WorldWideScience

Sample records for quantitative perfusion measurement

  1. Semi-quantitative myocardial perfusion measured by computed tomography in patients with refractory angina

    DEFF Research Database (Denmark)

    Qayyum, Abbas Ali; Kühl, Jørgen Tobias; Kjaer, Andreas

    2017-01-01

    INTRODUCTION: Computed tomography (CT) is a novel method for assessment of myocardial perfusion and has not yet been compared to rubidium-82 positron emission tomography (PET). We aimed to compare CT measured semi-quantitative myocardial perfusion with absolute quantified myocardial perfusion usi...

  2. Consideration of Normal Variation of Perfusion Measurements in the Quantitative Analysis of Myocardial Perfusion SPECT: Usefulness in Assessment of Viable Myocardium

    International Nuclear Information System (INIS)

    Paeng, Jin Chul; Lim, Il Han; Kim, Ki Bong; Lee, Dong Soo

    2008-01-01

    Although automatic quantification software of myocardial perfusion SPECT provides highly objective and reproducible quantitative measurements, there is still some limitation in the direct use of quantitative measurements. In this study we derived parameters using normal variation of perfusion measurements, and tried to test the usefulness of these parameters. In order to calculate normal variation of perfusion measurements on myocardial perfusion SPECT, 55 patients (M:F=28:27) of low-likelihood for coronary artery disease were enrolled and 201 Tl rest / 99m Tc-MIBI stress SPECT studies were performed. Using 20-segment model, mean (m) and standard deviation (SD) of perfusion were calculated in each segment. As a myocardial viability assessment group, another 48 patients with known coronary artery disease, who underwent coronary artery bypass graft surgery (CABG) were enrolled. 201 Tl rest / 99m Tc-MIBI stress / 201 Tl 24-hr delayed SPECT was performed before CABG and SPECT was followed up 3 months after CABG. From the preoperative 24-hr delayed SPECT, Q delay (perfusion measurement), Δ delay (Q delay .m) and Z delay ((Q delay .m)/SD) were defined and diagnostic performances of them for myocardial viability were evaluated using area under curve (AUC) on receiver operating characteristic (ROC) curve analysis. Segmental perfusion measurements showed considerable normal variations among segments. In men, the lowest segmental perfusion measurement was 51.8±6.5 and the highest segmental perfusion was 87.0±5.9, and they are 58.7±8.1 and 87.3±6.0, respectively in women. In the viability assessment, Q delay showed AUC of 0.633, while those for Δ delay and Z delay were 0.735 and 0.716, respectively. The AUCs of Δ delay and Z delay were significantly higher than that of Q delay (p=0.001 and 0.018, respectively). The diagnostic performance of Δ delay , which showed highest AUC, was 85% of sensitivity and 53% of specificity at the optimal cutoff of -24.7. On automatic

  3. Quantitative lung perfusion evaluation using Fourier decomposition perfusion MRI.

    Science.gov (United States)

    Kjørstad, Åsmund; Corteville, Dominique M R; Fischer, Andre; Henzler, Thomas; Schmid-Bindert, Gerald; Zöllner, Frank G; Schad, Lothar R

    2014-08-01

    To quantitatively evaluate lung perfusion using Fourier decomposition perfusion MRI. The Fourier decomposition (FD) method is a noninvasive method for assessing ventilation- and perfusion-related information in the lungs, where the perfusion maps in particular have shown promise for clinical use. However, the perfusion maps are nonquantitative and dimensionless, making follow-ups and direct comparisons between patients difficult. We present an approach to obtain physically meaningful and quantifiable perfusion maps using the FD method. The standard FD perfusion images are quantified by comparing the partially blood-filled pixels in the lung parenchyma with the fully blood-filled pixels in the aorta. The percentage of blood in a pixel is then combined with the temporal information, yielding quantitative blood flow values. The values of 10 healthy volunteers are compared with SEEPAGE measurements which have shown high consistency with dynamic contrast enhanced-MRI. All pulmonary blood flow (PBF) values are within the expected range. The two methods are in good agreement (mean difference = 0.2 mL/min/100 mL, mean absolute difference = 11 mL/min/100 mL, mean PBF-FD = 150 mL/min/100 mL, mean PBF-SEEPAGE = 151 mL/min/100 mL). The Bland-Altman plot shows a good spread of values, indicating no systematic bias between the methods. Quantitative lung perfusion can be obtained using the Fourier Decomposition method combined with a small amount of postprocessing. Copyright © 2013 Wiley Periodicals, Inc.

  4. Quantitative dual energy CT measurements in rabbit VX2 liver tumors: Comparison to perfusion CT measurements and histopathological findings

    International Nuclear Information System (INIS)

    Zhang, Long Jiang; Wu, Shengyong; Wang, Mei; Lu, Li; Chen, Bo; Jin, Lixin; Wang, Jiandong; Larson, Andrew C.; Lu, Guang Ming

    2012-01-01

    Purpose: To evaluate the correlation between quantitative dual energy CT and perfusion CT measurements in rabbit VX2 liver tumors. Materials and methods: This study was approved by the institutional animal care and use committee at our institution. Nine rabbits with VX2 liver tumors underwent contrast-enhanced dual energy CT and perfusion CT. CT attenuation for the tumors and normal liver parenchyma and tumor-to-liver ratio were obtained at the 140 kVp, 80 kVp, average weighted images and dual energy CT iodine maps. Quantitative parameters for the viable tumor and adjacent liver were measured with perfusion CT. The correlation between the enhancement values of the tumor in iodine maps and perfusion CT parameters of each tumor was analyzed. Radiation dose from dual energy CT and perfusion CT was measured. Results: Enhancement values for the tumor were higher than that for normal liver parenchyma at the hepatic arterial phase (P < 0.05). The highest tumor-to-liver ratio was obtained in hepatic arterial phase iodine map. Hepatic blood flow of the tumor was higher than that for adjacent liver (P < 0.05). Enhancement values of hepatic tumors in the iodine maps positively correlated with permeability of capillary vessel surface (r = 0.913, P < 0.001), hepatic blood flow (r = 0.512, P = 0.010), and hepatic blood volume (r = 0.464, P = 0.022) at the hepatic arterial phases. The effective radiation dose from perfusion CT was higher than that from DECT (P < 0.001). Conclusions: The enhancement values for viable tumor tissues measured in iodine maps were well correlated to perfusion CT measurements in rabbit VX2 liver tumors. Compared with perfusion CT, dual energy CT of the liver required a lower radiation dose.

  5. Standardized perfusion value of the esophageal carcinoma and its correlation with quantitative CT perfusion parameter values

    Energy Technology Data Exchange (ETDEWEB)

    Djuric-Stefanovic, A., E-mail: avstefan@eunet.rs [Faculty of Medicine, University of Belgrade, Belgrade (Serbia); Unit of Digestive Radiology (First University Surgical Clinic), Center of Radiology and MR, Clinical Center of Serbia, Belgrade (Serbia); Saranovic, Dj., E-mail: crvzve4@gmail.com [Faculty of Medicine, University of Belgrade, Belgrade (Serbia); Unit of Digestive Radiology (First University Surgical Clinic), Center of Radiology and MR, Clinical Center of Serbia, Belgrade (Serbia); Sobic-Saranovic, D., E-mail: dsobic2@gmail.com [Faculty of Medicine, University of Belgrade, Belgrade (Serbia); Center of Nuclear Medicine, Clinical Center of Serbia, Belgrade (Serbia); Masulovic, D., E-mail: draganmasulovic@yahoo.com [Faculty of Medicine, University of Belgrade, Belgrade (Serbia); Unit of Digestive Radiology (First University Surgical Clinic), Center of Radiology and MR, Clinical Center of Serbia, Belgrade (Serbia); Artiko, V., E-mail: veraart@beotel.rs [Faculty of Medicine, University of Belgrade, Belgrade (Serbia); Center of Nuclear Medicine, Clinical Center of Serbia, Belgrade (Serbia)

    2015-03-15

    Purpose: Standardized perfusion value (SPV) is a universal indicator of tissue perfusion, normalized to the whole-body perfusion, which was proposed to simplify, unify and allow the interchangeability among the perfusion measurements and comparison between the tumor perfusion and metabolism. The aims of our study were to assess the standardized perfusion value (SPV) of the esophageal carcinoma, and its correlation with quantitative CT perfusion measurements: blood flow (BF), blood volume (BV), mean transit time (MTT) and permeability surface area product (PS) of the same tumor volume samples, which were obtained by deconvolution-based CT perfusion analysis. Methods: Forty CT perfusion studies of the esophageal cancer were analyzed, using the commercial deconvolution-based CT perfusion software (Perfusion 3.0, GE Healthcare). The SPV of the esophageal tumor and neighboring skeletal muscle were correlated with the corresponding mean tumor and muscle quantitative CT perfusion parameter values, using Spearman's rank correlation coefficient (r{sub S}). Results: Median SPV of the esophageal carcinoma (7.1; range: 2.8–13.4) significantly differed from the SPV of the skeletal muscle (median: 1.0; range: 0.4–2.4), (Z = −5.511, p < 0.001). The cut-off value of the SPV of 2.5 enabled discrimination of esophageal cancer from the skeletal muscle with sensitivity and specificity of 100%. SPV of the esophageal carcinoma significantly correlated with corresponding tumor BF (r{sub S} = 0.484, p = 0.002), BV (r{sub S} = 0.637, p < 0.001) and PS (r{sub S} = 0.432, p = 0.005), and SPV of the skeletal muscle significantly correlated with corresponding muscle BF (r{sub S} = 0.573, p < 0.001), BV (r{sub S} = 0.849, p < 0.001) and PS (r{sub S} = 0.761, p < 0.001). Conclusions: We presented a database of the SPV for the esophageal cancer and proved that SPV of the esophageal neoplasm significantly differs from the SPV of the skeletal muscle, which represented a sample of healthy

  6. Quantitative aspects of myocardial perfusion imaging

    International Nuclear Information System (INIS)

    Vogel, R.A.

    1980-01-01

    Myocardial perfusion measurements have traditionally been performed in a quantitative fashion using application of the Sapirstein, Fick, Kety-Schmidt, or compartmental analysis principles. Although global myocardial blood flow measurements have not proven clinically useful, regional determinations have substantially advanced our understanding of and ability to detect myocardial ischemia. With the introduction of thallium-201, such studies have become widely available, although these have generally undergone qualitative evaluation. Using computer-digitized data, several methods for the quantification of myocardial perfusion images have been introduced. These include orthogonal and polar coordinate systems and anatomically oriented region of interest segmentation. Statistical ranges of normal and time-activity analyses have been applied to these data, resulting in objective and reproducible means of data evaluation

  7. Diagnostic performance of semi-quantitative and quantitative stress CMR perfusion analysis: a meta-analysis.

    Science.gov (United States)

    van Dijk, R; van Assen, M; Vliegenthart, R; de Bock, G H; van der Harst, P; Oudkerk, M

    2017-11-27

    Stress cardiovascular magnetic resonance (CMR) perfusion imaging is a promising modality for the evaluation of coronary artery disease (CAD) due to high spatial resolution and absence of radiation. Semi-quantitative and quantitative analysis of CMR perfusion are based on signal-intensity curves produced during the first-pass of gadolinium contrast. Multiple semi-quantitative and quantitative parameters have been introduced. Diagnostic performance of these parameters varies extensively among studies and standardized protocols are lacking. This study aims to determine the diagnostic accuracy of semi- quantitative and quantitative CMR perfusion parameters, compared to multiple reference standards. Pubmed, WebOfScience, and Embase were systematically searched using predefined criteria (3272 articles). A check for duplicates was performed (1967 articles). Eligibility and relevance of the articles was determined by two reviewers using pre-defined criteria. The primary data extraction was performed independently by two researchers with the use of a predefined template. Differences in extracted data were resolved by discussion between the two researchers. The quality of the included studies was assessed using the 'Quality Assessment of Diagnostic Accuracy Studies Tool' (QUADAS-2). True positives, false positives, true negatives, and false negatives were subtracted/calculated from the articles. The principal summary measures used to assess diagnostic accuracy were sensitivity, specificity, andarea under the receiver operating curve (AUC). Data was pooled according to analysis territory, reference standard and perfusion parameter. Twenty-two articles were eligible based on the predefined study eligibility criteria. The pooled diagnostic accuracy for segment-, territory- and patient-based analyses showed good diagnostic performance with sensitivity of 0.88, 0.82, and 0.83, specificity of 0.72, 0.83, and 0.76 and AUC of 0.90, 0.84, and 0.87, respectively. In per territory

  8. Prognostic Value of Quantitative Stress Perfusion Cardiac Magnetic Resonance.

    Science.gov (United States)

    Sammut, Eva C; Villa, Adriana D M; Di Giovine, Gabriella; Dancy, Luke; Bosio, Filippo; Gibbs, Thomas; Jeyabraba, Swarna; Schwenke, Susanne; Williams, Steven E; Marber, Michael; Alfakih, Khaled; Ismail, Tevfik F; Razavi, Reza; Chiribiri, Amedeo

    2018-05-01

    This study sought to evaluate the prognostic usefulness of visual and quantitative perfusion cardiac magnetic resonance (CMR) ischemic burden in an unselected group of patients and to assess the validity of consensus-based ischemic burden thresholds extrapolated from nuclear studies. There are limited data on the prognostic value of assessing myocardial ischemic burden by CMR, and there are none using quantitative perfusion analysis. Patients with suspected coronary artery disease referred for adenosine-stress perfusion CMR were included (n = 395; 70% male; age 58 ± 13 years). The primary endpoint was a composite of cardiovascular death, nonfatal myocardial infarction, aborted sudden death, and revascularization after 90 days. Perfusion scans were assessed visually and with quantitative analysis. Cross-validated Cox regression analysis and net reclassification improvement were used to assess the incremental prognostic value of visual or quantitative perfusion analysis over a baseline clinical model, initially as continuous covariates, then using accepted thresholds of ≥2 segments or ≥10% myocardium. After a median 460 days (interquartile range: 190 to 869 days) follow-up, 52 patients reached the primary endpoint. At 2 years, the addition of ischemic burden was found to increase prognostic value over a baseline model of age, sex, and late gadolinium enhancement (baseline model area under the curve [AUC]: 0.75; visual AUC: 0.84; quantitative AUC: 0.85). Dichotomized quantitative ischemic burden performed better than visual assessment (net reclassification improvement 0.043 vs. 0.003 against baseline model). This study was the first to address the prognostic benefit of quantitative analysis of perfusion CMR and to support the use of consensus-based ischemic burden thresholds by perfusion CMR for prognostic evaluation of patients with suspected coronary artery disease. Quantitative analysis provided incremental prognostic value to visual assessment and

  9. Resting quantitative cerebral blood flow in schizophrenia measured by pulsed arterial spin labeling perfusion MRI

    OpenAIRE

    Pinkham, Amy; Loughead, James; Ruparel, Kosha; Wu, Wen-Chau; Overton, Eve; Gur, Raquel; Gur, Ruben

    2011-01-01

    Arterial spin labeling imaging (ASL) perfusion MRI is a relatively novel technique that can allow for quantitative measurement of cerebral blood flow (CBF) by using magnetically labeled arterial blood water as an endogenous tracer. Available data on resting CBF in schizophrenia primarily comes from invasive and expensive nuclear medicine techniques that are often limited to small samples and yield mixed results. The noninvasive nature of ASL offers promise for larger-scale studies. The utilit...

  10. Measurement of myocardial perfusion using magnetic resonance

    DEFF Research Database (Denmark)

    Fritz-Hansen, T.; Jensen, L.T.; Larsson, H.B.

    2008-01-01

    Cardiac magnetic resonance imaging (MRI) has evolved rapidly. Recent developments have made non-invasive quantitative myocardial perfusion measurements possible. MRI is particularly attractive due to its high spatial resolution and because it does not involve ionising radiation. This paper reviews...... myocardial perfusion imaging with MR contrast agents: methods, validation and experiences from clinical studies. Unresolved issues still restrict the use of these techniques to research although clinical applications are within reach Udgivelsesdato: 2008/12/8...

  11. Patient-specific coronary blood supply territories for quantitative perfusion analysis

    Science.gov (United States)

    Zakkaroff, Constantine; Biglands, John D.; Greenwood, John P.; Plein, Sven; Boyle, Roger D.; Radjenovic, Aleksandra; Magee, Derek R.

    2018-01-01

    Abstract Myocardial perfusion imaging, coupled with quantitative perfusion analysis, provides an important diagnostic tool for the identification of ischaemic heart disease caused by coronary stenoses. The accurate mapping between coronary anatomy and under-perfused areas of the myocardium is important for diagnosis and treatment. However, in the absence of the actual coronary anatomy during the reporting of perfusion images, areas of ischaemia are allocated to a coronary territory based on a population-derived 17-segment (American Heart Association) AHA model of coronary blood supply. This work presents a solution for the fusion of 2D Magnetic Resonance (MR) myocardial perfusion images and 3D MR angiography data with the aim to improve the detection of ischaemic heart disease. The key contribution of this work is a novel method for the mediated spatiotemporal registration of perfusion and angiography data and a novel method for the calculation of patient-specific coronary supply territories. The registration method uses 4D cardiac MR cine series spanning the complete cardiac cycle in order to overcome the under-constrained nature of non-rigid slice-to-volume perfusion-to-angiography registration. This is achieved by separating out the deformable registration problem and solving it through phase-to-phase registration of the cine series. The use of patient-specific blood supply territories in quantitative perfusion analysis (instead of the population-based model of coronary blood supply) has the potential of increasing the accuracy of perfusion analysis. Quantitative perfusion analysis diagnostic accuracy evaluation with patient-specific territories against the AHA model demonstrates the value of the mediated spatiotemporal registration in the context of ischaemic heart disease diagnosis. PMID:29392098

  12. Feasibility of high-resolution quantitative perfusion analysis in patients with heart failure.

    Science.gov (United States)

    Sammut, Eva; Zarinabad, Niloufar; Wesolowski, Roman; Morton, Geraint; Chen, Zhong; Sohal, Manav; Carr-White, Gerry; Razavi, Reza; Chiribiri, Amedeo

    2015-02-12

    Cardiac magnetic resonance (CMR) is playing an expanding role in the assessment of patients with heart failure (HF). The assessment of myocardial perfusion status in HF can be challenging due to left ventricular (LV) remodelling and wall thinning, coexistent scar and respiratory artefacts. The aim of this study was to assess the feasibility of quantitative CMR myocardial perfusion analysis in patients with HF. A group of 58 patients with heart failure (HF; left ventricular ejection fraction, LVEF ≤ 50%) and 33 patients with normal LVEF (LVEF >50%), referred for suspected coronary artery disease, were studied. All subjects underwent quantitative first-pass stress perfusion imaging using adenosine according to standard acquisition protocols. The feasibility of quantitative perfusion analysis was then assessed using high-resolution, 3 T kt perfusion and voxel-wise Fermi deconvolution. 30/58 (52%) subjects in the HF group had underlying ischaemic aetiology. Perfusion abnormalities were seen amongst patients with ischaemic HF and patients with normal LV function. No regional perfusion defect was observed in the non-ischaemic HF group. Good agreement was found between visual and quantitative analysis across all groups. Absolute stress perfusion rate, myocardial perfusion reserve (MPR) and endocardial-epicardial MPR ratio identified areas with abnormal perfusion in the ischaemic HF group (p = 0.02; p = 0.04; p = 0.02, respectively). In the Normal LV group, MPR and endocardial-epicardial MPR ratio were able to distinguish between normal and abnormal segments (p = 0.04; p = 0.02 respectively). No significant differences of absolute stress perfusion rate or MPR were observed comparing visually normal segments amongst groups. Our results demonstrate the feasibility of high-resolution voxel-wise perfusion assessment in patients with HF.

  13. In-vivo quantitative evaluation of perfusion zones and perfusion gradient in the deep inferior epigastric artery perforator flap

    Science.gov (United States)

    Saint-Cyr, Michel; Lakhiani, Chrisovalantis; Cheng, Angela; Mangum, Michael; Liang, Jinyang; Teotia, Sumeet; Livingston, Edward H.; Zuzak, Karel J.

    2013-03-01

    The selection of well-vascularized tissue during DIEP flap harvest remains controversial. While several studies have elucidated cross-midline perfusion, further characterization of perfusion to the ipsilateral hemiabdomen is necessary for minimizing rates of fat necrosis or partial fat necrosis in bilateral DIEP flaps. Eighteen patients (29 flaps) underwent DIEP flap harvest using a prospectively designed protocol. Perforators were marked and imaged with a novel system for quantitatively measuring tissue oxygenation, the Digital Light Hyperspectral Imager. Images were then analyzed to determine if perforator selection influenced ipsilateral flap perfusion. Flaps based on a single lateral row perforator (SLRP) were found to have a higher level of hemoglobin oxygenation in Zone I (mean %HbO2 = 76.1) compared to single medial row perforator (SMRP) flaps (%HbO2 = 71.6). Perfusion of Zone III relative to Zone I was similar between SLRP and SMRP flaps (97.4% vs. 97.9%, respectively). These differences were not statistically significant (p>0.05). Perfusion to the lateral edge of the flap was slightly greater for SLRP flaps compared SMRP flaps (92.1% vs. 89.5%, respectively). SMRP flaps had superior perfusion travelling inferiorly compared to SLRP flaps (88.8% vs. 83.9%, respectively). Overall, it was observed that flaps were better perfused in the lateral direction than inferiorly. Significant differences in perfusion gradients directed inferiorly or laterally were observed, and perforator selection influenced perfusion in the most distal or inferior aspects of the flap. This suggests broader clinical implications for flap design that merit further investigation.

  14. Simulation evaluation of quantitative myocardial perfusion assessment from cardiac CT

    Science.gov (United States)

    Bindschadler, Michael; Modgil, Dimple; Branch, Kelley R.; La Riviere, Patrick J.; Alessio, Adam M.

    2014-03-01

    Contrast enhancement on cardiac CT provides valuable information about myocardial perfusion and methods have been proposed to assess perfusion with static and dynamic acquisitions. There is a lack of knowledge and consensus on the appropriate approach to ensure 1) sufficient diagnostic accuracy for clinical decisions and 2) low radiation doses for patient safety. This work developed a thorough dynamic CT simulation and several accepted blood flow estimation techniques to evaluate the performance of perfusion assessment across a range of acquisition and estimation scenarios. Cardiac CT acquisitions were simulated for a range of flow states (Flow = 0.5, 1, 2, 3 ml/g/min, cardiac output = 3,5,8 L/min). CT acquisitions were simulated with a validated CT simulator incorporating polyenergetic data acquisition and realistic x-ray flux levels for dynamic acquisitions with a range of scenarios including 1, 2, 3 sec sampling for 30 sec with 25, 70, 140 mAs. Images were generated using conventional image reconstruction with additional image-based beam hardening correction to account for iodine content. Time attenuation curves were extracted for multiple regions around the myocardium and used to estimate flow. In total, 2,700 independent realizations of dynamic sequences were generated and multiple MBF estimation methods were applied to each of these. Evaluation of quantitative kinetic modeling yielded blood flow estimates with an root mean square error (RMSE) of ~0.6 ml/g/min averaged across multiple scenarios. Semi-quantitative modeling and qualitative static imaging resulted in significantly more error (RMSE = ~1.2 and ~1.2 ml/min/g respectively). For quantitative methods, dose reduction through reduced temporal sampling or reduced tube current had comparable impact on the MBF estimate fidelity. On average, half dose acquisitions increased the RMSE of estimates by only 18% suggesting that substantial dose reductions can be employed in the context of quantitative myocardial

  15. Quantitative Renal Cortical Perfusion in Human Subjects with Magnetic Resonance Imaging Using Iron-Oxide Nanoparticles: Influence of T1 Shortening

    Energy Technology Data Exchange (ETDEWEB)

    Morell, A.; Ahlstrom, H.; Schoenberg, S.O.; Abildgaard, A.; Bock, M.; Bjoernerud, A. (Dept. of Diagnostic Radiology, Uppsala Univ. Hospital, Uppsala (Sweden))

    2008-10-15

    Background: Using conventional contrast agents, the technique of quantitative perfusion by observing the transport of a bolus with magnetic resonance imaging (MRI) is limited to the brain due to extravascular leakage. Purpose: To perform quantitative perfusion measurements in humans with an intravascular contrast agent, and to estimate the influence of the T1 relaxivity of the contrast agent on the first-pass response. Material and Methods: Renal cortical perfusion was measured quantitatively in six patients with unilateral renal artery stenosis using a rapid gradient double-echo sequence in combination with an intravenous bolus injection of NC100150 Injection, an intravascular contrast agent based on iron-oxide nanoparticles. The influence of T1 relaxivity was measured by comparing perfusion results based on single- and double-echo data. Results: The mean values of cortical blood flow, cortical blood volume, and mean transit time in the normal kidneys were measured to 339+-60 ml/min/100 g, 41+-8 ml/100 g, and 7.3+-1.0 s, respectively, based on double-echo data. The corresponding results based on single-echo data, which are not compensated for the T1 relaxivity, were 254+-47 ml/min/100 g, 27+-3 ml/100 g, and 6+-1.2 s, respectively. Conclusion: The use of a double-echo sequence enabled elimination of confounding T1 effects and consequent systematic underestimation of the perfusion.

  16. Quantitative analysis of pulmonary perfusion using time-resolved parallel 3D MRI - initial results

    International Nuclear Information System (INIS)

    Fink, C.; Buhmann, R.; Plathow, C.; Puderbach, M.; Kauczor, H.U.; Risse, F.; Ley, S.; Meyer, F.J.

    2004-01-01

    Purpose: to assess the use of time-resolved parallel 3D MRI for a quantitative analysis of pulmonary perfusion in patients with cardiopulmonary disease. Materials and methods: eight patients with pulmonary embolism or pulmonary hypertension were examined with a time-resolved 3D gradient echo pulse sequence with parallel imaging techniques (FLASH 3D, TE/TR: 0.8/1.9 ms; flip angle: 40 ; GRAPPA). A quantitative perfusion analysis based on indicator dilution theory was performed using a dedicated software. Results: patients with pulmonary embolism or chronic thromboembolic pulmonary hypertension revealed characteristic wedge-shaped perfusion defects at perfusion MRI. They were characterized by a decreased pulmonary blood flow (PBF) and pulmonary blood volume (PBV) and increased mean transit time (MTT). Patients with primary pulmonary hypertension or eisenmenger syndrome showed a more homogeneous perfusion pattern. The mean MTT of all patients was 3.3 - 4.7 s. The mean PBF and PBV showed a broader interindividual variation (PBF: 104-322 ml/100 ml/min; PBV: 8 - 21 ml/100 ml). Conclusion: time-resolved parallel 3D MRI allows at least a semi-quantitative assessment of lung perfusion. Future studies will have to assess the clinical value of this quantitative information for the diagnosis and management of cardiopulmonary disease. (orig.) [de

  17. Quantitation of Brown Adipose Tissue Perfusion in Transgenic Mice Using Near-Infrared Fluorescence Imaging

    Directory of Open Access Journals (Sweden)

    Akira Nakayama

    2003-01-01

    Full Text Available Brown adipose tissue (BAT; brown fat is the principal site of adaptive thermogenesis in the human newborn and other small mammals. Of paramount importance for thermogenesis is vascular perfusion, which controls the flow of cool blood in, and warmed blood out, of BAT. We have developed an optical method for the quantitative imaging of BAT perfusion in the living, intact animal using the heptamethine indocyanine IR-786 and near-infrared (NIR fluorescent light. We present a detailed analysis of the physical, chemical, and cellular properties of IR-786, its biodistribution and pharmacokinetics, and its uptake into BAT. Using transgenic animals with homozygous deletion of Type II iodothyronine deiodinase, or homozygous deletion of uncoupling proteins (UCPs 1 and 2, we demonstrate that BAT perfusion can be measured noninvasively, accurately, and reproducibly. Using these techniques, we show that UCP 1/2 knockout animals, when compared to wild-type animals, have a higher baseline perfusion of BAT but a similar maximal response to β3-receptor agonist. These results suggest that compensation for UCP deletion is mediated, in part, by the control of BAT perfusion. Taken together, BAT perfusion can now be measured noninvasively using NIR fluorescent light, and pharmacological modulators of thermogenesis can be screened at relatively high throughput in living animals.

  18. Quantitative myocardial perfusion from static cardiac and dynamic arterial CT

    Science.gov (United States)

    Bindschadler, Michael; Branch, Kelley R.; Alessio, Adam M.

    2018-05-01

    Quantitative myocardial blood flow (MBF) estimation by dynamic contrast enhanced cardiac computed tomography (CT) requires multi-frame acquisition of contrast transit through the blood pool and myocardium to inform the arterial input and tissue response functions. Both the input and the tissue response functions for the entire myocardium are sampled with each acquisition. However, the long breath holds and frequent sampling can result in significant motion artifacts and relatively high radiation dose. To address these limitations, we propose and evaluate a new static cardiac and dynamic arterial (SCDA) quantitative MBF approach where (1) the input function is well sampled using either prediction from pre-scan timing bolus data or measured from dynamic thin slice ‘bolus tracking’ acquisitions, and (2) the whole-heart tissue response data is limited to one contrast enhanced CT acquisition. A perfusion model uses the dynamic arterial input function to generate a family of possible myocardial contrast enhancement curves corresponding to a range of MBF values. Combined with the timing of the single whole-heart acquisition, these curves generate a lookup table relating myocardial contrast enhancement to quantitative MBF. We tested the SCDA approach in 28 patients that underwent a full dynamic CT protocol both at rest and vasodilator stress conditions. Using measured input function plus single (enhanced CT only) or plus double (enhanced and contrast free baseline CT’s) myocardial acquisitions yielded MBF estimates with root mean square (RMS) error of 1.2 ml/min/g and 0.35 ml/min/g, and radiation dose reductions of 90% and 83%, respectively. The prediction of the input function based on timing bolus data and the static acquisition had an RMS error compared to the measured input function of 26.0% which led to MBF estimation errors greater than threefold higher than using the measured input function. SCDA presents a new, simplified approach for quantitative

  19. Quantitative Myocardial Perfusion Imaging Versus Visual Analysis in Diagnosing Myocardial Ischemia: A CE-MARC Substudy.

    Science.gov (United States)

    Biglands, John D; Ibraheem, Montasir; Magee, Derek R; Radjenovic, Aleksandra; Plein, Sven; Greenwood, John P

    2018-05-01

    This study sought to compare the diagnostic accuracy of visual and quantitative analyses of myocardial perfusion cardiovascular magnetic resonance against a reference standard of quantitative coronary angiography. Visual analysis of perfusion cardiovascular magnetic resonance studies for assessing myocardial perfusion has been shown to have high diagnostic accuracy for coronary artery disease. However, only a few small studies have assessed the diagnostic accuracy of quantitative myocardial perfusion. This retrospective study included 128 patients randomly selected from the CE-MARC (Clinical Evaluation of Magnetic Resonance Imaging in Coronary Heart Disease) study population such that the distribution of risk factors and disease status was proportionate to the full population. Visual analysis results of cardiovascular magnetic resonance perfusion images, by consensus of 2 expert readers, were taken from the original study reports. Quantitative myocardial blood flow estimates were obtained using Fermi-constrained deconvolution. The reference standard for myocardial ischemia was a quantitative coronary x-ray angiogram stenosis severity of ≥70% diameter in any coronary artery of >2 mm diameter, or ≥50% in the left main stem. Diagnostic performance was calculated using receiver-operating characteristic curve analysis. The area under the curve for visual analysis was 0.88 (95% confidence interval: 0.81 to 0.95) with a sensitivity of 81.0% (95% confidence interval: 69.1% to 92.8%) and specificity of 86.0% (95% confidence interval: 78.7% to 93.4%). For quantitative stress myocardial blood flow the area under the curve was 0.89 (95% confidence interval: 0.83 to 0.96) with a sensitivity of 87.5% (95% confidence interval: 77.3% to 97.7%) and specificity of 84.5% (95% confidence interval: 76.8% to 92.3%). There was no statistically significant difference between the diagnostic performance of quantitative and visual analyses (p = 0.72). Incorporating rest myocardial

  20. A model for post-occlusive reactive hyperemia as measured with laser-Doppler perfusion monitoring

    NARCIS (Netherlands)

    de Mul, FFM; Morales, F; Smit, AJ; Graaff, R

    To facilitate the quantitative analysis of post-occlusive reactive fiyper emia (POR11), measured with laser-Doppler perfusion monitoring (LDPM) on extremities, we present a flow model for the dynamics of the perfusion of the tissue during PORH, based on three parameters: two time constants (tau(1)

  1. Application of myocardial perfusion quantitative imaging for the evaluation of therapeutic effect in canine with myocardial infarction

    International Nuclear Information System (INIS)

    Liang Hong; Chen Ju; Liu Sheng; Zeng Shiquan

    2000-01-01

    Myocardial blood perfusion (MBP) ECT and quantitative analysis were performed in 10 canines with experimental acute myocardial infarct (AMI). The accuracy of main myocardial quantitative index, including defect volume (DV) and defect fraction (DF), was estimated and correlated with histochemical staining (HS) of infarcted area. Other 21/AMI canines were divided into Nd:YAG laser trans-myocardial revascularization treated group LTMR and control group. All canines were performed MBP ECT after experimental AMI. Results found that the infarcted volume (IV) measured by HS has well correlated (r 0.88) with DV estimated by myocardial quantitative analysis. But the DF values calculated by both methods was not significantly different (t = 1.28 P > 0.05). In LTMR group 27.5% +- 3.9%, the DF is smaller than control group 32.1% +- 4.6% (t = 2.49 P 99m Tc-MIBI myocardial perfusion SPECT and quantitative study can accurately predict the myocardial blood flow and magnitude of injured myocardium. Nd:YAG LTMR could improve myocardial blood perfusion of ischemic myocardium and decrease effectively the infarct areas

  2. Quantitative assessment of the brain perfusion using the short-lived isotope 195m-Au

    International Nuclear Information System (INIS)

    Lindner, P.; Nickel, O.

    1985-01-01

    The possibilities of quantitatively assessing the brain perfusion on the basis of a modified transit time theory, using the favourable properties of the ultrashort-lived isotope 195m-Au, are shown. The intravascular deposition of the isotope 195m-Au enables quantitative brain perfusion studies based on both the dorsal and lateral projection. The 195m-Au isotope has a half-life of 30 sec and is able to be eluated from the 195m-Hg 195m-Au generator (Byk-Mallinckrodt). The quantification of brain perfusion (in terms of ml/min/100 g) is based on a recently published theory for non-diffusing radio-indicators, using a first-pass technique. This method of quantification corresponds to a modification of the transit time theory from Maier and Zierler (1) and accounts for the influences of dispersion and recirculation of an intravenously injected non-diffused tracer bolus (2, 3). The energy spectrum of the eluate from the generator shows two lines of high intensity at 262 keV and 68 keV. The low-energy peak is suited for the lateral view, i.e. brain perfusion studies of one hemisphere, without a significant 'look-through-effect'. The high-energy peak is successfully used for dorsal projections of brain perfusion studies. An examination takes less time than one minute and can be repeated after three minutes. Dynamic brain perfusion studies enable parametric images of the quantitative regional brain perfusion distribution, or the reciprocal mean transit times, to be obtained by calculation. Infarcted areas are able to be visualized with high sensitivity. Quantitative perfusion patterns during activation of the visual centre are detectable. The advantages of this method are discussed. (orig.) [de

  3. Noninvasive measurements of regional cerebral perfusion in preterm and term neonates by magnetic resonance arterial spin labeling

    DEFF Research Database (Denmark)

    Miranda Gimenez-Ricco, Maria Jo; Olofsson, K; Sidaros, Karam

    2006-01-01

    Magnetic resonance arterial spin labeling (ASL) at 3 Tesla has been investigated as a quantitative technique for measuring regional cerebral perfusion (RCP) in newborn infants. RCP values were measured in 49 healthy neonates: 32 preterm infants born before 34 wk of gestation and 17 term-born neon......Magnetic resonance arterial spin labeling (ASL) at 3 Tesla has been investigated as a quantitative technique for measuring regional cerebral perfusion (RCP) in newborn infants. RCP values were measured in 49 healthy neonates: 32 preterm infants born before 34 wk of gestation and 17 term...

  4. Quantitative assessment of angiographic perfusion reduction using color-coded digital subtraction angiography during transarterial chemoembolization.

    Science.gov (United States)

    Wang, Ji; Cheng, Jie-Jun; Huang, Kai-Yi; Zhuang, Zhi-Guo; Zhang, Xue-Bin; Chi, Jia-Chang; Hua, Xiao-Lan; Xu, Jian-Rong

    2016-03-01

    The aim of this study was to develop a quantitative measurement of perfusion reduction using color-coded digital subtraction angiography (ccDSA) to monitor intra-procedural arterial stasis during TACE. A total number of 35 patients with hepatocellular carcinoma who had undergone TACE were enrolled into the study. Pre- and post-two-dimensional digital subtraction angiography scans were conducted with same protocol and post-processed with ccDSA prototype software. Time-contrast-intensity (CI[t]) curve was obtained by region-of-interest (ROI) measurement on the generated ccDSA image. Quantitative 2D perfusion parameters time to peak, area under the curve (AUC), maximum upslope, and contrast intensity peak (CI-Peak) derived from the ROI-based CI[t] curve for pre- and post-TACE were evaluated to assess the reduction of antegrade blood flow and tumor blush. Relationships between 2D perfusion parameters, subjective angiographic chemoembolization endpoint (SACE) scale, and clinical outcomes were analyzed. Area normalized AUC and CI-Peak revealed significant reduction after the TACE (P SACE level III and a reduction ranging from 60% to 70% was equivalent to SACE level IV. For intermediate reduction (SACE level III), better tumor response was found after TACE rather than a higher reduction (SACE level IV). ccDSA application provides an objective approach to quantify the perfusion reduction and subjectively evaluate the arterial stasis of antegrade blood flow and tumor blush caused by TACE.

  5. Quantitative 4D Transcatheter Intraarterial Perfusion MR Imaging as a Method to Standardize Angiographic Chemoembolization Endpoints

    Science.gov (United States)

    Jin, Brian; Wang, Dingxin; Lewandowski, Robert J.; Ryu, Robert K.; Sato, Kent T.; Larson, Andrew C.; Salem, Riad; Omary, Reed A.

    2011-01-01

    PURPOSE We aimed to test the hypothesis that subjective angiographic endpoints during transarterial chemoembolization (TACE) of hepatocellular carcinoma (HCC) exhibit consistency and correlate with objective intraprocedural reductions in tumor perfusion as determined by quantitative four dimensional (4D) transcatheter intraarterial perfusion (TRIP) magnetic resonance (MR) imaging. MATERIALS AND METHODS This prospective study was approved by the institutional review board. Eighteen consecutive patients underwent TACE in a combined MR/interventional radiology (MR-IR) suite. Three board-certified interventional radiologists independently graded the angiographic endpoint of each procedure based on a previously described subjective angiographic chemoembolization endpoint (SACE) scale. A consensus SACE rating was established for each patient. Patients underwent quantitative 4D TRIP-MR imaging immediately before and after TACE, from which mean whole tumor perfusion (Fρ) was calculated. Consistency of SACE ratings between observers was evaluated using the intraclass correlation coefficient (ICC). The relationship between SACE ratings and intraprocedural TRIP-MR imaging perfusion changes was evaluated using Spearman’s rank correlation coefficient. RESULTS The SACE rating scale demonstrated very good consistency among all observers (ICC = 0.80). The consensus SACE rating was significantly correlated with both absolute (r = 0.54, P = 0.022) and percent (r = 0.85, P SACE rating scale demonstrates very good consistency between raters, and significantly correlates with objectively measured intraprocedural perfusion reductions during TACE. These results support the use of the SACE scale as a standardized alternative method to quantitative 4D TRIP-MR imaging to classify patients based on embolic endpoints of TACE. PMID:22021520

  6. Magnetic resonance perfusion imaging without contrast media

    International Nuclear Information System (INIS)

    Martirosian, Petros; Graf, Hansjoerg; Schick, Fritz; Boss, Andreas; Schraml, Christina; Schwenzer, Nina F.; Claussen, Claus D.

    2010-01-01

    Principles of magnetic resonance imaging techniques providing perfusion-related contrast weighting without administration of contrast media are reported and analysed systematically. Especially common approaches to arterial spin labelling (ASL) perfusion imaging allowing quantitative assessment of specific perfusion rates are described in detail. The potential of ASL for perfusion imaging was tested in several types of tissue. After a systematic comparison of technical aspects of continuous and pulsed ASL techniques the standard kinetic model and tissue properties of influence to quantitative measurements of perfusion are reported. For the applications demonstrated in this paper a flow-sensitive alternating inversion recovery (FAIR) ASL perfusion preparation approach followed by true fast imaging with steady precession (true FISP) data recording was developed and implemented on whole-body scanners operating at 0.2, 1.5 and 3 T for quantitative perfusion measurement in various types of tissue. ASL imaging provides a non-invasive tool for assessment of tissue perfusion rates in vivo. Images recorded from kidney, lung, brain, salivary gland and thyroid gland provide a spatial resolution of a few millimetres and sufficient signal to noise ratio in perfusion maps after 2-5 min of examination time. Newly developed ASL techniques provide especially high image quality and quantitative perfusion maps in tissues with relatively high perfusion rates (as also present in many tumours). Averaging of acquisitions and image subtraction procedures are mandatory, leading to the necessity of synchronization of data recording to breathing in abdominal and thoracic organs. (orig.)

  7. Reproducibility of quantitative planar thallium-201 scintigraphy: quantitative criteria for reversibility of myocardial perfusion defects

    International Nuclear Information System (INIS)

    Sigal, S.L.; Soufer, R.; Fetterman, R.C.; Mattera, J.A.; Wackers, F.J.

    1991-01-01

    Fifty-two paired stress/delayed planar 201 TI studies (27 exercise studies, 25 dipyridamole studies) were processed twice by seven technologists to assess inter- and intraobserver variability. The reproducibility was inversely related to the size of 201 Tl perfusion abnormalities. Intraobserver variability was not different between exercise and dipyridamole studies for lesions of similar size. Based upon intraobserver variability, objective quantitative criteria for reversibility of perfusion abnormalities were defined. These objective criteria were tested prospectively in a separate group of 35 201 Tl studies and compared with the subjective interpretation of quantitative circumferential profiles. Overall, exact agreement existed in 78% of images (kappa statistic k = 0.66). We conclude that quantification of planar 201 Tl scans is highly reproducible, with acceptable inter- and intraobserver variability. Objective criteria for lesion reversibility correlated well with analysis by experienced observers

  8. Quantitative hepatic CT perfusion measurement: Comparison of Couinaud's hepatic segments with dual-source 128-slice CT

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xuan [The Department of Radiology, Peking Union Medical College Hospital, Dongcheng District, Beijing, 100730 (China); Xue, Hua-dan, E-mail: bjdanna95@hotmail.com [The Department of Radiology, Peking Union Medical College Hospital, Dongcheng District, Beijing, 100730 (China); Jin, Zheng-yu, E-mail: jin_zhengyu@163.com [The Department of Radiology, Peking Union Medical College Hospital, Dongcheng District, Beijing, 100730 (China); Su, Bai-yan; Li, Zhuo; Sun, Hao; Chen, Yu; Liu, Wei [The Department of Radiology, Peking Union Medical College Hospital, Dongcheng District, Beijing, 100730 (China)

    2013-02-15

    Purpose: To compare the quantitative liver computed tomography perfusion (CTP) differences among eight hepatic segments. Materials and methods: This retrospective study was based on 72 acquired upper abdomen CTP scans for detecting suspected pancreas tumor. Patients with primary or metastatic liver tumor, any focal liver lesions except simple cyst (<3 cm in diameter), history of liver operation or splenectomy, evidence of liver cirrhosis or invasion of portal vein were excluded. The final analysis included 50 patients (M:F = 21:29, mean age = 43.2 years, 15–76 years). Arterial liver perfusion (ALP), portal-venous perfusion (PVP), total hepatic perfusion (THP = ALP + PVP), and hepatic perfusion index (HPI) of each hepatic segment were calculated and compared by means of one-way analysis of variance (ANOVA) and the Bonferonni correction method. Results: Compared to hepatic segments 5, 6, 7 and 8, segments 2 and 3 showed a tendency of higher ALPs, lower PVPs, and higher HPIs, most of which were statistically significant (p < 0.05). Hepatic segments 1 and 4 had higher mean values of ALP and HPI and lower mean values of PVP than segments 5, 6, 7 and 8 as well, although no significant differences were detected except for ALP and HPI for liver segments 1 and 7 (p = 0.001 and 0.035 respectively), and ALP for liver segments 1 and 5 (p = 0.039). Higher ALP and HPI were showed in hepatic segment 3 compared to segment 4 (p = 0.000 and 0.000 respectively). No significant differences were found for THP among eight segments. Conclusions: Intra-hepatic perfusion differences exist in normal hepatic parenchyma especially between lateral sector (segments 2 and 3) and right lobe (segments 5, 6, 7 and 8). This might have potential clinical significance in liver-perfusion-related protocol design and result analysis.

  9. A relative quantitative assessment of myocardial perfusion by first-pass technique: animal study

    Science.gov (United States)

    Chen, Jun; Zhang, Zhang; Yu, Xuefang; Zhou, Kenneth J.

    2015-03-01

    The purpose of this study is to quantitatively assess the myocardial perfusion by first-pass technique in swine model. Numerous techniques based on the analysis of Computed Tomography (CT) Hounsfield Unit (HU) density have emerged. Although these methods proposed to be able to assess haemodynamically significant coronary artery stenosis, their limitations are noticed. There are still needs to develop some new techniques. Experiments were performed upon five (5) closed-chest swine. Balloon catheters were placed into the coronary artery to simulate different degrees of luminal stenosis. Myocardial Blood Flow (MBF) was measured using color microsphere technique. Fractional Flow Reserve (FFR) was measured using pressure wire. CT examinations were performed twice during First-pass phase under adenosine-stress condition. CT HU Density (HUDCT) and CT HU Density Ratio (HUDRCT) were calculated using the acquired CT images. Our study presents that HUDRCT shows a good (y=0.07245+0.09963x, r2=0.898) correlation with MBF and FFR. In receiver operating characteristic (ROC) curve analyses, HUDRCT provides excellent diagnostic performance for the detection of significant ischemia during adenosine-stress as defined by FFR indicated by the value of Area Under the Curve (AUC) of 0.927. HUDRCT has the potential to be developed as a useful indicator of quantitative assessment of myocardial perfusion.

  10. Quantitative assessment of local perfusion change in acute intracerebral hemorrhage areas with and without "dynamic spot sign" using CT perfusion imaging.

    Science.gov (United States)

    Fu, Fan; Sui, Binbin; Liu, Liping; Su, Yaping; Sun, Shengjun; Li, Yingying

    2018-01-01

    Background Positive "dynamic spot sign" has been proven to be a potential risk factor for acute intracerebral hemorrhage (ICH) expansion, but local perfusion change has not been quantitatively investigated. Purpose To quantitatively evaluate perfusion changes at the ICH area using computed tomography perfusion (CTP) imaging. Material and Methods Fifty-three patients with spontaneous ICH were recruited. Unenhanced computed tomography (NCCT), CTP within 6 h, and follow-up NCCT were performed for 21 patients in the "spot sign"-positive group and 32 patients in the control group. Cerebral perfusion change was quantitatively measured on regional cerebral blood flow/regional cerebral blood volume (rCBF/rCBV) maps. Regions of interest (ROIs) were set at the "spot-sign" region and the whole hematoma area for "spot-sign"-positive cases, and at one of the highest values of three interested areas and the whole hematoma area for the control group. Hematoma expansion was determined by follow-up NCCT. Results For the "spot-sign"-positive group, the average rCBF (rCBV) values at the "spot-sign" region and the whole hematoma area were 21.34 ± 15.24 mL/min/100 g (21.64 ± 21.48 mL/100g) and 5.78 ± 6.32 mL/min/100 g (6.07 ± 5.45 mL/100g); for the control group, the average rCBF (rCBV) values at the interested area and whole hematoma area were 2.50 ± 1.83 mL/min/100 g (3.13 ± 1.96 mL/100g) and 3.02 ± 1.80 mL/min/100 g (3.40 ± 1.44 mL/100g), respectively. Average rCBF and rCBV values of the "spot-sign" region were significantly different from other regions ( P spot-sign"-positive and control groups were 25.24 ± 19.38 mL and -0.41 ± 1.34 mL, respectively. Conclusion The higher perfusion change at ICH on CTP images may reflect the contrast extravasation and be associated with the hematoma expansion.

  11. Comparison of semi-quantitative and quantitative dynamic contrast-enhanced MRI evaluations of vertebral marrow perfusion in a rat osteoporosis model.

    Science.gov (United States)

    Zhu, Jingqi; Xiong, Zuogang; Zhang, Jiulong; Qiu, Yuyou; Hua, Ting; Tang, Guangyu

    2017-11-14

    This study aims to investigate the technical feasibility of semi-quantitative and quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in the assessment of longitudinal changes of marrow perfusion in a rat osteoporosis model, using bone mineral density (BMD) measured by micro-computed tomography (micro-CT) and histopathology as the gold standards. Fifty rats were randomly assigned to the control group (n=25) and ovariectomy (OVX) group whose bilateral ovaries were excised (n=25). Semi-quantitative and quantitative DCE-MRI, micro-CT, and histopathological examinations were performed on lumbar vertebrae at baseline and 3, 6, 9, and 12 weeks after operation. The differences between the two groups in terms of semi-quantitative DCE-MRI parameter (maximum enhancement, E max ), quantitative DCE-MRI parameters (volume transfer constant, K trans ; interstitial volume, V e ; and efflux rate constant, K ep ), micro-CT parameter (BMD), and histopathological parameter (microvessel density, MVD) were compared at each of the time points using an independent-sample t test. The differences in these parameters between baseline and other time points in each group were assessed via Bonferroni's multiple comparison test. A Pearson correlation analysis was applied to assess the relationships between DCE-MRI, micro-CT, and histopathological parameters. In the OVX group, the E max values decreased significantly compared with those of the control group at weeks 6 and 9 (p=0.003 and 0.004, respectively). The K trans values decreased significantly compared with those of the control group from week 3 (pquantitative DCE-MRI, the quantitative DCE-MRI parameter K trans is a more sensitive and accurate index for detecting early reduced perfusion in osteoporotic bone.

  12. Quantitative myocardial perfusion PET combined with coronary anatomy derived from CT angiography. Validation of a new fusion and visualisation software

    International Nuclear Information System (INIS)

    Fricke, Harald; Weise, Reiner; Burchert, Wolfgang; Fricke, Eva; Elsner, Andreas; Bolte, Matthias; Domik, Gitta; Hoff, Joerg van den

    2009-01-01

    Aim: Dynamic perfusion PET offers a clinical relevant advantage over myocardial perfusion scintigraphy due to its ability to measure myocardial blood flow quantitatively. This leads to an improved detection of multivessel disease and the possibility to assess not only the culprit lesion but lower grade stenoses as well. For appropriate revascularization, perfusion defects must be matched to coronary lesions. It has been shown that image fusion of morphological and functional images is superior to side-by-side analysis. Still, software for quantitative perfusion PET combined with CT angiography is rare. In this paper we present a new software tool for image fusion and visualization of quantitative perfusion PET and coronary morphology derived from CT angiography. Methods: In our software, a PET uptake image is used for manual co-registration. Co-registration results are then applied to the functional data derived from compartment modelling. To evaluate the reproducibility of the manual co-registration, we calculated the deviation between a series of manual co-registrations performed on nine pairs of unregistered PET and CT datasets by five trained participants. Two dimensional transfer functions were used to highlight the coronary arteries from the CT study in the combined data sets. Results: The average Euclidian distances for three references points were between 3.7 and 4.1 mm. The maximum distance was 10.6 mm. By the use of the two dimensional transfer functions, coronary anatomy could be easily visualised either by user-interaction or automatically by use of neuronal networks. Conclusions: With this approach it is possible to combine quantitative perfusion PET with coronary anatomy derived from CT angiography. Our first experiences indicate that manual image fusion with our tool is reproducible and that visualisation of the combined datasets is achieved within short time. (orig.)

  13. Quantitative myocardial perfusion PET parametric imaging at the voxel-level

    International Nuclear Information System (INIS)

    Mohy-ud-Din, Hassan; Rahmim, Arman; Lodge, Martin A

    2015-01-01

    Quantitative myocardial perfusion (MP) PET has the potential to enhance detection of early stages of atherosclerosis or microvascular dysfunction, characterization of flow-limiting effects of coronary artery disease (CAD), and identification of balanced reduction of flow due to multivessel stenosis. We aim to enable quantitative MP-PET at the individual voxel level, which has the potential to allow enhanced visualization and quantification of myocardial blood flow (MBF) and flow reserve (MFR) as computed from uptake parametric images. This framework is especially challenging for the 82 Rb radiotracer. The short half-life enables fast serial imaging and high patient throughput; yet, the acquired dynamic PET images suffer from high noise-levels introducing large variability in uptake parametric images and, therefore, in the estimates of MBF and MFR. Robust estimation requires substantial post-smoothing of noisy data, degrading valuable functional information of physiological and pathological importance. We present a feasible and robust approach to generate parametric images at the voxel-level that substantially reduces noise without significant loss of spatial resolution. The proposed methodology, denoted physiological clustering, makes use of the functional similarity of voxels to penalize deviation of voxel kinetics from physiological partners. The results were validated using extensive simulations (with transmural and non-transmural perfusion defects) and clinical studies. Compared to post-smoothing, physiological clustering depicted enhanced quantitative noise versus bias performance as well as superior recovery of perfusion defects (as quantified by CNR) with minimal increase in bias. Overall, parametric images obtained from the proposed methodology were robust in the presence of high-noise levels as manifested in the voxel time-activity-curves. (paper)

  14. A model system for perfusion quantification using FAIR

    DEFF Research Database (Denmark)

    Andersen, Irene Klærke; Sidaros, Karam; Gesmar, Henrik

    2000-01-01

    Flow-sensitive experiments (FAIR) have been performed on a tube-flow phantom in order to validate quantitative perfusion measurements on humans. A straight-forward correspondence between perfusion and bulk-flow is found. It is shown that the flow phantom model only holds when the slice profiles...... of the involved RF pulses are taken into account. A small flow-independent off-set may be present in the data. The off-set is explained by the model. Based on the correspondence between the phantom and the in vivo models, it is shown that the lowest flow values that could be measured in the phantom correspond...... to perfusion values lower than the cortical perfusion in the brain. Thus, the experimental accuracy and the computational methods for quantitative perfusion measurements in vivo can be validated by a tube-flow phantom....

  15. A model system for perfusion quantification using FAIR

    DEFF Research Database (Denmark)

    Andersen, I.K.; Sidaros, Karam; Gesmar, H

    2000-01-01

    Flow-sensitive experiments (FAIR) have been performed on a tube-flow phantom in order to validate quantitative perfusion measurements on humans. A straight-forward correspondence between perfusion and bulk-flow is found. It is shown that the flow phantom model only holds when the slice profiles...... of the involved RF pulses are taken into account. A small flow-independent off-set may be present in the data. The off-set is explained by the model. Based on the correspondence between the phantom and the in vivo models, it is shown that the lowest flow values that could be measured in the phantom correspond...... to perfusion values lower than the cortical perfusion in the brain. Thus, the experimental accuracy and the computational methods for quantitative perfusion measurements in vivo can be validated by a tube-flow phantom...

  16. Qualitative and quantitative evaluation of rigid and deformable motion correction algorithms using dual-energy CT images in view of application to CT perfusion measurements in abdominal organs affected by breathing motion.

    Science.gov (United States)

    Skornitzke, S; Fritz, F; Klauss, M; Pahn, G; Hansen, J; Hirsch, J; Grenacher, L; Kauczor, H-U; Stiller, W

    2015-02-01

    To compare six different scenarios for correcting for breathing motion in abdominal dual-energy CT (DECT) perfusion measurements. Rigid [RRComm(80 kVp)] and non-rigid [NRComm(80 kVp)] registration of commercially available CT perfusion software, custom non-rigid registration [NRCustom(80 kVp], demons algorithm) and a control group [CG(80 kVp)] without motion correction were evaluated using 80 kVp images. Additionally, NRCustom was applied to dual-energy (DE)-blended [NRCustom(DE)] and virtual non-contrast [NRCustom(VNC)] images, yielding six evaluated scenarios. After motion correction, perfusion maps were calculated using a combined maximum slope/Patlak model. For qualitative evaluation, three blinded radiologists independently rated motion correction quality and resulting perfusion maps on a four-point scale (4 = best, 1 = worst). For quantitative evaluation, relative changes in metric values, R(2) and residuals of perfusion model fits were calculated. For motion-corrected images, mean ratings differed significantly [NRCustom(80 kVp) and NRCustom(DE), 3.3; NRComm(80 kVp), 3.1; NRCustom(VNC), 2.9; RRComm(80 kVp), 2.7; CG(80 kVp), 2.7; all p VNC), 22.8%; RRComm(80 kVp), 0.6%; CG(80 kVp), 0%]. Regarding perfusion maps, NRCustom(80 kVp) and NRCustom(DE) were rated highest [NRCustom(80 kVp), 3.1; NRCustom(DE), 3.0; NRComm(80 kVp), 2.8; NRCustom(VNC), 2.6; CG(80 kVp), 2.5; RRComm(80 kVp), 2.4] and had significantly higher R(2) and lower residuals. Correlation between qualitative and quantitative evaluation was low to moderate. Non-rigid motion correction improves spatial alignment of the target region and fit of CT perfusion models. Using DE-blended and DE-VNC images for deformable registration offers no significant improvement. Non-rigid algorithms improve the quality of abdominal CT perfusion measurements but do not benefit from DECT post processing.

  17. Effects of perfusion detect on the measurement of left ventricular mass, ventricular volume and post-stress left ventricular ejection fraction in gated myocardial perfusion SPECT

    International Nuclear Information System (INIS)

    Ahn, Byeong Cheol; Bae, Sun Keun; Lee, Sang Woo; Jeong, Sin Young; Lee, Jae Tae; Lee, Kyu Bo

    2002-01-01

    The presence of perfusion defect may influence the left ventricular mass (LVM) measurement by quantitative gated myocardial perfusion SPECT (QGS), and ischemic myocardium, usually showing perfusion defect may produce post-stress LV dysfunction. This study was aimed to evaluated the effects of extent and reversibility of perfusion defect on the automatic measurement of LVM by QGS and to investigate the effect of reversibility of perfusion defect on post-stress LV dysfunction. Forty-six patients (male/female=34:12, mean age=64 years) with perfusion defect on myocardial perfusion SPECT underwent rest and post-stress QGS. Forty patients (87%) showed reversible defect. End-diastolic volume (EDV), end-systolic volume (ESV), LV ejection fraction (EF), and LV myocardial volume were obtained from QGS by autoquant program, and LVM was calculated by multiplying the LV myocardial volume by the specific gravity of myocardium. LVMs measured at rest and post-stress QGS showed good correlation, and higher correlation was founded in the subjects with fixed perfusion defect and with small defect (smaller than 20%). There were no significant differences in EDVs, ESVs and EFs between obtained by rest and post-stress QGS in patients with fixed myocardial defect. Whereas, EF obtained by post-stress QGS was lower than that by rest QGS in patients with reversible defect and 10 (25%) of them showed decreases in EF more than 5% in post-stress QGS, as compared to that of rest QGS. Excellent correlations of EDVs, ESVs, EFs between rest and post-stress QGS were noted. Patients with fixed defect had higher correlation between defect can affect LVM measurement by QGS and patients with reversible defect shows post-stress LV dysfunction more frequently than patients with fixed perfusion defect

  18. Quantitative arterial spin labelling perfusion measurements in rat models of renal transplantation and acute kidney injury at 3 T

    Energy Technology Data Exchange (ETDEWEB)

    Zimmer, Fabian; Schad, Lothar R.; Zoellner, Frank G. [Heidelberg Univ., Mannheim (Germany). Computer Assisted Clinical Medicine; Klotz, Sarah; Hoeger, Simone; Yard, Benito A.; Kraemer, Bernhard K. [Heidelberg Univ., Mannheim (Germany). Dept. of Medicine V

    2017-05-01

    To employ ASL for the measurement of renal cortical perfusion in particular renal disorders typically associated with graft loss and to investigate its potential to detect and differentiate the related functional deterioration i.e., in a setting of acute kidney injury (AKI) as well as in renal grafts showing acute and chronic transplant rejection. 14 Lewis rats with unilateral ischaemic AKI and 43 Lewis rats with renal grafts showing acute or chronic rejections were used. All ASL measurements in this study were performed on a 3 T MR scanner using a FAIR True-FISP approach to assess renal blood flow (RBF). Perfusion maps were calculated and the cortical blood flow was determined using a region-of-interest based analysis. RBF of healthy and AKI kidneys as well as of both rejection models, were compared. In a subsample of 20 rats, creatinine clearance was measured and correlated with cortical perfusion. RBF differs significantly between healthy and AKI kidneys (P < 0.001) with a mean difference of 213 ± 80 ml/100 g/min. Renal grafts with chronic rejections show a significantly higher (P < 0.001) mean cortical perfusion (346 ± 112 ml/100 g/min) than grafts with acute rejection (240 ± 66 ml/100 g/min). Both transplantation models have a significantly (P < 0.001) lower perfusion than healthy kidneys. Renal creatinine clearance is significantly correlated (R = 0.85, P < 0.001) with cortical blood flow. Perfusion measurements with ASL have the potential to become a valuable diagnostic tool, regarding the detection of renal impairment and the differentiation of disorders that lead to a loss of renal function and that are typically associated with graft loss.

  19. Quantitative arterial spin labelling perfusion measurements in rat models of renal transplantation and acute kidney injury at 3 T

    International Nuclear Information System (INIS)

    Zimmer, Fabian; Schad, Lothar R.; Zoellner, Frank G.; Klotz, Sarah; Hoeger, Simone; Yard, Benito A.; Kraemer, Bernhard K.

    2017-01-01

    To employ ASL for the measurement of renal cortical perfusion in particular renal disorders typically associated with graft loss and to investigate its potential to detect and differentiate the related functional deterioration i.e., in a setting of acute kidney injury (AKI) as well as in renal grafts showing acute and chronic transplant rejection. 14 Lewis rats with unilateral ischaemic AKI and 43 Lewis rats with renal grafts showing acute or chronic rejections were used. All ASL measurements in this study were performed on a 3 T MR scanner using a FAIR True-FISP approach to assess renal blood flow (RBF). Perfusion maps were calculated and the cortical blood flow was determined using a region-of-interest based analysis. RBF of healthy and AKI kidneys as well as of both rejection models, were compared. In a subsample of 20 rats, creatinine clearance was measured and correlated with cortical perfusion. RBF differs significantly between healthy and AKI kidneys (P < 0.001) with a mean difference of 213 ± 80 ml/100 g/min. Renal grafts with chronic rejections show a significantly higher (P < 0.001) mean cortical perfusion (346 ± 112 ml/100 g/min) than grafts with acute rejection (240 ± 66 ml/100 g/min). Both transplantation models have a significantly (P < 0.001) lower perfusion than healthy kidneys. Renal creatinine clearance is significantly correlated (R = 0.85, P < 0.001) with cortical blood flow. Perfusion measurements with ASL have the potential to become a valuable diagnostic tool, regarding the detection of renal impairment and the differentiation of disorders that lead to a loss of renal function and that are typically associated with graft loss.

  20. Regional quantitative noninvasive assessment of cerebral perfusion and function with N-Isopropyl-[123I]p-iodoamphetamine

    International Nuclear Information System (INIS)

    von Schulthess, G.K.; Ketz, E.; Schubiger, P.A.; Bekier, A.

    1985-01-01

    Although several reports on the clinical usefulness of N-isopropyl-[ 123 I]p-iodoamphetamine (IMP) in the diagnosis of cerebral disease have appeared in the literature, quantitative, noninvasive measurements of regional cerebral blood flow with this method pose difficulties because cerebral IMP uptake not only depends on cerebral perfusion but also on cerebral function. Rather than trying to develop a method to measure cerebral perfusion with IMP, the authors have chosen to test a method to quantitatively evaluate planar and emission computed tomographic (ECT) studies by comparing the data obtained in patients with established pathology with the data obtained in a group of normal individuals. Using this method, absolute cerebral IMP uptake (counts/pixel/mCi/min) and planar anterior right-left ratios were obtained. Also measured were right-left ratios obtained from 12 paired regions in three ECT slices. The evaluation of the patients cerebral IMP uptake asymmetries relative to the normal standard values is a useful adjunct to qualitative image analysis in assessing the presence ans severity of disease, as qualitative analysis is prone to false-positive and negative results. Cerebral IMP uptake as measured in cts/pixel/mCi/min is abnormal only in severe cerebral disease and therefore generally a less helpful parameter

  1. Dynamic contrast-enhanced quantitative perfusion measurement of the brain using T-1-weighted MRI at 3T

    DEFF Research Database (Denmark)

    Larsson, H.B.W.; Hansen, A.E.; Berg, H.K.

    2008-01-01

    Purpose: To develop a method for the measurement of brain perfusion based on dynamic contrast-enhanced T-1-weighted MR imaging. Materials and Methods: Dynamic imaging of the first pass of a bolus of a paramagnetic contrast agent was performed using a 3T whole-body magnet and a T-1-weighted fast...... field echo sequence. The input function was obtained from the internal carotid artery. An initial T-1 measurement was performed in order to convert the MR signal to concentration of the contrast agent. Pixelwise and region of interest (ROI)based calculation of cerebral perfusion (CBF) was performed...... inside the infarct core was, 9 mL/100g/min in one of the stroke patients. The other stroke patient had postischemic hyperperfusion and CBF was 140 mL/100g/min. Conclusion: Absolute values of brain perfusion can be obtained using dynamic contrast-enhanced MRI. These values correspond,to expected values...

  2. Quantitative study on lung volume and lung perfusion using SPECT and CT in thoracal tumors

    International Nuclear Information System (INIS)

    Beyer-Enke, S.A.; Goerich, J.; Strauss, L.G.

    1988-01-01

    22 patients with space occupying lesions in the thoracal region were investigated by computer tomography and by perfusion scintigraphy using SPECT. In order to evaluate the CT images quantitatively, the lung volume was determined using approximation method and compared with the perfusion in the SPECT study. For this, anatomically equivalent transaxial SPECT slices had been coordinated to the CT slices. Between the determined lung volumes and the activity in the ocrresponding layers, a statistically significant correlation was found. It could be shown that the stronger perfusion, frequently observed at the right side of the healthy lung, may be explained by an higher volume of the right pulmonary lobe. Whereas in benign displacing processes the relation activity to volume was similar to the one of the healthy lung, a strongly reduced perfusion together with inconspicuous lung volumes became apparent with malignant tumors. In addition to the great morphological evidence of CT and SPECT studies, additional informations regarding the dignity of displacing processes may be derived from the quantitative evaluation of both methods. (orig.) [de

  3. Clinical use of quantitative cardiac perfusion PET: rationale, modalities and possible indications. Position paper of the Cardiovascular Committee of the European Association of Nuclear Medicine (EANM)

    International Nuclear Information System (INIS)

    Sciagra, Roberto; Passeri, Alessandro; Bucerius, Jan; Verberne, Hein J.; Slart, Riemer H.J.A.; Lindner, Oliver; Gimelli, Alessia; Hyafil, Fabien; Agostini, Denis; Uebleis, Christopher; Hacker, Marcus

    2016-01-01

    Until recently, PET was regarded as a luxurious way of performing myocardial perfusion scintigraphy, with excellent image quality and diagnostic capabilities that hardly justified the additional cost and procedural effort. Quantitative perfusion PET was considered a major improvement over standard qualitative imaging, because it allows the measurement of parameters not otherwise available, but for many years its use was confined to academic and research settings. In recent years, however, several factors have contributed to the renewal of interest in quantitative perfusion PET, which has become a much more readily accessible technique due to progress in hardware and the availability of dedicated and user-friendly platforms and programs. In spite of this evolution and of the growing evidence that quantitative perfusion PET can play a role in the clinical setting, there are not yet clear indications for its clinical use. Therefore, the Cardiovascular Committee of the European Association of Nuclear Medicine, starting from the experience of its members, decided to examine the current literature on quantitative perfusion PET to (1) evaluate the rationale for its clinical use, (2) identify the main methodological requirements, (3) identify the remaining technical difficulties, (4) define the most reliable interpretation criteria, and finally (5) tentatively delineate currently acceptable and possibly appropriate clinical indications. The present position paper must be considered as a starting point aiming to promote a wider use of quantitative perfusion PET and to encourage the conception and execution of the studies needed to definitely establish its role in clinical practice. (orig.)

  4. Skin perfusion measurement: the normal range, the effects of ambient temperature and its clinical application

    International Nuclear Information System (INIS)

    Henry, R.E.; Malone, J.M.; Daly, M.J.; Hughes, J.H.; Moore, W.S.

    1982-01-01

    Quantitation of skin perfusion provides objective criteria to determine the optimal amputation level in ischemic limb disease, to assess the maturation of pedicle flaps in reconstructive surgery, and to select appropriate treatment for chronic skin ulcers. A technique for measurement of skin perfusion using intradermal (ID) Xe-133 and a gamma camera/minicomputer system was previously reported. An update of this procedure is now reported, the normal range for the lower extremity in men, observations on the effects of ambient temperature, and an experience using the procedure to determine amputation level

  5. Dual-energy CT iodine maps as an alternative quantitative imaging biomarker to abdominal CT perfusion: determination of appropriate trigger delays for acquisition using bolus tracking.

    Science.gov (United States)

    Skornitzke, Stephan; Fritz, Franziska; Mayer, Philipp; Koell, Marco; Hansen, Jens; Pahn, Gregor; Hackert, Thilo; Kauczor, Hans-Ulrich; Stiller, Wolfram

    2018-05-01

    Quantitative evaluation of different bolus tracking trigger delays for acquisition of dual energy (DE) CT iodine maps as an alternative to CT perfusion. Prior to this retrospective analysis of prospectively acquired data, DECT perfusion sequences were dynamically acquired in 22 patients with pancreatic carcinoma using dual source CT at 80/140 kV p with tin filtration. After deformable motion-correction, perfusion maps of blood flow (BF) were calculated from 80 kV p image series of DECT, and iodine maps were calculated for each of the 34 DECT acquisitions per patient. BF and iodine concentrations were measured in healthy pancreatic tissue and carcinoma. To evaluate potential DECT acquisition triggered by bolus tracking, measured iodine concentrations from the 34 DECT acquisitions per patient corresponding to different trigger delays were assessed for correlation to BF and intergroup differences between tissue types depending on acquisition time. Average BF measured in healthy pancreatic tissue and carcinoma was 87.6 ± 28.4 and 38.6 ± 22.2 ml/100 ml min -1 , respectively. Correlation between iodine concentrations and BF was statistically significant for bolus tracking with trigger delay greater than 0 s (r max = 0.89; p alternative to CT perfusion measurements of BF. Advances in knowledge: After clinical validation, DECT iodine maps of pancreas acquired using bolus tracking with appropriate trigger delay as determined in this study could offer an alternative quantitative imaging biomarker providing functional information for tumor assessment at reduced patient radiation exposure compared to CT perfusion measurements of BF.

  6. SPECT Myocardial Blood Flow Quantitation Concludes Equivocal Myocardial Perfusion SPECT Studies to Increase Diagnostic Benefits.

    Science.gov (United States)

    Chen, Lung-Ching; Lin, Chih-Yuan; Chen, Ing-Jou; Ku, Chi-Tai; Chen, Yen-Kung; Hsu, Bailing

    2016-01-01

    Recently, myocardial blood flow quantitation with dynamic SPECT/CT has been reported to enhance the detection of coronary artery disease in human. This advance has created important clinical applications to coronary artery disease diagnosis and management for areas where myocardial perfusion PET tracers are not available. We present 2 clinical cases that undergone a combined test of 1-day rest/dipyridamole-stress dynamic SPECT and ECG-gated myocardial perfusion SPECT scans using an integrated imaging protocol and demonstrate that flow parameters are capable to conclude equivocal myocardial perfusion SPECT studies, therefore increasing diagnostic benefits to add value in making clinical decisions.

  7. The investigation of in-vivo measurement of individual renal blood perfusion, effective renal plasma flow and quantitation of renogram and 15 min bladder collection percentage

    International Nuclear Information System (INIS)

    Huang Kangchu

    1991-01-01

    25 normals and 43 renal diseases were examined by the RBF-I multifunctioning renography. The result showed that the determination of ERPF has no difference between blood sampling and noin-blood sampling method, and actually the lattrer can replace the former one. Above method can be also used for the measurement of the individual renal blood perfusion, the quantitation of renogram and the 15 min bladder coolection percentage at the same time. Thereby it provides more complete diagnostic information for the renal vascular diseases, renal pancren chymations and other urologic diseases

  8. Automated quantitative coronary computed tomography correlates of myocardial ischaemia on gated myocardial perfusion SPECT

    International Nuclear Information System (INIS)

    Graaf, Michiel A. de; Boogers, Mark J.; Veltman, Caroline E.; El-Naggar, Heba M.; Bax, Jeroen J.; Delgado, Victoria; Broersen, Alexander; Kitslaar, Pieter H.; Dijkstra, Jouke; Kroft, Lucia J.; Younis, Imad Al; Reiber, Johan H.; Scholte, Arthur J.

    2013-01-01

    Automated software tools have permitted more comprehensive, robust and reproducible quantification of coronary stenosis, plaque burden and plaque location of coronary computed tomography angiography (CTA) data. The association between these quantitative CTA (QCT) parameters and the presence of myocardial ischaemia has not been explored. The aim of the present investigation was to evaluate the association between QCT parameters of coronary artery lesions and the presence of myocardial ischaemia on gated myocardial perfusion single-photon emission CT (SPECT). Included in the study were 40 patients (mean age 58.2 ± 10.9 years, 27 men) with known or suspected coronary artery disease (CAD) who had undergone multidetector row CTA and gated myocardial perfusion SPECT within 6 months. From the CTA datasets, vessel-based and lesion-based visual analyses were performed. Consecutively, lesion-based QCT was performed to assess plaque length, plaque burden, percentage lumen area stenosis and remodelling index. Subsequently, the presence of myocardial ischaemia was assessed using the summed difference score (SDS ≥2) on gated myocardial perfusion SPECT. Myocardial ischaemia was seen in 25 patients (62.5 %) in 37 vascular territories. Quantitatively assessed significant stenosis and quantitatively assessed lesion length were independently associated with myocardial ischaemia (OR 7.72, 95 % CI 2.41-24.7, p 2 = 20.7) and lesion length (χ 2 = 26.0) to the clinical variables and the visual assessment (χ 2 = 5.9) had incremental value in the association with myocardial ischaemia. Coronary lesion length and quantitatively assessed significant stenosis were independently associated with myocardial ischaemia. Both quantitative parameters have incremental value over baseline variables and visually assessed significant stenosis. Potentially, QCT can refine assessment of CAD, which may be of potential use for identification of patients with myocardial ischaemia. (orig.)

  9. Perfusion characteristics of late radiation injury of parotid glands: quantitative evaluation with dynamic contrast-enhanced MRI

    International Nuclear Information System (INIS)

    Juan, Chun-Jung; Chen, Cheng-Yu.; Hsueh, Chun-Jen; Huang, Guo-Shu; Jen, Yee-Min; Liu, Hua-Shan; Wang, Chao-Ying; Chung, Hsiao-Wen; Liu, Yi-Jui; Chou, Yu-Ching; Chai, Yao-Te

    2009-01-01

    We aimed to quantitatively investigate the alteration of parotid perfusion after irradiation using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) based on a two-compartment tracer kinetic model. This study enrolled 19 patients (53.2±14.9 years) treated by head and neck radiotherapy and 19 age-relevant and sex-matched subjects as a control group. Perfusion parameters (K el , k 21 and A) of parotid glands were analyzed based on the Brix model from T1-weighted DCE-MRI. Suitability of the Brix model was evaluated via Monte Carlo simulation for the goodness-of-fit. Analysis of nonlinear goodness-of-fit showed that the Brix model is appropriate in evaluating the parotid perfusion (R 2 = 0.938±0.050). The irradiated parotid glands showed significantly lower K el (P 21 (P < 0.05) and consequently significantly higher value of peak enhancement (P<0.0005) and time-to-peak (P<0.0005) compared with non-irradiated ones, suggestive of gradual and prolonged accumulation and delayed wash-out of contrast agent due to increased extracellular extravascular space and decreased vascular permeability in the irradiated glands. Linear regression analysis showed dose-dependent perfusion changes of the irradiated parotid glands. We conclude that quantitative DCE-MRI is a potential tool in investigating parotid gland perfusion changes after radiotherapy. (orig.)

  10. Quantitative perfusion imaging in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Zoellner, F.G.; Gaa, T.; Zimmer, F.; Ong, M.M.; Riffel, P.; Hausmann, D.; Schoenberg, S.O.; Weis, M.

    2016-01-01

    Magnetic resonance imaging (MRI) is recognized for its superior tissue contrast while being non-invasive and free of ionizing radiation. Due to the development of new scanner hardware and fast imaging techniques during the last decades, access to tissue and organ functions became possible. One of these functional imaging techniques is perfusion imaging with which tissue perfusion and capillary permeability can be determined from dynamic imaging data. Perfusion imaging by MRI can be performed by two approaches, arterial spin labeling (ASL) and dynamic contrast-enhanced (DCE) MRI. While the first method uses magnetically labelled water protons in arterial blood as an endogenous tracer, the latter involves the injection of a contrast agent, usually gadolinium (Gd), as a tracer for calculating hemodynamic parameters. Studies have demonstrated the potential of perfusion MRI for diagnostics and also for therapy monitoring. The utilization and application of perfusion MRI are still restricted to specialized centers, such as university hospitals. A broad application of the technique has not yet been implemented. The MRI perfusion technique is a valuable tool that might come broadly available after implementation of standards on European and international levels. Such efforts are being promoted by the respective professional bodies. (orig.) [de

  11. Prognostic Value of Normal Perfusion but Impaired Left Ventricular Function in the Diabetic Heart on Quantitative Gated Myocardial Perfusion SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hwanjeong; Choi, Sehun; Han, Yeonhee [Research Institute of Chonbuk National Univ. Medical School and Hospitial, Jeonju (Korea, Republic of); Lee, Dong Soo; Lee, Hoyoung; Chung, Junekey [Seoul National Univ., Seoul (Korea, Republic of)

    2013-09-15

    This study aimed at identifying the predictive parameters on quantitative gated myocardial perfusion single-photon emission computed tomography (QG-SPECT) in diabetic patients with normal perfusion but impaired function. Methods Among the 533 consecutive diabetic patients, 379 patients with normal perfusion on rest Tl-201/dipyridamole-stress Tc-{sup 99m} sestamibi Gated SPECT were enrolled. Patients were grouped into those with normal post-stress left ventricular function (Group I) and those with impaired function (EF <50 or impaired regional wall motion, Group II). We investigated cardiac events and cause of death by chart review and telephone interview. Survival analysis and Cox proportional hazard model analysis were performed. Between the Group I and II, cardiac events as well as chest pain symptoms, smoking, diabetic complications were significantly different (P<0.05). On survival analysis, event free survival rate in Group II was significantly lower than in Group I (P=0.016). In univariate Cox proportional hazard analysis on overall cardiac event, Group (II over I), diabetic nephropathy, summed motion score (SMS), summed systolic thickening score (STS), numbers of abnormal segmental wall motion and systolic thickening predicted more cardiac events (P<0.05). Multivariate analysis showed that STS was the only independent predictor cardiac event. The functional parameter, especially summed systolic thickening score on QG-SPECT had prognostic values, despite normal perfusion, in predicting cardiac events in diabetic patients, and QG-SPECT provides clinically useful risk stratification in diabetic patients with normal perfusion.

  12. Automated quantitative coronary computed tomography correlates of myocardial ischaemia on gated myocardial perfusion SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Graaf, Michiel A. de; Boogers, Mark J.; Veltman, Caroline E. [Leiden University Medical Center, Department of Cardiology, Leiden (Netherlands); The Interuniversity Cardiology Institute of The Netherlands, Utrecht (Netherlands); El-Naggar, Heba M.; Bax, Jeroen J.; Delgado, Victoria [Leiden University Medical Center, Department of Cardiology, Leiden (Netherlands); Broersen, Alexander; Kitslaar, Pieter H.; Dijkstra, Jouke [Leiden University Medical Center, Department of Radiology, Division of Image Processing, Leiden (Netherlands); Kroft, Lucia J. [Leiden University Medical Center, Department of Radiology, Leiden (Netherlands); Younis, Imad Al [Leiden University Medical Center, Department of Nuclear Medicine, Leiden (Netherlands); Reiber, Johan H. [Leiden University Medical Center, Department of Radiology, Division of Image Processing, Leiden (Netherlands); Medis medical imaging systems B.V., Leiden (Netherlands); Scholte, Arthur J. [Leiden University Medical Center, Department of Cardiology, Leiden (Netherlands)

    2013-08-15

    Automated software tools have permitted more comprehensive, robust and reproducible quantification of coronary stenosis, plaque burden and plaque location of coronary computed tomography angiography (CTA) data. The association between these quantitative CTA (QCT) parameters and the presence of myocardial ischaemia has not been explored. The aim of the present investigation was to evaluate the association between QCT parameters of coronary artery lesions and the presence of myocardial ischaemia on gated myocardial perfusion single-photon emission CT (SPECT). Included in the study were 40 patients (mean age 58.2 {+-} 10.9 years, 27 men) with known or suspected coronary artery disease (CAD) who had undergone multidetector row CTA and gated myocardial perfusion SPECT within 6 months. From the CTA datasets, vessel-based and lesion-based visual analyses were performed. Consecutively, lesion-based QCT was performed to assess plaque length, plaque burden, percentage lumen area stenosis and remodelling index. Subsequently, the presence of myocardial ischaemia was assessed using the summed difference score (SDS {>=}2) on gated myocardial perfusion SPECT. Myocardial ischaemia was seen in 25 patients (62.5 %) in 37 vascular territories. Quantitatively assessed significant stenosis and quantitatively assessed lesion length were independently associated with myocardial ischaemia (OR 7.72, 95 % CI 2.41-24.7, p < 0.001, and OR 1.07, 95 % CI 1.00-1.45, p = 0.032, respectively) after correcting for clinical variables and visually assessed significant stenosis. The addition of quantitatively assessed significant stenosis ({chi} {sup 2} = 20.7) and lesion length ({chi} {sup 2} = 26.0) to the clinical variables and the visual assessment ({chi} {sup 2} = 5.9) had incremental value in the association with myocardial ischaemia. Coronary lesion length and quantitatively assessed significant stenosis were independently associated with myocardial ischaemia. Both quantitative parameters have

  13. High-resolution MRI for the quantitative evaluation of subendocardial and subepicardial perfusion under pharmalogical stress and at rest

    International Nuclear Information System (INIS)

    Ritter, C.O.; Savio, K. del; Brackertz, A.; Beer, M.; Hahn, D.; Koestler, H.

    2007-01-01

    Purpose: MR stress perfusion imaging of the heart allows the quantification of myocardial perfusion and the evaluation of myocardial perfusion reserve (MPR) and the ratio of subendocardial to subepicardial perfusion at rest and under adenosine stress. The aim of this study was to evaluate a high-resolution GRAPPA sequence for quantitative MR first pass perfusion imaging in healthy volunteers. Materials and Methods: First pass stress and rest perfusion studies were performed on 10 healthy volunteers using a 1.5 T MR scanner with a multislice SR-TrueFISP first pass perfusion sequence with a GRAPPA algorithm (acceleration factor 3) in prebolus technique and an image resolution of 1.8 x 1.8 mm. For the comparison group, we examined 12 different healthy volunteers with a standard first pass perfusion SR-TrueFISP sequence using a resolution of 2.7 x 3.3 mm. Myocardial contours were manually delineated followed by an automatic division of the myocardium into two rings with an equal thickness for the subendo- and subepicardial layer. Eight sectors per slice were evaluated using contamination and baseline correction. Results: Using the GRAPPA sequence, the ratio of subendo- to subepimyocardial perfusion was 1.18 ± 0.32 for the examination at rest. Under pharmacologically induced stress, the ratio was 1.08 ± 0.27. For the standard sequence the ratio was 1.15 ± 0.28 at rest and 1.11 ± 0.33 under stress. For the high resolution sequence higher mean values for the subendo- to subepimyocardial ratio were obtained with comparable standard deviations. The difference between the sequences was not significant. Conclusion: The evaluation of subendomyocardial and subepimyocardial perfusion is feasible with a high-resolution first pass perfusion sequence. The use of a higher resolution to avoid systematic error leads to increased image noise. However, no relevant reduction in the quantitative perfusion values under stress and at rest was able to be depicted. (orig.)

  14. Quantification of MRI measured myocardial perfusion reserve in healthy humans: A comparison with positron emission tomography

    DEFF Research Database (Denmark)

    Fritz-Hansen, T.; Hove, J.D.; Kofoed, K.F.

    2008-01-01

    Purpose: To validate a noninvasive quantitative MRI technique, the K-i perfusion method, for myocardial perfusion in humans using N-13-ammonia PET as a reference method. Materials and Methods: Ten healthy males (64 +/- 8 years) were examined with combined PET and MRI perfusion imaging at rest and...

  15. Perfusion measurements of the brain: using dynamic CT for the quantitative assessment of cerebral ischemia in acute stroke

    International Nuclear Information System (INIS)

    Klotz, Ernst; Koenig, Matthias

    1999-01-01

    Objective: Perfusion CT has been successfully used as a functional imaging technique for the differential diagnosis of patients with hyperacute stroke. We investigated to what extent this technique can also be used for the quantitative assessment of cerebral ischemia. Methods and material: We studied linearity, spatial resolution and noise behaviour of cerebral blood flow (CBF) determination with computer simulations and phantom measurements. Statistical ROI based analysis of CBF images of a subset of 38 patients from a controlled clinical stroke study with currently more than 75 patients was done to check the power of relative cerebral blood flow (rCBF) values to predict definite infarction and ischemic penumbra. Classification was performed using follow-up CT and MR data. Results: Absolute CBF values were systematically underestimated, the degree depended on the cardiac output of the patients. Phantom measurements and simulations indicated very good linearity allowing reliable calculation of rCBF values. Infarct and penumbra areas in 19 patients receiving standard heparin therapy had mean rCBF values of 0.19 and 0.62, respectively. The corresponding values for 19 patients receiving local intraarterial fibrinolysis were 0.18 and 0.57. The difference between infarct and penumbra values was highly significant (P<0.0001) in both groups. No penumbra area was found with an rCBF value of less than 0.20. While in the heparin group only 25% of all areas with an rCBF between 0.20 and 0.35 survived, in the fibrinolytic group 61% of these areas could be saved (P<0.05). Conclusion: Perfusion CT is a fast and practical technique for routine clinical application. It provides substantial and important additional information for the selection of the optimal treatment strategy for patients with hyperacute stroke. Relative values of cerebral blood flow discriminate very well between areas of reversible and irreversible ischemia; an rCBF value of 0.20 appears to be a definite lower

  16. Disturbances in the cerebral perfusion of human immune deficiency virus-1 seropositive asymptomatic subjects: A quantitative tomography study of 18 cases

    International Nuclear Information System (INIS)

    Tran Dinh, Y.R.; Mamo, H.; Cervoni, J.; Caulin, C.; Saimot, A.C.

    1990-01-01

    Quantitative measurements of cerebral blood flow (CBF) by xenon-133 ( 133 Xe) tomography, together with magnetic resonance imaging (MRI), electroencephalography (EEG), psychometric tests, and laboratory analyses were performed on 18 human immunodeficiency virus 1 (HIV-1) seropositive asymptomatic subjects. Abnormalities of cerebral perfusion were observed in 16 cases (88%). These abnormalities were particularly frequent in the frontal regions (77% of cases). MRI demonstrated leucoencephalopathy in only two cases. EEG showed only induced diffuse abnormalities in two cases. Psychometric tests showed restricted moderate disturbances in 55% of patients. These disturbances mostly concerned those sectors involved in cognitive functions and memorization. These results indicate that quantitative measurements of CBF by 133 Xe-SPECT is capable of detecting abnormalities of cerebral perfusion at a very early stage (Phase II) of HIV-1 infection. These abnormalities are indications of disturbances resulting from unidentified metabolic or vascular lesions. This technique appears to be superior to MRI at this stage of the disease's development. It could provide objective information leading to earlier treatment, and prove useful in evaluating potential antiviral chemotherapy

  17. Simplified quantitative determination of cerebral perfusion reserve with H215O PET and acetazolamide

    International Nuclear Information System (INIS)

    Arigoni, M.; Kneifel, S.; Burger, C.; Buck, A.; Fandino, J.; Khan, N.

    2000-01-01

    The measurement of regional cerebral blood from (rCBF) and perfusion reserve (PR) with H 2 15 O positron emission tomography (PET) and acetazolamide challenge is of importance in evaluating patients with cerebrovascular disease and is thought to be useful in selecting patients for possible vascular surgery. Full quantitative assessment of rCBF with PET requires arterial blood sampling, which is inconvenient in a clinical setting. In this work, we present a simple non-invasive method with which to quantitatively evaluate PR in one PET session lasting no more than 30 min. In ten patients with cerebrovascular disease, rCBF was measured with H 2 15 O PET under the baseline condition and after administration of 1 g acetazolamide using a standard technique involving arterial blood sampling. The activity accumulated over 60 s was normalized to injected activity per kilogram body weight (nAA) and compared with rCBF in eight different brain regions. A high linear correlation was found for PR based on nAA (PR nAA ) and rCBF (PR rCBF ) (PR nAA =0.843 PR rCBF + 0.092, r=0.83, Pearson's correlation coefficient). Bland-Altman analyses further confirmed that PR nAA reflects PR in a quantitative manner. These results demonstrate that the method based on normalized counts allows the quantitative assessment of PR without blood sampling. (orig.)

  18. Effect of intravenous contrast agent volume on colorectal cancer vascular parameters as measured by perfusion computed tomography

    International Nuclear Information System (INIS)

    Goh, V.; Bartram, C.; Halligan, S.

    2009-01-01

    Aim: To determine the effect of two different contrast agent volumes on quantitative and semi-quantitative vascular parameters as measured by perfusion computed tomography (CT) in colorectal cancer. Materials and methods: Following ethical approval and informed consent, eight prospectively recruited patients with proven colorectal adenocarcinoma underwent two separate perfusion CT studies on the same day after (a) 100 ml and (b) 50 ml of a 340 mg/ml iodinated contrast medium, respectively. Quantitative (blood volume, blood flow, permeability surface area product) and semi-quantitative (peak enhancement, time to peak enhancement) tumour vascular parameters were determined using commercial software based on distributed parameter analysis and compared using t-testing. Results: Tumour blood volume, blood flow, and permeability surface area product were not substantially different following the injection of 100 ml and 50 ml contrast medium: 6.12 versus 6.23 ml/100 g tissue; 73.4 versus 71.3 ml/min/100 g tissue; 15.6 versus 15.3 ml/min/100 g tissue for 100 and 50 ml, respectively; p > 0.05. Tumour peak enhancement and time to peak were significantly greater following the injection of 100 ml versus 50 ml contrast medium: 41.2 versus 28.5 HU; 16.1 versus 11.8 s for 100 ml and 50 ml, respectively; p = 0.002; p = 0.0003. Conclusion: Quantitative parameters do not appear to change substantially with a higher contrast agent volume suggesting a combined diagnostic staging-perfusion CT study following a single injection is feasible for colorectal cancer

  19. Blood perfusion in osteomyelitis studied with [15O]water PET in a juvenile porcine model

    DEFF Research Database (Denmark)

    Jødal, Lars; Nielsen, Ole L; Afzelius, Pia

    2017-01-01

    and not quantitative. Quantitative assessment of perfusion could aid in the selection of therapy. A non-invasive, quantitative way to study perfusion is dynamic [15O]water positron emission tomography (PET). We aim to demonstrate that the method can be used for measuring perfusion in OM lesions and hypothesize...... that perfusion will be less elevated in OM lesions than in soft tissue (ST) infection. The study comprised 11 juvenile pigs with haematogenous osteomyelitis induced by injection of Staphylococcus aureus into the right femoral artery 1 week before scanning (in one pig, 2 weeks). The pigs were dynamically PET...

  20. Laser doppler perfusion imaging

    International Nuclear Information System (INIS)

    Waardell, K.

    1992-01-01

    Recording of tissue perfusion is important in assessing the influence of peripheral vascular diseases on the microcirculation. This thesis reports on a laser doppler perfusion imager based on dynamic light scattering in tissue. When a low power He-Ne laser beam sequentally scans the tissue, moving blood cells generate doppler components in the back-scattered light. A fraction of this light is detected by a photodetector and converted into an electrical signal. In the processor, a signal proportional to the tissue perfusion at each measurement site is calculated and stored. When the scanning procedure is completed, a color-coded perfusion image is presented on a monitor. To convert important aspects of the perfusion image into more quantitative parameters, data analysis functions are implemented in the software. A theory describing the dependence of the distance between individual measurement points and detector on the system amplification factor is proposed and correction algorithms are presented. The performance of the laser doppler perfusion imager was evaluated using a flow simulator. A linear relationship between processor output signal and flow through the simulator was demonstrated for blood cell concentrations below 0.2%. The median sampling depth of the laser beam was simulated by a Monte Carlo technique and estimated to 235 μm. The perfusion imager has been used in the clinic to study perfusion changes in port wine stains treated with argon laser and to investigate the intensity and extension of the cutaneous axon reflex response after electrical nerve stimulation. The fact that perfusion can be visualized without touching the tissue implies elimination of sterilization problems, thus simplifying clinical investigations of perfusion in association with diagnosis and treatment of peripheral vascular diseases. 22 refs

  1. Decreased Lung Perfusion After Breast/Chest Wall Irradiation: Quantitative Results From a Prospective Clinical Trial

    Energy Technology Data Exchange (ETDEWEB)

    Liss, Adam L., E-mail: adamliss68@gmail.com [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Marsh, Robin B. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Kapadia, Nirav S. [Department of Radiation Oncology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (United States); McShan, Daniel L. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Rogers, Virginia E. [Division of Nuclear Medicine, Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States); Balter, James M.; Moran, Jean M.; Brock, Kristy K.; Schipper, Matt J.; Jagsi, Reshma [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Griffith, Kent A. [Biostatistics Unit, University of Michigan, Ann Arbor, Michigan (United States); Flaherty, Kevin R. [Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan (United States); Frey, Kirk A. [Division of Nuclear Medicine, Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States); Pierce, Lori J. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States)

    2017-02-01

    Purpose: To quantify lung perfusion changes after breast/chest wall radiation therapy (RT) using pre- and post-RT single photon emission computed tomography/computed tomography (SPECT/CT) attenuation-corrected perfusion scans; and correlate decreased perfusion with adjuvant RT dose for breast cancer in a prospective clinical trial. Methods and Materials: As part of an institutional review board–approved trial studying the impact of RT technique on lung function in node-positive breast cancer, patients received breast/chest wall and regional nodal irradiation including superior internal mammary node RT to 50 to 52.2 Gy with a boost to the tumor bed/mastectomy scar. All patients underwent quantitative SPECT/CT lung perfusion scanning before RT and 1 year after RT. The SPECT/CT scans were co-registered, and the ratio of decreased perfusion after RT relative to the pre-RT perfusion scan was calculated to allow for direct comparison of SPECT/CT perfusion changes with delivered RT dose. The average ratio of decreased perfusion was calculated in 10-Gy dose increments from 0 to 60 Gy. Results: Fifty patients had complete lung SPECT/CT perfusion data available. No patient developed symptoms consistent with pulmonary toxicity. Nearly all patients demonstrated decreased perfusion in the left lung according to voxel-based analyses. The average ratio of lung perfusion deficits increased for each 10-Gy increment in radiation dose to the lung, with the largest changes in regions of lung that received 50 to 60 Gy (ratio 0.72 [95% confidence interval 0.64-0.79], P<.001) compared with the 0- to 10-Gy region. For each increase in 10 Gy to the left lung, the lung perfusion ratio decreased by 0.06 (P<.001). Conclusions: In the assessment of 50 patients with node-positive breast cancer treated with RT in a prospective clinical trial, decreased lung perfusion by SPECT/CT was demonstrated. Our study allowed for quantification of lung perfusion defects in a prospective cohort of

  2. Noninvasive measurements of regional cerebral perfusion in preterm and term neonates by magnetic resonance arterial spin labeling.

