WorldWideScience

Sample records for quantitative multiplex assay

  1. A Multiplexed, Probe-Based Quantitative PCR Assay for DNA of Phytophthora sojae

    Science.gov (United States)

    Phytophthora sojae (Kaufm. & Gerd.) causes seed rot, pre- and post-emergence damping off, and sometimes foliar blight in soybean (Glycine max). Crop loss may approach 100% with susceptible cultivars. We report here the development of a unique quantitative PCR assay specific to DNA of P. sojae, and a...

  2. A multiplex calibrated real-time PCR assay for quantitation of DNA of EBV-1 and 2.

    Science.gov (United States)

    Gatto, Francesca; Cassina, Giulia; Broccolo, Francesco; Morreale, Giuseppe; Lanino, Edoardo; Di Marco, Eddi; Vardas, Efthiya; Bernasconi, Daniela; Buttò, Stefano; Principi, Nicola; Esposito, Susanna; Scarlatti, Gabriella; Lusso, Paolo; Malnati, Mauro S

    2011-12-01

    Accurate and highly sensitive tests for the diagnosis of active Epstein-Barr virus (EBV) infection are essential for the clinical management of individuals infected with EBV. A calibrated quantitative real-time PCR assay for the measurement of EBV DNA of both EBV-1 and 2 subtypes was developed, combining the detection of the EBV DNA and a synthetic DNA calibrator in a multiplex PCR format. The assay displays a wide dynamic range and a high degree of accuracy even in the presence of 1μg of human genomic DNA. This assay measures with the same efficiency EBV DNA from strains prevalent in different geographic areas. The clinical sensitivity and specificity of the system were evaluated by testing 181 peripheral blood mononuclear cell (PBMCs) and plasma specimens obtained from 21 patients subjected to bone marrow transplantation, 70 HIV-seropositive subjects and 23 healthy controls. Patients affected by EBV-associated post-transplant lymphoprolipherative disorders had the highest frequency of EBV detection and the highest viral load. Persons infected with HIV had higher levels of EBV DNA load in PBMCs and a higher frequency of EBV plasma viremia compared to healthy controls. In conclusion, this new assay provides a reliable high-throughput method for the quantitation of EBV DNA in clinical samples.

  3. Multiplex time-reducing quantitative polymerase chain reaction assay for determination of telomere length in blood and tissue DNA.

    Science.gov (United States)

    Jiao, Jingjing; Kang, Jing X; Tan, Rui; Wang, Jingdong; Zhang, Yu

    2012-04-01

    In this paper we describe a multiplex time-reducing quantitative polymerase chain reaction (qPCR) method for determination of telomere length. This multiplex qPCR assay enables two pairs of primers to simultaneously amplify telomere and single copy gene (albumin) templates, thus reducing analysis time and labor compared with the previously established singleplex assay. The chemical composition of the master mix and primers for the telomere and albumin were systematically optimized. The thermal cycling program was designed to ensure complete separation of the melting processes of the telomere and albumin. Semi-log standard curves of DNA concentration versus cycle threshold (C (t)) were established, with a linear relationship over an 81-fold DNA concentration range. The well-performed intra-assay (RSD range 2.4-4.7%) and inter-assay (RSD range: 3.1-5.0%) reproducibility were demonstrated to ensure measurement stability. Using wild-type, Lewis lung carcinoma and H22 liver carcinoma C57BL/6 mouse models, significantly different telomere lengths among different DNA samples were not observed in wild-type mice. However, the relative telomere lengths of the tumor DNA in the two strains of tumor-bearing mice were significantly shorter than the lengths in the surrounding non-tumor DNA of tumor-bearing mice and the tissue DNA of wild-type mice. These results suggest that the shortening of telomere lengths may be regarded as an important indicator for cancer control and prevention. Quantification of telomere lengths was further confirmed by the traditional Southern blotting method. This method could be successfully used to reduce the time needed for rapid, precise measurement of telomere lengths in biological samples.

  4. Comparison of a Multiplex Flow Cytometric Assay with Enzyme-Linked Immunosorbent Assay for Quantitation of Antibodies to Tetanus, Diphtheria, and Haemophilus influenzae Type b

    OpenAIRE

    Pickering, Jerry W.; Martins, Thomas B.; Schroder, M. Carl; Hill, Harry R.

    2002-01-01

    We developed a multiplexed indirect immunofluorescence assay for antibodies to Haemophilus influenza type b (Hib) polysaccharide and the toxoids of Clostridium tetani (Tet) and Corynebacterium diphtheriae (Dip) based on the Luminex multiple-analyte profiling system. A pooled serum standard was calibrated against World Health Organization standards for Dip and Tet and an international standard for Hib. The multiplexed Luminex assay was compared to individual enzyme-linked immunosorbent assays ...

  5. A quantitative multiplex nuclease protection assay reveals immunotoxicity gene expression profiles in the rabbit model for vaginal drug safety evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Fichorova, Raina N., E-mail: rfichorova@rics.bwh.harvard.edu [Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women' s Hospital and Harvard Medical School, Boston, MA (United States); Mendonca, Kevin; Yamamoto, Hidemi S.; Murray, Ryan [Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women' s Hospital and Harvard Medical School, Boston, MA (United States); Chandra, Neelima; Doncel, Gustavo F. [CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA (United States)

    2015-06-15

    Any vaginal product that alters the mucosal environment and impairs the immune barrier increases the risk of sexually transmitted infections, especially HIV infection, which thrives on mucosal damage and inflammation. The FDA-recommended rabbit vaginal irritation (RVI) model serves as a first line selection tool for vaginal products; however, for decades it has been limited to histopathology scoring, insufficient to select safe anti-HIV microbicides. In this study we incorporate to the RVI model a novel quantitative nuclease protection assay (qNPA) to quantify mRNA levels of 25 genes representing leukocyte differentiation markers, toll-like receptors (TLR), cytokines, chemokines, epithelial repair, microbicidal and vascular markers, by designing two multiplex arrays. Tissue sections were obtained from 36 rabbits (6 per treatment arm) after 14 daily applications of a placebo gel, saline, 4% nonoxynol-9 (N-9), and three combinations of the anti-HIV microbicides tenofovir (TFV) and UC781 in escalating concentrations (highest: 10% TFV + 2.5%UC781). Results showed that increased expression levels of toll-like receptor (TLR)-4, interleukin (IL)-1β, CXCL8, epithelial membrane protein (EMP)-1 (P < 0.05), and decreased levels of TLR2 (P < 0.05), TLR3 and bactericidal permeability increasing protein (BPI) (P < 0.001) were associated with cervicovaginal mucosal alteration (histopathology). Seven markers showed a significant linear trend predicting epithelial damage (up with CD4, IL-1β, CXCL8, CCL2, CCL21, EMP1 and down with BPI). Despite the low tissue damage RVI scores, the high-dose microbicide combination gel caused activation of HIV host cells (SLC and CD4) while N-9 caused proinflammatory gene upregulation (IL-8 and TLR4) suggesting a potential for increasing risk of HIV via different mechanisms depending on the chemical nature of the test product. - Highlights: • A transcriptome nuclease protection assay assessed microbicides for vaginal safety. • Biomarkers were

  6. Quantitative multiplex assay for simultaneous detection and identification of Indiana and New Jersey serotypes of vesicular stomatitis virus

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bruun; Uttenthal, Åse; Fernandez, Jovita;

    2005-01-01

    In order to establish a rapid and reliable system for the detection of vesicular stomatitis virus (VSV), we developed a quantitative reverse transcription-PCR assay for the detection, quantification, and differentiation of the major serotypes, VSV Indiana and VSV New Jersey, using a closed...

  7. Evaluation and subsequent optimizations of the quantitative AmpliSens Florocenosis/Bacterial vaginosis-FRT multiplex real-time PCR assay for diagnosis of bacterial vaginosis.

    Science.gov (United States)

    Rumyantseva, Tatiana; Shipitsyna, Elena; Guschin, Alexander; Unemo, Magnus

    2016-12-01

    Traditional microscopy-based methods for diagnosis of bacterial vaginosis (BV) are underutilized in many settings, and molecular techniques may provide opportunities for rapid, objective, and accurate BV diagnosis. This study evaluated the quantitative AmpliSens Florocenosis/Bacterial vaginosis-FRT multiplex real-time PCR (Florocenosis-BV) assay. Vaginal samples from a previous study including unselected female subjects (n = 163) and using Amsel criteria and 454 pyrosequencing for BV diagnosis were examined with the Florocenosis-BV test and additionally tested for the presence and quantity of Gardnerella vaginalis clades 3 and 4. The Florocenosis-BV assay demonstrated 100% and 98% sensitivity compared with the Amsel criteria and 454 pyrosequencing, respectively, with 91% specificity. The modified Florocenosis-BV assay (detecting also G. vaginalis clades 3 and 4) resulted in 100% sensitivity vs the Amsel criteria and 454 pyrosequencing with specificity of 86% and 88%, respectively. Further optimizations of thresholds for the quantitative parameters used in the kit resulted in 99-100% accuracy vs Amsel criteria and 454 pyrosequencing for selected parameters. The Florocenosis-BV assay is an objective, accurate, sensitive, and specific method for BV diagnosis; however, the performance of the test can be further improved with some minor optimizations. © 2016 APMIS. Published by John Wiley & Sons Ltd.

  8. Development and Validation of a Multiplexed Protein Quantitation Assay for the Determination of Three Recombinant Proteins in Soybean Tissues by Liquid Chromatography with Tandem Mass Spectrometry.

    Science.gov (United States)

    Hill, Ryan C; Oman, Trent J; Shan, Guomin; Schafer, Barry; Eble, Julie; Chen, Cynthia

    2015-08-26

    Currently, traditional immunochemistry technologies such as enzyme-linked immunosorbent assays (ELISA) are the predominant analytical tool used to measure levels of recombinant proteins expressed in genetically engineered (GE) plants. Recent advances in agricultural biotechnology have created a need to develop methods capable of selectively detecting and quantifying multiple proteins in complex matrices because of increasing numbers of transgenic proteins being coexpressed or "stacked" to achieve tolerance to multiple herbicides or to provide multiple modes of action for insect control. A multiplexing analytical method utilizing liquid chromatography with tandem mass spectrometry (LC-MS/MS) has been developed and validated to quantify three herbicide-tolerant proteins in soybean tissues: aryloxyalkanoate dioxygenase (AAD-12), 5-enol-pyruvylshikimate-3-phosphate synthase (2mEPSPS), and phosphinothricin acetyltransferase (PAT). Results from the validation showed high recovery and precision over multiple analysts and laboratories. Results from this method were comparable to those obtained with ELISA with respect to protein quantitation, and the described method was demonstrated to be suitable for multiplex quantitation of transgenic proteins in GE crops.

  9. Simultaneous detection and quantitation of Chikungunya, dengue and West Nile viruses by multiplex RT-PCR assays and dengue virus typing using high resolution melting.

    Science.gov (United States)

    Naze, F; Le Roux, K; Schuffenecker, I; Zeller, H; Staikowsky, F; Grivard, P; Michault, A; Laurent, P

    2009-12-01

    Chikungunya (CHIKV), Dengue (DENV) and West Nile (WNV) viruses are arthropod-borne viruses that are able to emerge or re-emerge in many regions due to climatic changes and increase in travel. Since these viruses produce similar clinical signs it is important for physicians and epidemiologists to differentiate them rapidly. A molecular method was developed for their detection and quantitation in plasma samples and a DENV typing technique were developed. The method consisted in performing two multiplex real-time one-step RT-PCR assays, to detect and quantify the three viruses. Both assays were conducted in a single run, from a single RNA extract containing a unique coextracted and coamplified composite internal control. The quantitation results were close to the best detection thresholds obtained with simplex RT-PCR techniques. The differentiation of DENV types was performed using a High Resolution Melting technique. The assays enable the early diagnosis of the three arboviruses during viremia, including cases of coinfection. The method is rapid, specific and highly sensitive with a potential for clinical diagnosis and epidemiological surveillance. A DENV positive sample can be typed conveniently using the High Resolution Melting technique using the same apparatus.

  10. Rapid semi-automated quantitative multiplex tandem PCR (MT-PCR assays for the differential diagnosis of influenza-like illness

    Directory of Open Access Journals (Sweden)

    Dwyer Dominic E

    2010-05-01

    Full Text Available Abstract Background Influenza A, including avian influenza, is a major public health threat in developed and developing countries. Rapid and accurate detection is a key component of strategies to contain spread of infection, and the efficient diagnosis of influenza-like-illness is essential to protect health infrastructure in the event of a major influenza outbreak. Methods We developed a multiplexed PCR (MT-PCR assay for the simultaneous diagnosis of respiratory viruses causing influenza-like illness, including the specific recognition of influenza A haemagglutinin subtypes H1, H3, and H5. We tested several hundred clinical specimens in two diagnostic reference laboratories and compared the results with standard techniques. Results The sensitivity and specificity of these assays was higher than individual assays based on direct antigen detection and standard PCR against a range of control templates and in several hundred clinical specimens. The MT-PCR assays provided differential diagnoses as well as potentially useful quantitation of virus in clinical samples. Conclusions MT-PCR is a potentially powerful tool for the differential diagnosis of influenza-like illness in the clinical diagnostic laboratory.

  11. Detection of gene copy number aberrations in mantle cell lymphoma by a single quantitative multiplex PCR assay: clinicopathological relevance and prognosis value.

    Science.gov (United States)

    Jardin, Fabrice; Picquenot, Jean-Michel; Parmentier, Françoise; Ruminy, Philippe; Cornic, Marie; Penther, Dominique; Bertrand, Philippe; Lanic, Hélène; Cassuto, Ophélie; Humbrecht, Catherine; Lemasle, Emilie; Wautier, Agathe; Bastard, Christian; Tilly, Hervé

    2009-09-01

    The t(11;14)(q13;q32) is the hallmark of mantle cell lymphoma (MCL). Additional genetic alterations occur in the majority of cases. This study aimed to design a polymerase chain reaction (PCR) assay to determine the incidence and relevance of recurrent gene copy number aberrations in this disease. Forty-two MCL cases with frozen- or paraffin-embedded (FFPE) tissues were selected. Three different quantitative Multiplex PCR of Short Fluorescent Fragments (QMPSF) assays were designed to simultaneously analyse eight genes (CDKN2A, RB1, ATM, CDK2, TP53, MYC, CDKN1B, MDM2), to analyse the 9p21 locus (CDKN2A/CDKN2B) and FFPE tissues. Gains of MYC, CDK2, CDKN1B, and MDM2 were observed in 10% of cases. Losses of RB1, CDKN2A, ATM or TP53 were observed in 38%, 31%, 24% and 10% of cases, respectively. Analysis of the 9p21 locus indicated that, in most cases, tumours displayed a complete inactivation of p14(ARF)/p15I(NK4B)/p16I(NK4A). CDKN2A and MYC aberrations were associated with a high MCL international prognostic index (MIPI). CDK2/MDM2 gains and CDKN2A/TP53 losses correlated with an unfavourable outcome. PCR experiments with frozen and FFPE-tissues indicated that our approach is valid in a routine diagnostic setting, providing a powerful tool that could be used for patient stratification in combination with MIPI in future clinical trials.

  12. Development and validation of a quantitative PCR assay using multiplexed hydrolysis probes for detection and quantification of Theileria orientalis isolates and differentiation of clinically relevant subtypes.

    Science.gov (United States)

    Bogema, D R; Deutscher, A T; Fell, S; Collins, D; Eamens, G J; Jenkins, C

    2015-03-01

    Theileria orientalis is an emerging pathogen of cattle in Asia, Australia, and New Zealand. This organism is a vector-borne hemoprotozoan that causes clinical disease characterized by anemia, abortion, and death, as well as persistent subclinical infections. Molecular methods of diagnosis are preferred due to their sensitivity and utility in differentiating between pathogenic and apathogenic genotypes. Conventional PCR (cPCR) assays for T. orientalis detection and typing are laborious and do not provide an estimate of parasite load. Current real-time PCR assays cannot differentiate between clinically relevant and benign genotypes or are only semiquantitative without a defined clinical threshold. Here, we developed and validated a hydrolysis probe quantitative PCR (qPCR) assay which universally detects and quantifies T. orientalis and identifies the clinically associated Ikeda and Chitose genotypes (UIC assay). Comparison of the UIC assay results with previously validated universal and genotype-specific cPCR results demonstrated that qPCR detects and differentiates T. orientalis with high sensitivity and specificiy. Comparison of quantitative results based on percent parasitemia, determined via blood film analysis and packed cell volume (PCV) revealed significant positive and negative correlations, respectively. One-way analysis of variance (ANOVA) indicated that blood samples from animals with clinical signs of disease contained statistically higher concentrations of T. orientalis DNA than animals with subclinical infections. We propose clinical thresholds to assist in classifying high-, moderate-, and low-level infections and describe how parasite load and the presence of the Ikeda and Chitose genotypes relate to disease.

  13. Lab-on-a-Chip Multiplex Assays.

    Science.gov (United States)

    Peter, Harald; Wienke, Julia; Bier, Frank F

    2017-01-01

    Lab-on-a-chip multiplex assays allow a rapid identification of multiple parameters in an automated manner. Here we describe a lab-based preparation followed by a rapid and fully automated DNA microarray hybridization and readout in less than 10 min using the Fraunhofer in vitro diagnostics (ivD) platform to enable rapid identification of bacterial species and detection of antibiotic resistance. The use of DNA microarrays allows a fast adaptation of new biomarkers enabling the identification of different genes as well as single-nucleotide-polymorphisms (SNPs) within these genes. In this protocol we describe a DNA microarray developed for identification of Staphylococcus aureus and the mecA resistance gene.

  14. Multiplexed Dosing Assays by Digitally Definable Hydrogel Volumes

    DEFF Research Database (Denmark)

    Faralli, Adele; Melander, Fredrik; Larsen, Esben Kjær Unmack

    2016-01-01

    Stable and low-cost multiplexed drug sensitivity assays using small volumes of cells or tissue are in demand for personalized medicine, including patientspecific combination chemotherapy. Spatially defined projected light photopolymerization of hydrogels with embedded active compounds is introduc...

  15. Quantitative multiplex detection of pathogen biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Mukundan, Harshini; Xie, Hongzhi; Swanson, Basil I.; Martinez, Jennifer; Grace, Wynne K.

    2016-02-09

    The present invention addresses the simultaneous detection and quantitative measurement of multiple biomolecules, e.g., pathogen biomarkers through either a sandwich assay approach or a lipid insertion approach. The invention can further employ a multichannel, structure with multi-sensor elements per channel.

  16. Quantitative multiplex detection of pathogen biomarkers

    Science.gov (United States)

    Mukundan, Harshini; Xie, Hongzhi; Swanson, Basil I; Martinez, Jennifer; Grace, Wynne K

    2014-10-14

    The present invention addresses the simultaneous detection and quantitative measurement of multiple biomolecules, e.g., pathogen biomarkers through either a sandwich assay approach or a lipid insertion approach. The invention can further employ a multichannel, structure with multi-sensor elements per channel.

  17. A multiplex real-time PCR assay for routine diagnosis of bacterial vaginosis

    NARCIS (Netherlands)

    Kusters, J. G.; Reuland, E. A.; Bouter, S.; Koenig, P.; Dorigo-Zetsma, J. W.

    2015-01-01

    A semi-quantitative multiplex PCR assay for the diagnosis of bacterial vaginosis (BV) was evaluated in a prospective study in a population of Dutch women with complaints of abnormal vaginal discharge. The PCR targets Gardnerella vaginalis, Atopobium vaginae, Megasphaera phylotype 1, Lactobacillus

  18. A multiplex real-time PCR assay for routine diagnosis of bacterial vaginosis

    NARCIS (Netherlands)

    Kusters, J. G.; Reuland, E. A.; Bouter, S.; Koenig, P.; Dorigo-Zetsma, J. W.

    2015-01-01

    A semi-quantitative multiplex PCR assay for the diagnosis of bacterial vaginosis (BV) was evaluated in a prospective study in a population of Dutch women with complaints of abnormal vaginal discharge. The PCR targets Gardnerella vaginalis, Atopobium vaginae, Megasphaera phylotype 1, Lactobacillus cr

  19. Quantitative multiplex real-time PCR assay for shrimp allergen: comparison of commercial master mixes and PCR platforms in rapid cycling.

    Science.gov (United States)

    Eischeid, Anne C; Kasko, Sasha M

    2015-01-01

    Real-time PCR has been used widely in numerous fields. In food safety, it has been applied to detection of microbes and other contaminants, including food allergens. Interest in rapid (fast) cycling real-time PCR has grown because it yields results in less time than does conventional cycling. However, fast cycling can adversely affect assay performance. Here we report on tests of commercial master mixes specifically designed for fast real-time PCR using a shrimp allergen assay we previously developed and validated. The objective of this work was to determine whether specialized commercial master mixes lead to improved assay performance in rapid cycling. Real-time PCR assays were carried out using four different master mixes and two different rapid cycling protocols. Results indicated that specialized master mixes did yield quality results. In many cases, linear ranges spanned up to 7 orders of magnitude, R(2) values were at least 0.95, and reaction efficiencies were within or near the optimal range of 90 to 110%. In the faster of the two rapid cycling protocols tested, assay performance and PCR amplification were markedly better for the shorter PCR product. In conclusion, specialized commercial master mixes were effective as part of rapid cycling protocols, but conventional cycling as used in our previous work is more reliable for the shrimp assay tested.

  20. Development of a multiplexed urine assay for prostate cancer diagnosis.

    Science.gov (United States)

    Vener, Tatiana; Derecho, Carlo; Baden, Jonathan; Wang, Haiying; Rajpurohit, Yashoda; Skelton, Joanne; Mehrotra, Jyoti; Varde, Shobha; Chowdary, Dondapati; Stallings, Walt; Leibovich, Bradley; Robin, Howard; Pelzer, Alexandre; Schäfer, Georg; Auprich, Marco; Mannweiler, Sebastian; Amersdorfer, Peter; Mazumder, Abhijit

    2008-05-01

    Several studies have demonstrated the value of DNA methylation in urine-based assays for prostate cancer diagnosis. However, a multicenter validation with a clinical prototype has not been published. We developed a multiplexed, quantitative methylation-specific polymerase chain reaction (MSP) assay consisting of 3 methylation markers, GSTP1, RARB, and APC, and an endogenous control, ACTB, in a closed-tube, homogeneous assay format. We tested this format with urine samples collected after digital rectal examination from 234 patients with prostate-specific antigen (PSA) concentrations > or =2.5 microg/L in 2 independent patient cohorts from 9 clinical sites. In the first cohort of 121 patients, we demonstrated 55% sensitivity and 80% specificity, with area under the curve (AUC) 0.69. In the second independent cohort of 113 patients, we found a comparable sensitivity of 53% and specificity of 76% (AUC 0.65). In the first cohort, as well as in a combined cohort, the MSP assay in conjunction with total PSA, digital rectal examination status, and age improved the AUC without MSP, although the difference was not statistically significant. Importantly, the GSTP1 cycle threshold value demonstrated a good correlation (R = 0.84) with the number of cores found to contain prostate cancer or premalignant lesions on biopsy. Moreover, samples that exhibited methylation for either GSTP1 or RARB typically contained higher tumor volumes at prostatectomy than those samples that did not exhibit methylation. These data confirm and extend previously reported studies and demonstrate the performance of a clinical prototype assay that should aid urologists in identifying men who should undergo biopsy.

  1. Multiplexed Recombinase Polymerase Amplification Assay To Detect Intestinal Protozoa.

    Science.gov (United States)

    Crannell, Zachary; Castellanos-Gonzalez, Alejandro; Nair, Gayatri; Mejia, Rojelio; White, A Clinton; Richards-Kortum, Rebecca

    2016-02-01

    This work describes a proof-of-concept multiplex recombinase polymerase amplification (RPA) assay with lateral flow readout that is capable of simultaneously detecting and differentiating DNA from any of the diarrhea-causing protozoa Giardia, Cryptosporidium, and Entamoeba. Together, these parasites contribute significantly to the global burden of diarrheal illness. Differential diagnosis of these parasites is traditionally accomplished via stool microscopy. However, microscopy is insensitive and can miss up to half of all cases. DNA-based diagnostics such as polymerase chain reaction (PCR) are far more sensitive; however, they rely on expensive thermal cycling equipment, limiting their availability to centralized reference laboratories. Isothermal DNA amplification platforms, such as the RPA platform used in this study, alleviate the need for thermal cycling equipment and have the potential to broaden access to more sensitive diagnostics. Until now, multiplex RPA assays have not been developed that are capable of simultaneously detecting and differentiating infections caused by different pathogens. We developed a multiplex RPA assay to detect the presence of DNA from Giardia, Cryptosporidium, and Entamoeba. The multiplex assay was characterized using synthetic DNA, where the limits-of-detection were calculated to be 403, 425, and 368 gene copies per reaction of the synthetic Giardia, Cryptosporidium, and Entamoeba targets, respectively (roughly 1.5 orders of magnitude higher than for the same targets in a singleplex RPA assay). The multiplex assay was also characterized using DNA extracted from live parasites spiked into stool samples where the limits-of-detection were calculated to be 444, 6, and 9 parasites per reaction for Giardia, Cryptosporidium, and Entamoeba parasites, respectively. This proof-of-concept assay may be reconfigured to detect a wide variety of targets by re-designing the primer and probe sequences.

  2. Multiplex PCR Assay for Identification of Human Diarrheagenic Escherichia coli

    OpenAIRE

    Toma, Claudia; Lu, Yan; Higa, Naomi; Nakasone, Noboru; Isabel CHINEN; Baschkier, Ariela; Rivas, Marta; Iwanaga, Masaaki

    2003-01-01

    A multiplex PCR assay for the identification of human diarrheagenic Escherichia coli was developed. The targets selected for each category were eae for enteropathogenic E. coli, stx for Shiga toxin-producing E. coli, elt and est for enterotoxigenic E. coli, ipaH for enteroinvasive E. coli, and aggR for enteroaggregative E. coli. This assay allowed the categorization of a diarrheagenic E. coli strain in a single reaction tube.

  3. Multiplex PCR Assay for Identification of Human Diarrheagenic Escherichia coli

    OpenAIRE

    2003-01-01

    A multiplex PCR assay for the identification of human diarrheagenic Escherichia coli was developed. The targets selected for each category were eae for enteropathogenic E. coli, stx for Shiga toxin-producing E. coli, elt and est for enterotoxigenic E. coli, ipaH for enteroinvasive E. coli, and aggR for enteroaggregative E. coli. This assay allowed the categorization of a diarrheagenic E. coli strain in a single reaction tube.

  4. Development and standardization of multiplexed antibody microarrays for use in quantitative proteomics.

    Science.gov (United States)

    Perlee, Lt; Christiansen, J; Dondero, R; Grimwade, B; Lejnine, S; Mullenix, M; Shao, W; Sorette, M; Tchernev, Vt; Patel, Dd; Kingsmore, Sf

    2004-12-15

    BACKGROUND: Quantitative proteomics is an emerging field that encompasses multiplexed measurement of many known proteins in groups of experimental samples in order to identify differences between groups. Antibody arrays are a novel technology that is increasingly being used for quantitative proteomics studies due to highly multiplexed content, scalability, matrix flexibility and economy of sample consumption. Key applications of antibody arrays in quantitative proteomics studies are identification of novel diagnostic assays, biomarker discovery in trials of new drugs, and validation of qualitative proteomics discoveries. These applications require performance benchmarking, standardization and specification. RESULTS: Six dual-antibody, sandwich immunoassay arrays that measure 170 serum or plasma proteins were developed and experimental procedures refined in more than thirty quantitative proteomics studies. This report provides detailed information and specification for manufacture, qualification, assay automation, performance, assay validation and data processing for antibody arrays in large scale quantitative proteomics studies. CONCLUSION: The present report describes development of first generation standards for antibody arrays in quantitative proteomics. Specifically, it describes the requirements of a comprehensive validation program to identify and minimize antibody cross reaction under highly multiplexed conditions; provides the rationale for the application of standardized statistical approaches to manage the data output of highly replicated assays; defines design requirements for controls to normalize sample replicate measurements; emphasizes the importance of stringent quality control testing of reagents and antibody microarrays; recommends the use of real-time monitors to evaluate sensitivity, dynamic range and platform precision; and presents survey procedures to reveal the significance of biomarker findings.

  5. Development and standardization of multiplexed antibody microarrays for use in quantitative proteomics

    Directory of Open Access Journals (Sweden)

    Sorette M

    2004-12-01

    Full Text Available Abstract Background Quantitative proteomics is an emerging field that encompasses multiplexed measurement of many known proteins in groups of experimental samples in order to identify differences between groups. Antibody arrays are a novel technology that is increasingly being used for quantitative proteomics studies due to highly multiplexed content, scalability, matrix flexibility and economy of sample consumption. Key applications of antibody arrays in quantitative proteomics studies are identification of novel diagnostic assays, biomarker discovery in trials of new drugs, and validation of qualitative proteomics discoveries. These applications require performance benchmarking, standardization and specification. Results Six dual-antibody, sandwich immunoassay arrays that measure 170 serum or plasma proteins were developed and experimental procedures refined in more than thirty quantitative proteomics studies. This report provides detailed information and specification for manufacture, qualification, assay automation, performance, assay validation and data processing for antibody arrays in large scale quantitative proteomics studies. Conclusion The present report describes development of first generation standards for antibody arrays in quantitative proteomics. Specifically, it describes the requirements of a comprehensive validation program to identify and minimize antibody cross reaction under highly multiplexed conditions; provides the rationale for the application of standardized statistical approaches to manage the data output of highly replicated assays; defines design requirements for controls to normalize sample replicate measurements; emphasizes the importance of stringent quality control testing of reagents and antibody microarrays; recommends the use of real-time monitors to evaluate sensitivity, dynamic range and platform precision; and presents survey procedures to reveal the significance of biomarker findings.

  6. Development of analytical methods for multiplex bio-assay with inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Ornatsky, Olga I; Kinach, Robert; Bandura, Dmitry R; Lou, Xudong; Tanner, Scott D; Baranov, Vladimir I; Nitz, Mark; Winnik, Mitchell A

    2008-01-01

    Advances in the development of highly multiplexed bio-analytical assays with inductively coupled plasma mass spectrometry (ICP-MS) detection are discussed. Use of novel reagents specifically designed for immunological methods utilizing elemental analysis is presented. The major steps of method development, including selection of elements for tags, validation of tagged reagents, and examples of multiplexed assays, are considered in detail. The paper further describes experimental protocols for elemental tagging of antibodies, immunostaining of live and fixed human leukemia cells, and preparation of samples for ICP-MS analysis. Quantitative analysis of surface antigens on model cell lines using a cocktail of seven lanthanide labeled antibodies demonstrated high specificity and concordance with conventional immunophenotyping.

  7. Multiplex real-time PCR assay for Legionella species.

    Science.gov (United States)

    Kim, Seung Min; Jeong, Yoojung; Sohn, Jang Wook; Kim, Min Ja

    2015-12-01

    Legionella pneumophila serogroup 1 (sg1) accounts for the majority of infections in humans, but other Legionella species are also associated with human disease. In this study, a new SYBR Green I-based multiplex real-time PCR assay in a single reaction was developed to allow the rapid detection and differentiation of Legionella species by targeting specific gene sequences. Candidate target genes were selected, and primer sets were designed by referring to comparative genomic hybridization data of Legionella species. The Legionella species-specific groES primer set successfully detected all 30 Legionella strains tested. The xcpX and rfbA primers specifically detected L. pneumophila sg1-15 and L. pneumophila sg1, respectively. In addition, this assay was validated by testing clinical samples and isolates. In conclusion, this novel multiplex real-time PCR assay might be a useful diagnostic tool for the rapid detection and differentiation of Legionella species in both clinical and epidemiological studies.

  8. Development of a multiplex Real-time fluorescent quantitative PCR assay for simultaneous detection of PRV,PPV and PCV2%3种猪繁殖障碍性病毒Real-time PCR快速检测方法的建立

    Institute of Scientific and Technical Information of China (English)

    赵绪永; 马辉; 宁豫昌; 赵丽

    2012-01-01

    【目的】建立可同时检测猪伪狂犬病毒(PRV)、猪细小病毒(PPV)和猪圆环病毒Ⅱ型(PCV2)的多重实时荧光定量PCR方法。【方法】根据GenBank数据库中PRV、PPV和PCV2的核苷酸序列,设计3对特异性引物和探针,以10倍系列稀释的阳性质粒为模板,优化反应条件,建立检测PRV、PPV和PCV2的多重Real-time PCR方法,并对其敏感性、重复性和特异性进行检验;分别采用单项和多重Real-time PCR方法,对临床收集的42份疑似病料进行检测,比较2种方法的符合率。【结果】特异性和灵敏度试验表明,建立的多重Real-time PCR检测方法具有高度特异性,与其他病原无明显交叉反应;检测灵敏度高,可检出1.0×101拷贝/μL的阳性质粒或1TCID50/mL的病毒样品。用多重Real-time PCR对42份临床疑似病料进行检测,其检测结果与单重Real-time PCR结果完全一致,表明多重Real-time PCR方法是可行的。【结论】建立了可同时检测PRV、PPV和PCV2的多重Real-time PCR方法,该法具有快速、灵敏、特异和重复性好等优点。%【Objective】 The study developed a multiplex real-time fluorescent quantitative PCR which can simultaneously detect and discriminate porcine pseudorabies virus(PRV),porcine parvovirus(PPV) and porcine circovirus type 2(PCV2).【Method】 According to the nucleotide sequences of PRV,PPV and PCV2 from GenBank,3 pairs of specific primers and probes were designed.The positive plasmid diluted by 10 times was used as template to establish a multiplex Real-time PCR assay by optimizing the reaction conditions.Sensitivity,reproducibility and specificity assays were determined.42 clinical suspected disease materials were detected by the established multiplex Real-time PCR assay and compared with the result of singleplex assay.【Result】 The results of specificity and sensitivity assays showed that the specificity of the established multiplex Real-time PCR assay was high

  9. Variance in multiplex suspension array assays: A distribution generation machine for multiplex counts

    Directory of Open Access Journals (Sweden)

    Hanley Brian P

    2008-01-01

    Full Text Available Abstract Background This study attempted to replicate Luminex experimental results for large numbers of beads per classifier using multiplexed assays and routine instrument use conditions. Conclusion Using larger numbers of microspheres per classifier highlights a fundamental stochastic distribution of bead counts issue complicated by other factors. The more classifiers and the higher the count required per classifier there are, the more apparent the distribution of counts per classifier will be, and the more microspheres are required. Additional problems have been identified. Alternate methods of improving precision and reliability are recommended such as intraplexing and multi-well sample replicates to improve precision and confidence.

  10. Multiplexed serologic assay for nine anogenital human papillomavirus types.

    Science.gov (United States)

    Opalka, David; Matys, Katie; Bojczuk, Paul; Green, Tina; Gesser, Richard; Saah, Alfred; Haupt, Richard; Dutko, Frank; Esser, Mark T

    2010-05-01

    A multiplexed human papillomavirus (HPV) immunoassay has been developed for the detection of human IgG antibodies to HPV type 6, 11, 16, 18, 31, 33, 45, 52, and 58 virus-like particle (VLP) types in serum following natural infection or immunization with VLP-based vaccines. The VLP antigens were covalently conjugated to carboxyl Luminex microspheres (MS) using a carbodiimide chemistry. Antibody (Ab) titers were determined in a direct binding format, in which an IgG1- to -4-specific, phycoerythrin (PE)-labeled monoclonal antibody (MAb) (HP6043) binds to human serum IgG antibodies. Pooled serum samples from rhesus macaques immunized with a 9-valent VLP-based vaccine served as the reference standard. The overall specificity of the assay was >99%, and the linearity (parallelism) of the assay was <7% per 10-fold dilution. Total assay precision was <19% across 3 different VLP-microsphere lots, 2 secondary antibody lots, and 2 different operators over a period of 3 weeks. Three different methods were used to evaluate serostatus cutoffs (SCO): (i) a clinical sensitivity/specificity analysis based on "likely negative" and "likely positive" samples from nonvaccinees, (ii) stringent upper tolerance limits on samples from "likely negatives," and (iii) stringent upper tolerance limits from the same "likely negative" sample set after VLP adsorption. Depending on the method to set the serostatus cutoff, the percentage of seropositive samples at the month 48 time point following vaccination with the HPV 6/11/16/18 quadrivalent vaccine ranged from 70% to 100%. This assay has proven useful for measuring the levels of serum antibody to the nine HPV VLPs following natural infection or administration of VLP-based vaccines.

  11. Multiplexed Serologic Assay for Nine Anogenital Human Papillomavirus Types▿

    Science.gov (United States)

    Opalka, David; Matys, Katie; Bojczuk, Paul; Green, Tina; Gesser, Richard; Saah, Alfred; Haupt, Richard; Dutko, Frank; Esser, Mark T.

    2010-01-01

    A multiplexed human papillomavirus (HPV) immunoassay has been developed for the detection of human IgG antibodies to HPV type 6, 11, 16, 18, 31, 33, 45, 52, and 58 virus-like particle (VLP) types in serum following natural infection or immunization with VLP-based vaccines. The VLP antigens were covalently conjugated to carboxyl Luminex microspheres (MS) using a carbodiimide chemistry. Antibody (Ab) titers were determined in a direct binding format, in which an IgG1- to -4-specific, phycoerythrin (PE)-labeled monoclonal antibody (MAb) (HP6043) binds to human serum IgG antibodies. Pooled serum samples from rhesus macaques immunized with a 9-valent VLP-based vaccine served as the reference standard. The overall specificity of the assay was >99%, and the linearity (parallelism) of the assay was <7% per 10-fold dilution. Total assay precision was <19% across 3 different VLP-microsphere lots, 2 secondary antibody lots, and 2 different operators over a period of 3 weeks. Three different methods were used to evaluate serostatus cutoffs (SCO): (i) a clinical sensitivity/specificity analysis based on “likely negative” and “likely positive” samples from nonvaccinees, (ii) stringent upper tolerance limits on samples from “likely negatives,” and (iii) stringent upper tolerance limits from the same “likely negative” sample set after VLP adsorption. Depending on the method to set the serostatus cutoff, the percentage of seropositive samples at the month 48 time point following vaccination with the HPV 6/11/16/18 quadrivalent vaccine ranged from 70% to 100%. This assay has proven useful for measuring the levels of serum antibody to the nine HPV VLPs following natural infection or administration of VLP-based vaccines. PMID:20237197

  12. A Multiplex Assay for Detection of Staphylococcal and Streptococcal Exotoxins.

    Directory of Open Access Journals (Sweden)

    Preeti Sharma

    Full Text Available Staphylococcal and streptococcal exotoxins, also known as superantigens, mediate a range of diseases including toxic shock syndrome, and they exacerbate skin, pulmonary and systemic infections caused by these organisms. When present in food sources they can cause enteric effects commonly known as food poisoning. A rapid, sensitive assay for the toxins would enable testing of clinical samples and improve surveillance of food sources. Here we developed a bead-based, two-color flow cytometry assay using single protein domains of the beta chain of T cell receptors engineered for high-affinity for staphylococcal (SEA, SEB and TSST-1 and streptococcal (SpeA and SpeC toxins. Site-directed biotinylated forms of these high-affinity agents were used together with commercial, polyclonal, anti-toxin reagents to enable specific and sensitive detection with SD50 values of 400 pg/ml (SEA, 3 pg/ml (SEB, 25 pg/ml (TSST-1, 6 ng/ml (SpeA, and 100 pg/ml (SpeC. These sensitivities were in the range of 4- to 80-fold higher than achieved with standard ELISAs using the same reagents. A multiplex format of the assay showed reduced sensitivity due to higher noise associated with the use of multiple polyclonal agents, but the sensitivities were still well within the range necessary for detection in food sources or for rapid detection of toxins in culture supernatants. For example, the assay specifically detected toxins in supernatants derived from cultures of Staphylococcus aureus. Thus, these reagents can be used for simultaneous detection of the toxins in food sources or culture supernatants of potential pathogenic strains of Staphylococcus aureus and Streptococcus pyogenes.

  13. Multiplex RT Q-PCR assay for simultaneous quantification of three viruses used for validation of virus clearance by biopharmaceutical production.

    Science.gov (United States)

    Lute, Scott; Wang, Hua; Sanchez, Davonie; Barletta, Janet; Chen, Qi; Brorson, Kurt

    2009-10-01

    Virus removal studies are used to insure the safety of biopharmaceutical products by quantitatively estimating the viral clearance capacity by the manufacturing process. Virus quantification assays are used to measure the log(10) clearance factor of individual purification unit operations in spike recovery studies. We have developed a multiplex RT Q-PCR assay that detects and quantifies three commonly used model viruses X-MuLV, SV40, and MMV simultaneously. This RT Q-PCR multiplex assay has a 6log(10) dynamic range with a limit of detection (LOD) of approximately 1 genome copy/microL. Amplification profiles are similar to existing singleplex assays. Overall, this RT Q-PCR multiplex assay is highly quantitative, accurately identifies multiple viruses simultaneously, and may prove useful to validate viral clearance of biological products in small scale studies.

  14. Indirect competitive assays on DVD for direct multiplex detection of drugs of abuse in oral fluids.

    Science.gov (United States)

    Zhang, Lingling; Li, Xiaochun; Li, Yunchao; Shi, Xiaoli; Yu, Hua-Zhong

    2015-02-03

    On-site oral fluid testing for drugs of abuse has become prominent in order to take immediate administrative action in an enforcement process. Herein, we report a DVD technology-based indirect competitive immunoassay platform for the quantitative detection of drugs of abuse. A microfluidic approach was adapted to prepare multiplex immunoassays on a standard DVD-R, an unmodified multimode DVD/Blu-Ray drive to read signal, and a free disc-quality analysis software program to process the data. The DVD assay platform was successfully demonstrated for the simultaneous, quantitative detection of drug candidates (morphine and cocaine) in oral fluids with high selectivity. The detection limit achieved was as low as 1.0 ppb for morphine and 5.0 ppb for cocaine, comparable with that of standard mass spectrometry and ELISA methods.

  15. Real time quantitative amplification detection on a microarray: towards high multiplex quantitative PCR.

    NARCIS (Netherlands)

    Pierik, A.; Moamfa, M; van Zelst, M.; Clout, D.; Stapert, H.; Dijksman, Johan Frederik; Broer, D.; Wimberger-Friedl, R.

    2012-01-01

    Quantitative real-time polymerase chain reaction (qrtPCR) is widely used as a research and diagnostic tool. Notwithstanding its many powerful features, the method is limited in the degree of multiplexing to about 6 due to spectral overlap of the available fluorophores. A new method is presented that

  16. Design of a multiplex PCR assay for the simultaneous detection and confirmation of Neisseria gonorrhoeae.

    LENUS (Irish Health Repository)

    O'Callaghan, Isabelle

    2010-05-01

    To improve the detection of Neisseria gonorrhoeae by designing a multiplex PCR assay using two N gonorrhoeae-specific genes as targets, thereby providing detection and confirmation of a positive result simultaneously.

  17. Final Report Nucleic Acid System - Hybrid PCR and Multiplex Assay Project Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, R P; Langlois, R G; Nasarabadi, S; Benett, W J; Colston, B W; Johnson, D C; Brown, S B; Stratton, P L; Milanovich, F P

    2002-04-17

    This report covers phase 2 (year 2) of the Nucleic Acid System--Hybrid PCR and Multiplex Assay project. The objective of the project is to reduce to practice the detection and identification of biological warfare pathogens by the nucleic acid recognition technique of PCR (polymerase chain reaction) in a multiplex mode using flow cytometry. The Hybrid instrument consists of a flow-through PCR module capable of handling a multiplexed PCR assay, a hybridizing module capable of hybridizing multiplexed PCR amplicons and beads, and a flow cytometer module for bead-based identification, all controlled by a single computer. Multiplex immunoassay using bead-based Luminex flow cytometry is available, allowing rapid screening for many agents. PCR is highly specific and complements and verifies immunoassay. It can also be multiplexed and detection provided using the bead-based Luminex flow cytometer. This approach allows full access to the speed and 100-fold multiplex capability of flow cytometry for rapid screening as well as the accuracy and specificity of PCR. This project has two principal activities: (1) Design, build and test a prototype hybrid PCR/flow cytometer with the basic capabilities for rapid, broad spectrum detection and identification, and (2) Develop and evaluate multiplex flow analysis assay protocols and reagents for the simultaneous detection of PCR products. This project requires not only building operationally functional instrumentation but also developing the chemical assays for detection of priority pathogens. This involves development and evaluation of multiplex flow analysis assay protocols and reagents for the simultaneous detection of PCR products.

  18. Profiling of multiple signal pathway activities by multiplexing antibody and GFP-based translocation assays.

    Science.gov (United States)

    Henriksen, Ulla; Fog, Jacob; Loechel, Frosty; Praestegaard, Morten

    2008-08-01

    Multiplexing of GFP based and immunofluorescence translocation assays enables easy acquisition of multiple readouts from the same cell in a single assay run. Immunofluorescence assays monitor translocation, phosphorylation, and up/down regulation of endogenous proteins. GFP-based assays monitor translocation of stably expressed GFP-fusion proteins. Such assays may be multiplexed along (vertical), across (horizontal), and between (branch) signal pathways. Examples of these strategies are presented: 1) The MK2-GFP assay monitors translocation of MK2-GFP from the nucleus to the cytoplasm in response to stimulation of the p38 pathway. By applying different immunofluorescent assays to the MK2 assay, a multiplexed HCA system is created for deconvolution of p38 pathway activation including assay readouts for MK2, p38, NFkappaB, and c-Jun. 2) A method for evaluating GPCR activation and internalization in a single assay run has been established by multiplexing GFP-based internalization assays with immunofluorescence assays for downstream transducers of GPCR activity: pCREB (cAMP sensor), NFATc1 (Ca(2+) sensor), and ERK (G-protein activation). Activation of the AT1 receptor is given as an example. 3) Cell toxicity readouts can be linked to primary readouts of interest via acquisition of secondary parameters describing cellular morphology. This approach is used to flag cytotoxic compounds and deselect false positives. The ATF6 Redistribution assay is provided as an example. These multiplex strategies provide a unique opportunity to enhance HCA data quality and save time during drug discovery. From a single assay run, several assay readouts are obtained that help the user to deconvolute the mode of action of test compounds.

  19. Measuring immunoglobulin g antibodies to tetanus toxin, diphtheria toxin, and pertussis toxin with single-antigen enzyme-linked immunosorbent assays and a bead-based multiplex assay.

    Science.gov (United States)

    Reder, Sabine; Riffelmann, Marion; Becker, Christian; Wirsing von König, Carl Heinz

    2008-05-01

    Bead-based assay systems offer the possibility of measuring several specific antibodies in one sample simultaneously. This study evaluated a vaccine panel of a multianalyte system that measures antibodies to tetanus toxin, diphtheria toxin, and pertussis toxin (PT) from Bordetella pertussis. The antibody concentrations of human immunoglobulin G (IgG) to PT, tetanus toxin, and diphtheria toxin were measured in 123 serum pairs (total of 246 sera) from a vaccine study. The multianalyte bead assay was compared to a standardized in-house IgG- anti-PT enzyme-linked immunosorbent assay (ELISA) of the German reference laboratory for bordetellae, as well as to various commercially available ELISAs for anti-PT IgG, anti-tetanus IgG, and anti-diphtheria IgG. The results of the multiplex assay regarding the antibodies against diphtheria toxin compared favorably with a regression coefficient of 0.938 for values obtained with an ELISA from the same manufacturer used as a reference. Similarly, antibodies to tetanus toxin showed a correlation of 0.910 between the reference ELISA and the multianalyte assay. A correlation coefficient of 0.905 was found when an "in-house" IgG anti-PT and the multiplex assay were compared. Compared to single ELISA systems from two other manufacturers, the multiplex assay performed similarly well or better. The multianalyte assay system was a robust system with fast and accurate results, analyzing three parameters simultaneously in one sample. The system was well suited to quantitatively determine relevant vaccine induced antibodies compared to in-house and commercially available single-antigen ELISA systems.

  20. Establishment of a Multiplex Real-Time Fluorescence Quantitative PCR Assay for Detection of Brucella and Mycobacterium tuberculosis%梅迪-维斯纳病毒和羊痘病毒多联实时定量PCR检测方法的建立及初步应用

    Institute of Scientific and Technical Information of China (English)

    徐军; 孙志华; 刘娟; 孟茹; 戴莉; 段晓东; 叶志辉

    2012-01-01

    To establish a method of multiplex real-time fluorescence quantitative PCR assay for fast diagnosis of Maedi-Visna virus (MVV) and Capripox virus (CPV). We designed and synthesized primers of MVV and CPV genes according to gene sequence published in GenBank,established multiplex RTFQ-PCR,then tested its stability,specificity and sensitivity,and detected the clinic and imitation samples with this method. The Tm of multiplex RT-PCR to amplify brucella and mycobacterium tuberculosis was 89~90 ℃ and 91~92 'C. But the results of the amplification of other bacteria were negative. The lowest detection limit for DNA of Brucella,MVV and CPV was 25 copies/μL,40 copies/μL,80 copies/μL,respectively. In conclusion,the assay could be used to detect CPV simultaneously.%利用多联实时荧光定量PCR技术建立了一种梅迪-维斯纳病毒和羊痘病毒快速鉴别诊断方法.分别设计并合成梅迪-维斯纳病毒和羊痘病毒基因的引物,建立多联实时定量PCR快速鉴别诊断方法;对所建立的方法进行稳定性、特异性和敏感性试验;并用所建立的方法对临床样品进行检测.结果显示:设计的引物敏感性和特异性较好,该多联实时荧光定量PCR方法中梅迪-维斯纳病毒Tm值为89~90℃,羊痘病毒Tm值为91~92℃,对其他供试的菌株则为阴性,并且该方法对梅迪-维斯纳病毒的DNA最低检出量为25拷贝/μL,羊痘病毒为40拷贝/μL,两病原都存在时为80拷贝/μL.研究结果表明本实验建立的方法可用于同时检测梅迪-维斯纳病毒和羊痘病毒,为动物检疫提供了一种有效的检测方法.

  1. Quantitative multiplex detection of biomarkers on a waveguide-based biosensor using quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Hongzhi [Los Alamos National Laboratory; Mukundan, Harshini [Los Alamos National Laboratory; Martinez, Jennifer S [Los Alamos National Laboratory; Swanson, Basil I [Los Alamos National Laboratory; Anderson, Aaron S [Los Alamos National Laboratory; Grace, Kevin [Los Alamos National Laboratory

    2009-01-01

    The quantitative, simultaneous detection of multiple biomarkers with high sensitivity and specificity is critical for biomedical diagnostics, drug discovery and biomarker characterization [Wilson 2006, Tok 2006, Straub 2005, Joos 2002, Jani 2000]. Detection systems relying on optical signal transduction are, in general, advantageous because they are fast, portable, inexpensive, sensitive, and have the potential for multiplex detection of analytes of interest. However, conventional immunoassays for the detection of biomarkers, such as the Enzyme Linked Immunosorbant Assays (ELISAs) are semi-quantitative, time consuming and insensitive. ELISA assays are also limited by high non-specific binding, especially when used with complex biological samples such as serum and urine (REF). Organic fluorophores that are commonly used in such applications lack photostability and possess a narrow Stoke's shift that makes simultaneous detection of multiple fluorophores with a single excitation source difficult, thereby restricting their use in multiplex assays. The above limitations with traditional assay platforms have resulted in the increased use of nanotechnology-based tools and techniques in the fields of medical imaging [ref], targeted drug delivery [Caruthers 2007, Liu 2007], and sensing [ref]. One such area of increasing interest is the use of semiconductor quantum dots (QDs) for biomedical research and diagnostics [Gao and Cui 2004, Voura 2004, Michalet 2005, Chan 2002, Jaiswal 2004, Gao 2005, Medintz 2005, So 2006 2006, Wu 2003]. Compared to organic dyes, QDs provide several advantages for use in immunoassay platforms, including broad absorption bands with high extinction coefficients, narrow and symmetric emission bands with high quantum yields, high photostablility, and a large Stokes shift [Michalet 2005, Gu 2002]. These features prompted the use of QDs as probes in biodetection [Michalet 2005, Medintz 2005]. For example, Jaiswal et al. reported long term multiple

  2. Development of a One-Step Multiplex PCR Assay for Differential Detection of Major Mycobacterium Species.

    Science.gov (United States)

    Chae, Hansong; Han, Seung Jung; Kim, Su-Young; Ki, Chang-Seok; Huh, Hee Jae; Yong, Dongeun; Koh, Won-Jung; Shin, Sung Jae

    2017-09-01

    The prevalence of tuberculosis continues to be high, and nontuberculous mycobacterial (NTM) infection has also emerged worldwide. Moreover, differential and accurate identification of mycobacteria to the species or subspecies level is an unmet clinical need. Here, we developed a one-step multiplex PCR assay using whole-genome analysis and bioinformatics to identify novel molecular targets. The aims of this assay were to (i) discriminate between the Mycobacterium tuberculosis complex (MTBC) and NTM using rv0577 or RD750, (ii) differentiate M. tuberculosis (M. tuberculosis) from MTBC using RD9, (iii) selectively identify the widespread M. tuberculosis Beijing genotype by targeting mtbk_20680, and (iv) simultaneously detect five clinically important NTM (M. avium, M. intracellulare, M. abscessus, M. massiliense, and M. kansasii) by targeting IS1311, DT1, mass_3210, and mkan_rs12360 An initial evaluation of the multiplex PCR assay using reference strains demonstrated 100% specificity for the targeted Mycobacterium species. Analytical sensitivity ranged from 1 to 10 pg for extracted DNA and was 10(3) and 10(4) CFU for pure cultures and nonhomogenized artificial sputum cultures, respectively, of the targeted species. The accuracy of the multiplex PCR assay was further evaluated using 55 reference strains and 94 mycobacterial clinical isolates. Spoligotyping, multilocus sequence analysis, and a commercial real-time PCR assay were employed as standard assays to evaluate the multiplex PCR assay with clinical M. tuberculosis and NTM isolates. The PCR assay displayed 100% identification agreement with the standard assays. Our multiplex PCR assay is a simple, convenient, and reliable technique for differential identification of MTBC, M. tuberculosis, M. tuberculosis Beijing genotype, and major NTM species. Copyright © 2017 American Society for Microbiology.

  3. Evaluation of Multiplex Type-Specific Real-Time PCR Assays Using the LightCycler and Joint Biological Agent Identification and Diagnostic System Platforms for Detection and Quantitation of Adult Human Respiratory Adenoviruses

    Science.gov (United States)

    2010-04-01

    causing bacteria . These assays have the potential to be useful as clinical diagnostic tools for the detection of HAdV infection in adult populations...conjunctivitis, genitouri- nary infections, and gastroenteritis , and specific types of ade- novirus are associated with specific types of disease (18, 21...react with other adenoviruses, influenza virus, respiratory syncytial virus, or respiratory disease-causing bacteria . These assays have the

  4. Respiratory virus multiplex RT-PCR assay sensitivities and influence factors in hospitalized children with lower respiratory tract infections.

    Science.gov (United States)

    Deng, Jikui; Ma, Zhuoya; Huang, Wenbo; Li, Chengrong; Wang, Heping; Zheng, Yuejie; Zhou, Rong; Tang, Yi-Wei

    2013-04-01

    Multiplex RT-PCR assays have been widely used tools for detection and differentiation of a panel of respiratory viral pathogens. In this study, we evaluated the Qiagen ResPlex II V2.0 kit and explored factors influencing its sensitivity. Nasopharyngeal swab (NPS) specimens were prospectively collected from pediatric inpatients with lower respiratory tract infections at the time of admission in the Shenzhen Children's Hospital from May 2009 to April 2010. Total nucleic acids were extracted using the EZ1 system (Qiagen, Germany) and 17 respiratory viruses and genotypes including influenza A virus (FluA), FluB, parainfluenza virus 1 (PIV1), PIV2, PIV3, PIV4, respiratory syncytial virus (RSV), human metapneumovirus (hMPV), rhinoviruses (RhV), enteroviruses (EnV), human bocaviruses (hBoV), adenoviruses (AdV), four coronaviruses (229E, OC43, NL63 and HKU1), and FluA 2009 pandemic H1N1(H1N1-p) were detected and identified by the ResPlex II kit. In parallel, 16 real-time TaqMan quantitative RT-PCR assays were used to quantitatively detect each virus except for RhV. Influenza and parainfluenza viral cultures were also performed. Among the total 438 NPS specimens collected during the study period, one or more viral pathogens were detected in 274 (62.6%) and 201(45.9%) specimens by monoplex TaqMan RT-PCR and multiplex ResPlex, respectively. When results from monoplex PCR or cell culture were used as the reference standard, the multiplex PCR possessed specificities of 92.9-100.0%. The sensitivity of multiplex PCR for PIV3, hMPV, PIV1 and BoV were 73.1%, 70%, 66.7% and 55.6%, respectively, while low sensitivities (11.1%-40.0%) were observed for FluA, EnV, OC43, RSV and H1N1. Among the seven viruses/genotypes detected with higher frequencies, multiplex PCR sensitivities were correlated significantly with viral loads determined by the TaqMan RT-PCR in FluA, H1N1-p and RSV (p=0.011-0.000). The Qiagen ResPlex II multiplex RT-PCR kit possesses excellent specificity for simultaneous

  5. A new multiplex polymerase chain reaction assay for the identification a panel of bacteria involved in bacteremia

    Directory of Open Access Journals (Sweden)

    Hossein Fazzeli

    2013-01-01

    Conclusions: The presented multiplex PCR offers a rapid and accurate molecular diagnostic tool for simultaneous detection of some pathogenic microorganisms. The IC exists in the multiplex PCR accompanied by other primers in the system, can serve as a simple, cost- effective internal control for the multiplex PCR assay.

  6. Development of a multiplex PCR assay detecting 52 autosomal SNPs

    DEFF Research Database (Denmark)

    Sanchez Sanchez, Juan Jose; Phillips, C.; Børsting, Claus

    2006-01-01

    be performed. The SNPforID consortium (www.snpforid.org) was established in 2003 with the principal goal of developing a SNP-based system of DNA analysis that would have comparable discrimination power and ease of use to those of existing short tandem repeat (STR) based techniques. Here, we describe a strategy...... for amplifying 52 genomic DNA fragments, each containing one SNP, in a single tube, and accurately genotyping the PCR product mixture using two single base extension reactions. This multiplex approach reduces the cost of SNP genotyping and requires as little as 0.5 ng of genomic DNA to detect 52 SNPs. We used...... a multiple injection approach for DNA sequencers that can effectively detect all the SNPs amplified in a single electrophoretic run. We present SNP data for 700 unrelated individuals from 9 populations...

  7. Multiplexed paper test strip for quantitative bacterial detection.

    Science.gov (United States)

    Hossain, S M Zakir; Ozimok, Cory; Sicard, Clémence; Aguirre, Sergio D; Ali, M Monsur; Li, Yingfu; Brennan, John D

    2012-06-01

    Rapid, sensitive, on-site detection of bacteria without a need for sophisticated equipment or skilled personnel is extremely important in clinical settings and rapid response scenarios, as well as in resource-limited settings. Here, we report a novel approach for selective and ultra-sensitive multiplexed detection of Escherichia coli (non-pathogenic or pathogenic) using a lab-on-paper test strip (bioactive paper) based on intracellular enzyme (β-galactosidase (B-GAL) or β-glucuronidase (GUS)) activity. The test strip is composed of a paper support (0.5 × 8 cm), onto which either 5-bromo-4-chloro-3-indolyl-β-D: -glucuronide sodium salt (XG), chlorophenol red β-galactopyranoside (CPRG) or both and FeCl(3) were entrapped using sol-gel-derived silica inks in different zones via an ink-jet printing technique. The sample was lysed and assayed via lateral flow through the FeCl(3) zone to the substrate area to initiate rapid enzyme hydrolysis of the substrate, causing a change from colorless-to-blue (XG hydrolyzed by GUS, indication of nonpathogenic E. coli) and/or yellow to red-magenta (CPRG hydrolyzed by B-GAL, indication of total coliforms). Using immunomagnetic nanoparticles for selective preconcentration, the limit of detection was ~5 colony-forming units (cfu) per milliliter for E. coli O157:H7 and ~20 cfu/mL for E. coli BL21, within 30 min without cell culturing. Thus, these paper test strips could be suitable for detection of viable total coliforms and pathogens in bathing water samples. Moreover, inclusion of a culturing step allows detection of less than 1 cfu in 100 mL within 8 h, making the paper tests strips relevant for detection of multiple pathogens and total coliform bacteria in beverage and food samples.

  8. A multiplex ligation detection assay for the characterization of Salmonella enterica strains

    DEFF Research Database (Denmark)

    Aarts, Henk J.M.; Vos, Pieter; Larsson, Jonas T.

    2011-01-01

    A proof of principle of a multi-target assay for genotyping Salmonella has been developed targeting 62 genomic marker sequences of Salmonella related to pathogenicity. The assay is based on multiplex ligation detection reaction (LDR) followed by customized ArrayTube® microarray detection. The fea......A proof of principle of a multi-target assay for genotyping Salmonella has been developed targeting 62 genomic marker sequences of Salmonella related to pathogenicity. The assay is based on multiplex ligation detection reaction (LDR) followed by customized ArrayTube® microarray detection...... of four serovars each serovar was characterized by a unique virulence associated gene repertoire. The LDR microarray platform proved to be a convenient, rapid and easy to use tool with potential in tracing a Salmonella contamination in the food chain, for outbreak studies, and to provide data for risk...

  9. Evaluation of Multiplexed Foot-and-Mouth Disease Nonstructural Protein Antibody Assay Against Standardized Bovine Serum Panel

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, J; Parida, S; Clavijo, A

    2007-05-14

    Liquid array technology has previously been used to show proof-of-principle of a multiplexed non structural protein serological assay to differentiate foot-and-mouth infected and vaccinated animals. The current multiplexed assay consists of synthetically produced peptide signatures 3A, 3B and 3D and recombinant protein signature 3ABC in combination with four controls. To determine diagnostic specificity of each signature in the multiplex, the assay was evaluated against a naive population (n = 104) and a vaccinated population (n = 94). Subsequently, the multiplexed assay was assessed using a panel of bovine sera generated by the World Reference Laboratory for foot-and-mouth disease in Pirbright, UK. This sera panel has been used to assess the performance of other singleplex ELISA-based non-structural protein antibody assays. The 3ABC signature in the multiplexed assay showed comparative performance to a commercially available non-structural protein 3ABC ELISA (Cedi test{reg_sign}) and additional information pertaining to the relative diagnostic sensitivity of each signature in the multiplex is acquired in one experiment. The encouraging results of the evaluation of the multiplexed assay against a panel of diagnostically relevant samples promotes further assay development and optimization to generate an assay for routine use in foot-and-mouth disease surveillance.

  10. Development of silicon photonic microring resonator biosensors for multiplexed cytokine assays and in vitro diagnostics

    Science.gov (United States)

    Luchansky, Matthew Sam

    In order to guide critical care therapies that are personalized to a patient's unique disease state, a diagnostic or theranostic medical device must quickly provide a detailed biomolecular understanding of disease onset and progression. This detailed molecular understanding of cellular processes and pathways requires the ability to measure multiple analytes in parallel. Though many traditional sensing technologies for biomarker analysis and fundamental biological studies (i.e. enzyme-linked immunosorbent assays, real-time polymerase chain reaction, etc.) rely on single-parameter measurements, it has become increasingly clear that the inherent complexity of many human illnesses and pathways necessitates quantitative and multiparameter analysis of biological samples. Currently used analytical methods are deficient in that they often provide either highly quantitative data for a single biomarker or qualitative data for many targets, but methods that simultaneously provide highly quantitative analysis of many targets have yet to be adequately developed. Fields such as medical diagnostics and cellular biology would benefit greatly from a technology that enables rapid, quantitative and reproducible assays for many targets within a single sample. In an effort to fill this unmet need, this doctoral dissertation describes the development of a clinically translational biosensing technology based on silicon photonics and developed in the chemistry research laboratory of Ryan C. Bailey. Silicon photonic microring resonators, a class of high-Q optical sensors, represent a promising platform for rapid, multiparameter in vitro measurements. The original device design utilizes 32-ring arrays for real-time biomolecular sensing without fluorescent labels, and these optical biosensors display great potential for more highly multiplexed (100s-1000s) measurements based on the impressive scalability of silicon device fabrication. Though this technology can be used to detect a variety of

  11. A multiplex endpoint RT-PCR assay for quality assessment of RNA extracted from formalin-fixed paraffin-embedded tissues

    Directory of Open Access Journals (Sweden)

    Dobrovic Alexander

    2010-12-01

    Full Text Available Abstract Background RNA extracted from formalin-fixed paraffin-embedded (FFPE samples is chemically modified and degraded, which compromises its use in gene expression studies. Most of the current approaches for RNA quality assessment are not suitable for FFPE derived RNA. Results We have developed a single-tube multiplex endpoint RT-PCR assay specifically designed to evaluate RNA extracted from FFPE tissues for mRNA integrity and performance in reverse transcription - quantitative real-time PCR (RT-qPCR assays. This single-tube quality control (QC assay minimises the amount of RNA used in quality control. mRNA integrity and the suitability of RNA for RT-PCR is evaluated by the multiplex endpoint RT-PCR assay using the TBP gene mRNA as the target sequence. The RT-PCR amplicon sizes, 92, 161, 252 and 300 bp, cover a range of amplicon sizes suitable for a wide range of RT-qPCR assays. The QC assay was used to evaluate RNA prepared by two different protocols for extracting total RNA from needle microdissected FFPE breast tumour samples. The amplification products were analysed by gel electrophoresis where the spectrum of amplicon sizes indicated the level of RNA degradation and thus the suitability of the RNA for PCR. The ability of the multiplex endpoint RT-PCR QC assay to identify FFPE samples with an adequate RNA quality was validated by examining the Cq values of an RT-qPCR assay with an 87 bp amplicon. Conclusions The multiplex endpoint RT-PCR assay is well suited for the determination of the quality of FFPE derived RNAs, to identify which RT-PCR assays they are suitable for, and is also applicable to assess non-FFPE RNA for gene expression studies. Furthermore, the assay can also be used for the evaluation of RNA extraction protocols from FFPE samples.

  12. Digital magnetic tagging for multiplexed suspension-based biochemical assays

    Science.gov (United States)

    Mitrelias, T.; Trypiniotis, T.; Palfreyman, J. J.; Hong, B.; Vyas, K.; Hayward, T. J.; Llandro, J.; Kopper, K. P.; Bland, J. A. C.; Robertson, P. A.; Barnes, C. H. W.

    2009-04-01

    Microarrays and suspension (or bead)-based technologies have attracted significant interest for their broad applications in high throughput molecular biology. However, the throughput of microarrays will always be limited by the array density and the slow diffusion of molecules to their binding sites. Suspension-based technologies, in which all the reactions take place directly on the surface of microcarriers functionalized with molecular probes, could offer true multiplexing due to the possibility of extending their detection capability by a straightforward expansion of the size of the chemical library of probes. To fully exploit their potential, the microcarriers must be tagged, but the number of distinct codes available from spectrometric/graphical/physical encoding methods is currently fairly limited. A digital magnetic tagging method based on magnetic microtags, which have been anisotropy engineered to provide stable magnetization directions which correspond to digital codes, is reported. The tags can be suspended in solution and functionalized with a variety of biological molecular probes. Magnetic tagging offers several benefits compared to the traditional optical encoding techniques currently employed. It offers minimal background signals, potential for a large number of distinct codes, miniaturization of devices, and the ability to write a code in situ. Experimental data showing the reading of individual magnetic microbars from samples comprising 50×20 μm2 Ni elements, as well as micromagnetic simulations that show the feasibility of stray field detection, are presented. The stray fields of the magnetic microbars spanning a range of 60 mOe were detected by a microfabricated fluxgate sensor scanned in a raster fashion over the sample that was placed about 70 μm away. Free floating tags have also been fabricated for use in microfluidic systems. A magnetic lab-on-a-chip device could be used for tagging biomolecular probes for applications in genome

  13. Development and inter-laboratory assessment of droplet digital PCR assays for multiplex quantification of 15 genetically modified soybean lines.

    Science.gov (United States)

    Košir, Alexandra Bogožalec; Spilsberg, Bjørn; Holst-Jensen, Arne; Žel, Jana; Dobnik, David

    2017-08-17

    Quantification of genetically modified organisms (GMOs) in food and feed products is often required for their labelling or for tolerance thresholds. Standard-curve-based simplex quantitative polymerase chain reaction (qPCR) is the prevailing technology, which is often combined with screening analysis. With the rapidly growing number of GMOs on the world market, qPCR analysis becomes laborious and expensive. Innovative cost-effective approaches are therefore urgently needed. Here, we report the development and inter-laboratory assessment of multiplex assays to quantify GMO soybean using droplet digital PCR (ddPCR). The assays were developed to facilitate testing of foods and feed for compliance with current GMO regulations in the European Union (EU). Within the EU, the threshold for labelling is 0.9% for authorised GMOs per ingredient. Furthermore, the EU has set a technical zero tolerance limit of 0.1% for certain unauthorised GMOs. The novel multiplex ddPCR assays developed target 11 GMO soybean lines that are currently authorised, and four that are tolerated, pending authorisation in the EU. Potential significant improvements in cost efficiency are demonstrated. Performance was assessed for the critical parameters, including limits of detection and quantification, and trueness, repeatability, and robustness. Inter-laboratory performance was also determined on a number of proficiency programme and real-life samples.

  14. Multiplex PCR Assay for Identifi cation and Differentiation of Campylobacter jejuni and Campylobacter coli Isolates.

    Science.gov (United States)

    Pavlova, Maria R; Dobreva, Elina G; Ivanova, Katucha I; Asseva, Galina D; Ivanov, Ivan N; Petrov, Peter K; Velev, Valeri R; Tomova, Ivelina I; Tiholova, Maida M; Kantardjiev, Todor V

    2016-01-01

    Campylobacter spp. are important causative agents of gastrointestinal infections in humans. The most frequently isolated strains of this bacterial genus are Campylobacter jejuni and Campylobacter coli. To date, genetic methods for bacterial identification have not been used in Bulgaria. We optimized the multiplex PSR assay to identify Campylobacter spp. and differentiate C. jejuni from C. coli in clinical isolates. We also compared this method with the routinely used biochemical methods. To identify Campylobacter spp. and discriminate C. coli from C. jejuni in clinical isolates using multiplex PCR assay. Between February 2014 and January 2015 we studied 93 stool samples taken from patients with diarrheal syndrome and identified 40 species of Campylobacter spp. in them. The clinical material was cultured in microaerophilic atmosphere, the isolated strains being biochemically diff erentiated (hydrolysis of sodium hippurate for C. jejuni, and hydrolysis of indoxyl acetate for C. coli). DNA was isolated from the strains using QiaAmp MiniKit (QIAGEN, Germany). Twenty strains were tested with multiplex PCR for the presence of these genes: cadF, characteristic for Campylobacter spp., hipO for C. jejuni and asp for C. coli. The biochemical tests identified 16 strains of C. jejuni, 3 strains of C. coli, and 1 strain of C. upsaliensis. After the multiplex PCR assay the capillary gel electrophoresis confirmed 16 strains of C. jejuni, 2 strains of C. coli and 2 strains of Campylobacter spp. - because of the presence of the gene cadF. C. jejuni has the gene hipO, and it is possible that this gene may not be expressed in the biochemical differentiation yielding a negative reaction as a result. In comparison, we can conclude that the genetic differentiation is a more accurate method than the biochemical tests. The multiplex PCR assay is a fast, accurate method for identifi cation of Campylobacter spp. which makes it quite necessary in the clinical diagnostic practice.

  15. A tissue biopsy-based epigenetic multiplex PCR assay for prostate cancer detection

    Directory of Open Access Journals (Sweden)

    Van Neste Leander

    2012-06-01

    Full Text Available Abstract Background PSA-directed prostate cancer screening leads to a high rate of false positive identifications and an unnecessary biopsy burden. Epigenetic biomarkers have proven useful, exhibiting frequent and abundant inactivation of tumor suppressor genes through such mechanisms. An epigenetic, multiplex PCR test for prostate cancer diagnosis could provide physicians with better tools to help their patients. Biomarkers like GSTP1, APC and RASSF1 have demonstrated involvement with prostate cancer, with the latter two genes playing prominent roles in the field effect. The epigenetic states of these genes can be used to assess the likelihood of cancer presence or absence. Results An initial test cohort of 30 prostate cancer-positive samples and 12 cancer-negative samples was used as basis for the development and optimization of an epigenetic multiplex assay based on the GSTP1, APC and RASSF1 genes, using methylation specific PCR (MSP. The effect of prostate needle core biopsy sample volume and age of formalin-fixed paraffin-embedded (FFPE samples was evaluated on an independent follow-up cohort of 51 cancer-positive patients. Multiplexing affects copy number calculations in a consistent way per assay. Methylation ratios are therefore altered compared to the respective singleplex assays, but the correlation with patient outcome remains equivalent. In addition, tissue-biopsy samples as small as 20 μm can be used to detect methylation in a reliable manner. The age of FFPE-samples does have a negative impact on DNA quality and quantity. Conclusions The developed multiplex assay appears functionally similar to individual singleplex assays, with the benefit of lower tissue requirements, lower cost and decreased signal variation. This assay can be applied to small biopsy specimens, down to 20 microns, widening clinical applicability. Increasing the sample volume can compensate the loss of DNA quality and quantity in older samples.

  16. A multiplex real-time polymerase chain reaction assay to diagnose Epiphyas postvittana (Lepidoptera: Tortricidae).

    Science.gov (United States)

    Barr, N B; Ledezma, L A; Farris, R E; Epstein, M E; Gilligan, T M

    2011-10-01

    A molecular assay for diagnosis of light brown apple moth, Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae), in North America is reported. The assay multiplexes two TaqMan real-time polymerase chain reaction (RT-PCR) probe systems that are designed to target DNA segments of the internal transcribed spacer region 2 (ITS2) and 18S rRNA gene. The RT-PCR probe designed for the 18S target recognizes a DNA sequence conserved in all of the moths included in the study and functions as a control in the assay. The second probe recognizes a segment of the ITS2 specifically found in E. postvittana and not found in the other moths included in the study, i.e., this segment is not conserved. Inclusion of the two markers in a single multiplex reaction did not affect assay performance. The assay was tested against 637 moths representing > 90 taxa in 15 tribes in all three subfamilies in the Tortricidae. The assay generated no false negatives based on analysis of 355 E. postvittana collected from California, Hawaii, England, New Zealand, and Australia. Analysis of a data set including 282 moths representing 41 genera generated no false positives. Only three inconclusive results were generated from the 637 samples. Spike experiments demonstrated that DNA contamination in the assay can affect samples differently. Contaminated samples analyzed with the ITS2 RT-PCR assay and DNA barcode methodology by using the cytochrome oxidase I gene can generate contradictory diagnoses.

  17. Development of a multiplex real-time RT-PCR assay for simultaneous detection of dengue and chikungunya viruses.

    Science.gov (United States)

    Cecilia, D; Kakade, M; Alagarasu, K; Patil, J; Salunke, A; Parashar, D; Shah, P S

    2015-01-01

    Dengue and chikungunya viruses co-circulate and cause infections that start with similar symptoms but progress to radically different outcomes. Therefore, an early diagnostic test that can differentiate between the two is needed. A single-step multiplex real-time RT-PCR assay was developed that can simultaneously detect and quantitate RNA of all dengue virus (DENV) serotypes and chikungunya virus (CHIKV). The sensitivity was 100 % for DENV and 95.8 % for CHIKV, whilst the specificity was 100 % for both viruses when compared with conventional RT-PCR. The detection limit ranged from 1 to 50 plaque-forming units. The assay was successfully used for differential diagnosis of dengue and chikungunya in Pune, where the viruses co-circulate.

  18. Performance of an automated multiplex immunofluorescence assay for detection of Chlamydia trachomatis immunoglobulin G.