    Science.gov (United States)

    Miranda, Maria J; Olofsson, Kern; Sidaros, Karam

    2006-09-01

    Magnetic resonance arterial spin labeling (ASL) at 3 Tesla has been investigated as a quantitative technique for measuring regional cerebral perfusion (RCP) in newborn infants. RCP values were measured in 49 healthy neonates: 32 preterm infants born before 34 wk of gestation and 17 term-born neonates. Examinations were performed on unsedated infants at postmenstrual age of 39-40 wk in both groups. Due to motion, reliable data were obtained from 23 preterm and 6 term infants. Perfusion in the basal ganglia (39 and 30 mL/100 g/min for preterm and term neonates, respectively) was significantly higher (p neonates at term-equivalent age and in term neonates. Perfusion was significantly higher (p = 0.01) in the preterm group than in the term infants, indicating that RCP may be influenced by developmental and postnatal ages. This study demonstrates, for the first time, that noninvasive ASL at 3T may be used to measure RCP in healthy unsedated preterm and term neonates. ASL is, therefore, a viable tool that will allow serial studies of RCP in high-risk neonates.

  3. Quantitative Assessment of Free Flap Viability with CEUS Using an Integrated Perfusion Software.

    Science.gov (United States)

    Geis, S; Klein, S; Prantl, L; Dolderer, J; Lamby, P; Jung, E-M

    2015-12-01

    New treatment strategies in oncology and trauma surgery lead to an increasing demand for soft tissue reconstruction with free tissue transfer. In previous studies, CEUS was proven to detect early flap failure. The aim of this study was to detect and quantify vascular disturbances after free flap transplantation using a fast integrated perfusion software tool. From 2011 to 2013, 33 patients were examined by one experienced radiologist using CEUS after a bolus injection of 1-2.4 ml of SonoVue(®). Flap perfusion was analysed qualitatively regarding contrast defects or delayed wash-in. Additionally, an integrated semi-quantitative analysis using time-intensity curve analysis (TIC) was performed. TIC analysis of the transplant was conducted on a centimetre-by-centimetre basis up to a penetration depth of 4 cm. The 2 perfusion parameters "Time to PEAK" and "Area under the Curve" were compared in patients without complications vs. patients with minor complications or complete flap loss to figure out significant differences. TtoPk is given in seconds (s) and Area is given in relative units (rU) Results: A regular postoperative process was observed in 26 (79%) patients. In contrast, 5 (15%) patients with partial superficial flap necrosis, 1 patient (3%) with complete flap loss and 1 patient (3%) with haematoma were observed. TtoPk revealed no significant differences, whereas Area revealed significantly lower perfusion values in the corresponding areas in patients with complications. The critical threshold for sufficient flap perfusion was set below 150 rU. In conclusion, CEUS is a mobile and cost-effective opportunity to quantify tissue perfusion and can even be used almost without any restrictions in multi-morbid patients with renal and hepatic failure. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Quantitative contrast-enhanced first-pass cardiac perfusion MRI at 3 tesla with accurate arterial input function and myocardial wall enhancement.

    Science.gov (United States)

    Breton, Elodie; Kim, Daniel; Chung, Sohae; Axel, Leon

    2011-09-01

    To develop, and validate in vivo, a robust quantitative first-pass perfusion cardiovascular MR (CMR) method with accurate arterial input function (AIF) and myocardial wall enhancement. A saturation-recovery (SR) pulse sequence was modified to sequentially acquire multiple slices after a single nonselective saturation pulse at 3 Tesla. In each heartbeat, an AIF image is acquired in the aortic root with a short time delay (TD) (50 ms), followed by the acquisition of myocardial images with longer TD values (∼150-400 ms). Longitudinal relaxation rates (R(1) = 1/T(1)) were calculated using an ideal saturation recovery equation based on the Bloch equation, and corresponding gadolinium contrast concentrations were calculated assuming fast water exchange condition. The proposed method was validated against a reference multi-point SR method by comparing their respective R(1) measurements in the blood and left ventricular myocardium, before and at multiple time-points following contrast injections, in 7 volunteers. R(1) measurements with the proposed method and reference multi-point method were strongly correlated (r > 0.88, P < 10(-5)) and in good agreement (mean difference ±1.96 standard deviation 0.131 ± 0.317/0.018 ± 0.140 s(-1) for blood/myocardium, respectively). The proposed quantitative first-pass perfusion CMR method measured accurate R(1) values for quantification of AIF and myocardial wall contrast agent concentrations in 3 cardiac short-axis slices, in a total acquisition time of 523 ms per heartbeat. Copyright © 2011 Wiley-Liss, Inc.

  5. Automatic assessment of cardiac perfusion MRI

    DEFF Research Database (Denmark)

    Ólafsdóttir, Hildur; Stegmann, Mikkel Bille; Larsson, Henrik B.W.

    2004-01-01

    In this paper, a method based on Active Appearance Models (AAM) is applied for automatic registration of myocardial perfusion MRI. A semi-quantitative perfusion assessment of the registered image sequences is presented. This includes the formation of perfusion maps for three parameters; maximum up...

  6. Quantitative Validation of the Presto Blue Metabolic Assay for Online Monitoring of Cell Proliferation in a 3D Perfusion Bioreactor System.

    Science.gov (United States)

    Sonnaert, Maarten; Papantoniou, Ioannis; Luyten, Frank P; Schrooten, Jan Ir

    2015-06-01

    As the fields of tissue engineering and regenerative medicine mature toward clinical applications, the need for online monitoring both for quantitative and qualitative use becomes essential. Resazurin-based metabolic assays are frequently applied for determining cytotoxicity and have shown great potential for monitoring 3D bioreactor-facilitated cell culture. However, no quantitative correlation between the metabolic conversion rate of resazurin and cell number has been defined yet. In this work, we determined conversion rates of Presto Blue, a resazurin-based metabolic assay, for human periosteal cells during 2D and 3D static and 3D perfusion cultures. Our results showed that for the evaluated culture systems there is a quantitative correlation between the Presto Blue conversion rate and the cell number during the expansion phase with no influence of the perfusion-related parameters, that is, flow rate and shear stress. The correlation between the cell number and Presto Blue conversion subsequently enabled the definition of operating windows for optimal signal readouts. In conclusion, our data showed that the conversion of the resazurin-based Presto Blue metabolic assay can be used as a quantitative readout for online monitoring of cell proliferation in a 3D perfusion bioreactor system, although a system-specific validation is required.

  7. Quantitative Validation of the Presto Blue™ Metabolic Assay for Online Monitoring of Cell Proliferation in a 3D Perfusion Bioreactor System

    Science.gov (United States)

    Sonnaert, Maarten; Papantoniou, Ioannis; Luyten, Frank P.

    2015-01-01

    As the fields of tissue engineering and regenerative medicine mature toward clinical applications, the need for online monitoring both for quantitative and qualitative use becomes essential. Resazurin-based metabolic assays are frequently applied for determining cytotoxicity and have shown great potential for monitoring 3D bioreactor-facilitated cell culture. However, no quantitative correlation between the metabolic conversion rate of resazurin and cell number has been defined yet. In this work, we determined conversion rates of Presto Blue™, a resazurin-based metabolic assay, for human periosteal cells during 2D and 3D static and 3D perfusion cultures. Our results showed that for the evaluated culture systems there is a quantitative correlation between the Presto Blue conversion rate and the cell number during the expansion phase with no influence of the perfusion-related parameters, that is, flow rate and shear stress. The correlation between the cell number and Presto Blue conversion subsequently enabled the definition of operating windows for optimal signal readouts. In conclusion, our data showed that the conversion of the resazurin-based Presto Blue metabolic assay can be used as a quantitative readout for online monitoring of cell proliferation in a 3D perfusion bioreactor system, although a system-specific validation is required. PMID:25336207

  8. Ventilation-perfused studies using SPECT

    International Nuclear Information System (INIS)

    Zwijnenburg, A.

    1989-01-01

    A method for the quantitative analysis of ventilation-perfusion SPECT studies is decribed and an effort is made to evaluate its usefullness. The technical details of the emthod are described. In the the transaxial reconstructions of the tomographic studies the contour of the lungs is detected and regional values of lung volume, ventilation, perfusion and ventilation-perfusion ratios are calculated. The method is operator independent. The lung volume calculations from the SPECT studies are validated by comparing them with lung volume measurements using the helium dilution technique. A good correlation (r=0.91) was found between the two volumes. SPECT volume was greater than the volume measured with helium dilution, which was attributed to non-gas-containing structures in the. lungs. The use of ventilation-perfusion ratio SPECT is described to evaluate the effect of ionizing radiation on the lungs in patients treated with mantle field irradiation for Hodgkin's disease. Perfusion changes appear as early as 2 months after the start of irradiation. Ventilation changes appear later and relatively minor. No changes are seen outside the radiation portals. The ventilation-perfusion inequality in pulmonary sarcoidosis is treated. It is suggested that the decrease D LCO in these patients may be partly due to an even distribution of ventilation perfusion ratios. An effort is made to establish the properties of a new tracer used for the assessment of the metabolic function of the pulmonary endothelium. The lung uptake of I-123 IMP mimics the distribution of a perfusion tracer and it is suggested that this tracer may be useful for the early detection of pulmonary vascular damage, even when blood flow is still intact. Some aspects of the use of Kr-81m as a ventilation tracer are discussed as well as the effect of noise on Kr-81m SPECT reconstructions. (author). 146 refs.; 39 figs.; 8 tabs

  9. Quantitative Myocardial Perfusion with Dynamic Contrast-Enhanced Imaging in MRI and CT: Theoretical Models and Current Implementation

    Directory of Open Access Journals (Sweden)

    G. J. Pelgrim

    2016-01-01

    Full Text Available Technological advances in magnetic resonance imaging (MRI and computed tomography (CT, including higher spatial and temporal resolution, have made the prospect of performing absolute myocardial perfusion quantification possible, previously only achievable with positron emission tomography (PET. This could facilitate integration of myocardial perfusion biomarkers into the current workup for coronary artery disease (CAD, as MRI and CT systems are more widely available than PET scanners. Cardiac PET scanning remains expensive and is restricted by the requirement of a nearby cyclotron. Clinical evidence is needed to demonstrate that MRI and CT have similar accuracy for myocardial perfusion quantification as PET. However, lack of standardization of acquisition protocols and tracer kinetic model selection complicates comparison between different studies and modalities. The aim of this overview is to provide insight into the different tracer kinetic models for quantitative myocardial perfusion analysis and to address typical implementation issues in MRI and CT. We compare different models based on their theoretical derivations and present the respective consequences for MRI and CT acquisition parameters, highlighting the interplay between tracer kinetic modeling and acquisition settings.

  10. Perfusion vector - a new method to quantify myocardial perfusion scintigraphy images: a simulation study with validation in patients

    DEFF Research Database (Denmark)

    Minarik, David; Senneby, Martin; Wollmer, Per

    2015-01-01

    Background The interpretation of myocardial perfusion scintigraphy (MPS) largely relies on visual assessment by the physician of the localization and extent of a perfusion defect. The aim of this study was to introduce the concept of the perfusion vector as a new objective quantitative method...

  11. Improvements in the Quantitative Assessment of Cerebral Blood Volume and Flow with the Removal of Vessel Voxels from MR Perfusion Images

    Directory of Open Access Journals (Sweden)

    Michael Mu Huo Teng

    2013-01-01

    Full Text Available Objective. To improve the quantitative assessment of cerebral blood volume (CBV and flow (CBF in the brain voxels from MR perfusion images. Materials and Methods. Normal brain parenchyma was automatically segmented with the time-to-peak criteria after cerebrospinal fluid removal and preliminary vessel voxel removal. Two scaling factors were calculated by comparing the relative CBV and CBF of the segmented normal brain parenchyma with the absolute values in the literature. Using the scaling factors, the relative values were converted to the absolute CBV and CBF. Voxels with either CBV > 8 mL/100 g or CBF > 100 mL/100 g/min were characterized as vessel voxels and were excluded from the quantitative measurements. Results. The segmented brain parenchyma with normal perfusion was consistent with the angiographic findings for each patient. We confirmed the necessity of dual thresholds including CBF and CBV for proper removal of vessel voxels. The scaling factors were 0.208 ± 0.041 for CBV, and 0.168 ± 0.037, 0.172 ± 0.037 for CBF calculated using standard and circulant singular value decomposition techniques, respectively. Conclusion. The automatic scaling and vessel removal techniques provide an alternative method for obtaining improved quantitative assessment of CBV and CBF in patients with thromboembolic cerebral arterial disease.

  12. Quantitative fluorescence angiography for neurosurgical interventions.

    Science.gov (United States)

    Weichelt, Claudia; Duscha, Philipp; Steinmeier, Ralf; Meyer, Tobias; Kuß, Julia; Cimalla, Peter; Kirsch, Matthias; Sobottka, Stephan B; Koch, Edmund; Schackert, Gabriele; Morgenstern, Ute

    2013-06-01

    Present methods for quantitative measurement of cerebral perfusion during neurosurgical operations require additional technology for measurement, data acquisition, and processing. This study used conventional fluorescence video angiography--as an established method to visualize blood flow in brain vessels--enhanced by a quantifying perfusion software tool. For these purposes, the fluorescence dye indocyanine green is given intravenously, and after activation by a near-infrared light source the fluorescence signal is recorded. Video data are analyzed by software algorithms to allow quantification of the blood flow. Additionally, perfusion is measured intraoperatively by a reference system. Furthermore, comparing reference measurements using a flow phantom were performed to verify the quantitative blood flow results of the software and to validate the software algorithm. Analysis of intraoperative video data provides characteristic biological parameters. These parameters were implemented in the special flow phantom for experimental validation of the developed software algorithms. Furthermore, various factors that influence the determination of perfusion parameters were analyzed by means of mathematical simulation. Comparing patient measurement, phantom experiment, and computer simulation under certain conditions (variable frame rate, vessel diameter, etc.), the results of the software algorithms are within the range of parameter accuracy of the reference methods. Therefore, the software algorithm for calculating cortical perfusion parameters from video data presents a helpful intraoperative tool without complex additional measurement technology.

  13. Magnetic Resonance Imaging of Ventilation and Perfusion in the Lung

    Science.gov (United States)

    Prisk, Gordon Kim (Inventor); Hopkins, Susan Roberta (Inventor); Buxton, Richard Bruce (Inventor); Pereira De Sa, Rui Carlos (Inventor); Theilmann, Rebecca Jean (Inventor); Cronin, Matthew Vincent (Inventor)

    2017-01-01

    Methods, devices, and systems are disclosed for implementing a fully quantitative non-injectable contrast proton MRI technique to measure spatial ventilation-perfusion (VA/Q) matching and spatial distribution of ventilation and perfusion. In one aspect, a method using MRI to characterize ventilation and perfusion in a lung includes acquiring an MR image of the lung having MR data in a voxel and obtaining a breathing frequency parameter, determining a water density value, a specific ventilation value, and a perfusion value in at least one voxel of the MR image based on the MR data and using the water density value to determine an air content value, and determining a ventilation-perfusion ratio value that is the product of the specific ventilation value, the air content value, the inverse of the perfusion value, and the breathing frequency.

  14. Optical techniques for perfusion monitoring of the gastric tube after esophagectomy: a review of technologies and thresholds.

    Science.gov (United States)

    Jansen, S M; de Bruin, D M; van Berge Henegouwen, M I; Strackee, S D; Veelo, D P; van Leeuwen, T G; Gisbertz, S S

    2018-04-26

    Anastomotic leakage is one of the most severe complications after esophageal resection with gastric tube reconstruction. Impaired perfusion of the gastric fundus is seen as the main contributing factor for this complication. Optical modalities show potential in recognizing compromised perfusion in real time, when ischemia is still reversible. This review provides an overview of optical techniques with the aim to evaluate the (1) quantitative measurement of change in perfusion in gastric tube reconstruction and (2) to test which parameters are the most predictive for anastomotic leakage.A Pubmed, MEDLINE, and Embase search was performed and articles on laser Doppler flowmetry (LDF), near-infrared spectroscopy (NIRS), laser speckle contrast imaging (LSCI), fluorescence imaging (FI), sidestream darkfield microscopy (SDF), and optical coherence tomography (OCT) regarding blood flow in gastric tube surgery were reviewed. Two independent reviewers critically appraised articles and extracted the data: Primary outcome was quantitative measure of perfusion change; secondary outcome was successful prediction of necrosis or anastomotic leakage by measured perfusion parameters.Thirty-three articles (including 973 patients and 73 animals) were selected for data extraction, quality assessment, and risk of bias (QUADAS-2). LDF, NIRS, LSCI, and FI were investigated in gastric tube surgery; all had a medium level of evidence. IDEAL stage ranges from 1 to 3. Most articles were found on LDF (n = 12), which is able to measure perfusion in arbitrary perfusion units with a significant lower amount in tissue with necrosis development and on FI (n = 12). With FI blood flow routes could be observed and flow was qualitative evaluated in rapid, slow, or low flow. NIRS uses mucosal oxygen saturation and hemoglobin concentration as perfusion parameters. With LSCI, a decrease of perfusion units is observed toward the gastric fundus intraoperatively. The perfusion units (LDF, LSCI), although

  15. Quantitative perfusion parameters in a cohort of patients with no known ischemic heart disease and normal myocardial perfusion imaging studied by 82Rb-PET

    DEFF Research Database (Denmark)

    Hoff, Camilla; Balche, Abdallah; Majgaard, J

    Purpose 82Rb perfusion PET allows for visual as well as quantitative interpretation of myocardial function. Whereas visual interpretation relies on intra-individual redistribution of the tracer between rest and stress studies, quantitative interpretation of absolute flow values requires robust.......86 mL/g/min. Global coronary flow reserve (CFR) was 2.81 (±SD 0.71). EF at rest was 65.3% (±SD 10) and during stress 69% (±SD 12.3), yielding an EF reserve of 4.5%. TPD at rest and stress was 6% (±SD 4). Conclusion Based on a representative population of patients in which coronary artery disease...

  16. Retinal hemodynamic oxygen reactivity assessed by perfusion velocity, blood oximetry and vessel diameter measurements

    DEFF Research Database (Denmark)

    Klefter, Oliver Niels; Lauritsen, Anne Øberg; Larsen, Michael

    2015-01-01

    PURPOSE: To test the oxygen reactivity of a fundus photographic method of measuring macular perfusion velocity and to integrate macular perfusion velocities with measurements of retinal vessel diameters and blood oxygen saturation. METHODS: Sixteen eyes in 16 healthy volunteers were studied at two...... is a valid method for assessing macular perfusion. Results were consistent with previous observations of hyperoxic blood flow reduction using blue field entoptic and laser Doppler velocimetry. Retinal perfusion seemed to be regulated around individual set points according to blood glucose levels. Multimodal...

  17. Photoplethysmographic sensors for perfusion measurements in spinal cord tissue

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, J P; Kyriacou, P A, E-mail: Justin.Phillips.1@city.ac.uk [School of Engineering and Mathematical Sciences, City University London, EC1V 0HB (United Kingdom)

    2011-08-17

    Sensors for recording photoplethysmographic signals from the nervous tissue of the spinal cord are described. The purpose of these sensors is to establish whether perfusion is compromised in various states of injury which occur in certain animal models of spinal cord injury, for example compression injury. Various measures of perfusion are applicable such as the amplitude of the photoplethysmograph signal and the oxygen saturation, measured using a dual wavelength configuration. Signals are usually compared to baseline measurements made in uninjured subjects. This paper describes two types of probe, one based on optical fibres, and one in which optotes are placed in direct contact with the tissue surface. Results from a study based on a compression model utilising a fibreoptic sensor are presented.

  18. Contribution of quantitative perfusion pulmonary scintiscanning with particles to the study of the regional pulmonary blood flow distribution

    International Nuclear Information System (INIS)

    Barreto, S.S.M.

    1988-01-01

    The quantitative perfusion pulmonary scintiscanning with macro aggregates was studied by digital images of perfusion, obtained in scintiscanning chamber coupled to the data processing system. The study was developed in four phases, in the Nuclear Medicine Service of Porto Alegre Clinical Hospital. In each phase, it was studied groups with different ages and different clinical aspects (normal and cardiopathic persons), and they were submitted to several diagnostic techniques. The macro aggregates used was the human albumin and was labelled with technetium 99. A comparative evaluation of this method with others diagnostic techniques was also presented. (C.G.C)

  19. Quantitative analysis of Tl-201 myocardial perfusion image with special reference to circumferential profile method

    Energy Technology Data Exchange (ETDEWEB)

    Miyanaga, Hajime [Kyoto Prefectural Univ. of Medicine (Japan)

    1982-08-01

    A quantitative analysis of thallium-201 myocardial perfusion image (MPI) was attempted by using circumferential profile method (CPM) and the first purpose of this study is to assess the clinical utility of this method for the detection of myocardial ischemia. In patients with coronary artery disease, CPM analysis to exercise T1-MPI showed high sensitivity (9/12, 75%) and specificity (9/9, 100%), whereas exercise ECG showed high sensitivity (9/12, 75%), but relatively low specificity (7/9, 78%). In patients with myocardial infarction, CPM also showed high sensitivity (34/38, 89%) for the detection of myocardial necrosis, compared with visual interpretation (31/38, 81%) and with ECG (31/38, 81%). Defect score was correlated well with the number of abnormal Q waves. In exercise study, CPM was also sensitive to the change of perfusion defect in T1-MPI produced by exercise. So the results indicate that CPM is a good method not only quantitatively but also objectively to analyze T1-MPI. Although ECG is the most commonly used diagnostic tool for ischemic heart disease, several exercise induced ischemic changes in ECG have been still on discussion as criteria. So the second purpose of this study is to evaluate these ischemic ECG changes by exercise T1-MPI analized quantitatively. ST depression (ischemic 1 mm and junctional 2 mm or more), ST elevation (1 mm or more), and coronary T wave reversion in exercise ECG were though to be ischemic changes.

  20. Quantitative iodine-123 IMP imaging of brain perfusion in schizophrenia

    International Nuclear Information System (INIS)

    Cohen, M.B.; Lake, R.R.; Graham, L.S.

    1989-01-01

    Decreased perfusion in the frontal lobes of patients with chronic schizophrenia has been reported by multiple observes using a variety of techniques. Other observers have been unable to confirm this finding using similar techniques. In this study quantitative single photon emission computed tomography brain imaging was performed using p,5n [ 123 I]IMP in five normal subjects and ten chronically medicated patients with schizophrenia. The acquisition data were preprocessed with an image dependent Metz filter and reconstructed using a ramp filtered back projection technique. The uptake in each of 50 regions of interest in each subject was normalized to the uptake in the cerebellum. There were no significant confirmed differences in the comparable ratios of normal subjects and patients with schizophrenia even at the p = 0.15 level. Hypofrontality was not observed

  1. Quantitative perfusion imaging in magnetic resonance imaging; Quantitative Perfusionsbildgebung in der Magnetresonanztomographie

    Energy Technology Data Exchange (ETDEWEB)

    Zoellner, F.G.; Gaa, T.; Zimmer, F. [Universitaet Heidelberg, Computerunterstuetzte Klinische Medizin, Medizinische Fakultaet Mannheim, Mannheim (Germany); Ong, M.M.; Riffel, P.; Hausmann, D.; Schoenberg, S.O.; Weis, M. [Universitaet Heidelberg, Institut fuer Klinische Radiologie und Nuklearmedizin, Universitaetsmedizin Mannheim, Medizinische Fakultaet Mannheim, Mannheim (Germany)

    2016-02-15

    Magnetic resonance imaging (MRI) is recognized for its superior tissue contrast while being non-invasive and free of ionizing radiation. Due to the development of new scanner hardware and fast imaging techniques during the last decades, access to tissue and organ functions became possible. One of these functional imaging techniques is perfusion imaging with which tissue perfusion and capillary permeability can be determined from dynamic imaging data. Perfusion imaging by MRI can be performed by two approaches, arterial spin labeling (ASL) and dynamic contrast-enhanced (DCE) MRI. While the first method uses magnetically labelled water protons in arterial blood as an endogenous tracer, the latter involves the injection of a contrast agent, usually gadolinium (Gd), as a tracer for calculating hemodynamic parameters. Studies have demonstrated the potential of perfusion MRI for diagnostics and also for therapy monitoring. The utilization and application of perfusion MRI are still restricted to specialized centers, such as university hospitals. A broad application of the technique has not yet been implemented. The MRI perfusion technique is a valuable tool that might come broadly available after implementation of standards on European and international levels. Such efforts are being promoted by the respective professional bodies. (orig.) [German] Die Magnetresonanztomographie (MRT) zeichnet sich durch einen ueberlegenen Gewebekontrast aus, waehrend sie nichtinvasiv und frei von ionisierender Strahlung ist. Sie bietet Zugang zu Gewebe- und Organfunktion. Eine dieser funktionellen bildgebenden Verfahren ist die Perfusionsbildgebung. Mit dieser Technik koennen u. a. Gewebeperfusion und Kapillarpermeabilitaet aus dynamischen Bilddaten bestimmt werden. Perfusionsbildgebung mithilfe der MRT kann durch 2 Ansaetze, naemlich ''arterial spin labeling'' (ASL) und dynamische kontrastverstaerkte (DCE-)MRT durchgefuehrt werden. Waehrend die erste Methode magnetisch

  2. Clinical use of quantitative cardiac perfusion PET : rationale, modalities and possible indications. Position paper of the Cardiovascular Committee of the European Association of Nuclear Medicine (EANM)

    NARCIS (Netherlands)

    Sciagra, Roberto; Passeri, Alessandro; Bucerius, Jan; Verberne, Hein J.; Slart, Riemer H. J. A.; Lindner, Oliver; Gimelli, Alessia; Hyafil, Fabien; Agostini, Denis; Uebleis, Christopher; Hacker, Marcus

    Until recently, PET was regarded as a luxurious way of performing myocardial perfusion scintigraphy, with excellent image quality and diagnostic capabilities that hardly justified the additional cost and procedural effort. Quantitative perfusion PET was considered a major improvement over standard

  3. Clinical use of quantitative cardiac perfusion PET: rationale, modalities and possible indications. Position paper of the Cardiovascular Committee of the European Association of Nuclear Medicine (EANM)

    NARCIS (Netherlands)

    Sciagrà, Roberto; Passeri, Alessandro; Bucerius, Jan; Verberne, Hein J.; Slart, Riemer H. J. A.; Lindner, Oliver; Gimelli, Alessia; Hyafil, Fabien; Agostini, Denis; Übleis, Christopher; Hacker, Marcus

    2016-01-01

    Until recently, PET was regarded as a luxurious way of performing myocardial perfusion scintigraphy, with excellent image quality and diagnostic capabilities that hardly justified the additional cost and procedural effort. Quantitative perfusion PET was considered a major improvement over standard

  4. Prediction of functional recovery after revascularization using quantitative gated myocardial perfusion SPECT: a multi-center cohort study in Japan

    International Nuclear Information System (INIS)

    Nakajima, Kenichi; Tamaki, Nagara; Kuwabara, Yoichi; Kawano, Masaya; Matsunari, Ichiro; Taki, Junichi; Nishimura, Shigeyuki; Yamashina, Akira; Ishida, Yoshio; Tomoike, Hitonobu

    2008-01-01

    Prediction of left ventricular functional recovery is important after myocardial infarction. The impact of quantitative perfusion and motion analyses with gated single-photon emission computed tomography (SPECT) on predictive ability has not been clearly defined in multi-center studies. A total of 252 patients with recent myocardial infarction (n = 74) and old myocardial infarction (n = 175) were registered from 25 institutions. All patients underwent resting gated SPECT using 99m Tc-hexakis-2-methoxy-isobutyl isonitrile (MIBI) and repeated the study after revascularization after an average follow-up period of 132 ± 81 days. Visual and quantitative assessment of perfusion and wall motion were performed in 5,040 segments. Non-gated segmental percent uptake and end-systolic (ES) percent uptake were good predictors of wall motion recovery and significantly differed between improved and non-improved groups (66 ± 17% and 55 ± 18%, p 99m Tc-MIBI uptake provided a useful predictor of wall motion improvement. Application of quantitative approach with non-gated and ES percent uptake enhanced predictive accuracy over visual analysis particularly in a multi-center study. (orig.)

  5. Assessment value of quantitative indexes of pancreatic CT perfusion scanning for malignant degree of pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Jiang-Xia Lei

    2016-10-01

    Full Text Available Objective: To analyze the assessment value of the quantitative indexes of pancreatic CT perfusion scanning for malignant degree of pancreatic cancer. Methods: A total of 58 patients with space-occupying pancreatic lesions were divided into 20 patients with pancreatic cancer and 38 patients with benign pancreatic lesions after pancreatic CT perfusion. Patients with pancreatic cancer received palliative surgery, and the cancer tissue and para-carcinoma tissue specimens were collected during operation. The differences in pancreatic CT perfusion scanning parameter values and serum tumor marker levels were compared between patients with pancreatic cancer and patients with benign pancreatic lesions, mRNA expression levels of malignant molecules in pancreatic cancer tissue and para-carcinoma tissue were further determined, and the correlation between pancreatic CT perfusion scanning parameter values and malignant degree of pancreatic cancer was analyzed. Results: CT perfusion scanning BF, BV and Per values of patients with pancreatic cancer were lower than those of patients with benign pancreatic lesions; serum CA19-9, CEA, CA125 and CA242 levels were higher than those of patients with benign pancreatic lesions (P<0.05; mRNA expression levels of Bcl-2, Bcl-xL and survivin in pancreatic cancer tissue samples were higher than those in paracarcinoma tissue samples, and mRNA expression levels of P53 and Bax were lower than those in para-carcinoma tissue samples (P<0.05; CT perfusion scanning parameters BF, BV and Per values of patients with pancreatic cancer were negatively correlated with CA19-9, CEA, CA125 and CA242 levels in serum as well as mRNA expression levels of Bcl-2, Bcl-xL and survivin in pancreatic cancer tissue, and positively correlated with mRNA expression levels of P53 and Bax in pancreatic cancer tissue (P<0.05. Conclusions: Pancreatic CT perfusion scanning is a reliable way to judge the malignant degree of pancreatic cancer and plays a

  6. CT hepatic perfusion measurement: Comparison of three analytic methods

    International Nuclear Information System (INIS)

    Kanda, Tomonori; Yoshikawa, Takeshi; Ohno, Yoshiharu; Kanata, Naoki; Koyama, Hisanobu; Takenaka, Daisuke; Sugimura, Kazuro

    2012-01-01

    Objectives: To compare the efficacy of three analytic methods, maximum slope (MS), dual-input single-compartment model (CM) and deconvolution (DC), for CT measurements of hepatic perfusion and assess the effects of extra-hepatic systemic factors. Materials and methods: Eighty-eight patients who were suspected of having metastatic liver tumors underwent hepatic CT perfusion. The scans were performed at the hepatic hilum 7–77 s after administration of contrast material. Hepatic arterial and portal perfusions (HAP and HPP, ml/min/100 ml) and arterial perfusion fraction (APF, %) were calculated with the three methods, followed by correlation assessment. Partial correlation analysis was used to assess the effects on hepatic perfusion values by various factors such as age, sex, risk of cardiovascular diseases, arrival time of contrast material at abdominal aorta, transit time from abdominal aorta to hepatic parenchyma, and liver dysfunction. Results: Mean HAP of MS was significantly higher than DC. HPP of CM was significantly higher than MS and CM, and HPP of MS was significantly higher than DC. There was no significant difference in APF. HAP and APF showed significant and moderate correlations among the methods. HPP showed significant and moderate correlations between CM and DC, and poor correlation between MS and CM or DC. All methods showed weak correlations between HAP or APF and age or sex. Finally, MS showed weak correlations between HAP or HPP and arrival time or cardiovascular risks. Conclusions: Hepatic perfusion values arrived at with the three methods are not interchangeable. CM and DC are less susceptible to extra-hepatic systemic factors

  7. Hepatic arterial perfusion increases in the early stage of severe acute pancreatitis patients: Evaluation by perfusion computed tomography

    International Nuclear Information System (INIS)

    Koyasu, Sho; Isoda, Hiroyoshi; Tsuji, Yoshihisa; Yamamoto, Hiroshi; Matsueda, Kazuhiro; Watanabe, Yuji; Chiba, Tsutomu; Togashi, Kaori

    2012-01-01

    Purpose: Although hepatic perfusion abnormalities have been reported in patients with acute pancreatitis, hepatic perfusion with severe acute pancreatitis (SAP) has not been quantitatively evaluated in humans. Therefore, we investigated hepatic perfusion in patients with SAP using perfusion CT. Materials and methods: Hepatic perfusion CT was performed in 67 patients with SAP within 3 days after symptom onset. The patients were diagnosed as having SAP according to the Atlanta criteria. Fifteen cases were established as a control group. Perfusion CT was obtained for 54 s beginning with a bolus injection of 40 ml of contrast agent (600–630 mgI/kg) at a flow rate of 4 ml/s. Perfusion data were analyzed by the dual-input maximum slope method to obtain hepatic arterial perfusion (HAP) and hepatic portal perfusion (HPP). Finally, we compared HAP and HPP in SAP patients with those in the control group, respectively. Results: Average HAP was significantly higher in SAP patients than in the control group (75.1 ± 38.0 vs. 38.2 ± 9.0 ml/min/100 ml; p < 0.001). There was no significant difference in average HPP between SAP patients and the control group (206.7 ± 54.9 vs. 204.4 ± 38.5 ml/min/100 ml; p = 0.92). Conclusion: Using quantitative analysis on perfusion CT, we first demonstrated an increase of HAP in the right hepatic lobe in SAP patients.

  8. SU-F-R-34: Quantitative Perfusion Measurement in Rectal Cancer Using Three Different Pharmacokinetic Models: Implications for Prospective Study Design

    Energy Technology Data Exchange (ETDEWEB)

    Nie, K; Yue, N; Jabbour, S; Kim, S [Rutgers-Cancer Institute of New Jersey, Rutgers-Robert Wood Johnson Medical, New Brunswick, NJ (United States); Mao, T; Shi, L; Hu, X; Qian, L; Sun, X; Niu, T [Sir Run Run Shaw Hospital, Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang (China)

    2016-06-15

    Purpose: To compare three different pharmacokinetic models for analysis of dynamic-contrast-enhanced (DCE)-CT data with respect to different acquisition times and location of region of interest. Methods: Eight rectal cancer patients with pre-treatment DCE-CTs were included. The dynamic sequence started 4–10seconds(s) after the injection of contrast agent. The scan included a 110s acquisition with intervals of 40×1s+15×3s+4×6s. An experienced oncologist outlined the tumor region. Hotspots with top-5%-enhancement were also identified. Pharmacokinetic analysis was performed using three different models: deconvolution method, Patlak model, and modified Toft’s model. Perfusion parameters as blood flow (BF), blood volume (BV), mean transit time (MTT), permeability-surface-area-product (PS), volume transfer constant (Ktrans), and flux rate constant (Kep), were compared with respect to different acquisition times of 45s, 65s, 85s and 105s. Both hotspot and whole-volume variances were also assessed. The differences were compared using the Wilcoxon matched-pairs test and Bland-Altman plots. Results: Moderate correlation was observed for various perfusion parameters (r=0.56–0.72, p<0.0001) but the Wilcoxon test revealed a significant difference among the three models (P < .001). Significant differences in PS were noted between acquisitions of 45s versus longer time of 85s or 105s (p<0.05) using Patlak but not with the deconvolution method. In addition, measurements varied substantially between whole-volume vs. hotspot analysis. Conclusion: The radiation dose of DCE-CT was on average 1.5 times of an abdomen/pelvic CT, which is not insubstantial. To take the DCE-CT forward as a biomarker in oncology, prospective studies should be carefully designed with the optimal image acquisition and analysis technique. Our study suggested that: (1) different kinetic models are not interchangeable; (2) a 45s acquisition might not be sufficient for reliable permeability measurement

  9. Limbic system perfusion in Alzheimer's disease measured by MRI-coregistered HMPAO SPET

    International Nuclear Information System (INIS)

    Callen, David J.A.; Black, Sandra E.; Caldwell, Curtis B.

    2002-01-01

    The goal of this study was to perform a systematic, semi-quantitative analysis of limbic perfusion in patients with Alzheimer's disease (AD) using coregistered single-photon emission tomography (SPET) images aligned to magnetic resonance (MR) images. Limbic perfusion in 40 patients with mild to moderate AD was compared with that of 17 age-, sex-, and education-matched normal controls (NC). HMPAO SPET scans and 3D T1-weighted MR images were acquired for each subject. Structures of the limbic system (i.e. hippocampus, amygdala, anterior thalamus, hypothalamus, mamillary bodies, basal forebrain, septal area and cingulate, orbitofrontal and parahippocampal cortices) were traced on the MR images and transferred to the coregistered SPET scans. Perfusion ratios for all limbic regions were calculated relative to cerebellar perfusion. General linear model multivariate analysis revealed that, overall, limbic structures showed significant hypoperfusion (F=7.802, P 2 =0.695) in AD patients compared with NC. Greatest differences (d≥0.8) were found in the hippocampus, as well as all areas of the cingulate cortex. Significant relative hypoperfusion was also apparent in the parahippocampal cortex, amygdala/entorhinal cortex, septal area and anterior thalamus, all of which showed medium to large effect sizes (d=0.6-0.8). No significant relative perfusion differences were detected in the basal forebrain, hypothalamus, mamillary bodies or orbitofrontal cortex. Logistic regression indicated that posterior cingulate cortex perfusion was able to discriminate AD patients from NC with 93% accuracy (95% sensitivity, 88% specificity). The current results suggest that most, but not all, limbic structures show significant relative hypoperfusion in AD. These findings validate previous post-mortem studies and could be useful in improving diagnostic accuracy, monitoring disease progression and evaluating potential treatment strategies in AD. (orig.)

  10. Quantitative myocardial blood flow with Rubidium-82 PET

    DEFF Research Database (Denmark)

    Hagemann, Christoffer E; Ghotbi, Adam A; Kjær, Andreas

    2015-01-01

    Positron emission tomography (PET) allows assessment of myocardial blood flow in absolute terms (ml/min/g). Quantification of myocardial blood flow (MBF) and myocardial flow reserve (MFR) extend the scope of conventional semi-quantitative myocardial perfusion imaging (MPI): e.g. in 1) identificat......Positron emission tomography (PET) allows assessment of myocardial blood flow in absolute terms (ml/min/g). Quantification of myocardial blood flow (MBF) and myocardial flow reserve (MFR) extend the scope of conventional semi-quantitative myocardial perfusion imaging (MPI): e.g. in 1...... global MFR and major adverse cardiovascular events (MACE), and together with new diagnostic possibilities from measuring the longitudinal myocardial perfusion gradient, cardiac (82)Rb PET faces a promising clinical future. This article reviews current evidence on quantitative (82)Rb PET's ability...

  11. CT Perfusion Characteristics Identify Metastatic Sites in Liver

    Directory of Open Access Journals (Sweden)

    Yuan Wang

    2015-01-01

    Full Text Available Tissue perfusion plays a critical role in oncology because growth and migration of cancerous cells require proliferation of new blood vessels through the process of tumor angiogenesis. Computed tomography (CT perfusion is an emerging functional imaging modality that measures tissue perfusion through dynamic CT scanning following intravenous administration of contrast medium. This noninvasive technique provides a quantitative basis for assessing tumor angiogenesis. CT perfusion has been utilized on a variety of organs including lung, prostate, liver, and brain, with promising results in cancer diagnosis, disease prognostication, prediction, and treatment monitoring. In this paper, we focus on assessing the extent to which CT perfusion characteristics can be used to discriminate liver metastases from neuroendocrine tumors from normal liver tissues. The neuroendocrine liver metastases were analyzed by distributed parameter modeling to yield tissue blood flow (BF, blood volume (BV, mean transit time (MTT, permeability (PS, and hepatic arterial fraction (HAF, for tumor and normal liver. The result reveals the potential of CT perfusion as a tool for constructing biomarkers from features of the hepatic vasculature for guiding cancer detection, prognostication, and treatment selection.

  12. A quantitative analysis of Tl-201 myocardial perfusion image with special reference to circumferential profile method

    International Nuclear Information System (INIS)

    Miyanaga, Hajime

    1982-01-01

    A quantitative analysis of thallium-201 myocardial perfusion image (MPI) was attempted by using circumferential profile method (CPM) and the first purpose of this study is to assess the clinical utility of this method for the detection of myocardial ischemia. In patients with coronary artery disease, CPM analysis to exercise T1-MPI showed high sensitivity (9/12, 75%) and specificity (9/9, 100%), whereas exercise ECG showed high sensitivity (9/12, 75%), but relatively low specificity (7/9, 78%). In patients with myocardial infarction, CPM also showed high sensitivity (34/38, 89%) for the detection of myocardial necrosis, compared with visual interpretation (31/38, 81%) and with ECG (31/38, 81%). Defect score was correlated well with the number of abnormal Q waves. In exercise study, CPM was also sensitive to the change of perfusion defect in T1-MPI produced by exercise. So the results indicate that CPM is a good method not only quantitatively but also objectively to analyze T1-MPI. Although ECG is the most commonly used diagnostic tool for ischemic heart disease, several exercise induced ischemic changes in ECG have been still on discussion as criteria. So the second purpose of this study is to evaluate these ischemic ECG changes by exercise T1-MPI analized quantitatively. ST depression (ischemic 1 mm and junctional 2 mm or more), ST elevation (1 mm or more), and coronary T wave reversion in exercise ECG were though to be ischemic changes. (J.P.N.)

  13. Intravoxel incoherent motion perfusion imaging in acute stroke: initial clinical experience

    International Nuclear Information System (INIS)

    Federau, C.; Becce, F.; Maeder, P.; Meuli, R.; Sumer, S.; Wintermark, M.; O'Brien, K.

    2014-01-01

    Intravoxel incoherent motion (IVIM) imaging is an MRI perfusion technique that uses a diffusion-weighted sequence with multiple b values and a bi-compartmental signal model to measure the so-called pseudo-diffusion of blood caused by its passage through the microvascular network. The goal of the current study was to assess the feasibility of IVIM perfusion fraction imaging in patients with acute stroke. Images were collected in 17 patients with acute stroke. Exclusion criteria were onset of symptoms to imaging >5 days, hemorrhagic transformation, infratentorial lesions, small lesions 2 . Image quality was assessed by two radiologists, and quantitative analysis was performed in regions of interest placed in the stroke area, defined by thresholding the apparent diffusion coefficient maps, as well as in the contralateral region. IVIM perfusion fraction maps showed an area of decreased perfusion fraction f in the region of decreased apparent diffusion coefficient. Quantitative analysis showed a statistically significant decrease in both IVIM perfusion fraction f (0.026 ± 0.019 vs. 0.056 ± 0.025, p = 2.2 . 10 -6 ) and diffusion coefficient D compared with the contralateral side (3.9 ± 0.79 . 10 -4 vs. 7.5 ± 0.86 . 10 -4 mm 2 /s, p = 1.3 . 10 -20 ). IVIM perfusion fraction imaging is feasible in acute stroke. IVIM perfusion fraction is significantly reduced in the visible infarct. Further studies should evaluate the potential for IVIM to predict clinical outcome and treatment response. (orig.)

  14. Quantitative evaluation of myocardial perfusion and heart function using a non-invasive double isotope technique

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, W H; Doll, J; Georgi, P [Deutsches Krebsforschungszentrum, Heidelberg (Germany, F.R.). Inst. fuer Nuklearmedizin; Tillmanns, H [Heidelberg Univ. (Germany, F.R.). Innere Medizin 3

    1976-11-01

    This paper describes a non-invasive double nuclide technique for the simultaneous measurement of minimal cardiac transit times (MTT) and regional 'myocardial appearance times' (MAT) using gamma camera and computer. MAT is defined as the time lag between the appearance of an indicator with myocardial affinity in the aortic root and its extraction in the myocardial cells. The extraction can be identified as an increase of the ratio between the count rates of the two nuclides e.g. /sup 201/Tl-chloride and sup(113m)In DTPA. The clinical evaluation of this method allows the following conclusions: 1) MAT, determined over several circumscript myocardial regions permits the qualitative diagnosis of a coronary artery disease with high confidence. 2) Indices of nutritive myocardial blood flow (INF), derived by MAT using several representative areas of myocardium, show a definite correlation to the degree of coronary artery disease. In addition to the localization of infarction and the determination of infarct size, the technique described promises a quantitative evaluation of the regional myocardial perfusion. Simultaneously measured MTT help to assess segmental cardiac performance.

  15. Quantitative pulmonary perfusion imaging with 3-dimensional, contrast-enhanced MR: regional difference in the perfusion parameters of healthy volunteers

    International Nuclear Information System (INIS)

    Kim, Song Soo; Seo, Joon Beom; Kim, Nam Kuk; Do, Kyung Hyun; Lee, Young Kyung; Song, Jae Woo; Lee, Jin Seong; Kim, Jin Hwan

    2007-01-01

    We wanted to evaluate the regional differences in such perfusion parameters as pulmonary blood flow (PBF), mean transit time (MTT) and pulmonary blood volume (PBV) in the entire lung of healthy volunteers with using three-dimensional, contrast-enhanced MR imaging (3D CEMRI). Six healthy volunteers underwent dynamic 3D CEMRI (TR/TE 2.7/0.6 msec; flip angle 40 .deg. ; matrix 128 x 96; reconstructed matrix 256 x 192; rectangular field of view 450 x 315 mm; coronal 100-150mm-thick x 10 slabs; temporal resolution 1.0 sec; 35 dynamic phases) For all subjects, 2 mL of Gd-DTPA mixed with 3 ml of physiologic saline was administered as a bolus at a rate of 5 mL/sec, and this was followed by 20 mL of physiologic saline flush. From the signal intensity-time curves, the PBF, MTT and PBV maps were generated using indicator dilution theories and the central volume principle on a pixel-by-pixel basis. A total of 54 round, 1-cm sized ROIs were placed in the lung in each subject (6 ROIs per slab x 9 slices except for the most posterior slab). The regional differences of the measured parameters were statistically evaluated in the gravitational direction and in the upper-mid-lower direction by one-way ANOVA tests. The calculated PBF, MTT and PBV in the entire lung were 141.8 ± 53.4 mL/100 mL/min (mean ± SD), 5.35 ± 1.38 sec, and 13.4 ± 6.48 mL/100mL, respectively. In the gravitational direction, there was a significant increase in the PBF and PBV as it goes to the posterior direction (ρ < 0.05). No statistical difference was found in PBF or PBV between the upper, mid and lower lung zone areas. Regional difference in the various perfusion parameters of the lung in healthy volunteers can be quantitatively assessed with performing 3D CEMRI

  16. Interpretative intra- and interobserver reproducibility of Stress/Rest 99m Tc-steamboat's myocardial perfusion SPECT using semi quantitative 20-segment model

    International Nuclear Information System (INIS)

    Fazeli, M.; Firoozi, F.

    2002-01-01

    It well established that myocardial perfusion SPECT with 201 T L or 99 mTc-se sta mi bi play an important role diagnosis and risk assessment in patients with known or suspected coronary artery disease. Both quantitative and qualitative methods are available for interpretation of images. The use of a semi quantitative scoring system in which each of 20 segments is scored according to a five-point scheme provides an approach to interpretation that is more systematic and reproducible than simple qualitative evaluation. Only a limited number of studies have dealt with the interpretive observer reproducibility of 99 mTc-steamboat's myocardial perfusion imaging. The aim of this study was to assess the intra-and inter observer variability of semi quantitative SPECT performed with this technique. Among 789 patients that underwent myocardial perfusion SPECT during last year 80 patients finally need to coronary angiography as gold standard. In this group of patients a semi quantitative visual interpretation was carried out using short axis and vertical long-axis myocardial tomograms and a 20-segments model. These segments we reassigned on six evenly spaced regions in the apical, mid-ventricular, and basal short-axis view and two apical segments on the mid-ventricular long-axis slice. Uptake in each segment was graded on a 5-point scale (0=normal, 1=equivocal, 2=moderate, 3=severe, 4=absence of uptake). The steamboat's images was interpreted separately w ice by two observers without knowledge of each other's findings or results of angiography. A SPECT study was judged abnormal if there were two or more segments with a stress score equal or more than 2. We con eluded that semi-quantitative visual analysis is a simple and reproducible method of interpretation

  17. Simultaneous measurement of pO2 and perfusion in the rabbit kidney in vivo.

    Science.gov (United States)

    O'Connor, Paul M; Anderson, Warwick P; Kett, Michelle M; Evans, Roger G

    2007-01-01

    Recently, a combined probe has been developed capable of simultaneous measurement of local tissue pO2 (fluorescence oximetry) and microvascular perfusion (laser Doppler flux) within the same local region. The aim of the current study was to test the utility of these combined probes to measure pO2 and perfusion in the kidney. Studies were performed in anesthetized, artificially ventilated rabbits (n=7). Baseline measurements of renal medullary perfusion and pO2 obtained using combined probes (537 +/- 110 units & 28.7 +/- 6.l mmHg, respectively) were indistinguishable from those obtained using independent probes (435 +/- 102 units & 26.9 +/- 6.4 mmHg). Baseline measurements of renal cortical pO2 were also similar between combined (9.7 +/- 1.6 mmHg) and independent probes (9.5 +/- 2.3 mmHg). Baseline levels of cortical perfusion however, were significantly greater when measured using independent probes (1130 +/- 114 units) compared to combined probes (622 +/- 59 units; P pO2 resulting from graded stimulation of the renal nerves were not significantly different when measured using combined probes to those obtained using independent probes. We conclude that combined probes are equally suitable to independent probes for tissue pO2 and microvascular perfusion measurement in the kidney. Our results raise some concerns regarding the accuracy of these OxyLite fluorescence probes for pO2 measurement in the kidney, particularly within the renal cortex.

  18. Method for the assessment of placental blood perfusion using /sup 99/Tc pertechnetate

    Energy Technology Data Exchange (ETDEWEB)

    Suonio, S; Olkkonen, H [Kuopio Central Hospital (Finland)

    1977-10-01

    A radioisotope method was developed for the measurement of placental blood flow using /sup 99/Tc pertechnetate as a tracer and a single detector as a measuring device. The results are given as placental perfusion rate (ml/min/ml) calculated from the tracer-appearance curve. The series consisted of 148 healthy pregnant women between the 28th and 42nd week and fifty pregnancies with a hypertensive disease. In healthy subjects the placental perfusion rate increased by about 32% in the period between 28th and 38th week, but there was a large variation. The perfusion rate showed a tendency to diminish at term. In a group of fifty hypertensive pregnancies a highly significant decrease in the perfusion rate was observed when compared with normal subjects. The conclusion drawn is that this method can be used for the quantitative measurement of placental blood supply.

  19. New possibilities for quantitative measurements of regional cerebral blood flow with gold-195m

    International Nuclear Information System (INIS)

    Lindner, P.; Nickel, O.

    1985-01-01

    A previously reported theory for quantitative cerebral blood flow measurement for nondiffusible radiotracers has been applied to patients after stroke and to volunteers undergoing a mental stimulation exercise. The energy spectrum of gold-195m shows two strong photon peaks, one at an energy level of 68 keV and a second at an energy-level of 262 keV. The low energy peak is suitable for perfusion studies in lateral views of the hemispheres; no look-through effect is seen. The high energy level is good for studies in posterior-anterior positions. Parametric images for quantitative regional cerebral blood flow can be generated. The area of occluded vessels in the case of stroke can be detected. Quantitative activation patterns of cerebral blood flow during mental stimulation can be generated. The results prove that, not only with freely diffusible indicators like xenon but also with nondiffusible indicators, it is possible to measure quantitatively cerebral blood flow patterns

  20. Estimation of intra-operator variability in perfusion parameter measurements using DCE-US.

    Science.gov (United States)

    Gauthier, Marianne; Leguerney, Ingrid; Thalmensi, Jessie; Chebil, Mohamed; Parisot, Sarah; Peronneau, Pierre; Roche, Alain; Lassau, Nathalie

    2011-03-28

    To investigate intra-operator variability of semi-quantitative perfusion parameters using dynamic contrast-enhanced ultrasonography (DCE-US), following bolus injections of SonoVue(®). The in vitro experiments were conducted using three in-house sets up based on pumping a fluid through a phantom placed in a water tank. In the in vivo experiments, B16F10 melanoma cells were xenografted to five nude mice. Both in vitro and in vivo, images were acquired following bolus injections of the ultrasound contrast agent SonoVue(®) (Bracco, Milan, Italy) and using a Toshiba Aplio(®) ultrasound scanner connected to a 2.9-5.8 MHz linear transducer (PZT, PLT 604AT probe) (Toshiba, Japan) allowing harmonic imaging ("Vascular Recognition Imaging") involving linear raw data. A mathematical model based on the dye-dilution theory was developed by the Gustave Roussy Institute, Villejuif, France and used to evaluate seven perfusion parameters from time-intensity curves. Intra-operator variability analyses were based on determining perfusion parameter coefficients of variation (CV). In vitro, different volumes of SonoVue(®) were tested with the three phantoms: intra-operator variability was found to range from 2.33% to 23.72%. In vivo, experiments were performed on tumor tissues and perfusion parameters exhibited values ranging from 1.48% to 29.97%. In addition, the area under the curve (AUC) and the area under the wash-out (AUWO) were two of the parameters of great interest since throughout in vitro and in vivo experiments their variability was lower than 15.79%. AUC and AUWO appear to be the most reliable parameters for assessing tumor perfusion using DCE-US as they exhibited the lowest CV values.

  1. Diagnostic value of rest and stress gated 82Rb PET myocardial perfusion imaging using quantitative software

    International Nuclear Information System (INIS)

    Shi Hongcheng; Gu Yusen; Liu Wenguan; Zhu Weimin; Halkar, R.K.; Santana, C.A.; Feng Yusheng

    2008-01-01

    Objective: Gated myocardial perfusion imaging (MPI) is regularly performed using SPECT. More recently, gated 82 Rb MPI has been used to assess left ventricular myocardial perfusion and function with new generation PET scanners. The objective of this study was to evaluate the value of rest and stress gated 82 Rb PET myocardial perfusion imaging and to determine whether the quantitative technique in- creased the confidence level of the interpreters. Methods: Thirty-two patients underwent rest and adenosine stress gated 82 Pb PET MPI. Emory Cardiac Toolbox quantitative software was used for processing and inter-predation. Left ventricular ejection fraction (LVEF), end-diastolic, end-systolic and transient ischemia dilation ratio were automatically generated. Three interpreters (nuclear medicine doctors) independently reviewed the studies. Visual scoring (1-5 scales: excellent, good, unsure, poor, uninterpretable) was used to assess the overall quality of the gated images and the added confidence level of interpretation. Visual assessment of the LVEF was compared to the automatically generated LVEF. Comparison between the visual assessment and software generated was graded on a 1- 5 scales (helpful, probably helpful, unsure, probably not helpful, definitely not helpful). The analysed items were divided into two groups (favorable group and negative group). The percentage and 95% confidence intervals of each group were calculated. Results: A total of 192 gated studies were evaluated (64 gated x 3 interpreters ). The overall quality of the gated images was good [excellent 40.1% (77/192), good 43.2% (83/192), unsure 3.1% (6/192), poor 13.6% (26/192), uninterpretable 0]. The 95% confidence intervals of good and excellent quality range from 78.1% to 88.6%. The interpreter's agreed with the automated LVEF on 85.4% of the gated images [agree 76.6% (147/192), probably agree 8.8% (17/192), unsure 3.1% (6/192), probably disagree 8.8% (17/192), disagree 2.6% (5/192)]. And its 95

  2. Determination of liver and spleen perfusion by quantitative sequential scintigraphy: results in normal subjects and in patients with portal hypertension

    International Nuclear Information System (INIS)

    Biersack, H.J.; Torres, J.; Thelen, M.; Monzon, O.; Winkler, C.

    1981-01-01

    Quantitative sequential hepatosplenic scintigraphy was performed to determine the arterial and portal components of the total liver circulation in 135 patients (no liver disease in 20, liver cirrhosis and portal ;hypertension in 115). Portal circulation in healthy patients is calculated to be 70.4 +/- 6.2% of the total liver blood flow, whereas patients with portal hypertension showed a clear reduction of portal perfusion to 20.2 +/- 10.9%. Thirteen of 20 patients having portosystemic shunt surgery showed no portal perfusion. This new, noninvasive diagnostic technique yields vital information particularly useful in ;the surgical evaluation of portal hypertension. Other indications are also discussed

  3. Correlation of oxygenation and perfusion sensitive MRI with invasive micro probe measurements in healthy mice brain.

    Science.gov (United States)

    Sedlacik, Jan; Reitz, Matthias; Bolar, Divya S; Adalsteinsson, Elfar; Schmidt, Nils O; Fiehler, Jens

    2015-03-01

    The non-invasive assessment of (patho-)physiological parameters such as, perfusion and oxygenation, is of great importance for the characterization of pathologies e.g., tumors, which may be helpful to better predict treatment response and potential outcome. To better understand the influence of physiological parameters on the investigated oxygenation and perfusion sensitive MRI methods, MRI measurements were correlated with subsequent invasive micro probe measurements during free breathing conditions of air, air+10% CO2 and 100% O2 in healthy mice brain. MRI parameters were the irreversible (R2), reversible (R2') and effective (R2*) transverse relaxation rates, venous blood oxygenation level assessed by quantitative blood oxygenation level dependent (qBOLD) method and cerebral blood flow (CBF) assessed by arterial spin labeling (ASL) using a 7 T small animal MRI scanner. One to two days after MRI, tissue perfusion and pO2 were measured by Laser-Doppler flowmetry and fluorescence quenching micro probes, respectively. The tissue pO2 values were converted to blood oxygen saturation by using the Hill equation. The animals were anesthetized by intra peritoneal injection of ketamine-xylazine-acepromazine (10-2-0.3 mg/ml · kg). Results for normal/hypercapnia/hyperoxia conditions were: R2[s(∧)-1] = 20.7/20.4/20.1, R2*[s(∧)-1] = 31.6/29.6/25.9, R2'[s-(∧)1] = 10.9/9.2/5.7, qBOLD venous blood oxygenation level = 0.43/0.51/0.56, CBF[ml · min(∧)-1 · 100 g(∧)-1] = 70.6/105.5/81.8, Laser-Doppler flowmetry[a.u.] = 89.2/120.2/90.6 and pO2[mmHg] = 6.3/32.3/46.7. All parameters were statistically significantly different with P effects of anesthesia and trauma due to micro probe insertion are strong confounding factors and need close attention for study planning and conduction of experiments. Investigation of the correlation of perfusion and oxygenation sensitive MRI methods with micro probe measurements in pathologic tissue such as tumors is now of compelling interest

  4. Quantitative perfusion modeling in cardiac in-vivo nuclear magnetic resonance (NMR) imaging

    International Nuclear Information System (INIS)

    Carme, Sabin Charles

    2004-01-01

    A parametrical analysis of contrast agent distribution is proposed to interpret first pass MR images and to quantify the myocardial perfusion. We are concerned with the correction of spatial intensity variations in images. Furthermore, we are interested in the application of a robust NMR signal processing technique and deconvolution techniques adapted to low signal-to-noise ratio. Data sets were provided, close to clinical conditions, using in-vivo experiments applying several pharmacological stresses on ischemic pigs presenting a stenosis of the left circumflex coronary artery. The agreement and accuracy measurements between observers are respectively 57.1% and 53.1% for visual analysis, and 81.2% and 81.1% for parametric map analysis. A linear relationship between perfusion parameters and radioactive microspheres is established for low blood flows [fr

  5. Adaptive statistical iterative reconstruction improves image quality without affecting perfusion CT quantitation in primary colorectal cancer

    Directory of Open Access Journals (Sweden)

    D. Prezzi

    Full Text Available Objectives: To determine the effect of Adaptive Statistical Iterative Reconstruction (ASIR on perfusion CT (pCT parameter quantitation and image quality in primary colorectal cancer. Methods: Prospective observational study. Following institutional review board approval and informed consent, 32 patients with colorectal adenocarcinoma underwent pCT (100 kV, 150 mA, 120 s acquisition, axial mode. Tumour regional blood flow (BF, blood volume (BV, mean transit time (MTT and permeability surface area product (PS were determined using identical regions-of-interests for ASIR percentages of 0%, 20%, 40%, 60%, 80% and 100%. Image noise, contrast-to-noise ratio (CNR and pCT parameters were assessed across ASIR percentages. Coefficients of variation (CV, repeated measures analysis of variance (rANOVA and Spearman’ rank order correlation were performed with statistical significance at 5%. Results: With increasing ASIR percentages, image noise decreased by 33% while CNR increased by 61%; peak tumour CNR was greater than 1.5 with 60% ASIR and above. Mean BF, BV, MTT and PS differed by less than 1.8%, 2.9%, 2.5% and 2.6% across ASIR percentages. CV were 4.9%, 4.2%, 3.3% and 7.9%; rANOVA P values: 0.85, 0.62, 0.02 and 0.81 respectively. Conclusions: ASIR improves image noise and CNR without altering pCT parameters substantially. Keywords: Perfusion imaging, Multidetector computed tomography, Colorectal neoplasms, Computer-assisted image processing, Radiation dosage

  6. Computed Tomography Perfusion Imaging for the Diagnosis of Hepatic Alveolar Echinococcosis

    Science.gov (United States)

    Sade, Recep; Kantarci, Mecit; Genc, Berhan; Ogul, Hayri; Gundogdu, Betul; Yilmaz, Omer

    2018-01-01

    Objective: Alveolar echinococcosis (AE) is a rare life-threatening parasitic infection. Computed tomography perfusion (CTP) imaging has the potential to provide both quantitative and qualitative information about the tissue perfusion characteristics. The purpose of this study was the examination of the characteristic features and feasibility of CTP in AE liver lesions. Material and Methods: CTP scanning was performed in 25 patients who had a total of 35 lesions identified as AE of the liver. Blood flow (BF), blood volume (BV), portal venous perfusion (PVP), arterial liver perfusion (ALP), and hepatic perfusion indexes (HPI) were computed for background liver parenchyma and each AE lesion. Results: Significant differences were detected between perfusion values of the AE lesions and background liver tissue. The BV, BF, ALP, and PVP values for all components of the AE liver lesions were significantly lower than the normal liver parenchyma (p<0.01). Conclusions: We suggest that perfusion imaging can be used in AE of the liver. Thus, the quantitative knowledge of perfusion parameters are obtained via CT perfusion imaging. PMID:29531482

  7. CT perfusion scanning of the brain in stroke and beyond

    International Nuclear Information System (INIS)

    Riedel, Christian

    2011-01-01

    CT perfusion scanning (CTP) allows for quantitative analysis of cerebral blood flow (CBF) and cerebral blood volume (CBV). Until recently, it was only possible to study brain perfusion parameters in a small stack of CT-slices close to the skull base. With the introduction of multidetector CT scanners with 64 and more detector rows it has become possible to assess perfusion of the entire brain. An optimal choice of scanning parameters like the new 'shuttle'-technique combined with a well adapted regimen for contrast administration is required to guarantee reliable perfusion measurements while still keeping the X-ray dose absorbed by the patient at a minimum. With these techniques, CTP is not only an important modality in the work-up of patients suffering from acute ischemic stroke but can also be valuable in other emergency situations such as in prolonged epileptic seizures or to monitor patients with subacute subarachnoid hemorrhage. (orig.)

  8. Variability of physiological brain perfusion in healthy subjects - A systematic review of modifiers. Considerations for multi-center ASL studies

    DEFF Research Database (Denmark)

    Clement, Patricia; Mutsaerts, Henk-Jan; Václavů, Lena

    2018-01-01

    was carried out for factors influencing quantitative measurements of perfusion in the human brain unrelated to medication use. A total of 58 perfusion modifiers were categorized into four groups. Several factors (e.g., caffeine, aging, and blood gases) were found to induce a considerable effect on brain...

  9. Dipyridamole 201T1 myocardial perfusion tomography and bull's--eye analysis for quantitative evaluation of CAD

    International Nuclear Information System (INIS)

    Jiang Maosong; Tang Xi

    1992-01-01

    To assess the ability of quantitative analysis of dipyridamole 201 T1 tomography for detecting and localizing coronary artery disease (CAD), 55 patients with angiographically proved CAD ( = 50% stenosis) were studied. All patients underwent dipyridamole 201 T1 myocardial perfusion tomography and coronary arteriography. The overall sensitivity for detection of CAD by Bull's-eye analysis was 89% (50 patients) and 92% (51 patients) with visual analysis. The sensitivity for detecting individual vessel involvement with the Bull'-eye analysis was 88% for LAD. 81% for RCA and 67% for LCX. With visual analysis, the results were 88%, 83% and 58% respectively. The overall rate of detection was 87% in lesions greater than or equal to 75% stenosis vs 59% in those under 75% stenosis (P 201 T1 tomography using Bull's-eye display is a highly accurate reproducible technique for the detection of patients with CAD and the localization of individual coronary vessel, and it offers the potential to quantify the percentage of the abnormally perfused myocardium

  10. Brain tumors and synchrotron radiation: Methodological developments in quantitative brain perfusion imaging and radiation therapy

    International Nuclear Information System (INIS)

    Adam, Jean-Francois

    2005-01-01

    High-grade gliomas are the most frequent type of primary brain tumors in adults. Unfortunately, the management of glioblastomas is still mainly palliative and remains a difficult challenge, despite advances in brain tumor molecular biology and in some emerging therapies. Synchrotron radiation opens fields for medical imaging and radiation therapy by using monochromatic intense x-ray beams. It is now well known that angiogenesis plays a critical role in the tumor growth process and that brain perfusion is representative of the tumor mitotic activity. Synchrotron radiation quantitative computed tomography (SRCT) is one of the most accurate techniques for measuring in vivo contrast agent concentration and thus computing precise and accurate absolute values of the brain perfusion key parameters. The methodological developments of SRCT absolute brain perfusion measurements as well as their preclinical validation are detailed in this thesis. In particular, absolute cerebral volume and blood brain barrier permeability high-resolution (pixel size 2 ) parametric maps were reported. In conventional radiotherapy, the treatment of these tumors remains a delicate challenge, because the damages to the surrounding normal brain tissue limit the amount of radiation that can be delivered. One strategy to overcome this limitation is to infuse an iodinated contrast agent to the patient during the irradiation. The contrast agent accumulates in the tumor, through the broken blood brain barrier, and the irradiation is performed with kilovoltage x rays, in tomography mode, the tumor being located at the center of rotation and the beam size adjusted to the tumor dimensions. The dose enhancement results from the photoelectric effect on the heavy element and from the irradiation geometry. Synchrotron beams, providing high intensity, tunable monochromatic x rays, are ideal for this treatment. The beam properties allow the selection of monochromatic irradiation, at the optimal energy, for a

  11. Prediction of revascularization after myocardial perfusion SPECT by machine learning in a large population.

    Science.gov (United States)

    Arsanjani, Reza; Dey, Damini; Khachatryan, Tigran; Shalev, Aryeh; Hayes, Sean W; Fish, Mathews; Nakanishi, Rine; Germano, Guido; Berman, Daniel S; Slomka, Piotr

    2015-10-01

    We aimed to investigate if early revascularization in patients with suspected coronary artery disease can be effectively predicted by integrating clinical data and quantitative image features derived from perfusion SPECT (MPS) by machine learning (ML) approach. 713 rest (201)Thallium/stress (99m)Technetium MPS studies with correlating invasive angiography with 372 revascularization events (275 PCI/97 CABG) within 90 days after MPS (91% within 30 days) were considered. Transient ischemic dilation, stress combined supine/prone total perfusion deficit (TPD), supine rest and stress TPD, exercise ejection fraction, and end-systolic volume, along with clinical parameters including patient gender, history of hypertension and diabetes mellitus, ST-depression on baseline ECG, ECG and clinical response during stress, and post-ECG probability by boosted ensemble ML algorithm (LogitBoost) to predict revascularization events. These features were selected using an automated feature selection algorithm from all available clinical and quantitative data (33 parameters). Tenfold cross-validation was utilized to train and test the prediction model. The prediction of revascularization by ML algorithm was compared to standalone measures of perfusion and visual analysis by two experienced readers utilizing all imaging, quantitative, and clinical data. The sensitivity of machine learning (ML) (73.6% ± 4.3%) for prediction of revascularization was similar to one reader (73.9% ± 4.6%) and standalone measures of perfusion (75.5% ± 4.5%). The specificity of ML (74.7% ± 4.2%) was also better than both expert readers (67.2% ± 4.9% and 66.0% ± 5.0%, P < .05), but was similar to ischemic TPD (68.3% ± 4.9%, P < .05). The receiver operator characteristics areas under curve for ML (0.81 ± 0.02) was similar to reader 1 (0.81 ± 0.02) but superior to reader 2 (0.72 ± 0.02, P < .01) and standalone measure of perfusion (0.77 ± 0.02, P < .01). ML approach is comparable or better than

  12. Quantitative cerebral H215O perfusion PET without arterial blood sampling, a method based on washout rate

    International Nuclear Information System (INIS)

    Treyer, Valerie; Jobin, Mathieu; Burger, Cyrill; Buck, Alfred; Teneggi, Vincenzo

    2003-01-01

    The quantitative determination of regional cerebral blood flow (rCBF) is important in certain clinical and research applications. The disadvantage of most quantitative methods using H 2 15 O positron emission tomography (PET) is the need for arterial blood sampling. In this study a new non-invasive method for rCBF quantification was evaluated. The method is based on the washout rate of H 2 15 O following intravenous injection. All results were obtained with Alpert's method, which yields maps of the washin parameter K 1 (rCBF K1 ) and the washout parameter k 2 (rCBF k2 ). Maps of rCBF K1 were computed with measured arterial input curves. Maps of rCBF k2* were calculated with a standard input curve which was the mean of eight individual input curves. The mean of grey matter rCBF k2* (CBF k2* ) was then compared with the mean of rCBF K1 (CBF K1 ) in ten healthy volunteer smokers who underwent two PET sessions on day 1 and day 3. Each session consisted of three serial H 2 15 O scans. Reproducibility was analysed using the rCBF difference scan 3-scan 2 in each session. The perfusion reserve (PR = rCBF acetazolamide -rCBF baseline ) following acetazolamide challenge was calculated with rCBF k2* (PR k2* ) and rCBF K1 (PR K1 ) in ten patients with cerebrovascular disease. The difference CBF k2* -CBF K1 was 5.90±8.12 ml/min/100 ml (mean±SD, n=55). The SD of the scan 3-scan 1 difference was 6.1% for rCBF k2* and rCBF K1 , demonstrating a high reproducibility. Perfusion reserve values determined with rCBF K1 and rCBF k2* were in high agreement (difference PR k2* -PR K1 =-6.5±10.4%, PR expressed in percentage increase from baseline). In conclusion, a new non-invasive method for the quantitative determination of rCBF is presented. The method is in good agreement with Alpert's original method and the reproducibility is high. It does not require arterial blood sampling, yields quantitative voxel-by-voxel maps of rCBF, and is computationally efficient and easy to implement

  13. PCA-based groupwise image registration for quantitative MRI

    NARCIS (Netherlands)

    Huizinga, W.; Poot, D. H. J.; Guyader, J.-M.; Klaassen, R.; Coolen, B. F.; van Kranenburg, M.; van Geuns, R. J. M.; Uitterdijk, A.; Polfliet, M.; Vandemeulebroucke, J.; Leemans, A.; Niessen, W. J.; Klein, S.

    2016-01-01

    Quantitative magnetic resonance imaging (qMRI) is a technique for estimating quantitative tissue properties, such as the T5 and T2 relaxation times, apparent diffusion coefficient (ADC), and various perfusion measures. This estimation is achieved by acquiring multiple images with different

  14. New possibilities for quantitative measurements of regional cerebral blood flow with Au-195 m

    International Nuclear Information System (INIS)

    Lindner, P.; Nickel, O.

    1984-01-01

    A previously reported theory for quantitative cerebral blood flow measurement for nondiffusible radiotracers has been applied on patients after stroke and an volunteers undergoing a mental stimulation exercise. Quantitative measurements of cerebral blood flow patterns not only in p-a. but also in lateral views of the brain are possible by the use of the recently developed generator for the short lived (30 sec) isotope Au-195 m. The energy spectrum of the eluate of the generator shows two strong photon peaks, one at an energy level of 68 KeV and a second at an energy-level of 262 KeV. The low energy peak is suitable for perfusion studies in lateral views of the hemispheres, no ''look through'' effect is seen. The high energy level is good for studies in p-a-positions. The studies last less than 1 minute and can be repeated after 3 minutes. Parametric images for quantitative regional cerebral blood flow can be generated. The area of occluded vessels in the case of stroke can be detected. Quantitative activation patterns of cerebral blood flow during mental stimulation can be generated. The results prove that not only with freely diffusible indicators like Xenon but also with nondiffusible indicators it is possible to measure quantitatively cerebral blood flow patterns. (orig.)

  15. Arterio-venous anastomoses in mice affect perfusion measurements with dynamic contrast enhanced CT

    International Nuclear Information System (INIS)

    Gabra, Peter; Lee, Ting-Yim; Shen, Gang; Xuan, Jim

    2010-01-01

    Accurate measurement of perfusion with dynamic contrast enhanced CT requires an arterial input curve (AIC) uncontaminated by venous sources. Arterio-venous anastomoses (AVAs) are sources of contamination if contrast is injected intravenously. We seek to identify AVAs in mice and associated errors in perfusion measurements. Six transgenic mice with spontaneous prostate tumor were scanned with a micro-CT scanner (GE Healthcare (GE)) using a high resolution anatomical and a lower resolution perfusion protocol. For the anatomical protocol, a CT scan was performed during injection of an iodinated contrast agent (Hypaque) into a tail vein. Images covering the thoracic, abdominal and pelvic regions at an isotropic resolution of 175 µm were reconstructed and rendered in 3D to show the arterial and venous tree (Advantage Window, GE). For the perfusion protocol, each mouse was continuously scanned for 40 s and the contrast agent (Hypaque) was injected via a tail vein 5 s into scanning. Tumor images were reconstructed every second. Tumor blood flow (BF) and volume (BV) maps were calculated with CT perfusion software (GE) using AIC measured either from abdominal aorta (AA) or tail (caudal) artery (TA). In all mice, there was an AVA from the bifurcation of the inferior vena cava to the tail artery shunting venous blood and portion of the contrast agent injected into the tail vein into the TA. Contrast arrival time at the TA preceded that at the AA by 3.3 ± 0.5 s (P < 0.05). Mean tumor BV and BF values calculated with AA versus TA were 10.0 ± 1.8 versus 4.8 ± 2.1 ml (100 g) −1 (P < 0.05) and 108.8 ± 26.5 versus 33.0 ± 8.5 ml min −1 100 g −1 (P < 0.05), respectively. AVA in the murine pelvic region can result in inaccurate and more variable measurements of pelvic organ/tissue perfusion when the tail artery is used as the AIC

  16. TU-G-204-01: BEST IN PHYSICS (IMAGING): Dynamic CT Myocardial Perfusion Measurement and Its Comparison to Fractional Flow Reserve

    Energy Technology Data Exchange (ETDEWEB)

    Ziemer, B; Hubbard, L; Groves, E; Sadeghi, B; Javan, H; Lipinski, J; Molloi, S [University of California, Irvine, CA (United States)

    2015-06-15

    Purpose: To evaluate a first pass analysis (FPA) technique for CT perfusion measurement in a swine animal and its validation using fractional flow reserve (FFR) as a reference standard. Methods: Swine were placed under anesthesia and relevant physiologic parameters were continuously recorded. Intra-coronary adenosine was administered to induce maximum hyperemia. A pressure wire was advanced distal to the first diagonal branch of the left anterior descending (LAD) artery for FFR measurements and a balloon dilation catheter was inserted over the pressure wire into the proximal LAD to create varying levels of stenosis. Images were acquired with a 320-row wide volume CT scanner. Three main coronary perfusion beds were delineated in the myocardium using arteries extracted from CT angiography images using a minimum energy hypothesis. The integrated density in the perfusion bed was used to calculate perfusion using the FPA technique. The perfusion in the LAD bed over a range of stenosis severity was measured. The measured fractional perfusion was compared to FFR and linear regression was performed. Results: The measured fractional perfusion using the FPA technique (P-FPA) and FFR were related as P-FPA = 1.06FFR – 0.06 (r{sup 2} = 0.86). The perfusion measurements were calculated with only three to five total CT volume scans, which drastically reduces the radiation dose as compared with the existing techniques requiring 15–20 volume scans. Conclusion: The measured perfusion using the first pass analysis technique showed good correlation with FFR measurements as a reference standard. The technique for perfusion measurement can potentially make a substantial reduction in radiation dose as compared with the existing techniques.

  17. TU-G-204-01: BEST IN PHYSICS (IMAGING): Dynamic CT Myocardial Perfusion Measurement and Its Comparison to Fractional Flow Reserve

    International Nuclear Information System (INIS)

    Ziemer, B; Hubbard, L; Groves, E; Sadeghi, B; Javan, H; Lipinski, J; Molloi, S

    2015-01-01

    Purpose: To evaluate a first pass analysis (FPA) technique for CT perfusion measurement in a swine animal and its validation using fractional flow reserve (FFR) as a reference standard. Methods: Swine were placed under anesthesia and relevant physiologic parameters were continuously recorded. Intra-coronary adenosine was administered to induce maximum hyperemia. A pressure wire was advanced distal to the first diagonal branch of the left anterior descending (LAD) artery for FFR measurements and a balloon dilation catheter was inserted over the pressure wire into the proximal LAD to create varying levels of stenosis. Images were acquired with a 320-row wide volume CT scanner. Three main coronary perfusion beds were delineated in the myocardium using arteries extracted from CT angiography images using a minimum energy hypothesis. The integrated density in the perfusion bed was used to calculate perfusion using the FPA technique. The perfusion in the LAD bed over a range of stenosis severity was measured. The measured fractional perfusion was compared to FFR and linear regression was performed. Results: The measured fractional perfusion using the FPA technique (P-FPA) and FFR were related as P-FPA = 1.06FFR – 0.06 (r 2 = 0.86). The perfusion measurements were calculated with only three to five total CT volume scans, which drastically reduces the radiation dose as compared with the existing techniques requiring 15–20 volume scans. Conclusion: The measured perfusion using the first pass analysis technique showed good correlation with FFR measurements as a reference standard. The technique for perfusion measurement can potentially make a substantial reduction in radiation dose as compared with the existing techniques

  18. Limbic system perfusion in Alzheimer's disease measured by MRI-coregistered HMPAO SPET

    Energy Technology Data Exchange (ETDEWEB)

    Callen, David J.A. [Institute of Medical Science, Research Program in Aging, Imaging, Sunnybrook and Women' s University of Toronto, ON (Canada); Black, Sandra E. [Cognitive Neurology Unit and Research Program in Aging, Sunnybrook and Women' s College Health Sciences Centre, Toronto, ON (Canada); Institute of Medical Science, Research Program in Aging, Imaging, Sunnybrook and Women' s University of Toronto, ON (Canada); Department of Medicine (Neurology), University of Toronto, ON (Canada); Caldwell, Curtis B. [Department of Medical Imaging, Sunnybrook and Women' s College Health Sciences Centre and University of Toronto, CN (Canada)

    2002-07-01

    The goal of this study was to perform a systematic, semi-quantitative analysis of limbic perfusion in patients with Alzheimer's disease (AD) using coregistered single-photon emission tomography (SPET) images aligned to magnetic resonance (MR) images. Limbic perfusion in 40 patients with mild to moderate AD was compared with that of 17 age-, sex-, and education-matched normal controls (NC). HMPAO SPET scans and 3D T1-weighted MR images were acquired for each subject. Structures of the limbic system (i.e. hippocampus, amygdala, anterior thalamus, hypothalamus, mamillary bodies, basal forebrain, septal area and cingulate, orbitofrontal and parahippocampal cortices) were traced on the MR images and transferred to the coregistered SPET scans. Perfusion ratios for all limbic regions were calculated relative to cerebellar perfusion. General linear model multivariate analysis revealed that, overall, limbic structures showed significant hypoperfusion (F=7.802, P<0.00001, {eta}{sup 2}=0.695) in AD patients compared with NC. Greatest differences (d{>=}0.8) were found in the hippocampus, as well as all areas of the cingulate cortex. Significant relative hypoperfusion was also apparent in the parahippocampal cortex, amygdala/entorhinal cortex, septal area and anterior thalamus, all of which showed medium to large effect sizes (d=0.6-0.8). No significant relative perfusion differences were detected in the basal forebrain, hypothalamus, mamillary bodies or orbitofrontal cortex. Logistic regression indicated that posterior cingulate cortex perfusion was able to discriminate AD patients from NC with 93% accuracy (95% sensitivity, 88% specificity). The current results suggest that most, but not all, limbic structures show significant relative hypoperfusion in AD. These findings validate previous post-mortem studies and could be useful in improving diagnostic accuracy, monitoring disease progression and evaluating potential treatment strategies in AD. (orig.)

  19. Reproducibility of Dynamic Computed Tomography Brain Perfusion Measurements in Patients with Significant Carotid Artery Stenosis

    International Nuclear Information System (INIS)

    Serafin, Z.; Kotarski, M.; Karolkiewicz, M.; Mindykowski, R.; Lasek, W.; Molski, S.; Gajdzinska, M.; Nowak-Nowacka, A.

    2009-01-01

    Background: Perfusion computed tomography (PCT) determination is a minimally invasive and widely available technique for brain blood flow assessment, but its application may be restricted by large variation of results. Purpose: To determine the intraobserver, interobserver, and inter examination variability of brain PCT absolute measurements in patients with significant carotid artery stenosis (CAS), and to evaluate the effect of the use of relative perfusion values on PCT reproducibility. Material and Methods: PCT imaging was completed in 61 patients before endarterectomy, and in 38 of these within 4 weeks after treatment. Cerebral blood flow (CBF), cerebral blood volume (CBV), time to peak (TTP), and peak enhancement intensity (PEI) were calculated with the maximum slope method. Inter examination variability was evaluated based on perfusion of hemisphere contralateral to the treated CAS, from repeated examinations. Interobserver and intraobserver variability were established for the untreated side, based on pretreatment examination. Results: Interobserver and intraobserver variability were highest for CBF measurement (28.8% and 32.5%, respectively), and inter examination variability was the highest for CBV (24.1%). Intraobserver and interobserver variability were higher for absolute perfusion values compared with their respective ratios for CBF and TTP. The only statistically significant difference between perfusion values measured by two observers was for CBF (mean 78.3 vs. 67.5 ml/100 g/min). The inter examination variability of TTP (12.1%) was significantly lower than the variability of other absolute perfusion measures, and the inter examination variability of ratios was significantly lower than absolute values for all the parameters. Conclusion: In longitudinal studies of patients with chronic cerebral ischemia, PCT ratios and either TTP or CBV are more suitable measures than absolute CBF values, because of their considerably lower inter- and intraobserver

  20. Reproducibility of Dynamic Computed Tomography Brain Perfusion Measurements in Patients with Significant Carotid Artery Stenosis

    Energy Technology Data Exchange (ETDEWEB)

    Serafin, Z.; Kotarski, M.; Karolkiewicz, M.; Mindykowski, R.; Lasek, W.; Molski, S.; Gajdzinska, M.; Nowak-Nowacka, A. (Dept. of Radiology and Diagnostic Imaging, and Dept. of General and Vascular Surgery, Nicolaus Copernicus Univ., Collegium Medicum, Bydgoszcz (Poland))

    2009-02-15

    Background: Perfusion computed tomography (PCT) determination is a minimally invasive and widely available technique for brain blood flow assessment, but its application may be restricted by large variation of results. Purpose: To determine the intraobserver, interobserver, and inter examination variability of brain PCT absolute measurements in patients with significant carotid artery stenosis (CAS), and to evaluate the effect of the use of relative perfusion values on PCT reproducibility. Material and Methods: PCT imaging was completed in 61 patients before endarterectomy, and in 38 of these within 4 weeks after treatment. Cerebral blood flow (CBF), cerebral blood volume (CBV), time to peak (TTP), and peak enhancement intensity (PEI) were calculated with the maximum slope method. Inter examination variability was evaluated based on perfusion of hemisphere contralateral to the treated CAS, from repeated examinations. Interobserver and intraobserver variability were established for the untreated side, based on pretreatment examination. Results: Interobserver and intraobserver variability were highest for CBF measurement (28.8% and 32.5%, respectively), and inter examination variability was the highest for CBV (24.1%). Intraobserver and interobserver variability were higher for absolute perfusion values compared with their respective ratios for CBF and TTP. The only statistically significant difference between perfusion values measured by two observers was for CBF (mean 78.3 vs. 67.5 ml/100 g/min). The inter examination variability of TTP (12.1%) was significantly lower than the variability of other absolute perfusion measures, and the inter examination variability of ratios was significantly lower than absolute values for all the parameters. Conclusion: In longitudinal studies of patients with chronic cerebral ischemia, PCT ratios and either TTP or CBV are more suitable measures than absolute CBF values, because of their considerably lower inter- and intraobserver

  1. Correlation of oxygenation and perfusion sensitive MRI with invasive micro probe measurements in healthy mice brain

    International Nuclear Information System (INIS)

    Sedlacik, Jan; Fiehler, Jens; Reitz, Matthias; Schmidt, Nils O.; Bolar, Divya S.; Adalsteinsson, Elfar

    2015-01-01

    The non-invasive assessment of (patho-)physiological parameters such as, perfusion and oxygenation, is of great importance for the characterization of pathologies e.g., tumors, which may be helpful to better predict treatment response and potential outcome. To better understand the influence of physiological parameters on the investigated oxygenation and perfusion sensitive MRI methods, MRI measurements were correlated with subsequent invasive micro probe measurements during free breathing conditions of air, air+10% CO2 and 100% O2 in healthy mice brain. MRI parameters were the irreversible (R2), reversible (R2') and effective (R2*) transverse relaxation rates, venous blood oxygenation level assessed by quantitative blood oxygenation level dependent (qBOLD) method and cerebral blood flow (CBF) assessed by arterial spin labeling (ASL) using a 7T small animal MRI scanner. One to two days after MRI, tissue perfusion and pO2 were measured by Laser-Doppler flowmetry and fluorescence quenching micro probes, respectively. The tissue pO2 values were converted to blood oxygen saturation by using the Hill equation. The animals were anesthetized by intra peritoneal injection of ketamine-xylazine-acepromazine (10-2-0.3 mg/ml.kg). Results for normal/hypercapnia/hyperoxia conditions were: R2[s and -1] = 20.7/20.4/20.1, R2*[s and -1] = 31.6/29.6/25.9, R2'[s and 1] = 10.9/9.2/5.7, qBOLD venous blood oxygenation level = 0.43/0.51/0.56, CBF[ml.min and -1.100g and -1] = 70.6/105.5/81.8, Laser-Doppler flowmetry[a.u.] = 89.2/120.2/90.6 and pO2[mmHg] = 6.3/32.3/46.7. All parameters were statistically significantly different with P < 0.001 between all breathing conditions. All MRI and the corresponding micro probe measurements were also statistically significantly (P ≤ 0.03) correlated with each other. However, converting the tissue pO2 to blood oxygen saturation = 0.02/0.34/0.63, showed only very limited agreement with the qBOLD venous blood oxygenation level. We found good

  2. Correlation of oxygenation and perfusion sensitive MRI with invasive micro probe measurements in healthy mice brain

    Energy Technology Data Exchange (ETDEWEB)

    Sedlacik, Jan; Fiehler, Jens [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Neuroradiology; Reitz, Matthias; Schmidt, Nils O. [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Neurosurgery; Bolar, Divya S. [Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA (United States). Radiology; Adalsteinsson, Elfar [Massachusetts Institute of Technology, Cambridge, MA (United States). Electrical Engineering and Computer Science

    2015-05-01

    The non-invasive assessment of (patho-)physiological parameters such as, perfusion and oxygenation, is of great importance for the characterization of pathologies e.g., tumors, which may be helpful to better predict treatment response and potential outcome. To better understand the influence of physiological parameters on the investigated oxygenation and perfusion sensitive MRI methods, MRI measurements were correlated with subsequent invasive micro probe measurements during free breathing conditions of air, air+10% CO2 and 100% O2 in healthy mice brain. MRI parameters were the irreversible (R2), reversible (R2') and effective (R2*) transverse relaxation rates, venous blood oxygenation level assessed by quantitative blood oxygenation level dependent (qBOLD) method and cerebral blood flow (CBF) assessed by arterial spin labeling (ASL) using a 7T small animal MRI scanner. One to two days after MRI, tissue perfusion and pO2 were measured by Laser-Doppler flowmetry and fluorescence quenching micro probes, respectively. The tissue pO2 values were converted to blood oxygen saturation by using the Hill equation. The animals were anesthetized by intra peritoneal injection of ketamine-xylazine-acepromazine (10-2-0.3 mg/ml.kg). Results for normal/hypercapnia/hyperoxia conditions were: R2[s {sup and} -1] = 20.7/20.4/20.1, R2*[s {sup and} -1] = 31.6/29.6/25.9, R2'[s {sup and} 1] = 10.9/9.2/5.7, qBOLD venous blood oxygenation level = 0.43/0.51/0.56, CBF[ml.min {sup and} -1.100g {sup and} -1] = 70.6/105.5/81.8, Laser-Doppler flowmetry[a.u.] = 89.2/120.2/90.6 and pO2[mmHg] = 6.3/32.3/46.7. All parameters were statistically significantly different with P < 0.001 between all breathing conditions. All MRI and the corresponding micro probe measurements were also statistically significantly (P ≤ 0.03) correlated with each other. However, converting the tissue pO2 to blood oxygen saturation = 0.02/0.34/0.63, showed only very limited agreement with the qBOLD venous blood

  3. Is correction necessary when clinically determining quantitative cerebral perfusion parameters from multi-slice dynamic susceptibility contrast MR studies?

    International Nuclear Information System (INIS)

    Salluzzi, M; Frayne, R; Smith, M R

    2006-01-01

    Several groups have modified the standard singular value decomposition (SVD) algorithm to produce delay-insensitive cerebral blood flow (CBF) estimates from dynamic susceptibility contrast (DSC) perfusion studies. However, new dependences of CBF estimates on bolus arrival times and slice position in multi-slice studies have been recently recognized. These conflicting findings can be reconciled by accounting for several experimental and algorithmic factors. Using simulation and clinical studies, the non-simultaneous measurement of arterial and tissue concentration curves (relative slice position) in a multi-slice study is shown to affect time-related perfusion parameters, e.g. arterial-tissue-delay measurements. However, the current clinical impact of relative slice position on amplitude-related perfusion parameters, e.g. CBF, can be expected to be small unless any of the following conditions are present individually or in combination: (a) high concentration curve signal-to-noise ratios, (b) small tissue mean transit times, (c) narrow arterial input functions or (d) low temporal resolution of the DSC image sequence. Recent improvements in magnetic resonance (MR) technology can easily be expected to lead to scenarios where these effects become increasingly important sources of inaccuracy for all perfusion parameter estimates. We show that using Fourier interpolated (high temporal resolution) residue functions reduces the systematic error of the perfusion parameters obtained from multi-slice studies

  4. Quantitative evaluation of muscle perfusion with CEUS and with MR

    International Nuclear Information System (INIS)

    Weber, Marc-Andre; Delorme, Stefan; Krix, Martin

    2007-01-01

    Functional imaging might increase the role of imaging in muscular diseases, since alterations of muscle morphology alone are not specific for a particular disease. Perfusion, i.e., the blood flow per tissue and time unit including capillary flow, is an important functional parameter. Pathological changes of skeletal muscle perfusion can be found in various clinical conditions, such as degenerative or inflammatory myopathies or peripheral arterial occlusive disease. This article reviews the theoretical basics of functional radiological techniques for assessing skeletal muscle perfusion and focuses on contrast-enhanced ultrasound (CEUS) and magnetic resonance imaging (MRI) techniques. Also, the applications of microvascular imaging, such as in detection of myositis and for discriminating myositis from other myopathies or evaluating peripheral arterial occlusive disease, are presented, and possible clinical indications are discussed. In conclusion, dedicated MR and CEUS methods are now available that visualize and quantify (patho-)physiologic information about microcirculation within skeletal muscles in vivo and hence establish a useful diagnostic tool for muscular diseases. (orig.)

  5. Quantitative evaluation of muscle perfusion with CEUS and with MR

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Marc-Andre; Delorme, Stefan [German Cancer Research Centre, Department of Radiology, Heidelberg (Germany); Krix, Martin [German Cancer Research Centre, Department of Radiology, Heidelberg (Germany); Bracco ALTANA Pharma GmbH, Konstanz (Germany)

    2007-10-15

    Functional imaging might increase the role of imaging in muscular diseases, since alterations of muscle morphology alone are not specific for a particular disease. Perfusion, i.e., the blood flow per tissue and time unit including capillary flow, is an important functional parameter. Pathological changes of skeletal muscle perfusion can be found in various clinical conditions, such as degenerative or inflammatory myopathies or peripheral arterial occlusive disease. This article reviews the theoretical basics of functional radiological techniques for assessing skeletal muscle perfusion and focuses on contrast-enhanced ultrasound (CEUS) and magnetic resonance imaging (MRI) techniques. Also, the applications of microvascular imaging, such as in detection of myositis and for discriminating myositis from other myopathies or evaluating peripheral arterial occlusive disease, are presented, and possible clinical indications are discussed. In conclusion, dedicated MR and CEUS methods are now available that visualize and quantify (patho-)physiologic information about microcirculation within skeletal muscles in vivo and hence establish a useful diagnostic tool for muscular diseases. (orig.)

  6. Integration of Quantitative Positron Emission Tomography Absolute Myocardial Blood Flow Measurements in the Clinical Management of Coronary Artery Disease.

    Science.gov (United States)

    Gewirtz, Henry; Dilsizian, Vasken

    2016-05-31

    In the >40 years since planar myocardial imaging with(43)K-potassium was introduced into clinical research and management of patients with coronary artery disease (CAD), diagnosis and treatment have undergone profound scientific and technological changes. One such innovation is the current state-of-the-art hardware and software for positron emission tomography myocardial perfusion imaging, which has advanced it from a strictly research-oriented modality to a clinically valuable tool. This review traces the evolving role of quantitative positron emission tomography measurements of myocardial blood flow in the evaluation and management of patients with CAD. It presents methodology, currently or soon to be available, that offers a paradigm shift in CAD management. Heretofore, radionuclide myocardial perfusion imaging has been primarily qualitative or at best semiquantitative in nature, assessing regional perfusion in relative terms. Thus, unlike so many facets of modern cardiovascular practice and CAD management, which depend, for example, on absolute values of key parameters such as arterial and left ventricular pressures, serum lipoprotein, and other biomarker levels, the absolute levels of rest and maximal myocardial blood flow have yet to be incorporated into routine clinical practice even in most positron emission tomography centers where the potential to do so exists. Accordingly, this review focuses on potential value added for improving clinical CAD practice by measuring the absolute level of rest and maximal myocardial blood flow. Physiological principles and imaging fundamentals necessary to understand how positron emission tomography makes robust, quantitative measurements of myocardial blood flow possible are highlighted. © 2016 American Heart Association, Inc.