    Science.gov (United States)

    Baud, David; Zufferey, Jade; Hohlfeld, Patrick; Greub, Gilbert

    2014-03-01

    Chlamydia serology is indicated to investigate etiology of miscarriage, infertility, pelvic inflammatory disease, and ectopic pregnancy. Here, we assessed the reliability of a new automated-multiplex immunofluorescence assay (InoDiag test) to detect specific anti-C. trachomatis immunoglobulin G. Considering immunofluorescence assay (IF) as gold standard, InoDiag tests exhibited similar sensitivities (65.5%) but better specificities (95.1%-98%) than enzyme-linked immunosorbent assays (ELISAs). InoDiag tests demonstrated similar or lower cross-reactivity rates when compared to ELISA or IF.

  19. Multiplex polymerase chain reaction-capillary gel electrophoresis: a promising tool for GMO screening--assay for simultaneous detection of five genetically modified cotton events and species.

    Science.gov (United States)

    Nadal, Anna; Esteve, Teresa; Pla, Maria

    2009-01-01

    A multiplex polymerase chain reaction assay coupled to capillary gel electrophoresis for amplicon identification by size and color (multiplex PCR-CGE-SC) was developed for simultaneous detection of cotton species and 5 events of genetically modified (GM) cotton. Validated real-time-PCR reactions targeting Bollgard, Bollgard II, Roundup Ready, 3006-210-23, and 281-24-236 junction sequences, and the cotton reference gene acp1 were adapted to detect more than half of the European Union-approved individual or stacked GM cotton events in one reaction. The assay was fully specific (PCR-CGE-SC assay to allow simultaneous detection of 6 cotton and 5 maize targets (two endogenous genes and 9 GM events) in two multiplex PCRs and a single CGE, making the approach more economic. Besides allowing simultaneous detection of many targets with adequate specificity and sensitivity, the multiplex PCR-CGE-SC approach has high throughput and automation capabilities, while keeping a very simple protocol, e.g., amplification and labeling in one step. Thus, it is an easy and inexpensive tool for initial screening, to be complemented with quantitative assays if necessary.

  20. Multiplex Assay for Protein Profiling and Potency Measurement of German Cockroach Allergen Extracts.

    Directory of Open Access Journals (Sweden)

    Taruna Khurana

    Full Text Available German cockroach (GCr allergens induce IgE responses and may cause asthma. Commercial GCr allergen extracts are variable and existing assays may not be appropriate for determining extract composition and potency.Our aim was to develop a multiplex antibody/bead-based assay for assessment of GCr allergen extracts.Single chain fragment variable (scFv antibodies against GCr were obtained by screening libraries derived from naïve human lymphocytes and hyperimmunized chicken splenocytes and bone marrow. Selected clones were sequenced and characterized by immunoblotting. Eighteen scFv antibodies (17 chicken, 1 human coupled to polystyrene beads were used in this suspension assay; binding of targeted GCr allergens to antibody-coated beads was detected using rabbit antisera against GCr, and against specific allergens rBla g 1, rBla g 2, and rBla g 4. The assay was tested for specificity, accuracy, and precision. Extracts were also compared by IgE competition ELISA.Chicken scFv's generated eight different binding patterns to GCr proteins from 14 to 150 kDa molecular weight. Human scFv's recognized a 100 kDa GCr protein. The multiplex assay was found to be specific and reproducible with intra-assay coefficient of variation (CV of 2.64% and inter-assay CV of 10.0%. Overall potencies of various GCr extracts were calculated using mean logEC50s for eight selected scFvs. Overall potency measures were also analyzed by assessing the contributions to potency of each target.An scFv antibody-based multiplex assay has been developed capable of simultaneously measuring different proteins in a complex mixture, and to determine the potencies and compositions of allergen extracts.

  1. Multiplexed Molecular Assays for Rapid Rule-Out of Foot-and-Mouth Disease

    Energy Technology Data Exchange (ETDEWEB)

    Lenhoff, R; Naraghi-Arani, P; Thissen, J; Olivas, J; Carillo, C; Chinn, C; Rasmussen, M; Messenger, S; Suer, L; Smith, S M; Tammero, L; Vitalis, E; Slezak, T R; Hullinger, P J; Hindson, B J; Hietala, S; Crossley, B; Mcbride, M

    2007-06-26

    A nucleic acid-based multiplexed assay was developed that combines detection of foot-and-mouth disease virus (FMDV) with rule-out assays for two other foreign animal diseases and four domestic animal diseases that cause vesicular or ulcerative lesions indistinguishable from FMDV infection in cattle, sheep and swine. The FMDV 'look-alike' diagnostic assay panel contains five PCR and twelve reverse transcriptase PCR (RT-PCR) signatures for a total of seventeen simultaneous PCR amplifications for seven diseases plus incorporating four internal assay controls. It was developed and optimized to amplify both DNA and RNA viruses simultaneously in a single tube and employs Luminex{trademark} liquid array technology. Assay development including selection of appropriate controls, a comparison of signature performance in single and multiplex testing against target nucleic acids, as well of limits of detection for each of the individual signatures is presented. While this assay is a prototype and by no means a comprehensive test for FMDV 'look-alike' viruses, an assay of this type is envisioned to have benefit to a laboratory network in routine surveillance and possibly for post-outbreak proof of freedom from foot-and-mouth disease.

  2. Evaluation of multiplex ligation-dependent probe amplification analysis versus multiplex polymerase chain reaction assays in the detection of dystrophin gene rearrangements in an Iranian population subset

    Directory of Open Access Journals (Sweden)

    Nayereh Nouri

    2014-01-01

    Full Text Available Background: The Duchenne muscular dystrophy (DMD gene is located in the short arm of the X chromosome (Xp21. It spans 2.4 Mb of the human genomic DNA and is composed of 79 exons. Mutations in the Dystrophin gene result in DMD and Becker muscular dystrophy. In this study, the efficiency of multiplex ligation-dependent probe amplification (MLPA over multiplex polymerase chain reaction (PCR assays in an Iranian population was investigated. Materials and Methods: Multiplex PCR assays and MLPA analysis were carried out in 74 patients affected with DMD. Results: Multiplex PCR detected deletions in 51% of the patients with DMD. MLPA analysis could determine all the deletions detected by the multiplex PCR. Additionally, MLPA was able to identify one more deletion and duplication in patients without detectable mutations by multiplex PCR. Moreover, MLPA precisely determined the exact size of the deletions. Conclusion: Although MLPA analysis is more sensitive for detection of deletions and duplications in the dystrophin gene, multiplex PCR might be used for the initial analysis of the boys affected with DMD in the Iranian population as it was able to detect 95% of the rearrangements in patients with DMD.

  3. Development and evaluation of a multiplex screening assay for Plasmodium falciparum exposure

    DEFF Research Database (Denmark)

    Jepsen, Micha Phill Grønholm; Röser, Dennis; Christiansen, Michael

    2012-01-01

    . falciparum malaria was calculated by comparing travelers with clinical malaria (n=52) and non-exposed blood donors (n=119). The index was evaluated on blood donors with suspected malaria exposure (n=249) and compared to the diagnostic performance of IFAT. At a specificity of 95.8 %, the MPA discrimination...... from the MPA exhibits similar diagnostic performance as IFAT for detection of P. falciparum malaria. Combining the antibody response against multiple antigens in a discrimination index increased the sensitivity of the MPA and reduced the readout to a single value....... performance of a multiplex assay for detection of antibodies against Plasmodium falciparum in donor blood using IFAT as a comparator. A multiplex assay (MPA) containing the antigens GLURP-R0, GLURP-R2, MSP3, MSP1 hybrid and AMA1 was constructed using xMAP® technology. A discrimination index for exposure to P...

  4. Quantitative proteomic profiling of breast cancers using a multiplexed microfluidic platform for immunohistochemistry and immunocytochemistry.

    Science.gov (United States)

    Kim, Minseok S; Kwon, Seyong; Kim, Taemin; Lee, Eun Sook; Park, Je-Kyun

    2011-02-01

    This paper describes a multiplexed microfluidic immunohistochemistry (IHC)/immunocytochemistry (ICC) platform for quantitative proteomic profiling in breast cancer samples. Proteomic profiling via ICC was examined for four breast cancer cell lines (AU-565, HCC70, MCF-7, and SK-BR-3). The microfluidic device enabled 20 ICC assays on a biological specimen at the same time and a 16-fold decrease in time consumption, and could be used to quantitatively compare the expression level of each biomarker. The immunohistochemical staining from the microfluidic system showed an accurate localization of protein and comparable quality to that of the conventional IHC method. Although AU-565 and SK-BR-3 cell lines were classified by luminal subtype and adenocarcinomas and were derived from the same patient, weak p63 expression was seen only in SK-BR-3. The HCC70 cell line showed a triple-negative (estrogen receptor-negative/progesterone receptor-negative/human epidermal growth factor receptor 2-negative) phenotype and showed only cytokeratin 5 expression, a representative basal/myoepithelial cell marker. To demonstrate the applicability of the system to clinical samples for proteomic profiling, we were also able to apply this platform to human breast cancer tissue. This result indicates that the microfluidic IHC/ICC platform is useful for accurate histopathological diagnoses using numerous specific biomarkers simultaneously, facilitating the individualization of cancer therapy.

  5. Real-time multiplex PCR assay for detection of Yersinia pestis and Yersinia pseudotuberculosis.

    Science.gov (United States)

    Matero, Pirjo; Pasanen, Tanja; Laukkanen, Riikka; Tissari, Päivi; Tarkka, Eveliina; Vaara, Martti; Skurnik, Mikael

    2009-01-01

    A multiplex real-time polymerase chain reaction (PCR) assay was developed for the detection of Yersinia pestis and Yersinia pseudotuberculosis. The assay includes four primer pairs, two of which are specific for Y. pestis, one for Y. pestis and Y. pseudotuberculosis and one for bacteriophage lambda; the latter was used as an internal amplification control. The Y. pestis-specific target genes in the assay were ypo2088, a gene coding for a putative methyltransferase, and the pla gene coding for the plasminogen activator. In addition, the wzz gene was used as a target to specifically identify both Y. pestis and the closely related Y. pseudotuberculosis group. The primer and probe sets described for the different genes can be used either in single or in multiplex PCR assays because the individual probes were designed with different fluorochromes. The assays were found to be both sensitive and specific; the lower limit of the detection was 10-100 fg of extracted Y. pestis or Y. pseudotuberculosis total DNA. The sensitivity of the tetraplex assay was determined to be 1 cfu for the ypo2088 and pla probe labelled with FAM and JOE fluorescent dyes, respectively.

  6. Development of multiplex serological assay for the detection of human African trypanosomiasis.

    Science.gov (United States)

    Nzou, Samson Muuo; Fujii, Yoshito; Miura, Masashi; Mwau, Matilu; Mwangi, Anne Wanjiru; Itoh, Makoto; Salam, Md Abdus; Hamano, Shinjiro; Hirayama, Kenji; Kaneko, Satoshi

    2016-04-01

    Human African trypanosomiasis (HAT) is a disease caused by Kinetoplastid infection. Serological tests are useful for epidemiological surveillance. The aim of this study was to develop a multiplex serological assay for HAT to assess the diagnostic value of selected HAT antigens for sero-epidemiological surveillance. We cloned loci encoding eight antigens from Trypanosoma brucei gambiense, expressed the genes in bacterial systems, and purified the resulting proteins. Antigens were subjected to Luminex multiplex assays using sera from HAT and VL patients to assess the antigens' immunodiagnostic potential. Among T. b. gambiense antigens, the 64-kDa and 65-kDa invariant surface glycoproteins (ISGs) and flagellar calcium binding protein (FCaBP) had high sensitivity for sera from T. b. gambiense patients, yielding AUC values of 0.871, 0.737 and 0.858 respectively in receiver operating characteristics (ROC) analysis. The ISG64, ISG65, and FCaBP antigens were partially cross-reactive to sera from Trypanosoma brucei rhodesiense patients. The GM6 antigen was cross-reactive to sera from T. b. rhodesiense patients as well as to sera from VL patients. Furthermore, heterogeneous antibody responses to each individual HAT antigen were observed. Testing for multiple HAT antigens in the same panel allowed specific and sensitive detection. Our results demonstrate the utility of applying multiplex assays for development and evaluation of HAT antigens for use in sero-epidemiological surveillance.

  7. Expansion of a SNaPshot assay to a 55-SNP multiplex: Assay enhancements, validation, and power in forensic science.

    Science.gov (United States)

    Wang, Qian; Fu, Lihong; Zhang, Xiaojing; Dai, Xinyu; Bai, Mei; Fu, Guangping; Cong, Bin; Li, Shujin

    2016-05-01

    A previously developed multiplex assay with 44 individual identification SNPs was expanded to a 55plex assay. Fifty-four highly informative SNPs and an amelogenin sex marker were amplified in one PCR reaction and then detected with two SNaPshot reactions using CE. PCR primers for four loci, 28 single-base extension primers, and the reaction conditions were altered to improve the robustness of the method. A detailed approach for allele calling was developed to guide analysis of the electropherogram. One hundred and eighty unrelated individuals and 100 father-child-mother trios of the Han population in Hebei, China were analyzed. No mutation was found in the SNP loci. The combined mean match probability and cumulative probability of exclusion were 1.327 × 10(-22) and 0.999932, respectively. Analysis of the 54 SNPs and 26 STRs (included in the AmpFLSTR Identifiler and Investigator HDplex kits) showed no significant linkage disequilibriums. Our research shows that the expanded SNP multiplex assay is an easily performed and valuable method to supplement STR analysis.

  8. Respiratory Virus Multiplex RT-PCR Assay Sensitivities and Influence Factors in Hospitalized Children with Lower Respiratory Tract Infections

    Institute of Scientific and Technical Information of China (English)

    Jikui Deng; Zhuoya Ma; Wenbo Huang; Chengrong Li; Heping Wang; Yuejie Zheng; Rong Zhou

    2013-01-01

    Multiplex RT-PCR assays have been widely used tools for detection and differentiation of a panel of respiratory viral pathogens.In this study,we evaluated the Qiagen ResPlex Ⅱ V2.0 kit and explored factors influencing its sensitivity.Nasopharyngeal swab (NPS) specimens were prospectively collected from pediatric inpatients with lower respiratory tract infections at the time of admission in the Shenzhen Children's Hospital from May 2009 to April 2010.Total nucleic acids were extracted using the EZ1 system (Qiagen,Germany) and 17 respiratory viruses and genotypes including influenza A virus (FluA),FluB,parainfluenza virus 1 (PIV1),PIV2,PIV3,PIV4,respiratory syncytial virus (RSV),human metapneumovirus (hMPV),rhinoviruses (RhV),enteroviruses (EnV),human bocaviruses (hBoV),adenoviruses (AdV),four coronaviruses (229E,OC43,NL63 and HKU1),and FluA 2009 pandemic H1N1(H1N1-p) were detected and identified by the ResPlex Ⅱ kit.In parallel,16 real-time TaqMan quantitative RT-PCR assays were used to quantitatively detect each virus except for RhV.Influenza and parainfluenza viral cultures were also performed.Among the total 438 NPS specimens collected during the study period,one or more viral pathogens were detected in 274 (62.6%) and 201(45.9%) specimens by monoplex TaqMan RT-PCR and multiplex ResPlex,respectively.When results from monoplex PCR or cell culture were used as the reference standard,the multiplex PCR possessed specificities of 92.9-100.0%.The sensitivity of multiplex PCR for PIV3,hMPV,PIV1 and BoV were 73.1%,70%,66.7% and 55.6%,respectively,while low sensitivities (11.1%-40.0%) were observed for FluA,EnV,OC43,RSV and H1N1.Among the seven viruses/genotypes detected with higher frequencies,multiplex PCR sensitivities were correlated significantly with viral loads determined by the TaqMan RT-PCR in F luA,H 1N 1-p and RSV (p=0.011-0.000).The Qiagen ResPlex Ⅱ multiplex RT-PCR kit possesses excellent specificity for simultaneous detection of 17

  9. A MULTIPLEXED ASSAY FOR DETERMINATION OF NEUROTOXICANT EFFECTS ON SPONTANEOUS NETWORK ACTIVITY AND CELL VIABILITY FROM MICROELECTRODE ARRAYS

    Science.gov (United States)

    AbstractTITLE: A MULTIPLEXED ASSAY FOR DETERMINATION OF NEUROTOXICANT EFFECTS ON SPONTANEOUS NETWORK ACTIVITY AND CELL VIABILITY FROM MICROELECTRODE ARRAYSABSTRACT BODY: Microelectrode array (MEA) recordings are increasingly being used as an in vitro method to detect and characte...

  10. Multiplexed Nucleic Acid Hybridization Assays Using Single-FRET-Pair Distance-Tuning.

    Science.gov (United States)

    Qiu, Xue; Guo, Jiajia; Jin, Zongwen; Petreto, Alexandra; Medintz, Igor L; Hildebrandt, Niko

    2017-07-01

    Multiplexed photoluminescence (PL) detection plays an important role in chemical and biological sensing. Here, it is shown that time-gated (TG) detection of a single terbium-donor-based Förster resonance energy transfer (FRET) pair can be used to selectively quantify low nanomolar concentrations of multiple DNAs or microRNAs in a single sample. This study demonstrates the applicability of single-TG-FRET-pair multiplexing for molecular (Tb-to-dye) and nanoparticle (Tb-to-quantum-dot) biosensing. Both systems use acceptor-sensitization and donor-quenching for quantifying biomolecular recognition and modification of the donor-acceptor distance for tuning the PL decays. TG intensity detection provides extremely low background noise and a quick and simple one-step assay format. Single-TG-FRET-pair multiplexing can be combined with spectral and spatial resolution, paving the way for biosensing with unprecedented high-order multiplexing capabilities. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Rapid identification of Acinetobacter baumannii, Acinetobacter nosocomialis and Acinetobacter pittii with a multiplex PCR assay.

    Science.gov (United States)

    Chen, Te-Li; Lee, Yi-Tzu; Kuo, Shu-Chen; Yang, Su-Pen; Fung, Chang-Phone; Lee, Shou-Dong

    2014-09-01

    Acinetobacter baumannii, Acinetobacter nosocomialis and Acinetobacter pittii are clinically relevant members of the Acinetobacter calcoaceticus-A. baumannii (Acb) complex and important nosocomial pathogens. These three species are genetically closely related and phenotypically similar; however, they differ in their epidemiology, antibiotic resistance and pathogenicity. In this study, we investigated the use of a multiplex PCR-based assay designed to detect internal fragments of the 16S-23S rRNA intergenic region and the gyrB and recA genes. The assay was capable of differentiating A. baumannii, A. nosocomialis and A. pittii in a reliable manner. In 23 different reference strains and 89 clinical isolates of Acinetobacter species, the assay accurately identified clinically relevant Acb complex species except those 'between 1 and 3' or 'close to 13TU'. None of the non-Acb complex species was misidentified. In an analysis of 1034 positive blood cultures, the assay had a sensitivity of 92.4 % and specificity of 98.2 % for Acb complex identification. Our results show that a single multiplex PCR assay can reliably differentiate clinically relevant Acb complex species. Thus, this method may be used to better understand the clinical differences between infections caused by these species.

  12. Differentiating Botulinum Neurotoxin-Producing Clostridia with a Simple, Multiplex PCR Assay.

    Science.gov (United States)

    Williamson, Charles H D; Vazquez, Adam J; Hill, Karen; Smith, Theresa J; Nottingham, Roxanne; Stone, Nathan E; Sobek, Colin J; Cocking, Jill H; Fernández, Rafael A; Caballero, Patricia A; Leiser, Owen P; Keim, Paul; Sahl, Jason W

    2017-09-15

    Diverse members of the genus Clostridium produce botulinum neurotoxins (BoNTs), which cause a flaccid paralysis known as botulism. While multiple species of clostridia produce BoNTs, the majority of human botulism cases have been attributed to Clostridium botulinum groups I and II. Recent comparative genomic studies have demonstrated the genomic diversity within these BoNT-producing species. This report introduces a multiplex PCR assay for differentiating members of C. botulinum group I, C. sporogenes, and two major subgroups within C. botulinum group II. Coding region sequences unique to each of the four species/subgroups were identified by in silico analyses of thousands of genome assemblies, and PCR primers were designed to amplify each marker. The resulting multiplex PCR assay correctly assigned 41 tested isolates to the appropriate species or subgroup. A separate PCR assay to determine the presence of the ntnh gene (a gene associated with the botulinum neurotoxin gene cluster) was developed and validated. The ntnh gene PCR assay provides information about the presence or absence of the botulinum neurotoxin gene cluster and the type of gene cluster present (ha positive [ha(+)] or orfX(+)). The increased availability of whole-genome sequence data and comparative genomic tools enabled the design of these assays, which provide valuable information for characterizing BoNT-producing clostridia. The PCR assays are rapid, inexpensive tests that can be applied to a variety of sample types to assign isolates to species/subgroups and to detect clostridia with botulinum neurotoxin gene (bont) clusters.IMPORTANCE Diverse clostridia produce the botulinum neurotoxin, one of the most potent known neurotoxins. In this study, a multiplex PCR assay was developed to differentiate clostridia that are most commonly isolated in connection with human botulism cases: C. botulinum group I, C. sporogenes, and two major subgroups within C. botulinum group II. Since BoNT-producing and

  13. Multiplex real-time PCR assay for rapid detection of methicillin-resistant staphylococci directly from positive blood cultures.

    Science.gov (United States)

    Wang, Hye-Young; Kim, Sunghyun; Kim, Jungho; Park, Soon-Deok; Uh, Young; Lee, Hyeyoung

    2014-06-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is the most prevalent cause of bloodstream infections (BSIs) and is recognized as a major nosocomial pathogen. This study aimed to evaluate a newly designed multiplex real-time PCR assay capable of the simultaneous detection of mecA, S. aureus, and coagulase-negative staphylococci (CoNS) in blood culture specimens. The Real-MRSA and Real-MRCoNS multiplex real-time PCR assays (M&D, Republic of Korea) use the TaqMan probes 16S rRNA for Staphylococcus spp., the nuc gene for S. aureus, and the mecA gene for methicillin resistance. The detection limit of the multiplex real-time PCR assay was 10(3) CFU/ml per PCR for each gene target. The multiplex real-time PCR assay was evaluated using 118 clinical isolates from various specimen types and a total of 350 positive blood cultures from a continuous monitoring blood culture system. The results obtained with the multiplex real-time PCR assay for the three targets were in agreement with those of conventional identification and susceptibility testing methods except for one organism. Of 350 positive bottle cultures, the sensitivities of the multiplex real-time PCR kit were 100% (166/166 cultures), 97.2% (35/36 cultures), and 99.2% (117/118 cultures) for the 16S rRNA, nuc, and mecA genes, respectively, and the specificities for all three targets were 100%. The Real-MRSA and Real-MRCoNS multiplex real-time PCR assays are very useful for the rapid accurate diagnosis of staphylococcal BSIs. In addition, the Real-MRSA and Real-MRCoNS multiplex real-time PCR assays could have an important impact on the choice of appropriate antimicrobial therapy, based on detection of the mecA gene.

  14. A multiplex reverse transcription-polymerase chain reaction assay for Newcastle disease virus and avian pneumovirus (Colorado strain).

    Science.gov (United States)

    Ali, A; Reynolds, D L

    2000-01-01

    Newcastle disease virus (NDV) and avian pneumovirus (APV) cause Newcastle disease and rhinotracheitis respectively, in turkeys. Both of these viruses infect the respiratory system. A one-tube, multiplex, reverse transcription-polymerase chain reaction (RT-PCR) assay for the detection of both NDV and Colorado strain of APV (APV-Col) was developed and evaluated. The primers, specific for each virus, were designed from the matrix protein gene of APV-Col and the fusion protein gene of NDV to amplify products of 631 and 309 nucleotides, respectively. The multiplex RT-PCR assay, for detecting both viruses simultaneously, was compared with the single-virus RT-PCR assays for its sensitivity and specificity. The specific primers amplified products of predicted size from each virus in the multiplex as well as the single-virus RT-PCR assays. The multiplex RT-PCR assay was determined to be equivalent to the single-virus RT-PCR assays for detecting both NDV and APV-Col. This multiplex RT-PCR assay proved to be a sensitive method for the simultaneous and rapid detection of NDV and APV-Col. This assay has the potential for clinical diagnostic applications.

  15. METHODOLOGICAL ASPECTS OF QUANTITATIVE RECEPTOR ASSAYS

    NARCIS (Netherlands)

    SMISTEROVA, J; ENSING, K; DEZEEUW, RA

    1994-01-01

    Receptor assays occupy a particular position in the methods used in bioanalysis, as they do not exploit the physico-chemical properties of the analyte. These assays make use of the property of the analyte to bind to the specific binding site (receptor) and to competitively replace a labelled ligand

  16. Microsatellite multiplex assay for the coral-eating crown-of-thorns starfish, Acanthaster cf. planci

    KAUST Repository

    Harrison, Hugo B.

    2015-03-20

    Population outbreaks of crown-of-thorns starfish (Acanthaster spp.) represent one of the most significant biological disturbances on Indo-Pacific coral reefs. Here, we combine 15 published and 11 newly isolated polymorphic microsatellite markers from the coral-eating starfish, A. cf. planci and describe their integration into four multiplex PCRs. All markers were polymorphic with a mean of 11.7 ± 1.9 SE alleles per locus and an average observed heterozygosity of 0.619 ± 0.049 SE across 195 genotyped individuals from the Great Barrier Reef. This multiplex assay provides an effective means of investigating the population dynamics of crown-of-thorns starfish and the initiation and spread of population outbreaks.

  17. Validation of a multiplex PCR assay for the forensic identification of Indian crocodiles.

    Science.gov (United States)

    Meganathan, Poorlin Ramakodi; Dubey, Bhawna; Jogayya, Kothakota Naga; Haque, Ikramul

    2011-09-01

    A dependable and efficient wildlife species identification system is essential for swift dispensation of the justice linking wildlife crimes. Development of molecular techniques is befitting the need of the time. The forensic laboratories often receive highly ill-treated samples for identification purposes, and thus, validation of any novel methodology is necessary for forensic usage. We validate a novel multiplex polymerase chain reaction assay, developed at this laboratory for the forensic identification of three Indian crocodiles, Crocodylus palustris, Crocodylus porosus, and Gavialis gangeticus, following the guidelines of Scientific Working Group on DNA Analysis Methods. The multiplex PCR was tested for its specificity, reproducibility, sensitivity, and stability. This study also includes the samples treated with various chemical substances and exposed to various environmental regimes. The result of this validation study promises this technique to be an efficient identification tool for Indian crocodiles and therefore is recommended for forensic purposes.

  18. Multiplex, Quantitative, Reverse Transcription PCR Detection of Influenza Viruses Using Droplet Microfluidic Technology

    Directory of Open Access Journals (Sweden)

    Ravi Prakash

    2014-12-01

    Full Text Available Quantitative, reverse transcription, polymerase chain reaction (qRT-PCR is facilitated by leveraging droplet microfluidic (DMF system, which due to its precision dispensing and sample handling capabilities at microliter and lower volumes has emerged as a popular method for miniaturization of the PCR platform. This work substantially improves and extends the functional capabilities of our previously demonstrated single qRT-PCR micro-chip, which utilized a combination of electrostatic and electrowetting droplet actuation. In the reported work we illustrate a spatially multiplexed micro-device that is capable of conducting up to eight parallel, real-time PCR reactions per usage, with adjustable control on the PCR thermal cycling parameters (both process time and temperature set-points. This micro-device has been utilized to detect and quantify the presence of two clinically relevant respiratory viruses, Influenza A and Influenza B, in human samples (nasopharyngeal swabs, throat swabs. The device performed accurate detection and quantification of the two respiratory viruses, over several orders of RNA copy counts, in unknown (blind panels of extracted patient samples with acceptably high PCR efficiency (>94%. The multi-stage qRT-PCR assays on eight panel patient samples were accomplished within 35–40 min, with a detection limit for the target Influenza virus RNAs estimated to be less than 10 RNA copies per reaction.

  19. Multiplex DNA assay based on nanoparticle probes by single particle inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Zhang, Shixi; Han, Guojun; Xing, Zhi; Zhang, Sichun; Zhang, Xinrong

    2014-04-01

    A multiplex DNA assay based on nanoparticle (NP) tags detection utilizing single particle mode inductively coupled plasma mass spectrometry (SP-ICP-MS) as ultrasensitive readout has been demonstrated in the article. Three DNA targets associated with clinical diseases (HIV, HAV, and HBV) down to 1 pM were detected by DNA probes labeled with AuNPs, AgNPs, and PtNPs via DNA sandwich assay. Single nucleotide polymorphisms in genes can also be effectively discriminated. Since our method is unaffected by the sample matrix, it is well-suited for diagnostic applications. Moreover, with the high sensitivity of SP-ICP-MS and the variety of NPs detectable by SP-ICP-MS, high-throughput DNA assay could be achieved without signal amplification or chain reaction amplification.

  20. Detection of four important Eimeria species by multiplex PCR in a single assay.

    Science.gov (United States)

    You, Myung-Jo

    2014-06-01

    The oocysts of some of the recognized species of chicken coccidiosis are difficult to distinguish morphologically. Diagnostic laboratories are increasingly utilizing DNA-based technologies for the specific identification of Eimeria species. This study reports a multiplex polymerase chain reaction (PCR) assay based on internal transcribed spacer-1 (ITS-1) for the simultaneous diagnosis of the Eimeria tenella, Eimeria acervulina, Eimeria maxima, and Eimeria necatrix species, which infect domestic fowl. Primer pairs specific to each species were designed in order to generate a ladder of amplification products ranging from 20 to 25 bp, and a common optimum annealing temperature for these species was determined to be 52.5 °C. Sensitivity tests were performed for each species, showing a detection threshold of 1-5 pg. All the species were amplified homogeneously, and a homogenous band ladder was observed, indicating that the assay permitted the simultaneous detection of all the species in a single-tube reaction. In the phylogenic study, there was a clear species clustering, which was irrespective of geographical location, for all the ITS-1 sequences used. This multiplex PCR assay represents a rapid and potential cost-effective diagnostic method for the detection of some key Eimeria species that infect domestic fowl.

  1. Identification multiplex assay of 19 terrestrial mammal species present in New Zealand.

    Science.gov (United States)

    Ramón-Laca, Ana; Linacre, Adrian M T; Gleeson, Dianne M; Tobe, Shanan S

    2013-12-01

    An identification assay has been developed that allows accurate detection of 19 of the most common terrestrial mammals present in New Zealand (cow, red deer, goat, dog, horse, hedgehog, cat, tammar wallaby, mouse, weasel, ferret, stoat, sheep, rabbit, Pacific rat, Norway rat, ship rat, pig, and brushtail possum). This technique utilizes species-specific primers that, combined in a multiplex PCR, target small fragments of the mitochondrial cytochrome b gene. Each species, except hedgehog, produces two distinctive species-specific fragments, making the assay self-confirmatory and enabling the identification of multiple species simultaneously in DNA mixtures. The multiplex assay detects as little as 100 copies of mitochondrial DNA, which makes it a very reliable tool for degraded and trace samples. Reliability, accuracy, reproducibility, and sensitivity tests to validate the technique were performed. The technique featured here enabled a prompt response in a predation specific event, but can also be useful for wildlife management and conservation, pest incursions detection, forensic, and industrial purposes in a very simple and cost-effective manner.

  2. Design and validation of DNA libraries for multiplexing proximity ligation assays.

    Science.gov (United States)

    Gobet, Nicolas; Ketterer, Simon; Meier, Matthias

    2014-01-01

    Here, we present an in silico, analytical procedure for designing and testing orthogonal DNA templates for multiplexing of the proximity ligation assay (PLA). PLA is a technology for the detection of protein interactions, post-translational modifications, and protein concentrations. To enable multiplexing of the PLA, the target information of antibodies was encoded within the DNA template of a PLA, where each template comprised four single-stranded DNA molecules. Our DNA design procedure followed the principles of minimizing the free energy of DNA cross-hybridization. To validate the functionality, orthogonality, and efficiency of the constructed template libraries, we developed a high-throughput solid-phase rolling-circle amplification assay and solid-phase PLA on a microfluidic platform. Upon integration on a microfluidic chip, 640 miniaturized pull-down assays for oligonucleotides or antibodies could be performed in parallel together with steps of DNA ligation, isothermal amplification, and detection under controlled microenvironments. From a large computed PLA template library, we randomly selected 10 template sets and tested all DNA combinations for cross-reactivity in the presence and absence of antibodies. By using the microfluidic chip application, we determined rapidly the false-positive rate of the design procedure, which was less than 1%. The combined theoretical and experimental procedure is applicable for high-throughput PLA studies on a microfluidic chip.

  3. A comprehensive assay for targeted multiplex amplification of human DNA sequences.

    Science.gov (United States)

    Krishnakumar, Sujatha; Zheng, Jianbiao; Wilhelmy, Julie; Faham, Malek; Mindrinos, Michael; Davis, Ronald

    2008-07-01

    We developed a robust and reproducible methodology to amplify human sequences in parallel for use in downstream multiplexed sequence analyses. We call the methodology SMART (Spacer Multiplex Amplification Reaction), and it is based, in part, on padlock probe technology. As a proof of principle, we used SMART technology to simultaneously amplify 485 human exons ranging from 100 to 500 bp from human genomic DNA. In multiple repetitions, >90% of the targets were successfully amplified with a high degree of uniformity, with 70% of targets falling within a 10-fold range and all products falling within a 100-fold range of each other in abundance. We used long padlock probes (LPPs) >300 bases in length for the assay, and the increased length of these probes allowed for the capture of human sequences up to 500 bp in length, which is optimal for capturing most human exons. To engineer the LPPs, we developed a method that generates ssDNA molecules with precise ends, using an appropriately designed dsDNA template. The template has appropriate restriction sites engineered into it that can be digested to generate nucleotide overhangs that are suitable for lambda exonuclease digestion, producing a single-stranded probe from dsDNA. The SMART technology is flexible and can be easily adapted to multiplex tens of thousands of target sequences in a single reaction.

  4. Multiplexed homogeneous proximity ligation assays for high throughput protein biomarker research in serological material

    DEFF Research Database (Denmark)

    Lundberg, Martin; Thorsen, Stine Buch; Assarsson, Erika;

    2011-01-01

    A high throughput protein biomarker discovery tool has been developed based on multiplexed proximity ligation assays (PLA) in a homogeneous format in the sense of no washing steps. The platform consists of four 24-plex panels profiling 74 putative biomarkers with sub pM sensitivity each consuming...... only 1 micro Litre of human plasma sample. The system uses either matched monoclonal antibody pairs or the more readily available single batches of affinity purified polyclonal antibodies to generate the target specific reagents by covalently linking with unique nucleic acid sequences. These paired...

  5. Comprehensive multiplex one-step real-time TaqMan qRT-PCR assays for detection and quantification of hemorrhagic fever viruses.

    Directory of Open Access Journals (Sweden)

    Zheng Pang

    Full Text Available BACKGROUND: Viral hemorrhagic fevers (VHFs are a group of animal and human illnesses that are mostly caused by several distinct families of viruses including bunyaviruses, flaviviruses, filoviruses and arenaviruses. Although specific signs and symptoms vary by the type of VHF, initial signs and symptoms are very similar. Therefore rapid immunologic and molecular tools for differential diagnosis of hemorrhagic fever viruses (HFVs are important for effective case management and control of the spread of VHFs. Real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR assay is one of the reliable and desirable methods for specific detection and quantification of virus load. Multiplex PCR assay has the potential to produce considerable savings in time and resources in the laboratory detection. RESULTS: Primers/probe sets were designed based on appropriate specific genes for each of 28 HFVs which nearly covered all the HFVs, and identified with good specificity and sensitivity using monoplex assays. Seven groups of multiplex one-step real-time qRT-PCR assays in a universal experimental system were then developed by combining all primers/probe sets into 4-plex reactions and evaluated with serial dilutions of synthesized viral RNAs. For all the multiplex assays, no cross-reactivity with other HFVs was observed, and the limits of detection were mainly between 45 and 150 copies/PCR. The reproducibility was satisfactory, since the coefficient of variation of Ct values were all less than 5% in each dilution of synthesized viral RNAs for both intra-assays and inter-assays. Evaluation of the method with available clinical serum samples collected from HFRS patients, SFTS patients and Dengue fever patients showed high sensitivity and specificity of the related multiplex assays on the clinical specimens. CONCLUSIONS: Overall, the comprehensive multiplex one-step real-time qRT-PCR assays were established in this study, and proved to be

  6. A Biologist's Field Guide to Multiplexed Quantitative Proteomics.

    Science.gov (United States)

    Bakalarski, Corey E; Kirkpatrick, Donald S

    2016-05-01

    High-throughput genomic and proteomic studies have generated near-comprehensive catalogs of biological constituents within many model systems. Nevertheless, static catalogs are often insufficient to fully describe the dynamic processes that drive biology. Quantitative proteomic techniques address this need by providing insight into closely related biological states such as the stages of a therapeutic response or cellular differentiation. The maturation of quantitative proteomics in recent years has brought about a variety of technologies, each with their own strengths and weaknesses. It can be difficult for those unfamiliar with this evolving landscape to match the experiment at hand with the best tool for the job. Here, we outline quantitative methods for proteomic mass spectrometry and discuss their benefits and weaknesses from the perspective of the biologist aiming to generate meaningful data and address mechanistic questions. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Performance Assessment of a Trypanosoma cruzi Chimeric Antigen in Multiplex Liquid Microarray Assays.

    Science.gov (United States)

    Santos, Fred Luciano Neves; Celedon, Paola Alejandra Fiorani; Zanchin, Nilson Ivo Tonin; Leitolis, Amanda; Crestani, Sandra; Foti, Leonardo; de Souza, Wayner Vieira; Gomes, Yara de Miranda; Krieger, Marco Aurélio

    2017-10-01

    Diagnosing chronic Chagas disease (CD) requires antibody-antigen detection methods, which are traditionally based on enzymatic assay techniques whose performance depend on the type and quality of antigen used. Previously, 4 recombinant chimeric proteins from the Instituto de Biologia Molecular do Paraná (IBMP-8.1 to 8.4) comprising immuno-dominant regions of diverse Trypanosoma cruzi antigens showed excellent diagnostic performance in enzyme-linked immunosorbent assays. Considering that next-generation platforms offer improved CD diagnostic accuracy with different T. cruzi-specific recombinant antigens, we assessed the performance of these chimeras in liquid microarrays (LMAs). The chimeric proteins were expressed in Escherichia coli and purified by chromatography. Sera from 653 chagasic and 680 healthy individuals were used to assess the performance of these chimeras in detecting specific anti-T. cruzi antibodies. Accuracies ranged from 98.1 to 99.3%, and diagnostic odds ratio values were 3,548 for IBMP-8.3, 4,826 for IBMP-8.1, 7,882 for IBMP-8.2, and 25,000 for IBMP-8.4. A separate sera bank (851 samples) was employed to assess cross-reactivity with other tropical diseases. Leishmania, a pathogen with high similarity to T. cruzi, showed cross-reactivity rates ranging from 0 to 2.17%. Inconclusive results were negligible (0 to 0.71%). Bland-Altman and Deming regression analysis based on 200 randomly selected CD-positive and negative samples demonstrated interchangeability with respect to CD diagnostic performance in both singleplex and multiplex assays. Our results suggested that these chimeras can potentially replace antigens currently used in commercially available assay kits. Moreover, the use of multiplex platforms, such as LMA assays employing 2 or more IBMP antigens, would abrogate the need for 2 different testing techniques when diagnosing CD. Copyright © 2017 American Society for Microbiology.

  8. Opportunities for bead-based multiplex assays in veterinary diagnostic laboratories.

    Science.gov (United States)

    Christopher-Hennings, Jane; Araujo, Karla P C; Souza, Carlos J H; Fang, Ying; Lawson, Steven; Nelson, Eric A; Clement, Travis; Dunn, Michael; Lunney, Joan K

    2013-11-01

    Bead-based multiplex assays (BBMAs) are applicable for high throughput, simultaneous detection of multiple analytes in solution (from several to 50-500 analytes within a single, small sample volume). Currently, few assays are commercially available for veterinary applications, but they are available to identify and measure various cytokines, growth factors and their receptors, inflammatory proteins, kinases and inhibitors, neurobiology proteins, and pathogens and antibodies in human beings, nonhuman primates, and rodent species. In veterinary medicine, various nucleic acid and protein-coupled beads can be used in, or for the development of, antigen and antibody BBMAs, with the advantage that more data can be collected using approximately the same amount of labor as used for other antigen and antibody assays. Veterinary-related BBMAs could be used for detection of pathogens, genotyping, measurement of hormone levels, and in disease surveillance and vaccine assessment. It will be important to evaluate whether BBMAs are "fit for purpose," how costs and efficiencies compare between assays, which assays are published or commercially available for specific veterinary applications, and what procedures are involved in the development of the assays. It is expected that many veterinary-related BBMAs will be published and/or become commercially available in the next few years. The current review summarizes the BBMA technology and some of the currently available BBMAs developed for veterinary settings. Some of the human diagnostic BBMAs are also described, providing an example of possible templates for future development of new veterinary-related BBMAs.

  9. Screening for proteolytic activities in snake venom by means of a multiplexing electrospray ionization mass spectrometry assay scheme

    NARCIS (Netherlands)

    Liesener, André; Perchuc, Anna-Maria; Schöni, Reto; Wilmer, Marianne; Karst, Uwe

    2005-01-01

    A multiplexed mass spectrometry based assay scheme for the simultaneous determination of five different substrate/product pairs was developed as a tool for screening of proteolytic activities in snake venom fractions from Bothrops moojeni. The assay scheme was employed in the functional characteriza

  10. Screening for Proteolytic Activities in Snake Venom by Means of a Multiplexing ESI-MS Assay Scheme

    NARCIS (Netherlands)

    Liesener, A.; Perchuc, Anna-Maria; Schöni, Reto; Wilmer, Marianne; Karst, U.

    2005-01-01

    A multiplexed mass spectrometry based assay scheme for the simultaneous determination of five different substrate/product pairs was developed as a tool for screening of proteolytic activities in snake venom fractions from Bothrops moojeni. The assay scheme was employed in the functional characteriza

  11. Application of a Multiplex Quantitative PCR to Assess Prevalence and Intensity Of Intestinal Parasite Infections in a Controlled Clinical Trial.

    Directory of Open Access Journals (Sweden)

    Stacey Llewellyn

    2016-01-01

    Full Text Available Accurate quantitative assessment of infection with soil transmitted helminths and protozoa is key to the interpretation of epidemiologic studies of these parasites, as well as for monitoring large scale treatment efficacy and effectiveness studies. As morbidity and transmission of helminth infections are directly related to both the prevalence and intensity of infection, there is particular need for improved techniques for assessment of infection intensity for both purposes. The current study aimed to evaluate two multiplex PCR assays to determine prevalence and intensity of intestinal parasite infections, and compare them to standard microscopy.Faecal samples were collected from a total of 680 people, originating from rural communities in Timor-Leste (467 samples and Cambodia (213 samples. DNA was extracted from stool samples and subject to two multiplex real-time PCR reactions the first targeting: Necator americanus, Ancylostoma spp., Ascaris spp., and Trichuris trichiura; and the second Entamoeba histolytica, Cryptosporidium spp., Giardia. duodenalis, and Strongyloides stercoralis. Samples were also subject to sodium nitrate flotation for identification and quantification of STH eggs, and zinc sulphate centrifugal flotation for detection of protozoan parasites. Higher parasite prevalence was detected by multiplex PCR (hookworms 2.9 times higher, Ascaris 1.2, Giardia 1.6, along with superior polyparasitism detection with this effect magnified as the number of parasites present increased (one: 40.2% vs. 38.1%, two: 30.9% vs. 12.9%, three: 7.6% vs. 0.4%, four: 0.4% vs. 0%. Although, all STH positive samples were low intensity infections by microscopy as defined by WHO guidelines the DNA-load detected by multiplex PCR suggested higher intensity infections.Multiplex PCR, in addition to superior sensitivity, enabled more accurate determination of infection intensity for Ascaris, hookworms and Giardia compared to microscopy, especially in samples

  12. Development and Validation of a Multiplex Reverse Transcription PCR Assay for Simultaneous Detection of Three Papaya Viruses

    OpenAIRE

    Tuo, Decai; Shen, Wentao; Yang, Yong; Yan, Pu; Li, Xiaoying; Zhou, Peng

    2014-01-01

    Papaya ringspot virus (PRSV), Papaya leaf distortion mosaic virus (PLDMV), and Papaya mosaic virus (PapMV) produce similar symptoms in papaya. Each threatens commercial production of papaya on Hainan Island, China. In this study, a multiplex reverse transcription PCR assay was developed to detect simultaneously these three viruses by screening combinations of mixed primer pairs and optimizing the multiplex RT-PCR reaction conditions. A mixture of three specific primer pairs was used to amplif...

  13. One-step multiplex quantitative RT-PCR for the simultaneous detection of viroids and phytoplasmas of pome fruit trees.

    Science.gov (United States)

    Malandraki, Ioanna; Varveri, Christina; Olmos, Antonio; Vassilakos, Nikon

    2015-03-01

    A one-step multiplex real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) based on TaqMan chemistry was developed for the simultaneous detection of Pear blister canker viroid and Apple scar skin viroid along with universal detection of phytoplasmas, in pome trees. Total nucleic acids (TNAs) extraction was performed according to a modified CTAB protocol. Primers and TaqMan MGB probes for specific detection of the two viroids were designed in this study, whereas for phytoplasma detection published universal primers and probe were used, with the difference that the later was modified to carry a MGB quencher. The pathogens were detected simultaneously in 10-fold serial dilutions of TNAs from infected plant material into TNAs of healthy plant up to dilutions 10(-5) for viroids and 10(-4) for phytoplasmas. The multiplex real-time assay was at least 10 times more sensitive than conventional protocols for viroid and phytoplasma detection. Simultaneous detection of the three targets was achieved in composite samples at least up to a ratio of 1:100 triple-infected to healthy tissue, demonstrating that the developed assay has the potential to be used for rapid and massive screening of viroids and phytoplasmas of pome fruit trees in the frame of certification schemes and surveys.

  14. Detection of Nicotiana DNA in Tobacco Products Using a Novel Multiplex Real-Time PCR Assay.

    Science.gov (United States)

    Korchinski, Katie L; Land, Adrian D; Craft, David L; Brzezinski, Jennifer L

    2016-07-01

    Establishing that a product contains tobacco is a requirement for the U.S. Food and Drug Administration's regulation and/or prosecution of tobacco products. Therefore, a multiplex real-time PCR method was designed to determine if Nicotiana (tobacco) DNA is present in tobacco products. The PCR method simultaneously amplifies a 73 bp fragment of the cytochrome P450 monoxygenase CYP82E4 gene and 66 bp fragment in the nia-1 gene for nitrate reductase, which are detected using dual-labeled TaqMan probes. The assay is capable of detecting approximately 7.8 pg purified tobacco DNA, with a similar sensitivity for either gene target while incorporating an internal positive control (IPC). DNA was extracted from prepared tobacco products-including chewing tobacco, pipe tobacco, and snuff-or from the cut fill (no wrapper) of cigarettes and cigars. Of the 13 products analyzed, 12 were positive for both tobacco-specific markers and the IPC. DNA was also extracted from the fill of five varieties of herbal cigarettes, which were negative for both tobacco-specific gene targets and positive for the IPC. Our method expands on current assays by introducing a multiplex reaction, targeting two sequences in two different genes of interest, incorporating an IPC into the reaction, and lowering the LOD and LOQ while increasing the efficiency of the PCR.

  15. Quantitative Assays for RAS Pathway Proteins and Phosphorylation States

    Science.gov (United States)

    The NCI CPTAC program is applying its expertise in quantitative proteomics to develop assays for RAS pathway proteins. Targets include key phosphopeptides that should increase our understanding of how the RAS pathway is regulated.

  16. Increased Performances of the Biological Diagnosis of the Antiphospholipid Syndrome by the Use of a Multiplex Assay.

    Science.gov (United States)

    Sénant, M; Rostane, H; Fernani-Oukil, F; Hosking, F; Bellery, F; Courchinoux, A; Tartour, E; Darnige, L; Dragon-Durey, M-A

    2015-01-01

    Antiphospholipid syndrome (APS) is characterized by development of venous and/or arterial thrombosis and pregnancy morbidity. Biological criteria are the persistent presence of lupus anticoagulant (LA) and/or anti-cardiolipin (aCL) and/or anti-B2GP1 autoantibodies' positivity. The assays' performances are of crucial importance. We evaluated a multiplex assay allowing simultaneous detection of IgG anti-cardiolipin, anti-B2GP1, and anti-factor II. 300 samples were tested. Patients were categorized according to clinical scores of APS from 0 to 3 based on presence or not of arterial or venous thrombosis, fetal loss, and autoimmunity. We used a multiplex assay for APS for simultaneous detection of aCL, anti-B2GP1, and factor II and compared its performances to ELISA assays. Presence of LA was also assessed. We performed a correlation study of the tested assays and compared their clinical efficacy by ROC curve analysis. We obtained significantly higher performances with the multiplex assay than ELISA with higher area under the curve (AUC). The disease rate increased with the number of positive markers from 9% for 1 marker to 100% for 4 markers positive for patients with high risk scores. The multiplex APS assay exhibited higher performances particularly in case of primary APS and is useful for rapid diagnosis of APS.

  17. A novel multiplex cell viability assay for high-throughput RNAi screening.

    Science.gov (United States)

    Gilbert, Daniel F; Erdmann, Gerrit; Zhang, Xian; Fritzsche, Anja; Demir, Kubilay; Jaedicke, Andreas; Muehlenberg, Katja; Wanker, Erich E; Boutros, Michael

    2011-01-01

    Cell-based high-throughput RNAi screening has become a powerful research tool in addressing a variety of biological questions. In RNAi screening, one of the most commonly applied assay system is measuring the fitness of cells that is usually quantified using fluorescence, luminescence and absorption-based readouts. These methods, typically implemented and scaled to large-scale screening format, however often only yield limited information on the cell fitness phenotype due to evaluation of a single and indirect physiological indicator. To address this problem, we have established a cell fitness multiplexing assay which combines a biochemical approach and two fluorescence-based assaying methods. We applied this assay in a large-scale RNAi screening experiment with siRNA pools targeting the human kinome in different modified HEK293 cell lines. Subsequent analysis of ranked fitness phenotypes assessed by the different assaying methods revealed average phenotype intersections of 50.7±2.3%-58.7±14.4% when two indicators were combined and 40-48% when a third indicator was taken into account. From these observations we conclude that combination of multiple fitness measures may decrease false-positive rates and increases confidence for hit selection. Our robust experimental and analytical method improves the classical approach in terms of time, data comprehensiveness and cost.

  18. A novel multiplex cell viability assay for high-throughput RNAi screening.

    Directory of Open Access Journals (Sweden)

    Daniel F Gilbert

    Full Text Available Cell-based high-throughput RNAi screening has become a powerful research tool in addressing a variety of biological questions. In RNAi screening, one of the most commonly applied assay system is measuring the fitness of cells that is usually quantified using fluorescence, luminescence and absorption-based readouts. These methods, typically implemented and scaled to large-scale screening format, however often only yield limited information on the cell fitness phenotype due to evaluation of a single and indirect physiological indicator. To address this problem, we have established a cell fitness multiplexing assay which combines a biochemical approach and two fluorescence-based assaying methods. We applied this assay in a large-scale RNAi screening experiment with siRNA pools targeting the human kinome in different modified HEK293 cell lines. Subsequent analysis of ranked fitness phenotypes assessed by the different assaying methods revealed average phenotype intersections of 50.7±2.3%-58.7±14.4% when two indicators were combined and 40-48% when a third indicator was taken into account. From these observations we conclude that combination of multiple fitness measures may decrease false-positive rates and increases confidence for hit selection. Our robust experimental and analytical method improves the classical approach in terms of time, data comprehensiveness and cost.

  19. Development of a Fluorescent Multiplex Assay for Detection of MSI-High Tumors

    Directory of Open Access Journals (Sweden)

    Jeffery W. Bacher

    2004-01-01

    of MSI testing in that it is both extremely sensitive and specific and amenable to high-throughput analysis. The MSI Multiplex System meets the new recommendations proposed at the recent 2002 NCI workshop on HNPCC and MSI testing and overcomes problems inherent to the original five-marker panel. The use of a single multiplex fluorescent MSI assay reduces the time and costs involved in MSI testing with increased reliability and accuracy and thus should facilitate widespread screening for microsatellite instability in tumors of patients with gastrointestinal cancers.

  20. Comparison of two multiplex PCR assays for the detection of Listeria spp. and Listeria monocytogenes in biological samples

    Directory of Open Access Journals (Sweden)

    Budniak Sylwia

    2016-12-01

    Full Text Available Introduction: The aim of the study was to optimise and compare two multiplex PCR assays for the detection of Listeria spp. and Listeria monocytogenes in biological samples including the liver, brain, and blood. Material and Methods: Three strains of L. monocytogenes and single strains of each of the species: L. ivanovii, L. innocua, L. grayi, L. welshimeri, and L. seeligeri were used. Additionally, five other species of bacterium were used to evaluate the specificity of the tests. Results: Specific amplification products were obtained for both multiplex PCR assays, which confirmed the tested strains as Listeria spp. and L. monocytogenes, respectively. Isolates of other species did not yield PCR products. Conclusion: Both multiplex PCR assays proved to be significantly sensitive and highly-specific methods for the detection of Listeria strains.

  1. Increased Performances of the Biological Diagnosis of the Antiphospholipid Syndrome by the Use of a Multiplex Assay

    Directory of Open Access Journals (Sweden)

    M. Sénant

    2015-01-01

    Full Text Available Antiphospholipid syndrome (APS is characterized by development of venous and/or arterial thrombosis and pregnancy morbidity. Biological criteria are the persistent presence of lupus anticoagulant (LA and/or anti-cardiolipin (aCL and/or anti-B2GP1 autoantibodies’ positivity. The assays’ performances are of crucial importance. We evaluated a multiplex assay allowing simultaneous detection of IgG anti-cardiolipin, anti-B2GP1, and anti-factor II. 300 samples were tested. Patients were categorized according to clinical scores of APS from 0 to 3 based on presence or not of arterial or venous thrombosis, fetal loss, and autoimmunity. We used a multiplex assay for APS for simultaneous detection of aCL, anti-B2GP1, and factor II and compared its performances to ELISA assays. Presence of LA was also assessed. We performed a correlation study of the tested assays and compared their clinical efficacy by ROC curve analysis. We obtained significantly higher performances with the multiplex assay than ELISA with higher area under the curve (AUC. The disease rate increased with the number of positive markers from 9% for 1 marker to 100% for 4 markers positive for patients with high risk scores. The multiplex APS assay exhibited higher performances particularly in case of primary APS and is useful for rapid diagnosis of APS.

  2. Evaluation of dried blood spots with a multiplex assay for measuring recent HIV-1 infection.

    Directory of Open Access Journals (Sweden)

    Kelly A Curtis

    Full Text Available Laboratory-based HIV tests for recent infection (TRIs, which primarily measure a specific serological biomarker(s that distinguishes recent from long-term HIV infection, have facilitated the estimation of population-based incidence. Dried blood spots (DBS on filter paper are an attractive sample source for HIV surveillance, given the simplified and cost-effective methods of specimen collection, storage, and shipment. Here, we evaluated the use of DBS in conjunction with an in-house multiplex TRI, the HIV-1-specific Bio-Plex assay, which measures direct antibody binding and avidity to multiple HIV-1 analytes. The assay performance was comparable between matched plasma and DBS samples from HIV-1 infected individuals obtained from diverse sources. The coefficients of variation, comparing the median antibody reactivity for each analyte between plasma and DBS, ranged from 2.78% to 9.40% and the correlation coefficients between the two sample types ranged from 0.89 to 0.97, depending on the analyte. The correlation in antibody reactivity between laboratory and site-prepared DBS for each analyte ranged from 0.87 to 0.98 and from 0.90 to 0.97 between site-prepared DBS and plasma. The correlation in assay measures between plasma and DBS indicate that the sample types can be used interchangeably with the Bio-Plex format, without negatively impacting the misclassification rate of the assay.

  3. Multiplex bio-assay with inductively coupled plasma mass spectrometry: Towards a massively multivariate single-cell technology

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, Scott D. [Institute of Biomaterials and Biomedical Engineering, University of Toronto, Room 407, 164 College Street, Toronto, Ontario, M5S 3G9 (Canada)], E-mail: sd.tanner@utoronto.ca; Ornatsky, Olga; Bandura, Dmitry R.; Baranov, Vladimir I. [Institute of Biomaterials and Biomedical Engineering, University of Toronto, Room 407, 164 College Street, Toronto, Ontario, M5S 3G9 (Canada)

    2007-03-15

    Recent progress in the development of massively multiplexed bioanalytical assays using element tags with inductively coupled plasma mass spectrometry detection is reviewed. Feasibility results using commercially available secondary immunolabeling reagents for leukemic cell lines are presented. Multiplex analysis of higher order is shown with first generation tag reagents based on functionalized carriers that bind lanthanide ions. DNA quantification using metallointercalation allows for cell enumeration or mitotic state differentiation. In situ hybridization permits the determination of cellular RNA. The results provide a feasibility basis for the development of a multivariate assay tool for individual cell analysis based on inductively coupled plasma mass spectrometry in a cytometer configuration.

  4. Comparison of Real-Time Multiplex Human Papillomavirus (HPV) PCR Assays with INNO-LiPA HPV Genotyping Extra Assay▿

    OpenAIRE

    Else, Elizabeth A.; Swoyer, Ryan; Zhang, Yuhua; Taddeo, Frank J.; Bryan, Janine T.; Lawson, John; Van Hyfte, Inez; Roberts, Christine C.

    2011-01-01

    Real-time type-specific multiplex human papillomavirus (HPV) PCR assays were developed to detect HPV DNA in samples collected for the efficacy determination of the quadrivalent HPV (type 6, 11, 16, and 18) L1 virus-like particle (VLP) vaccine (Gardasil). Additional multiplex (L1, E6, and E7 open reading frame [ORF]) or duplex (E6 and E7 ORF) HPV PCR assays were developed to detect high-risk HPV types, including HPV type 31 (HPV31), HPV33, HPV35, HPV39, HPV45, HPV51, HPV52, HPV56, HPV58, and H...

  5. Multiplex Real-Time PCR Assay for Rapid Detection of Methicillin-Resistant Staphylococci Directly from Positive Blood Cultures

    OpenAIRE

    Wang, Hye-young; Kim, Sunghyun; Kim, Jungho; Park, Soon-Deok; Uh, Young; Lee, Hyeyoung

    2014-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is the most prevalent cause of bloodstream infections (BSIs) and is recognized as a major nosocomial pathogen. This study aimed to evaluate a newly designed multiplex real-time PCR assay capable of the simultaneous detection of mecA, S. aureus, and coagulase-negative staphylococci (CoNS) in blood culture specimens. The Real-MRSA and Real-MRCoNS multiplex real-time PCR assays (M&D, Republic of Korea) use the TaqMan probes 16S rRNA for Staphylo...

  6. Development of a multiplex real-time PCR assay for phylogenetic analysis of Uropathogenic Escherichia coli.

    Science.gov (United States)

    Hasanpour, Mojtaba; Najafi, Akram

    2017-03-28

    Uropathogenic Escherichia coli (UPEC) is among major pathogens causing 80-90% of all episodes of urinary tract infections (UTIs). Recently, E. coli strains are divided into eight main phylogenetic groups including A, B1, B2, C, D, E, F, and clade I. This study was aimed to develop a rapid, sensitive, and specific multiplex real time PCR method capable of detecting phylogenetic groups of E. coli strains. This study was carried out on E. coli strains (isolated from the patient with UTI) in which the presence of all seven target genes had been confirmed in our previous phylogenetic study. An EvaGreen-based singleplex and multiplex real-time PCR with melting curve analysis was designed for simultaneous detection and differentiation of these genes. The primers were selected mainly based on the production of amplicons with melting temperatures (Tm) ranging from 82°C to 93°C and temperature difference of more than 1.5°C between each peak.The multiplex real-time PCR assays that have been developed in the present study were successful in detecting the eight main phylogenetic groups. Seven distinct melting peaks were discriminated, with Tm value of 93±0.8 for arpA, 89.2±0.1for chuA, 86.5±0.1 for yjaA, 82.3±0.2 for TspE4C2, 87.8±0.1for trpAgpC, 85.4±0.6 for arpAgpE genes, and 91±0.5 for the internal control. To our knowledge, this study is the first melting curve-based real-time PCR assay developed for simultaneous and discrete detection of these seven target genes. Our findings showed that this assay has the potential to be a rapid, reliable and cost-effective alternative for routine phylotyping of E. coli strains.

  7. A bead-based multiplex assay for the detection of DNA viruses infecting laboratory rodents.

    Science.gov (United States)

    Höfler, Daniela; Nicklas, Werner; Mauter, Petra; Pawlita, Michael; Schmitt, Markus

    2014-01-01

    The Federation of European Laboratory Animal Science Association (FELASA) recommends screening of laboratory rodents and biological materials for a broad variety of bacterial agents, viruses, and parasites. Methods commonly used to date for pathogen detection are neither cost-effective nor time- and animal-efficient or uniform. However, an infection even if silent alters experimental results through changing the animals' physiology and increases inter-individual variability. As a consequence higher numbers of animals and experiments are needed for valid and significant results. We developed a novel high-throughput multiplex assay, called rodent DNA virus finder (rDVF) for the simultaneous identification of 24 DNA viruses infecting mice and rats. We detected all 24 DNA viruses with high specificity and reproducibility. Detection limits for the different DNA viruses varied between 10 and 1000 copies per PCR. The validation of rDVF was done with DNA isolated from homogenised organs amplified by pathogen specific primers in one multiplex PCR. The biotinylated amplicons were detected via hybridisation to specific oligonucleotide probes coupled to spectrally distinct sets of fluorescent Luminex beads. In conclusion, rDVF may have the potential to replace conventional testing and may simplify and improve routine detection of DNA viruses infecting rodents.

  8. A bead-based multiplex assay for the detection of DNA viruses infecting laboratory rodents.

    Directory of Open Access Journals (Sweden)

    Daniela Höfler

    Full Text Available The Federation of European Laboratory Animal Science Association (FELASA recommends screening of laboratory rodents and biological materials for a broad variety of bacterial agents, viruses, and parasites. Methods commonly used to date for pathogen detection are neither cost-effective nor time- and animal-efficient or uniform. However, an infection even if silent alters experimental results through changing the animals' physiology and increases inter-individual variability. As a consequence higher numbers of animals and experiments are needed for valid and significant results. We developed a novel high-throughput multiplex assay, called rodent DNA virus finder (rDVF for the simultaneous identification of 24 DNA viruses infecting mice and rats. We detected all 24 DNA viruses with high specificity and reproducibility. Detection limits for the different DNA viruses varied between 10 and 1000 copies per PCR. The validation of rDVF was done with DNA isolated from homogenised organs amplified by pathogen specific primers in one multiplex PCR. The biotinylated amplicons were detected via hybridisation to specific oligonucleotide probes coupled to spectrally distinct sets of fluorescent Luminex beads. In conclusion, rDVF may have the potential to replace conventional testing and may simplify and improve routine detection of DNA viruses infecting rodents.

  9. Identification of cytoplasm types in rapeseed (Brassica napus L.) accessions by a multiplex PCR assay.

    Science.gov (United States)

    Zhao, H X; Li, Z J; Hu, S W; Sun, G L; Chang, J J; Zhang, Z H

    2010-08-01

    Cytoplasmic male sterility (CMS) has widely been used as an efficient pollination control system in rapeseed hybrid production. Identification of cytoplasm type of rapeseed accessions is becoming the most important basic work for hybrid-rapeseed breeding. In this study, we report a simple multiplex PCR method to distinguish the existing common cytoplasm resources, Pol, Nap, Cam, Ogu and Ogu-NWSUAF cytoplasm, in rapeseed. Cytoplasm type of 35 F(1) hybrids and 140 rapeseed open pollinated varieties or breeding lines in our rapeseed breeding programme were tested by this method. The results indicated that 10 of 35 F(1) hybrids are the Nap, and 25 the Pol cytoplasm type, which is consistent with the information provided by the breeders. Out of 140 accessions tested, 100 (71.4%), 21 (15%) and 19 (13.6%) accessions possess Nap, Cam and Pol cytoplasm, respectively. All 19 accessions with Pol cytoplasm are from China. Pedigree analysis indicated that these accessions with Pol cytoplasm were either restorers for Pol CMS, including Shaan 2C, Huiyehui, 220, etc. or derived from hybrids with Pol CMS as female parent. Our molecular results are consistent with those of the classical testcross, suggesting the reliability of this method. The multiplex PCR assay method can be applied to CMS "three-line" breeding, selection and validation of hybrid rapeseed.

  10. Multiplexed lateral flow microarray assay for detection of citrus pathogens Xylella fastidiosa and Xanthomonas axonopodis pv citri

    Energy Technology Data Exchange (ETDEWEB)

    Cary; R. Bruce (Santa Fe, NM); Stubben, Christopher J. (Los Alamos, NM)

    2011-03-22

    The invention provides highly sensitive and specific assays for the major citrus pathogens Xylella fastidiosa and Xanthomonas axonopodis, including a field deployable multiplexed assay capable of rapidly assaying for both pathogens simultaneously. The assays are directed at particular gene targets derived from pathogenic strains that specifically cause the major citrus diseases of citrus variegated chlorosis (Xylella fastidiosa 9a5c) and citrus canker (Xanthomonas axonopodis pv citri). The citrus pathogen assays of the invention offer femtomole sensitivity, excellent linear dynamic range, and rapid and specific detection.

  11. Identification and Differentiation of Verticillium Species and V. longisporum Lineages by Simplex and Multiplex PCR Assays

    Science.gov (United States)

    Inderbitzin, Patrik; Davis, R. Michael; Bostock, Richard M.; Subbarao, Krishna V.

    2013-01-01

    Accurate species identification is essential for effective plant disease management, but is challenging in fungi including Verticillium sensu stricto (Ascomycota, Sordariomycetes, Plectosphaerellaceae), a small genus of ten species that includes important plant pathogens. Here we present fifteen PCR assays for the identification of all recognized Verticillium species and the three lineages of the diploid hybrid V. longisporum. The assays were based on DNA sequence data from the ribosomal internal transcribed spacer region, and coding and non-coding regions of actin, elongation factor 1-alpha, glyceraldehyde-3-phosphate dehydrogenase and tryptophan synthase genes. The eleven single target (simplex) PCR assays resulted in amplicons of diagnostic size for V. alfalfae, V. albo-atrum, V. dahliae including V. longisporum lineage A1/D3, V. isaacii, V. klebahnii, V. nonalfalfae, V. nubilum, V. tricorpus, V. zaregamsianum, and Species A1 and Species D1, the two undescribed ancestors of V. longisporum. The four multiple target (multiplex) PCR assays simultaneously differentiated the species or lineages within the following four groups: Verticillium albo-atrum, V. alfalfae and V. nonalfalfae; Verticillium dahliae and V. longisporum lineages A1/D1, A1/D2 and A1/D3; Verticillium dahliae including V. longisporum lineage A1/D3, V. isaacii, V. klebahnii and V. tricorpus; Verticillium isaacii, V. klebahnii and V. tricorpus. Since V. dahliae is a parent of two of the three lineages of the diploid hybrid V. longisporum, no simplex PCR assay is able to differentiate V. dahliae from all V. longisporum lineages. PCR assays were tested with fungal DNA extracts from pure cultures, and were not evaluated for detection and quantification of Verticillium species from plant or soil samples. The DNA sequence alignments are provided and can be used for the design of additional primers. PMID:23823707

  12. Development and application of multiplex PCR assays for detection of virus-induced respiratory disease complex in dogs

    Science.gov (United States)

    PIEWBANG, Chutchai; RUNGSIPIPAT, Anudep; POOVORAWAN, Yong; TECHANGAMSUWAN, Somporn

    2016-01-01

    Canine infectious respiratory disease complex (CIRDC) viruses have been detected in dogs with respiratory illness. Canine influenza virus (CIV), canine parainfluenza virus (CPIV), canine distemper virus (CDV), canine respiratory coronavirus (CRCoV), canine adenovirus type 2 (CAdV-2) and canine herpesvirus 1 (CaHV-1), are all associated with the CIRDC. To allow diagnosis, two conventional multiplex polymerase chain reactions (PCR) were developed to simultaneously identify four RNA and two DNA viruses associated with CIRDC. The two multiplex PCR assays were then validated on 102 respiratory samples collected from 51 dogs with respiratory illness by sensitivity and specificity determination in comparison to conventional simplex PCR and a rapid three-antigen test kit. All six viruses were detected in either individual or multiple infections. The developed multiplex PCR assays had a >87% sensitivity and 100% specificity compared to their simplex counterpart. Compared to the three-antigen test kit, the multiplex PCR assays yielded 100% sensitivity and more than 83% specificity for detection of CAdV-2 and CDV, but not for CIV. Therefore, the developed multiplex PCR modalities were able to simultaneously diagnose a panel of CIRDC viruses and facilitated specimen collection through being suitable for use of nasal or oral samples. PMID:27628592

  13. A multiplexed microfluidic PCR assay for sensitive and specific point-of-care detection of Chlamydia trachomatis.

    Directory of Open Access Journals (Sweden)

    Deborah Dean

    Full Text Available BACKGROUND: Chlamydia trachomatis (Ct is the most common cause of bacterial sexually transmitted diseases (STD worldwide. While commercial nucleic acid amplification tests (NAAT are available for Ct, none are rapid or inexpensive enough to be used at the point-of-care (POC. Towards the first Ct POC NAAT, we developed a microfluidic assay that simultaneously interrogates nine Ct loci in 20 minutes. METHODOLOGY AND PRINCIPAL FINDINGS: Endocervical samples were selected from 263 women at high risk for Ct STDs (∼35% prevalence. A head-to-head comparison was performed with the Roche-Amplicor NAAT. 129 (49.0% and 88 (33.5% samples were positive by multiplex and Amplicor assays, respectively. Sequencing resolved 71 discrepant samples, confirming 53 of 53 positive multiplex samples and 12 of 18 positive Amplicor samples. The sensitivity and specificity were 91.5% and 100%, and 62.4% and 95.9%, respectively, for multiplex and Amplicor assays. Positive and negative predictive values were 100% and 91%, and 94.1% and 68.6%, respectively. CONCLUSIONS: This is the first rapid multiplex approach to Ct detection, and the assay was also found to be superior to a commercial NAAT. In effect, nine simultaneous reactions significantly increased sensitivity and specificity. Our assay can potentially increase Ct detection in globally diverse clinical settings at the POC.

  14. A hard microflow cytometer using groove-generated sheath flow for multiplexed bead and cell assays.

    Science.gov (United States)

    Thangawng, Abel L; Kim, Jason S; Golden, Joel P; Anderson, George P; Robertson, Kelly L; Low, Vyechi; Ligler, Frances S

    2010-11-01

    With a view toward developing a rugged microflow cytometer, a sheath flow system was micromachined in hard plastic (polymethylmethacrylate) for analysis of particles and cells using optical detection. Six optical fibers were incorporated into the interrogation region of the chip, in which hydrodynamic focusing narrowed the core stream to ~35 μm × 40 μm. The use of a relatively large channel at the inlet as well as in the interrogation region (375 μm × 125 μm) successfully minimized the risk of clogging. The device could withstand pressures greater than 100 psi without leaking. Assays using both coded microparticles and cells were demonstrated using the microflow cytometer. Multiplexed immunoassays detected nine different bacteria and toxins using a single mixture of coded microspheres. A549 cancer cells processed with locked nucleic acid probes were evaluated using fluorescence in situ hybridization.

  15. Autoantibody profiling of patients with primary biliary cirrhosis using a multiplexed line-blot assay.

    Science.gov (United States)

    Villalta, Danilo; Sorrentino, Maria Concetta; Girolami, Elia; Tampoia, Marilina; Alessio, Maria Grazia; Brusca, Ignazio; Daves, Massimo; Porcelli, Brunetta; Barberio, Giuseppina; Bizzaro, Nicola

    2015-01-01

    To evaluate the autoantibody profile in patients with primary biliary cirrhosis (PBC) using a new multiplexed line-blot assay specifically designed for the diagnosis of autoimmune liver diseases. Sera of 58 consecutive PBC patients and 191 disease controls (144 with autoimmune liver diseases other than PBC, and 67 with non-autoimmune chronic liver diseases) were tested by both the multiplexed line-blot Autoimmune Liver Disease Profile 2 (ALD2) and by IIF on HEp-2 cells and on rat kidney/liver/stomach tissues. ALD2 contains the following PBC-associated antigens: AMA-M2, natively purified from bovine heart; M2-E3, a recombinant fusion protein including the E2 subunits of PDC, BCOADC and OGDC; sp100, PML and gp210 recombinant proteins. With the ALD2 assay, a positive reaction to AMA-M2, M2-E3, sp100, PML and gp210 in PBC patients was observed in 77.6%, 84.5%, 34.5%, 15.1% and 18.9%, respectively, of the PBC sera. The overall sensitivity and specificity for PBC were 98.3% and 93.7%. Using IIF, positivity rates to AMA, and to antinuclear autoantibodies with membranous/rim-like and multiple nuclear dot patterns were 86.2%, 8.6% and 22.4%, respectively. The overall sensitivity and specificity for PBC of the IIF method were 86.2% and 97.9%, respectively. The ALD2 line-blot showed a good diagnostic accuracy for PBC and a higher sensitivity than the IIF method to detect sp100 and gp210 autoantibodies. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. A New Multiplex Assay of 17 Autosomal STRs and Amelogenin for Forensic Application

    Science.gov (United States)

    Zhang, Suhua; Tian, Huaizhou; Wu, Jun; Zhao, Shumin; Li, Chengtao

    2013-01-01

    This paper describes a newly devised autosomal short tandem repeat (STR) multiplex polymerase chain reaction (PCR) systems for 17 autosomal loci (D1S1656, D2S441, D3S1358, D3S3045, D6S477, D7S3048, D8S1132, D10S1435, D10S1248, D11S2368, D13S325, D14S608, D15S659, D17S1290, D18S535, D19S253 and D22-GATA198B05) and Amelogenin. Primers for the loci were designed and optimized so that all of the amplicons were distributed from 50 base pairs (bp) to less than 500 bp within a five-dye chemistry design with the fifth dye reserved for the sizing standard. Strategies were developed to overcome challenges that encountered in creating the final assay. The limits of the multiplex were tested, resulting in the successful amplification of genomic DNA range from 0.25–4 ng with 30 PCR cycles. A total of 681 individuals from the Chinese Han population were studied and forensic genetic data were present. No significant deviations from Hardy–Weinberg equilibrium were observed. A total of 180 alleles were detected for the 17 autosomal STRs. The cumulative mean exclusion chance in duos (CMECD) was 0.999967, and cumulative mean exclusion chance in trios (CMECT) was 0.99999995. We conclude that the present 17plex autosomal STRs assay provides an additional powerful tool for forensic applications. PMID:23451235

  17. A new multiplex assay of 17 autosomal STRs and Amelogenin for forensic application.

    Directory of Open Access Journals (Sweden)

    Suhua Zhang

    Full Text Available This paper describes a newly devised autosomal short tandem repeat (STR multiplex polymerase chain reaction (PCR systems for 17 autosomal loci (D1S1656, D2S441, D3S1358, D3S3045, D6S477, D7S3048, D8S1132, D10S1435, D10S1248, D11S2368, D13S325, D14S608, D15S659, D17S1290, D18S535, D19S253 and D22-GATA198B05 and Amelogenin. Primers for the loci were designed and optimized so that all of the amplicons were distributed from 50 base pairs (bp to less than 500 bp within a five-dye chemistry design with the fifth dye reserved for the sizing standard. Strategies were developed to overcome challenges that encountered in creating the final assay. The limits of the multiplex were tested, resulting in the successful amplification of genomic DNA range from 0.25-4 ng with 30 PCR cycles. A total of 681 individuals from the Chinese Han population were studied and forensic genetic data were present. No significant deviations from Hardy-Weinberg equilibrium were observed. A total of 180 alleles were detected for the 17 autosomal STRs. The cumulative mean exclusion chance in duos (CMECD was 0.999967, and cumulative mean exclusion chance in trios (CMECT was 0.99999995. We conclude that the present 17plex autosomal STRs assay provides an additional powerful tool for forensic applications.

  18. Diagnosis of ocular toxoplasmosis by two polymerase chain reaction (PCR) examinations: qualitative multiplex and quantitative real-time.

    Science.gov (United States)

    Sugita, Sunao; Ogawa, Manabu; Inoue, Shizu; Shimizu, Norio; Mochizuki, Manabu

    2011-09-01

    To establish a two-step polymerase chain reaction (PCR) diagnostic system for ocular toxoplasmosis. A total of 13 ocular fluid samples (11 aqueous humor and 2 vitreous fluid) were collected from 13 patients with clinically suspected ocular toxoplasmosis. Ten ocular samples from other uveitis patients and 20 samples from subjects without ocular inflammation were used as controls. Two polymerase chain reaction (PCR) methods, i.e., qualitative multiplex PCR and quantitative real-time PCR, were used to measure the toxoplasma genome (T. gondii B1 gene). Qualitative multiplex PCR detected T. gondii B1 gene in the ocular fluids of 11 out of 13 patients with clinically suspected ocular toxoplasmosis. In real-time PCR, we detected high copy numbers of T. gondii DNA (5.1 × 10(2)-2.1 × 10(6) copies/mL) in a total of 10 patients (10/13, 77%). Only ocular toxoplasmosis scar lesions were observed in the three real-time PCR-negative patients. PCR assay results for the samples from the two control groups were all negative. The two-step PCR examination to detect toxoplasma DNA is a useful tool for diagnosing ocular toxoplasmosis.

  19. Development of a GeXP-multiplex PCR assay for the simultaneous detection and differentiation of six cattle viruses

    Science.gov (United States)

    Xie, Zhixun; Xie, Zhiqin; Deng, Xianwen; Xie, Liji; Huang, Li; Luo, Sisi; Huang, Jiaoling; Zhang, Yanfang; Zeng, Tingting; Wang, Sheng; Liu, Jiabo; Pang, Yaoshan

    2017-01-01

    Foot-and-mouth disease virus (FMDV), Bluetongue virus (BTV), Vesicular stomatitis Virus (VSV), Bovine viral diarrheal (BVDV), Bovine rotavirus (BRV), and Bovine herpesvirus 1 (IBRV) are common cattle infectious viruses that cause a great economic loss every year in many parts of the world. A rapid and high-throughput GenomeLab Gene Expression Profiler (GeXP) analyzer-based multiplex PCR assay was developed for the simultaneous detection and differentiation of these six cattle viruses. Six pairs of chimeric primers consisting of both the gene-specific primer and a universal primer were designed and used for amplification. Then capillary electrophoresis was used to separate the fluorescent labeled PCR products according to the amplicons size. The specificity of GeXP-multiplex PCR assay was examined with samples of the single template and mixed template of six viruses. The sensitivity was evaluated using the GeXP-multiplex PCR assay on serial 10-fold dilutions of ssRNAs obtained via in vitro transcription. To further evaluate the reliability, 305 clinical samples were tested by the GeXP-multiplex PCR assay. The results showed that the corresponding virus specific fragments of genes were amplified. The detection limit of the GeXP-multiplex PCR assay was 100 copies/μL in a mixed sample of ssRNAs containing target genes of six different cattle viruses, whereas the detection limit for the Gexp-mono PCR assay for a single target gene was 10 copies/μL. In detection of viruses in 305 clinical samples, the results of GeXP were consistent with simplex real-time PCR. Analysis of positive samples by sequencing demonstrated that the GeXP-multiplex PCR assay had no false positive samples of nonspecific amplification. In conclusion, this GeXP-multiplex PCR assay is a high throughput, specific, sensitive, rapid and simple method for the detection and differentiation of six cattle viruses. It is an effective tool that can be applied for the rapid differential diagnosis of clinical

  20. Development of a multiplex PCR assay for detection and discrimination of Theileria annulata and Theileria sergenti in cattle.

    Science.gov (United States)

    Junlong, Liu; Li, Youquan; Liu, Aihong; Guan, Guiquan; Xie, Junren; Yin, Hong; Luo, Jianxun

    2015-07-01

    Aim to construct a simple and efficient diagnostic assay for Theileria annulata and Theileria sergenti, a multiplex polymerase chain reaction (PCR) method was developed in this study. Following the alignment of the related sequences, two primer sets were designed specific targeting on T. annulata cytochrome b (COB) gene and T. sergenti internal transcribed spacer (ITS) sequences. It was found that the designed primers could react in one PCR system and generating amplifications of 818 and 393 base pair for T. sergenti and T. annulata, respectively. The standard genomic DNA of both species Theileria was serial tenfold diluted for testing the sensitivity, while specificity test confirmed both primer sets have no cross-reaction with other Theileria and Babesia species. In addition, 378 field samples were used for evaluation of the utility of the multiplex PCR assay for detection of the pathogens infection. The detection results were compared with the other two published PCR methods which targeting on T. annulata COB gene and T. sergenti major piroplasm surface protein (MPSP) gene, respectively. The developed multiplex PCR assay has similar efficient detection with COB and MPSP PCR, which indicates this multiplex PCR may be a valuable assay for the epidemiological studies for T. annulata and T. sergenti.

  1. Development of a multiplex real-time PCR assay for the rapid diagnosis of neonatal late onset sepsis.

    Science.gov (United States)

    van den Brand, Marre; Peters, Remco P H; Catsburg, Arnold; Rubenjan, Anna; Broeke, Ferdi J; van den Dungen, Frank A M; van Weissenbruch, Mirjam M; van Furth, A Marceline; Kõressaar, Triinu; Remm, Maido; Savelkoul, Paul H M; Bos, Martine P

    2014-11-01

    The diagnosis of late onset sepsis (LOS), a severe condition with high prevalence in preterm infants, is hampered by the suboptimal sensitivity and long turnaround time of blood culture. Detection of the infecting pathogen directly in blood by PCR would provide a much more timely result. Unfortunately, PCR-based assays reported so far are labor intensive and often lack direct species identification. Therefore we developed a real-time multiplex PCR assay tailored to LOS diagnosis which is easy-to-use, is applicable on small blood volumes and provides species-specific results within 4h. Species-specific PCR assays were selected from literature or developed using bioinformatic tools for the detection of the most prevalent etiologic pathogens: Enterococcus faecalis, Staphylococcus aureus, Staphylococcus spp., Streptococcus agalactiae, Escherichia coli, Pseudomonas aeruginosa, Klebsiella spp. and Serratia marcescens. The PCR assays showed 100% specificity, full coverage of the target pathogens and a limit of detection (LOD) of ≤10CFUeq./reaction. These LOD values were maintained in the multiplex format or when bacterial DNA was isolated from blood. Clinical evaluation showed high concordance between the multiplex PCR and blood culture. In conclusion, we developed a multiplex PCR that allows the direct detection of the most important bacterial pathogens causing LOS in preterm infants.

  2. Medical Devices; Immunology and Microbiology Devices; Classification of Gastrointestinal Microorganism Multiplex Nucleic Acid-Based Assay. Final order.

    Science.gov (United States)

    2015-11-02

    The Food and Drug Administration (FDA) is classifying a gastrointestinal microorganism multiplex nucleic acid-based assay into class II (special controls). The Agency is classifying the device into class II (special controls) in order to provide a reasonable assurance of safety and effectiveness of the device.

  3. All major prion types recognised by a multiplex immunofluorometric assay for disease screening and confirmation in sheep

    NARCIS (Netherlands)

    Tang, Y.; gielbert, A.; Jacobs, J.G.; Baron, T.; Andreoletti, O.; Langeveld, J.P.M.; Sauer, M.J.

    2012-01-01

    Prion diseases or transmissible spongiform encephalopathies (TSEs) in small ruminants are presented in many forms: classical scrapie, Nor98/atypical scrapie, CH1641 scrapie and bovine spongiform encephalopathy (BSE). We previously described a multiplex immunofluorometric assay (mIFMA), based on a be

  4. Establishment of multiplexed, microsphere-based flow cytometric assay for multiple human tumor markers

    Institute of Scientific and Technical Information of China (English)

    Kai SUN; Qian WANG; Xiao-hui HUANG; Mao-chuan ZHEN; Wen LI; Long-juan ZHANG

    2007-01-01

    Aim: The multiplexed, microsphere-based flow cytometric assay (MFCA) for mul- tiple human tumor markers was established for the early screening and detection of suspected cancer patients. Methods: Covalent coupling of capture antibodies directed against their respective tumor markers to fluorescent microspheres was performed by following the protocols recommended by a commercial corporation with some modifications. The coupling efficiency and cross-reactivity were iden- tified by the Luminex 100 system and associated software. The standard curve was constructed by using serial dilution of recombinant tumor marker standards and was validated by comparison with ELISA for quantifying the tumor markers in serum samples. Results: The identifications revealed that the coupling proce- dures were successful without non-specific cross-reactivity and the standard curve was highly efficient. However, it was necessary to ensure the quality con- trol of the coupling process since slight variations in the coupling procedures could profoundly affect the density of capture reagents coupled to the microspheres and consequently adversely affect the assay precision. In addition to its multi-analyte capability, the MFCA system had definite advantages, such as higher reproducibility, greater dynamic range of measurement, and considerably less preparation time and labor over the conventional "gold standard", which was the ELISA. Conclusion: The successful establishment of the MFCA system for the simultaneous detection of multiple tumor markers will provide the foundation for the further study of clinical applications.

  5. Cell Painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes.

    Science.gov (United States)

    Bray, Mark-Anthony; Singh, Shantanu; Han, Han; Davis, Chadwick T; Borgeson, Blake; Hartland, Cathy; Kost-Alimova, Maria; Gustafsdottir, Sigrun M; Gibson, Christopher C; Carpenter, Anne E

    2016-09-01

    In morphological profiling, quantitative data are extracted from microscopy images of cells to identify biologically relevant similarities and differences among samples based on these profiles. This protocol describes the design and execution of experiments using Cell Painting, which is a morphological profiling assay that multiplexes six fluorescent dyes, imaged in five channels, to reveal eight broadly relevant cellular components or organelles. Cells are plated in multiwell plates, perturbed with the treatments to be tested, stained, fixed, and imaged on a high-throughput microscope. Next, an automated image analysis software identifies individual cells and measures ∼1,500 morphological features (various measures of size, shape, texture, intensity, and so on) to produce a rich profile that is suitable for the detection of subtle phenotypes. Profiles of cell populations treated with different experimental perturbations can be compared to suit many goals, such as identifying the phenotypic impact of chemical or genetic perturbations, grouping compounds and/or genes into functional pathways, and identifying signatures of disease. Cell culture and image acquisition takes 2 weeks; feature extraction and data analysis take an additional 1-2 weeks.

  6. Development of a multiplex reverse transcription-PCR assay for simultaneous detection of garlic viruses

    Institute of Scientific and Technical Information of China (English)

    HU Xin-xi; LEI Yan; WANG Pei; TANG Lin-fei; HE Chang-zheng; SONG Yong; XIONG Xing-yao; NIE Xian-zhou

    2015-01-01

    A preliminary screening for garlic viruses in garlic plants in Hunan, China, using existing monoplex (simplex) reverse tran-scription-polymerase chain reaction (RT-PCR) procedures detected four viruses/virus groups. These viruses/virus groups were Onion yel ow dwarf virus (OYDV), Leek yel ow stripe virus (LYSV), Shal ot latent virus (SLV) and al exiviruses (e.g., garlic viruses A, B, C, D, E, X). Sequence analysis of the projected al exivirus amplicons revealed the al exivirus in the infected garlic plants was Garlic virus D (GarV-D), which shared 92–97%sequence identities with various isolates from the world. A multiplex RT-PCR (mRT-PCR) was therefore developed to simultaneously detect and differentiate the four viruses/virus groups. To achieve this, four primer pairs targeting al exiviruses, OYDV, LYSV and SLV were designed. The anticipated amplicon sizes are 183 bp (al exiviruses), 265 bp (OYDV), 404 bp (LYSV) and 592 bp (SLV), respectively. Al primer pairs produced virus-speciifc fragments in both simplex and multiplex formats, thus conifrming the efifcacy of the newly developed mRT-PCR for detection of these viruses. The mRT-PCR further was evaluated by applying it to garlic plant samples col ected in two geographic locations in Hunan. Al exiviruses, OYDV, LYSV and SLV were detected in 50.9, 40.3, 28.3 and 58.5%of leaf samples, respectively;and mixed infections with two or more viruses accounted for 54%of the garlic samples. The results obtained by mRT-PCR were conifrmed by simplex RT-PCR assays. In conclusion, this newly devel-oped mRT-PCR provides a rapid, sensitive and reliable method for the detection and identiifcation of major garlic viruses.

  7. Quantitative Microplate Assay for Real-Time Nuclease Kinetics

    OpenAIRE

    Eriksson, Jonas; Langel, Ülo

    2016-01-01

    Utilizing the phenomenon of nucleases exposing oligonucleotide phosphate backbones to phosphatases we present a novel quantitative method for kinetics of nuclease catalysis. Inorganic phosphate released from nuclease products by phosphatases could be quantified in real-time by a fluorescent sensor of inorganic phosphate. Two different nucleases were employed, showing the versatility of this assay for multiple turnover label-free nuclease studies.

  8. Multiplex polymerase chain reaction assay for the detection of minute virus of mice and mouse parvovirus infections in laboratory mice.

    Science.gov (United States)

    Wang, K W; Chueh, L L; Wang, M H; Huang, Y T; Fang, B H; Chang, C Y; Fang, M C; Chou, J Y; Hsieh, S C; Wan, C H

    2013-04-01

    Mouse parvoviruses are among the most prevalent infectious pathogens in contemporary mouse colonies. To improve the efficiency of routine screening for mouse parvovirus infections, a multiplex polymerase chain reaction (PCR) assay targeting the VP gene was developed. The assay detected minute virus of mice (MVM), mouse parvovirus (MPV) and a mouse housekeeping gene (α-actin) and was able to specifically detect MVM and MPV at levels as low as 50 copies. Co-infection with the two viruses with up to 200-fold differences in viral concentrations can easily be detected. The multiplex PCR assay developed here could be a useful tool for monitoring mouse health and the viral contamination of biological materials.

  9. A multiplexed reverse transcriptase PCR assay for identification of viral respiratory pathogens at point-of-care

    Energy Technology Data Exchange (ETDEWEB)

    Letant, S E; .Ortiz, J I; Tammero, L; Birch, J M; Derlet, R W; Cohen, S; Manning, D; McBride, M T

    2007-04-11

    We have developed a nucleic acid-based assay that is rapid, sensitive, specific, and can be used for the simultaneous detection of 5 common human respiratory pathogens including influenza A, influenza B, parainfluenza type 1 and 3, respiratory syncytial virus, and adenovirus group B, C, and E. Typically, diagnosis on an un-extracted clinical sample can be provided in less than 3 hours, including sample collection, preparation, and processing, as well as data analysis. Such a multiplexed panel would enable rapid broad-spectrum pathogen testing on nasal swabs, and therefore allow implementation of infection control measures, and timely administration of antiviral therapies. This article presents a summary of the assay performance in terms of sensitivity and specificity. Limits of detection are provided for each targeted respiratory pathogen, and result comparisons are performed on clinical samples, our goal being to compare the sensitivity and specificity of the multiplexed assay to the combination of immunofluorescence and shell vial culture currently implemented at the UCDMC hospital. Overall, the use of the multiplexed RT-PCR assay reduced the rate of false negatives by 4% and reduced the rate of false positives by up to 10%. The assay correctly identified 99.3% of the clinical negatives, 97% of adenovirus, 95% of RSV, 92% of influenza B, and 77% of influenza A without any extraction performed on the clinical samples. The data also showed that extraction will be needed for parainfluenza virus, which was only identified correctly 24% of the time on un-extracted samples.

  10. Enzyme catalysis-electrophoresis titration for multiplex enzymatic assay via moving reaction boundary chip.

    Science.gov (United States)

    Zhong, Ran; Xie, Haiyang; Kong, Fanzhi; Zhang, Qiang; Jahan, Sharmin; Xiao, Hua; Fan, Liuyin; Cao, Chengxi

    2016-09-21

    In this work, we developed the concept of enzyme catalysis-electrophoresis titration (EC-ET) under ideal conditions, the theory of EC-ET for multiplex enzymatic assay (MEA), and a related method based on a moving reaction boundary (MRB) chip with a collateral channel and cell phone imaging. As a proof of principle, the model enzymes horseradish peroxidase (HRP), laccase and myeloperoxidase (MPO) were chosen for the tests of the EC-ET model. The experiments revealed that the EC-ET model could be achieved via coupling EC with ET within a MRB chip; particularly the MEA analyses of catalysis rate, maximum rate, activity, Km and Kcat could be conducted via a single run of the EC-ET chip, systemically demonstrating the validity of the EC-ET theory. Moreover, the developed method had these merits: (i) two orders of magnitude higher sensitivity than a fluorescence microplate reader, (ii) simplicity and low cost, and (iii) fairly rapid (30 min incubation, 20 s imaging) analysis, fair stability (<5.0% RSD) and accuracy, thus validating the EC-ET method. Finally, the developed EC-ET method was used for the clinical assay of MPO activity in blood samples; the values of MPO activity detected via the EC-ET chip were in agreement with those obtained by a traditional fluorescence microplate reader, indicating the applicability of the EC-ET method. The work opens a window for the development of enzymatic research, enzyme assay, immunoassay, and point-of-care testing as well as titration, one of the oldest methods of analysis, based on a simple chip.

  11. Evaluation of a new multiplex polymerase chain reaction assay STDFinder for the simultaneous detection of 7 sexually transmitted disease pathogens.

    Science.gov (United States)

    Muvunyi, Claude Mambo; Dhont, Nathalie; Verhelst, Rita; Crucitti, Tania; Reijans, Martin; Mulders, Brit; Simons, Guus; Temmerman, Marleen; Claeys, Geert; Padalko, Elizaveta

    2011-09-01

    We evaluated a new multiplex polymerase chain reaction (mPCR), "STDFinder assay", a novel multiplex ligation-dependent probe amplification (MLPA) assay for the simultaneous detection of 7 clinically relevant pathogens of STDs, i.e., Neisseria gonorrhoeae, Chlamydia trachomatis, Trichomonas vaginalis, Mycoplasma genitalium, Treponema pallidum, and herpes simplex virus type 1 and 2 (HSV-1 and HSV-2). An internal amplification control was included in the mPCR reaction. The limits of detection for the STDFinder assay varied among the 7 target organisms from 1 to 20 copies per MLPA assay. There were no cross-reactions among any of the probes. Two hundred and forty-two vaginal swabs and an additional 80 specimens with known results for N. gonorrhoeae and C. trachomatis, obtained from infertile women seen at an infertility research clinic at the Kigali Teaching Hospital in Rwanda, were tested by STDFinder assay and the results were confirmed by single real-time PCR using different species-specific targets. Compared to the reference standard, the STDFinder assay showed specificities and sensitivities of 100% and 100%, respectively, for N. gonorrhoeae, C. trachomatis, and M. genitalium; 90.2% and 100%, respectively, for Trichomonas vaginalis; and 96.1% and 100%, respectively, for HSV-2. No specimen was found to be positive for HSV-1 by either the STDFinder assay or the comparator method. Similarly, the sensitivity for Treponema pallidum could not be calculated due to the absence of any Treponema pallidum-positive samples. In conclusion, the STDFinder assays have comparable clinical sensitivity to the conventional mono and duplex real-time PCR assay and are suitable for the routine detection of a broad spectrum of these STDs at relatively low cost due to multiplexing.

  12. Optimized conditions for a quantitative SELDI TOF MS protein assay.

    Science.gov (United States)

    Lomas, Lee; Clarke, Charlotte H; Thulasiraman, Vanitha; Fung, Eric

    2012-01-01

    The development of peptide/protein analyte assays for the purpose of diagnostic tests is driven by multiple factors, including sample availability, required throughput, and quantitative reproducibility. Laser Desorption/ionization mass spectrometry methods (LDI-MS) are particularly well suited for both peptide and protein characterization, and combining chromatographic surfaces directly onto the MS probe in the form of surface enhanced laser desorption/ionization (SELDI)-biochips has improved the reproducibility of analyte detection and provided effective relative quantitation. Here, we provide methods for developing reproducible SELDI-based assays by providing a complex artificial protein matrix background within the sample to be analyzed that allows for a common and reproducible ionization background as well as internal normalization standards. Using this approach, quantitative assays can be developed with CVs typically less than 10% across assays and days. Although the method has been extensively and successfully implemented in association with a protein matrix from E. coli, any other source for the complex protein matrix can be considered as long as it adheres to a set of conditions including the following: (1) the protein matrix must not provide interferences with the analyte to be detected, (2) the protein matrix must be sufficiently complex such that a majority of ion current generated from the desorption of the sample comes from the complex protein matrix, and (3) specific and well-resolved protein matrix peaks must be present within the mass range of the analyte of interest for appropriate normalization.

  13. Quantitative Fissile Assay In Used Fuel Using LSDS System

    Directory of Open Access Journals (Sweden)

    Lee YongDeok

    2017-01-01

    Full Text Available A quantitative assay of isotopic fissile materials (U235, Pu239, Pu241 was done at Korea Atomic Energy Research Institute (KAERI, using lead slowing down spectrometer (LSDS. The optimum design of LSDS was performed based on economics, easy maintenance and assay effectiveness. LSDS system consists of spectrometer, neutron source, detection and control. LSDS system induces fissile fission and fast neutrons are collected at fission chamber. The detected signal has a direct relation to the mass of existing fissile isotopes. Many current commercial assay technologies have a limitation in direct application on isotopic fissile assay of spent fuel, except chemical analysis. In the designed system, the fissile assay model was setup and the correction factor for self-shield was obtained. The isotopic fissile content assay was performed by changing the content of Pu239. Based on the fuel rod, the isotopic content was consistent with ~2% uncertainty for Pu239. By applying the covering (neutron absorber, the effective shielding was obtained and the activation was calculated on the target. From the assay evaluation, LSDS technique is very powerful and direct to analyze the isotopic fissile content. LSDS is applicable for nuclear fuel cycle and spent fuel management for safety and economics. Additionally, an accurate fissile content will contribute to the international transparency and credibility on spent fuel.

  14. Quantitative Fissile Assay In Used Fuel Using LSDS System

    Science.gov (United States)

    Lee, YongDeok; Jeon, Ju Young; Park, Chang-Je

    2017-09-01

    A quantitative assay of isotopic fissile materials (U235, Pu239, Pu241) was done at Korea Atomic Energy Research Institute (KAERI), using lead slowing down spectrometer (LSDS). The optimum design of LSDS was performed based on economics, easy maintenance and assay effectiveness. LSDS system consists of spectrometer, neutron source, detection and control. LSDS system induces fissile fission and fast neutrons are collected at fission chamber. The detected signal has a direct relation to the mass of existing fissile isotopes. Many current commercial assay technologies have a limitation in direct application on isotopic fissile assay of spent fuel, except chemical analysis. In the designed system, the fissile assay model was setup and the correction factor for self-shield was obtained. The isotopic fissile content assay was performed by changing the content of Pu239. Based on the fuel rod, the isotopic content was consistent with 2% uncertainty for Pu239. By applying the covering (neutron absorber), the effective shielding was obtained and the activation was calculated on the target. From the assay evaluation, LSDS technique is very powerful and direct to analyze the isotopic fissile content. LSDS is applicable for nuclear fuel cycle and spent fuel management for safety and economics. Additionally, an accurate fissile content will contribute to the international transparency and credibility on spent fuel.

  15. Development of a Multiplexed, Bead-Based Assessment Tool for Rapid Identification and Quantitation of Microorganisms in Field Samples. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, M.; Halden, R.

    2002-10-09

    This was the final report for DOE NABIR grant DE-FG02-01ER63264 (PI Mary Lowe). The grant was entitled ''Development of a Multiplexed Bead-Based Assessment Tool for Rapid Identification and Quantitation of Microorganisms in Field Samples.'' The grant duration was one year. The purpose was to develop a bead-based assay for measuring analyte DNAs in environmental PCR products and to apply the method to a field experiment. The primary experiment was located at the UMTRA Old Rifle site.

  16. Familial aggregation of quantitative autistic traits in multiplex versus simplex autism.

    Science.gov (United States)

    Virkud, Yamini V; Todd, Richard D; Abbacchi, Anna M; Zhang, Yi; Constantino, John N

    2009-04-05

    Recent research has suggested that the mode of inheritance for simplex autism (SA, one individual in the family affected) may be distinct from that for multiplex autism (MA, two or more individuals affected). Since sub clinical autistic traits have been observed in "unaffected" relatives of children with autism, we explored whether the distributions of such traits in families supported differential modes of genetic transmission for SA and MA autism. We measured patterns of familial aggregation of quantitative autistic traits (QAT) in children and parents in 80 SA families and 210 MA families, using the Social Responsiveness Scale. When considering all SA and MA siblings who scored below a uniform quantitative (clinical-level) severity threshold, MA brothers exhibited a distinct pathological shift in the distribution, compared to SA brothers (P level of concordant elevation among spousal pairs in this volunteer sample. Among male first degree relatives, there exist distinct patterns of QAT manifestation for simplex versus multiplex autism. These findings are consistent with the results of molecular genetic studies that have suggested differential modes of intergenerational transmission for SA and MA. Characterization of QAT and other endophenotypes among close relatives may be useful for reducing sample heterogeneity in future genetic and neurobiologic studies of autism.

  17. Development and validation of a multiplex reverse transcription PCR assay for simultaneous detection of three papaya viruses.

    Science.gov (United States)

    Tuo, Decai; Shen, Wentao; Yang, Yong; Yan, Pu; Li, Xiaoying; Zhou, Peng

    2014-10-21

    Papaya ringspot virus (PRSV), Papaya leaf distortion mosaic virus (PLDMV), and Papaya mosaic virus (PapMV) produce similar symptoms in papaya. Each threatens commercial production of papaya on Hainan Island, China. In this study, a multiplex reverse transcription PCR assay was developed to detect simultaneously these three viruses by screening combinations of mixed primer pairs and optimizing the multiplex RT-PCR reaction conditions. A mixture of three specific primer pairs was used to amplify three distinct fragments of 613 bp from the P3 gene of PRSV, 355 bp from the CP gene of PLDMV, and 205 bp from the CP gene of PapMV, demonstrating the assay's specificity. The sensitivity of the multiplex RT-PCR was evaluated by showing plasmids containing each of the viral target genes with 1.44 × 103, 1.79 × 103, and 1.91 × 102 copies for the three viruses could be detected successfully. The multiplex RT-PCR was applied successfully for detection of three viruses from 341 field samples collected from 18 counties of Hainan Island, China. Rates of single infections were 186/341 (54.5%), 93/341 (27.3%), and 3/341 (0.9%), for PRSV, PLDMV, and PapMV, respectively; 59/341 (17.3%) of the samples were co-infected with PRSV and PLDMV, which is the first time being reported in Hainan Island. This multiplex RT-PCR assay is a simple, rapid, sensitive, and cost-effective method for detecting multiple viruses in papaya and can be used for routine molecular diagnosis and epidemiological studies in papaya.

  18. Quantitative characterization of single cells by use of immunocytochemistry combined with multiplex LA-ICP-MS.

    Science.gov (United States)

    Mueller, Larissa; Herrmann, Antje J; Techritz, Sandra; Panne, Ulrich; Jakubowski, Norbert

    2017-05-01

    Actual research demonstrates that LA-ICP-MS is capable of being used as an imaging tool with cellular resolution. The aim of this investigation was the method development for LA-ICP-MS to extend the versatility to quantitative and multiplexing imaging of single eukaryotic cells. For visualization of individual cells selected, lanthanide-labeled antibodies were optimized for immuno-imaging of single cells with LA-ICP-MS. The molar content of the artificial introduced labels per cell was quantified using self-made nitrocellulose-coated slides for matrix-matched calibration and calculated amounts were in the range of 3.1 to 17.8 atmol per cell. Furthermore, the quantification strategy allows a conversion of 2D intensity profiles based on counts per second (cps) to quantitative 2D profiles representing the molar amount of the artificial introduced elemental probes per pixel for each individual cell. Graphical abstract ᅟ.

  19. Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC).

    Science.gov (United States)

    Phillips, Zachary F; Chen, Michael; Waller, Laura

    2017-01-01

    We present a new technique for quantitative phase and amplitude microscopy from a single color image with coded illumination. Our system consists of a commercial brightfield microscope with one hardware modification-an inexpensive 3D printed condenser insert. The method, color-multiplexed Differential Phase Contrast (cDPC), is a single-shot variant of Differential Phase Contrast (DPC), which recovers the phase of a sample from images with asymmetric illumination. We employ partially coherent illumination to achieve resolution corresponding to 2× the objective NA. Quantitative phase can then be used to synthesize DIC and phase contrast images or extract shape and density. We demonstrate amplitude and phase recovery at camera-limited frame rates (50 fps) for various in vitro cell samples and c. elegans in a micro-fluidic channel.

  20. A single step multiplex immunofluorometric assay for differential diagnosis of BSE and scrapie.

    Science.gov (United States)

    Tang, Yue; Thorne, Jemma; Whatling, Kirsty; Jacobs, Jorg G; Langeveld, Jan; Sauer, Maurice J

    2010-04-30

    Although there is no evidence that the European sheep population has been infected with bovine spongiform encephalopathy (BSE), distinguishing this from scrapie is paramount, given the association between BSE exposure and the human transmissible spongiform encephalopathy (TSE), variant Creutzfeldt-Jakob disease. The capability to differentially diagnose TSEs in sheep is thus essential in order to safeguard the food chain and human health. Biochemical methods for differentiating BSE and scrapie are largely reliant on assessment by Western blot (WB) analysis of the abnormal disease associated prion protein PrP(D) following partial proteolytic digestion. WB banding patterns obtained using a panel of antibodies enable different strain specific conformations of PrP(D) to be distinguished. This approach provides a robust confirmatory test but one which is not appropriate for high throughput screening. A simple, one step, bead array flow cytometry based multiplex immunofluorometric assay has been developed which is suitable for simultaneous screening and confirmation. Using a combination of antibodies directed towards three PrP epitopes enabled differential diagnosis of scrapie and BSE. Proof of principle studies indicated a high predictive value (100%) when applied to brain samples from control animals, BSE infected cattle and sheep naturally infected with scrapie or experimentally infected with BSE.

  1. A digital microfluidic method for multiplexed cell-based apoptosis assays.

    Science.gov (United States)

    Bogojevic, Dario; Chamberlain, M Dean; Barbulovic-Nad, Irena; Wheeler, Aaron R

    2012-02-07

    Digital microfluidics (DMF), a fluid-handling technique in which picolitre-microlitre droplets are manipulated electrostatically on an array of electrodes, has recently become popular for applications in chemistry and biology. DMF devices are reconfigurable, have no moving parts, and are compatible with conventional high-throughput screening infrastructure (e.g., multiwell plate readers). For these and other reasons, digital microfluidics has been touted as being a potentially useful new tool for applications in multiplexed screening. Here, we introduce the first digital microfluidic platform used to implement parallel-scale cell-based assays. A fluorogenic apoptosis assay for caspase-3 activity was chosen as a model system because of the popularity of apoptosis as a target for anti-cancer drug discovery research. Dose-response profiles of caspase-3 activity as a function of staurosporine concentration were generated using both the digital microfluidic method and conventional techniques (i.e., pipetting, aspiration, and 96-well plates.) As expected, the digital microfluidic method had a 33-fold reduction in reagent consumption relative to the conventional technique. Although both types of methods used the same detector (a benchtop multiwell plate reader), the data generated by the digital microfluidic method had lower detection limits and greater dynamic range because apoptotic cells were much less likely to de-laminate when exposed to droplet manipulation by DMF relative to pipetting/aspiration in multiwell plates. We propose that the techniques described here represent an important milestone in the development of digital microfluidics as a useful tool for parallel cell-based screening and other applications.

  2. Development of novel AllGlo-probe-based one-step multiplex qRT-PCR assay for rapid identification of avian influenza virus H7N9.

    Science.gov (United States)

    Zhang, Yanjun; Mao, Haiyan; Yan, Juying; Wang, Xinying; Zhang, Lei; Guus, Koch; Li, Hui; Li, Zhen; Chen, Yin; Gong, Liming; Chen, Zhiping; Xia, Shichang

    2014-07-01

    Recently, human deaths have resulted from infection with low-pathogenicity avian influenza virus H7N9 strains that have emerged recently in China. To strengthen H7N9 surveillance and outbreak control, rapid and reliable diagnostic methods are needed. To develop a sensitive quantitative real-time RT-PCR assay for rapid detection of H7N9 viral RNA, primers and AllGlo probes were designed to target the HA and NA genes of H7N9. Conserved sequences in the HA and NA genes were identified by phylogenic analysis and used as targets for H7N9 virus detection. The similarities of the targeted HA and NA gene sequences from different H7 and N9 influenza virus strains were 93.2-99.9 % and 96.0-99.6 %, respectively The specificity and sensitivity of the new multiplex real-time qRT-PCR was established. The test was used for the detection of viral RNA in human pharyngeal swabs and environmental samples. The detection limit of the multiplex qRT-PCR was estimated to be about 10(-1) TCID50/reaction. Finally, the diagnostic sensitivities of the multiplex qRT-PCR, virus isolation and TaqMan qRT-PCR were compared using pharyngeal swabs and environmental samples. These analyses yielded positive results in 46.7 %, 43.3 % and 20.0 % of the samples, respectively. The novel multiplex AllGlo qRT-PCR is a rapid and sensitive method to identify H7N9 virus in clinical and environmental samples and can be used to facilitate studies on the epidemiology of H7N9 virus.

  3. Multiplexing Fluo-4 NW and a GeneBLAzer transcriptional assay for high-throughput screening of G-protein-coupled receptors.

    Science.gov (United States)

    Hanson, Bonnie J

    2006-09-01

    Activation of G-protein-coupled receptors (GPCRs) leads to a cascade of signaling events, including calcium mobilization and downstream transcriptional activation of various proteins. Two commonly used methods of high-throughput screening for GPCRs include calcium-sensitive dyes, such as Fluo-4 NW, and reporter gene assays, such as beta-lactamase. To determine whether the advantages of each assay format could be combined by multiplexing, Jurkat and CHO-K1 cell lines over-expressing the M1 muscarinic receptor and beta-lactamase under control of an NFAT response element were tested in a multiplexed format. The Jurkat cell line was further screened with a subset of the LOPAC(1280) library. The multiplexing assay was compatible with both the CHO-K1 and Jurkat cell lines. For the screen, there was 100% correlation of on-target hits in the multiplexed format, and several false positives with each assay format were identified. Therefore, not only can the assays be multiplexed, but by multiplexing, the false positives associated with each assay format also could be easily identified. In addition to enhanced reliability, this method saves time and money because only half the amount of compounds, cells, and consumables are needed to screen a cell line in a multiplexed mode versus separate screening by both methods.

  4. Application of a multiplex PCR assay for Campylobacter fetus detection and subspecies differentiation in uncultured samples of aborted bovine fetuses.

    Science.gov (United States)

    Iraola, Gregorio; Hernández, Martín; Calleros, Lucía; Paolicchi, Fernando; Silveyra, Silvia; Velilla, Alejandra; Carretto, Luis; Rodríguez, Eliana; Pérez, Ruben

    2012-12-01

    Campylobacter (C.) fetus (epsilonproteobacteria) is an important veterinary pathogen. This species is currently divided into C. fetus subspecies (subsp.) fetus (Cff) and C. fetus subsp. venerealis (Cfv). Cfv is the causative agent of bovine genital Campylobacteriosis, an infectious disease that leads to severe reproductive problems in cattle worldwide. Cff is a more general pathogen that causes reproductive problems mainly in sheep although cattle can also be affected. Here we describe a multiplex PCR method to detect C. fetus and differentiate between subspecies in a single step. The assay was standardized using cultured strains and successfully used to analyze the abomasal liquid of aborted bovine fetuses without any pre-enrichment step. Results of our assay were completely consistent with those of traditional bacteriological diagnostic methods. Furthermore, the multiplex PCR technique we developed may be easily adopted by any molecular diagnostic laboratory as a complementary tool for detecting C. fetus subspecies and obtaining epidemiological information about abortion events in cattle.

  5. Multiplex dipstick immunoassay for semi-quantitative determination of Fusarium mycotoxins in cereals

    Energy Technology Data Exchange (ETDEWEB)

    Lattanzio, Veronica M.T., E-mail: veronica.lattanzio@ispa.cnr.it [National Research Council of Italy, Institute of Sciences of Food Production (ISPA-CNR), Via Amendola 122/O, 70126 Bari (Italy); Nivarlet, Noan [UNISENSOR S.A., Zoning industriel du Dossay, Rue du Dossay no 3, B-4020 Liege (Belgium); Lippolis, Vincenzo; Gatta, Stefania Della [National Research Council of Italy, Institute of Sciences of Food Production (ISPA-CNR), Via Amendola 122/O, 70126 Bari (Italy); Huet, Anne-Catherine; Delahaut, Philippe [Centre d' Economie Rurale (CER Groupe), Rue du Point du Jour no 8, B-6900 Marloie (Belgium); Granier, Benoit [UNISENSOR S.A., Zoning industriel du Dossay, Rue du Dossay no 3, B-4020 Liege (Belgium); Visconti, Angelo [National Research Council of Italy, Institute of Sciences of Food Production (ISPA-CNR), Via Amendola 122/O, 70126 Bari (Italy)

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer We developed a rapid method based on a multiplex dipstick immunoassay. Black-Right-Pointing-Pointer The assay allowed the determination of major Fusarium toxins in wheat, oats, maize. Black-Right-Pointing-Pointer We obtained cut off levels close to EU regulatory levels. - Abstract: A multiplex dipstick immunoassay based method for the simultaneous determination of major Fusarium toxins, namely zearalenone, T-2 and HT-2 toxins, deoxynivalenol and fumonisins in wheat, oats and maize has been developed. The dipstick format was based on an indirect competitive approach. Four test lines (mycotoxin-BSA conjugates) and one control line were located on the strip membrane. Labelled antibodies were freeze-dried within the microwell. Two matrix-related sample preparation protocols have been developed for wheat/oats (not containing fumonisins) and maize (containing fumonisins) respectively. The use of a methanol/water mixture for sample preparation allowed recoveries in the range 73-109% for all mycotoxins in all tested cereals, with relative standard deviation less than 10%. The optimized immunoassay was able to detect target mycotoxins at cut off levels equal to 80% of EU maximum permitted levels, i.e. 280, 400, 1400 and 3200 {mu}g kg{sup -1}, respectively, for zearalenone, T-2/HT-2 toxins, deoxynivalenol and fumonisins in maize, and 80, 400 and 1400 {mu}g kg{sup -1}, respectively, for zearalenone, T-2/HT-2 toxins and deoxynivalenol in wheat and oats. Analysis of naturally contaminated samples resulted in a good agreement between multiplex dipstick and validated confirmatory LC-MS/MS. The percentage of false positive results was less than or equal to 13%, whereas no false negative results were obtained. Data on the presence/absence of 6 mycotoxins at levels close to EU regulatory levels were obtained within 30 min. The proposed immunoassay protocol is rapid, inexpensive, easy-to-use and fit for purpose of rapid screening of mycotoxins

  6. Cross-laboratory validation of the OncoScan® FFPE Assay, a multiplex tool for whole genome tumour profiling

    OpenAIRE

    Foster, Joseph M.; Oumie, Assa; Togneri, Fiona S; Vasques, Fabiana Ramos; Hau, Debra; Taylor, Morag; Tinkler-Hundal, Emma; Southward, Katie; Medlow, Paul; McGreeghan-Crosby, Keith; Halfpenny, Iris; McMullan, Dominic J.; Quirke, Phil; Keating, Katherine E; Griffiths, Mike

    2015-01-01

    Background Adoption of new technology in both basic research and clinical settings requires rigorous validation of analytical performance. The OncoScan® FFPE Assay is a multiplexing tool that offers genome-wide copy number and loss of heterozygosity detection, as well as identification of frequently tested somatic mutations. Methods In this study, 162 formalin fixed paraffin embedded samples, representing six different tumour types, were profiled in triplicate across three independent laborat...

  7. Rapid detection and typing of pathogenic nonpneumophila Legionella spp. isolates using a multiplex real-time PCR assay.

    Science.gov (United States)

    Benitez, Alvaro J; Winchell, Jonas M

    2016-04-01

    We developed a single tube multiplex real-time PCR assay that allows for the rapid detection and typing of 9 nonpneumophila Legionella spp. isolates that are clinically relevant. The multiplex assay is capable of simultaneously detecting and discriminating L. micdadei, L. bozemanii, L. dumoffii, L. longbeachae, L. feeleii, L. anisa, L. parisiensis, L. tucsonensis serogroup (sg) 1 and 3, and L. sainthelensis sg 1 and 2 isolates. Evaluation of the assay with nucleic acid from each of these species derived from both clinical and environmental isolates and typing strains demonstrated 100% sensitivity and 100% specificity when tested against 43 other Legionella spp. Typing of L. anisa, L. parisiensis, and L. tucsonensis sg 1 and 3 isolates was accomplished by developing a real-time PCR assay followed by high-resolution melt (HRM) analysis targeting the ssrA gene. Further typing of L. bozemanii, L. longbeachae, and L. feeleii isolates to the serogroup level was accomplished by developing a real-time PCR assay followed by HRM analysis targeting the mip gene. When used in conjunction with other currently available diagnostic tests, these assays may aid in rapidly identifying specific etiologies associated with Legionella outbreaks, clusters, sporadic cases, and potential environmental sources.

  8. Rapid identification of Gram-positive anaerobic coccal species originally classified in the genus Peptostreptococcus by multiplex PCR assays using genus- and species-specific primers.

    Science.gov (United States)

    Song, Yuli; Liu, Chengxu; McTeague, Maureen; Vu, Ann; Liu, Jia Yia; Finegold, Sydney M

    2003-07-01

    Here, a rapid and reliable two-step multiplex PCR assay for identifying 14 Gram-positive anaerobic cocci (GPAC) species originally classified in the genus Peptostreptococcus (Anaerococcus hydrogenalis, Anaerococcus lactolyticus, Anaerococcus octavius, Anaerococcus prevotii, Anaerococcus tetradius, Anaerococcus vaginalis, Finegoldia magna, Micromonas micros, Peptostreptococcus anaerobius, Peptoniphilus asaccharolyticus, Peptoniphilus harei, Peptoniphilus indolicus, Peptoniphilus ivorii and Peptoniphilus lacrimalis) is reported. Fourteen type strains representing 14 GPAC species were first identified to the genus level by multiplex PCR (multiplex PCR-G). Since three of these genera (Finegoldia, Micromonas and Peptostreptococcus) contain only a single species, F. magna, M. micros and P. anaerobius, respectively, these organisms were identified to the species level directly by using the multiplex PCR-G. Then six species of the genus Anaerococcus (A. hydrogenalis, A. lactolyticus, A. octavius, A. prevotii, A. vaginalis and A. tetradius) were further identified to the species level using multiplex PCR assays (multiplex PCR-Ia and multiplex PCR-Ib). Similarly, five species of the genus Peptoniphilus (Pn. asaccharolyticus, Pn. harei, Pn. indolicus, Pn. ivorii and Pn. lacrimalis) were identified to the species level using multiplex PCR-IIa and multiplex PCR-IIb. The established two-step multiplex PCR identification scheme was applied to the identification of 190 clinical isolates of GPAC species that had been identified previously to the species level by 16S rRNA sequencing and phenotypic tests. The identification obtained from multiplex PCR assays showed 100 % agreement with 16S rDNA sequencing identification, but only 65 % (123/190) agreement with the identification obtained by phenotypic tests. The multiplex PCR scheme established in this study is a simple, rapid and reliable method for the identification of GPAC species. It will permit a more accurate assessment of the

  9. Detection and measurement of surface contamination by multiple antineoplastic drugs using multiplex bead assay.

    Science.gov (United States)

    Smith, Jerome P; Sammons, Deborah L; Robertson, Shirley A; Pretty, Jack R; DeBord, D Gayle; Connor, Thomas H; Snawder, John E

    2016-02-01

    Contamination of workplace surfaces by antineoplastic drugs presents an exposure risk for healthcare workers. Traditional instrumental methods to detect contamination such as liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) are sensitive and accurate but expensive. Since immunochemical methods may be cheaper and faster than instrumental methods, we wanted to explore their use for routine drug residue detection for preventing worker exposure. In this study we examined the feasibility of using fluorescence covalent microbead immunosorbent assay (FCMIA) for simultaneous detection and semi-quantitative measurement of three antineoplastic drugs (5-fluorouracil, paclitaxel, and doxorubicin). The concentration ranges for the assay were 0-1000 ng/ml for 5-fluorouracil, 0-100 ng/ml for paclitaxel, and 0-2 ng/ml for doxorubicin. The surface sampling technique involved wiping a loaded surface with a swab wetted with wash buffer, extracting the swab in storage/blocking buffer, and measuring drugs in the extract using FCMIA. There was no significant cross-reactivity between these drugs at the ranges studied indicated by a lack of response in the assay to cross analytes. The limit of detection (LOD) for 5-fluorouracil on the surface studied was 0.93 ng/cm(2) with a limit of quantitation (LOQ) of 2.8 ng/cm(2), the LOD for paclitaxel was 0.57 ng/cm(2) with an LOQ of 2.06 ng/cm(2), and the LOD for doxorubicin was 0.0036 ng/cm(2) with an LOQ of 0.013 ng/cm(2). The use of FCMIA with a simple sampling technique has potential for low cost simultaneous detection and semi-quantitative measurement of surface contamination from multiple antineoplastic drugs. © The Author(s) 2014.

  10. A multiplex real-time PCR panel assay for simultaneous detection and differentiation of 12 common swine viruses.

    Science.gov (United States)

    Shi, Xiju; Liu, Xuming; Wang, Qin; Das, Amaresh; Ma, Guiping; Xu, Lu; Sun, Qing; Peddireddi, Lalitha; Jia, Wei; Liu, Yanhua; Anderson, Gary; Bai, Jianfa; Shi, Jishu

    2016-10-01

    Mixed infection with different pathogens is common in swine production systems especially under intensive production conditions. Quick and accurate detection and differentiation of different pathogens are necessary for epidemiological surveillance, disease management and import and export controls. In this study, we developed and validated a panel of multiplex real-time PCR/RT-PCR assays composed of four subpanels, each detects three common swine pathogens. The panel detects 12 viruses or viral serotypes, namely, VSV-IN, VSV-NJ, SVDV, CSFV, ASFV, FMDV, PCV2, PPV, PRV, PRRSV-NA, PRRSV-EU and SIV. Correlation coefficients (R(2)) and PCR amplification efficiencies of all singular and triplex real-time PCR reactions are within the acceptable range. Comparison between singular and triplex real-time PCR assays of each subpanel indicates that there is no significant interference on assay sensitivities caused by multiplexing. Specificity tests on 226 target clinical samples or 4 viral strains and 91 non-target clinical samples revealed that the real-time PCR panel is 100% specific, and there is no cross amplification observed. The limit of detection of each triplex real-time PCR is less than 10 copies per reaction for DNA, and less than 16 copies per reaction for RNA viruses. The newly developed multiplex real-time PCR panel also detected different combinations of co-infections as confirmed by other means of detections.

  11. Development and Validation of a Multiplex Reverse Transcription PCR Assay for Simultaneous Detection of Three Papaya Viruses

    Directory of Open Access Journals (Sweden)

    Decai Tuo

    2014-10-01

    Full Text Available Papaya ringspot virus (PRSV, Papaya leaf distortion mosaic virus (PLDMV, and Papaya mosaic virus (PapMV produce similar symptoms in papaya. Each threatens commercial production of papaya on Hainan Island, China. In this study, a multiplex reverse transcription PCR assay was developed to detect simultaneously these three viruses by screening combinations of mixed primer pairs and optimizing the multiplex RT-PCR reaction conditions. A mixture of three specific primer pairs was used to amplify three distinct fragments of 613 bp from the P3 gene of PRSV, 355 bp from the CP gene of PLDMV, and 205 bp from the CP gene of PapMV, demonstrating the assay’s specificity. The sensitivity of the multiplex RT-PCR was evaluated by showing plasmids containing each of the viral target genes with 1.44 × 103, 1.79 × 103, and 1.91 × 102 copies for the three viruses could be detected successfully. The multiplex RT-PCR was applied successfully for detection of three viruses from 341 field samples collected from 18 counties of Hainan Island, China. Rates of single infections were 186/341 (54.5%, 93/341 (27.3%, and 3/341 (0.9%, for PRSV, PLDMV, and PapMV, respectively; 59/341 (17.3% of the samples were co-infected with PRSV and PLDMV, which is the first time being reported in Hainan Island. This multiplex RT-PCR assay is a simple, rapid, sensitive, and cost-effective method for detecting multiple viruses in papaya and can be used for routine molecular diagnosis and epidemiological studies in papaya.

  12. Quantitation of Bt-176 maize genomic sequences by surface plasmon resonance-based biospecific interaction analysis of multiplex polymerase chain reaction (PCR).

    Science.gov (United States)

    Feriotto, Giordana; Gardenghi, Sara; Bianchi, Nicoletta; Gambari, Roberto

    2003-07-30

    Surface plasmon resonance (SPR) based biosensors have been described for the identification of genetically modified organisms (GMO) by biospecific interaction analysis (BIA). This paper describes the design and testing of an SPR-based BIA protocol for quantitative determinations of GMOs. Biotinylated multiplex Polymerase Chain Reaction (PCR) products from nontransgenic maize as well as maize powders containing 0.5 and 2% genetically modified Bt-176 sequences were immobilized on different flow cells of a sensor chip. After immobilization, different oligonucleotide probes recognizing maize zein and Bt-176 sequences were injected. The results obtained were compared with Southern blot analysis and with quantitative real-time PCR assays. It was demonstrated that sequential injections of Bt-176 and zein probes to sensor chip flow cells containing multiplex PCR products allow discrimination between PCR performed using maize genomic DNA containing 0.5% Bt-176 sequences and that performed using maize genomic DNA containing 2% Bt-176 sequences. The efficiency of SPR-based BIA in discriminating material containing different amounts of Bt-176 maize is comparable to real-time quantitative PCR and much more reliable than Southern blotting, which in the past has been used for semiquantitative purposes. Furthermore, the approach allows the BIA assay to be repeated several times on the same multiplex PCR product immobilized on the sensor chip, after washing and regeneration of the flow cell. Finally, it is emphasized that the presented strategy to quantify GMOs could be proposed for all of the SPR-based, commercially available biosensors. Some of these optical SPR-based biosensors use, instead of flow-based sensor chips, stirred microcuvettes, reducing the costs of the experimentation.

  13. Development of a multiplex PCR assay for identification of Campylobacter coli, Campylobacter fetus, Campylobacter hyointestinalis subsp. hyointestinalis, Campylobacter jejuni, Campylobacter lari and Campylobacter upsaliensis

    National Research Council Canada - National Science Library

    Yamazaki-Matsune, Wataru; Taguchi, Masumi; Seto, Kazuko; Kawahara, Ryuji; Kawatsu, Kentaro; Kumeda, Yuko; Kitazato, Miyoshi; Nukina, Masafumi; Misawa, Naoaki; Tsukamoto, Teizo

    2007-01-01

    ...{at}iph.pref.osaka.jp Received 26 April 2007 Accepted 9 July 2007 A multiplex PCR assay has been developed for the identification of the six common Campylobacter taxa associated with human gastroenteritis...

  14. Development and assessment of a multiplex real-time PCR assay for quantification of human immunodeficiency virus type 1 DNA.

    Science.gov (United States)

    Beloukas, A; Paraskevis, D; Haida, C; Sypsa, V; Hatzakis, A

    2009-07-01

    Previous studies showed that high levels of human immunodeficiency virus type 1 (HIV-1) DNA are associated with a faster progression to AIDS, an increased risk of death, and a higher risk of HIV RNA rebound in patients on highly active antiretroviral therapy. Our objective was to develop and assess a highly sensitive real-time multiplex PCR assay for the quantification of HIV-1 DNA (RTMP-HIV) based on molecular beacons. HIV-1 DNA quantification was carried out by RTMP in a LightCycler 2.0 apparatus. HIV-1 DNA was quantified in parallel with CCR5 as a reference gene, and reported values are numbers of HIV-1 DNA copies/10(6) peripheral blood mononuclear cells (PBMCs). The clinical sensitivity of the assay was assessed for 115 newly diagnosed HIV-1-infected individuals. The analytical sensitivity was estimated to be 12.5 copies of HIV-1 DNA per 10(6) PBMCs, while the clinical sensitivity was 100%, with levels ranging from 1.23 to 4.25 log(10) HIV-1 DNA copies/10(6) PBMCs. In conclusion, we developed and assessed a new RTMP-HIV assay based on molecular beacons, using a LightCycler 2.0 instrument. This multiplex assay has comparable sensitivity, reproducibility, and accuracy to single real-time PCR assays.

  15. Multiplex analyte assays to characterize different dementias: brain inflammatory cytokines in poststroke and other dementias.

    Science.gov (United States)

    Chen, Aiqing; Oakley, Arthur E; Monteiro, Maria; Tuomela, Katri; Allan, Louise M; Mukaetova-Ladinska, Elizabeta B; O'Brien, John T; Kalaria, Raj N

    2016-02-01

    Both the inflammatory potential and cognitive function decline during aging. The association between the repertoire of inflammatory biomarkers and cognitive decline is unclear. Inflammatory cytokines have been reported to be increased, decreased, or unchanged in the cerebrospinal fluid and sera of subjects with dementia. We assessed 112 postmortem brains from subjects diagnosed with poststroke dementia (PSD), vascular dementia, mixed dementia, and Alzheimer's disease (AD), comparing those to poststroke nondemented (PSND) subjects and age-matched controls. We analyzed 5 brain regions including the gray and white matter from the frontal and temporal lobes for a panel of cytokine and/or chemokine analytes using multiplex-array assays. Of the 37 analytes, 14 were under or near the detection limits, 7 were close to the lowest detection level, and 16 cytokines were within the linear range of the assay. We observed widely variable concentrations of C-reactive protein (CRP) and serum amyloid A at the high end (1-150 ng/mg protein), whereas several of the interleukins (IL, interferon-gamma and tumor necrosis factor) at the low end (1-10 pg/mg). There were also regional variations; most notable being high concentrations of some cytokines (e.g., CRP and angiogenesis panel) in the frontal white matter. Overall, we found decreased concentrations of several cytokines, including IL-1 beta (p = 0.000), IL-6 (p = 0.000), IL-7 (p = 0.000), IL-8 (p = 0.000), IL-16 (p = 0.001), interferon-inducible protein-10 (0.044), serum amyloid A (p = 0.011), and a trend in IL-1 alpha (p = 0.084) across all dementia groups compared to nondemented controls. IL-6 and IL-8 were significantly lower in dementia subjects than in nondemented subjects in every region. In particular, lower levels of IL-6 and IL-8 were notable in the PSD compared to PSND subjects. Because these 2 stroke groups had comparable degree of vascular pathology, the lower production of IL-6 and IL-8 in PSD reaffirms a

  16. Comparison of three multiplex PCR assays for the detection of respiratory viral infections: evaluation of xTAG respiratory virus panel fast assay, RespiFinder 19 assay and RespiFinder SMART 22 assay

    Directory of Open Access Journals (Sweden)

    Dabisch-Ruthe Mareike

    2012-07-01

    Full Text Available Abstract Background A broad spectrum of pathogens is causative for respiratory tract infections, but symptoms are mostly similar. Therefore, the identification of the causative viruses and bacteria is only feasible using multiplex PCR or several monoplex PCR tests in parallel. Methods The analytical sensitivity of three multiplex PCR assays, RespiFinder-19, RespiFinder-SMART-22 and xTAG-Respiratory-Virus-Panel-Fast-Assay (RVP, were compared to monoplex real-time PCR with quantified standardized control material. All assays include the most common respiratory pathogens. Results To compare the analytical sensitivity of the multiplex assays, samples were inoculated with 13 different quantified viruses in the range of 101 to 105 copies/ml. Concordant results were received for rhinovirus, whereas the RVP detected influenzavirus, RSV and hMPV more frequently in low concentrations. The RespiFinder-19 and the RespiFinder-SMART-22 showed a higher analytical sensitivity for adenoviruses and coronaviruses, whereas the RVP was incapable to detect adenovirus and coronavirus in concentrations of 104 copies/ml. The RespiFinder-19 and RespiFinder-SMART-22A did not detect influenzaviruses (104 copies/ml and RSV (103 copies/ml. The detection of all 13 viruses in one sample was only achieved using monoplex PCR. To analyze possible competitive amplification reactions between the different viruses, samples were further inoculated with only 4 different viruses in one sample. Compared to the detection of 13 viruses in parallel, only a few differences were found. The incidence of respiratory viruses was compared in tracheal secretion (TS samples (n = 100 of mechanically ventilated patients in winter (n = 50 and summer (n = 50. In winter, respiratory viruses were detected in 32 TS samples (64% by RespiFinder-19, whereas the detection rate with RVP was only 22%. The most frequent viruses were adenovirus (32% and PIV-2 (20%. Multiple infections were detected

  17. Comparison of a multiplex flow cytometric assay with enzyme-linked immunosorbent assay for auantitation of antibodies to tetanus, diphtheria, and Haemophilus influenzae Type b.

    Science.gov (United States)

    Pickering, Jerry W; Martins, Thomas B; Schroder, M Carl; Hill, Harry R

    2002-07-01

    We developed a multiplexed indirect immunofluorescence assay for antibodies to Haemophilus influenza type b (Hib) polysaccharide and the toxoids of Clostridium tetani (Tet) and Corynebacterium diphtheriae (Dip) based on the Luminex multiple-analyte profiling system. A pooled serum standard was calibrated against World Health Organization standards for Dip and Tet and an international standard for Hib. The multiplexed Luminex assay was compared to individual enzyme-linked immunosorbent assays (ELISAs) for the same analytes. By both methods, 75 (92.6%) of 81 of random serum samples had protective levels of antibody to Tet (> or = 0.1 IU/ml). For Dip, 81.5% of the samples had protective antibody levels (> or = 0.1 IU/ml) by ELISA and 80.2% had protective antibody levels by Luminex. Protective levels (> or = 1.0 microg/ml) of antibody to Hib were found in 45.0% of the samples tested by ELISA and in 39.0% of the samples tested by Luminex. The correlations (R(2)) between ELISA and Luminex of the 81 samples were 0.96, 0.96, and 0.91 for Tet, Dip, and Hib, respectively. There was also similar agreement between Luminex and ELISA for sera collected before and 1 month after Tet, Dip, and Hib vaccine administration. Both methods detected strong postvaccination responses. The Luminex method is an attractive alternative to ELISA since it reduces labor and reagent costs, as well as assay time.

  18. Multiplex quantification of Escherichia coli, Salmonella typhi and Vibrio cholera with three DNA targets in single reaction assay.

    Science.gov (United States)

    Jangampalli Adi, Pradeepkiran; Naidu, Jagadish R; Matcha, Bhaskar

    2017-09-01

    Escherichia coli (E. coli), Salmonella typhi and Vibrio cholera harmful pathogens, which causes various diseases in humans. Rapid diagnosis of bacterial infection is an important for patient management and appropriate therapy during the early phase of the bacterial infected diseases. Among the existing techniques for identifying pathogens were less sensitive and time-consuming processes. In the present study total, 48 clinical 31 blood and 17 urine samples of patients suspected with the infections were collected from SVRR Hospital and used to detect the pathogens. Multiplex polymerase chain reaction (PCR) assay was set to design for the identification of Escherichia coli, Salmonella typhi and Vibrio cholera from the different clinical samples. Rapid diagnosis of Escherichia coli (E. coli), Salmonella and Vibrio cholera pathogens can be done with simultaneously in a single multiplex PCR assay by using specific primers with adjusted PCR conditions. Through this approach, the results represented with out of 31 blood samples 1-15 shows the positive with E. coli and remaining 14 only 11 were correlated with multiplex results of Vibrio cholera, remaining the urine samples all are positive with 17 samples correlate with the Salmonella typhi. Through the high specificity benefits of excellent sensitivity, with high resolution and reproducibility. This method of results proved and illustrates the best potential system for diagnosing the infectious disease with modern trendy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Identification of SPRED1 deletions using RT-PCR, multiplex ligation-dependent probe amplification and quantitative PCR.

    Science.gov (United States)

    Spencer, Emily; Davis, Julia; Mikhail, Fady; Fu, Chuanhua; Vijzelaar, Raymon; Zackai, Elaine H; Feret, Holly; Meyn, M Stephen; Shugar, Andrea; Bellus, Gary; Kocsis, Kristina; Kivirikko, Sirpa; Pöyhönen, Minna; Messiaen, Ludwine

    2011-06-01

    Legius syndrome, is a recently identified autosomal dominant disorder caused by loss of function mutations in the SPRED1 gene, with individuals mainly presenting with multiple café-au-lait macules (CALM), freckling and macrocephaly. So far, only SPRED1 point mutations have been identified as the cause of this syndrome. To determine if copy number changes (CNCs) are a cause of Legius syndrome, we have used a Multiplex Ligation-dependent Probe Amplification (MLPA) assay covering all SPRED1 exons in a cohort of 510 NF1-negative patients presenting with multiple CALMs with or without freckling, but no other NF1 diagnostic signs. Four different deletions were identified by MLPA and confirmed by quantitative PCR, reverse transcriptase PCR and/or array CGH: a deletion of exon 1 and the SPRED1 promoter region in a proband and two first-degree relatives; a deletion of the entire SPRED1 gene in a sporadic patient; a deletion of exon 2-6 in a proband and her father; and an ∼6.6 Mb deletion on chromosome 15 that spans SPRED1 in a sporadic patient. Deletions account for ∼10% of the 40 detected SPRED1 mutations in this cohort of 510 individuals. These results indicate the need for dosage analysis to complement sequencing-based SPRED1 mutation analyses.

  20. Caution regarding the interpretation of homoallelism in polyglutamine multiplex assays: a recommendation for confirmatory testing of homozygous alleles.

    Science.gov (United States)

    Smith, Danielle C; Esterhuizen, Alina; Greenberg, Jacquie

    2013-09-01

    Spinocerebellar ataxia type 7 (SCA7) is an inherited dominant neurodegenerative disease caused by the expansion of a CAG repeat within the ATXN7 gene. Standard molecular diagnostic testing for SCA7 involves amplification of the region surrounding the CAG repeat via end-labeled PCR and subsequent capillary electrophoresis. In addition, multiplex methods exist that may be used to test for multiple polyglutamine spinocerebellar ataxias in a single assay. Herein, we used a SCA7 singleplex method to screen 111 individuals for whom the multiplex method detected a single normal allele. A total of six retested individuals (5.4%) were shown to have a pathogenic expansion at the ATXN7 locus. An additional triplet-primed PCR method was used to test the same cohort, and revealed no further disease-causing alleles. This study demonstrates the importance of using complementary methods to rule out apparent homoallelism during molecular testing for polyglutamine diseases.

  1. Rapid detection of Shigella and enteroinvasive Escherichia coli in produce enrichments by a conventional multiplex PCR assay.

    Science.gov (United States)

    Binet, Rachel; Deer, Deanne M; Uhlfelder, Samantha J

    2014-06-01

    Faster detection of contaminated foods can prevent adulterated foods from being consumed and minimize the risk of an outbreak of foodborne illness. A sensitive molecular detection method is especially important for Shigella because ingestion of as few as 10 of these bacterial pathogens can cause disease. The objectives of this study were to compare the ability of four DNA extraction methods to detect Shigella in six types of produce, post-enrichment, and to evaluate a new and rapid conventional multiplex assay that targets the Shigella ipaH, virB and mxiC virulence genes. This assay can detect less than two Shigella cells in pure culture, even when the pathogen is mixed with background microflora, and it can also differentiate natural Shigella strains from a control strain and eliminate false positive results due to accidental laboratory contamination. The four DNA extraction methods (boiling, PrepMan Ultra [Applied Biosystems], InstaGene Matrix [Bio-Rad], DNeasy Tissue kit [Qiagen]) detected 1.6 × 10(3)Shigella CFU/ml post-enrichment, requiring ∼18 doublings to one cell in 25 g of produce pre-enrichment. Lower sensitivity was obtained, depending on produce type and extraction method. The InstaGene Matrix was the most consistent and sensitive and the multiplex assay accurately detected Shigella in less than 90 min, outperforming, to the best of our knowledge, molecular assays currently in place for this pathogen.

  2. Simultaneous quantitative assessment of circulating cell-free mitochondrial and nuclear DNA by multiplex real-time PCR

    Directory of Open Access Journals (Sweden)

    Peng Xia

    2009-01-01

    Full Text Available Quantification of circulating nucleic acids in plasma and serum could be used as a non-invasive diagnostic tool for monitoring a wide variety of diseases and conditions. We describe here a rapid, simple and accurate multiplex real-time PCR method for direct synchronized analysis of circulating cell-free (ccf mitochondrial (mtDNA and nuclear (nDNA DNA in plasma and serum samples. The method is based on one-step multiplex real-time PCR using a FAM-labeled MGB probe and primers to amplify the mtDNA sequence of the ATP 8 gene, and a VIC-labeled MGB probe and primers to amplify the nDNA sequence of the glycerinaldehyde-3-phosphate-dehydrogenase (GAPDH gene, in plasma and serum samples simultaneously. The efficiencies of the multiplex assays were measured in serial dilutions. Based on the simulation of the PCR reaction kinetics, the relative quantities of ccf mtDNA were calculated using a very simple equation. Using our optimised real-time PCR conditions, close to 100% efficiency was obtained from the two assays. The two assays performed in the dilution series showed very good and reproducible correlation to each other. This optimised multiplex real-time PCR protocol can be widely used for synchronized quantification of mtDNA and nDNA in different samples, with a very high rate of efficiency.

  3. Minimizing antibody cross-reactivity in multiplex detection of biomarkers in paper-based point-of-care assays

    Science.gov (United States)

    Dias, J. T.; Lama, L.; Gantelius, J.; Andersson-Svahn, H.

    2016-04-01

    Highly multiplexed immunoassays could allow convenient screening of hundreds or thousands of protein biomarkers simultaneously in a clinical sample such as serum or plasma, potentially allowing improved diagnostic accuracy and clinical management of many conditions such as autoimmune disorders, infections, and several cancers. Currently, antibody microarray-based tests are limited in part due to cross reactivity from detection antibody reagents. Here we present a strategy that reduces the cross-reactivity between nanoparticle-bound reporter antibodies through the application of ultrasound energy. By this concept, it was possible to achieve a sensitivity 103-fold (5 pg mL-1) lower than when no ultrasound was applied (50 ng mL-1) for the simultaneous detection of three different antigens. The detection limits and variability achieved with this technique rival those obtained with other types of multiplex sandwich assays.Highly multiplexed immunoassays could allow convenient screening of hundreds or thousands of protein biomarkers simultaneously in a clinical sample such as serum or plasma, potentially allowing improved diagnostic accuracy and clinical management of many conditions such as autoimmune disorders, infections, and several cancers. Currently, antibody microarray-based tests are limited in part due to cross reactivity from detection antibody reagents. Here we present a strategy that reduces the cross-reactivity between nanoparticle-bound reporter antibodies through the application of ultrasound energy. By this concept, it was possible to achieve a sensitivity 103-fold (5 pg mL-1) lower than when no ultrasound was applied (50 ng mL-1) for the simultaneous detection of three different antigens. The detection limits and variability achieved with this technique rival those obtained with other types of multiplex sandwich assays. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr09207h

  4. Rapid and quantitative detection of C-reactive protein based on quantum dots and immunofiltration assay

    Directory of Open Access Journals (Sweden)

    Zhang PF

    2015-09-01

    Full Text Available Pengfei Zhang,1,* Yan Bao,1,* Mohamed Shehata Draz,2,3,* Huiqi Lu,1 Chang Liu,1 Huanxing Han11Center for Translational Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China; 2Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China; 3Faculty of Science, Tanta University, Tanta, Egypt*These authors contributed equally to this workAbstract: Convenient and rapid immunofiltration assays (IFAs enable on-site “yes” or “no” determination of disease markers. However, traditional IFAs are commonly qualitative or semi-quantitative and are very limited for the efficient testing of samples in field diagnostics. Here, we overcome these limitations by developing a quantum dots (QDs-based fluorescent IFA for the quantitative detection of C-reactive proteins (CRP. CRP, the well-known diagnostic marker for acute viral and bacterial infections, was used as a model analyte to demonstrate performance and sensitivity of our developed QDs-based IFA. QDs capped with both polyethylene glycol (PEG and glutathione were used as fluorescent labels for our IFAs. The presence of the surface PEG layer, which reduced the non-specific protein interactions, in conjunction with the inherent optical properties of QDs, resulted in lower background signal, increased sensitivity, and ability to detect CRP down to 0.79 mg/L with only 5 µL serum sample. In addition, the developed assay is simple, fast and can quantitatively detect CRP with a detection limit up to 200 mg/L. Clinical test results of our QD-based IFA are well correlated with the traditional latex enhance immune-agglutination aggregation. The proposed QD-based fluorescent IFA is very promising, and potentially will be adopted for multiplexed immunoassay and in field point-of-care test.Keywords: C-reactive proteins, point-of-care test, Glutathione capped QDs, PEGylation

  5. [Clinical evaluation of a novel HBsAg quantitative assay].

    Science.gov (United States)

    Takagi, Kazumi; Tanaka, Yasuhito; Naganuma, Hatsue; Hiramatsu, Kumiko; Iida, Takayasu; Takasaka, Yoshimitsu; Mizokami, Masashi

    2007-07-01

    The clinical implication of the hepatitis B surface antigen (HBsAg) concentrations in HBV-infected individuals remains unclear. The aim of this study was to evaluate a novel fully automated Chemiluminescence Enzyme Immunoassay (Sysmex HBsAg quantitative assay) by comparative measurements of the reference serum samples versus two independent commercial assays (Lumipulse f or Architect HBsAg QT). Furthermore, clinical usefulness was assessed for monitoring of the serum HBsAg levels during antiviral therapy. A dilution test using 5 reference-serum samples showed linear correlation curve in range from 0.03 to 2,360 IU/ml. The HBsAg was measured in total of 400 serum samples and 99.8% had consistent results between Sysmex and Lumipulse f. Additionally, a positive linear correlation was observed between Sysmex and Architect. To compare the Architect and Sysmex, both methods were applied to quantify the HBsAg in serum samples with different HBV genotypes/subgenotypes, as well as in serum contained HBV vaccine escape mutants (126S, 145R). Correlation between the methods was observed in results for escape mutants and common genotypes (A, B, C) in Japan. Observed during lamivudine therapy, an increase in HBsAg and HBV DNA concentrations preceded the aminotransferase (ALT) elevation associated with drug-resistant HBV variant emergence (breakthrough hepatitis). In conclusion, reliability of the Sysmex HBsAg quantitative assay was confirmed for all HBV genetic variants common in Japan. Monitoring of serum HBsAg concentrations in addition to HBV DNA quantification, is helpful in evaluation of the response to lamivudine treatment and diagnosis of the breakthrough hepatitis.

  6. A 50 SNP-multiplex mass spectrometry assay for human identification

    DEFF Research Database (Denmark)

    2008-01-01

    ) multiplex reaction. Two different strategies were used to design the SBE multiplex: (1) Small 5'-tags (3-8ánt) that increased the masses of the SBE primers without changing the annealing temperature; (2) Cleavable primers with one RNA nucleotide which was later cleaved by a mixture of RNases. The SBE...... primers were extended with biotin labelled ddNTPs and purified on avidin beads ensuring that only the extended SBE primers were isolated and spotted on the MALDI-TOF anchor target. Detection of the 50 extended primers from the SBE reaction was performed in a mass range between 3000 and 10,000 m/z...

  7. Rapid focused sequencing: a multiplexed assay for simultaneous detection and strain typing of Bacillus anthracis, Francisella tularensis, and Yersinia pestis.

    Directory of Open Access Journals (Sweden)

    Rosemary S Turingan

    Full Text Available BACKGROUND: The intentional release of Bacillus anthracis in the United States in 2001 has heightened concern about the use of pathogenic microorganisms in bioterrorism attacks. Many of the deadliest bacteria, including the Class A Select Agents Bacillus anthracis, Francisella tularensis, and Yersinia pestis, are highly infectious via the pulmonary route when released in aerosolized form. Hence, rapid, sensitive, and reliable methods for detection of these biothreats and characterization of their potential impact on the exposed population are of critical importance to initiate and support rapid military, public health, and clinical responses. METHODOLOGY/PRINCIPAL FINDINGS: We have developed microfluidic multiplexed PCR and sequencing assays based on the simultaneous interrogation of three pathogens per assay and ten loci per pathogen. Microfluidic separation of amplified fluorescently labeled fragments generated characteristic electrophoretic signatures for identification of each agent. The three sets of primers allowed significant strain typing and discrimination from non-pathogenic closely-related species and environmental background strains based on amplicon sizes alone. Furthermore, sequencing of the 10 amplicons per pathogen, termed "Rapid Focused Sequencing," allowed an even greater degree of strain discrimination and, in some cases, can be used to determine virulence. Both amplification and sequencing assays were performed in microfluidic biochips developed for fast thermal cycling and requiring 7 µL per reaction. The 30-plex sequencing assay resulted in genotypic resolution of 84 representative strains belonging to each of the three biothreat species. CONCLUSIONS/SIGNIFICANCE: The microfluidic multiplexed assays allowed identification and strain differentiation of the biothreat agents Bacillus anthracis, Francisella tularensis, and Yersinia pestis and clear discrimination from closely-related species and several environmental

  8. A Two-Tube Multiplex Reverse Transcription PCR Assay for Simultaneous Detection of Viral and Bacterial Pathogens of Infectious Diarrhea

    Directory of Open Access Journals (Sweden)

    Ji Wang

    2014-01-01

    Full Text Available Diarrhea caused by viral and bacterial infections is a major health problem in developing countries. The purpose of this study is to develop a two-tube multiplex PCR assay using automatic electrophoresis for simultaneous detection of 13 diarrhea-causative viruses or bacteria, with an intended application in provincial Centers for Diseases Control and Prevention, China. The assay was designed to detect rotavirus A, norovirus genogroups GI and GII, human astrovirus, enteric adenoviruses, and human bocavirus (tube 1, and Salmonella, Vibrio parahaemolyticus, diarrheagenic Escherichia coli, Campylobacter jejuni, Shigella, Yersinia, and Vibrio cholera (tube 2. The analytical specificity was examined with positive controls for each pathogen. The analytical sensitivity was evaluated by performing the assay on serial tenfold dilutions of in vitro transcribed RNA, recombinant plasmids, or bacterial culture. A total of 122 stool samples were tested by this two-tube assay and the results were compared with those obtained from reference methods. The two-tube assay achieved a sensitivity of 20–200 copies for a single virus and 102-103 CFU/mL for bacteria. The clinical performance demonstrated that the two-tube assay had comparable sensitivity and specificity to those of reference methods. In conclusion, the two-tube assay is a rapid, cost-effective, sensitive, specific, and high throughput method for the simultaneous detection of enteric bacteria and virus.