  7. A capillary-based perfusion phantom for simulation of brain perfusion for MRI

    International Nuclear Information System (INIS)

    Maciak, A.; Kronfeld, A.; Mueller-Forell, W.; Wille, C.; Kempski, O.; Stoeter, P.

    2010-01-01

    Purpose: The measurement of the CBF is a non-standardized procedure and there are no reliable gold standards. This abstract shows a capillary-based perfusion-phantom for CE-DSC-MRI. It has equivalent flow properties to those within the tissue capillary system of the human brain and allows the validation of the Siemens Perfusion (MR) software. Materials and Methods: The perfusion phantom consists of a dialyzer for the simulation of the capillary system, a feeding tube for simulation of the AIF and a pulsatile pump for simulation of the heart. Using this perfusion phantom, the exact determination of the gold standard CBF due to the well-known geometry of the phantom is easy. It was validated based on different perfusion measurements. These measurements were investigated with standard software (Siemens Perfusion MR). The software determined the CBF within the capillary system. Based on this CBF, a comparison to the gold standard was made with several different flow speeds. After AIF selection, a total of 726 CBF data points were automatically extracted by the software. Results: This results in a comparison of the gold standard CBF to these 726 CBF values. Therefore, a reproducible and reliable deviation estimation between gold standard CBF and measured CBF using the software was computed. It can be shown that the deviation between gold standard and software-based evaluation ranges between 1 and 31 %. Conclusion: There is no significance for any correlation between flow speed and amount of deviation. The mean measured CBF is 11.4 % higher than the gold standard CBF (p-value < 0.001). Using this kind of perfusion-phantom, the validation of different software systems allows reliable conclusions about their quality. (orig.)

  8. Assessment of brain perfusion with MRI: methodology and application to acute stroke

    International Nuclear Information System (INIS)

    Grandin, C.B.

    2003-01-01

    We review the methodology of brain perfusion measurements with MRI and their application to acute stroke, with particular emphasis on the work awarded by the 6th Lucien Appel Prize for Neuroradiology. The application of the indicator dilution theory to the dynamic susceptibility-weighted bolus-tracking method is explained, as is the approach to obtaining quantitative measurements of cerebral blood flow (CBF) and volume (CBV). Our contribution to methodological developments, such as CBV measurement with the frequency-shifted burst sequence, development of the PRESTO sequence, comparison of different deconvolution methods and of spin- and gradient-echo sequences, and the validation of MRI measurements against positron emission tomography is summarised. The pathophysiology of brain ischaemia and the role of neuroimaging in the setting of acute stroke are reviewed, with an introduction to the concepts of ischaemic penumbra and diffusion/perfusion mismatch. Our work on the determination of absolute CBF and CBV thresholds for predicting the area of infarct growth, identification of the best perfusion parameters (relative or absolute) for predicting the area of infarct growth and the role of MR angiography is also summarised. We conclude that MRI is a very powerful way to assess brain perfusion and that its use might help in selecting patients who will benefit most from treatment such as thrombolysis. (orig.)

  9. Can the green laser doppler measure skin-nutritive perfusion in patients with peripheral vascular disease?

    NARCIS (Netherlands)

    Ubbink, D. T.; Tulevski, I. I.; Jacobs, M. J.

    2000-01-01

    The recently developed green laser (GL; wavelength 543 nm) is thought to measure perfusion derived from a more superficial skin layer than does the standard near-infrared laser (RL; wavelength 780 nm). These lasers were used to investigate the disturbances in the different layers of skin perfusion

  10. Effects of acquisition time and reconstruction algorithm on image quality, quantitative parameters, and clinical interpretation of myocardial perfusion imaging

    DEFF Research Database (Denmark)

    Enevoldsen, Lotte H; Menashi, Changez A K; Andersen, Ulrik B

    2013-01-01

    time (HT) protocols and Evolution for Cardiac Software. METHODS: We studied 45 consecutive, non-selected patients referred for a clinically indicated routine 2-day stress/rest (99m)Tc-Sestamibi myocardial perfusion SPECT. All patients underwent an FT and an HT scan. Both FT and HT scans were processed......-RR) and for quantitative analysis (FT-FBP, HT-FBP, and HT-RR). The datasets were analyzed using commercially available QGS/QPS software and read by two observers evaluating image quality and clinical interpretation. Image quality was assessed on a 10-cm visual analog scale score. RESULTS: HT imaging was associated......: Use of RR reconstruction algorithms compensates for loss of image quality associated with reduced scan time. Both HT acquisition and RR reconstruction algorithm had significant effects on motion and perfusion parameters obtained with standard software, but these effects were relatively small...

  11. Diffusion and perfusion imaging of bone marrow

    International Nuclear Information System (INIS)

    Biffar, Andreas; Dietrich, Olaf; Sourbron, Steven; Duerr, Hans-Roland; Reiser, Maximilian F.; Baur-Melnyk, Andrea

    2010-01-01

    In diffusion-weighted magnetic resonance imaging (DWI), the observed MRI signal intensity is attenuated by the self-diffusion of water molecules. DWI provides information about the microscopic structure and organization of a biological tissue, since the extent and orientation of molecular motion is influenced by these tissue properties. The most common method to measure perfusion in the body using MRI is T1-weighted dynamic contrast enhancement (DCE-MRI). The analysis of DCE-MRI data allows determining the perfusion and permeability of a biological tissue. DWI as well as DCE-MRI are established techniques in MRI of the brain, while significantly fewer studies have been published in body imaging. In recent years, both techniques have been applied successfully in healthy bone marrow as well as for the characterization of bone marrow alterations or lesions; e.g., DWI has been used in particular for the differentiation of benign and malignant vertebral compression fractures. In this review article, firstly a short introduction to diffusion-weighted and dynamic contrast-enhanced MRI is given. Non-quantitative and quantitative approaches for the analysis of DWI and semiquantitative and quantitative approaches for the analysis of DCE-MRI are introduced. Afterwards a detailed overview of the results of both techniques in healthy bone marrow and their applications for the diagnosis of various bone-marrow pathologies, like osteoporosis, bone tumors, and vertebral compression fractures are described.

  12. Use of ultrafast computed tomography to quantitate regional myocardial perfusion: a preliminary report

    International Nuclear Information System (INIS)

    Rumberger, J.A.; Feiring, A.J.; Lipton, M.J.; Higgins, C.B.; Ell, S.R.; Marcus, M.L.

    1987-01-01

    The purpose of this study was to assess the potential for rapid acquisition computed axial tomography (Imatron C-100) to quantify regional myocardial perfusion. Myocardial and left ventricular cavity contrast clearance curves were constructed after injecting nonionic contrast (1 ml/kg over 2 to 3 seconds) into the inferior vena cava of six anesthetized, closed chest dogs (n = 14). Independent myocardial perfusion measurements were obtained by coincident injection of radiolabeled microspheres into the left atrium during control, intermediate and maximal myocardial vasodilation with adenosine (0.5 to 1.0 mg/kg per min, intravenously, respectively). At each flow state, 40 serial short-axis scans of the left ventricle were taken near end-diastole at the midpapillary muscle level. Contrast clearance curves were generated and analyzed from the left ventricular cavity and posterior papillary muscle regions after excluding contrast recirculation and minimizing partial volume effects. The area under the curve (gamma variate function) was determined for a region of interest placed within the left ventricular cavity. Characteristics of contrast clearance data from the posterior papillary muscle region that were evaluated included the peak myocardial opacification, area under the contrast clearance curve and a contrast clearance time defined by the full width/half maximal extent of the clearance curve. Myocardial perfusion (microspheres) ranged from 35 to 450 ml/100 g per min (mean 167 +/- 125)

  13. Measurement of Choroidal Perfusion and Thickness Following Systemic Sildenafil (Viagra®)

    Science.gov (United States)

    Kim, David Y.; Silverman, Ronald H.; Chan, R.V. Paul; Khanifar, Aziz A.; Rondeau, Mark; Lloyd, Harriet; Schlegel, Peter; Coleman, D. Jackson

    2011-01-01

    Objective To demonstrate anatomic and physiologic changes in the human choroid following systemic sildenafil citrate (ViagraR) using enhanced depth imaging spectral domain-optical coherence tomography (EDI-OCT) and swept-scan high frequency digital ultrasound. Methods Seven healthy male subjects (mean age 32.7 years) were evaluated at baseline and two hours after ingesting 50 mg of sildenafil. Swept-scan high frequency digital ultrasound and EDI-OCT were utilized to measure choroidal perfusion and thickness, respectively. Results were read by masked observers. The Wilcoxon signed-rank test and t-test were used to analyze differences in choroidal flow and thickness at baseline and two hours after ingestion of sildenafil. Results Two hours following sildenafil, increased choroidal perfusion was observed in 11 of 12 eyes measured by swept-scan high frequency digital ultrasound. The mean increase was 3.46 (±2.00) times baseline with a range of 0.47 to 7.80 times baseline (p=0.004). Increased choroidal thickness was observed in 12 of 12 eyes measured with EDI-OCT. The average choroidal thickness increased by 11.6% temporal to the fovea, 9.3% nasal to the fovea, and 10.7% underneath the fovea (p<0.001 for all values). Conclusions Choroidal perfusion and thickness both increase in response to systemic sildenafil. These changes could secondarily affect retinal function, explain previously reported clinical symptoms, and potentially be a useful adjunct for treatment of ocular diseases that would benefit from increased choroidal blood flow. PMID:22974308

  14. Quantitative evaluation of perfusion magnetic resonance imaging hyper-acute ischemic stroke patients comparison with 1.5T and 3.0T units

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Eun Hoe [Dept. of Radiological Science, Cheongju University, Cheongju (Korea, Republic of); Moon, Il Bong; Dong, Kyung Rae [Dept. of Radiological Technology, Gwangju Health University, Gwangju (Korea, Republic of)

    2017-02-15

    Perfusion magnetic resonance image of biological mechanism are independent of magnetic field strength in hyper acute ischemic stroke. 3.0 T magnetic field, however, does affect the SNRs (signal to noise ratio) and artifacts of PMRI (perfusion magnetic resonance image), which basically will influence the quantitative of PMRI. In this study, the effects of field strength on PMRI are analyzed. The effects of the diseases also are discussed. PMRI in WM (white matter), GM (gray matter), hyper acute ischemic stroke were companied with 1.5 T and 3.0 T on SNR. PMRI also was compared to the SI difference after setting ROI (region of interest) in left and right b side of the brain. In conclusion, the SNRs and SI of the 3.0 T PMRI showed higher than those at 1.5 T. In summary, PMRI studies at 3.0 T is provided significantly improved perfusion evaluation when comparing with 1.5 T.

  15. Quantitative evaluation of perfusion magnetic resonance imaging hyper-acute ischemic stroke patients comparison with 1.5T and 3.0T units

    International Nuclear Information System (INIS)

    Goo, Eun Hoe; Moon, Il Bong; Dong, Kyung Rae

    2017-01-01

    Perfusion magnetic resonance image of biological mechanism are independent of magnetic field strength in hyper acute ischemic stroke. 3.0 T magnetic field, however, does affect the SNRs (signal to noise ratio) and artifacts of PMRI (perfusion magnetic resonance image), which basically will influence the quantitative of PMRI. In this study, the effects of field strength on PMRI are analyzed. The effects of the diseases also are discussed. PMRI in WM (white matter), GM (gray matter), hyper acute ischemic stroke were companied with 1.5 T and 3.0 T on SNR. PMRI also was compared to the SI difference after setting ROI (region of interest) in left and right b side of the brain. In conclusion, the SNRs and SI of the 3.0 T PMRI showed higher than those at 1.5 T. In summary, PMRI studies at 3.0 T is provided significantly improved perfusion evaluation when comparing with 1.5 T

  16. Diagnostic accuracy of semi-automatic quantitative metrics as an alternative to expert reading of CT myocardial perfusion in the CORE320 study.

    Science.gov (United States)

    Ostovaneh, Mohammad R; Vavere, Andrea L; Mehra, Vishal C; Kofoed, Klaus F; Matheson, Matthew B; Arbab-Zadeh, Armin; Fujisawa, Yasuko; Schuijf, Joanne D; Rochitte, Carlos E; Scholte, Arthur J; Kitagawa, Kakuya; Dewey, Marc; Cox, Christopher; DiCarli, Marcelo F; George, Richard T; Lima, Joao A C

    2018-04-03

    To determine the diagnostic accuracy of semi-automatic quantitative metrics compared to expert reading for interpretation of computed tomography perfusion (CTP) imaging. The CORE320 multicenter diagnostic accuracy clinical study enrolled patients between 45 and 85 years of age who were clinically referred for invasive coronary angiography (ICA). Computed tomography angiography (CTA), CTP, single photon emission computed tomography (SPECT), and ICA images were interpreted manually in blinded core laboratories by two experienced readers. Additionally, eight quantitative CTP metrics as continuous values were computed semi-automatically from myocardial and blood attenuation and were combined using logistic regression to derive a final quantitative CTP metric score. For the reference standard, hemodynamically significant coronary artery disease (CAD) was defined as a quantitative ICA stenosis of 50% or greater and a corresponding perfusion defect by SPECT. Diagnostic accuracy was determined by area under the receiver operating characteristic curve (AUC). Of the total 377 included patients, 66% were male, median age was 62 (IQR: 56, 68) years, and 27% had prior myocardial infarction. In patient based analysis, the AUC (95% CI) for combined CTA-CTP expert reading and combined CTA-CTP semi-automatic quantitative metrics was 0.87(0.84-0.91) and 0.86 (0.83-0.9), respectively. In vessel based analyses the AUC's were 0.85 (0.82-0.88) and 0.84 (0.81-0.87), respectively. No significant difference in AUC was found between combined CTA-CTP expert reading and CTA-CTP semi-automatic quantitative metrics in patient based or vessel based analyses(p > 0.05 for all). Combined CTA-CTP semi-automatic quantitative metrics is as accurate as CTA-CTP expert reading to detect hemodynamically significant CAD. Copyright © 2018 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.

  17. Quantitative Analysis of First-Pass Contrast-Enhanced Myocardial Perfusion Multidetector CT Using a Patlak Plot Method and Extraction Fraction Correction During Adenosine Stress

    Science.gov (United States)

    Ichihara, Takashi; George, Richard T.; Silva, Caterina; Lima, Joao A. C.; Lardo, Albert C.

    2011-02-01

    The purpose of this study was to develop a quantitative method for myocardial blood flow (MBF) measurement that can be used to derive accurate myocardial perfusion measurements from dynamic multidetector computed tomography (MDCT) images by using a compartment model for calculating the first-order transfer constant (K1) with correction for the capillary transit extraction fraction (E). Six canine models of left anterior descending (LAD) artery stenosis were prepared and underwent first-pass contrast-enhanced MDCT perfusion imaging during adenosine infusion (0.14-0.21 mg/kg/min). K1 , which is the first-order transfer constant from left ventricular (LV) blood to myocardium, was measured using the Patlak plot method applied to time-attenuation curve data of the LV blood pool and myocardium. The results were compared against microsphere MBF measurements, and the extraction fraction of contrast agent was calculated. K1 is related to the regional MBF as K1=EF, E=(1-exp(-PS/F)), where PS is the permeability-surface area product and F is myocardial flow. Based on the above relationship, a look-up table from K1 to MBF can be generated and Patlak plot-derived K1 values can be converted to the calculated MBF. The calculated MBF and microsphere MBF showed a strong linear association. The extraction fraction in dogs as a function of flow (F) was E=(1-exp(-(0.2532F+0.7871)/F)) . Regional MBF can be measured accurately using the Patlak plot method based on a compartment model and look-up table with extraction fraction correction from K1 to MBF.

  18. Evaluation of Perfusion and Thermal Parameters of Skin Tissue Using Cold Provocation and Thermographic Measurements

    Directory of Open Access Journals (Sweden)

    Strąkowska Maria

    2016-09-01

    Full Text Available Measurement of the perfusion coefficient and thermal parameters of skin tissue using dynamic thermography is presented in this paper. A novel approach based on cold provocation and thermal modelling of skin tissue is presented. The measurement was performed on a person’s forearm using a special cooling device equipped with the Peltier module. The proposed method first cools the skin, and then measures the changes of its temperature matching the measurement results with a heat transfer model to estimate the skin perfusion and other thermal parameters. In order to assess correctness of the proposed approach, the uncertainty analysis was performed.

  19. A new clinical tool for the quantification of myocardial CT perfusion imaging in patients with suspected Ischemic Heart Disease

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Muñoz, A.; Dux-Santoy Hurtado, L.; Rodriguez Palomares, J.L.; Piella Fenoy, G.

    2016-07-01

    In the clinical practice, the evaluation of myocardial perfusion by using Computed Tomography (CT) Imaging is usually performed visually or semi-quantitatively. The scarcity of quantitative perfusion data not always allows a proper diagnose of patients which are suspected of suffering from some diseases, such as Ischemic Heart Disease (IHD). In this work, a clinical tool for the automatic quantification of myocardial perfusion in patients with suspected IHD is proposed. Myocardial perfusion is assessed based on a combined diagnosis protocol (CT/CTP protocol) which involves the acquisition of two contrastenhanced CT images, one obtained at rest and another acquired under pharmacological stress. The clinical tool allows the automatic quantification of perfusion in different myocardial segments defined according to the 16-AHA-segmentation model of the left ventricle, by providing the mean of Hounsfield Units in those regions. Based on this analysis, the clinicians can compare the values at baseline and at hyperemia, and they can better determine hypoperfusion defects in patients with IHD. The validation of the clinical tool was performed by comparing automatic and manual perfusion measurements of 10 patients with suspected IHD who were previously assessed with Single Photon Emission Computed Tomography (SPECT) for perfusion analysis. A strong linear correlation was found between the automatic and manual results. Afterwards, perfusion defects obtained from CT/CTP protocol were compared to perfusion defects from SPECT, to assess the applicability of this clinical tool for the diagnosis of IHD. (Author)

  20. Paradoxical perfusion metrics of high-grade gliomas with an oligodendroglioma component: quantitative analysis of dynamic susceptibility contrast perfusion MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sunwoo, Leonard; Park, Sun-Won [Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Seoul Metropolitan Government - Seoul National University Boramae Medical Center, Department of Radiology, Seoul (Korea, Republic of); Choi, Seung Hong [Seoul National University Hospital, Department of Radiology, Seoul (Korea, Republic of); Seoul National University, Center for Nanoparticle Research, Institute for Basic Science, and School of Chemical and Biological Engineering, Seoul (Korea, Republic of); Yoo, Roh-Eul; Kang, Koung Mi; Yun, Tae Jin; Kim, Ji-hoon; Sohn, Chul-Ho [Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Seoul National University Hospital, Department of Radiology, Seoul (Korea, Republic of); Kim, Tae Min; Lee, Se-Hoon [Seoul National University Hospital, Department of Internal Medicine, Seoul (Korea, Republic of); Park, Chul-Kee [Seoul National University Hospital, Department of Neurosurgery, Seoul (Korea, Republic of); Won, Jae-Kyung; Park, Sung-Hye [Seoul National University Hospital, Department of Pathology, Seoul (Korea, Republic of); Kim, Il Han [Seoul National University Hospital, Department of Radiation Oncology, Seoul (Korea, Republic of)

    2015-11-15

    The aim of this study is to investigate perfusion characteristics of glioblastoma with an oligodendroglioma component (GBMO) compared with conventional glioblastoma (GBM) using dynamic susceptibility contrast (DSC) perfusion magnetic resonance (MR) imaging and microvessel density (MVD). The study was approved by the institutional review board. Newly diagnosed high-grade glioma patients were enrolled (n = 72; 20 GBMs, 14 GBMOs, 19 anaplastic astrocytomas (AAs), 13 anaplastic oligodendrogliomas (AOs), and six anaplastic oligoastrocytomas (AOAs)). All participants underwent preoperative MR imaging including DSC perfusion MR imaging. Normalized cerebral blood volume (nCBV) values were analyzed using a histogram approach. Histogram parameters were subsequently compared across each tumor subtype and grade. MVD was quantified by immunohistochemistry staining and correlated with perfusion parameters. Progression-free survival (PFS) was assessed according to the tumor subtype. GBMO displayed significantly reduced nCBV values compared with GBM, whereas grade III tumors with oligodendroglial components (AO and AOA) exhibited significantly increased nCBV values compared with AA (p < 0.001). MVD analyses revealed the same pattern as nCBV results. In addition, a positive correlation between MVD and nCBV values was noted (r = 0.633, p < 0.001). Patients with oligodendroglial tumors exhibited significantly increased PFS compared with patients with pure astrocytomas in each grade. In contrast to grade III tumors, the presence of oligodendroglial components in grade IV tumors resulted in paradoxically reduced perfusion metrics and MVD. In addition, patients with GBMO exhibited a better clinical outcome compared with patients with GBM. (orig.)

  1. Hepatic perfusion changes in an experimental model of acute pancreatitis: Evaluation by perfusion CT

    International Nuclear Information System (INIS)

    Tutcu, Semra; Serter, Selim; Kaya, Yavuz; Kara, Eray; Nese, Nalan; Pekindil, Goekhan; Coskun, Teoman

    2010-01-01

    Purpose: It is known that acute pancreatitis may cause secondary changes in several organs. Liver is one of these involved organs. In different experimental studies hepatic damages were shown histopathologically in acute pancreatitis but there are a few studies about perfusion disorders that accompany these histopathologic changes. Perfusion CT (pCT) provides the ability to detect regional and global alterations in organ blood flow. The purpose of the study was to describe hepatic perfusion changes in experimental acute pancreatitis model with pCT. Materials and methods: Forty Sprague-Dawley rats of both genders with average weights of 250 g were used. Rats were randomized into two groups. Twenty rats were in control group and 20 in acute pancreatitis group. pCT was performed. Perfusion maps were formed by processing the obtained images with perfusion CT software. Blood flow (BF) and blood volume (BV) values were obtained from these maps. All pancreatic and liver tissues were taken off with laparotomy and histopathologic investigation was performed. Student's t test was used for statistical analyses. Results: In pCT we found statistically significant increase in blood volume in both lobes of liver and in blood flow in right lobe of the liver (p < 0.01). Although blood flow in left lobe of the liver increased, it did not reach statistical significance. Conclusion: The quantitative analysis of liver parenchyma with pCT showed that acute pancreatitis causes a significant perfusion changes in the hepatic tissue. Systemic mediators seem to be effective as well as local inflammatory changes in perfusion changes.

  2. Hepatic perfusion changes in an experimental model of acute pancreatitis: Evaluation by perfusion CT

    Energy Technology Data Exchange (ETDEWEB)

    Tutcu, Semra [Department of Surgery, Celal Bayar University, School of Medicine, Manisa (Turkey); Serter, Selim, E-mail: serterselim@gmail.co [Department of Radiology, Celal Bayar University, School of Medicine, Manisa (Turkey); Kaya, Yavuz; Kara, Eray [Department of Surgery, Celal Bayar University, School of Medicine, Manisa (Turkey); Nese, Nalan [Department of Pathology, Celal Bayar University, School of Medicine, Manisa (Turkey); Pekindil, Goekhan [Department of Radiology, Celal Bayar University, School of Medicine, Manisa (Turkey); Coskun, Teoman [Department of Surgery, Celal Bayar University, School of Medicine, Manisa (Turkey)

    2010-08-15

    Purpose: It is known that acute pancreatitis may cause secondary changes in several organs. Liver is one of these involved organs. In different experimental studies hepatic damages were shown histopathologically in acute pancreatitis but there are a few studies about perfusion disorders that accompany these histopathologic changes. Perfusion CT (pCT) provides the ability to detect regional and global alterations in organ blood flow. The purpose of the study was to describe hepatic perfusion changes in experimental acute pancreatitis model with pCT. Materials and methods: Forty Sprague-Dawley rats of both genders with average weights of 250 g were used. Rats were randomized into two groups. Twenty rats were in control group and 20 in acute pancreatitis group. pCT was performed. Perfusion maps were formed by processing the obtained images with perfusion CT software. Blood flow (BF) and blood volume (BV) values were obtained from these maps. All pancreatic and liver tissues were taken off with laparotomy and histopathologic investigation was performed. Student's t test was used for statistical analyses. Results: In pCT we found statistically significant increase in blood volume in both lobes of liver and in blood flow in right lobe of the liver (p < 0.01). Although blood flow in left lobe of the liver increased, it did not reach statistical significance. Conclusion: The quantitative analysis of liver parenchyma with pCT showed that acute pancreatitis causes a significant perfusion changes in the hepatic tissue. Systemic mediators seem to be effective as well as local inflammatory changes in perfusion changes.

  3. Clinical evaluation of non-invasive perfusion-weighted MRI

    International Nuclear Information System (INIS)

    Takasu, Miyuki

    2000-01-01

    A spin labeling method to measure cerebral blood flow without a contrast medium was developed and applied clinically to obtain a non-invasive perfusion-weighted image. The purpose of this study is to compare the non-invasive perfusion-weighted image using FAIR with the well-established PWI using a bolus injection of Gd-DTPA. Of 41 lesions which revealed decreased perfusion, 13 were shown to be low signal intensity areas on FAIR. Therefore, detection rate of FAIR for hypoperfusion was 32%. Of 8 lesions which revealed increased perfusion, 7 demonstrated high intensity on FAIR. Therefore, detection rate of FAIR for hyperperfusion was 88%. Seven lesions were found to have a mean pixel value of zero on PWI. Of these lesions, 5 lesions could be detected as high signal intensity area on FAIR. The rCBV- and rCBF index ratios of hypoperfused lesions detected on FAIR were significantly lower than those of lesions which were not detected on FAIR (p=0.007, p=0.01). As concerns the lesions detected of FAIR, there were positive correlation between rCBV- or rCBF index ratio and FAIR signal ratio (rCBV ratio: ρ=0.873, p=0.0002, rCBF index ratio: ρ=0.858, p=0.0003). FAIR is valuable clinical tool to detect perfusion abnormality semi-quantitatively without contrast medium, although it showed relatively low detection rate for hypoperfused lesions. (author)

  4. Cerebral perfusion imaging in HIV positive patients

    International Nuclear Information System (INIS)

    Kundley, Kshama; Chowdhury, D.; Lele, V.R.; Lele, R.D.

    1998-01-01

    Full text: Twelve human immunodeficiency virus (HIV) positive patients were studied by SPECT cerebral perfusion imaging 1 hour post injection of 15 mCi of 99m Tc-ECD under ideal conditions with a triple head gamma camera (Prism 3000 X P LEUHR), fanbeam collimators followed by Folstein Mini Mental Status Examination (FMMSE) and AIDS dementia complex (ADC) staging on the same day. All 12 patients were male, in the age range of 23-45 y (mean 31 y). The infected status was diagnosed by ELISA (10 patients) or Western blot (5 patients). The interval between diagnosis and imaging ranged from 1 month - 35 months (mean 15.3 months). Two patients were alcoholic and 2 were smokers. None of them had CNS disorder clinically. ADC staging and FMMSE could be performed in 4 patients. Two patients were normal (stage 0) and 2 were subclinical (stage 0.5) on ADC staging. FMMSE revealed normal or near normal status (mean score 35; maximum score 36). Cerebral perfusion images were interpreted simultaneously by 3 observers blind towards history and examination using semi-quantitative and quantitative methods by consensus. It revealed multiple areas of hypoperfusion, viz. temporal (11 patients (91 %), parietal 10 patients (83%), frontal 9 patients (75%, pre and post central gyrus 7 patients (58%), occipital 6 patients (50%) cingulate gyrus and cerebellum 5 patients (41%) and thalamic in 2 patients (16%). Hyper perfusion in caudate nuclei was noted in 10 patients (83%). The study reveals presence of multiple perfusion abnormalities on cerebral perfusion imaging in HIV positive patients who have normal/near normal mental status suggesting precedence of perfusion abnormality over clinically apparent mental deficit

  5. Quantitation of esophageal transit and gastroesophageal reflux

    International Nuclear Information System (INIS)

    Malmud, L.S.; Fisher, R.S.

    1986-01-01

    Scintigraphic techniques are the only quantitative methods for the evaluation of esophageal transit and gastroesophageal reflux. By comparison, other techniques are not quantitative and are either indirect, inconvenient, or less sensitive. Methods, such as perfusion techniques, which measure flow, require the introduction of a tube assembly into the gastrointestinal tract with the possible introduction of artifacts into the measurements due to the indwelling tubes. Earlier authors using radionuclide markers, introduced a method for measuring gastric emptying which was both tubeless and quantitative in comparison to other techniques. More recently, a number of scintigraphic methods have been introduced for the quantitation of esophageal transit and clearance, the detection and quantitation of gastroesophageal reflux, the measurement of gastric emptying using a mixed solid-liquid meal, and the quantitation of enterogastric reflux. This chapter reviews current techniques for the evaluation of esophageal transit and gastroesophageal reflux

  6. Mucosal blood flow measurements using laser Doppler perfusion monitoring

    Institute of Scientific and Technical Information of China (English)

    Dag Arne Lihaug Hoff; Hans Gregersen; Jan Gunnar Hatlebakk

    2009-01-01

    Perfusion of individual tissues is a basic physiological process that is necessary to sustain oxygenation and nutrition at a cellular level. Ischemia, or the insufficiency of perfusion, is a common mechanism for tissue death or degeneration, and at a lower threshold, a mechanism for the generation of sensory signalling including pain. It is of considerable interest to study perfusion of peripheral abdominal tissues in a variety of circumstances. Microvascular disease of the abdominal organs has been implicated in the pathogenesis of a variety of disorders, including peptic ulcer disease, inflammatory bowel disease and chest pain. The basic principle of laser Doppler perfusion monitoring (LDPM) is to analyze changes in the spectrum of light reflected from tissues as a response to a beam of monochromatic laser light emitted. It reflects the total local microcirculatory blood perfusion, including perfusion in capillaries, arterioles, venules and shunts. During the last 20-25 years, numerous studies have been performed in different parts of the gastrointestinal (GI) tract using LDPM. In recent years we have developed a multi-modal catheter device which includes a laser Doppler probe, with the intent primarily to investigate patients suffering from functional chest pain of presumed oesophageal origin. Preliminary studies show the feasibility of incorporating LDPM into such catheters for performing physiological studies in the GI tract. LDPM has emerged as a research and clinical tool in preference to other methods; but, it is important to be aware of its limitations and account for them when reporting results.

  7. Does Enhancement or Perfusion on Preprocedure CT Predict Outcomes After Embolization of Hepatocellular Carcinoma?

    Science.gov (United States)

    Borgheresi, Alessandra; Gonzalez-Aguirre, Adrian; Brown, Karen T; Getrajdman, George I; Erinjeri, Joseph P; Covey, Anne; Yarmohammadi, Hooman; Ziv, Etay; Sofocleous, Constantinos T; Boas, Franz Edward

    2018-03-27

    The objective of this study was to evaluate whether quantitative enhancement or perfusion measurements on preprocedure triphasic computed tomography (CT) can be used to predict response or overall survival after embolization of hepatocellular carcinoma. The institutional review board approved this retrospective review of 63 patients with hepatocellular carcinoma treated with particle embolization between March 2009 and December 2014. Quantitative enhancement and perfusion measurements were performed on the target tumor and the background liver on the triphasic CT performed before treatment. Microvascular invasion (MVI) and degree of differentiation were determined from a core biopsy specimen. Quantitative enhancement and perfusion values were then correlated with pathology (two-tailed t test), response to embolization on modified Response Evaluation Criteria In Solid Tumors (two-tailed t test), and overall survival after embolization (Cox proportional hazards model). Arterial enhancement did not predict immediate response or overall survival after embolization. The degree of differentiation or presence of MVI also did not predict immediate response or overall survival after embolization. However, high hepatic artery coefficient or low portal vein coefficient, both in the tumor (P = .011 and P = .004) and in the background liver (P = .015 and P = .009), were associated with worse survival. Hepatic artery coefficient, both in the tumor (P = .025) and in the background liver (P = .013), were independent predictors of survival in a multivariate model including the Child-Pugh score and the BCLC stage. Tumor and liver perfusion parameters estimated from preprocedure triphasic CT were predictive of survival after embolization. Arterial-phase enhancement and histology (degree of differentiation or MVI) did not predict immediate response or overall survival after particle embolization. Copyright © 2018 The Association of University Radiologists

  8. Dynamic CT myocardial perfusion imaging identifies early perfusion abnormalities in diabetes and hypertension : Insights from a multicenter registry

    NARCIS (Netherlands)

    Vliegenthart, Rozemarijn; De Cecco, Carlo N.; Wichmann, Julian L.; Meinel, Felix G.; Pelgrim, Gert Jan; Tesche, Christian; Ebersberger, Ullrich; Pugliese, Francesca; Bamberg, Fabian; Choe, Yeon Hyeon; Wang, Yining; Schoepf, U. Joseph

    2016-01-01

    Background: To identify patients with early signs of myocardial perfusion reduction, a reference base for perfusion measures is needed. Objective: To analyze perfusion parameters derived from dynamic computed tomography perfusion imaging (CTPI) in patients with suspected coronary artery disease

  9. Lung perfusion scintigraphy by SPECT

    International Nuclear Information System (INIS)

    Hirayama, Takanobu

    1990-01-01

    The initial study reports the characteristic performance using lung segmental phantom filled in Tc-99m pertechnetate. To evaluate the segmental defect in lung perfusion scintigraphy, we applied Bull's-eye analysis in addition to planar image set. Bull's-eye analysis especially facilitated the interpretation in both middle and lower lobes. Subsequently, to evolute the clinical application of Bull's-eye analysis, pulmonary scintigraphy was performed on 10 normal subjects and 60 patients with several pulmonary diseases. Of interest, Bull's-eye analysis, however, encouraged the interpretation in both lower lobes. To calculate the extention and severity of perfusion defect, the present study describes Bull's-eye analysis. Quantitative scoring showed higher in patients with lung cancer than those with pulmonary tuberculosis. The present study focus that Bull's-eye analysis can be useful for evaluating perfusion in patients with a couple of pulmonary diseases. (author)

  10. Clinical application of cerebral dynamic perfusion studies

    International Nuclear Information System (INIS)

    DeLand, F.H.

    1975-01-01

    Radionuclide cerebral perfusion studies are assuming a far greater importance in the detection and differential diagnosis of cerebral lesions. Perfusion studies not only contribute to the differential diagnosis of lesions but in certain cases are the preferred methods by which more accurate clinical interpretations can be made. The characteristic blood flow of arterio-venous malformations readily differentiates this lesion from neoplasms. The decreased perfusion or absent perfusion observed in cerebral infarctions is diagnostic without concurrent evidence from static images. Changes in rates and direction of blood flow contribute fundamental information to the status of stenosis and vascular occlusion and, in addition, offer valuable information on the competency and routes of collateral circulation. The degree of cerebral perfusion after cerebral vascular accidents appears to be directly related to patient recovery, particularly muscular function. Cerebral perfusion adds a new parameter in the diagnosis of subdural haematomas and concussion and in the differentiation of obscuring radioactivity from superficial trauma. Although pictorial displays of perfusion blood flow will offer information in most cerebral vascular problems, the addition of computer analysis better defines temporal relationships of regional blood flow, quantitative changes in flow and the detection of the more subtle increases or decreases in cerebral blood flow. The status of radionuclide cerebral perfusion studies has taken on an importance making it the primary modality for the diagnosis of cerebral lesions. (author)

  11. Computerized analysis of brain perfusion parameter images

    International Nuclear Information System (INIS)

    Turowski, B.; Haenggi, D.; Wittsack, H.J.; Beck, A.; Aurich, V.

    2007-01-01

    Purpose: The development of a computerized method which allows a direct quantitative comparison of perfusion parameters. The display should allow a clear direct comparison of brain perfusion parameters in different vascular territories and over the course of time. The analysis is intended to be the basis for further evaluation of cerebral vasospasm after subarachnoid hemorrhage (SAH). The method should permit early diagnosis of cerebral vasospasm. Materials and Methods: The Angiotux 2D-ECCET software was developed with a close cooperation between computer scientists and clinicians. Starting from parameter images of brain perfusion, the cortex was marked, segmented and assigned to definite vascular territories. The underlying values were averages for each segment and were displayed in a graph. If a follow-up was available, the mean values of the perfusion parameters were displayed in relation to time. The method was developed under consideration of CT perfusion values but is applicable for other methods of perfusion imaging. Results: Computerized analysis of brain perfusion parameter images allows an immediate comparison of these parameters and follow-up of mean values in a clear and concise manner. Values are related to definite vascular territories. The tabular output facilitates further statistic evaluations. The computerized analysis is precisely reproducible, i. e., repetitions result in exactly the same output. (orig.)

  12. Brain perfusion abnormalities in Rett syndrome: a qualitative and quantitative SPET study with 99Tc(m)-ECD.

    Science.gov (United States)

    Burroni, L; Aucone, A M; Volterrani, D; Hayek, Y; Bertelli, P; Vella, A; Zappella, M; Vattimo, A

    1997-06-01

    Rett syndrome is a progressive neurological paediatric disorder associated with severe mental deficiency, which affects only girls. The aim of this study was to determine if brain blood flow abnormalities detected with 99Tc(m)-ethyl-cysteinate-dimer (99Tc[m]-ECD) single photon emission tomography (SPET) can explain the clinical manifestation and progression of the disease. Qualitative and quantitative global and regional brain blood flow was evaluated in 12 girls with Rett syndrome and compared with an aged-matched reference group of children. In comparison with the reference group, SPET revealed a considerable global reduction in cerebral perfusion in the groups of girls with Rett syndrome. A large statistical difference was noted, which was more evident when comparing the control group with girls with stage IV Rett syndrome than girls with stage III Rett syndrome. The reduction in cerebral perfusion reflects functional disturbance in the brain of children with Rett syndrome. These data confirm that 99Tc(m)-ECD brain SPET is sensitive in detecting hypoperfused areas in girls with Rett syndrome that may be associated with brain atrophy, even when magnetic resonance imaging appears normal.

  13. Developing a Benchmarking Process in Perfusion: A Report of the Perfusion Downunder Collaboration

    Science.gov (United States)

    Baker, Robert A.; Newland, Richard F.; Fenton, Carmel; McDonald, Michael; Willcox, Timothy W.; Merry, Alan F.

    2012-01-01

    Abstract: Improving and understanding clinical practice is an appropriate goal for the perfusion community. The Perfusion Downunder Collaboration has established a multi-center perfusion focused database aimed at achieving these goals through the development of quantitative quality indicators for clinical improvement through benchmarking. Data were collected using the Perfusion Downunder Collaboration database from procedures performed in eight Australian and New Zealand cardiac centers between March 2007 and February 2011. At the Perfusion Downunder Meeting in 2010, it was agreed by consensus, to report quality indicators (QI) for glucose level, arterial outlet temperature, and pCO2 management during cardiopulmonary bypass. The values chosen for each QI were: blood glucose ≥4 mmol/L and ≤10 mmol/L; arterial outlet temperature ≤37°C; and arterial blood gas pCO2 ≥ 35 and ≤45 mmHg. The QI data were used to derive benchmarks using the Achievable Benchmark of Care (ABC™) methodology to identify the incidence of QIs at the best performing centers. Five thousand four hundred and sixty-five procedures were evaluated to derive QI and benchmark data. The incidence of the blood glucose QI ranged from 37–96% of procedures, with a benchmark value of 90%. The arterial outlet temperature QI occurred in 16–98% of procedures with the benchmark of 94%; while the arterial pCO2 QI occurred in 21–91%, with the benchmark value of 80%. We have derived QIs and benchmark calculations for the management of several key aspects of cardiopulmonary bypass to provide a platform for improving the quality of perfusion practice. PMID:22730861

  14. Noninvasive assessment of coronary collaterals in man by PET perfusion imaging

    International Nuclear Information System (INIS)

    Demer, L.L.; Gould, K.L.; Goldstein, R.A.; Kirkeeide, R.L.

    1990-01-01

    At present, coronary collateralization cannot be identified or assessed noninvasively in patients. In animal studies, coronary collaterals are associated with coronary steal, defined as a regional fall in perfusion during coronary arteriolar vasodilation. To determine the effect of coronary arteriolar vasodilation on collateral bed perfusion in man, myocardial perfusion imaging was performed before and after pharmacologic coronary vasodilation in patients with coronary artery disease (CAD). Regional myocardial activity of 82 Rb or 13 N ammonia was measured by positron emission tomography (PET) at rest and with intravenous dipyridamole/handgrip stress in 28 patients with angiographic collaterals and in 25 control patients with similar CAD severity by quantitative arteriography. Regional myocardial activity decreased after dipyridamole, indicating coronary steal, in 25 of 28 patients with angiographic collaterals and in only 4 of 25 control patients without angiographic collaterals. These findings suggest that developed collaterals are associated with myocardial steal in patients with CAD, allowing potential use of PET for non-invasive identification of coronary collateralization

  15. Normal Values of Tissue-Muscle Perfusion Indexes of Lower Limbs Obtained with a Scintigraphic Method.

    Science.gov (United States)

    Manevska, Nevena; Stojanoski, Sinisa; Pop Gjorceva, Daniela; Todorovska, Lidija; Miladinova, Daniela; Zafirova, Beti

    2017-09-01

    Introduction Muscle perfusion is a physiologic process that can undergo quantitative assessment and thus define the range of normal values of perfusion indexes and perfusion reserve. The investigation of the microcirculation has a crucial role in determining the muscle perfusion. Materials and method The study included 30 examinees, 24-74 years of age, without a history of confirmed peripheral artery disease and all had normal findings on Doppler ultrasonography and pedo-brachial index of lower extremity (PBI). 99mTc-MIBI tissue muscle perfusion scintigraphy of lower limbs evaluates tissue perfusion in resting condition "rest study" and after workload "stress study", through quantitative parameters: Inter-extremity index (for both studies), left thigh/right thigh (LT/RT) left calf/right calf (LC/RC) and perfusion reserve (PR) for both thighs and calves. Results In our investigated group we assessed the normal values of quantitative parameters of perfusion indexes. Indexes ranged for LT/RT in rest study 0.91-1.05, in stress study 0.92-1.04. LC/RC in rest 0.93-1.07 and in stress study 0.93-1.09. The examinees older than 50 years had insignificantly lower perfusion reserve of these parameters compared with those younger than 50, LC (p=0.98), and RC (p=0.6). Conclusion This non-invasive scintigraphic method allows in individuals without peripheral artery disease to determine the range of normal values of muscle perfusion at rest and stress condition and to clinically implement them in evaluation of patients with peripheral artery disease for differentiating patients with normal from those with impaired lower limbs circulation.

  16. Dynamic perfusion CT: Optimizing the temporal resolution for the calculation of perfusion CT parameters in stroke patients

    Energy Technology Data Exchange (ETDEWEB)

    Kaemena, Andreas [Department of Radiology, Charite-Medical University Berlin, Augustenburger Platz 1, D-13353 Berlin (Germany)], E-mail: andreas.kaemena@charite.de; Streitparth, Florian; Grieser, Christian; Lehmkuhl, Lukas [Department of Radiology, Charite-Medical University Berlin, Augustenburger Platz 1, D-13353 Berlin (Germany); Jamil, Basil [Department of Radiotherapy, Charite-Medical University Berlin, Schumannstr. 20/21, D-10117 Berlin (Germany); Wojtal, Katarzyna; Ricke, Jens; Pech, Maciej [Department of Radiology, Charite-Medical University Berlin, Augustenburger Platz 1, D-13353 Berlin (Germany)

    2007-10-15

    Purpose: To assess the influence of different temporal sampling rates on the accuracy of the results from cerebral perfusion CTs in patients with an acute ischemic stroke. Material and methods: Thirty consecutive patients with acute stroke symptoms received a dynamic perfusion CT (LightSpeed 16, GE). Forty millilitres of iomeprol (Imeron 400) were administered at an injection rate of 4 ml/s. After a scan delay of 7 s, two adjacent 10 mm slices at 80 kV and 190 mA were acquired in a cine mode technique with a cine duration of 49 s. Parametric maps for the blood flow (BF), blood volume (BV) and mean transit time (MTT) were calculated for temporal sampling intervals of 0.5, 1, 2, 3 and 4 s using GE's Perfusion 3 software package. In addition to the quantitative ROI data analysis, a visual perfusion map analysis was performed. Results: The perfusion analysis proved to be technically feasible with all patients. The calculated perfusion values revealed significant differences with regard to the BF, BV and MTT, depending on the employed temporal resolution. The perfusion contrast between ischemic lesions and healthy brain tissue decreased continuously at the lower temporal resolutions. The visual analysis revealed that ischemic lesions were best depicted with sampling intervals of 0.5 and 1 s. Conclusion: We recommend a temporal scan resolution of two images per second for the best detection and depiction of ischemic areas.

  17. Spectral imaging technique for retinal perfusion detection using confocal scanning laser ophthalmoscopy

    Science.gov (United States)

    Rasta, Seyed Hossein; Manivannan, Ayyakkannu; Sharp, Peter F.

    2012-11-01

    To evaluate retinal perfusion in the human eye, a dual-wavelength confocal scanning laser ophthalmoscope (cSLO) was developed that provides spectral imaging of the fundus using a combination of red (670 nm) and near-infrared (810 nm) wavelengths. The image of the ocular fundus was analyzed to find out if quantitative measurements of the reflectivity of tissue permit assessment of the oxygen perfusion of tissue. We explored problems that affect the reproducibility of patient measurements such as non-uniformity errors on the image. For the first time, an image processing technique was designed and used to minimize the errors of oxygen saturation measurements by illumination correction in retina wide field by increasing SNR. Retinal images were taken from healthy and diabetic retinopathy eyes using the cSLO with a confocal aperture of 100 μm. The ratio image (RI) of red/IR, as oxygen saturation (SO2) index, was calculated for normal eyes. The image correction technique improved the reproducibility of the measurements. Average RI intensity variation of healthy retina tissue was determined within a range of about 5.5%. The capability of the new technique to discriminate oxygenation levels of retinal artery and vein was successfully demonstrated and showed good promise in the diagnosis of the perfused retina.

  18. The preliminary study of CT cerebral perfusion imaging in transient ischemic attacks

    International Nuclear Information System (INIS)

    Lu Jie; Li Kuncheng; Du Xiangying

    2002-01-01

    Objective: To probe the application of CT cerebral perfusion imaging on transient ischemic attacks (TIA). Methods: Conventional CT and CT cerebral perfusion imaging were performed on 5 normal adults and 20 patients with clinically diagnosed TIA. After regular CT examination, dynamic scans of 40 seconds were performed on selected slice (usually on the basal ganglia slice), while 40 ml non-ionic contrast material were bolus injected through antecubital vein with. These dynamic images were processed with the 'Perfusion CT' software package on a PC based workstation. Cerebral blood flow (CBF) and time to peak (TP) enhancement were measured within specific regions of the brain on CT perfusion images. Quantitative analysis was performed for these images. Results: A gradient of perfusion between gray matter and white matter was showed on cT perfusion images in normal adults and TIA patients. CBF and TP for normal cortical and white matter were 378.2 ml·min -1 ·L -1 , 7.8 s and 112.5 ml·min -1 ·L -1 , 9.9 s, respectively. In 20 cases with TIA, persisting abnormal perfusion changes corresponding to clinical symptoms were found in 15 cases with prolonged TP. Other 5 cases showed normal results. TP of affected side (11.8 +- 4.4) s compared with that of the contralateral side (9.1 +- 3.1) s was significantly prolonged (t = 5.277, P -1 · -1 ] and contralateral side [(229.1 +- 41.4) ml·min -1 ·L -1 ]. Conclusion: Perfusion CT provides valuable hemodynamic information and shows the extent of perfusion disturbances for patients with TIA

  19. The value of quantitative methods for assessment of renal transplant and comparison with physician expertness

    International Nuclear Information System (INIS)

    Firouzi, F.; Fazeli, M.

    2002-01-01

    Radionuclide renal diagnostic studies play an important role in assessing renal allograft. Various quantitative parameters have been derived from the Radionuclide renogram to facilitate and confirm the changes in perfusion and/or function of kidney allograft. These quantitative methods were divided into parameters used for assessing renal graft perfusion and parameters used for evaluating parenchymal function. The blood flow in renal transplants can be quantified by measuring the rate of activity appearance in the kidney graft and the ratio of the integral activity under the transplanted kidney and arterial curves e.g. Hilton's perfusion index and Karachi's kidney/aortic ratio. Quantitative evaluation of graft extraction and excretion was assessed by parameters derived from 123 I/ 131 I-OH, 99 mTc-DTPA or 99 mTc-Mag renogram. In this study we review retrospectively renal transplanted patients scintigraphies that all of them under gone to renal allograft needle biopsy nearly to date of allograft scan. We performed quantitative methods for all patients. We observed perfusion parameters affected by quality of bolus injection and numerical aviations related to changes in the site and size of region of interest. Quantitative methods for renal parenchymal functions were nonspecific and far from defining a specific cause of graft dysfunction. In conclusion, neither perfusion nor parenchymal parameters have not enough diagnostic power for specific diagnosis of graft dysfunction. Physician expertness by using scintigraphic images and renogram curves is more sensitive and specific for diagnosis of renal allograft dysfunction

  20. Altered myocardial perfusion during dobutamine stress testing in silent versus symptomatic myocardial ischaemia assessed by quantitative MIBI SPET imaging

    International Nuclear Information System (INIS)

    Elhendy, A.; Geleijnse, M.L.; Roelandt, J.R.T.C.; Cornel, J.H.; Domburg, R.T van; Reijs, A.E.M.; Nierop, P.R.; Fioretti, P.M.

    1996-01-01

    The aim of the study was to compare the extent and severity of reversible underperfusion in silent versus painful myocardial ischaemia during the dobutamine stress test. A consecutive series of 85 patients with significant coronary artery disease and reversible perfusion defects on technetium-99m methoxyisobutylisonitrile single-photon emission tomography performed at rest and during high-dose dobutamine stress (up to 40 μg kg -1 min -1 ) were studied. The left ventricle was divided into six segments. An ischaemic perfusion score was derived quantitatively by subtracting the rest from the stress defect score. Patients with multivessel disease had a higher ischaemic score (610±762 vs 310±411, P<0.05) and a higher number of reversible perfusion defects (2.1±1.2 vs 1.1±0.8, P<0.01) than patients with single-vessel disease. Typical angina occurred in 37 patients (44%) during the test. There was no significant difference between patients with and patients without angina with respecft to age, gender, peak rate-pressure product, prevalence of previous myocardial infarction, diabetes mellitus, multivessel disease or number of stenotic coronary arteries. Stress, rest and ischaemic scores as well as the number and distribution of reversible defects were not different in patients with and patients without angina. Patients with angina more frequently had a history of typical angina before the test (43% vs 17%, P<0.01) and ST-segment depression during the test (54% vs 25%, P<0.01). It is concluded that in patients with coronary artery disease and ischaemia detected by dobutamine scintigraphy, the extent and severity of coronary artery disease and myocardial perfusion abnormalities are similar with or without angina during stess testing. (orig.)

  1. Physiological and psychological individual differences influence resting brain function measured by ASL perfusion.

    Science.gov (United States)

    Kano, M; Coen, S J; Farmer, A D; Aziz, Q; Williams, S C R; Alsop, D C; Fukudo, S; O'Gorman, R L

    2014-09-01

    Effects of physiological and/or psychological inter-individual differences on the resting brain state have not been fully established. The present study investigated the effects of individual differences in basal autonomic tone and positive and negative personality dimensions on resting brain activity. Whole-brain resting cerebral perfusion images were acquired from 32 healthy subjects (16 males) using arterial spin labeling perfusion MRI. Neuroticism and extraversion were assessed with the Eysenck Personality Questionnaire-Revised. Resting autonomic activity was assessed using a validated measure of baseline cardiac vagal tone (CVT) in each individual. Potential associations between the perfusion data and individual CVT (27 subjects) and personality score (28 subjects) were tested at the level of voxel clusters by fitting a multiple regression model at each intracerebral voxel. Greater baseline perfusion in the dorsal anterior cingulate cortex (ACC) and cerebellum was associated with lower CVT. At a corrected significance threshold of p individual autonomic tone and psychological variability influence resting brain activity in brain regions, previously shown to be associated with autonomic arousal (dorsal ACC) and personality traits (amygdala, caudate, etc.) during active task processing. The resting brain state may therefore need to be taken into account when interpreting the neurobiology of individual differences in structural and functional brain activity.

  2. Fast Doppler as a novel bedside measure of cerebral perfusion in preterm infants.

    Science.gov (United States)

    Peeples, Eric S; Mehic, Edin; Mourad, Pierre D; Juul, Sandra E

    2016-02-01

    Altered cerebral perfusion from impaired autoregulation may contribute to the morbidity and mortality associated with premature birth. We hypothesized that fast Doppler imaging could provide a reproducible bedside estimation of cerebral perfusion and autoregulation in preterm infants. This is a prospective pilot study using fast Doppler ultrasound to assess blood flow velocity in the basal ganglia of 19 subjects born at 26-32 wk gestation. Intraclass correlation provided a measure of test-retest reliability, and linear regression of cerebral blood flow velocity and heart rate or blood pressure allowed for estimations of autoregulatory ability. The intraclass correlation when imaging in the first 48 h of life was 0.634. We found significant and independent correlations between the systolic blood flow velocity and both systolic blood pressure and heart rate (P = 0.015 and 0.012 respectively) only in the 26-28 wk gestational age infants in the first 48 h of life. Our results suggest that fast Doppler provides reliable bedside measurements of cerebral blood flow velocity at the tissue level in premature infants, acting as a proxy for cerebral tissue perfusion. Additionally, autoregulation appears to be impaired in the extremely preterm infants, even within a normal range of blood pressures.

  3. The influence of probe fiber distance on laser Doppler perfusion monitoring measurements

    NARCIS (Netherlands)

    Morales, F; Graaff, R; Smit, AJ; Gush, R; Rakhorst, G

    2003-01-01

    Laser Doppler perfusion monitoring (LDPM) is a noninvasive technique for monitoring skin microcirculation. The aim of this article was to investigate the influence of fiber separation on clinical LDPM measurements. A dual-channel LDPM system was used in combination with a probe that consists of two

  4. Measurement of the perfusion fraction in brain tumors with intravoxel incoherent motion MR imaging: validation with histopathological vascular density in meningiomas.

    Science.gov (United States)

    Togao, Osamu; Hiwatashi, Akio; Yamashita, Koji; Kikuchi, Kazufumi; Momosaka, Daichi; Yoshimoto, Koji; Kuga, Daisuke; Mizoguchi, Masahiro; Suzuki, Satoshi O; Iwaki, Toru; Van Cauteren, Marc; Iihara, Koji; Honda, Hiroshi

    2018-05-01

    To evaluate the quantification performance of the perfusion fraction (f) measured with intravoxel incoherent motion (IVIM) MR imaging in a comparison with the histological vascular density in meningiomas. 29 consecutive patients with meningioma (59.0 ± 16.8 years old, 8 males and 21 females) who underwent a subsequent surgical resection were examined with both IVIM imaging and a histopathological analysis. IVIM imaging was conducted using a single-shot SE-EPI sequence with 13 b-factors (0, 10, 20, 30, 50, 80, 100, 200, 300, 400, 600, 800, 1000 s mm - 2 ) at 3T. The perfusion fraction (f) was calculated by fitting the IVIM bi-exponential model. The 90-percentile f-value in the tumor region-of-interest (ROI) was defined as the maximum f-value (f-max). Histopathological vascular density (%Vessel) was measured on CD31-immunostainted histopathological specimens. The correlation and agreement between the f-values and %Vessel was assessed. The f-max (15.5 ± 5.5%) showed excellent agreement [intraclass correlation coefficient (ICC) = 0.754] and a significant correlation (r = 0.69, p < 0.0001) with the %Vessel (12.9 ± 9.4%) of the tumors. The Bland-Altman plot analysis showed excellent agreement between the f-max and %Vessel (bias, -2.6%; 95% limits of agreement, from -16.0 to 10.8%). The f-max was not significantly different among the histological subtypes of meningioma. An excellent agreement and a significant correlation were observed between the f-values and %Vessel. The f-value can be used as a noninvasive quantitative imaging measure to directly assess the vascular volume fraction in brain tumors. Advances in knowledge: The f-value measured by IVIM imaging showed a significant correlation and an excellent agreement with the histological vascular density in the meningiomas. The f-value can be used as a noninvasive and quantitative imaging measure to directly assess the volume fraction of capillaries in brain tumors.

  5. Critical myocardial perfusion in hypertrophic cardiomyopathy demonstrated with thallium-201 SPECT with a quantitative bullseye map

    International Nuclear Information System (INIS)

    Hunter, G.J.

    1990-01-01

    PURPOSE: A particular problem in hypertrophic cardiomyopathy (HCM) is the need to distinguish between true and apparent ischemia in otherwise normal areas of muscle when these are compared with adjacent hypertrophic muscle. The authors of this paper studied patients with proved HCM to define patterns of perfusion. T1-201 single photon emission CT (SPECT) was performed in 83 HCM patients immediately after stress (dipyridamole, 0.5 mg/kg) and 3 hours later for the redistribution image. The data were analyzed by a normalized quantitative analysis using a local bulls-eye technique. In all patients, the pattern of tracer distribution was different from expected uptake in a normal population. By virtue of the increased microcirculation to hypertrophied muscle, adjacent normal muscle appeared relatively ischemic

  6. Assessment of foot perfusion in patients with a diabetic foot ulcer.

    Science.gov (United States)

    Forsythe, Rachael O; Hinchliffe, Robert J

    2016-01-01

    Assessment of foot perfusion is a vital step in the management of patients with diabetic foot ulceration, in order to understand the risk of amputation and likelihood of wound healing. Underlying peripheral artery disease is a common finding in patients with foot ulceration and is associated with poor outcomes. Assessment of foot perfusion should therefore focus on identifying the presence of peripheral artery disease and to subsequently estimate the effect this may have on wound healing. Assessment of perfusion can be difficult because of the often complex, diffuse and distal nature of peripheral artery disease in patients with diabetes, as well as poor collateralisation and heavy vascular calcification. Conventional methods of assessing tissue perfusion in the peripheral circulation may be unreliable in patients with diabetes, and it may therefore be difficult to determine the extent to which poor perfusion contributes to foot ulceration. Anatomical data obtained on cross-sectional imaging is important but must be combined with measurements of tissue perfusion (such as transcutaneous oxygen tension) in order to understand the global and regional perfusion deficit present in a patient with diabetic foot ulceration. Ankle-brachial pressure index is routinely used to screen for peripheral artery disease, but its use in patients with diabetes is limited in the presence of neuropathy and medial arterial calcification. Toe pressure index may be more useful because of the relative sparing of pedal arteries from medial calcification but may not always be possible in patients with ulceration. Fluorescence angiography is a non-invasive technique that can provide rapid quantitative information about regional tissue perfusion; capillaroscopy, iontophoresis and hyperspectral imaging may also be useful in assessing physiological perfusion but are not widely available. There may be a future role for specialized perfusion imaging of these patients, including magnetic resonance

  7. Measurement of extracellular volume and transit time heterogeneity using contrast-enhanced myocardial perfusion MRI in patients after acute myocardial infarction.

    Science.gov (United States)

    Kunze, Karl P; Rischpler, Christoph; Hayes, Carmel; Ibrahim, Tareq; Laugwitz, Karl-Ludwig; Haase, Axel; Schwaiger, Markus; Nekolla, Stephan G

    2017-06-01

    To assess the ability of dynamic contrast-enhanced myocardial perfusion MRI to measure extracellular volume (ECV) and to investigate the possibility of estimating capillary transit time heterogeneity (CTH) in patients after myocardial infarction and successful revascularization. Twenty-four perfusion data sets were acquired on a 3 Tesla positron emission tomography (PET)/MRI scanner. Three perfusion models of different complexity were implemented in a hierarchical fashion with an Akaike information criterion being used to determine the number of fit parameters supported by the data. Results were compared sector-wise to ECV from an equilibrium T 1 mapping method (modified look-locker inversion recovery (MOLLI)). ECV derived from the perfusion analysis correlated well with equilibrium measurements (R² = 0.76). Estimation of CTH was supported in 16% of sectors (mostly remote). Inclusion of a nonzero CTH parameter usually led to lower estimates of first-pass extraction and slightly higher estimates of blood volume and flow. Estimation of the capillary permeability-surface area product was feasible in 81% of sectors. Transit time heterogeneity has a measurable effect on the kinetic analysis of myocardial perfusion MRI data, and Gd-DTPA extravasation in the myocardium is usually not flow-limited in infarct-related pathology. Measurement of myocardial ECV using perfusion imaging could provide a scan-time efficient alternative to methods based on T 1 mapping. Magn Reson Med 77:2320-2330, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  8. Contrast-enhanced 3T MR perfusion of musculoskeletal tumours. T1 value heterogeneity assessment and evaluation of the influence of T1 estimation methods on quantitative parameters

    Energy Technology Data Exchange (ETDEWEB)

    Gondim Teixeira, Pedro Augusto; Leplat, Christophe; Verbizier, Jacques de; Blum, Alain [Hopital Central, CHRU-Nancy, Service d' Imagerie Guilloz, Nancy (France); Chen, Bailiang; Beaumont, Marine [Universite de Lorraine, Laboratoire IADI, UMR S 947, Nancy (France); Badr, Sammy; Cotten, Anne [CHRU Lille Centre de Consultations et d' Imagerie de l' Appareil Locomoteur, Department of Radiology and Musculoskeletal Imaging, Lille (France)

    2017-12-15

    To evaluate intra-tumour and striated muscle T1 value heterogeneity and the influence of different methods of T1 estimation on the variability of quantitative perfusion parameters. Eighty-two patients with a histologically confirmed musculoskeletal tumour were prospectively included in this study and, with ethics committee approval, underwent contrast-enhanced MR perfusion and T1 mapping. T1 value variations in viable tumour areas and in normal-appearing striated muscle were assessed. In 20 cases, normal muscle perfusion parameters were calculated using three different methods: signal based and gadolinium concentration based on fixed and variable T1 values. Tumour and normal muscle T1 values were significantly different (p = 0.0008). T1 value heterogeneity was higher in tumours than in normal muscle (variation of 19.8% versus 13%). The T1 estimation method had a considerable influence on the variability of perfusion parameters. Fixed T1 values yielded higher coefficients of variation than variable T1 values (mean 109.6 ± 41.8% and 58.3 ± 14.1% respectively). Area under the curve was the least variable parameter (36%). T1 values in musculoskeletal tumours are significantly different and more heterogeneous than normal muscle. Patient-specific T1 estimation is needed for direct inter-patient comparison of perfusion parameters. (orig.)

  9. Myocardial perfusion with multi-detector computed tomography: quantitative evaluation

    International Nuclear Information System (INIS)

    Carrascosa, Patricia M.; Vallejos, J.; Capunay, Carlos M.; Deviggiano, A.; Carrascosa, Jorge M.

    2007-01-01

    The objective of this work is to evaluate the skill of multidetector computer tomography, to quantify the different patterns of intensification during the evaluation of the myocardial perfusion. 45 patients were studied with suspicion of cardiovascular disease. Multi-detector computed tomography was utilized on patients at rest and in effort with pharmacological stress, after the administration of dipyridamole. Also they were evaluated using nuclear medicine [es

  10. Perfusion abnormalities in congenital and neoplastic pulmonary disease: comparison of MR perfusion and multislice CT imaging

    International Nuclear Information System (INIS)

    Boll, Daniel T.; Lewin, Jonathan S.; Young, Philip; Gilkeson, Robert C.; Siwik, Ernest S.

    2005-01-01

    The aim of this work was to assess magnetic resonance (MR) perfusion patterns of chronic, nonembolic pulmonary diseases of congenital and neoplastic origin and to compare the findings with results obtained with pulmonary, contrast-enhanced multislice computed tomography (CT) imaging to prove that congenital and neoplastic pulmonary conditions require MR imaging over the pulmonary perfusion cycle to successfully and directly detect changes in lung perfusion patterns. Twenty-five patients underwent concurrent CT and MR evaluation of chronic pulmonary diseases of congenital (n=15) or neoplastic (n=10) origin. Analysis of MR perfusion and contrast-enhanced CT datasets was realized by defining pulmonary and vascular regions of interest in corresponding positions. MR perfusion calculated time-to-peak enhancement, maximal enhancement and the area under the perfusion curve. CT datasets provided pulmonary signal-to-noise ratio measurements. Vessel centerlines of bronchial arteries were determined. Underlying perfusion type, such as pulmonary arterial or systemic arterial supply, as well as regions with significant variations in perfusion were determined statistically. Analysis of the pulmonary perfusion pattern detected pulmonary arterial supply in 19 patients; six patients showed systemic arterial supply. In pulmonary arterial perfusion, MR and multislice CT imaging consistently detected the perfusion type and regions with altered perfusion patterns. In bronchial arterial supply, MR perfusion and CT imaging showed significant perfusion differences. Patients with bronchial arterial supply had bronchial arteries ranging from 2.0 to 3.6 mm compared with submillimeter diameters in pulmonary arterial perfusion. Dynamic MR imaging of congenital and neoplastic pulmonary conditions allowed characterization of the pulmonary perfusion type. CT imaging suggested the presence of systemic arterial perfusion by visualizing hypertrophied bronchial arteries. (orig.)

  11. Comparison between CT perfusion and Tc-99m ECD SPECT in the assessment of cerebrovascular reserve: a case study

    International Nuclear Information System (INIS)

    Crouch, J.; Wood, C.; Campbell, A.; McCarthy, M.; Dunne, M.; Bynevelt, M.; Lenzo, N.

    2003-01-01

    Full text: Brain perfusion is sensitively assessed by cerebral SPECT imaging utilising perfusion agents such as Tc-99m HMPAO and Tc-99m ethyl cysteinate dimer (ECD). Positron emission tomography can accurately assess and quantify brain perfusion and MRI can also be used for perfusion assessment. Both MRI and PET however are currently limited by cost and availability. A new technique utilising CT with contrast has been developed to assess and quantitate cerebral perfusion. The technique utilises arterial input information and deconvolution analysis to develop quantifiable measures of perfusion and contrast transit. The technique has been validated for acute stroke assessment and is being assessed for other possible applications. We present a case study comparison of this technique with cerebral SPECT perfusion using Tc-99m ECD in the assessment of cerebrovasular reserve. In each case, the CT and SPECT studies were performed pre- and post-acetazolamide and the SPECT study was statistically compared with a normal database utilising an automated brain perfusion statistical analysis package (NeurostatT). We discuss the correlation found between techniques, their strengths, weaknesses and possible future roles. Copyright (2003) The Australian and New Zealand Society of Nuclear Medicine Inc

  12. MR measures of renal perfusion, oxygen bioavailability and total renal blood flow in a porcine model: noninvasive regional assessment of renal function.

    Science.gov (United States)

    Wentland, Andrew L; Artz, Nathan S; Fain, Sean B; Grist, Thomas M; Djamali, Arjang; Sadowski, Elizabeth A

    2012-01-01

    Magnetic resonance imaging (MRI) may be a useful adjunct to current methods of evaluating renal function. MRI is a noninvasive imaging modality that has the ability to evaluate the kidneys regionally, which is lacking in current clinical methods. Other investigators have evaluated renal function with MRI-based measurements, such as with techniques to measure cortical and medullary perfusion, oxygen bioavailability and total renal blood flow (TRBF). However, use of all three techniques simultaneously, and therefore the relationships between these MRI-derived functional parameters, have not been reported previously. To evaluate the ability of these MRI techniques to track changes in renal function, we scanned 11 swine during a state of hyperperfusion with acetylcholine and a saline bolus and subsequently scanned during a state of hypoperfusion with the prolonged use of isoflurane anesthesia. For each time point, measurements of perfusion, oxygen bioavailability and TRBF were acquired. Measurements of perfusion and oxygen bioavailability were compared with measurements of TRBF for all swine across all time points. Cortical perfusion, cortical oxygen bioavailability, medullary oxygen bioavailability and TRBF significantly increased with the acetylcholine challenge. Cortical perfusion, medullary perfusion, cortical oxygen bioavailability and TRBF significantly decreased during isoflurane anesthesia. Cortical perfusion (Spearman's correlation coefficient = 0.68; P renal function. Maintenance of the medullary oxygen bioavailability in low blood flow states may reflect the autoregulation particular to this region of the kidney. The ability to non-invasively measure all three parameters of kidney function in a single MRI examination and to evaluate the relationships between these functional parameters is potentially useful for evaluating the state of the human kidneys in situ in future studies.

  13. MRI for the assessment of organ perfusion in patients with chronic kidney disease.

    Science.gov (United States)

    Odudu, Aghogho; Francis, Susan T; McIntyre, Christopher W

    2012-11-01

    Recent data have highlighted the importance of quantitative measures of organ perfusion and functional reserve. Magnetic resonance imaging allows the assessment of markers of perfusion without the use of contrast media. Techniques such as arterial spin labelling (ASL) and blood oxygen level-dependent (BOLD) imaging have been available for some time, but advances in the technology and concerns over the safety of contrast media in renal disease have spurred renewed interest and development. ASL measures perfusion, whereas BOLD imaging provides a marker of blood oxygenation, arising from the compound effect of a number of measures including perfusion, blood volume and oxygen consumption; thus, the techniques are complementary rather than analogous. They were initially confined to brain imaging as inherently low signal, susceptibility effects and motion limited their use in thoracic and abdominal organs. Advances in technology have led to robust sequences that can quantify clinically relevant changes and correlate well with reference standards. Novel approaches are likely to accelerate translation into clinical practice. The noninvasive and repeatable nature of ASL and BOLD imaging makes it likely that they will be increasingly used in clinical research. Using a developmental framework, we suggest that the application of these techniques to thoracic and abdominal organs requires validation before they are suitable for generalized clinical use. The demand for these techniques is likely to be driven by the incentive to avoid the use of contrast media.

  14. Renal Cell Carcinoma Perfusion before and after Radiofrequency Ablation Measured with Dynamic Contrast Enhanced MRI: A Pilot Study.

    Science.gov (United States)

    Wah, Tze Min; Sourbron, Steven; Wilson, Daniel Jonathan; Magee, Derek; Gregory, Walter Martin; Selby, Peter John; Buckley, David L

    2018-01-08

    To investigate if the early treatment effects of radiofrequency ablation (RFA) on renal cell carcinoma (RCC) can be detected with dynamic contrast enhanced (DCE)-MRI and to correlate RCC perfusion with RFA treatment time. 20 patients undergoing RFA of their 21 RCCs were evaluated with DCE-MRI before and at one month after RFA treatment. Perfusion was estimated using the maximum slope technique at two independent sittings. Total RCC blood flow was correlated with total RFA treatment time, tumour location, size and histology. DCE-MRI examinations were successfully evaluated for 21 RCCs (size from 1.3 to 4 cm). Perfusion of the RCCs decreased significantly ( p measuring RCC perfusion before and after RFA. Perfusion significantly decreases in the zone of ablation, suggesting that it may be useful for the assessment of treatment efficacy. Pre-RFA RCC blood flow may be used to predict RFA treatment time.

  15. Gray matter perfusion correlates with disease severity in ALS.

    Science.gov (United States)

    Rule, Randall R; Schuff, Norbert; Miller, Robert G; Weiner, Michael W

    2010-03-09

    The goal of this study is to determine if regional brain perfusion, as measured by arterial spin labeling (ASL) MRI, is correlated with clinical measures of amyotrophic lateral sclerosis (ALS) disease severity. The presence of such a relationship would indicate a possible role for ASL perfusion as a marker of disease severity and upper motor neuron involvement in ALS. Disease severity was assessed in 16 subjects with ALS (age 54 +/- 11) using the Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS) and the pulmonary function measure, forced vital capacity (FVC). Upper motor neuron involvement was assessed by testing rapid tapping of the fingers and feet. Magnetic resonance perfusion images were coregistered with structural T1-weighted MRI, corrected for partial volume effects using the structural images and normalized to a study-specific atlas. Correlations between perfusion and ALS disease severity were analyzed, using statistical parametric mapping, and including age as a factor. Analyses were adjusted for multiple clusters. ALS severity, as measured by the ALSFRS and FVC, was correlated with gray matter perfusion. This correlation was predominantly observed in the hemisphere contralateral to the more affected limbs. ALSFRS scores correlated with perfusion in the contralateral frontal and parietal lobe (p frontal lobe (p frontal lobe (p Upper motor neuron involvement, as measured by rapid finger tapping, correlated bilaterally with perfusion in the middle cingulate gyrus (p < 0.001). Amyotrophic lateral sclerosis (ALS) severity is correlated with brain perfusion as measured by arterial spin labeling (ASL) perfusion. This correlation appears to be independent of brain atrophy. ASL perfusion may be a useful tool for monitoring disease progression and assessing treatment effects in ALS.

  16. Cerebral perfusion in homogeneity in normal volunteers

    International Nuclear Information System (INIS)

    Gruenwald, S.M.; Larcos, G.

    1998-01-01

    Full text: In the interpretation of cerebral perfusion scans, it is important to know the normal variation in perfusion which may occur between the cerebral hemispheres. For this reason 24 normal volunteers with no neurological or psychiatric history, and who were on no medications, had 99m Tc-HMPAO brain SPECT studies using a single headed gamma camera computer system. Oblique, coronal and sagittal images were reviewed separately by two experienced observers and any differences were resolved by consensus. Semi-quantitation was performed by summing two adjacent oblique slices and drawing right and left mirror image ROIs corresponding to the mid section level of anterior and posterior frontal lobes, anterior and posterior parietal lobes, temporal lobes and cerebellum. From the mean counts per pixel, right: left ROI ratios and ROI: cerebellar ratios were calculated. On qualitative review 6/24 subjects had mild asymmetry in tracer distribution between right and left cerebral lobes. Semi-quantitation revealed a 5-10% difference in counts between right and left ROIs in 12/24 subjects and an additional three subjects had 10-20% difference in counts between right and left temporal lobes. This study demonstrates the presence of mild asymmetry of cerebral perfusion in a significant minority of normal subjects

  17. Contrast-enhanced 3T MR Perfusion of Musculoskeletal Tumours: T1 Value Heterogeneity Assessment and Evaluation of the Influence of T1 Estimation Methods on Quantitative Parameters.

    Science.gov (United States)

    Gondim Teixeira, Pedro Augusto; Leplat, Christophe; Chen, Bailiang; De Verbizier, Jacques; Beaumont, Marine; Badr, Sammy; Cotten, Anne; Blum, Alain

    2017-12-01

    To evaluate intra-tumour and striated muscle T1 value heterogeneity and the influence of different methods of T1 estimation on the variability of quantitative perfusion parameters. Eighty-two patients with a histologically confirmed musculoskeletal tumour were prospectively included in this study and, with ethics committee approval, underwent contrast-enhanced MR perfusion and T1 mapping. T1 value variations in viable tumour areas and in normal-appearing striated muscle were assessed. In 20 cases, normal muscle perfusion parameters were calculated using three different methods: signal based and gadolinium concentration based on fixed and variable T1 values. Tumour and normal muscle T1 values were significantly different (p = 0.0008). T1 value heterogeneity was higher in tumours than in normal muscle (variation of 19.8% versus 13%). The T1 estimation method had a considerable influence on the variability of perfusion parameters. Fixed T1 values yielded higher coefficients of variation than variable T1 values (mean 109.6 ± 41.8% and 58.3 ± 14.1% respectively). Area under the curve was the least variable parameter (36%). T1 values in musculoskeletal tumours are significantly different and more heterogeneous than normal muscle. Patient-specific T1 estimation is needed for direct inter-patient comparison of perfusion parameters. • T1 value variation in musculoskeletal tumours is considerable. • T1 values in muscle and tumours are significantly different. • Patient-specific T1 estimation is needed for comparison of inter-patient perfusion parameters. • Technical variation is higher in permeability than semiquantitative perfusion parameters.

  18. Comparison of blood flow models and acquisitions for quantitative myocardial perfusion estimation from dynamic CT

    International Nuclear Information System (INIS)

    Bindschadler, Michael; Alessio, Adam M; Modgil, Dimple; La Riviere, Patrick J; Branch, Kelley R

    2014-01-01

    Myocardial blood flow (MBF) can be estimated from dynamic contrast enhanced (DCE) cardiac CT acquisitions, leading to quantitative assessment of regional perfusion. The need for low radiation dose and the lack of consensus on MBF estimation methods motivates this study to refine the selection of acquisition protocols and models for CT-derived MBF. DCE cardiac CT acquisitions were simulated for a range of flow states (MBF = 0.5, 1, 2, 3 ml (min g) −1 , cardiac output = 3, 5, 8 L min −1 ). Patient kinetics were generated by a mathematical model of iodine exchange incorporating numerous physiological features including heterogenenous microvascular flow, permeability and capillary contrast gradients. CT acquisitions were simulated for multiple realizations of realistic x-ray flux levels. CT acquisitions that reduce radiation exposure were implemented by varying both temporal sampling (1, 2, and 3 s sampling intervals) and tube currents (140, 70, and 25 mAs). For all acquisitions, we compared three quantitative MBF estimation methods (two-compartment model, an axially-distributed model, and the adiabatic approximation to the tissue homogeneous model) and a qualitative slope-based method. In total, over 11 000 time attenuation curves were used to evaluate MBF estimation in multiple patient and imaging scenarios. After iodine-based beam hardening correction, the slope method consistently underestimated flow by on average 47.5% and the quantitative models provided estimates with less than 6.5% average bias and increasing variance with increasing dose reductions. The three quantitative models performed equally well, offering estimates with essentially identical root mean squared error (RMSE) for matched acquisitions. MBF estimates using the qualitative slope method were inferior in terms of bias and RMSE compared to the quantitative methods. MBF estimate error was equal at matched dose reductions for all quantitative methods and range of techniques evaluated. This

  19. Automatic extraction of left ventricle in SPECT myocardial perfusion imaging

    International Nuclear Information System (INIS)

    Liu Li; Zhao Shujun; Yao Zhiming; Wang Daoyu

    1999-01-01

    An automatic method of extracting left ventricle from SPECT myocardial perfusion data was introduced. This method was based on the least square analysis of the positions of all short-axis slices pixels from the half sphere-cylinder myocardial model, and used a iterative reconstruction technique to automatically cut off the non-left ventricular tissue from the perfusion images. Thereby, this technique provided the bases for further quantitative analysis

  20. Tomographic thallium-201 myocardial perfusion scintigrams after maximal coronary artery vasodilation with intravenous dipyridamole: comparison of qualitative and quantitative approaches

    International Nuclear Information System (INIS)

    Francisco, D.A.; Collins, S.M.; Go, R.T.; Ehrhardt, J.C.; Van Kirk, O.C.; Marcus, M.L.

    1982-01-01

    Eighty-six patients had thallium-201 ( 201 Tl) myocardial perfusion scintigrams after intense coronary artery dilation with i.v. dipyridamole. Tomographic and planar 201 Tl scintigrams were obtained in each patient. Tomographic scintigrams were interpreted using quantitative or visual criteria; planar scintigrams were assessed using visual criteria only. When visual criteria were used, interobserver variability was 40% for tomographic scintigrams and 44% for planar scintigrams. In the 24 patients with normal or nonsignificant CAD, quantitative analysis of the tomograms (range approach) indicated that one of 24 (4%) had a positive image (specificity 96%%); in contrast, when visual criteria were used to interpret the tomographic or planar 201 Tl scintigrams, eight of 24 (33%) had positive scintigrams (specificity 67%). In the 51 abnormal patients, the sensitivity of detecting CAD was 46 of 51 (90%) for tomographic scintigrams interpreted quantitatively, 39 of 51 (76%) for tomographic scintigrams interpreted visually and 41 of 51 (80%) for planar scintigrams assessed visually. The tomographic imaging procedure (quantitative interpretation) also demonstrated a high sensitivity (89%) and specificity (100%) in 28 patients (10 normal and 18 CAD), with a clinical diagnosis of unstable angina pectoris. Overall, the predictive accuracy of an abnormal scintigram with quantitative tomographic imaging (98%) was significantly better (p<0.05) than either qualitative planar or pinhole imaging

  1. Fundamental supply of skin blood flow in the Chinese Han population: Measurements by a full-field laser perfusion imager.

    Science.gov (United States)

    Fei, W; Xu, S; Ma, J; Zhai, W; Cheng, S; Chang, Y; Wang, X; Gao, J; Tang, H; Yang, S; Zhang, X

    2018-05-08

    Skin blood flow is believed to link with many diseases, and shows a significant heterogeneity. There are several papers on basal cutaneous microcirculation perfusion in different races, while the data in Chinese is vacant. The aim was to establish the database of absolute fundamental supply of skin blood flow in the Chinese Han population. With a full-field laser perfusion imager (FLPI), the skin blood flow can be quantified. Cutaneous perfusion values were determined in 17 selected skin areas in 406 healthy participants aged between 20 and 80 years (mean 35.05 ± 11.33). Essential parameters such as weight, height were also measured and values of BMI were calculated. The perfusion values were reported in Arbitrary Perfusion Units (APU). The highest cutaneous perfusion value fell on eyelid (931.20 ± 242.59 in male and 967.83 ± 225.49 in female), and pretibial had the lowest value (89.09 ± 30.28 in male and 85.08 ± 33.59 in female). The values were higher in men than women on the bank of fingertips, nose, forehead, cheek, neck and earlobe (P < .05). Perfusion values on stretch and flexion side of forearm had negative correlation with age (P = .01 and P = 4.88 × 10 -3 , respectively) in male. Abdomen was negatively correlated with BMI in both gender (P = .02, respectively). Skin blood flow values vary with skin regions. There is a tendency to measure higher perfusion values in men than in women. And the values are irrelevant with age or BMI. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Basal hyperaemia is the primary abnormality of perfusion in Takotsubo cardiomyopathy

    DEFF Research Database (Denmark)

    Christensen, Thomas Emil; Ahtarovski, Kiril Aleksov; Bang, Lia Evi

    2015-01-01

    AIMS: Takotsubo cardiomyopathy (TTC) is characterized by acute completely reversible regional left ventricle (LV) akinesia and decreased tracer uptake in the akinetic region on semi-quantitative perfusion imaging. The latter may be due to normoperfusion of the akinetic mid/apical area and basal...... hyperperfusion. Our aim was to examine abnormalities of perfusion in TTC, and we hypothesized that basal hyperperfusion is the primary perfusion abnormality in the acute state. METHOD AND RESULTS: Twenty-five patients were diagnosed with TTC due to (i) acute onset of symptoms, (ii) typical apical ballooning......-on follow-up. Patients initially had severe heart failure, mid/apical oedema but no infarction, and a rise in cardiac biomarkers. On initial perfusion PET imaging, eight patients appeared to have normal, whereas 17 patients had impaired LV perfusion. In the latter, flow in the basal region was increased...

  3. Evaluation of allograft perfusion by radionuclide first-pass study in renal failure following renal transplantation

    International Nuclear Information System (INIS)

    Baillet, G.; Ballarin, J.; Urdaneta, N.; Campos, H.; Vernejoul, P. de; Fermanian, J.; Kellershohn, C.; Kreis, H.

    1986-01-01

    To assess the diagnostic value of indices measured on a first-pass curve, we performed 72 radionuclide renal first-pass studies (RFP) in 21 patients during the early weeks following renal allograft transplantation. The diagnosis was based on standard clinical and biochemical data and on fine needle aspiration biopsy (FNAB) of the transplant. Aortic and renal first-pass curves were filtered using a true low-pass filter and five different indices of renal perfusion were computed, using formulae from the literature. Statistical analysis performed on the aortic and renal indices indicated excellent reproducibility of the isotopic study. Although renal indices presented a rather large scatter, they all discriminated well between normal and rejection. Three indices have a particularly good diagnostic value. In the discrimination between rejection and Acute Tubular Necrosis (ATN), only one index gave satisfying results. The indices, however, indicate that there are probably ATN with an alternation of renal perfusion and rejection episodes where perfusion is almost intact. We conclude that radionuclide first-pass study allows accurate and reproducible quantitation of renal allograft perfusion. The measured parameters are helpful to follow up the course of a post-transplantation renal failure episode and to gain more insight into renal ischemia following transplantation. (orig.)

  4. An efficient polyenergetic SART (pSART) reconstruction algorithm for quantitative myocardial CT perfusion

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yuan, E-mail: yuan.lin@duke.edu; Samei, Ehsan [Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, 2424 Erwin Road, Suite 302, Durham, North Carolina 27705 (United States)

    2014-02-15

    Purpose: In quantitative myocardial CT perfusion imaging, beam hardening effect due to dense bone and high concentration iodinated contrast agent can result in visible artifacts and inaccurate CT numbers. In this paper, an efficient polyenergetic Simultaneous Algebraic Reconstruction Technique (pSART) was presented to eliminate the beam hardening artifacts and to improve the CT quantitative imaging ability. Methods: Our algorithm made threea priori assumptions: (1) the human body is composed of several base materials (e.g., fat, breast, soft tissue, bone, and iodine); (2) images can be coarsely segmented to two types of regions, i.e., nonbone regions and noniodine regions; and (3) each voxel can be decomposed into a mixture of two most suitable base materials according to its attenuation value and its corresponding region type information. Based on the above assumptions, energy-independent accumulated effective lengths of all base materials can be fast computed in the forward ray-tracing process and be used repeatedly to obtain accurate polyenergetic projections, with which a SART-based equation can correctly update each voxel in the backward projecting process to iteratively reconstruct artifact-free images. This approach effectively reduces the influence of polyenergetic x-ray sources and it further enables monoenergetic images to be reconstructed at any arbitrarily preselected target energies. A series of simulation tests were performed on a size-variable cylindrical phantom and a realistic anthropomorphic thorax phantom. In addition, a phantom experiment was also performed on a clinical CT scanner to further quantitatively validate the proposed algorithm. Results: The simulations with the cylindrical phantom and the anthropomorphic thorax phantom showed that the proposed algorithm completely eliminated beam hardening artifacts and enabled quantitative imaging across different materials, phantom sizes, and spectra, as the absolute relative errors were reduced

  5. An efficient polyenergetic SART (pSART) reconstruction algorithm for quantitative myocardial CT perfusion

    International Nuclear Information System (INIS)

    Lin, Yuan; Samei, Ehsan

    2014-01-01

    Purpose: In quantitative myocardial CT perfusion imaging, beam hardening effect due to dense bone and high concentration iodinated contrast agent can result in visible artifacts and inaccurate CT numbers. In this paper, an efficient polyenergetic Simultaneous Algebraic Reconstruction Technique (pSART) was presented to eliminate the beam hardening artifacts and to improve the CT quantitative imaging ability. Methods: Our algorithm made threea priori assumptions: (1) the human body is composed of several base materials (e.g., fat, breast, soft tissue, bone, and iodine); (2) images can be coarsely segmented to two types of regions, i.e., nonbone regions and noniodine regions; and (3) each voxel can be decomposed into a mixture of two most suitable base materials according to its attenuation value and its corresponding region type information. Based on the above assumptions, energy-independent accumulated effective lengths of all base materials can be fast computed in the forward ray-tracing process and be used repeatedly to obtain accurate polyenergetic projections, with which a SART-based equation can correctly update each voxel in the backward projecting process to iteratively reconstruct artifact-free images. This approach effectively reduces the influence of polyenergetic x-ray sources and it further enables monoenergetic images to be reconstructed at any arbitrarily preselected target energies. A series of simulation tests were performed on a size-variable cylindrical phantom and a realistic anthropomorphic thorax phantom. In addition, a phantom experiment was also performed on a clinical CT scanner to further quantitatively validate the proposed algorithm. Results: The simulations with the cylindrical phantom and the anthropomorphic thorax phantom showed that the proposed algorithm completely eliminated beam hardening artifacts and enabled quantitative imaging across different materials, phantom sizes, and spectra, as the absolute relative errors were reduced

  6. Perfusion- and pattern-based quantitative CT indexes using contrast-enhanced dual-energy computed tomography in diffuse interstitial lung disease: relationships with physiologic impairment and prediction of prognosis

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Jung Won [Sungkyunkwan University School of Medicine, Department of Radiology, Kangbuk Samsung Hospital, Seoul (Korea, Republic of); Bae, Jang Pyo; Kim, Namkug; Chang, Yongjun; Seo, Joon Beom [University of Ulsan College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Lee, Ho Yun; Lee, Kyung Soo [Sungkyunkwan University School of Medicine, Department of Radiology and Center for Imaging Science, Samsung Medical Center, Seoul (Korea, Republic of); Chung, Man Pyo; Park, Hye Yun [Sungkyunkwan University School of Medicine, Department of Pulmonology, Samsung Medical Center, Seoul (Korea, Republic of)

    2016-05-15

    To evaluate automated texture-based segmentation of dual-energy CT (DECT) images in diffuse interstitial lung disease (DILD) patients and prognostic stratification by overlapping morphologic and perfusion information of total lung. Suspected DILD patients scheduled for surgical biopsy were prospectively included. Texture patterns included ground-glass opacity (GGO), reticulation and consolidation. Pattern- and perfusion-based CT measurements were assessed to extract quantitative parameters. Accuracy of texture-based segmentation was analysed. Correlations between CT measurements and pulmonary function test or 6-minute walk test (6MWT) were calculated. Parameters of idiopathic pulmonary fibrosis/usual interstitial pneumonia (IPF/UIP) and non-IPF/UIP were compared. Survival analysis was performed. Overall accuracy was 90.47 % for whole lung segmentation. Correlations between mean iodine values of total lung, 50-97.5th (%) attenuation and forced vital capacity or 6MWT were significant. Volume of GGO, reticulation and consolidation had significant correlation with DLco or SpO{sub 2} on 6MWT. Significant differences were noted between IPF/UIP and non-IPF/UIP in 6MWT distance, mean iodine value of total lung, 25-75th (%) attenuation and entropy. IPF/UIP diagnosis, GGO ratio, DILD extent, 25-75th (%) attenuation and SpO{sub 2} on 6MWT showed significant correlations with survival. DECT combined with pattern analysis is useful for analysing DILD and predicting survival by provision of morphology and enhancement. (orig.)

  7. Structural and perfusion magnetic resonance imaging of the lung in cystic fibrosis

    International Nuclear Information System (INIS)

    Amaxopoulou, Christina; Gnannt, Ralph; Kellenberger, Christian J.; Higashigaito, Kai; Jung, Andreas

    2018-01-01

    Because of its absence of ionising radiation and possibility for obtaining functional information, MRI is promising for assessing lung disease in children who require repetitive imaging for long-term follow-up. To describe MRI findings in children with cystic fibrosis and evaluate semi-quantitative dynamic contrast-enhanced lung perfusion. We retrospectively compared lung MRI in 25 children and young adults with cystic fibrosis (median age 3.7 years) to 12 children (median age 2 years) imaged for other pathologies. MRI at 1.5 T included respiratory-gated sequences and contrast-enhanced lung perfusion imaging. We described and graded any morphologic change. Signal enhancement and time to peak values of perfusion abnormalities were compared to those of normally enhancing lung parenchyma. Frequent findings in patients with cystic fibrosis were bronchial wall thickening (24/25, 96%), areas of consolidation (22/25, 88%), enlarged lymph nodes (20/25, 80%), bronchiectasis (5/25, 20%) and mucus plugging (3/25, 12%). Compared to normally enhancing lung, perfusion defects (21/25, 84%), characterised by decreased enhancement, showed prolonged time to peak. Areas of consolidation showed increased enhancement. While time to peak of procedure-related atelectasis was not significantly different from that of normal lung, disease-related consolidation showed prolonged time to peak (P=0.01). Lung MRI demonstrates structural and perfusion abnormalities in children and young people with cystic fibrosis. Semi-quantitative assessment of dynamic contrast-enhanced perfusion imaging might allow differentiation between procedure-related atelectasis and disease-related consolidation. (orig.)

  8. Structural and perfusion magnetic resonance imaging of the lung in cystic fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Amaxopoulou, Christina; Gnannt, Ralph; Kellenberger, Christian J. [University Children' s Hospital Zuerich, Department of Diagnostic Imaging, Zuerich, CH (Switzerland); University Children' s Hospital Zuerich, Children' s Research Center, Zuerich (Switzerland); Higashigaito, Kai [University Hospital Zuerich, Institute of Diagnostic and Interventional Radiology, Zuerich (Switzerland); Jung, Andreas [University Children' s Hospital Zuerich, Children' s Research Center, Zuerich (Switzerland); University Children' s Hospital Zuerich, Division of Pneumology, Zuerich (Switzerland)

    2018-02-15

    Because of its absence of ionising radiation and possibility for obtaining functional information, MRI is promising for assessing lung disease in children who require repetitive imaging for long-term follow-up. To describe MRI findings in children with cystic fibrosis and evaluate semi-quantitative dynamic contrast-enhanced lung perfusion. We retrospectively compared lung MRI in 25 children and young adults with cystic fibrosis (median age 3.7 years) to 12 children (median age 2 years) imaged for other pathologies. MRI at 1.5 T included respiratory-gated sequences and contrast-enhanced lung perfusion imaging. We described and graded any morphologic change. Signal enhancement and time to peak values of perfusion abnormalities were compared to those of normally enhancing lung parenchyma. Frequent findings in patients with cystic fibrosis were bronchial wall thickening (24/25, 96%), areas of consolidation (22/25, 88%), enlarged lymph nodes (20/25, 80%), bronchiectasis (5/25, 20%) and mucus plugging (3/25, 12%). Compared to normally enhancing lung, perfusion defects (21/25, 84%), characterised by decreased enhancement, showed prolonged time to peak. Areas of consolidation showed increased enhancement. While time to peak of procedure-related atelectasis was not significantly different from that of normal lung, disease-related consolidation showed prolonged time to peak (P=0.01). Lung MRI demonstrates structural and perfusion abnormalities in children and young people with cystic fibrosis. Semi-quantitative assessment of dynamic contrast-enhanced perfusion imaging might allow differentiation between procedure-related atelectasis and disease-related consolidation. (orig.)

  9. Hydrostatic determinants of cerebral perfusion

    International Nuclear Information System (INIS)

    Wagner, E.M.; Traystman, R.J.

    1986-01-01

    We examined the cerebral blood flow response to alterations in perfusion pressure mediated through decreases in mean arterial pressure, increases in cerebrospinal fluid (CSF) pressure, and increases in jugular venous (JV) pressure in 42 pentobarbital anesthetized dogs. Each of these three pressures was independently controlled. Cerebral perfusion pressure was defined as mean arterial pressure minus JV or CSF pressure, depending on which was greater. Mean hemispheric blood flow was measured with the radiolabeled microsphere technique. Despite 30-mm Hg reductions in mean arterial pressure or increases in CSF or JV pressure, CBF did not change as long as the perfusion pressure remained greater than approximately 60 mm Hg. However, whenever perfusion pressure was reduced to an average of 48 mm Hg, cerebral blood flow decreased 27% to 33%. These results demonstrate the capacity of the cerebral vascular bed to respond similarly to changes in the perfusion pressure gradient obtained by decreasing mean arterial pressure, increasing JV pressure or increasing CSF pressure, and thereby support the above definition of cerebral perfusion pressure

  10. Comparison of quantitative myocardial perfusion imaging CT to fluorescent microsphere-based flow from high-resolution cryo-images

    Science.gov (United States)

    Eck, Brendan L.; Fahmi, Rachid; Levi, Jacob; Fares, Anas; Wu, Hao; Li, Yuemeng; Vembar, Mani; Dhanantwari, Amar; Bezerra, Hiram G.; Wilson, David L.