  9. Detection of respiratory viruses using a multiplex real-time PCR assay in Germany, 2009/10.

    Science.gov (United States)

    Bierbaum, Sibylle; Forster, Johannes; Berner, Reinhard; Rücker, Gerta; Rohde, Gernot; Neumann-Haefelin, Dieter; Panning, Marcus

    2014-04-01

    The aim of this study was to determine the prevalence of respiratory viruses and to prospectively evaluate the performance of the fast-track diagnostics (FTD) respiratory pathogens multiplex PCR assay shortly after the 2009/10 influenza pandemic. Highly sensitive monoplex real-time PCR assays served as references. Discrepant results were further analyzed by the xTAG RVP Fast assay. A total of 369 respiratory samples from children and adults were collected prospectively in Germany from December 2009 until June 2010. The sensitivity and specificity of the FTD assay after resolution of discrepant results was 92.2 % and 99.5 %, respectively. Lowest specificity of the FTD assay was observed for human bocavirus. Multiple detections were recorded in 33/369 (8.9 %) of the samples by monoplex PCR and in 43/369 (11.7 %) using the FTD assay. The most prevalent viruses were respiratory syncytial virus and human metapneumovirus. Only pandemic influenza virus A/H1N1 (2009), and not seasonal influenza virus, was detected. Viruses other than influenza virus accounted for the majority of acute respiratory infections. The FTD assay can be easily implemented in general diagnostic laboratories and facilitate the optimization of patient-management schemes.

  10. Multiplex Real-Time PCR Assay for Detection and Classification of Klebsiella pneumoniae Carbapenemase Gene (blaKPC) Variants▿

    OpenAIRE

    Chen, Liang; Mediavilla, José R.; Endimiani, Andrea; Rosenthal, Marnie E.; Zhao, Yanan; Robert A Bonomo; Kreiswirth, Barry N.

    2011-01-01

    Carbapenem resistance mediated by plasmid-borne Klebsiella pneumoniae carbapenemases (KPC) is an emerging problem of significant clinical importance in Gram-negative bacteria. Multiple KPC gene variants (blaKPC) have been reported, with KPC-2 (blaKPC-2) and KPC-3 (blaKPC-3) associated with epidemic outbreaks in New York City and various international settings. Here, we describe the development of a multiplex real-time PCR assay using molecular beacons (MB-PCR) for rapid and accurate identific...

  11. Development of a multiplex PCR assay to detect Edwardsiella tarda, Streptococcus parauberis, and Streptococcus iniae in olive flounder (Paralichthys olivaceus).

    Science.gov (United States)

    Park, Seong Bin; Kwon, Kyoung; Cha, In Seok; Jang, Ho Bin; Nho, Seong Won; Fagutao, Fernand F; Kim, Young Kyu; Yu, Jong Earn; Jung, Tae Sung

    2014-01-01

    A multiplex PCR protocol was established to simultaneously detect major bacterial pathogens in olive flounder (Paralichthys olivaceus) including Edwardsiella (E.) tarda, Streptococcus (S.) parauberis, and S. iniae. The PCR assay was able to detect 0.01 ng of E. tarda, 0.1 ng of S. parauberis, and 1 ng of S. iniae genomic DNA. Furthermore, this technique was found to have high specificity when tested with related bacterial species. This method represents a cheaper, faster, and reliable alternative for identifying major bacterial pathogens in olive flounder, the most important farmed fish in Korea.

  12. Development of a multiplex polymerase chain reaction assay for simultaneous identification of human enterovirus 71 and coxsackievirus A16

    OpenAIRE

    Thao, Nguyen Thi Thanh; Ngoc, Nguyen Thi Kim; Tú, Phan Văn; Thúy, Trần Thi; Cardosa, Mary Jane; McMinn, Peter Charles; Phuektes, Patchara

    2010-01-01

    Human enterovirus 71 (HEV71) and coxsackievirus A16 (CVA16) are two major aetiological agents of hand, foot and mouth disease (HFMD) in children. Recently there have been several large outbreaks of HFMD in Vietnam and the Asia-Pacific region. In this study, a multiplex RT-PCR assay was developed in order to detect simultaneously HEV71, CVA16 and other human enteroviruses. Enterovirus detection was performed with a mixture of three pairs of oligonucleotide primers: one pair of published primer...

  13. Validation of the performance of a GMO multiplex screening assay based on microarray detection

    NARCIS (Netherlands)

    Leimanis, S.; Hamels, S.; Naze, F.; Mbongolo, G.; Sneyers, M.; Hochegger, R.; Broll, H.; Roth, L.; Dallmann, K.; Micsinai, A.; Dijk, van J.P.; Kok, E.J.

    2008-01-01

    A new screening method for the detection and identification of GMO, based on the use of multiplex PCR followed by microarray, has been developed and is presented. The technology is based on the identification of quite ubiquitous GMO genetic target elements first amplified by PCR, followed by direct

  14. A multiplex assay for the quantification of antibody responses in Staphylococcus aureus infections in mice

    NARCIS (Netherlands)

    van den Berg, Sanne; Bowden, M. Gabriela; Bosma, Tjibbe; Buist, Girbe; van Dijl, Jan Maarten; van Wamel, Willem J.; de Vogel, Corne P.; van Belkum, Alex; Bakker-Woudenberg, Irma A. J. M.

    2011-01-01

    Staphylococcus aureus causes a variety of infections. Knowledge about the physiological role of most S. aureus antigens in colonization and infection is only limited. This can be studied by measuring antigen-specific antibody responses. In this study, we optimized the multiplex microsphere

  15. Validation of the performance of a GMO multiplex screening assay based on microarray detection

    NARCIS (Netherlands)

    Leimanis, S.; Hamels, S.; Naze, F.; Mbongolo, G.; Sneyers, M.; Hochegger, R.; Broll, H.; Roth, L.; Dallmann, K.; Micsinai, A.; Dijk, van J.P.; Kok, E.J.

    2008-01-01

    A new screening method for the detection and identification of GMO, based on the use of multiplex PCR followed by microarray, has been developed and is presented. The technology is based on the identification of quite ubiquitous GMO genetic target elements first amplified by PCR, followed by direct

  16. Performance of multiplex cytokine assays in serum and saliva among community-dwelling postmenopausal women.

    Directory of Open Access Journals (Sweden)

    Richard W Browne

    Full Text Available Multiplexing arrays increase the throughput and decrease sample requirements for studies employing multiple biomarkers. The goal of this project was to examine the performance of Multiplex arrays for measuring multiple protein biomarkers in saliva and serum. Specimens from the OsteoPerio ancillary study of the Women's Health Initiative Observational Study were used. Participants required the presence of at least 6 teeth and were excluded based on active cancer and certain bone issues but were not selected on any specific condition. Quality control (QC samples were created from pooled serum and saliva. Twenty protein markers were measured on five multiplexing array panels. Sample pretreatment conditions were optimized for each panel. Recovery, lower limit of quantification (LLOQ and imprecision were determined for each analyte. Statistical adjustment at the plate level was used to reduce imprecision estimates and increase the number of usable observations. Sample pre-treatment improved recovery estimates for many analytes. The LLOQ for each analyte agreed with manufacturer specifications except for MMP-1 and MMP-2 which were significantly higher than reported. Following batch adjustment, 17 of 20 biomarkers in serum and 9 of 20 biomarkers in saliva demonstrated acceptable precision, defined as <20% coefficient of variation (<25% at LLOQ. The percentage of cohort samples having levels within the reportable range for each analyte varied from 10% to 100%. The ratio of levels in saliva to serum varied from 1∶100 to 28∶1. Correlations between saliva and serum were of moderate positive magnitude and significant for CRP, MMP-2, insulin, adiponectin, GM-CSF and IL-5. Multiplex arrays exhibit high levels of analytical imprecision, particularly at the batch level. Careful sample pre-treatment can enhance recovery and reduce imprecision. Following statistical adjustments to reduce batch effects, we identified biomarkers that are of acceptable quality in

  17. Simultaneous and sensitive detection of human immunodeficiency virus type 1 (HIV) drug resistant genotypes by multiplex oligonucleotide ligation assay.

    Science.gov (United States)

    Ellis, Giovanina M; Vlaskin, Tatyana A; Koth, Andrew; Vaz, Louise E; Dross, Sandra E; Beck, Ingrid A; Frenkel, Lisa M

    2013-09-01

    Oligonucleotide ligation assay (OLA) is a highly specific and relatively simple method to detect point mutations encoding HIV-1 drug-resistance, which can detect mutants comprising ≥2-5% of the viral population. Nevirapine (NVP), tenofovir (TDF) and lamivudine (3TC) are antiretroviral (ARV) drugs used worldwide for treatment of HIV infection and prevention of mother-to-child-transmission. Adapting the OLA to detect multiple mutations associated with HIV resistance to these ARV simultaneously would provide an efficient tool to monitor drug resistance in resource-limited settings. Known proportions of mutant and wild-type plasmids were used to optimize a multiplex OLA for detection of K103N, Y181C, K65R, and M184V in HIV subtypes B and C, and V106M and G190A in subtype C. Simultaneous detection of two mutations was impaired if probes annealed to overlapping regions of the viral template, but was sensitive to ≥2-5% when testing codons using non-overlapping probes. PCR products from HIV-subtype B- and C-infected individuals were tested by multiplex-OLA and compared to results of single-codon OLA. Multiplex-OLA detected mutations at codon pairs 103/181, 106/190 and 65/184 reliably when compared to singleplex-OLA in clinical specimens. The multiplex-OLA is sensitive and specific and reduces the cost of screening for NVP, TDF and/or 3TC resistance. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Electrochemical detection of magnetically-entrapped DNA sequences from complex samples by multiplexed enzymatic labelling: Application to a transgenic food/feed quantitative survey.

    Science.gov (United States)

    Manzanares-Palenzuela, C L; Martín-Clemente, J P; Lobo-Castañón, M J; López-Ruiz, B

    2017-03-01

    Monitoring of genetically modified organisms in food and feed demands molecular techniques that deliver accurate quantitative results. Electrochemical DNA detection has been widely described in this field, yet most reports convey qualitative data and application in processed food and feed samples is limited. Herein, the applicability of an electrochemical multiplex assay for DNA quantification in complex samples is assessed. The method consists of the simultaneous magnetic entrapment via sandwich hybridisation of two DNA sequences (event-specific and taxon-specific) onto the surface of magnetic microparticles, followed by bienzymatic labelling. As proof-of-concept, we report its application in a transgenic food/feed survey where relative quantification (two-target approach) of Roundup Ready Soybean® (RRS) was performed in food and feed. Quantitative coupling to end-point PCR was performed and calibration was achieved from 22 and 243 DNA copies spanning two orders of magnitude for the event and taxon-specific sequences, respectively. We collected a total of 33 soybean-containing samples acquired in local supermarkets, four out of which were found to contain undeclared presence of genetically modified soybean. A real-time PCR method was used to verify these findings. High correlation was found between results, indicating the suitability of the proposed multiplex method for food and feed monitoring.

  19. Evaluation of a Commercial Multiplex PCR Assay for Detection of Pathogen DNA in Blood from Patients with Suspected Sepsis.

    Science.gov (United States)

    Ziegler, Ingrid; Fagerström, Anna; Strålin, Kristoffer; Mölling, Paula

    2016-01-01

    The Magicplex Sepsis Real-time Test (MST) is a commercial multiplex PCR that can detect more than 90 different pathogens in blood, with an analysis time of six hours. The aim of the present study was to evaluate this method for the detection of bloodstream infection (BSI). An EDTA whole blood sample for MST was collected together with blood cultures (BC) from patients with suspected sepsis at the Emergency Department of a university hospital. Among 696 study patients, 322 (46%) patients were positive with at least one method; 128 (18%) were BC positive and 268 (38%) were MST positive. Considering BC to be the gold standard, MST had an overall sensitivity of 47%, specificity of 66%, positive predictive value (PPV) of 23%, and a negative predictive value of 87%. Among the MST positive samples with a negative BC, coagulase-negative staphylococci (CoNS) and species that rarely cause community-acquired BSI were frequently noted. However, the quantification cycle (Cq) values of the MST+/BC- results were often high. We thus hypothesized that the performance of the MST test could be improved if the Cq cut-off level was adjusted downwards. With a lower Cq cut-off value, i.e. 6.0 for Staphylococcus species and 9.0 for all other species, the number of MST positive cases decreased to 83 (12%) and the overall sensitivity decreased to 38%. However, the PPV increased to 59% and the specificity increased to 96%, as many MST positive results for CoNS and bacteria that rarely cause community-acquired BSI turned MST negative. In conclusion, our study shows that with a lower Cq cut-off value, the MST will detect less contaminants and findings with unclear relevance, but to the cost of a lower sensitivity. Consequently, we consider that a positive MST results with a Cq value above the adjusted cut-off should be interpreted with caution, as the result might be clinically irrelevant. In a correspondent way, quantitative results could probably be useful in the interpretation of positive

  20. Simultaneous detection of virulence factors from a colony in diarrheagenic Escherichia coli by a multiplex PCR assay with Alexa Fluor-labeled primers.

    Science.gov (United States)

    Kuwayama, Masaru; Shigemoto, Naoki; Oohara, Sachiko; Tanizawa, Yukie; Yamada, Hiroko; Takeda, Yoshihiro; Matsuo, Takeshi; Fukuda, Shinji

    2011-07-01

    We have developed simultaneous detection of eight genes associated with the five categories of diarrheagenic Escherichia coli by the multiplex PCR assay with Alexa Fluor-labeled primers. This assay can easily distinguish eight genes based on the size and color of amplified products without gel staining.

  1. Development of a multiplex taqMan real-time PCR assay for typing of Mycoplasma pneumoniae based on type-specific indels identified through whole genome sequencing.

    Science.gov (United States)

    Wolff, Bernard J; Benitez, Alvaro J; Desai, Heta P; Morrison, Shatavia S; Diaz, Maureen H; Winchell, Jonas M

    2017-03-01

    We developed a multiplex real-time PCR assay for simultaneously detecting M. pneumoniae and typing into historically-defined P1 types. Typing was achieved based on the presence of short type-specific indels identified through whole genome sequencing. This assay was 100% specific compared to existing methods and may be useful during epidemiologic investigations.

  2. Clinical Application of a Multiplex Real-Time PCR Assay for Simultaneous Detection of Legionella Species, Legionella pneumophila, and Legionella pneumophila Serogroup 1

    OpenAIRE

    Benitez, Alvaro J.; Winchell, Jonas M.

    2014-01-01

    We developed a single-tube multiplex real-time PCR assay capable of simultaneously detecting and discriminating Legionella spp., Legionella pneumophila, and Legionella pneumophila serogroup 1 in primary specimens. Evaluation of 21 clinical specimens and 115 clinical isolates demonstrated this assay to be a rapid, high-throughput diagnostic test with 100% specificity that may aid during legionellosis outbreaks and epidemiologic investigations.

  3. Clinical application of a multiplex real-time PCR assay for simultaneous detection of Legionella species, Legionella pneumophila, and Legionella pneumophila serogroup 1.

    Science.gov (United States)

    Benitez, Alvaro J; Winchell, Jonas M

    2013-01-01

    We developed a single-tube multiplex real-time PCR assay capable of simultaneously detecting and discriminating Legionella spp., Legionella pneumophila, and Legionella pneumophila serogroup 1 in primary specimens. Evaluation of 21 clinical specimens and 115 clinical isolates demonstrated this assay to be a rapid, high-throughput diagnostic test with 100% specificity that may aid during legionellosis outbreaks and epidemiologic investigations.

  4. A novel multiplex method for the simultaneous detection and relative quantitation of pollen allergens.

    Science.gov (United States)

    Morales, Sonia; Castro, Antonio Jesús; Jimenez-Lopez, Jose Carlos; Florido, Fernando; Rodríguez-García, María Isabel; de Dios Alché, Juan

    2012-05-01

    Standardization of pollen protein extracts is essential in order to ensure efficiency and safety in allergy diagnosis and immunotherapy. In this paper, we have optimized a multiplex Western blotting method for the simultaneous detection of four olive pollen allergens (Ole e 1, Ole e 2, Ole e 5, and Ole e 9) on a single blot using a monoclonal antibody from mouse and three polyclonal antibodies raised in rabbit. We utilized unconjugated Fab antibody fragments for blocking rabbit primary antibodies, and fluorescence-based detection. These changes allowed an accurate and reliable comparative quantitation of these allergens among pollen-protein samples from six olive cultivars. In addition, we also tested the IgE-binding capacity of these pollen extracts by reprobing the same blot with a pool of sera from eight patients allergic to olive and detection with enzyme conjugated antibodies. A noticeable variability regarding allergen content and IgE-reactivity was found among the olive cultivars analyzed. Moreover, we could easily confirm the identity of some of the IgE-binding proteins by simply overlapping both fluorescence and chemiluminescence images. This method is versatile since it can be applied to other allergogenic plant species and extended to other allergens.

  5. Genotyping performance assessment of whole genome amplified DNA with respect to multiplexing level of assay and its period of storage.

    Directory of Open Access Journals (Sweden)

    Daniel W H Ho

    Full Text Available Whole genome amplification can faithfully amplify genomic DNA (gDNA with minimal bias and substantial genome coverage. Whole genome amplified DNA (wgaDNA has been tested to be workable for high-throughput genotyping arrays. However, issues about whether wgaDNA would decrease genotyping performance at increasing multiplexing levels and whether the storage period of wgaDNA would reduce genotyping performance have not been examined. Using the Sequenom MassARRAY iPLEX Gold assays, we investigated 174 single nucleotide polymorphisms for 3 groups of matched samples: group 1 of 20 gDNA samples, group 2 of 20 freshly prepared wgaDNA samples, and group 3 of 20 stored wgaDNA samples that had been kept frozen at -70°C for 18 months. MassARRAY is a medium-throughput genotyping platform with reaction chemistry different from those of high-throughput genotyping arrays. The results showed that genotyping performance (efficiency and accuracy of freshly prepared wgaDNA was similar to that of gDNA at various multiplexing levels (17-plex, 21-plex, 28-plex and 36-plex of the MassARRAY assays. However, compared with gDNA or freshly prepared wgaDNA, stored wgaDNA was found to give diminished genotyping performance (efficiency and accuracy due to potentially inferior quality. Consequently, no matter whether gDNA or wgaDNA was used, better genotyping efficiency would tend to have better genotyping accuracy.

  6. A Multiplex PCR Assay for the Detection of Pathogenic Genes of EPEC, ETEC and EIEC

    Institute of Scientific and Technical Information of China (English)

    ZHANG Tienan; LI Jichang; LU Chengwu; HUO Guicheng

    2006-01-01

    A multiplex polymerase chain reaction (PCR) was developed to detect three pathogenic genes of enteropathogenic, enterotocigenic and enteroinvasive Escherichia coli.. In this study three different sets of oligonucleotide primer were simultaneously used, and in this way, specific fragments of 880, 600, 150 bp for EPEC eaeA,EIEC ipaH and ETEC ST genes were amplified, respectively. The best condition of the multiplex PCR was: after an initial heat denaturation step at 95℃ for 5 min, followed by 30 cycles of denaturation at 94 ℃ for 40 s, primer annealing at 51.3 ℃ for 40 s and extension at 72 ℃ for 1 min, final extension at 72 ℃ for 10 min. The detection limit of tively. It may be a good way for the detection and identification of Diarrhea-causing E. coli..

  7. Multiplex assay for live-cell monitoring of cellular fates of amyloid-β precursor protein (APP.

    Directory of Open Access Journals (Sweden)

    Maria Merezhko

    Full Text Available Amyloid-β precursor protein (APP plays a central role in pathogenesis of Alzheimer's disease. APP has a short half-life and undergoes complex proteolytic processing that is highly responsive to various stimuli such as changes in cellular lipid or energy homeostasis. Cellular trafficking of APP is controlled by its large protein interactome, including dozens of cytosolic adaptor proteins, and also by interactions with lipids. Currently, cellular regulation of APP is mostly studied based on appearance of APP-derived proteolytic fragments to conditioned media and cellular extracts. Here, we have developed a novel live-cell assay system based on several indirect measures that reflect altered APP trafficking and processing in cells. Protein-fragment complementation assay technology for detection of APP-BACE1 protein-protein interaction forms the core of the new assay. In a multiplex form, the assay can measure four endpoints: total cellular APP level, total secreted sAPP level in media, APP-BACE1 interaction in cells and in exosomes released by the cells. Functional validation of the assay with pharmacological and genetic tools revealed distinct patterns of cellular fates of APP, with immediate mechanistic implications. This new technology will facilitate functional genomics studies of late-onset Alzheimer's disease, drug discovery efforts targeting APP and characterization of the physiological functions of APP and its proteolytic fragments.

  8. A multiplex quantitative real-time polymerase chain reaction panel for detecting neurologic pathogens in dogs with meningoencephalitis

    OpenAIRE

    Han, Jae-Ik; Chang, Dong-Woo; Na, Ki-Jeong

    2015-01-01

    Meningoencephalitis (ME) is a common inflammatory disorder of the central nervous system in dogs. Clinically, ME has both infectious and non-infectious causes. In the present study, a multiplex quantitative real-time polymerase chain reaction (mqPCR) panel was optimized for the detection of eight canine neurologic pathogens (Blastomyces dermatitidis, Cryptococcus spp., Neospora caninum, Borrelia burgdorferi, Bartonella spp., Toxoplasma gondii, Ehrlichia canis, and canine distemper virus [CDV]...

  9. Quantitative Comparison of Tumor Delivery for Multiple Targeted Nanoparticles Simultaneously by Multiplex ICP-MS

    Science.gov (United States)

    Elias, Andrew; Crayton, Samuel H.; Warden-Rothman, Robert; Tsourkas, Andrew

    2014-01-01

    Given the rapidly expanding library of disease biomarkers and targeting agents, the number of unique targeted nanoparticles is growing exponentially. The high variability and expense of animal testing often makes it unfeasible to examine this large number of nanoparticles in vivo. This often leads to the investigation of a single formulation that performed best in vitro. However, nanoparticle performance in vivo depends on many variables, many of which cannot be adequately assessed with cell-based assays. To address this issue, we developed a lanthanide-doped nanoparticle method that allows quantitative comparison of multiple targeted nanoparticles simultaneously. Specifically, superparamagnetic iron oxide (SPIO) nanoparticles with different targeting ligands were created, each with a unique lanthanide dopant. Following the simultaneous injection of the various SPIO compositions into tumor-bearing mice, inductively coupled plasma mass spectroscopy was used to quantitatively and orthogonally assess the concentration of each SPIO composition in serial blood and resected tumor samples. PMID:25068300

  10. Quantitative Comparison of Tumor Delivery for Multiple Targeted Nanoparticles Simultaneously by Multiplex ICP-MS

    Science.gov (United States)

    Elias, Andrew; Crayton, Samuel H.; Warden-Rothman, Robert; Tsourkas, Andrew

    2014-07-01

    Given the rapidly expanding library of disease biomarkers and targeting agents, the number of unique targeted nanoparticles is growing exponentially. The high variability and expense of animal testing often makes it unfeasible to examine this large number of nanoparticles in vivo. This often leads to the investigation of a single formulation that performed best in vitro. However, nanoparticle performance in vivo depends on many variables, many of which cannot be adequately assessed with cell-based assays. To address this issue, we developed a lanthanide-doped nanoparticle method that allows quantitative comparison of multiple targeted nanoparticles simultaneously. Specifically, superparamagnetic iron oxide (SPIO) nanoparticles with different targeting ligands were created, each with a unique lanthanide dopant. Following the simultaneous injection of the various SPIO compositions into tumor-bearing mice, inductively coupled plasma mass spectroscopy was used to quantitatively and orthogonally assess the concentration of each SPIO composition in serial blood and resected tumor samples.

  11. Simultaneous detection of five enteric viruses associated with gastroenteritis by use of a PCR assay: a single real-time multiplex reaction and its clinical application.

    Science.gov (United States)

    Jiang, Yixiang; Fang, Lin; Shi, Xiaolu; Zhang, Hailong; Li, Yinghui; Lin, Yiman; Qiu, Yaqun; Chen, Qingliang; Li, Hui; Zhou, Li; Hu, Qinghua

    2014-04-01

    We developed a highly sensitive reverse transcription and multiplex real-time PCR (rtPCR) assay that can identify five viruses, including six genogroups, in a single reaction: norovirus genogroups I and II; sapovirus genogroups I, II, IV, and V; human rotavirus A; adenovirus serotypes 40 and 41; and human astrovirus. In comparison to monoplex rtPCR assays, the sensitivities and specificities of the multiplex rtPCR ranged from 75% to 100% and from 99% to 100%, respectively, evaluated on 812 clinical stool specimens.

  12. Medical devices; immunology and microbiology devices; classification of multiplex nucleic acid assay for identification of microorganisms and resistance markers from positive blood cultures. Final order.

    Science.gov (United States)

    2015-05-27

    The Food and Drug Administration (FDA) is classifying multiplex nucleic acid assay for identification of microorganisms and resistance markers from positive blood cultures into class II (special controls). The special controls that will apply to this device are identified in this order and will be part of the codified language for the multiplex nucleic acid assay for identification of microorganisms and resistance markers from positive blood cultures. The Agency is classifying the device into class II (special controls) in order to provide a reasonable assurance of safety and effectiveness of the device.

  13. Hormone Receptor Expression Analyses in Neoplastic and Non-Neoplastic Canine Mammary Tissue by a Bead Based Multiplex Branched DNA Assay: A Gene Expression Study in Fresh Frozen and Formalin-Fixed, Paraffin-Embedded Samples.

    Science.gov (United States)

    Mohr, Annika; Lüder Ripoli, Florenza; Hammer, Susanne Conradine; Willenbrock, Saskia; Hewicker-Trautwein, Marion; Kiełbowicz, Zdzisław; Murua Escobar, Hugo; Nolte, Ingo

    2016-01-01

    Immunohistochemistry (IHC) is currently considered the method of choice for steroid hormone receptor status evaluation in human breast cancer and, therefore, it is commonly utilized for assessing canine mammary tumors. In case of low hormone receptor expression, IHC is limited and thus is complemented by molecular analyses. In the present study, a multiplex bDNA assay was evaluated as a method for hormone receptor gene expression detection in canine mammary tissues. Estrogen receptor (ESR1), progesterone receptor (PGR), prolactin receptor (PRLR) and growth hormone receptor (GHR) gene expressions were evaluated in neoplastic and non-neoplastic canine mammary tissues. A set of 119 fresh frozen and 180 formalin-fixed, paraffin-embedded (FFPE) was comparatively analyzed and used for assay evaluation. Furthermore, a possible association between the hormone receptor expression in different histological subtypes of canine malignant mammary tumors and the castration status, breed and invasive growth of the tumor were analyzed. The multiplex bDNA assay proved to be more sensitive for fresh frozen specimens. Hormone receptor expression found was significantly decreased in malignant mammary tumors in comparison to non-neoplastic tissue and benign mammary tumors. Among the histological subtypes the lowest gene expression levels of ESR1, PGR and PRLR were found in solid, anaplastic and ductal carcinomas. In summary, the evaluation showed that the measurement of hormone receptors with the multiplex bDNA assay represents a practicable method for obtaining detailed quantitative information about gene expression in canine mammary tissue for future studies. Still, comparison with IHC or quantitative real-time PCR is needed for further validation of the present method.

  14. Diagnostic evaluation of a multiplexed RT-PCR microsphere array assay for the detection of foot-and-mouth and look-alike disease viruses

    Energy Technology Data Exchange (ETDEWEB)

    Hindson, B J; Baker, B R; Bentley Tammero, L F; Lenhoff, R J; Naraghi-Arani, P; Vitalis, E A; Slezak, T R; Hullinger, P J; Reid, S M; Ebert, K; Ferris, N P; King, D P

    2007-09-18

    A high-throughput multiplexed assay (Multiplex Version 1.0) was developed for the differential laboratory diagnosis of foot-and-mouth disease virus (FMDV) from viruses which cause clinically similar diseases of livestock. This assay simultaneously screens for five RNA and two DNA viruses using multiplexed reverse transcription PCR (mRT-PCR) amplification coupled with a microsphere hybridization array and flow-cytometric detection. Two of the seventeen primer-probe sets included in this multiplex assay were adopted from previously characterized real-time RT-PCR (rRT-PCR) assays for FMDV. The diagnostic accuracy of the mRT-PCR was evaluated using 287 field samples, including 248 (true positive n= 213, true negative n=34) from suspect cases of foot-and-mouth disease collected from 65 countries between 1965 and 2006 and 39 true negative samples collected from healthy animals. The mRT-PCR assay results were compared with two singleplex rRT-PCR assays, using virus isolation with antigen-ELISA as the reference method. The diagnostic sensitivity of the mRT-PCR assay for FMDV was 93.9% [95% C.I. 89.8-96.4%], compared to 98.1% [95% C.I. 95.3-99.3%] for the two singleplex rRTPCR assays used in combination. In addition, the assay could reliably differentiate between FMDV and other vesicular viruses such as swine vesicular disease virus and vesicular exanthema of swine virus. Interestingly, the mRT-PCR detected parapoxvirus (n=2) and bovine viral diarrhea virus (n=2) in clinical samples, demonstrating the screening potential of this mRT-PCR assay to identify viruses in FMDV-negative material not previously recognized using focused single-target rRT-PCR assays.

  15. Isolation, identification and differentiation of Campylobacter spp. using multiplex PCR assay from goats in Khartoum State, Sudan.

    Science.gov (United States)

    Elbrissi, Atif; Sabeil, Y A; Khalifa, Khalda A; Enan, Khalid; Khair, Osama M; El Hussein, A M

    2017-03-01

    The aim of this study was to identify and characterize thermophilic Campylobacter species in faecal samples from goats in Khartoum State, Sudan, by application of multiplex polymerase chain reaction. Campylobacteriosis is a zoonotic disease of global concern, and the organisms can be transmitted to human via food, water and through contact with farm animals and pets. There are five clinically related Campylobacter species: Campylobacter jejuni (C. jejuni). Campylobacter coli, Campylobacter lari, Campylobacter upsaliensis and Campylobacter fetus. Conventional cultural methods to diagnose campylobacteriosis are tedious and time consuming. Wide ranges of genes have been reported to be used for PCR-based identification of Campylobacter spp. We used a multiplex PCR assay to simultaneously detect genes from the major five clinically significant Campylobacter spp. The genes selected were hipO (hippuricase) and 23S rRNA from glyA (serine hydroxymethyl transferase) from each of C. jejuni. C. coli, C. lari, and C. upsaliensis; and sapB2 (surface layer protein) from C. fetus subsp. fetus. The assay was used to identify Campylobacter isolates recovered from 336 cultured faecal samples from goats in three localities in Khartoum State. C. coli was the most predominant isolate (234; 69.6%), followed by C. jejuni (19; 5.7%), C. upsaliensis (13; 3.9%), C. fetus subsp. fetus (7; 2.1%) and C. lari (6; 1.8%). Twenty-nine goats showed mixed infection with Campylobacter spp., 21 of which harbored two Campylobacter spp., while eight animals were infected with three species. Ten out of twelve goats that displayed diarrhea harbored C. coli only. C. coli, C. jejuni and C. upsaliensis showed significant variation with localities. The prevalence of C. coli was significantly higher (87; 25.9%) in goats from Omdurman, whereas C. jejuni and C. upsaliensis were significantly higher (11; 3.3%, 9; 2.7%) in goats from Khartoum. The multiplex PCR assay was found to be rapid and easy to perform and

  16. A multiplex PCR assay for the simultaneous identification of three mealybug species (Hemiptera: Pseudococcidae).

    Science.gov (United States)

    Saccaggi, D L; Krüger, K; Pietersen, G

    2008-02-01

    Molecular species identification is becoming more wide-spread in diagnostics and ecological studies, particularly with regard to insects for which morphological identification is difficult or time-consuming. In this study, we describe the development and application of a single-step multiplex PCR for the identification of three mealybug species (Hemiptera: Pseudococcidae) associated with grapevine in South Africa: Planococcus ficus (vine mealybug), Planococcus citri (citrus mealybug) and Pseudococcus longispinus (longtailed mealybug). Mealybugs are pests on many commercial crops, including grapevine, in which they transmit viral diseases. Morphological identification of mealybug species is usually time-consuming, requires a high level of taxonomic expertise and usually only adult females can be identified. The single-step multiplex PCR developed here, based on the mitochondrial cytochrome c oxidase subunit 1 (CO I) gene, is rapid, reliable, sensitive, accurate and simple. The entire identification protocol (including DNA extraction, PCR and electrophoresis) can be completed in approximately four hours. Successful DNA extraction from laboratory and unparasitized field-collected individuals stored in absolute ethanol was 97%. Specimens from which DNA could be extracted were always correctly identified (100% accuracy). The technique developed is simple enough to be implemented in any molecular laboratory. The principles described here can be extended to any organism for which rapid, reliable identification is needed.

  17. Fuzzy-logic based strategy for validation of multiplex methods: example with qualitative GMO assays.

    Science.gov (United States)

    Bellocchi, Gianni; Bertholet, Vincent; Hamels, Sandrine; Moens, W; Remacle, José; Van den Eede, Guy

    2010-02-01

    This paper illustrates the advantages that a fuzzy-based aggregation method could bring into the validation of a multiplex method for GMO detection (DualChip GMO kit, Eppendorf). Guidelines for validation of chemical, bio-chemical, pharmaceutical and genetic methods have been developed and ad hoc validation statistics are available and routinely used, for in-house and inter-laboratory testing, and decision-making. Fuzzy logic allows summarising the information obtained by independent validation statistics into one synthetic indicator of overall method performance. The microarray technology, introduced for simultaneous identification of multiple GMOs, poses specific validation issues (patterns of performance for a variety of GMOs at different concentrations). A fuzzy-based indicator for overall evaluation is illustrated in this paper, and applied to validation data for different genetically modified elements. Remarks were drawn on the analytical results. The fuzzy-logic based rules were shown to be applicable to improve interpretation of results and facilitate overall evaluation of the multiplex method.

  18. Molecular Characteristics of Pseudomonas syringae pv. actinidiae Strains Isolated in Korea and a Multiplex PCR Assay for Haplotype Differentiation

    Directory of Open Access Journals (Sweden)

    Hyun Seok Koh

    2014-03-01

    Full Text Available The molecular features of Pseudomonas syringae pv. actinidiae strains isolated in Korea were compared with strains isolated in Japan and Italy. Sequencing of eight P. syringae pv. actinidiae and three P. syringae pv. theae strains revealed a total of 44 single nucleotide polymorphisms across 4,818 bp of the concatenated alignment of nine genes. A multiplex PCR assay was developed for the detection of P. syringae pv. actinidiae and for the specific detection of recent haplotype strains other than strains isolated since the 1980s in Korea. The primer pair, designated as TacF and TacR, specifically amplified a 545-bp fragment with the genomic DNA of new haplotype of P. syringae pv. actinidiae strains. A multiplex PCR conducted with the TacF/TacR primer pair and the universal primer pair for all P. syringae pv. actinidiae strains can be simultaneously applied for the detection of P. syringae pv. actinidiae and for the differentiation of new haplotype strains.

  19. Quantamatrix Multiplexed Assay Platform system for direct detection of bacteria and antibiotic resistance determinants in positive blood culture bottles.

    Science.gov (United States)

    Wang, H Y; Uh, Y; Kim, S; Lee, H

    2017-05-01

    Rapid and accurate identification of the causative pathogens of bloodstream infections (BSIs) is crucial for initiating appropriate antimicrobial therapy, which decreases the related morbidity and mortality rates. The aim of this study was to evaluate the usefulness of a newly developed multiplexed, bead-based bioassay system, the Quantamatrix Multiplexed Assay Platform (QMAP) system, obtained directly from blood culture bottles, to simultaneously detect the presence of bacteria and identify the genes for antibiotic resistance. The QMAP system was used to evaluate 619 blood culture bottles from patients with BSIs and to compare the results of conventional culture methods. Using conventional bacterial cultures as the reference standard, the sensitivity, specificity, positive predictive value, and negative predictive value of the QMAP system for detection of bacterial pathogens in positive blood culture (PBC) samples were 99.8% (n=592, 95% CI 0.9852-1.000, p system for identification of the genes for antibiotic resistance were 99.4% (n=158, 95% CI 0.9617-0.9999, p system takes about 3 hr, while culture methods can take 48-72 hr. Therefore, analysis using the QMAP system is rapid and reliable for characterizing causative pathogens in BSIs. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  20. Development and evaluation of multiplex PCR assays for rapid detection of virulence-associated genes in Arcobacter species.

    Science.gov (United States)

    Whiteduck-Léveillée, Jenni; Cloutier, Michel; Topp, Edward; Lapen, David R; Talbot, Guylaine; Villemur, Richard; Khan, Izhar U H

    2016-02-01

    As the pathogenicity of Arcobacter species might be associated with various virulence factors, this study was aimed to develop and optimize three single-tube multiplex PCR (mPCR) assays that can efficiently detect multiple virulence-associated genes (VAGs) in Arcobacter spp. including the Arcobacter butzleri, Arcobacter cryaerophilus and Arcobacter skirrowii, respectively. The recognized target virulence factors used in the study were fibronectin binding protein (cj1349), filamentous hemagglutinin (hecA), hemolysin activation protein (hecB), hemolysin (tlyA), integral membrane protein virulence factor (mviN), invasin (ciaB), outer membrane protein (irgA) and phospholipase (pldA). Identical results were obtained between singleplex PCR and mPCR assays and no cross- and/or non-specific amplification products were obtained when tested against other closely related bacterial species. The sensitivities of these three mPCR assays were ranging from 1ngμL(-1) to 100ngμL(-1) DNA. The developed assays with combinations of duplex or triplex PCR primer pairs of VAGs were further evaluated and validated by applying them to isolates of the A. butzleri, A. cryaerophilus and A. skirrowii recovered from fecal samples of human and animal origins. The findings revealed that the distribution of the ciaB (90%), mviN (70%), tlyA (50%) and pldA (45%) genes among these target species was significantly higher than the hecA (16%), hecB (10%) and each of irgA and cj1349 (6%) genes, respectively. The newly developed mPCR assays can be used as rapid technique and useful markers for the detection, prevalence and profiling of VAGs in the Arcobacter spp. Moreover, these assays can easily be performed with a high throughput to give a presumptive identification of the causal pathogen in epidemiological investigation of human infections.

  1. Development and assessment of multiplex high resolution melting assay as a tool for rapid single-tube identification of five Brucella species.

    Science.gov (United States)

    Gopaul, Krishna K; Sells, Jessica; Lee, Robin; Beckstrom-Sternberg, Stephen M; Foster, Jeffrey T; Whatmore, Adrian M

    2014-12-11

    The zoonosis brucellosis causes economically significant reproductive problems in livestock and potentially debilitating disease of humans. Although the causative agent, organisms from the genus Brucella, can be differentiated into a number of species based on phenotypic characteristics, there are also significant differences in genotype that are concordant with individual species. This paper describes the development of a five target multiplex assay to identify five terrestrial Brucella species using real-time polymerase chain reaction (PCR) and subsequent high resolution melt curve analysis. This technology offers a robust and cost effective alternative to previously described hydrolysis-probe Single Nucleotide Polymorphism (SNP)-based species defining assays. Through the use of Brucella whole genome sequencing five species defining SNPs were identified. Individual HRM assays were developed to these target these changes and, following optimisation of primer concentrations, it was possible to multiplex all five assays in a single tube. In a validation exercise using a panel of 135 Brucella strains of terrestrial and marine origin, it was possible to distinguish the five target species from the other species within this panel. The HRM multiplex offers a number of diagnostic advantages over previously described SNP-based typing approaches. Further, and uniquely for HRM, the successful multiplexing of five assays in a single tube allowing differentiation of five Brucella species in the diagnostic laboratory in a cost-effective and timely manner is described. However there are possible limitations to using this platform on DNA extractions direct from clinical material.

  2. On-chip multiplexed solid-phase nucleic acid hybridization assay using spatial profiles of immobilized quantum dots and fluorescence resonance energy transfer

    Energy Technology Data Exchange (ETDEWEB)

    Noor, M. Omair; Tavares, Anthony J.; Krull, Ulrich J., E-mail: ulrich.krull@utoronto.ca

    2013-07-25

    Graphical abstract: -- Highlights: •Solid-phase multiplexed QD-FRET nucleic acid assay in electrokinetic fluidic chip. •Concurrent detection of two oligonucleotides based on channel length coverage. •Selection of “turn-on” and “turn-off” signals from two acceptor dyes and two colors of immobilized QDs, respectively. •No loss in assay sensitivity when implementing multiplexed assay format. -- Abstract: A microfluidic based solid-phase assay for the multiplexed detection of nucleic acid hybridization using quantum dot (QD) mediated fluorescence resonance energy transfer (FRET) is described herein. The glass surface of hybrid glass-polydimethylsiloxane (PDMS) microfluidic channels was chemically modified to assemble the biorecognition interface. Multiplexing was demonstrated using a detection system that was comprised of two colors of immobilized semi-conductor QDs and two different oligonucleotide probe sequences. Green-emitting and red-emitting QDs were paired with Cy3 and Alexa Fluor 647 (A647) labeled oligonucleotides, respectively. The QDs served as energy donors for the transduction of dye labeled oligonucleotide targets. The in-channel assembly of the biorecognition interface and the subsequent introduction of oligonucleotide targets was accomplished within minutes using a combination of electroosmotic flow and electrophoretic force. The concurrent quantification of femtomole quantities of two target sequences was possible by measuring the spatial coverage of FRET sensitized emission along the length of the channel. In previous reports, multiplexed QD-FRET hybridization assays that employed a ratiometric method for quantification had challenges associated with lower analytical sensitivity arising from both donor and acceptor dilution that resulted in reduced energy transfer pathways as compared to single-color hybridization assays. Herein, a spatial method for quantification that is based on in-channel QD-FRET profiles provided higher analytical

  3. Development of a Multiplex-PCR assay for the rapid identification of Geobacillus stearothermophilus and Anoxybacillus flavithermus.

    Science.gov (United States)

    Pennacchia, Carmela; Breeuwer, Pieter; Meyer, Rolf

    2014-10-01

    The presence of thermophilic bacilli in dairy products is indicator of poor hygiene. Their rapid detection and identification is fundamental to improve the industrial reactivity in the implementation of corrective and preventive actions. In this study a rapid and reliable identification of Geobacillus stearothermophilus and Anoxybacillus flavithermus was achieved by species-specific PCR assays. Two primer sets, targeting the ITS 16S-23S rRNA region and the rpoB gene sequence of the target species respectively, were employed. Species-specificity of both primer sets was evaluated by using 53 reference strains of DSMZ collection; among them, 13 species of the genus Geobacillus and 15 of the genus Anoxybacillus were represented. Moreover, 99 wild strains and 23 bulk cells collected from 24 infant formula powders gathered from several countries worldwide were included in the analyses. Both primer sets were highly specific and the expected PCR fragments were obtained only when DNA from G. stearothermophilus or A. flavithermus was used. After testing their specificity, they were combined in a Multiplex-PCR assay for the simultaneous identification of the two target species. The specificity of the Multiplex-PCR was evaluated by using both wild strains and bulk cells. Every analysis confirmed the reliable identification results provided by the single species-specific PCR methodology. The easiness, the rapidity (about 4 h from DNA isolation to results) and the reliability of the PCR procedures developed in this study highlight the advantage of their application for the specific detection and identification of the thermophilic species G. stearothermophilus and A. flavithermus.

  4. Looking for new biomarkers of skin wound vitality with a cytokine-based multiplex assay: preliminary study.

    Science.gov (United States)

    Peyron, Pierre-Antoine; Baccino, Éric; Nagot, Nicolas; Lehmann, Sylvain; Delaby, Constance

    2017-02-01

    Determination of skin wound vitality is an important issue in forensic practice. No reliable biomarker currently exists. Quantification of inflammatory cytokines in injured skin with MSD(®) technology is an innovative and promising approach. This preliminary study aims to develop a protocol for the preparation and the analysis of skin samples. Samples from ante mortem wounds, post mortem wounds, and intact skin ("control samples") were taken from corpses at the autopsy. After an optimization of the pre-analytical protocol had been performed in terms of skin homogeneisation and proteic extraction, the concentration of TNF-α was measured in each sample with the MSD(®) approach. Then five other cytokines of interest (IL-1β, IL-6, IL-10, IL-12p70 and IFN-γ) were simultaneously quantified with a MSD(®) multiplex assay. The optimal pre-analytical conditions consist in a proteic extraction from a 6 mm diameter skin sample, in a PBS buffer with triton 0,05%. Our results show the linearity and the reproductibility of the TNF-α quantification with MSD(®), and an inter- and intra-individual variability of the concentrations of proteins. The MSD(®) multiplex assay is likely to detect differential skin concentrations for each cytokine of interest. This preliminary study was used to develop and optimize the pre-analytical and analytical conditions of the MSD(®) method using injured and healthy skin samples, for the purpose of looking for and identifying the cytokine, or the set of cytokines, that may be biomarkers of skin wound vitality.

  5. Simultaneous quantification of five bacterial and plant toxins from complex matrices using a multiplexed fluorescent magnetic suspension assay.

    Science.gov (United States)

    Pauly, Diana; Kirchner, Sebastian; Stoermann, Britta; Schreiber, Tanja; Kaulfuss, Stefan; Schade, Rüdiger; Zbinden, Reto; Avondet, Marc-André; Dorner, Martin B; Dorner, Brigitte G

    2009-10-01

    Proteotoxins such as ricin, abrin, botulinum neurotoxins type A and B (BoNT/A, BoNT/B) and staphylococcal enterotoxin B (SEB) are regarded as potential biological warfare agents which could be used for bioterrorism attacks on the food chain. In this study we used a novel immunisation strategy to generate high-affinity monoclonal and polyclonal antibodies against native ricin, BoNT/A, and BoNT/B. The antibodies were used along with antibodies against SEB and abrin to establish a highly sensitive magnetic and fluorescent multiplex bead array with excellent sensitivities between 2 ng/L and 546 ng/L from a minimal sample volume of 50 microL. The assay was validated using 20 different related analytes and the assay precision was determined. Advancing the existing bead array technology, the novel magnetic and fluorescent microbeads proved amenable to enrichment procedures, by further increasing sensitivity to 0.3-85 ng/L, starting from a sample volume of 500 microL. Furthermore, the method was successfully applied for the simultaneous identification of the target toxins spiked into complex food matrices like milk, baby food and yoghurt. On the basis of our results, the assay appears to be a good tool for large-scale screening of samples from the food supply chain.

  6. A novel multiplex poliovirus binding inhibition assay applicable for large serosurveillance and vaccine studies, without the use of live poliovirus.

    Science.gov (United States)

    Schepp, Rutger M; Berbers, Guy A M; Ferreira, José A; Reimerink, Johan H; van der Klis, Fiona R

    2017-03-01

    Large-scale serosurveillance or vaccine studies for poliovirus using the "gold standard" WHO neutralisation test (NT) are very laborious and time consuming. With the polio eradication at hand and with the removal of live attenuated Sabin strains from the oral poliovirus vaccine (OPV), starting with type 2 (as of April 2016), laboratories will need to conform to much more stringent laboratory biosafety regulations when handling live poliovirus strains. In this study, a poliovirus binding inhibition multiplex immunoassay (polio MIA) using inactivated poliovirus vaccine (IPV-Salk) was developed for simultaneous quantification of serum antibodies directed to all three poliovirus types. Our assay shows a good correlation with the NT and an excellent correlation with the ELISA-based binding inhibition assay (POBI). The assay is highly type-specific and reproducible. Additionally, serum sample throughput increases about fivefold relative to NT and POBI and the amount of serum needed is reduced by more than 90%. In conclusion, the polio MIA can be used as a safe and high throughput application, especially for large-scale surveillance and vaccine studies, reducing laboratory time and serum amounts needed. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Detection of virulence, antibiotic resistance and toxin (VAT) genes in Campylobacter species using newly developed multiplex PCR assays.

    Science.gov (United States)

    Laprade, Natacha; Cloutier, Michel; Lapen, David R; Topp, Edward; Wilkes, Graham; Villemur, Richard; Khan, Izhar U H

    2016-05-01

    Campylobacter species are one of the leading causes of bacterial gastroenteritis in humans worldwide. This twofold study was sought to: i) develop and optimize four single-tube multiplex PCR (mPCR) assays for the detection of six virulence (ciaB, dnaJ, flaA, flaB, pldA and racR), three toxin (cdtA, cdtB and cdtC) and one antibiotic resistance tet(O) genes in thermophilic Campylobacter spp. and ii) apply and evaluate the developed mPCR assays by testing 470 previously identified C. jejuni, C. coli and C. lari isolates from agricultural water. In each mPCR assay, a combination of two or three sets of primer pairs for virulence, antibiotic resistance and toxin (VAT) genes was used and optimized. Assay 1 was developed for the detection of dnaJ, racR and cdtC genes with expected amplification sizes of 720, 584 and 182bp. Assay 2 generated PCR amplicons for tet(O) and cdtA genes of 559 and 370bp. Assay 3 amplified cdtB ciaB, and pldA genes with PCR amplicon sizes of 620, 527 and 385bp. Assay 4 was optimized for flaA and flaB genes that generated PCR amplicons of 855 and 260bp. The primer pairs and optimized PCR protocols did not show interference and/or cross-amplification with each other and generated the expected size of amplification products for each target VAT gene for the C. jejuni ATCC 33291 reference strain. Overall, all ten target VAT genes were detected at a variable frequency in tested isolates of thermophilic Campylobacter spp. where cdtC, flaB, ciaB, cdtB, cdtA and pldA were commonly detected compared to the flaA, racR, dnaJ and tet(O) genes which were detected with less frequency. The developed mPCR assays are simple, rapid, reliable and sensitive tools for simultaneously assessing potential pathogenicity and antibiotic resistance profiling in thermophilic Campylobacter spp. The mPCR assays will be useful in diagnostic and analytical settings for routine screening of VAT characteristics of Campylobacter spp. as well as being applicable in epidemiological

  8. High-throughput screening of cellulase F mutants from multiplexed plasmid sets using an automated plate assay on a functional proteomic robotic workcell

    Directory of Open Access Journals (Sweden)

    Qureshi Nasib

    2006-05-01

    Full Text Available Abstract Background The field of plasmid-based functional proteomics requires the rapid assay of proteins expressed from plasmid libraries. Automation is essential since large sets of mutant open reading frames are being cloned for evaluation. To date no integrated automated platform is available to carry out the entire process including production of plasmid libraries, expression of cloned genes, and functional testing of expressed proteins. Results We used a functional proteomic assay in a multiplexed setting on an integrated plasmid-based robotic workcell for high-throughput screening of mutants of cellulase F, an endoglucanase from the anaerobic fungus Orpinomyces PC-2. This allowed us to identify plasmids containing optimized clones expressing mutants with improved activity at lower pH. A plasmid library of mutagenized clones of the celF gene with targeted variations in the last four codons was constructed by site-directed PCR mutagenesis and transformed into Escherichia coli. A robotic picker integrated into the workcell was used to inoculate medium in a 96-well deep well plate, combining the transformants into a multiplexed set in each well, and the plate was incubated on the workcell. Plasmids were prepared from the multiplexed culture on the liquid handler component of the workcell and used for in vitro transcription/translation. The multiplexed expressed recombinant proteins were screened for improved activity and stability in an azo-carboxymethylcellulose plate assay. The multiplexed wells containing mutants with improved activity were identified and linked back to the corresponding multiplexed cultures stored in glycerol. Spread plates were prepared from the glycerol stocks and the workcell was used to pick single colonies from the spread plates, prepare plasmid, produce recombinant protein, and assay for activity. The screening assay and subsequent deconvolution of the multiplexed wells resulted in identification of improved Cel

  9. Multiplex real-time PCR assay for detection and classification of Klebsiella pneumoniae carbapenemase gene (bla KPC) variants.

    Science.gov (United States)

    Chen, Liang; Mediavilla, José R; Endimiani, Andrea; Rosenthal, Marnie E; Zhao, Yanan; Bonomo, Robert A; Kreiswirth, Barry N

    2011-02-01

    Carbapenem resistance mediated by plasmid-borne Klebsiella pneumoniae carbapenemases (KPC) is an emerging problem of significant clinical importance in Gram-negative bacteria. Multiple KPC gene variants (bla(KPC)) have been reported, with KPC-2 (bla(KPC-2)) and KPC-3 (bla(KPC-3)) associated with epidemic outbreaks in New York City and various international settings. Here, we describe the development of a multiplex real-time PCR assay using molecular beacons (MB-PCR) for rapid and accurate identification of bla(KPC) variants. The assay consists of six molecular beacons and two oligonucleotide primer pairs, allowing for detection and classification of all currently described bla(KPC) variants (bla(KPC-2) to bla(KPC-11)). The MB-PCR detection limit was 5 to 40 DNA copies per reaction and 4 CFU per reaction using laboratory-prepared samples. The MB-PCR probes were highly specific for each bla(KPC) variant, and cross-reactivity was not observed using DNA isolated from several bacterial species. A total of 457 clinical Gram-negative isolates were successfully characterized by our MB-PCR assay, with bla(KPC-3) and bla(KPC-2) identified as the most common types in the New York/New Jersey metropolitan region. The MB-PCR assay described herein is rapid, sensitive, and specific and should be useful for understanding the ongoing evolution of carbapenem resistance in Gram-negative bacteria. As novel bla(KPC) variants continue to emerge, the MB-PCR assay can be modified in response to epidemiologic developments.

  10. Detection of somatic quantitative genetic alterations by multiplex polymerase chain reaction for the prediction of outcome in diffuse large B-cell lymphomas.

    Science.gov (United States)

    Jardin, Fabrice; Ruminy, Philippe; Kerckaert, Jean-Pierre; Parmentier, Françoise; Picquenot, Jean-Michel; Quief, Sabine; Villenet, Céline; Buchonnet, Gérard; Tosi, Mario; Frebourg, Thierry; Bastard, Christian; Tilly, Hervé

    2008-04-01

    Genomic gains and losses play a crucial role in the development of diffuse large B-cell lymphomas. High resolution array comparative genomic hybridization provides a comprehensive view of these genomic imbalances but is not routinely applicable. We developed a polymerase chain reaction assay to provide information regarding gains or losses of relevant genes and prognosis in diffuse large B-cell lymphomas. Two polymerase chain reaction assays (multiplex polymerase chain reaction of short fluorescent fragments, QMPSF) were designed to detect gains or losses of c-REL, BCL6, SIM1, PTPRK, MYC, CDKN2A, MDM2, CDKN1B, TP53 and BCL2. Array comparative genomic hybridization was simultaneously performed to evaluate the sensitivity and predictive value of the QMPSF assay. The biological and clinical relevance of this assay were assessed. The predictive value of the QMPSF assay for detecting abnormal DNA copy numbers ranged between 88-97%, giving an overall concordance rate of 92% with comparative genomic hybridization results. In 77 cases of diffuse large B-cell lymphomas, gains of MYC, CDKN1B, c-REL and BCL2 were detected in 12%, 40%, 27% and 29%, respectively. TP53 and CDKN2A deletions were observed in 22% and 36% respectively. BCL2 and CDKN2A allelic status correlated with protein expression. TP53 mutations were associated with allelic deletions in 45% of cases. The prognostic value of a single QMPSF assay including TP53, MYC, CDKN2A, SIM1 and CDKN1B was predictive of the outcome independently of the germinal center B-cell like/non-germinal center B-cell like subtype or the International Prognostic Index. QMPSF is a reliable and flexible method for detecting somatic quantitative genetic alterations in diffuse large B-cell lymphomas and could be integrated in future prognostic predictive models.

  11. Development of a multiplex PCR-ligase detection reaction assay for diagnosis of infection by the four parasite species causing malaria in humans.

    Science.gov (United States)

    McNamara, David T; Thomson, Jodi M; Kasehagen, Laurin J; Zimmerman, Peter A

    2004-06-01

    The diagnosis of infections caused by Plasmodium species is critical for understanding the nature of malarial disease, treatment efficacy, malaria control, and public health. The demands of field-based epidemiological studies of malaria will require faster and more sensitive diagnostic methods as new antimalarial drugs and vaccines are explored. We have developed a multiplex PCR-ligase detection reaction (LDR) assay that allows the simultaneous diagnosis of infection by all four parasite species causing malaria in humans. This assay exhibits sensitivity and specificity equal to those of other PCR-based assays, identifying all four human malaria parasite species at levels of parasitemias equal to 1 parasitized erythrocyte/microl of blood. The multiplex PCR-LDR assay goes beyond other PCR-based assays by reducing technical procedures and by detecting intraindividual differences in species-specific levels of parasitemia. Application of the multiplex PCR-LDR assay will provide the sensitivity and specificity expected of PCR-based diagnostic assays and will contribute new insight regarding relationships between the human malaria parasite species and the human host in future epidemiological studies.

  12. Comparison of 2 Luminex-based Multiplexed Protein Assays for Quantifying Microglia Activation and Inflammatory Proteins

    Science.gov (United States)

    2016-04-01

    streptavidin-phycoerythrin (PE) similar to sandwich enzyme-linked immunosorbent assays (ELISAs). The 3 fluorescent markers (2 beads plus PE) allow for...least expensive platform. It uses a magnetic plate to create a monolayer of beads that can be imaged with a light-emitting-diode-based imager capable... Magnetic Luminex Screening Assay Rat Premixed Multi-Analyte Kit, a kit was purchased that included all of the 17 analytes included in company’s catalog

  13. Analytical Performance of a Multiplex Real-Time PCR Assay Using TaqMan Probes for Quantification of Trypanosoma cruzi Satellite DNA in Blood Samples

    Science.gov (United States)

    Abate, Teresa; Cayo, Nelly M.; Parrado, Rudy; Bello, Zoraida Diaz; Velazquez, Elsa; Muñoz-Calderon, Arturo; Juiz, Natalia A.; Basile, Joaquín; Garcia, Lineth; Riarte, Adelina; Nasser, Julio R.; Ocampo, Susana B.; Yadon, Zaida E.; Torrico, Faustino; de Noya, Belkisyole Alarcón; Ribeiro, Isabela; Schijman, Alejandro G.

    2013-01-01

    Background The analytical validation of sensitive, accurate and standardized Real-Time PCR methods for Trypanosoma cruzi quantification is crucial to provide a reliable laboratory tool for diagnosis of recent infections as well as for monitoring treatment efficacy. Methods/Principal Findings We have standardized and validated a multiplex Real-Time quantitative PCR assay (qPCR) based on TaqMan technology, aiming to quantify T. cruzi satellite DNA as well as an internal amplification control (IAC) in a single-tube reaction. IAC amplification allows rule out false negative PCR results due to inhibitory substances or loss of DNA during sample processing. The assay has a limit of detection (LOD) of 0.70 parasite equivalents/mL and a limit of quantification (LOQ) of 1.53 parasite equivalents/mL starting from non-boiled Guanidine EDTA blood spiked with T. cruzi CL-Brener stock. The method was evaluated with blood samples collected from Chagas disease patients experiencing different clinical stages and epidemiological scenarios: 1- Sixteen Venezuelan patients from an outbreak of oral transmission, 2- Sixty three Bolivian patients suffering chronic Chagas disease, 3- Thirty four Argentinean cases with chronic Chagas disease, 4- Twenty seven newborns to seropositive mothers, 5- A seronegative receptor who got infected after transplantation with a cadaveric kidney explanted from an infected subject. Conclusions/Significance The performing parameters of this assay encourage its application to early assessment of T. cruzi infection in cases in which serological methods are not informative, such as recent infections by oral contamination or congenital transmission or after transplantation with organs from seropositive donors, as well as for monitoring Chagas disease patients under etiological treatment. PMID:23350002

  14. Analytical performance of a multiplex Real-Time PCR assay using TaqMan probes for quantification of Trypanosoma cruzi satellite DNA in blood samples.

    Directory of Open Access Journals (Sweden)

    Tomas Duffy

    Full Text Available BACKGROUND: The analytical validation of sensitive, accurate and standardized Real-Time PCR methods for Trypanosoma cruzi quantification is crucial to provide a reliable laboratory tool for diagnosis of recent infections as well as for monitoring treatment efficacy. METHODS/PRINCIPAL FINDINGS: We have standardized and validated a multiplex Real-Time quantitative PCR assay (qPCR based on TaqMan technology, aiming to quantify T. cruzi satellite DNA as well as an internal amplification control (IAC in a single-tube reaction. IAC amplification allows rule out false negative PCR results due to inhibitory substances or loss of DNA during sample processing. The assay has a limit of detection (LOD of 0.70 parasite equivalents/mL and a limit of quantification (LOQ of 1.53 parasite equivalents/mL starting from non-boiled Guanidine EDTA blood spiked with T. cruzi CL-Brener stock. The method was evaluated with blood samples collected from Chagas disease patients experiencing different clinical stages and epidemiological scenarios: 1- Sixteen Venezuelan patients from an outbreak of oral transmission, 2- Sixty three Bolivian patients suffering chronic Chagas disease, 3- Thirty four Argentinean cases with chronic Chagas disease, 4- Twenty seven newborns to seropositive mothers, 5- A seronegative receptor who got infected after transplantation with a cadaveric kidney explanted from an infected subject. CONCLUSIONS/SIGNIFICANCE: The performing parameters of this assay encourage its application to early assessment of T. cruzi infection in cases in which serological methods are not informative, such as recent infections by oral contamination or congenital transmission or after transplantation with organs from seropositive donors, as well as for monitoring Chagas disease patients under etiological treatment.

  15. Multiplex PCR assays for simultaneous detection of six major serotypes and two virulence-associated phenotypes of Streptococcus suis in tonsillar specimens from pigs

    NARCIS (Netherlands)

    Wisselink, H.J.; Joosten, J.J.; Smith, H.E.

    2002-01-01

    Multiplex PCR assays for the detection and identification of various Streptococcus suis strains in tonsillar specimens from pigs were developed and evaluated. In two separate reactions, five distinct DNA targets were amplified. Three targets, based on the S. suis capsular polysaccharide (cps) genes

  16. Dataset of proinflammatory cytokine and cytokine receptor gene expression in rainbow trout (Oncorhynchus mykiss) measured using a novel GeXP multiplex, RT-PCR assay

    Science.gov (United States)

    A GeXP multiplex, RT-PCR assay was developed and optimized that simultaneously measures expression of a suite of immune-relevant genes in rainbow trout (Oncorhynchus mykiss), concentrating on tumor necrosis factor and interleukin-1 ligand/receptor systems and acute phase response genes. The dataset ...

  17. A multiplex real-time polymerase chain reaction (TaqMan) assay for the simultaneous detection of Meloidogyne chitwoodi and M-fallax

    NARCIS (Netherlands)

    Zijlstra, C.; Hoof, van R.A.

    2006-01-01

    This study describes a multiplex real-time polymerase chain reaction (PCR) approach for the simultaneous detection of Meloidogyne chitwoodi and M. fallax in a single assay. The approach uses three fluorogenic minor groove binding (MGB) TaqMan probes: one FAM-labeled to detect M. chitwoodi, one VIC-l

  18. A highly sensitive, multiplex broad-spectrum PCR-DNA-enzyme immunoassay and reverse hybridization assay for rapid detection and identification of Chlamydia trachomatis serovars.

    NARCIS (Netherlands)

    Quint, K.D.; Doorn, L.J. van; Kleter, B.; Koning, M.N. de; Munckhof, H.A. van den; Morre, S.A.; Harmsel, B. ter; Weiderpass, E.; Harbers, G.; Melchers, W.J.G.; Quint, W.G.V.

    2007-01-01

    Chlamydia trachomatis (Ct) comprises distinct serogroups and serovars. The present study evaluates a novel Ct amplification, detection, and genotyping method (Ct-DT assay). The Ct-DT amplification step is a multiplex broad-spectrum PCR for the cryptic plasmid and the VD2-region of ompl. The Ct-DT de

  19. Development of a multiplex assay for genus- and species-specific detection of Phytophthora based on differences in mitochondrial gene order

    Science.gov (United States)

    G. J. Bilodeau; F. N. Martin; M. D. Coffey; C. L. Blomquist

    2014-01-01

    A molecular diagnostic assay for Phytophthora spp. that is specific, sensitive, has both genus- and species-specific detection capabilities multiplexed, and can be used to systematically develop markers for detection of a wide range of species would facilitate research and regulatory efforts. To address this need, a marker system was developed...

  20. A comparison of serum and plasma cytokine values using a multiplexed assay in cats.

    Science.gov (United States)

    Gruen, Margaret E; Messenger, Kristen M; Thomson, Andrea E; Griffith, Emily H; Paradise, Hayley; Vaden, Shelly; Lascelles, B D X

    2016-12-01

    Degenerative joint disease (DJD) is highly prevalent in cats, and pain contributes to morbidity. In humans, alterations of cytokine concentrations have been associated with joint deterioration and pain. Similar changes have not been investigated in cats. Cytokine concentrations can be measured using multiplex technology with small samples of serum or plasma, however, serum and plasma are not interchangeable for most bioassays. Correlations for cytokine concentrations between serum and plasma have not been evaluated in cats. To evaluate the levels of detection and agreement between serum and plasma samples in cats. Paired serum and plasma samples obtained from 38 cats. Blood was collected into anti-coagulant free and EDTA Vacutainer(®) tubes, serum or plasma extracted, and samples frozen at -80°C until testing. Duplicate samples were tested using a 19-plex feline cytokine/chemokine magnetic bead panel. Agreement between serum and plasma for many analytes was high, however correlation coefficients ranged from -0.01 to 0.97. Results from >50% of samples were below the lower limit of quantification for both serum and plasma for nine analytes, and for an additional three analytes for plasma only. While serum and plasma agreement was generally good, detection was improved using serum samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Diagnostic evaluation of a multiplexed RT-PCR microsphere array assay for the detection of foot-and-mouth disease virus and look-alike disease viruses

    Energy Technology Data Exchange (ETDEWEB)

    Hindson, B J; Reid, S M; Baker, B R; Ebert, K; Ferris, N P; Bentley Tammero, L F; Lenhoff, R J; Naraghi-Arani, P; Vitalis, E A; Slezak, T R; Hullinger, P J; King, D P

    2007-07-26

    A high-throughput multiplexed assay was developed for the differential laboratory diagnosis of foot-and-mouth disease virus (FMDV) from viruses which cause clinically similar diseases of livestock. This assay simultaneously screens for five RNA and two DNA viruses using multiplexed reverse transcription PCR (mRT-PCR) amplification coupled with a microsphere hybridization array and flow-cytometric detection. Two of the seventeen primer-probe sets included in this multiplex assay were adopted from previously characterized real-time RT-PCR (rRT-PCR) assays for FMDV. The diagnostic accuracy of the mRT-PCR was evaluated using 287 field samples, including 248 (true positive n= 213, true negative n=34) from suspect cases of foot-and-mouth disease collected from 65 countries between 1965 and 2006 and 39 true negative samples collected from healthy animals. The mRT-PCR assay results were compared with two singleplex rRT-PCR assays, using virus isolation with antigen-ELISA as the reference method. The diagnostic sensitivity of the mRT-PCR assay for FMDV was 93.9% [95% C.I. 89.8-96.4%], compared to 98.1% [95% C.I. 95.3-99.3%] for the two singleplex rRT-PCR assays used in combination. In addition, the assay could reliably differentiate between FMDV and other vesicular viruses such as swine vesicular disease virus and vesicular exanthema of swine virus. Interestingly, the mRT-PCR detected parapoxvirus (n=2) and bovine viral diarrhea virus (n=2) in clinical samples, demonstrating the screening potential of this mRT-PCR assay to identify viruses in FMDV-negative material not previously recognized using focused single-target rRT-PCR assays.

  2. Detection of Salmonella spp, Salmonella Enteritidis and Typhimurium in naturally infected broiler chickens by a multiplex PCR-based assay

    Directory of Open Access Journals (Sweden)

    F.G. Paião

    2013-01-01

    Full Text Available The presence of Salmonella in the intestinal tract, on the chickens skin and among their feathers, may cause carcasses contamination during slaughtering and processing and possibly it is responsible by the introduction of this microorganism in the slaughterhouses. A rapid method to identify and monitor Salmonella and their sorovars in farm is becoming necessary. A pre-enriched multiplex polymerase chain reaction (m-PCR assay employing specific primers was developed and used to detect Salmonella at the genus level and to identify the Salmonella enterica serovar Enteritidis (S. Enteritidis and Salmonella enterica serovar Typhimurium (S. Typhimurium in broiler chicken swab samples. The method was validated by testing DNA extract from 90 fresh culture cloacal swab samples from poultry chicken cultured in phosphate buffer peptone water at 37 ºC for 18 h. The final results showed the presence of Salmonella spp. in 25% of samples, S. Enteritidis was present in 12% of the Salmonella-positive samples and S. Typhimurium in 3% of the samples. The m-PCR assay developed in this study is a specific and rapid alternative method for the identification of Salmonella spp. and allowed the observation of specific serovar contamination in the field conditions within the locations where these chickens are typically raised.

  3. Unravelling the Bacterial Vaginosis-Associated Biofilm: A Multiplex Gardnerella vaginalis and Atopobium vaginae Fluorescence In Situ Hybridization Assay Using Peptide Nucleic Acid Probes.

    Directory of Open Access Journals (Sweden)

    Liselotte Hardy

    Full Text Available Bacterial vaginosis (BV, a condition defined by increased vaginal discharge without significant inflammation, is characterized by a change in the bacterial composition of the vagina. Lactobacillus spp., associated with a healthy vaginal microbiome, are outnumbered by BV-associated organisms. These bacteria could form a polymicrobial biofilm which allows them to persist in spite of antibiotic treatment. In this study, we examined the presence of Gardnerella vaginalis and Atopobium vaginae in vaginal biofilms using Peptide Nucleic Acid (PNA probes targeting these bacteria. For this purpose, we developed three new PNA probes for A. vaginae. The most specific A. vaginae probe, AtoITM1, was selected and then used in an assay with two existing probes, Gard162 and BacUni-1, to evaluate multiplex FISH on clinical samples. Using quantitative polymerase chain reaction (qPCR as the gold standard, we demonstrated a sensitivity of 66.7% (95% confidence interval: 54.5% - 77.1% and a specificity of 89.4% (95% confidence interval: 76.1% - 96% of the new AtoITM1 probe. FISH enabled us to show the presence of a polymicrobial biofilm in bacterial vaginosis, in which Atopobium vaginae is part of a Gardnerella vaginalis-dominated biofilm. We showed that the presence of this biofilm is associated with high bacterial loads of A. vaginae and G. vaginalis.

  4. Unravelling the Bacterial Vaginosis-Associated Biofilm: A Multiplex Gardnerella vaginalis and Atopobium vaginae Fluorescence In Situ Hybridization Assay Using Peptide Nucleic Acid Probes.

    Science.gov (United States)

    Hardy, Liselotte; Jespers, Vicky; Dahchour, Nassira; Mwambarangwe, Lambert; Musengamana, Viateur; Vaneechoutte, Mario; Crucitti, Tania

    2015-01-01

    Bacterial vaginosis (BV), a condition defined by increased vaginal discharge without significant inflammation, is characterized by a change in the bacterial composition of the vagina. Lactobacillus spp., associated with a healthy vaginal microbiome, are outnumbered by BV-associated organisms. These bacteria could form a polymicrobial biofilm which allows them to persist in spite of antibiotic treatment. In this study, we examined the presence of Gardnerella vaginalis and Atopobium vaginae in vaginal biofilms using Peptide Nucleic Acid (PNA) probes targeting these bacteria. For this purpose, we developed three new PNA probes for A. vaginae. The most specific A. vaginae probe, AtoITM1, was selected and then used in an assay with two existing probes, Gard162 and BacUni-1, to evaluate multiplex FISH on clinical samples. Using quantitative polymerase chain reaction (qPCR) as the gold standard, we demonstrated a sensitivity of 66.7% (95% confidence interval: 54.5% - 77.1%) and a specificity of 89.4% (95% confidence interval: 76.1% - 96%) of the new AtoITM1 probe. FISH enabled us to show the presence of a polymicrobial biofilm in bacterial vaginosis, in which Atopobium vaginae is part of a Gardnerella vaginalis-dominated biofilm. We showed that the presence of this biofilm is associated with high bacterial loads of A. vaginae and G. vaginalis.

  5. A multiplex serum protein assay for determining the probability of colorectal cancer.

    Science.gov (United States)

    Brock, Randall; Xiong, Bob; Li, Lily; Vanbogelen, Ruth A; Christman, Lori

    2012-01-01

    Our purpose is to develop a serum assay to determine an individual's probability of having colorectal cancer (CRC). We have discovered a protein panel yielding encouraging, clinically significant results. We evaluated 431 serum samples from donors screened for CRC by colonoscopy. We compared the concentration of seven proteins in individuals with CRC versus individuals found to be CRC free. The assay monitored a single peptide from each of seven proteins. Comparing CRC to normal samples in univariate two-sample t-tests, 6 of the 7 proteins yielded a p-value less than 0.01. Logistic regression was used to construct a model for determination of CRC probability. The model was fit on a randomly chosen training set of 321 samples. Using 6 of the 7 proteins (ORM1, GSN, C9, HABP2, SAA2, and C3) and a cut point of 0.4, an independent test set of 110 samples yielded a sensitivity of 93.75%, a specificity of 82.89% and a prevalence-adjusted negative predictive value (NPV) of 99.9775% for the assay. The results demonstrate that the assay has promise as a sensitive, non-invasive diagnostic test to provide individuals with an understanding of their own probability of having CRC.

  6. Study comparing human papillomavirus (HPV) real-time multiplex PCR and Hybrid Capture II INNO-LiPA v2 HPV genotyping PCR assays.

    Science.gov (United States)

    Iftner, Thomas; Germ, Liesje; Swoyer, Ryan; Kjaer, Susanne Kruger; Breugelmans, J Gabrielle; Munk, Christian; Stubenrauch, Frank; Antonello, Joseph; Bryan, Janine T; Taddeo, Frank J

    2009-07-01

    Human papillomavirus (HPV) DNA genotyping is an essential test to establish efficacy in HPV vaccine clinical trials and HPV prevalence in natural history studies. A number of HPV DNA genotyping methods have been cited in the literature, but the comparability of the outcomes from the different methods has not been well characterized. Clinically, cytology is used to establish possible HPV infection. We evaluated the sensitivity and specificity of HPV multiplex PCR assays compared to those of the testing scheme of the Hybrid Capture II (HCII) assay followed by an HPV PCR/line hybridization assay (HCII-LiPA v2). SurePath residual samples were split into two aliquots. One aliquot was subjected to HCII testing followed by DNA extraction and LiPA v2 genotyping. The second aliquot was shipped to a second laboratory, where DNA was extracted and HPV multiplex PCR testing was performed. Comparisons were evaluated for 15 HPV types common in both assays. A slightly higher proportion of samples tested positive by the HPV multiplex PCR than by the HCII-LiPA v2 assay. The sensitivities of the multiplex PCR assay relative to those of the HCII-LiPA v2 assay for HPV types 6, 11, 16, and 18, for example, were 0.806, 0.646, 0.920, and 0.860, respectively; the specificities were 0.986, 0.998, 0.960, and 0.986, respectively. The overall comparability of detection of the 15 HPV types was quite high. Analyses of DNA genotype testing compared to cytology results demonstrated a significant discordance between cytology-negative (normal) and HPV DNA-positive results. This demonstrates the challenges of cytological diagnosis and the possibility that a significant number of HPV-infected cells may appear cytologically normal.