    2016-03-01

    Myocardial perfusion imaging using CT (MPI-CT) has the potential to provide quantitative measures of myocardial blood flow (MBF) which can aid the diagnosis of coronary artery disease. We evaluated the quantitative accuracy of MPI-CT in a porcine model of balloon-induced LAD coronary artery ischemia guided by fractional flow reserve (FFR). We quantified MBF at baseline (FFR=1.0) and under moderate ischemia (FFR=0.7) using MPI-CT and compared to fluorescent microsphere-based MBF from high-resolution cryo-images. Dynamic, contrast-enhanced CT images were obtained using a spectral detector CT (Philips Healthcare). Projection-based mono-energetic images were reconstructed and processed to obtain MBF. Three MBF quantification approaches were evaluated: singular value decomposition (SVD) with fixed Tikhonov regularization (ThSVD), SVD with regularization determined by the L-Curve criterion (LSVD), and Johnson-Wilson parameter estimation (JW). The three approaches over-estimated MBF compared to cryo-images. JW produced the most accurate MBF, with average error 33.3+/-19.2mL/min/100g, whereas LSVD and ThSVD had greater over-estimation, 59.5+/-28.3mL/min/100g and 78.3+/-25.6 mL/min/100g, respectively. Relative blood flow as assessed by a flow ratio of LAD-to-remote myocardium was strongly correlated between JW and cryo-imaging, with R2=0.97, compared to R2=0.88 and 0.78 for LSVD and ThSVD, respectively. We assessed tissue impulse response functions (IRFs) from each approach for sources of error. While JW was constrained to physiologic solutions, both LSVD and ThSVD produced IRFs with non-physiologic properties due to noise. The L-curve provided noise-adaptive regularization but did not eliminate non-physiologic IRF properties or optimize for MBF accuracy. These findings suggest that model-based MPI-CT approaches may be more appropriate for quantitative MBF estimation and that cryo-imaging can support the development of MPI-CT by providing spatial distributions of MBF.

  11. Measurement of ventilation- and perfusion-mediated cooling during laser ablation in ex vivo human lung tumors

    Energy Technology Data Exchange (ETDEWEB)

    Vietze, Andrea, E-mail: anvie@gmx.de [Department of Diagnostic Radiology and Neuroradiology, Ernst-Moritz-Arndt-Universitaet Greifswald, Sauerbruchstrasse, 17487 Greifswald (Germany); Koch, Franziska, E-mail: franzi_koch@hotmail.com [Department of Diagnostic Radiology and Neuroradiology, Ernst-Moritz-Arndt-Universitaet Greifswald, Sauerbruchstrasse, 17487 Greifswald (Germany); Laskowski, Ulrich, E-mail: ulrich.laskowski@klinikum-luedenscheid.de [Department of Vascular and Thoracic Surgery, Klinikum Luedenscheid, Paulmannshoeher Strasse 14, 58515 Luedenscheid (Germany); Linder, Albert, E-mail: albert.linder@klinikum-bremen-ost.de [Department of Thoracic Surgery, Klinikum Bremen-Ost, Zuericher Strasse 40, 28325 Bremen (Germany); Hosten, Norbert, E-mail: hosten@uni-greifswald.de [Department of Diagnostic Radiology and Neuroradiology, Ernst-Moritz-Arndt-Universitaet Greifswald, Sauerbruchstrasse, 17487 Greifswald (Germany)

    2011-11-15

    Purpose: Perfusion-mediated tissue cooling has often been described in the literature for thermal ablation therapies of liver tumors. The objective of this study was to investigate the cooling effects of both perfusion and ventilation during laser ablation of lung malignancies. Materials and methods: An ex vivo lung model was used to maintain near physiological conditions for the specimens. Fourteen human lung lobes containing only primary lung tumors (non-small cell lung cancer) were used. Laser ablation was carried out using a Nd:YAG laser with a wavelength of 1064 nm and laser fibers with 30 mm diffusing tips. Continuous invasive temperature measurement in 10 mm distance from the laser fiber was performed. Laser power was increased at 2 W increments starting at 10 W up to a maximum power of 12-20 W until a temperature plateau around 60 deg. C was reached at one sensor. Ventilation and perfusion were discontinued for 6 min each to assess their effects on temperature development. Results: The experiments lead to 25 usable temperature profiles. A significant temperature increase was observed for both discontinued ventilation and perfusion. In 6 min without perfusion, the temperature rose about 5.5 deg. C (mean value, P < 0.05); without ventilation it increased about 7.0 deg. C (mean value, P < 0.05). Conclusion: Ventilation- and perfusion-mediated tissue cooling are significant influencing factors on temperature development during thermal ablation. They should be taken into account during the planning and preparation of minimally invasive lung tumor treatment in order to achieve complete ablation.

  12. Heterogeneity of pulmonary perfusion as a mechanistic image-based phenotype in emphysema susceptible smokers.

    Science.gov (United States)

    Alford, Sara K; van Beek, Edwin J R; McLennan, Geoffrey; Hoffman, Eric A

    2010-04-20

    Recent evidence suggests that endothelial dysfunction and pathology of pulmonary vascular responses may serve as a precursor to smoking-associated emphysema. Although it is known that emphysematous destruction leads to vasculature changes, less is known about early regional vascular dysfunction which may contribute to and precede emphysematous changes. We sought to test the hypothesis, via multidetector row CT (MDCT) perfusion imaging, that smokers showing early signs of emphysema susceptibility have a greater heterogeneity in regional perfusion parameters than emphysema-free smokers and persons who had never smoked (NS). Assuming that all smokers have a consistent inflammatory response, increased perfusion heterogeneity in emphysema-susceptible smokers would be consistent with the notion that these subjects may have the inability to block hypoxic vasoconstriction in patchy, small regions of inflammation. Dynamic ECG-gated MDCT perfusion scans with a central bolus injection of contrast were acquired in 17 NS, 12 smokers with normal CT imaging studies (SNI), and 12 smokers with subtle CT findings of centrilobular emphysema (SCE). All subjects had normal spirometry. Quantitative image analysis determined regional perfusion parameters, pulmonary blood flow (PBF), and mean transit time (MTT). Mean and coefficient of variation were calculated, and statistical differences were assessed with one-way ANOVA. MDCT-based MTT and PBF measurements demonstrate globally increased heterogeneity in SCE subjects compared with NS and SNI subjects but demonstrate similarity between NS and SNI subjects. These findings demonstrate a functional lung-imaging measure that provides a more mechanistically oriented phenotype that differentiates smokers with and without evidence of emphysema susceptibility.

  13. Differences in 99mTc-HMPAO brain SPET perfusion imaging between Tourette's syndrome and chronic tic disorder in children

    International Nuclear Information System (INIS)

    Chiu, N.-T.; Lee, B.-F.; Chang, Y.-C.; Huang, C.-C.; Wang, S.-T.

    2001-01-01

    Early differential diagnosis between Tourette's syndrome and chronic tic disorder is difficult but important because both the outcome and the treatment of these two childhood-onset diseases are distinct. We assessed the sensitivity and specificity of brain single-photon emission tomography (SPET) perfusion imaging in distinguishing the two diseases, and characterized their different cerebral perfusion patterns. Twenty-seven children with Tourette's syndrome and 11 with chronic tic disorder (mean age 9.5 and 8.6 years, respectively) underwent brain SPET with technetium-99m hexamethylpropylene amine oxime (HMPAO). Visual interpretation and semi-quantitative analysis of SPET images were performed. On visual interpretation, 22 of 27 (82%) of the Tourette's syndrome group had lesions characterized by decreased perfusion. The left hemisphere was more frequently involved. None of the children with chronic tic disorder had a visible abnormality. Semi-quantitative analysis showed that, compared with children with chronic tic disorder, children with Tourette's syndrome had significantly lower perfusion in the left lateral temporal area and asymmetric perfusion in the dorsolateral frontal, lateral and medial temporal areas. In conclusion, using the visual approach, brain SPET perfusion imaging is sensitive and specific in differentiating Tourette's syndrome and chronic tic disorder. The perfusion difference between the two groups, demonstrated by semi-quantitative analysis, may be related more to the co-morbidity in Tourette's syndrome than to tics per se. (orig.)

  14. Regional Cerebral Perfusion in Progressive Supranuclear Palsy

    International Nuclear Information System (INIS)

    Lee, Won Yong; Lee, Ki Hyeong; Yoon, Byung Woo; Lee, Sang Bok; Jeon, Beom S.; Lee, Kyung Han; Lee, Myung Chul

    1996-01-01

    Progressive supranuclear palsy (PSP) is a Parkinson-plus syndrome characterized clinically by supranuclear ophthalmoplegia, pseudobulbar palsy, axial rigidity, bradykinesia, postural instability and dementia. Presence of dementia and lack of cortical histopathology suggest the derangement of cortical function by pathological changes in subcortical structures in PSP, which is supported by the pattern of behavioral changes and measurement of brain metabolism using positron emission tomography. This study was done to examine whether there are specific changes of regional cerebral perfusion in PSP and whether there is a correlation between severity of motor abnormaility and degree of changes in cerebral perfusion. We measured regional cerebral perfusion indices in 5 cortical and 2 subcortical areas in 6 patients with a clinical diagnosis of PSP and 6 healthy age and sex matched controls using Tc-99m-HMPAO SPECT. Compared with age and sex matched controls, only superior frontal regional perfusion index was significantly decreased in PSP (p 0.05). We affirm the previous reports that perfusion in superior frontal cortex is decreased in PSP. Based on our results that there was no correlation between severity of motor abnormality and cerebral perfusion in the superior frontal cortex, nonmotoric symptoms including dementia needs to be looked at whether there is a correlation with the perfusion abnormality in superior frontal cortex

  15. In-vivo quantitative measurement

    International Nuclear Information System (INIS)

    Ito, Takashi

    1992-01-01

    So far by positron CT, the quantitative analyses of oxygen consumption rate, blood flow distribution, glucose metabolic rate and so on have been carried out. The largest merit of using the positron CT is the observation and verification of mankind have become easy. Recently, accompanying the rapid development of the mapping tracers for central nervous receptors, the observation of many central nervous receptors by the positron CT has become feasible, and must expectation has been placed on the elucidation of brain functions. The conditions required for in vitro processes cannot be realized in strict sense in vivo. The quantitative measurement of in vivo tracer method is carried out by measuring the accumulation and movement of a tracer after its administration. The movement model of the mapping tracer for central nervous receptors is discussed. The quantitative analysis using a steady movement model, the measurement of dopamine receptors by reference method, the measurement of D 2 receptors using 11C-Racloprode by direct method, and the possibility of measuring dynamics bio-reaction are reported. (K.I.)

  16. Combined T1-based perfusion MRI and MR angiography in kidney: First experience in normals and pathology

    Energy Technology Data Exchange (ETDEWEB)

    Dujardin, Martine [Department of Radiology/BEFY, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels (Belgium)], E-mail: martine.dujardin@gmail.com; Luypaert, Rob [Department of Radiology/BEFY, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels (Belgium)], E-mail: rluypaer@vub.ac.be; Vandenbroucke, F. [Department of Radiology/BEFY, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels (Belgium)], E-mail: frederik.vandenbroucke@uzbrussel.be; Van der Niepen, Patricia [Department of Nephrology, UZ Brussel, Laarbeeklaan 101, 1090 Brussels (Belgium)], E-mail: hemovnnp@az.vub.ac.be; Sourbron, Steven [Institute of Clinical Radiology, Ludwig-Maximilian-University Munich, Marchioninistrasse 15, 81377 Munchen (Germany)], E-mail: Steven.Sourbron@med.uni-muenchen.de; Verbeelen, Dierik [Department of Nephrology, UZ Brussel, Laarbeeklaan 101, 1090 Brussels (Belgium)], E-mail: dierik.verbeelen@uzbrussel.be; Stadnik, T. [Department of Radiology/BEFY, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels (Belgium)], E-mail: tadeusz.stadnik@uzbrussel.be; Mey, Johan de [Department of Radiology/BEFY, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels (Belgium)], E-mail: johan.demey@uzbrussel.be

    2009-03-15

    Objectives: To investigate the feasibility of implementing quantitative T1-perfusion in the routine MRA-protocol and to obtain a first experience in normals and pathology. Materials and methods: For perfusion imaging, IR-prepared FLASH (one 4 mm slice at mid-renal level, TR 4.4 ms, TE 2.2 ms, TI 180 ms, FA 50 deg., matrix 128 x 256, bandwidth per pixel 300, 400 dynamics, temporal resolution 0.3 s, total measurement time 2 min) was applied during the injection of 10 ml of standard 0.5 mmol/ml Gadolinium-DTPA solution at 2 ml/s, followed by 3DCE-MRA with bolus tracking (TR 5.4, TE 1.4, FA 40 deg., matrix 192 x 512, NSA 1, slice thickness 1.5 mm), using a second dose of 0.1 mmol Gadolinium-DTPA per kg body weight with a maximum of 20 ml. The T1-weighted signals (perfusion data) were converted to tissue tracer concentrations and deconvolved with an inflow corrected AIF; blood flow, distribution volume, mean transit time and blood flow heterogeneity were derived. Results: MRA quality was uncompromised by the first bolus administered for perfusion purposes. In the normals, average cortical RBF, RVD and MTT were 1.2 ml/min/ml (S.D. 0.3 ml/min/ml), 0.4 ml/ml (S.D. 0.1 ml/ml) and 21 s (S.D. 4 s). These RBF values are lower than those found in the literature, probably due to residual AIF inflow effects. The sensitivity of the technique was sufficient to demonstrate altered perfusion in the examples of pathology. Conclusion: Combined quantitative T1-perfusion and MRA have a potential for noninvasive renovascular screening and may provide an anatomical and physiological evaluation of renal status.

  17. Evaluation of renal transplant perfusion by functional imaging

    International Nuclear Information System (INIS)

    Nicoletti, R.

    1990-01-01

    Radionuclide angiography (RNA) is used as a noninvasive method for the evaluation of renal transplant perfusion. The computer processing method generally used, based on regions of interest, is unsatisfactory because it does not permit the regional differentiation of perfusion defects. Furthermore, the subjective delineation of the regions of interest introduces considerable inter-observer variation of results. We developed a processing method which is less operator-dependent and permits the evaluation of local defects; it is based on the concept of functional imaging. The method was evaluated in 62 patient examinations, which were subdivided into four groups: Normal transplant perfusion (23 examinations), acute tubular necrose (ATN) (16), cellular rejection (13), and vascular rejection (10). Quantitative results derived from profile curves were combined with visual estimation of the functional images and yielded a synoptic graph which allowed differentiation into three groups: Normal transplant perfusion (sensitivity 0.78, specificity 0.97), ATN or cellular rejection (sens. 0.83, spec. 0.82), and vascular rejection (sens. 0.90, spec. 0.92). (orig.)

  18. Dynamic Contrast-Enhanced Perfusion MRI of High Grade Brain Gliomas Obtained with Arterial or Venous Waveform Input Function.

    Science.gov (United States)

    Filice, Silvano; Crisi, Girolamo

    2016-01-01

    The aim of this study was to evaluate the differences in dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) perfusion estimates of high-grade brain gliomas (HGG) due to the use of an input function (IF) obtained respectively from arterial (AIF) and venous (VIF) approaches by two different commercially available software applications. This prospective study includes 20 patients with pathologically confirmed diagnosis of high-grade gliomas. The data source was processed by using two DCE dedicated commercial packages, both based on the extended Toft model, but the first customized to obtain input function from arterial measurement and the second from sagittal sinus sampling. The quantitative parametric perfusion maps estimated from the two software packages were compared by means of a region of interest (ROI) analysis. The resulting input functions from venous and arterial data were also compared. No significant difference has been found between the perfusion parameters obtained with the two different software packages (P-value < .05). The comparison of the VIFs and AIFs obtained by the two packages showed no statistical differences. Direct comparison of DCE-MRI measurements with IF generated by means of arterial or venous waveform led to no statistical difference in quantitative metrics for evaluating HGG. However, additional research involving DCE-MRI acquisition protocols and post-processing would be beneficial to further substantiate the effectiveness of venous approach as the IF method compared with arterial-based IF measurement. Copyright © 2015 by the American Society of Neuroimaging.

  19. Analysis of hip perfusion at early and reversible stages of aseptic hip necrosis

    International Nuclear Information System (INIS)

    Predic, P.; Dodig, D.; Karner, I.

    2002-01-01

    Aim: A proper early diagnosis of aseptic hip necrosis is very important for further therapy.Since there has always been a question of the amount of perfusion in hips at different stages of aseptic hip necrosis we tried to impartially examine the perfusion in hips at early and reversible stages of aseptic hip necrosis. Material and Methods:Study included 143 patients with aseptic hip necrosis.The 550-740 MBq of Tc-99m-DPD were on bolus injected.All patients were subjected to 3-phase scintigraphy of hips and quantitative calculation of relative perfusion in the artery phase (3T) at early and repeated at reversible stages of aseptic hip necrosis. Results: At the early stage of aseptic hip necrosis the obtained 3T was decreased from 0.94-0.69 (3T=0.80).Scintigrams showed a moderate increase or diffuse accumulation. At the reversible stages we obtained 3T decreased from 0.92-0.71 (3T=0.79) thus evidencing hypoperfusion.Scintigrams showed an diffuse increased accumulation. Conclusion: With the aseptic hip necrosis quantitative analysis of perfusion in the artery phase-3T indicates that the perfusion is decreased at all stages of the process which however shows a significantly falling trend with the progress of the disease

  20. Free-breathing cardiac MR stress perfusion with real-time slice tracking.

    Science.gov (United States)

    Basha, Tamer A; Roujol, Sébastien; Kissinger, Kraig V; Goddu, Beth; Berg, Sophie; Manning, Warren J; Nezafat, Reza

    2014-09-01

    To develop a free-breathing cardiac MR perfusion sequence with slice tracking for use after physical exercise. We propose to use a leading navigator, placed immediately before each 2D slice acquisition, for tracking the respiratory motion and updating the slice location in real-time. The proposed sequence was used to acquire CMR perfusion datasets in 12 healthy adult subjects and 8 patients. Images were compared with the conventional perfusion (i.e., without slice tracking) results from the same subjects. The location and geometry of the myocardium were quantitatively analyzed, and the perfusion signal curves were calculated from both sequences to show the efficacy of the proposed sequence. The proposed sequence was significantly better compared with the conventional perfusion sequence in terms of qualitative image scores. Changes in the myocardial location and geometry decreased by 50% in the slice tracking sequence. Furthermore, the proposed sequence had signal curves that are smoother and less noisy. The proposed sequence significantly reduces the effect of the respiratory motion on the image acquisition in both rest and stress perfusion scans. Copyright © 2013 Wiley Periodicals, Inc.

  1. Regional Cerebral Perfusion in Progressive Supranuclear Palsy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Yong; Lee, Ki Hyeong; Yoon, Byung Woo; Lee, Sang Bok; Jeon, Beom S. [Samsung Medical Center, Seoul (Korea, Republic of); Lee, Kyung Han; Lee, Myung Chul [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1996-03-15

    Progressive supranuclear palsy (PSP) is a Parkinson-plus syndrome characterized clinically by supranuclear ophthalmoplegia, pseudobulbar palsy, axial rigidity, bradykinesia, postural instability and dementia. Presence of dementia and lack of cortical histopathology suggest the derangement of cortical function by pathological changes in subcortical structures in PSP, which is supported by the pattern of behavioral changes and measurement of brain metabolism using positron emission tomography. This study was done to examine whether there are specific changes of regional cerebral perfusion in PSP and whether there is a correlation between severity of motor abnormaility and degree of changes in cerebral perfusion. We measured regional cerebral perfusion indices in 5 cortical and 2 subcortical areas in 6 patients with a clinical diagnosis of PSP and 6 healthy age and sex matched controls using Tc-99m-HMPAO SPECT. Compared with age and sex matched controls, only superior frontal regional perfusion index was significantly decreased in PSP (p<0.05). There was no correlation between the severity of the motor abnormality and any of the regional cerebral perfusion indices (p>0.05). We affirm the previous reports that perfusion in superior frontal cortex is decreased in PSP. Based on our results that there was no correlation between severity of motor abnormality and cerebral perfusion in the superior frontal cortex, nonmotoric symptoms including dementia needs to be looked at whether there is a correlation with the perfusion abnormality in superior frontal cortex

  2. The value of the renal resistive index in the measurement of renal perfusion before and after extracorporal shock wave lithotripsy in correlation to the scintigraphy, to the magnetic resonance perfusion imaging and to big-endothelin values

    International Nuclear Information System (INIS)

    Palwein-Prettner, L.

    1999-07-01

    Purpose: the goal of this study was to evaluate effects of extracorporeal shock wave lithotripsy (ESWL) on the renal perfusion using the resistive index (RI), perfusion scintigraphy, magnetic resonance (MR) perfusion imaging and plasma big-endothelin (big-ET-1) values. Method/materials: In 21 patients divided in 3 age-groups the RI was measured before and 1,3,6 and 24 hours after ESWL. Big-ET-1, a potent vasoconstrictor peptid was correlated with the RI values. The RI and Big-ET-1 results was compared to the results of the MR perfusion imaging and the scintigraphy, the gold-standard method. Results: The RI of the treated kidneys increased significantly from 0,64±0,05 to 0,72±0,08 after the ESWL (p<0,001) and in the untreated kidneys from 0,63±0,05 to 0,68±0,09 (p=0,003). The hightest age group shows the most significant increase. The Big-ET-values also increased only in this age group significantly from 0,78±0,24 fmol/l to 1,58±0,52 fmol/l. In the scintigraphy the decrease of the renal plasma flow (RPF) in this age group was most significant. The MR perfusion Imaging shows in all age groups significant decrease (p<0,001). Conclusion: we conclude that the ESWL causes considerable renal parenchymal damage only in the elderly patients. The following changes in renal perfusion were measured very sensitively with the RI which had a good correlation to the results of the perfusion scintigraphy and the MR perfusion imaging. Further studies with larger series have to evaluate these results. (author)

  3. Quantification of the effect of water exchange in dynamic contrast MRI perfusion measurements in the brain and heart

    DEFF Research Database (Denmark)

    Larsson, H B; Rosenbaum, S; Fritz-Hansen, T

    2001-01-01

    Measurement of myocardial and brain perfusion when using exogenous contrast agents (CAs) such as gadolinium-DTPA (Gd-DTPA) and MRI is affected by the diffusion of water between compartments. This water exchange may have an impact on signal enhancement, or, equivalently, on the longitudinal...... exchange can have a significant effect on perfusion estimation (F) in the brain when using Gd-DTPA, where it acts as an intravascular contrast agent....

  4. Systemic perfusion: a method of enhancing relative tumor uptake of radiolabeled monoclonal antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Wahl, R.L.; Piko, C.R.; Beers, B.A.; Geatti, O.; Johnson, J.; Sherman, P. (Michigan Univ., Ann Arbor, MI (USA). Dept. of Internal Medicine)

    1989-01-01

    The authors evaluated the feasibility of systemic vascular perfusion with saline (mimicking plasmapheresis) as a method to enhance tumor-specific monoclonal antibody (MoAb) tumor/background ratios. Perfusion in rats dropped whole-body 5G6.4 levels significantly at both perfusion times. The drop in whole-body radioactivity with perfusion was significantly greater for the animals perfused at 4 h post i.v. 5G6.4 antibody injection (48.3 +- 5.1%) than for those perfused at 24h post i.v. antibody injection (32.9 +- 2.9%). In the nude mice with ovarian cancer xenografts, gamma camera images of tumors were visually and quantitatively by computer image analysis enhanced by perfusion, with a 2.33-fold greater decline in whole body uptake than in the tumor. These studies show that much background antibody radioactivity can be removed using whole-body perfusion with saline, that the decline in whole body activity is larger with 4 than 24h perfusion and that tumor imaging can be enhanced by this approach. This and similar approaches that increase relative tumor antibody uptake such as plasmapheresis may be useful in imaging and therapy with radiolabeled antibodies.

  5. Perfusion-induced changes in cardiac contractility depend on capillary perfusion.

    Science.gov (United States)

    Dijkman, M A; Heslinga, J W; Sipkema, P; Westerhof, N

    1998-02-01

    The perfusion-induced increase in cardiac contractility (Gregg phenomenon) is especially found in heart preparations that lack adequate coronary autoregulation and thus protection of changes in capillary pressure. We determined in the isolated perfused papillary muscle of the rat whether cardiac muscle contractility is related to capillary perfusion. Oxygen availability of this muscle is independent of internal perfusion, and perfusion may be varied or even stopped without loss of function. Muscles contracted isometrically at 27 degrees C (n = 7). During the control state stepwise increases in perfusion pressure resulted in all muscles in a significant increase in active tension. Muscle diameter always increased with increased perfusion pressure, but muscle segment length was unaffected. Capillary perfusion was then obstructed by plastic microspheres (15 microns). Flow, at a perfusion pressure of 66.6 +/- 26.2 cmH2O, reduced from 17.6 +/- 5.4 microliters/min in the control state to 3.2 +/- 1.3 microliters/min after microspheres. Active tension developed by the muscle in the unperfused condition before microspheres and after microspheres did not differ significantly (-12.8 +/- 29.4% change). After microspheres similar perfusion pressure steps as in control never resulted in an increase in active tension. Even at the two highest perfusion pressures (89.1 +/- 28.4 and 106.5 +/- 31.7 cmH2O) that were applied a significant decrease in active tension was found. We conclude that the Gregg phenomenon is related to capillary perfusion.

  6. Radionuclide ventilation-perfusion studies in pediatric respiratory diseases: 157 measurements of the distribution of ventilation and perfusion in 130 children

    International Nuclear Information System (INIS)

    Guillet, J.; Basse-Cathalinat, B.; Christophe, E.; Saudubray, F.

    1983-01-01

    Radionuclide investigations provide regional quantitative and kinetic data with a very low exposure. Results are dissonant with roentgenographic findings in 52% of cases and enhance diagnostic and prognostic accuracy. Although it provides poor quality images. The use of 133 Xe is preferable for ventilation studies to ensure correct evaluation of washout and trapping. According to the patient's age and position, 50% washout times vary from 5.6 to 8.7 seconds in the upper segments and from 5.6 to 8.5 seconds in the lower segments. Distribution of blood flow can be studied after intravenous injection of either sup(99m)Tc labelled microspheres of human albumin or 133 Xe saline solution. The former provides better quality images with studies of all incidences but may be contraindicated in cases of severe pulmonary hypertension or major right-to-left shunts. The latter allows a better sequential study. Radionuclide ventilation-perfusion studies are one of the major advances in pediatric pneumology in recent years [fr

  7. Hepatic perfusion during hepatic artery infusion chemotherapy: Evaluation with perfusion CT and perfusion scintigraphy

    International Nuclear Information System (INIS)

    Miller, D.L.; Carrasquillo, J.A.; Lutz, R.J.; Chang, A.E.

    1989-01-01

    The standard method for the evaluation of hepatic perfusion during hepatic artery infusion (HAI) chemotherapy is planar hepatic artery perfusion scintigraphy (HAPS). Planar HAPS was performed with 2 mCi of [99mTc] macroaggregated albumin infused at 1 ml/min and compared with single photon emission CT (SPECT) HAPS and with a new study, CT performed during the slow injection of contrast material through the HAI catheter (HAI-CT). Thirteen patients underwent 16 HAI-CT studies, 14 planar HAPS studies, and 9 SPECT HAPS studies. In 13 of 14 studies (93%) HAI-CT and planar HAPS were in complete agreement as to the perfusion pattern of intrahepatic metastases and normal liver. In nine studies where all modalities were performed, the findings identified by HAI-CT and planar HAPS agreed in all cases, whereas the results of two SPECT scans disagreed with the other studies. With respect to perfusion of individual metastases, 14 of 14 HAI-CT studies, 12 of 13 planar HAPS studies, and 9 of 9 SPECT HAPS studies correctly demonstrated the perfusion status of individual lesions as indicated by the pattern of changes in tumor size determined on CT obtained before and after the perfusion studies. Hepatic artery infusion CT was superior for delineation of individual metastases, particularly small lesions, and for the evaluation of nonperfused portions of the liver. Planar HAPS detected extrahepatic perfusion in four patients, and this was not detected by HAI-CT. We conclude that HAI-CT and scintigraphy are complementary techniques. Hepatic artery infusion CT has advantages for the evaluation of intrahepatic perfusion, and planar HAPS is superior to HAI-CT for the detection of extrahepatic perfusion

  8. MR-based assessment of pulmonary ventilation-perfusion in animal models

    International Nuclear Information System (INIS)

    Yang Jian; Wan Mingxi; Guo Youmin

    2003-01-01

    Objective: To show the feasibility and value in the diagnosis of airway obstruction and pulmonary embolism with MR oxygen-enhanced ventilation combined with pulmonary perfusion imaging. Methods: Eight canines were implemented for peripheral pulmonary embolism by intravenous injection of gelfoam granules at pulmonary segmental arterial level, and five of them were formed airway obstruction models by inserting self-made balloon catheter at second-bronchia. The oxygen-enhanced MR ventilation imaging was introduced by subtracting the images of pre- and post- inhaled pure oxygen. The MR pulmonary perfusion imaging was achieved by the first-pass contrast agent method. Moreover, the manifestation of MR ventilation and perfusion imaging was observed and contradistinguished with that of general pathologic anatomy, ventilation-perfusion scintigraphy, and pulmonary angiography. Results: The manifestations of airway obstruction regions in MR ventilation and perfusion imaging were matched, but those of pulmonary embolism regions were dismatched. The defect range of airway obstruction in MR ventilation image was smaller than that in ventilation scintigraphy. The abnormal perfusion regions of pulmonary embolism were divided into defect regions and reduce regions based on the time courses of signal intensity changes. The sensitivity and specificity of diagnosis on pulmonary embolism by MR ventilation combined with perfusion technique were 75.0% and 98.1%. The diagnostic results were in good coherence with ventilation-perfusion scintigraphy and pulmonary angiography (K=0.743, 0.899). Conclusion: The MR oxygen-enhanced ventilation combined with pulmonary perfusion imaging can be used to diagnose the airway and vascular abnormity in lung. This technique resembles the ventilation-perfusion scintigraphy. It can provide quantitative functional information and better spatial and temporal resolution, and possesses the value of clinical application

  9. Development of a universal dual-bolus injection scheme for the quantitative assessment of myocardial perfusion cardiovascular magnetic resonance

    Directory of Open Access Journals (Sweden)

    Alfakih Khaled

    2011-05-01

    Full Text Available Abstract Background The dual-bolus protocol enables accurate quantification of myocardial blood flow (MBF by first-pass perfusion cardiovascular magnetic resonance (CMR. However, despite the advantages and increasing demand for the dual-bolus method for accurate quantification of MBF, thus far, it has not been widely used in the field of quantitative perfusion CMR. The main reasons for this are that the setup for the dual-bolus method is complex and requires a state-of-the-art injector and there is also a lack of post processing software. As a solution to one of these problems, we have devised a universal dual-bolus injection scheme for use in a clinical setting. The purpose of this study is to show the setup and feasibility of the universal dual-bolus injection scheme. Methods The universal dual-bolus injection scheme was tested using multiple combinations of different contrast agents, contrast agent dose, power injectors, perfusion sequences, and CMR scanners. This included 3 different contrast agents (Gd-DO3A-butrol, Gd-DTPA and Gd-DOTA, 4 different doses (0.025 mmol/kg, 0.05 mmol/kg, 0.075 mmol/kg and 0.1 mmol/kg, 2 different types of injectors (with and without "pause" function, 5 different sequences (turbo field echo (TFE, balanced TFE, k-space and time (k-t accelerated TFE, k-t accelerated balanced TFE, turbo fast low-angle shot and 3 different CMR scanners from 2 different manufacturers. The relation between the time width of dilute contrast agent bolus curve and cardiac output was obtained to determine the optimal predefined pause duration between dilute and neat contrast agent injection. Results 161 dual-bolus perfusion scans were performed. Three non-injector-related technical errors were observed (1.9%. No injector-related errors were observed. The dual-bolus scheme worked well in all the combinations of parameters if the optimal predefined pause was used. Linear regression analysis showed that the optimal duration for the predefined

  10. Role of perfusion SPECT in prediction and measurement of pulmonary complications after radiotherapy for lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Farr, Katherina P.; Khalil, Azza A.; Grau, Cai [Aarhus University Hospital, Department of Oncology, Aarhus C (Denmark); Kramer, Stine; Morsing, Anni [Aarhus University Hospital, Department of Nuclear Medicine and PET Centre, Aarhus C (Denmark)

    2015-07-15

    The purpose of the study was to evaluate the ability of baseline perfusion defect score (DS) on SPECT to predict the development of severe symptomatic radiation pneumonitis (RP) and to evaluate changes in perfusion on SPECT as a method of lung perfusion function assessment after curative radiotherapy (RT) for non-small-cell lung cancer (NSCLC). Patients with NSCLC undergoing curative RT were included prospectively. Perfusion SPECT/CT and global pulmonary function tests (PFT) were performed before RT and four times during follow-up. Functional activity on SPECT was measured using a semiquantitative perfusion DS. Pulmonary morbidity was graded by the National Cancer Institute's Common Terminology Criteria for Adverse Events version 4 for pneumonitis. Patients were divided into two groups according to the severity of RP. A total of 71 consecutive patients were included in the study. Baseline DS was associated with chronic obstructive pulmonary disease. A significant inverse correlation was found between baseline DS and forced expiratory volume in 1 s and diffusing capacity of the lung for carbon monoxide. Patients with severe RP had significantly higher baseline total lung DS (mean 5.43) than those with no or mild symptoms (mean DS 3.96, p < 0.01). PFT results were not different between these two groups. The odds ratio for total lung DS was 7.8 (95 % CI 1.9 - 31) demonstrating the ability of this parameter to predict severe RP. Adjustment for other potential confounders known to be associated with increased risk of RP was performed and did not change the odds ratio. The median follow-up time after RT was 8.4 months. The largest DS increase of 13.3 % was associated with severe RP at 3 months of follow-up (p < 0.01). The development of severe RP during follow-up was not associated with changes in PFT results. Perfusion SPECT is a valuable method for predicting severe RP and for assessing changes in regional functional perfusion after curative RT comparable with

  11. Vessel encoded arterial spin labeling with cerebral perfusion: preliminary study

    International Nuclear Information System (INIS)

    Wu Bing; Xiao Jiangxi; Xie Cheng; Wang Xiaoying; Jiang Xuexiang; Wong, E.C.; Wang Jing; Guo Jia; Zhang Beiru; Zhang Jue; Fang Jing

    2008-01-01

    Objective: To evaluate a noninvasive vessel encoded imaging for selective mapping of the flow territories of the left and fight internal carotid arteries and vertebral-basilar arteries. Methods: Seven volunteers [(33.5 ± 4.1) years; 3 men, 4 women] and 6 patients [(55.2 ± 3.2) years; 2 men, 4 women] were given written informed consent approved by the institutional review board before participating in the study. A pseudo-continuous tagging pulse train is modified to encode all vessels of interest. The selectivity of this method was demonstrated. Regional perfusion imaging was developed on the same arterial spin labeling sequence. Perfusion-weighted images of the selectively labeled cerebral arteries were obtained by subtraction of the labeled from control images. The CBF values of hemisphere, white matter, and gray matter of volunteers were calculated. The vessel territories on patients were compared with DSA. The low perfusion areas were compared with high signal areas on T 2 -FLAIR. Results: High SNR maps of left carotid, right carotid, and basilar territories were generated in 8 minutes of scan time. Cerebral blood flow values measured with regional perfusion imaging in the complete hemisphere (32.6 ± 4.3) ml·min -1 · 100 g -1 , white matter (10.8 ± 0.9) ml·min -1 ·100 g -1 , and gray matter (55.6±2.9) ml·min -1 · 100 g -1 were in agreement with data in the literature. Vessel encoded imaging in patients had a good agreement with DSA. The low perfusion areas were larger than high signal areas on T 2 -FLAIR. Conclusion: We present a new method capable of evaluating both quantitatively and qualitatively the individual brain- feeding arteries in vivo. (authors)

  12. Increased sinusoidal volume and solute extraction during retrograde liver perfusion

    International Nuclear Information System (INIS)

    Bass, N.M.; Manning, J.A.; Weisiger, R.A.

    1989-01-01

    Retrograde isolated liver perfusion has been used to probe acinar functional heterogeneity, but the hemodynamic effects of backward flow have not been characterized. In this study, extraction of a long-chain fatty acid derivative, 12-N-methyl-7-nitrobenzo-2-oxa-1,3-diazol-amino stearate (12-NBDS), was greater during retrograde than during anterograde perfusion of isolated rat liver. To determine whether hemodynamic differences between anterograde and retrograde perfused livers could account for this finding, the hepatic extracellular space was measured for both directions of flow by means of [ 14 C]sucrose washout during perfusion as well as by direct measurement of [ 14 C]sucrose entrapped during perfusion. A three- to fourfold enlargement of the total hepatic extracellular space was found during retrograde perfusion by both approaches. Examination of perfusion-fixed livers by light microscopy and morphometry revealed that marked distension of the sinusoids occurred during retrograde perfusion and that this accounts for the observed increase in the [ 14 C]sucrose space. These findings support the hypothesis that maximum resistance to perfusate flow in the isolated perfused rat liver is located at the presinusoidal level. In addition, increased transit time of perfusate through the liver and greater sinusoidal surface area resulting from sinusoidal distension may account for the higher extraction of 12-NBDS and possibly other compounds by retrograde perfused liver

  13. CT perfusion imaging of the liver and the spleen in patients with cirrhosis: Is there a correlation between perfusion and portal venous hypertension?

    International Nuclear Information System (INIS)

    Talakic, Emina; Schoellnast, Helmut; Schaffellner, Silvia; Kniepeiss, Daniela; Mueller, Helmut; Stauber, Rudolf; Quehenberger, Franz

    2017-01-01

    To correlate hepatic and splenic CT perfusion parameters with hepatic venous pressure gradient (HVPG) measurements in patients with cirrhosis. Twenty-one patients with cirrhosis (males, 17; females, 4; mean ± SD age, 57 ± 7 years) underwent hepatic and splenic perfusion CT on a 320-detector row volume scanner as well as invasive measurement of HVPG. Different CT perfusion algorithms (maximum slope analysis and Patlak plot) were used to measure hepatic arterial flow (HAF), portal venous flow (PVF), hepatic perfusion index (HPI), splenic arterial flow (SAF), splenic blood volume (SBV) and splenic clearance (SCL). Hepatic and splenic perfusion parameters were correlated with HVPG, and sensitivity and specificity for detection of severe portal hypertension (≥12 mmHg) were calculated. The Spearman correlation coefficient was -0.53 (p < 0.05) between SAF and HVPG, and -0.68 (p < 0.01) between HVPG and SCL. Using a cut-off value of 125 ml/min/100 ml for SCL, sensitivity for detection of a HVPG of ≥12 mmHg was 94%, and specificity 100%. There was no significant correlation between hepatic perfusion parameters and HVPG. CT perfusion in patients with cirrhosis showed a strong correlation between SCL and HVPG and may be used for detection of severe portal hypertension. (orig.)

  14. CT perfusion imaging of the liver and the spleen in patients with cirrhosis: Is there a correlation between perfusion and portal venous hypertension?

    Energy Technology Data Exchange (ETDEWEB)

    Talakic, Emina; Schoellnast, Helmut [Medical University of Graz, Division of General Radiology, Department of Radiology, Graz (Austria); Schaffellner, Silvia; Kniepeiss, Daniela; Mueller, Helmut [Medical University of Graz, Department of Surgery, Division of Transplantation Surgery, Graz (Austria); Stauber, Rudolf [Medical University of Graz, Department of Internal Medicine, Division of Gastoenterology and Hepatology, Graz (Austria); Quehenberger, Franz [Medical University of Graz, Institute for Medical Informatics, Statistics and Documentation, Graz (Austria)

    2017-10-15

    To correlate hepatic and splenic CT perfusion parameters with hepatic venous pressure gradient (HVPG) measurements in patients with cirrhosis. Twenty-one patients with cirrhosis (males, 17; females, 4; mean ± SD age, 57 ± 7 years) underwent hepatic and splenic perfusion CT on a 320-detector row volume scanner as well as invasive measurement of HVPG. Different CT perfusion algorithms (maximum slope analysis and Patlak plot) were used to measure hepatic arterial flow (HAF), portal venous flow (PVF), hepatic perfusion index (HPI), splenic arterial flow (SAF), splenic blood volume (SBV) and splenic clearance (SCL). Hepatic and splenic perfusion parameters were correlated with HVPG, and sensitivity and specificity for detection of severe portal hypertension (≥12 mmHg) were calculated. The Spearman correlation coefficient was -0.53 (p < 0.05) between SAF and HVPG, and -0.68 (p < 0.01) between HVPG and SCL. Using a cut-off value of 125 ml/min/100 ml for SCL, sensitivity for detection of a HVPG of ≥12 mmHg was 94%, and specificity 100%. There was no significant correlation between hepatic perfusion parameters and HVPG. CT perfusion in patients with cirrhosis showed a strong correlation between SCL and HVPG and may be used for detection of severe portal hypertension. (orig.)

  15. Evaluation of Microvascular Perfusion and Resuscitation after Severe Injury.

    Science.gov (United States)

    Lee, Yann-Leei L; Simmons, Jon D; Gillespie, Mark N; Alvarez, Diego F; Gonzalez, Richard P; Brevard, Sidney B; Frotan, Mohammad A; Schneider, Andrew M; Richards, William O

    2015-12-01

    Achieving adequate perfusion is a key goal of treatment in severe trauma; however, tissue perfusion has classically been measured by indirect means. Direct visualization of capillary flow has been applied in sepsis, but application of this technology to the trauma population has been limited. The purpose of this investigation was to compare the efficacy of standard indirect measures of perfusion to direct imaging of the sublingual microcirculatory flow during trauma resuscitation. Patients with injury severity scores >15 were serially examined using a handheld sidestream dark-field video microscope. In addition, measurements were also made from healthy volunteers. The De Backer score, a morphometric capillary density score, and total vessel density (TVD) as cumulative vessel area within the image, were calculated using Automated Vascular Analysis (AVA3.0) software. These indices were compared against clinical and laboratory parameters of organ function and systemic metabolic status as well as mortality. Twenty severely injured patients had lower TVD (X = 14.6 ± 0.22 vs 17.66 ± 0.51) and De Backer scores (X = 9.62 ± 0.16 vs 11.55 ± 0.37) compared with healthy controls. These scores best correlated with serum lactate (TVD R(2) = 0.525, De Backer R(2) = 0.576, P trauma patients, and seems to provide real-time assessment of microcirculatory perfusion. This study suggests that in severe trauma, many indirect measurements of perfusion do not correlate with microvascular perfusion. However, visualized perfusion deficiencies do reflect a shift toward anaerobic metabolism.

  16. Spatio-temporal analysis of blood perfusion by imaging photoplethysmography

    Science.gov (United States)

    Zaunseder, Sebastian; Trumpp, Alexander; Ernst, Hannes; Förster, Michael; Malberg, Hagen

    2018-02-01

    Imaging photoplethysmography (iPPG) has attracted much attention over the last years. The vast majority of works focuses on methods to reliably extract the heart rate from videos. Only a few works addressed iPPGs ability to exploit spatio-temporal perfusion pattern to derive further diagnostic statements. This work directs at the spatio-temporal analysis of blood perfusion from videos. We present a novel algorithm that bases on the two-dimensional representation of the blood pulsation (perfusion map). The basic idea behind the proposed algorithm consists of a pairwise estimation of time delays between photoplethysmographic signals of spatially separated regions. The probabilistic approach yields a parameter denoted as perfusion speed. We compare the perfusion speed versus two parameters, which assess the strength of blood pulsation (perfusion strength and signal to noise ratio). Preliminary results using video data with different physiological stimuli (cold pressure test, cold face test) show that all measures are influenced by those stimuli (some of them with statistical certainty). The perfusion speed turned out to be more sensitive than the other measures in some cases. However, our results also show that the intraindividual stability and interindividual comparability of all used measures remain critical points. This work proves the general feasibility of employing the perfusion speed as novel iPPG quantity. Future studies will address open points like the handling of ballistocardiographic effects and will try to deepen the understanding of the predominant physiological mechanisms and their relation to the algorithmic performance.

  17. In vivo MR perfusion imaging of renal artery stenosis

    International Nuclear Information System (INIS)

    Powers, T.; Lorenz, C.H.; Bain, R.; Holburn, G.; Price, R.R.

    1989-01-01

    Various techniques have been developed for noninvasive evaluation of renal blood flow. More important in the assessment of potential renal ischemia may be actual perfusion of the nephron mass. MR pulse sequences have been devised that allow perfusion imaging (PI) in a dog model of renal artery stenosis. Unilateral renal artery stenosis was created in mongrel dogs and quantitation of renal blood flow was obtained with radioactive microspheres. Perfusion imaging was performed on a 1.5-T system to obtain the apparent diffusion coefficient. During initial studies, it was found that the usual gradient factor used in brain PI was too high for renal studies; a factor of < 50 was found to be optimal. Additionally, respiratory gating with acquisition at end expiration was necessary to prevent renal motion. Recent studies have shown that PI reflects the asymmetry of flow in this model

  18. Non-contrast MRI perfusion angiosome in diabetic feet

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jie [Cardiovascular Imaging Lab, Mallinckrodt Institute of Radiology, St. Louis, MO (United States); Hastings, Mary K.; Mueller, Michael J. [Washington University School of Medicine, The Program in Physical Therapy, St. Louis, MO (United States); Muccigross, David; Hildebolt, Charles F. [Washington University School of Medicine, Mallinckrodt Institute of Radiology, St. Louis, MO (United States); Fan, Zhaoyang [Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA (United States); Gao, Fabao [West China Hospital, Sichuan University, Department of Radiology, Chengdu (China); Curci, John [Washington University School of Medicine, The Department of Surgery, St. Louis, MO (United States)

    2015-01-15

    The purpose of this study is to develop a non-contrast magnetic resonance imaging (MRI) approach to evaluate skeletal muscle perfusion in the diabetic foot based on the concept of angiosomes of the foot. Five healthy volunteers and five participants with diabetes (HbA1c = 7.2 ± 1.8 %) without a history of peripheral artery disease were examined. The non-contrast perfusion measurements were performed during a toe flexion challenge. Absolute perfusion maps were created and two regions (medial and lateral) on the maps were segmented based on angiosomes. Regional difference in the perfusion of foot muscle was readily visualized in the MRI perfusion angiosomes during the challenge. In the participants with diabetes, the perfusion during toe flexion challenge was significantly lower than in healthy volunteers (P < 0.01). The average perfusion for the medial plantar region of the right foot was lower in subjects with diabetes (38 ± 9 ml/min/100 g) than in healthy subjects (93 ± 33 ml/min/100 g). Non-contrast MRI perfusion angiosome maps demonstrate the feasibility of determining regional perfusion in foot muscles during toe challenge and may facilitate evaluation of muscle perfusion in diabetic feet. (orig.)

  19. Non-contrast MRI perfusion angiosome in diabetic feet

    International Nuclear Information System (INIS)

    Zheng, Jie; Hastings, Mary K.; Mueller, Michael J.; Muccigross, David; Hildebolt, Charles F.; Fan, Zhaoyang; Gao, Fabao; Curci, John

    2015-01-01

    The purpose of this study is to develop a non-contrast magnetic resonance imaging (MRI) approach to evaluate skeletal muscle perfusion in the diabetic foot based on the concept of angiosomes of the foot. Five healthy volunteers and five participants with diabetes (HbA1c = 7.2 ± 1.8 %) without a history of peripheral artery disease were examined. The non-contrast perfusion measurements were performed during a toe flexion challenge. Absolute perfusion maps were created and two regions (medial and lateral) on the maps were segmented based on angiosomes. Regional difference in the perfusion of foot muscle was readily visualized in the MRI perfusion angiosomes during the challenge. In the participants with diabetes, the perfusion during toe flexion challenge was significantly lower than in healthy volunteers (P < 0.01). The average perfusion for the medial plantar region of the right foot was lower in subjects with diabetes (38 ± 9 ml/min/100 g) than in healthy subjects (93 ± 33 ml/min/100 g). Non-contrast MRI perfusion angiosome maps demonstrate the feasibility of determining regional perfusion in foot muscles during toe challenge and may facilitate evaluation of muscle perfusion in diabetic feet. (orig.)

  20. Measurement of cerebral perfusion after zolpidem administration in the baboon model.

    Science.gov (United States)

    Clauss, R P; Dormehl, I C; Oliver, D W; Nel, W H; Kilian, E; Louw, W K

    2001-01-01

    A recent report showed that zolpidem (CAS 82626-48-0) can lead to the arousal of a semi-comatosed patient. Zolpidem is clinically used for the treatment of insomnia. It belongs to the imidazopyridine chemical class and is a non benzodiazepine drug. It illicits its pharmacological action via the GABA receptor system through stimulation of particularly the omega 1 receptors. In this study, the effect of zolpidem on brain perfusion was examined by 99mTc hexamethyl-propylene amine oxime (HMPAO) split dose brain SPECT on four normal baboons and in one baboon with abnormal neurological behaviour. The global and regional brain perfusion was not significantly affected in the normal brains. In some regions of the abnormal baboon brain, however, there was a disproportionate increase in perfusion after zolpidem.

  1. Directly measuring spinal cord blood flow and spinal cord perfusion pressure via the collateral network: correlations with changes in systemic blood pressure.

    Science.gov (United States)

    Kise, Yuya; Kuniyoshi, Yukio; Inafuku, Hitoshi; Nagano, Takaaki; Hirayasu, Tsuneo; Yamashiro, Satoshi

    2015-01-01

    During thoracoabdominal surgery in which segmental arteries are sacrificed over a large area, blood supply routes from collateral networks have received attention as a means of avoiding spinal cord injury. The aim of this study was to investigate spinal cord blood supply through a collateral network by directly measuring spinal cord blood flow and spinal cord perfusion pressure experimentally. In beagle dogs (n = 8), the thoracoabdominal aorta and segmental arteries L1-L7 were exposed, and a temporary bypass was created for distal perfusion. Next, a laser blood flow meter was placed on the spinal dura mater in the L5 region to measure the spinal cord blood flow. The following were measured simultaneously when the direct blood supply from segmental arteries L2-L7 to the spinal cord was stopped: mean systemic blood pressure, spinal cord perfusion pressure (blood pressure within the aortic clamp site), and spinal cord blood flow supplied via the collateral network. These variables were then investigated for evidence of correlations. Positive correlations were observed between mean systemic blood pressure and spinal cord blood flow during interruption of segmental artery flow both with (r = 0.844, P flow with and without distal perfusion (r = 0.803, P network from outside the interrupted segmental arteries, and high systemic blood pressure (∼1.33-fold higher) was needed to obtain the preclamping spinal cord blood flow, whereas 1.68-fold higher systemic blood pressure was needed when distal perfusion was halted. Spinal cord blood flow is positively correlated with mean systemic blood pressure and spinal cord perfusion pressure under spinal cord ischemia caused by clamping a wide range of segmental arteries. In open and endovascular thoracic and thoracoabdominal surgery, elevating mean systemic blood pressure is a simple and effective means of increasing spinal cord blood flow, and measuring spinal cord perfusion pressure seems to be useful for monitoring

  2. Perfusion imaging with single-photon emission computed tomography

    International Nuclear Information System (INIS)

    Holman, B.L.; Hill, T.C.

    1987-01-01

    SPECT with perfusion tracers is useful in a number of circumstances: (1) In acute cerebral infarction while the CT scan may be normal for several days after onset of symptoms, the uptake of SPECT perfusion tracers will be altered immediately after the onset of the stroke. Even when the CT scan has become abnormal, the physiologic abnormality may exceed the anatomic abnormality. One may, therefore be able to measure the extent of the reversibly ischemic tissue early enough to justify more agressive therapeutic interventions. (2) For endarterectomy and other surgical and medical therapies serial measurements of regional cerebral perfusion with SPECT may provide a readily available tool to assess their efficacy. (3) SPECT perfusion imaging may become the method of choice for the diagnosis and evaluation of Alzheimer's disease. (4) In patients with epilepsy, the extent and location of the abnormally perfused focus may be important to medical and surgical management. Follow-up examination may be useful in documenting the effectiveness of therapy

  3. CT perfusion during delayed cerebral ischemia after subarachnoid hemorrhage: distinction between reversible ischemia and ischemia progressing to infarction

    Energy Technology Data Exchange (ETDEWEB)

    Cremers, Charlotte H.P. [University Medical Center Utrecht, Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, PO Box 85500, Utrecht, Utrecht (Netherlands); University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Vos, Pieter C. [University Medical Center Utrecht, Image Sciences Institute, Utrecht (Netherlands); Schaaf, Irene C. van der; Velthuis, Birgitta K.; Dankbaar, Jan Willem [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Vergouwen, Mervyn D.I.; Rinkel, Gabriel J.E. [University Medical Center Utrecht, Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, PO Box 85500, Utrecht, Utrecht (Netherlands)

    2015-09-15

    Delayed cerebral ischemia (DCI) after aneurysmal subarachnoid hemorrhage (aSAH) can be reversible or progress to cerebral infarction. In patients with a deterioration clinically diagnosed as DCI, we investigated whether CT perfusion (CTP) can distinguish between reversible ischemia and ischemia progressing to cerebral infarction. From a prospectively collected series of aSAH patients, we included those with DCI, CTP on the day of clinical deterioration, and follow-up imaging. In qualitative CTP analyses (visual assessment), we calculated positive and negative predictive value (PPV and NPV) with 95 % confidence intervals (95%CI) of a perfusion deficit for infarction on follow-up imaging. In quantitative analyses, we compared perfusion values of the least perfused brain tissue between patients with and without infarction by using receiver-operator characteristic curves and calculated a threshold value with PPV and NPV for the perfusion parameter with the highest area under the curve. In qualitative analyses of 33 included patients, 15 of 17 patients (88 %) with and 6 of 16 patients (38 %) without infarction on follow-up imaging had a perfusion deficit during clinical deterioration (p = 0.002). Presence of a perfusion deficit had a PPV of 71 % (95%CI: 48-89 %) and NPV of 83 % (95%CI: 52-98 %) for infarction on follow-up. Quantitative analyses showed that an absolute minimal cerebral blood flow (CBF) threshold of 17.7 mL/100 g/min had a PPV of 63 % (95%CI: 41-81 %) and a NPV of 78 % (95%CI: 40-97 %) for infarction. CTP may differ between patients with DCI who develop infarction and those who do not. For this purpose, qualitative evaluation may perform marginally better than quantitative evaluation. (orig.)

  4. Impact of patient motion on myocardial perfusion SPECT

    International Nuclear Information System (INIS)

    Huang Kemin; Feng Yanlin; He Xiaohong; Wen Guanghua; Yu Fengwen; Liu Shusheng; Liu Dejun; Yuan Jianwei; Yang Ming

    2008-01-01

    Objective: It is well known that patient motion may cause artifacts in myocardial SPECT images and affect clinical diagnosis. The aim of the study was to evaluate the effects of motion on quality and semi-quantitative results of myocardial perfusion images. Methods: Six healthy volunteers un- derwent myocardial perfusion SPECT. The raw data in each case was manually shifted 1-6 frames and 1 4 pixels, respectively by using the motion correction software. The shifted raw data were then reconstructed. A semi-quantitative software was used to assess the myocardial perfusion of left ventricle. The quality and semi-quantitative results of the tomographic images reconstructed from the raw data with and without motion were compared and analyzed. SPSS 12.0 was used for data analysis. Results: There was no visible artifact and semi-quantitative difference on the data with 1 frame and (or) 1 pixel shift when compared with the original data without shift. The image artifacts became significantly deteriorated when the number of flame and (or) pixel shift was increased. In general, the image artifact of inferior and posterior wall was related to the upward shift, and that of anterior and infero-posterior wall was related to the downward shift, that of septal, anterior, infero-postefior wall and apex was related to right-ward shift, and the septal and infero-posterior wall was related to the left-ward shift. The differences along the x-axis shift were more prominent than that of the y-axis (t=2.848, P<0.01), and the differences in the downward and rightward shift were more severe than the upward and leftward shift (t=2.941, 6.598; all P<0.01), respectively. Conclusions: Image artifacts became significant when there was motion induced by manual shift of more than one flame and (or) one pixel. Different motion directions were closely related to different segments of left ventricle. (authors)

  5. Measurement of cerebral white matter perfusion using pseudocontinuous arterial spin labeling 3T magnetic resonance imaging--an experimental and theoretical investigation of feasibility.

    Directory of Open Access Journals (Sweden)

    Wen-Chau Wu

    Full Text Available PURPOSE: This study was aimed to experimentally and numerically investigate the feasibility of measuring cerebral white matter perfusion using pseudocontinuous arterial spin labeling (PCASL 3T magnetic resonance imaging (MRI at a relatively fine resolution to mitigate partial volume effect from gray matter. MATERIALS AND METHODS: The Institutional Research Ethics Committee approved this study. On a clinical 3T MR system, ten healthy volunteers (5 females, 5 males, age = 28 ± 3 years were scanned after providing written informed consent. PCASL imaging was performed with varied combinations of labeling duration (τ = 1000, 1500, 2000, and 2500 ms and post-labeling delay (PLD = 1000, 1400, 1800, and 2200 ms, at a spatial resolution (1.56 x 1.56 x 5 mm(3 finer than commonly used (3.5 x 3.5 mm(2, 5-8 mm in thickness. Computer simulations were performed to calculate the achievable perfusion-weighted signal-to-noise ratio at varied τ, PLD, and transit delay. RESULTS: Based on experimental and numerical data, the optimal τ and PLD were found to be 2000 ms and 1500-1800 ms, respectively, yielding adequate SNR (~2 to support perfusion measurement in the majority (~60% of white matter. The measurement variability was about 9% in a one-week interval. The measured white matter perfusion and perfusion ratio of gray matter to white matter were 15.8-27.5 ml/100ml/min and 1.8-4.0, respectively, depending on spatial resolution as well as the amount of deep white matter included. CONCLUSION: PCASL 3T MRI is able to measure perfusion in the majority of cerebral white matter at an adequate signal-to-noise ratio by using appropriate tagging duration and post-labeling delay. Although pixel-wise comparison may not be possible, region-of-interest based flow quantification is feasible.

  6. Comparison of rest and adenosine stress quantitative and semi-quantitative myocardial perfusion using magnetic resonance in patients with ischemic heart disease

    DEFF Research Database (Denmark)

    Qayyum, Abbas A; Qayyum, Faiza; Larsson, Henrik B W

    2017-01-01

    software. Linear regression analysis demonstrated that absolute quantitative data correlated stronger to maxSI (rest: r=0.296, p=.193; stress: r=0.583, p=0.011; myocardial perfusion reserve (MPR): r=0.789, pr=0.683, p=0.004) than to upslope (rest: r=0.420, p=0.......058; stress: r=0.096, p=0.704; MPR: r=0.682, p=0.004; and Δ MBF: r=0.055, p=0.804). Absolute quantified MP was able to distinguish between ischemic and non-ischemic territories at rest (left anterior descending artery (LAD): 103.1±11.3mL/100g/min vs. 206.3±98.5mL/100g/min; p=0.001, right coronary artery (RCA......: 206.6±105.1mL/100g/min vs. 273.8±78.0mL/100g/min; p=0.186). The correlation between global maxSI and positron emission tomography data was non-significant at rest and borderline significant at stress (r=0.265, p=0.382 and r=0.601, p=0.050, respectively). Quantified MP may be useful in patients...

  7. Rapid gated Thallium-201 perfusion SPECT - clinically feasible?

    International Nuclear Information System (INIS)

    Wadhwa, S.S.; Mansberg, R.; Fernandes, V.B.; Wilkinson, D.; Abatti, D.

    1998-01-01

    Full text: Standard dose energy window optimised Thallium-201 (Tl-201) SPECT has about half the counts of a standard dose from Technetium-99m Sestamibi (Tc99m-Mibi) gated perfusion SPECT. This study investigates the clinical feasibility of rapid energy window optimised Tl-201 gated perfusion SPECT (gated-TI) and compares quantitative left ventricular ejection fraction (LVEF) and visually assessed image quality for wall motion and thickening to analogous values obtained from Tc99m-Mibi gated perfusion SPECT (gated - mibi). Methods: We studied 60 patients with a rest gated Tl-201 SPECT (100 MBq, 77KeV peak, 34% window, 20 sec/projection) followed by a post stress gated Sestamibi SPECT (1GBq, 140KeV, 20% window, 20 sec/projection) separate dual isotope protocol. LVEF quantitation was performed using commercially available software (SPECTEF, General Electric). Visual grading of image quality for wall thickening and motion was performed using a three-point scale (excellent, good and poor). Results: LVEF for gated Tl-201 SPECT was 59.6 ± 12.0% (Mean ± SD). LVEF for gated Sestamibi SPECT was 60.4 ±11.4% (Mean ± SD). These were not significantly different (P=0.27, T-Test). There was good correlation (r=0.9) between gated-TI and gated-mibi LVEF values. The quality of gated-Tl images was ranked as excellent, good and poor in 12, 50 and 38% of the patients respectively. Image quality was better in gated-mibi SPECT, with ratings of 12, 62 and 26% respectively. Conclusion: Rapid gated Thallium-201 acquisition with energy window optimisation can be effectively performed on majority of patients and offers the opportunity to assess not only myocardial perfusion and function, as with Technetium based agents, but also viability using a single day one isotope protocol

  8. Partial scan artifact reduction (PSAR) for the assessment of cardiac perfusion in dynamic phase-correlated CT.

    Science.gov (United States)

    Stenner, Philip; Schmidt, Bernhard; Bruder, Herbert; Allmendinger, Thomas; Haberland, Ulrike; Flohr, Thomas; Kachelriess, Marc

    2009-12-01

    Cardiac CT achieves its high temporal resolution by lowering the scan range from 2pi to pi plus fan angle (partial scan). This, however, introduces CT-value variations, depending on the angular position of the pi range. These partial scan artifacts are of the order of a few HU and prevent the quantitative evaluation of perfusion measurements. The authors present the new algorithm partial scan artifact reduction (PSAR) that corrects a dynamic phase-correlated scan without a priori information. In general, a full scan does not suffer from partial scan artifacts since all projections in [0, 2pi] contribute to the data. To maintain the optimum temporal resolution and the phase correlation, PSAR creates an artificial full scan pn(AF) by projectionwise averaging a set of neighboring partial scans pn(P) from the same perfusion examination (typically N approximately 30 phase-correlated partial scans distributed over 20 s and n = 1, ..., N). Corresponding to the angular range of each partial scan, the authors extract virtual partial scans pn(V) from the artificial full scan pn(AF). A standard reconstruction yields the corresponding images fn(P), fn(AF), and fn(V). Subtracting the virtual partial scan image fn(V) from the artificial full scan image fn(AF) yields an artifact image that can be used to correct the original partial scan image: fn(C) = fn(P) - fn(V) + fn(AF), where fn(C) is the corrected image. The authors evaluated the effects of scattered radiation on the partial scan artifacts using simulated and measured water phantoms and found a strong correlation. The PSAR algorithm has been validated with a simulated semianthropomorphic heart phantom and with measurements of a dynamic biological perfusion phantom. For the stationary phantoms, real full scans have been performed to provide theoretical reference values. The improvement in the root mean square errors between the full and the partial scans with respect to the errors between the full and the corrected scans is

  9. Partial scan artifact reduction (PSAR) for the assessment of cardiac perfusion in dynamic phase-correlated CT

    International Nuclear Information System (INIS)

    Stenner, Philip; Schmidt, Bernhard; Bruder, Herbert; Allmendinger, Thomas; Haberland, Ulrike; Flohr, Thomas; Kachelriess, Marc

    2009-01-01

    Purpose: Cardiac CT achieves its high temporal resolution by lowering the scan range from 2π to π plus fan angle (partial scan). This, however, introduces CT-value variations, depending on the angular position of the π range. These partial scan artifacts are of the order of a few HU and prevent the quantitative evaluation of perfusion measurements. The authors present the new algorithm partial scan artifact reduction (PSAR) that corrects a dynamic phase-correlated scan without a priori information. Methods: In general, a full scan does not suffer from partial scan artifacts since all projections in [0, 2π] contribute to the data. To maintain the optimum temporal resolution and the phase correlation, PSAR creates an artificial full scan p n AF by projectionwise averaging a set of neighboring partial scans p n P from the same perfusion examination (typically N≅30 phase-correlated partial scans distributed over 20 s and n=1,...,N). Corresponding to the angular range of each partial scan, the authors extract virtual partial scans p n V from the artificial full scan p n AF . A standard reconstruction yields the corresponding images f n P , f n AF , and f n V . Subtracting the virtual partial scan image f n V from the artificial full scan image f n AF yields an artifact image that can be used to correct the original partial scan image: f n C =f n P -f n V +f n AF , where f n C is the corrected image. Results: The authors evaluated the effects of scattered radiation on the partial scan artifacts using simulated and measured water phantoms and found a strong correlation. The PSAR algorithm has been validated with a simulated semianthropomorphic heart phantom and with measurements of a dynamic biological perfusion phantom. For the stationary phantoms, real full scans have been performed to provide theoretical reference values. The improvement in the root mean square errors between the full and the partial scans with respect to the errors between the full and the

  10. Ventilation and perfusion imaging by electrical impedance tomography: a comparison with radionuclide scanning.

    Science.gov (United States)

    Kunst, P W; Vonk Noordegraaf, A; Hoekstra, O S; Postmus, P E; de Vries, P M

    1998-11-01

    Electrical impedance tomography (EIT) is a technique that makes it possible to measure ventilation and pulmonary perfusion in a volume that approximates to a 2D plane. The possibility of using EIT for measuring the left-right division of ventilation and perfusion was compared with that of radionuclide imaging. Following routine ventilation (81mKr) and perfusion scanning (99mTc-MAA), EIT measurements were performed at the third and the sixth intercostal level in 14 patients with lung cancer. A correlation (r = 0.98, p RC) was calculated for estimating the left-right division with EIT. The RC for the ventilation measurements was 94% and 96% for the perfusion measurements. The correlation analysis for reproducibility of the EIT measurements was 0.95 (p < 0.001) for the ventilation and 0.93 (p < 0.001) for the perfusion measurements. In conclusion, EIT can be regarded as a promising technique to estimate the left-right division of pulmonary perfusion and ventilation.

  11. Single photon emission computed tomography study of human pulmonary perfusion: preliminary findings

    Energy Technology Data Exchange (ETDEWEB)

    Carratu, L; Sofia, M [Naples Univ. (Italy). Facolta di Medicina e Chirurgia; Salvatore, M; Muto, P; Ariemma, G [Istituto Nazionale per la Prevenzione, Lo Studio e La Cura dei Tumori Fondazione Pascale, Naples (Italy); Lopez-Majano, V [Cook County Hospital, Chicago, IL (USA). Nuclear Medicine Div.

    1984-02-01

    Single photon emission computed tomography (SPECT) was performed with /sup 99/Tcsup(m)-albumin macroaggregates to study human pulmonary perfusion in healthy subjects and patients with respiratory diseases such as chronic obstructive pulmonary disease (COPD) and lung neoplasms. The reconstructed SPECT data was displayed in coronal, transverse, sagittal plane sections and compared to conventional perfusion scans. The SPECT data gave more complicated anatomical information about the extent of damage and morphology of the pulmonary vascular bed. In healthy subjects and COPD patients, qualitative and quantitative assessment of pulmonary perfusion could be obtained from serial SPECT scans with respect to distribution and relative concentration of the injected radiopharmaceutical. Furthermore, SPECT of pulmonary perfusion has been useful in detecting the extent of damage to the pulmonary circulation. This is useful for the preoperative evaluation and staging of lung cancer.

  12. Improved visualization of delayed perfusion in lung MRI

    International Nuclear Information System (INIS)

    Risse, Frank; Eichinger, Monika; Kauczor, Hans-Ulrich; Semmler, Wolfhard; Puderbach, Michael

    2011-01-01

    Introduction: The investigation of pulmonary perfusion by three-dimensional (3D) dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was proposed recently. Subtraction images are generated for clinical evaluation, but temporal information is lost and perfusion defects might therefore be masked in this process. The aim of this study is to demonstrate a simple analysis strategy and classification for 3D-DCE-MRI perfusion datasets in the lung without omitting the temporal information. Materials and methods: Pulmonary perfusion measurements were performed in patients with different lung diseases using a 1.5 T MR-scanner with a time-resolved 3D-GRE pulse sequence. 25 3D-volumes were acquired after iv-injection of 0.1 mmol/kg KG Gadolinium-DTPA. Three parameters were determined for each pixel: (1) peak enhancement S n,max normalized to the arterial input function to detect regions of reduced perfusion; (2) time between arterial peak enhancement in the large pulmonary artery and tissue peak enhancement τ to visualize regions with delayed bolus onset; and (3) ratio R = S n,max /τ was calculated to visualize impaired perfusion, irrespectively of whether related to reduced or delayed perfusion. Results: A manual selection of peak perfusion images is not required. Five different types of perfusion can be found: (1) normal perfusion; (2) delayed non-reduced perfusion; (3) reduced non-delayed perfusion; (4) reduced and delayed perfusion; and (5) no perfusion. Types II and IV could not be seen in subtraction images since the temporal information is necessary for this purpose. Conclusions: The analysis strategy in this study allows for a simple and observer-independent visualization and classification of impaired perfusion in dynamic contrast-enhanced pulmonary perfusion MRI by using the temporal information of the datasets.

  13. PulseCam: high-resolution blood perfusion imaging using a camera and a pulse oximeter.

    Science.gov (United States)

    Kumar, Mayank; Suliburk, James; Veeraraghavan, Ashok; Sabharwal, Ashutosh

    2016-08-01

    Measuring blood perfusion is important in medical care as an indicator of injury and disease. However, currently available devices to measure blood perfusion like laser Doppler flowmetry are bulky, expensive, and cumbersome to use. An alternative low-cost and portable camera-based blood perfusion measurement system has recently been proposed, but such camera-only system produces noisy low-resolution blood perfusion maps. In this paper, we propose a new multi-sensor modality, named PulseCam, for measuring blood perfusion by combining a traditional pulse oximeter with a video camera in a unique way to provide low noise and high-resolution blood perfusion maps. Our proposed multi-sensor modality improves per pixel signal to noise ratio of measured perfusion map by up to 3 dB and improves the spatial resolution by 2 - 3 times compared to best known camera-only methods. Blood perfusion measured in the palm using our PulseCam setup during a post-occlusive reactive hyperemia (PORH) test replicates standard PORH response curve measured using laser Doppler flowmetry device but with much lower cost and a portable setup making it suitable for further development as a clinical device.

  14. Perfusion computed tomography for detection of hepatocellular carcinoma in patients with liver cirrhosis

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Michael A.; Kartalis, Nikolaos; Grigoriadis, Aristeidis; Loizou, Louiza; Leidner, Bertil; Aspelin, Peter; Brismar, Torkel B. [Karolinska Institute, Department of Clinical Science, Intervention and Technology, Division of Medical Imaging and Technology, Stockholm (Sweden); Karolinska University Hospital, Department of Radiology, Stockholm (Sweden); Staal, Per [Karolinska University Hospital, Department of Hepatology, Stockholm (Sweden)

    2015-11-15

    To evaluate the diagnostic performance of dynamic perfusion CT (P-CT) for detection of hepatocellular carcinoma (HCC) in the cirrhotic liver. Twenty-six cirrhotic patients (19 men, aged 69 ± 10 years) with suspicion of HCC prospectively underwent P-CT of the liver using the 4D spiral-mode (100/80 kV; 150/175mAs/rot) of a dual-source system. Two readers assessed: (1) arterial liver-perfusion (ALP), portal-venous liver-perfusion (PLP) and hepatic perfusion-index (HPI) maps alone; and (2) side-by-side with maximum-intensity-projections of arterial time-points (art-MIP) for detection of HCC using histopathology and imaging follow-up as standard of reference. Another reader quantitatively assessed perfusion maps of detected lesions. A total of 48 HCCs in 21/26 (81 %) patients with a mean size of 20 ± 10 mm were detected by histopathology (9/48, 19 %) or imaging follow-up (39/48, 81 %). Detection rates (Reader1/Reader2) of HPI maps and side-by-side analysis of HPI combined with arterial MIP were 92/88 % and 98/96 %, respectively. Positive-predictive values were 63/63 % and 68/71 %, respectively. A cut-off value of ≥85 % HPI and ≥99 % HPI yielded a sensitivity and specificity of 100 %, respectively, for detection of HCC. P-CT shows a high sensitivity for detection of HCC in the cirrhotic liver. Quantitative assessment has the potential to reduce false-positive findings improving the specificity of HCC diagnosis. (orig.)

  15. Quantitative analysis of 99Tcm-MIBI myocardial perfusion images before and after intracoronary stenting

    International Nuclear Information System (INIS)

    Liu Liangfu; Wang Tie; Yin Chuangui; Hu Dayi; Liu Jian; Li Xinhua; Zhang Shourong; Jia Sanqing

    2001-01-01

    Objective: Assessing the value of 99 Tc m -MIBI myocardial perfusion imaging (SPECT) in selection of patients for stenting, and in evaluation of the therapeutic effects of the procedure and its value for following-up of the patients with coronary artery stents. Methods: Rest and dipyridamole stress SPECT were performed in 51 patients with coronary artery diseases and coronary artery stents one week before procedure, one week and half a year (21 cases) after procedure. The location, degree and area of blood flow deficit were quantitatively analyzed. Results: Before the procedure, 50 patients showed blood flow deficit degree >80% (the lower the percentage, the more the blood flow deficit degree), blood flow deficit area 80%, 8 (16%) patients who had been with blood flow deficit area 70% before the procedure, 10 (20%) of them one week after procedure were without any severe blood flow deficit. Their acute myocardial infarctions were significantly improved. Pre-procedure, at rest, the blood flow deficit degree was 38.05%, at one week after procedure became 57.40%, it was improved by 19.35%. The patients with blood flow deficit area of 70.75% at rest before the procedure, showed a deficit area of 55.91% one week after the procedure. Compared to pre-procedure readings, the significant improvement (P 0.05) in blood flow deficit degree and area between rest and dipyridamole stress SPECT before or one week, half a year after procedure. Conclusions: The blood flow deficit degree or area measured by SPECT were improved one week and half a year after procedure. SPECT is valuable in selection of patients for the procedure and in evaluation of the effect of the therapy and it is very useful during follow-up of the patients with intracoronary stents

  16. Perfusion magnetic resonance imaging with continuous arterial spin labeling: methods and clinical applications in the central nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Detre, John A. E-mail: detre@mail.med.upenn.edu; Alsop, David C

    1999-05-01

    Several methods are now available for measuring cerebral perfusion and related hemodynamic parameters using magnetic resonance imaging (MRI). One class of techniques utilizes electromagnetically labeled arterial blood water as a noninvasive diffusible tracer for blood flow measurements. The electromagnetically labeled tracer has a decay rate of T1, which is sufficiently long to allow perfusion of the tissue and microvasculature to be detected. Alternatively, electromagnetic arterial spin labeling (ASL) may be used to obtain qualitative perfusion contrast for detecting changes in blood flow, similar to the use of susceptibility contrast in blood oxygenation level dependent functional MRI (BOLD fMRI) to detect functional activation in the brain. The ability to obtain blood flow maps using a non-invasive and widely available modality such as MRI should greatly enhance the utility of blood flow measurement as a means of gaining further insight into the broad range of hemodynamically related physiology and pathophysiology. This article describes the biophysical considerations pertaining to the generation of quantitative blood flow maps using a particular form of ASL in which arterial blood water is continuously labeled, termed continuous arterial spin labeling (CASL). Technical advances permit multislice perfusion imaging using CASL with reduced sensitivity to motion and transit time effects. Interpretable cerebral perfusion images can now be reliably obtained in a variety of clinical settings including acute stroke, chronic cerebrovascular disease, degenerative diseases and epilepsy. Over the past several years, the technical and theoretical foundations of CASL perfusion MRI techniques have evolved from feasibility studies into practical usage. Currently existing methodologies are sufficient to make reliable and clinically relevant observations which complement structural assessment using MRI. Future technical improvements should further reduce the acquisition times

  17. Quantitative gated SPECT- a comparative study of two algorithms for parameters of perfusion and LV function

    International Nuclear Information System (INIS)

    Ali, A.Z.

    2007-01-01

    Full text: Aim: To compare the perfusion and LV function parameters as quantified by 4D-MSPECT and ECT in the same patient group and a qualitative comparison of the reconstructed slices by two different experts. Materials and methods: Thirty-one consecutive patients underwent gated myocardial perfusion SPECT using a two-day protocol. The gated and ungated data were reconstructed by back projection method. Quantitative analysis was performed on the same set of reconstructed slices by 4D-MSPECT and Emory Cardiac Tool Box. The reconstructed slices were read qualitatively by two different experts on their respective systems. Polar map and functional analysis was performed in both softwares and the results were compared. Results: The concordance between the two experts qualitatively was seen in 78/93(84%) coronary territories. The polar map defects were comparable in LAD (r-value of 0.87) and LCX (r-value of 0.76) territories whereas RCA defects (r-value of 0.04) were not at all correlating. The defect severity showed concordance in 68/93 (73%) coronary territories. There was concordance between 4DMSPECT and the qualitative interpretation in 84/93 (90%) coronary territories whereas ECT showed concordance in only 70/93(75%) coronary territories. The overall sensitivity is marginally higher for ECT (100% vs. 96%) but the overall specificity is much higher with 4 DMSPECT (88% vs. 65%). ESV showed good correlation(r=0.94) of the two softwares with no significant difference in means. EDV and LVEF although had good correlation(r = 0.96 and 0.89) showed high difference in means (p<0.01). Conclusion: Between 4D-MSPECT and ECT, 4D-MSPECT is marginally superior to ECT with reference to qualitative interpretation in view of better specificity. The LVEF values between the two softwares should also not be used interchangeably. (author)

  18. Basic consideration of diffusion/perfusion imaging

    International Nuclear Information System (INIS)

    Tamagawa, Yoichi; Kimura, Hirohiko; Matsuda, Tsuyoshi; Kawamura, Yasutaka; Nakatsugawa, Shigekazu; Ishii, Yasushi; Sakuma, Hajime; Tsukamoto, Tetsuji.

    1990-01-01

    In magnetic resonance imaging (MRI), microscopic motion of biological system such as molecular diffusion of water and microcirculation of blood in the capillary network (perfusion) has been proposed to cause signal attenuation as an intravoxel incoherent motion (IVIM). Quantitative imaging of the IVIM phenomenon was attempted to generate from a set of spin-echo (SE) sequences with or without sensitization by motion probing gradient (MPG). The IVIM imaging is characterized by a parameter, apparent diffusion coefficient (ADC), which is an integration of both the diffusion and the perfusion factor on voxel-by-voxel basis. Hard ware was adjusted to avoid image artifact mainly produced by eddy current. Feasibility of the method was tested using bottle phantom filled with water at different temperature and acetone, and the calculated ADC values of these media corresponded well with accepted values of diffusion. The method was then applied to biological system to investigate mutual participation of diffusion/perfusion on the ADC value. The result of tumor model born on nude mouse suggested considerable participation of perfusion factor which immediately disappeared after sacrificing the animal. Meanwhile, lower value of sacrificed tissue without microcirculation was suggested to have some restriction of diffusion factor by biological tissue. To substantiate the restriction effect on the diffusion, a series of observation have made on a fiber phantom, stalk of celory with botanical fibers and human brain with nerve fibers, in applying unidirectional MPG along the course of these banch of fiber system. The directional restriction effect of diffusion along the course of fiber (diffusion anisotrophy) was clearly visualized as directional change of ADC value. The present method for tissue characterization by diffusion/perfusion on microscopic level will provide a new insight for evaluation of functional derangement in human brain and other organs. (author)

  19. Renal perfusion scintiscan

    Science.gov (United States)

    ... Radionuclide renal perfusion scan; Perfusion scintiscan - renal; Scintiscan - renal perfusion Images Kidney anatomy Kidney - blood and urine flow Intravenous pyelogram References Rottenberg G, Andi AC. Renal ...

  20. Effects of ethanol and hyperosmotic perfusates on albumin synthesis and release

    International Nuclear Information System (INIS)

    Rothschild, M.A.; Oratz, M.; Schreiber, S.S.; Mongelli, J.

    1986-01-01

    Sucrose and ethanol inhibit albumin synthesis; sucrose via an osmotic mechanism and ethanol during its metabolism. The present study was undertaken to compare the effects of both of these agents on albumin synthesis and secretion, and to see if ethanol inhibition could be related to an osmotic effect. Male, fed rabbits served as liver donors in all studies. There were a total of 35 studies: 13 control; 10 ethanol (39 to 52 mM); 4 cycloheximide (0.5 mM), and 8 sucrose (1%). Plasma volume was measured with 125 I-albumin (human) and extracellular volume measured with either /sup 99m/Tc diethylenetriamine pentaacetic acid or [ 14 C]sucrose. During perfusion, rabbit albumin content in the perfusate was measured immunologically every 15 to 30 min for 225 min. Interstitial albumin efflux was measured by the rate of appearance in the perfusate of 125 I-albumin given to 10 other rabbits 3 days prior to hepatic removal and perfusion. During the initial 75 min of perfusion, 74% of the in vivo equilibrated exchangeable 125 I-albumin appeared in the perfusate, and during this period the rabbit albumin that entered the perfusate was taken to represent efflux from the interstitial volume plus synthesis. Rabbit albumin appearing in the perfusate during the later period of 150 min was taken to represent mainly synthesis and was used to calculate the amount of albumin that would be synthesized in 75 min. The difference between these two values would be hepatic interstitial albumin appearing in the perfusate

  1. Quantifying Cerebellum Grey Matter and White Matter Perfusion Using Pulsed Arterial Spin Labeling

    Science.gov (United States)

    Li, Xiufeng; Sarkar, Subhendra N.; Purdy, David E.; Briggs, Richard W.

    2014-01-01

    To facilitate quantification of cerebellum cerebral blood flow (CBF), studies were performed to systematically optimize arterial spin labeling (ASL) parameters for measuring cerebellum perfusion, segment cerebellum to obtain separate CBF values for grey matter (GM) and white matter (WM), and compare FAIR ASST to PICORE. Cerebellum GM and WM CBF were measured with optimized ASL parameters using FAIR ASST and PICORE in five subjects. Influence of volume averaging in voxels on cerebellar grey and white matter boundaries was minimized by high-probability threshold masks. Cerebellar CBF values determined by FAIR ASST were 43.8 ± 5.1 mL/100 g/min for GM and 27.6 ± 4.5 mL/100 g/min for WM. Quantitative perfusion studies indicated that CBF in cerebellum GM is 1.6 times greater than that in cerebellum WM. Compared to PICORE, FAIR ASST produced similar CBF estimations but less subtraction error and lower temporal, spatial, and intersubject variability. These are important advantages for detecting group and/or condition differences in CBF values. PMID:24949416

  2. Quantifying Cerebellum Grey Matter and White Matter Perfusion Using Pulsed Arterial Spin Labeling

    Directory of Open Access Journals (Sweden)

    Xiufeng Li

    2014-01-01

    Full Text Available To facilitate quantification of cerebellum cerebral blood flow (CBF, studies were performed to systematically optimize arterial spin labeling (ASL parameters for measuring cerebellum perfusion, segment cerebellum to obtain separate CBF values for grey matter (GM and white matter (WM, and compare FAIR ASST to PICORE. Cerebellum GM and WM CBF were measured with optimized ASL parameters using FAIR ASST and PICORE in five subjects. Influence of volume averaging in voxels on cerebellar grey and white matter boundaries was minimized by high-probability threshold masks. Cerebellar CBF values determined by FAIR ASST were 43.8 ± 5.1 mL/100 g/min for GM and 27.6 ± 4.5 mL/100 g/min for WM. Quantitative perfusion studies indicated that CBF in cerebellum GM is 1.6 times greater than that in cerebellum WM. Compared to PICORE, FAIR ASST produced similar CBF estimations but less subtraction error and lower temporal, spatial, and intersubject variability. These are important advantages for detecting group and/or condition differences in CBF values.

  3. Quantifying cerebellum grey matter and white matter perfusion using pulsed arterial spin labeling.

    Science.gov (United States)

    Li, Xiufeng; Sarkar, Subhendra N; Purdy, David E; Briggs, Richard W

    2014-01-01

    To facilitate quantification of cerebellum cerebral blood flow (CBF), studies were performed to systematically optimize arterial spin labeling (ASL) parameters for measuring cerebellum perfusion, segment cerebellum to obtain separate CBF values for grey matter (GM) and white matter (WM), and compare FAIR ASST to PICORE. Cerebellum GM and WM CBF were measured with optimized ASL parameters using FAIR ASST and PICORE in five subjects. Influence of volume averaging in voxels on cerebellar grey and white matter boundaries was minimized by high-probability threshold masks. Cerebellar CBF values determined by FAIR ASST were 43.8 ± 5.1 mL/100 g/min for GM and 27.6 ± 4.5 mL/100 g/min for WM. Quantitative perfusion studies indicated that CBF in cerebellum GM is 1.6 times greater than that in cerebellum WM. Compared to PICORE, FAIR ASST produced similar CBF estimations but less subtraction error and lower temporal, spatial, and intersubject variability. These are important advantages for detecting group and/or condition differences in CBF values.

  4. Evaluation of heart perfusion in patients with acute myocardial infarction using dynamic contrast-enhanced magnetic resonance imaging

    DEFF Research Database (Denmark)

    Nielsen, Gitte; Fritz-Hansen, Thomas; Dirks, Christina G

    2004-01-01

    with acute transmural myocardial infarction were studied using a Turbo-fast low angle shot (FLASH) MRI sequence to monitor the first pass of an extravascular contrast agent (CA), gadolinium diethylene triamine pentaacetic acid (Gd-DTPA). Quantitation of perfusion, expressed as Ki (mL/100 g/minute), in five......PURPOSE: To investigate the diagnostic ability of quantitative magnetic resonance imaging (MRI) heart perfusion in acute heart patients, a fast, multislice dynamic contrast-enhanced MRI sequence was applied to patients with acute myocardial infarction. MATERIALS AND METHODS: Seven patients...

  5. Brain perfusion CT in acute stroke: current status

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, Matthias E-mail: matthias.koenig@ruhr-uni-bochum.de

    2003-03-01

    Dynamic perfusion CT has become a widely accepted imaging modality for the diagnostic workup of acute stroke patients. Although compared with standard spiral CT the use of multislice CT has broadened the range from which perfusion data may be derived in a single scan run. The advent of multidetector row technology has not really overcome the limited 3D capability of this technique. Multidetector CT angiography (CTA) of the cerebral arteries may in part compensate for this by providing additional information about the cerebrovascular status. This article describes the basics of cerebral contrast bolus scanning with a special focus on optimization of contrast/noise in order to ensure high quality perfusion maps. Dedicated scan protocols including low tube voltage (80 kV) as well as the use of highly concentrated contrast media are amongst the requirements to achieve optimum contrast signal from the short bolus passage through the brain. Advanced pre and postprocessing algorithms may help reduce the noise level, which may become critical in unconscious stroke victims. Two theoretical concepts have been described for the calculation of tissue perfusion from contrast bolus studies, both of which can be equally employed for brain perfusion imaging. For each perfusion model there are some profound limitations regarding the validity of perfusion values derived from ischemic brain areas. This makes the use of absolute quantitative cerebral blood flow (CBF) values for the discrimination of the infarct core from periinfarct ischemia questionable. Multiparameter imaging using maps of CBF, cerebral blood volume (CBV), and a time parameter of the local bolus transit enables analyzing of the cerebral perfusion status in detail. Perfusion CT exceeds plain CT in depicting cerebral hypoperfusion at its earliest stage yielding a sensitivity of about 90% for the detection of embolic and hemodynamic lesions within cerebral hemispheres. Qualitative assessment of brain perfusion can be

  6. MR-perfusion (MRP) and diffusion-weighted imaging (DWI) in prostate cancer: quantitative and model-based gadobenate dimeglumine MRP parameters in detection of prostate cancer.

    Science.gov (United States)

    Scherr, M K; Seitz, M; Müller-Lisse, U G; Ingrisch, M; Reiser, M F; Müller-Lisse, U L

    2010-12-01

    Various MR methods, including MR-spectroscopy (MRS), dynamic, contrast-enhanced MRI (DCE-MRI), and diffusion-weighted imaging (DWI) have been applied to improve test quality of standard MRI of the prostate. To determine if quantitative, model-based MR-perfusion (MRP) with gadobenate dimeglumine (Gd-BOPTA) discriminates between prostate cancer, benign tissue, and transitional zone (TZ) tissue. 27 patients (age, 65±4 years; PSA 11.0±6.1 ng/ml) with clinical suspicion of prostate cancer underwent standard MRI, 3D MR-spectroscopy (MRS), and MRP with Gd-BOPTA. Based on results of combined MRI/MRS and subsequent guided prostate biopsy alone (17/27), biopsy and radical prostatectomy (9/27), or sufficient negative follow-up (7/27), maps of model-free, deconvolution-based mean transit time (dMTT) were generated for 29 benign regions (bROIs), 14 cancer regions (cROIs), and 18 regions of transitional zone (tzROIs). Applying a 2-compartment exchange model, quantitative perfusion analysis was performed including as parameters: plasma flow (PF), plasma volume (PV), plasma mean transit time (PMTT), extraction flow (EFL), extraction fraction (EFR), interstitial volume (IV) and interstitial mean transit time (IMTT). Two-sided T-tests (significance level pMRP with Gd-BOPTA discriminates between prostate cancer and benign tissue with several parameters. However, distinction of prostate cancer and TZ does not appear to be reliable. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  7. Quantitative Ultrasound Measurements at the Heel

    DEFF Research Database (Denmark)

    Daugschies, M.; Brixen, K.; Hermann, P.

    2015-01-01

    Calcaneal quantitative ultrasound can be used to predict osteoporotic fracture risk, but its ability to monitor therapy is unclear possibly because of its limited precision. We developed a quantitative ultrasound device (foot ultrasound scanner) that measures the speed of sound at the heel...... with the foot ultrasound scanner reduced precision errors by half (p quantitative ultrasound measurements is feasible. (E-mail: m.daugschies@rad.uni-kiel.de) (C) 2015 World Federation for Ultrasound in Medicine & Biology....

  8. A capillary-based perfusion phantom for simulation of brain perfusion for MRI; Ein kapillarbasiertes Phantom zur Simulation der Gehirnperfusion mit der Magnet-Resonanz-Tomografie

    Energy Technology Data Exchange (ETDEWEB)

    Maciak, A.; Kronfeld, A.; Mueller-Forell, W. [Universitaetsklinikum Mainz (Germany). Inst. fuer Neuroradiologie; Wille, C. [Fachhochschule Bingen (Germany). Inst. fuer Informatik; Kempski, O. [Universitaetsklinikum Mainz (Germany). Inst. fuer Neurochirurgische Pathophysiologie; Stoeter, P. [CEDIMAT, Santo Domingo (Dominican Republic). Inst. of Neuroradiology

    2010-10-15

    Purpose: The measurement of the CBF is a non-standardized procedure and there are no reliable gold standards. This abstract shows a capillary-based perfusion-phantom for CE-DSC-MRI. It has equivalent flow properties to those within the tissue capillary system of the human brain and allows the validation of the Siemens Perfusion (MR) software. Materials and Methods: The perfusion phantom consists of a dialyzer for the simulation of the capillary system, a feeding tube for simulation of the AIF and a pulsatile pump for simulation of the heart. Using this perfusion phantom, the exact determination of the gold standard CBF due to the well-known geometry of the phantom is easy. It was validated based on different perfusion measurements. These measurements were investigated with standard software (Siemens Perfusion MR). The software determined the CBF within the capillary system. Based on this CBF, a comparison to the gold standard was made with several different flow speeds. After AIF selection, a total of 726 CBF data points were automatically extracted by the software. Results: This results in a comparison of the gold standard CBF to these 726 CBF values. Therefore, a reproducible and reliable deviation estimation between gold standard CBF and measured CBF using the software was computed. It can be shown that the deviation between gold standard and software-based evaluation ranges between 1 and 31 %. Conclusion: There is no significance for any correlation between flow speed and amount of deviation. The mean measured CBF is 11.4 % higher than the gold standard CBF (p-value < 0.001). Using this kind of perfusion-phantom, the validation of different software systems allows reliable conclusions about their quality. (orig.)

  9. Regional myocardial perfusion of cardioplegic solutions

    International Nuclear Information System (INIS)

    Eugene, J.; Lyons, K.P.; Ott, R.A.; Gelezunas, V.L.; Chang, C.W.; Kowall, M.G.; Haiduc, N.J.

    1987-01-01

    We compared the regional myocardial perfusion of blood cardioplegic solution (BCP) and crystalloid cardioplegic solution (CCP) in 14 mongrel dogs. Cardiopulmonary bypass was established at 28 degrees C, and a hydraulic occluder was placed around the proximal left anterior descending (LAD) coronary artery. In group 1 (N = 7) collateral coronary arteries were ligated; in group 2 (N = 7) collateral coronary arteries were left in situ. After the aorta was clamped, BCP and CCP were alternately perfused at 200 ml/min. The occluder was inflated to produce moderate, severe, and critical LAD stenosis, and regional perfusion was measured by xenon-133 washout with the Silicon Avalanche Radiation Detector. BCP infusion produced a consistently higher aortic pressure, but CCP flow was better than BCP flow under all conditions, particularly without coronary collaterals. Regional myocardial perfusion of CCP is superior to BCP

  10. Ventilation-perfusion distribution in normal subjects.

    Science.gov (United States)

    Beck, Kenneth C; Johnson, Bruce D; Olson, Thomas P; Wilson, Theodore A

    2012-09-01

    Functional values of LogSD of the ventilation distribution (σ(V)) have been reported previously, but functional values of LogSD of the perfusion distribution (σ(q)) and the coefficient of correlation between ventilation and perfusion (ρ) have not been measured in humans. Here, we report values for σ(V), σ(q), and ρ obtained from wash-in data for three gases, helium and two soluble gases, acetylene and dimethyl ether. Normal subjects inspired gas containing the test gases, and the concentrations of the gases at end-expiration during the first 10 breaths were measured with the subjects at rest and at increasing levels of exercise. The regional distribution of ventilation and perfusion was described by a bivariate log-normal distribution with parameters σ(V), σ(q), and ρ, and these parameters were evaluated by matching the values of expired gas concentrations calculated for this distribution to the measured values. Values of cardiac output and LogSD ventilation/perfusion (Va/Q) were obtained. At rest, σ(q) is high (1.08 ± 0.12). With the onset of ventilation, σ(q) decreases to 0.85 ± 0.09 but remains higher than σ(V) (0.43 ± 0.09) at all exercise levels. Rho increases to 0.87 ± 0.07, and the value of LogSD Va/Q for light and moderate exercise is primarily the result of the difference between the magnitudes of σ(q) and σ(V). With known values for the parameters, the bivariate distribution describes the comprehensive distribution of ventilation and perfusion that underlies the distribution of the Va/Q ratio.

  11. Quantitative myocardial perfusion by O-15-water PET

    DEFF Research Database (Denmark)

    Thomassen, Anders; Petersen, Henrik; Johansen, Allan

    2015-01-01

    AIMS: Reporting of quantitative myocardial blood flow (MBF) is typically performed in standard coronary territories. However, coronary anatomy and myocardial vascular territories vary among individuals, and a coronary artery may erroneously be deemed stenosed or not if territorial demarcation...... disease (CAD). METHODS AND RESULTS: Forty-four patients with suspected CAD were included prospectively and underwent coronary CT-angiography and quantitative MBF assessment with O-15-water PET followed by invasive, quantitative coronary angiography, which served as reference. MBF was calculated...