  7. A novel multiplex polymerase chain reaction assay for profile analyses of gene expression in peripheral blood

    Directory of Open Access Journals (Sweden)

    Jia Xingwang

    2012-07-01

    Full Text Available Abstract Background Studies have demonstrated that inflammation has a key role in the pathogenesis of atherosclerosis due to the abnormal gene expressions of multiple cytokines. We established an accurate and precise method to observe gene expression in whole blood that might provide specific diagnostic information for coronary artery disease (CAD and other related diseases. Methods The fifteen selected CAD-related genes (IL1B, IL6, IL8, IFNG, MCP-1, VWF, MTHFR, SELL, TNFalpha, ubiquitin, MCSF, ICAM1, ID2, HMOX1 and LDLR and two housekeeping genes (ACTB and GK as internal references have been measured simultaneously with a newly developed multiplex polymerase chain reaction (multi-PCR method. Moreover, the precision was evaluated, and a procedure for distinguishing patients from the normal population has been developed based upon analyses of peripheral blood. A total of 148 subjects were divided into group A (control group without plaques, group B (calcified plaques and group C (non-calcified plaques, and combination group according dual-source CT criteria. Gene expression in blood was analyzed by multi-PCR, and levels of glucose and lipids measured in 50 subjects to explore the relationship among them. Results The precision results of the multi-PCR system revealed within-run and between-run CV values of 3.695–12.537% and 4.405–13.405%, respectively. The profiles of cytokine gene expression in peripheral blood were set: a positive correlation between glucose and MCSF, HMOX1 or TNFalpha were found. We also found that triglyceride levels were negatively correlated with SELL gene expression in 50 subjects. Compared with controls, gene expression levels of IL1B, IL6, IL8 and MCP-1 increased significantly in group C. Conclusions A new multiple gene expression analysis system has been developed. The primary data suggested that gene expression was related to CAD. This system might be used for risk assessment of CVDs and other related diseases.

  8. Quantitative Molecular Assay for Fingerprinting Microbial Communities of Wastewater and Estrogen-Degrading Consortia

    OpenAIRE

    Yu, Chang-Ping; Ahuja, Rajiv; Sayler, Gary; Chu, Kung-Hui

    2005-01-01

    A quantitative fingerprinting method, called the real-time terminal restriction fragment length polymorphism (real-time-t-RFLP) assay, was developed for simultaneous determination of microbial diversity and abundance within a complex community. The real-time-t-RFLP assay was developed by incorporating the quantitative feature of real-time PCR and the fingerprinting feature of t-RFLP analysis. The assay was validated by using a model microbial community containing three pure strains, an Escher...

  9. Identification of Clostridium beijerinckii, Cl. butyricum, Cl. sporogenes, Cl. tyrobutyricum isolated from silage, raw milk and hard cheese by a multiplex PCR assay.

    Science.gov (United States)

    Cremonesi, Paola; Vanoni, Laura; Silvetti, Tiziana; Morandi, Stefano; Brasca, Milena

    2012-08-01

    Late blowing, caused by the outgrowth of clostridial spores present in raw milk and originating from silage, can create considerable product loss, especially in the production of hard and semi-hard cheeses. The conventional method for the isolation of Clostridium spp. from cheeses with late-blowing symptoms is very complicated and the identification of isolates is problematic. The aim of this work was the development of a multiplex PCR method for the detection of the main dairy-related clostridia such as: Cl. beijerinckii, Cl. butyricum, Cl. sporogenes, Cl. tyrobutyricum. Samples derived from silage, raw milk and hard cheese were analysed by the most probable number (MPN) enumeration. Forty-four bacterial strains isolated from gas positive tubes were used to check the reliability of the multiplex PCR assay. The specificity of the primers was tested by individually analysing each primer pair and the primer pair combined in the multiplex PCR. It was interesting to note that the samples not identified by the multiplex PCR assay were amplified by V2-V3 16S rRNA primer pair and the sequencing revealed the aligned 16S rRNA sequences to be Paenibacillus and Bacillus spp. This new molecular assay provides a simple promising alternative to traditional microbiological methods for a rapid, sensitive detection of clostridia in dairy products.

  10. Immunogenicity assessment of HPV16/18 vaccine using the glutathione S-transferase L1 multiplex serology assay.

    Science.gov (United States)

    Robbins, Hilary A; Waterboer, Tim; Porras, Carolina; Kemp, Troy J; Pawlita, Michael; Rodriguez, Ana Cecilia; Wacholder, Sholom; Gonzalez, Paula; Schiller, John T; Lowy, Douglas R; Esser, Mark; Matys, Katie; Poncelet, Sylviane; Herrero, Rolando; Hildesheim, Allan; Pinto, Ligia A; Safaeian, Mahboobeh

    2014-01-01

    The glutathione S-transferase (GST)-L1 multiplex serology assay has favorable properties for use in clinical trials and epidemiologic studies, including low cost, high throughput capacity, and low serum volume requirement. Therefore, we evaluated the GST-L1 assay as a measure of HPV16/18 vaccine immunogenicity. Our study population included 65 women selected from the Costa Rica Vaccine Trial who received the bivalent HPV16/18 virus-like particle (VLP) vaccine at the recommended 0/1/6-month schedule. We tested replicate serum samples from months 0/1/12 (i.e., after 0/1/3 doses) by GST-L1 and 3 other commonly used serology assays, VLP-ELISA, SEAP-NA, and cLIA. We calculated the percentage of women seropositive by GST-L1 by time point and HPV type (14 HPV types), and compared GST-L1 to other assays using Spearman rank correlation coefficients. After 1 vaccine dose, seropositivity by GST-L1 was 40% each for HPV16 and HPV18, increasing to 100% and 98%, respectively, after 3 doses. Seropositivity after 3 doses ranged from 32% to 69% for HPV types 31/33/45, for which partial vaccine efficacy is reported, though increases also occurred for types with no evidence for cross-protection (e.g., HPV77). GST-L1 correlated best after 3 doses with VLP-ELISA (HPV16 and HPV18 each ρ = 0.72) and SEAP-NA (HPV16 ρ = 0.65, HPV18 ρ = 0.71) (all P < 0.001); correlation was lower with cLIA. The GST-L1 is suitable for evaluating HPV16/18 vaccine immunogenicity after 3 vaccine doses, although in contrast to other assays it may classify some samples as HPV16/18 seronegative. The assay's utility is limited for lower antibody levels such as after receipt of 1 dose.

  11. Study comparing human papillomavirus (HPV) real-time multiplex PCR and Hybrid Capture II INNO-LiPA v2 HPV genotyping PCR assays

    DEFF Research Database (Denmark)

    Iftner, Thomas; Germ, Liesje; Swoyer, Ryan

    2009-01-01

    Human papillomavirus (HPV) DNA genotyping is an essential test to establish efficacy in HPV vaccine clinical trials and HPV prevalence in natural history studies. A number of HPV DNA genotyping methods have been cited in the literature, but the comparability of the outcomes from the different...... methods has not been well characterized. Clinically, cytology is used to establish possible HPV infection. We evaluated the sensitivity and specificity of HPV multiplex PCR assays compared to those of the testing scheme of the Hybrid Capture II (HCII) assay followed by an HPV PCR/line hybridization assay...... (HCII-LiPA v2). SurePath residual samples were split into two aliquots. One aliquot was subjected to HCII testing followed by DNA extraction and LiPA v2 genotyping. The second aliquot was shipped to a second laboratory, where DNA was extracted and HPV multiplex PCR testing was performed. Comparisons...

  12. Rapid differential diagnosis between extrapulmonary tuberculosis and focal complications of brucellosis using a multiplex real-time PCR assay.

    Directory of Open Access Journals (Sweden)

    María Isabel Queipo-Ortuño

    Full Text Available BACKGROUND: Arduous to differ clinically, extrapulmonary tuberculosis and focal complications of brucellosis remain important causes of morbidity and mortality in many countries. We developed and applied a multiplex real-time PCR assay (M RT-PCR for the simultaneous detection of Mycobacterium tuberculosis complex and Brucella spp. METHODOLOGY: Conventional microbiological techniques and M RT-PCR for M. tuberculosis complex and Brucella spp were performed on 45 clinical specimens from patients with focal complications of brucellosis or extrapulmonary tuberculosis and 26 control samples. Fragments of 207 bp and 164 bp from the conserved region of the genes coding for an immunogenic membrane protein of 31 kDa of B. abortus (BCSP31 and the intergenic region SenX3-RegX3 were used for the identification of Brucella and M. tuberculosis complex, respectively. CONCLUSIONS: The detection limit of the M RT-PCR was 2 genomes per reaction for both pathogens and the intra- and inter-assay coefficients of variation were 0.44% and 0.93% for Brucella and 0.58% and 1.12% for Mycobacterium. M RT-PCR correctly identified 42 of the 45 samples from patients with tuberculosis or brucellosis and was negative in all the controls. Thus, the overall sensitivity, specificity, PPV and NPV values of the M RT PCR assay were 93.3%, 100%, 100% and 89.7%, respectively, with an accuracy of 95.8% (95% CI, 91.1%-100%. Since M RT-PCR is highly reproducible and more rapid and sensitive than conventional microbiological tests, this technique could be a promising and practical approach for the differential diagnosis between extrapulmonary tuberculosis and focal complications of brucellosis.

  13. Calibration of qualitative HBsAg assay results for quantitative HBsAg monitoring.

    Science.gov (United States)

    Gunning, Hans; Adachi, Dena; Tang, Julian W

    2014-10-01

    Evidence is accumulating that quantitative hepatitis B surface antigen monitoring may be useful in managing patients with chronic HBV infection on certain treatment regimens. Based on these results with the Abbott Architect qualitative and quantitative HBsAg assays, it seems feasible to convert qualitative to quantitative HBsAg values for this purpose. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Plasmonic liquid marbles: a miniature substrate-less SERS platform for quantitative and multiplex ultratrace molecular detection.

    Science.gov (United States)

    Lee, Hiang Kwee; Lee, Yih Hong; Phang, In Yee; Wei, Jiaqi; Miao, Yue-E; Liu, Tianxi; Ling, Xing Yi

    2014-05-12

    Inspired by aphids, liquid marbles have been studied extensively and have found application as isolated microreactors, as micropumps, and in sensing. However, current liquid-marble-based sensing methodologies are limited to qualitative colorimetry-based detection. Herein we describe the fabrication of a plasmonic liquid marble as a substrate-less analytical platform which, when coupled with ultrasensitive SERS, enables simultaneous multiplex quantification and the identification of ultratrace analytes across separate phases. Our plasmonic liquid marble demonstrates excellent mechanical stability and is suitable for the quantitative examination of ultratrace analytes, with detection limits as low as 0.3 fmol, which corresponds to an analytical enhancement factor of 5×10(8). The results of our simultaneous detection scheme based on plasmonic liquid marbles and an aqueous-solid-organic interface quantitatively tally with those found for the individual detection of methylene blue and coumarin.

  15. A high throughput single nucleotide polymorphism multiplex assay for parentage assignment in New Zealand sheep.

    Directory of Open Access Journals (Sweden)

    Shannon M Clarke

    Full Text Available Accurate pedigree information is critical to animal breeding systems to ensure the highest rate of genetic gain and management of inbreeding. The abundance of available genomic data, together with development of high throughput genotyping platforms, means that single nucleotide polymorphisms (SNPs are now the DNA marker of choice for genomic selection studies. Furthermore the superior qualities of SNPs compared to microsatellite markers allows for standardization between laboratories; a property that is crucial for developing an international set of markers for traceability studies. The objective of this study was to develop a high throughput SNP assay for use in the New Zealand sheep industry that gives accurate pedigree assignment and will allow a reduction in breeder input over lambing. This required two phases of development--firstly, a method of extracting quality DNA from ear-punch tissue performed in a high throughput cost efficient manner and secondly a SNP assay that has the ability to assign paternity to progeny resulting from mob mating. A likelihood based approach to infer paternity was used where sires with the highest LOD score (log of the ratio of the likelihood given parentage to likelihood given non-parentage are assigned. An 84 "parentage SNP panel" was developed that assigned, on average, 99% of progeny to a sire in a problem where there were 3,000 progeny from 120 mob mated sires that included numerous half sib sires. In only 6% of those cases was there another sire with at least a 0.02 probability of paternity. Furthermore dam information (either recorded, or by genotyping possible dams was absent, highlighting the SNP test's suitability for paternity testing. Utilization of this parentage SNP assay will allow implementation of progeny testing into large commercial farms where the improved accuracy of sire assignment and genetic evaluations will increase genetic gain in the sheep industry.

  16. Analysis of a novel multiplex polymerase chain reaction assay as a sensitive tool for the diagnosis of indeterminate and tuberculoid forms of leprosy

    Directory of Open Access Journals (Sweden)

    V Sundeep Chaitanya

    2017-01-01

    Full Text Available Objective/Background: Clinical diagnosis of indeterminate and tuberculoid leprosy is often difficult due to limited and confounding signs and symptoms. In the current study, we evaluated the utility of new multiplex polymerase chain reaction (PCR using Mycobacterium leprae-specific DNA sequences in the pseudogene regions of ML1545, ML2180, and ML2179 for PCR-based diagnosis of indeterminate leprosy (IND and leprosy cases across the immunological spectrum. The sensitivity was compared with that of RLEP PCR. Methods: DNA was extracted from paraffin-embedded skin biopsy specimens of 220 leprosy cases, which were divided into IND (41, tuberculoid form (3, borderline tuberculoid (42, midborderline (3, borderline lepromatous (n=59, and lepromatous leprosy (72 cases. PCR positivity of both multiplex and RLEP PCR were compared in all the samples. A decision tree was constructed using the classification and regression trees algorithm to predict the probability of PCR positivity with the new multiplex PCR scheme in various clinical groups of leprosy. Sensitivity of each pseudogene target was determined using real-time PCR assays, and specificity was confirmed by PCR amplification of DNA extracted from three other mycobacterial species and skin biopsies of 44 non-leprosy cases. Results: A multiplex PCR positivity of 75.61% was noted in IND cases when compared to that of 58.54% using RLEP PCR (P < 0.05. Enhanced multiplex PCR positivity was noted across various clinical groups in comparison to RLEP PCR. The decision tree classifier has predicted statistically significant probability for multiplex PCR positivity among RLEP-PCR negative group and clinical groups with a low bacillary load. Conclusion: This new multiplex PCR scheme can support the diagnosis of indeterminate and tuberculoid forms of leprosy with limited clinical manifestations and can be implemented in basic clinical/diagnostic setting that possess conventional PCR facilities.

  17. Quantitative CrAssphage PCR Assays for Human Fecal ...

    Science.gov (United States)

    Environmental waters are monitored for fecal pollution to protect public health and water resources. Traditionally, general fecal indicator bacteria are used; however, they cannot distinguish human fecal waste from pollution from other animals. Recently, a novel bacteriophage, crAssphage, was discovered by metagenomic data mining and reported to be abundant in and closely associated with human fecal waste. To confirm bioinformatic predictions, 384 primer sets were designed along the length of the crAssphage genome. Based upon initial screening, two novel crAssphage qPCR assays (CPQ_056 and CPQ_064) were designed and evaluated in reference fecal samples and water matrices. The assays exhibited high specificities (98.6%) when tested against a large animal fecal reference library and were highly abundant in raw sewage and sewage impacted water samples. In addition, CPQ_056 and CPQ_064 assay performance was compared to HF183/BacR287 and HumM2 methods in paired experiments. Findings confirm viral crAssphage qPCR assays perform at a similar level to well established bacterial human-associated fecal source identification technologies. These new viral based assays could become important water quality management and research tools. To inform the public.

  18. Development of a Multiplex Real-Time PCR Assay for the Detection of Treponema pallidum, HCV, HIV-1, and HBV.

    Science.gov (United States)

    Zhou, Li; Gong, Rui; Lu, Xuan; Zhang, Yi; Tang, Jingfeng

    2015-01-01

    Treponema pallidum, hepatitis C virus (HCV), human immunodeficiency virus (HIV)-1, and hepatitis B virus (HBV) are major causes of sexually transmitted diseases passed through blood contact. The development of a sensitive and efficient method for detection is critical for early diagnosis and for large-scale screening of blood specimens in China. This study aims to establish an assay to detect these pathogens in clinical serum specimens. We established a TaqMan-locked nucleic acid (LNA) real-time polymerase chain reaction (PCR) assay for rapid, sensitive, specific, quantitative, and simultaneous detection and identification. The copy numbers of standards of these 4 pathogens were quantified. Standard curves were generated by determining the mean cycle threshold values versus 10-fold serial dilutions of standards over a range of 10(6) to 10(1) copies/μL, with the lowest detection limit of the assay being 10(1) copies/μL. The assay was applied to 328 clinical specimens and compared with enzyme-linked immunosorbent assay (ELISA) and commercial nucleic acid testing (NAT) methods. The assay identified 39 T. pallidum-, 96 HCV-, 13 HIV-1-, 123 HBV-, 5 HBV/HCV-, 1 T. pallidum/HBV-, 1 HIV-1/HCV-, and 1 HIV-1/T. pallidum-positive specimens. The high sensitivity of the assay confers strong potential for its use as a highly reliable, cost-effective, and useful molecular diagnostic tool for large-scale screening of clinical specimens. This assay will assist in the study of the pathogenesis and epidemiology of sexually transmitted blood diseases.

  19. One-Step Multiplex RT-qPCR Assay for the Detection of Peste des petits ruminants virus, Capripoxvirus, Pasteurella multocida and Mycoplasma capricolum subspecies (ssp.) capripneumoniae

    Science.gov (United States)

    Lamien, Charles Euloge; Spergser, Joachim; Lelenta, Mamadou; Wade, Abel; Gelaye, Esayas; Loitsch, Angelika; Minoungou, Germaine; Thiaucourt, Francois; Diallo, Adama

    2016-01-01

    Respiratory infections, although showing common clinical symptoms like pneumonia, are caused by bacterial, viral or parasitic agents. These are often reported in sheep and goats populations and cause huge economic losses to the animal owners in developing countries. Detection of these diseases is routinely done using ELISA or microbiological methods which are being reinforced or replaced by molecular based detection methods including multiplex assays, where detection of different pathogens is carried out in a single reaction. In the present study, a one-step multiplex RT-qPCR assay was developed for simultaneous detection of Capripoxvirus (CaPV), Peste de petits ruminants virus (PPRV), Pasteurella multocida (PM) and Mycoplasma capricolum ssp. capripneumonia (Mccp) in pathological samples collected from small ruminants with respiratory disease symptoms. The test performed efficiently without any cross-amplification. The multiplex PCR efficiency was 98.31%, 95.48%, 102.77% and 91.46% whereas the singleplex efficiency was 93.43%, 98.82%, 102.55% and 92.0% for CaPV, PPRV, PM and Mccp, respectively. The correlation coefficient was greater than 0.99 for all the targets in both multiplex and singleplex. Based on cycle threshold values, intra and inter assay variability, ranged between the limits of 2%–4%, except for lower concentrations of Mccp. The detection limits at 95% confidence interval (CI) were 12, 163, 13 and 23 copies/reaction for CaPV, PPRV, PM and Mccp, respectively. The multiplex assay was able to detect CaPVs from all genotypes, PPRV from the four lineages, PM and Mccp without amplifying the other subspecies of mycoplasmas. The discriminating power of the assay was proven by accurate detection of the targeted pathogen (s) by screening 58 viral and bacterial isolates representing all four targeted pathogens. Furthermore, by screening 81 pathological samples collected from small ruminants showing respiratory disease symptoms, CaPV was detected in 17 samples

  20. One-Step Multiplex RT-qPCR Assay for the Detection of Peste des petits ruminants virus, Capripoxvirus, Pasteurella multocida and Mycoplasma capricolum subspecies (ssp. capripneumoniae.

    Directory of Open Access Journals (Sweden)

    Tirumala Bharani Kumar Settypalli

    Full Text Available Respiratory infections, although showing common clinical symptoms like pneumonia, are caused by bacterial, viral or parasitic agents. These are often reported in sheep and goats populations and cause huge economic losses to the animal owners in developing countries. Detection of these diseases is routinely done using ELISA or microbiological methods which are being reinforced or replaced by molecular based detection methods including multiplex assays, where detection of different pathogens is carried out in a single reaction. In the present study, a one-step multiplex RT-qPCR assay was developed for simultaneous detection of Capripoxvirus (CaPV, Peste de petits ruminants virus (PPRV, Pasteurella multocida (PM and Mycoplasma capricolum ssp. capripneumonia (Mccp in pathological samples collected from small ruminants with respiratory disease symptoms. The test performed efficiently without any cross-amplification. The multiplex PCR efficiency was 98.31%, 95.48%, 102.77% and 91.46% whereas the singleplex efficiency was 93.43%, 98.82%, 102.55% and 92.0% for CaPV, PPRV, PM and Mccp, respectively. The correlation coefficient was greater than 0.99 for all the targets in both multiplex and singleplex. Based on cycle threshold values, intra and inter assay variability, ranged between the limits of 2%-4%, except for lower concentrations of Mccp. The detection limits at 95% confidence interval (CI were 12, 163, 13 and 23 copies/reaction for CaPV, PPRV, PM and Mccp, respectively. The multiplex assay was able to detect CaPVs from all genotypes, PPRV from the four lineages, PM and Mccp without amplifying the other subspecies of mycoplasmas. The discriminating power of the assay was proven by accurate detection of the targeted pathogen (s by screening 58 viral and bacterial isolates representing all four targeted pathogens. Furthermore, by screening 81 pathological samples collected from small ruminants showing respiratory disease symptoms, CaPV was detected in

  1. Design and development of an in-house multiplex RT-PCR assay for simultaneous detection of HIV-1 and HCV in plasma samples

    Directory of Open Access Journals (Sweden)

    M Paryan

    2012-03-01

    Full Text Available Background and Objectives: HIV-1 and HCV infections are life threatening problems in patients who receive blood products. Serological methods have proven useful in detecting these infections, but there are setbacks that make it challenging to detect these infectious agents. By the advent of Nucleic Acid Testing (NAT methods, especially in multiplex format, more precise detection is possible.Materials and Methods: We have developed a multiplex RT-PCR assay for simultaneous detection of HIV-1 and HCV. Primers were designed for highly conserved region of genome of each virus. Using these primers and standard plasmids, we determined the limit of detection, clinical and analytical specificity and sensitivity of the assay. Monoplex and multiplex RT-PCR were performed.Results: Analytical sensitivity was considered to be 100 and 200 copies/ml for HIV-1 and HCV, respectively. High concentration of one virus had no significant effect on the detection of the other one with low concentration. By analysis of 40 samples, clinical sensitivity of the assay was determined to be 97.5%. Using different viral and human genome samples, the specificity of the assay was evaluated to be 100%.Conclusions: The aim of this study was to develop a reliable, rapid and cost effective method to detect HIV-1 and HCV simultaneously. Results showed that this simple and rapid method is perfectly capable of detecting two viruses in clinical samples.

  2. CCL18 in a multiplex urine-based assay for the detection of bladder cancer.

    Directory of Open Access Journals (Sweden)

    Virginia Urquidi

    Full Text Available The early detection of bladder cancer (BCa is pivotal for successful patient treatment and management. Through genomic and proteomic studies, we have identified a number of bladder cancer-associated biomarkers that have potential clinical utility. In a case-control study, we examined voided urines from 127 subjects: 64 tumor-bearing subjects and 63 controls. The urine concentrations of the following proteins were assessed by enzyme-linked immunosorbent assay (ELISA; C-C motif chemokine 18 (CCL18, Plasminogen Activator Inhibitor 1 (PAI-1 and CD44. Data were compared to a commercial ELISA-based BCa detection assay (BTA-Trak© and voided urinary cytology. We used analysis of the area under the curve of receiver operating characteristic curves to compare the ability of CCL18, PAI-1, CD44, and BTA to detect BCa in voided urine samples. Urinary concentrations of CCL18, PAI-1, and BTA were significantly elevated in subjects with BCa. CCL18 was the most accurate biomarker (AUC; 0.919; 95% confidence interval [CI], 0.8704-0.9674. Multivariate regression analysis highlighted CCL18 (OR; 18.31; 95% CI, 4.95-67.70, p<0.0001 and BTA (OR; 6.43; 95% CI, 1.86-22.21, p = 0.0033 as independent predictors of BCa in voided urine samples. The combination of CCL18, PAI-1 and CD44 improved the area under the curve to 0.938. Preliminary results indicate that CCL18 was a highly accurate biomarker for BCa detection in this cohort. Monitoring CCL18 in voided urine samples has the potential to improve non-invasive tests for BCa diagnosis. Furthermore using the combination of CCL18, PAI-1 and CD44 may make the model more robust to errors to detect BCa over the individual biomarkers or BTA.

  3. Comparison of Droplet Digital PCR and Quantitative PCR Assays for Quantitative Detection of Xanthomonas citri Subsp. citri.

    Directory of Open Access Journals (Sweden)

    Yun Zhao

    Full Text Available Droplet digital polymerase chain reaction (ddPCR is a novel molecular biology technique providing absolute quantification of target nucleic acids without the need for an external calibrator. Despite its emerging applications in medical diagnosis, there are few reports of its use for the detection of plant pathogens. This work was designed to assess the diagnosis potential of the ddPCR for absolute quantitative detection of Xanthomonas citri subsp. citri, a quarantine plant pathogenic bacterium that causes citrus bacterial canker in susceptible Citrus species. We transferred an established quantitative PCR (qPCR assay for citrus bacterial canker diagnosis directly to the ddPCR format and compared the performance of the two methods. The qPCR assay has a broader dynamic range compared to the ddPCR assay and the ddPCR assay has a significantly higher degree of sensitivity compared to the qPCR assay. The influence of PCR inhibitors can be reduced considerably in the ddPCR assay because the collection of end-point fluorescent signals and the counting of binomial events (positive or negative droplets are associated with a Poisson algorithm. The ddPCR assay also shows lower coefficient of variation compared to the qPCR assay especially in low target concentration. The linear association of the measurements by ddPCR and qPCR assays is strong (Pearson correlation = 0.8633; P<0.001. Receiver operating characteristic analysis indicates the ddPCR methodology is a more robust approach for diagnosis of citrus bacterial canker. In summary, the results demonstrated that the ddPCR assay has the potential for the quantitative detection of X. citri subsp. citri with high precision and accuracy as compared with the results from qPCR assay. Further studies are required to evaluate and validate the value of ddPCR technology in the diagnosis of plant disease and quarantine applications.

  4. A monoclonal antibody-based VZV glycoprotein E quantitative assay and its application on antigen quantitation in VZV vaccine.

    Science.gov (United States)

    Liu, Jian; Zhu, Rui; Ye, Xiangzhong; Yang, Lianwei; Wang, Yongmei; Huang, Yanying; Wu, Jun; Wang, Wei; Ye, Jianghui; Li, Yimin; Zhao, Qinjian; Zhu, Hua; Cheng, Tong; Xia, Ningshao

    2015-06-01

    Varicella-zoster virus (VZV) is a highly infectious agent that causes varicella and herpes zoster (HZ), which may be associated with severe neuralgia. Vaccination is the most effective way to reduce the burden of the diseases. VZV glycoprotein E (gE) is the major and most immunogenic membrane protein that plays important roles in vaccine efficacy. A quantitative assay for gE content is desirable for the VZV vaccine process monitoring and product analysis. In this study, 70 monoclonal antibodies (mAbs) were obtained after immunizing mice with purified recombinant gE (rgE). The collection of mAbs was well-characterized, and a pair of high-affinity neutralization antibodies (capture mAb 4A2 and detection mAb 4H10) was selected to establish a specific and sensitive sandwich enzyme-linked immunosorbent assay (ELISA) to quantify the native and recombinant gE. The detection limit of this assay was found to be 1.95 ng/mL. Furthermore, a reasonably good correlation between the gE content (as measured by the mAb-based quantitative ELISA) and the virus titer (as measured by the "gold standard" plaque assay) was observed when both assays were performed for tracking the kinetics of virus growth during cell culture. A total of 16 batches of lyophilized VZV vaccine were tested using the newly developed quantitative ELISA and classical plaque assay, demonstrating reasonably good correlation between gE content and virus titer. Therefore, this mAb-based gE quantitative assay serves as a rapid, stable, and sensitive method for monitoring viral antigen content, one additional quantitative method for VZV vaccine process and product characterization. This quantitative ELISA may also serve as a complementary method for virus titering.

  5. Clinical Application of an Innovative Multiplex-Fluorescent-Labeled STRs Assay for Prader-Willi Syndrome and Angelman Syndrome.

    Directory of Open Access Journals (Sweden)

    Kaihui Zhang

    Full Text Available Prader-Willi syndrome (PWS and Angelman syndrome (AS are two clinically distinct neurodevelopmental disorders caused by absence of paternally or maternally expressed imprinted genes on chr15q11.2-q13.3. Three mechanisms are known to be involved in the pathogenesis: microdeletions, uniparental disomy (UPD and imprinting defects. Both disorders are difficult to be definitely diagnosed at early age if no available molecular cytogenetic tests. In this study, we identified 5 AS patients with the maternal deletion and 26 PWS patients with paternal deletion on chr15q11-q13 by using an innovative multiplex-fluorescent-labeled short tandem repeats (STRs assay based on linkage analysis, and validated by the methylation-specific PCR and array comparative genomic hybridization techniques. More interesting, one of these PWS patients was confirmed as maternal uniparental isodisomy by the STR linkage analysis. The phenotypic and genotypic characteristics of these individuals were also presented. Our results indicate that the new linkage analysis is much faster and easier for large-scale screening deletion and uniparental disomy, thus providing a valuable method for early diagnosis of PWS/AS patients, which is critical for genetic diagnosis, management and improvement of prognosis.

  6. Numerical Investigation of Cell Encapsulation for Multiplexing Diagnostic Assays Using Novel Centrifugal Microfluidic Emulsification and Separation Platform

    Directory of Open Access Journals (Sweden)

    Yong Ren

    2016-01-01

    Full Text Available In the present paper, we report a novel centrifugal microfluidic platform for emulsification and separation. Our design enables encapsulation and incubation of multiple types of cells by droplets, which can be generated at controlled high rotation speed modifying the transition between dripping-to-jetting regimes. The droplets can be separated from continuous phase using facile bifurcated junction design. A three dimensional (3D model was established to investigate the formation and sedimentation of droplets using the centrifugal microfluidic platform by computational fluid dynamics (CFD. The simulation results were compared to the reported experiments in terms of droplet shape and size to validate the accuracy of the model. The influence of the grid resolution was investigated and quantified. The physics associated with droplet formation and sedimentation is governed by the Bond number and Rossby number, respectively. Our investigation provides insight into the design criteria that can be used to establish centrifugal microfluidic platforms tailored to potential applications, such as multiplexing diagnostic assays, due to the unique capabilities of the device in handling multiple types of cells and biosamples with high throughput. This work can inspire new development of cell encapsulation and separation applications by centrifugal microfluidic technology.

  7. Quantitation of Protein Expression and Co-localization Using Multiplexed Immuno-histochemical Staining and Multispectral Imaging.

    Science.gov (United States)

    Bauman, Tyler M; Ricke, Emily A; Drew, Sally A; Huang, Wei; Ricke, William A

    2016-04-08

    Immunohistochemistry is a commonly used clinical and research lab detection technique for investigating protein expression and localization within tissues. Many semi-quantitative systems have been developed for scoring expression using immunohistochemistry, but inherent subjectivity limits reproducibility and accuracy of results. Furthermore, the investigation of spatially overlapping biomarkers such as nuclear transcription factors is difficult with current immunohistochemistry techniques. We have developed and optimized a system for simultaneous investigation of multiple proteins using high throughput methods of multiplexed immunohistochemistry and multispectral imaging. Multiplexed immunohistochemistry is performed by sequential application of primary antibodies with secondary antibodies conjugated to horseradish peroxidase or alkaline phosphatase. Different chromogens are used to detect each protein of interest. Stained slides are loaded into an automated slide scanner and a protocol is created for automated image acquisition. A spectral library is created by staining a set of slides with a single chromogen on each. A subset of representative stained images are imported into multispectral imaging software and an algorithm for distinguishing tissue type is created by defining tissue compartments on images. Subcellular compartments are segmented by using hematoxylin counterstain and adjusting the intrinsic algorithm. Thresholding is applied to determine positivity and protein co-localization. The final algorithm is then applied to the entire set of tissues. Resulting data allows the user to evaluate protein expression based on tissue type (ex. epithelia vs. stroma) and subcellular compartment (nucleus vs. cytoplasm vs. plasma membrane). Co-localization analysis allows for investigation of double-positive, double-negative, and single-positive cell types. Combining multispectral imaging with multiplexed immunohistochemistry and automated image acquisition is an

  8. Multiplex real-time PCR assays for the identification of the potato cyst and tobacco cyst nematodes

    Science.gov (United States)

    TaqMan primer-probe sets were developed for the detection and identification of potato cyst nematodes (PCN) Globodera pallida and G. rostochiensis using two-tube, multiplex real-time PCR. One tube contained a primer-probe set specific for G. pallida (pale cyst nematode) multiplexed with another prim...

  9. Multiplex real-time PCR assays for detection of eight Shiga toxin-producing Escherichia coli in food samples by melting curve analysis.

    Science.gov (United States)

    Singh, Prashant; Mustapha, Azlin

    2015-12-23

    Shiga toxin-producing Escherichia coli (STEC) are pathogenic strains of E. coli that can cause bloody diarrhea and kidney failure. Seven STEC serogroups, O157, O26, O45, O103, O111, O121 and O145 are responsible for more than 71% of the total infections caused by this group of pathogens. All seven serogroups are currently considered as adulterants in non-intact beef products in the U.S. In this study, two multiplex melt curve real-time PCR assays with internal amplification controls (IACs) were standardized for the detection of eight STEC serogroups. The first multiplex assay targeted E. coli serogroups O145, O121, O104, and O157; while the second set detected E. coli serogroups O26, O45, O103 and O111. The applicability of the assays was tested using 11 different meat and produce samples. For food samples spiked with a cocktail of four STEC serogroups with a combined count of 10 CFU/25 g food, all targets of the multiplex assays were detected after an enrichment period of 6h. The assays also worked efficiently when 325 g of food samples were spiked with 10 CFU of STECs. The assays are not dependent on fluorescent-labeled probes or immunomagnetic beads, and can be used for the detection of eight STEC serogroups in less than 11h. Routine preliminary screening of STECs in food samples is performed by testing for the presence of STEC virulence genes. The assays developed in this study can be useful as a first- or second-tier test for the identification of the eight O serogroup-specific genes in suspected food samples.

  10. Optimally designed nanolayered metal-dielectric particles as probes for massively multiplexed and ultrasensitive molecular assays.

    Science.gov (United States)

    Kodali, Anil K; Llora, Xavier; Bhargava, Rohit

    2010-08-03

    An outstanding challenge in biomedical sciences is to devise a palette of molecular probes that can enable simultaneous and quantitative imaging of tens to hundreds of species down to ultralow concentrations. Addressing this need using surface-enhanced Raman scattering-based probes is potentially possible. Here, we theorize a rational design and optimization strategy to obtain reproducible probes using nanospheres with alternating metal and reporter-filled dielectric layers. The isolation of reporter molecules from metal surfaces suppresses chemical enhancement, and consequently signal enhancements are determined by electromagnetic effects alone. This strategy synergistically couples interstitial surface plasmons and permits the use of almost any molecule as a reporter by eliminating the need for surface attachment. Genetic algorithms are employed to optimize the layer dimensions to provide controllable enhancements exceeding 11 orders of magnitude and of single molecule sensitivity for nonresonant and resonant reporters, respectively. The strategy also provides several other opportunities, including a facile route to tuning the response of these structures to be spectrally flat and localization of the enhancement within a specific volume inside or outside the probe. The spectrally uniform enhancement for multiple excitation wavelengths and for different shifts enables generalized probes, whereas enhancement tuning permits a large dynamic range by suppression of enhancements from outside the probe. Combined, these theoretical calculations open the door for a set of reproducible and robust probes with controlled sensitivity for molecular sensing over a concentration range of over 20 orders of magnitude.

  11. One-step multiplex real-time RT-PCR assay for detecting and genotyping wild-type group A rotavirus strains and vaccine strains (Rotarix® and RotaTeq® in stool samples

    Directory of Open Access Journals (Sweden)

    Rashi Gautam

    2016-01-01

    Full Text Available Background. Group A rotavirus (RVA infection is the major cause of acute gastroenteritis (AGE in young children worldwide. Introduction of two live-attenuated rotavirus vaccines, RotaTeq® and Rotarix®, has dramatically reduced RVA associated AGE and mortality in developed as well as in many developing countries. High-throughput methods are needed to genotype rotavirus wild-type strains and to identify vaccine strains in stool samples. Quantitative RT-PCR assays (qRT-PCR offer several advantages including increased sensitivity, higher throughput, and faster turnaround time. Methods. In this study, a one-step multiplex qRT-PCR assay was developed to detect and genotype wild-type strains and vaccine (Rotarix® and RotaTeq® rotavirus strains along with an internal processing control (Xeno or MS2 RNA. Real-time RT-PCR assays were designed for VP7 (G1, G2, G3, G4, G9, G12 and VP4 (P[4], P[6] and P[8] genotypes. The multiplex qRT-PCR assay also included previously published NSP3 qRT-PCR for rotavirus detection and Rotarix® NSP2 and RotaTeq® VP6 qRT-PCRs for detection of Rotarix® and RotaTeq® vaccine strains respectively. The multiplex qRT-PCR assay was validated using 853 sequence confirmed stool samples and 24 lab cultured strains of different rotavirus genotypes. By using thermostable rTth polymerase enzyme, dsRNA denaturation, reverse transcription (RT and amplification (PCR steps were performed in single tube by uninterrupted thermocycling profile to reduce chances of sample cross contamination and for rapid generation of results. For quantification, standard curves were generated using dsRNA transcripts derived from RVA gene segments. Results. The VP7 qRT-PCRs exhibited 98.8–100% sensitivity, 99.7–100% specificity, 85–95% efficiency and a limit of detection of 4–60 copies per singleplex reaction. The VP7 qRT-PCRs exhibited 81–92% efficiency and limit of detection of 150–600 copies in multiplex reactions. The VP4 q

  12. One-step multiplex real-time RT-PCR assay for detecting and genotyping wild-type group A rotavirus strains and vaccine strains (Rotarix® and RotaTeq®) in stool samples.

    Science.gov (United States)

    Gautam, Rashi; Mijatovic-Rustempasic, Slavica; Esona, Mathew D; Tam, Ka Ian; Quaye, Osbourne; Bowen, Michael D

    2016-01-01

    Background. Group A rotavirus (RVA) infection is the major cause of acute gastroenteritis (AGE) in young children worldwide. Introduction of two live-attenuated rotavirus vaccines, RotaTeq® and Rotarix®, has dramatically reduced RVA associated AGE and mortality in developed as well as in many developing countries. High-throughput methods are needed to genotype rotavirus wild-type strains and to identify vaccine strains in stool samples. Quantitative RT-PCR assays (qRT-PCR) offer several advantages including increased sensitivity, higher throughput, and faster turnaround time. Methods. In this study, a one-step multiplex qRT-PCR assay was developed to detect and genotype wild-type strains and vaccine (Rotarix® and RotaTeq®) rotavirus strains along with an internal processing control (Xeno or MS2 RNA). Real-time RT-PCR assays were designed for VP7 (G1, G2, G3, G4, G9, G12) and VP4 (P[4], P[6] and P[8]) genotypes. The multiplex qRT-PCR assay also included previously published NSP3 qRT-PCR for rotavirus detection and Rotarix® NSP2 and RotaTeq® VP6 qRT-PCRs for detection of Rotarix® and RotaTeq® vaccine strains respectively. The multiplex qRT-PCR assay was validated using 853 sequence confirmed stool samples and 24 lab cultured strains of different rotavirus genotypes. By using thermostable rTth polymerase enzyme, dsRNA denaturation, reverse transcription (RT) and amplification (PCR) steps were performed in single tube by uninterrupted thermocycling profile to reduce chances of sample cross contamination and for rapid generation of results. For quantification, standard curves were generated using dsRNA transcripts derived from RVA gene segments. Results. The VP7 qRT-PCRs exhibited 98.8-100% sensitivity, 99.7-100% specificity, 85-95% efficiency and a limit of detection of 4-60 copies per singleplex reaction. The VP7 qRT-PCRs exhibited 81-92% efficiency and limit of detection of 150-600 copies in multiplex reactions. The VP4 qRT-PCRs exhibited 98

  13. Quantitative assay for the detection of vesicoureteral reflux in childhood

    Energy Technology Data Exchange (ETDEWEB)

    Linden, A.; Schnippering, H.G.; Ritzl, F.

    1984-04-01

    Using a method in which the camera computer system is adjusted for the individual patient, a quantitative isotopic micturition cystourethrogram (Nuclear Cystogram) can be obtained with less radiation exposure for the patient and more sensitively compared to the equivalent X-ray micturition cysto-urethrogram. Less than 0,1 ml reflux urine can be measured and it can be determined whether reflux occurs during bladder filling or emptying.

  14. Validation of a Multiplex Real-Time PCR Assay for Detection of Mycobacterium spp., Mycobacterium tuberculosis Complex, and Mycobacterium avium Complex Directly from Clinical Samples by Use of the BD Max Open System.

    Science.gov (United States)

    Rocchetti, Talita T; Silbert, Suzane; Gostnell, Alicia; Kubasek, Carly; Widen, Raymond

    2016-06-01

    A multiplex real-time PCR was validated on the BD Max open system to detect different Mycobacterium tuberculosis complex, Mycobacterium avium complex, and Mycobacterium spp. directly from clinical samples. The PCR results were compared to those with traditional cultures. The multiplex PCR assay was found to be a specific and sensitive method for the rapid detection of mycobacteria directly from clinical specimens.

  15. Quantitative analysis of energy metabolic pathways in MCF-7 breast cancer cells by selected reaction monitoring assay.

    Science.gov (United States)

    Drabovich, Andrei P; Pavlou, Maria P; Dimitromanolakis, Apostolos; Diamandis, Eleftherios P

    2012-08-01

    To investigate the quantitative response of energy metabolic pathways in human MCF-7 breast cancer cells to hypoxia, glucose deprivation, and estradiol stimulation, we developed a targeted proteomics assay for accurate quantification of protein expression in glycolysis/gluconeogenesis, TCA cycle, and pentose phosphate pathways. Cell growth conditions were selected to roughly mimic the exposure of cells in the cancer tissue to the intermittent hypoxia, glucose deprivation, and hormonal stimulation. Targeted proteomics assay allowed for reproducible quantification of 76 proteins in four different growth conditions after 24 and 48 h of perturbation. Differential expression of a number of control and metabolic pathway proteins in response to the change of growth conditions was found. Elevated expression of the majority of glycolytic enzymes was observed in hypoxia. Cancer cells, as opposed to near-normal MCF-10A cells, exhibited significantly increased expression of key energy metabolic pathway enzymes (FBP1, IDH2, and G6PD) that are known to redirect cellular metabolism and increase carbon flux through the pentose phosphate pathway. Our quantitative proteomic protocol is based on a mass spectrometry-compatible acid-labile detergent and is described in detail. Optimized parameters of a multiplex selected reaction monitoring (SRM) assay for 76 proteins, 134 proteotypic peptides, and 401 transitions are included and can be downloaded and used with any SRM-compatible mass spectrometer. The presented workflow is an integrated tool for hypothesis-driven studies of mammalian cells as well as functional studies of proteins, and can greatly complement experimental methods in systems biology, metabolic engineering, and metabolic transformation of cancer cells.

  16. Development of a multiplex gene expression assay for components of the endocrine growth axis in coho salmon.

    Science.gov (United States)

    Metzger, David C; Luckenbach, J Adam; Dickey, Jon T; Beckman, Brian R

    2013-08-01

    This study explores the efficacy of the Quantigene plex (QGP) technology for measuring a panel of endocrine growth-related transcripts in coho salmon, Oncorhynchus kisutch. The QGP technology permits the simultaneous quantification of multiple targeted mRNAs within a single tissue homogenate using sequence-specific probes and requires no reverse transcription (RT) or amplification as is required for RT-quantitative PCR (RT-qPCR). Using liver homogenates from coho salmon under fed and fasted conditions, we compared the detectable fold differences of steady-state mRNA levels between the QGP and probe-based RT-qPCR assays for insulin-like growth factors (igf1 and igf2), insulin-like growth factor binding proteins (igfbp1b, igfbp2a, and igfbp2b), somatolactin receptor (slr), and growth hormone receptors (ghr1 and ghr2). Significant, positive correlations for all genes between the two assays were found. In addition, the relatively low variance of results from the QGP assay suggests that this is a suitable method for a comprehensive analysis of endocrine growth-related transcripts and could potentially be used to develop assays for other gene networks in teleosts.

  17. Simultaneous detection, typing and quantitation of oncogenic human papillomavirus by multiplex consensus real-time PCR.

    Science.gov (United States)

    Jenkins, Andrew; Allum, Anne-Gry; Strand, Linda; Aakre, Randi Kersten

    2013-02-01

    A consensus multiplex real-time PCR test (PT13-RT) for the oncogenic human papillomavirus (HPV) types 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59 and 66 is described. The test targets the L1 gene. Analytical sensitivity is between 4 and 400 GU (genomic units) in the presence of 500 ng of human DNA, corresponding to 75,000 human cells. HPV types are grouped into multiplex groups of 3 or 4 resulting in the use of 4 wells per sample and permitting up to 24 samples per run (including controls) in a standard 96-well real-time PCR instrument. False negative results are avoided by (a) measuring sample DNA concentration to control that sufficient cellular material is present and (b) including HPV type 6 as a homologous internal control in order to detect PCR inhibition or competition from other (non-oncogenic) HPV types. Analysis time from refrigerator to report is 8 h, including 2.5 h hands-on time. Relative to the HC2 test, the sensitivity and specificity were respectively 98% and 83%, the lower specificity being attributable to the higher analytical sensitivity of PT13-RT. To assess type determination comparison was made with a reversed line-blot test. Type concordance was high (κ=0.79) with discrepancies occurring mostly in multiple-positive samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Multiplex enrichment quantitative PCR (ME-qPCR): a high-throughput, highly sensitive detection method for GMO identification.

    Science.gov (United States)

    Fu, Wei; Zhu, Pengyu; Wei, Shuang; Zhixin, Du; Wang, Chenguang; Wu, Xiyang; Li, Feiwu; Zhu, Shuifang

    2017-04-01

    Among all of the high-throughput detection methods, PCR-based methodologies are regarded as the most cost-efficient and feasible methodologies compared with the next-generation sequencing or ChIP-based methods. However, the PCR-based methods can only achieve multiplex detection up to 15-plex due to limitations imposed by the multiplex primer interactions. The detection throughput cannot meet the demands of high-throughput detection, such as SNP or gene expression analysis. Therefore, in our study, we have developed a new high-throughput PCR-based detection method, multiplex enrichment quantitative PCR (ME-qPCR), which is a combination of qPCR and nested PCR. The GMO content detection results in our study showed that ME-qPCR could achieve high-throughput detection up to 26-plex. Compared to the original qPCR, the Ct values of ME-qPCR were lower for the same group, which showed that ME-qPCR sensitivity is higher than the original qPCR. The absolute limit of detection for ME-qPCR could achieve levels as low as a single copy of the plant genome. Moreover, the specificity results showed that no cross-amplification occurred for irrelevant GMO events. After evaluation of all of the parameters, a practical evaluation was performed with different foods. The more stable amplification results, compared to qPCR, showed that ME-qPCR was suitable for GMO detection in foods. In conclusion, ME-qPCR achieved sensitive, high-throughput GMO detection in complex substrates, such as crops or food samples. In the future, ME-qPCR-based GMO content identification may positively impact SNP analysis or multiplex gene expression of food or agricultural samples. Graphical abstract For the first-step amplification, four primers (A, B, C, and D) have been added into the reaction volume. In this manner, four kinds of amplicons have been generated. All of these four amplicons could be regarded as the target of second-step PCR. For the second-step amplification, three parallels have been taken for

  19. An Efficient Multiplex PCR-Based Assay as a Novel Tool for Accurate Inter-Serovar Discrimination of Salmonella Enteritidis, S. Pullorum/Gallinarum and S. Dublin

    Science.gov (United States)

    Xiong, Dan; Song, Li; Tao, Jing; Zheng, Huijuan; Zhou, Zihao; Geng, Shizhong; Pan, Zhiming; Jiao, Xinan

    2017-01-01

    Salmonella enterica serovars Enteritidis, Pullorum/Gallinarum, and Dublin are infectious pathogens causing serious problems for pig, chicken, and cattle production, respectively. Traditional serotyping for Salmonella is costly and labor-intensive. Here, we established a rapid multiplex PCR method to simultaneously identify three prevalent Salmonella serovars Enteritidis, Pullorum/Gallinarum, and Dublin individually for the first time. The multiplex PCR-based assay focuses on three genes tcpS, lygD, and flhB. Gene tcpS exists only in the three Salmonella serovars, and lygD exists only in S. Enteritidis, while a truncated region of flhB gene is only found in S. Pullorum/Gallinarum. The sensitivity and specificity of the multiplex PCR assay using three pairs of specific primers for these genes were evaluated. The results showed that this multiplex PCR method could accurately identify Salmonella Enteritidis, Pullorum/Gallinarum, and Dublin from eight non-Salmonella species and 27 Salmonella serovars. The least concentration of genomic DNA that could be detected was 58.5 pg/μL and the least number of cells was 100 CFU. Subsequently, this developed method was used to analyze clinical Salmonella isolates from one pig farm, one chicken farm, and one cattle farm. The results showed that blinded PCR testing of Salmonella isolates from the three farms were in concordance with the traditional serotyping tests, indicating the newly developed multiplex PCR system could be used as a novel tool to accurately distinguish the three specific Salmonella serovars individually, which is useful, especially in high-throughput screening. PMID:28360901

  20. Quantitative assay for TALEN activity at endogenous genomic loci

    Directory of Open Access Journals (Sweden)

    Yu Hisano

    2013-02-01

    Artificially designed nucleases such as zinc-finger nucleases (ZFNs and transcription activator-like effector nucleases (TALENs can induce a targeted DNA double-strand break at the specific target genomic locus, leading to the frameshift-mediated gene disruption. However, the assays for their activity on the endogenous genomic loci remain limited. Herein, we describe a versatile modified lacZ assay to detect frameshifts in the nuclease target site. Short fragments of the genome DNA at the target or putative off-target loci were amplified from the genomic DNA of TALEN-treated or control embryos, and were inserted into the lacZα sequence for the conventional blue–white selection. The frequency of the frameshifts in the fragment can be estimated from the numbers of blue and white colonies. Insertions and/or deletions were easily determined by sequencing the plasmid DNAs recovered from the positive colonies. Our technique should offer broad application to the artificial nucleases for genome editing in various types of model organisms.

  1. The Relevance of a Novel Quantitative Assay to Detect up to 40 Major Streptococcus pneumoniae Serotypes Directly in Clinical Nasopharyngeal and Blood Specimens.

    Directory of Open Access Journals (Sweden)

    Melina Messaoudi

    Full Text Available For epidemiological and surveillance purposes, it is relevant to monitor the distribution and dynamics of Streptococcus pneumoniae serotypes. Conventional serotyping methods do not provide rapid or quantitative information on serotype loads. Quantitative serotyping may enable prediction of the invasiveness of a specific serotype compared to other serotypes carried. Here, we describe a novel, rapid multiplex real-time PCR assay for identification and quantification of the 40 most prevalent pneumococcal serotypes and the assay impacts in pneumonia specimens from emerging and developing countries. Eleven multiplex PCR to detect 40 serotypes or serogroups were optimized. Quantification was enabled by reference to standard dilutions of known bacterial load. Performance of the assay was evaluated to specifically type and quantify S. pneumoniae in nasopharyngeal and blood samples from adult and pediatric patients hospitalized with pneumonia (n = 664 from five different countries. Serogroup 6 was widely represented in nasopharyngeal specimens from all five cohorts. The most frequent serotypes in the French, South African, and Brazilian cohorts were 1 and 7A/F, 3 and 19F, and 14, respectively. When both samples were available, the serotype in blood was always present as carriage with other serotypes in the nasopharynx. Moreover, the ability of a serotype to invade the bloodstream may be linked to its nasopharyngeal load. The mean nasopharyngeal concentration of the serotypes that moved to the blood was 3 log-fold higher than the ones only found in the nasopharynx. This novel, rapid, quantitative assay may potentially predict some of the S. pneumoniae serotypes invasiveness and assessment of pneumococcal serotype distribution.

  2. Pre-incubation and low temperatures in quantitative radioreceptor assays

    Energy Technology Data Exchange (ETDEWEB)

    Ensing, K.; de Zeeuw, R.A.

    1984-01-01

    The detection limits of drugs in quantitative RRA are primarily determined by their affinities towards the receptor. Yet, the concentration of radiolabeled ligand, necessary for quantification of receptor-bound drug, increases the theoretical detection limit. Therefore the influences of low temperatures and pre-incubation on the detection limit was studied. Analysis of experimental data suggests that when a well-defined incubation procedure is used, pre-incubation and low temperatures will increase sensitivity without loss of accuracy and precision. 6 references, 2 figures.

  3. Comparison of quantitative PCR assays for Escherichia coli targeting ribosomal RNA and single copy genes

    Science.gov (United States)

    Aims: Compare specificity and sensitivity of quantitative PCR (qPCR) assays targeting single and multi-copy gene regions of Escherichia coli. Methods and Results: A previously reported assay targeting the uidA gene (uidA405) was used as the basis for comparing the taxono...

  4. Image based quantitative reader for Lateral flow immunofluorescence assay.

    Science.gov (United States)

    Chowdhury, Kaushik Basak; Joseph, Jayaraj; Sivaprakasam, Mohanasankar

    2015-08-01

    Fluorescence Lateral flow immunoassays (LFIA) have wide range of applications in point-of-care testing (POCT). An integrated, motion-free, accurate, reliable reader that performs automated quantitative analysis of LFIA is essential for POCT diagnosis. We demonstrate an image based quantitative method to read the lateral flow immunofluorescence test strips. The developed reader uses line laser diode module to illuminate the LFIA test strip having fluorescent dye. Fluorescence light coming from the region of interest (ROI) of the LFIA test strip was filtered using an emission filter and imaged using a camera following which images were processed in computer. A dedicated control program was developed that automated the entire process including illumination of the test strip using laser diode, capturing the ROI of the test strip, processing and analyzing the images and displaying of results. Reproducibility of the reader has been evaluated using few reference cartridges and HbA1c (Glycated haemoglobin) test cartridges. The proposed system can be upgraded to a compact reader for widespread testing of LFIA test strips.

  5. Smartphone based visual and quantitative assays on upconversional paper sensor.

    Science.gov (United States)

    Mei, Qingsong; Jing, Huarong; Li, You; Yisibashaer, Wuerzha; Chen, Jian; Nan Li, Bing; Zhang, Yong

    2016-01-15

    The integration of smartphone with paper sensors recently has been gain increasing attentions because of the achievement of quantitative and rapid analysis. However, smartphone based upconversional paper sensors have been restricted by the lack of effective methods to acquire luminescence signals on test paper. Herein, by the virtue of 3D printing technology, we exploited an auxiliary reusable device, which orderly assembled a 980nm mini-laser, optical filter and mini-cavity together, for digitally imaging the luminescence variations on test paper and quantitative analyzing pesticide thiram by smartphone. In detail, copper ions decorated NaYF4:Yb/Tm upconversion nanoparticles were fixed onto filter paper to form test paper, and the blue luminescence on it would be quenched after additions of thiram through luminescence resonance energy transfer mechanism. These variations could be monitored by the smartphone camera, and then the blue channel intensities of obtained colored images were calculated to quantify amounts of thiram through a self-written Android program installed on the smartphone, offering a reliable and accurate detection limit of 0.1μM for the system. This work provides an initial demonstration of integrating upconversion nanosensors with smartphone digital imaging for point-of-care analysis on a paper-based platform.

  6. A colony multiplex quantitative PCR-Based 3S3DBC method and variations of it for screening DNA libraries.

    Directory of Open Access Journals (Sweden)

    Yang An

    Full Text Available A DNA library is a collection of DNA fragments cloned into vectors and stored individually in host cells, and is a valuable resource for molecular cloning, gene physical mapping, and genome sequencing projects. To take the best advantage of a DNA library, a good screening method is needed. After describing pooling strategies and issues that should be considered in DNA library screening, here we report an efficient colony multiplex quantitative PCR-based 3-step, 3-dimension, and binary-code (3S3DBC method we used to screen genes from a planarian genomic DNA fosmid library. This method requires only 3 rounds of PCR reactions and only around 6 hours to distinguish one or more desired clones from a large DNA library. According to the particular situations in different research labs, this method can be further modified and simplified to suit their requirements.

  7. Structure-guided unravelling: Phenolic hydroxyls contribute to reduction of acrylamide using multiplex quantitative structure-activity relationship modelling.

    Science.gov (United States)

    Zhang, Yu; Huang, Mengmeng; Wang, Qiao; Cheng, Jun

    2016-05-15

    We reported a structure-activity relationship study on unravelling phenolic hydroxyls instead of alcoholic hydroxyls contribute to the reduction of acrylamide formation by flavonoids. The dose-dependent study shows a close correlation between the number of phenolic hydroxyls of flavonoids and their reduction effects. In view of positions of hydroxyls, the 3',4'(ortho)-dihydroxyls in B cycle, 3-hydroxyl or hydroxyls of 3-gallate in C cycle, and 5,7(meta)-dihydroxyls in A cycle of flavonoid structures play an important role in the reduction of acrylamide. Flavone C-glycosides are more effective at reducing the formation of acrylamide than flavone O-glycosides when sharing the same aglycone. The current multiplex quantitative structure-activity relationship (QSAR) equations effectively predict the inhibitory rates of acrylamide using selected chemometric parameters (R(2): 0.835-0.938). This pioneer study opens a broad understanding on the chemoprevention of acrylamide contaminants on a structural basis.

  8. A quantitative assay for lysosomal acidification rates in human osteoclasts

    DEFF Research Database (Denmark)

    Jensen, Vicki Kaiser; Nosjean, Olivier; Dziegiel, Morten Hanefeld;

    2011-01-01

    lacunae. The electroneutrality of the lacunae is maintained by chloride transport through the chloride-proton antiporter chloride channel 7. Inhibition of either proton or chloride transport prevents bone resorption. The aims of this study were to validate the human osteoclastic microsome- based influx......, the effect of valinomycin, inhibitor sensitivity, and the ion profile of the human osteoclast microsomes. The expression level of chloride channel 7 was increased in the human osteoclastic microsomes compared with whole osteoclasts. Acid influx was induced by 1.25 mM adenosine triphosphate. Further 1.1 μ......M valinomycin increased the acid influx by 129%. Total abrogation of acid influx was observed using both H(+) and Cl(-) ionophores. Finally, investigation of the anion profile demonstrated that Cl(-) and Br(-) are the preferred anions for the transporter. In conclusion, the acid influx assay based on microsomes...

  9. Quantitative Multiplex Immunohistochemistry Reveals Myeloid-Inflamed Tumor-Immune Complexity Associated with Poor Prognosis

    Directory of Open Access Journals (Sweden)

    Takahiro Tsujikawa

    2017-04-01

    Full Text Available Here, we describe a multiplexed immunohistochemical platform with computational image processing workflows, including image cytometry, enabling simultaneous evaluation of 12 biomarkers in one formalin-fixed paraffin-embedded tissue section. To validate this platform, we used tissue microarrays containing 38 archival head and neck squamous cell carcinomas and revealed differential immune profiles based on lymphoid and myeloid cell densities, correlating with human papilloma virus status and prognosis. Based on these results, we investigated 24 pancreatic ductal adenocarcinomas from patients who received neoadjuvant GVAX vaccination and revealed that response to therapy correlated with degree of mono-myelocytic cell density and percentages of CD8+ T cells expressing T cell exhaustion markers. These data highlight the utility of in situ immune monitoring for patient stratification and provide digital image processing pipelines to the community for examining immune complexity in precious tissue sections, where phenotype and tissue architecture are preserved to improve biomarker discovery and assessment.

  10. Diagnostic accuracy of two multiplex real-time polymerase chain reaction assays for the diagnosis of meningitis in children in a resource-limited setting

    Science.gov (United States)

    Khumalo, Jermaine; Nicol, Mark; Hardie, Diana; Muloiwa, Rudzani; Mteshana, Phindile

    2017-01-01

    Introduction Accurate etiological diagnosis of meningitis is important, but difficult in resource-limited settings due to prior administration of antibiotics and lack of viral diagnostics. We aimed to develop and validate 2 real-time multiplex PCR (RT-PCR) assays for the detection of common causes of community-acquired bacterial and viral meningitis in South African children. Methods We developed 2 multiplex RT- PCRs for detection of S. pneumoniae, N. meningitidis, H. influenzae, enteroviruses, mumps virus and herpes simplex virus. We tested residual CSF samples from children presenting to a local paediatric hospital over a one-year period, whose CSF showed an abnormal cell count. Results were compared with routine diagnostic tests and the final discharge diagnosis. We calculated accuracy of the bacterial RT-PCR assay compared to CSF culture and using World Health Organisation definitions of laboratory-confirmed bacterial meningitis. Results From 292 samples, bacterial DNA was detected in 12 (4.1%) and viral nucleic acids in 94 (32%). Compared to CSF culture, the sensitivity and specificity of the bacterial RT-PCR was 100% and 97.2% with complete agreement in organism identification. None of the cases positive by viral RT-PCR had a bacterial cause confirmed on CSF culture. Only 9/90 (10%) of patients diagnosed clinically as bacterial meningitis or partially treated bacterial meningitis tested positive with the bacterial RT-PCR. Discussion In this population the use of 2 multiplex RT-PCRs targeting 6 common pathogens gave promising results. If introduced into routine diagnostic testing, these multiplex RT-PCR assays would supplement other diagnostic tests, and have the potential to limit unnecessary antibiotic therapy and hospitalisation. PMID:28346504

  11. Development of multiplex real-time PCR assay for the detection of Brucella spp., Leptospira spp. and Campylobacter foetus

    Directory of Open Access Journals (Sweden)

    Abdelfattah M. Selim

    2014-12-01

    Full Text Available Abortion among dairy cattle is one of the major causes of economic losses in the livestock industry. This study describes a 1-step multiplex real-time polymerase chain reaction (PCR to detect Brucella spp., Leptospira spp. and Campylobacter foetus, these are significant bacteria commonly implicated in bovine abortion. ß-actin was added to the same PCR reaction as an internal control to detect any extraction failure or PCR inhibition. The detection limit of multiplex real-time PCR using purified DNA from cultured organisms was set to 5 fg for Leptospira spp. and C. foetus and to 50 fg for Brucella spp. The multiplex real-time PCR did not produce any non-specific amplification when tested with different strains of the 3 pathogens. This multiplex real-time PCR provides a valuable tool for diagnosis, simultaneous and rapid detection for the 3 pathogens causing abortion in bovine.

  12. Quantitative data analysis methods for bead-based DNA hybridization assays using generic flow cytometry platforms.

    Science.gov (United States)

    Corrie, S R; Lawrie, G A; Battersby, B J; Ford, K; Rühmann, A; Koehler, K; Sabath, D E; Trau, M

    2008-05-01

    Bead-based assays are in demand for rapid genomic and proteomic assays for both research and clinical purposes. Standard quantitative procedures addressing raw data quality and analysis are required to ensure the data are consistent and reproducible across laboratories independent of flow platform. Quantitative procedures have been introduced spanning raw histogram analysis through to absolute target quantitation. These included models developed to estimate the absolute number of sample molecules bound per bead (Langmuir isotherm), relative quantitative comparisons (two-sided t-tests), and statistical analyses investigating the quality of raw fluorescence data. The absolute target quantitation method revealed a concentration range (below probe saturation) of Cy5-labeled synthetic cytokeratin 19 (K19) RNA of c.a. 1 x 10(4) to 500 x 10(4) molecules/bead, with a binding constant of c.a. 1.6 nM. Raw hybridization frequency histograms were observed to be highly reproducible across 10 triplex assay replicates and only three assay replicates were required to distinguish overlapping peaks representing small sequence mismatches. This study provides a quantitative scheme for determining the absolute target concentration in nucleic acid hybridization reactions and the equilibrium binding constants for individual probe/target pairs. It is envisaged that such studies will form the basis of standard analytical procedures for bead-based cytometry assays to ensure reproducibility in inter- and intra-platform comparisons of data between laboratories. (c) 2008 International Society for Advancement of Cytometry.

  13. Newborn screening for galactosemia by a second-tier multiplex enzyme assay using UPLC-MS/MS in dried blood spots.

    Science.gov (United States)

    Ko, Dae-Hyun; Jun, Sun-Hee; Park, Kyoung Un; Song, Sang Hoon; Kim, Jin Q; Song, Junghan

    2011-04-01

    Galactosemia is one of the most important inherited metabolic disorders detected by newborn screening tests. Abnormal results during screening should be confirmed by enzyme activity assays. Recently, we developed a multiplex enzyme assay for galactosemia in erythrocytes using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). In this study, we proposed a second-tier multiplex enzyme assay for galactosemia that can be directly applied to dried blood spots (DBSs). Supernatants from two rehydrated-punched 3.2-mm DBSs were incubated with a reaction mixture containing [¹³C6]galactose, [¹³C2]galactose-1-phosphate, and UDP-glucose as substrates for three galactose-metabolizing enzymes. After a 4-hour incubation, the end products from the combined reaction mixture, [¹³C6]galactose-1-phosphate, UDP-[¹³C2]galactose, and UDP-galactose, were simultaneously measured using UPLC-MS/MS. Substrates, products, and internal standards from the mixture of the three enzyme reactions were clearly separated in the UPLC-MS/MS system, with an injection cycle time of 10 min. Intra- and inter-assay imprecisions of the UPLC-MS/MS were 8.4-14.8% and 13.2-15.7% CV, respectively. Enzyme activities in DBSs from 37 normal individuals and 10 patients with enzyme deficiencies were analyzed. DBSs from galactosemia patients showed consistently lower enzyme activities as compared to those of normal individuals. In conclusion, multiplex enzyme assays using UPLC-MS/MS can be successfully applied to DBS analysis. This method allows a fast and effective second-tier test for newborns showing abnormal screening results.

  14. Multiplex assay (Mikrogen recomBead) for detection of serum IgG and IgM antibodies to 13 recombinant antigens of Borrelia burgdorferi sensu lato in patients with neuroborreliosis

    DEFF Research Database (Denmark)

    Dessau, Ram Benny; Møller, Jens K.; Kolmos, Birte

    2015-01-01

    A multiplex-bead-based assay for the detection of serum antibodies to Borrelia burgdorferi sensu lato was evaluated. The assay contained 13 different antigens in both the IgG and the IgM assay; thus, a total of 26 measurement results were available from each sample. A total of 49 Danish patients...

  15. Evaluation of two real-time multiplex PCR screening assays detecting fetal RHD in plasma from RhD negative women to ascertain the requirement for antenatal RhD prophylaxis

    DEFF Research Database (Denmark)

    Clausen, Frederik Banch; Krog, Grethe Risum; Rieneck, Klaus

    2011-01-01

    OBJECTIVE: To evaluate two different multiplex real-time PCR assays detecting fetal RHD for screening of RhD negative women in relation to antenatal RhD prophylaxis. METHODS: We designed a duplex assay for the detection of RHD exon 7 and 10 and a triplex assay for the detection of RHD exon 7, 10 ...

  16. A novel multi-walled carbon nanotube-based antibody conjugate for quantitative and semi-quantitative lateral flow assays.

    Science.gov (United States)

    Sun, Wenjuan; Hu, Xiaolong; Liu, Jia; Zhang, Yurong; Lu, Jianzhong; Zeng, Libo

    2017-10-01

    In this study, the multi-walled carbon nanotubes (MWCNTs) were applied in lateral flow strips (LFS) for semi-quantitative and quantitative assays. Firstly, the solubility of MWCNTs was improved using various surfactants to enhance their biocompatibility for practical application. The dispersed MWCNTs were conjugated with the methamphetamine (MET) antibody in a non-covalent manner and then manufactured into the LFS for the quantitative detection of MET. The MWCNTs-based lateral flow assay (MWCNTs-LFA) exhibited an excellent linear relationship between the values of test line and MET when its concentration ranges from 62.5 to 1500 ng/mL. The sensitivity of the LFS was evaluated by conjugating MWCNTs with HCG antibody and the MWCNTs conjugated method is 10 times more sensitive than the one conjugated with classical colloidal gold nanoparticles. Taken together, our data demonstrate that MWCNTs-LFA is a more sensitive and reliable assay for semi-quantitative and quantitative detection which can be used in forensic analysis.

  17. Initial development and preliminary evaluation of a multiplex bead assay to detect antibodies to Ehrlichia canis, Anaplasma platys, and Ehrlichia chaffeensis outer membrane peptides in naturally infected dogs from Grenada, West Indies.

    Science.gov (United States)

    Wilkerson, Melinda J; Black, Kelley E; Lanza-Perea, Marta; Sharma, Bhumika; Gibson, Kathryn; Stone, Diana M; George, Anushka; Nair, Arathy D S; Ganta, Roman R

    2017-01-01

    Tick-borne bacteria, Ehrlichia canis, Anaplasma platys, and Ehrlichia chaffeensis are significant pathogens of dogs worldwide, and coinfections of E. canis and A. platys are common in dogs on the Caribbean islands. We developed and evaluated the performance of a multiplex bead-based assay to detect antibodies to E. canis, A. platys, and E. chaffeensis peptides in dogs from Grenada, West Indies, where E. canis and A. platys infections are endemic. Peptides from outer membrane proteins of P30 of E. canis, OMP-1X of A. platys, and P28-19/P28-14 of E. chaffeensis were coupled to magnetic beads. The multiplex peptide assay detected antibodies in dogs experimentally infected with E. canis and E. chaffeensis, but not in an A. platys experimentally infected dog. In contrast, the multiplex assay and an in-house enzyme-linked immunosorbent assay (ELISA) detected A. platys antibodies in naturally infected Grenadian dogs. Following testing of 104 Grenadian canine samples, multiplex assay results had good agreement with commercially available ELISA and immunofluorescent assay for E. canis antibody-positive dogs ( K values of 0.73 and 0.84), whereas A. platys multiplex results had poor agreement with these commercial assays ( K values of -0.02 and 0.01). Prevalence of seropositive E. canis and A. platys Grenadian dogs detected by the multiplex and commercial antibody assays were similar to previous reports. Although the multiplex peptide assay performed well in detecting the seropositive status of dogs to E. canis and had good agreement with commercial assays, better antigen targets are necessary for the antibody detection of A. platys.

  18. The development of a GeXP-based multiplex reverse transcription-PCR assay for simultaneous detection of sixteen human respiratory virus types/subtypes

    Directory of Open Access Journals (Sweden)

    Li Jin

    2012-08-01

    Full Text Available Abstract Background Existing standard non-molecular diagnostic methods such as viral culture and immunofluorescent (DFA are time-consuming, labor intensive or limited sensitivity. Several multiplex molecular assays are costly. Therefore, there is a need for the development of a rapid and sensitive diagnosis of respiratory viral pathogens. Methods A GeXP-based multiplex RT-PCR assay (GeXP assay was developed to detect simultaneously sixteen different respiratory virus types/subtypes. Seventeen sets of chimeric primers were used to initiate the RT-PCR, and one pair of universal primers was used for the subsequent cycles of the RT-PCR. The specificity of the GeXP assay was examined with positive controls for each virus type/subtype. The sensitivity was evaluated by performing the assay on serial ten-fold dilutions of in vitro-transcribed RNA of all RNA viruses and the plasmids containing the Adv and HBoV target sequence. GeXP assay was further evaluated using 126 clinical specimens and compared with Luminex xTAG RVP Fast assay. Results The GeXP assay achieved a sensitivity of 20–200 copies for a single virus and 1000 copies when all of the 16 pre-mixed viral targets were present. Analyses of 126 clinical specimens using the GeXP assay demonstrated that GeXP assay and the RVP Fast assay were in complete agreement for 109/126 (88.51% of the specimens. GeXP assay was more sensitive than the RVP Fast assay for the detection of HRV and PIV3, and slightly less sensitive for the detection of HMPV, Adv, RSVB and HBoV. The whole process of the GeXP assay for the detection of 12 samples was completed within 2.5 hours. Conclusions In conclusion, the GeXP assay is a rapid, cost-effective, sensitive, specific and high throughput method for the detection of respiratory virus infections.

  19. Novel multiplex real-time PCR diagnostic assay for identification and differentiation of Mycobacterium tuberculosis, Mycobacterium canettii, and Mycobacterium tuberculosis complex strains.

    Science.gov (United States)

    Reddington, Kate; O'Grady, Justin; Dorai-Raj, Siobhan; Maher, Majella; van Soolingen, Dick; Barry, Thomas

    2011-02-01

    Tuberculosis (TB) in humans is caused by members of the Mycobacterium tuberculosis complex (MTC). Rapid detection of the MTC is necessary for the timely initiation of antibiotic treatment, while differentiation between members of the complex may be important to guide the appropriate antibiotic treatment and provide epidemiological information. In this study, a multiplex real-time PCR diagnostics assay using novel molecular targets was designed to identify the MTC while simultaneously differentiating between M. tuberculosis and M. canettii. The lepA gene was targeted for the detection of members of the MTC, the wbbl1 gene was used for the differentiation of M. tuberculosis and M. canettii from the remainder of the complex, and a unique region of the M. canettii genome, a possible novel region of difference (RD), was targeted for the specific identification of M. canettii. The multiplex real-time PCR assay was tested using 125 bacterial strains (64 MTC isolates, 44 nontuberculosis mycobacteria [NTM], and 17 other bacteria). The assay was determined to be 100% specific for the mycobacteria tested. Limits of detection of 2.2, 2.17, and 0.73 cell equivalents were determined for M. tuberculosis/M. canettii, the MTC, and M. canettii, respectively, using probit regression analysis. Further validation of this diagnostics assay, using clinical samples, should demonstrate its potential for the rapid, accurate, and sensitive diagnosis of TB caused by M. tuberculosis, M. canettii, and the other members of the MTC.

  20. Development of Multiplex-Mismatch Amplification Mutation-PCR Assay for Simultaneous Detection of Campylobacter jejuni and Mutation in gyrA Gene Related to Fluoroquinolone Resistance.

    Science.gov (United States)

    Cui, Mingquan; Wu, Chenbin; Zhang, Peng; Wu, Congming

    2016-11-01

    Campylobacter jejuni, a foodborne pathogen, is the major cause of enteritis in humans worldwide, however, its increasing resistance to fluoroquinolones reported recently is of a major concern. In the present study, multiplex-mismatch amplification mutation assay-polymerase chain reaction (MMAMA-PCR) was developed for the first time with the aim to quickly identify C. jejuni and to detect the single nucleotide mutation (C-257 to T) frequently observed in gyrA gene, associated with the acquisition of resistance to fluoroquinolones. In this assay, mismatch amplification mutation primers for the detection of gyrA mutation in C. jejuni were coupled with primers for the hip gene encoding for hippuricase and 16S rRNA gene of C. jejuni, respectively, in the multiplex PCR assay. The specificity and accuracy of this method were analyzed by the use of 78 C. jejuni strains with previously confirmed resistance phenotypes and the mutation (C-257 to T) in gyrA gene, as well as 107 clinical isolates of various bacterial species, including 29 C. jejuni isolates. This study indicates that MMAMA-PCR is a promising assay for the rapid identification of C. jejuni with a specific mutation in gyrA gene, responsible for the resistance to fluoroquinolones.

  1. Establishment of a 10-Plex Quantitative Fluorescent-PCR Assay for rapid diagnosis of sex chromosome aneuploidies.

    Directory of Open Access Journals (Sweden)

    Xingmei Xie

    Full Text Available Sex chromosome aneuploidies occur commonly in the general population, with an incidence of 1 in 400 newborns. However, no tests specifically targeting sex chromosomes have been carried out in prenatal diagnosis or newborn screening, resulting in late recognition of these diseases. In this study, a rapid diagnostic method for sex chromosome aneuploidies was established using Quantitative Fluorescent-PCR (QF-PCR. Ten markers were included in one multiplex QF-PCR assay, including two sex determination genes (AMXY and SRY, five X-linked short tandem repeats (STRs; DXS1053, DXS981, DXS6809, DXS1187, and DXS8377, one X/Y-common STR (X22, and two autosomal STRs (D13S305 and D21S11. Retrospective tests of 70 cases with known cytogenetic results indicated that the 10-plex QF-PCR assay could well determine sex chromosome copy numbers by both allelic peak numbers and a sex chromosome dosage calculation with the autosomal STRs as internal controls. Prospective comparison with cytogenetic karyotyping on 534 cases confirmed that the 10-plex QF-PCR assay could be well employed for sex chromosome aneuploidy diagnosis in at least the Chinese Han population. This is the first QF-PCR test for the diagnosis of sex chromosome aneuploidies in the Chinese population. This test is superior to previous designs by including up to 8 sex-linked markers covering different parts of sex chromosomes as well as employing internal controls for copy number dosage calculation in a single PCR reaction. Due to simple technique and data analysis, as well as easy implementation within routine clinical services, this method is of great clinical application value and could be widely applied.