  12. Image quality in CT perfusion imaging of the brain. The role of iodine concentration

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, Matthias; Bueltmann, Eva; Bode-Schnurbus, Lucas; Koenen, Dirk; Mielke, Eckhart; Heuser, Lothar [Knappschaftskrankenhaus Langendreer, Department of Diagnostic and Interventional Radiology and Nuclear Medicine, Ruhr-University Bochum, Bochum (Germany)

    2007-01-15

    The purpose of this study was to evaluate the impact of various iodine contrast concentrations on image quality in computed tomography (CT) perfusion studies. Twenty-one patients with suspicion of cerebral ischemia underwent perfusion CT using two different iodine contrast concentrations: 11 patients received iomeprol 300 (iodine concentration: 300 mg/ml) while ten received the same volume of iomeprol 400 (iodine concentration: 400 mg/ml). Scan parameters were kept constant for both groups. Maps of cerebral blood flow (CBF), cerebral blood volume (CBV), and time to peak (TTP) were calculated from two adjacent slices. Quantitative comparisons were based on measurements of the maximum enhancement [Hounsfield units (HU)] and signal-to-noise index (SNI) on CBF, CBV, and TTP images. Determinations of grey-to-white-matter delineation for each iodine concentration were performed by two blinded readers. Only data from the non-ischemic hemispheres were considered. Both maximum enhancement and SNI values were higher after iomeprol 400, resulting in significantly better image quality in areas of low perfusion. No noteworthy differences were found for normal values of CBF, CBV, and TTP. Qualitative assessment of grey/white matter contrast on CBF and CBV maps revealed better performance for iomeprol 400. For brain perfusion studies, highly concentrated contrast media such as iomeprol 400 is superior to iomeprol 300. (orig.)

  13. Differences in {sup 99m}Tc-HMPAO brain SPET perfusion imaging between Tourette's syndrome and chronic tic disorder in children

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, N.-T.; Lee, B.-F. [Dept. of Nuclear Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan (Taiwan); Chang, Y.-C. [Dept. of Pediatrics, Kaohsiung Chang Kang Children' s Hospital, Kaohsiung, Taiwan (Taiwan); Huang, C.-C. [Dept. of Pediatrics, College of Medicine, National Cheng Kung University, Tainan (Taiwan); Wang, S.-T. [Dept. of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan (Taiwan)

    2001-02-01

    Early differential diagnosis between Tourette's syndrome and chronic tic disorder is difficult but important because both the outcome and the treatment of these two childhood-onset diseases are distinct. We assessed the sensitivity and specificity of brain single-photon emission tomography (SPET) perfusion imaging in distinguishing the two diseases, and characterized their different cerebral perfusion patterns. Twenty-seven children with Tourette's syndrome and 11 with chronic tic disorder (mean age 9.5 and 8.6 years, respectively) underwent brain SPET with technetium-99m hexamethylpropylene amine oxime (HMPAO). Visual interpretation and semi-quantitative analysis of SPET images were performed. On visual interpretation, 22 of 27 (82%) of the Tourette's syndrome group had lesions characterized by decreased perfusion. The left hemisphere was more frequently involved. None of the children with chronic tic disorder had a visible abnormality. Semi-quantitative analysis showed that, compared with children with chronic tic disorder, children with Tourette's syndrome had significantly lower perfusion in the left lateral temporal area and asymmetric perfusion in the dorsolateral frontal, lateral and medial temporal areas. In conclusion, using the visual approach, brain SPET perfusion imaging is sensitive and specific in differentiating Tourette's syndrome and chronic tic disorder. The perfusion difference between the two groups, demonstrated by semi-quantitative analysis, may be related more to the co-morbidity in Tourette's syndrome than to tics per se. (orig.)

  14. Functional and perfusion magnetic resonance imaging at 3 tesla

    International Nuclear Information System (INIS)

    Klarhoefer, M.

    2001-03-01

    This thesis deals with the development and optimization of fast magnetic resonance imaging (MRI) methods for non-invasive functional studies of the human brain and perfusion imaging on a 3 Tesla (T) whole body NMR system. The functional MRI (fMRI) experiments performed showed that single-shot multi-echo EPI and spiral imaging techniques provide fast tools to obtain information about T2* distributions during functional activation in the human brain. Both sequences were found to be useful in the separation of different sources contributing to the functional MR signal like inflow or susceptibility effects in the various vascular environments. An fMRI study dealing with the involvement of prefrontal brain regions in movement preparation lead to inconsistent results. It could not be clarified if these were caused by problems during a spatial normalization process of the individual brains or if the functional paradigm, using very short inter-stimulus intervals, was not suited for the problem investigated. Blood flow velocity measurements in the human finger showed that the use of a strong, small-bore gradient system permits short echo times that reduce flow artefacts and allows high spatial resolution in order to keep systematic errors due to partial volume effects small. With regard to the perfusion investigations an inversion recovery snapshot-FLASH sequence was implemented, which allowed the acquisition of T1 parameter maps of the human brain within a few seconds. The accuracy of this method was demonstrated in test objects. The perfusion investigations with FAIR showed good qualitative results, whereas the quantitative analysis did not yield reproducible findings. A reason for the poor results could be the low signal-to-noise ratio (SNR) of the FAIR images or an incomplete global inversion of the magnetization due to the transmission characteristics of the radio-frequency coil. The BASE sequence that did not require a global inversion yielded quantitative perfusion

  15. Spatial correspondence of 4D CT ventilation and SPECT pulmonary perfusion defects in patients with malignant airway stenosis

    Science.gov (United States)

    Castillo, Richard; Castillo, Edward; McCurdy, Matthew; Gomez, Daniel R.; Block, Alec M.; Bergsma, Derek; Joy, Sarah; Guerrero, Thomas

    2012-04-01

    To determine the spatial overlap agreement between four-dimensional computed tomography (4D CT) ventilation and single photon emission computed tomography (SPECT) perfusion hypo-functioning pulmonary defect regions in a patient population with malignant airway stenosis. Treatment planning 4D CT images were obtained retrospectively for ten lung cancer patients with radiographically demonstrated airway obstruction due to gross tumor volume. Each patient also received a SPECT perfusion study within one week of the planning 4D CT, and prior to the initiation of treatment. Deformable image registration was used to map corresponding lung tissue elements between the extreme component phase images, from which quantitative three-dimensional (3D) images representing the local pulmonary specific ventilation were constructed. Semi-automated segmentation of the percentile perfusion distribution was performed to identify regional defects distal to the known obstructing lesion. Semi-automated segmentation was similarly performed by multiple observers to delineate corresponding defect regions depicted on 4D CT ventilation. Normalized Dice similarity coefficient (NDSC) indices were determined for each observer between SPECT perfusion and 4D CT ventilation defect regions to assess spatial overlap agreement. Tidal volumes determined from 4D CT ventilation were evaluated versus measurements obtained from lung parenchyma segmentation. Linear regression resulted in a linear fit with slope = 1.01 (R2 = 0.99). Respective values for the average DSC, NDSC1 mm and NDSC2 mm for all cases and multiple observers were 0.78, 0.88 and 0.99, indicating that, on average, spatial overlap agreement between ventilation and perfusion defect regions was comparable to the threshold for agreement within 1-2 mm uncertainty. Corresponding coefficients of variation for all metrics were similarly in the range: 0.10%-19%. This study is the first to quantitatively assess 3D spatial overlap agreement between

  16. Arterial spin labelling MRI for assessment of cerebral perfusion in children with moyamoya disease: comparison with dynamic susceptibility contrast MRI

    Energy Technology Data Exchange (ETDEWEB)

    Goetti, Robert [University Children' s Hospital Zurich, Department of Diagnostic Imaging, Zurich (Switzerland); University Hospital Zurich, Department of Diagnostic and Interventional Radiology, Zurich (Switzerland); O' Gorman, Ruth [University Children' s Hospital Zurich, Center for MR Research, Zurich (Switzerland); Khan, Nadia [University Children' s Hospital Zurich, Moyamoya Center, Division of Neurosurgery, Department of Surgery, Zurich (Switzerland); Kellenberger, Christian J.; Scheer, Ianina [University Children' s Hospital Zurich, Department of Diagnostic Imaging, Zurich (Switzerland)

    2013-05-15

    This study seeks to evaluate the diagnostic accuracy of cerebral perfusion imaging with arterial spin labelling (ASL) MR imaging in children with moyamoya disease compared to dynamic susceptibility contrast (DSC) imaging. Ten children (7 females; age, 9.2 {+-} 5.4 years) with moyamoya disease underwent cerebral perfusion imaging with ASL and DSC on a 3-T MRI scanner in the same session. Cerebral perfusion images were acquired with ASL (pulsed continuous 3D ASL sequence, 32 axial slices, TR = 5.5 s, TE = 25 ms, FOV = 24 cm, matrix = 128 x 128) and DSC (gradient echo EPI sequence, 35 volumes of 28 axial slices, TR = 2,000 ms, TE = 36 ms, FOV = 24 cm, matrix = 96 x 96, 0.2 ml/kg Gd-DOTA). Cerebral blood flow maps were generated. ASL and DSC images were qualitatively assessed regarding perfusion of left and right ACA, MCA, and PCA territories by two independent readers using a 3-point-Likert scale and quantitative relative cerebral blood flow (rCBF) was calculated. Correlation between ASL and DSC for qualitative and quantitative assessment and the accuracy of ASL for the detection of reduced perfusion per territory with DSC serving as the standard of reference were calculated. With a good interreader agreement ({kappa} = 0.62) qualitative perfusion assessment with ASL and DSC showed a strong and significant correlation ({rho} = 0.77; p < 0.001), as did quantitative rCBF (r = 0.79; p < 0.001). ASL showed a sensitivity, specificity and accuracy of 94 %, 93 %, and 93 % for the detection of reduced perfusion per territory. In children with moyamoya disease, unenhanced ASL enables the detection of reduced perfusion per vascular territory with a good accuracy compared to contrast-enhanced DSC. (orig.)

  17. Measurement of lung volume by lung perfusion scanning using SPECT and prediction of postoperative respiratory function

    International Nuclear Information System (INIS)

    Andou, Akio; Shimizu, Nobuyosi; Maruyama, Shuichiro

    1992-01-01

    Measurement of lung volume by lung perfusion scanning using single photon emission computed tomography (SPECT) and its usefulness for the prediction of respiratory function after lung resection were investigated. The lung volumes calculated in 5 patients by SPECT (threshold level 20%) using 99m Tc-macroaggregated albumin (MAA), related very closely to the actually measured lung volumes. This results prompted us to calculate the total lung volume and the volume of the lobe to be resected in 18 patients with lung cancer by SPECT. Based on the data obtained, postoperative respiratory function was predicted. The predicted values of forced vital capacity (FVC), forced expiratory volume (FEV 1.0 ), and maximum vital volume (MVV) showed closer correlations with the actually measured postoperative values (FVC, FEV 1.0 , MVV : r=0.944, r=0.917, r=0.795 respectively), than the values predicted by the ordinary lung perfusion scanning. This method facilitates more detailed evaluation of local lung function on a lobe-by-lobe basis, and can be applied clinically to predict postoperative respiratory function. (author)

  18. Quantitative imaging by pixel-based contrast-enhanced ultrasound reveals a linear relationship between synovial vascular perfusion and the recruitment of pathogenic IL-17A-F+IL-23+ CD161+ CD4+ T helper cells in psoriatic arthritis joints.

    Science.gov (United States)

    Fiocco, Ugo; Stramare, Roberto; Martini, Veronica; Coran, Alessandro; Caso, Francesco; Costa, Luisa; Felicetti, Mara; Rizzo, Gaia; Tonietto, Matteo; Scanu, Anna; Oliviero, Francesca; Raffeiner, Bernd; Vezzù, Maristella; Lunardi, Francesca; Scarpa, Raffaele; Sacerdoti, David; Rubaltelli, Leopoldo; Punzi, Leonardo; Doria, Andrea; Grisan, Enrico

    2017-02-01

    To develop quantitative imaging biomarkers of synovial tissue perfusion by pixel-based contrast-enhanced ultrasound (CEUS), we studied the relationship between CEUS synovial vascular perfusion and the frequencies of pathogenic T helper (Th)-17 cells in psoriatic arthritis (PsA) joints. Eight consecutive patients with PsA were enrolled in this study. Gray scale CEUS evaluation was performed on the same joint immediately after joint aspiration, by automatic assessment perfusion data, using a new quantification approach of pixel-based analysis and the gamma-variate model. The set of perfusional parameters considered by the time intensity curve includes the maximum value (peak) of the signal intensity curve, the blood volume index or area under the curve, (BVI, AUC) and the contrast mean transit time (MTT). The direct ex vivo analysis of the frequencies of SF IL17A-F + CD161 + IL23 + CD4 + T cells subsets were quantified by fluorescence-activated cell sorter (FACS). In cross-sectional analyses, when tested for multiple comparison setting, a false discovery rate at 10%, a common pattern of correlations between CEUS Peak, AUC (BVI) and MTT parameters with the IL17A-F + IL23 + - IL17A-F + CD161 + - and IL17A-F + CD161 + IL23 + CD4 + T cells subsets, as well as lack of correlation between both peak and AUC values and both CD4 + T and CD4 + IL23 + T cells, was observed. The pixel-based CEUS assessment is a truly measure synovial inflammation, as a useful tool to develop quantitative imaging biomarker for monitoring target therapeutics in PsA.

  19. Myocardial perfusion scintigraphy with thallium-201 - principle and method

    International Nuclear Information System (INIS)

    Dressler, J.

    1981-01-01

    Since from the cardiological and cardio-surgical aspects non-invasive methods practicable in the diagnostics of regional myocardial blood perfusion are claiming priority, the myocardial perfusion scintigraphy with thallium 201 has gained more and more importance in the diagnostics of coronary heart diseases. Although radiothallium because of its nucleo-physical characteristics is not regarded as ideal radiopharmaceutical, it is at present, because of its potassium-analogue biokinetics the best radiopharmaceutical to represent the regional coronary perfusion distribution, the vitality and configuration of the heart muscle non-invasively. With careful clinical indication and under consideration of the physico-technical limitations, the informative value provided by the serial scintigraphy with thallium 201 is greater than that provided by the excercise ECG. Various possibilities for solving the problem of quantitative analysis of the myocardial scintigrams have been given. Up to the present day a standardised evaluation procedure corresponding to that of the visual scintigram interpretation has not yet found general acceptance. (orig.) [de

  20. Perfusion MRI (dynamic susceptibility contrast imaging) with different measurement approaches for the evaluation of blood flow and blood volume in human gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Thomsen, H. (Den Sundhedsfaglige Kandidatuddannelse, Aarhus Universitet Bygning 1264, Aarhus (Denmark); University College Nordjylland, Aalborg (Denmark)), Email: hnt@ucn.dk; Steffensen, E. (Aalborg Hospital/Aarhus University Hospital, Department of Radiology, Aalborg (Denmark)); Larsson, E. M. (Aalborg Hospital/Aarhus University Hospital, Department of Radiology, Aalborg (Denmark); Uppsala University Hospital, Department of Radiology, Uppsala (Sweden))

    2012-02-15

    Background. Perfusion magnetic resonance imaging (MRI) is increasingly used in the evaluation of brain tumors. Relative cerebral blood volume (rCBV) is usually obtained by dynamic susceptibility contrast (DSC) MRI using normal appearing white matter as reference region. The emerging perfusion technique arterial spin labelling (ASL) presently provides measurement only of cerebral blood flow (CBF), which has not been widely used in human brain tumor studies. Purpose. To assess if measurement of blood flow is comparable with measurement of blood volume in human biopsy-proven gliomas obtained by DSC-MRI using two different regions for normalization and two different measurement approaches. Material and Methods. Retrospective study of 61 patients with different types of gliomas examined with DSC perfusion MRI. Regions of interest (ROIs) were placed in tumor portions with maximum perfusion on rCBF and rCBV maps, with contralateral normal appearing white matter and cerebellum as reference regions. Larger ROIs were drawn for histogram analyses. The type and grade of the gliomas were obtained by histopathology. Statistical comparison was made between diffuse astrocytomas, anaplastic astrocytomas, and glioblastomas. Results. rCBF and rCBV measurements obtained with the maximum perfusion method were correlated when normalized to white matter (r = 0.60) and to the cerebellum (r = 0.49). Histogram analyses of rCBF and rCBV showed that mean and median values as well as skewness and peak position were correlated (0.61 < r < 0.93), whereas for kurtosis and peak height, the correlation coefficient was about 0.3 when comparing rCBF and rCBV values for the same reference region. Neither rCBF nor rCBV quantification provided a statistically significant difference between the three types of gliomas. However, both rCBF and rCBV tended to increase with tumor grade and to be lower in patients who had undergone resection/treatment. Conclusion. rCBF measurements normalized to white matter

  1. CT perfusion imaging of the liver and the spleen in patients with cirrhosis: Is there a correlation between perfusion and portal venous hypertension?

    Science.gov (United States)

    Talakić, Emina; Schaffellner, Silvia; Kniepeiss, Daniela; Mueller, Helmut; Stauber, Rudolf; Quehenberger, Franz; Schoellnast, Helmut

    2017-10-01

    To correlate hepatic and splenic CT perfusion parameters with hepatic venous pressure gradient (HVPG) measurements in patients with cirrhosis. Twenty-one patients with cirrhosis (males, 17; females, 4; mean ± SD age, 57 ± 7 years) underwent hepatic and splenic perfusion CT on a 320-detector row volume scanner as well as invasive measurement of HVPG. Different CT perfusion algorithms (maximum slope analysis and Patlak plot) were used to measure hepatic arterial flow (HAF), portal venous flow (PVF), hepatic perfusion index (HPI), splenic arterial flow (SAF), splenic blood volume (SBV) and splenic clearance (SCL). Hepatic and splenic perfusion parameters were correlated with HVPG, and sensitivity and specificity for detection of severe portal hypertension (≥12 mmHg) were calculated. The Spearman correlation coefficient was -0.53 (p portal hypertension. • SAF and SCL are statistically significantly correlated with HVPG • SCL showed stronger correlation with HVPG than SAF • 125 ml/min/100 ml SCL-cut-off yielded 94 % sensitivity, 100 % specificity for severe PH • HAF, PVF and HPI showed no statistically significant correlation with HVPG.

  2. Vicarious audiovisual learning in perfusion education.

    Science.gov (United States)

    Rath, Thomas E; Holt, David W

    2010-12-01

    Perfusion technology is a mechanical and visual science traditionally taught with didactic instruction combined with clinical experience. It is difficult to provide perfusion students the opportunity to experience difficult clinical situations, set up complex perfusion equipment, or observe corrective measures taken during catastrophic events because of patient safety concerns. Although high fidelity simulators offer exciting opportunities for future perfusion training, we explore the use of a less costly low fidelity form of simulation instruction, vicarious audiovisual learning. Two low fidelity modes of instruction; description with text and a vicarious, first person audiovisual production depicting the same content were compared. Students (n = 37) sampled from five North American perfusion schools were prospectively randomized to one of two online learning modules, text or video.These modules described the setup and operation of the MAQUET ROTAFLOW stand-alone centrifugal console and pump. Using a 10 question multiple-choice test, students were assessed immediately after viewing the module (test #1) and then again 2 weeks later (test #2) to determine cognition and recall of the module content. In addition, students completed a questionnaire assessing the learning preferences of today's perfusion student. Mean test scores from test #1 for video learners (n = 18) were significantly higher (88.89%) than for text learners (n = 19) (74.74%), (p audiovisual learning modules may be an efficacious, low cost means of delivering perfusion training on subjects such as equipment setup and operation. Video learning appears to improve cognition and retention of learned content and may play an important role in how we teach perfusion in the future, as simulation technology becomes more prevalent.

  3. Renal Cell Carcinoma Perfusion before and after Radiofrequency Ablation Measured with Dynamic Contrast Enhanced MRI: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Tze Min Wah

    2018-01-01

    Full Text Available Aim: To investigate if the early treatment effects of radiofrequency ablation (RFA on renal cell carcinoma (RCC can be detected with dynamic contrast enhanced (DCE-MRI and to correlate RCC perfusion with RFA treatment time. Materials and methods: 20 patients undergoing RFA of their 21 RCCs were evaluated with DCE-MRI before and at one month after RFA treatment. Perfusion was estimated using the maximum slope technique at two independent sittings. Total RCC blood flow was correlated with total RFA treatment time, tumour location, size and histology. Results: DCE-MRI examinations were successfully evaluated for 21 RCCs (size from 1.3 to 4 cm. Perfusion of the RCCs decreased significantly (p < 0.0001 from a mean of 203 (±80 mL/min/100 mL before RFA to 8.1 (±3.1 mL/min/100 mL after RFA with low intra-observer variability (r ≥ 0.99, p < 0.0001. There was an excellent correlation (r = 0.95 between time to complete ablation and pre-treatment total RCC blood flow. Tumours with an exophytic location exhibit the lowest mean RFA treatment time. Conclusion: DCE-MRI can detect early treatment effects by measuring RCC perfusion before and after RFA. Perfusion significantly decreases in the zone of ablation, suggesting that it may be useful for the assessment of treatment efficacy. Pre-RFA RCC blood flow may be used to predict RFA treatment time.

  4. Transplacental pharmacokinetics of diclofenac in perfused human placenta.

    Science.gov (United States)

    Shintaku, Kyohei; Hori, Satoko; Tsujimoto, Masayuki; Nagata, Hideaki; Satoh, Shoji; Tsukimori, Kiyomi; Nakano, Hitoo; Fujii, Tomoyuki; Taketani, Yuji; Ohtani, Hisakazu; Sawada, Yasufumi

    2009-05-01

    The aims of this study were to evaluate the transplacental transfer properties of diclofenac and to determine the effect of L-lactic acid on the transplacental transfer of diclofenac. The maternal and fetal vessels of human placenta were perfused in a single-pass mode with a solution containing diclofenac and antipyrine. The transplacental pharmacokinetic model was fitted to the time profiles of the drug concentrations in the effluent and placenta to obtain transplacental pharmacokinetic parameters. In addition, chloride ion in the perfusate was partially replaced with L-lactic acid to see the change in the transplacental transfer properties of diclofenac. The TPT(ss) value (ratio of the rate of amount transferred across the placenta to that infused in the steady state) of diclofenac was 2.22%, which was approximately one-third that of antipyrine and was significantly reduced in the presence of L-lactic acid. The transplacental pharmacokinetic model could adequately explain the transplacental transfer of diclofenac with influx clearances from maternal and fetal perfusates to placental tissue of 0.276 and 0.0345 ml/min/g cotyledon and efflux rate constants from placental tissue to maternal and fetal perfusates of 0.406 and 0.0337 min(-1), respectively. By taking into account protein binding, the placental tissue/plasma concentration ratio in humans for diclofenac was estimated to be 0.108 ml/g of cotyledon and was smaller than that of antipyrine. In conclusion, human placental perfusion and transplacental pharmacokinetic modeling allowed us to determine the transplacental transfer properties of diclofenac quantitatively. Diclofenac may share transplacental transfer system(s) with L-lactic acid.

  5. [Myocardial perfusion scintigraphy - short form of the German guideline].

    Science.gov (United States)

    Lindner, O; Burchert, W; Hacker, M; Schaefer, W; Schmidt, M; Schober, O; Schwaiger, M; vom Dahl, J; Zimmermann, R; Schäfers, M

    2013-01-01

    This guideline is a short summary of the guideline for myocardial perfusion scintigraphy published by the Association of the Scientific Medical Societies in Ger-many (AWMF). The purpose of this guideline is to provide practical assistance for indication and examination procedures as well as image analysis and to present the state-of-the-art of myocardial-perfusion-scintigraphy. After a short introduction on the fundamentals of imaging, precise and detailed information is given on the indications, patient preparation, stress testing, radiopharmaceuticals, examination protocols and techniques, radiation exposure, data reconstruction as well as information on visual and quantitative image analysis and interpretation. In addition possible pitfalls, artefacts and key elements of reporting are described.

  6. A quantitative study of brain perfusion patterns of 99mTc-ECD SPECT in children with developmental disabilities

    International Nuclear Information System (INIS)

    Hirano, Keiko; Aiba, Hideo; Oguro, Katsuhiko

    2004-01-01

    The aim of this study was to investigate the relationship between developmental disabilities and brain perfusion patterns. We performed technetium-99m-ethylcysteinate dimer ( 99m Tc-ECD) single photon emission computed tomography (SPECT) in 30 children with neurological disorders using the Patlak plot method. In children without developmental disabilities, the distribution of regional cortical perfusion evolved in relation to brain maturation. At one month of age, there was a predominant uptake in the perirolandic cortex. Radionuclide uptake in both the parietal and occipital cortices became evident by three months. Uptake in the temporal and frontal cortex increased by 6 and 11 months, respectively. Brain perfusion showed a pattern similar to that of adults by two years of age at the latest. In children with developmental disabilities, developmental changes of brain perfusion were delayed compared to normally developing children. Brain SPECT is a useful tool to assess the brain maturation in children with developmental disabilities. (author)

  7. Simultaneous assessment of myocardial perfusion and function during mental stress in patients with chronic coronary artery disease.

    Science.gov (United States)

    Arrighi, James A; Burg, Matthew; Cohen, Ira S; Soufer, Robert

    2003-01-01

    Mental stress (MS) is an important provocateur of myocardial ischemia in many patients with chronic coronary artery disease. The majority of laboratory assessments of ischemia in response to MS have included measurements of either myocardial perfusion or function alone. We performed this study to determine the relationship between alterations in perfusion and ventricular function during MS. Methods and results Twenty-eight patients with reversible perfusion defects on exercise or pharmacologic stress myocardial perfusion imaging (MPI) underwent simultaneous technetium 99m sestamibi single photon emission computed tomography (SPECT) MPI and transthoracic echocardiography at rest and during MS according to a mental arithmetic protocol. In all cases the MS study was performed within 4 weeks of the initial exercise or pharmacologic MPI that demonstrated ischemia. SPECT studies were analyzed visually with the use of a 13-segment model and quantitatively by semiautomated circumferential profile analysis. Echocardiograms were graded on a segmental model for regional wall motion on a 4-point scale. Of 28 patients, 18 (64%) had perfusion defects and/or left ventricular dysfunction develop during MS: 9 (32%) had myocardial perfusion defects develop, 6 (21%) had regional or global left ventricular dysfunction develop, and 3 (11%) had both perfusion defects and left ventricular dysfunction develop. The overall concordance between perfusion and function criteria for ischemia during MS was only 46%. Among 9 patients with MS-induced left ventricular dysfunction, 5 had new regional wall motion abnormalities and 4 had a global decrement in function. In patients with MS-induced ischemia by SPECT, the number of reversible perfusion defects was similar during both MS and exercise/pharmacologic stress (2.8 +/- 2.0 vs 3.5 +/- 1.8, P =.41). Hemodynamic changes during MS were similar whether patients were divided on the basis of perfusion defects or left ventricular dysfunction during MS

  8. Quantitative autoradiography - a method of radioactivity measurement

    International Nuclear Information System (INIS)

    Treutler, H.C.; Freyer, K.

    1988-01-01

    In the last years the autoradiography has been developed to a quantitative method of radioactivity measurement. Operating techniques of quantitative autoradiography are demonstrated using special standard objects. Influences of irradiation quality, of backscattering in sample and detector materials, and of sensitivity and fading of the detectors are considered. Furthermore, questions of quantitative evaluation of autoradiograms are dealt with, and measuring errors are discussed. Finally, some practical uses of quantitative autoradiography are demonstrated by means of the estimation of activity distribution in radioactive foil samples. (author)

  9. Can quantitative contrast-enhanced ultrasonography predict cervical tumor response to neoadjuvant chemotherapy?

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Chuan; Liu, Long-Zhong; Zheng, Wei [Department of Ultrasound, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060 (China); Xie, Yan-Jun [Department of Gynecology and Obstetrics, Zhongcun Town hospital, 140 Renmin Road, Zhongcun Town, Panyu District, Guangzhou, 511400 (China); Xiong, Yong-Hong; Li, An-Hua [Department of Ultrasound, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060 (China); Pei, Xiao-Qing, E-mail: peixq@sysucc.org.cn [Department of Ultrasound, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060 (China)

    2016-11-15

    Highlights: • We assessed the clinical value of quantitative CEUS for prediction of cervical tumor perfusion response to NACT. • IMAX, RT, and TTP changed significantly after one NACT cycle. • Pre-treatment IMAX positively correlated with the absolute and percentage changes in all cervical tumor IMAX after NACT. • Pre-treatment IMAX may be predictive of NACT perfusion response in cervical tumor. - Abstract: Objective: To evaluate the feasibility of quantitative contrast-enhanced ultrasonography (CEUS) for predicting and assessing cervical tumor response to neoadjuvant chemotherapy (NACT). Methods: Thirty-eight cases with stage IB2 or IIA cervical cancer were studied using CEUS before and after one cycle of NACT. The quantitative CEUS parameters maximum intensity (IMAX), rise time (RT), time to peak (TTP), and mean transit time (MTT) were compared between cervical tumors and myometrium (reference zone) using Sonoliver software. Absolute and relative changes in quantitative CEUS parameters were also compared among complete response, partial response, and non-responsive groups. Correlations between pre-treatment IMAX and changes in quantitative parameters were assessed after one cycle of NACT. Results: There were significant changes in cervical tumor IMAX (P < 0.001), RT (P < 0.05), and TTP (P < 0.05) after one cycle of NACT. According to the Response Evaluation Criteria In Solid Tumors guidelines, the enrollments were divided into complete response, partial response, stable disease and progressive disease groups. There were no significant differences in quantitative CEUS parameters among complete response, partial response, and non-responsive groups (P > 0.05). In the stable disease group (n = 17), cervical tumor IMAX, RT, and TTP decreased significantly after NACT (P < 0.001). The absolute and percentage changes in IMAX were positively correlated with pre-treatment IMAX in all 38 patients (r = 0.576, P < 0.001 and r = 0.429, P < 0.001). Conclusion

  10. 99mTc-HMPAO perfusion indices and brain-mapping in stroke patients

    International Nuclear Information System (INIS)

    Minchev, D.; Klisarova, A.

    1997-01-01

    It is the purpose of the study to establish correlations between 99mTc-HMPAO (hexamethylpropylenaminoxym) perfusion indices and changes in brain-mapping among patients with acute stroke. Forty-six patients with definitely proved stroke syndrome are investigated in the first 72 hours and 15 days after the onset of cerebrovascular accident using clinical, neuro-physiological and 99mTc-HMPAO SPECT methods. Regional and hemispheric perfusion asymmetry correlate with the brain-mapping cerebral disturbance (p < 0.001). In patients presenting focal hypoperfusion there is a significant correlation between perfusion indices and local EEG disturbance (r = 0.87). The dynamic study demonstrates a significant correlation between perfusion indices and electrical cerebral disturbance in the first 72 hours after the onset of the cerebrovascular accident. Fifteen days later no such correlation is documented. The obtained results demonstrate the essential practical bearing of 99mTc-HMPAO SPECT indices on the objective assessment of perfusion hemispheric and regional asymmetry in stroke patients, and the possibility of being used for indirect estimation of the regional cerebral blood flow in acute stroke patients against the background of visual and quantitative EEG changes (author)

  11. Discrepancy between microsphere and diffusible tracer estimates of perfusion to ischemic myocardium

    International Nuclear Information System (INIS)

    Yoshida, S.; Akizuki, S.; Gowski, D.; Downey, J.M.

    1985-01-01

    This study critically tests the ability of microspheres to accurately measure perfusion to ischemic myocardium. The left anterior descending coronary artery was cannulated and perfused with arterial blood. The perfusion line was clamped, and a sidearm between the clamp and the cannula was opened to the atmosphere, allowing blood to flow retrograde from the distal segment of the artery. Measurement of regional blood flow during retrograde flow diversion with 15-micron microspheres revealed essentially zero flow to the perfused segment (0.005 ml X min-1 X g-1). Measurements under the same conditions by either 86 Rb uptake or 133 Xe washout revealed that an appreciable perfusion of the tissue persisted during retrograde flow diversion (0.043 and 0.11 ml X min-1 X g-1, respectively, for the 2 methods). Thus, the authors have identified a condition during which microspheres indicate zero flow to the tissue but diffusible tracers can both be washed in and washed out at a brisk rate. They conclude that with simple occlusion there is a hidden component of perfusion to an ischemic zone that cannot be measured by microspheres, causing them to underestimate flow by about 25% in that condition

  12. Partial scan artifact reduction (PSAR) for the assessment of cardiac perfusion in dynamic phase-correlated CT

    Energy Technology Data Exchange (ETDEWEB)

    Stenner, Philip; Schmidt, Bernhard; Bruder, Herbert; Allmendinger, Thomas; Haberland, Ulrike; Flohr, Thomas; Kachelriess, Marc [Institute of Medical Physics, Henkestrasse 91, 91052 Erlangen (Germany); Siemens AG, Healthcare Sector, Siemensstrasse 1, 91301 Forchheim (Germany); Institute of Medical Physics, Henkestrasse. 91, 91052 Erlangen (Germany)

    2009-12-15

    Purpose: Cardiac CT achieves its high temporal resolution by lowering the scan range from 2{pi} to {pi} plus fan angle (partial scan). This, however, introduces CT-value variations, depending on the angular position of the {pi} range. These partial scan artifacts are of the order of a few HU and prevent the quantitative evaluation of perfusion measurements. The authors present the new algorithm partial scan artifact reduction (PSAR) that corrects a dynamic phase-correlated scan without a priori information. Methods: In general, a full scan does not suffer from partial scan artifacts since all projections in [0, 2{pi}] contribute to the data. To maintain the optimum temporal resolution and the phase correlation, PSAR creates an artificial full scan p{sub n}{sup AF} by projectionwise averaging a set of neighboring partial scans p{sub n}{sup P} from the same perfusion examination (typically N{approx_equal}30 phase-correlated partial scans distributed over 20 s and n=1,...,N). Corresponding to the angular range of each partial scan, the authors extract virtual partial scans p{sub n}{sup V} from the artificial full scan p{sub n}{sup AF}. A standard reconstruction yields the corresponding images f{sub n}{sup P}, f{sub n}{sup AF}, and f{sub n}{sup V}. Subtracting the virtual partial scan image f{sub n}{sup V} from the artificial full scan image f{sub n}{sup AF} yields an artifact image that can be used to correct the original partial scan image: f{sub n}{sup C}=f{sub n}{sup P}-f{sub n}{sup V}+f{sub n}{sup AF}, where f{sub n}{sup C} is the corrected image. Results: The authors evaluated the effects of scattered radiation on the partial scan artifacts using simulated and measured water phantoms and found a strong correlation. The PSAR algorithm has been validated with a simulated semianthropomorphic heart phantom and with measurements of a dynamic biological perfusion phantom. For the stationary phantoms, real full scans have been performed to provide theoretical reference

  13. Prediction of Liver Function by Using Magnetic Resonance-based Portal Venous Perfusion Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Cao Yue, E-mail: yuecao@umich.edu [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States); Wang Hesheng [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Johnson, Timothy D. [Department of Biostatistics, University of Michigan, Ann Arbor, Michigan (United States); Pan, Charlie [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Hussain, Hero [Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States); Balter, James M.; Normolle, Daniel; Ben-Josef, Edgar; Ten Haken, Randall K.; Lawrence, Theodore S.; Feng, Mary [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States)

    2013-01-01

    Purpose: To evaluate whether liver function can be assessed globally and spatially by using volumetric dynamic contrast-enhanced magnetic resonance imaging MRI (DCE-MRI) to potentially aid in adaptive treatment planning. Methods and Materials: Seventeen patients with intrahepatic cancer undergoing focal radiation therapy (RT) were enrolled in institution review board-approved prospective studies to obtain DCE-MRI (to measure regional perfusion) and indocyanine green (ICG) clearance rates (to measure overall liver function) prior to, during, and at 1 and 2 months after treatment. The volumetric distribution of portal venous perfusion in the whole liver was estimated for each scan. We assessed the correlation between mean portal venous perfusion in the nontumor volume of the liver and overall liver function measured by ICG before, during, and after RT. The dose response for regional portal venous perfusion to RT was determined using a linear mixed effects model. Results: There was a significant correlation between the ICG clearance rate and mean portal venous perfusion in the functioning liver parenchyma, suggesting that portal venous perfusion could be used as a surrogate for function. Reduction in regional venous perfusion 1 month after RT was predicted by the locally accumulated biologically corrected dose at the end of RT (P<.0007). Regional portal venous perfusion measured during RT was a significant predictor for regional venous perfusion assessed 1 month after RT (P<.00001). Global hypovenous perfusion pre-RT was observed in 4 patients (3 patients with hepatocellular carcinoma and cirrhosis), 3 of whom had recovered from hypoperfusion, except in the highest dose regions, post-RT. In addition, 3 patients who had normal perfusion pre-RT had marked hypervenous perfusion or reperfusion in low-dose regions post-RT. Conclusions: This study suggests that MR-based volumetric hepatic perfusion imaging may be a biomarker for spatial distribution of liver function, which

  14. Renal MR angiography and perfusion in the pig using hyperpolarized water.

    Science.gov (United States)

    Wigh Lipsø, Kasper; Hansen, Esben Søvsø Szocska; Tougaard, Rasmus Stilling; Laustsen, Christoffer; Ardenkjaer-Larsen, Jan Henrik

    2017-09-01

    To study hyperpolarized water as an angiography and perfusion tracer in a large animal model. Protons dissolved in deuterium oxide (D 2 O) were hyperpolarized in a SPINlab dissolution dynamic nuclear polarization (dDNP) polarizer and subsequently investigated in vivo in a pig model at 3 Tesla (T). Approximately 15 mL of hyperpolarized water was injected in the renal artery by hand over 4-5 s. A liquid state polarization of 5.3 ± 0.9% of 3.8 M protons in 15 mL of deuterium oxide was achieved with a T 1 of 24 ± 1 s. This allowed injection through an arterial catheter into the renal artery and subsequently high-contrast imaging of the entire kidney parenchyma over several seconds. The dynamic images allow quantification of tissue perfusion, with a mean cortical perfusion of 504 ± 123 mL/100 mL/min. Hyperpolarized water MR imaging was successfully demonstrated as a renal angiography and perfusion method. Quantitative perfusion maps of the kidney were obtained in agreement with literature and control experiments with gadolinium contrast. Magn Reson Med 78:1131-1135, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  15. Feasibility of ASL spinal bone marrow perfusion imaging with optimized inversion time.

    Science.gov (United States)

    Xing, Dong; Zha, Yunfei; Yan, Liyong; Wang, Kejun; Gong, Wei; Lin, Hui

    2015-11-01

    To assess the correlation between flow-sensitive alternating inversion recovery (FAIR) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in the measurement of spinal bone marrow (SBM) perfusion; in addition, to assess for an optimized inversion time (TI) as well as the reproducibility of SBM FAIR perfusion. The optimized TI of a FAIR SBM perfusion experiment was carried out on 14 volunteers; two adjacent vertebral bodies were selected from each volunteer to measure the change of signal intensity (ΔM) and the signal-to-noise ratio (SNR) of FAIR perfusion MRI with five different TIs. Then, reproducibility of FAIR data from 10 volunteers was assessed by the reposition SBM FAIR experiments. Finally, FAIR and DCE-MRI were performed on 27 subjects. The correlation between the blood flow on FAIR (BFASL ) and perfusion-related parameters on DCE-MRI was evaluated. The maximum value of ΔM and SNR were 36.39 ± 12.53 and 2.38 ± 0.97, respectively; both were obtained when TI was near 1200 msec. There were no significant difference between the two successive measurements of SBM BFASL perfusion (P = 0.879), and the within-subject coefficients of variation (wCV) of the measurements was 3.28%. The BFASL showed a close correlation with K(trans) (P FAIR perfusion scan protocol has good reproducibility, and as blood flow measurement on FAIR is reliable and closely related with the parameters on DCE-MRI, FAIR is feasible for measuring SBM blood flow. © 2015 Wiley Periodicals, Inc.

  16. Reversible ventilation and perfusion abnormalities in unilateral obstructed lung

    International Nuclear Information System (INIS)

    Ward, H.E.; Jones, R.L.; King, E.G.; Sproule, B.J.; Fortune, R.L.

    1982-01-01

    An intraluminal carcinoid tumor obstructing the left mainstem bronchus produced hypoxemia through alteration in ventilation/perfusion matching. Studies of regional lung function using 133-xenon (/sup 133/Xe) and a multiprobe computerized instrumentation system documented a reduction of perfusion to 22 percent and ventilation to 6 percent of the total. There was negligible washout of intravenously injected /sup 133/Xe from the left lung consistent with air trapping. Four days after left mainstem bronchial sleeve resection, perfusion, ventilation and washout of injected xenon had significantly improved and by four months postresection, all measurements were virtually normal, although complete restoration of perfusion in relation to ventilation was delayed. Regional lung function studied with a multiprobe system in this patient provided a clinical model for the study of ventilation and perfusion inter-relationships in large airway obstruction and demonstrated that a prolonged time may be required for return of perfusion to normal

  17. The diagnostic value of ventilation-perfusion scintigraphy combined with plasma D-dimer assay in diagnosis of pulmonary embolism

    International Nuclear Information System (INIS)

    Wang Qian; Huang Lili; Qin Shuling; Yue Minggang; Wang Yu; Nie Yuxin; Liang Tiejun

    2005-01-01

    Objective: To investigate the clinical diagnostic value of ventilation-perfusion scintigraphy combined with plasma D-dimer assay in diagnosis of pulmonary embolism (PE). Methods: One hundred and four patients with clinically suspected PE underwent both pulmonary ventilation-perfusion scintigraphy and plasma D-dimer assay. According to the criteria of prospective investigation of the pulmonary embolism diagnosis (PIOPED), ventilation-perfusion scintigraphy was interpreted as normal, very low or low probability of PE, intermediate probability of PE and high probability of PE. High probability was considered as positive; normal and very low or low probability as negative and intermediate probability as non-diagnostic. Plasma D-dimer levels were measured using a quantitative immunoturbidimetric method, and a cut-off value of 500 mg/L was used in the diagnosis of PE. Clinical diagnostic value of ventilation-perfusion scintigraphy, D-dimer assay and combined use of ventilation-perfusion scintigraphy and D-dimer assay for diagnosing PE was evaluated, respectively, comparing with the final clinical diagnosis that was based on the clinical findings. Results: Among the 104 patients, 44 were diagnosed with PE and 60 were excluded. Ventilation-perfusion scintigraphy provided diagnostic interpretations for 86 (82.7%) patients, and non-diagnostic interpretations for 18 (17.3%) patients. For diagnosing PE, the sensitivity, specificity, accuracy, positive predictive value and negative predictive value of ventilation-perfusion scintigraphy was 84.1%, 75.0%, 78.8%, 71.2% and 86.5%, respectively, and with D-dimer assay was 93.2%, 60.0%, 74.0%, 63.1% and 92.3%, respectively. If a plasma D-dimer level of < 500 mg/L was taken as a criterion to exclude PE for those intermediate probability of ventilation-perfusion scintigraphy, the diagnostic specificity and accuracy would be raised to 85.0% and 84.6%, respectively. Conclusions: When a non-diagnostic interpretation was occurred on

  18. Impact of image denoising on image quality, quantitative parameters and sensitivity of ultra-low-dose volume perfusion CT imaging

    International Nuclear Information System (INIS)

    Othman, Ahmed E.; Brockmann, Carolin; Afat, Saif; Pjontek, Rastislav; Nikoubashman, Omid; Brockmann, Marc A.; Wiesmann, Martin; Yang, Zepa; Kim, Changwon; Nikolaou, Konstantin; Kim, Jong Hyo

    2016-01-01

    To examine the impact of denoising on ultra-low-dose volume perfusion CT (ULD-VPCT) imaging in acute stroke. Simulated ULD-VPCT data sets at 20 % dose rate were generated from perfusion data sets of 20 patients with suspected ischemic stroke acquired at 80 kVp/180 mAs. Four data sets were generated from each ULD-VPCT data set: not-denoised (ND); denoised using spatiotemporal filter (D1); denoised using quanta-stream diffusion technique (D2); combination of both methods (D1 + D2). Signal-to-noise ratio (SNR) was measured in the resulting 100 data sets. Image quality, presence/absence of ischemic lesions, CBV and CBF scores according to a modified ASPECTS score were assessed by two blinded readers. SNR and qualitative scores were highest for D1 + D2 and lowest for ND (all p ≤ 0.001). In 25 % of the patients, ND maps were not assessable and therefore excluded from further analyses. Compared to original data sets, in D2 and D1 + D2, readers correctly identified all patients with ischemic lesions (sensitivity 1.0, kappa 1.0). Lesion size was most accurately estimated for D1 + D2 with a sensitivity of 1.0 (CBV) and 0.94 (CBF) and an inter-rater agreement of 1.0 and 0.92, respectively. An appropriate combination of denoising techniques applied in ULD-VPCT produces diagnostically sufficient perfusion maps at substantially reduced dose rates as low as 20 % of the normal scan. (orig.)

  19. Two-dimensional mapping of three-dimensional SPECT data: a preliminary step to the quantitation of thallium myocardial perfusion single photon emission tomography

    International Nuclear Information System (INIS)

    Goris, M.L.; Boudier, S.; Briandet, P.A.

    1987-01-01

    A method is presented by which tomographic myocardial perfusion data are prepared for quantitative analysis. The method is characterized by an interrogation of the original data, which results in a size and shape normalization. The method is analogous to the circumferential profile methods used in planar scintigraphy but requires a polar-to-cartesian transformation from three to two dimensions. As was the case in the planar situation, centering and reorientation are explicit. The degree of data reduction is evaluated by reconstructing idealized three-dimensional data from the two-dimensional sampling vectors. The method differs from previously described approaches by the absence in the resulting vector of a coordinate reflecting cartesian coordinate in the original data (slice number)

  20. Occipital lobe and posterior cingulate perfusion in the prediction of dementia with Lewy body pathology in a clinical sample.

    Science.gov (United States)

    Prosser, Angus M J; Tossici-Bolt, Livia; Kipps, Christopher M

    2017-12-01

    The aim of this study was to investigate the diagnostic value of occipital lobe and posterior cingulate perfusion in predicting dopamine transporter imaging outcome using a quantitative measure of analysis. In total, 99 patients with cognitive complaints who had undergone both technetium-99m-hexamethylpropyleneamine oxime single-photon emission computed tomography (Tc-HMPAO SPECT) and I ioflupane (I-FP-CIT also called DaTSCAN) imaging in a dementia diagnostic center were analyzed. Measures of perfusion were calculated from HMPAO SPECT images for the medial and lateral occipital lobe, the posterior cingulate cortex, precuneus and cuneus regions of interest using statistical parametric mapping 8. DaTSCAN images were quantified and specific binding ratios were calculated independent from HMPAO SPECT results. Statistical parametric mapping and tests of associations between perfusion and I-FP-CIT imaging were completed. Regions of interest on HMPAO yielded poor predictive values when used independently to predict I-FP-CIT status; however, the combination of normal posterior cingulate perfusion with medial and lateral occipital hypoperfusion was associated significantly with I-FP-CIT status, χ (1, N=99)=9.72, P=0.002. This combination also yielded a high positive likelihood ratio and specificity (11.1, 98%). Sensitivity was, however, low (22%). No significant perfusion differences were found when abnormal and normal I-FP-CIT groups were compared directly using voxel-based morphometry (Poccipital hypoperfusion with preserved posterior cingulate gyrus perfusion is highly specific for individuals with a positive I-FP-CIT scan in a clinical sample where diagnostic doubt exists. This regional combination, however, lacks sensitivity; therefore, absence of the sign cannot be used to rule out dementia with Lewy bodies. A positive finding provides strong evidence to rule in dementia with Lewy bodies.

  1. A methodology for generating normal and pathological brain perfusion SPECT images for evaluation of MRI/SPECT fusion methods: application in epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Grova, C [Laboratoire IDM, Faculte de Medecine, Universite de Rennes 1, Rennes (France); Jannin, P [Laboratoire IDM, Faculte de Medecine, Universite de Rennes 1, Rennes (France); Biraben, A [Laboratoire IDM, Faculte de Medecine, Universite de Rennes 1, Rennes (France); Buvat, I [INSERM U494, CHU Pitie Salpetriere, Paris (France); Benali, H [INSERM U494, CHU Pitie Salpetriere, Paris (France); Bernard, A M [Service de Medecine Nucleaire, Centre Eugene Marquis, Rennes (France); Scarabin, J M [Laboratoire IDM, Faculte de Medecine, Universite de Rennes 1, Rennes (France); Gibaud, B [Laboratoire IDM, Faculte de Medecine, Universite de Rennes 1, Rennes (France)

    2003-12-21

    Quantitative evaluation of brain MRI/SPECT fusion methods for normal and in particular pathological datasets is difficult, due to the frequent lack of relevant ground truth. We propose a methodology to generate MRI and SPECT datasets dedicated to the evaluation of MRI/SPECT fusion methods and illustrate the method when dealing with ictal SPECT. The method consists in generating normal or pathological SPECT data perfectly aligned with a high-resolution 3D T1-weighted MRI using realistic Monte Carlo simulations that closely reproduce the response of a SPECT imaging system. Anatomical input data for the SPECT simulations are obtained from this 3D T1-weighted MRI, while functional input data result from an inter-individual analysis of anatomically standardized SPECT data. The method makes it possible to control the 'brain perfusion' function by proposing a theoretical model of brain perfusion from measurements performed on real SPECT images. Our method provides an absolute gold standard for assessing MRI/SPECT registration method accuracy since, by construction, the SPECT data are perfectly registered with the MRI data. The proposed methodology has been applied to create a theoretical model of normal brain perfusion and ictal brain perfusion characteristic of mesial temporal lobe epilepsy. To approach realistic and unbiased perfusion models, real SPECT data were corrected for uniform attenuation, scatter and partial volume effect. An anatomic standardization was used to account for anatomic variability between subjects. Realistic simulations of normal and ictal SPECT deduced from these perfusion models are presented. The comparison of real and simulated SPECT images showed relative differences in regional activity concentration of less than 20% in most anatomical structures, for both normal and ictal data, suggesting realistic models of perfusion distributions for evaluation purposes. Inter-hemispheric asymmetry coefficients measured on simulated data were

  2. Spatial Correlation of Pathology and Perfusion Changes within the Cortex and White Matter in Multiple Sclerosis.

    Science.gov (United States)

    Mulholland, A D; Vitorino, R; Hojjat, S-P; Ma, A Y; Zhang, L; Lee, L; Carroll, T J; Cantrell, C G; Figley, C R; Aviv, R I

    2018-01-01

    The spatial correlation between WM and cortical GM disease in multiple sclerosis is controversial and has not been previously assessed with perfusion MR imaging. We sought to determine the nature of association between lobar WM, cortical GM, volume and perfusion. Nineteen individuals with secondary-progressive multiple sclerosis, 19 with relapsing-remitting multiple sclerosis, and 19 age-matched healthy controls were recruited. Quantitative MR perfusion imaging was used to derive CBF, CBV, and MTT within cortical GM, WM, and T2-hyperintense lesions. A 2-step multivariate linear regression (corrected for age, disease duration, and Expanded Disability Status Scale) was used to assess correlations between perfusion and volume measures in global and lobar normal-appearing WM, cortical GM, and T2-hyperintense lesions. The Bonferroni adjustment was applied as appropriate. Global cortical GM and WM volume was significantly reduced for each group comparison, except cortical GM volume of those with relapsing-remitting multiple sclerosis versus controls. Global and lobar cortical GM CBF and CBV were reduced in secondary-progressive multiple sclerosis compared with other groups but not for relapsing-remitting multiple sclerosis versus controls. Global and lobar WM CBF and CBV were not significantly different across groups. The distribution of lobar cortical GM and WM volume reduction was disparate, except for the occipital lobes in patients with secondary-progressive multiple sclerosis versus those with relapsing-remitting multiple sclerosis. Moderate associations were identified between lobar cortical GM and lobar normal-appearing WM volume in controls and in the left temporal lobe in relapsing-remitting multiple sclerosis. No significant associations occurred between cortical GM and WM perfusion or volume. Strong correlations were observed between cortical-GM perfusion, normal appearing WM and lesional perfusion, with respect to each global and lobar region within HC, and

  3. Pulmonary O2 transfer during pulsatile and non-pulsatile perfusion.

    Science.gov (United States)

    Hauge, A; Nicolaysen, G

    1980-07-01

    The importance of the perfusion pattern for the oxygen transfer has been examined in isolated rabbit lungs perfused with plasma at constant volume inflow. The lungs were ventilated with constant tidal volume and constant end-expiratory pressure. Following a standardized rise in FIO2 the rate of rise in pulmonary venous PO2 (delta PO2/delta t) was measured during alternately pulsatile and non-pulsatile perfusion in normal lungs and in lungs made edematous by elevation of left atrial pressure. In normal lungs there was no difference in delta PO2/delta t when the two modes of perfusion were compared. In edematous lungs delta PO/delta t was statistically higher during pulsatile perfusion, indicating a beneficial effect of flow- and pressure pulsations, e.g. a better distribution of V/Q ratios throughout the lungs. In a separate series of expts. the advancement of a high O2 front through the airways was measured, and the two perfusion patterns compared. Since no difference was found, we suggest that the phenomenon of "cardiogenic gas mixing" in the airways in vivo is a result of a direct action of the heart on the lungs rather than arterial pulsations.

  4. Evaluation of a breath-motion-correction technique in reducing measurement error in hepatic CT perfusion imaging

    International Nuclear Information System (INIS)

    He Wei; Liu Jianyu; Li Xuan; Li Jianying; Liao Jingmin

    2009-01-01

    Objective: To evaluate the effect of a breath-motion-correction (BMC) technique in reducing measurement error of the time-density curve (TDC) in hepatic CT perfusion imaging. Methods: Twenty-five patients with suspected liver diseases underwent hepatic CT perfusion scans. The right branch of portal vein was selected as the anatomy of interest and performed BMC to realign image slices for the TDC according to the rule of minimizing the temporal changes of overall structures. Ten ROIs was selected on the right branch of portal vein to generate 10 TDCs each with and without BMC. The values of peak enhancement and the time-to-peak enhancement for each TDC were measured. The coefficients of variation (CV) of peak enhancement and the time-to-peak enhancement were calculated for each patient with and without BMC. Wilcoxon signed ranks test was used to evaluate the difference between the CV of the two parameters obtained with and without BMC. Independent-samples t test was used to evaluate the difference between the values of peak enhancement obtained with and without BMC. Results: The median (quartiles) of CV of peak enhancement with BMC [2.84% (2.10%, 4.57%)] was significantly lower than that without BMC [5.19% (3.90%, 7.27%)] (Z=-3.108,P<0.01). The median (quartiles) of CV of time-to-peak enhancement with BMC [2.64% (0.76%, 4.41%)] was significantly lower than that without BMC [5.23% (3.81%, 7.43%)] (Z=-3.924, P<0.01). In 8 cases, TDC demonstrated statistically significant higher peak enhancement with BMC (P<0.05). Conclusion: By applying the BMC technique we can effectively reduce measurement error for parameters of the TDC in hepatic CT perfusion imaging. (authors)

  5. Assessment of consistency of the whole tumor and single section perfusion imaging with 256-slice spiral CT: a preliminary study

    International Nuclear Information System (INIS)

    Sun Hongliang; Xu Yanyan; Hu Yingying; Tian Yuanjiang; Wang Wu

    2014-01-01

    Objective: To determine the consistency between quantitative CT perfusion measurements of colorectal cancer obtained from single section with maximal tumor dimension and from average of whole tumor, and compare intra- and inter-observer consistency of the two analysis methods. Methods: Twenty-two patients with histologically proven colorectal cancer were examined prospectively with 256-slice CT and the whole tumor perfusion images were obtained. Perfusion parameters were obtained from region of interest (ROI) inserted in single section showing maximal tumor dimension, then from ROI inserted in all tumor-containing sections by two radiologists. Consistency between values of blood flow (BF), blood volume (BV) and time to peak (TTP) calculated by two methods was assessed. Intra-observer consistency was evaluated by comparing repeated measurements done by the same radiologist using both methods after 3 months. Perfusion measurements were done by another radiologist independently to assess inter-observer consistency of both methods. The results from different methods were compared using paired t test and Bland-Altman plot. Results: Twenty-two patients were examined successfully. The perfusion parameters BF, BV and TTP obtained by whole tumor perfusion and single-section analysis were (35.59 ± 14.59) ml · min -1 · 100 g -1 , (17.55 ±4.21) ml · 100 g -1 , (21.30 ±7.57) s and (34.64 ± 13.29)ml · min -1 · 100 g -1 , (17.61 ±6.39)ml · 100 g -1 , (19.82 ±9.01) s, respectively. No significant differences were observed between the means of the perfusion parameters (BF, BV, TTP) calculated by the two methods (t=0.218, -0.033, -0.668, P>0.05, respectively). The intra-observer 95% limits of consistency of perfusion parameters were BF -5.3% to 10.0%, BV -13.8% to 10.8%, TTP -15.0% to 12.6% with whole tumor analysis, respectively; BF -14.3% to 16.5%, BV -24.2% to 22.2%, TTP -19.0% to 16.1% with single section analysis, respectively. The inter-observer 95% limits of

  6. Simultaneous Multiagent Hyperpolarized 13C Perfusion Imaging

    DEFF Research Database (Denmark)

    von Morze, Cornelius; Bok, Robert A.; Reed, Galen D.

    2014-01-01

    in simulations. "Tripolarized" perfusion MRI methods were applied to initial preclinical studies with differential conditions of vascular permeability, in normal mouse tissues and advanced transgenic mouse prostate tumors. Results: Dynamic imaging revealed clear differences among the individual tracer...... distributions. Computed permeability maps demonstrated differential permeability of brain tissue among the tracers, and tumor perfusion and permeability were both elevated over values expected for normal tissues. Conclusion: Tripolarized perfusion MRI provides new molecular imaging measures for specifically...

  7. Effect of perfusion and irrigation flow rate variations on NaCl efflux from the isolated, perfused head of the marine teleost, Myoxocephalus octodecimspinosus

    Energy Technology Data Exchange (ETDEWEB)

    Claiborne, J.B. (Miami Univ., Coral Gables, FL (USA)); Evans, D.H. (Mt. Desert Island Biological Laboratory, Salsbury Cove, ME, USA)

    1981-06-01

    In vivo branchial blood pressure and unidirectional efflux values for NaCl were determined in the marine teleost, Myoxocephalus octodecimspinosus. Utilizing an isolated, perfused head preparation, perfused at in vivo pressure levels, NaCl efflux was measured and compared to in vivo values. The effect of variations in perfusion or irrigation rates on the ion efflux across the gills of the isolated head was also studied. The efflux of /sup 22/Na from the isolated, perfused head was found to be similar to in vivo values and dependent on perfusion flow and pressure. In vitro /sup 36/Cl efflux was lower than the efflux from intact animals and was determined to be flow/pressure independent. Irrigation rate changes at all rates tested did not affect the unidirectional efflux of either ion.

  8. Peritumoral brain edema in intracranial tumor evaluated by CT perfusion imaging

    International Nuclear Information System (INIS)

    Shi Yuxin; Xu Jianfeng

    2005-01-01

    Objective: To semi-quantitatively evaluate the cerebral perfusion in the peritumoral brain edema of cerebral tumors using CT perfusion imaging. Methods: Twenty-one patients with peritumoral brain edema (including pathologically confirmed meningiomas n=4, metastasis n=10, gliomas n=7) were examined by CT perfusion imaging. The regional cerebral blood flow (rCBF), regional cerebral blood volume (rCBV), and mean transit time (MTT) were calculated for peritumoral brain edema and the contralateralwhite matter. The rCBF and rCBV were compared between peritumoral brain edema and the contralateral white matter. The mean ratios (edema/contralateral white matter) of rCBF and rCBV were compared among the three tumors. Results: The rCBF and rCBV of peritumoral brain edema were significantly lower than those of contralateral white matter in patients with meningiomas and metastasis (rCBF: t=2.92 and 3.82, P 0.05). The mean ratios (edema/contralateralwhite matter) of rCBF and rCBV were not significantly different between meningiomas and metastasis (t=0.23 and 0.73, P>0.05), but both of them were significantly lower than those of gliomas (t=3.05 and 3.37, P<0.01, 0.005). Conclusion: The rCBF and rCBV in peritumoral brain edema were significantly lower than those of contralateral white matter in patients with meningiomas and metastasis, while almost the same with or higher than those of contralateral white matter in patients with gliomas. CT perfusion can provide quantitative information of blood flow in peritumoral brain edema, and is useful in the diagnosis and follow-up of cerebral tumors. (authors)

  9. MR-perfusion (MRP) and diffusion-weighted imaging (DWI) in prostate cancer: Quantitative and model-based gadobenate dimeglumine MRP parameters in detection of prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Scherr, M.K., E-mail: michael.scherr@med.uni-muenchen.de [Institute of Clinical Radiology, University of Munich, Munich (Germany); Seitz, M. [Department of Urology, University of Munich, Munich (Germany); Mueller-Lisse, U.G. [Institute of Clinical Radiology, University of Munich, Munich (Germany); Ingrisch, M. [Josef Lissner Laboratory for Biomedical Imaging, Institute of Clinical Radiology, University of Munich, Munich (Germany); Reiser, M.F. [Institute of Clinical Radiology, University of Munich, Munich (Germany); Mueller-Lisse, U.L. [Department of Urology, University of Munich, Munich (Germany)

    2010-12-15

    Background: Various MR methods, including MR-spectroscopy (MRS), dynamic, contrast-enhanced MRI (DCE-MRI), and diffusion-weighted imaging (DWI) have been applied to improve test quality of standard MRI of the prostate. Purpose: To determine if quantitative, model-based MR-perfusion (MRP) with gadobenate dimeglumine (Gd-BOPTA) discriminates between prostate cancer, benign tissue, and transitional zone (TZ) tissue. Material and methods: 27 patients (age, 65 {+-} 4 years; PSA 11.0 {+-} 6.1 ng/ml) with clinical suspicion of prostate cancer underwent standard MRI, 3D MR-spectroscopy (MRS), and MRP with Gd-BOPTA. Based on results of combined MRI/MRS and subsequent guided prostate biopsy alone (17/27), biopsy and radical prostatectomy (9/27), or sufficient negative follow-up (7/27), maps of model-free, deconvolution-based mean transit time (dMTT) were generated for 29 benign regions (bROIs), 14 cancer regions (cROIs), and 18 regions of transitional zone (tzROIs). Applying a 2-compartment exchange model, quantitative perfusion analysis was performed including as parameters: plasma flow (PF), plasma volume (PV), plasma mean transit time (PMTT), extraction flow (EFL), extraction fraction (EFR), interstitial volume (IV) and interstitial mean transit time (IMTT). Two-sided T-tests (significance level p < 0.05) discriminated bROIs vs. cROIs and cROIs vs. tzROIs, respectively. Results: PMTT discriminated best between bROIs (11.8 {+-} 3.0 s) and cROIs (24.3 {+-} 9.6 s) (p < 0.0001), while PF, PV, PS, EFR, IV, IMTT also differed significantly (p 0.00002-0.0136). Discrimination between cROIs and tzROIs was insignificant for all parameters except PV (14.3 {+-} 2.5 ml vs. 17.6 {+-} 2.6 ml, p < 0.05). Conclusions: Besides MRI, MRS and DWI quantitative, 2-compartment MRP with Gd-BOPTA discriminates between prostate cancer and benign tissue with several parameters. However, distinction of prostate cancer and TZ does not appear to be reliable.

  10. Non-invasive monitoring of muscle blood perfusion by photoplethysmography: evaluation of a new application.

    Science.gov (United States)

    Sandberg, M; Zhang, Q; Styf, J; Gerdle, B; Lindberg, L-G

    2005-04-01

    To evaluate a specially developed photoplethysmographic (PPG) technique, using green and near-infrared light sources, for simultaneous non-invasive monitoring of skin and muscle perfusion. Evaluation was based on assessments of changes in blood perfusion to various provocations, such as post-exercise hyperaemia and hyperaemia following the application of liniment. The deep penetrating feature of PPG was investigated by measurement of optical radiation inside the muscle. Simultaneous measurements using ultrasound Doppler and the new PPG application were performed to elucidate differences between the two methods. Specific problems related to the influence of skin temperature on blood flow were highlightened, as well. Following static and dynamic contractions an immediate increase in muscle perfusion was shown, without increase in skin perfusion. Liniment application to the skin induced a rapid increase in skin perfusion, but not in muscle. Both similarities and differences in blood flow measured by Ultrasound Doppler and PPG were demonstrated. The radiant power measured inside the muscle, by use of an optical fibre, showed that the near-infrared light penetrates down to the vascular depth inside the muscle. The results of this study indicate the potentiality of the method for non-invasive measurement of local muscle perfusion, although some considerations still have to be accounted for, such as influence of temperature on blood perfusion.

  11. Measurement of Outflow Facility Using iPerfusion.

    Directory of Open Access Journals (Sweden)

    Joseph M Sherwood

    Full Text Available Elevated intraocular pressure (IOP is the predominant risk factor for glaucoma, and reducing IOP is the only successful strategy to prevent further glaucomatous vision loss. IOP is determined by the balance between the rates of aqueous humour secretion and outflow, and a pathological reduction in the hydraulic conductance of outflow, known as outflow facility, is responsible for IOP elevation in glaucoma. Mouse models are often used to investigate the mechanisms controlling outflow facility, but the diminutive size of the mouse eye makes measurement of outflow technically challenging. In this study, we present a new approach to measure and analyse outflow facility using iPerfusion™, which incorporates an actuated pressure reservoir, thermal flow sensor, differential pressure measurement and an automated computerised interface. In enucleated eyes from C57BL/6J mice, the flow-pressure relationship is highly non-linear and is well represented by an empirical power law model that describes the pressure dependence of outflow facility. At zero pressure, the measured flow is indistinguishable from zero, confirming the absence of any significant pressure independent flow in enucleated eyes. Comparison with the commonly used 2-parameter linear outflow model reveals that inappropriate application of a linear fit to a non-linear flow-pressure relationship introduces considerable errors in the estimation of outflow facility and leads to the false impression of pressure-independent outflow. Data from a population of enucleated eyes from C57BL/6J mice show that outflow facility is best described by a lognormal distribution, with 6-fold variability between individuals, but with relatively tight correlation of facility between fellow eyes. iPerfusion represents a platform technology to accurately and robustly characterise the flow-pressure relationship in enucleated mouse eyes for the purpose of glaucoma research and with minor modifications, may be applied

  12. Correction of Gradient Nonlinearity Bias in Quantitative Diffusion Parameters of Renal Tissue with Intra Voxel Incoherent Motion.

    Science.gov (United States)

    Malyarenko, Dariya I; Pang, Yuxi; Senegas, Julien; Ivancevic, Marko K; Ross, Brian D; Chenevert, Thomas L

    2015-12-01

    Spatially non-uniform diffusion weighting bias due to gradient nonlinearity (GNL) causes substantial errors in apparent diffusion coefficient (ADC) maps for anatomical regions imaged distant from magnet isocenter. Our previously-described approach allowed effective removal of spatial ADC bias from three orthogonal DWI measurements for mono-exponential media of arbitrary anisotropy. The present work evaluates correction feasibility and performance for quantitative diffusion parameters of the two-component IVIM model for well-perfused and nearly isotropic renal tissue. Sagittal kidney DWI scans of a volunteer were performed on a clinical 3T MRI scanner near isocenter and offset superiorly. Spatially non-uniform diffusion weighting due to GNL resulted both in shift and broadening of perfusion-suppressed ADC histograms for off-center DWI relative to unbiased measurements close to isocenter. Direction-average DW-bias correctors were computed based on the known gradient design provided by vendor. The computed bias maps were empirically confirmed by coronal DWI measurements for an isotropic gel-flood phantom. Both phantom and renal tissue ADC bias for off-center measurements was effectively removed by applying pre-computed 3D correction maps. Comparable ADC accuracy was achieved for corrections of both b -maps and DWI intensities in presence of IVIM perfusion. No significant bias impact was observed for IVIM perfusion fraction.

  13. Hemodynamic study on liver cirrhosis: clinical application of CT perfusion imaging

    International Nuclear Information System (INIS)

    Jiang Li; Yang Jianyong; Xie Hongbo; Yang Xufeng; Yan Chaogui; Li Ziping; Zeng Fang

    2004-01-01

    Objective: To estimate hepatic perfusion parameters with helical CT, and to study the relationship between hepatic perfusion parameters and the severity of liver cirrhosis. Methods: Dynamic single-section computed tomography (CT) of the liver was performed in 40 participants, including 27 patients with liver cirrhosis and 13 patients without liver disease (control subjects). CT scans were obtained at a single level to include the liver, spleen, aorta, and portal vein. On each CT scan, the attenuation of these organs was measured in regions of interest to provide time-density curves. The arterial, portal venous, and total perfusion of the liver and the hepatic perfusion index were assessed. Results: In the control group, hepatic arterial perfusion, portal venous perfusion, and total hepatic perfusion were (0.2823 ± 0.0969) ml·min -1 ·ml -1 , (1.1788 ± 0.4004) ml·min -1 ·ml -1 , and (1.4563 ± 0.4439) ml·min -1 ·ml -1 , respectively. Hepatic perfusion index was (19.73 ±5.81)%. These hepatic perfusion parameters correlated significantly with the severity of liver cirrhosis. Hepatic arterial perfusion decreased in Child A and B cirrhotic patients [ (0.1685 ± 0.1068) ml·min -1 ·ml -1 and (0.1921 ± 0.0986) ml·min -1 ·ml -1 , respectively]. Comparing to Child A and B cirrhotic patients, hepatic arterial perfusion in Child C cirrhotic patients [(0.3072 · 0.1145) ml·min -1 ·ml -1 ] raised significantly. Portal venous perfusion decreased significantly in Child B and C cirrhotic patients [(0.6331±0.2070) ml·min -1 ·ml -1 and (0.5702 ± 0.3562) ml·min -1 ·ml -1 , respectively]. Total hepatic blood flow reduced markedly in Child B and C cirrhotic patients [(0.8252 ± 0.2952) ml·min -1 ·ml -1 and (0.8774 ± 0.4118) ml·min -1 ·ml -1 , respectively]. Hepatic perfusion index increased in Child C cirrhotic patients (37.48 ± 16.65)%. Conclusion: Dynamic single-section CT showed potential in quantifying hepatic perfusion parameters, and hepatic perfusion

  14. Volume perfusion CT (VPCT) for the differential diagnosis of patients with suspected cerebral vasospasm: Qualitative and quantitative analysis of 3D parameter maps

    International Nuclear Information System (INIS)

    Dolatowski, K.; Malinova, V.; Frölich, A.M.J.; Schramm, R.; Haberland, U.; Klotz, E.; Mielke, D.; Knauth, M.; Schramm, P.

    2014-01-01

    Object: Cerebral vasospasm (CV) following subarachnoid hemorrhage (SAH) implies high risk for secondary ischemia. It requires early diagnosis to start treatment on time. We aimed to assess the utility of “whole brain” VPCT for detecting localization and characteristics of arterial vasospasm. Methods: 23 patients received a non-enhanced CT, VPCT and CTA of the brain. The distribution of ischemic lesions was analyzed on 3D-perfusion-parameter-maps of CBF, CBV, MTT, TTS, TTP, and TTD. CT-angiographic axial and coronal maximum-intensity-projections were reconstructed to determine arterial vasospasm. CT-data was compared to DSA, if performed additionally. Volume-of-interest placement was used to obtain quantitative mean VPCT values. Results: 82% patients (n = 19) had focal cerebral hypoperfusion. 100% sensitivity and 100% specificity was found for TTS (median 1.9 s), MTT (median 5.9 s) and TTD (median 7.6 s). CBV showed no significant differences. In 78% (n = 18) focal vessel aberrations could be detected either on CTA or DSA or on both. Conclusion: VPCT is a non-invasive method with the ability to detect focal perfusion deficits almost in the whole brain. While DSA remains to be the gold standard for detection of CV, VPCT has the potential to improve noninvasive diagnosis and treatment decisions

  15. A study of whole brain perfusion CT and CT angiography in hyperacute and acute cerebral infarction

    International Nuclear Information System (INIS)

    Zhang Yonghai; Bai Junhu; Zhang Ming; Yang Guocai; Tang Guibo; Fang Jun; Shi Wei; Li Xinghua; Liu Suping; Lu Qing; Tang Jun

    2005-01-01

    Objective: To evaluate the diagnostic value of whole-brain perfusion blood volume-weighted CT imaging (PWCT) and simultaneous CT angiography (CTA) on early stage of cerebral ischemic infarction. Methods: Non-contrast CT (NCCT), CT perfusion-weighted imaging (PWCT) and delayed CT (DCT) were conducted on 20 cases of early ischemic infarction of whose onset time ranged from 2 to 24 hours. All cases were reexamined with CT or MRI one week to one month later. CT values and perfusion blood volume (PBV) of central and peripheral low perfusion areas as well as those of collateral side were measured. CTA was reconstructed with PWCT as source images to evaluate occlusion or stenosis of blood vessel, and DCT was used to detect the collateral circulation. Results: Of the 20 cases, NCCT, PWCT and CTA were negative in 10 cases in which 6 were confirmed as Transient Ischemic Attack (TIA) on reexamined CT and clinical features, and the other 4 were confirmed as lacunar infarction. For the remaining 10 cases, a comparison was made with ANOVA between low perfusion area (central, peripheral inside and outside) and collateral side. The difference was significant (P<0.01). However, no significant difference was revealed in the central, peripheral inside and outside areas. PBV values were significant in low perfusion area and collateral side (P<0.05). The area of the final infarction was larger than that of the low perfusion area, and the percentage of enlargement exhibited medium negative correlation to the time of ischemia. CTA indicated that 2 cases suffered from left middle cerebral artery occlusion, meanwhile anterior and middle branches of MCA in the other 3 cases were not identified. The sensitivity of NCCT, PWCT and CTA were 28.5%, 71.4% and 35.7% respectively. DCT indicated that 5 cases had asymmetrical blood vessels. Conclusion: The whole-brain perfusion-weighted CT imaging and simultaneous CT angiography (CTA) is p roved to be a simple, timesaving and effective method for the

  16. Correlation between serum VEGF level and CT perfusion imaging in patients with primary liver cancer pre-and post TACE

    International Nuclear Information System (INIS)

    Jia Zhongzhi; Huang Yuanquan; Feng Yaoliang; Shi Haibin

    2010-01-01

    Objective: To investigate the correlation between serum vascular endothelial growth factor(VEGF) level and CT perfusion parameters in patients with primary liver cancer (PLC) pre-and post-transcatheter arterial chemoembolization (TACE) treatment. Methods: Serum VEGF level was measured and CT perfusion imaging was performed 1 day before and 6 ∼ 8, 32 ∼ 40 days after TACE in 18 patients with PLC. Before and after TACE, the serum VEGF level, the tumor's artery liver perfusion (ALP), the portal vein perfusion (PVP) and the hepatic artery perfusion index (HPI) were measured pre-and post-TACE. The pre-TACE and post-TACE results were compared and statistically analyzed. Results: Based on the therapeutic results, the patients were divided into complete response (CR) group and partial response or stable disease(PR+SD) group. Although no significant difference in serum VEGF level, tumor's ALP, PVP and HPI existed between two groups pre-TACE, there was significant difference in ALP, HPI 6-8 days after TACE (P<0.05). Significant difference in serum VEGF level also existed in CR group (P<0.05), but not in (PR+SD) group, at (32-40) days post-TACE (P=0.221). The serum VEGF level carried a positive correlation with the tumor's ALP and HPI. Conclusion: The serum VEGF level can indirectly reflect the neovascularization of the tumor, while the CTPI can directly and quantitatively reflect the hemodynamic changes of the tumor post-TACE. Moreover, a positive correlation exists between serum VEGF level and ALP, HPI. Therefore, the determination of serum VEGF level together with CTPI is very useful in both evaluating TACE efficacy and making therapeutic schedule. (authors)

  17. Evaluation of myocardial perfusion reserve in patients with CAD using Contrast-Enhanced MRI: A comparison between semiquantitative and quantitative methods

    International Nuclear Information System (INIS)

    Schmitt, M.; Mohrs, O.K.; Petersen, S.E.; Kreitner, K.F.

    2002-01-01

    Objective: Comparison between two semiquantitative methods and a quantitative evaluation of myocardial blood flow (MBF) for assessment of myocardial perfusion reserve (MPR) in patients with CAD. Material and Methods: 9 patients with coronary stenoses>50% were examined with an ECG-gated Saturation Recovery Turbo FLASH sequence by using Gd-DTPA as contrast agent (CA). The entive measurements were performed both during rest and hyperemia induced by adenosine. The up-slopes of the signal-time S(t) curves in the myocardium and left ventricular (LV) cavity were evaluated by a linear fit. MPR was calculated from the original up-slopes of the myocardial S(t) curves and from the up-slopes, which were normalized to the up-slopes of the LV S(t) curves, respectively. For quantification of MBF values, the mathematical model MMID 4 was used and MPR was evaluated from the MBF values. Results: With all tested methods, MPR was reduced in myocardial regions subtended by arteries with stenoses≥70% compared with remote regions. With MMID 4 and the normalized up-slope method, differences between severe ischemic and remote regions were statistically significant. Conclusion: The up-slope method with normalization and quantification with MMID 4 are more sensitive methods to differentiate between remote and ischemic myocardium than the up-slope method without normalization. (orig.) [de

  18. SU-E-I-36: A KWIC and Dirty Look at Dose Savings and Perfusion Metrics in Simulated CT Neuro Perfusion Exams

    International Nuclear Information System (INIS)

    Hoffman, J; Martin, T; Young, S; McNitt-Gray, M; Wang, D

    2015-01-01

    Purpose: CT neuro perfusion scans are one of the highest dose exams. Methods to reduce dose include decreasing the number of projections acquired per gantry rotation, however conventional reconstruction of such scans leads to sampling artifacts. In this study we investigated a projection view-sharing reconstruction algorithm used in dynamic MRI – “K-space Weighted Image Contrast” (KWIC) – applied to simulated perfusion exams and evaluated dose savings and impacts on perfusion metrics. Methods: A FORBILD head phantom containing simulated time-varying objects was developed and a set of parallel-beam CT projection data was created. The simulated scans were 60 seconds long, 1152 projections per turn, with a rotation time of one second. No noise was simulated. 5mm, 10mm, and 50mm objects were modeled in the brain. A baseline, “full dose” simulation used all projections and reduced dose cases were simulated by downsampling the number of projections per turn from 1152 to 576 (50% dose), 288 (25% dose), and 144 (12.5% dose). KWIC was further evaluated at 72 projections per rotation (6.25%). One image per second was reconstructed using filtered backprojection (FBP) and KWIC. KWIC reconstructions utilized view cores of 36, 72, 144, and 288 views and 16, 8, 4, and 2 subapertures respectively. From the reconstructed images, time-to-peak (TTP), cerebral blood flow (CBF) and the FWHM of the perfusion curve were calculated and compared against reference values from the full-dose FBP data. Results: TTP, CBF, and the FWHM were unaffected by dose reduction (to 12.5%) and reconstruction method, however image quality was improved when using KWIC. Conclusion: This pilot study suggests that KWIC preserves image quality and perfusion metrics when under-sampling projections and that the unique contrast weighting of KWIC could provided substantial dose-savings for perfusion CT scans. Evaluation of KWIC in clinical CT data will be performed in the near future. R01 EB014922, NCI

  19. SU-E-I-36: A KWIC and Dirty Look at Dose Savings and Perfusion Metrics in Simulated CT Neuro Perfusion Exams

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, J; Martin, T; Young, S; McNitt-Gray, M; Wang, D [UCLA School of Medicine, Los Angeles, CA (United States)

    2015-06-15

    Purpose: CT neuro perfusion scans are one of the highest dose exams. Methods to reduce dose include decreasing the number of projections acquired per gantry rotation, however conventional reconstruction of such scans leads to sampling artifacts. In this study we investigated a projection view-sharing reconstruction algorithm used in dynamic MRI – “K-space Weighted Image Contrast” (KWIC) – applied to simulated perfusion exams and evaluated dose savings and impacts on perfusion metrics. Methods: A FORBILD head phantom containing simulated time-varying objects was developed and a set of parallel-beam CT projection data was created. The simulated scans were 60 seconds long, 1152 projections per turn, with a rotation time of one second. No noise was simulated. 5mm, 10mm, and 50mm objects were modeled in the brain. A baseline, “full dose” simulation used all projections and reduced dose cases were simulated by downsampling the number of projections per turn from 1152 to 576 (50% dose), 288 (25% dose), and 144 (12.5% dose). KWIC was further evaluated at 72 projections per rotation (6.25%). One image per second was reconstructed using filtered backprojection (FBP) and KWIC. KWIC reconstructions utilized view cores of 36, 72, 144, and 288 views and 16, 8, 4, and 2 subapertures respectively. From the reconstructed images, time-to-peak (TTP), cerebral blood flow (CBF) and the FWHM of the perfusion curve were calculated and compared against reference values from the full-dose FBP data. Results: TTP, CBF, and the FWHM were unaffected by dose reduction (to 12.5%) and reconstruction method, however image quality was improved when using KWIC. Conclusion: This pilot study suggests that KWIC preserves image quality and perfusion metrics when under-sampling projections and that the unique contrast weighting of KWIC could provided substantial dose-savings for perfusion CT scans. Evaluation of KWIC in clinical CT data will be performed in the near future. R01 EB014922, NCI

  20. The effect of perfusion and irrigation flow rate variations on NaCl efflux from the isolated, perfused head of the marine teleost, Myoxocephalus octodecimspinosus

    International Nuclear Information System (INIS)

    Claiborne, J.B.; Evans, D.H.

    1981-01-01

    In vivo branchial blood pressure and unidirectional efflux values for NaCl were determined in the marine teleost, Myoxocephalus octodecimspinosus. Utilizing an isolated, perfused head preparation, perfused at in vivo pressure levels, NaCl efflux was measured and compared to in vivo values. The effect of variations in perfusion or irrigation rates on the ion efflux across the gills of the isolated head was also studied. The efflux of 22 Na from the isolated, perfused head was found to be similar to in vivo values and dependent on perfusion flow and pressure. In vitro 36 Cl efflux was lower than the efflux from intact animals and was determined to be flow/pressure independent. Irrigation rate changes at all rates tested did not affect the unidirectional efflux of either ion. (Auth.)

  1. Metabolism of 1-[14C]nitropyrene in isolated perfused rat livers

    International Nuclear Information System (INIS)

    Bond, J.A.; Medinsky, M.A.; Dutcher, J.S.

    1984-01-01

    1-Nitropyrene (1-NP), a constituent of diesel exhaust, is carcinogenic to rats and is a bacterial and mammalian mutagen. Biliary and fecal excretion of 1-NP metabolites are the major routes of excretion in rats, suggesting that hepatic metabolism plays a dominant role in determining the biological fate of 1-NP. The purpose of this investigation was to quantitate 1-[14C]NP metabolites formed in isolated perfused rat livers and excreted in bile from rats. Perfused rat livers displayed a capacity for oxidation, reduction, acetylation, and conjugation of 1-NP (or its metabolites). Reduction of 1-NP followed by N-acetylation was the major metabolic pathway observed in the perfused livers. Acetylaminopyrene (AAP) was the major metabolite detected, with total quantities (150 nmol) accounting for about 60% of the total 1-[14C]NP dose (258 nmol) added to the perfusate. Considerably smaller quantities of aminopyrene and hydroxynitropyrenes were also detected. Livers perfused with 1-[14C]NP excreted about 36 nmol equivalents of 1-[14C]NP (12% of the total 1-NP dose) in bile after 60 min. Some of the biliary metabolites were tentatively identified as metabolites of the mercapturic acid pathway. The spectrum of biliary metabolites was qualitatively identical to that seen in bile from intact rats. Quantities of 14C covalently bound to hepatic macromolecules from perfused livers were 0.4 nmol 1-NP eq/g liver. The data from this study indicate that the liver may be an important site for metabolism of 1-NP

  2. Quantitation of size of myocardial infarctions by computerized transmission tomography. Comparison with hot-spot and cold-spot radionuclide scans

    International Nuclear Information System (INIS)

    Gerber, K.H.; Higgins, C.B.

    1983-01-01

    The current study evaluated the ability to quantitate the volume of myocardial infarctions when they are outlined by intravenously administered contrast media in the myocardial perfusion phase and in the phase of delayed contrast enhancement of the infarct. Quantitation by contrast media was assessed from computerized transmission tomography (CTT) scans of the ex situ heart and compared with quantitation by technetium-99m (/sup 99m/Tc)pyrophosphate (/sup 99m/Tc PYP) and thallium-201 (201Tl) scans of the same ex situ hearts. True volume was defined by histochemical morphometry. CTT during the contrast perfusion phase uniformly underestimated infarct size but had a good correlation with true volume. CTT during enhancement phase correlated closely with true volume (r . 0.98) and most precisely measured true size (y . 1.06 X 0.23). The /sup 99m/Tc PYP scan overestimated infarct volume (predictive overestimation of 6 to 199%) but had a good correlation with true volume. 201Tl underestimated infarct volume but correlated well with true volume. Thus, quantitation of infarct volume from CTT scans performed during either the perfusion or infarct enhancement phase after intravenous contrast media provides a good estimate of true infarct volume. Delineation of the infarct by contrast media in the ex situ heart is more precise during the phase of delayed enhancement of the infarct

  3. Modeling and analysis of dynamic scintigraphic data for measurement of cardiac perfusion and performance

    International Nuclear Information System (INIS)

    Twieg, D.B.

    1977-01-01

    Clinical scintigraphy is the technique of imaging the distributions of gamma-ray-emitting tracers within a patient's body. The increasingly popular small nuclear medicine computer has greatly facilitated the use of mathematical models for interpretation of scintigraphic data, and has made it possible for the clinician and the researcher to extract from the scintigraphic data information not otherwise available. The purpose of this work was to investigate several models used in dynamic scintigraphic studies of the heart. The Xenon washout method of measuring myocardial perfusion is discussed. The use of single-compartment, multi-compartment, and noncompartmental models are critically examined, and the influence of multiexponential components on monoexponential fits for perfusion measurement from Xenon washouts is investigated. A model of cardiac pump function is developed which allows for incompetent valves at the input and output of the ventricular chamber. An iterative method is used in conjunction with the model to estimate forward and regurgitant flows from simulated noisy scintigraphic data and from patient data. Unlike previously available methods, the method presented here was developed to allow noninvasive determination of both mitral and aortic regurgitation. Simulation results were successful, and preliminary studies in a few patients were encouraging. An investigation is presented into the relationship between the count-volume and geometric scintigraphic methods of estimating left ventricular ejection fraction, an important index of the contractile state of the myocardial muscle. A bias due to failure to account for the effects of Poisson noise was found in one popular method for ejection measurement

  4. Perfusion CT assessment of the colon and rectum: Feasibility of quantification of bowel wall perfusion and vascularization

    International Nuclear Information System (INIS)

    Khan, Sairah; Goh, Vicky; Tam, Emily; Wellsted, David; Halligan, Steve

    2012-01-01

    The aim was to determine the feasibility of vascular quantification of the bowel wall for different anatomical segments of the colorectum. Following institutional ethical approval and informed consent, 39 patients with colorectal cancer underwent perfusion CT. Blood flow (BF), blood volume (BV), mean transit time (MTT), and permeability surface area product (PS) were assessed for different segments of the colorectum: ascending, transverse, descending colon, sigmoid, or rectum, that were distant from the tumor, and which were proven normal on contemporary colonoscopy, and subsequent imaging and clinical follow up. Mean (SD) for BF, BV, MTT and PS for the different anatomical colorectal segments were obtained and compared using a pooled t-test. Significance was at 5%. Assessment was not possible in 9 of 39 (23%) patients as the bowel wall was ≤5 mm precluding quantitative analysis. Forty-four segments were evaluated in the remaining 30 patients. Mean BF was higher in the proximal than distal colon: 24.0 versus 17.8 mL/min/100 g tissue; p = 0.009; BV, MTT and PS were not significantly different; BV: 3.46 versus 3.15 mL/100 g tissue, p = 0.45; MTT: 15.1 versus 18.3 s; p = 0.10; PS: 6.84 versus 8.97 mL/min/100 tissue, p = 0.13, respectively. In conclusion, assessment of bowel wall perfusion may fail in 23% of patients. The colorectum demonstrates segmental differences in perfusion.

  5. Whole-brain 320-detector row dynamic volume CT perfusion detected crossed cerebellar diaschisis after spontaneous intracerebral hemorrhage

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Jun; Chen, Wei-jian; Wang, Mei-hao; Li, Jian-ce; Zhang, Qian; Xia, Neng-zhi; Yang, Yun-jun [Wenzhou Medical University, Department of Radiology, First Affiliated Hospital, Wenzhou (China); Wu, Gui-yun [Cleveland Clinics Foundation, Department of Nuclear Medicine, Imaging Institute, Cleveland, OH (United States); Cheng, Jing-liang; Zhang, Yong [Zhengzhou University, Department of Radiology, First Affiliated Hospital, Zhengzhou (China); Zhuge, Qichuan [Wenzhou Medical University, Department of Neurosurgery, First Affiliated Hospital, Wenzhou (China)

    2014-11-09

    The purpose of this study was to evaluate the value of 320-detector row CT used to detect crossed cerebellar diaschisis (CCD) in patients with unilateral supratentorial spontaneous intracerebral hemorrhage (SICH). We investigated 62 of 156 patients with unilateral supratentorial SICH using 320-detector row CT scanning. Regional cerebral blood flow (rCBF), cerebral blood volume (rCBV), mean transit time (rMTT), and time to peak (rTTP) levels were measured in different regions of interest (ROIs) that were manually outlined on computed tomography perfusion (CTP) for the cerebrum, including normal-appearing brain tissue that surrounded the perilesional low-density area (NA) and the perihematomal low-density area (PA) in all patients and the cerebellum (ipsilateral and contralateral) in CCD-positive patients. Of 62 cases, a total of 14 met the criteria for CCD due to cerebellar perfusion asymmetry on CTP maps. In the quantitative analysis, significant differences were found in the perfusion parameters between the contralateral and ipsilateral cerebellum in CCD-positive cases. No significant differences were found between the CCD-positive group and the CCD-negative group according to the hematoma volume, NIHSS scores, and cerebral perfusion abnormality (each P > 0.05). The correlation analysis of the degree of NA, PA perfusion abnormality, and the degree of CCD severity showed negative and significant linear correlations (R, -0.66∝-0.56; P < 0.05). 320-detector row CT is a robust and practicable method for the comprehensive primary imaging work-up of CCD in unilateral supratentorial SICH patients. (orig.)

  6. Whole-brain 320-detector row dynamic volume CT perfusion detected crossed cerebellar diaschisis after spontaneous intracerebral hemorrhage

    International Nuclear Information System (INIS)

    Fu, Jun; Chen, Wei-jian; Wang, Mei-hao; Li, Jian-ce; Zhang, Qian; Xia, Neng-zhi; Yang, Yun-jun; Wu, Gui-yun; Cheng, Jing-liang; Zhang, Yong; Zhuge, Qichuan

    2015-01-01

    The purpose of this study was to evaluate the value of 320-detector row CT used to detect crossed cerebellar diaschisis (CCD) in patients with unilateral supratentorial spontaneous intracerebral hemorrhage (SICH). We investigated 62 of 156 patients with unilateral supratentorial SICH using 320-detector row CT scanning. Regional cerebral blood flow (rCBF), cerebral blood volume (rCBV), mean transit time (rMTT), and time to peak (rTTP) levels were measured in different regions of interest (ROIs) that were manually outlined on computed tomography perfusion (CTP) for the cerebrum, including normal-appearing brain tissue that surrounded the perilesional low-density area (NA) and the perihematomal low-density area (PA) in all patients and the cerebellum (ipsilateral and contralateral) in CCD-positive patients. Of 62 cases, a total of 14 met the criteria for CCD due to cerebellar perfusion asymmetry on CTP maps. In the quantitative analysis, significant differences were found in the perfusion parameters between the contralateral and ipsilateral cerebellum in CCD-positive cases. No significant differences were found between the CCD-positive group and the CCD-negative group according to the hematoma volume, NIHSS scores, and cerebral perfusion abnormality (each P > 0.05). The correlation analysis of the degree of NA, PA perfusion abnormality, and the degree of CCD severity showed negative and significant linear correlations (R, -0.66∝-0.56; P < 0.05). 320-detector row CT is a robust and practicable method for the comprehensive primary imaging work-up of CCD in unilateral supratentorial SICH patients. (orig.)

  7. Thallium-201 peripheral perfusion scans: feasibility of single-dose, single-day, rest and stress study

    International Nuclear Information System (INIS)

    Siegel, M.E.; Stewart, C.A.

    1981-01-01

    The distribution and redistribution kinetics of thallium-201 in the lower extremities were investigated to determine the relationships among the rest, stress, and delayed-stress perfusion studies. The distribution of perfusion when the tracer was administered at rest was compared with that when administered during stress, and the distribution 5--6 hr after the stress injection. The distribution was evaluated qualitatively by scanning and quantitatively by point counting. In nine of 10 subjects without peripheral vascular disease, the 5--6 poststress redistribution pattern was unchanged from the stress pattern and was different from the rest pattern. However, in all patients with peripheral vascular disease, the delayed poststress perfusion distribution had greater similarity to the rest pattern and was substantially different from that noted immediately after stress. Using the time frame of this study, the stress and delayed-stress 201 Tl perfusion study of the lower extremities cannot be used to represent true rest perfusion. However, because of the similarity of the delayed-stress to the true rest distribution in abnormals, it may be clinically useful in defining rest and stress alterations

  8. Dynamic CT perfusion imaging of intra-axial brain tumours: differentiation of high-grade gliomas from primary CNS lymphomas

    International Nuclear Information System (INIS)

    Schramm, Peter; Xyda, Argyro; Knauth, Michael; Klotz, Ernst; Tronnier, Volker; Hartmann, Marius

    2010-01-01

    Perfusion computed tomography (PCT) allows to quantitatively assess haemodynamic characteristics of brain tissue. We investigated if different brain tumor types can be distinguished from each other using Patlak analysis of PCT data. PCT data from 43 patients with brain tumours were analysed with a commercial implementation of the Patlak method. Four patients had low-grade glioma (WHO II), 31 patients had glioblastoma (WHO IV) and eight patients had intracerebral lymphoma. Tumour regions of interest (ROIs) were drawn in a morphological image and automatically transferred to maps of cerebral blood flow (CBF), cerebral blood volume (CBV) and permeability (K Trans ). Mean values were calculated, group differences were tested using Wilcoxon and Mann Whitney U-tests. In comparison with normal parenchyma, low-grade gliomas showed no significant difference of perfusion parameters (p > 0.05), whereas high-grade gliomas demonstrated significantly higher values (p Trans , p Trans values compared with unaffected cerebral parenchyma (p = 0.0078) but no elevation of CBV. High-grade gliomas show significant higher CBV values than lymphomas (p = 0.0078). PCT allows to reliably classify gliomas and lymphomas based on quantitative measurements of CBV and K Trans . (orig.)

  9. Estimation of bone perfusion as a function of intramedullary pressure in sheep

    International Nuclear Information System (INIS)

    Rosenthal, M.S.; Lehner, C.E.; Pearson, D.W.; Kanikula, T.M.; Adler, G.G.; Venci, R.; Lanphier, E.H.; De Luca, P.M.