  2. Establishment of a 10-Plex Quantitative Fluorescent-PCR Assay for rapid diagnosis of sex chromosome aneuploidies.

    Science.gov (United States)

    Xie, Xingmei; Liang, Qiaoyi

    2014-01-01

    Sex chromosome aneuploidies occur commonly in the general population, with an incidence of 1 in 400 newborns. However, no tests specifically targeting sex chromosomes have been carried out in prenatal diagnosis or newborn screening, resulting in late recognition of these diseases. In this study, a rapid diagnostic method for sex chromosome aneuploidies was established using Quantitative Fluorescent-PCR (QF-PCR). Ten markers were included in one multiplex QF-PCR assay, including two sex determination genes (AMXY and SRY), five X-linked short tandem repeats (STRs; DXS1053, DXS981, DXS6809, DXS1187, and DXS8377), one X/Y-common STR (X22), and two autosomal STRs (D13S305 and D21S11). Retrospective tests of 70 cases with known cytogenetic results indicated that the 10-plex QF-PCR assay could well determine sex chromosome copy numbers by both allelic peak numbers and a sex chromosome dosage calculation with the autosomal STRs as internal controls. Prospective comparison with cytogenetic karyotyping on 534 cases confirmed that the 10-plex QF-PCR assay could be well employed for sex chromosome aneuploidy diagnosis in at least the Chinese Han population. This is the first QF-PCR test for the diagnosis of sex chromosome aneuploidies in the Chinese population. This test is superior to previous designs by including up to 8 sex-linked markers covering different parts of sex chromosomes as well as employing internal controls for copy number dosage calculation in a single PCR reaction. Due to simple technique and data analysis, as well as easy implementation within routine clinical services, this method is of great clinical application value and could be widely applied.

  3. Detection of free-living amoebae by using multiplex quantitative PCR.

    Science.gov (United States)

    Le Calvez, Thomas; Trouilhé, Marie-Cécile; Humeau, Philippe; Moletta-Denat, Marina; Frère, Jacques; Héchard, Yann

    2012-06-01

    Free-living amoebae (FLA) are protozoa found worldwide in soil and aquatic environments, which are able to colonize man-made water networks. Some FLA have the potential to be pathogenic and others might harbour pathogenic bacteria. Indeed, FLA feed on bacteria, but some bacteria could resist phagocytosis and either survive in FLA or even multiply within FLA. These bacteria are collectively named amoeba resistant bacteria (ARB). The best characterized example is Legionella pneumophila, for which FLA is the main reservoir in the environment. Not only could FLA be a reservoir that protects ARB, some bacteria might become more resistant to treatment and be more virulent. Thus, it is of medical significance to quantify FLA populations in soil, water or the environment. The main limitation for the quantification of FLA is that classical culture is not efficient and reliable for many genera and 'strains'. Thus, several PCR-based quantification methods have been published for various FLA. However, thus far, no method has been published to simultaneously quantify the main FLA genera in the same PCR reaction. In this study, we developed a multiplex qPCR method to detect both Amoebozoan (i.e. Acanthamoeba, Hartmannella and Echinamoeba) and Vahlkampfiidae (i.e. Vahlkampfia and Naegleria) using 18S ribosomal RNA as the target gene. This method was shown to be specific, reliable and sensitive, could be used for the quantification of FLA and is likely to be useful to anticipate risks due to FLA or pathogenic bacteria, such as L. pneumophila.

  4. Terbium complex to quantum dot Förster resonance energy transfer for homogeneous and multiplexed microRNA assay (Conference Presentation)

    Science.gov (United States)

    Qiu, Xue; Hildebrandt, Niko

    2016-03-01

    The importance of microRNA (miRNA) dysregulation in the development and progression of diseases has made these short-length nucleic acids to next generation biomarkers. Tb-to-QD Förster resonance energy transfer (FRET) has several unique advantages over organic dye-based FRET systems for biomolecular sensing. Large Förster distances (6-11 nm) offer much high FRET efficiencies, exceptionally long Tb excited-state lifetimes (ms) enable time-gated detection void of autofluorecence background, and the narrow, symmetric, and tunable emission bands of QDs provide unrivaled potential for multiplexing. Here we report a rapid and homogeneous method to sensitively detect three different miRNAs (hsa-miR-20a-5p, hsa-miR-20b-5p, and hsa-miR-21-5p) from a single 150 µL sample based on multiplexed FRET between a luminescent Lumi4-Tb complex and three different QDs. The biosensing approach exploits both base pairing and stacking. Careful design and optimization of sequence lengths and orientations of the QD and Tb-DNA conjugates was performed to provide maximum selectivity and sensitivity for all three miRNA biomarkers. The assays work at room temperature and were designed for their application on a KRYPTOR diagnostic plate reader system.Only 30 min of sample incubation and 7.5 s of measurement are required to obtain ca. 1 nM (subpicomol) detection limits. We also demonstrate precise multiplexed measurements of these miRNAs at different and varying concentrations and the feasibility of adapting the technology to point-of-care testing (POCT) in buffer containing 10% serum. Our assay does not only demonstrate an important milestone for the integration of quantum dots to multiplexed clinical diagnostics but also a unique rapid miRNA detection technology that is complimentary to the rather complicated high-throughput and high-sensitivity approaches that are established today.

  5. Guided protein extraction from formalin-fixed tissues for quantitative multiplex analysis avoids detrimental effects of histological stains.

    Science.gov (United States)

    Becker, Karl-Friedrich; Schott, Christina; Becker, Ingrid; Höfler, Heinz

    2008-05-01

    Formalin fixed and paraffin embedded (FFPE) tissues are the basis for histopathological diagnosis of many diseases around the world. For translational research and routine diagnostics, protein analysis from FFPE tissues is very important. We evaluated the potential influence of six histological stains, including hematoxylin (Mayer and Gill), fast red, light green, methyl blue and toluidine blue, for yield, electrophoretic mobility in 1-D gels, and immunoreactivity of proteins isolated from formalin-fixed breast cancer tissues. Proteins extracted from stained FFPE tissues using a recently established technique were compared with proteins obtained from the same tissues but without prior histological staining. Western blot and quantitative protein lysate microarray analysis demonstrated that histological staining can result in decreased protein yield but may not have much influence on immunoreactivity and electrophoretic mobility. Interestingly, not all staining protocols tested are compatible with subsequent protein analysis. The commonly used hematoxylin staining was found to be suitable for multiplexed quantitative protein measurement technologies although protein extraction was less efficient. For best results we suggest a guided protein extraction method, in which an adjacent hematoxylin/eosin-stained tissue section is used to control dissection of an unstained specimen for subsequent protein extraction and quantification for research and diagnosis.

  6. Quantitative detection of RT activity by PERT assay: feasibility and limits to a standardized screening assay for human vaccines.

    Science.gov (United States)

    André, M; Morgeaux, S; Fuchs, F

    2000-06-01

    The detection of adventitious retroviruses has always been critical for assessing the safety concerns associated with viral vaccines. Assays for the enzymatic activity of reverse transcriptase (RT) are used as general methods for the detection of both known and unknown retroviruses. Several studies using newly-developed ultrasensitive PCR-based RT assays reported RT activity in viral vaccines grown in chicken cells. Here, we have assessed the performances of such a PCR-based RT assay--PERT assay--for the quantitative detection of RT activity in vaccines. Sensitivity, linearity and reproducibility of the method were studied on purified RT and viral vaccines treated to release RT from potentially contaminant retroviruses. The level of RT activity detected in chicken cell-derived vaccines was higher for live attenuated vaccines compared to inactivated ones. Contrary to other studies, RT activity was found in some mammalian cell-derived vaccines. AZT-TP sensitivity of RT activities detected in these vaccines and discrimination between retroviral and RT-like activities was further investigated. Feasibility and limits of PERT assay as a broad-spectrum retroviruses detection method in vaccines are discussed.

  7. Comparison of conventional PCR, multiplex PCR, and loop-mediated isothermal amplification assays for rapid detection of Arcobacter species.

    Science.gov (United States)

    Wang, Xiaoyu; Seo, Dong Joo; Lee, Min Hwa; Choi, Changsun

    2014-02-01

    This study aimed to develop a loop-mediated isothermal amplification (LAMP) method for the rapid detection of Arcobacter species. Specific primers targeting the 23S ribosomal RNA gene were used to detect Arcobacter butzleri, Arcobacter cryaerophilus, and Arcobacter skirrowii. The specificity of the LAMP primer set was assessed using DNA samples from a panel of Arcobacter and Campylobacter species, and the sensitivity was determined using serial dilutions of Arcobacter species cultures. LAMP showed a 10- to 1,000-fold-higher sensitivity than multiplex PCR, with a detection limit of 2 to 20 CFU per reaction in vitro. Whereas multiplex PCR showed cross-reactivity with Campylobacter species, the LAMP method developed in this study was more sensitive and reliable than conventional PCR or multiplex PCR for the detection of Arcobacter species.

  8. Development and Characterization of A Multiplexed RT-PCR Species Specific Assay for Bovine and one for Porcine Foot-and-Mouth Disease Virus Rule-Out

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S M; Danganan, L; Tammero, L; Vitalis, B; Lenhoff, R; Naraghi-arani, P; Hindson, B

    2007-08-06

    Lawrence Livermore National Laboratory (LLNL), in collaboration with the Department of Homeland Security (DHS) and the United States Department of Agriculture (USDA), Animal and Plant Health Inspection Services (APHIS) has developed candidate multiplexed assays that may potentially be used within the National Animal Health Laboratory Network (NAHLN), the National Veterinary Services Laboratory (Ames, Iowa) and the Plum Island Animal Disease Center (PIADC). This effort has the ability to improve our nation's capability to discriminate between foreign animal diseases and those that are endemic using a single assay, thereby increasing our ability to protect food and agricultural resources with a diagnostic test which could enhance the nation's capabilities for early detection of a foreign animal disease. In FY2005 with funding from the DHS, LLNL developed the first version (Version 1.0) of a multiplexed (MUX) nucleic-acid-based RT-PCR assay that included signatures for foot-and-mouth disease virus (FMDV) detection with rule-out tests for two other foreign animal diseases (FADs) of swine, Vesicular Exanthema of Swine (VESV) and Swine Vesicular Disease Virus (SVDV), and four other domestic viral diseases Bovine Viral Diarrhea Virus (BVDV), Bovine Herpes Virus 1 (BHV-1), Bluetongue virus (BTV) and Parapox virus complex (which includes Bovine Papular Stomatitis Virus [BPSV], Orf of sheep, and Pseudocowpox). In FY06, LLNL has developed Bovine and Porcine species-specific panel which included existing signatures from Version 1.0 panel as well as new signatures. The MUX RT-PCR porcine assay for detection of FMDV includes the FADs, VESV and SVD in addition to vesicular stomatitis virus (VSV) and porcine reproductive and respiratory syndrome (PRRS). LLNL has also developed a MUX RT-PCR bovine assay for detection of FMDV with rule out tests for the two bovine FADs malignant catarrhal fever (MCF), rinderpest virus (RPV) and the domestic diseases vesicular stomatitis

  9. Multiplexed quantitative analysis of CD3, CD8, and CD20 predicts response to neoadjuvant chemotherapy in breast cancer.

    Science.gov (United States)

    Brown, Jason R; Wimberly, Hallie; Lannin, Donald R; Nixon, Christian; Rimm, David L; Bossuyt, Veerle

    2014-12-01

    Although tumor-infiltrating lymphocytes (TIL) have been associated with response to neoadjuvant therapy, measurement typically is subjective, semiquantitative, and unable to differentiate among subpopulations. Here, we describe a quantitative objective method for analyzing lymphocyte subpopulations and assessing their predictive value. We developed a quantitative immunofluorescence assay to measure stromal expression of CD3, CD8, and CD20 on one slide. We validated this assay by comparison with flow cytometry on tonsil specimens and assessed predictive value in breast cancer on a neoadjuvant cohort (n = 95). Then, each marker was tested for prediction of pathologic complete response (pCR) compared with pathologist estimation of the percentage of lymphocyte infiltrate. The lymphocyte percentage and CD3, CD8, and CD20 proportions were similar between flow cytometry and quantitative immunofluorescence on tonsil specimens. Pathologist TIL count predicted pCR [P = 0.043; OR, 4.77; 95% confidence interval (CI), 1.05-21.6] despite fair interobserver reproducibility (κ = 0.393). Stromal AQUA (automated quantitative analysis) scores for CD3 (P = 0.023; OR, 2.51; 95% CI, 1.13-5.57), CD8 (P = 0.029; OR, 2.00; 95% CI, 1.08-3.72), and CD20 (P = 0.005; OR, 1.80; 95% CI, 1.19-2.72) predicted pCR in univariate analysis. CD20 AQUA score predicted pCR (P = 0.019; OR, 5.37; 95% CI, 1.32-21.8) independently of age, size, nuclear grade, nodal status, ER, PR, HER2, and Ki-67, whereas CD3, CD8, and pathologist estimation did not. We have developed and validated an objective, quantitative assay measuring TILs in breast cancer. Although this work provides analytic validity, future larger studies will be required to prove clinical utility. ©2014 American Association for Cancer Research.

  10. Multiplex PCR assay for unequivocal differentiation of Actinobacillus pleuropneumoniae serovars 1 to 3, 5 to 8, 10, and 12.

    Science.gov (United States)

    Bossé, Janine T; Li, Yanwen; Angen, Øystein; Weinert, Lucy A; Chaudhuri, Roy R; Holden, Matthew T; Williamson, Susanna M; Maskell, Duncan J; Tucker, Alexander W; Wren, Brendan W; Rycroft, Andrew N; Langford, Paul R

    2014-07-01

    An improved multiplex PCR, using redesigned primers targeting the serovar 3 capsule locus, which differentiates serovars 3, 6, and 8 Actinobacillus pleuropneumoniae isolates, is described. The new primers eliminate an aberrant serovar 3-indicative amplicon found in some serovar 6 clinical isolates. Furthermore, we have developed a new multiplex PCR for the detection of serovars 1 to 3, 5 to 8, 10, and 12 along with apxIV, thus extending the utility of this diagnostic PCR to cover a broader range of isolates. Copyright © 2014 Bossé et al.

  11. A continuous-flow ATP amplification system for increasing the sensitivity of quantitative bioluminescence assay

    OpenAIRE

    Satoh, Tetsuya; Shinoda, Yasuharu; Alexandrov, Maxym; Kuroda, Akio; Murakami, Yuji

    2008-01-01

    We constructed a novel ATP amplification reactor using a continuous-flow system, and this allowed us to increase the sensitivity of quantitative bioluminescence assay by controlling the number of ATP amplification cycles. We previously developed a bioluminescence assay coupled with ATP amplification using a batch system. However, it was difficult to control the number of amplification cycles. In this study, ATP amplification was performed using a continuous-flow system, and significant linear...

  12. Multiplex Real-Time PCR Assay Targeting Eight Parasites Customized to the Korean Population: Potential Use for Detection in Diarrheal Stool Samples from Gastroenteritis Patients

    Science.gov (United States)

    Won, Eun Jeong; Kim, Soo Hyun; Kee, Seung Jung; Shin, Jong Hee; Suh, Soon Pal; Chai, Jong Yil; Ryang, Dong Wook; Shin, Myung Geun

    2016-01-01

    Intestinal parasitic diseases occur worldwide and can cause diarrhea or gastroenteritis; however, their diagnosis is quite difficult, especially in low-endemism countries. We developed a multiplex real-time PCR assay for detection of eight intestinal parasites and prospectively evaluated it for patients with gastroenteritis. The assay targeted Cryptosporidium parvum, Giardia lamblia, Entamoeba histolytica, Blastocystis hominis, Dientamoeba fragilis, Clonorchis sinensis, Metagonimus yokogawai, and Gymnophalloides seoi. Performance characteristics were evaluated based on recovery after DNA extraction, analytical sensitivity, specificity, reproducibility, cross-reactivity, and interference characteristics. Clinical performance was validated against microscopy on 123 diarrheal samples. The assay demonstrated strong correlations between DNA concentrations and Ct values (R2, 0.9924–0.9998), and had a high PCR efficiency (83.3%–109.5%). Polymerase chain reactions detected as few as 10–30 copies of genomic DNA, and coefficient of variance was 0–7%. There was no cross-reactivity to the other 54 microorganisms tested. Interference occurred only in presence of high concentrations of erythrocytes or leukocytes. This assay had a higher correct identification rate (100.0% vs. 90.2%) and lower incorrect ID rate (0.0% vs. 9.8%) when compared to microscopy. Overall, this assay showed a higher sensitivity (100.0%; 95% confidence interval [CI] of 80.5–100.0) than microscopy (29.4%; 95% CI 10.31–55.96), and the specificity levels were comparable for both methods (100.0%; 95% CI 96.58–100.0). This newly developed multiplex real-time PCR assay offers a potential use for detecting intestinal parasitic pathogens customized to the Korean population. PMID:27861635

  13. Quantitative assay of glycocalyx produced by viridans group streptococci that cause endocarditis.

    Science.gov (United States)

    Dall, L; Herndon, B

    1989-09-01

    A quantitative method to determine glycocalyx production by strains of viridans group streptococci from patients with endocarditis is presented. There is good correlation between this new tryptophan quantitative assay and qualitative assays employing polysaccharide stains (ruthenium red, periodic acid-Schiff, and Cellufluor) or the Molisch test. The quantification of the glycocalyx production in glucose substrate in vitro by viridans group streptococci correlates with the size of cardiac vegetation and ease of antimicrobial sterilization in experimental endocarditis. The relationship of in vitro quantification of glycocalyx to maintenance of infection, morbidity of infection, and antimicrobial treatment is discussed.

  14. In vivo multiplex quantitative analysis of 3 forms of alpha melanocyte stimulating hormone in pituitary of prolyl endopeptidase deficient mice

    Directory of Open Access Journals (Sweden)

    Perroud Bertrand

    2009-06-01

    Full Text Available Abstract Background In vitro reactions are useful to identify putative enzyme substrates, but in vivo validation is required to identify actual enzyme substrates that have biological meaning. To investigate in vivo effects of prolyl endopeptidase (PREP, a serine protease, on alpha melanocyte stimulating hormone (α-MSH, we developed a new mass spectrometry based technique to quantitate, in multiplex, the various forms of α-MSH. Methods Using Multiple Reaction Monitoring (MRM, we analyzed peptide transitions to quantify three different forms of α-MSH. Transitions were first confirmed using standard peptides. Samples were then analyzed by mass spectrometry using a triple quadrupole mass spectrometer, after elution from a reverse phase C18 column by a gradient of acetonitrile. Results We first demonstrate in vitro that PREP digests biological active alpha melanocyte stimulating hormone (α-MSH1–13, by cleaving the terminal amidated valine and releasing a truncated alpha melanocyte stimulating hormone (α-MSH1–12 product – the 12 residues α-MSH form. We then use the technique in vivo to analyze the MRM transitions of the three different forms of α-MSH: the deacetylated α-MSH1–13, the acetylated α-MSH1–13 and the truncated form α-MSH1–12. For this experiment, we used a mouse model (PREP-GT in which the serine protease, prolyl endopeptidase, is deficient due to a genetrap insertion. Here we report that the ratio between acetylated α-MSH1–13 and α-MSH1–12 is significantly increased (P-value = 0.015, N = 6 in the pituitaries of PREP-GT mice when compared to wild type littermates. In addition no significant changes were revealed in the relative level of α-MSH1–13 versus the deacetylated α-MSH1–13. These results combined with the demonstration that PREP digests α-MSH1–13 in vitro, strongly suggest that α-MSH1–13 is an in vivo substrate of PREP. Conclusion The multiplex targeted quantitative peptidomics technique we

  15. Multiplex PCR amplification assay for the detection of blaSHV, blaTEM and blaCTX-M genes in Enterobacteriaceae.

    Science.gov (United States)

    Monstein, H-J; Ostholm-Balkhed, A; Nilsson, M V; Nilsson, M; Dornbusch, K; Nilsson, L E

    2007-12-01

    Extended-spectrum beta-lactamases (ESBLs) are often mediated by (bla-)SHV, (bla)TEM and (bla)CTX-M genes in Enterobacteriaceae and other Gram-negative bacteria. Numerous molecular typing methods, including PCR-based assays, have been developed for their identification. To reduce the number of PCR amplifications needed we have developed a multiplex PCR assay which detects and discriminates between (bla-)SHV, (bla)TEM and (bla)CTX-M PCR amplicons of 747, 445 and 593 bp, respectively. This multiplex PCR assay allowed the identification of (bla-)SHV, (bla)TEM and (bla)CTX-M genes in a series of clinical isolates of Enterobacteriaceae with previously characterised ESBL phenotype. The presence of (bla)SHV, (bla)TEM and (bla)CTX-M genes was confirmed by partial DNA sequence analysis. Apparently, the universal well-established CTX-M primer pair used here to reveal plasmid-encoded (bla)CTX-M genes would also amplify the chromosomally located K-1 enzyme gene in all Klebsiella oxytoca strains included in the study.

  16. A Multiplex Real-Time PCR Assay for Screening Gypsy Moths (Lepidoptera: Erebidae) in the United States for Evidence of an Asian Genotype.

    Science.gov (United States)

    Islam, M S; Barr, N B; Braswell, W E; Martinez, M; Ledezma, L A; Molongoski, J; Mastro, V; Schuenzel, E L

    2015-10-01

    European gypsy moth populations (Lymantria dispar L.) are well established and a proven destructive force in hardwood trees throughout the United States and Canada. Introduction of the exotic Asian gypsy moth into North America would be even more impactful, as Asian gypsy moth populations have wider host ranges, and are capable of naturally dispersing more rapidly due to female flight ability. To support early detection and exclusion of Asian gypsy moth, the U.S. Department of Agriculture (USDA) uses molecular techniques to screen moths trapped in North America for evidence of common Asian genotype. In order to strengthen U.S. domestic capacity to screen moths quickly and efficiently, we report a real-time PCR assay for this pest. A probe system using TaqMan 5' nuclease chemistry is reported for detection of an allele associated with common Asian gypsy moth genotypes. The targeted allele is located at the nuclear FS1 locus currently used by the USDA in conventional PCR tests to screen for evidence of Asian gypsy moth introductions or introgression. The diagnostic probe is successfully multiplexed with a conserved 18S probe system to detect reaction failure due to poor sample quality or quantity. The specificity, sensitivity, and repeatability of the FS1-18S multiplex real-time PCR assay were tested on laboratory-reared and field-collected moths to demonstrate diagnostic utility. Implications of the new assay as a screening tool for evidence of Asian gypsy moth introgression and introduction are discussed.

  17. Improved TLC Bioautographic Assay for Qualitative and Quantitative Estimation of Tyrosinase Inhibitors in Natural Products.

    Science.gov (United States)

    Zhou, Jinge; Tang, Qingjiu; Wu, Tao; Cheng, Zhihong

    2017-03-01

    TLC bioautography for tyrosinase inhibitors has made recent progress; however, an assay with a relative low consumption of enzyme and quantitative capability would greatly advance the efficacy of related TLC bioautographic assays. An improved TLC bioautographic assay for detecting tyrosinase inhibitors was developed and validated in this study. L-DOPA (better water-solubility than L-tyrosine) was used as the substrate instead of reported L-tyrosine. The effects of enzyme and substrate concentrations, reaction temperatures and times, and pH values of the reaction system as well as different plate types on the TLC bioautographic assay were optimised. The quantitative analysis was conducted by densitometric scanning of spot areas, and expressed as the relative tyrosinase inhibitory capacity (RTIC) using a positive control (kojic acid) equivalent. The limit of detection (LOD) of this assay was 1.0 ng for kojic acid. This assay has acceptable accuracy (101.73-102.90%), intra- and inter-day, and intra- and inter-plate precisions [relative standard deviation (RSD), less than 7.0%], and ruggedness (RSD, less than 3.5%). The consumption of enzyme (75 U/mL) is relatively low. Two tyrosinase inhibitory compounds including naringenin and 1-O-β-D-glucopyranosyl-4-allylbenzene have been isolated from Rhodiola sacra guided by this TLC bioautographic assay. Our improved assay is a relatively low-cost, sensitive, and quantitative method compared to the reported TLC bioautographic assays. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. A multiplex nested PCR assay for simultaneous detection of Corchorus golden mosaic virus and a phytoplasma in white jute (Corchorus capsularis L.).

    Science.gov (United States)

    Biswas, C; Dey, P; Satpathy, S

    2013-05-01

    A multiplex nested PCR assay was developed by optimizing reaction components and reaction cycling parameters for simultaneous detection of Corchorus golden mosaic virus (CoGMV) and a phytoplasma (Group 16Sr V-C) causing little leaf and bunchy top in white jute (Corchorus capsularis). Three sets of specific primers viz. a CoGMV specific (DNA-A region) primer, a 16S rDNA universal primer pair P1/P7 and nested primer pair R16F2n/R2 for phytoplasmas were used. The concentrations of the PCR components such as primers, MgCl2 , Taq DNA polymerase, dNTPs and PCR conditions including annealing temperature and amplification cycles were examined and optimized. Expected fragments of 1 kb (CoGMV), 674 bp (phytoplasma) and 370 bp (nested R16F2n/R2) were successfully amplified by this multiplex nested PCR system ensuring simultaneous, sensitive and specific detection of the phytoplasma and the virus. The multiplex nested PCR provides a sensitive, rapid and low-cost method for simultaneous detection of jute little leaf phytoplasma and CoGMV. Based on BLASTn analyses, the phytoplasma was found to belong to the Group 16Sr V-C. © 2013 The Society for Applied Microbiology.

  19. Multiplex PCR assays for the detection of Vibrio alginolyticus, Vibrio parahaemolyticus, Vibrio vulnificus, and Vibrio cholerae with an internal amplification control.

    Science.gov (United States)

    Wei, Shuang; Zhao, Hui; Xian, Yuyin; Hussain, Malik A; Wu, Xiyang

    2014-06-01

    A multiplex polymerase chain reaction (PCR) assay that can simultaneously detect 4 major Vibrio spp., Vibrio alginolyticus, Vibrio parahaemolyticus, Vibrio vulnificus, and Vibrio cholerae, in the presence of an internal amplification control (IAC) was developed. Species-specific PCR primers were designed based on the gyrB gene for V. alginolyticus, the collagenase gene for V. parahaemolyticus, the vvhA gene for V. vulnificus, and the ompW gene for V. cholerae. Additionally, an IAC primer pair was designed in conserved regions of the bacterial 16S rRNA gene that is used to indicate false-negative results. A multiplex PCR method was developed after optimization of the reaction conditions. The specificity of the PCR was validated by using 83 Vibrio strains and 10 other non-Vibrio bacterial species. The detection limit of the PCR was 10 CFU per tube for V. alginolyticus, V. parahaemolyticus, V. vulnificus, and 10(5) CFU per tube for V. cholerae in mixed conditions. This method was used to identify 69 suspicious Vibrio isolates, and the results were consistent with physiological and biochemical tests. This multiplex PCR method proved to be rapid, sensitive, and specific. The existence of IAC could successfully eliminate false-negative results for the detection of V. alginolyticus, V. parahaemolyticus, V. vulnificus, and V. cholerae. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. An investigation of genital ulcers in Jackson, Mississippi, with use of a multiplex polymerase chain reaction assay: high prevalence of chancroid and human immunodeficiency virus infection.

    Science.gov (United States)

    Mertz, K J; Weiss, J B; Webb, R M; Levine, W C; Lewis, J S; Orle, K A; Totten, P A; Overbaugh, J; Morse, S A; Currier, M M; Fishbein, M; St Louis, M E

    1998-10-01

    In 1994, an apparent outbreak of atypical genital ulcers was noted by clinicians at the sexually transmitted disease clinic in Jackson, Mississippi. Of 143 patients with ulcers tested with a multiplex polymerase chain reaction (PCR) assay, 56 (39%) were positive for Haemophilus ducreyi, 44 (31%) for herpes simplex virus, and 27 (19%) for Treponema pallidum; 12 (8%) were positive for > 1 organism. Of 136 patients tested for human immunodeficiency virus (HIV) by serology, 14 (10%) were HIV-seropositive, compared with none of 200 patients without ulcers (P genital ulcers and HIV infection in this population highlights the urgency of preventing genital ulcers in the southern United States.

  1. Multiplex quantitative PCR for detection of lower respiratory tract infection and meningitis caused by Streptococcus pneumoniae, Haemophilus influenzae and Neisseria meningitidis

    Directory of Open Access Journals (Sweden)

    Welinder-Olsson Christina

    2010-12-01

    Full Text Available Abstract Background Streptococcus pneumoniae and Haemophilus influenzae cause pneumonia and as Neisseria meningitidis they are important agents of meningitis. Although several PCR methods have been described for these bacteria the specificity is an underestimated problem. Here we present a quantitative multiplex real-time PCR (qmPCR for detection of S. pneumoniae (9802 gene fragment, H. influenzae (omp P6 gene and N. meningitidis (ctrA gene. The method was evaluated on bronchoalveolar lavage (BAL samples from 156 adults with lower respiratory tract infection (LRTI and 31 controls, and on 87 cerebrospinal fluid (CSF samples from meningitis patients. Results The analytical sensitivity was not affected by using a combined mixture of reagents and a combined DNA standard (S. pneumoniae/H. influenzae/N. meningitidis in single tubes. By blood- and BAL-culture and S. pneumoniae urinary antigen test, S. pneumoniae and H. influenzae were aetiological agents in 21 and 31 of the LTRI patients, respectively. These pathogens were identified by qmPCR in 52 and 72 of the cases, respectively, yielding sensitivities and specificities of 95% and 75% for S. pneumoniae, and 90% and 65% for H. influenzae, respectively. When using a cut-off of 105 genome copies/mL for clinical positivity the sensitivities and specificities were 90% and 80% for S. pneumoniae, and 81% and 85% for H. influenzae, respectively. Of 44 culture negative but qmPCR positive for H. influenzae, 41 were confirmed by fucK PCR as H. influenzae. Of the 103 patients who had taken antibiotics prior to sampling, S. pneumoniae and H. influenzae were identified by culture in 6% and 20% of the cases, respectively, and by the qmPCR in 36% and 53% of the cases, respectively. In 87 CSF samples S. pneumoniae and N. meningitidis were identified by culture and/or 16 S rRNA in 14 and 10 samples and by qmPCR in 14 and 10 samples, respectively, giving a sensitivity of 100% and a specificity of 100% for both

  2. Quantitative comparison between microfluidic and microtiter plate formats for cell-based assays.

    Science.gov (United States)

    Yin, Huabing; Pattrick, Nicola; Zhang, Xunli; Klauke, Norbert; Cordingley, Hayley C; Haswell, Steven J; Cooper, Jonathan M

    2008-01-01

    In this paper, we compare a quantitative cell-based assay measuring the intracellular Ca2+ response to the agonist uridine 5'-triphosphate in Chinese hamster ovary cells, in both microfluidic and microtiter formats. The study demonstrates that, under appropriate hydrodynamic conditions, there is an excellent agreement between traditional well-plate assays and those obtained on-chip for both suspended immobilized cells and cultured adherent cells. We also demonstrate that the on-chip assay, using adherent cells, provides the possibility of faster screening protocols with the potential for resolving subcellular information about local Ca2+ flux.

  3. A multiplex real-time PCR assay for the identification and differentiation of Salmonella enterica serovar Typhimurium and monophasic serovar 4,[5],12:i:-.

    Science.gov (United States)

    Prendergast, Deirdre M; Hand, Darren; Nί Ghallchóir, Eadaoin; McCabe, Evonne; Fanning, Seamus; Griffin, Margaret; Egan, John; Gutierrez, Montserrat

    2013-08-16

    Salmonella enterica subsp. enterica serovar 4,[5],12:i:- is considered to be a monophasic variant of Salmonella Typhimurium and is increasingly associated with human infections. The use of PCR for the unequivocal identification of strains identified by conventional serotyping as 4,[5],12:i:- has been recommended by the European Food Safety Authority (EFSA), in particular the conventional multiplex PCR developed by Tennant et al. (2010). An alternative protocol for the identification and differentiation of S. Typhimurium and S. Typhimurium-like strains, including its monophasic variants, based on a multiplex real-time PCR assay was developed in our laboratory. A panel of 206 Salmonella strains was used to validate our multiplex real-time PCR against the conventional multiplex PCR recommended by EFSA, i.e. 43 Salmonella strains of serovars other than Typhimurium and 163 routine isolates determined by slide agglutination serotyping to have an incomplete antigenic formula compatible with the S. Typhimurium formula 4,[5],12:i:1,2. Both methods correctly identified the 43 Salmonella strains as non S. Typhimurium. Among the 163 isolates of undetermined serovar by conventional serotyping, both PCR protocols identified 54 isolates as S. Typhimurium, 101 as monophasic S. Typhimurium and 8 as non-S. Typhimurium. Twenty isolates phenotypically lacking the phase-2 H antigen were positive for the fljB.1,2 gene. These strains have been recently described in the literature by other workers and have been referred to as "inconsistent" variants of S. Typhimurium. Antimicrobial resistance and phage typing were also performed on the S. Typhimurium isolates, including monophasic variants, and approximately half of the isolates identified as monophasic S. Typhimurium by our multiplex real-time PCR protocol were DT193 with the resistance pattern ASSuT. There was 100% concordance between the conventional PCR and the multiplex real-time PCR method developed in this study which proved that

  4. One-Step Multiplex PCR Assay for Differentiating Proposed New Species "Clostridium neonatale" from Closely Related Species.

    Science.gov (United States)

    Ferraris, Laurent; Schönherr, Sophia; Bouvet, Philippe; Dauphin, Brunhilde; Popoff, Michel; Butel, Marie Jose; Aires, Julio

    2015-11-01

    "Clostridium neonatale" sp. nov., previously involved in an outbreak of neonatal necrotizing enterocolitis, was recently proposed as a new species of the Clostridium genus sensu stricto. We developed a one-step multiplex colony PCR for C. neonatale identification and investigated C. neonatale intestinal colonization frequency in healthy preterm neonates. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. BIOMARKER QUANTITATION: ANALYTICAL CONSIDERATIONS FOR LIGAND BINDING ASSAY REGRESSION CURVES AND QUALITY CONTROL SAMPLES

    Directory of Open Access Journals (Sweden)

    Mark Dysinger

    2012-01-01

    Full Text Available As biomarkers grow in relevance for both the design and support of therapeutics and the clinical trials associated with them, there is an ever increasing need for accurate quantitation of these biochemical entities in biological matrices. While quantifying many biotherapeutics via ligand binding assay platforms can be fairly straightforward, biomarkers present some unique challenges that must be taken into account during assay development, validation and subsequent sample analysis. These challenges can be especially confounded by the relationship between two ligand binding assay tools: The regression curve and quality control samples. Due diligence must be performed to develop an assay that takes into account matrix vs. buffer effects and endogenous biomarker presence. Lack of diligence in these areas can lead to less than reliable results, thus potentially rendering the intended use of the assay moot.

  6. A multiplex quantitative real-time polymerase chain reaction panel for detecting neurologic pathogens in dogs with meningoencephalitis.

    Science.gov (United States)

    Han, Jae-Ik; Chang, Dong-Woo; Na, Ki-Jeong

    2015-01-01

    Meningoencephalitis (ME) is a common inflammatory disorder of the central nervous system in dogs. Clinically, ME has both infectious and non-infectious causes. In the present study, a multiplex quantitative real-time polymerase chain reaction (mqPCR) panel was optimized for the detection of eight canine neurologic pathogens (Blastomyces dermatitidis, Cryptococcus spp., Neospora caninum, Borrelia burgdorferi, Bartonella spp., Toxoplasma gondii, Ehrlichia canis, and canine distemper virus [CDV]). The mqPCR panel was subsequently applied to 53 cerebrospinal fluid (CSF) samples collected from dogs with ME. The analytic sensitivity (i.e., limit of detection, expressed as molecules per 1 mL of recombinant vector) was 3.8 for CDV, 3.7 for Ehrlichia canis, 3.7 for Bartonella spp., 3.8 for Borrelia burgdorferi, 3.7 for Blastomyces dermatitidis, 3.7 for Cryptococcus spp., 38 for Neospora caninum, and 3.7 for Toxoplasma gondii. Among the tested CSF samples, seven (15%) were positive for the following pathogens in decreasing order of frequency: Cryptococcus spp. (3/7), Blastomyces dermatitidis (2/7), and Borrelia burgdorferi (2/7). In summary, use of an mqPCR panel with high analytic sensitivity as an initial screen for infectious agents in dogs with ME could facilitate the selection of early treatment strategies and improve outcomes.

  7. High-throughput multiplex quantitative polymerase chain reaction method for Giardia lamblia and Cryptosporidium species detection in stool samples.

    Science.gov (United States)

    Nurminen, Noora; Juuti, Rosa; Oikarinen, Sami; Fan, Yue-Mei; Lehto, Kirsi-Maarit; Mangani, Charles; Maleta, Kenneth; Ashorn, Per; Hyöty, Heikki

    2015-06-01

    Giardia lamblia and Cryptosporidium species belong to a complex group of pathogens that cause diseases hampering development and socioeconomic improvements in the developing countries. Both pathogens are recognized as significant causes of diarrhea and nutritional disorders. However, further studies are needed to clarify the role of parasitic infections, especially asymptomatic infections in malnutrition and stunting. We developed a high-throughput multiplex quantitative polymerase chain reaction (qPCR) method for G. lamblia and Cryptosporidium spp. detection in stool samples. The sensitivity and specificity of the method were ensured by analyzing confirmed positive samples acquired from diagnostics laboratories and participating in an external quality control round. Its capability to detect asymptomatic G. lamblia and Cryptosporidium spp. infections was confirmed by analyzing stool samples collected from 44 asymptomatic 6-month-old infants living in an endemic region in Malawi. Of these, five samples were found to be positive for G. lamblia and two for Cryptosporidium spp. In conclusion, the developed method is suitable for large-scale studies evaluating the occurrence of G. lamblia and Cryptosporidium spp. in endemic regions and for clinical diagnostics of these infections.

  8. A simple method for the evaluation of microfluidic architecture using flow quantitation via a multiplexed fluidic resistance measurement.

    Science.gov (United States)

    Leslie, Daniel C; Melnikoff, Brett A; Marchiarullo, Daniel J; Cash, Devin R; Ferrance, Jerome P; Landers, James P

    2010-08-07

    Quality control of microdevices adds significant costs, in time and money, to any fabrication process. A simple, rapid quantitative method for the post-fabrication characterization of microchannel architecture using the measurement of flow with volumes relevant to microfluidics is presented. By measuring the mass of a dye solution passed through the device, it circumvents traditional gravimetric and interface-tracking methods that suffer from variable evaporation rates and the increased error associated with smaller volumes. The multiplexed fluidic resistance (MFR) measurement method measures flow via stable visible-wavelength dyes, a standard spectrophotometer and common laboratory glassware. Individual dyes are used as molecular markers of flow for individual channels, and in channel architectures where multiple channels terminate at a common reservoir, spectral deconvolution reveals the individual flow contributions. On-chip, this method was found to maintain accurate flow measurement at lower flow rates than the gravimetric approach. Multiple dyes are shown to allow for independent measurement of multiple flows on the same device simultaneously. We demonstrate that this technique is applicable for measuring the fluidic resistance, which is dependent on channel dimensions, in four fluidically connected channels simultaneously, ultimately determining that one chip was partially collapsed and, therefore, unusable for its intended purpose. This method is thus shown to be widely useful in troubleshooting microfluidic flow characteristics.

  9. Microgravity validation of a novel system for RNA isolation and multiplex quantitative real time PCR analysis of gene expression on the International Space Station.

    Science.gov (United States)

    Parra, Macarena; Jung, Jimmy; Boone, Travis D; Tran, Luan; Blaber, Elizabeth A; Brown, Mark; Chin, Matthew; Chinn, Tori; Cohen, Jacob; Doebler, Robert; Hoang, Dzung; Hyde, Elizabeth; Lera, Matthew; Luzod, Louie T; Mallinson, Mark; Marcu, Oana; Mohamedaly, Youssef; Ricco, Antonio J; Rubins, Kathleen; Sgarlato, Gregory D; Talavera, Rafael O; Tong, Peter; Uribe, Eddie; Williams, Jeffrey; Wu, Diana; Yousuf, Rukhsana; Richey, Charles S; Schonfeld, Julie; Almeida, Eduardo A C

    2017-01-01

    The International Space Station (ISS) National Laboratory is dedicated to studying the effects of space on life and physical systems, and to developing new science and technologies for space exploration. A key aspect of achieving these goals is to operate the ISS National Lab more like an Earth-based laboratory, conducting complex end-to-end experimentation, not limited to simple microgravity exposure. Towards that end NASA developed a novel suite of molecular biology laboratory tools, reagents, and methods, named WetLab-2, uniquely designed to operate in microgravity, and to process biological samples for real-time gene expression analysis on-orbit. This includes a novel fluidic RNA Sample Preparation Module and fluid transfer devices, all-in-one lyophilized PCR assays, centrifuge, and a real-time PCR thermal cycler. Here we describe the results from the WetLab-2 validation experiments conducted in microgravity during ISS increment 47/SPX-8. Specifically, quantitative PCR was performed on a concentration series of DNA calibration standards, and Reverse Transcriptase-quantitative PCR was conducted on RNA extracted and purified on-orbit from frozen Escherichia coli and mouse liver tissue. Cycle threshold (Ct) values and PCR efficiencies obtained on-orbit from DNA standards were similar to Earth (1 g) controls. Also, on-orbit multiplex analysis of gene expression from bacterial cells and mammalian tissue RNA samples was successfully conducted in about 3 h, with data transmitted within 2 h of experiment completion. Thermal cycling in microgravity resulted in the trapping of gas bubbles inside septa cap assay tubes, causing small but measurable increases in Ct curve noise and variability. Bubble formation was successfully suppressed in a rapid follow-up on-orbit experiment using standard caps to pressurize PCR tubes and reduce gas release during heating cycles. The WetLab-2 facility now provides a novel operational on-orbit research capability for molecular biology and

  10. Microplate assay for quantitation of neutral lipids in extracts from microalgae.

    Science.gov (United States)

    Higgins, Brendan T; Thornton-Dunwoody, Alexander; Labavitch, John M; VanderGheynst, Jean S

    2014-11-15

    Lipid quantitation is widespread in the algae literature, but popular methods such as gravimetry, gas chromatography and mass spectrometry (GC-MS), and Nile red cell staining suffer drawbacks, including poor quantitation of neutral lipids, expensive equipment, and variable results among algae species, respectively. A high-throughput microplate assay was developed that uses Nile red dye to quantify neutral lipids that have been extracted from algae cells. Because the algal extracts contained pigments that quenched Nile red fluorescence, a mild bleach solution was used to destroy pigments, resulting in a nearly linear response for lipid quantities in the range of 0.75 to 40 μg. Corn oil was used as a standard for quantitation, although other vegetable oils displayed a similar response. The assay was tested on lipids extracted from three species of Chlorella and resulted in close agreement with triacylglycerol (TAG) levels determined by thin layer chromatography. The assay was found to more accurately measure algal lipids conducive to biodiesel production and nutrition applications than the widely used gravimetric assay. Assay response was also consistent among different species, in contrast to Nile red cell staining procedures. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Continuous-flow ATP amplification system for increasing the sensitivity of quantitative bioluminescence assay.

    Science.gov (United States)

    Satoh, Tetsuya; Shinoda, Yasuharu; Alexandrov, Maxym; Kuroda, Akio; Murakami, Yuji

    2008-08-01

    We constructed a novel ATP amplification reactor using a continuous-flow system, and this allowed us to increase the sensitivity of a quantitative bioluminescence assay by controlling the number of ATP amplification cycles. We previously developed a bioluminescence assay coupled with ATP amplification using a batch system. However, it was difficult to control the number of amplification cycles. In this study, ATP amplification was performed using a continuous-flow system, and significant linear correlations between amplified luminescence and initial ATP concentration were observed. When performing four cycles of continuous-flow ATP amplification, the gradient of amplification was 1.87(N). Whereas the lower quantifiable level was 500 pM without amplification, values as low as 50 pM ATP could be measured after amplification. The sensitivity thus increased 10-fold, with further improvements expected with additional amplification cycles. The continuous-flow system thus effectively increased the sensitivity of the quantitative bioluminescence assay.

  12. Multiplex diagnosis of viral infectious diseases (AIDS, hepatitis C, and hepatitis A) based on point of care lateral flow assay using engineered proteinticles.

    Science.gov (United States)

    Lee, Jong-Hwan; Seo, Hyuk Seong; Kwon, Jung-Hyuk; Kim, Hee-Tae; Kwon, Koo Chul; Sim, Sang Jun; Cha, Young Joo; Lee, Jeewon

    2015-07-15

    Lateral flow assay (LFA) is an attractive method for rapid, simple, and cost-effective point of care diagnosis. For LFA-based multiplex diagnosis of three viral intractable diseases (acquired immune deficiency syndrome and hepatitis C and A), here we developed proteinticle-based 7 different 3D probes that display different viral antigens on their surface, which were synthesized in Escherichia coli by self-assembly of human ferritin heavy chain that was already engineered by genetically linking viral antigens to its C-terminus. Each of the three test lines on LFA strip contains the proteinticle probes to detect disease-specific anti-viral antibodies. Compared to peptide probes, the proteinticle probes were evidently more sensitive, and the proteinticle probe-based LFA successfully diagnosed all the 20 patient sera per each disease without a false negative signal, whereas the diagnostic sensitivities in the peptide probe-based LFAs were 65-90%. Duplex and triplex assays performed with randomly mixed patient sera gave only true positive signals for all the 20 serum mixtures without any false positive signals, indicating 100% sensitivity and 100% specificity. It seems that on the proteinticle surface the antigenic peptides have homogeneous orientation and conformation without inter-peptide clustering and hence lead to the enhanced diagnostic performance with solving the problems of traditional diagnostic probes. Although the multiplex diagnosis of three viral diseases above was demonstrated as proof-of-concept here, the proposed LFA system can be applied to multiplex point of care diagnosis of other intractable diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Detection of Salmonella in Shellfish Using SYBR Green™ I-Based Real-Time Multiplexed PCR Assay Targeting invA and spvB

    KAUST Repository

    Gangwar, Maulshree

    2012-09-23

    A SYBR Green™ I-based real-time multiplexed PCR assay was developed targeting invA and spvB for the detection of Salmonella strains in shellfish after both hns and invA genes were identified in all Salmonella strains. Simultaneously, the 16S rRNA gene was used as a PCR internal amplification control (IAC). All 89 Salmonella strains tested in this study exhibited amplification of invA, whereas only 21 (23. 6 %) were PCR positive for spvB. The sensitivity of detection of all three targeted genes was 1 ng, which is equivalent to approximately 105 colony-forming unit (CFU) of Salmonella enterica. The analysis showed specific PCR products that were identified by reproducible melt temperature profiles (invA, 84. 27 ± 1. 7 °C; spvB, 88. 76 ± 1. 0 °C; and 16S rRNA gene, 87. 16 ± 0. 8 °C). The sensitivity of detection was 10 pg purified DNA (invA) or 105 CFU in 1 mL pure culture of S. enterica ATCC 14028. The above molecular detection method for Salmonella strains was successfully applied to the oyster homogenates (food matrix). An initial inoculum of 106 and 102 CFU Salmonella in 1 ml seeded oyster tissue homogenate was detected by multiplexed PCR for all three genes after 5 and 24 h of enrichment, respectively. Natural oysters isolated from Gulf of Mexico during the winter months exhibited negative PCR amplification results suggesting the absence of Salmonella. In contrast to conventional PCR, real-time multiplex PCR assay developed in this study is rapid and sensitive and will help Interstate Shellfish Sanitation Conference undertake appropriate measures to monitor Salmonella in oysters, thereby preventing disease outbreaks and consequently protecting consumer health. © 2012 Springer Science+Business Media, LLC.

  14. Simple multiplex PCR assay for identification of Beijing family Mycobacterium tuberculosis isolates with a lineage-specific mutation in Rv0679c.

    Science.gov (United States)

    Nakajima, Chie; Tamaru, Aki; Rahim, Zeaur; Poudel, Ajay; Maharjan, Bhagwan; Khin Saw Aye; Ling, Hong; Hattori, Toshio; Iwamoto, Tomotada; Fukushima, Yukari; Suzuki, Haruka; Suzuki, Yasuhiko; Matsuba, Takashi

    2013-07-01

    The Beijing genotype of Mycobacterium tuberculosis is known to be a worldwide epidemic clade. It is suggested to be a possibly resistant clone against BCG vaccination and is also suggested to be highly pathogenic and prone to becoming drug resistant. Thus, monitoring the prevalence of this lineage seems to be important for the proper control of tuberculosis. The Rv0679c protein of M. tuberculosis has been predicted to be one of the outer membrane proteins and is suggested to contribute to host cell invasion. Here, we conducted a sequence analysis of the Rv0679c gene using clinical isolates and found that a single nucleotide polymorphism, C to G at position 426, can be observed only in the isolates that are identified as members of the Beijing genotype family. Here, we developed a simple multiplex PCR assay to detect this point mutation and applied it to 619 clinical isolates. The method successfully distinguished Beijing lineage clones from non-Beijing strains with 100% accuracy. This simple, quick, and cost-effective multiplex PCR assay can be used for a survey or for monitoring the prevalence of Beijing genotype M. tuberculosis strains.

  15. Single Multiplex PCR Assay To Identify Simultaneously the Six Categories of Diarrheagenic Escherichia coli Associated with Enteric Infections

    Science.gov (United States)

    Vidal, Maricel; Kruger, Eileen; Durán, Claudia; Lagos, Rosanna; Levine, Myron; Prado, Valeria; Toro, Cecilia; Vidal, Roberto

    2005-01-01

    We designed a multiplex PCR for the detection of all categories of diarrheagenic Escherichia coli. This method proved to be specific and rapid in detecting virulence genes from Shiga toxin-producing (stx1, stx2, and eae), enteropathogenic (eae and bfp), enterotoxigenic (stII and lt), enteroinvasive (virF and ipaH), enteroaggregative (aafII), and diffuse adherent (daaE) Escherichia coli in stool samples. PMID:16208019

  16. Multiplex Real-Time qPCR Assay for Simultaneous and Sensitive Detection of Phytoplasmas in Sesame Plants and Insect Vectors.

    Directory of Open Access Journals (Sweden)

    Cengiz Ikten

    Full Text Available Phyllody, a destructive and economically important disease worldwide caused by phytoplasma infections, is characterized by the abnormal development of floral structures into stunted leafy parts and contributes to serious losses in crop plants, including sesame (Sesamum indicum L.. Accurate identification, differentiation, and quantification of phyllody-causing phytoplasmas are essential for effective management of this plant disease and for selection of resistant sesame varieties. In this study, a diagnostic multiplex qPCR assay was developed using TaqMan® chemistry based on detection of the 16S ribosomal RNA gene of phytoplasmas and the 18S ribosomal gene of sesame. Phytoplasma and sesame specific primers and probes labeled with different fluorescent dyes were used for simultaneous amplification of 16SrII and 16SrIX phytoplasmas in a single tube. The multiplex real-time qPCR assay allowed accurate detection, differentiation, and quantification of 16SrII and 16SrIX groups in 109 sesame plant and 92 insect vector samples tested. The assay was found to have a detection sensitivity of 1.8 x 102 and 1.6 x 102 DNA copies for absolute quantification of 16SrII and 16SrIX group phytoplasmas, respectively. Relative quantification was effective and reliable for determination of phyllody phytoplasma DNA amounts normalized to sesame DNA in infected plant tissues. The development of this qPCR assay provides a method for the rapid measurement of infection loads to identify resistance levels of sesame genotypes against phyllody phytoplasma disease.

  17. A novel multiplex real-time PCR assay for the concurrent detection of hepatitis A, B and C viruses in patients with acute hepatitis.

    Science.gov (United States)

    Park, Yongjung; Kim, Beom Seok; Choi, Kyu Hun; Shin, Dong Ho; Lee, Mi Jung; Cho, Yonggeun; Kim, Hyon-Suk

    2012-01-01

    A novel multiplex real-time PCR assay for concurrent detection of hepatitis viruses was evaluated for its clinical performance in screening patients with acute hepatitis. A total of 648 serum samples were collected from patients with acute symptoms of hepatitis. Concurrent detection of nucleic acids of HAV, HBV and HCV was performed using the Magicplex™ HepaTrio Real-time Detection test. Serum nucleic acid levels of HBV and HCV were also quantified by the Cobas® AmpliPrep/Cobas® TaqMan® (CAP/CTM) HBV and HCV tests. Patients' medical records were also reviewed. Concordance rates between the results from the HepaTrio and the CAP/CTM tests for the detection of HBV and HCV were 94.9% (k = 0.88) and 99.2% (k = 0.98), respectively. The cycle threshold values with the HepaTrio test were also correlated well with the levels of HBV DNA (r = -0.9230) and HCV RNA (r = -0.8458). The sensitivity and specificity of the HepaTrio test were 93.8% and 98.2%, respectively, for detecting HBV infection, and 99.1% and 100.0%, respectively, for HCV infection. For the HepaTrio test, 21 (3.2%) cases were positive for both HBV and HCV. Among the positive cases, 6 (0.9%) were true coinfections. This test also detected 18 (2.8%) HAV positives. The HepaTrio test demonstrated good clinical performance and produced results that agreed well with those of the CAP/CTM assays, especially for the detection of HCV. This assay was also able to detect HAV RNA from anti-HAV IgM-positive individuals. Therefore, this new multiplex PCR assay could be useful for the concurrent detection of the three hepatitis viruses.

  18. Development of a multiplex PCR assay based on the 16S-23S rRNA internal transcribed spacer for the detection and identification of rodent Pasteurellaceae.

    Science.gov (United States)

    Benga, Laurentiu; Benten, W Peter M; Engelhardt, Eva; Bleich, André; Gougoula, Christina; Sager, Martin

    2013-11-01

    The rodents Pasteurellaceae have to be excluded from the specified pathogen free experimental animal facilities. Despite the biological and economic importance of Pasteurellaceae in relation to experimental animals just a few molecular based methods are available for their detection and identification. The aim of the present investigation was to develop a multiplex PCR assay allowing detection of all rodent Pasteurellaceae and identification of [Pasteurella] pneumotropica biotype Jawetz, [P.] pneumotropica biotype Heyl and [Actinobacillus] muris, as the most prevalent members of the group. For this, a Pasteurellaceae common forward primer located on the 16S rRNA gene was used in conjunction with four different reverse primers specific for [P.] pneumotropica biotype Jawetz, [P.] pneumotropica biotype Heyl, [A.] muris and a common reverse primer for all rodent Pasteurellaceae, all targeting the 16S-23S rRNA internal transcribed spacer sequences. The performance characteristics of the assay were tested against 125 Pasteurellaceae isolates belonging to eleven different species and including 34 strains of [P.] pneumotropica biotype Jawetz, 44 strains of [P.] pneumotropica biotype Heyl and 37 strains of [A.] muris. Additionally, eight other mouse associated bacterial species which could pose a diagnostic problem were included. The assay showed 100% sensitivity and specificity. Identification of the clinical isolates was validated by ITS profiling and when necessary by 16S rRNA gene sequencing. This multiplex PCR represents the first molecular tool able to detect and differentiate in a single assay among the Pasteurellaceae found in laboratory mouse and may become a reliable alternative to the present diagnostic methods. © 2013.

  19. Multiplexed and quantitative study of biomarker expression in tumor specimens using quantum dots

    Science.gov (United States)

    Wu, Aileen; True, Lawrence; Gao, Xiaohu

    2006-02-01

    When conjugated with targeting molecules, quantum dots (QD) can be used as powerful cancer diagnostic tools providing the molecular profiles of cancer cases based on common clinical biopsies. Such personalized analyses will enable doctors to treat and manage the patients' diseases more effectively. The unique optical properties (e.g., size-tunable emission, simultaneous excitation, high brightness and photostability) of these nanoparticles make them superior to conventionally popular organic fluorophores 1-2. Polymer-encapsulated, antibody-tagged QDs were prepared and used to successfully stain both fixed and live cells as well as clinical formalin-fixed paraffin-embedded (FFPE) tissue sections. In the tissue staining study, QD bioconjugates targeting mutated p53 and early growth response protein (egr-1) were used to examine prostate cancer tissues. The tissue slides were then analyzed with a wavelength-resolved spectrometer to accurately quantify the protein expression levels. In comparison to traditional qualitatively based diagnostic procedures, quantum dot nanotechnology allows for a more quantitative, rigorous and objective analysis of tissue specimens in question. In addition, new developments in imaging instrumentation could automate spectroscopy measurements and data analysis.

  20. Detection and characterization of recombinant DNA expressing vip3A-type insecticidal gene in GMOs--standard single, multiplex and construct-specific PCR assays.

    Science.gov (United States)

    Singh, Chandra K; Ojha, Abhishek; Bhatanagar, Raj K; Kachru, Devendra N

    2008-01-01

    Vegetative insecticidal protein (Vip), a unique class of insecticidal protein, is now part of transgenic plants for conferring resistance against lepidopteron pests. In order to address the imminent regulatory need for detection and labeling of vip3A carrying genetically modified (GM) products, we have developed a standard single PCR and a multiplex PCR assay. As far as we are aware, this is the first report on PCR-based detection of a vip3A-type gene (vip-s) in transgenic cotton and tobacco. Our assay involves amplification of a 284-bp region of the vip-s gene. This assay can possibly detect as many as 20 natural wild-type isolates bearing a vip3A-like gene and two synthetic genes of vip3A in transgenic plants. The limit of detection as established by our assay for GM trait (vip-s) is 0.1%. Spiking with nontarget DNA originating from diverse plant sources had no inhibitory effect on vip-s detection. Since autoclaving of vip-s bearing GM leaf samples showed no deterioration/interference in detection efficacy, the assay seems to be suitable for processed food products as well. The vip-s amplicon identity was reconfirmed by restriction endonuclease assay. The primer set for vip-s was equally effective in a multiplex PCR assay format (duplex, triplex and quadruplex), used in conjunction with the primer sets for the npt-II selectable marker gene, Cauliflower mosaic virus 35S promoter and nopaline synthetase terminator, enabling concurrent detection of the transgene, regulatory sequences and marker gene. Further, the entire transgene construct was amplified using the forward primer of the promoter and the reverse primer of the terminator. The resultant amplicon served as a template for nested PCR to confirm the construct integrity. The method is suitable for screening any vip3A-carrying GM plant and food. The availability of a reliable PCR assay method prior to commercial release of vip3A-based transgenic crops and food would facilitate rapid and efficient regulatory

  1. A multiplex, internally controlled real-time PCR assay for detection of toxigenic Clostridium difficile and identification of hypervirulent strain 027/ST-1

    DEFF Research Database (Denmark)

    Hoegh, A M; Nielsen, J B; Lester, A

    2012-01-01

    The purpose of this study was to validate a multiplex real-time PCR assay capable of detecting toxigenic Clostridium difficile and simultaneously identifying C. difficile ribotype 027/ST-1 by targeting the toxin genes tcdA, tcdB and cdtA in one reaction and in a separate reaction identifying the Δ...... to confirm the correct identification of the Δ117 deletion in tcdC and C. difficile ribotype 027/ST-1, respectively. The PCR assay displayed a sensitivity, specificity, PPV and NPV of 99.0%, 97.4%, 87.4% and 99.8%, respectively, compared to toxigenic culture on 665 samples evaluable both by PCR and culture....... Sequencing of tcdC, ribotyping and MLST of cultured isolates validated the genotyping assay and confirmed the ability of the assay to correctly identify C. difficile ribotype 027/ST-1 in our current epidemiological setting. We describe the use of a combination of two separate PCR assays for sensitive...

  2. A Multiplex PCR/LDR Assay for Simultaneous Detection and Identification of the NIAID Category B Bacterial Food and Water-borne Pathogens

    Science.gov (United States)

    Rundell, Mark S.; Pingle, Maneesh; Das, Sanchita; Hussain, Aashiq; Ocheretina, Oksana; Charles, Macarthur; Larone, Davise H.; Spitzer, Eric D.; Golightly, Linnie; Barany, Francis

    2014-01-01

    Enteric pathogens that cause gastroenteritis remain a major global health concern. The goal of this study was to develop a multiplex PCR/LDR assay for the detection of all NIAID category B bacterial food and water-borne pathogens directly from stool specimens. To validate the PCR/LDR assay, clinical isolates of Campylobacter spp., Vibrio spp., Shigella spp., Salmonella spp., Listeria monocytogenes, Yersinia enterocolitica, and diarrheagenic Escherichia coli were tested. The sensitivity and specificity of the assay was assessed using a large number of seeded culture-negative stool specimens and a smaller set of clinical specimens from Haiti. The overall sensitivity ranged from 91 to 100% (median 100%) depending on the species. For the majority of organisms the sensitivity was 100%. The overall specificity based on initial testing ranged from 98% to 100% depending on the species. After additional testing of discordant samples the lowest specificity was 99.4%. PCR/LDR detected additional category B agents (particularly diarrheagenic E. coli) in 11/40 specimens from Haiti that were culture-positive for V. cholerae and in approximately 1% of routine culture-negative stool specimens from a hospital in New York. This study demonstrated the ability of the PCR/LDR assay to detect a large comprehensive panel of category B enteric bacterial pathogens as well as mixed infections. This type of assay has the potential to provide earlier warnings of possible public health threats and more accurate surveillance of food and water-borne pathogens. PMID:24709368

  3. Centrifugal multiplexing fixed-volume dispenser on a plastic lab-on-a-disk for parallel biochemical single-end-point assays.

    Science.gov (United States)

    La, Moonwoo; Park, Sang Min; Kim, Dong Sung

    2015-01-01

    In this study, a multiple sample dispenser for precisely metered fixed volumes was successfully designed, fabricated, and fully characterized on a plastic centrifugal lab-on-a-disk (LOD) for parallel biochemical single-end-point assays. The dispenser, namely, a centrifugal multiplexing fixed-volume dispenser (C-MUFID) was designed with microfluidic structures based on the theoretical modeling about a centrifugal circumferential filling flow. The designed LODs were fabricated with a polystyrene substrate through micromachining and they were thermally bonded with a flat substrate. Furthermore, six parallel metering and dispensing assays were conducted at the same fixed-volume (1.27 μl) with a relative variation of ±0.02 μl. Moreover, the samples were metered and dispensed at different sub-volumes. To visualize the metering and dispensing performances, the C-MUFID was integrated with a serpentine micromixer during parallel centrifugal mixing tests. Parallel biochemical single-end-point assays were successfully conducted on the developed LOD using a standard serum with albumin, glucose, and total protein reagents. The developed LOD could be widely applied to various biochemical single-end-point assays which require different volume ratios of the sample and reagent by controlling the design of the C-MUFID. The proposed LOD is feasible for point-of-care diagnostics because of its mass-producible structures, reliable metering/dispensing performance, and parallel biochemical single-end-point assays, which can identify numerous biochemical.

  4. A fluorescence-based quantitative real-time PCR assay for accurate Pocillopora damicornis species identification

    Science.gov (United States)

    Thomas, Luke; Stat, Michael; Evans, Richard D.; Kennington, W. Jason

    2016-09-01

    Pocillopora damicornis is one of the most extensively studied coral species globally, but high levels of phenotypic plasticity within the genus make species identification based on morphology alone unreliable. As a result, there is a compelling need to develop cheap and time-effective molecular techniques capable of accurately distinguishing P. damicornis from other congeneric species. Here, we develop a fluorescence-based quantitative real-time PCR (qPCR) assay to genotype a single nucleotide polymorphism that accurately distinguishes P. damicornis from other morphologically similar Pocillopora species. We trial the assay across colonies representing multiple Pocillopora species and then apply the assay to screen samples of Pocillopora spp. collected at regional scales along the coastline of Western Australia. This assay offers a cheap and time-effective alternative to Sanger sequencing and has broad applications including studies on gene flow, dispersal, recruitment and physiological thresholds of P. damicornis.

  5. Quantitation of the receptor for urokinase plasminogen activator by enzyme-linked immunosorbent assay

    DEFF Research Database (Denmark)

    Rønne, E; Behrendt, N; Ploug, M;

    1994-01-01

    variant of uPAR, suPAR, has been constructed by recombinant technique and the protein content of a purified suPAR standard preparation was determined by amino acid composition analysis. The sensitivity of the assay (0.6 ng uPAR/ml) is strong enough to measure uPAR in extracts of cultured cells and cancer......Binding of the urokinase plasminogen activator (uPA) to a specific cell surface receptor (uPAR) plays a crucial role in proteolysis during tissue remodelling and cancer invasion. An immunosorbent assay for the quantitation of uPAR has now been developed. This assay is based on two monoclonal...... tissue. Recent studies have shown that a high uPA level in tumor extracts is in some cancers associated with poor prognosis. The present assay will now allow similar prognostic studies of uPAR levels....

  6. Analysis of JC virus DNA replication using a quantitative and high-throughput assay.

    Science.gov (United States)

    Shin, Jong; Phelan, Paul J; Chhum, Panharith; Bashkenova, Nazym; Yim, Sung; Parker, Robert; Gagnon, David; Gjoerup, Ole; Archambault, Jacques; Bullock, Peter A

    2014-11-01

    Progressive Multifocal Leukoencephalopathy (PML) is caused by lytic replication of JC virus (JCV) in specific cells of the central nervous system. Like other polyomaviruses, JCV encodes a large T-antigen helicase needed for replication of the viral DNA. Here, we report the development of a luciferase-based, quantitative and high-throughput assay of JCV DNA replication in C33A cells, which, unlike the glial cell lines Hs 683 and U87, accumulate high levels of nuclear T-ag needed for robust replication. Using this assay, we investigated the requirement for different domains of T-ag, and for specific sequences within and flanking the viral origin, in JCV DNA replication. Beyond providing validation of the assay, these studies revealed an important stimulatory role of the transcription factor NF1 in JCV DNA replication. Finally, we show that the assay can be used for inhibitor testing, highlighting its value for the identification of antiviral drugs targeting JCV DNA replication.

  7. Quantitative methylene blue decolourisation assays as rapid screening tools for assessing the efficiency of catalytic reactions.

    Science.gov (United States)

    Kruid, Jan; Fogel, Ronen; Limson, Janice Leigh

    2017-05-01

    Identifying the most efficient oxidation process to achieve maximum removal of a target pollutant compound forms the subject of much research. There exists a need to develop rapid screening tools to support research in this area. In this work we report on the development of a quantitative assay as a means for identifying catalysts capable of decolourising methylene blue through the generation of oxidising species from hydrogen peroxide. Here, a previously described methylene blue test strip method was repurposed as a quantitative, aqueous-based spectrophotometric assay. From amongst a selection of metal salts and metallophthalocyanine complexes, monitoring of the decolourisation of the cationic dye methylene blue (via Fenton-like and non-Fenton oxidation reactions) by the assay identified the following to be suitable oxidation catalysts: CuSO4 (a Fenton-like catalyst), iron(II)phthalocyanine (a non-Fenton oxidation catalyst), as well as manganese(II) phthalocyanine. The applicability of the method was examined for the removal of bisphenol A (BPA), as measured by HPLC, during parallel oxidation experiments. The order of catalytic activity was identified as FePc > MnPc > CuSO4 for both BPA and MB. The quantitative MB decolourisation assay may offer a rapid method for screening a wide range of potential catalysts for oxidation processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. A DNA immunoprecipitation assay used in quantitative detection of in vitro DNA-protein complex binding.

    Science.gov (United States)

    Kim, Min Young; Chae, Ji Hyung; Oh, Chang-Ho; Kim, Chul Geun

    2013-10-15

    To begin gene transcription, several transcription factors must bind to specific DNA sequences to form a complex via DNA-protein interactions. We established an in vitro method for specific and sensitive analyses of DNA-protein interactions based on a DNA immunoprecipitation (DIP) method. We verified the accuracy and efficiency of the DIP assay in quantitatively measuring DNA-protein binding using transcription factor CP2c as a model. With our DIP assay, we could detect specific interactions within a DNA-CP2c complex, with reproducible and quantitative binding values. In addition, we were able to effectively measure the changes in DNA-CP2c binding by the addition of a small molecule, FQI1 (factor quinolinone inhibitor 1), previously identified as a specific inhibitor of this binding. To identify a new regulator of DNA-CP2c binding, we analyzed several CP2c binding peptides and found that only one class of peptide severely inhibits DNA-CP2c binding. These data show that our DIP assay is very useful in quantitatively detecting the binding dynamics of DNA-protein complex. Because DNA-protein interaction is very dynamic in different cellular environments, our assay can be applied to the detection of active transcription factors, including promoter occupancy in normal and disease conditions. Moreover, it may be used to develop a targeted regulator of specific DNA-protein interaction.

  9. Simultaneous Detection of CDC Category "A" DNA and RNA Bioterrorism Agents by Use of Multiplex PCR & RT-PCR Enzyme Hybridization Assays

    Directory of Open Access Journals (Sweden)

    Kelly J. Henrickson

    2009-10-01

    Full Text Available Assays to simultaneously detect multiple potential agents of bioterrorism are limited. Two multiplex PCR and RT-PCR enzyme hybridization assays (mPCR-EHA, mRT-PCR-EHA were developed to simultaneously detect many of the CDC category “A” bioterrorism agents. The “Bio T” DNA assay was developed to detect: Variola major (VM, Bacillus anthracis (BA, Yersinia pestis (YP, Francisella tularensis (FT and Varicella zoster virus (VZV. The “Bio T” RNA assay (mRT-PCR-EHA was developed to detect: Ebola virus (Ebola, Lassa fever virus (Lassa, Rift Valley fever (RVF, Hantavirus Sin Nombre species (HSN and dengue virus (serotypes 1-4. Sensitivity and specificity of the 2 assays were tested by using genomic DNA, recombinant plasmid positive controls, RNA transcripts controls, surrogate (spiked clinical samples and common respiratory pathogens. The analytical sensitivity (limit of detection (LOD of the DNA asssay for genomic DNA was 1×100~1×102 copies/mL for BA, FT and YP. The LOD for VZV whole organism was 1×10-2 TCID50/mL. The LOD for recombinant controls ranged from 1×102~1×103copies/mL for BA, FT, YP and VM. The RNA assay demonstrated LOD for RNA transcript controls of 1×104~1×106 copies/mL without extraction and 1×105~1×106 copies/mL with extraction for Ebola, RVF, Lassa and HSN. The LOD for dengue whole organisms was ~1×10-4 dilution for dengue 1 and 2, 1×104 LD50/mL and 1×102 LD50/mL for dengue 3 and 4. The LOD without extraction for recombinant plasmid DNA controls was ~1×103 copies/mL (1.5 input copies/reaction for Ebola, RVF, Lassa and HSN. No cross-reactivity of primers and probes used in both assays was detected with common respiratory pathogens or between targeted analytes. Clinical sensitivity was estimated using 264 surrogate clinical samples tested with the BioT DNA assay and 549 samples tested with the BioT RNA assay. The clinical specificity is 99.6% and 99.8% for BioT DNA assay and BioT RNA assay, respectively. The

  10. Quantitative digital in situ senescence-associated β-galactosidase assay

    Directory of Open Access Journals (Sweden)

    Yehezkel Shiran

    2011-04-01

    Full Text Available Abstract Background Cellular senescence plays important roles in the aging process of complex organisms, in tumor suppression and in response to stress. Several markers can be used to identify senescent cells, of which the most widely used is the senescence-associated β-galactosidase (SABG activity. The main advantage of SABG activity over other markers is the simplicity of the detection assay and the capacity to identify in situ a senescent cell in a heterogeneous cell population. Several approaches have been introduced to render the SABG assay quantitative. However none of these approaches to date has proven particularly amenable to quantitative analysis of SABG activity in situ. Furthermore the role of cellular senescence (CS in vivo remains unclear mainly due to the ambiguity of current cellular markers in identifying CS of individual cells in tissues. Results In the current study we applied a digital image analysis technique to the staining generated using the original SABG assay, and demonstrate that this analysis is highly reproducible and sensitive to subtle differences in staining intensities resulting from diverse cellular senescence pathways in culture. We have further validated our method on mouse kidney samples with and without diabetes mellitus, and show that a more accurate quantitative SABG activity with a wider range of values can be achieved at a pH lower than that used in the conventional SABG assay. Conclusions We conclude that quantitative in situ SABG assay, is feasible and reproducible and that the pH at which the reaction is performed should be tailored and chosen, depending on the research question and experimental system of interest.

  11. A new TLC bioautographic assay for qualitative and quantitative estimation of lipase inhibitors.

    Science.gov (United States)

    Tang, Jihe; Zhou, Jinge; Tang, Qingjiu; Wu, Tao; Cheng, Zhihong

    2016-01-01

    Lipase inhibitory assays based on TLC bioautography have made recent progress; however, an assay with greater substrate specificity and quantitative capabilities would advance the efficacy of this particular bioassay. To address these limitations, a new TLC bioautographic assay for detecting lipase inhibitors was developed and validated in this study. The new TLC bioautographic assay was based on reaction of lipase with β-naphthyl myristate and the subsequent formation of the purple dye between β-naphthol and Fast Blue B salt (FBB). The relative lipase inhibitory capacity (RLIC) was determined by a TLC densitometry with fluorescence detection, expressed as orlistat equivalents in millimoles on a per sample weight basis. Six pure compounds and three natural extracts were evaluated for their potential lipase inhibitory activities by this TLC bioautographic assay. The β-naphthyl myristate as the substrate improved the detection sensitivity and specificity significantly. The limit of detection (LOD) of this assay was 0.01 ng for orlistat, the current treatment for obesity. This assay has acceptable accuracy (92.07-105.39%), intra-day and inter-day precisions [relative standard deviation (RSD), 2.64-4.40%], as well as intra-plate and inter-plate precisions (RSD, 1.8-4.9%). The developed method is rapid, simple, stable, and specific for screening and estimation of the potential lipase inhibitors. Copyright © 2015 John Wiley & Sons, Ltd.