    1985-01-01

    It has been reported previously that following decompression (i.e. diving ascents) the intramedullary pressure (IMP) in bone can rise dramatically and possibly by the mechanism which can induce dysbaric osteonecrosis or the ''silent bends''. If the blood supply for the bone transverses the marrow compartment, than an increase in IMP could cause a temporary decrease in perfusion or hemostasis and hence ischemia leading to bone necrosis. To test this hypothesis, the authors measured the perfusion of bone in sheep as a function of IMP. The bone perfusion was estimated by measuring the perfusion-limited clearance of Ar-41 (Eγ=1293 keV, T/sub 1/2/=1.83 h) from the bone mineral matrix of sheep's tibia. The argon gas was formed in vivo by the fast neutron activation of Ca-44 to Ar-41 following the Ca-44(n,α) reaction. Clearance of Ar-41 was measured by time gated gamma-ray spectroscopy. These results indicate that an elevation of intramedullary pressure can decrease perfusion in bone and may cause bone necrosis

  10. Reproducibility and Reliability of Repeated Quantitative Fluorescence Angiography

    DEFF Research Database (Denmark)

    Nerup, Nikolaj; Knudsen, Kristine Bach Korsholm; Ambrus, Rikard

    2017-01-01

    INTRODUCTION: When using fluorescence angiography (FA) in perioperative perfusion assessment, repeated measures with re-injections of fluorescent dye (ICG) may be required. However, repeated injections may cause saturation of dye in the tissue, exceeding the limit of fluorescence intensity...... that the camera can detect. As the emission of fluorescence is dependent of the excitatory light intensity, reduction of this may solve the problem. The aim of the present study was to investigate the reproducibility and reliability of repeated quantitative FA during a reduction of excitatory light....

  11. Phase correction of MR perfusion/diffusion images

    International Nuclear Information System (INIS)

    Chenevert, T.L.; Pipe, J.G.; Brunberg, J.A.; Yeung, H.N.

    1989-01-01

    Apparent diffusion coefficient (ADC) and perfusion MR sequences are exceptionally sensitive to minute motion and, therefore, are prone to bulk motions that hamper ADC/perfusion quantification. The authors have developed a phase correction algorithm to substantially reduce this error. The algorithm uses a diffusion-insensitive data set to correct data that are diffusion sensitive but phase corrupt. An assumption of the algorithm is that bulk motion phase shifts are uniform in one dimension, although they may be arbitrarily large and variable from acquisition to acquisition. This is facilitated by orthogonal section selection. The correction is applied after one Fourier transform of a two-dimensional Fourier transform reconstruction. Imaging experiments on rat and human brain demonstrate significant artifact reduction in ADC and perfusion measurements

  12. Validation and absolute quantification of MR perfusion compared with CT perfusion in patients with unilateral cerebral arterial stenosis

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Fang-Ying, E-mail: fychiou@hotmail.com [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei City, Taiwan (China); Kao, Yi-Hsuan, E-mail: yhkao@ym.edu.tw [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei City, Taiwan (China); Teng, Michael Mu Huo, E-mail: mhteng@gmail.com [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei City, Taiwan (China); School of Medicine, National Yang-Ming University, Taipei City, Taiwan (China); Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan (China); Chung, Hsiao-Wen, E-mail: chung@cc.ee.ntu.edu.tw [Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan (China); Chang, Feng-Chi, E-mail: fcchang374@gmail.com [School of Medicine, National Yang-Ming University, Taipei City, Taiwan (China); Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan (China); Cho, I-Chieh, E-mail: jessie8030@yahoo.com.tw [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei City, Taiwan (China); Chen, Wen-Chun, E-mail: sky7408695@hotmail.com [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei City, Taiwan (China)

    2012-12-15

    Objective: The aim of the study was to assess absolute quantification of dynamic susceptibility contrast-enhanced magnetic resonance perfusion (MRP) comparing with computed tomography perfusion (CTP) in patients with unilateral stenosis. Materials and methods: We retrospectively post-processed MRP in 20 patients with unilateral occlusion or stenosis of >79% at the internal carotid artery or the middle cerebral artery (MCA). Absolute quantification of MRP was performed after applying the following techniques: cerebrospinal fluid removal, vessel removal, and automatic segmentation of brain to calculate the scaling factors to convert relative cerebral blood volume (rCBV) and relative cerebral blood flow (rCBF) values to absolute values. For comparison between MRP and CTP, we manually deposited regions of interest in bilateral MCA territories at the level containing the body of the lateral ventricle. Results: The correlation between MRP and CTP was best for mean transit time (MTT) (r = 0.83), followed by cerebral blood flow (CBF) (r = 0.52) and cerebral blood volume (CBV) (r = 0.43). There was no significant difference between CTP and MRP for CBV, CBF, and MTT on the lesion side, the contralateral side, the lesion-contralateral differences, or the lesion-to-contralateral ratios (P > 0.05). The mean differences between MRP and CTP were as follows: CBV −0.57 mL/100 g, CBF 2.50 mL/100 g/min, and MTT −0.90 s. Conclusion: Absolute quantification of MRP is possible. Using the proposed method, measured values of MRP and CTP had acceptable linear correlation and quantitative agreement.

  13. Validation and absolute quantification of MR perfusion compared with CT perfusion in patients with unilateral cerebral arterial stenosis

    International Nuclear Information System (INIS)

    Chiu, Fang-Ying; Kao, Yi-Hsuan; Teng, Michael Mu Huo; Chung, Hsiao-Wen; Chang, Feng-Chi; Cho, I-Chieh; Chen, Wen-Chun

    2012-01-01

    Objective: The aim of the study was to assess absolute quantification of dynamic susceptibility contrast-enhanced magnetic resonance perfusion (MRP) comparing with computed tomography perfusion (CTP) in patients with unilateral stenosis. Materials and methods: We retrospectively post-processed MRP in 20 patients with unilateral occlusion or stenosis of >79% at the internal carotid artery or the middle cerebral artery (MCA). Absolute quantification of MRP was performed after applying the following techniques: cerebrospinal fluid removal, vessel removal, and automatic segmentation of brain to calculate the scaling factors to convert relative cerebral blood volume (rCBV) and relative cerebral blood flow (rCBF) values to absolute values. For comparison between MRP and CTP, we manually deposited regions of interest in bilateral MCA territories at the level containing the body of the lateral ventricle. Results: The correlation between MRP and CTP was best for mean transit time (MTT) (r = 0.83), followed by cerebral blood flow (CBF) (r = 0.52) and cerebral blood volume (CBV) (r = 0.43). There was no significant difference between CTP and MRP for CBV, CBF, and MTT on the lesion side, the contralateral side, the lesion-contralateral differences, or the lesion-to-contralateral ratios (P > 0.05). The mean differences between MRP and CTP were as follows: CBV −0.57 mL/100 g, CBF 2.50 mL/100 g/min, and MTT −0.90 s. Conclusion: Absolute quantification of MRP is possible. Using the proposed method, measured values of MRP and CTP had acceptable linear correlation and quantitative agreement.

  14. Quantitative evaluation of regional blood flow in pulmonary sarcoidosis with Bull's eye analysis

    International Nuclear Information System (INIS)

    Akaki, Shiro

    1991-01-01

    Lung perfusion scintigraphy was performed in 23 patients with pulmonary sarcoidosis and in 11 normal volunteers. Bull's eye analysis was used to analyze regional pulmonary blood flow quantitatively. First, whole lung perfusion images were divided into three regions by three concentric circles. Then radial axes were projected from the center to define 36 x 10deg sectors. The counts for each sector were calculated and a Bull's eye image was displayed. The counts were compared with the lower limit of normal (mean -2SD), and as the indices of reduction in perfusion, extent score (ES) and severity score (SS) were calculated. ES and SS showed significant reduction in perfusion 16 patients (70%) with sarcoidosis. In stage II sarcoidosis, both ES and SS were significantly higher than in stage I sarcoidosis (p 67 Ga scintigraphy findings. In comparison with clinical data, ES had a positive correlation with serum angiotensin-converting enzyme activity (p + /CD8 + ratio (p<0.05). The Bull's eye analysis was considered useful for the quantitative evaluation of regional pulmonary blood flow in pulmonary sarcoidosis, and it was suggested that the mechanism of reduction in perfusion might result mainly in its alveolitis and angitis. Ventilation abnormality, which may happen prior to reduction in perfusion, may be an important factor of reduction in perfusion. (author)

  15. Prevalence of symptomatic and silent stress-induced perfusion defects in diabetic patients with suspected coronary artery disease referred for myocardial perfusion scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Prior, John O.; Calcagni, Maria-Lucia; Bischof Delaloye, Angelika [Centre Hospitalier Universitaire Vaudois (CHUV University Hospital), Division of Nuclear Medicine, Lausanne (Switzerland); Monbaron, David; Ruiz, Juan [Centre Hospitalier Universitaire Vaudois (CHUV University Hospital), Division of Endocrinology, Diabetology and Metabolism, Lausanne (Switzerland); Koehli, Melanie [Centre Hospitalier Universitaire Vaudois (CHUV University Hospital), Division of Nuclear Medicine, Lausanne (Switzerland); Centre Hospitalier Universitaire Vaudois (CHUV University Hospital), Division of Endocrinology, Diabetology and Metabolism, Lausanne (Switzerland)

    2005-01-01

    Silent myocardial ischaemia - as evaluated by stress-induced perfusion defects on myocardial perfusion scintigraphy (MPS) in patients without a history of chest pain - is frequent in diabetes and is associated with increased rates of cardiovascular events. Its prevalence has been determined in asymptomatic diabetic patients, but remains largely unknown in diabetic patients with suspected coronary artery disease (CAD) in the clinical setting. In this study we therefore sought (a) to determine the prevalence of symptomatic and silent perfusion defects in diabetic patients with suspected CAD and (b) to characterise the eventual predictors of abnormal perfusion. The patient population comprised 133 consecutive diabetic patients with suspected CAD who had been referred for MPS. Studies were performed with exercise (41%) or pharmacological stress testing (1-day protocol, {sup 99m}Tc-sestamibi, {sup 201}Tl or both). We used semi-quantitative analysis (20-segment polar maps) to derive the summed stress score (SSS) and the summed difference score (SDS). Abnormal MPS (SSS{>=}4) was observed in 49 (37%) patients (SSS=4.9{+-}8.4, SDS=2.4{+-}4.7), reversible perfusion defects (SDS{>=}2) in 40 (30%) patients [SSS=13.3{+-}10.9; SDS=8.0{+-}5.6; 20% moderate to severe (SDS>4), 7% multivessel] and fixed defects in 21 (16%) patients. Results were comparable between patients with and patients without a history of chest pain. Of 75 patients without a history of chest pain, 23 (31%, 95% CI=21-42%) presented reversible defects (SSS=13.9{+-}11.3; SDS=7.4{+-}1.2), indicative of silent ischaemia. Reversible defects were associated with inducible ST segment depression during MPS stress (odds ratio (OR)=3.2, p<0.01). Fixed defects were associated with erectile dysfunction in males (OR=3.7, p=0.02) and lower aspirin use (OR=0.25, p=0.02). Silent stress-induced perfusion defects occurred in 31% of the patients, a rate similar to that in patients with a history of chest pain. MPS could identify

  16. Perfusion parameters of dynamic contrast-enhanced magnetic resonance imaging in patients with rectal cancer: Correlation with microvascular density and vascular endothelial growth factor expression

    International Nuclear Information System (INIS)

    Kim, Yeo Eun; Lim, Joon Seok; Kim, Myeong Jin; Kim, Ki Whang; Choi, Jun Jeong; Kim, Dae Hong; Myoung, Sung Min

    2013-01-01

    To determine whether quantitative perfusion parameters of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) correlate with immunohistochemical markers of angiogenesis in rectal cancer. Preoperative DCE-MRI was performed in 63 patients with rectal adenocarcinoma. Transendothelial volume transfer (K trans ) and fractional volume of the extravascular-extracellular space (Ve) were measured by Interactive Data Language software in rectal cancer. After surgery, microvessel density (MVD) and vascular endothelial growth factor (VEGF) expression scores were determined using immunohistochemical staining of rectal cancer specimens. Perfusion parameters (K trans , Ve) of DCE-MRI in rectal cancer were found to be correlated with MVD and VEGF expression scores by Spearman's rank coefficient analysis. T stage and N stage (negative or positive) were correlated with perfusion parameters and MVD. Significant correlation was not found between any DCE-MRI perfusion parameters and MVD (rs = -0.056 and p 0.662 for K trans ; rs = -0.103 and p = 0.416 for Ve), or between any DCE-MRI perfusion parameters and the VEGF expression score (rs = -0.042, p 0.741 for K trans ; r = 0.086, p = 0.497 for Ve) in rectal cancer. TN stage showed no significant correlation with perfusion parameters or MVD (p > 0.05 for all). DCE-MRI perfusion parameters, K trans and Ve, correlated poorly with MVD and VEGF expression scores in rectal cancer, suggesting that these parameters do not simply denote static histological vascular properties.

  17. Liver perfusion CT during hepatic arteriography for the hepatocellular carcinoma: Dose reduction and quantitative evaluation for normal- and ultralow-dose protocol

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Shingo [Department of Radiology, Dokkyo Medical University Koshigaya Hospital, 2-1-50, Minami-Koshigaya, Koshigaya-shi, Saitama 343-8555 (Japan); Katada, Yoshiaki, E-mail: yoshiaki@dokkyomed.ac.jp [Department of Radiology, Dokkyo Medical University Koshigaya Hospital, 2-1-50, Minami-Koshigaya, Koshigaya-shi, Saitama 343-8555 (Japan); Gohkyu, Masaki; Nakajima, Masahiro; Kawabata, Hideyuki; Nozaki, Miwako [Department of Radiology, Dokkyo Medical University Koshigaya Hospital, 2-1-50, Minami-Koshigaya, Koshigaya-shi, Saitama 343-8555 (Japan)

    2012-12-15

    Objectives: The purpose of this study was to investigate whether substantial reduction of the computed tomography (CT) dose is possible in liver CT perfusion imaging by comparing the results of ultralow-dose CT perfusion imaging with those of conventional CT perfusion imaging the same patients and under the same conditions. Materials and methods: The study was composed following two parts: computer simulation and patients study. In computer simulation, noise was added to the images so that the standard deviation (SD) of the CT values in the liver parenchyma became various values using ImageJ. Time density curves (TDCs) were created from the simulated data, and the influence of difference in the SDs on the shapes of the TDCs was investigated. In the patient study, CT perfusion during intra-arterial injection was performed in 30 consecutive patients undergoing transcatheter arterial chemoembolization. CT perfusion images were acquired twice, at 100 mA (CTDI{sub vol}, 300 mGy) for normal and at 20 mA (CTDI{sub vol}, 60 mGy) for the ultralow radiation doses, under the same conditions. Results: No change was observed in the shape of the TDCs and peak values in the analysis of simulation images. A very good correlation was observed between the normal- and ultralow-dose CT images for all analyzed values (R{sup 2} = 0.9885 for blood flow, 0.9269 for blood volume, and 0.8424 for mean transit time). Conclusions: Our results demonstrated that there was no significant difference in the analysis results of perfusion CT between ultralow-dose CT performed using 20% of the conventional dose and normal-dose CT perfusion.

  18. Perfusion MRI in CNS disease: current concepts

    International Nuclear Information System (INIS)

    Essig, M.; Giesel, F.; Le-Huu, M.; Stieltjes, B.; Tengg, H. von; Weber, M.-A.

    2004-01-01

    Today there are several indications for cerebral perfusion MRI. The major indications routinely used in increasing numbers of imaging centers include cerebrovascular disease, tumor imaging and recently psychiatric disorders. Perfusion MRI is based on the injection of a gadolinium chelate and the rapid acquisition of images as the bolus of contrast agent passes through the blood vessels in the brain. The contrast agent causes a signal change; this signal change over time can be analysed to measure cerebral hemodynamics. The quality of brain perfusion studies is very dependent on the contrast agent used: a robust and strong signal decrease with a compact bolus is needed. MultiHance (gadobenate dimeglumine, Gd-BOPTA) is the first of a new class of paramagnetic MR contrast agents with a weak affinity for serum proteins. Due to the interaction of Gd-BOPTA with serum albumin, MultiHance presents with significantly higher T1- and T2-relaxivities enabling a sharper bolus profile. This article reviews the indications of perfusion MRI and the performance of MultiHance in MR perfusion of different diseases. Previous studies using perfusion MRI for a variety of purposes required the use of double dose of contrast agent to achieve a sufficiently large signal drop to enable the acquisition of a clear input function and the calculation of perfusion rCBV and rCBF maps of adequate quality. Recent studies with Multi-Hance suggest that only a single dose of this agent is needed to cause a signal drop of about 30% which is sufficient to allow the calculation of high quality rCBV and rCBF maps. (orig.)

  19. Measuring perfusion and bioenergetics simultaneously in mouse skeletal muscle: a multi-parametric functional-NMR approach

    International Nuclear Information System (INIS)

    Baligand, C.; Wary, C.; Menard, J.C.; Giacomini, E.; Carlier, P.G.; Baligand, C.; Wary, C.; Menard, J.C.; Hogrel, J.Y.; Carlier, P.G.; Hogrel, J.Y.

    2011-01-01

    A totally noninvasive set-up was developed for comprehensive NMR evaluation of mouse skeletal muscle function in vivo. Dynamic pulsed arterial spin labeling-NMRI perfusion and blood oxygenation level-dependent (BOLD) signal measurements were interleaved with 31 P NMRS to measure both vascular response and oxidative capacities during stimulated exercise and subsequent recovery. Force output was recorded with a dedicated ergometer. Twelve exercise bouts were performed. The perfusion, BOLD signal, pH and force-time integral were obtained from mouse legs for each exercise. All reached a steady state after the second exercise, justifying the pointwise summation of the last 10 exercises to compensate for the limited 31 P signal. In this way, a high temporal resolution of 2.5 s was achieved to provide a time constant for phosphocreatine (PCr) recovery (tPCr). The higher signal-to-noise ratio improved the precision of τ(PCr) measurement [coefficient of variation (CV)1/416.5% vs CV1/449.2% for a single exercise at a resolution of 30 s]. Inter-animal summation confirmed that τ(PCr) was stable at steady state, but shorter (89.3W8.6 s) than after the first exercise (148 s, p≤0.05). This novel experimental approach provides an assessment of muscle vascular response simultaneously to energetic function in vivo. Its pertinence was illustrated by observing the establishment of a metabolic steady state. This comprehensive tool offers new perspectives for the study of muscle pathology in mice models. (authors)

  20. Low dose dynamic CT myocardial perfusion imaging using a statistical iterative reconstruction method

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Yinghua [Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States); Chen, Guang-Hong [Department of Medical Physics and Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States); Hacker, Timothy A.; Raval, Amish N. [Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53792 (United States); Van Lysel, Michael S.; Speidel, Michael A., E-mail: speidel@wisc.edu [Department of Medical Physics and Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States)

    2014-07-15

    Purpose: Dynamic CT myocardial perfusion imaging has the potential to provide both functional and anatomical information regarding coronary artery stenosis. However, radiation dose can be potentially high due to repeated scanning of the same region. The purpose of this study is to investigate the use of statistical iterative reconstruction to improve parametric maps of myocardial perfusion derived from a low tube current dynamic CT acquisition. Methods: Four pigs underwent high (500 mA) and low (25 mA) dose dynamic CT myocardial perfusion scans with and without coronary occlusion. To delineate the affected myocardial territory, an N-13 ammonia PET perfusion scan was performed for each animal in each occlusion state. Filtered backprojection (FBP) reconstruction was first applied to all CT data sets. Then, a statistical iterative reconstruction (SIR) method was applied to data sets acquired at low dose. Image voxel noise was matched between the low dose SIR and high dose FBP reconstructions. CT perfusion maps were compared among the low dose FBP, low dose SIR and high dose FBP reconstructions. Numerical simulations of a dynamic CT scan at high and low dose (20:1 ratio) were performed to quantitatively evaluate SIR and FBP performance in terms of flow map accuracy, precision, dose efficiency, and spatial resolution. Results: Forin vivo studies, the 500 mA FBP maps gave −88.4%, −96.0%, −76.7%, and −65.8% flow change in the occluded anterior region compared to the open-coronary scans (four animals). The percent changes in the 25 mA SIR maps were in good agreement, measuring −94.7%, −81.6%, −84.0%, and −72.2%. The 25 mA FBP maps gave unreliable flow measurements due to streaks caused by photon starvation (percent changes of +137.4%, +71.0%, −11.8%, and −3.5%). Agreement between 25 mA SIR and 500 mA FBP global flow was −9.7%, 8.8%, −3.1%, and 26.4%. The average variability of flow measurements in a nonoccluded region was 16.3%, 24.1%, and 937

  1. Low dose dynamic CT myocardial perfusion imaging using a statistical iterative reconstruction method

    International Nuclear Information System (INIS)

    Tao, Yinghua; Chen, Guang-Hong; Hacker, Timothy A.; Raval, Amish N.; Van Lysel, Michael S.; Speidel, Michael A.

    2014-01-01

    Purpose: Dynamic CT myocardial perfusion imaging has the potential to provide both functional and anatomical information regarding coronary artery stenosis. However, radiation dose can be potentially high due to repeated scanning of the same region. The purpose of this study is to investigate the use of statistical iterative reconstruction to improve parametric maps of myocardial perfusion derived from a low tube current dynamic CT acquisition. Methods: Four pigs underwent high (500 mA) and low (25 mA) dose dynamic CT myocardial perfusion scans with and without coronary occlusion. To delineate the affected myocardial territory, an N-13 ammonia PET perfusion scan was performed for each animal in each occlusion state. Filtered backprojection (FBP) reconstruction was first applied to all CT data sets. Then, a statistical iterative reconstruction (SIR) method was applied to data sets acquired at low dose. Image voxel noise was matched between the low dose SIR and high dose FBP reconstructions. CT perfusion maps were compared among the low dose FBP, low dose SIR and high dose FBP reconstructions. Numerical simulations of a dynamic CT scan at high and low dose (20:1 ratio) were performed to quantitatively evaluate SIR and FBP performance in terms of flow map accuracy, precision, dose efficiency, and spatial resolution. Results: Forin vivo studies, the 500 mA FBP maps gave −88.4%, −96.0%, −76.7%, and −65.8% flow change in the occluded anterior region compared to the open-coronary scans (four animals). The percent changes in the 25 mA SIR maps were in good agreement, measuring −94.7%, −81.6%, −84.0%, and −72.2%. The 25 mA FBP maps gave unreliable flow measurements due to streaks caused by photon starvation (percent changes of +137.4%, +71.0%, −11.8%, and −3.5%). Agreement between 25 mA SIR and 500 mA FBP global flow was −9.7%, 8.8%, −3.1%, and 26.4%. The average variability of flow measurements in a nonoccluded region was 16.3%, 24.1%, and 937

  2. A 4D digital phantom for patient-specific simulation of brain CT perfusion protocols.

    Science.gov (United States)

    van den Boom, Rieneke; Manniesing, Rashindra; Oei, Marcel T H; van der Woude, Willem-Jan; Smit, Ewoud J; Laue, Hendrik O A; van Ginneken, Bram; Prokop, Mathias

    2014-07-01

    Optimizing CT brain perfusion protocols is a challenge because of the complex interaction between image acquisition, calculation of perfusion data, and patient hemodynamics. Several digital phantoms have been developed to avoid unnecessary patient exposure or suboptimum choice of parameters. The authors expand this idea by using realistic noise patterns and measured tissue attenuation curves representing patient-specific hemodynamics. The purpose of this work is to validate that this approach can realistically simulate mean perfusion values and noise on perfusion data for individual patients. The proposed 4D digital phantom consists of three major components: (1) a definition of the spatial structure of various brain tissues within the phantom, (2) measured tissue attenuation curves, and (3) measured noise patterns. Tissue attenuation curves were measured in patient data using regions of interest in gray matter and white matter. By assigning the tissue attenuation curves to the corresponding tissue curves within the phantom, patient-specific CTP acquisitions were retrospectively simulated. Noise patterns were acquired by repeatedly scanning an anthropomorphic skull phantom at various exposure settings. The authors selected 20 consecutive patients that were scanned for suspected ischemic stroke and constructed patient-specific 4D digital phantoms using the individual patients' hemodynamics. The perfusion maps of the patient data were compared with the digital phantom data. Agreement between phantom- and patient-derived data was determined for mean perfusion values and for standard deviation in de perfusion data using intraclass correlation coefficients (ICCs) and a linear fit. ICCs ranged between 0.92 and 0.99 for mean perfusion values. ICCs for the standard deviation in perfusion maps were between 0.86 and 0.93. Linear fitting yielded slope values between 0.90 and 1.06. A patient-specific 4D digital phantom allows for realistic simulation of mean values and

  3. Histogram based analysis of lung perfusion of children after congenital diaphragmatic hernia repair.

    Science.gov (United States)

    Kassner, Nora; Weis, Meike; Zahn, Katrin; Schaible, Thomas; Schoenberg, Stefan O; Schad, Lothar R; Zöllner, Frank G

    2018-05-01

    To investigate a histogram based approach to characterize the distribution of perfusion in the whole left and right lung by descriptive statistics and to show how histograms could be used to visually explore perfusion defects in two year old children after Congenital Diaphragmatic Hernia (CDH) repair. 28 children (age of 24.2±1.7months; all left sided hernia; 9 after extracorporeal membrane oxygenation therapy) underwent quantitative DCE-MRI of the lung. Segmentations of left and right lung were manually drawn to mask the calculated pulmonary blood flow maps and then to derive histograms for each lung side. Individual and group wise analysis of histograms of left and right lung was performed. Ipsilateral and contralateral lung show significant difference in shape and descriptive statistics derived from the histogram (Wilcoxon signed-rank test, phistogram derived parameters. Histogram analysis can be a valuable tool to characterize and visualize whole lung perfusion of children after CDH repair. It allows for several possibilities to analyze the data, either describing the perfusion differences between the right and left lung but also to explore and visualize localized perfusion patterns in the 3D lung volume. Subgroup analysis will be possible given sufficient sample sizes. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Abnormal perfusion on myocardial perfusion SPECT in patients with Wolff-Parkinson-White syndrome

    International Nuclear Information System (INIS)

    Kang, Do Young; Cha, Kwang Soo; Han, Seung Ho; Park, Tae Ho; Kim, Moo Hyun; Kim, Young Dae

    2005-01-01

    Abnormal myocardial perfusion may be caused by ventricular preexcitation, but its location, extent, severity and correlation with accessory pathway (AP) are not established. We evaluated perfusion patterns on myocardial perfusion SPECT and location of AP in patients with WPW (Wolff-Parkison-White) syndrome. Adenosine Tc-99m MIBI or Tl-201 myocardial perfusion SPECT was performed in 11 patients with WPW syndrome. Perfusion defects (PD) were compared to AP location based on ECT with Fitzpatrick's algorithm of electrophysiologic study and radiofrequency catheter ablation. Patients had atypical chest discomfort or no symptom. Risk of coronary artery disease (CAD) was below 0.1 in 11 patients using the nomogram to estimate the probability of CAD. Coronary angiography was performed in 4 patients(mid-LAD 50% in one, normal in others). In 4 patients, AP localization was done by electrophysiologic study and radiofrequency catheter ablation (RFCA). Small to large extent (11.0 ± 8.5%, range:3 ∼ 35%) and mild to moderate severity (-71 ± 42.7%, range:-217 ∼ -39%) of reversible (n=9) or fixed (n=1) perfusion defects were noted. One patients with right free wall (right lateral) AP showed normal. PD locations were variable following the location of AP. One patient with left lateral wall AP was followed 6 weeks after RFCA and showed significantly decreased PD on SPECT with successful ablation. Myocardial perfusion defect showed variable extent, severity and location in patients with WPW syndrome. Abnormal perfusion defect showed in most of all patients, but if did not seem to be correlated specifically with location of accessory pathway and coronary artery disease. Therefore myocardial perfusion SPECT should be interpreted carefully in patients with WPW syndrome

  5. Abnormal perfusion on myocardial perfusion SPECT in patients with Wolff-Parkinson-White syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Do Young; Cha, Kwang Soo; Han, Seung Ho; Park, Tae Ho; Kim, Moo Hyun; Kim, Young Dae [Donga University College of Medicine, Busan (Korea, Republic of)

    2005-02-15

    Abnormal myocardial perfusion may be caused by ventricular preexcitation, but its location, extent, severity and correlation with accessory pathway (AP) are not established. We evaluated perfusion patterns on myocardial perfusion SPECT and location of AP in patients with WPW (Wolff-Parkison-White) syndrome. Adenosine Tc-99m MIBI or Tl-201 myocardial perfusion SPECT was performed in 11 patients with WPW syndrome. Perfusion defects (PD) were compared to AP location based on ECT with Fitzpatrick's algorithm of electrophysiologic study and radiofrequency catheter ablation. Patients had atypical chest discomfort or no symptom. Risk of coronary artery disease (CAD) was below 0.1 in 11 patients using the nomogram to estimate the probability of CAD. Coronary angiography was performed in 4 patients(mid-LAD 50% in one, normal in others). In 4 patients, AP localization was done by electrophysiologic study and radiofrequency catheter ablation (RFCA). Small to large extent (11.0 {+-} 8.5%, range:3 {approx} 35%) and mild to moderate severity (-71 {+-} 42.7%, range:-217 {approx} -39%) of reversible (n=9) or fixed (n=1) perfusion defects were noted. One patients with right free wall (right lateral) AP showed normal. PD locations were variable following the location of AP. One patient with left lateral wall AP was followed 6 weeks after RFCA and showed significantly decreased PD on SPECT with successful ablation. Myocardial perfusion defect showed variable extent, severity and location in patients with WPW syndrome. Abnormal perfusion defect showed in most of all patients, but if did not seem to be correlated specifically with location of accessory pathway and coronary artery disease. Therefore myocardial perfusion SPECT should be interpreted carefully in patients with WPW syndrome.

  6. Reference Range of Functional Data of Gated Myocardial Perfusion SPECT by Quantitative Gated SPECT of Cedars-Sinai and 4D-MSPECT of Michigan University

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Do Young; Kim, Moo Hyun; Kim, Young Dae [College of Medicine, Univ. of Donga, Pusan (Korea, Republic of)

    2003-07-01

    Various programs have been developed for gating of myocardial perfusion SPECT. Among the those program, the most popular program is the Quantitative Gated SPECT (QGS)? developed by Cedars-Sinai hospital and most recently released program is 4D-MSPECT? developed by university of Michigan. It is important to know the reference range of the functional data of gated myocardial perfusion SPECT because it is necessary to determine abnormality of individual patient and echocardiographic data is different from those of gated SPECT. Tc-99m MIBI gated myocardial perfusion SPECT image was reconstructed by dual head gamma camera (Siemens, BCAM, esoft) as routine procedure and analyzed using QGS? and 4D-MSPECT? program. All patients (M: F=9: 18, Age 69{+-}9 yrs) showed normal myocardial perfusion. The patients with following characteristics were excluded: previous angina or MI history, ECG change with Q wave or ST-T change, diabetes melitius, hypercholesterolemia, typical chest pain, hypertension and cardiomyopathy. Pre-test likelihood of all patients was low. (1) In stress gated SPECT by QGS?, EDV was 73{+-}25 ml, ESV 25{+-}14 ml, EF 67{+-}11 % and area of first frame of gating 106.4{+-}21cm{sup 2}. In rest gated SPECT, EDV was 76{+-}26 ml, ESV 27{+-}15 ml, EF 66{+-}12 and area of first frame of gating 108{+-}20cm{sup 2}. (2) In stress gated SPECT by 4D-MSPECT?, EDV was 76{+-}28 ml, ESV 23{+-}16 ml, EF 72{+-}11 %, mass 115{+-}24 g and ungated volume 42{+-}15 ml. In rest gated SPECT, EDV was 75{+-}27 ml, ESV 23{+-}12 ml, EF 71{+-}9%, mass 113{+-}25g and ungate dvolume 42{+-}15 ml, (3) s-EDV, s-EF, r-ESV and r-EF were significantly different between QGS? and 4D-MSPECT? (each p=0.016, p<0.001. p=0.003 and p=0.001). We determined the normal reference range of functional parameters by QGS? and 4D-MSPECT? program to diagnose individually the abnormality of patients. And the reference ranges have to adopted to be patients by each specific gating program.

  7. Computed Tomography Perfusion of the liver: Assessment of Pure Portal Blood Flow Studied with CT Perfusion During Superior Mesenteric Arterial Portography

    International Nuclear Information System (INIS)

    Kojima, H.; Tanigawa, N.; Komemushi, A.; Kariya, S.; Sawada, S.

    2004-01-01

    Purpose: To quantitatively assess the portal component of hepatic blood flow using computed tomography (CT) perfusion studies during superior mesenteric arterial portography. Material and Methods: Thirty-four patients with hepatocellular carcinoma and liver cirrhosis (LC) and 13 patients with liver metastasis without chronic liver disease were enrolled in this study. Ten milliliters of a non-ionic contrast medium (150 mgI) was injected at a rate of 5 ml/s via a catheter placed in the superior mesenteric artery. Single-slice cine CT images at the level of the main trunk or the right/left main trunk of the portal vein were acquired over 40 s. The deconvolution method was then used on these CT images to measure blood flow (BF), blood volume (BV), and mean transit time (MTT) in (a) liver parenchyma in patients with HCC and liver cirrhosis; (b) liver parenchyma in patients with liver metastasis without cirrhosis; (c) directly in the HCC; and (d) directly in one of the metastases. Results: In 34 LC patients (a), BF, BV, and MTT in the liver parenchyma were 44.7±24.5 ml/min/100 g, 3.9±2.4 ml/100 g, and 10.9±5.5 s, respectively. In 13 patients without cirrhosis (b), BF, BV, and MTT in the liver parenchyma were 89.6±52.0 ml/min/100 g, 6.3 ±3.2 ml/100 g, and 8.7±3.6 sec, respectively. A significant difference in BF and BV was seen in patients with liver cirrhosis compared to those without cirrhosis. BF, BV, and MTT measured directly in HCC (c) were 6.5±4.5 ml/min/100 g, 0.4±0.4 ml/100 g, and 3.0±3.1 sec respectively, and BF, BV, and MTT in liver metastases (d) were 19.3 ± 21.7 ml/min/100 g, 0.6±0.8 ml/100 g, and 1.8±1.6 s, respectively. Conclusion: CT perfusion studies during superior mesenteric arterial portography allow quantitative assessment of pure portal blood flow in the liver

  8. Pulmonary artery perfusion versus no pulmonary perfusion during cardiopulmonary bypass in patients with COPD

    DEFF Research Database (Denmark)

    Buggeskov, Katrine B; Sundskard, Martin M; Jonassen, Thomas

    2016-01-01

    INTRODUCTION: Absence of pulmonary perfusion during cardiopulmonary bypass (CPB) may be associated with reduced postoperative oxygenation. Effects of active pulmonary artery perfusion were explored in patients with chronic obstructive pulmonary disease (COPD) undergoing cardiac surgery. METHODS: 90...... perfusion with normothermic oxygenated blood during cardiopulmonary bypass appears to improve postoperative oxygenation in patients with COPD undergoing cardiac surgery. Pulmonary artery perfusion with hypothermic HTK solution does not seem to improve postoperative oxygenation. TRIAL REGISTRATION NUMBER...

  9. Reverse ventilation--perfusion mismatch

    International Nuclear Information System (INIS)

    Palmaz, J.C.; Barnett, C.A.; Reich, S.B.; Krumpe, P.E.; Farrer, P.A.

    1984-01-01

    Patients having lobar airway obstruction or consolidation usually have decreases of both ventilation and perfusion on lung scans. We report three patients in whom hypoxic vasoconstriction was apparently incomplete, resulting in a ''reversed'' ventilation-perfusion mismatch. Perfusion of the hypoxic lobe on the radionuclide scan was associated with metabolic alkalosis, pulmonary venous and pulmonary arterial hypertension in these patients

  10. Noninvasive quantification of regional myocardial perfusion with rubidium-82 and positron emission tomography. Exploration of a mathematical model

    International Nuclear Information System (INIS)

    Herrero, P.; Markham, J.; Shelton, M.E.; Weinheimer, C.J.; Bergmann, S.R.

    1990-01-01

    Positron emission tomography (PET) centers without cyclotrons use generator-produced rubidium-82 (82Rb) for assessment of myocardial perfusion. The aim of the present study was to determine whether myocardial blood flow could be assessed quantitatively with 82Rb and PET. Because the myocardial extraction fraction of 82Rb varies inversely and nonlinearly with flow and cannot be measured conveniently with PET, we used an experimentally derived mathematical function defining the relation between single-pass extraction fraction of 82Rb and flow to obviate the necessity of measuring the extraction fraction directly. Myocardial blood flow in absolute terms (ml/g/min) was estimated from dynamic PET scans after intravenous administration of 82Rb in intact dogs and compared with flows measured with radiolabeled microspheres. In 36 comparisons in 13 dogs studied at rest, or after coronary occlusion, reperfusion, or after coronary hyperemia induced with intravenous dipyridamole, over the flow range from 0.2 to 2.0 ml/g/min, estimates of perfusion with rubidium correlated well with flows measured concomitantly with microspheres, although there was a slight underestimation of flow with rubidium (flow by 82Rb = 0.92 x flow by microspheres-0.021, r = 0.83). In general, estimates of flow in ischemic regions were less reliable than estimates for regions with normal flow. Thus, although the relation between myocardial extraction and retention of 82Rb and flow can vary under a variety of physiological and pathophysiological conditions, this study demonstrates the ability to obtain quantitative estimates of myocardial blood flow with 82Rb and PET under carefully defined conditions without measuring the extraction fraction directly

  11. Lung perfusion and ventilation scintigraphy in pre- and postoperative diagnostics

    International Nuclear Information System (INIS)

    Sandrock, D.; Munz, D.L.

    1998-01-01

    Lung perfusion (Tc-99m labeled albumin particles) and ventilation (Xe-133 gas) are used prior to thoracic surgery in order to evaluate changes in perfusion and ventilation due to the underlying diseases. Furthermore, perfusion scintigraphy allows combined with spirometry the prediction of the postinterventional vital capacity and the forced expiratory volume in 1 s. The correlation coefficient for this procedure compared with values measured postoperatively are in the range of 0.8. The method allows the assessment of operability in terms of postinterventional function. (orig.) [de

  12. Accuracy and feasibility of dynamic contrast-enhanced 3D MR imaging in the assessment of lung perfusion: comparison with Tc-99 MAA perfusion scintigraphy

    International Nuclear Information System (INIS)

    Yilmaz, E.; Akkoclu, A.; Degirmenci, B.; Cooper, R.A.; Sengun, B.; Gulcu, A.; Osma, E.; Ucan, E.S.

    2005-01-01

    AIM: The aim of this study was to correlate findings of perfusion magnetic resonance imaging (MRI) and perfusion scintigraphy in cases where there was a suspicion of abnormal pulmonary vasculature, and to evaluate the usefulness of MRI in the detection of perfusion deficits of the lung. METHODS: In all, 17 patients with suspected abnormality of the pulmonary vasculature underwent dynamic contrast-enhanced MRI. T1-weighted 3D fast-field echo pulse sequences were obtained (TR/TE 3.3/1.58 ms; flip angle 30 deg ; slice thickness 12 to 15 mm). The dynamic study was acquired in the coronal plane following administration of 0.1 mmol/kg gadopentetate dimeglumine. A total of 8 to 10 sections repeated 20 to 25 times at intervals of 1 s were performed. Perfusion lung scintigraphy was carried out a maximum of 48 h before the MR examination in all cases. Two radiologists, who were blinded to the clinical data and results of other imaging methods, reviewed all coronal sections. MR perfusion images were independently assessed in terms of segmental or lobar perfusion defects in the 85 lobes of the 17 individuals, and the findings were compared with the results of scintigraphy. RESULTS: Of the 17 patients, 8 were found to have pulmonary emboli, 2 chronic obstructive pulmonary disease with emphysema, 2 bullous emphysema, 2 Takayasu arteritis and 1 had a hypoplastic pulmonary artery. Pulmonary perfusion was completely normal in 2 cases. In 35 lobes, perfusion defects were detected using both methods, in 4 with MR alone and in 9 only with scintigraphy. There was good agreement between MRI and scintigraphy findings (kappa=0.695). CONCLUSION: Pulmonary perfusion MRI is a new alternative to scintigraphy in the evaluation of pulmonary perfusion for various lung disorders. In addition, this technique allows measurement and quantification of pulmonary perfusion abnormalities

  13. Improvement of brain perfusion SPET using iterative reconstruction with scatter and non-uniform attenuation correction

    Energy Technology Data Exchange (ETDEWEB)

    Kauppinen, T.; Vanninen, E.; Kuikka, J.T. [Kuopio Central Hospital (Finland). Dept. of Clinical Physiology; Koskinen, M.O. [Dept. of Clinical Physiology and Nuclear Medicine, Tampere Univ. Hospital, Tampere (Finland); Alenius, S. [Signal Processing Lab., Tampere Univ. of Technology, Tampere (Finland)

    2000-09-01

    Filtered back-projection (FBP) is generally used as the reconstruction method for single-photon emission tomography although it produces noisy images with apparent streak artefacts. It is possible to improve the image quality by using an algorithm with iterative correction steps. The iterative reconstruction technique also has an additional benefit in that computation of attenuation correction can be included in the process. A commonly used iterative method, maximum-likelihood expectation maximisation (ML-EM), can be accelerated using ordered subsets (OS-EM). We have applied to the OS-EM algorithm a Bayesian one-step late correction method utilising median root prior (MRP). Methodological comparison was performed by means of measurements obtained with a brain perfusion phantom and using patient data. The aim of this work was to quantitate the accuracy of iterative reconstruction with scatter and non-uniform attenuation corrections and post-filtering in SPET brain perfusion imaging. SPET imaging was performed using a triple-head gamma camera with fan-beam collimators. Transmission and emission scans were acquired simultaneously. The brain phantom used was a high-resolution three-dimensional anthropomorphic JB003 phantom. Patient studies were performed in ten chronic pain syndrome patients. The images were reconstructed using conventional FBP and iterative OS-EM and MRP techniques including scatter and nonuniform attenuation corrections. Iterative reconstructions were individually post-filtered. The quantitative results obtained with the brain perfusion phantom were compared with the known actual contrast ratios. The calculated difference from the true values was largest with the FBP method; iteratively reconstructed images proved closer to the reality. Similar findings were obtained in the patient studies. The plain OS-EM method improved the contrast whereas in the case of the MRP technique the improvement in contrast was not so evident with post-filtering. (orig.)

  14. Improvement of brain perfusion SPET using iterative reconstruction with scatter and non-uniform attenuation correction

    International Nuclear Information System (INIS)

    Kauppinen, T.; Vanninen, E.; Kuikka, J.T.; Alenius, S.

    2000-01-01

    Filtered back-projection (FBP) is generally used as the reconstruction method for single-photon emission tomography although it produces noisy images with apparent streak artefacts. It is possible to improve the image quality by using an algorithm with iterative correction steps. The iterative reconstruction technique also has an additional benefit in that computation of attenuation correction can be included in the process. A commonly used iterative method, maximum-likelihood expectation maximisation (ML-EM), can be accelerated using ordered subsets (OS-EM). We have applied to the OS-EM algorithm a Bayesian one-step late correction method utilising median root prior (MRP). Methodological comparison was performed by means of measurements obtained with a brain perfusion phantom and using patient data. The aim of this work was to quantitate the accuracy of iterative reconstruction with scatter and non-uniform attenuation corrections and post-filtering in SPET brain perfusion imaging. SPET imaging was performed using a triple-head gamma camera with fan-beam collimators. Transmission and emission scans were acquired simultaneously. The brain phantom used was a high-resolution three-dimensional anthropomorphic JB003 phantom. Patient studies were performed in ten chronic pain syndrome patients. The images were reconstructed using conventional FBP and iterative OS-EM and MRP techniques including scatter and nonuniform attenuation corrections. Iterative reconstructions were individually post-filtered. The quantitative results obtained with the brain perfusion phantom were compared with the known actual contrast ratios. The calculated difference from the true values was largest with the FBP method; iteratively reconstructed images proved closer to the reality. Similar findings were obtained in the patient studies. The plain OS-EM method improved the contrast whereas in the case of the MRP technique the improvement in contrast was not so evident with post-filtering. (orig.)

  15. Combined evaluation of regional coronary artery calcium and myocardial perfusion by {sup 82}Rb PET/CT in the identification of obstructive coronary artery disease

    Energy Technology Data Exchange (ETDEWEB)

    Zampella, Emilia; Assante, Roberta; Nappi, Carmela; Mainolfi, Ciro Gabriele; Green, Roberta; Cantoni, Valeria; Klain, Michele; Cuocolo, Alberto [University Federico II, Department of Advanced Biomedical Sciences, Naples (Italy); Acampa, Wanda [University Federico II, Department of Advanced Biomedical Sciences, Naples (Italy); National Council of Research, Institute of Biostructure and Bioimaging, Naples (Italy); Gaudieri, Valeria; Panico, Mariarosaria [National Council of Research, Institute of Biostructure and Bioimaging, Naples (Italy); Petretta, Mario [University Federico II, Department of Translational Medical Sciences, Naples (Italy); Slomka, Piotr J. [Cedars-Sinai Medical Center, Department of Medicine, Los Angeles, CA (United States); UCLA, David Geffen School of Medicine, Los Angeles, CA (United States)

    2018-04-15

    Cardiac imaging with PET/CT allows measurement of coronary artery calcium (CAC), myocardial perfusion and coronary vascular function. We investigated whether the combined assessment of regional CAC score, ischemic total perfusion deficit (ITPD) and quantitative coronary vascular function would further improve the diagnostic accuracy of PET/CT in predicting obstructive coronary artery disease (CAD). We analyzed 113 patients with suspected CAD referred to {sup 82}Rb PET/CT myocardial perfusion imaging with available coronary angiographic data. Obstructive CAD was defined as ≥75% stenosis. The receiver operating characteristic area under curve (AUC) was applied to evaluate the ability of CAC score, ITPD, hyperemic myocardial blood flow (MBF) and coronary flow reserve (CFR) to identify CAD. Vessels with obstructive CAD (71 vessels) had higher ITPD (4.6 ± 6.2 vs. 0.6 ± 1.3) and lower hyperemic MBF (1.01 ± 0.5 vs. 1.75 ± 0.6 ml/min/g) and CFR (1.56 ± 0.6 vs. 2.38 ± 0.7; all p < 0.001) than those without. In prediction of per-vessel CAD, the AUCs for the models including CAC/ITPD/hyperemic MBF (0.869) and CAC/ITPD/CFR (0.875) were higher (both p < 0.01) than for the model including CAC/ITPD (0.790). Compared with CAC/ITPD, continuous net reclassification improvement was 0.69 (95% bootstrap confidence interval, CI, 0.365-1.088) for the CAC/ITPD/hyperemic MBF model and 0.99 (95% bootstrap CI 0.64-1.26) for the CAC/ITPD/CFR model. Hyperemic MBF and CFR provide incremental information about the presence of CAD over CAC score and perfusion imaging parameters. The combined use of CAC, myocardial perfusion imaging and quantitative coronary vascular function in may help predict more accurately the presence of obstructive CAD. (orig.)

  16. The clinical value of planar thallium-201 myocardial perfusion scintigraphy

    International Nuclear Information System (INIS)

    Niemeyer, M.G.

    1989-01-01

    The clinical value of planar thalium-201 myocardial perfusion scintigraphy was examined, using visual and quantitative analysis, for the detection of presence, localization and extent of coronary disease, using coronary arteriography as gold standard. The indremental diagnostic yield of different noninvasive tests for the diagnosis and the severity of coronary artery disease was quantified by using multivariate discriminant analysis. (author). 284 refs.; 14 figs.; 37 tabs

  17. Differential physiologic effects of perfusion of scala tympani versus scala vestibuli in the ischemic cochlea.

    Science.gov (United States)

    Kobayashi, T; Rokugo, M; Takasaka, T; Thalmann, R

    1993-07-01

    The effectiveness of perilymphatic perfusion with oxygenated artificial media upon the endocochlear potential (EP) was measured during systemic ischemia in the guinea pig. Differences in the effects of perfusion of the two perilymphatic scalae were determined. Perfusion of scala vestibuli with oxygenated artificial perilymph at a high flow rate resulted in complete recovery of the EP to the pre-ischemic level, whereas perfusion of scala tympani with the same medium was unable to effect complete recovery. The recovery obtained by perfusion of scala tympani was about half that obtained of scala vestibuli. The pO2 in scala media was measured during perfusion by means of oxygen-sensitive microelectrodes. perfusion of scala vestibuli led to an approximately two-fold higher pO2 in scala media than perfusion of scala tympani. During perfusion, the pO2 in scala media varied dependent upon depth of electrode insertion, with a gradient decreasing toward the stria vascularis, a direction opposite to that seen under normal metabolic conditions. These findings suggest that, in the ischemic cochlea, oxygen enters scala media more easily from scala vestibuli across Reissner's membrane than from scala tympani via the basilar membrane/organ of Corti complex.

  18. Repeatability of Bolus Kinetics Ultrasound Perfusion Imaging for the Quantification of Cerebral Blood Flow

    NARCIS (Netherlands)

    Vinke, Elisabeth J.; Eyding, Jens; de Korte, Chris L.; Slump, Cornelis H.; van der Hoeven, Johannes G.; Hoedemaekers, Cornelia W.E.

    2017-01-01

    Ultrasound perfusion imaging (UPI) can be used for the quantification of cerebral perfusion. In a neuro-intensive care setting, repeated measurements are required to evaluate changes in cerebral perfusion and monitor therapy. The aim of this study was to determine the repeatability of UPI in

  19. Effects of Constant Flow vs. Constant Pressure Perfusion on Fluid Filtration in Severe Hypothermic Isolated Blood-Perfused Rat Lungs.

    Science.gov (United States)

    Halsøy, Kathrine; Kondratiev, Timofey; Tveita, Torkjel; Bjertnaes, Lars J

    2016-01-01

    Victims of severe accidental hypothermia are prone to fluid extravasation but rarely develop lung edema. We hypothesize that combined hypothermia-induced increase in pulmonary vascular resistance (PVR) and a concomitant fall in cardiac output protect the lungs against edema development. Our aim was to explore in hypothermic-isolated blood-perfused rat lungs whether perfusion at constant pressure influences fluid filtration differently from perfusion at constant flow. Isolated blood-perfused rat lungs were hanging freely in a weight transducer for measuring weight changes (ΔW). Fluid filtration coefficient (Kfc), was determined by transiently elevating left atrial pressure (Pla) by 5.8 mmHg two times each during normothermia (37°C) and during hypothermia (15°C). The lung preparations were randomized to two groups. One group was perfused with constant flow (Constant flow group) and the other group with constant pulmonary artery pressure (Constant PPA group). Microvascular pressure (Pmv) was determined before and during elevation of Pla (ΔPmv) by means of the double occlusion technique. Kfc was calculated with the formula Kfc = ΔW/ΔPmv/min. All Kfc values were normalized to predicted lung weight (P LW ), which was based on body weight (BW) according to the formula: P LW  = 0.0053 BW - 0.48 and presented as Kfc PLW in mg/min/mmHg/g. At cessation, bronchoalveolar lavage (BAL) fluid/perfusate protein concentration (B/P) ratio was determined photometrically. Data were analyzed with parametric or non-parametric tests as appropriate. p  Kfc PLW and B/P ratio increased significantly by more than 10-fold during hypothermia concerted by visible signs of edema in the trachea. Hemoglobin and hematocrit increased within the Constant flow group and between the groups at cessation of the experiments. In hypothermic rat lungs perfused at constant flow, fluid filtration coefficient per gram P LW and B/P ratio increased more than 10-fold concerted by increased

  20. Ventilation and perfusion imaging by electrical impedance tomography: a comparison with radionuclide scanning

    NARCIS (Netherlands)

    Kunst, P. W.; Vonk Noordegraaf, A.; Hoekstra, O. S.; Postmus, P. E.; de Vries, P. M.

    1998-01-01

    Electrical impedance tomography (EIT) is a technique that makes it possible to measure ventilation and pulmonary perfusion in a volume that approximates to a 2D plane. The possibility of using EIT for measuring the left-right division of ventilation and perfusion was compared with that of

  1. Improvements in the technique of vascular perfusion-fixation employing a fluorocarbon-containing perfusate and a peristaltic pump controlled by pressure feedback

    DEFF Research Database (Denmark)

    Rostgaard, J; Qvortrup, Klaus; Poulsen, Steen Seier

    1993-01-01

    A new improved technique for whole-body perfusion-fixation of rats and other small animals is described. The driving force is a peristaltic pump which is feedback regulated by a pressure transducer that monitors the blood-perfusion pressure in the left ventricle of the heart. The primary perfusate...... to cannulate the heart; the outer and inner barrels of the cannula are connected to the peristaltic pump and to the pressure transducer, respectively. The tissue oxygen tension in the rat is monitored by a subcutaneous oxygen electrode. Measurements showed that tissue hypoxia/anoxia did not develop before......-fixative is composed of a blood substitute--13.3% oxygenated fluorocarbon FC-75--in 0.05 M cacodylate buffer (pH 7.4) with a 2% glutaraldehyde. The secondary perfusate-fixative is composed of 2% glutaraldehyde in 0.05 M cacodylate buffer (pH 7.4) with 20 mM CaCl2. A double-barrelled, self-holding cannula is used...

  2. Perfusion dyssynchrony analysis

    NARCIS (Netherlands)

    Chiribiri, A.; Villa, A.D.M.; Sammut, E.; Breeuwer, M.; Nagel, E.

    2015-01-01

    AIMS: We sought to describe perfusion dyssynchrony analysis specifically to exploit the high temporal resolution of stress perfusion CMR. This novel approach detects differences in the temporal distribution of the wash-in of contrast agent across the left ventricular wall. METHODS AND RESULTS:

  3. Relationship between plasma BNP level and perfusion and function of the left ventricle in patients with coronary artery disease

    International Nuclear Information System (INIS)

    Celinski, R.; Cholewinski, W.; Stefaniak, B.; Tarkowska, A.; Grzywa-Celinska, A.

    2004-01-01

    Elevation of the plasma BNP is known to occur in heart failure. However, some observations suggest that in patients with CAD an increase in BNP level may be caused also by the myocardial ischaemia. The study population comprised 79 patients with CAD, aged on average 59.6, and 18 healthy volunteers (CG). In patients with CAD g SPECT was performed using 99mT c tetrofosmin and myocardial perfusion and function were assessed quantitatively. Plasma BNP was measured using immunoradiometric method and was analyzed according to LVEF, EDV, ESV and two perfusion parameters: SCD and TPD. In all patients with CAD perfusion defects were found at rest. BNP concentration was significantly higher in CAD than in CG. In the group with dLVEF plasma BNP was distinctly higher than in that with nVEF but that difference was not significant. In pts with dLVEF significant correlation was found between BNP concentration on one hand and LVEF, EDV and ESV on the other. No significant relationships were observed between plasma BNP and both perfusion parameters. In patients with CAD the increase in plasma BNP level is related to the disorders of the left ventricular contractility, to the systolic function impairment first of all. Myocardial ischaemia without concomitant contractility disorders does not lead to elevation of BNP level. (author)

  4. NMR study of damage on isolated perfused rat heart exposed to ischemia and hypoxia

    International Nuclear Information System (INIS)

    Luo Xuechun; Yan Yongbin; Zhang Riqing; Fan Lili

    2001-01-01

    Myocardial ischemia is the most common and primary cause of myocardium damage. Numerous conventional techniques and methods have been developed for ischemia and reperfusion studies. However, because of damage to the heart sample, most of these techniques can not be used to continuously monitor the full dynamic course of the myocardial metabolic pathway. The nuclear magnetic resonance (NMR) surface coil technique, which overcomes the limitations of conventional instrumentation, can be used to quantitatively study every stage of the perfused heart (especially after perfusion stoppage) continuously, dynamically, and without damage under normal or designed physiological conditions at the molecular level. In this paper, 31 P-NMR was used to study the effects of ischemia and hypoxia on isolated perfused hearts. The results show that complete hypoxia caused more severe functional damage to the myocardial cells than complete ischemia

  5. The uptake and metabolism of cystamine and taurine by isolated, ventilated and perfused rat and rabbit lungs

    International Nuclear Information System (INIS)

    Sharma, R.; Kodavanti, U.P.; Smith, L.L.; Mehendale, H.M.

    1991-01-01

    Cystamine has been reported to be taken up by the lung slices and metabolized to taurine via hypotaurine through enzymatic processes. The objective of these studies was to determine whether intact isolated, ventilated and perfused rat and rabbit lungs also posses similar characteristics. The lungs were isolated from male New Zealand white rabbits and S-D rats and perfused with 20 μM [ 14 C] cystamine (Sp. Act., 16.4 mCi/mmol) for 60 min and 30 min, respectively. Cystamine and its metabolites in lung as well as in perfusate were separated by TLC and quantitated using scintillation spectrometry. Similar experiments were also conducted with 20 μM taurine to investigate its fate in perfused lungs. Significant pulmonary uptake of cystamine and taurine occurred during perfusion. Cystamine was metabolized to [ 14 C] hypotaurine and [ 14 C] taurine. No further metabolism of taurine was evident in rat or rabbit lungs. Inclusion of 1 nM GSH did not significantly alter the ability of lungs to sequester cystamine, but the metabolism of hypotaurine to taurine was decreased. It was evident that cystamine was metabolized to taurine by perfused lungs in the same way as in lung slices

  6. Brain perfusion: computed tomography applications

    International Nuclear Information System (INIS)

    Miles, K.A.

    2004-01-01

    Within recent years, the broad introduction of fast multi-detector computed tomography (CT) systems and the availability of commercial software for perfusion analysis have made cerebral perfusion imaging with CT a practical technique for the clinical environment. The technique is widely available at low cost, accurate and easy to perform. Perfusion CT is particularly applicable to those clinical circumstances where patients already undergo CT for other reasons, including stroke, head injury, subarachnoid haemorrhage and radiotherapy planning. Future technical developments in multi-slice CT systems may diminish the current limitations of limited spatial coverage and radiation burden. CT perfusion imaging on combined PET-CT systems offers new opportunities to improve the evaluation of patients with cerebral ischaemia or tumours by demonstrating the relationship between cerebral blood flow and metabolism. Yet CT is often not perceived as a technique for imaging cerebral perfusion. This article reviews the use of CT for imaging cerebral perfusion, highlighting its advantages and disadvantages and draws comparisons between perfusion CT and magnetic resonance imaging. (orig.)

  7. Comparison of Gated SPECT Myocardial Perfusion Imaging with Echocardiography for the Measurement of Left Ventricular Volumes and Ejection Fraction in Patients With Severe Heart Failure

    Science.gov (United States)

    Shojaeifard, Maryam; Ghaedian, Tahereh; Yaghoobi, Nahid; Malek, Hadi; Firoozabadi, Hasan; Bitarafan-Rajabi, Ahmad; Haghjoo, Majid; Amin, Ahmad; Azizian, Nasrin; Rastgou, Feridoon

    2015-01-01

    Background: Gated single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) is known as a feasible tool for the measurement of left ventricular ejection fraction (EF) and volumes, which are of great importance in the management and follow-up of patients with coronary artery diseases. However, considering the technical shortcomings of SPECT in the presence of perfusion defect, the accuracy of this method in heart failure patients is still controversial. Objectives: The aim of the present study was to compare the results from gated SPECT MPI with those from echocardiography in heart failure patients to compare echocardiographically-derived left ventricular dimension and function data to those from gated SPECT MPI in heart failure patients. Patients and Methods: Forty-one patients with severely reduced left ventricular systolic function (EF ≤ 35%) who were referred for gated SPECT MPI were prospectively enrolled. Quantification of EF, end-diastolic volume (EDV), and end-systolic volume (ESV) was performed by using quantitative gated spect (QGS) (QGS, version 0.4, May 2009) and emory cardiac toolbox (ECTb) (ECTb, revision 1.0, copyright 2007) software packages. EF, EDV, and ESV were also measured with two-dimensional echocardiography within 3 days after MPI. Results: A good correlation was found between echocardiographically-derived EF, EDV, and ESV and the values derived using QGS (r = 0.67, r = 0.78, and r = 0.80 for EF, EDV, and ESV, respectively; P echocardiography. ECTb-derived EDV was also significantly higher than the EDV measured with echocardiography and QGS. The highest correlation between echocardiography and gated SPECT MPI was found for mean values of ESV different. Conclusions: Gated SPECT MPI has a good correlation with echocardiography for the measurement of left ventricular EF, EDV, and ESV in patients with severe heart failure. However, the absolute values of these functional parameters from echocardiography and gated

  8. Hydrogen ion changes and contractile behavior in the perfused rat heart

    NARCIS (Netherlands)

    Cingolani, H.E.; Maas, A.H.J.; Zimmerman, A.N.E.; Meijler, F.L.

    1975-01-01

    The effect of acid-base alterations was analyzed using isolated rat hearts perfused at constant coronary perfusion pressure, and stimulated to contract at constant rate. The amount of shortening in the major axis and its derivative were measured to assess myocardial contractility. Both the

  9. Comparing effects of perfusion and hydrostatic pressure on gene profiles of human chondrocyte.

    Science.gov (United States)

    Zhu, Ge; Mayer-Wagner, Susanne; Schröder, Christian; Woiczinski, Matthias; Blum, Helmut; Lavagi, Ilaria; Krebs, Stefan; Redeker, Julia I; Hölzer, Andreas; Jansson, Volkmar; Betz, Oliver; Müller, Peter E

    2015-09-20

    Hydrostatic pressure and perfusion have been shown to regulate the chondrogenic potential of articular chondrocytes. In order to compare the effects of hydrostatic pressure plus perfusion (HPP) and perfusion (P) we investigated the complete gene expression profiles of human chondrocytes under HPP and P. A simplified bioreactor was constructed to apply loading (0.1 MPa for 2 h) and perfusion (2 ml) through the same piping by pressurizing the medium directly. High-density monolayer cultures of human chondrocytes were exposed to HPP or P for 4 days. Controls (C) were maintained in static cultures. Gene expression was evaluated by sequencing (RNAseq) and quantitative real-time PCR analysis. Both treatments changed gene expression levels of human chondrocytes significantly. Specifically, HPP and P increased COL2A1 expression and decreased COL1A1 and MMP-13 expression. Despite of these similarities, RNAseq revealed a list of cartilage genes including ACAN, ITGA10 and TNC, which were differentially expressed by HPP and P. Of these candidates, adhesion related molecules were found to be upregulated in HPP. Both HPP and P treatment had beneficial effects on chondrocyte differentiation and decreased catabolic enzyme expression. The study provides new insight into how hydrostatic pressure and perfusion enhance cartilage differentiation and inhibit catabolic effects. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Effects of perfusion pressure and insulin on (3H) cytochalasin B (CB) binding to control and diabetic rat hearts

    International Nuclear Information System (INIS)

    Pleta, M.; Chan, T.

    1987-01-01

    Using ( 3 H) CB, they attempted to quantitate the changes in the amount of glucose transporters in the plasma membrane (PM) and intracellular membranes (HSP) prepared from rat hearts perfused with insulin, under low and high pressure. Membranes isolated from non-perfused hearts showed a PM/HSP ratio of (0.593). Hearts perfused with low pressure showed a lower ratio of (0.474). Perfusion with insulin increased the ratio to (1.8), almost a 3-4 fold increase from low perfusion pressure. These data correlate with insulin effects in glucose transport and CB binding in the fat cells. High pressure perfusion increased the PM/HSP ratio by 1-2 fold. ( 3 H) 2-DG transport indicates a comparable increase in glucose uptake with high pressure, but with insulin only a 1.5 fold increase was observed. Initial data obtained from streptozotocin (STZ) injected diabetic rats indicate low CB binding in the PM fraction. Only insulin, but not high perfusion pressure increased PM/HSP ratio in the STZ-diabetic hearts. Their data imply that while both caused apparent translocation of glucose transporters, influences on cardiac glucose metabolism by work load are different. Furthermore, STZ induced diabetes affected only the high perfusion pressure-induced and not the insulin-stimulated change in CB binding

  11. Quantitative analysis of MR perfusion/diffusion images in a dog model of renal artery stenosis with microsphere correlation

    International Nuclear Information System (INIS)

    Lorens, C.H.; Powers, T.A.; Holburn, G.E.; Price, R.R.

    1990-01-01

    This paper compares MR perfusion/diffusion-derived parameters with microsphere determination of asymmetry of renal perfusion in a dog model of renal artery stenosis. A left renal artery stenosis was created by placement of a silk ligature. Nb-95-labeled microspheres were injected into the left ventricle, and a reference blood sample was drawn. The dog was imaged in a 1.5-T MR imager with both spin-echo and turbo-FLASH perfusion/diffusion-sensitive pulse sequences. The kidneys were excised, weighted, divided into sections, and counted. Two dogs have been studied to date. In dog 1, left renal blood flow (RBF) was 42 mL/min/100g and right RBF was 337 mL/min/100g. In dog 2 left RBF was 444 mL/min/100g and right RBF was 608 mL/min/100g. The apparent diffusion coefficients (ADC) reflected the asymmetry of flow in dog 1 for both spin-echo and turbo-FLASH sequences (RADC/LADC = 1.7) and showed essentially equal flow in dog 2(RADC/LADC = 0.7)

  12. Differential impact of multi-focus fan beam collimation with L-mode and conventional systems on the accuracy of myocardial perfusion imaging: Quantitative evaluation using phantoms

    International Nuclear Information System (INIS)

    Onishi, Hideo; Matsutomo, Norikazu; Kangai, Yoshiharu; Saho, Tatsunori; Amijima, Hizuru

    2013-01-01

    A novel IQ-SPECT™ method has become widely used in clinical studies. The present study compares the quality of myocardial perfusion images (MPI) acquired using the IQ-SPECT™ (IQ-mode), conventional (180° apart: C-mode) and L-mode (90° apart: L-mode) systems. We assessed spatial resolution, image reproducibility and quantifiability using various physical phantoms. SPECT images were acquired using a dual-headed gamma camera with C-mode, L-mode, and IQ-mode acquisition systems from line source, pai and cardiac phantoms containing solutions of 99m Tc. The line source phantom was placed in the center of the orbit and at ± 4.0, ± 8.0, ± 12.0, ± 16.0 and ± 20.0 cm off center. We examined quantifiability using the pai phantom comprising six chambers containing 0.0, 0.016, 0.03, 0.045, 0.062, and 0.074 MBq/mL of 99m-Tc and cross-calibrating the SPECT counts. Image resolution and reproducibility were quantified as myocardial wall thickness (MWT) and %uptake using polar maps. The full width at half maximum (FWHM) of the IQ-mode in the center was increased by 11% as compared with C-mode, and FWHM in the periphery was increased 41% compared with FWHM at the center. Calibrated SPECT counts were essentially the same when quantified using IQ-and C-modes. IQ-SPECT images of MWT were significantly improved (P<0.001) over L-mode, and C-mode SPECT imaging with IQ-mode became increasingly inhomogeneous, both visually and quantitatively (C-mode vs. L-mode, ns; C-mode vs. IQ-mode, P<0.05). Myocardial perfusion images acquired by IQ-SPECT were comparable to those acquired by conventional and L-mode SPECT, but with significantly improved resolution and quality. Our results suggest that IQ-SPECT is the optimal technology for myocardial perfusion SPECT imaging

  13. Perfusion CT in acute stroke

    International Nuclear Information System (INIS)

    Eckert, Bernd; Roether, Joachim; Fiehler, Jens; Thomalla, Goetz

    2015-01-01

    Modern multislice CT scanners enable multimodal protocols including non-enhanced CT, CT angiography, and CT perfusion. A 64-slice CT scanner provides 4-cm coverage. To cover the whole brain, a 128 - 256-slice scanner is needed. The use of perfusion CT requires an optimized scan protocol in order to reduce exposure to radiation. As compared to non-enhanced CT and CT angiography, the use of CT perfusion increases detection rates of cerebral ischemia, especially small cortical ischemic lesions, while the detection of lacunar and infratentorial stroke lesions remains limited. Perfusion CT enables estimation of collateral flow in acute occlusion of large intra- or extracranial arteries. Currently, no established reliable thresholds are available for determining infarct core and penumbral tissue by CT perfusion. Moreover, perfusion parameters depend on the processing algorithms and the software used for calculation. However, a number of studies point towards a reduction of cerebral blood volume (CBV) below 2 ml/100 g as a critical threshold that identifies infarct core. Large CBV lesions are associated with poor outcome even in the context of recanalization. The extent of early ischemic signs on non-enhanced CT remains the main parameter from CT imaging to guide acute reperfusion treatment. Nevertheless, perfusion CT increases diagnostic and therapeutic certainty in the acute setting. Similar to stroke MRI, perfusion CT enables the identification of tissue at risk of infarction by the mismatch between infarct core and the larger area of critical hypoperfusion. Further insights into the validity of perfusion parameters are expected from ongoing trials of mechanical thrombectomy in stroke.

  14. Quantitative measurement of cerebral blood flow in a juvenile porcine model by depth-resolved near-infrared spectroscopy

    Science.gov (United States)

    Elliott, Jonathan T.; Diop, Mamadou; Tichauer, Kenneth M.; Lee, Ting-Yim; Lawrence, Keith St.

    2010-05-01

    Nearly half a million children and young adults are affected by traumatic brain injury each year in the United States. Although adequate cerebral blood flow (CBF) is essential to recovery, complications that disrupt blood flow to the brain and exacerbate neurological injury often go undetected because no adequate bedside measure of CBF exists. In this study we validate a depth-resolved, near-infrared spectroscopy (NIRS) technique that provides quantitative CBF measurement despite significant signal contamination from skull and scalp tissue. The respiration rates of eight anesthetized pigs (weight: 16.2+/-0.5 kg, age: 1 to 2 months old) are modulated to achieve a range of CBF levels. Concomitant CBF measurements are performed with NIRS and CT perfusion. A significant correlation between CBF measurements from the two techniques is demonstrated (r2=0.714, slope=0.92, p<0.001), and the bias between the two techniques is -2.83 mL.min-1.100 g-1 (CI0.95: -19.63 mL.min-1.100 g-1-13.9 mL.min-1.100 g-1). This study demonstrates that accurate measurements of CBF can be achieved with depth-resolved NIRS despite significant signal contamination from scalp and skull. The ability to measure CBF at the bedside provides a means of detecting, and thereby preventing, secondary ischemia during neurointensive care.

  15. Differential and directional effects of perfusion on electrical and thermal conductivities in liver.

    Science.gov (United States)

    Podhajsky, Ronald J; Yi, Ming; Mahajan, Roop L

    2009-01-01

    Two different measurement probes--an electrical probe and a thermal conductivity probe--were designed, fabricated, calibrated, and used in experimental studies on a pig liver model that was designed to control perfusion rates. These probes were fabricated by photolithography and mounted in 1.5-mm diameter catheters. We measured the local impedance and thermal conductivity, respectively, of the artificially perfused liver at different flow rates and, by rotating the probes, in different directions. The results show that both the local electrical conductivity and the thermal conductivity varied location to location, that thermal conductivity increased with decreased distance to large blood vessels, and that significant directional differences exist in both electrical and thermal conductivities. Measurements at different perfusion rates demonstrated that both the local electrical and local thermal conductivities increased linearly with the square root of perfusion rate. These correlations may be of great value to many energy-based biomedical applications.

  16. Perfusion imaging of brain gliomas using arterial spin labeling: correlation with histopathological vascular density in MRI-guided biopsies

    Energy Technology Data Exchange (ETDEWEB)

    Di, Ningning; Pang, Haopeng; Ren, Yan; Yao, Zhenwei; Feng, Xiaoyuan [Huashan Hospital Fudan University, Department of Radiology, Shanghai (China); Dang, Xuefei [Shang Hai Gamma Knife Hospital, Shanghai (China); Cheng, Wenna [Binzhou Medical University Affiliated Hospital, Department of Pharmacy, Binzhou (China); Wu, Jingsong; Yao, Chengjun [Huashan Hospital Fudan University, Department of Neurosurgery, Shanghai (China)

    2017-01-15

    This study was designed to determine if cerebral blood flow (CBF) derived from arterial spin labeling (ASL) perfusion imaging could be used to quantitatively evaluate the microvascular density (MVD) of brain gliomas on a ''point-to-point'' basis by matching CBF areas and surgical biopsy sites as accurate as possible. The study enrolled 47 patients with treatment-naive brain gliomas who underwent preoperative ASL, 3D T1-weighted imaging with gadolinium contrast enhancement (3D T1C+), and T2 fluid acquisition of inversion recovery (T2FLAIR) sequences before stereotactic surgery. We histologically quantified MVD from CD34-stained sections of stereotactic biopsies and co-registered biopsy locations with localized CBF measurements. The correlation between CBF and MVD was determined using Spearman's correlation coefficient. P ≤.05 was considered statistically significant. Of the 47 patients enrolled in the study, 6 were excluded from the analysis because of brain shift or poor co-registration and localization of the biopsy site during surgery. Finally, 84 biopsies from 41 subjects were included in the analysis. CBF showed a statistically significant positive correlation with MVD (ρ = 0.567; P =.029). ASL can be a useful noninvasive perfusion MR method for quantitative evaluation of the MVD of brain gliomas. (orig.)

  17. Prevalence of symptomatic and silent stress-induced perfusion defects in diabetic patients with suspected coronary artery disease referred for myocardial perfusion scintigraphy

    International Nuclear Information System (INIS)

    Prior, John O.; Calcagni, Maria-Lucia; Bischof Delaloye, Angelika; Monbaron, David; Ruiz, Juan; Koehli, Melanie

    2005-01-01

    Silent myocardial ischaemia - as evaluated by stress-induced perfusion defects on myocardial perfusion scintigraphy (MPS) in patients without a history of chest pain - is frequent in diabetes and is associated with increased rates of cardiovascular events. Its prevalence has been determined in asymptomatic diabetic patients, but remains largely unknown in diabetic patients with suspected coronary artery disease (CAD) in the clinical setting. In this study we therefore sought (a) to determine the prevalence of symptomatic and silent perfusion defects in diabetic patients with suspected CAD and (b) to characterise the eventual predictors of abnormal perfusion. The patient population comprised 133 consecutive diabetic patients with suspected CAD who had been referred for MPS. Studies were performed with exercise (41%) or pharmacological stress testing (1-day protocol, 99m Tc-sestamibi, 201 Tl or both). We used semi-quantitative analysis (20-segment polar maps) to derive the summed stress score (SSS) and the summed difference score (SDS). Abnormal MPS (SSS≥4) was observed in 49 (37%) patients (SSS=4.9±8.4, SDS=2.4±4.7), reversible perfusion defects (SDS≥2) in 40 (30%) patients [SSS=13.3±10.9; SDS=8.0±5.6; 20% moderate to severe (SDS>4), 7% multivessel] and fixed defects in 21 (16%) patients. Results were comparable between patients with and patients without a history of chest pain. Of 75 patients without a history of chest pain, 23 (31%, 95% CI=21-42%) presented reversible defects (SSS=13.9±11.3; SDS=7.4±1.2), indicative of silent ischaemia. Reversible defects were associated with inducible ST segment depression during MPS stress (odds ratio (OR)=3.2, p<0.01). Fixed defects were associated with erectile dysfunction in males (OR=3.7, p=0.02) and lower aspirin use (OR=0.25, p=0.02). Silent stress-induced perfusion defects occurred in 31% of the patients, a rate similar to that in patients with a history of chest pain. MPS could identify these patients with a

  18. Regional glucose utilization in infarcted and remote myocardium: its relation to coronary anatomy and perfusion.

    Science.gov (United States)

    Fragasso, G; Chierchia, S L; Landoni, C; Lucignani, G; Rossetti, E; Sciammarella, M; Vanoli, G E; Fazio, F

    1998-07-01

    We studied the relationship between coronary anatomy, perfusion and metabolism in myocardial segments exhibiting transient and persistent perfusion defects on stress/rest 99Tcm-MIBI single photon emission tomography in 35 patients (31 males, 4 females, mean age 56 +/- 7 years) with a previous myocardial infarction. Quantitative coronary angiography and assessment of myocardial perfusion reserve and glucose metabolism were performed within 1 week of one another. Perfusion was assessed by SPET after the intravenous injection of 740 MBq of 99Tcm-MIBI at rest and after exercise. Regional myocardial glucose metabolism was assessed by position emission tomography at rest (200 MBq of 18F-2-deoxyglucose, FDG) after an overnight fast with no glucose loading. All 35 patients exhibited persistent perfusion defects consistent with the clinically identified infarct site, and 27 (77%) also showed various degrees of within-infarct FDG uptake; 11 patients developed exercise-induced transient perfusion defects within, or in the vicinity of, 15 infarct segments and resting FDG uptake was present in 10 of these segments (67%). Five patients also showed exercise-induced transient perfusion defects in nine segments remote from the site of infarct: resting FDG uptake was present in six of these regions (67%). Finally, nine patients had increased glucose uptake in non-infarcted regions not showing transient perfusion defects upon exercise testing and perfused by coronary arteries with only minor irregularities. Our results confirm the presence of viable tissue in a large proportion of infarct sites. Moreover, FDG uptake can be seen in regions perfused by coronary arteries showing minor irregularities, not necessarily resulting in detectable transient perfusion defects on a MIBI stress scan. Since the clinical significance of such findings is not clear, further studies should be conducted to assess the long-term evolution of perfusion, function and metabolism in non

  19. Volume perfusion CT imaging of cerebral vasospasm: diagnostic performance of different perfusion maps

    Energy Technology Data Exchange (ETDEWEB)

    Othman, Ahmed E. [RWTH Aachen University, Department of Diagnostic and Interventional Neuroradiology, Aachen (Germany); Eberhard Karls University Tuebingen, University Hospital Tuebingen, Department for Diagnostic and Interventional Radiology, Tuebingen (Germany); Afat, Saif; Nikoubashman, Omid; Mueller, Marguerite; Wiesmann, Martin; Brockmann, Carolin [RWTH Aachen University, Department of Diagnostic and Interventional Neuroradiology, Aachen (Germany); Schubert, Gerrit Alexander [RWTH Aachen University, Department of Neurosurgery, Aachen (Germany); Bier, Georg [Eberhard Karls University Tuebingen, University Hospital Tuebingen, Department for Diagnostic and Interventional Neuroradiology, Tuebingen (Germany); Brockmann, Marc A. [RWTH Aachen University, Department of Diagnostic and Interventional Neuroradiology, Aachen (Germany); University Hospital Mainz, Department of Neuroradiology, Mainz (Germany)

    2016-08-15

    In this study, we aimed to evaluate the diagnostic performance of different volume perfusion CT (VPCT) maps regarding the detection of cerebral vasospasm compared to angiographic findings. Forty-one datasets of 26 patients (57.5 ± 10.8 years, 18 F) with subarachnoid hemorrhage and suspected cerebral vasospasm, who underwent VPCT and angiography within 6 h, were included. Two neuroradiologists independently evaluated the presence and severity of vasospasm on perfusion maps on a 3-point Likert scale (0 - no vasospasm, 1 - vasospasm affecting <50 %, 2 - vasospasm affecting >50 % of vascular territory). A third neuroradiologist independently assessed angiography for the presence and severity of vasospasm on a 3-point Likert scale (0 - no vasospasm, 1 - vasospasm affecting < 50 %, 2 - vasospasm affecting > 50 % of vessel diameter). Perfusion maps of cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT), and time to drain (TTD) were evaluated regarding diagnostic accuracy for cerebral vasospasm with angiography as reference standard. Correlation analysis of vasospasm severity on perfusion maps and angiographic images was performed. Furthermore, inter-reader agreement was assessed regarding findings on perfusion maps. Diagnostic accuracy for TTD and MTT was significantly higher than for all other perfusion maps (TTD, AUC = 0.832; MTT, AUC = 0.791; p < 0.001). TTD revealed higher sensitivity than MTT (p = 0.007). The severity of vasospasm on TTD maps showed significantly higher correlation levels with angiography than all other perfusion maps (p ≤ 0.048). Inter-reader agreement was (almost) perfect for all perfusion maps (kappa ≥ 0.927). The results of this study indicate that TTD maps have the highest sensitivity for the detection of cerebral vasospasm and highest correlation with angiography regarding the severity of vasospasm. (orig.)

  20. Lung perfusion in hemorrhagic shock of rats. The effects of resuscitation with whole blood, saline or hes 6%

    Energy Technology Data Exchange (ETDEWEB)

    Turhanoglu, S.; Kaya, S.; Kararmaz, A.; Turhanoglu, A.D. [Dicle Univ., Diyarbakir (Turkey). Medical School

    2001-12-01

    This study was undertaken to determine the effects of various resuscitation regimens on lung perfusion following resuscitation from hemorrhagic shock. Fourty male Sprague-Dawley rats (250-300 g) were used. The rats were divided randomly into four groups (n=10 for each) and were sedated with intramuscular ketamine (100 mg/kg). We measured blood pressure, rectal temperature and lung perfusion using radioscintigraphy with a technetium colloid indicator. The systolic blood pressure was decreased 75% by removing blood via v. jugularis in the first three groups and group 4 was accepted as the control group, and blood volume was not diminished. Then the first three groups were resuscitated with autologous blood containing 125 units heparine/ml in group 1, saline in group 2, and hydroxyethyl starch (HES) 6% in group 3. After the correction of hypovolemia, all animals were injected 100 Bg (0.1 cc) technetium 99m macroaggregated albumin ({sup 99m}Tc MAA) via penil vein. After injection of {sup 99m}Tc MAA, 3 minutes fixed images were detected by a {gamma} camera in posterior position at 15 minutes and 5 hours. {sup 99m}Tc MMA ''wash out'' rate in lung was determined quantitatively at 5 hours. Compared to a control group, lung perfusion was decreased significantly in groups resuscitated with saline, and HES 6% while perfusion was restored with autologous blood. We conclude that heparinized autologous blood saved lung capillary circulation in hemorrhagic shock in rats. (author)

  1. Lung perfusion in hemorrhagic shock of rats. The effects of resuscitation with whole blood, saline or hes 6%

    International Nuclear Information System (INIS)

    Turhanoglu, S.; Kaya, S.; Kararmaz, A.; Turhanoglu, A.D.

    2001-01-01

    This study was undertaken to determine the effects of various resuscitation regimens on lung perfusion following resuscitation from hemorrhagic shock. Fourty male Sprague-Dawley rats (250-300 g) were used. The rats were divided randomly into four groups (n=10 for each) and were sedated with intramuscular ketamine (100 mg/kg). We measured blood pressure, rectal temperature and lung perfusion using radioscintigraphy with a technetium colloid indicator. The systolic blood pressure was decreased 75% by removing blood via v. jugularis in the first three groups and group 4 was accepted as the control group, and blood volume was not diminished. Then the first three groups were resuscitated with autologous blood containing 125 units heparine/ml in group 1, saline in group 2, and hydroxyethyl starch (HES) 6% in group 3. After the correction of hypovolemia, all animals were injected 100 Bg (0.1 cc) technetium 99m macroaggregated albumin ( 99m Tc MAA) via penil vein. After injection of 99m Tc MAA, 3 minutes fixed images were detected by a γ camera in posterior position at 15 minutes and 5 hours. 99m Tc MMA ''wash out'' rate in lung was determined quantitatively at 5 hours. Compared to a control group, lung perfusion was decreased significantly in groups resuscitated with saline, and HES 6% while perfusion was restored with autologous blood. We conclude that heparinized autologous blood saved lung capillary circulation in hemorrhagic shock in rats. (author)

  2. Relationship between perfusion index and patent ductus arteriosus in preterm infants.

    Science.gov (United States)

    Gomez-Pomar, Enrique; Makhoul, Majd; Westgate, Philip M; Ibonia, Katrina T; Patwardhan, Abhijit; Giannone, Peter J; Bada, Henrietta S; Abu Jawdeh, Elie G

    2017-05-01

    Perfusion index (PI) is a noninvasive measure of perfusion. ΔPI (difference between pre- and postductal PI) may identify hemodynamically significant PDA. However, studies are limited to brief and intermittent ΔPI sampling. Our objective is to assess the value of continuous high resolution ΔPI monitoring in the diagnosis of PDA. Continuous ΔPI monitoring in preterm infants was prospectively performed using two high-resolution pulse oximeters. Perfusion Index measures (ΔPI mean and variability, pre- and postductal PI) were analyzed over a 4-h period prior to echocardiography. A cardiologist blinded to the results evaluated for PDA on echocardiography. Linear mixed regression models were utilized for analyses. We obtained 31 echocardiography observations. Mean ΔPI (-0.23 vs. 0.16; P < 0.05), mean pre-PI (0.86 vs. 1.26; P < 0.05), and ΔPI variability (0.39 vs. 0.61; P = 0.05) were lower in infants with PDA compared to infants without PDA at the time of echocardiography. Mean ΔPI, ΔPI variability, and mean pre-PI measured 4 h prior to echocardiography detect PDA in preterm infants. PI is dynamic and should be assessed continuously. Perfusion index is a promising bedside measurement to identify PDA in preterm infants.

  3. Co-registered perfusion SPECT/CT: Utility for prediction of improved postoperative outcome in lung volume reduction surgery candidates

    International Nuclear Information System (INIS)

    Takenaka, Daisuke; Ohno, Yoshiharu; Koyama, Hisanobu; Nogami, Munenobu; Onishi, Yumiko; Matsumoto, Keiko; Yoshikawa, Takeshi; Matsumoto, Sumiaki; Sugimura, Kazuro

    2010-01-01

    Purpose: To directly compare the capabilities of perfusion scan, SPECT, co-registered SPECT/CT, and quantitatively and qualitatively assessed MDCT (i.e. quantitative CT and qualitative CT) for predicting postoperative clinical outcome for lung volume reduction surgery (LVRS) candidates. Materials and methods: Twenty-five consecutive candidates (19 men and six women, age range: 42-72 years) for LVRS underwent preoperative CT and perfusion scan with SPECT. Clinical outcome of LVRS for all subjects was also assessed by determining the difference between pre- and postoperative forced expiratory volume in 1 s (FEV 1 ) and 6-min walking distance (6MWD). All SPECT examinations were performed on a SPECT scanner, and co-registered to thin-section CT by using commercially available software. On planar imaging, SPECT and SPECT/CT, upper versus lower zone or lobe ratios (U/Ls) were calculated from regional uptakes between upper and lower lung fields in the operated lung. On quantitatively assessed CT, U/L for all subjects was assessed from regional functional lung volumes. On qualitatively assessed CT, planar imaging, SPECT and co-registered SPECT/CT, U/Ls were assessed with a 4-point visual scoring system. To compare capabilities of predicting clinical outcome, each U/L was statistically correlated with the corresponding clinical outcome. Results: Significantly fair or moderate correlations were observed between quantitatively and qualitatively assessed U/Ls obtained with all four methods and clinical outcomes (-0.60 ≤ r ≤ -0.42, p < 0.05). Conclusion: Co-registered perfusion SPECT/CT has better correlation with clinical outcome in LVRS candidates than do planar imaging, SPECT or qualitatively assessed CT, and is at least as valid as quantitatively assessed CT.

  4. Co-registered perfusion SPECT/CT: Utility for prediction of improved postoperative outcome in lung volume reduction surgery candidates

    Energy Technology Data Exchange (ETDEWEB)

    Takenaka, Daisuke [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017 (Japan); Ohno, Yoshiharu, E-mail: yosirad@kobe-u.ac.j [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017 (Japan); Koyama, Hisanobu [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017 (Japan); Nogami, Munenobu [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017 (Japan); Division of Image-Based Medicine, Institute of Biomedical Research and Innovation, 2-2, Minatojima Minamimachi Chuo-ku, Kobe, Hyogo, 650-0047 (Japan); Onishi, Yumiko [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017 (Japan); Matsumoto, Keiko [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017 (Japan); Department of Radiology, University of Yamanashi, 1110 Shimogato, Chuo, Yamanashi, 409-3898 (Japan); Yoshikawa, Takeshi; Matsumoto, Sumiaki; Sugimura, Kazuro [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017 (Japan)

    2010-06-15

    Purpose: To directly compare the capabilities of perfusion scan, SPECT, co-registered SPECT/CT, and quantitatively and qualitatively assessed MDCT (i.e. quantitative CT and qualitative CT) for predicting postoperative clinical outcome for lung volume reduction surgery (LVRS) candidates. Materials and methods: Twenty-five consecutive candidates (19 men and six women, age range: 42-72 years) for LVRS underwent preoperative CT and perfusion scan with SPECT. Clinical outcome of LVRS for all subjects was also assessed by determining the difference between pre- and postoperative forced expiratory volume in 1 s (FEV{sub 1}) and 6-min walking distance (6MWD). All SPECT examinations were performed on a SPECT scanner, and co-registered to thin-section CT by using commercially available software. On planar imaging, SPECT and SPECT/CT, upper versus lower zone or lobe ratios (U/Ls) were calculated from regional uptakes between upper and lower lung fields in the operated lung. On quantitatively assessed CT, U/L for all subjects was assessed from regional functional lung volumes. On qualitatively assessed CT, planar imaging, SPECT and co-registered SPECT/CT, U/Ls were assessed with a 4-point visual scoring system. To compare capabilities of predicting clinical outcome, each U/L was statistically correlated with the corresponding clinical outcome. Results: Significantly fair or moderate correlations were observed between quantitatively and qualitatively assessed U/Ls obtained with all four methods and clinical outcomes (-0.60 {<=} r {<=} -0.42, p < 0.05). Conclusion: Co-registered perfusion SPECT/CT has better correlation with clinical outcome in LVRS candidates than do planar imaging, SPECT or qualitatively assessed CT, and is at least as valid as quantitatively assessed CT.

  5. Parametric imaging of tumor perfusion and neovascular morphology using ultrasound

    Science.gov (United States)

    Hoyt, Kenneth

    2015-03-01

    A new image processing strategy is detailed for the simultaneous measurement of tumor perfusion and neovascular morphology parameters from a sequence of dynamic contrast-enhanced ultrasound (DCE-US) images. A technique for locally mapping tumor perfusion parameters using skeletonized neovascular data is also introduced. Simulated images were used to test the neovascular skeletonization technique and variance (error) of relevant parametric estimates. Preliminary DCE-US image datasets were collected in 6 female patients diagnosed with invasive breast cancer and using a Philips iU22 ultrasound system equipped with a L9-3 MHz transducer and Definity contrast agent. Simulation data demonstrates that neovascular morphology parametric estimation is reproducible albeit measurement error can occur at a lower signal-to-noise ratio (SNR). Experimental results indicate the feasibility of our approach to performing both tumor perfusion and neovascular morphology measurements from DCE-US images. Future work will expand on our initial clinical findings and also extent our image processing strategy to 3-dimensional space to allow whole tumor characterization.

  6. Connecting qualitative observation and quantitative measurement for enhancing quantitative literacy in plant anatomy course

    Science.gov (United States)

    Nuraeni, E.; Rahmat, A.

    2018-05-01

    Forming of cognitive schemes of plant anatomy concepts is performed by processing of qualitative and quantitative data obtained from microscopic observations. To enhancing student’s quantitative literacy, strategy of plant anatomy course was modified by adding the task to analyze quantitative data produced by quantitative measurement of plant anatomy guided by material course. Participant in this study was 24 biology students and 35 biology education students. Quantitative Literacy test, complex thinking in plant anatomy test and questioner used to evaluate the course. Quantitative literacy capability data was collected by quantitative literacy test with the rubric from the Association of American Colleges and Universities, Complex thinking in plant anatomy by test according to Marzano and questioner. Quantitative literacy data are categorized according to modified Rhodes and Finley categories. The results showed that quantitative literacy of biology education students is better than biology students.

  7. Differentiation of grade II/III and grade IV glioma by combining ''T1 contrast-enhanced brain perfusion imaging'' and susceptibility-weighted quantitative imaging

    International Nuclear Information System (INIS)

    Saini, Jitender; Gupta, Pradeep Kumar; Gupta, Rakesh Kumar; Sahoo, Prativa; Singh, Anup; Patir, Rana; Ahlawat, Suneeta; Beniwal, Manish; Thennarasu, K.; Santosh, Vani

    2018-01-01

    MRI is a useful method for discriminating low- and high-grade glioma using perfusion MRI and susceptibility-weighted imaging (SWI). The purpose of this study is to evaluate the usefulness of T1-perfusion MRI and SWI in discriminating among grade II, III, and IV gliomas. T1-perfusion MRI was used to measure relative cerebral blood volume (rCBV) in 129 patients with glioma (70 grade IV, 33 grade III, and 26 grade II tumors). SWI was also used to measure the intratumoral susceptibility signal intensity (ITSS) scores for each tumor in these patients. rCBV and ITSS values were compared to seek differences between grade II vs. grade III, grade III vs. grade IV, and grade III+II vs. grade IV tumors. Significant differences in rCBV values of the three grades of the tumors were noted and pairwise comparisons showed significantly higher rCBV values in grade IV tumors as compared to grade III tumors, and similarly increased rCBV was seen in the grade III tumors as compared to grade II tumors (p < 0.001). Grade IV gliomas showed significantly higher ITSS scores on SWI as compared to grade III tumors (p < 0.001) whereas insignificant difference was seen on comparing ITSS scores of grade III with grade II tumors. Combining the rCBV and ITSS resulted in significant improvement in the discrimination of grade III from grade IV tumors. The combination of rCBV values derived from T1-perfusion MRI and SWI derived ITSS scores improves the diagnostic accuracy for discrimination of grade III from grade IV gliomas. (orig.)

  8. Differentiation of grade II/III and grade IV glioma by combining ''T1 contrast-enhanced brain perfusion imaging'' and susceptibility-weighted quantitative imaging

    Energy Technology Data Exchange (ETDEWEB)

    Saini, Jitender [National Institute of Mental Health and Neurosciences, Neuroimaging and Interventional Radiology, Bangalore (India); Gupta, Pradeep Kumar; Gupta, Rakesh Kumar [Fortis Memorial Research Institute, Department of Radiology and Imaging, Gurugram (India); Sahoo, Prativa [Philips Health System, Philips India Limited, Bangalore (India); Beckman Research Institute, Mathematical Oncology, Duarte, CA (United States); Singh, Anup [Indian Institute of Technology Delhi, Center for Biomedical Engineering, Delhi (India); Patir, Rana [Fortis Memorial Research Institute, Department of Neurosurgery, Gurugram (India); Ahlawat, Suneeta [Fortis Memorial Research Institute, SRL Diagnostics, Gurugram (India); Beniwal, Manish [National Institute of Mental Health and Neurosciences, Department of Neurosurgery, Bangalore (India); Thennarasu, K. [National Institute of Mental Health and Neurosciences, Department of Biostatistics, Bangalore (India); Santosh, Vani [National Institute of Mental Health and Neurosciences, Department of Neuropathology, Bangalore (India)

    2018-01-15

    MRI is a useful method for discriminating low- and high-grade glioma using perfusion MRI and susceptibility-weighted imaging (SWI). The purpose of this study is to evaluate the usefulness of T1-perfusion MRI and SWI in discriminating among grade II, III, and IV gliomas. T1-perfusion MRI was used to measure relative cerebral blood volume (rCBV) in 129 patients with glioma (70 grade IV, 33 grade III, and 26 grade II tumors). SWI was also used to measure the intratumoral susceptibility signal intensity (ITSS) scores for each tumor in these patients. rCBV and ITSS values were compared to seek differences between grade II vs. grade III, grade III vs. grade IV, and grade III+II vs. grade IV tumors. Significant differences in rCBV values of the three grades of the tumors were noted and pairwise comparisons showed significantly higher rCBV values in grade IV tumors as compared to grade III tumors, and similarly increased rCBV was seen in the grade III tumors as compared to grade II tumors (p < 0.001). Grade IV gliomas showed significantly higher ITSS scores on SWI as compared to grade III tumors (p < 0.001) whereas insignificant difference was seen on comparing ITSS scores of grade III with grade II tumors. Combining the rCBV and ITSS resulted in significant improvement in the discrimination of grade III from grade IV tumors. The combination of rCBV values derived from T1-perfusion MRI and SWI derived ITSS scores improves the diagnostic accuracy for discrimination of grade III from grade IV gliomas. (orig.)

  9. Stress-only myocardial perfusion scintigraphy: a prospective study on the accuracy and observer agreement with quantitative coronary angiography as the gold standard.

    Science.gov (United States)

    Ejlersen, June A; May, Ole; Mortensen, Jesper; Nielsen, Gitte L; Lauridsen, Jeppe F; Allan, Johansen

    2017-11-01

    Patients with normal stress perfusion have an excellent prognosis. Prospective studies on the diagnostic accuracy of stress-only scans with contemporary, independent examinations as gold standards are lacking. A total of 109 patients with typical angina and no previous coronary artery disease underwent a 2-day stress (exercise)/rest, gated, and attenuation-corrected (AC), 99m-technetium-sestamibi perfusion study, followed by invasive coronary angiography. The stress datasets were evaluated twice by four physicians with two different training levels (expert and novice): familiar and unfamiliar with AC. The two experts also made a consensus reading of the integrated stress-rest datasets. The consensus reading and quantitative data from the invasive coronary angiography were applied as reference methods. The sensitivity/specificity were 0.92-1.00/0.73-0.90 (reference: expert consensus reading), 0.93-0.96/0.63-0.82 (reference: ≥1 stenosis>70%), and 0.75-0.88/0.70-0.88 (reference: ≥1 stenosis>50%). The four readers showed a high and fairly equal sensitivity independent of their familiarity with AC. The expert familiar with AC had the highest specificity independent of the reference method. The intraobserver and interobserver agreements on the stress-only readings were good (readers without AC experience) to excellent (readers with AC experience). AC stress-only images yielded a high sensitivity independent of the training level and experience with AC of the nuclear physician, whereas the specificity correlated positively with both. Interobserver and intraobserver agreements tended to be the best for physicians with AC experience.

  10. Comparison of Dextran Perfusion and GSI-B4 Isolectin Staining in a Mouse Model of Oxygen-induced Retinopathy.

    Science.gov (United States)

    Huang, Shaofen; Liang, Jiajian; Yam, Gary Hin-Fai; Lu, Zhihao; Pang, Chi Pui; Chen, Haoyu

    2015-06-01

    Oxygen-induced retinopathy (OIR) is a robust and widely used animal model for the study of retinal neovascularization (NV). Dextran perfusion and Griffonia simplicifolia isolectin B4 (GSI-B4) staining are two common methods for examining the occurrence and extent of OIR. This study provides a quantitative comparison of the two for OIR detection. At postnatal day 7 (PN7), fifteen C57BL/6J mice were exposed to a 75% hyperoxic condition for 5 days and then returned to room air conditions. At PN17, the mice received intravitreal injection of GSI-B4 Alexa Fluor 568 conjugate. After 10 hours, they were infused with FITC-dextran conjugate via the left ventricle. Retinal flat mounts were photographed by confocal microscopy. Areas with fluorescent signals and the total retinal areas were quantified by Image J software. Both GSI-B4 and dextran detected the peripheral neovascular area. The mean hyper fluorescence area was 0.33 ± 0.14% of whole retinal area determined by GSI-B4 staining and 0.25 ± 0.28% determined by dextran perfusion. The difference between the two measures was 0.08% (95% CI:-0.59%, 0.43%). The Pearson correlation coefficient between the two methods was 0.386,P =0.035. The mean coincidence rates were 14.3 ± 13.4% and 24.9 ± 18.5% for GSI-B4 and dextran staining, respectively. Both methods can complement each other in demonstrating and quantitatively evaluating retinal NV. A poor agreement was found between the two methods; GSI-B4 isolectin was more effective than FITC-dextran perfusion in evaluating the extent of retinal NV in a mouse model of OIR.

  11. Global cerebral blood flow changes measured by brain perfusion SPECT immediately after whole brain irradiation

    International Nuclear Information System (INIS)

    Ohtawa, Nobuyuki; Machida, Kikuo; Honda, Norinari; Hosono, Makoto; Takahashi, Takeo

    2003-01-01

    Whole brain irradiation (WBI) is still a major treatment option for patients with metastatic brain tumor despite recent advances in chemotherapy and newer techniques of radiation therapy. Cerebral blood flow (CBF) of changes induced by whole brain radiation is not fully investigated, and the aim of the study was to measure CBF changes non-invasively with brain perfusion SPECT to correlate with treatment effect or prognosis. Total of 106 patients underwent WBI during April 1998 to March 2002. Both brain MRI and brain perfusion SPECT could be performed before (less than 1 week before or less than 10 Gy of WBI) and immediately after (between 1 week before and 2 weeks after the completion of WBI) the therapy in 17 of these patients. They, 10 men and 7 women, all had metastatic brain tumor with age range of 45 to 87 (mean of 61.4) years. Tc-99m brain perfusion agent (HMPAO in 4, ECD in 13) was rapidly administered in a 740-MBq dose to measure global and regional CBF according to Matsuda's method, which based on both Patlak plot and Lassens' linearity correction. Brain MRI was used to measure therapeutic response according to World Health Organization (WHO) classification as complete remission (CR), partial response (PR), no change (NC), and progressive disease (PD). Survival period was measured from the completion of WBI. Mean global CBF was 40.6 and 41.5 ml/100 g/min before and immediately after the WBI, respectively. Four patients increased (greater than 10%) their global mean CBF, 10 unchanged (less than 10% increase or decrease), and 3 decreased after the WBI. The WBI achieved CR in none, PR in 8, NC in 6, and PD in 3 on brain MRI. Change in global mean CBF (mean±SD) was significantly larger in PR (4.3±2.0 ml/100 g/min, p=0.002) and in NC (-0.1±4.5) than in PD (-3.9±6.4, P=0.002, P=0.016, respectively). Survival was not significantly (p>0.05) different among the patients with CR (20 weeks), NC (48 weeks), and PD (21 weeks). Change in global CBF and survival was

  12. γ-Aminobutyric acid (GABA) concentration inversely correlates with basal perfusion in human occipital lobe.

    Science.gov (United States)

    Donahue, Manus J; Rane, Swati; Hussey, Erin; Mason, Emily; Pradhan, Subechhya; Waddell, Kevin W; Ally, Brandon A

    2014-03-01

    Commonly used neuroimaging approaches in humans exploit hemodynamic or metabolic indicators of brain function. However, fundamental gaps remain in our ability to relate such hemo-metabolic reactivity to neurotransmission, with recent reports providing paradoxical information regarding the relationship among basal perfusion, functional imaging contrast, and neurotransmission in awake humans. Here, sequential magnetic resonance spectroscopy (MRS) measurements of the primary inhibitory neurotransmitter, γ-aminobutyric acid (GABA+macromolecules normalized by the complex N-acetyl aspartate-N-acetyl aspartyl glutamic acid: [GABA(+)]/[NAA-NAAG]), and magnetic resonance imaging (MRI) measurements of perfusion, fractional gray-matter volume, and arterial arrival time (AAT) are recorded in human visual cortex from a controlled cohort of young adult male volunteers with neurocognitive battery-confirmed comparable cognitive capacity (3 T; n=16; age=23±3 years). Regression analyses reveal an inverse correlation between [GABA(+)]/[NAA-NAAG] and perfusion (R=-0.46; P=0.037), yet no relationship between AAT and [GABA(+)]/[NAA-NAAG] (R=-0.12; P=0.33). Perfusion measurements that do not control for AAT variations reveal reduced correlations between [GABA(+)]/[NAA-NAAG] and perfusion (R=-0.13; P=0.32). These findings largely reconcile contradictory reports between perfusion and inhibitory tone, and underscore the physiologic origins of the growing literature relating functional imaging signals, hemodynamics, and neurotransmission.

  13. Nuclear magnetic resonance of perfused tissue

    International Nuclear Information System (INIS)

    Harpen, M.D.; Allison, R.C.

    1986-01-01

    The effect of perfusion on the NMR signal observed in NMR imaging is studied in a phantom and in two isolated perfused canine lungs. It is observed that perfusion in tissue has little effect on longitudinal relaxation times. Transverse relaxation rates are observed to correlate linearly with rates of perfusion, in accordance with a model presented. (author)

  14. Correlative assessment of cerebral blood flow obtained with perfusion CT and positron emission tomography in symptomatic stenotic carotid disease

    Energy Technology Data Exchange (ETDEWEB)

    Bisdas, Sotirios [JWG University Hospital, Department of Diagnostic and Interventional Radiology, Frankfurt (Germany); Nemitz, Ole; Becker, Hartmut; Donnerstag, Frank [Hannover Medical School, Department of Neuroradiology, Hannover (Germany); Berding, Georg [Hannover Medical School, Department of Nuclear Medicine, Hannover (Germany); Weissenborn, Karin; Ahl, Bjoern [Hannover Medical School, Department of Neurology, Hannover (Germany)

    2006-10-15

    Twelve patients with ICA stenosis underwent dynamic perfusion computed tomography (CT) and positron emission tomography (PET) studies at rest and after acetazolamide challenge. Cerebral blood flow (CBF) maps on perfusion CT resulted from a deconvolution of parenchymal time-concentration curves by an arterial input function (AIF) in the anterior cerebral artery as well as in both anterior choroidal arteries. CBF was measured by [{sup 15}O]H{sub 2}O PET using multilinear least-squares minimization procedure based on the one-compartment model. In corresponding transaxial PET scans, CBF values were extracted using standardized ROIs. The baseline perfusion CT-CBF values were lower in perfusion CT than in PET (P>0.05). CBF values obtained by perfusion CT were significantly correlated with those measured by PET before (P<0.05) and after (P<0.01) acetazolamide challenge. Nevertheless, the cerebrovascular reserve capacity was overestimated (P=0.05) using perfusion CT measurements. The AIF selection relative to the side of carotid stenosis did not significantly affect calculated perfusion CT-CBF values. In conclusion, the perfusion CT-CBF measurements correlate significantly with the PET-CBF measurements in chronic carotid stenotic disease and contribute useful information to the evaluation of the altered cerebral hemodynamics. (orig.)

  15. Correlative assessment of cerebral blood flow obtained with perfusion CT and positron emission tomography in symptomatic stenotic carotid disease

    International Nuclear Information System (INIS)

    Bisdas, Sotirios; Nemitz, Ole; Becker, Hartmut; Donnerstag, Frank; Berding, Georg; Weissenborn, Karin; Ahl, Bjoern

    2006-01-01

    Twelve patients with ICA stenosis underwent dynamic perfusion computed tomography (CT) and positron emission tomography (PET) studies at rest and after acetazolamide challenge. Cerebral blood flow (CBF) maps on perfusion CT resulted from a deconvolution of parenchymal time-concentration curves by an arterial input function (AIF) in the anterior cerebral artery as well as in both anterior choroidal arteries. CBF was measured by [ 15 O]H 2 O PET using multilinear least-squares minimization procedure based on the one-compartment model. In corresponding transaxial PET scans, CBF values were extracted using standardized ROIs. The baseline perfusion CT-CBF values were lower in perfusion CT than in PET (P>0.05). CBF values obtained by perfusion CT were significantly correlated with those measured by PET before (P<0.05) and after (P<0.01) acetazolamide challenge. Nevertheless, the cerebrovascular reserve capacity was overestimated (P=0.05) using perfusion CT measurements. The AIF selection relative to the side of carotid stenosis did not significantly affect calculated perfusion CT-CBF values. In conclusion, the perfusion CT-CBF measurements correlate significantly with the PET-CBF measurements in chronic carotid stenotic disease and contribute useful information to the evaluation of the altered cerebral hemodynamics. (orig.)

  16. Comparative value of brain perfusion SPECT and [123I]MIBG myocardial scintigraphy in distinguishing between dementia with Lewy bodies and Alzheimer's disease

    International Nuclear Information System (INIS)

    Hanyu, Haruo; Shimizu, Soichiro; Hirao, Kentaro; Kanetaka, Hidekazu; Iwamoto, Toshihiko; Chikamori, Taishiro; Usui, Yasuhiro; Yamashina, Akira; Koizumi, Kiyoshi; Abe, Kimihiko

    2006-01-01

    Both decreased occipital perfusion on brain single-photon emission computed tomography (SPECT) and reduction in cardiac 123 I-metaiodobenzylguanidine (MIBG) uptake are characteristic features of dementia with Lewy bodies (DLB), and potentially support the clinical diagnosis of DLB. The aim of this study was to compare the diagnostic value of these two methods for differentiation of DLB from Alzheimer's disease (AD). The study population comprised 19 patients with probable DLB and 39 patients with probable AD who underwent both SPECT with N-isopropyl-p-[ 123 I]iodoamphetamine and MIBG myocardial scintigraphy. Objective and quantitative measurement of perfusion in the medial occipital lobe, including the cuneus and lingual gyrus, was performed by the use of three-dimensional stereotactic surface projections. Medial occipital perfusion was significantly decreased in the DLB group compared with the AD group. The mean heart/mediastinum ratios of MIBG uptake were significantly lower in the DLB group than in the AD group. Although SPECT failed to demonstrate significant hypoperfusion in the medial occipital lobe in five patients with DLB, marked reduction of MIBG uptake was found in all patients with DLB. Receiver operating characteristic analysis revealed that MIBG myocardial scintigraphy enabled more accurate discrimination between DLB and AD than was possible with perfusion SPECT. MIBG myocardial scintigraphy may improve the sensitivity in the detection of DLB. In particular, this method may provide a powerful differential diagnostic tool when it is difficult to distinguish cases of DLB from AD using brain perfusion SPECT. (orig.)

  17. Perfusion magnetic resonance imaging in pediatric brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Dallery, F.; Michel, D.; Constans, J.M.; Gondry-Jouet, C. [University Hospital, Department of Radiology, Amiens (France); Bouzerar, R.; Promelle, V.; Baledent, O. [University Hospital, Department of Imaging and Biophysics, Amiens (France); Attencourt, C. [University Hospital, Departement of Pathology, Amiens (France); Peltier, J. [University Hospital, Departement of Neurosurgery, Amiens (France)

    2017-11-15

    The use of DSC-MR imaging in pediatric neuroradiology is gradually growing. However, the number of studies listed in the literature remains limited. We propose to assess the perfusion and permeability parameters in pediatric brain tumor grading. Thirty children with a brain tumor having benefited from a DSC-MR perfusion sequence have been retrospectively explored. Relative CBF and CBV were computed on the ROI with the largest lesion coverage. Assessment of the lesion's permeability was also performed through the semi-quantitative PSR parameter and the K2 model-based parameter on the whole-lesion ROI and a reduced ROI drawn on the permeability maps. A statistical comparison of high- and low-grade groups (HG, LG) as well as a ROC analysis was performed on the histogram-based parameters. Our results showed a statistically significant difference between LG and HG groups for mean rCBV (p < 10{sup -3}), rCBF (p < 10{sup -3}), and for PSR (p = 0.03) but not for the K2 factor (p = 0.5). However, the ratio K2/PSR was shown to be a strong discriminating factor between the two groups of lesions (p < 10{sup -3}). For rCBV and rCBF indicators, high values of ROC AUC were obtained (> 0.9) and mean value thresholds were observed at 1.07 and 1.03, respectively. For K2/PSR in the reduced area, AUC was also superior to 0.9. The implementation of a dynamic T2* perfusion sequence provided reliable results using an objective whole-lesion ROI. Perfusion parameters as well as a new permeability indicator could efficiently discriminate high-grade from low-grade lesions in the pediatric population. (orig.)

  18. Electric Field Quantitative Measurement System and Method

    Science.gov (United States)

    Generazio, Edward R. (Inventor)

    2016-01-01

    A method and system are provided for making a quantitative measurement of an electric field. A plurality of antennas separated from one another by known distances are arrayed in a region that extends in at least one dimension. A voltage difference between at least one selected pair of antennas is measured. Each voltage difference is divided by the known distance associated with the selected pair of antennas corresponding thereto to generate a resulting quantity. The plurality of resulting quantities defined over the region quantitatively describe an electric field therein.

  19. Myocardial perfusion modeling using MRI

    DEFF Research Database (Denmark)

    Larsson, H B; Fritz-Hansen, T; Rostrup, Egill

    1996-01-01

    In the present study, it is shown that it is possible to quantify myocardial perfusion using magnetic resonance imaging in combination with gadolinium diethylenetriaminopentaacetic acid (Gd-DTPA). Previously, a simple model and method for measuring myocardial perfusion using an inversion recovery...... turbo-FLASH (fast low-angle shot) sequence and Gd-DTPA has been presented. Here, an extension of the model is presented taking into account fast and slow water exchange between the compartments, enabling the calculation of the unidirectional influx constant (Ki) for Gd-DTPA, the distribution volume...... of Gd-DTPA (lambda), the vascular blood volume (Vb), and the time delay through the coronary arteries (delta T). The model was evaluated by computer simulation and used on experimental results from seven healthy subjects. The results in the healthy volunteers for a region of interest placed...

  20. Conversion of p-tyrosine to p-tyramine in the isolated perfused rat kidney: Modulation by perfusate concentrations of p-tyrosine

    International Nuclear Information System (INIS)

    Brier, M.E.; Bowsher, R.R.; Henry, D.P.; Mayer, P.R.

    1991-01-01

    The authors used the isolated perfused rat kidney to evaluate the role of renal decarboxylation of p-tyrosine as the source of urinary p-tyramine. Kidneys were perfused with concentrations of p-tyrosine ranging from 0.02 mM to 2.0 mM. p-Tyramine was measured by a sensitive and specific radioenzymatic assay. An increase in the perfusate concentration of p-tyrosine resulted in a significant increase in p-tyramine production that was blocked by the addition of NSD-1015, an inhibitor of aromatic-1-amino decarboxylase (AADC). They conclude p-tyrosine is the precursor for the renal production of p-tyramine, renal AADC catalyzes the formation of urinary p-tyramine, synthesized p-tyramine is predominantly excreted in the urine, and p-tyramine synthesis is modulated by the arterial delivery of p-tyrosine to the kidney

  1. Noninvasive quantification of myocardial perfusion heterogeneity by Markovian analysis in SPECT nuclear imaging

    International Nuclear Information System (INIS)

    Pons, G.

    2011-01-01

    Cardiovascular diseases are the leading cause of mortality worldwide, and third of these deaths are caused by coronary artery disease and rupture of vulnerable atherosclerotic plaques. The heterogeneous alteration of the coronary microcirculation is an early phenomenon associated with many cardiovascular risk factors that can strongly predict the subsequent development of coronary artery disease, and lead to the appearance of myocardial perfusion heterogeneity. Nuclear medicine allows the study of myocardial perfusion in clinical routine through scintigraphic scans performed after injection of a radioactive tracer of coronary blood flow. Analysis of scintigraphic perfusion images currently allows the detection of myocardial ischemia, but the ability of the technique to measure the perfusion heterogeneity in apparently normally perfused areas is unknown. The first part of this thesis focuses on a retrospective clinical study to determine the feasibility of myocardial perfusion heterogeneity quantification measured by Thallium-201 single photon emission computed tomography (SPECT) in diabetic patients compared with healthy subjects. The clinical study has demonstrated the ability of routine thallium-201 SPECT imaging to quantify greater myocardial perfusion heterogeneity in diabetic patients compared with normal subjects. The second part of this thesis tests the hypothesis that the myocardial perfusion heterogeneity could be quantified in small animal SPECT imaging by Thallium-201 and/or Technetium-99m-MIBI in an experimental study using two animal models of diabetes, and is correlated with histological changes. The lack of difference in myocardial perfusion heterogeneity between control and diabetic animals suggests that animal models are poorly suited, or that the technology currently available does not seem satisfactory to obtain similar results as the clinical study. (author)

  2. Effects of hypoxia and pyruvate infusion on myocardial fatty acid oxidation measured with 123I heptadecanoic acid

    International Nuclear Information System (INIS)

    Comans, E.F.I.; Visser, F.C.; Elzinga, Gijs

    1993-01-01

    Radio-iodinated fatty acids like 123 I heptadecanoic acid (HDA) can be used for the non-invasive delineation of myocardial non-esterified fatty acid (FA) metabolism. In this study the quantitative value of HDA was assessed for the measurement of myocardial FA oxidation. In an isolated saline perfused rat heart preparation myocardial time-activity curves were made during control perfusion and after inhibition of FA oxidation by hypoxia and infusion of 10.0 mM pyruvate, respectively. Control experiments were performed using 1- 14 C palmitate as the 'golden standard' for myocardial FA oxidation. Myocardial HDA oxidation was calculated from the amplitude of the third exponential term of the time-activity curve. During control perfusion no differences were observed between the calculated oxygen equivalents (from HDA oxidation) and the measured (A-V oxygen content difference) and the estimated ( 14 CO 2 production) values. Inhibition of palmitate oxidation with pyruvate was accurately detected with HDA. During hypoxic perfusion, an overestimation of palmitate oxidation was calculated on the basic of HDA oxidation. Infusion of pyruvate did not influence the time constants of the time-activity curves, whereas during hypoxic perfusion an increase of the time constant of the third exponential term was observed, probably caused by the presence of back-diffusion of non-metabolized HDA. We conclude that HDA can be used as a quantitative tool for the measurement of myocardial FA oxidation under various metabolic conditions. During periods of a decreased oxygen availability back-diffusion of FA needs to be taken into account for the interpretation of the myocardial time-activity curves. (author)

  3. Methodology for ventilation/perfusion SPECT

    DEFF Research Database (Denmark)

    Bajc, Marika; Neilly, Brian; Miniati, Massimo

    2010-01-01

    radiolabeled liquid aerosols are not restricted to the presence of obstructive lung disease. Radiolabeled macroaggregated human albumin is the imaging agent of choice for perfusion scintigraphy. An optimal combination of nuclide activities and acquisition times for ventilation and perfusion, collimators......Ventilation/perfusion single-photon emission computed tomography (V/Q SPECT) is the scintigraphic technique of choice for the diagnosis of pulmonary embolism and many other disorders that affect lung function. Data from recent ventilation studies show that the theoretic advantages of Technegas over......, and imaging matrix yields an adequate V/Q SPECT study in approximately 20 minutes of imaging time. The recommended protocol based on the patient remaining in an unchanged position during the initial ventilation study and the perfusion study allows presentation of matching ventilation and perfusion slices...

  4. Comprehensive Assessment of Coronary Artery Disease by Using First-Pass Analysis Dynamic CT Perfusion: Validation in a Swine Model.

    Science.gov (United States)

    Hubbard, Logan; Lipinski, Jerry; Ziemer, Benjamin; Malkasian, Shant; Sadeghi, Bahman; Javan, Hanna; Groves, Elliott M; Dertli, Brian; Molloi, Sabee

    2018-01-01

    Purpose To retrospectively validate a first-pass analysis (FPA) technique that combines computed tomographic (CT) angiography and dynamic CT perfusion measurement into one low-dose examination. Materials and Methods The study was approved by the animal care committee. The FPA technique was retrospectively validated in six swine (mean weight, 37.3 kg ± 7.5 [standard deviation]) between April 2015 and October 2016. Four to five intermediate-severity stenoses were generated in the left anterior descending artery (LAD), and 20 contrast material-enhanced volume scans were acquired per stenosis. All volume scans were used for maximum slope model (MSM) perfusion measurement, but only two volume scans were used for FPA perfusion measurement. Perfusion measurements in the LAD, left circumflex artery (LCx), right coronary artery, and all three coronary arteries combined were compared with microsphere perfusion measurements by using regression, root-mean-square error, root-mean-square deviation, Lin concordance correlation, and diagnostic outcomes analysis. The CT dose index and size-specific dose estimate per two-volume FPA perfusion measurement were also determined. Results FPA and MSM perfusion measurements (P FPA and P MSM ) in all three coronary arteries combined were related to reference standard microsphere perfusion measurements (P MICRO ), as follows: P FPA_COMBINED = 1.02 P MICRO_COMBINED + 0.11 (r = 0.96) and P MSM_COMBINED = 0.28 P MICRO_COMBINED + 0.23 (r = 0.89). The CT dose index and size-specific dose estimate per two-volume FPA perfusion measurement were 10.8 and 17.8 mGy, respectively. Conclusion The FPA technique was retrospectively validated in a swine model and has the potential to be used for accurate, low-dose vessel-specific morphologic and physiologic assessment of coronary artery disease. © RSNA, 2017.

  5. Analysis of decrease in lung perfusion blood volume with occlusive and non-occlusive pulmonary embolisms

    International Nuclear Information System (INIS)

    Ikeda, Yohei; Yoshimura, Norihiko; Hori, Yoshiro; Horii, Yosuke; Ishikawa, Hiroyuki; Yamazaki, Motohiko; Noto, Yoshiyuki; Aoyama, Hidefumi

    2014-01-01

    Highlights: • The proportion of preserved PE lesions in the non-occlusive group was 76.7% (33/43). • HUs of the iodine map were significantly higher in the non-occlusive group than in the occlusive group. • There was no significant difference in HUs between the non-occlusive and corresponding normal group. - Abstract: Purpose: The aim of this study was to determine if lung perfusion blood volume (lung PBV) with non-occlusive pulmonary embolism (PE) differs quantitatively and visually from that with occlusive PE and to investigate if lung PBV with non-occlusive PE remains the same as that without PE. Materials and methods: Totally, 108 patients suspected of having acute PE underwent pulmonary dual-energy computed tomography angiography (DECTA) between April 2011 and January 2012. Presence of PE on DECTA was evaluated by one radiologist. Two radiologists visually evaluated the PE distribution (segmental or subsegmental) and its nature (occlusive or non-occlusive) on DECTA and classified perfusion in lung PBV as “decreased,” “slightly decreased,” and “preserved”. Two radiologists used a lung PBV application to set a region of interest (ROI) in the center of the lesion and measured HU values of an iodine map. In the same slice as the ROI of the lesion and close to the lesion, another ROI was set in the normal perfusion area without PE, and HUs were measured. The proportion of lesions was compared between the occlusive and non-occlusive groups. HUs were compared among the occlusive, non-occlusive, and corresponding normal groups. Results: Twenty-five patients had 80 segmental or subsegmental lesions. There were 37 and 43 lesions in the occlusive and non-occlusive groups, respectively. The proportion of decreased lesions was 73.0% (27/37) in the occlusive group, while that of preserved lesions in the non-occlusive group was 76.7% (33/43). There was a significant difference in the proportion of lesions (P < 0.001) between the two groups. HUs of the

  6. Dynamic Measurement of Tumor Vascular Permeability and Perfusion using a Hybrid System for Simultaneous Magnetic Resonance and Fluorescence Imaging.

    Science.gov (United States)

    Ren, Wuwei; Elmer, Andreas; Buehlmann, David; Augath, Mark-Aurel; Vats, Divya; Ripoll, Jorge; Rudin, Markus

    2016-04-01

    Assessing tumor vascular features including permeability and perfusion is essential for diagnostic and therapeutic purposes. The aim of this study was to compare fluorescence and magnetic resonance imaging (MRI)-based vascular readouts in subcutaneously implanted tumors in mice by simultaneous dynamic measurement of tracer uptake using a hybrid fluorescence molecular tomography (FMT)/MRI system. Vascular permeability was measured using a mixture of extravascular imaging agents, GdDOTA and the dye Cy5.5, and perfusion using a mixture of intravascular agents, Endorem and a fluorescent probe (Angiosense). Dynamic fluorescence reflectance imaging (dFRI) was integrated into the hybrid system for high temporal resolution. Excellent correspondence between uptake curves of Cy5.5/GdDOTA and Endorem/Angiosense has been found with correlation coefficients R > 0.98. The two modalities revealed good agreement regarding permeability coefficients and centers-of-gravity of the imaging agent distribution. The FMT/dFRI protocol presented is able to accurately map physiological processes and poses an attractive alternative to MRI for characterizing tumor neoangiogenesis.

  7. A Review of Liver Perfusion Method in Toxicology Studies

    Directory of Open Access Journals (Sweden)

    M karami

    2014-06-01

    Full Text Available Introduction: The isolated perfused rat liver is an accepted method in toxicology studies. The isolated perfused rat liver (IPRL is a useful experimental system for evaluating hepatic function without the influence of other organ systems, undefined plasma constituents, and neural-hormonal effects. Methods: The untreated male rats (180-220gr body weight were anesthetised with ether and then surgery with proper method. The abdomen was opened through a midline and one transversal incision and the bile duct was cannulated. Heparin sodium solution (0.5 ml; 500 U/ml in 0.9% NaCl was injected via the abdominal vena cava to prevent blood clotting. The liver inferior venacava was cannulated with PE-10 tubing and secured. The portal vein was immediately cannulated with an 23gr catheter which was secured and then liver was perfused in situ by Krebs- Henseleit buffer (pH 7.4; saturated with 95% O2 and 5% CO2; 37°C at a flow rate of 20 ml/min for 3hr. Temperature, perfusion pressure, flow rate and perfusion fluid pH were closely monitored during the perfusion. Results: Transferase enzymes (ALT, AST alterations can be widely used as a measure of biochemical alterations in order to assess liver damage due to use of drugs such as isoniazid (INH and animal and plant toxins. Accumulated material in gallbladder are valuable samples to assess the level of Glutathione (GSH. Sections of perfused liver tissue can also be effectively analyzed for pathological aspects such as necrosis, fibrosis, cellularity. Conclusion: The isolated perfused rat liver (IPRL is a useful and Sutible experimental system for evaluating hepatic function. In this system, the effects of adjacent organs, on the liver is minimized

  8. Comparison of automatic quantification software for the measurement of ventricular volume and ejection fraction in gated myocardial perfusion SPECT

    International Nuclear Information System (INIS)

    Van Staden, J.A.; Herbst, C.P.; Du Raan, H.; Lotter, M.G.; Otto, A.C.

    2004-01-01

    Full text: Introduction: Gated myocardial perfusion SPECT has been used to calculate left ventricular ejection fraction (LVEF) and left ventricular end-diastolic volume (LVEDV) and has correlated well with conventional methods. However, the comparative accuracy of and correlations across various types of gated SPECT software are not well understood. Materials and methods: Twelve patients participated in a radionuclide gated blood-pool (GBP) study in addition to undergoing 99m Tc-sestamibi gated SPECT. Three different software algorithms, Quantitative Gated SPECT (QGS) from Cedars-Sinai, MultiDim from Stanford University Medical School and GQUANT from Alfa Nuclear were used to compute LVEF and LVEDV. These software algorithms operate in 3-dimensional space, two dependent on surface detection and the other on statistical parameters. The LVEF as calculated from gated SPECT myocardial perfusion images were compared with LVEF calculated from the GBP studies in the same patients to assess accuracy of the three software algorithms. Results: The software success-rate was 92% (11/12 pts) for MultiDim and 100% for the QGS and GQUANT. Agreement between LVEF measured with MultiDim and QGS, MultiDim and GQUANT and QGS and GQUANT were excellent (LVEF-MuItidim 0.80 LVEF QGS +5.02, r = 0.93, LVEF GQUANT = 1.10 LVEF MuItidim -1.33, r 0.90 and LVEF GQUANT = 1.02 LVEF QGS -1.40, r = 0.96). The correlation coefficient for LVEF between gated SPECT and the GBP study was 0.95, 0.95 and 0.97, for MultiDim, GQUANT and QGS, respectively. Conclusion: All 3 software programs showed good correlation between LVEF for gated SPECT and the GBP study. Good agreement for LVEF was observed also between the three software algorithms. However, because each method has unique characteristics that depend on its specific algorithm and thus behaves differently in the various patients, the methods should not be used interchangeably. (author)

  9. The application of phase analysis of gated myocardial perfusion imaging to assess left ventricular mechanical dyssynchrony in cardiovascular disease

    International Nuclear Information System (INIS)

    Wang Jianfeng; Wang Yuetao

    2013-01-01

    Left ventricular mechanical dyssynchrony is closely related to the severity of cardiovascular disease, it is essential to assess left ventricular mechanical dyssynchrony accurately for early prediction of adverse cardiac events and prognosis assessment of the cardiac resynchronization therapy. As a new technology to assess left ventricular mechanical dyssynchrony, the phase analysis of gated myocardial perfusion imaging (GMPI) can get both quantitative indicators of regional myocardial perfusion, evaluation of regional myocardial viability and scar tissue, as well as quantitative analysis of left ventricular function and left ventricular mechanical synchrony, it has broad application prospects in cardiovascular disease to assess left ventricular mechanical dyssynchrony and prognosis assessment. This review mainly described the applications of GMPI phase analysis in the cardiovascular disease. (authors)

  10. Improvement of image quality and radiation dose of CT perfusion of the brain by means of low-tube voltage (70 KV)

    International Nuclear Information System (INIS)

    Li, Zhen-lin; Zhang, Kai; Li, Wang-jiang; Chen, Xian; Wu, Bin; Song, Bin; Li, Hang

    2014-01-01

    To investigate the feasibility of 70 kV cerebral CT perfusion by comparing image quality and radiation exposure to 80 kV. Thirty patients with suspected cerebral ischemia who underwent dual-source CT perfusion were divided into group A (80 kV, 150 mAs) and group B (70 kV, 150 mAs). Quantitative comparisons were used for maximum enhancement, signal-to-noise index (SNI), and values of cerebral blood flow (CBF), cerebral blood flow (CBV), mean transit time (MTT) on CBF, CBV, and MTT images, and radiation dose from these two groups. Qualitative perfusion images were assessed by two readers. Maximum enhancement for group B was higher than group A (P < 0.05). There were no significant differences between the two groups for SNI on CBF and CBV maps (P = 0.06 - 0.576), but significant differences for MTT when SNI was measured on frontal white matter and temporo-occipital white matter (P < 0.05). There were no differences among values of CBF, CBV, and MTT for both groups (P = 0.251-0.917). Mean image quality score in group B was higher than group A for CBF (P < 0.05), but no differences for CBV (P = 0.542) and MTT (P = 0.962). Radiation dose for group B decreased compared with group A. 70 kV cerebral CT perfusion reduces radiation dose without compromising image quality. (orig.)

  11. Improvement of image quality and radiation dose of CT perfusion of the brain by means of low-tube voltage (70 KV)

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhen-lin; Zhang, Kai; Li, Wang-jiang; Chen, Xian; Wu, Bin; Song, Bin [West China Hospital of Sichuan University, Department of Radiology, Chengdu, Sichuan (China); Li, Hang [Sichuan Provincial People' s Hospital, Department of Radiology, Chengdu, Sichuan (China)

    2014-08-15

    To investigate the feasibility of 70 kV cerebral CT perfusion by comparing image quality and radiation exposure to 80 kV. Thirty patients with suspected cerebral ischemia who underwent dual-source CT perfusion were divided into group A (80 kV, 150 mAs) and group B (70 kV, 150 mAs). Quantitative comparisons were used for maximum enhancement, signal-to-noise index (SNI), and values of cerebral blood flow (CBF), cerebral blood flow (CBV), mean transit time (MTT) on CBF, CBV, and MTT images, and radiation dose from these two groups. Qualitative perfusion images were assessed by two readers. Maximum enhancement for group B was higher than group A (P < 0.05). There were no significant differences between the two groups for SNI on CBF and CBV maps (P = 0.06 - 0.576), but significant differences for MTT when SNI was measured on frontal white matter and temporo-occipital white matter (P < 0.05). There were no differences among values of CBF, CBV, and MTT for both groups (P = 0.251-0.917). Mean image quality score in group B was higher than group A for CBF (P < 0.05), but no differences for CBV (P = 0.542) and MTT (P = 0.962). Radiation dose for group B decreased compared with group A. 70 kV cerebral CT perfusion reduces radiation dose without compromising image quality. (orig.)

  12. Assessment of the myocardial perfusion pattern in patients with multivessel coronary artery disease

    International Nuclear Information System (INIS)

    Iskandrian, A.S.; Hakki, A.H.; Segal, B.L.; Kane, S.A.; Amenta, A.

    1983-01-01

    A total of 42 symptomatic patients with coronary artery disease involving two or three vessels were studied using exercise thallium-201 myocardial scintigraphy. Qualitative analysis of the images predicted multivessel disease in 75% of the patients with two-vessel disease and in 82% of the patients with three-vessel disease. Quantitative analysis of the size of the perfusion defect indicated that approximately 40% of the left ventricular perimeter showed abnormal perfusion pattern during stress in these patients, and there was no significant difference in the size of the defect in patients with two-vessel disease or three-vessel disease (41 +/- 17% vs 42 +/- 14%, respectively, mean +/- SD). The exercise heart rate, exercise ECG response, and severity of narrowing did not correlate with the size of the perfusion defect. Patients with anterior infarction had larger defects in the distribution of the left anterior descending artery than those without infarction. Collaterals offered partial protection during exercise only when they were not jeopardized. This study confirms the value of qualitative analysis of exercise thallium-201 imaging in predicting multivessel disease, and describes a simple method of assessing the extent of perfusion abnormalities during stress in patients with multivessel disease. The results may be important in patient management and prognosis

  13. A comparative study of colour and perfusion between two different post surgical scars. Do the laser Doppler imager and the colorimeter measure the same features of a scar?

    Science.gov (United States)

    Mermans, J F; Peeters, W J; Dikmans, R; Serroyen, J; van der Hulst, R R J W; Van den Kerckhove, E

    2013-05-01

    The purpose of this study was to investigate the influence of different located post surgical scars on both perfusion and redness. The pattern of change and correlation between perfusion and redness of post surgical scars is also examined. In this study, we measured redness and perfusion of the abdominal and breast scar of 24 women undergoing breast reconstruction with Deep Inferior Epigastric Perforator Free Flap surgery with the Minolta Chromameter CR-400/410 and the Moor Instruments laser Doppler imager 12IR, respectively, at different intervals post-operatively. The laser Doppler imager gives significantly higher values for the abdominal compared with the breast scar. There was no consistent correlation found between perfusion and redness at the different test moments for both locations. The scores of both parameters were significantly associated after 9 months follow-up for both locations. Scars closed with higher mechanical force show higher perfusion and prolonged activity; and more redness is associated with more perfusion for both post surgical scars. Nevertheless, there was no consistent correlation found between these parameters making the laser Doppler imager and the Colorimeter still non-replaceable instruments. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  14. Intra-Arterial MR Perfusion Imaging of Meningiomas: Comparison to Digital Subtraction Angiography and Intravenous MR Perfusion Imaging.

    Directory of Open Access Journals (Sweden)

    Mark A Lum

    Full Text Available To evaluate the ability of IA MR perfusion to characterize meningioma blood supply.Studies were performed in a suite comprised of an x-ray angiography unit and 1.5T MR scanner that permitted intraprocedural patient movement between the imaging modalities. Patients underwent intra-arterial (IA and intravenous (IV T2* dynamic susceptibility MR perfusion immediately prior to meningioma embolization. Regional tumor arterial supply was characterized by digital subtraction angiography and classified as external carotid artery (ECA dural, internal carotid artery (ICA dural, or pial. MR perfusion data regions of interest (ROIs were analyzed in regions with different vascular supply to extract peak height, full-width at half-maximum (FWHM, relative cerebral blood flow (rCBF, relative cerebral blood volume (rCBV, and mean transit time (MTT. Linear mixed modeling was used to identify perfusion curve parameter differences for each ROI for IA and IV MR imaging techniques. IA vs. IV perfusion parameters were also directly compared for each ROI using linear mixed modeling.18 ROIs were analyzed in 12 patients. Arterial supply was identified as ECA dural (n = 11, ICA dural (n = 4, or pial (n = 3. FWHM, rCBV, and rCBF showed statistically significant differences between ROIs for IA MR perfusion. Peak Height and FWHM showed statistically significant differences between ROIs for IV MR perfusion. RCBV and MTT were significantly lower for IA perfusion in the Dural ECA compared to IV perfusion. Relative CBF in IA MR was found to be significantly higher in the Dural ICA region and MTT significantly lower compared to IV perfusion.

  15. Assmentment of myocardial perfusion by magnetic resonance imaging: on the way to clinical application

    International Nuclear Information System (INIS)

    Fischer, S.E.; Lorenz, C.H.

    1997-01-01

    Magnetic resonance imaging detects the flow of contrast - enhanced blood and even allows the quantitative assessment of myocardial perfusion. The clinical application of this method is being held back by the difficulties in image evaluation and the limitation of standard techniques to the acquisition of a single slice per heart beat cycle. Recent developments in scanner hardware as well as in image acquisition techniques open up the possibility of assessing myocardial perfusion over the entire heart with a spatial resolution in the range of 2 mm. As an example of such a new scanning strategy, a segmented gradient-echo recalled echo planar imaging sequence with preceding saturation is discussed and results in a patient with an infarction are presented. The clinical use of perfusion assessment covering the entire heart for the diagnosis of coronary artery disease is enhanced by the flexibility of magnetic resonance imaging for the assessment of functional cardiac parameters. (orig.) [de

  16. Testosterone biotransformation by the isolated perfused canine pancreas

    International Nuclear Information System (INIS)

    Fernandez-del Castillo, C.; Diaz-Sanchez, V.; Varela-Fascinetto, G.; Altamirano, A.; Odor-Morales, A.; Lopez-Medrano, R.M.; Robles-Diaz, G.

    1991-01-01

    There is strong evidence indicating that the pancreas is under the influence of sex steroid hormones, and that it may even participate in their biosynthesis and metabolism. In the present study, [3H]testosterone was perfused into the isolated canine pancreas, and measured in the effluent with several of its metabolites (5 alpha-dihydrotestosterone, androstenedione, and estradiol). Results show that testosterone is readily transformed by the canine pancreas. The main product found in the effluent is androstenedione. The testis and spleen were also perfused with [3H]testosterone and used as controls. In both cases, this hormone appeared mostly unchanged in the effluent as compared to the pancreatic perfusion (p less than 0.0001). From our data, we conclude that the canine pancreas has the capacity to transform sex steroid hormones, and could be considered an extragonadal site of sex steroid biosynthesis

  17. Testosterone biotransformation by the isolated perfused canine pancreas

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-del Castillo, C.; Diaz-Sanchez, V.; Varela-Fascinetto, G.; Altamirano, A.; Odor-Morales, A.; Lopez-Medrano, R.M.; Robles-Diaz, G. (Instituto Nacional de la Nutricion Salvador Zubiran, Mexico City (Mexico))

    1991-01-01

    There is strong evidence indicating that the pancreas is under the influence of sex steroid hormones, and that it may even participate in their biosynthesis and metabolism. In the present study, (3H)testosterone was perfused into the isolated canine pancreas, and measured in the effluent with several of its metabolites (5 alpha-dihydrotestosterone, androstenedione, and estradiol). Results show that testosterone is readily transformed by the canine pancreas. The main product found in the effluent is androstenedione. The testis and spleen were also perfused with (3H)testosterone and used as controls. In both cases, this hormone appeared mostly unchanged in the effluent as compared to the pancreatic perfusion (p less than 0.0001). From our data, we conclude that the canine pancreas has the capacity to transform sex steroid hormones, and could be considered an extragonadal site of sex steroid biosynthesis.

  18. Pulmonary perfusion ''without ventilation''

    International Nuclear Information System (INIS)

    Chapman, C.N.; Sziklas, J.J.; Spencer, R.P.; Rosenberg, R.J.

    1983-01-01

    An 88-yr-old man, with prior left upper lobectomy and phrenic nerve injury, had a ventilation/perfusion lung image. Both wash-in and equilibrium ventilation images showed no radioactive gas in the left lung. Nevertheless, the left lung was perfused. A similar result was obtained on a repeat study 8 days later. Delayed images, during washout, showed some radioactive gas in the left lung. Nearly absent ventilation (but continued perfusion) of that lung might have been related to altered gas dynamics brought about by the prior lobectomy, a submucosal bronchial lesion, phrenic nerve damage, and limited motion of the left part of the diaphragm. This case raises the issue of the degree of ventilation (and the phase relationship between the lungs) required for the entry of radioactive gas into a diseased lung, and the production of a ''reversed ventilation/perfusion mismatch.''

  19. The myocardial perfusion imaging of bone marrow mesenchymal stem cell transplantation treated acute myocardial infarction in pig

    International Nuclear Information System (INIS)

    He Miao; Hou Xiancun; Li Yaomei; Zhou Peng; Qi Chunmei; Wu Weihuan; Li Li

    2006-01-01

    Objective: To evaluate the clinical value of bone marrow mesenchymal stem cell transplantation on acute myocardial infarction in pig with myocardial perfusion imaging. Methods: Acute myocardial infarction models were established by 21 minitype Chinese pigs and were divided into two groups. After 10 days, experimental group (n=11) was transplanted with bone marrow mesenchymal stem cell at the infarct areas, and the control group (n=10) with incubation solution. Before and eight weeks after transplantation, both groups were examined by 99 Tc m -methoxyisobutylisonitrile (MIBI) myocardial perfusion imaging and with semi-quantitative analysis. Besides, echocardiogram and immunohistochemistry were also performed. Results: There was significant difference of total myocardial perfusion abnormal segments (46 vs 26), infarct areas [(34±12)% vs (21±10)%] and myocardial ischemia score [(20.0±4.3) vs (12.1±3.6)] between two groups (P<0.05). Also, there were accordant results with echocardiogram and immunohistochemistry findings. Conclusions: Bone marrow mesenchymal stem cell transplantation may improve blood perfusion and viability of the ischemic areas: Myocardial perfusion imaging can accurately observe the survival of bone marrow mesenchymal stem cell transplanted at the infarct areas. (authors)

  20. An Assessment of Urinary Biomarkers in a Series of Declined Human Kidneys Measured During ex-vivo Normothermic Kidney Perfusion

    OpenAIRE

    Hosgood, Sarah Anne; Nicholson, Michael Lennard

    2016-01-01

    BACKGROUND: The measurement of urinary biomarkers during ex-vivo normothermic kidney perfusion (EVKP) may aid in the assessment of a kidney prior to transplantation. This study measured levels of neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1) and endothelin-1 (ET-1) during EVKP in a series of discarded human kidneys. METHODS: Fifty six kidneys from deceased donors were recruited into the study. Each kidney underwent 60 minutes of EVKP and was scored based ...

  1. Methodological NMR imaging developments to measure cerebral perfusion

    International Nuclear Information System (INIS)

    Pannetier, N.

    2010-12-01

    This work focuses on acquisition techniques and physiological models that allow characterization of cerebral perfusion by MRI. The arterial input function (AIF), on which many models are based, is measured by a technique of optical imaging at the carotid artery in rats. The reproducibility and repeatability of the AIF are discussed and a model function is proposed. Then we compare two techniques for measuring the vessel size index (VSI) in rats bearing a glioma. The reference technique, using a USPIO contrast agent (CA), faces the dynamic approach that estimates this parameter during the passage of a bolus of Gd. This last technique has the advantage of being used clinically. The results obtained at 4.7 T by both approaches are similar and use of VSI in clinical protocols is strongly encouraged at high field. The mechanisms involved (R1 and R2* relaxivities) were then studied using a multi gradient -echoes approach. A multi-echoes spiral sequence is developed and a method that allows the refocusing between each echo is presented. This sequence is used to characterize the impact of R1 effects during the passage of two successive injections of Gd. Finally, we developed a tool for simulating the NMR signal on a 2D geometry taking into account the permeability of the BBB and the CA diffusion in the interstitial space. At short TE, the effect of diffusion on the signal is negligible. In contrast, the effects of diffusion and permeability may be separated at long echo time. Finally we show that during the extravasation of the CA, the local magnetic field homogenization due to the decrease of the magnetic susceptibility difference at vascular interfaces is quickly balanced by the perturbations induced by the increase of the magnetic susceptibility difference at the cellular interfaces in the extravascular compartment. (author)

  2. Compartmented pyruvate in perfused working heart

    International Nuclear Information System (INIS)

    Buenger, R.

    1985-01-01

    Pyruvate compartmentation and lactate dehydrogenase (LDH) were studied in isolated perfused working guinea pig hearts. The mean intracellular pyruvate (Pyr) contents increased with perfusate Pyr (0-2 mM) but varied only slightly with glucose (0-10 mM) and additional insulin (0.04-5 U/l), respectively. With 5-10 mM glucose plus 5 U/l insulin, but not with Pyr or lactate (Lac) as substrates, a near equilibrium between the LDH and the glycerol-3-phosphate dehydrogenase seemed to exist. Evidence for an inhibitory effect of Pyr on the activity of the LDH system of the perfused hearts was not obtained. With [U- 14 C]glucose as sole substrate, the specific activity of coronary venous Lac was near half that of precursor glucose. 14 CO 2 production was thus in quantitative agreement with rates of pyruvate oxidation that were determined as glucose uptake minus (Pyr + Lac) release. In contrast, with 0.2 mM [1- 14 C]Pyr plus 5 mM glucose, the ratio of 14 CO 2 production to specific activity of Lac overestimated Pyr oxidation judged from myocardial substrate balances and O 2 uptake, respectively; here, at least three pools of [ 14 C]HCO-3 and [ 14 C]lac, respectively, were kinetically demonstrable during washout of trace amounts of 14 C-labeled Pyr. Evidently, the specific activity of Lac was equivalent to that of mitochondrial oxidized Pyr provided [ 14 C]glucose was the sole or major precursor of cellular pyruvate. However, exogenously applied [1- 14 C]Pyr of high specific activity seemed to induce intracellular formation of both a highly and lowly labeled Pyr; the latter Pyr compartment did not seem in ready equilibrium with the cell physiologically prevailing highly labeled Pyr pool

  3. Dynamic subcortical blood flow during male sexual activity with ecological validity : A perfusion NRI study

    NARCIS (Netherlands)

    Georgiadis, Janniko R.; Farrell, Michael J.; Boessen, Ruud; Denton, Derek A.; Gavrilescu, Maria; Kortekaas, Rudie; Renken, Remco J.; Hoogduin, Johannes M.; Egan, Gary F.

    This study used arterial spin labeling (ASL) fMRI to measure brain perfusion in a group of healthy men under conditions that closely resembled customary sexual behavior. Serial perfusion measures for 30 min during two self-limited periods of partnered penis stimulation, and during post-stimulatory

  4. Simultaneous cardiac output and regional myocardial perfusion determination with PET and nitrogen 13 ammonia

    DEFF Research Database (Denmark)

    Hove, Jens D; Kofoed, Klaus F; Wu, Hsiao M

    2003-01-01

    The purpose of this study was to evaluate the possibility of measuring cardiac output during positron emission tomography (PET) examination of myocardial perfusion with nitrogen 13 ammonia.......The purpose of this study was to evaluate the possibility of measuring cardiac output during positron emission tomography (PET) examination of myocardial perfusion with nitrogen 13 ammonia....

  5. The relationship between red blood cell deformability metrics and perfusion of an artificial microvascular network.

    Science.gov (United States)

    Sosa, Jose M; Nielsen, Nathan D; Vignes, Seth M; Chen, Tanya G; Shevkoplyas, Sergey S

    2014-01-01

    The ability of red blood cells (RBC) to undergo a wide range of deformations while traversing the microvasculature is crucial for adequate perfusion. Interpretation of RBC deformability measurements performed in vitro in the context of microvascular perfusion has been notoriously difficult. This study compares the measurements of RBC deformability performed using micropore filtration and ektacytometry with the RBC ability to perfuse an artificial microvascular network (AMVN). Human RBCs were collected from healthy consenting volunteers, leukoreduced, washed and exposed to graded concentrations (0-0.08%) of glutaraldehyde (a non-specific protein cross-linker) and diamide (a spectrin-specific protein cross-linker) to impair the deformability of RBCs. Samples comprising cells with two different levels of deformability were created by adding non-deformable RBCs (hardened by exposure to 0.08% glutaraldehyde) to the sample of normal healthy RBCs. Ektacytometry indicated a nearly linear decline in RBC deformability with increasing glutaraldehyde concentration. Micropore filtration showed a significant reduction only for concentrations of glutaraldehyde higher than 0.04%. Neither micropore filtration nor ektacytometry measurements could accurately predict the AMVN perfusion. Treatment with diamide reduced RBC deformability as indicated by ektacytometry, but had no significant effect on either micropore filtration or the AMVN perfusion. Both micropore filtration and ektacytometry showed a linear decline in effective RBC deformability with increasing fraction of non-deformable RBCs in the sample. The corresponding decline in the AMVN perfusion plateaued above 50%, reflecting the innate ability of blood flow in the microvasculature to bypass occluded capillaries. Our results suggest that in vitro measurements of RBC deformability performed using either micropore filtration or ektacytometry may not represent the ability of same RBCs to perfuse microvascular networks. Further

  6. Contralateral thalamic hypoperfusion on brain perfusion SPECT

    International Nuclear Information System (INIS)

    Lee, Seok Mo; Bae, Sang Kyun; Yoo, Kyung Moo; Yum, Ha Yong

    2000-01-01

    Brain perfusion single photon emission computed tomography (SPECT) is useful for the localization of cerebrovascular lesion and sometimes reveals more definite lesion than radiologic imaging modality such as CT or MRI does. The purpose of this study was to evaluate the diagnostic usefulness of brain perfusion SPECT in patients with hemisensory impairment. Thirteen consecutive patients (M:F= 8:5, mean age = 48) who has hemisensory impairment were included. Brain perfusion SPECT was performed after intravenous injection of 1110 MBq of Tc-99m ECD. The images were obtained using a dual-head gamma camera with ultra-high resolution collimator. Semiquantitative analysis was performed after placing multiple ROIs on cerebral cortex, basal ganglia, thalamus and cerebellum. There were 10 patients with left hemisensory impairment and 3 patients with right-sided symptom. Only 2 patients revealed abnormal signal change in the thalamus on MRI. But brain perfusion SPECT showed decreased perfusion in the thalamus in 9 patients. Six patients among 10 patients with left hemisensory impairment revealed decreased perfusion in the contralateral thalamus on brain SPECT. The other 4 patients revealed no abnormality. Two patients among 3 patients with right hemisensory impairment also showed decreased perfusion in the contralateral thalamus on brain SPECT. One patients with right hemisensory impairment showed ipsilateral perfusion decrease. Two patients who had follow-up brain perfusion SEPCT after treatment revealed normalization of perfusion in the thalamus. Brain perfusion SPECT might be a useful tool in diagnosing patients with hemisensory impairment

  7. Assessment of perfusion pattern and extent of perfusion defect on dual-energy CT angiography: Correlation between the causes of pulmonary hypertension and vascular parameters

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Young [Dept. of Radiology, Chonbuk National University Medical School and Hospital, Research Institute of Clinical Medicine, Jeonju (Korea, Republic of); Seo, Joon Beom; Oh, Sang Young; Lee, Choong Wook; Lee, Sang Min [Dept. of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Hwang, Hye Jeon [Dept. of Radiology, Hallym University College of Medicine, Hallym University Sacred Heart Hospital, Anyang (Korea, Republic of); Lee, Young Kyung [Dept. of Radiology, Seoul Medical Center, Seoul (Korea, Republic of)

    2014-04-15

    To assess perfusion patterns on a dual-energy pulmonary CT angiography (DECTA) of pulmonary hypertension (PHT) with variable causes and to assess whether the extent of perfusion defect can be used in the severity assessment of PHT. Between March 2007 and February 2011, DECTA scans of 62 consecutive patients (24 men, 38 women; mean age, 58.5 ± 17.3 [standard deviation] years; range, 19-87 years) with PHT were retrospectively included with following inclusion criteria; 1) absence of acute pulmonary thromboembolism, 2) maximal velocity of tricuspid regurgitation jet (TR Vmax) above 3 m/s on echocardiography performed within one week of the DECTA study. Perfusion patterns of iodine map were divided into normal (NL), diffuse heterogeneously decreased (DH), multifocal geographic and multiple peripheral wedging patterns. The extent of perfusion defects (PD), the diameter of main pulmonary artery (MPA) and the ratio of ascending aorta diameter/MPA (aortopulmonary ratio, APR) were measured. Pearson correlation analysis was performed between TR Vmax on echocardiography and CT imaging parameters. Common perfusion patterns of primary PHT were DH (n = 15) and NL (n = 12). The perfusion patterns of secondary PHT were variable. On the correlation analysis, in primary PHT, TR Vmax significantly correlated with PD, MPA and APR (r = 0.52, r = 0.40, r = -0.50, respectively, all p < 0.05). In secondary PHT, TR Vmax significantly correlated with PD and MPA (r = 0.38, r = 0.53, respectively, all p < 0.05). Different perfusion patterns are observed on DECTA of PHT according to the causes. PD and MPA are significantly correlated with the TR Vmax.

  8. Assessment of perfusion pattern and extent of perfusion defect on dual-energy CT angiography: Correlation between the causes of pulmonary hypertension and vascular parameters

    International Nuclear Information System (INIS)

    Kim, Eun Young; Seo, Joon Beom; Oh, Sang Young; Lee, Choong Wook; Lee, Sang Min; Hwang, Hye Jeon; Lee, Young Kyung

    2014-01-01

    To assess perfusion patterns on a dual-energy pulmonary CT angiography (DECTA) of pulmonary hypertension (PHT) with variable causes and to assess whether the extent of perfusion defect can be used in the severity assessment of PHT. Between March 2007 and February 2011, DECTA scans of 62 consecutive patients (24 men, 38 women; mean age, 58.5 ± 17.3 [standard deviation] years; range, 19-87 years) with PHT were retrospectively included with following inclusion criteria; 1) absence of acute pulmonary thromboembolism, 2) maximal velocity of tricuspid regurgitation jet (TR Vmax) above 3 m/s on echocardiography performed within one week of the DECTA study. Perfusion patterns of iodine map were divided into normal (NL), diffuse heterogeneously decreased (DH), multifocal geographic and multiple peripheral wedging patterns. The extent of perfusion defects (PD), the diameter of main pulmonary artery (MPA) and the ratio of ascending aorta diameter/MPA (aortopulmonary ratio, APR) were measured. Pearson correlation analysis was performed between TR Vmax on echocardiography and CT imaging parameters. Common perfusion patterns of primary PHT were DH (n = 15) and NL (n = 12). The perfusion patterns of secondary PHT were variable. On the correlation analysis, in primary PHT, TR Vmax significantly correlated with PD, MPA and APR (r = 0.52, r = 0.40, r = -0.50, respectively, all p < 0.05). In secondary PHT, TR Vmax significantly correlated with PD and MPA (r = 0.38, r = 0.53, respectively, all p < 0.05). Different perfusion patterns are observed on DECTA of PHT according to the causes. PD and MPA are significantly correlated with the TR Vmax.

  9. The Relationship between Quantitative and Qualitative Measures of Writing Skills.

    Science.gov (United States)

    Howerton, Mary Lou P.; And Others

    The relationships of quantitative measures of writing skills to overall writing quality as measured by the E.T.S. Composition Evaluation Scale (CES) were examined. Quantitative measures included indices of language productivity, vocabulary diversity, spelling, and syntactic maturity. Power of specific indices to account for variation in overall…

  10. Left ventricular ejection fraction determined by gated Tl-201 perfusion SPECT and quantitative software

    International Nuclear Information System (INIS)

    Hyun, In Young; Kim, Sung Eun; Seo, Jeong Kee; Hong, Eui Soo; Kwan, Jun; Park, Keum Soo; Lee, Woo Hyung

    2000-01-01

    We compared estimates of ejection fraction (EF) determined by gated Tl-201 perfusion SPECT (g-Tl-SPECT) with those by gated blood pool (GBP) scan. Eighteen subjects underwent g-Tl-SPECT and GBP scan. After reconstruction of g-Tl-SPECT, we measured EF with Cedars software. The comparison of the EF with g-Tl-SPECT and GBP scan was assessed by correlation analysis and Bland Altman plot. The estimates of EF were significantly different (p<0.05) with g-Tl-SPECT (40%±14%) and GBP scan (43%±14%). There was an excellent correlation of EF between g-Tl-SPECT and GBP scan (r=3D0.94, p<0.001). The mean difference of EF between GBP scan and g-Tl-SPECT was +3.2%. Ninety-five percent limits of agreement were ±9.8%. EF between g-Tl-SPECT and GBP scan were in poor agreement. The estimates of EF by g-Tl-SPECT was well correlated with those by GBP scan. However, EF of g-Tl-SPECT doesn't agree with EF of GBP scan. EF of g-Tl-SPECT can't be used interchangeably with EF of GBP scan.=20

  11. Correlations between quantitative cineangiography, coronary flow reserve measured with digital subtraction cineangiography and exercise thallium perfusion scintigraphy

    International Nuclear Information System (INIS)

    Zijlstra, F.; Fioretti, P.; Reiber, J.H.; Serruys, P.W.

    1988-01-01

    The goal of this investigation was to establish which anatomical parameters of stenotic lesions correlate best with its functional severity. Therefore, thirty-eight patients with single vessel disease underwent coronary cineangiography and exercise/redistribution thallium-201 scintigraphy. Cross-sectional area at the site of obstruction (OA), percentage diameter stenosis (DS), the calculated pressuredrop over the stenosis (PD), as well as coronary flow reserve (CFR) derived from myocardial contrast appearance time and density were determined. The relations between CFR and the 3 anatomical parameters were described by the following equations: CFR = 4.6 - 0.053 DS, r = 0.82, SEE: 0.79, p less than 0.001 CFR = 0.5 + 0.75 OA, r = 0.87, SEE: 0.68, p less than 0.001 CFR = 3.6 - 1.5 log PD, r = 0.90, SEE: 0.62, p less than 0.001 The calculated pressuredrop was highly predictive of the thallium scintigraphic results with a sensitivity of 94% and a specificity of 90%. Therefore, the calculated pressuredrop is a better anatomical parameter for assessing the functional importance of a stenosis than percentage diameter stenosis or obstruction area. However, the 95% confidence limits of the relation between pressuredrop and coronary flow reserve are wide, making measurement of CFR a valuable addition to quantitative angiography, especially when determining the functional importance of moderately severe coronary artery lesions

  12. Can preoperative myocardial perfusion scintigraphy predict changes in left ventricular perfusion and function after coronary artery bypass graft surgery?

    DEFF Research Database (Denmark)

    Eckardt, Rozy; Kjeldsen, Bo Juel; Johansen, Allan

    2012-01-01

    OBJECTIVESWe wanted to evaluate whether preoperative myocardial perfusion scintigraphy (MPS) could predict changes in cardiac symptoms and postoperative myocardial perfusion and left ventricular function after coronary artery bypass grafting (CABG).METHODSNinety-two patients with stable angina...... in 26%. Left ventricular ejection fraction (LVEF), which was normal before operation in 45%, improved in 40% of all patients. The increase in LVEF was not related to the preoperative pattern of perfusion defects. Of 30 patients with normalized perfusion after CABG, 29 (97%) had reversible defects...... that reversible or partly reversible perfusion defects at a preoperative MPS have a high chance of normalized myocardial perfusion assessed by MPS 6 months after operation. Normal perfusion is obtained almost exclusively in territories with reversible ischaemia. Symptoms improved in nearly all patients and LVEF...

  13. Dynamic Contrast-Enhanced Perfusion Area-Detector CT: Preliminary Comparison of Diagnostic Performance for N Stage Assessment With FDG PET/CT in Non-Small Cell Lung Cancer.

    Science.gov (United States)

    Ohno, Yoshiharu; Fujisawa, Yasuko; Sugihara, Naoki; Kishida, Yuji; Seki, Shinichiro; Koyama, Hisanobu; Yoshikawa, Takeshi

    2017-11-01

    The objective of our study was to directly compare the capability of dynamic first-pass contrast-enhanced (CE) perfusion area-detector CT (ADCT) and FDG PET/CT for differentiation of metastatic from nonmetastatic lymph nodes and assessment of N stage in patients with non-small cell lung carcinoma (NSCLC). Seventy-seven consecutive patients, 45 men (mean age ± SD, 70.4 ± 5.9 years) and 32 women (71.2 ± 7.7 years), underwent dynamic first-pass CE-perfusion ADCT at two or three different positions for covering the entire thorax, FDG PET/CT, surgical treatment, and pathologic examination. From all ADCT data for each of the subjects, a whole-chest perfusion map was computationally generated using the dual- and single-input maximum slope and Patlak plot methods. For quantitative N stage assessment, perfusion parameters and the maximum standardized uptake value (SUV max ) for each lymph node were determined by measuring the relevant ROI. ROC curve analyses were performed for comparing the diagnostic capability of each of the methods on a per-node basis. N stages evaluated by each of the indexes were then statistically compared with the final pathologic diagnosis by means of chi-square and kappa statistics. The area under the ROC curve (A z ) values of systemic arterial perfusion (A z = 0.89), permeability surface (A z = 0.78), and SUV max (A z = 0.85) were significantly larger than the A z values of total perfusion (A z = 0.70, p Dynamic first-pass CE-perfusion ADCT is as useful as FDG PET/CT for the differentiation of metastatic from nonmetastatic lymph nodes and assessment of N stage in patients with NSCLC.

  14. Ex-vivo machine perfusion for kidney preservation.

    Science.gov (United States)

    Hamar, Matyas; Selzner, Markus

    2018-06-01

    Machine perfusion is a novel strategy to decrease preservation injury, improve graft assessment, and increase organ acceptance for transplantation. This review summarizes the current advances in ex-vivo machine-based kidney preservation technologies over the last year. Ex-vivo perfusion technologies, such as hypothermic and normothermic machine perfusion and controlled oxygenated rewarming, have gained high interest in the field of organ preservation. Keeping kidney grafts functionally and metabolically active during the preservation period offers a unique chance for viability assessment, reconditioning, and organ repair. Normothermic ex-vivo kidney perfusion has been recently translated into clinical practice. Preclinical results suggest that prolonged warm perfusion appears superior than a brief end-ischemic reconditioning in terms of renal function and injury. An established standardized protocol for continuous warm perfusion is still not available for human grafts. Ex-vivo machine perfusion represents a superior organ preservation method over static cold storage. There is still an urgent need for the optimization of the perfusion fluid and machine technology and to identify the optimal indication in kidney transplantation. Recent research is focusing on graft assessment and therapeutic strategies.

  15. Reproducibility of rest and exercise stress contrast-enhanced calf perfusion magnetic resonance imaging in peripheral arterial disease

    Directory of Open Access Journals (Sweden)

    Jiji Ronny S

    2013-01-01

    Full Text Available Abstract Background The purpose was to determine the reproducibility and utility of rest, exercise, and perfusion reserve (PR measures by contrast-enhanced (CE calf perfusion magnetic resonance imaging (MRI of the calf in normal subjects (NL and patients with peripheral arterial disease (PAD. Methods Eleven PAD patients with claudication (ankle-brachial index 0.67 ±0.14 and 16 age-matched NL underwent symptom-limited CE-MRI using a pedal ergometer. Tissue perfusion and arterial input were measured at rest and peak exercise after injection of 0.1 mM/kg of gadolinium-diethylnetriamine pentaacetic acid (Gd-DTPA. Tissue function (TF and arterial input function (AIF measurements were made from the slope of time-intensity curves in muscle and artery, respectively, and normalized to proton density signal to correct for coil inhomogeneity. Perfusion index (PI = TF/AIF. Perfusion reserve (PR = exercise TF/ rest TF. Intraclass correlation coefficient (ICC was calculated from 11 NL and 10 PAD with repeated MRI on a different day. Results Resting TF was low in NL and PAD (mean ± SD 0.25 ± 0.18 vs 0.35 ± 0.71, p = 0.59 but reproducible (ICC 0.76. Exercise TF was higher in NL than PAD (5.5 ± 3.2 vs. 3.4 ± 1.6, p = 0.04. Perfusion reserve was similar between groups and highly variable (28.6 ± 19.8 vs. 42.6 ± 41.0, p = 0.26. Exercise TF and PI were reproducible measures (ICC 0.63 and 0.60, respectively. Conclusion Although rest measures are reproducible, they are quite low, do not distinguish NL from PAD, and lead to variability in perfusion reserve measures. Exercise TF and PI are the most reproducible MRI perfusion measures in PAD for use in clinical trials.

  16. Differential impact of multi-focus fan beam collimation with L-mode and conventional systems on the accuracy of myocardial perfusion imaging: Quantitative evaluation using phantoms

    Directory of Open Access Journals (Sweden)

    Tatsunori Saho

    2013-10-01

    Full Text Available Introduction: A novel IQ-SPECTTM method has become widely used in clinical studies. The present study compares the quality of myocardial perfusion images (MPI acquired using the IQ-SPECTTM (IQ-mode,conventional (180° apart: C-mode and L-mode (90° apart: L-mode systems. We assessed spatial resolution, image reproducibility and quantifiability using various physical phantoms. Materials and Methods: SPECT images were acquired using a dual-headed gamma camera with C-mode, L-mode, and IQ-mode acquisition systems from line source, pai and cardiac phantoms containing solutions of 99mTc. The line source phantom was placed in the center of the orbit and at ± 4.0, ± 8.0, ± 12.0, ± 16.0 and ± 20.0 cm off center. We examined quantifiability using the pai phantom comprising six chambers containing 0.0, 0.016, 0.03, 0.045, 0.062, and 0.074 MBq/mLof 99m-Tc and cross-calibrating the SPECT counts. Image resolution and reproducibility were quantified as myocardial wall thickness (MWT and %uptake using polar maps. Results: The full width at half maximum (FWHM of the IQ-mode in the center was increased by 11% as compared with C-mode, and FWHM in the periphery was increased 41% compared with FWHM at the center. Calibrated SPECT counts were essentially the same when quantified using IQ-and C-modes. IQ-SPECT images of MWT were significantly improved (P<0.001 over L-mode, and C-mode SPECT imaging with IQ-mode became increasingly inhomogeneous, both visually and quantitatively (C-mode vs. L-mode, ns; C-mode vs. IQ-mode, P<0.05. Conclusion: Myocardial perfusion images acquired by IQ-SPECT were comparable to those acquired by conventional and L-mode SPECT, but with significantly improved resolution and quality. Our results suggest that IQ-SPECT is the optimal technology for myocardial perfusion SPECT imaging.

  17. Reactivity of the isolated perfused rat tail vascular bed

    Directory of Open Access Journals (Sweden)

    A.S. França

    1997-07-01

    Full Text Available Isolated segments of the perfused rat tail artery display a high basal tone when compared to other isolated arteries such as the mesenteric and are suitable for the assay of vasopressor agents. However, the perfusion of this artery in the entire tail has not yet been used for functional studies. The main purpose of the present study was to identify some aspects of the vascular reactivity of the rat tail vascular bed and validate this method to measure vascular reactivity. The tail severed from the body was perfused with Krebs solution containing different Ca2+ concentrations at different flow rates. Rats were anesthetized with sodium pentobarbital (65 mg/kg and heparinized (500 U. The tail artery was dissected near the tail insertion, cannulated and perfused with Krebs solution plus 30 µM EDTA at 36oC and 2.5 ml/min and the procedures were started after equilibration of the perfusion pressure. In the first group a dose-response curve to phenylephrine (PE (0.5, 1, 2 and 5 µg, bolus injection was obtained at different flow rates (1.5, 2.5 and 3.5 ml/min. The mean perfusion pressure increased with flow as well as PE vasopressor responses. In a second group the flow was changed (1.5, 2, 2.5, 3 and 3.5 ml/min at different Ca2+ concentrations (0.62, 1.25, 2.5 and 3.75 mM in the Krebs solution. Increasing Ca2+ concentrations did not alter the flow-pressure relationship. In the third group a similar protocol was performed but the rat tail vascular bed was perfused with Krebs solution containing PE (0.1 µg/ml. There was an enhancement of the effect of PE with increasing external Ca2+ and flow. PE vasopressor responses increased after endothelial damage with air and CHAPS, suggesting an endothelial modulation of the tone of the rat tail vascular bed. These experiments validate the perfusion of the rat tail vascular bed as a method to investigate vascular reactivity

  18. Specific perfusion pattern in stress 201Tl myocardial scintigraphy of left main coronary artery disease

    International Nuclear Information System (INIS)

    Wakasugi, Shigetoshi; Shibata, Nobuhiko; Kobayashi, Tohru; Fudemoto, Yoshiyuki; Hasegawa, Yoshihisa; Nakano, Shunichi

    1986-01-01

    The usefulness of stress 201 Tl myocardial scintigraphy for identifying left main coronary artery disease was evaluated with data from 23 patients with 50% or more narrowing of the left main coronary artery and 56 patients with 75% or more narrowing of the major coronary arteries but without left main coronary artery involvement (no left main coronary artery disease). Quantitative evaluation of stress perfusion scintigrams in all five patients with narrowing of the left main coronary artery of 90% or more showed a characteristic perfusion pattern (left main pattern) of extensive homogeneous defect over the whole anterolateral segment and simultaneous defects in all radii of the high anteroseptal and high posterolateral segments. On the other hand, such a perfusion pattern was noted in only 1 of 18 patients with less than 90% stenosis of the left main coronary artery and in only 1 of 56 patients with no left coronary artery disease. (orig.)

  19. Extracellular Vesicles from Human Liver Stem Cells Reduce Injury in an Ex Vivo Normothermic Hypoxic Rat Liver Perfusion Model.

    Science.gov (United States)

    Rigo, Federica; De Stefano, Nicola; Navarro-Tableros, Victor; David, Ezio; Rizza, Giorgia; Catalano, Giorgia; Gilbo, Nicholas; Maione, Francesca; Gonella, Federica; Roggio, Dorotea; Martini, Silvia; Patrono, Damiano; Salizzoni, Mauro; Camussi, Giovanni; Romagnoli, Renato

    2018-05-01

    The gold standard for organ preservation before transplantation is static cold storage, which is unable to fully protect suboptimal livers from ischemia/reperfusion injury. An emerging alternative is normothermic machine perfusion (NMP), which permits organ reconditioning. Here, we aimed to explore the feasibility of a pharmacological intervention on isolated rat livers by using a combination of NMP and human liver stem cells-derived extracellular vesicles (HLSC-EV). We established an ex vivo murine model of NMP capable to maintain liver function despite an ongoing hypoxic injury induced by hemodilution. Livers were perfused for 4 hours without (control group, n = 10) or with HLSC-EV (treated group, n = 9). Bile production was quantified; perfusate samples were collected hourly to measure metabolic (pH, pO2, pCO2) and cytolysis parameters (AST, alanine aminotransferase, lactate dehydrogenase). At the end of perfusion, we assessed HLSC-EV engraftment by immunofluorescence, tissue injury by histology, apoptosis by terminal deoxynucleotidyl transferase dUTP nick-end labeling assay, tissue hypoxia-inducible factor 1-α, and transforming growth factor-beta 1 RNA expression by quantitative reverse transcription-polymerase chain reaction. During hypoxic NMP, livers were able to maintain homeostasis and produce bile. In the treated group, AST (P = 0.018) and lactate dehydrogenase (P = 0.032) levels were significantly lower than those of the control group at 3 hours of perfusion, and AST levels persisted lower at 4 hours (P = 0.003). By the end of NMP, HLSC-EV had been uptaken by hepatocytes, and EV treatment significantly reduced histological damage (P = 0.030), apoptosis (P = 0.049), and RNA overexpression of hypoxia-inducible factor 1-α (P < 0.0001) and transforming growth factor-beta 1 (P = 0.014). HLSC-EV treatment, even in a short-duration model, was feasible and effectively reduced liver injury during hypoxic NMP.

  20. Enhanced task-related brain activation and resting perfusion in healthy older adults after chronic blueberry supplementation.

    Science.gov (United States)

    Bowtell, Joanna L; Aboo-Bakkar, Zainie; Conway, Myra E; Adlam, Anna-Lynne R; Fulford, Jonathan

    2017-07-01

    Blueberries are rich in flavonoids, which possess antioxidant and anti-inflammatory properties. High flavonoid intakes attenuate age-related cognitive decline, but data from human intervention studies are sparse. We investigated whether 12 weeks of blueberry concentrate supplementation improved brain perfusion, task-related activation, and cognitive function in healthy older adults. Participants were randomised to consume either 30 mL blueberry concentrate providing 387 mg anthocyanidins (5 female, 7 male; age 67.5 ± 3.0 y; body mass index, 25.9 ± 3.3 kg·m -2 ) or isoenergetic placebo (8 female, 6 male; age 69.0 ± 3.3 y; body mass index, 27.1 ± 4.0 kg·m -2 ). Pre- and postsupplementation, participants undertook a battery of cognitive function tests and a numerical Stroop test within a 1.5T magnetic resonance imaging scanner while functional magnetic resonance images were continuously acquired. Quantitative resting brain perfusion was determined using an arterial spin labelling technique, and blood biomarkers of inflammation and oxidative stress were measured. Significant increases in brain activity were observed in response to blueberry supplementation relative to the placebo group within Brodmann areas 4/6/10/21/40/44/45, precuneus, anterior cingulate, and insula/thalamus (p blueberry versus placebo supplementation (p = 0.05). Supplementation with an anthocyanin-rich blueberry concentrate improved brain perfusion and activation in brain areas associated with cognitive function in healthy older adults.

  1. Polarographic measurement of ascorbate washout in isolated perfused rabbit hearts

    International Nuclear Information System (INIS)

    Arts, T.; Kuikka, J.T.; Reneman, R.S.; Bassingthwaighte, J.B.

    1985-01-01

    To study the myocardial washout of ascorbate, the applicability of polarographic detection of ascorbate ions by a platinum electrode (sensitive area 0.03 mm2) was investigated, in both a calibration setup (sampling flow along the electrode: 100 microliter X s-1) and isolated, retrogradely perfused rabbit hearts. In the calibration setup at pH 7.4, the sensitivity of the electrode was 70 microA/mol. This sensitivity increased moderately with increasing pH (13%/unit pH) and increasing sampling flow rate (14% at an increase from 100 to 150 microliter X s-1). In the isolated hearts, ascorbate infused into the aorta was detected in a right ventricular drain by the electrode as well as by the use of 14 C-labeled ascorbate. Both recorded time courses were similar except for a scaling factor dependent on flow velocity. During continuous infusion the arteriovenous difference of ascorbate was 2 +/- 2% (SD), indicating a relatively low consumption of ascorbate by the isolated heart. The authors conclude that polarographic measurement of ascorbate in the coronary effluent of an isolated rabbit heart can be performed on-line and relatively easily

  2. The prognostic value of the subjective assessment of peripheral perfusion in critically ill patients

    NARCIS (Netherlands)

    Lima, Alexandre; Jansen, Tim C.; van Bommel, Jasper; Ince, Can; Bakker, Jan

    2009-01-01

    OBJECTIVE:: The physical examination of peripheral perfusion based on touching the skin or measuring capillary refill time has been related to the prognosis of patients with circulatory shock. It is unclear, however, whether monitoring peripheral perfusion after initial resuscitation still provides

  3. Perfusion based cell culture chips

    DEFF Research Database (Denmark)

    Heiskanen, Arto; Emnéus, Jenny; Dufva, Martin

    2010-01-01

    Performing cell culture in miniaturized perfusion chambers gives possibilities to experiment with cells under near in vivo like conditions. In contrast to traditional batch cultures, miniaturized perfusion systems provide precise control of medium composition, long term unattended cultures...... and tissue like structuring of the cultures. However, as this chapter illustrates, many issues remain to be identified regarding perfusion cell culture such as design, material choice and how to use these systems before they will be widespread amongst biomedical researchers....

  4. Brain Perfusion Changes in Intracerebral Hemorrhage

    International Nuclear Information System (INIS)

    Mititelu, R.; Mazilu, C.; Ghita, S.; Rimbu, A.; Marinescu, G.; Codorean, I.; Bajenaru, O.

    2006-01-01

    Full text: Purpose: Despite the latest advances in medical treatment and neuro critical care, patients suffering spontaneous intracerebral hemorrhage (SICH) still have a very poor prognosis, with a greater mortality and larger neurological deficits at the survivors than for ischemic stroke. Many authors have shown that there are many mechanisms involved in the pathology of SICH: edema, ischemia, inflammation, apoptosis. All of these factors are affecting brain tissue surrounding hematoma and are responsible of the progressive neurological deterioration; most of these damages are not revealed by anatomical imaging techniques. The aim of our study was to asses the role of brain perfusion SPECT in demonstrating perfusion changes in SICH patients. Method: 17 SICH pts were studied. All pts underwent same day CT and brain SPECT with 99mTcHMPAO, 24h-5d from onset of stroke. Results: 14/17 pts showed a larger perfusion defect than expected after CT. In 2 pts hematoma diameter was comparable on CT and SPECT; 1pt had quasinormal aspect of SPECT study. In pts with larger defects, SPECT revealed a large cold spot with similar size compared with CT, and a surrounding hypo perfused area. 6/17 pts revealed cortical hyper perfusion adjacent to hypo perfused area and corresponding to a normal-appearing brain tissue on CT. In 3 pts we found crossed cerebellar diaskisis.In 2 pts we found cortical hypo perfused area in the contralateral cortex, with normal appearing brain tissue on CT. Conclusions: Brain perfusion SPECT revealed different types of perfusion changes in the brain tissue surrounding hematoma. These areas contain viable brain tissue that may be a target for future ne uroprotective strategies. Further studies are definitely required to demonstrate prognostic significance of these changes, but we can conclude that brain perfusion SPECT can play an important role in SICH, by early demonstrating functional changes responsible of clinical deterioration, thus allowing prompt

  5. First-pass perfusion disturbance of coronary artery stenosis: an experimental study using MR imaging with Gd-DTPA enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Kyung Il; Lee, Young Ju [Ajou Univ. College of Medicine, Seoul (Korea, Republic of); Lim, Tae Hwan [Ulsan Univ. College of Medicine, Ulsan (Korea, Republic of)] [and others

    1997-11-01

    In order to determine the value of first-pass MR imaging in the diagnosis of myocardial ischemia, first-pass perfusion abnormality of coronary artery stenosis was observed in MRI after gadopentate dimeglumine(GD-DTPA) enhancement. The left anterior descending(LAD) coronary arteries of six dogs were subjected to approximately 70% stenosis confirmed by coronary angiography. Half an hour after adenosine and {sup 99m}Tc-sestamibi infusion, Gd-DTPA(0.2mmol/kg) and methylene blue were administered and termination was induced with potassium chloride. SE T1-weighted and single-photon emission computed tomography(SPECT) images were subsequently obtained and the findings of perfusion defect compared with specimen stain. Three dimensionally reconstructed MR images were used to measure signal intensity(SI) of normal myocardium and perfusion defect from their sectional and total volume. Five of six dogs with LAD artey stenosis ranging from 66% to 73% displayed perfusion defect on MRI, SPECT, and specimen stain, but the remaining dog with stenosis of 58% showed no such defect. MRI showed the perfusion defect as distinct low SI, enabling the measurement of percentage perfusion defect(24.4{+-}5.4%), which increased inferiorly. SI of normal myocardium and perfusion defect decreased inferiorly; their difference indicated stenosis-induced perfusion loss according to section location. Volumetric SI of normal myocardium and perfusion defect were 3.42{+-}0.52 and 2.16{+-}0.45, respectively(p<0.05). Gd-DTPA enhanced MRI displayed first-pass perfusion abnormality of coronary artery stenosis as perfusion defect with distinct low SI; this enabled the measurement of its volume and SI changes according to section location, and thus indicated the value of first-pass MR imaging in the diagnosis of myocardial ischemia.

  6. First-pass perfusion disturbance of coronary artery stenosis: an experimental study using MR imaging with Gd-DTPA enhancement

    International Nuclear Information System (INIS)

    Chung, Kyung Il; Lee, Young Ju; Lim, Tae Hwan

    1997-01-01

    In order to determine the value of first-pass MR imaging in the diagnosis of myocardial ischemia, first-pass perfusion abnormality of coronary artery stenosis was observed in MRI after gadopentate dimeglumine(GD-DTPA) enhancement. The left anterior descending(LAD) coronary arteries of six dogs were subjected to approximately 70% stenosis confirmed by coronary angiography. Half an hour after adenosine and 99m Tc-sestamibi infusion, Gd-DTPA(0.2mmol/kg) and methylene blue were administered and termination was induced with potassium chloride. SE T1-weighted and single-photon emission computed tomography(SPECT) images were subsequently obtained and the findings of perfusion defect compared with specimen stain. Three dimensionally reconstructed MR images were used to measure signal intensity(SI) of normal myocardium and perfusion defect from their sectional and total volume. Five of six dogs with LAD artey stenosis ranging from 66% to 73% displayed perfusion defect on MRI, SPECT, and specimen stain, but the remaining dog with stenosis of 58% showed no such defect. MRI showed the perfusion defect as distinct low SI, enabling the measurement of percentage perfusion defect(24.4±5.4%), which increased inferiorly. SI of normal myocardium and perfusion defect decreased inferiorly; their difference indicated stenosis-induced perfusion loss according to section location. Volumetric SI of normal myocardium and perfusion defect were 3.42±0.52 and 2.16±0.45, respectively(p<0.05). Gd-DTPA enhanced MRI displayed first-pass perfusion abnormality of coronary artery stenosis as perfusion defect with distinct low SI; this enabled the measurement of its volume and SI changes according to section location, and thus indicated the value of first-pass MR imaging in the diagnosis of myocardial ischemia

  7. High temporal versus high spatial resolution in MR quantitative pulmonary perfusion imaging of two-year old children after congenital diaphragmatic hernia repair

    Energy Technology Data Exchange (ETDEWEB)

    Weidner, M.; Hagelstein, C.; Schoenberg, S.O.; Neff, K.W. [University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Institute of Clinical Radiology and Nuclear Medicine, Mannheim (Germany); Zoellner, F.G.; Schad, L.R. [Heidelberg University, Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Mannheim (Germany); Zahn, K. [University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Department of Pediatric Surgery, Mannheim (Germany); Schaible, T. [University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Department of Pediatrics, Mannheim (Germany)

    2014-10-15

    Congenital diaphragmatic hernia (CDH) leads to lung hypoplasia. Using dynamic contrast-enhanced (DCE) MR imaging, lung perfusion can be quantified. As MR perfusion values depend on temporal resolution, we compared two protocols to investigate whether ipsilateral lung perfusion is impaired after CDH, whether there are protocol-dependent differences, and which protocol is preferred. DCE-MRI was performed in 36 2-year old children after CDH on a 3 T MRI system; protocol A (n = 18) based on a high spatial (3.0 s; voxel: 1.25 mm{sup 3}) and protocol B (n = 18) on a high temporal resolution (1.5 s; voxel: 2 mm{sup 3}). Pulmonary blood flow (PBF), pulmonary blood volume (PBV), mean transit time (MTT), and peak-contrast-to-noise-ratio (PCNR) were quantified. PBF was reduced ipsilaterally, with ipsilateral PBF of 45 ± 26 ml/100 ml/min to contralateral PBF of 63 ± 28 ml/100 ml/min (p = 0.0016) for protocol A; and for protocol B, side differences were equivalent (ipsilateral PBF = 62 ± 24 vs. contralateral PBF = 85 ± 30 ml/100 ml/min; p = 0.0034). PCNR was higher for protocol B (30 ± 18 vs. 20 ± 9; p = 0.0294). Protocol B showed higher values of PBF in comparison to protocol A (p always <0.05). Ipsilateral lung perfusion is reduced in 2-year old children following CDH repair. Higher temporal resolution and increased voxel size show a gain in PCNR and lead to higher perfusion values. Protocol B is therefore preferred. (orig.)

  8. Dual-energy perfusion-CT of pancreatic adenocarcinoma

    International Nuclear Information System (INIS)

    Klauß, M.; Stiller, W.; Pahn, G.; Fritz, F.; Kieser, M.; Werner, J.; Kauczor, H.U.; Grenacher, L.

    2013-01-01

    Purpose: To evaluate the feasibility of dual-energy CT (DECT)-perfusion of pancreatic carcinomas for assessing the differences in perfusion, permeability and blood volume of healthy pancreatic tissue and histopathologically confirmed solid pancreatic carcinoma. Materials and methods: 24 patients with histologically proven pancreatic carcinoma were examined prospectively with a 64-slice dual source CT using a dynamic sequence of 34 dual-energy (DE) acquisitions every 1.5 s (80 ml of iodinated contrast material, 370 mg/ml, flow rate 5 ml/s). 80 kV p , 140 kV p , and weighted average (linearly blended M0.3) 120 kV p -equivalent dual-energy perfusion image data sets were evaluated with a body-perfusion CT tool (Body-PCT, Siemens Medical Solutions, Erlangen, Germany) for estimating perfusion, permeability, and blood volume values. Color-coded parameter maps were generated. Results: In all 24 patients dual-energy CT-perfusion was. All carcinomas could be identified in the color-coded perfusion maps. Calculated perfusion, permeability and blood volume values were significantly lower in pancreatic carcinomas compared to healthy pancreatic tissue. Weighted average 120 kV p -equivalent perfusion-, permeability- and blood volume-values determined from DE image data were 0.27 ± 0.04 min −1 vs. 0.91 ± 0.04 min −1 (p −1 vs. 0.67 ± 0.05 *0.5 min −1 (p = 0.06) and 0.49 ± 0.07 min −1 vs. 1.28 ± 0.11 min −1 (p p the standard deviations of the kV p 120 kV p -equivalent values were manifestly smaller. Conclusion: Dual-energy CT-perfusion of the pancreas is feasible. The use of DECT improves the accuracy of CT-perfusion of the pancreas by fully exploiting the advantages of enhanced iodine contrast at 80 kV p in combination with the noise reduction at 140 kV p . Therefore using dual-energy perfusion data could improve the delineation of pancreatic carcinomas

  9. Arterio-portal shunts in the cirrhotic liver: perfusion computed tomography for distinction of arterialized pseudolesions from hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Michael A. [University Hospital Zurich, Department of Diagnostic and Interventional Radiology, Zurich (Switzerland); Karolinska Institutet, Division of Medical Imaging and Technology. Department of Clinical Science, Intervention and Technology (CLINTEC), Stockholm (Sweden); Marquez, Herman P.; Gordic, Sonja; Alkadhi, Hatem [University Hospital Zurich, Department of Diagnostic and Interventional Radiology, Zurich (Switzerland); Leidner, Bertil; Aspelin, Peter; Brismar, Torkel B. [Karolinska Institutet, Division of Medical Imaging and Technology. Department of Clinical Science, Intervention and Technology (CLINTEC), Stockholm (Sweden); Klotz, Ernst [Computed Tomography and Radiation Oncology, Siemens Healthcare, Forchheim (Germany)

    2017-03-15

    To determine perfusion computed tomography (P-CT) findings for distinction of arterial pseudolesions (APL) from hepatocellular carcinoma (HCC) in the cirrhotic liver. 32 APL and 21 HCC in 20 cirrhotic patients (15 men; 65 ± 10 years), who underwent P-CT for evaluation of HCC pre- (N = 9) or post- (N = 11) transarterial chemoembolization, were retrospectively included using CT follow-up as the standard of reference. All 53 lesions were qualitatively (visual) and quantitatively (perfusion parameters) analysed according to their shape (wedge, irregular, nodular), location (not-/adjunct to a fistula), arterial liver perfusion (ALP), portal venous liver perfusion (PLP), hepatic perfusion index (HPI). Accuracy for diagnosis of HCC was determined using receiver operating characteristics. 18/32 (56 %) APL were wedge shaped, 10/32 (31 %) irregular and 4/32 (12 %) nodular, while 11/21 (52 %) HCC were nodular or 10/21 (48 %) irregular, but never wedge shaped. Significant difference between APL and HCC was seen for lesion shape in pretreated lesions (P < 0.001), and for PLP and HPI in both pre- and post-treated lesions (all, P < 0.001). Diagnostic accuracy for HCC was best for combined assessment of lesion configuration and PLP showing an area under the curve of 0.901. Combined assessment of lesion configuration and portal venous perfusion derived from P-CT allows best to discriminate APL from HCC with high diagnostic accuracy. (orig.)

  10. Normal LVEF measurements are significantly higher in females asassessed by post-stress resting Tc-99m sestamibi gated myocardial perfusion SPECT

    International Nuclear Information System (INIS)

    Kim, Jong Ho; Shin, Eak Kyun

    1999-01-01

    Volume-LVEF relationship is one of the most important factors of automatic EF quantification algorithm from gated myocardial perfusion SPECT(gMPS) (Germano et al. JNM, 1995). Gender difference whereby normal LVEF measurements are higher in females assessed by gMPS (Yao et al. JNM 1997). To validate true physiologic value of LVEF vs sampling or measured error, various parameters were evaluated statistically in both gender and age matched 200 subjects (mean age= 58.41±15.01) with normal LVEF more than 50%, and a low likelihood of coronary artery disease. Correlation between LVEDVi(ml/m2) and LVEF was highly significant (r=-0.62, p<0.0001) with similar correlations noted in both male (r=-0.45, p<0.0001) and female (r=-0.67, p<0.0001) subgroups. By multivariate analysis, LV volume and stroke volume was the most significant factor influencing LVEF in male and female, respectively. In conclusion, there is a significant negative correlation between LV volume and LVEF as measured by Tc-99m gated SPECT. Higher normal LVEF value should be applied to females as assessed by post-stress resting Tc-99m Sestamibi gated myocardial perfusion SPECT

  11. Quantitative pre-surgical lung function estimation with SPECT/CT

    International Nuclear Information System (INIS)

    Bailey, D. L.; Willowson, K. P.; Timmins, S.; Harris, B. E.; Bailey, E. A.; Roach, P. J.

    2009-01-01

    Full text:Objectives: To develop methodology to predict lobar lung function based on SPECT/CT ventilation and perfusion (V/Q) scanning in candidates for lobectomy for lung cancer. Methods: This combines two development areas from our group: quantitative SPECT based on CT-derived corrections for scattering and attenuation of photons, and SPECT V/Q scanning with lobar segmentation from CT. Eight patients underwent baseline pulmonary function testing (PFT) including spirometry, measure of DLCO and cario-pulmonary exercise testing. A SPECT/CT V/Q scan was acquired at baseline. Using in-house software each lobe was anatomically defined using CT to provide lobar ROIs which could be applied to the SPECT data. From these, individual lobar contribution to overall function was calculated from counts within the lobe and post-operative FEV1, DLCO and VO2 peak were predicted. This was compared with the quantitative planar scan method using 3 rectangular ROIs over each lung. Results: Post-operative FEV1 most closely matched that predicted by the planar quantification method, with SPECT V/Q over-estimating the loss of function by 8% (range - 7 - +23%). However, post-operative DLCO and VO2 peak were both accurately predicted by SPECT V/Q (average error of 0 and 2% respectively) compared with planar. Conclusions: More accurate anatomical definition of lobar anatomy provides better estimates of post-operative loss of function for DLCO and VO2 peak than traditional planar methods. SPECT/CT provides the tools for accurate anatomical defintions of the surgical target as well as being useful in producing quantitative 3D functional images for ventilation and perfusion.

  12. Validation of quantitation of regional myocardial blood flow in vivo with 11C-labeled human albumin microspheres and positron emission tomography

    International Nuclear Information System (INIS)

    Wilson, R.A.; Shea, M.J.; De Landsheere, C.M.; Turton, D.; Brady, F.; Deanfield, J.E.; Selwyn, A.P.

    1984-01-01

    Use of radiolabeled microspheres is a standard method to measure regional myocardial perfusion in animals. Human albumin microspheres have been given safely to patients, but positron-emitting 67 Ga-labeled human albumin microspheres are characterized by an unstable radiolabel. A new labeling procedure that covalently binds 11 C to human albumin microspheres via 11 CH 3 I was developed. Seven open-chest and two closed-chest dogs were studied. Reference and 11 C-labeled human albumin microspheres (2 to 25 mCi) were both injected into the left atrium. Positron tomographic images were obtained of the myocardial distribution of the 11 C-labeled microspheres. Timed arterial withdrawal was used for both reference gamma-labeled microspheres and 11 C-labeled human albumin microspheres. Regional myocardial perfusion calculated by this technique correlated well with values obtained with reference microspheres over a range of 0.2 to 3.5 ml/min/g. Thus, 11 C human albumin microspheres are stable radiochemically and can be used as a quantitative measure of regional myocardial perfusion

  13. Perfusion measurements with radioactively labelled microspheres

    International Nuclear Information System (INIS)

    Schosser, R.