  12. A quantitative infection assay for human type I, II, and III interferon antiviral activities

    Science.gov (United States)

    2013-01-01

    Background Upon virus infection, cells secrete a diverse group of antiviral molecules that signal proximal cells to enter into an antiviral state, slowing or preventing viral spread. These paracrine signaling molecules can work synergistically, so measurement of any one antiviral molecule does not reflect the total antiviral activity of the system. Results We have developed an antiviral assay based on replication inhibition of an engineered fluorescent vesicular stomatitis virus reporter strain on A549 human lung epithelial cells. Our assay provides a quantitative functional readout of human type I, II, and III interferon activities, and it provides better sensitivity, intra-, and inter-assay reproducibility than the traditional crystal violet based assay. Further, it eliminates cell fixation, rinsing, and staining steps, and is inexpensive to implement. Conclusions A dsRed2-strain of vesicular stomatitis virus that is sensitive to type I, II, and III interferons was used to develop a convenient and sensitive assay for interferon antiviral activity. We demonstrate use of the assay to quantify the kinetics of paracrine antiviral signaling from human prostate cancer (PC3) cells in response to viral infection. The assay is applicable to high-throughput screening for anti-viral compounds as well as basic studies of cellular antiviral signaling. PMID:23829314

  13. Detection of 22 common leukemic fusion genes using a single-step multiplex qRT-PCR-based assay.

    Science.gov (United States)

    Lyu, Xiaodong; Wang, Xianwei; Zhang, Lina; Chen, Zhenzhu; Zhao, Yu; Hu, Jieying; Fan, Ruihua; Song, Yongping

    2017-07-25

    Fusion genes generated from chromosomal translocation play an important role in hematological malignancies. Detection of fusion genes currently employ use of either conventional RT-PCR methods or fluorescent in situ hybridization (FISH), where both methods involve tedious methodologies and require prior characterization of chromosomal translocation events as determined by cytogenetic analysis. In this study, we describe a real-time quantitative reverse transcription PCR (qRT-PCR)-based multi-fusion gene screening method with the capacity to detect 22 fusion genes commonly found in leukemia. This method does not require pre-characterization of gene translocation events, thereby facilitating immediate diagnosis and therapeutic management. We performed fluorescent qRT-PCR (F-qRT-PCR) using a commercially-available multi-fusion gene detection kit on a patient cohort of 345 individuals comprising 108 cases diagnosed with acute myeloid leukemia (AML) for initial evaluation; remaining patients within the cohort were assayed for confirmatory diagnosis. Results obtained by F-qRT-PCR were compared alongside patient analysis by cytogenetic characterization. Gene translocations detected by F-qRT-PCR in AML cases were diagnosed in 69.4% of the patient cohort, which was comparatively similar to 68.5% as diagnosed by cytogenetic analysis, thereby demonstrating 99.1% concordance. Overall gene fusion was detected in 53.7% of the overall patient population by F-qRT-PCR, 52.9% by cytogenetic prediction in leukemia, and 9.1% in non-leukemia patients by both methods. The overall concordance rate was calculated to be 99.0%. Fusion genes were detected by F-qRT-PCR in 97.3% of patients with CML, followed by 69.4% with AML, 33.3% with acute lymphoblastic leukemia (ALL), 9.1% with myelodysplastic syndromes (MDS), and 0% with chronic lymphocytic leukemia (CLL). We describe the use of a F-qRT-PCR-based multi-fusion gene screening method as an efficient one-step diagnostic procedure as an

  14. Quantitative Molecular Assay for Fingerprinting Microbial Communities of Wastewater and Estrogen-Degrading Consortia

    Science.gov (United States)

    Yu, Chang-Ping; Ahuja, Rajiv; Sayler, Gary; Chu, Kung-Hui

    2005-01-01

    A quantitative fingerprinting method, called the real-time terminal restriction fragment length polymorphism (real-time-t-RFLP) assay, was developed for simultaneous determination of microbial diversity and abundance within a complex community. The real-time-t-RFLP assay was developed by incorporating the quantitative feature of real-time PCR and the fingerprinting feature of t-RFLP analysis. The assay was validated by using a model microbial community containing three pure strains, an Escherichia coli strain (gram negative), a Pseudomonas fluorescens strain (gram negative), and a Bacillus thuringiensis strain (gram positive). Subsequently, the real-time-t-RFLP assay was applied to and proven to be useful for environmental samples; the richness and abundance of species in microbial communities (expressed as the number of 16S rRNA gene copies of each ribotype per milliliter) of wastewater and estrogen-degrading consortia (enriched with 17α-estradiol, 17β-estradiol, or estrone) were successfully characterized. The results of this study strongly suggested that the real-time-t-RFLP assay can be a powerful molecular tool for gaining insight into microbial communities in various engineered systems and natural habitats. PMID:15746346

  15. A rapid and quantitative coat protein complex II vesicle formation assay using luciferase reporters.

    Science.gov (United States)

    Fromme, J Chris; Kim, Jinoh

    2012-02-15

    The majority of protein export from the endoplasmic reticulum (ER) is facilitated by coat protein complex II (COPII). The COPII proteins deform the ER membrane into vesicles at the ER exit sites. During the vesicle formation step, the COPII proteins load cargo molecules into the vesicles. Formation of COPII vesicles has been reconstituted in vitro in yeast and in mammalian systems. These in vitro COPII vesicle formation assays involve incubation of microsomal membranes and purified COPII proteins with nucleotides. COPII vesicles are separated from the microsomes by differential centrifugation. Interestingly, the efficiency of the COPII vesicle formation with purified recombinant mammalian COPII proteins is lower than that with cytosol, suggesting that an additional cytosolic factor(s) is involved in this process. Indeed, other studies have also implicated additional factors. To facilitate biochemical identification of such regulators, a rapid and quantitative COPII vesicle formation assay is necessary because the current assay is lengthy. To expedite this assay, we generated luciferase reporter constructs. The reporter proteins were packaged into COPII vesicles and yielded quantifiable luminescent signals, resulting in a rapid and quantitative COPII vesicle formation assay.

  16. Assessment of a novel multiplex real-time PCR assay for the detection of the CBPP agent Mycoplasma mycoides subsp. mycoides SC through experimental infection in cattle

    Directory of Open Access Journals (Sweden)

    Tomaso Herbert

    2011-08-01

    Full Text Available Abstract Background Mycoplasma mycoides subsp. mycoides SC is the pathogenic agent of contagious bovine pleuropneumonia (CBPP, the most important disease of cattle in Africa causing significant economic losses. The re-emergence of CBPP in Europe in the 1980s and 1990s illustrates that it is still a threat also to countries that have successfully eradicated the disease in the past. Nowadays, probe-based real-time PCR techniques are among the most advanced tools for a reliable identification and a sensitive detection of many pathogens, but only few protocols have been published so far for CBPP diagnosis. Therefore we developed a novel TaqMan®-based real-time PCR assay comprising the amplification of two independent targets (MSC_0136 and MSC_1046 and an internal exogenous amplification control in a multiplex reaction and evaluated its diagnostic performance with clinical samples. Results The assays detected 49 MmmSC strains from diverse temporal and geographical origin, but did not amplify DNA from 82 isolates of 20 non-target species confirming a specificity of 100%. The detection limit was determined to be 10 fg DNA per reaction for the MSC_0136 assay and 100 fg per reaction for the MSC_1046 assay corresponding to 8 and 80 genome equivalents, respectively. The diagnostic performance of the assay was evaluated with clinical samples from 19 experimentally infected cattle and from 20 cattle without CBPP and compared to those of cultivation and a conventional PCR protocol. The two rt-PCR tests proved to be the most sensitive methods and identified all 19 infected animals. The different sample types used were not equally suitable for MmmSC detection. While 94.7% of lung samples from the infected cohort were positively tested in the MSC_0136 assay, only 81% of pulmonal lymph nodes, 31% of mediastinal lymph nodes and 25% of pleural fluid samples gave a positive result. Conclusions The developed multiplex rt-PCR assay is recommended as an efficient tool

  17. Application of a Multiplex Quantitative PCR to Assess Prevalence and Intensity Of Intestinal Parasite Infections in a Controlled Clinical Trial

    DEFF Research Database (Denmark)

    Llewellyn, Stacey; Inpankaew, Tawin; Nery, Susana Vaz;

    2016-01-01

    multiplex real-time PCR reactions the first targeting: Necator americanus, Ancylostoma spp., Ascaris spp., and Trichuris trichiura; and the second Entamoeba histolytica, Cryptosporidium spp., Giardia. duodenalis, and Strongyloides stercoralis. Samples were also subject to sodium nitrate flotation...

  18. Influence of hydrodynamic conditions on quantitative cellular assays in microfluidic systems.

    Science.gov (United States)

    Yin, Huabing; Zhang, Xunli; Pattrick, Nicola; Klauke, Norbert; Cordingley, Hayley C; Haswell, Stephen J; Cooper, Jonathan M

    2007-09-15

    This study demonstrates the importance of the hydrodynamic environment in microfluidic systems in quantitative cellular assays using live cells. Commonly applied flow conditions used in microfluidics were evaluated using the quantitative intracellular Ca2+ analysis of Chinese hamster ovary (CHO) cells as a model system. Above certain thresholds of shear stress, hydrodynamically induced intracellular Ca2+ fluxes were observed which mimic the responses induced by chemical stimuli, such as the agonist uridine 5'-triphosphate tris salt (UTP). This effect is of significance given the increasing application of microfluidic devices in high-throughput cellular analysis for biophysical applications and pharmacological screening.

  19. Multiplex RT-PCR and indirect immunofluorescence assays for detection and subtyping of human influenza virus in Tunisia.

    Science.gov (United States)

    Ben M'hadheb, Manel; Harrabi, Myriam; Souii, Amira; Jrad-Battikh, Nadia; Gharbi, Jawhar

    2015-03-01

    Influenza viruses are negative stranded segmented RNA viruses belonging to Orthomyxoviridae family. They are classified into three types A, B, and C. Type A influenza viruses are classified into subtypes according to the antigenic characters of the surface glycoproteins: hemagglutinin (H) and neuraminidase (N). The aim of the present study is to develop a fast and reliable multiplex RT-PCR technique for detecting simultaneously the subtypes A/H1N1 and A/H3N2 of influenza virus. Our study included 398 patients (mean age 30.33 ± 19.92 years) with flu or flu-like syndromes, consulting physicians affiliated with collaborating teams. A multiplex RT-PCR detecting A/H1N1 and A/H3N2 influenza viruses and an examination by indirect immunofluorescence (IFI) were performed. In the optimized conditions, we diagnosed by IFI a viral infection in 90 patients (22.6 %): 85 cases of influenza type A, four cases of influenza type B, and only one case of coinfection with types A and B. An evaluation of the technique was performed on 19 clinical specimens positive in IFI, and we detected eight cases of A/H3N2, five cases of A/H1N1, one case of influenza virus type A which is not an H1N1 nor H3N2, and five negative cases. Multiplex RT-PCR is a sensitive technique allowing an effective and fast diagnosis of respiratory infections caused by influenza viruses in which the optimization often collides with problems of sensibility.

  20. Multiplex Real-Time PCR Assays for Screening of Shiga Toxin 1 and 2 Genes, Including All Known Subtypes, and Escherichia coli O26-, O111-, and O157-Specific Genes in Beef and Sprout Enrichment Cultures.

    Science.gov (United States)

    Harada, Tetsuya; Iguchi, Atsushi; Iyoda, Sunao; Seto, Kazuko; Taguchi, Masumi; Kumeda, Yuko

    2015-10-01

    Shiga toxin family members have recently been classified using a new nomenclature into three Stx1 subtypes (Stx1a, Stx1c, and Stx1d) and seven Stx2 subtypes (Stx2a, Stx2b, Stx2c, Stx2d, Stx2e, Stx2f, and Stx2g). To develop screening methods for Stx genes, including all of these subtype genes, and Escherichia coli O26-, O111-, and O157-specific genes in laboratory investigations of Shiga toxin-producing E. coli (STEC) foodborne cases, we developed multiplex real-time PCR assays and evaluated their specificity and quantitative accuracy using STEC and non-STEC isolates, recombinant plasmids, and food enrichment cultures and by performing STEC spiking experiments with beef and sprout enrichment cultures. In addition, we evaluated the relationship between the recovery rates of the target strains by direct plating and immunomagnetic separation and the cycle threshold (CT) values of the real-time PCR assays for the Stx subtypes and STEC O26, O111, and O157 serogroups. All three stx1- and seven stx2-subtype genes were detected by real-time PCR with high sensitivity and specificity, and the quantitative accuracy of this assay was confirmed using control plasmids and STEC spiking experiments. The results of the STEC spiking experiments suggest that it is not routinely possible to isolate STEC from enrichment cultures with real-time PCR CT values greater than 30 by direct plating on MacConkey agar, although highly selective media and immunomagnetic beads were able to isolate the inoculated strains from the enrichment cultures. These data suggest that CT values obtained from the highly quantitative real-time PCR assays developed in this study provide useful information to develop effective isolation strategies for STEC from food samples. The real-time PCR assays developed here are expected to aid in investigations of infections or outbreaks caused by STEC harboring any of the stx-subtype genes in the new Stx nomenclature, as well as STEC O26, O111, and O157.

  1. A qPCR and multiplex pyrosequencing assay combined with automated data processing for rapid and unambiguous detection of ESBL-producers Enterobacteriaceae.

    Science.gov (United States)

    Deccache, Yann; Irenge, Leonid M; Ambroise, Jérôme; Savov, Encho; Marinescu, Dan; Chirimwami, Raphael B; Gala, Jean-Luc

    2015-12-01

    Rapid and specific detection of extended-spectrum β-lactamase-producing (ESBL) bacteria is crucial both for timely antibiotic therapy when treating infected patients as well as for appropriate infection control measures aimed at curbing the spread of ESBL-producing isolates. Whereas a variety of phenotypic methods are currently available for ESBL detection, they remain time consuming and sometimes difficult to interpret while being also affected by a lack of sensitivity and specificity. Considering the longer turnaround time (TAT) of susceptibility testing and culture results, DNA-based ESBL identification would be a valuable surrogate for phenotypic-based methods. Putative ESBL-positive Enterobacteriaceae isolates (n = 330) from clinical specimen were prospectively collected in Bulgaria, Romania and Democratic Republic of Congo and tested in this study. All isolates were assessed for ESBL-production by the E-test method and those giving undetermined ESBL status were re-tested using the combination disk test. A genotypic assay successively combining qPCR detection of blaCTX-M, blaTEM and blaSHV genes with a multiplex pyrosequencing of blaTEM and blaSHV genes was developed in order to detect the most common ESBL-associated TEM and SHV single nucleotides polymorphisms, irrespective of their plasmid and/or chromosomal location. This assay was applied on all Enterobacteriaceae isolates (n = 330). Phenotypic and genotypic results matched in 324/330 (98.2%). Accordingly, real-time PCR combined with multiplex pyrosequencing appears to be a reliable and easy-to-perform assay with high-throughput identification and fast TAT (~5 h).

  2. A novel multiplex assay combining autoantibodies plus PSA has potential implications for classification of prostate cancer from non-malignant cases

    Directory of Open Access Journals (Sweden)

    Pantuck Allan J

    2011-04-01

    Full Text Available Abstract Background The lack of sufficient specificity and sensitivity among conventional cancer biomarkers, such as prostate specific antigen (PSA for prostate cancer has been widely recognized after several decades of clinical implications. Autoantibodies (autoAb among others are being extensively investigated as potential substitute markers, but remain elusive. One major obstacle is the lack of a sensitive and multiplex approach for quantifying autoAb against a large panel of clinically relevant tumor-associated antigens (TAA. Methods To circumvent preparation of phage lysates and purification of recombinant proteins, we identified B cell epitopes from a number of previously defined prostate cancer-associated antigens (PCAA. Peptide epitopes from cancer/testis antigen NY-ESO-1, XAGE-1b, SSX-2,4, as well as prostate cancer overexpressed antigen AMACR, p90 autoantigen, and LEDGF were then conjugated with seroMAP microspheres to allow multiplex measurement of autoAb present in serum samples. Moreover, simultaneous quantification of autoAb plus total PSA was achieved in one reaction, and termed the "A+PSA" assay. Results Peptide epitopes from the above 6 PCAA were identified and confirmed that autoAb against these peptide epitopes reacted specifically with the full-length protein. A pilot study was conducted with the A+PSA assay using pre-surgery sera from 131 biopsy-confirmed prostate cancer patients and 121 benign prostatic hyperplasia and/or prostatitis patients. A logistic regression-based A+PSA index was found to enhance sensitivities and specificities over PSA alone in distinguishing prostate cancer from nonmalignant cases. The A+PSA index also reduced false positive rate and improved the area under a receiver operating characteristic curve. Conclusions The A+PSA assay represents a novel platform that integrates autoAb signatures with a conventional cancer biomarker, which may aid in the diagnosis and prognosis of prostate cancer and others.

  3. A quantitative real-time RT-PCR assay for mature C. albicans biofilms

    Directory of Open Access Journals (Sweden)

    Dongari-Bagtzoglou Anna

    2011-05-01

    Full Text Available Abstract Background Fungal biofilms are more resistant to anti-fungal drugs than organisms in planktonic form. Traditionally, susceptibility of biofilms to anti-fungal agents has been measured using the 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl-2H-tetrazolium-5-carboxyanilide (XTT assay, which measures the ability of metabolically active cells to convert tetrazolium dyes into colored formazan derivatives. However, this assay has limitations when applied to high C. albicans cell densities because substrate concentration and solubility are limiting factors in the reaction. Because mature biofilms are composed of high cell density populations we sought to develop a quantitative real-time RT-PCR assay (qRT-PCR that could accurately assess mature biofilm changes in response to a wide variety of anti-fungal agents, including host immune cells. Results The XTT and qRT-PCR assays were in good agreement when biofilm changes were measured in planktonic cultures or in early biofilms which contain lower cell densities. However, the real-time qRT-PCR assay could also accurately quantify small-medium size changes in mature biofilms caused by mechanical biomass reduction, antifungal drugs or immune effector cells, that were not accurately quantifiable with the XTT assay. Conclusions We conclude that the qRT-PCR assay is more accurate than the XTT assay when measuring small-medium size effects of anti-fungal agents against mature biofilms. This assay is also more appropriate when mature biofilm susceptibility to anti-fungal agents is tested on complex biological surfaces, such as organotypic cultures.

  4. Rapid Multiplexed Flow Cytometric Assay for Botulinum Neurotoxin Detection Using an Automated Fluidic Microbead-Trapping Flow Cell for Enhanced Sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Ozanich, Richard M.; Bruckner-Lea, Cindy J.; Warner, Marvin G.; Miller, Keith D.; Antolick, Kathryn C.; Marks, James D.; Lou, Jianlong; Grate, Jay W.

    2009-07-15

    A bead-based sandwich immunoassay for botulinum neurotoxin serotype A (BoNT/A) has been developed and demonstrated using a recombinant 50 kDa fragment (BoNT/A-HC-fragment) of the BoNT/A heavy chain (BoNT/A-HC) as a structurally valid simulant. Three different anti-BoNT/A antibodies were attached to three different fluorescent dye encoded flow cytometry beads for multiplexing. The assay was conducted in two formats: a manual microcentrifuge tube format and an automated fluidic system format. Flow cytometry detection was used for both formats. The fluidic system used a novel microbead-trapping flow cell to capture antibody-coupled beads with subsequent sequential perfusion of sample, wash, dye-labeled reporter antibody, and final wash solutions. After the reaction period, the beads were collected for analysis by flow cytometry. Sandwich assays performed on the fluidic system gave median fluorescence intensity signals on the flow cytometer that were 2-4 times higher than assays performed manually in the same amount of time. Limits of detection were estimated at 1 pM (~50 pg/mL for BoNT/A-HC-fragment) for the 15 minute fluidic assay.

  5. Clinical Application of Multiplex PCR Assay for the Diagnosis of the Etiology of Genital Ulcer Disease Among Patients Attending STD Clinics in Guangzhou, China

    Institute of Scientific and Technical Information of China (English)

    朱慧兰; 苏向阳; 林路洋; 叶兴东

    2002-01-01

    Objectives: To develop a method of simultaneous PCRdetection of Haemophilus ducreyi, Treponema pallidum, andHerpes Simplex Virus Types 1 and 2 from genital ulcersamong patients attending STD clinics in Guangzhou, China;and evaluate the clinical application of multiplex PCR (M-PCR) assay for diagnosing the etiology of genital ulcerdiseases (GUD). Methods: 244 patients with a genital ulcer were evaluated.Clinical etiology of GUD was based on physical appearanceand microbiologic evaluations that included dark fieldmicroscopy examination (D-F) and serology test for syphilis(STS). Swabs of each genital ulcer were tested for HSVantigen by enzyme immunoassay (EIA) and processed in anM-PCR assay for simultaneous detection of T. pallidum, HSVand H. ducreyi. Results: The standard strains of T. pallidum, HSV and H.ducreyi were amplified by M-PCR, producing amplifiedproducts of 260bp,432bp,170bp, respectively. The sensitivityof M-PCR is 102pg DNA. M-PCR assay for T. pallidum, HSVand H. ducreyi showed good agreement when compared withD-F detection for T. pallidum, STS, H. ducreyi culture and EIAfor HSV antigen (Kappa scores are 0.774,0.704,0.793,0.756,respectively). Conclusions: The M-PCR is a convenient, accurate andreliable assay for the detection of T. pallidum, HSV and H.ducreyi from genital ulcers, and can be used as a method of diagnosing the etiology of GUD.

  6. Simple Identification of Human Taenia Species by Multiplex Loop-Mediated Isothermal Amplification in Combination with Dot Enzyme-Linked Immunosorbent Assay.

    Science.gov (United States)

    Nkouawa, Agathe; Sako, Yasuhito; Okamoto, Munehiro; Ito, Akira

    2016-06-01

    For differential detection of Taenia solium, Taenia saginata, and Taenia asiatica, loop-mediated isothermal amplification (LAMP) assay targeting the cytochrome c oxidase subunit 1 gene has been recently developed and shown to be sensitive, specific, and effective. However, to achieve differential identification, one specimen requires three reaction mixtures containing a primer set of each Taenia species separately, which is complex and time consuming and increases the risk of cross-contamination. In this study, we developed a simple differential identification of human Taenia species using multiplex LAMP (mLAMP) in combination with dot enzyme-linked immunosorbent assay (dot-ELISA). Forward inner primers of T. solium, T. saginata, and T. asiatica labeled with fluorescein isothiocyanate (FITC), digoxigenin (DIG), and tetramethylrhodamine (TAMRA), respectively, and biotin-labeled backward inner primers were used in mLAMP. The mLAMP assay succeeded in specific amplification of each respective target gene in a single tube. Furthermore, the mLAMP product from each species was easily distinguished by dot-ELISA with an antibody specific for FITC, DIG, or TAMRA. The mLAMP assay in combination with dot-ELISA will make identification of human Taenia species simpler, easier, and more practical.

  7. Tracking the Invasion of Small Numbers of Cells in Paper-Based Assays with Quantitative PCR.

    Science.gov (United States)

    Truong, Andrew S; Lochbaum, Christian A; Boyce, Matthew W; Lockett, Matthew R

    2015-11-17

    Paper-based scaffolds are an attractive material for culturing mammalian cells in a three-dimensional environment. There are a number of previously published studies, which utilize these scaffolds to generate models of aortic valves, cardiac ischemia and reperfusion, and solid tumors. These models have largely relied on fluorescence imaging and microscopy to quantify cells in the scaffolds. We present here a polymerase chain reaction (PCR)-based method, capable of quantifying multiple cell types in a single culture with the aid of DNA barcodes: unique sequences of DNA introduced to the genome of individual cells or cell types through lentiviral transduction. PCR-based methods are highly specific and are amenable to high-throughput and multiplexed analyses. To validate this method, we engineered two different breast cancer lines to constitutively express either a green or red fluorescent protein. These cells lines allowed us to directly compare the ability of fluorescence imaging (of the fluorescent proteins) and qPCR (of the unique DNA sequences of the fluorescent proteins) to quantify known numbers of cells in the paper based-scaffolds. We also used both methods to quantify the distribution of these breast cell lines in homotypic and heterotypic invasion assays. In the paper-based invasion assays, a single sheet of paper containing cells suspended in a hydrogel was sandwiched between sheets of paper containing only hydrogel. The stack was incubated, and the cells invaded the adjacent layers. The individual sheets of the invasion assay were then destacked and the number of cells in each layer quantified. Our results show both methods can accurately detect cell populations of greater than 500 cells. The qPCR method can repeatedly and accurately detect as few as 50 cells, allowing small populations of highly invasive cells to be detected and differentiated from other cell types.

  8. Western blot assay for quantitative and qualitative antigen detection in vaccine development.

    Science.gov (United States)

    Kumar, Sanjai; Zheng, Hong; Mahajan, Babita; Kozakai, Yukiko; Morin, Merribeth; Locke, Emily

    2014-05-01

    Immunological methods for quantitative measurement, antigenic characterization, and monitoring the stability of active immunogenic component(s) are a critical need in the vaccine development process. This unit describes an enhanced chemiluminescence-based western blot for quantitative detection of Plasmodium falciparum circumsporozoite protein (PfCSP), a major malaria candidate vaccine antigen. The most salient features of this assay are its high sensitivity and reproducibility; it can reliably detect ∼5 to 10 pg PfCSP expressed on native parasites or recombinantly expressed in Escherichia coli. Although described for a specific vaccine antigen, this assay should be applicable for any antigen-antibody combination for which relevant detection reagents are available. Detailed stepwise experimental procedures and methods for data acquisition and analysis are described. Copyright © 2014 John Wiley & Sons, Inc.

  9. Quantitative assay of photoinduced DNA strand breaks by real-time PCR.

    Science.gov (United States)

    Wiczk, Justyna; Westphal, Kinga; Rak, Janusz

    2016-09-05

    Real-time PCR (qPCR) - a modern methodology primarily used for studying gene expression has been employed for the quantitative assay of an important class of DNA damage - single strand breaks. These DNA lesions which may lead to highly cytotoxic double strand breaks were quantified in a model system where double stranded DNA was sensitized to UV photons by labeling with 5-bromo-2'-deoxyuridine. The amount of breaks formed due to irradiation with several doses of 320nm photons was assayed by two independent methods: LC-MS and qPCR. A very good agreement between the relative damage measured by the two completely different analytical tools proves the applicability of qPCR for the quantitative analysis of SSBs. Our results suggest that the popularity of the hitherto underestimated though accurate and site-specific technique of real-time PCR may increase in future DNA damage studies.

  10. Analysis of JC virus DNA replication using a quantitative and high-throughput assay

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jong; Phelan, Paul J.; Chhum, Panharith; Bashkenova, Nazym; Yim, Sung; Parker, Robert [Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111 (United States); Gagnon, David [Institut de Recherches Cliniques de Montreal (IRCM), 110 Pine Avenue West, Montreal, Quebec, Canada H2W 1R7 (Canada); Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec (Canada); Gjoerup, Ole [Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111 (United States); Archambault, Jacques [Institut de Recherches Cliniques de Montreal (IRCM), 110 Pine Avenue West, Montreal, Quebec, Canada H2W 1R7 (Canada); Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec (Canada); Bullock, Peter A., E-mail: Peter.Bullock@tufts.edu [Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111 (United States)

    2014-11-15

    Progressive Multifocal Leukoencephalopathy (PML) is caused by lytic replication of JC virus (JCV) in specific cells of the central nervous system. Like other polyomaviruses, JCV encodes a large T-antigen helicase needed for replication of the viral DNA. Here, we report the development of a luciferase-based, quantitative and high-throughput assay of JCV DNA replication in C33A cells, which, unlike the glial cell lines Hs 683 and U87, accumulate high levels of nuclear T-ag needed for robust replication. Using this assay, we investigated the requirement for different domains of T-ag, and for specific sequences within and flanking the viral origin, in JCV DNA replication. Beyond providing validation of the assay, these studies revealed an important stimulatory role of the transcription factor NF1 in JCV DNA replication. Finally, we show that the assay can be used for inhibitor testing, highlighting its value for the identification of antiviral drugs targeting JCV DNA replication. - Highlights: • Development of a high-throughput screening assay for JCV DNA replication using C33A cells. • Evidence that T-ag fails to accumulate in the nuclei of established glioma cell lines. • Evidence that NF-1 directly promotes JCV DNA replication in C33A cells. • Proof-of-concept that the HTS assay can be used to identify pharmacological inhibitor of JCV DNA replication.

  11. Quantitative imaging of nanometric optical path length modulations by time-averaged heterodyne holography in coherent frequency-division multiplexing regime

    CERN Document Server

    Bruno, Francois; Lesaffre, Max; Verrier, Nicolas; Atlan, Michael

    2013-01-01

    We report a demonstration of amplitude and phase imaging of out-of-plane sinusoidal vibration at nanometer scales with a heterodyne holographic interferometer. Time-averaged holograms of a phase-modulated optical field are recorded with an exposure time much longer than the modulation period. Optical heterodyning, a frequency-conversion process aimed at shifting a given radiofrequency optical side band in the sensor bandwidth, is performed with an off-axis and frequency-shifted optical local oscillator. The originality of the proposed method is to make use of a multiplexed local oscillator to address several optical side bands into the temporal bandwidth of the sensor array. This process is called coherent frequency-division multiplexing. It enables simultaneous recording and pixel-to-pixel division of two side band holograms, which permits quantitative mapping of the modulation depth of local optical path lengths yielding small optical phase modulations. Additionally, a linear frequency chirp ensures the ret...

  12. Quantitative assays for new families of esterified oxylipins generated by immune cells

    OpenAIRE

    2010-01-01

    Phospholipid-esterified oxylipins are newly described families of bioactive lipids generated by lipoxygenases in immune cells. Until now, assays for their quantitation were not well developed or widely available. Here, we describe a mass spectrometric protocol that enables accurate measurement of several, in particular hydro(pero)xyeicosatetraenoic acids (H(p)ETEs), hydroxyoctadecadienoic acids (HODEs), hydroxydocosahexaenoic acids (HDOHEs) and keto-eicosatetraenoic acids (KETEs), attached to...

  13. Multicenter Evaluation of the Elecsys Hepatitis B Surface Antigen Quantitative Assay

    Science.gov (United States)

    Zacher, B. J.; Moriconi, F.; Bowden, S.; Hammond, R.; Louisirirotchanakul, S.; Phisalprapa, P.; Tanwandee, T.; Wursthorn, K.; Brunetto, M. R.; Wedemeyer, H.; Bonino, F.

    2011-01-01

    The Elecsys hepatitis B surface antigen (HBsAg) II quantitative assay is a new quantitative electrochemiluminescence immunoassay which uses onboard dilution and a simple algorithm to determine HBsAg levels expressed in international units (IU)/ml (standardized against the World Health Organization [WHO] Second International Standard). This study evaluated its performance using routine serum samples from a wide range of HBsAg carriers and patients with chronic hepatitis B (CHB). HBsAg levels were measured in serum samples collected independently by five centers in Europe, Australia, and Asia. Serial dilution analyses were performed to assess the recommended dilution algorithm and determine the assay range free of hook effect. Assay precision was also established. Following assessment of serial dilutions (1:100 to 1:1,000,000) of the 611 samples analyzed, 70.0% and 85.6% of samples tested with analyzers incorporating 1:100 (Elecsys 2010 and cobas e 411) and 1:400 (Modular Analytics E170) onboard dilution, respectively, fell within the linear range of the assay, providing a final result on the first test. No high-dose hook effect was seen up to the maximum HBsAg serum level tested (870,000 IU/ml) using the dilution algorithm. HBsAg levels were reliably determined across all hepatitis B virus (HBV) genotypes, phases of HBV infection, and stages of disease tested. Precision was high across all analyzers (% coefficient of variation [CV], 1.4 to 9.6; HBsAg concentrations, 0.1 to 37,300 IU/ml). The Elecsys HBsAg II quantitative assay accurately and reliably quantifies HBsAg in routine clinical samples. Onboard dilution minimizes retesting and reduces the potential for error. PMID:21880853

  14. Multicenter evaluation of the Elecsys hepatitis B surface antigen quantitative assay.

    Science.gov (United States)

    Zacher, B J; Moriconi, F; Bowden, S; Hammond, R; Louisirirotchanakul, S; Phisalprapa, P; Tanwandee, T; Wursthorn, K; Brunetto, M R; Wedemeyer, H; Bonino, F

    2011-11-01

    The Elecsys hepatitis B surface antigen (HBsAg) II quantitative assay is a new quantitative electrochemiluminescence immunoassay which uses onboard dilution and a simple algorithm to determine HBsAg levels expressed in international units (IU)/ml (standardized against the World Health Organization [WHO] Second International Standard). This study evaluated its performance using routine serum samples from a wide range of HBsAg carriers and patients with chronic hepatitis B (CHB). HBsAg levels were measured in serum samples collected independently by five centers in Europe, Australia, and Asia. Serial dilution analyses were performed to assess the recommended dilution algorithm and determine the assay range free of hook effect. Assay precision was also established. Following assessment of serial dilutions (1:100 to 1:1,000,000) of the 611 samples analyzed, 70.0% and 85.6% of samples tested with analyzers incorporating 1:100 (Elecsys 2010 and cobas e 411) and 1:400 (Modular Analytics E170) onboard dilution, respectively, fell within the linear range of the assay, providing a final result on the first test. No high-dose hook effect was seen up to the maximum HBsAg serum level tested (870,000 IU/ml) using the dilution algorithm. HBsAg levels were reliably determined across all hepatitis B virus (HBV) genotypes, phases of HBV infection, and stages of disease tested. Precision was high across all analyzers (% coefficient of variation [CV], 1.4 to 9.6; HBsAg concentrations, 0.1 to 37,300 IU/ml). The Elecsys HBsAg II quantitative assay accurately and reliably quantifies HBsAg in routine clinical samples. Onboard dilution minimizes retesting and reduces the potential for error.

  15. Sensitive quantitative assays for tau and phospho-tau in transgenic mouse models

    Science.gov (United States)

    Acker, Christopher M.; Forest, Stefanie K.; Zinkowski, Ray; Davies, Peter; d’Abramo, Cristina

    2012-01-01

    Transgenic mouse models have been an invaluable resource in elucidating the complex roles of Aβ and tau in Alzheimer’s disease. While many laboratories rely on qualitative or semi-quantitative techniques when investigating tau pathology, we have developed four Low-Tau Sandwich ELISAs that quantitatively assess different epitopes of tau relevant to Alzheimer’s disease: total tau, pSer-202, pThr-231, pSer-396/404. In this study, after comparing our assays to commercially available ELISAs, we demonstrate our assays high specificity and quantitative capabilities using brain homogenates from tau transgenic mice, htau, JNPL3, tau KO mice. All four ELISAs show excellent specificity for mouse and human tau, with no reactivity to tau KO animals. An age dependent increase of serum tau in both tau transgenic models was also seen. Taken together, these assays are valuable methods to quantify tau and phospho-tau levels in transgenic animals, by examining tau levels in brain and measuring tau as a potential serum biomarker. PMID:22727277

  16. Paper-based solid-phase multiplexed nucleic acid hybridization assay with tunable dynamic range using immobilized quantum dots as donors in fluorescence resonance energy transfer.

    Science.gov (United States)

    Noor, M Omair; Krull, Ulrich J

    2013-08-06

    A multiplexed solid-phase nucleic acid hybridization assay on a paper-based platform is presented using multicolor immobilized quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET). The surface of paper was modified with imidazole groups to immobilize two types of QD-probe oligonucleotide conjugates that were assembled in solution. Green-emitting QDs (gQDs) and red-emitting QDs (rQDs) served as donors with Cy3 and Alexa Fluor 647 (A647) acceptors. The gQD/Cy3 FRET pair served as an internal standard, while the rQD/A647 FRET pair served as a detection channel, combining the control and analytical test zones in one physical location. Hybridization of dye-labeled oligonucleotide targets provided the proximity for FRET sensitized emission from the acceptor dyes, which served as an analytical signal. Hybridization assays in the multicolor format provided a limit of detection of 90 fmol and an upper limit of dynamic range of 3.5 pmol. The use of an array of detection zones was designed to provide improved analytical figures of merit compared to that which could be achieved on one type of array design in terms of relative concentration of multicolor QDs. The hybridization assays showed excellent resistance to nonspecific adsorption of oligonucleotides. Selectivity of the two-plex hybridization assay was demonstrated by single nucleotide polymorphism (SNP) detection at a contrast ratio of 50:1. Additionally, it is shown that the use of preformed QD-probe oligonucleotide conjugates and consideration of the relative number density of the two types of QD-probe conjugates in the two-color assay format is advantageous to maximize assay sensitivity and the upper limit of dynamic range.

  17. Development and Characterization of A Multiplexed RT-PCR Species Specific Assay for Bovine and one for Porcine Foot-and-Mouth Disease Virus Rule-Out

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S M; Danganan, L; Tammero, L; Vitalis, B; Lenhoff, R; Naraghi-arani, P; Hindson, B

    2007-08-06

    Lawrence Livermore National Laboratory (LLNL), in collaboration with the Department of Homeland Security (DHS) and the United States Department of Agriculture (USDA), Animal and Plant Health Inspection Services (APHIS) has developed candidate multiplexed assays that may potentially be used within the National Animal Health Laboratory Network (NAHLN), the National Veterinary Services Laboratory (Ames, Iowa) and the Plum Island Animal Disease Center (PIADC). This effort has the ability to improve our nation's capability to discriminate between foreign animal diseases and those that are endemic using a single assay, thereby increasing our ability to protect food and agricultural resources with a diagnostic test which could enhance the nation's capabilities for early detection of a foreign animal disease. In FY2005 with funding from the DHS, LLNL developed the first version (Version 1.0) of a multiplexed (MUX) nucleic-acid-based RT-PCR assay that included signatures for foot-and-mouth disease virus (FMDV) detection with rule-out tests for two other foreign animal diseases (FADs) of swine, Vesicular Exanthema of Swine (VESV) and Swine Vesicular Disease Virus (SVDV), and four other domestic viral diseases Bovine Viral Diarrhea Virus (BVDV), Bovine Herpes Virus 1 (BHV-1), Bluetongue virus (BTV) and Parapox virus complex (which includes Bovine Papular Stomatitis Virus [BPSV], Orf of sheep, and Pseudocowpox). In FY06, LLNL has developed Bovine and Porcine species-specific panel which included existing signatures from Version 1.0 panel as well as new signatures. The MUX RT-PCR porcine assay for detection of FMDV includes the FADs, VESV and SVD in addition to vesicular stomatitis virus (VSV) and porcine reproductive and respiratory syndrome (PRRS). LLNL has also developed a MUX RT-PCR bovine assay for detection of FMDV with rule out tests for the two bovine FADs malignant catarrhal fever (MCF), rinderpest virus (RPV) and the domestic diseases vesicular stomatitis

  18. Identification of viral and atypical bacterial pathogens in children hospitalized with acute respiratory infections in Hong Kong by multiplex PCR assays.

    Science.gov (United States)

    Sung, R Y T; Chan, Paul K S; Tsen, Tracy; Li, A M; Lam, W Y; Yeung, Apple C M; Nelson, E A S

    2009-01-01

    Acute respiratory tract infection is a leading cause of hospital admission of children. This study used a broad capture, rapid and sensitive method (multiplex PCR assay) to detect 20 different respiratory pathogens including influenza A subtypes H1, H3, and H5; influenza B; parainfluenza types 1, 2, 3, and 4; respiratory syncytial virus (RSV) groups A and B; adenoviruses; human rhinoviruses; enteroviruses; human metapneumoviruses; human coronaviruses OC43, 229E, and SARS-CoV; Chlamydophila pneumoniae; Legionella pneumophila; and Mycoplasma pneumoniae; from respiratory specimens of 475 children hospitalized over a 12-month period for acute respiratory tract infections. The overall positive rate (47%) was about twice higher than previous reports based on conventional methods. Influenza A, parainfluenza and RSV accounted for 51%, and non-cultivable viruses accounted for 30% of positive cases. Influenza A peaked at March and June. Influenza B was detected in January, February, and April. Parainfluenza was prevalent throughout the year except from April to June. Most RSV infections were found between February and September. Adenovirus had multiple peaks, whereas rhinovirus and coronavirus OC43 were detected mainly in winter and early spring. RSV infection was associated with bronchiolitis, and parainfluenza was associated with croup; otherwise the clinical manifestations were largely nonspecific. In general, children infected with influenza A, adenovirus and mixed viruses had higher temperatures. In view of the increasing concern about unexpected outbreaks of severe viral infections, a rapid multiplex PCR assay is a valuable tool to enhance the management of hospitalized patients, and for the surveillance for viral infections circulating in the community.

  19. Assessment of exposure to Plasmodium falciparum transmission in a low endemicity area by using multiplex fluorescent microsphere-based serological assays

    Directory of Open Access Journals (Sweden)

    Sarr Jean

    2011-11-01

    Full Text Available Abstract Background The evaluation of malaria transmission intensity is a crucial indicator for estimating the burden of malarial disease. In this respect, entomological and parasitological methods present limitations, especially in low transmission areas. The present study used a sensitive multiplex assay to assess the exposure to Plasmodium falciparum infection in children living in an area of low endemicity. In three Senegalese villages, specific antibody (IgG responses to 13 pre-erythrocytic P. falciparum peptides derived from Lsa1, Lsa3, Glurp, Salsa, Trap, Starp, Csp and Pf11.1 proteins were simultaneously evaluated before (June, at the peak (September and after (December the period of malaria transmission, in children aged from 1 to 8 years. Results Compared to other antigens, a high percentage of seropositivity and specific antibody levels were detected with Glurp, Salsa1, Lsa3NR2, and Lsa1J antigens. The seropositivity increased with age for all tested antigens. Specific IgG levels to Glurp, Salsa1, Lsa3NR2, and Lsa1J were significantly higher in P. falciparum infected children compared to non-infected and this increase is significantly correlated with parasite density. Conclusion The multiplex assay represents a useful technology for a serological assessment of rapid variations in malaria transmission intensity, especially in a context of low parasite rates. The use of such combined serological markers (i.e. Glurp, Lsa1, Lsa3, and Salsa could offer the opportunity to examine these variations over time, and to evaluate the efficacy of integrated malaria control strategies.

  20. Staining-free gel electrophoresis-based multiplex enzyme assay using DNA and peptide dual-functionalized gold nanoparticles.

    Science.gov (United States)

    Zhao, Wenting; Yao, Chunlei; Luo, Xiaoteng; Lin, Li; Hsing, I-Ming

    2012-04-01

    We report a simple staining-free gel electrophoresis method to simultaneously probe protease and nuclease. Utilizing gold nanoparticles (Au-NPs) dual-functionalized with DNA and peptide, the presence and concentration of nuclease and protease are determined concurrently from the relative position and intensity of the bands in the staining-free gel electrophoresis. The use of Au-NPs eliminates the need for staining processes and enables naked eye detection, while a mononucleotide-mediated approach facilitates the synthesis of DNA/peptide conjugated Au-NPs and simplifies the operation procedures. Multiplex detection and quantification of DNase I and trypsin are successfully demonstrated. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Real-time PCR assay for rapid qualitative and quantitative detection of Entamoeba histolytica.

    Science.gov (United States)

    Orosz, Erika; Perkátai, Katalin; Kapusinszky, Beatrix; Farkas, Agnes; Kucsera, István

    2012-12-01

    Simple real-time PCR assay with one set of primer and probe for rapid, sensitive qualitative and quantitative detection of Entamoeba histolytica has been used. Consensus sequences were used to amplify a species-specific region of the 16S rRNA gene, and fluorescence resonance energy transfer hybridization probes were used for detection in a LightCycler platform (Roche). The anchor probe sequence was designed to be a perfect match for the 16S rRNA gene of Entamoeba species, while the acceptor probe sequence was designed for Entamoeba histolytica, which allowed differentiation. The performed characteristics of the real-time PCR assay were compared with ELISA antigen and microscopical detection from 77 samples of individuals with suspected clinical diagnosis of imported E. histolytica infection. Stool and liver abscess pus samples were examined with analytical sensitivity of 5 parasites per PCR reaction. The melting curve means Tms (standard deviation) in clinical isolates were 54°C. The real-time assay was 100% sensitive and specific for differentiation of Entamoeba histolytica, compared with conventional ELISA or microscopy. This real-time PCR assay with melting curve analysis is rapid, and specific for the detection and differentiation of Entamoeba histolytica. The suitability for routine use of this assay in clinical diagnostic laboratories is discussed.

  2. Quantitative rRNA-targeted solution-based hybridization assay using peptide nucleic acid molecular beacons.

    Science.gov (United States)

    Li, Xu; Morgenroth, Eberhard; Raskin, Lutgarde

    2008-12-01

    The potential of a solution-based hybridization assay using peptide nucleic acid (PNA) molecular beacon (MB) probes to quantify 16S rRNA of specific populations in RNA extracts of environmental samples was evaluated by designing PNA MB probes for the genera Dechloromonas and Dechlorosoma. In a kinetic study with 16S rRNA from pure cultures, the hybridization of PNA MB to target 16S rRNA exhibited a higher final hybridization signal and a lower apparent rate constant than the hybridizations to nontarget 16S rRNAs. A concentration of 10 mM NaCl in the hybridization buffer was found to be optimal for maximizing the difference between final hybridization signals from target and nontarget 16S rRNAs. Hybridization temperatures and formamide concentrations in hybridization buffers were optimized to minimize signals from hybridizations of PNA MB to nontarget 16S rRNAs. The detection limit of the PNA MB hybridization assay was determined to be 1.6 nM of 16S rRNA. To establish proof for the application of PNA MB hybridization assays in complex systems, target 16S rRNA from Dechlorosoma suillum was spiked at different levels to RNA isolated from an environmental (bioreactor) sample, and the PNA MB assay enabled effective quantification of the D. suillum RNA in this complex mixture. For another environmental sample, the quantitative results from the PNA MB hybridization assay were compared with those from clone libraries.

  3. Use of coefficient of variation in assessing variability of quantitative assays.

    Science.gov (United States)

    Reed, George F; Lynn, Freyja; Meade, Bruce D

    2002-11-01

    We have derived the mathematical relationship between the coefficient of variation associated with repeated measurements from quantitative assays and the expected fraction of pairs of those measurements that differ by at least some given factor, i.e., the expected frequency of disparate results that are due to assay variability rather than true differences. Knowledge of this frequency helps determine what magnitudes of differences can be expected by chance alone when the particular coefficient of variation is in effect. This frequency is an operational index of variability in the sense that it indicates the probability of observing a particular disparity between two measurements under the assumption that they measure the same quantity. Thus the frequency or probability becomes the basis for assessing if an assay is sufficiently precise. This assessment also provides a standard for determining if two assay results for the same subject, separated by an intervention such as vaccination or infection, differ by more than expected from the variation of the assay, thus indicating an intervention effect. Data from an international collaborative study are used to illustrate the application of this proposed interpretation of the coefficient of variation, and they also provide support for the assumptions used in the mathematical derivation.

  4. Development of multiplex polymerase chain reaction assay for simultaneous detection of clostero-, badna- and mandari-viruses along with huanglongbing bacterium in citrus trees.

    Science.gov (United States)

    Meena, Ram Prasnna; Baranwal, V K

    2016-09-01

    Citrus trees harbor a large number of viral and bacterial pathogens. Citrus yellow vein clearing virus (CYVCV), Indian citrus ringspot virus (ICRSV), Citrus yellow mosaic virus (CYMV), Citrus tristeza virus (CTV) and a bacterium, Candidatus Liberibacter asiaticus (CLa) associated with huanglongbing (HLB) disease, the most prevalent pathogens in citrus orchards of different regions in India and are responsible for debilitating citriculture. For detection of these viral and bacterial pathogens a quick, sensitive and cost effective detection method is required. With this objective a multiplex polymerase chain reaction (mPCR) assay was developed for simultaneous detection of four viruses and a bacterium in citrus. Several sets of primers were designed for each virus based on the retrieved reference sequences from the GenBank. A primer pair published previously was used for greening bacterium. Each pair of primers was evaluated for their sensitivity and differentiation by simplex and mPCR. The constant amplified products were identified on the basis of molecular size in mPCR and were compared with standard PCR. The amplicons were cloned and results were confirmed with sequencing analysis. The mPCR assay was validated using naturally infected field samples for one or more citrus viruses and the huanglongbing bacterium. The mPCR assay developed here will aid in the production of virus free planting materials and rapid indexing for certification of citrus budwood programme. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. A modified molecular beacons-based multiplex real-time PCR assay for simultaneous detection of eight foodborne pathogens in a single reaction and its application.

    Science.gov (United States)

    Hu, Qinghua; Lyu, Dongyue; Shi, Xiaolu; Jiang, Yixiang; Lin, Yiman; Li, Yinghui; Qiu, Yaqun; He, Lianhua; Zhang, Ran; Li, Qingge

    2014-03-01

    Foodborne disease outbreaks are often caused by one of the major pathogens. Early identification of the causal pathogen is crucial for disease control and prevention. We describe a real-time polymerase chain reaction (rtPCR) assay that can identify, in a single reaction, up to eight common foodborne bacterial pathogens, including Salmonella enterica subsp. enterica, Listeria monocytogenes, Escherichia coli O157, Vibrio parahaemolyticus, V. vulnificus, Campylobacter jejuni, Enterobacter sakazakii, and Shigella spp. This multiplex rtPCR assay takes advantage of modified molecular beacons and the multicolor combinational probe coding strategy to discriminate each pathogen and the homo-tag assisted non-dimer (HAND) system to prevent dimer formation. The detection limits of the assay ranged from 1.3×10(3) colony-forming units (CFU)/g stool (L. monocytogenes) to 1.6×10(4) CFU/g stool (Shigella spp.). The target genes were 100% specific as assessed on 986 reference strains covering 41 species since no cross-reactions were observed. The assay was applied to the detection of foodborne pathogens in 11,167 clinical samples and the results were compared with culture methods for further validation. The sensitivity and specificity of the rtPCR were 100% and 99%, respectively. When performed in a 96-well rtPCR system, more than 90 samples could be analyzed within 3 h. Given the high accuracy, sensitivity, specificity, and short turn-around time, the established assay could be used for the rapid and reliable identification of the causative pathogens responsible for a certain foodborne disease outbreak and rapid screening of these major foodborne pathogens in laboratory-based surveillance of outpatient clinical samples or even food samples.

  6. Development of a multiplex real-time PCR assay for the detection of Bordetella pertussis and Bordetella parapertussis in a single tube reaction.

    Science.gov (United States)

    Arbefeville, Sophie; Levi, Michael H; Ferrieri, Patricia

    2014-02-01

    Pertussis is an infectious respiratory disease caused by the fastidious bacterium Bordetella pertussis, which may infect unvaccinated, previously vaccinated children, and adults in whom immunity has waned. Infants are at a particular risk for severe disease and complications. Bordetella parapertussis may cause a similar illness, however the symptoms are less severe and of shorter duration. Pertussis is a highly contagious disease and early diagnosis is essential. Studies have shown that PCR is 2-4 times more likely than culture to detect Bordetella pertussis. We developed a multiplex, real-time PCR assay using analyte-specific reagent (ASR) primers and probes dispensed in a convenient lyophilized bead format that targeted the multi-copy insertion sequences IS481 and IS1001 of B. pertussis and B. parapertussis, respectively. These specific ASRs were used in conjunction with Cepheid Smartmix. Included in the ASRs is a competitive internal control to evaluate the performance of the PCR reaction. After DNA extraction, amplification and detection were done on the Smart Cycler System, which performs integrated amplification and detection automatically in a single step. Specificity of the assay was confirmed using multiple distinct bacterial strains. Sensitivity of the assay and extraction efficiency were evaluated on DNA isolated from pure bacterial cultures and on spiked respiratory specimens. We also spiked different swab types and transport media to evaluate for interfering substances. To assess accuracy, we studied different patient specimen types received from two outside laboratories that used similar or different methods to detect B. pertussis and B. parapertussis. The sensitivity and the specificity of the assay for B. pertussis were 90% and 96%, respectively, and for B. parapertussis 71% (only 7 positive specimens were available for testing) and 100%, respectively. Our assay was found to be a valid method for the simultaneous detection of B. pertussis and B

  7. Specific PCR and real-time PCR assays for detection and quantitation of 'Candidatus Phytoplasma phoenicium'.

    Science.gov (United States)

    Jawhari, Maan; Abrahamian, Peter; Sater, Ali Abdel; Sobh, Hana; Tawidian, Patil; Abou-Jawdah, Yusuf

    2015-02-01

    Almond witches' broom (AlmWB) is a fast-spreading lethal disease of almond, peach and nectarine associated with 'Candidatus Phytoplasma phoenicium'. The development of PCR and quantitative real-time PCR (qPCR) assays for the sensitive and specific detection of the phytoplasma is of prime importance for early detection of 'Ca. P. phoenicium' and for epidemiological studies. The developed qPCR assay herein uses a TaqMan(®) probe labeled with Black Hole Quencher Plus. The specificity of the PCR and that of the qPCR detection protocols were tested on 17 phytoplasma isolates belonging to 11 phytoplasma 16S rRNA groups, on samples of almond, peach, nectarine, native plants and insects infected or uninfected with the phytoplasma. The developed assays showed high specificity against 'Ca. P. phoenicium' and no cross-reactivity against any other phytoplasma, plant or insect tested. The sensitivity of the developed PCR and qPCR assays was similar to the conventional nested PCR protocol using universal primers. The qPCR assay was further validated by quantitating AlmWB phytoplasma in different hosts, plant parts and potential insect vectors. The highest titers of 'Ca. P. phoenicium' were detected in the phloem tissues of stems and roots of almond and nectarine trees, where they averaged from 10(5) to 10(6) genomic units per nanogram of host DNA (GU/ng of DNA). The newly developed PCR and qPCR protocols are reliable, specific and sensitive methods that are easily applicable to high-throughput diagnosis of AlmWB in plants and insects and can be used for surveys of potential vectors and alternative hosts.

  8. A quantitative and high-throughput assay of human papillomavirus DNA replication.

    Science.gov (United States)

    Gagnon, David; Fradet-Turcotte, Amélie; Archambault, Jacques

    2015-01-01

    Replication of the human papillomavirus (HPV) double-stranded DNA genome is accomplished by the two viral proteins E1 and E2 in concert with host DNA replication factors. HPV DNA replication is an established model of eukaryotic DNA replication and a potential target for antiviral therapy. Assays to measure the transient replication of HPV DNA in transfected cells have been developed, which rely on a plasmid carrying the viral origin of DNA replication (ori) together with expression vectors for E1 and E2. Replication of the ori-plasmid is typically measured by Southern blotting or PCR analysis of newly replicated DNA (i.e., DpnI digested DNA) several days post-transfection. Although extremely valuable, these assays have been difficult to perform in a high-throughput and quantitative manner. Here, we describe a modified version of the transient DNA replication assay that circumvents these limitations by incorporating a firefly luciferase expression cassette in cis of the ori. Replication of this ori-plasmid by E1 and E2 results in increased levels of firefly luciferase activity that can be accurately quantified and normalized to those of Renilla luciferase expressed from a control plasmid, thus obviating the need for DNA extraction, digestion, and analysis. We provide a detailed protocol for performing the HPV type 31 DNA replication assay in a 96-well plate format suitable for small-molecule screening and EC50 determinations. The quantitative and high-throughput nature of the assay should greatly facilitate the study of HPV DNA replication and the identification of inhibitors thereof.

  9. Application of a Multiplex Quantitative PCR to Assess Prevalence and Intensity Of Intestinal Parasite Infections in a Controlled Clinical Trial

    DEFF Research Database (Denmark)

    Llewellyn, Stacey; Inpankaew, Tawin; Nery, Susana Vaz

    2016-01-01

    multiplex real-time PCR reactions the first targeting: Necator americanus, Ancylostoma spp., Ascaris spp., and Trichuris trichiura; and the second Entamoeba histolytica, Cryptosporidium spp., Giardia. duodenalis, and Strongyloides stercoralis. Samples were also subject to sodium nitrate flotation...... for identification and quantification of STH eggs, and zinc sulphate centrifugal flotation for detection of protozoan parasites. Higher parasite prevalence was detected by multiplex PCR (hookworms 2.9 times higher, Ascaris 1.2, Giardia 1.6, along with superior polyparasitism detection with this effect magnified...

  10. A multiplex fluorescent quantitative PCR method for detection of three rodent-carrying pathogens%多重荧光定量PCR检测鼠感染3种病原体的方法

    Institute of Scientific and Technical Information of China (English)

    吉尚志; 杨宇; 王静; 王振东; 纪海波

    2011-01-01

    目的 建立多重荧光定量PCR快速检测以鼠为宿主伯氏疏螺旋体、弓形虫和恶性疟原虫的方法,对预防3种病原体引发的疫情具有重要意义.方法 通过设计特异性引物和探针,扩增伯氏疏螺旋体23S rRNA基因,弓形虫的B1基因和恶性疟原虫的SSU基因,采用倍比梯度稀释法检测该体系的灵敏度,以另外8种以鼠为宿主的致病菌评价检测体系的特异性;建立了同时感染3种病原体的鼠全血模拟样本检测试验,以验证方法的适用性.结果 建立自鼠血液模拟样本中同时检测伯氏疏螺旋体、弓形虫和恶性疟原虫的多重荧光定量PCR方法,检测3种病原体的灵敏度分别为5.5、12.8、17.2拷贝/μl,特异性强.结论 建立了多重荧光定量PCR检测伯氏疏螺旋体、弓形虫和恶性疟原虫方法,缩短了检测时间,在疾病防控等方面有很好的应用前景.%Objective To develop a multiplex fluorescenct quantitative PCR assay for rapid and simultaneous detection of Borrelia burgdorferi, Toxoplasma gondii and Plasmodium falciparm carried by rodents. Methods Specific primers and probes were designed to amplify the 23S rRNA gene of B. Burgdorferi, the B1 gene of T. Gondii and the SSU gene of P. Falciparm. The sensitivity of the assay was detected by the fold dilution method. The other eight strains of rodent-bome bacteria were used to examine the specificity of the assay. The method was evaluated to detect B. Burgdorferi, T. Gondii and P. Falciparm simultaneously in mice blood. Results A highly sensitive and specific multiplex fluorescent quantitative PCR assay was established for detection of B. Burgdorferi, T. Gondii and P. Falciparm. The sensitivity was 5.5 copies/u,l for B. Burgdorferi, 12.8 copies/u,l for T. Gondii and 17.2 copies/|xl for P. Falciparm. Conclusion A multiplex fluorescent quantitative PCR assay was developed for detection of B. Burgdorferi, T. Gondii and P. Falciparm, significantly reducing the time

  11. Sensitive, simultaneous quantitation of two unlabeled DNA targets using a magnetic nanoparticle-enzyme sandwich assay.

    Science.gov (United States)

    Zhang, Yue; Pilapong, Chalermchai; Guo, Yuan; Ling, Zhenlian; Cespedes, Oscar; Quirke, Philip; Zhou, Dejian

    2013-10-01

    We report herein the development of a simple, sensitive colorimetric magnetic nanoparticle (MNP)-enzyme-based DNA sandwich assay that is suitable for simultaneous, label-free quantitation of two DNA targets down to 50 fM level. It can also effectively discriminate single-nucleotide polymorphisms (SNPs) in genes associated with human cancers (KRAS codon 12/13 SNPs). This assay uses a pair of specific DNA probes, one being covalently conjugated to an MNP for target capture and the other being linked to an enzyme for signal amplification, to sandwich a DNA target, allowing for convenient magnetic separation and subsequent efficient enzymatic signal amplification for high sensitivity. Careful optimization of the MNP surfaces and assay conditions greatly reduced the background, allowing for sensitive, specific detection of as little as 5 amol (50 fM in 100 μL) of target DNA. Moreover, this sensor is robust, it can effectively discriminate cancer-specific SNPs against the wild-type noncancer target, and it works efficiently in 10% human serum. Furthermore, this sensor can simultaneously quantitate two different DNA targets by using two pairs of unique capture- and signal-DNA probes specific for each target. This general, simple, and sensitive DNA sensor appears to be well-suited for a wide range of genetics-based biosensing and diagnostic applications.

  12. Quantitative serine protease assays based on formation of copper(II)-oligopeptide complexes.

    Science.gov (United States)

    Ding, Xiaokang; Yang, Kun-Lin

    2015-01-07

    A quantitative protease assay based on the formation of a copper-oligopeptide complex is developed. In this assay, when a tripeptide GGH fragment is cleaved from an oligopeptide chain by serine proteases, the tripeptide quickly forms a pink GGH/Cu(2+) complex whose concentration can be determined quantitatively by using UV-Vis spectroscopy. Therefore, activities of serine proteases can be determined from the formation rate of the GGH/Cu(2+) complex. This principle can be used to detect the presence of serine protease in a real-time manner, or measure proteolytic activities of serine protease cleaving different oligopeptide substrates. For example, by using this assay, we demonstrate that trypsin, a model serine protease, is able to cleave two oligopeptides GGGGKGGH () and GGGGRGGH (). However, the specificity constant (kcat/Km) for is higher than that of (6.4 × 10(3) mM(-1) min(-1)vs. 1.3 × 10(3) mM(-1) min(-1)). This result shows that trypsin is more specific toward arginine (R) than lysine (K) in the oligopeptide sequence.

  13. A universal, high recovery assay for protein quantitation through temperature programmed liquid chromatography (TPLC).

    Science.gov (United States)

    Orton, Dennis J; Doucette, Alan A

    2013-03-15

    As an alternative to direct UV absorbance measurements, estimation of total protein concentration is typically conducted through colorimetric reagent assays. However, for protein-limited applications, the proportion of the sample sacrificed to the assay becomes increasingly significant. This work demonstrates a method for quantitation of protein samples with high recovery. Temperature programmed liquid chromatography (TPLC) with absorbance detection at 214nm permits accurate estimation of total protein concentration from samples containing as little as 0.75μg. The method incorporates a temperature gradient from 25 to 80°C to facilitate elution of total protein into a single fraction. Analyte recovery, as measured from 1 and 10μg protein extracts of Escherichia coli, is shown to exceed 93%. Extinction coefficients at 214nm were calculated across the human proteome, providing a relative standard deviation of 21% (versus 42% at 280nm), suggesting absorbance values at 214nm provide a more consistent measure of protein concentration. These results translate to a universal protein detection strategy exhibiting a coefficient of variation below 10%. Together with the sensitivity and tolerance to contaminants, TPLC with UV detection is a favorable alternative to colorimetric assay for total protein quantitation, particularly in sample-limited applications.

  14. Development of a quantitative bead capture assay for soluble IL-7 receptor alpha in human plasma.

    Directory of Open Access Journals (Sweden)

    Sylvie Faucher

    Full Text Available BACKGROUND: IL-7 is an essential cytokine in T-cell development and homeostasis. It binds to the IL-7R receptor, a complex of the IL-7Ralpha (CD127 and common gamma (CD132 chains. There is significant interest in evaluating the expression of CD127 on human T-cells as it often decreased in medical conditions leading to lymphopenia. Previous reports showed the usefulness of CD127 as a prognostic marker in viral infections such as HIV, CMV, EBV and HCV. A soluble CD127 (sCD127 is released in plasma and may contribute to disease pathogenesis through its control on IL-7 activities. Measuring sCD127 is important to define its role and may complement existing markers used in lymphopenic disease management. We describe a new quantitative assay for the measurement of sCD127 in plasma and report sCD127 concentrations in healthy adults. METHODOLOGY/PRINCIPAL FINDINGS: We developed a quantitative bead-based sCD127 capture assay. Polyclonal CD127-specific antibodies were chosen for capture and a biotinylated monoclonal anti-CD127 antibody was selected for detection. The assay can detect native sCD127 and recombinant sCD127 which served as the calibrator. The analytical performance of the assay was characterized and the concentration and stability of plasma sCD127 in healthy adults was determined. The assay's range was 3.2-1000 ng/mL. The concentration of plasma sCD127 was 164+/-104 ng/mL with over a log variation between subjects. Individual sCD127 concentrations remained stable when measured serially during a period of up to one year. CONCLUSIONS/SIGNIFICANCE: This is the first report on the quantification of plasma sCD127 in a population of healthy adults. Soluble CD127 plasma concentrations remained stable over time in a given individual and sCD127 immunoreactivity was resistant to repeated freeze-thaw cycles. This quantitative sCD127 assay is a valuable tool for defining the potential role of sCD127 in lymphopenic diseases.

  15. Naked-eye quantitative aptamer-based assay on paper device.

    Science.gov (United States)

    Zhang, Yun; Gao, Dong; Fan, Jinlong; Nie, Jinfang; Le, Shangwang; Zhu, Wenyuan; Yang, Jiani; Li, Jianping

    2016-04-15

    This work initially describes the design of low-cost, naked-eye quantitative aptamer-based assays by using microfluidic paper-based analytical device (μPAD). Two new detection motifs are proposed for quantitative μPAD measurement without using external electronic readers, which depend on the length of colored region in a strip-like μPAD and the number of colorless detection microzones in a multi-zone μPAD. The length measuring method is based on selective color change of paper from colorless to blue-black via formation of iodine-starch complex. The counting method is conducted on the basis of oxidation-reduction reaction between hydrogen peroxide and potassium permanganate. Their utility is well demonstrated with sensitive, specific detection of adenosine as a model analyte with the naked eye in buffer samples and undiluted human serum. These equipment-free quantitative methods proposed thus hold great potential for the development of more aptamer-based assays that are simple, cost-efficient, portable, and user-friendly for various point-of-care applications particularly in resource-constrained environments.

  16. [Evaluation of high-sensitivity HBsAg quantitative assay for HBV genotype].

    Science.gov (United States)

    Takagi, Kazumi; Tanaka, Yasuhito; Hiramatu, Kumiko; Kani, Satomi; Tatematsu, Kanako; Naganuma, Hatsue; Ueno, Tetsuo; Gotou, Takaaki; Wakimoto, Yukio; Mizokami, Masashi

    2009-07-01

    The clinical implication of the hepatitis B surface antigen (HBsAg) concentrations has been reported in HBV-infected patients during anti-viral treatment. HBV genotypes A and D are ubiquitous and scattered worldwide, especially northern America as well as Europe, whereas genotypes B and C are common in Asia. The aim of this study was to evaluate a new version of the Sysmex HBsAg quantitative kit based on Chemiluminescence Enzyme Immunoassay. Sera collected from 172 patients infected with any of the four major genotypes A to D (HBV/A, n = 18; B, n = 25; C, n = 84; D, n = 45), including the genotype D cases with weak reaction in the previous version of the kit. The new version of the kit having additional monoclonal antibody, showed improved sensitivity compared to the previous version as well as robust correlation with another quantitative HBsAg assay: the Abbot Architect. Observed during lamivudine therapy, increase in HBsAg and HBV DNA concentrations preceded the aminotransferase (ALT) elevation associated with drug-resistant HBV variant emergence (breakthrough hepatitis). In conclusion, reliability of the Sysmex HBsAg quantitative assay was confirmed for the four HBV genotypes common worldwide. Monitoring of serum HBsAg concentrations in addition to HBV DNA quantification, is helpful in evaluation of the response or resistance to anti-viral therapy.

  17. Rapid detection and grouping of porcine bocaviruses by an EvaGreen(®) based multiplex real-time PCR assay using melting curve analysis.

    Science.gov (United States)

    Zheng, Xiaowen; Liu, Gaopeng; Opriessnig, Tanja; Wang, Zining; Yang, Zongqi; Jiang, Yonghou

    2016-08-01

    Several novel porcine bocaviruses (PBoVs) have been identified in pigs in recent years and association of these viruses with respiratory signs or diarrhea has been suggested. In this study, an EvaGreen(®)-based multiplex real-time PCR (EG-mPCR) with melting curve analysis was developed for simultaneous detection and grouping of novel PBoVs into the same genogroups G1, G2 and G3. Each target produced a specific amplicon with a melting peak of 81.3 ± 0.34 °C for PBoV G1, 78.2 ± 0.37 °C for PBoV G2, and 85.0 ± 0.29 °C for PBoV G3. Non-specific reactions were not observed when other pig viruses were used to assess the EG-mPCR assay. The sensitivity of the EG-mPCR assay using purified plasmid constructs containing the specific viral target fragments was 100 copies for PBoV G1, 50 for PBoV G2 and 100 for PBoV G3. The assay is able to detect and distinguish three PBoV groups with intra-assay and inter-assay variations ranging from 0.13 to 1.59%. The newly established EG-mPCR assay was validated with 227 field samples from pigs. PBoV G1, G2 and G3 was detected in 15.0%, 25.1% and 41.9% of the investigated samples and coinfections of two or three PBoV groups were also detected in 25.1% of the cases, indicating that all PBoV groups are prevalent in Chinese pigs. The agreement of the EG-mPCR assay with an EvaGreen-based singleplex real-time PCR (EG-sPCR) assay was 99.1%. This EG-mPCR will serve as a rapid, sensitive, reliable and cost effective alternative for routine surveillance testing of multiple PBoVs in pigs and will enhance our understanding of the epidemiological features and possible also pathogenetic changes associated with these viruses in pigs.

  18. FungiQuant: A broad-coverage fungal quantitative real-time PCR assay

    Directory of Open Access Journals (Sweden)

    Liu Cindy M

    2012-11-01

    Full Text Available Abstract Background Fungal load quantification is a critical component of fungal community analyses. Limitation of current approaches for quantifying the fungal component in the human microbiome suggests the need for new broad-coverage techniques. Methods We analyzed 2,085 18S rRNA gene sequences from the SILVA database for assay design. We generated and quantified plasmid standards using a qPCR-based approach. We evaluated assay coverage against 4,968 sequences and performed assay validation following the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE guidelines. Results We designed FungiQuant, a TaqMan® qPCR assay targeting a 351 bp region in the fungal 18S rRNA gene. Our in silico analysis showed that FungiQuant is a perfect sequence match to 90.0% of the 2,617 fungal species analyzed. We showed that FungiQuant’s is 100% sensitive and its amplification efficiencies ranged from 76.3% to 114.5%, with r2-values of >0.99 against the 69 fungal species tested. Additionally, FungiQuant inter- and intra-run coefficients of variance ranged from Conclusions FungiQuant has comprehensive coverage against diverse fungi and is a robust quantification and detection tool for delineating between true fungal detection and non-target human DNA.

  19. A mass spectrometry-based assay for improved quantitative measurements of efflux pump inhibition.

    Directory of Open Access Journals (Sweden)

    Adam R Brown

    Full Text Available Bacterial efflux pumps are active transport proteins responsible for resistance to selected biocides and antibiotics. It has been shown that production of efflux pumps is up-regulated in a number of highly pathogenic bacteria, including methicillin resistant Staphylococcus aureus. Thus, the identification of new bacterial efflux pump inhibitors is a topic of great interest. Existing assays to evaluate efflux pump inhibitory activity rely on fluorescence by an efflux pump substrate. When employing these assays to evaluate efflux pump inhibitory activity of plant extracts and some purified compounds, we observed severe optical interference that gave rise to false negative results. To circumvent this problem, a new mass spectrometry-based method was developed for the quantitative measurement of bacterial efflux pump inhibition. The assay was employed to evaluate efflux pump inhibitory activity of a crude extract of the botanical Hydrastis Canadensis, and to compare the efflux pump inhibitory activity of several pure flavonoids. The flavonoid quercetin, which appeared to be completely inactive with a fluorescence-based method, showed an IC50 value of 75 μg/mL with the new method. The other flavonoids evaluated (apigenin, kaempferol, rhamnetin, luteolin, myricetin, were also active, with IC50 values ranging from 19 μg/mL to 75 μg/mL. The assay described herein could be useful in future screening efforts to identify efflux pump inhibitors, particularly in situations where optical interference precludes the application of methods that rely on fluorescence.

  20. Multiple reaction monitoring and multiple reaction monitoring cubed based assays for the quantitation of apolipoprotein F.

    Science.gov (United States)

    Kumar, Abhinav; Gangadharan, Bevin; Zitzmann, Nicole

    2016-10-15

    Apolipoprotein F (APO-F) is a novel low abundance liver fibrosis biomarker and its concentration decreases in human serum and plasma across liver fibrosis stages. Current antibody based assays for APO-F suffer from limitations such as unspecific binding, antibody availability and undetectable target if the protein is degraded; and so an antibody-free assay has the potential to be a valuable diagnostic tool. We report an antibody-free, rapid, sensitive, selective and robust LC-MS/MS (MRM and MRM(3)) method for the detection and quantitation of APO-F in healthy human plasma. With further analysis of clinical samples, this LC-MS based method could be established as the first ever antibody-free biomarker assay for liver fibrosis. We explain the use of Skyline software for peptide selection and the creation of a reference library to aid in true peak identification of endogenous APO-F peptides in digests of human plasma without protein or peptide enrichment. Detection of a glycopeptide using MRM-EPI mode and reduction of interferences using MRM3 are explained. The amount of APO-F in human plasma from a healthy volunteer was determined to be 445.2ng/mL, the coefficient of variation (CV) of precision for 20 injections was <12% and the percentage error of each point along the calibration curve was calculated to be <8%, which is in line with the assay requirements for clinical samples.

  1. Impedance Analysis of Colloidal Gold Nanoparticles in Chromatography Paper for Quantitation of an Immunochromatographic Assay.

    Science.gov (United States)

    Hori, Fumitaka; Harada, Yuji; Kuretake, Tatsumi; Uno, Shigeyasu

    2016-01-01

    A detection method of gold nanoparticles in chromatography paper has been developed for a simple, cost-effective and reliable quantitation of immunochromatographic strip test. The time courses of the solution resistance in chromatography paper with the gold nanoparticles solution are electrochemically measured by chrono-impedimetry. The dependence of the solution resistance on the concentration of gold nanoparticles has been successfully observed. The main factor to increase the solution resistance may be obstruction of the ion transport due to the presence of gold nanoparticles. The existence of gold nanoparticles with 1.92 × 10(9) particles/mL in an indistinctly-colored chromatography paper is also identified by a solution resistance measurement. This indicates that the solution resistance assay has the potential to lower the detection limit of the conventional qualitative assay.

  2. Rapid genotyping of cytomegalovirus in dried blood spots by multiplex real-time PCR assays targeting the envelope glycoprotein gB and gH genes.

    Science.gov (United States)

    de Vries, Jutte J C; Wessels, Els; Korver, Anna M H; van der Eijk, Annemiek A; Rusman, Lisette G; Kroes, Aloys C M; Vossen, Ann C T M

    2012-02-01

    Genotyping of cytomegalovirus (CMV) is useful to examine potential differences in the pathogenicity of strains and to demonstrate coinfection with multiple strains involved in CMV disease in adults and congenitally infected newborns. Studies on genotyping of CMV in dried blood spots (DBS) are rare and have been hampered by the small amount of dried blood available. In this study, two multiplex real-time PCR assays for rapid gB and gH genotyping of CMV in DBS were developed. Validation of the assays with 39 CMV-positive plasma samples of transplant recipients and 21 urine specimens of congenitally infected newborns was successful in genotyping 100% of the samples, with gB1 and gB3 being the most prevalent genotypes. Multiple gB and gH genotypes were detected in 36% and 33% of the plasma samples, respectively. One urine sample from a newborn with symptomatic congenital CMV was positive for gB1 and gB2. DBS of congenitally infected newborns (n = 41) were tested using 9 μl of dried blood, and genotypes were detected in 81% (gB) and 73% (gH) of the samples, with gB3 being the most prevalent genotype. No clear association of specific genotypes with clinical outcome was observed. In conclusion, the CMV gB and gH PCR assays were found to be rapid, sensitive for detecting mixed infections, and suitable for direct usage on DBS. These assays are efficient tools for genotyping of CMV in DBS of congenitally infected newborns.

  3. Development and validation of a multiplex, real-time RT PCR assay for the simultaneous detection of classical and African swine fever viruses.

    Science.gov (United States)

    Haines, Felicity J; Hofmann, Martin A; King, Donald P; Drew, Trevor W; Crooke, Helen R

    2013-01-01

    A single-step, multiplex, real-time polymerase chain reaction (RT-PCR) was developed for the simultaneous and differential laboratory diagnosis of Classical swine fever virus (CSFV) and African swine fever virus (ASFV) alongside an exogenous internal control RNA (IC-RNA). Combining a single extraction methodology and primer and probe sets for detection of the three target nucleic acids CSFV, ASFV and IC-RNA, had no effect on the analytical sensitivity of the assay and the new triplex RT-PCR was comparable to standard PCR techniques for CSFV and ASFV diagnosis. After optimisation the assay had a detection limit of 5 CSFV genome copies and 22 ASFV genome copies. Analytical specificity of the triplex assay was validated using a panel of viruses representing 9 of the 11 CSFV subgenotypes, at least 8 of the 22 ASFV genotypes as well as non-CSFV pestiviruses. Positive and negative clinical samples from animals infected experimentally, due to field exposure or collected from the UK which is free from both swine diseases, were used to evaluate the diagnostic sensitivity and specificity for detection of both viruses. The diagnostic sensitivity was 100% for both viruses whilst diagnostic specificity estimates were 100% for CSFV detection and 97.3% for ASFV detection. The inclusion of a heterologous internal control allowed identification of false negative results, which occurred at a higher level than expected. The triplex assay described here offers a valuable new tool for the differential detection of the causative viruses of two clinically indistinguishable porcine diseases, whose geographical occurrence is increasingly overlapping.

  4. Development and validation of a multiplex, real-time RT PCR assay for the simultaneous detection of classical and African swine fever viruses.