    1980-01-01

    The technique and the evaluation of the microsphere-method are comprehensively represented in theory and practice. Some changes and new concepts are discussed, besides the known foundations and techniques, that assure an essential methodic improvement resp. practical simplifications. Two new formulas are derived within the frame of the theoretical principles, by which the absolute flux of shorts can be calculated, i.e. on the one hand in the case of known and on the other hand in the case of unknown applied amount of indicator. The determination of the optimal indicator dose is defined and formulated mathematically with respect to the experimental conditions to be expected. The matrix method was designed for the analysis of complex gamma spectra. Hereby there is no selective error accumulation in the case of low energy radio nuclids contrary to the so far exclusively used stripping technique. The number of possible error quantities was reduced by one resp. two variables. The error of particular radio nuclid components is quantitatively computed as standard deviation by means of the theory of approximated systems of linear equations. The external measurement of distance was developed. This technique is less susceptible for errors as the aliquota i.e. whole body measurement technique. Additionally less measurement time is needed. A flexible computer program for a desk top computer was developped for the evaluation. The data from the gamma spectrometer are recorded on tipe and automatically read in by the computer. The manual input are limited to the weights of the organs and some control parameter. The output is made by a clearly arranged table by means of a lineprinter. (orig./MG) [de

  14. Improvement of myocardial perfusion status in response to indian vedic breathing

    International Nuclear Information System (INIS)

    Anand, Y.N.I.; Muthu, G.S.

    2004-01-01

    Introduction: Yoga is the buzz word all over the world today. Amidst their busy schedule, people tend to ignore their personal health. Management of various disorders, especially those involving interventions, surgical or radiological, is very expensive. The Indian Vedic Exercises, of which Pranaayaama is one, emphasize on prevention of the diseases in order to keep the individual in good health. It is equally applicable to those who have already suffered from various disorders and in whom both improvement and/or avoidance of further deterioration are required. However, no Objective assessment of the disease status in response to these exercises has been reported so far. Objectives: This pilot study has been undertaken on patients with reversible myocardial perfusion defects to Objectively monitor the improvements in the myocardial perfusion in response to a breathing exercise, Pranayama, a breathing technique prescribed in the Indian Vedic Sciences. Methods: Two patients who were found to have reversible myocardial perfusion defects were taken up in this study. These defects were diagnosed from the myocardial perfusion SPECT done in stressed (on Tread Mill) and resting states with 99m Technetium labeled MIBI.These patients were taught the pranayama technique which is done for about 30 minutes every day. At the end of four months from the commencement of this technique, the myocardial perfusion SPECT studies were repeated. Details of the exercise in the form of a CD are available on request. Results: Overall good improvements were observed in all the quantitative parameters in the TMT and SPECT studies in the studies done after the pranayama procedures in both the patients. Perfusion defects seen in the stress images of the initial studies have almost completely reversed in the stress images of the later study. Patients are asymptomatic and are leading a comfortable life. Conclusion: This is only a study of two cases to Objectively evaluate the effects of pranayama

  15. Placental perfusion - a human alternative

    DEFF Research Database (Denmark)

    Mose, Tina; Knudsen, Lisbeth E

    2006-01-01

    Foetal exposures to environmental and medicinal products have impact on the growth of the foetus (e.g. cigarette smoke) and development of organs (e.g. methylmercury and Thalidomide). Perfusion studies of the human term placenta enable investigation of placental transport of chemical substances...... between the mother and foetus. Dual perfusion of a single cotyledon in the human placenta can contribute to a better understanding of the placental barrier, transport rate and mechanisms of different substances and placental metabolism. The perfusion system has recently been established in Copenhagen...

  16. Hepatic blood perfusion estimated by dynamic contrast-enhanced computed tomography in pigs

    DEFF Research Database (Denmark)

    Winterdahl, Michael; Sørensen, Michael; Keiding, Inger Susanne

    2012-01-01

    The aim of this study was to determine whether dynamic contrast-enhanced computed tomography (DCE-CT) and the slope method can provide absolute measures of hepatic blood perfusion from the hepatic artery (HA) and portal vein (PV) at experimentally varied blood flow rates.......The aim of this study was to determine whether dynamic contrast-enhanced computed tomography (DCE-CT) and the slope method can provide absolute measures of hepatic blood perfusion from the hepatic artery (HA) and portal vein (PV) at experimentally varied blood flow rates....

  17. Phosphorus nuclear magnetic resonance in isolated perfused rat pancreas

    International Nuclear Information System (INIS)

    Matsumoto, Takehisa; Kanno, Tomio; Seo, Yoshiteru; Murakami, Masataka; Watari, Hiroshi

    1988-01-01

    Phosphorus nuclear magnetic resonance spectroscopy was applied to measure phosphorus energy metabolites in isolated perfused rat pancreas. The gland was perfused with a modified Krebs-Henseleit solution at room temperature (25 degree C). 31 P resonances of creatine phosphate (PCr), ATP, ADP, inorganic phosphate (P i ) and phosphomonoesters (PMEs) were observed in all the preparations of pancreas. In different individual preparations, the resonance of PCr varied, but those of ATP were almost the same. The initial levels of PCr and ATP in individual preparations, however, remained almost unchanged during perfusion with the standard solution for 2 h. When the perfusion was stopped, the levels of ATP and PCr decreased, while the levels of PME and P i increased. At that time, the P i resonance shfted to a higher magnetic field, indicating that the tissue pH decreased. On reperfusion, the tissue levels of phosphorus compounds and the tissue pH were restored to their initial resting levels. Continuous infusion of 0.1 μM acetylcholine caused marked and sustained increases in the flow of pancreatic juice and protein output. During the stimulation the tissue levels of phosphorus compounds remained unchanged, while the tissue pH was decreased slightly

  18. The Groningen hypothermic liver perfusion pump : Functional evaluation of a new machine perfusion system

    NARCIS (Netherlands)

    van der Plaats, A.; Maathuis, M. H. J.; Hart, N. A. 't; Bellekom, A. A.; Hofker, H. S.; van der Houwen, E. B.; Verkerke, G. J.; Leuvenink, H. G. D.; Verdonck, P.; Ploeg, R. J.; Rakhorst, G.

    2006-01-01

    To improve preservation of donor livers, we have developed a portable hypothermic machine perfusion (HMP) system as an alternative for static cold storage. A prototype of the system was built and evaluated on functionality. Evaluation criteria included 24 h of adequate pressure controlled perfusion,

  19. Experimental flow and perfusion measurement in an animal model with magnetic resonance tomography

    International Nuclear Information System (INIS)

    Schoenberg, S.O.; Bock, M.; Just, A.

    2001-01-01

    Aim. Validation of non-invasive methods for morphologic and functional imaging of the kidney under physiologic and pathophysiologic conditions. Material and Methods. In chronically instrumented animals (foxhounds) comparative measurements of renal flow and perfusion were performed. Magnetic resonance imaging techniques were compared to data obtained from implanted flow probes and total kidney weight post mortem. In the MR system, different degrees of renal artery stenosis could be induced by means of an implanted inflatable cuff. The degree of stenosis was verified with high-resolution 3D contrast-enhanced MR angiography (3D-CE-MRA) using an intravascular contrast agent. Results. The MR-data agreed well with the invasively obtained results. Artifacts resulting from the implanted flow probes and other devices could be kept to a minimum due to appropriate selection of the probe materials and measurement strategies. Stenoses could be reproduced reliably and quantified from the induced morphologic and functional changes. Conclusion. Morphologic and functional MR techniques are well suited for non-invasive in vivo assessment of renal blood flow physiology. (orig.) [de

  20. Smile line assessment comparing quantitative measurement and visual estimation.

    Science.gov (United States)

    Van der Geld, Pieter; Oosterveld, Paul; Schols, Jan; Kuijpers-Jagtman, Anne Marie

    2011-02-01

    Esthetic analysis of dynamic functions such as spontaneous smiling is feasible by using digital videography and computer measurement for lip line height and tooth display. Because quantitative measurements are time-consuming, digital videography and semiquantitative (visual) estimation according to a standard categorization are more practical for regular diagnostics. Our objective in this study was to compare 2 semiquantitative methods with quantitative measurements for reliability and agreement. The faces of 122 male participants were individually registered by using digital videography. Spontaneous and posed smiles were captured. On the records, maxillary lip line heights and tooth display were digitally measured on each tooth and also visually estimated according to 3-grade and 4-grade scales. Two raters were involved. An error analysis was performed. Reliability was established with kappa statistics. Interexaminer and intraexaminer reliability values were high, with median kappa values from 0.79 to 0.88. Agreement of the 3-grade scale estimation with quantitative measurement showed higher median kappa values (0.76) than the 4-grade scale estimation (0.66). Differentiating high and gummy smile lines (4-grade scale) resulted in greater inaccuracies. The estimation of a high, average, or low smile line for each tooth showed high reliability close to quantitative measurements. Smile line analysis can be performed reliably with a 3-grade scale (visual) semiquantitative estimation. For a more comprehensive diagnosis, additional measuring is proposed, especially in patients with disproportional gingival display. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  1. Quantifying fluctuations of resting state networks using arterial spin labeling perfusion MRI.

    Science.gov (United States)

    Dai, Weiying; Varma, Gopal; Scheidegger, Rachel; Alsop, David C

    2016-03-01

    Blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) has been widely used to investigate spontaneous low-frequency signal fluctuations across brain resting state networks. However, BOLD only provides relative measures of signal fluctuations. Arterial Spin Labeling (ASL) MRI holds great potential for quantitative measurements of resting state network fluctuations. This study systematically quantified signal fluctuations of the large-scale resting state networks using ASL data from 20 healthy volunteers by separating them from global signal fluctuations and fluctuations caused by residual noise. Global ASL signal fluctuation was 7.59% ± 1.47% relative to the ASL baseline perfusion. Fluctuations of seven detected resting state networks vary from 2.96% ± 0.93% to 6.71% ± 2.35%. Fluctuations of networks and residual noise were 6.05% ± 1.18% and 6.78% ± 1.16% using 4-mm resolution ASL data applied with Gaussian smoothing kernel of 6mm. However, network fluctuations were reduced by 7.77% ± 1.56% while residual noise fluctuation was markedly reduced by 39.75% ± 2.90% when smoothing kernel of 12 mm was applied to the ASL data. Therefore, global and network fluctuations are the dominant structured noise sources in ASL data. Quantitative measurements of resting state networks may enable improved noise reduction and provide insights into the function of healthy and diseased brain. © The Author(s) 2015.

  2. Evaluation of airway protection: Quantitative timing measures versus penetration/aspiration score.

    Science.gov (United States)

    Kendall, Katherine A

    2017-10-01

    Quantitative measures of swallowing function may improve the reliability and accuracy of modified barium swallow (MBS) study interpretation. Quantitative study analysis has not been widely instituted, however, secondary to concerns about the time required to make measures and a lack of research demonstrating impact on MBS interpretation. This study compares the accuracy of the penetration/aspiration (PEN/ASP) scale (an observational visual-perceptual assessment tool) to quantitative measures of airway closure timing relative to the arrival of the bolus at the upper esophageal sphincter in identifying a failure of airway protection during deglutition. Retrospective review of clinical swallowing data from a university-based outpatient clinic. Swallowing data from 426 patients were reviewed. Patients with normal PEN/ASP scores were identified, and the results of quantitative airway closure timing measures for three liquid bolus sizes were evaluated. The incidence of significant airway closure delay with and without a normal PEN/ASP score was determined. Inter-rater reliability for the quantitative measures was calculated. In patients with a normal PEN/ASP score, 33% demonstrated a delay in airway closure on at least one swallow during the MBS study. There was no correlation between PEN/ASP score and airway closure delay. Inter-rater reliability for the quantitative measure of airway closure timing was nearly perfect (intraclass correlation coefficient = 0.973). The use of quantitative measures of swallowing function, in conjunction with traditional visual perceptual methods of MBS study interpretation, improves the identification of airway closure delay, and hence, potential aspiration risk, even when no penetration or aspiration is apparent on the MBS study. 4. Laryngoscope, 127:2314-2318, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  3. Prospective assessment of regional myocardial perfusion before and after coronary revascularization surgery by quantitative thallium-201 scintigraphy

    International Nuclear Information System (INIS)

    Gibson, R.S.; Watson, D.D.; Taylor, G.J.; Crosby, I.K.; Wellons, H.L.; Holt, N.D.; Beller, G.A.

    1983-01-01

    Because thallium-201 uptake relates directly to the amount of viable myocardium and nutrient blood flow, the potential for exercise scintigraphy to predict response to coronary revascularization surgery was investigated in 47 consecutive patients. All patients underwent thallium-201 scintigraphy and coronary angiography at a mean (+/- standard deviation) of 4.3 +/- 3.1 weeks before and 7.5 +/- 1.6 weeks after surgery. Thallium uptake and washout were computer-quantified and each of six segments was defined as normal, showing total or partial redistribution or a persistent defect. Persistent defects were further classified according to the percent reduction in regional thallium activity; PD25-50 denoted a 25 to 50% constant reduction in relative thallium activity and PD greater than 50 denoted a greater than 50% reduction. Of 82 segments with total redistribution before surgery, 76 (93%) showed normal thallium uptake and washout postoperatively, versus only 16 (73%) of 22 with partial redistribution (probability [p] . 0.01). Preoperative ventriculography revealed that 95% of the segments with total redistribution had preserved wall motion, versus only 74% of those with partial redistribution (p . 0.01). Of 42 persistent defects thought to represent myocardial scar before surgery, 19 (45%) demonstrated normal perfusion postoperatively. Of the persistent defects that showed improved thallium perfusion postoperatively, 75% had normal or hypokinetic wall motion before surgery, versus only 14% of those without improvement (p less than 0.001). Whereas 57% of the persistent defects that showed a 25 to 50% decrease in myocardial activity demonstrated normal thallium uptake and washout postoperatively, only 21% of the persistent defects with a decrease in myocardial activity greater than 50% demonstrated improved perfusion after surgery (p . 0.02)

  4. Luminal and basolateral uptake of insulin in isolated perfused, proximal tubules

    International Nuclear Information System (INIS)

    Nielsen, S.; Nielsen, J.T.; Christensen, E.I.

    1987-01-01

    The present study was performed to quantitate compare the luminal and the peritubular uptake of 125 I-insulin in isolated, perfused, proximal tubules from rabbit kidneys. 125 I-insulin was added in physiological concentrations to either the perfusate or the bath fluid for 30 min. The luminal uptake in 30 min averaged 0.76 pg/mm at physiological concentrations and 18.0 pg/mm at high insulin concentrations. About 15-41% of the absorbed insulin was digested and 125 I-insulin at physiological and high concentrations in the bath was 0.136 and 0.318 pg, respectively. The data indicates that insulin is bound/absorbed at the basolateral membranes both by a saturable specific mechanism and a nonspecific, nonsaturable mechanism. The basolateral absorption constituted 15.2 and 1.8% of the total tubular extraction of insulin at physiological and high insulin concentrations, respectively. Electron microscope autoradiography showed that, after luminal as well as basolateral endocytosis, insulin was exclusively accumulated in endocytic vacuoles and lysosomes

  5. Evaluation of ocular acupuncture on cerebral infarction with cerebral blood flow perfusion imaging

    International Nuclear Information System (INIS)

    Li Yuge; Gao Qinyi; Wang Shuang; Zhao Yong

    2008-01-01

    To evaluate the immediate effect of ocular acupuncture on patients, an method of SPECT image of cerebral blood flow daily stress test was established. 10 patients diagnosed as cerebral infarction by CT or MRI were tested. They all received 99 Tc m -ECD SPECT imaging at twice before and after ocular acupuncture. By means of image subtraction technique and semi-quantitative method of regional interesting area, the change of regional cerebral blood flow was observed between the two images. Under restful state perfusion of cerebral blood flow in 18 foci was low at the frontal lobe, the cerebellum, the basal ganglia and temporal lobe. After ocular acupuncture, the perfusions were obviously increased in 16 foci among them and the reactivity of the frontal lobe and the cerebellum to ocular acupuncture was higher, the average improvement rate of which was 55.15% and 53.06% respectively, lower in the basal ganglia and temporal lobe, the average improvement rate was 31.79% and 36.67% respectively. 99 Tc m -ECD SPECT cerebral perfusion image has some significant clinic value for evaluating the effect of ocular acupuncture to treating cerebral infarction. (authors)

  6. Pulmonary ventilation and perfusion abnormalities and ventilation perfusion imbalance in children with pulmonary atresia or extreme tetralogy of Fallot

    Energy Technology Data Exchange (ETDEWEB)

    Dowdle, S.C.; Human, D.G.; Mann, M.D. (Univ. of Cape Town (South Africa))

    1990-08-01

    Xenon-133 lung ventilation and perfusion scans were done preoperatively after cardiac catheterization and cineangiocardiography in 19 children; 6 had pulmonary atresia with an intact ventricular septum and hypoplastic right ventricle, 4 pulmonary atresia with associated complex univentricular heart, and 9 extreme Tetralogy of Fallot. The four patients with discrepancies in the sizes of the left and right pulmonary arteries on angiography had marked asymmetry of pulmonary perfusion and ventilation-perfusion imbalance on scintigraphy. Similar degrees of asymmetry and imbalance were present in 6 of the 15 children with equal-size pulmonary vessels. Asymmetry of pulmonary perfusion and ventilation-perfusion imbalance were associated with a poor prognosis.

  7. Pulmonary ventilation and perfusion abnormalities and ventilation perfusion imbalance in children with pulmonary atresia or extreme tetralogy of Fallot

    International Nuclear Information System (INIS)

    Dowdle, S.C.; Human, D.G.; Mann, M.D.

    1990-01-01

    Xenon-133 lung ventilation and perfusion scans were done preoperatively after cardiac catheterization and cineangiocardiography in 19 children; 6 had pulmonary atresia with an intact ventricular septum and hypoplastic right ventricle, 4 pulmonary atresia with associated complex univentricular heart, and 9 extreme Tetralogy of Fallot. The four patients with discrepancies in the sizes of the left and right pulmonary arteries on angiography had marked asymmetry of pulmonary perfusion and ventilation-perfusion imbalance on scintigraphy. Similar degrees of asymmetry and imbalance were present in 6 of the 15 children with equal-size pulmonary vessels. Asymmetry of pulmonary perfusion and ventilation-perfusion imbalance were associated with a poor prognosis

  8. Evaluation of heart perfusion in patients with acute myocardial infarction using dynamic contrast-enhanced magnetic resonance imaging

    DEFF Research Database (Denmark)

    Nielsen, Gitte; Hansen, Thomas Fritz; Dirks, Christina G

    2004-01-01

    with acute transmural myocardial infarction were studied using a Turbo-fast low angle shot (FLASH) MRI sequence to monitor the first pass of an extravascular contrast agent (CA), gadolinium diethylene triamine pentaacetic acid (Gd-DTPA). Quantitation of perfusion, expressed as Ki (mL/100 g/minute), in five...

  9. MDMA ‘ecstasy’ increases cerebral cortical perfusion determined by bolus-tracking arterial spin labelling (btASL) MRI

    Science.gov (United States)

    Rouine, J; Gobbo, O L; Campbell, M; Gigliucci, V; Ogden, I; McHugh Smith, K; Duffy, P; Behan, B; Byrne, D; Kelly, M E; Blau, C W; Kerskens, C M; Harkin, A

    2013-01-01

    Background and Purpose The purpose of this study was to assess cerebral perfusion changes following systemic administration of the recreational drug 3,4-methylendioxymethamphetamine (MDMA ‘ecstasy’) to rats. Experimental Approach Cerebral perfusion was quantified using bolus-tracking arterial spin labelling (btASL) MRI. Rats received MDMA (20 mg·kg−1; i.p.) and were assessed 1, 3 or 24 h later. Rats received MDMA (5 or 20 mg·kg−1; i.p.) and were assessed 3 h later. In addition, rats received MDMA (5 or 10 mg·kg−1; i.p.) or saline four times daily over 2 consecutive days and were assessed 8 weeks later. Perfusion-weighted images were generated in a 7 tesla (7T) MRI scanner and experimental data was fitted to a quantitative model of cerebral perfusion to generate mean transit time (MTT), capillary transit time (CTT) and signal amplitude. Key Results MDMA reduces MTT and CTT and increases amplitude in somatosensory and motor cortex 1 and 3 h following administration, indicative of an increase in perfusion. Prior exposure to MDMA provoked a long-term reduction in cortical 5-HT concentration, but did not produce a sustained effect on cerebral cortical perfusion. The response to acute MDMA challenge (20 mg·kg−1; i.p.) was attenuated in these animals indicating adaptation in response to prior MDMA exposure. Conclusions and Implications MDMA provokes changes in cortical perfusion, which are quantifiable by btASL MRI, a neuroimaging tool with translational potential. Future studies are directed towards elucidation of the mechanisms involved and correlating changes in cerebrovascular function with potential behavioural deficits associated with drug use. PMID:23517012

  10. Modeling laser speckle imaging of perfusion in the skin (Conference Presentation)

    Science.gov (United States)

    Regan, Caitlin; Hayakawa, Carole K.; Choi, Bernard

    2016-02-01

    Laser speckle imaging (LSI) enables visualization of relative blood flow and perfusion in the skin. It is frequently applied to monitor treatment of vascular malformations such as port wine stain birthmarks, and measure changes in perfusion due to peripheral vascular disease. We developed a computational Monte Carlo simulation of laser speckle contrast imaging to quantify how tissue optical properties, blood vessel depths and speeds, and tissue perfusion affect speckle contrast values originating from coherent excitation. The simulated tissue geometry consisted of multiple layers to simulate the skin, or incorporated an inclusion such as a vessel or tumor at different depths. Our simulation used a 30x30mm uniform flat light source to optically excite the region of interest in our sample to better mimic wide-field imaging. We used our model to simulate how dynamically scattered photons from a buried blood vessel affect speckle contrast at different lateral distances (0-1mm) away from the vessel, and how these speckle contrast changes vary with depth (0-1mm) and flow speed (0-10mm/s). We applied the model to simulate perfusion in the skin, and observed how different optical properties, such as epidermal melanin concentration (1%-50%) affected speckle contrast. We simulated perfusion during a systolic forearm occlusion and found that contrast decreased by 35% (exposure time = 10ms). Monte Carlo simulations of laser speckle contrast give us a tool to quantify what regions of the skin are probed with laser speckle imaging, and measure how the tissue optical properties and blood flow affect the resulting images.

  11. Carotid artery disease and low cerebral perfusion pressure

    DEFF Research Database (Denmark)

    Schroeder, T; Utzon, N P; Aabech, J

    1990-01-01

    Direct internal carotid artery blood pressure measurements in patients undergoing carotid endarterectomy identified 49 patients, among 239 consecutive cases (21%), who had a reduction in perfusion pressure of 20% or more. The clinical history, objective findings and angiographic data were compared...

  12. Quantitative Xe-133 perfusion and exhalation scintigraphy of lungs in children with asthma

    International Nuclear Information System (INIS)

    Lederer, A.G.; Sternthal, H.M.; Nicoletti, R.; Fuger, G.F.

    1990-01-01

    In children with asthma, the authors quantified the extent of the obstructive lung disease by calculating a time to peak (TTP) and mean transit time (MTT) image. In this paper compare the results to common pulmonary function tests. The authors studied 17 children twice: first, after the initial intravenous therapy after an asthmatic attach and, second, before discharge from the hospital. After intravenous injection of 185-370 MBq of Xe-133, a dynamic computer acquisition was performed, and a TTP and MTT image were calculated. The authors were able to estimate the extent, intensity (qualified by the MTT), and location of the ventilation disorder as well as the changes of perfusion (expressed by the TTP) in sever disease

  13. Quantitative assessment of myocardial blood flow by measurement of fractional myocardial uptake of 201Tl

    International Nuclear Information System (INIS)

    Yonekura, Yoshiharu; Ishii, Yasushi; Torizuka, Kanji; Kadota, Kazunori; Kambara, Hirofumi

    1980-01-01

    Fractional Myocardial uptake of 201 Tl was measured for the quantitative assessment of myocardial blood flow in coronary artery disease (CAD). 10 normals and 28 CAD, 7 of which have less than 50% stenosis (CAD I) and 21 of which have more than 50% stenosis (CAD II) in the proximal portion of coronary arteries, were studied at rest and with submaximal exercise loading by bicycle ergometer. After intravenous injection of 201 Tl, its rapid transport process was recorded during the initial 5 minutes by a scintillation camera and a minicomputer. Total injected dosage (T) was obtained from the counts of the entire chest region during the initial passage of the tracer through the heart and lung. Myocardial uptake (M) was counted with the same geometry from the subsequent accumulation within the myocardial region with subtraction of the background activities in the upper mediastinal region (B). The fractional myocardial uptake of 201 Tl ((M-B)/T) is assumed to be proportional to the fractional myocardial blood flow to cardiac output (MBF/CO) according to the indicator fractionation principle. The average value of MBF/CO at rest in CAD (4.11 +- 1.12%) was significantly greater than in normals (3.36 +- 0.49%), which may be caused by an increased left ventricular mass in CAD. Change rate of MBF/CO on the exercise loading was significantly less in CAD I (1.36 +- 0.14) and in CAD II (1.11 +- 0.21) than in normals (1.75 +- 0.11). MBF/CO increased proportionally to the increment of the double product of heart rate and systolic blood pressure by exercise loading in normals, whereas it didn't in CAD. The sensitivity of this method was superior to the stress electrocardiogram and the stress myocardial perfusion imaging, not only in CAD II but also in CAD I. This result indicated that this type of global assessment of the myocardial reserve capacity is valuable in addition to the simple stress myocardial perfusion imaging. (author)

  14. 99mTc-DTPA aerosol for same-day post-perfusion ventilation imaging: Results of a multicentre study

    International Nuclear Information System (INIS)

    Koehn, H.; Koenig, B.; Bachmayr, S.; Markt, B.; Eber, O.; Lind, P.; Galvan, G.; Rettenbacher, L.; Holm, C.; Ogris, E.

    1993-01-01

    A multicentre study was performed in an attempt to evaluate a submicronic technetium-99m diethylene triamine penta-acetic acid aerosol generated by a newly developed delivery system, the aerosol production equipment (APE nebulizer), for same-day post-perfusion ventilation imaging in patients with clinically suspected pulmonary embolism. Quantitative comparison between the DTPA aerosol and krypton gas demonstrated a close correlation with respect to regional pulmonary distribution of activity and peripheral lung penetration (n=14, r=0.94, P 99m Tc-labelled DTPA aerosol is well suited for fast same-day post-perfusion ventilation imaging in patients with clinical suspicion of pulmonary embolism. (orig.)

  15. Quantitative tomographic measurements of opaque multiphase flows

    Energy Technology Data Exchange (ETDEWEB)

    GEORGE,DARIN L.; TORCZYNSKI,JOHN R.; SHOLLENBERGER,KIM ANN; O' HERN,TIMOTHY J.; CECCIO,STEVEN L.

    2000-03-01

    An electrical-impedance tomography (EIT) system has been developed for quantitative measurements of radial phase distribution profiles in two-phase and three-phase vertical column flows. The EIT system is described along with the computer algorithm used for reconstructing phase volume fraction profiles. EIT measurements were validated by comparison with a gamma-densitometry tomography (GDT) system. The EIT system was used to accurately measure average solid volume fractions up to 0.05 in solid-liquid flows, and radial gas volume fraction profiles in gas-liquid flows with gas volume fractions up to 0.15. In both flows, average phase volume fractions and radial volume fraction profiles from GDT and EIT were in good agreement. A minor modification to the formula used to relate conductivity data to phase volume fractions was found to improve agreement between the methods. GDT and EIT were then applied together to simultaneously measure the solid, liquid, and gas radial distributions within several vertical three-phase flows. For average solid volume fractions up to 0.30, the gas distribution for each gas flow rate was approximately independent of the amount of solids in the column. Measurements made with this EIT system demonstrate that EIT may be used successfully for noninvasive, quantitative measurements of dispersed multiphase flows.

  16. Combining SPECT and Quantitative EEG Analysis for the Automated Differential Diagnosis of Disorders with Amnestic Symptoms

    Directory of Open Access Journals (Sweden)

    Yvonne Höller

    2017-09-01

    Full Text Available Single photon emission computed tomography (SPECT and Electroencephalography (EEG have become established tools in routine diagnostics of dementia. We aimed to increase the diagnostic power by combining quantitative markers from SPECT and EEG for differential diagnosis of disorders with amnestic symptoms. We hypothesize that the combination of SPECT with measures of interaction (connectivity in the EEG yields higher diagnostic accuracy than the single modalities. We examined 39 patients with Alzheimer's dementia (AD, 69 patients with depressive cognitive impairment (DCI, 71 patients with amnestic mild cognitive impairment (aMCI, and 41 patients with amnestic subjective cognitive complaints (aSCC. We calculated 14 measures of interaction from a standard clinical EEG-recording and derived graph-theoretic network measures. From regional brain perfusion measured by 99mTc-hexamethyl-propylene-aminoxime (HMPAO-SPECT in 46 regions, we calculated relative cerebral perfusion in these patients. Patient groups were classified pairwise with a linear support vector machine. Classification was conducted separately for each biomarker, and then again for each EEG- biomarker combined with SPECT. Combination of SPECT with EEG-biomarkers outperformed single use of SPECT or EEG when classifying aSCC vs. AD (90%, aMCI vs. AD (70%, and AD vs. DCI (100%, while a selection of EEG measures performed best when classifying aSCC vs. aMCI (82% and aMCI vs. DCI (90%. Only the contrast between aSCC and DCI did not result in above-chance classification accuracy (60%. In general, accuracies were higher when measures of interaction (i.e., connectivity measures were applied directly than when graph-theoretical measures were derived. We suggest that quantitative analysis of EEG and machine-learning techniques can support differentiating AD, aMCI, aSCC, and DCC, especially when being combined with imaging methods such as SPECT. Quantitative analysis of EEG connectivity could become

  17. Neuroradiological findings in primary progressive aphasia: CT, MRI and cerebral perfusion SPECT

    International Nuclear Information System (INIS)

    Sinnatamby, R.; Antoun, N.A.; Freer, C.E.L.; Miles, K.A.; Hodges, J.R.

    1996-01-01

    Primary progressive aphasia (PPA) is defined as progressive decline in language for 2 or more years with preservation of activities of daily living and general cognitive functions. Whereas the clinical features of this syndrome have been well documented, the neuroradiological findings have not been studied systematically. We studied 13 patients with PPA retrospectively: 10 underwent CT, 12 MRI and 12 cerebral perfusion studies using 99m Tc-HMPAO SPECT. CT and MR images were scored for focal atrophy by two independent assessors. Initial qualitative assessment of SPECT images was confirmed by quantitative analysis. CY was normal in 5 patients. Focal atrophy, affecting predominantly the left temporal lobe, was seen in 4 of 10 patients on CT, and 10 of 12 on MRI. Atrophy was localised primarily to the superior and middle temporal gyri on MRI. All 12 patients who underwent SPECT had unilateral temporal lobe perfusion defects, in 2 patients of whom MRI was normal. CT is relatively insensitive to focal abnormalities in PPA; MRI and SPECT are the imaging modalities of choice. MRI allows accurate, specific localisation of atrophy with the temporal neocortex. SPECT may reveal a functional decrease in cerebral perfusion prior to establishment of structural change. (orig.)

  18. Neuroradiological findings in primary progressive aphasia: CT, MRI and cerebral perfusion SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Sinnatamby, R. [Dept. of Radiology, Addenbrooke`s Hospital NHS Trust, Cambridge (United Kingdom); Antoun, N.A. [Dept. of Radiology, Addenbrooke`s Hospital NHS Trust, Cambridge (United Kingdom); Freer, C.E.L. [Dept. of Radiology, Addenbrooke`s Hospital NHS Trust, Cambridge (United Kingdom); Miles, K.A. [Dept. of Nuclear Medicine, Addenbrooke`s Hospital NHS Trust, Cambridge (United Kingdom); Hodges, J.R. [Dept. of Neurology, Addenbrooke`s Hospital NHS Trust, Cambridge (United Kingdom)

    1996-04-01

    Primary progressive aphasia (PPA) is defined as progressive decline in language for 2 or more years with preservation of activities of daily living and general cognitive functions. Whereas the clinical features of this syndrome have been well documented, the neuroradiological findings have not been studied systematically. We studied 13 patients with PPA retrospectively: 10 underwent CT, 12 MRI and 12 cerebral perfusion studies using {sup 99m}Tc-HMPAO SPECT. CT and MR images were scored for focal atrophy by two independent assessors. Initial qualitative assessment of SPECT images was confirmed by quantitative analysis. CY was normal in 5 patients. Focal atrophy, affecting predominantly the left temporal lobe, was seen in 4 of 10 patients on CT, and 10 of 12 on MRI. Atrophy was localised primarily to the superior and middle temporal gyri on MRI. All 12 patients who underwent SPECT had unilateral temporal lobe perfusion defects, in 2 patients of whom MRI was normal. CT is relatively insensitive to focal abnormalities in PPA; MRI and SPECT are the imaging modalities of choice. MRI allows accurate, specific localisation of atrophy with the temporal neocortex. SPECT may reveal a functional decrease in cerebral perfusion prior to establishment of structural change. (orig.)

  19. Application of a Simplified Method for Estimating Perfusion Derived from Diffusion-Weighted MR Imaging in Glioma Grading.

    Science.gov (United States)

    Cao, Mengqiu; Suo, Shiteng; Han, Xu; Jin, Ke; Sun, Yawen; Wang, Yao; Ding, Weina; Qu, Jianxun; Zhang, Xiaohua; Zhou, Yan

    2017-01-01

    Purpose : To evaluate the feasibility of a simplified method based on diffusion-weighted imaging (DWI) acquired with three b -values to measure tissue perfusion linked to microcirculation, to validate it against from perfusion-related parameters derived from intravoxel incoherent motion (IVIM) and dynamic contrast-enhanced (DCE) magnetic resonance (MR) imaging, and to investigate its utility to differentiate low- from high-grade gliomas. Materials and Methods : The prospective study was approved by the local institutional review board and written informed consent was obtained from all patients. From May 2016 and May 2017, 50 patients confirmed with glioma were assessed with multi- b -value DWI and DCE MR imaging at 3.0 T. Besides conventional apparent diffusion coefficient (ADC 0,1000 ) map, perfusion-related parametric maps for IVIM-derived perfusion fraction ( f ) and pseudodiffusion coefficient (D*), DCE MR imaging-derived pharmacokinetic metrics, including K trans , v e and v p , as well as a metric named simplified perfusion fraction (SPF), were generated. Correlation between perfusion-related parameters was analyzed by using the Spearman rank correlation. All imaging parameters were compared between the low-grade ( n = 19) and high-grade ( n = 31) groups by using the Mann-Whitney U test. The diagnostic performance for tumor grading was evaluated with receiver operating characteristic (ROC) analysis. Results : SPF showed strong correlation with IVIM-derived f and D* ( ρ = 0.732 and 0.716, respectively; both P simplified method to measure tissue perfusion based on DWI by using three b -values may be helpful to differentiate low- from high-grade gliomas. SPF may serve as a valuable alternative to measure tumor perfusion in gliomas in a noninvasive, convenient and efficient way.

  20. Myocardial perfusion abnormality and chest pain in patients with hypertrophic cardiomyopathy

    International Nuclear Information System (INIS)

    Narita, Michihiro; Kurihara, Tadashi; Murano, Kenichi; Usami, Masahisa

    1991-01-01

    To investigate the role of myocardial ischemia in the development of chest pain in patients with hypertrophic cardiomyopathy (HCM), exercise stress (Ex) redistribution myocardial single photon emission CT's (SPECT's) with thallium-201 (Tl) were obtained in 27 patients with HCM. In all patients, coronary arteries were normal arteriographically. Patients were classified into NYHA Class I, II and III according to the frequency and severity of the chest pain during daily life. In these 3 groups, age, sex and intraventricular septal thickness measured by echocardiography were not different. Types of myocardial perfusion obtained by myocardial SPECT's were divided into 5: (1) normal perfusion, (2) no perfusion defect with abnormal myocardial Tl washout rate (WOR) during 3 hours (<30%) [Def(-)/WORabn], (3) reversible perfusion defect (RD), (4) fixed defect with abnormal WOR (FD/WORabn), and (5) fixed defect with normal WOR (FD/WORnl). In 14 patients of Class I, 9 patients (64%) showed normal perfusion but the rest showed perfusion abnormality (def(-)/WORabn in 3 and RD in 2). In Class II and III, all patients showed perfusion abnormalities of RD, FD/WORabn or FD/WORnl. As the functional class progressed from Class II to III, the ratio of fixed defect (both WORnl and WORabn) to RD increased, but it was not statistically significant. In 2 patients in whom Ex SPECT's were repeated because of the progression of the chest pain, the severity of the perfusion abnormality also progressed. Perfusion abnormalities were observed most frequently in anterior (35%), then inferior/posterior (20%) and septal wall (18%). The frequency of Ex induced ECG abnormalities (ST-depression or T wave changes) increased as the NYHA Class progressed (Class III vs I p<0.05). These findings suggested the following: chest pain in patients with HCM relates to the myocardial ischemia which may originate in the myocardial small arteries, and when the lesions progress myocardial necrosis may ensue. (author)

  1. Comparative value of brain perfusion SPECT and [{sup 123}I]MIBG myocardial scintigraphy in distinguishing between dementia with Lewy bodies and Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Hanyu, Haruo; Shimizu, Soichiro; Hirao, Kentaro; Kanetaka, Hidekazu; Iwamoto, Toshihiko [Tokyo Medical University, Department of Geriatric Medicine, Tokyo (Japan); Chikamori, Taishiro; Usui, Yasuhiro; Yamashina, Akira [Tokyo Medical University, 2. Department of Internal Medicine, Tokyo (Japan); Koizumi, Kiyoshi; Abe, Kimihiko [Tokyo Medical University, Department of Radiology, Tokyo (Japan)

    2006-03-15

    Both decreased occipital perfusion on brain single-photon emission computed tomography (SPECT) and reduction in cardiac {sup 123}I-metaiodobenzylguanidine (MIBG) uptake are characteristic features of dementia with Lewy bodies (DLB), and potentially support the clinical diagnosis of DLB. The aim of this study was to compare the diagnostic value of these two methods for differentiation of DLB from Alzheimer's disease (AD). The study population comprised 19 patients with probable DLB and 39 patients with probable AD who underwent both SPECT with N-isopropyl-p-[{sup 123}I]iodoamphetamine and MIBG myocardial scintigraphy. Objective and quantitative measurement of perfusion in the medial occipital lobe, including the cuneus and lingual gyrus, was performed by the use of three-dimensional stereotactic surface projections. Medial occipital perfusion was significantly decreased in the DLB group compared with the AD group. The mean heart/mediastinum ratios of MIBG uptake were significantly lower in the DLB group than in the AD group. Although SPECT failed to demonstrate significant hypoperfusion in the medial occipital lobe in five patients with DLB, marked reduction of MIBG uptake was found in all patients with DLB. Receiver operating characteristic analysis revealed that MIBG myocardial scintigraphy enabled more accurate discrimination between DLB and AD than was possible with perfusion SPECT. MIBG myocardial scintigraphy may improve the sensitivity in the detection of DLB. In particular, this method may provide a powerful differential diagnostic tool when it is difficult to distinguish cases of DLB from AD using brain perfusion SPECT. (orig.)

  2. Assessment of tumor vascularization with functional computed tomography perfusion imaging in patients with cirrhotic liver disease.

    Science.gov (United States)

    Li, Jin-Ping; Zhao, De-Li; Jiang, Hui-Jie; Huang, Ya-Hua; Li, Da-Qing; Wan, Yong; Liu, Xin-Ding; Wang, Jin-E

    2011-02-01

    Hepatocellular carcinoma (HCC) is a common malignant tumor in China, and early diagnosis is critical for patient outcome. In patients with HCC, it is mostly based on liver cirrhosis, developing from benign regenerative nodules and dysplastic nodules to HCC lesions, and a better understanding of its vascular supply and the hemodynamic changes may lead to early tumor detection. Angiogenesis is essential for the growth of primary and metastatic tumors due to changes in vascular perfusion, blood volume and permeability. These hemodynamic and physiological properties can be measured serially using functional computed tomography perfusion (CTP) imaging and can be used to assess the growth of HCC. This study aimed to clarify the physiological characteristics of tumor angiogenesis in cirrhotic liver disease by this fast imaging method. CTP was performed in 30 volunteers without liver disease (control subjects) and 49 patients with liver disease (experimental subjects: 27 with HCC and 22 with cirrhosis). All subjects were also evaluated by physical examination, laboratory screening and Doppler ultrasonography of the liver. The diagnosis of HCC was made according to the EASL criteria. All patients underwent contrast-enhanced ultrasonography, pre- and post-contrast triple-phase CT and CTP study. A mathematical deconvolution model was applied to provide hepatic blood flow (HBF), hepatic blood volume (HBV), mean transit time (MTT), permeability of capillary vessel surface (PS), hepatic arterial index (HAI), hepatic arterial perfusion (HAP) and hepatic portal perfusion (HPP) data. The Mann-Whitney U test was used to determine differences in perfusion parameters between the background cirrhotic liver parenchyma and HCC and between the cirrhotic liver parenchyma with HCC and that without HCC. In normal liver, the HAP/HVP ratio was about 1/4. HCC had significantly higher HAP and HAI and lower HPP than background liver parenchyma adjacent to the HCC. The value of HBF at the tumor

  3. Characteristics of Brain Perfusion in Patients of Parkinson's Disease

    International Nuclear Information System (INIS)

    Jeong, Young Jin; Park, Min Jung; Kim, Jae Woo; Kang, Young Kang

    2008-01-01

    It was well known that cerebral blood perfusion is normal or diffusely decreased in the majority of patients with Parkinson's disease (PD). Actually we interpreted brain perfusion SPECT images of PD patients in the clinical situation, we observed various cerebral perfusion patterns in patients with PD. So we performed brain perfusion SPECT to know the brain perfusion patterns of PD patients and the difference of perfusion patterns according to the sex and the age. Also we classified PD patients into small groups based on the brain perfusion pattern. Two hundred nineteen patients (M: 70, F: 149, mean age: 62.9±6.9 y/o) who were diagnosed as PD without dementia clinically and 55 patients (M: 15, F: 40, mean age: 61.4±9.2 y/o) as normal controls who had no past illness history were performed 99m Tc-HMPAO brain perfusion SPECT and neuropsychological test. At first, we compared all patients with PD and normal controls. Brain perfusion in left inferior frontal gyrus, left insula, left transverse temporal gyrus, left inferior parietal lobule, left superior parietal lobule, right precuneus, right caudate tail were lower in patients with PD than normal controls. Secondly, we compared male and female patients with PD and normal controls, respectively. Brain perfusion SPECT showed more decreased cerebral perfusion in left hemisphere than right side in both male and female patients compared to normal controls. And there was larger hypoperfusion area in female patients compared with male. Thirdly, we classified patients with PD and normal controls into 4 groups according to the age and compared brain perfusion respectively. In patient below fifties, brain perfusion in both occipitoparietal and left temporal lobe were lower in PD group. As the patients with PD grew older, hypoperfusion area were shown in both frontal, temporal and limbic lobes. Fourthly, We were able to divide patients into small groups based on cerebral perfusion pattern. There was normal cerebral blood

  4. Calibration of quantitative neutron radiography method for moisture measurement

    International Nuclear Information System (INIS)

    Nemec, T.; Jeraj, R.

    1999-01-01

    Quantitative measurements of moisture and hydrogenous matter in building materials by neutron radiography (NR) are regularly performed at TRIGA Mark II research of 'Jozef Stefan' Institute in Ljubljana. Calibration of quantitative method is performed using standard brick samples with known moisture content and also with a secondary standard, plexiglas step wedge. In general, the contribution of scattered neutrons to the neutron image is not determined explicitly what introduces an error to the measured signal. Influence of scattered neutrons is significant in regions with high gradients of moisture concentrations, where the build up of scattered neutrons causes distortion of the moisture concentration profile. In this paper detailed analysis of validity of our calibration method for different geometrical parameters is presented. The error in the measured hydrogen concentration is evaluated by an experiment and compared with results obtained by Monte Carlo calculation with computer code MCNP 4B. Optimal conditions are determined for quantitative moisture measurements in order to minimize the error due to scattered neutrons. The method is tested on concrete samples with high moisture content.(author)

  5. Quantification of reversible perfusion abnormality using exercise-stress thallium SPECT before and after coronary revascularization

    International Nuclear Information System (INIS)

    Nagao, Kazuhiko; Nakata, Tomoaki; Tsuchihashi, Kazufumi

    1994-01-01

    Reversible myocardial perfusion abnormality was quantified by bull's eye and unfolded surface mapping methods in exercise thallium SPECT before and after coronary revascularization in 47 patients with angina pectoris, including 34 patients with previous myocardial infarction (PMI) and 13 with effort angina (AP). There was no difference in the incidence or extent of myocardial ischemia between the 2 groups before revascularization. However, the ischemic scores were significantly smaller in PMI group preoperatively than the reductions of the ischemic scores after revascularization. The ischemic scores, preoperatively estimated reversible perfusion abnormality was 32%, 69% and 48% of the improvement of the ischemic score (extent score, severity score, and ischemic area, respectively). Using the 3 ischemic scores, the improvement of perfusion abnormality was well predicted in 70-89% of AP patients but 35-57% of PMI patients. Thus, quantitative analysis in stress thallium SPECT is useful for detecting myocardial ischemia and evaluating the effect of coronary revascularization. However, about a half of myocardial viability was underestimated in one third of PMI patients by the conventional exercise-stress thallium SPECT study. (author)

  6. Dipyridamole stress myocardial perfusion by computed tomography in patients with left bundle branch block

    OpenAIRE

    Cabeda, Est?van Vieira; Falc?o, Andr?a Maria Gomes; Soares Jr., Jos?; Rochitte, Carlos Eduardo; Nomura, C?sar Higa; ?vila, Luiz Francisco Rodrigues; Parga, Jos? Rodrigues

    2015-01-01

    Abstract Background: Functional tests have limited accuracy for identifying myocardial ischemia in patients with left bundle branch block (LBBB). Objective: To assess the diagnostic accuracy of dipyridamole-stress myocardial computed tomography perfusion (CTP) by 320-detector CT in patients with LBBB using invasive quantitative coronary angiography (QCA) (stenosis ≥ 70%) as reference; to investigate the advantage of adding CTP to coronary computed tomography angiography (CTA) and comp...

  7. Comparing kidney perfusion using noncontrast arterial spin labeling MRI and microsphere methods in an interventional swine model.

    Science.gov (United States)

    Artz, Nathan S; Wentland, Andrew L; Sadowski, Elizabeth A; Djamali, Arjang; Grist, Thomas M; Seo, Songwon; Fain, Sean B

    2011-02-01

    The purpose of this study was to assess the ability of a flow-sensitive alternating inversion recovery-arterial spin labeling (FAIR-ASL) technique to track renal perfusion changes during pharmacologic and physiologic alterations in renal blood flow using microspheres as a gold standard. Fluorescent microsphere and FAIR-ASL perfusion were compared in the cortex of the kidney for 11 swine across 4 interventional time points: (1) under baseline conditions, (2) during an acetylcholine and fluid bolus challenge to increase perfusion, (3) initially after switching to isoflurane anesthesia, and (4) after 2 hours of isoflurane anesthesia. In 10 of the 11 swine, a bag of ice was placed on the hilum of 1 kidney at the beginning of isoflurane administration to further reduce perfusion in 1 kidney. Both ASL and microspheres tracked the expected cortical perfusion changes (P values were systematically lower compared with microsphere perfusion. Very good correlation (r = 0.81, P values in the expected physiologic range (microsphere perfusion values saturated for perfusion >550 mL/min/100 g. Cortical perfusion measured with ASL correlated with microspheres and reliably detected changes in renal perfusion in response to physiologic challenge.

  8. Using a pulse oximeter to determine clinical depth of anesthesia-investigation of the utility of the perfusion index.

    Science.gov (United States)

    Krishnamohan, Anirudh; Siriwardana, Viraj; Skowno, Justin J

    2016-11-01

    Peripheral vasodilation is a well-recognized side effect of general anesthesia, and induces changes in the amplitude of the pulse plethysmograph (PPG) waveform. This can be continuously quantitaed using the Perfusion Index (PI), a ratio of the pulsatile to nonpulsatile signal amplitude in the PPG waveform. We hypothesized that the perfusion index would rise with the induction of anesthesia in children, and fall with emergence, and performed a prospective, observational study to test this. Our primary aim was to test whether the different clinical stages of anesthesia were associated with changes in the perfusion index, and the secondary aim was to test the correlation between the normalized perfusion index and the MAC value. Twenty-one patients between the ages of 1 and 18 undergoing minor procedures with no anticipated painful stimuli were recruited. Patients with significant illnesses were excluded. Data collection commenced with a preinduction baseline, and data were collected continuously, with event marking, until completion of the anesthesia and removal of the pulse oximeter. Data collected included perfusion index, heart rate, and anesthetic gas concentration values. A normalized perfusion index was calculated by subtracting the initial baseline perfusion index value from all perfusion index values, allowing changes, from a standardized initial baseline value of zero, to be analyzed. During induction, the mean normalized perfusion index rose from 0.0 to 4.2, and then declined to 0.470 when the patients returned to consciousness. P < 0.001 using repeated measures anova test. The normalized perfusion index was correlated with MAC values (r 2 = 0.33, 95% CI 0.18-0.47, P < 0.01). The perfusion index changed significantly during different stages of anesthesia. There is a significant correlation between the perfusion index, measured by pulse oximetry, and the MAC value, in pediatric patients undergoing minor procedures. © 2016 John Wiley & Sons Ltd.

  9. Pulmonary vascular volume ratio measured by cardiac computed tomography in children and young adults with congenital heart disease: comparison with lung perfusion scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Hyun Woo; Park, Sang Hyub [University of Ulsan College of Medicine, Department of Radiology and Research Institute of Radiology, Asan Medical Center, Seoul (Korea, Republic of)

    2017-11-15

    Lung perfusion scintigraphy is regarded as the gold standard for evaluating differential lung perfusion ratio in congenital heart disease. To compare cardiac CT with lung perfusion scintigraphy for estimated pulmonary vascular volume ratio in patients with congenital heart disease. We included 52 children and young adults (median age 4 years, range 2 months to 28 years; 31 males) with congenital heart disease who underwent cardiac CT and lung perfusion scintigraphy without an interim surgical or transcatheter intervention and within 1 year. We calculated the right and left pulmonary vascular volumes using threshold-based CT volumetry. Then we compared right pulmonary vascular volume percentages at cardiac CT with right lung perfusion percentages at lung perfusion scintigraphy by using paired t-test and Bland-Altman analysis. The right pulmonary vascular volume percentages at cardiac CT (66.3 ± 14.0%) were significantly smaller than the right lung perfusion percentages at lung perfusion scintigraphy (69.1 ± 15.0%; P=0.001). Bland-Altman analysis showed a mean difference of -2.8 ± 5.8% and 95% limits of agreement (-14.1%, 8.5%) between these two variables. Cardiac CT, in a single examination, can offer pulmonary vascular volume ratio in addition to pulmonary artery anatomy essential for evaluating peripheral pulmonary artery stenosis in patients with congenital heart disease. However there is a wide range of agreement between cardiac CT and lung perfusion scintigraphy. (orig.)

  10. Pulmonary vascular volume ratio measured by cardiac computed tomography in children and young adults with congenital heart disease: comparison with lung perfusion scintigraphy

    International Nuclear Information System (INIS)

    Goo, Hyun Woo; Park, Sang Hyub

    2017-01-01

    Lung perfusion scintigraphy is regarded as the gold standard for evaluating differential lung perfusion ratio in congenital heart disease. To compare cardiac CT with lung perfusion scintigraphy for estimated pulmonary vascular volume ratio in patients with congenital heart disease. We included 52 children and young adults (median age 4 years, range 2 months to 28 years; 31 males) with congenital heart disease who underwent cardiac CT and lung perfusion scintigraphy without an interim surgical or transcatheter intervention and within 1 year. We calculated the right and left pulmonary vascular volumes using threshold-based CT volumetry. Then we compared right pulmonary vascular volume percentages at cardiac CT with right lung perfusion percentages at lung perfusion scintigraphy by using paired t-test and Bland-Altman analysis. The right pulmonary vascular volume percentages at cardiac CT (66.3 ± 14.0%) were significantly smaller than the right lung perfusion percentages at lung perfusion scintigraphy (69.1 ± 15.0%; P=0.001). Bland-Altman analysis showed a mean difference of -2.8 ± 5.8% and 95% limits of agreement (-14.1%, 8.5%) between these two variables. Cardiac CT, in a single examination, can offer pulmonary vascular volume ratio in addition to pulmonary artery anatomy essential for evaluating peripheral pulmonary artery stenosis in patients with congenital heart disease. However there is a wide range of agreement between cardiac CT and lung perfusion scintigraphy. (orig.)

  11. Pulmonary vascular volume ratio measured by cardiac computed tomography in children and young adults with congenital heart disease: comparison with lung perfusion scintigraphy.

    Science.gov (United States)

    Goo, Hyun Woo; Park, Sang Hyub

    2017-11-01

    Lung perfusion scintigraphy is regarded as the gold standard for evaluating differential lung perfusion ratio in congenital heart disease. To compare cardiac CT with lung perfusion scintigraphy for estimated pulmonary vascular volume ratio in patients with congenital heart disease. We included 52 children and young adults (median age 4 years, range 2 months to 28 years; 31 males) with congenital heart disease who underwent cardiac CT and lung perfusion scintigraphy without an interim surgical or transcatheter intervention and within 1 year. We calculated the right and left pulmonary vascular volumes using threshold-based CT volumetry. Then we compared right pulmonary vascular volume percentages at cardiac CT with right lung perfusion percentages at lung perfusion scintigraphy by using paired t-test and Bland-Altman analysis. The right pulmonary vascular volume percentages at cardiac CT (66.3 ± 14.0%) were significantly smaller than the right lung perfusion percentages at lung perfusion scintigraphy (69.1 ± 15.0%; P=0.001). Bland-Altman analysis showed a mean difference of -2.8 ± 5.8% and 95% limits of agreement (-14.1%, 8.5%) between these two variables. Cardiac CT, in a single examination, can offer pulmonary vascular volume ratio in addition to pulmonary artery anatomy essential for evaluating peripheral pulmonary artery stenosis in patients with congenital heart disease. However there is a wide range of agreement between cardiac CT and lung perfusion scintigraphy.

  12. Quantitative cerebral blood flow patterns with the short lived isotope 195m Au

    International Nuclear Information System (INIS)

    Lindner, P.; Nickel, O.

    1984-01-01

    A previously reported theory for quantitative cerebral blood flow measurements using intravenously injected nondiffusible radiotracers has been applied on patients after stroke and on volunteers undergoing a mental stimulation exercise. Quantitative measurements of cerebral blood flow patterns (in ml/min/100g) not only in p.a. but also in lateral views of the brain are possible by using of the short-lived (30 sec) isotope Au 195m. The energy spectrum of the eluate of the generator shows two strong photon peaks, one at 68 keV and a second at 262 keV. The 68 keV peak is suitable for perfusion studies in lateral views of the hemispheres, no 'look through' effect is seen. The 262 keV peak is good for studies in p.a. positions. The studies last less than 1 minute and can be repeated after 3 minutes. Parametric images for quantitative regional cerebral blood flow can be generated. The area of occluded vessels in the case of stroke can be made visible. Quantitative activation patterns of cerebral blood flow during mental stimulation can be generated. After optical stimulation a clear increase of blood flow was seen in the visual cortex. The results prove that not only with freely diffusible (like Xenon) but also with nondiffusible indicators like 195m Au it is possible to measure quantitatively cerebral blood flow patterns. Au 195m is very advantageous for quantitative clinical investigations of cerebrovascular disease. (Author)

  13. Measurement of canine pancreatic perfusion using dynamic computed tomography: Influence of input-output vessels on deconvolution and maximum slope methods

    Energy Technology Data Exchange (ETDEWEB)

    Kishimoto, Miori, E-mail: miori@mx6.et.tiki.ne.jp [Department of Clinical Veterinary Science, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada-cho, Obihiro 080-8555 (Japan); Tsuji, Yoshihisa, E-mail: y.tsuji@extra.ocn.ne.jp [Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Shogoinkawara-cho 54, Sakyo-ku 606-8507 (Japan); Katabami, Nana; Shimizu, Junichiro; Lee, Ki-Ja [Department of Clinical Veterinary Science, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada-cho, Obihiro 080-8555 (Japan); Iwasaki, Toshiroh [Department of Veterinary Internal Medicine, Tokyo University of Agriculture and Technology, Saiwai-cho, 3-5-8, Fuchu 183-8509 (Japan); Miyake, Yoh-Ichi [Department of Clinical Veterinary Science, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada-cho, Obihiro 080-8555 (Japan); Yazumi, Shujiro [Digestive Disease Center, Kitano Hospital, 2-4-20 Ougi-machi, Kita-ku, Osaka 530-8480 (Japan); Chiba, Tsutomu [Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Shogoinkawara-cho 54, Sakyo-ku 606-8507 (Japan); Yamada, Kazutaka, E-mail: kyamada@obihiro.ac.jp [Department of Clinical Veterinary Science, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada-cho, Obihiro 080-8555 (Japan)

    2011-01-15

    Objective: We investigated whether the prerequisite of the maximum slope and deconvolution methods are satisfied in pancreatic perfusion CT and whether the measured parameters between these algorithms are correlated. Methods: We examined nine beagles injected with iohexol (200 mgI kg{sup -1}) at 5.0 ml s{sup -1}. The abdominal aorta and splenic and celiac arteries were selected as the input arteries and the splenic vein, the output veins. For the maximum slope method, we determined the arterial contrast volume of each artery by measuring the area under the curve (AUC) and compared the peak enhancement time in the pancreas with the contrast appearance time in the splenic vein. For the deconvolution method, the artery-to-vein collection rate of contrast medium was calculated. We calculated the pancreatic tissue blood flow (TBF), tissue blood volume (TBV), and mean transit time (MTT) using both algorithms and investigated their correlation based on vessel selection. Results: The artery AUC significantly decreased as it neared the pancreas (P < 0.01). In all cases, the peak time of the pancreas (11.5 {+-} 1.6) was shorter than the appearance time (14.1 {+-} 1.6) in the splenic vein. The splenic artery-vein combination exhibited the highest collection rate (91.1%) and was the only combination that was significantly correlated between TBF, TBV, and MTT in both algorithms. Conclusion: Selection of a vessel nearest to the pancreas is considered as a more appropriate prerequisite. Therefore, vessel selection is important in comparison of the semi-quantitative parameters obtained by different algorithms.

  14. Measurement of canine pancreatic perfusion using dynamic computed tomography: Influence of input-output vessels on deconvolution and maximum slope methods

    International Nuclear Information System (INIS)

    Kishimoto, Miori; Tsuji, Yoshihisa; Katabami, Nana; Shimizu, Junichiro; Lee, Ki-Ja; Iwasaki, Toshiroh; Miyake, Yoh-Ichi; Yazumi, Shujiro; Chiba, Tsutomu; Yamada, Kazutaka

    2011-01-01

    Objective: We investigated whether the prerequisite of the maximum slope and deconvolution methods are satisfied in pancreatic perfusion CT and whether the measured parameters between these algorithms are correlated. Methods: We examined nine beagles injected with iohexol (200 mgI kg -1 ) at 5.0 ml s -1 . The abdominal aorta and splenic and celiac arteries were selected as the input arteries and the splenic vein, the output veins. For the maximum slope method, we determined the arterial contrast volume of each artery by measuring the area under the curve (AUC) and compared the peak enhancement time in the pancreas with the contrast appearance time in the splenic vein. For the deconvolution method, the artery-to-vein collection rate of contrast medium was calculated. We calculated the pancreatic tissue blood flow (TBF), tissue blood volume (TBV), and mean transit time (MTT) using both algorithms and investigated their correlation based on vessel selection. Results: The artery AUC significantly decreased as it neared the pancreas (P < 0.01). In all cases, the peak time of the pancreas (11.5 ± 1.6) was shorter than the appearance time (14.1 ± 1.6) in the splenic vein. The splenic artery-vein combination exhibited the highest collection rate (91.1%) and was the only combination that was significantly correlated between TBF, TBV, and MTT in both algorithms. Conclusion: Selection of a vessel nearest to the pancreas is considered as a more appropriate prerequisite. Therefore, vessel selection is important in comparison of the semi-quantitative parameters obtained by different algorithms.

  15. Solid-state vs water-perfused catheters to measure colonic high-amplitude propagating contractions

    NARCIS (Netherlands)

    Liem, O.; Burgers, R. E.; Connor, F. L.; Benninga, M. A.; Reddy, S. N.; Mousa, H. M.; Di Lorenzo, C.

    2012-01-01

    Background Solid-state (SS) manometry catheters with portable data loggers offer many potential advantages over traditional water-perfused (WP) systems, such as prolonged recordings in a more physiologic ambulatory setting and the lack of risk for water overload. The use of SS catheters has not been

  16. Skin Blood Perfusion and Oxygenation Colour Affect Perceived Human Health

    Science.gov (United States)

    Stephen, Ian D.; Coetzee, Vinet; Law Smith, Miriam; Perrett, David I.

    2009-01-01

    Skin blood perfusion and oxygenation depends upon cardiovascular, hormonal and circulatory health in humans and provides socio-sexual signals of underlying physiology, dominance and reproductive status in some primates. We allowed participants to manipulate colour calibrated facial photographs along empirically-measured oxygenated and deoxygenated blood colour axes both separately and simultaneously, to optimise healthy appearance. Participants increased skin blood colour, particularly oxygenated, above basal levels to optimise healthy appearance. We show, therefore, that skin blood perfusion and oxygenation influence perceived health in a way that may be important to mate choice. PMID:19337378

  17. Dynamic CT Perfusion Imaging for the Detection of Crossed Cerebellar Diaschisis in Acute Ischemic Stroke

    International Nuclear Information System (INIS)

    Jeon, Young Wook; Kim, Seo Hyun; Lee, Ji Young; Whang, Kum; Kim, Myung Soon; Kim, Young Ju; Lee, Myeong Sub; Brain Reserch Group

    2012-01-01

    Although the detection of crossed cerebellar diaschisis (CCD) by means of different imaging modalities is well described, little is known about its diagnosis by computed tomography perfusion (CTP) imaging. We investigated the detection rate of CCD by CTP imaging and the factors related to CCD on CTP images in patients with acute ischemic stroke. CT perfusion maps of cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT), and time-to-peak (TTP) obtained from 81 consecutive patients affected by an acute ischemic stroke were retrospectively reviewed. Whole-brain perfusion maps were obtained with a multichannel CT scanner using the toggling-table technique. The criteria for CCD was a unilateral supratentorial ischemic lesion and an accompanying decrease in perfusion of the contralateral cerebellar hemisphere on the basis of CTP maps by visual inspection without a set threshold. Maps were quantitatively analyzed in CCD positive cases. The criteria for CCD were fulfilled in 25 of the 81 cases (31%). Detection rates per CTP map were as follows: MTT (31%) > TTP (21%) > CBF (9%) > CBV (6%). Supratentorial ischemic volume, degree of perfusion reduction, and infratentorial asymmetry index correlated strongly (R, 0.555-0.870) and significantly (p < 0.05) with each other in CCD-positive cases. It is possible to detect CCD on all four of the CTP-based maps. Of these maps, MTT is most sensitive in detecting CCD. Our data indicate that CTP imaging is a valid tool for the diagnosis of CCD in patients affected by an acute hemispheric stroke.

  18. Residual Activity Correction in Quantitative Myocardial Perfusion N-13-Ammonia PET Imaging : A Study in Post-MI Patients

    NARCIS (Netherlands)

    Markousis-Mavrogenis, George; Juarez-Orozco, Luis Eduardo; Alexanderson, Erick

    2017-01-01

    Background/Introduction/Aim: Positron emission tomography (PET) is the gold standard for the quantification of myocardial blood flow (MBF). A standard PET scan is acquired in two phases (rest and pharmacological stress). N-13-ammonia is a perfusion radiotracer that may show residual activity, which

  19. The quantitation of buffering action II. Applications of the formal & general approach

    Science.gov (United States)

    Schmitt, Bernhard M

    2005-01-01

    Background The paradigm of "buffering" originated in acid-base physiology, but was subsequently extended to other fields and is now used for a wide and diverse set of phenomena. In the preceding article, we have presented a formal and general approach to the quantitation of buffering action. Here, we use that buffering concept for a systematic treatment of selected classical and other buffering phenomena. Results H+ buffering by weak acids and "self-buffering" in pure water represent "conservative buffered systems" whose analysis reveals buffering properties that contrast in important aspects from classical textbook descriptions. The buffering of organ perfusion in the face of variable perfusion pressure (also termed "autoregulation") can be treated in terms of "non-conservative buffered systems", the general form of the concept. For the analysis of cytoplasmic Ca++ concentration transients (also termed "muffling"), we develop a related unit that is able to faithfully reflect the time-dependent quantitative aspect of buffering during the pre-steady state period. Steady-state buffering is shown to represent the limiting case of time-dependent muffling, namely for infinitely long time intervals and infinitely small perturbations. Finally, our buffering concept provides a stringent definition of "buffering" on the level of systems and control theory, resulting in four absolute ratio scales for control performance that are suited to measure disturbance rejection and setpoint tracking, and both their static and dynamic aspects. Conclusion Our concept of buffering provides a powerful mathematical tool for the quantitation of buffering action in all its appearances. PMID:15771784

  20. Estimation of Radiation Exposure of 128-Slice 4D-Perfusion CT for the Assessment of Tumor Vascularity

    Energy Technology Data Exchange (ETDEWEB)

    Ketelsen, Dominik; Horger, Marius; Buchgeister, Markus; Fenchel, Michael; Thomas, Christoph; Boehringer, Nadine; Schulze, Maximilian; Tsiflikas, Ilias; Claussen, Claus D.; Heuschmid, Martin [University Hospital Tuebingen, Tuebingen (Germany)

    2010-10-15

    We aimed to estimate the effective dose of 4D-Perfusion-CT protocols of the lung, liver, and pelvis for the assessment of tumor vascularity. An Alderson-Rando phantom equipped with thermoluminescent dosimeters was used to determine the effective dose values of 4D Perfusion-CT. Phantom measurements were performed on a 128-slice single source scanner in adaptive 4D-spiral-mode with bidirectional table movement and a total scan range of 69 mm over a time period of nearly 120 seconds (26 scans). Perfusion measurements were simulated for the lung, liver, and pelvis under the following conditions: lung (80 kV, 60 mAs), liver (80 kV/80 mAs and 80 kV/120 mAs), pelvis (100 kV/80 mAs and 100 kV/120 mAs). Depending on gender, the evaluated body region and scan protocol, an effective whole-body dose between 2.9-12.2 mSv, was determined. The radiation exposure administered to gender-specific organs like the female breast tissue (lung perfusion) or to the ovaries (pelvic perfusion) led to an increase in the female specific dose by 86% and 100% in perfusion scans of the lung and the pelvis, respectively. Due to a significant radiation dose of 4D-perfusion-CT protocols, the responsible use of this new promising technique is mandatory. Gender- and organ-specific differences should be considered for indication and planning of tumor perfusion scans

  1. Regional reliability of quantitative signal targeting with alternating radiofrequency (STAR) labeling of arterial regions (QUASAR).

    Science.gov (United States)

    Tatewaki, Yasuko; Higano, Shuichi; Taki, Yasuyuki; Thyreau, Benjamin; Murata, Takaki; Mugikura, Shunji; Ito, Daisuke; Takase, Kei; Takahashi, Shoki

    2014-01-01

    Quantitative signal targeting with alternating radiofrequency labeling of arterial regions (QUASAR) is a recent spin labeling technique that could improve the reliability of brain perfusion measurements. Although it is considered reliable for measuring gray matter as a whole, it has never been evaluated regionally. Here we assessed this regional reliability. Using a 3-Tesla Philips Achieva whole-body system, we scanned four times 10 healthy volunteers, in two sessions 2 weeks apart, to obtain QUASAR images. We computed perfusion images and ran a voxel-based analysis within all brain structures. We also calculated mean regional cerebral blood flow (rCBF) within regions of interest configured for each arterial territory distribution. The mean CBF over whole gray matter was 37.74 with intraclass correlation coefficient (ICC) of .70. In white matter, it was 13.94 with an ICC of .30. Voxel-wise ICC and coefficient-of-variation maps showed relatively lower reliability in watershed areas and white matter especially in deeper white matter. The absolute mean rCBF values were consistent with the ones reported from PET, as was the relatively low variability in different feeding arteries. Thus, QUASAR reliability for regional perfusion is high within gray matter, but uncertain within white matter. © 2014 The Authors. Journal of Neuroimaging published by the American Society of Neuroimaging.

  2. Diagnostic value of transmural perfusion ratio derived from dynamic CT-based myocardial perfusion imaging for the detection of haemodynamically relevant coronary artery stenosis

    Energy Technology Data Exchange (ETDEWEB)

    Coenen, Adriaan; Lubbers, Marisa M.; Dedic, Admir; Chelu, Raluca G.; Geuns, Robert-Jan M. van; Nieman, Koen [Erasmus University Medical Center, Department of Radiology, Rotterdam (Netherlands); Erasmus University Medical Center, Department of Cardiology, Rotterdam (Netherlands); Kurata, Akira; Kono, Atsushi; Dijkshoorn, Marcel L. [Erasmus University Medical Center, Department of Radiology, Rotterdam (Netherlands); Rossi, Alexia [Erasmus University Medical Center, Department of Radiology, Rotterdam (Netherlands); Barts Health NHS Trust, NIHR Cardiovascular Biomedical Research Unit at Barts, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London and Department of Cardiology, London (United Kingdom)

    2017-06-15

    To investigate the additional value of transmural perfusion ratio (TPR) in dynamic CT myocardial perfusion imaging for detection of haemodynamically significant coronary artery disease compared with fractional flow reserve (FFR). Subjects with suspected or known coronary artery disease were prospectively included and underwent a CT-MPI examination. From the CT-MPI time-point data absolute myocardial blood flow (MBF) values were temporally resolved using a hybrid deconvolution model. An absolute MBF value was measured in the suspected perfusion defect. TPR was defined as the ratio between the subendocardial and subepicardial MBF. TPR and MBF results were compared with invasive FFR using a threshold of 0.80. Forty-three patients and 94 territories were analysed. The area under the receiver operator curve was larger for MBF (0.78) compared with TPR (0.65, P = 0.026). No significant differences were found in diagnostic classification between MBF and TPR with a territory-based accuracy of 77 % (67-86 %) for MBF compared with 70 % (60-81 %) for TPR. Combined MBF and TPR classification did not improve the diagnostic classification. Dynamic CT-MPI-based transmural perfusion ratio predicts haemodynamically significant coronary artery disease. However, diagnostic performance of dynamic CT-MPI-derived TPR is inferior to quantified MBF and has limited incremental value. (orig.)

  3. Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation.

    Science.gov (United States)

    Abrigo, Jill M; Fountain, Daniel M; Provenzale, James M; Law, Eric K; Kwong, Joey Sw; Hart, Michael G; Tam, Wilson Wai San

    2018-01-22

    Gliomas are the most common primary brain tumour. They are graded using the WHO classification system, with Grade II-IV astrocytomas, oligodendrogliomas and oligoastrocytomas. Low-grade gliomas (LGGs) are WHO Grade II infiltrative brain tumours that typically appear solid and non-enhancing on magnetic resonance imaging (MRI) scans. People with LGG often have little or no neurologic deficit, so may opt for a watch-and-wait-approach over surgical resection, radiotherapy or both, as surgery can result in early neurologic disability. Occasionally, high-grade gliomas (HGGs, WHO Grade III and IV) may have the same MRI appearance as LGGs. Taking a watch-and-wait approach could be detrimental for the patient if the tumour progresses quickly. Advanced imaging techniques are increasingly used in clinical practice to predict the grade of the tumour and to aid clinical decision of when to intervene surgically. One such advanced imaging technique is magnetic resonance (MR) perfusion, which detects abnormal haemodynamic changes related to increased angiogenesis and vascular permeability, or "leakiness" that occur with aggressive tumour histology. These are reflected by changes in cerebral blood volume (CBV) expressed as rCBV (ratio of tumoural CBV to normal appearing white matter CBV) and permeability, measured by K trans . To determine the diagnostic test accuracy of MR perfusion for identifying patients with primary solid and non-enhancing LGGs (WHO Grade II) at first presentation in children and adults. In performing the quantitative analysis for this review, patients with LGGs were considered disease positive while patients with HGGs were considered disease negative.To determine what clinical features and methodological features affect the accuracy of MR perfusion. Our search strategy used two concepts: (1) glioma and the various histologies of interest, and (2) MR perfusion. We used structured search strategies appropriate for each database searched, which included: MEDLINE

  4. Using CT perfusion during the early baseline period in aneurysmal subarachnoid hemorrhage to assess for development of vasospasm

    International Nuclear Information System (INIS)

    Sanelli, Pina C.; Jou, Austin; Reichman, Melissa; Greenberg, Edward; Cayci, Zuzan; Gold, Rachel; John, Majnu; Ugorec, Igor; Rosengart, Axel

    2011-01-01

    The aim of this study is to evaluate computed tomography perfusion (CTP) during admission baseline period (days 0-3) in aneurysmal subarachnoid hemorrhage (A-SAH) for development of vasospasm. Retrospective analysis was performed on A-SAH patients from Dec 2004 to Feb 2007 with CTP on days 0-3. Cerebral blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT) maps were analyzed for qualitative perfusion deficits. Quantitative analysis was performed using region-of-interest placement to obtain mean CTP values. Development of vasospasm was determined by a multistage hierarchical reference standard incorporating both imaging and clinical criteria. Student's t test and threshold analysis were performed. Seventy-five patients were included, 37% (28/75) were classified as vasospasm. Mean CTP values in vasospasm compared to no vasospasm groups were: CBF 31.90 ml/100 g/min vs. 39.88 ml/100 g/min (P < 0.05), MTT 7.12 s vs. 5.03 s (P < 0.01), and CBV 1.86 ml/100 g vs. 2.02 ml/100 g (P = 0.058). Fifteen patients had qualitative perfusion deficits with 73% (11/15) developed vasospasm. Optimal threshold for CBF is 24-25 mL/100 g/min with 91% specificity and 50% sensitivity, MTT is 5.5 s with 70% specificity and 61% sensitivity and CBV is 1.7 mL/100 g with 89% specificity and 36% sensitivity. These initial results support our hypothesis that A-SAH patients who develop vasospasm may demonstrate early alterations in cerebral perfusion, with statistically significant CBF reduction and MTT prolongation. Overall, CTP has high specificity for development of vasospasm. Future clinical implications include using CTP during the baseline period for early identification of A-SAH patients at high risk for vasospasm to prompt robust preventative measures and treatment. (orig.)

  5. Correlation of CT perfusion and CT volumetry in patients with Alzheimers disease

    International Nuclear Information System (INIS)

    Czarnecka, A.; Zimny, A.; Sasiadek, M.

    2010-01-01

    Background: Both brain atrophy and decrease of perfusion are observed in dementive diseases. The aim of the study was to correlate the results of brain perfusion CT (pCT) and CT volumetry in patients with Alzheimers disease (AD). Material/Methods: Forty-eight patients with AD (mean age of 71.3 years) underwent brain pCT and CT volumetry. The pCT was performed at the level of basal ganglia after the injection of contrast medium (50 ml, 4 ml/sec.) with serial scanning (delay 7 sec, 50 scans, 1 scan/sec). Volumetric measurements were carried out on the basis of source images, with the use of a dedicated CT software combined with manual outlining of the regions of interest in extracerebral and intraventricular CSF spaces. Perfusion parameters of the cerebral blood flow (CBF) and cerebral blood volume (CBV) from the grey matter of frontal and temporal as well as basal ganglia were compared statistically with the volumetric measurements of frontal and temporal cortical atrophy as well as subcortical atrophy. Results: A statistically significant positive correlation was found between the values of CBF and CBV in the basal ganglia and the volumes of the lateral and third ventricles. The comparison of CBF and CBV results with the volumetric measurements in the areas of the frontal and temporal lobes showed mostly negative correlations, but none of them was of statistical significance. Conclusions: In patients with AD, the degree of cortical atrophy is not correlated with the decrease of perfusion in the grey matter and subcortical atrophy is not correlated with the decrease of perfusion in the basal ganglia region. It suggests that functional and structural changes in AD are not related to each other. (authors)

  6. Dependency of cardiac rubidium-82 imaging quantitative measures on age, gender, vascular territory, and software in a cardiovascular normal population.

    Science.gov (United States)

    Sunderland, John J; Pan, Xiao-Bo; Declerck, Jerome; Menda, Yusuf

    2015-02-01

    Recent technological improvements to PET imaging equipment combined with the availability of software optimized to calculate regional myocardial blood flow (MBF) and myocardial flow reserve (MFR) create a paradigm shifting opportunity to provide new clinically relevant quantitative information to cardiologists. However, clinical interpretation of the MBF and MFR is entirely dependent upon knowledge of MBF and MFR values in normal populations and subpopulations. This work reports Rb-82-based MBF and MFR measurements for a series of 49 verified cardiovascularly normal subjects as a preliminary baseline for future clinical studies. Forty-nine subjects (24F/25M, ages 41-69) with low probability for coronary artery disease and with normal exercise stress test were included. These subjects underwent rest/dipyridamole stress Rb-82 myocardial perfusion imaging using standard clinical techniques (40 mCi injection, 6-minute acquisition) using a Siemens Biograph 40 PET/CT scanner with high count rate detector option. List mode data was rehistogrammed into 26 dynamic frames (12 × 5 seconds, 6 × 10 seconds, 4 × 20 seconds, 4 × 40 seconds). Cardiac images were processed, and MBF and MFR calculated using Siemens syngo MBF, PMOD, and FlowQuant software using a single compartment Rb-82 model. Global myocardial blood flow under pharmacological stress for the 24 females as measured by PMOD, syngo MBF, and FlowQuant were 3.10 ± 0.72, 2.80 ± 0.66, and 2.60 ± 0.63 mL·minute(-1)·g(-1), and for the 25 males was 2.60 ± 0.84, 2.33 ± 0.75, 2.15 ± 0.62 mL·minute(-1)·g(-1), respectively. Rest flows for PMOD, syngo MBF, and FlowQuant averaged 1.32 ± 0.42, 1.20 ± 0.33, and 1.06 ± 0.38 mL·minute(-1)·g(-1) for the female subjects, and 1.12 ± 0.29, 0.90 ± 0.26, and 0.85 ± 0.24 mL·minute(-1)·g(-1) for the males. Myocardial flow reserves for PMOD, syngo MBF, and FlowQuant for the female normals were calculated to be 2.50 ± 0.80, 2.53 ± 0.67, 2.71 ± 0.90, and 2.50 ± 1.19, 2

  7. Improved Accuracy of Myocardial Perfusion SPECT for the Detection of Coronary Artery Disease by Utilizing a Support Vector Machines Algorithm

    Science.gov (United States)

    Arsanjani, Reza; Xu, Yuan; Dey, Damini; Fish, Matthews; Dorbala, Sharmila; Hayes, Sean; Berman, Daniel; Germano, Guido; Slomka, Piotr

    2012-01-01

    We aimed to improve the diagnostic accuracy of automatic myocardial perfusion SPECT (MPS) interpretation analysis for prediction of coronary artery disease (CAD) by integrating several quantitative perfusion and functional variables for non-corrected (NC) data by support vector machines (SVM), a computer method for machine learning. Methods 957 rest/stress 99mtechnetium gated MPS NC studies from 623 consecutive patients with correlating invasive coronary angiography and 334 with low likelihood of CAD (LLK < 5% ) were assessed. Patients with stenosis ≥ 50% in left main or ≥ 70% in all other vessels were considered abnormal. Total perfusion deficit (TPD) was computed automatically. In addition, ischemic changes (ISCH) and ejection fraction changes (EFC) between stress and rest were derived by quantitative software. The SVM was trained using a group of 125 pts (25 LLK, 25 0-, 25 1-, 25 2- and 25 3-vessel CAD) using above quantitative variables and second order polynomial fitting. The remaining patients (N = 832) were categorized based on probability estimates, with CAD defined as (probability estimate ≥ 0.50). The diagnostic accuracy of SVM was also compared to visual segmental scoring by two experienced readers. Results Sensitivity of SVM (84%) was significantly better than ISCH (75%, p < 0.05) and EFC (31%, p < 0.05). Specificity of SVM (88%) was significantly better than that of TPD (78%, p < 0.05) and EFC (77%, p < 0.05). Diagnostic accuracy of SVM (86%) was significantly better than TPD (81%), ISCH (81%), or EFC (46%) (p < 0.05 for all). The Receiver-operator-characteristic area-under-the-curve (ROC-AUC) for SVM (0.92) was significantly better than TPD (0.90), ISCH (0.87), and EFC (0.60) (p < 0.001 for all). Diagnostic accuracy of SVM was comparable to the overall accuracy of both visual readers (85% vs. 84%, p < 0.05). ROC-AUC for SVM (0.92) was significantly better than that of both visual readers (0.87 and 0.88, p < 0.03). Conclusion Computational

  8. Comparison with myocardial perfusion MRI and myocardial perfusion SPECT in the diagnostic performance of coronary artery disease. A meta-analysis

    International Nuclear Information System (INIS)

    Iwata, Kunihiro; Kubota, Makoto; Ogasawara, Katsuhiko

    2008-01-01

    We compared the diagnostic abilities of stress myocardial perfusion MRI (myocardial perfusion MRI) and myocardial perfusion single photon emission computed tomography (SPECT), using a meta-analysis method. We investigated the diagnostic abilities of MRI and SPECT in similar subject groups in reports written in English or Japanese. The reports to be used for analysis were selected according to a ''screening standard,'' which was established in advance. After consolidating the data from the selected reports, we compared the integrated odds ratio, the point estimation values of sensibility/specificity, and the summary receiver operating characteristic (ROC) curve. For the analysis, six reports were selected (subjects: 153, coronary-artery target sites: 447). Meta-analysis revealed that the diagnostic ability of myocardial perfusion MRI was superior to that of myocardial perfusion SPECT regarding each of the parameters. This is considered to be supportive evidence of the usefulness of myocardial perfusion MRI. (author)

  9. Measurement of single-kidney glomerular filtration function from magnetic resonance perfusion renography

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Meiying; Cheng, Yingsheng [Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Zhao, Binghui, E-mail: binghuizhao@163.com [Department of Radiology, Shanghai Tenth People' s Hospital, Tongji University, Shanghai 200072 (China)

    2015-08-15

    Highlights: • MRPR monitors the transit of contrast material through nephron. • MRPR could reveal renal physiological characteristics in quality and quantity. • This review outlines the basics and future challenges of DCE MRPR. - Abstract: Glomerular filtration rate (GFR) describes the flow rate of filtered fluid through the kidney, and is considered to be the reference standard in the evaluation of renal function. There are many ways to test the GFR clinically, such as serum creatinine concentration, blood urea nitrogen and SPECT renography, however, they’re all not a good standard to evaluate the early damage of renal function. In recent years, the improvement of MRI hardware and software makes it possible to reveal physiological characteristics such as renal blood flow or GFR by dynamic contrast enhancement magnetic resonance perfusion renography (DEC MRPR). MRPR is a method used to monitor the transit of contrast material, typically a gadolinium chelate, through the renal cortex, the medulla, and the collecting system. This review outlines the basics of DCE MRPR included acquisition of dynamic MR perfusion imaging, calculation of the contrast concentration from signal intensity and compartment models, and some challenges of MRPR method faced in prospective clinical application.

  10. Skin Blood Perfusion and Cellular Response to Insertion of Insulin Pen Needles With Different Diameters

    DEFF Research Database (Denmark)

    Præstmark, Kezia Ann; Stallknecht, Bente Merete; Bo Jensen, Casper

    2014-01-01

    skin blood perfusion response around needle insertion sites. Three common sized pen needles of 28G, 30G, and 32G as well as hooked 32G needles, were inserted into the neck skin of pigs and then removed. Laser Speckle Contrast Analysis was used to measure skin blood perfusion for 20 minutes after...... blood perfusion recording and grouped according to needle type, skin blood perfusion response relates to needle diameter. The response was significantly higher after insertions with 28G and hooked 32G needles than with 30G (P ..., but there was a trend of an increased response with increasing needle diameter. Skin blood perfusion response to pen needle insertions rank according to needle diameter, and the tissue response caused by hooked 32G needles corresponds to that of 28G needles. The relation between needle diameter and trauma when...

  11. Regional cerebral perfusion measurements: a comparative study of xenon-enhanced CT and C15O2 build-up using dynamic PET

    International Nuclear Information System (INIS)

    St Lawrence, K.S.; Bews, J.; Dunscombe, P.B.

    1992-01-01

    Regional cerebral perfusion can be determined by monitoring the uptake of a diffusable tracer concurrently in cerebral tissue and arterial blood. Two techniques based on this methodology are xenon-enhanced computed tomography (Xe CT) and C 15 O 2 build-up using dynamic positron emission tomography (C 15 O 2 PET). Serial images are used by both Xe CT and C 15 O 2 PET to characterize the uptake of the tracer in cerebral tissue. The noise present in these images will reduce the precision of the perfusion measurements obtained by either technique. Using Monte Carlo type computer simulations, the precision of the two techniques as a function of image noise has been examined. On the basis of their results, they conclude that the precision of the Xe CT technique is comparable to the precision of C 15 O 2 PET when realistic clinical protocols are employed for both. (author)

  12. Instrument-independent flux units for laser Doppler perfusion monitoring assessed in a multi-device study on the renal cortex

    NARCIS (Netherlands)

    Petoukhova, AL; Steenbergen, W; Morales, F; Graaff, R; de Jong, ED; Elstrodt, JM; de Mul, FFM; Rakhorst, G

    To investigate the feasibility of instrument-independent perfusion units for laser Doppler flowmetry, a comparison was performed of two commercial fiberoptic laser Doppler perfusion monitors measuring the same flux situation for two different types of probes. In vivo measurements were performed on

  13. Instrument-independent flux units for laser Doppler perfusion monitoring assessed in a multi-device study on the renal cortex

    NARCIS (Netherlands)

    Petoukhova, Anna; Steenbergen, Wiendelt; Morales, F.; Graaff, R.; de Jong, Ed; Elstrodt, J.M.; de Mul, F.F.M.; Rakhorst, G.

    2003-01-01

    To investigate the feasibility of instrument-independent perfusion units for laser Doppler flowmetry, a comparison was performed of two commercial fiberoptic laser Doppler perfusion monitors measuring the same flux situation for two different types of probes. In vivo measurements were performed on

  14. Quantitative perfusion computed tomography measurements of cerebral hemodynamics: Correlation with digital subtraction angiography identified primary and secondary cerebral collaterals in internal carotid artery occlusive disease

    International Nuclear Information System (INIS)

    Cheng Xiaoqing; Tian Jianming; Zuo Changjing; Liu Jia; Zhang Qi; Lu Guangming

    2012-01-01

    Background: The aim of the present study was to assess hemodynamic variations in symptomatic unilateral internal carotid artery occlusion (ICAO) patients with primary collateral flow via circle of Willis or secondary collateral flow via ophthalmic artery and/or leptomeningeal collaterals. Methods: Thirty-eight patients with a symptomatic unilateral ICAO were enrolled in the study. Based on digital subtraction angiography (DSA) findings, patients were classified into 2 groups: primary collateral (n = 14) and secondary collateral (n = 24) groups. Collateral flow hemodynamics were investigated with perfusion computed tomography (PCT) by measuring the cerebral blood flow (CBF), cerebral blood volume (CBV) and time to peak (TTP) in the hemispheres ipsilateral and contralateral to ICAO. Based on the measurements, the ipsilateral to contralateral ratio for each parameter was calculated and compared. Results: Irrespective of the collateral patterns, ipsilateral CBF was not significantly different from that of the contralateral hemisphere (P = 0.285); ipsilateral CBV and TTP was significantly increased compared with those of the contralateral hemisphere (P = 0.000 and P = 0.000 for CBV and TTP, respectively). Furthermore, patients with secondary collaterals had significantly larger ipsilateral-to-contralateral ratios for both CBV (rCBV, P = 0.0197) and TTP (rTTP, P = 0.000) than those of patients with only primary collaterals. These two groups showed no difference in ipsilateral-to-contralateral ratio for CBF (rCBF, P = 0.312). Conclusion: Patients with symptomatic unilateral ICAO in our study were in an autoregulatory vasodilatation status. Moreover, secondary collaterals in ICAO patients were correlated with ipsilateral CBV and delayed TTP that suggested severe hemodynamic impairment, presumably increasing the risk of ischemic events.

  15. The use of hemoglobin saturation ratio as a means of measuring tissue perfusion in the development of heel pressure sores.

    Science.gov (United States)

    Aliano, Kristen A; Stavrides, Steve; Davenport, Thomas

    2013-09-01

    The heel is a common site of pressure ulcers. The amount of pressure and time needed to develop these wounds is dependent on various factors including pressure surface, the patient's anatomy, and co-morbidities. We studied the use of the hemoglobin saturation ratio as a means of assessing heel perfusion in various pressure settings. The mixed perfusion ratio in the heels of 5 volunteers was assessed on 3 pressure surfaces and at the time of off-load. The surfaces studied included: stretcher pad, plastic backboard without padding, and pressure reduction gel. Each surface was measured for 5 minutes with a real-time reading. On the stretcher, the average StO2% decrease for each pressure surface was 26.2 ± 10 (range 18-43). The average StO2% decrease on the backboard was 22.8 ± 12.3 (range 8-37), and 24.0 ± 4.8 (range 19-30) on the gel pad. The StO2% drop plateaued with the stretcher and gel pad, but with the backboard there was a continued slow drop at 5 minutes. This study demonstrates that hemoglobin oxygenation ratio may be effective in assessing a tissue's direct perfusion in the setting of tissue pressure and may also be beneficial to better assess the effects of pressure-reduction surfaces. Further studies will be needed to determine time to skin breakdown as it pertains to pressure and tissue oxygenation.

  16. Measurement of brain perfusion in newborns: Pulsed arterial spin labeling (PASL versus pseudo-continuous arterial spin labeling (pCASL

    Directory of Open Access Journals (Sweden)

    Elodie Boudes

    2014-01-01

    Conclusion: This study demonstrates that both ASL methods are feasible to assess brain perfusion in healthy and sick newborns. However, pCASL might be a better choice over PASL in newborns, as pCASL perfusion maps had a superior image quality that allowed a more detailed identification of the different brain structures.

  17. Tc-99m DTPA perfusion scintigraphy and color coded duplex sonography in the evaluation of minimal renal allograft perfusion

    International Nuclear Information System (INIS)

    Bair, H.J.; Platsch, G.; Wolf, F.; Guenter, E.; Becker, D.; Rupprecht, H.; Neumayer, H.H.

    1997-01-01

    Aim: The clinical impact of perfusion scintigraphy versus color coded Duplex sonography was evaluated, with respect to their potential in assessing minimal allograft perfusion in vitally threatened kidney transplants, i.e. oligoanuric allografts suspected to have either severe rejection or thrombosis of the renal vein or artery. Methods: From July 1990 to August 1994 the grafts of 15 out of a total of 315 patients were vitally threatened. Technetium-99m DTPA scintigraphy and color coded Duplex sonography were performed in all patients. For scintigraphic evaluation of transplant perfusion analog scans up to 60 min postinjection, and time-activity curves over the first 60 sec after injection of 370-440 MBq Tc-99m diethylenetriaminepentaacetate acid (DTPA) were used and classified by a perfusion score, the time between renal and iliac artery peaks (TDiff) and the washout of the renogram curve. Additionally, evaluation of excretion function and assessment of vascular or urinary leaks were performed. By color coded Duplex sonography the perfusion in all sections of the graft as well as the vascular anastomoses were examined and the maximal blood flow velocity (Vmax) and the resistive index (RI) in the renal artery were determined by means of the pulsed Doppler device. Pathologic-anatomical diagnosis was achieved by either biopsy or post-explant histology in all grafts. Results: Scintigraphy and color coded Duplex sonography could reliably differentiate minimal (8/15) and not perfused (7/15) renal allografts. The results were confirmed either by angiography in digital subtraction technique (DSA) or the clinical follow up. Conclusion: In summary, perfusion scintigraphy and color coded Duplex sonography are comparable modalities to assess kidney graft perfusion. In clinical practice scintigraphy and colorcoded Doppler sonography can replace digital subtraction angiography in the evaluation of minimal allograft perfusion. (orig.) [de

  18. Initial intramuscular perfusion pressure predicts early skeletal muscle function following isolated tibial fractures

    Directory of Open Access Journals (Sweden)

    Haas Norbert P

    2008-04-01

    Full Text Available Abstract Background The severity of associated soft tissue trauma in complex injuries of the extremities guides fracture treatment and decisively determines patient's prognosis. Trauma-induced microvascular dysfunction and increased tissue pressure is known to trigger secondary soft tissue damage and seems to adversely affect skeletal muscle function. Methods 20 patients with isolated tibial fractures were included. Blood pressure and compartment pressure (anterior and deep posterior compartment were measured continuously up to 24 hours. Corresponding perfusion pressure was calculated. After 4 and 12 weeks isokinetic muscle peak torque and mean power of the ankle joint in dorsal and plantar flexion were measured using a Biodex dynamometer. Results A significant inverse correlation between the anterior perfusion pressure at 24 hours and deficit in dorsiflexion at 4 weeks was found for both, the peak torque (R = -0.83; p Conclusion The functional relationship between the decrease in intramuscular perfusion pressures and muscle performance in the early rehabilitation period indicate a causative and prognostic role of early posttraumatic microcirculatory derangements and skeletal muscle function. Therapeutic concepts aimed at effective muscle recovery, early rehabilitation, and decreased secondary tissue damage, should consider the maintenance of an adequate intramuscular perfusion pressure.

  19. Heat-washout measurements compared to distal blood pressure and perfusion in orthopaedic patients with foot ulcers

    DEFF Research Database (Denmark)

    Midttun, M; Azad, B B S; Broholm, R

    2015-01-01

    Distal blood pressure and local skin perfusion pressure were compared to measurement of blood flow rate (BFR) measured by the heat-washout method in orthopaedic patients with and without diabetes, all with a foot ulcer in one foot, compared to healthy controls. The correlation was good between heat......-washout and distal blood pressure in patients with diabetes with and without an ulcer (P = 0·024 and 0·059, respectively). The correlation was weak in patients without diabetes with and without an ulcer, most probably due to power problems (P = 0·118 and 0·116, respectively). The correlation in the healthy controls...... the surrounding tissue, and therefore, measurements are easier made in these subjects. BFR in the first toe increased significantly in all patients when the foot was moved from heart level to 50 cm below heart level (P = between 0·03 and 0·05) as previously seen in patients with claudication...

  20. Normal anatomy of lung perfusion SPECT scintigraphy

    International Nuclear Information System (INIS)

    Moskowitz, G.W.; Levy, L.M.

    1987-01-01

    Ten patients studies for possible pulmonary embolic disease had normal lung perfusion planar and SPECT scintigraphy. A computer program was developed to superimpose the CT scans on corresponding SPECT images. Superimposition of CT scans on corresponding SPECT transaxial cross-sectional images, when available, provides the needed definition and relationships of adjacent organs. SPECT transaxial sections provide clear anatomic definition of perfusion defects without foreground and background lung tissue superimposed. The location, shape, and size of the perfusion defects can be readily assessed by SPECT. An algorithm was developed for the differentiation of abnormal pulmonary perfusion patterns from normal structures on variation