    Directory of Open Access Journals (Sweden)

    Felicity J Haines

    Full Text Available A single-step, multiplex, real-time polymerase chain reaction (RT-PCR was developed for the simultaneous and differential laboratory diagnosis of Classical swine fever virus (CSFV and African swine fever virus (ASFV alongside an exogenous internal control RNA (IC-RNA. Combining a single extraction methodology and primer and probe sets for detection of the three target nucleic acids CSFV, ASFV and IC-RNA, had no effect on the analytical sensitivity of the assay and the new triplex RT-PCR was comparable to standard PCR techniques for CSFV and ASFV diagnosis. After optimisation the assay had a detection limit of 5 CSFV genome copies and 22 ASFV genome copies. Analytical specificity of the triplex assay was validated using a panel of viruses representing 9 of the 11 CSFV subgenotypes, at least 8 of the 22 ASFV genotypes as well as non-CSFV pestiviruses. Positive and negative clinical samples from animals infected experimentally, due to field exposure or collected from the UK which is free from both swine diseases, were used to evaluate the diagnostic sensitivity and specificity for detection of both viruses. The diagnostic sensitivity was 100% for both viruses whilst diagnostic specificity estimates were 100% for CSFV detection and 97.3% for ASFV detection. The inclusion of a heterologous internal control allowed identification of false negative results, which occurred at a higher level than expected. The triplex assay described here offers a valuable new tool for the differential detection of the causative viruses of two clinically indistinguishable porcine diseases, whose geographical occurrence is increasingly overlapping.

  5. A multiplex single nucleotide polymorphism typing assay for detecting mutations that result in decreased fluoroquinolone susceptibility in Salmonella enterica serovars Typhi and Paratyphi A.

    LENUS (Irish Health Repository)

    Song, Yajun

    2010-08-01

    OBJECTIVES: Decreased susceptibility to fluoroquinolones has become a major problem for the successful therapy of human infections caused by Salmonella enterica, especially the life-threatening typhoid and paratyphoid fevers. METHODS: By using Luminex xTAG beads, we developed a rapid, reliable and cost-effective multiplexed genotyping assay for simultaneously detecting 11 mutations in gyrA, gyrB and parE of S. enterica serovars Typhi and Paratyphi A that result in nalidixic acid resistance (Nal(R)) and\\/or decreased susceptibility to fluoroquinolones. RESULTS: This assay yielded unambiguous single nucleotide polymorphism calls on extracted DNA from 292 isolates of Salmonella Typhi (Nal(R) = 223 and Nal(S) = 69) and 106 isolates of Salmonella Paratyphi A (Nal(R) = 24 and Nal(S) = 82). All of the 247 Nal(R) Salmonella Typhi and Salmonella Paratyphi A isolates were found to harbour at least one of the target mutations, with GyrA Phe-83 as the most common one (143\\/223 for Salmonella Typhi and 18\\/24 for Salmonella Paratyphi A). We also identified three GyrB mutations in eight Nal(S) Salmonella Typhi isolates (six for GyrB Phe-464, one for GyrB Leu-465 and one for GyrB Asp-466), and mutations GyrB Phe-464 and GyrB Asp-466 seem to be related to the decreased ciprofloxacin susceptibility phenotype in Salmonella Typhi. This assay can also be used directly on boiled single colonies. CONCLUSIONS: The assay presented here would be useful for clinical and reference laboratories to rapidly screen quinolone-resistant isolates of Salmonella Typhi and Salmonella Paratyphi A, and decipher the underlying genetic changes for epidemiological purposes.

  6. Diagnostic Performance of a Multiplex PCR assay for meningitis in an HIV-infected population in Uganda

    Science.gov (United States)

    Rhein, Joshua; Bahr, Nathan C; Hemmert, Andrew C; Cloud, Joann L; Bellamkonda, Satya; Oswald, Cody; Lo, Eric; Nabeta, Henry; Kiggundu, Reuben; Akampurira, Andrew; Musubire, Abdu; Williams, Darlisha; Meya, David B; Boulware, David R

    2015-01-01

    Meningitis remains a worldwide problem, and rapid diagnosis is essential to optimize survival. We evaluated the utility of a multiplex PCR test in differentiating possible etiologies of meningitis. Cerebrospinal fluid (CSF) from 69 HIV-infected Ugandan adults with meningitis was collected at diagnosis (n=51) and among persons with cryptococcal meningitis during therapeutic lumbar punctures (n=68). Cryopreserved CSF specimens were analyzed with BioFire FilmArray® Meningitis/Encephalitis panel, which targets 17 pathogens. The panel detected Cryptococcus in the CSF of patients diagnosed with a first-episode of cryptococcal meningitis by fungal culture with 100% sensitivity and specificity, and differentiated between fungal relapse and paradoxical immune reconstitution inflammatory syndrome in recurrent episodes. A negative FilmArray result was predictive of CSF sterility on follow-up lumbar punctures for cryptococcal meningitis. EBV was frequently detected in this immunosuppressed population (n=45). Other pathogens detected included: CMV (n=2), VZV (n=2), HHV-6 (n=1), and Streptococcus pneumoniae (n=1). The FilmArray Meningitis/Encephalitis panel offers a promising platform for rapid meningitis diagnosis. PMID:26711635

  7. A novel single-step multiplex polymerase chain reaction assay for the detection of diarrheagenic Escherichia coli.

    Science.gov (United States)

    Fujioka, Miyuki; Otomo, Yoshimitsu; Ahsan, Chowdhury Rafiqul

    2013-03-01

    Escherichia coli that causes diarrhea in humans is referred to as diarrheagenic E. coli (DEC), and has been categorized into the following 5 groups: shigatoxin-producing E. coli (STEC), enteropathogenic E. coli (EPEC), enteroinvasive E. coli (EIEC), enteroaggregative E. coli (EAggEC), and enterotoxigenic E. coli (ETEC). In this study, we developed a novel one-step multiplex polymerase chain reaction (mPCR) for the rapid detection of 10 pathogenic genes (stx1, stx2, eae, bfpA, invE, aggR, esth, estp, elt, and astA) of DEC. Five categorized strains were used as positive controls for DEC harboring each pathogenic gene, and 828 DEC-like strains, isolated from diarrheal stool samples and assumed to be DEC on the basis of serotyping, were used in the mPCR-based detection of the pathogenic genes. To demonstrate the utility of mPCR, the 828 strains were subjected to our optimized protocol, and the results obtained were compared with those obtained by monoplex PCR. The results showed agreement for all strains. Using mPCR, we also detected 65 DEC and 41 astA-positive E. coli, and 7 of these DEC strains were "O antigen untypable" (OUT). This novel mPCR protocol allowed for rapid, convenient, and economical pathogenicity-based identification of the DEC.

  8. Diagnostic performance of a multiplex PCR assay for meningitis in an HIV-infected population in Uganda.

    Science.gov (United States)

    Rhein, Joshua; Bahr, Nathan C; Hemmert, Andrew C; Cloud, Joann L; Bellamkonda, Satya; Oswald, Cody; Lo, Eric; Nabeta, Henry; Kiggundu, Reuben; Akampurira, Andrew; Musubire, Abdu; Williams, Darlisha A; Meya, David B; Boulware, David R

    2016-03-01

    Meningitis remains a worldwide problem, and rapid diagnosis is essential to optimize survival. We evaluated the utility of a multiplex PCR test in differentiating possible etiologies of meningitis. Cerebrospinal fluid (CSF) from 69 HIV-infected Ugandan adults with meningitis was collected at diagnosis (n=51) and among persons with cryptococcal meningitis during therapeutic lumbar punctures (n=68). Cryopreserved CSF specimens were analyzed with BioFire FilmArray® Meningitis/Encephalitis panel, which targets 17 pathogens. The panel detected Cryptococcus in the CSF of patients diagnosed with a first episode of cryptococcal meningitis by fungal culture with 100% sensitivity and specificity and differentiated between fungal relapse and paradoxical immune reconstitution inflammatory syndrome in recurrent episodes. A negative FilmArray result was predictive of CSF sterility on follow-up lumbar punctures for cryptococcal meningitis. EBV was frequently detected in this immunosuppressed population (n=45). Other pathogens detected included: cytomegalovirus (n=2), varicella zoster virus (n=2), human herpes virus 6 (n=1), and Streptococcus pneumoniae (n=1). The FilmArray Meningitis/Encephalitis panel offers a promising platform for rapid meningitis diagnosis.

  9. 乙型肝炎病毒核酸检测试剂临床应用的分析%Evaluation of multiplex nucleic acid testing assays for screening of hepatitis B virus DNA in blood donation process

    Institute of Scientific and Technical Information of China (English)

    周诚; 吴星; 黄维金; 蓝海云; 辜文洁; 祁自柏; 梁争论; 李河民

    2008-01-01

    Objective To evaluate the multiplex nucleic acid testing (NAT) assays for HBV,HCV and HIV in detecting HBV DNA in plasma samples. Methods 534 plasma samples collected form several areas were detected with Abbott Architect i2000 HBsAg, ani-HBs, HBeAg, anti-HBe, anti-HBc and anti-HBc IgM diagnostic kits. HBV DNA levels of those samples were detected with Roche COBAS AmpliPrep/ COBAS TaqMan HBV Test. Two kinds of multiplex NAT assays for HBV, HCV and HIV were used to test HBV DNA of those 534 samples. Results of serology-markers and quantitative HBV DNA levels with results of NAT were compared. Results HBV DNA was positive in all 81 HBsAg, HBeAg and anti-HBc positive samples,detected by both of NAT assays. HBV DNA was positive in 11 and 19 of 200 HBsAg negative samples when detected with the two kinds of NAT assays separately. Compared with the quantitative results detected by Roche COBAS AmpliPrep/COBAS TaqMan HBV Test, the HBV DNA positive rates were 96.9% and 94.3% in 193 samples of HBV DNA levels over 500 IU/ml while 40.2% and 45.3% in 117 samples of HBV DNA levels below 500 IU/ml while 99.3% and 96.0% in 151 samples of DNA negative HBV. Conclusion There are some occult low level HBV DNA carriers with HBsAg negative results in China. NAT assays for HBV, HCV and HIV may be useful to improve the transfusion safety.%目的 了解HBV/HCV/HIV联合核酸检测的临床应用.方法 使用Abbott Architecti2000化学发光检测盒对534份血浆样品进行血清学检测,Roche COBAS AmpliPrep/COBAS TaqManHBV Test试剂定量检测分别与2种联合核酸检测结果 进行比较分析.结果 81份HBsAg、HBeAg、抗-HBc 3项均阳性样品联合核酸检测均为HBV阳性,200份HBsAg阴性的样品中联合核酸检测试剂分别有11、19份检测为HBV阳性.HBV DNA定量检测>500 IU/ml的193份样品联合核酸检测试剂阳性符合率分别为96.9%、94.3%,117份样品<500 IU/ml阳性符合率分别为40.2%、45.3%,151份HBV DNA阴性样品联

  10. Diagnosis of viral gastroenteritis by simultaneous detection of Adenovirus group F, Astrovirus, Rotavirus group A, Norovirus genogroups I and II, and Sapovirus in two internally controlled multiplex real-time PCR assays.

    Science.gov (United States)

    van Maarseveen, Noortje M; Wessels, Els; de Brouwer, Caroline S; Vossen, Ann C T M; Claas, Eric C J

    2010-11-01

    Norovirus, Rotavirus group A, Astrovirus, Sapovirus and Adenovirus serotypes 40 and 41, are common causes of gastroenteritis. Conventional diagnosis of these causative agents is based on antigen detection and electron microscopy. To improve the diagnostic possibilities for viral gastroenteritis, two internally controlled multiplex real-time PCRs have been developed. Individual real-time PCRs were developed and optimized for the specific detection of Norovirus genogroup I, Norovirus genogroup II, Rotavirus group A, Astrovirus, Adenovirus group F and Sapovirus. Subsequently, the PCRs were combined to two multiplex PCR reactions. The multiplex assays were clinically evaluated using 239 fecal samples submitted to our laboratory over a 1-year period for the routine detection of Rotavirus and/or Adenovirus antigens using the Vikia(®) Rota/Adeno test (bioMérieux, Boxtel, The Netherlands). In general, the multiplex real-time PCR assays showed comparable sensitivity and specificity to the individual assays. A retrospective clinical evaluation showed increased pathogen detection in samples from 14% using conventional methods to 45% using PCR. Subsequently, the assay was implemented as a routine diagnostic tool. From September 2007 up to December 2009, 486 positive results were obtained in 1570 samples (31%) analyzed. Norovirus genogroup II was found the most frequently (61.1%), followed by Adenovirus (9.9%), Rotavirus (9.3%), Astrovirus (6.0%), Norovirus genogroup I (3.3%) and Sapovirus (0.4%). Two internally controlled multiplex real-time PCR assays for the simultaneous detection of Astrovirus, Adenovirus group F, Rotavirus, Norovirus genogroups I and II and Sapovirus have shown significant improvement in the diagnosis of viral gastroenteritis. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Assessing the performance capabilities of LRE-based assays for absolute quantitative real-time PCR.

    Directory of Open Access Journals (Sweden)

    Robert G Rutledge

    Full Text Available BACKGROUND: Linear regression of efficiency or LRE introduced a new paradigm for conducting absolute quantification, which does not require standard curves, can generate absolute accuracies of +/-25% and has single molecule sensitivity. Derived from adapting the classic Boltzmann sigmoidal function to PCR, target quantity is calculated directly from the fluorescence readings within the central region of an amplification profile, generating 4-8 determinations from each amplification reaction. FINDINGS: Based on generating a linear representation of PCR amplification, the highly visual nature of LRE analysis is illustrated by varying reaction volume and amplification efficiency, which also demonstrates how LRE can be used to model PCR. Examining the dynamic range of LRE further demonstrates that quantitative accuracy can be maintained down to a single target molecule, and that target quantification below ten molecules conforms to that predicted by Poisson distribution. Essential to the universality of optical calibration, the fluorescence intensity generated by SYBR Green I (FU/bp is shown to be independent of GC content and amplicon size, further verifying that absolute scale can be established using a single quantitative standard. Two high-performance lambda amplicons are also introduced that in addition to producing highly precise optical calibrations, can be used as benchmarks for performance testing. The utility of limiting dilution assay for conducting platform-independent absolute quantification is also discussed, along with the utility of defining assay performance in terms of absolute accuracy. CONCLUSIONS: Founded on the ability to exploit lambda gDNA as a universal quantitative standard, LRE provides the ability to conduct absolute quantification using few resources beyond those needed for sample preparation and amplification. Combined with the quantitative and quality control capabilities of LRE, this kinetic-based approach has the

  12. Quantitative dynamic nuclear polarization-NMR on blood plasma for assays of drug metabolism.

    Science.gov (United States)

    Lerche, Mathilde H; Meier, Sebastian; Jensen, Pernille R; Hustvedt, Svein-Olaf; Karlsson, Magnus; Duus, Jens Ø; Ardenkjaer-Larsen, Jan H

    2011-01-01

    Analytical platforms for the fast detection, identification and quantification of circulating drugs with a narrow therapeutic range are vital in clinical pharmacology. As a result of low drug concentrations, analytical tools need to provide high sensitivity and specificity. Dynamic nuclear polarization-NMR (DNP-NMR) in the form of the hyperpolarization-dissolution method should afford the sensitivity and spectral resolution for the direct detection and quantification of numerous isotopically labeled circulating drugs and their metabolites in single liquid-state NMR transients. This study explores the capability of quantitative in vitro DNP-NMR to assay drug metabolites in blood plasma. The lower limit of detection for the anti-epileptic drug (13)C-carbamazepine and its pharmacologically active metabolite (13)C-carbamazepine-10,11-epoxide is 0.08 µg/mL in rabbit blood plasma analyzed by single-scan (13)C DNP-NMR. An internal standard is used for the accurate quantification of drug and metabolite. Comparison of quantitative DNP-NMR data with an established analytical method (liquid chromatography-mass spectrometry) yields a Pearson correlation coefficient r of 0.99. Notably, all DNP-NMR determinations were performed without analyte derivatization or sample purification other than plasma protein precipitation. Quantitative DNP-NMR is an emerging methodology which requires little sample preparation and yields quantitative data with high sensitivity for therapeutic drug monitoring.

  13. Molecular barcoding of venomous snakes and species-specific multiplex PCR assay to identify snake groups for which antivenom is available in Thailand.

    Science.gov (United States)

    Supikamolseni, A; Ngaoburanawit, N; Sumontha, M; Chanhome, L; Suntrarachun, S; Peyachoknagul, S; Srikulnath, K

    2015-10-30

    DNA barcodes of mitochondrial COI and Cytb genes were constructed from 54 specimens of 16 species for species identification. Intra- and interspecific sequence divergence of the COI gene (10 times) was greater than that of the Cytb gene (4 times), which suggests that the former gene may be a better marker than the latter for species delimitation in snakes. The COI barcode cut-off scores differed by more than 3% between most species, and the minimum interspecific divergence was greater than the maximum intraspecific divergence. Clustering analysis indicated that most species fell into monophyletic clades. These results suggest that these species could be reliably differentiated using COI DNA barcodes. Moreover, a novel species-specific multiplex PCR assay was developed to distinguish between Naja spp, Ophiophagus hannah, Trimeresurus spp, Hydrophiinae, Daboia siamensis, Bungarus fasciatus, and Calloselasma rhodostoma. Antivenom for these species is produced and kept by the Thai Red Cross for clinical use. Our novel PCR assay could easily be applied to venom and saliva samples and could be used effectively for the rapid and accurate identification of species during forensic work, conservation study, and medical research.

  14. Protein Detection Using the Multiplexed Proximity Extension Assay (PEA from Plasma and Vaginal Fluid Applied to the Indicating FTA Elute Micro Card™

    Directory of Open Access Journals (Sweden)

    Malin Berggrund

    2016-01-01

    Full Text Available The indicating FTA elute micro card™ has been developed to collect and stabilize the nucleic acid in biological samples and is widely used in human and veterinary medicine and other disciplines. This card is not recommended for protein analyses, since surface treatment may denature proteins. We studied the ability to analyse proteins in human plasma and vaginal fluid as applied to the indicating FTA elute micro card™ using the sensitive proximity extension assay (PEA. Among 92 proteins in the Proseek Multiplex Oncology Iv2 panel, 87 were above the limit of detection (LOD in liquid plasma and 56 among 92 above LOD in plasma applied to FTA cards. Washing and protein elution protocols were compared to identify an optimal method. Liquid-based cytology samples showed a lower number of proteins above LOD than FTA cards with vaginal fluid samples applied. Our results demonstrate that samples applied to the indicating FTA elute micro card™ are amendable to protein analyses, given that a sensitive protein detection assay is used. The results imply that biological samples applied to FTA cards can be used for DNA, RNA and protein detection.

  15. Development and validation of a multiplex add-on assay of biomarkers related to sepsis using xMAP technology

    DEFF Research Database (Denmark)

    Kofoed, Kristian; Vest Schneider, Uffe; Scheel, Troels

    2006-01-01

    %, respectively. Recoveries of suPAR, sTREM-1, and MIF calibrators were 108%, 88%, and 51%, respectively. In plasma collected from 10 patients with bacterial sepsis confirmed by blood culture, the assay detected significantly increased concentrations of all 8 analytes compared with healthy controls. CONCLUSIONS...

  16. Development and Assessment of a Single Tube Internally ControlledMultiplex PCR Assay to Detect Different Pathogenic Bacteria Involved inBlood Stream Infections

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Arabestani

    2013-01-01

    Full Text Available Background: Bloodstream infections are associated with high morbidity and mortality. Delayed etiological diagnosis and inadequate antimicrobial therapy are associated with treatment failures. Objectives: This study describes the development and assessment of a new multiplex PCR that includes an Internal Control (IC for the assurance of the whole workflow from the extraction of the DNA until the revelation of the amplicons. Materials and Methods: A unique sequence was chosen for each pathogen and used for primer design. Primers for amplification of Enterobacteriaceae, Enterococcus spp, Staphylococcus spp, Acinetobacterbaumanii and IC were designed and tested for sensitivity and specificity on the basis of their standard strains. Results: The multiplex PCR showed a sensitivity ranging from 1 to 100 target copies per reaction or 50 to 100 colony forming unit (CFU per ml to the whole blood depending on the bacterial species. The specificity of this method was elevated and no false positive amplification was identified for 17 different species other than the target microorganisms. Moreover, the detection of the IC was observed in the concentration as low as 1 copy per reaction. The correct co-amplification of IC for each single bacterial species showed a correct whole workflow procedure starting from the extraction step. Conclusion: This new assay permits a rapid and accurate detection of some pathogenic microorganisms, that are among the most commonly detected ones in blood stream infections in Iran, with a simple and cost-effective method which includes the use of an internal control to validate the whole procedure thus avoiding false negative results.

  17. Rapid multiplex detection of 10 foodborne pathogens with an up-converting phosphor technology-based 10-channel lateral flow assay.

    Science.gov (United States)

    Zhao, Yong; Wang, Haoran; Zhang, Pingping; Sun, Chongyun; Wang, Xiaochen; Wang, Xinrui; Yang, Ruifu; Wang, Chengbin; Zhou, Lei

    2016-02-17

    The rapid high-throughput detection of foodborne pathogens is essential in controlling food safety. In this study, a 10-channel up-converting phosphor technology-based lateral flow (TC-UPT-LF) assay was established for the rapid and simultaneous detection of 10 epidemic foodborne pathogens. Ten different single-target UPT-LF strips were developed and integrated into one TC-UPT-LF disc with optimization. Without enrichment the TC-UPT-LF assay had a detection sensitivity of 10(4) CFU mL(-1) or 10(5) CFU mL(-1) for each pathogen, and after sample enrichment it was 10 CFU/0.6 mg. The assay also showed good linearity, allowing quantitative detection, with a linear fitting coefficient of determination (R(2)) of 0.916-0.998. The 10 detection channels did not cross-react, so multiple targets could be specifically detected. When 279 real food samples were tested, the assay was highly consistent (100%) with culture-based methods. The results for 110 food samples artificially contaminated with single or multiple targets showed a high detection rate (≥ 80%) for most target bacteria. Overall, the TC-UPT-LF assay allows the rapid, quantitative, and simultaneous detection of 10 kinds of foodborne pathogens within 20 min, and is especially suitable for the rapid detection and surveillance of foodborne pathogens in food and water.

  18. Single-tube fluorescent product-enhanced reverse transcriptase assay with Ampliwax (STF-PERT) for retrovirus quantitation.

    Science.gov (United States)

    Sears, Johnna F; Khan, Arifa S

    2003-03-01

    A TaqMan fluorescent probe-based product enhanced reverse transcriptase (RT) assay is described in which the RT and polymerase chain reaction (PCR) steps are set-up in a single tube, in two compartments separated by Ampliwax (designated as single-tube fluorescent product-enhanced reverse transcriptase assay (STF-PERT)). This simplification of the two-step method resulted in increased assay reproducibility and handling efficiency while maintaining the sensitivity of the PERT assay (PERT assay can be used to quantitate low amounts of retrovirus in clinical and research materials and to evaluate retrovirus contamination in cell substrates and biological products in human use.

  19. A parallel and quantitative cell migration assay using a novel multi-well-based device.

    Science.gov (United States)

    Quan, Qianghua; Zhang, Shuwen; Wang, Xudong; Ouyang, Qi; Wang, Yugang; Yang, Gen; Luo, Chunxiong

    2016-12-01

    Cell migration assays for different chemical environments are important for both scientists and clinicians searching for new therapeutics. In this study, we developed a multi-well-based microfluidic chip that has multiple units for different conditions. In each unit, cells can be patterned and then released to observe their migration. Automatic image analysis and model-based data processing were developed to describe the integrated cell migration assay precisely and quickly. As a demonstration, the migration behaviors of two types of cells in eight chemical conditions were studied. The results showed that supplementation with transforming growth factor-β(TGF-β) significantly promoted the migration of MCF-7 and MCF-10 A cells compared to several growth factors, such as Epidermal Growth Factor(EGF) and basic fibroblast growth factor(bFGF), as well as a control sample. Cells can migrate particularly fast with two or more mixed supplementary factors, such as TGF-β + bFGF + EGF, which indicated a synergy effect. Thus, this chip could be used to quantitatively observe cancer cell migration and demonstrated great potential for use in quantitative migration studies and chemical screening.

  20. Development of a highly-sensitive multi-plex assay using monoclonal antibodies for the simultaneous measurement of kappa and lambda immunoglobulin free light chains in serum and urine.

    Science.gov (United States)

    Campbell, John P; Cobbold, Mark; Wang, Yanyun; Goodall, Margaret; Bonney, Sarah L; Chamba, Anita; Birtwistle, Jane; Plant, Timothy; Afzal, Zaheer; Jefferis, Roy; Drayson, Mark T

    2013-05-31

    Monoclonal κ and λ immunoglobulin free light chain (FLC) paraproteins in serum and urine are important markers in the diagnosis and monitoring of B cell dyscrasias. Current nephelometric and turbidimetric methods that use sheep polyclonal antisera to quantify serum FLC have a number of well-observed limitations. In this report, we describe an improved method using specific mouse anti-human FLC monoclonal antibodies (mAbs). Anti-κ and anti-λ FLC mAbs were, separately, covalently coupled to polystyrene Xmap® beads and assayed, simultaneously, in a multi-plex format by Luminex® (mAb assay). The mAbs displayed no cross-reactivity to bound LC, the alternate LC type, or other human proteins and had improved sensitivity and specificity over immunofixation electrophoresis (IFE) and Freelite™. The assay gives good linearity and sensitivity (<1 mg/L), and the competitive inhibition format gave a broad calibration curve up to 437.5 mg/L and prevented anomalous results for samples in antigen excess i.e. high FLC levels. The mAbs displayed good concordance with Freelite™ for the quantitation of normal polyclonal FLC in plasma from healthy donors (n=249). The mAb assay identified all monoclonal FLC in serum from consecutive patient samples (n=1000; 50.1% with monoclonal paraprotein by serum IFE), and all FLC in a large cohort of urine samples tested for Bence Jones proteins (n=13090; 22.8% with monoclonal κ, 9.0% with monoclonal λ, and 0.8% with poly LC detected by urine IFE). Importantly this shows that the mAbs are at least close to the ideal of detecting FLC from all patients and neoplastic plasma cell clones. Given the overall effectiveness of the anti-FLC mAbs, further clinical validation is now warranted on serial samples from a range of patients with B cell disorders. Use of these mAbs on other assay platforms should also be investigated.

  1. Development of a Highly Automated and Multiplexed Targeted Proteome Pipeline and Assay for 112 Rat Brain Synaptic Proteins

    Science.gov (United States)

    Colangelo, Christopher M.; Ivosev, Gordana; Chung, Lisa; Abbott, Thomas; Shifman, Mark; Sakaue, Fumika; Cox, David; Kitchen, Rob R.; Burton, Lyle; Tate, Stephen A; Gulcicek, Erol; Bonner, Ron; Rinehart, Jesse; Nairn, Angus C.; Williams, Kenneth R.

    2015-01-01

    We present a comprehensive workflow for large scale (>1000 transitions/run) label-free LC-MRM proteome assays. Innovations include automated MRM transition selection, intelligent retention time scheduling (xMRM) that improves Signal/Noise by >2-fold, and automatic peak modeling. Improvements to data analysis include a novel Q/C metric, Normalized Group Area Ratio (NGAR), MLR normalization, weighted regression analysis, and data dissemination through the Yale Protein Expression Database. As a proof of principle we developed a robust 90 minute LC-MRM assay for Mouse/Rat Post-Synaptic Density (PSD) fractions which resulted in the routine quantification of 337 peptides from 112 proteins based on 15 observations per protein. Parallel analyses with stable isotope dilution peptide standards (SIS), demonstrate very high correlation in retention time (1.0) and protein fold change (0.94) between the label-free and SIS analyses. Overall, our first method achieved a technical CV of 11.4% with >97.5% of the 1697 transitions being quantified without user intervention, resulting in a highly efficient, robust, and single injection LC-MRM assay. PMID:25476245

  2. Multiplexed, rapid detection of H5N1 using a PCR-free nanoparticle-based genomic microarray assay

    Directory of Open Access Journals (Sweden)

    Ragupathy Viswanath

    2010-10-01

    Full Text Available Abstract Background For more than a decade there has been increasing interest in the use of nanotechnology and microarray platforms for diagnostic applications. In this report, we describe a rapid and simple gold nanoparticle (NP-based genomic microarray assay for specific identification of avian influenza virus H5N1 and its discrimination from other major influenza A virus strains (H1N1, H3N2. Results Capture and intermediate oligonucleotides were designed based on the consensus sequences of the matrix (M gene of H1N1, H3N2 and H5N1 viruses, and sequences specific for the hemaglutinin (HA and neuraminidase (NA genes of the H5N1 virus. Viral RNA was detected within 2.5 hours using capture-target-intermediate oligonucleotide hybridization and gold NP-mediated silver staining in the absence of RNA fragmentation, target amplification, and enzymatic reactions. The lower limit of detection (LOD of the assay was less than 100 fM for purified PCR fragments and 103 TCID50 units for H5N1 viral RNA. Conclusions The NP-based microarray assay was able to detect and distinguish H5N1 sequences from those of major influenza A viruses (H1N1, H3N2. The new method described here may be useful for simultaneous detection and subtyping of major influenza A viruses.

  3. A quantitative evaluation of cell migration by the phagokinetic track motility assay.

    Science.gov (United States)

    Nogalski, Maciej T; Chan, Gary C T; Stevenson, Emily V; Collins-McMillen, Donna K; Yurochko, Andrew D

    2012-12-04

    Cellular motility is an important biological process for both unicellular and multicellular organisms. It is essential for movement of unicellular organisms towards a source of nutrients or away from unsuitable conditions, as well as in multicellular organisms for tissue development, immune surveillance and wound healing, just to mention a few roles(1,2,3). Deregulation of this process can lead to serious neurological, cardiovascular and immunological diseases, as well as exacerbated tumor formation and spread(4,5). Molecularly, actin polymerization and receptor recycling have been shown to play important roles in creating cellular extensions (lamellipodia), that drive the forward movement of the cell(6,7,8). However, many biological questions about cell migration remain unanswered. The central role for cellular motility in human health and disease underlines the importance of understanding the specific mechanisms involved in this process and makes accurate methods for evaluating cell motility particularly important. Microscopes are usually used to visualize the movement of cells. However, cells move rather slowly, making the quantitative measurement of cell migration a resource-consuming process requiring expensive cameras and software to create quantitative time-lapsed movies of motile cells. Therefore, the ability to perform a quantitative measurement of cell migration that is cost-effective, non-laborious, and that utilizes common laboratory equipment is a great need for many researchers. The phagokinetic track motility assay utilizes the ability of a moving cell to clear gold particles from its path to create a measurable track on a colloidal gold-coated glass coverslip(9,10). With the use of freely available software, multiple tracks can be evaluated for each treatment to accomplish statistical requirements. The assay can be utilized to assess motility of many cell types, such as cancer cells(11,12), fibroblasts(9), neutrophils(13), skeletal muscle cells(14

  4. A Multiplex PCR/LDR Assay for the Simultaneous Identification of Category A Infectious Pathogens: Agents of Viral Hemorrhagic Fever and Variola Virus.

    Directory of Open Access Journals (Sweden)

    Sanchita Das

    Full Text Available CDC designated category A infectious agents pose a major risk to national security and require special action for public health preparedness. They include viruses that cause viral hemorrhagic fever (VHF syndrome as well as variola virus, the agent of smallpox. VHF is characterized by hemorrhage and fever with multi-organ failure leading to high morbidity and mortality. Smallpox, a prior scourge, has been eradicated for decades, making it a particularly serious threat if released nefariously in the essentially non-immune world population. Early detection of the causative agents, and the ability to distinguish them from other pathogens, is essential to contain outbreaks, implement proper control measures, and prevent morbidity and mortality. We have developed a multiplex detection assay that uses several species-specific PCR primers to generate amplicons from multiple pathogens; these are then targeted in a ligase detection reaction (LDR. The resultant fluorescently-labeled ligation products are detected on a universal array enabling simultaneous identification of the pathogens. The assay was evaluated on 32 different isolates associated with VHF (ebolavirus, marburgvirus, Crimean Congo hemorrhagic fever virus, Lassa fever virus, Rift Valley fever virus, Dengue virus, and Yellow fever virus as well as variola virus and vaccinia virus (the agent of smallpox and its vaccine strain, respectively. The assay was able to detect all viruses tested, including 8 sequences representative of different variola virus strains from the CDC repository. It does not cross react with other emerging zoonoses such as monkeypox virus or cowpox virus, or six flaviviruses tested (St. Louis encephalitis virus, Murray Valley encephalitis virus, Powassan virus, Tick-borne encephalitis virus, West Nile virus and Japanese encephalitis virus.

  5. Comparison of the conventional multiplex RT-PCR, real time RT-PCR and Luminex xTAG® RVP fast assay for the detection of respiratory viruses.

    Science.gov (United States)

    Choudhary, Manohar L; Anand, Siddharth P; Tikhe, Shamal A; Walimbe, Atul M; Potdar, Varsha A; Chadha, Mandeep S; Mishra, Akhilesh C

    2016-01-01

    Detection of respiratory viruses using polymerase chain reaction (PCR) is sensitive, specific and cost effective, having huge potential for patient management. In this study, the performance of an in-house developed conventional multiplex RT-PCR (mRT-PCR), real time RT-PCR (rtRT-PCR) and Luminex xTAG(®) RVP fast assay (Luminex Diagnostics, Toronto, Canada) for the detection of respiratory viruses was compared. A total 310 respiratory clinical specimens predominantly from pediatric patients, referred for diagnosis of influenza A/H1N1pdm09 from August 2009 to March 2011 were tested to determine performance characteristic of the three methods. A total 193 (62.2%) samples were detected positive for one or more viruses by mRT-PCR, 175 (56.4%) samples by real time monoplex RT-PCR, and 138 (44.5%) samples by xTAG(®) RVP fast assay. The overall sensitivity of mRT-PCR was 96.9% (95% CI: 93.5, 98.8), rtRT-PCR 87.9% (95% CI: 82.5, 92.1) and xTAG(®) RVP fast was 68.3% (95% CI: 61.4, 74.6). Rhinovirus was detected most commonly followed by respiratory syncytial virus group B and influenza A/H1N1pdm09. The monoplex real time RT-PCR and in-house developed mRT-PCR are more sensitive, specific and cost effective than the xTAG(®) RVP fast assay.

  6. A Multiplex PCR/LDR Assay for the Simultaneous Identification of Category A Infectious Pathogens: Agents of Viral Hemorrhagic Fever and Variola Virus

    Science.gov (United States)

    Das, Sanchita; Rundell, Mark S.; Mirza, Aashiq H.; Pingle, Maneesh R.; Shigyo, Kristi; Garrison, Aura R.; Paragas, Jason; Smith, Scott K.; Olson, Victoria A.; Larone, Davise H.; Spitzer, Eric D.; Barany, Francis; Golightly, Linnie M.

    2015-01-01

    CDC designated category A infectious agents pose a major risk to national security and require special action for public health preparedness. They include viruses that cause viral hemorrhagic fever (VHF) syndrome as well as variola virus, the agent of smallpox. VHF is characterized by hemorrhage and fever with multi-organ failure leading to high morbidity and mortality. Smallpox, a prior scourge, has been eradicated for decades, making it a particularly serious threat if released nefariously in the essentially non-immune world population. Early detection of the causative agents, and the ability to distinguish them from other pathogens, is essential to contain outbreaks, implement proper control measures, and prevent morbidity and mortality. We have developed a multiplex detection assay that uses several species-specific PCR primers to generate amplicons from multiple pathogens; these are then targeted in a ligase detection reaction (LDR). The resultant fluorescently-labeled ligation products are detected on a universal array enabling simultaneous identification of the pathogens. The assay was evaluated on 32 different isolates associated with VHF (ebolavirus, marburgvirus, Crimean Congo hemorrhagic fever virus, Lassa fever virus, Rift Valley fever virus, Dengue virus, and Yellow fever virus) as well as variola virus and vaccinia virus (the agent of smallpox and its vaccine strain, respectively). The assay was able to detect all viruses tested, including 8 sequences representative of different variola virus strains from the CDC repository. It does not cross react with other emerging zoonoses such as monkeypox virus or cowpox virus, or six flaviviruses tested (St. Louis encephalitis virus, Murray Valley encephalitis virus, Powassan virus, Tick-borne encephalitis virus, West Nile virus and Japanese encephalitis virus). PMID:26381398

  7. Development of a Rapid Real-Time PCR Assay for Quantitation of Pneumocystis carinii f. sp. Carinii

    DEFF Research Database (Denmark)

    Larsen, Hans Henrik; Kovacs, Joseph A; Stock, Frida

    2002-01-01

    . In conclusion, a rapid, sensitive, and reproducible quantitative PCR assay for P. carinii f. sp. carinii has been developed and is applicable to in vivo as well as in vitro systems. The assay should prove useful for conducting studies in which quantification of organism burden or growth assessment is critical...

  8. Zebrafish Caudal Fin Angiogenesis Assay-Advanced Quantitative Assessment Including 3-Way Correlative Microscopy.

    Directory of Open Access Journals (Sweden)

    Ruslan Hlushchuk

    Full Text Available Researchers evaluating angiomodulating compounds as a part of scientific projects or pre-clinical studies are often confronted with limitations of applied animal models. The rough and insufficient early-stage compound assessment without reliable quantification of the vascular response counts, at least partially, to the low transition rate to clinics.To establish an advanced, rapid and cost-effective angiogenesis assay for the precise and sensitive assessment of angiomodulating compounds using zebrafish caudal fin regeneration. It should provide information regarding the angiogenic mechanisms involved and should include qualitative and quantitative data of drug effects in a non-biased and time-efficient way.Basic vascular parameters (total regenerated area, vascular projection area, contour length, vessel area density were extracted from in vivo fluorescence microscopy images using a stereological approach. Skeletonization of the vasculature by our custom-made software Skelios provided additional parameters including "graph energy" and "distance to farthest node". The latter gave important insights into the complexity, connectivity and maturation status of the regenerating vascular network. The employment of a reference point (vascular parameters prior amputation is unique for the model and crucial for a proper assessment. Additionally, the assay provides exceptional possibilities for correlative microscopy by combining in vivo-imaging and morphological investigation of the area of interest. The 3-way correlative microscopy links the dynamic changes in vivo with their structural substrate at the subcellular level.The improved zebrafish fin regeneration model with advanced quantitative analysis and optional 3-way correlative morphology is a promising in vivo angiogenesis assay, well-suitable for basic research and preclinical investigations.

  9. A lateral flow assay for quantitative detection of amplified HIV-1 RNA.

    Directory of Open Access Journals (Sweden)

    Brittany A Rohrman

    Full Text Available Although the accessibility of HIV treatment in developing nations has increased dramatically over the past decade, viral load testing to monitor the response of patients receiving therapy is often unavailable. Existing viral load technologies are often too expensive or resource-intensive for poor settings, and there is no appropriate HIV viral load test currently available at the point-of-care in low resource settings. Here, we present a lateral flow assay that employs gold nanoparticle probes and gold enhancement solution to detect amplified HIV RNA quantitatively. Preliminary results show that, when coupled with nucleic acid sequence based amplification (NASBA, this assay can detect concentrations of HIV RNA that match the clinically relevant range of viral loads found in HIV patients. The lateral flow test is inexpensive, simple and rapid to perform, and requires few resources. Our results suggest that the lateral flow assay may be integrated with amplification and sample preparation technologies to serve as an HIV viral load test for low-resource settings.

  10. A Caco-2 cell-based quantitative antioxidant activity assay for antioxidants.

    Science.gov (United States)

    Wan, Hongxia; Liu, Dong; Yu, Xiangying; Sun, Haiyan; Li, Yan

    2015-05-15

    A Caco-2 cell-based antioxidant activity (CAA) assay for quantitative evaluation of antioxidants was developed by optimizing seeding density and culture time of Caco-2 cells, incubation time and concentration of fluorescent probe (2',7'-dichlorofluorescin diacetate, DCFH-DA), incubation way and incubation time of antioxidants (pure phytochemicals) and DCFH-DA with cells, and detection time of fluorescence. Results showed that the CAA assay was of good reproducibility and could be used to evaluate the antioxidant activity of antioxidants at the following conditions: seeding density of 5 × 10(4)/well, cell culture time of 24h, co-incubation of 60 μM DCFH-DA and pure phytochemicals with Caco-2 cells for 20 min and fluorescence recorded for 90 min. Additionally, a significant correlation was observed between CAA values and rat plasma ORAC values following the intake of antioxidants for selected pure phytochemicals (R(2) = 0.815, p < 0.01), demonstrating the good biological relevance of CAA assay. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Development, validation and quantitative assessment of an enzymatic assay suitable for small molecule screening and profiling: A case-study

    Directory of Open Access Journals (Sweden)

    Vicente Sancenon

    2015-06-01

    Full Text Available The successful discovery and subsequent development of small molecule inhibitors of drug targets relies on the establishment of robust, cost-effective, quantitative, and physiologically relevant in vitro assays that can support prolonged screening and optimization campaigns. The current study illustrates the process of developing and validating an enzymatic assay for the discovery of small molecule inhibitors using alkaline phosphatase from bovine intestine as model target. The assay development workflow includes an initial phase of optimization of assay materials, reagents, and conditions, continues with a process of miniaturization and automation, and concludes with validation by quantitative measurement of assay performance and signal variability. The assay is further evaluated for dose–response and mechanism-of-action studies required to support structure–activity-relationship studies. Emphasis is placed on the most critical aspects of assay optimization and other relevant considerations, including the technology, assay materials, buffer constituents, reaction conditions, liquid handling equipment, analytical instrumentation, and quantitative assessments. Examples of bottlenecks encountered during assay development and strategies to address them are provided.

  12. Detection of homozygous and heterozygous SMN deletions of spinal muscular atrophy in a single assay with multiplex ligation-dependent probe amplification%SMN基因缺失多重连接探针扩增法检测和识别脊柱肌肉萎缩症的纯合型或杂合型SMN基因缺失

    Institute of Scientific and Technical Information of China (English)

    Keith TOMASZEWICZ; Peter KANG; Bai-Lin WU

    2005-01-01

    Objective: Spinal muscular atrophy(SMA), an autosomal recessive neuromuscular degeneration of the anterior horn cells of the spinal cord and brain stem, results in one of the most common diseases with muscle fatigue and atrophy. Most SMA cases including all the types are due to the homozygous deletion of at least exon 7 within the survival motor neuron 1 (SMN-1) gene. Although a "golden standard" assay (PCR with mismatch primer followed by enzyme digestion) is very reliable for the identification of homozygous SMN-1 deletion, the carrier detection of heterozygous SMN-1 deletion remains a challenge. Methods: Some PCR-based gene dosage assays or multiplex PCR allow for the determination of the copy number of SMN-1 gene to identify heterozygous deletion, but these procedures are often time consuming and available on a limited clinical basis. Recently developed MLPA (multiplex ligation-dependent probe amplification) is an efficient procedure that can accurately analyze relative quantification to establish the copy number of the SMN gene. We performed a validation for simultaneous detection of homozygous SMN-1 deletions of SMA patients and heterozygous SMN-1 deletions of SMA carriers in a simple assay using a MLPA-SMA assay specific reagent. Results: Six out of 20 patients with SMA were found to have homozygous SMN-1 deletion, confirmed by the PCR/digestion assay. All 4 parents of the children with SMA had heterozygous SMN-1 deletion, confirmed by an independent relative quantitative analysis. Conclusion: MLPA provides a simple, rapid and accurate method of simultaneously detecting homozygous deletions and heterozygous deletions in a single assay for both SMN-1 and SMN-2 genes.

  13. Performance evaluation of new automated hepatitis B viral markers in the clinical laboratory: two quantitative hepatitis B surface antigen assays and an HBV core-related antigen assay.

    Science.gov (United States)

    Park, Yongjung; Hong, Duck Jin; Shin, Saeam; Cho, Yonggeun; Kim, Hyon-Suk

    2012-05-01

    We evaluated quantitative hepatitis B surface antigen (qHBsAg) assays and a hepatitis B virus (HBV) core-related antigen (HBcrAg) assay. A total of 529 serum samples from patients with hepatitis B were tested. HBsAg levels were determined by using the Elecsys (Roche Diagnostics, Indianapolis, IN) and Architect (Abbott Laboratories, Abbott Park, IL) qHBsAg assays. HBcrAg was measured by using Lumipulse HBcrAg assay (Fujirebio, Tokyo, Japan). Serum aminotransferases and HBV DNA were respectively quantified by using the Hitachi 7600 analyzer (Hitachi High-Technologies, Tokyo, Japan) and the Cobas AmpliPrep/Cobas TaqMan test (Roche). Precision of the qHBsAg and HBcrAg assays was assessed, and linearity of the qHBsAg assays was verified. All assays showed good precision performance with coefficients of variation between 4.5% and 5.3% except for some levels. Both qHBsAg assays showed linearity from 0.1 to 12,000.0 IU/mL and correlated well (r = 0.9934). HBsAg levels correlated with HBV DNA (r = 0.3373) and with HBcrAg (r = 0.5164), and HBcrAg also correlated with HBV DNA (r = 0.5198; P HBcrAg assays.

  14. Multiplex real-time PCR melting curve assay to detect drug-resistant mutations of Mycobacterium tuberculosis.

    Science.gov (United States)

    Luo, Tao; Jiang, Lili; Sun, Weiming; Fu, G; Mei, Jian; Gao, Qian

    2011-09-01

    Early diagnosis of drug-resistant Mycobacterium tuberculosis is urgently needed to optimize treatment regimens and to prevent the transmission of resistant strains. Real-time PCR assays have been developed to detect drug resistance rapidly, but none of them have been widely applied due to their complexity, high cost, or requirement for advanced instruments. In this study, we developed a real-time PCR method based on melting curve analysis of dually labeled probes. Six probes targeting the rpoB 81-bp core region, katG315, the inhA promoter, the ahpC promoter, and embB306 were designed and validated with clinical isolates. First, 10 multidrug-resistant (MDR) strains with a wide mutation spectrum were used to analyze the melting temperature (T(m)) deviations of different mutations by single real-time PCR. All mutations can be detected by significant T(m) reductions compared to the wild type. Then, three duplex real-time PCRs, with two probes in each, were developed to detect mutations in 158 MDR isolates. Comparison of the results with the sequencing data showed that all mutations covered by the six probes were detected with 100% sensitivity and 100% specificity. Our method provided a new way to rapidly detect drug-resistant mutations in M. tuberculosis. Compared to other real-time PCR methods, we use fewer probes, which are labeled with the same fluorophore, guaranteeing that this assay can be used for detection in a single fluorescent channel or can be run on single-channel instruments. In conclusion, we have developed a widely applicable real-time PCR assay to detect drug-resistant mutations in M. tuberculosis.

  15. Development and validation of a multiplex add-on assay of biomarkers related to sepsis using xMAP technology

    DEFF Research Database (Denmark)

    Kofoed, Kristian; Vest Schneider, Uffe; Scheel, Troels

    2006-01-01

    %, respectively. Recoveries of suPAR, sTREM-1, and MIF calibrators were 108%, 88%, and 51%, respectively. In plasma collected from 10 patients with bacterial sepsis confirmed by blood culture, the assay detected significantly increased concentrations of all 8 analytes compared with healthy controls. CONCLUSIONS......BACKGROUND: Sepsis is a common and often fatal disease. Because sepsis can be caused by many different organisms, biomarkers that can aid in diagnosing sepsis and monitoring treatment efficacy are highly warranted. New sepsis markers may provide additional information to complement the currently...

  16. Development and validation of a multiplex add-on assay for sepsis biomarkers using xMAP technology

    DEFF Research Database (Denmark)

    Kofoed, Kristian; Schneider, Uffe Vest; Scheel, Troels

    2006-01-01

    %, respectively. Recoveries of suPAR, sTREM-1, and MIF calibrators were 108%, 88%, and 51%, respectively. In plasma collected from 10 patients with bacterial sepsis confirmed by blood culture, the assay detected significantly increased concentrations of all 8 analytes compared with healthy controls. CONCLUSIONS......BACKGROUND: Sepsis is a common and often fatal disease. Because sepsis can be caused by many different organisms, biomarkers that can aid in diagnosing sepsis and monitoring treatment efficacy are highly warranted. New sepsis markers may provide additional information to complement the currently...

  17. Multiplex Real-Time PCR Assay with High-Resolution Melting Analysis for Characterization of Antimicrobial Resistance in Neisseria gonorrhoeae.

    Science.gov (United States)

    Donà, Valentina; Kasraian, Sara; Lupo, Agnese; Guilarte, Yuvia N; Hauser, Christoph; Furrer, Hansjakob; Unemo, Magnus; Low, Nicola; Endimiani, Andrea

    2016-08-01

    Resistance to antibiotics used against Neisseria gonorrhoeae infections is a major public health concern. Antimicrobial resistance (AMR) testing relies on time-consuming culture-based methods. Development of rapid molecular tests for detection of AMR determinants could provide valuable tools for surveillance and epidemiological studies and for informing individual case management. We developed a fast (<1.5-h) SYBR green-based real-time PCR method with high-resolution melting (HRM) analysis. One triplex and three duplex reactions included two sequences for N. gonorrhoeae identification and seven determinants of resistance to extended-spectrum cephalosporins (ESCs), azithromycin, ciprofloxacin, and spectinomycin. The method was validated by testing 39 previously fully characterized N. gonorrhoeae strains, 19 commensal Neisseria species strains, and an additional panel of 193 gonococcal isolates. Results were compared with results of culture-based AMR determination. The assay correctly identified N. gonorrhoeae and the presence or absence of the seven AMR determinants. There was some cross-reactivity with nongonococcal Neisseria species, and the detection limit was 10(3) to 10(4) genomic DNA (gDNA) copies/reaction. Overall, the platform accurately detected resistance to ciprofloxacin (sensitivity and specificity, 100%), ceftriaxone (sensitivity, 100%; specificity, 90%), cefixime (sensitivity, 92%; specificity, 94%), azithromycin (sensitivity and specificity, 100%), and spectinomycin (sensitivity and specificity, 100%). In conclusion, our methodology accurately detects mutations that generate resistance to antibiotics used to treat gonorrhea. Low assay sensitivity prevents direct diagnostic testing of clinical specimens, but this method can be used to screen collections of gonococcal isolates for AMR more quickly than current culture-based AMR testing.

  18. Developmental validation of the GlobalFiler(®) Express PCR Amplification Kit: A 6-dye multiplex assay for the direct amplification of reference samples.

    Science.gov (United States)

    Wang, Dennis Y; Gopinath, Siddhita; Lagacé, Robert E; Norona, Wilma; Hennessy, Lori K; Short, Marc L; Mulero, Julio J

    2015-11-01

    In order to increase the power of discrimination, reduce the possibility of adventitious matches, and expand global data sharing, the CODIS Core Loci Working Group made a recommendation to expand the CODIS core loci from the "required" 13 loci to 20 plus three additional "highly recommended" loci. The GlobalFiler(®) Express Kit was designed to incorporate all 20 required and 3 highly recommended loci along with a novel male-specific Y insertion/deletion marker. The GlobalFiler(®) Express Kit allows simultaneous amplification of the following loci: D3S1358, vWA, D16S539, CSF1PO, TPOX, Yindel, AMEL, D8S1179, D21S11, D18S51, DYS391, D2S441, D19S433, TH01, FGA, D22S1045, D5S818, D13S317, D7S820, SE33, D10S1248, D1S1656, D12S391, and D2S1338. The kit enables direct amplification from blood and buccal samples stored on paper or swab and the chemistry features an optimized PCR protocol that yields time to results in less than an hour. Developmental validation testing followed SWGDAM guidelines and demonstrated the quality and robustness of the GlobalFiler(®) Express Kit over a number of variables. The validation results demonstrate that the 24-locus multiplex kit is a robust and reliable identification assay as required for forensic DNA typing and databasing.

  19. Antibiotic resistance genes detected by multiplex PCR assays in Staphylococcus epidermidis strains isolated from dialysis fluid and needles in a dialysis service.

    Science.gov (United States)

    Chaieb, Kamel; Zmantar, Tarek; Chehab, Olfa; Bouchami, Ons; Ben Hasen, Assia; Mahdouani, Kacem; Bakhrouf, Amina

    2007-07-01

    The rate of the onset of methicillin-resistant Staphylococcus epidermidis infections is increasing in Tunisia. We have isolated 32 S. epidermidis strains from dialysis fluid and needle cultures in dialysis service. The strains were identified by classic methods (colonial morphology, Gram staining, catalase test, coagulase test, and DNase test) as well as by API ID32 Staph. Susceptibilities to 18 antibiotics were tested with the ATB Staph kit. Most of the tested strains were resistant to penicillin. In addition, the presence of multidrug resistant strains that showed resistance to different antibiotics was recorded. We have characterized these strains by multiplex PCR assay to identify intercellular adhesion genes icaA/icaD associated with the adhesiveness of staphylococci in biomaterials, and to identify representative resistant genes: oxacillin resistance, mecA; erythromycin methylase (ermA, ermB, and ermC), and macrolide efflux gene (msrA and mef). The frequency of the carriage of these genes was icaA/icaD (71.9%), mecA (78.1%), ermA (12.5%), ermB (31.3%), ermC (53.1%), msrA (68.8%), and mef (O%). Although the carriage of the genes and the results of susceptibility testing did not match exactly, it could be judged that the PCR identification of antibiotic resistance genes is rapid and supplementary methods for identifying staphylococci or epidemiological study used for the control of nosocomial infection.

  20. Integration of Multiplex Bead Assays for Parasitic Diseases into a National, Population-Based Serosurvey of Women 15-39 Years of Age in Cambodia

    Science.gov (United States)

    Priest, Jeffrey W.; Jenks, M. Harley; Moss, Delynn M.; Mao, Bunsoth; Buth, Sokhal; Wannemuehler, Kathleen; Soeung, Sann Chan; Lucchi, Naomi W.; Udhayakumar, Venkatachalam; Gregory, Christopher J.; Huy, Rekol; Muth, Sinuon; Lammie, Patrick J.

    2016-01-01

    Collection of surveillance data is essential for monitoring and evaluation of public health programs. Integrated collection of household-based health data, now routinely carried out in many countries through demographic health surveys and multiple indicator surveys, provides critical measures of progress in health delivery. In contrast, biomarker surveys typically focus on single or related measures of malaria infection, HIV status, vaccination coverage, or immunity status for vaccine-preventable diseases (VPD). Here we describe an integrated biomarker survey based on use of a multiplex bead assay (MBA) to simultaneously measure antibody responses to multiple parasitic diseases of public health importance as part of a VPD serological survey in Cambodia. A nationally-representative cluster-based survey was used to collect serum samples from women of child-bearing age. Samples were tested by MBA for immunoglobulin G antibodies recognizing recombinant antigens from Plasmodium falciparum and P. vivax, Wuchereria bancrofti, Toxoplasma gondii, Taenia solium, and Strongyloides stercoralis. Serologic IgG antibody results were useful both for generating national prevalence estimates for the parasitic diseases of interest and for confirming the highly focal distributions of some of these infections. Integrated surveys offer an opportunity to systematically assess the status of multiple public health programs and measure progress toward Millennium Development Goals. PMID:27136913

  1. Development of multiplex and construct specific PCR assay for detection of cry2Ab transgene in genetically modified crops and product.

    Science.gov (United States)

    Kamle, Suchitra; Kumar, Arvind; Bhatnagar, Raj K

    2011-01-01

    An efficient detection system for trait validation and screening of GMOs is a much sought after procedure, which could also help in regulatory compliance. Currently, in India, a number of cry2Ab transgene carrying GM crops are undergoing field trial i.e., MON15985 cotton, Bt rice, Bt okra, Bt corn, Bt brinjal, Bt potato and Bt tomato. In this study, we report a qualitative assay for detection for cry2Ab (326 bp). Further, the amplification compatibility with promoter, p35S (195 bp), terminator, t-nos (180 bp) and marker gene, npt II ( 215 bp) was also confirmed using Bt cotton event MON15985 as reference material. The detection sensitivity was 0.1% that is far below the requirement of the stringent European Union (EU) regulations of 0.9%. The target DNA when spiked with either MECH-12 (cry1Ac), RR-soya (epsps) or MON-810 (cry1Ab) showed no inhibitory effect on cry2Ab detection. Moreover, the cry2Ab specific transgene construct (1.9 kb) was amplified and its identity confirmed by a nested PCR. Hence, a comprehensive multiplex PCR method for detection of cry2Ab gene in a GM crop/products was established. This is possibly a first report showing concurrent amplification of cry2Ab transgene, promoter, terminator and marker gene.

  2. Multiplexing spheroid volume, resazurin and acid phosphatase viability assays for high-throughput screening of tumour spheroids and stem cell neurospheres.

    Science.gov (United States)

    Ivanov, Delyan P; Parker, Terry L; Walker, David A; Alexander, Cameron; Ashford, Marianne B; Gellert, Paul R; Garnett, Martin C

    2014-01-01

    Three-dimensional cell culture has many advantages over monolayer cultures, and spheroids have been hailed as the best current representation of small avascular tumours in vitro. However their adoption in regular screening programs has been hindered by uneven culture growth, poor reproducibility and lack of high-throughput analysis methods for 3D. The objective of this study was to develop a method for a quick and reliable anticancer drug screen in 3D for tumour and human foetal brain tissue in order to investigate drug effectiveness and selective cytotoxic effects. Commercially available ultra-low attachment 96-well round-bottom plates were employed to culture spheroids in a rapid, reproducible manner amenable to automation. A set of three mechanistically different methods for spheroid health assessment (Spheroid volume, metabolic activity and acid phosphatase enzyme activity) were validated against cell numbers in healthy and drug-treated spheroids. An automated open-source ImageJ macro was developed to enable high-throughput volume measurements. Although spheroid volume determination was superior to the other assays, multiplexing it with resazurin reduction and phosphatase activity produced a richer picture of spheroid condition. The ability to distinguish between effects on malignant and the proliferating component of normal brain was tested using etoposide on UW228-3 medulloblastoma cell line and human neural stem cells. At levels below 10 µM etoposide exhibited higher toxicity towards proliferating stem cells, whereas at concentrations above 10 µM the tumour spheroids were affected to a greater extent. The high-throughput assay procedures use ready-made plates, open-source software and are compatible with standard plate readers, therefore offering high predictive power with substantial savings in time and money.

  3. Structural comparison of O-antigen gene clusters of Legionella pneumophila and its application of a serogroup-specific multiplex PCR assay.

    Science.gov (United States)

    Cao, Boyang; Tian, Zhenyang; Wang, Suwei; Zhu, Zhiyan; Sun, Yamin; Feng, Lu; Wang, Lei

    2015-12-01

    The Legionella pneumophila serogroups O1, O4, O6, O7, O10 and O13 are pathogenic strains associated with pneumonia. The surface O-antigen gene clusters of L. pneumophila serogroups O4, O6, O7, O10 and O13 were sequenced and analyzed, with the function annotated on the basis of homology to that of the genes of L. pneumophila serogroup O1 (L. pneumophila subsp. pneumophila str. Philadelphia 1). The gene locus of the six L. pneumophila serogroups contains genes of yvfE, neuABCD, pseA-like for nucleotide sugar biosynthesis, wecA for sugar transfer, and wzm as well as wzt for O-antigen processing. The detection of O-antigen genes allows the fine differentiation at species and serogroup level without the neccessity of nucleotide sequencing. The O-antigen-processing genes wzm and wzt, which were found to be distinctive for different for different serogroups, have been used as the target genes for the detection and identification of L. pneumophila strains of different O serogroups. In this report, a multiplex PCR assay based on wzm or wzt that diferentiates all the six serogroups by amplicon size was developed with the newly designed specific primer pairs for O1 and O7, and the specific primer pairs for O4, O6, O10, and O13 reported previously. The array was validated by analysis of 34 strains including 15 L. pneumophila O-standard reference strains, eight reference strains of other Legionella non-pneumophila species, six other bacterial species, and five L. pneumophila environmental isolates. The detection sensitivity was one ng genomic DNA. The accurate and sensitive assay is suitable for the identification and detection of strains of these serogroups in environmental and clinical samples.

  4. Multiplexing spheroid volume, resazurin and acid phosphatase viability assays for high-throughput screening of tumour spheroids and stem cell neurospheres.

    Directory of Open Access Journals (Sweden)

    Delyan P Ivanov

    Full Text Available Three-dimensional cell culture has many advantages over monolayer cultures, and spheroids have been hailed as the best current representation of small avascular tumours in vitro. However their adoption in regular screening programs has been hindered by uneven culture growth, poor reproducibility and lack of high-throughput analysis methods for 3D. The objective of this study was to develop a method for a quick and reliable anticancer drug screen in 3D for tumour and human foetal brain tissue in order to investigate drug effectiveness and selective cytotoxic effects. Commercially available ultra-low attachment 96-well round-bottom plates were employed to culture spheroids in a rapid, reproducible manner amenable to automation. A set of three mechanistically different methods for spheroid health assessment (Spheroid volume, metabolic activity and acid phosphatase enzyme activity were validated against cell numbers in healthy and drug-treated spheroids. An automated open-source ImageJ macro was developed to enable high-throughput volume measurements. Although spheroid volume determination was superior to the other assays, multiplexing it with resazurin reduction and phosphatase activity produced a richer picture of spheroid condition. The ability to distinguish between effects on malignant and the proliferating component of normal brain was tested using etoposide on UW228-3 medulloblastoma cell line and human neural stem cells. At levels below 10 µM etoposide exhibited higher toxicity towards proliferating stem cells, whereas at concentrations above 10 µM the tumour spheroids were affected to a greater extent. The high-throughput assay procedures use ready-made plates, open-source software and are compatible with standard plate readers, therefore offering high predictive power with substantial savings in time and money.

  5. A novel quantitative fluorescent reporter assay for RAG targets and RAG activity

    Directory of Open Access Journals (Sweden)

    Ines eTrancoso

    2013-05-01

    Full Text Available Recombination-Activating Genes (RAG 1 and 2 form the site specific recombinase that mediates V(DJ recombination, a process of DNA editing required for lymphocyte development and responsible for their diverse repertoire of antigen receptors. Mistargeted RAG activity associates with genome alteration and is responsible for various lymphoid tumors. Moreover several non-lymphoid tumors express RAG ectopically. A practical and powerful tool to perform quantitative assessment of RAG activity and to score putative RAG-Recognition signal sequences (RSS is required in the fields of immunology, oncology, gene therapy and development.Here we report the detailed characterization of a novel fluorescence-based reporter of RAG activity, named GFPi, a tool that allows measuring recombination efficiency by simple FACS analysis. GFPi can be produced both as a plasmid for transient transfection experiments in cell lines or as a retrovirus for stable integration in the genome, thus supporting ex vivo and in vivo studies. The GFPi assay faithfully quantified endogenous and ectopic RAG activity as tested in genetically modified fibroblasts, tumor derived cell lines, developing pre B cells and hematopoietic cells. The GFPi assay also successfully ranked the recombination efficiency of various RSS pairs, including bona fide RSS associated with V(DJ segments, artificial consensus sequences modified or not at specific nucleotides known to affect their efficiencies, or cryptic RSS involved in RAG-dependent activation of oncogenes.Our work validates the GFPi reporter as a practical quantitative tool for the study of RAG activity and RSS efficiencies. It should turn useful for the study of RAG mediated V(DJ and aberrant rearrangements, lineage commitment and vertebrate evolution.

  6. Quantitative immunobinding assay for vitamin D-dependent calcium-binding protein (calbindin-D28k) using nitrocellulose filters

    Energy Technology Data Exchange (ETDEWEB)

    Varghese, S.; Christakos, S.

    1987-08-15

    A sensitive dot immunobinding assay has been developed for the quantitative determination of vitamin D-dependent calcium-binding protein (calbindin-D28k; CaBP) in rat and human kidney and brain. Protein samples are spotted onto nitrocellulose sheets, fixed, and then rinsed with Tris-buffered saline. The remaining protein binding sites are blocked with bovine serum albumin, gelatin, or nonfat dry milk protein and the filters are then incubated sequentially with antiserum to calbindin-D28k (1:500 dilution) and /sup 125/I-protein A (200,000 cpm/ml). After washing, the radioactivity bound to each sample is quantitated by counting in a gamma counter. The sensitivity of the assay is such that 10 ng calbindin-D28k can be accurately quantitated. The highest levels of CaBP were detected in kidney (7.8 +/- 0.5 micrograms/mg protein) and cerebellum (22.1 +/- 1.4 micrograms/mg protein). Ten micrograms calmodulin, lactalbumin, or parvalbumin and 100 micrograms liver extract showed no reactivity in the assay. The assay is precise (intraassay variability, 4.0%) and reproducible (interassay variability, 8.8%). There was good agreement between the data in this assay and the data we obtained using radioimmunoassay (RIA). The assay has several advantages over the RIA. Iodination of pure antigen is not required and it is possible to detect membrane-bound and insoluble antigens using this assay. Also, the antiserum and /sup 125/I-protein A solutions can be saved and reused. This assay represents a major modification of the original immunobinding assays which used the less sensitive peroxidase stain. It is also an improvement over previous /sup 125/I immunobinding assays which were not quantitative but were used as antigen spot tests or which required iodination of the antibody.

  7. Development of Quantitative Real-time PCR Assays for Different Clades of “Candidatus Accumulibacter”

    Science.gov (United States)

    Zhang, An Ni; Mao, Yanping; Zhang, Tong

    2016-05-01

    We designed novel quantitative real-time polymerase chain reaction (qPCR) primers for the polyphosphate kinase 1 (ppk1) gene, targeting eight individual “Candidatus Accumulibacter” (referred to as Accumulibacter) clades. An evaluation of primer sets was conducted regarding the coverage, specificity, and PCR efficiency. (i) All primer sets were designed to cover all available sequences of the target clade. (ii) The phylogenetic analysis of the sequences retrieved from the qPCR products by each primer set demonstrated a high level of specificity. (iii) All calibration curves presented high PCR efficiencies in the range of 85–112% (R2 = 0.962–0.998). In addition, the possible interference of non-target amplicons was individually examined using the qPCR assay for 13 Accumulibacter clades, which were either undetected or showed negligible detection. With the primers designed by other research groups, a highly selective and sensitive qPCR-based method was developed to quantify all Accumulibacter clades, with the exception of Clade IE, in one assay, which enables more comprehensive insights into the community dynamics. The applicability to environmental samples was demonstrated by profiling the Accumulibacter clades in activated sludge samples of nine full-scale wastewater treatment plants.

  8. LUCID: A Quantitative Assay of ESCRT-Mediated Cargo Sorting into Multivesicular Bodies.

    Science.gov (United States)

    Nickerson, Daniel P; Merz, Alexey J

    2015-12-01

    Endosomes are transportation nodes, mediating selective transport of soluble and transmembrane cargos to and from the Golgi apparatus, plasma membrane and lysosomes. As endosomes mature to become multivesicular bodies (MVBs), Endosomal Sorting Complexes Required for Transport (ESCRTs) selectively incorporate transmembrane cargos into vesicles that bud into the endosome lumen. Luminal vesicles and their cargoes are targeted for destruction when MVBs fuse with lysosomes. Common assays of endosomal luminal targeting, including fluorescence microscopy and monitoring of proteolytic cargo maturation, possess significant limitations. We present a quantitative assay system called LUCID (LUCiferase reporter of Intraluminal Deposition) that monitors exposure of chimeric luciferase-cargo reporters to cytosol. Luciferase-chimera signal increases when sorting to the endosome lumen is disrupted, and silencing of signal from the chimera depends upon luminal delivery of the reporter rather than proteolytic degradation. The system presents several advantages, including rapidity, microscale operation and a high degree of reproducibility that enables detection of subtle phenotypic differences. Luciferase reporters provide linear signal over an extremely broad dynamic range, allowing analysis of reporter traffic even at anemic levels of expression. Furthermore, LUCID reports transport kinetics when applied to inducible trafficking reporters.

  9. A quantitative PCR (TaqMan assay for pathogenic Leptospira spp

    Directory of Open Access Journals (Sweden)

    Symonds Meegan L

    2002-07-01

    Full Text Available Abstract Background Leptospirosis is an emerging infectious disease. The differential diagnosis of leptospirosis is difficult due to the varied and often "flu like" symptoms which may result in a missed or delayed diagnosis. There are over 230 known serovars in the genus Leptospira. Confirmatory serological diagnosis of leptospirosis is usually made using the microscopic agglutination test (MAT which relies on the use of live cultures as the source of antigen, often performed using a panel of antigens representative of local serovars. Other techniques, such as the enzyme linked immunosorbent assay (ELISA and slide agglutination test (SAT, can detect different classes of antibody but may be subject to false positive reactions and require confirmation of these results by the MAT. Methods The polymerase chain reaction (PCR has been used to detect a large number of microorganisms, including those of clinical significance. The sensitivity of PCR often precludes the need for isolation and culture, thus making it ideal for the rapid detection of organisms involved in acute infections. We employed real-time (quantitative PCR using TaqMan chemistry to detect leptospires in clinical and environmental samples. Results and Conclusions The PCR assay can be applied to either blood or urine samples and does not rely on the isolation and culture of the organism. Capability exists for automation and high throughput testing in a clinical laboratory. It is specific for Leptospira and may discriminate pathogenic and non-pathogenic species. The limit of detection is as low as two cells.

  10. Quantitative determination of VEGF165 in cell culture medium by aptamer sandwich based chemiluminescence assay.

    Science.gov (United States)

    Shan, Siwen; He, Ziyi; Mao, Sifeng; Jie, Mingsha; Yi, Linglu; Lin, Jin-Ming

    2017-08-15

    In this work, we have developed a sensitive and selective chemiluminescence (CL) assay for vascular endothelial growth factor (VEGF165) quantitative detection based on two specific VEGF165 binding aptamers (Apt). VEGF is a predominant biomarker in cancer angiogenesis, and sensitive detection method of VEGF are highly demanded for both academic study and clinical diagnosis of multiple cancers. In our experiment, VEGF165 was captured in a sandwich structure assembled by two binding aptamers, one capture aptamer was immobilized on streptavidin-coated magnetic beads (MBs) and another VEGF-binding aptamer was labeled by biotin for further phosphatase conjunction. After Apt-VEGF-Apt sandwich was formed on MBs surface, alkaline phosphatase (ALP) was modified to the second aptamer to catalyze CL reaction. By applying 4-methoxy-4-(3-phosphatephenyl)-spiro-(1,2-dioxetane-3,2-adamantane) (AMPPD) as CL substrate, strong signal intensity was achieved. VEGF165 content as low as 1ng/mL was detected in standard spiked samples by our assay, and linear range of working curve was confirmed from 1 to 20ng/mL. Then our method was successfully applied for cell culture medium analysis and on-chip hypoxic HepG2-HUVEC co-culture model study with excellent accuracy equal to ELISA Kit. Our developed assay demonstrated an outstanding performance in VEGF165 quantification and may be further extended to clinical testing of important biomarkers as well as probing microchip cell culture model. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Development and evaluation of a four-tube real time multiplex PCR assay covering fourteen respiratory viruses, and comparison to its corresponding single target counterparts

    NARCIS (Netherlands)

    R.R. Jansen; J. Schinkel; S. Koekkoek; D. Pajkrt; M. Beld; M.D. de Jong; R. Molenkamp

    2011-01-01

    Multiplex real time PCR is increasingly used to diagnose respiratory viruses and has shown to be superior to traditional methods, like culture and antigen detection. However, comprehensive data on sensitivity, specificity and performance of the multiplex PCR compared to the single target PCR's is li

  12. Telomerase Activity Detected by Quantitative Assay in Bladder Carcinoma and Exfoliated Cells in Urine

    Directory of Open Access Journals (Sweden)

    Roberta Fedriga

    2001-01-01

    Full Text Available Early diagnosis is one of the most determining factors for patient survival. The detection of telomerase activity is a potentially promising tool in the diagnosis of bladder and other types of cancer due to the high expression of this enzyme in tumor cells. We carried out a quantitative evaluation of telomerase activity in urine samples in an attempt to determine a cut-off capable of identifying cancer patients. Telomerase activity was quantified by fluorescence TRAP assay in urine from 50 healthy volunteers and in urine and bioptic tumor samples from 56 previously untreated bladder cancer patients and expressed in arbitrary enzymatic units (AEU. Telomerase activity in urine ranged from 0 to 106 AEU (median 0 in healthy donors and from 0 to 282 AEU (median 87 in patients with cancer. A telomerase expression higher than the cut off value determined by receiver operating characteristic (ROC analysis was observed in 78% of cases, regardless of tumor grade and in 71% (15/21 of cases of nonassessable or negative cytology. The quantitative analysis of telomerase activity in urine enabled us to define cut-off values characterized by different sensitivity and specificity. Cytologic and telomerase determination, used sequentially, enabled us to detect about 90% of tumors.

  13. [Use of procalcitonine in intensive care units: comparison of semi quantitative PCT-Q Brahms assay with automated PCT-Kryptor assay].

    Science.gov (United States)

    Schuch, Géraldine; Duc-Marchand, Catherine; Venet, Cyrille; Mann, Hubert; Tixier, Anne; Bionda, Clara

    2011-01-01

    Procalcitonine (PCT) is recognized as a major and specific biomarker in diagnosis of bacterial infection. Used early in sepsis, it allows immediate administration of antibiotics and monitoring its effectiveness. Confronted on systemic inflammation response syndrom (SIRS), physicians must react quickly and effectively to evaluate bacterial infection and sepsis. The objective of this study was to compare analytical and clinical performances of semi-quantitative PCT-Q assay (Brahms) with quantitative and automated assay such on Kryptor (Brahms). Fifty blood samples of intensive care patients were compared. The analytical performance observed with PCT-Q assay is accurate: linear ratio kappa of 0.912 (95% CI 0.61, 0.97) and a good correlation between these techniques (p < 0.0001) (MedCalc software) were observed. Three discordances were observed and confirm the difficulties of reading for values close to 0.5 ng/mL. For these patients, PCT result showed its interest to discriminate local infection of a sepsis, to stop antibiotherapy with broad spectrum and to consolidate a therapeutic effectiveness in multi-visceral failure context. The semi-quantitative assay seems adapted for a fast and reliable evaluation of PCT in a general-purpose laboratory, not requiring neither dedicated analyzer, nor complex technicality but a control of the visual evaluation of results. It could be used for diagnosis of sepsis without monitoring precisely therapeutic follow-up.

  14. A multiplex GC-MS/MS technique for the sensitive and quantitative single-run analysis of acidic phytohormones and related compounds, and its application to Arabidopsis thaliana.

    Science.gov (United States)

    Müller, Axel; Düchting, Petra; Weiler, Elmar W

    2002-11-01

    A highly sensitive and accurate multiplex gas chromatography-tandem mass spectrometry (GC-MS/MS) technique is reported for indole-3-acetic acid, abscisic acid, jasmonic acid, 12-oxo-phytodienoic acid and salicylic acid. The optimized setup allows the routine processing and analysis of up to 60 plant samples of between 20 and 200 mg of fresh weight per day. The protocol was designed and the equipment used was chosen to facilitate implementation of the method into other laboratories and to provide access to state-of-the-art analytical tools for the acidic phytohormones and related signalling molecules. Whole-plant organ-distribution maps for indole-3-acetic acid, abscisic acid, jasmonic acid, 12-oxo-phytodienoic acid and salicylic acid were generated for Arabidopsis thaliana (L.) Heynh. For leaves of A. thaliana, a spatial resolution of hormone quantitation down to approximately 2 mm(2) was achieved.

  15. Quantitative multiplex quantum dot in-situ hybridisation based gene expression profiling in tissue microarrays identifies prognostic genes in acute myeloid leukaemia

    Energy Technology Data Exchange (ETDEWEB)

    Tholouli, Eleni [Department of Haematology, Manchester Royal Infirmary, Oxford Road, Manchester, M13 9WL (United Kingdom); MacDermott, Sarah [The Medical School, The University of Manchester, Oxford Road, M13 9PT Manchester (United Kingdom); Hoyland, Judith [School of Biomedicine, Faculty of Medical and Human Sciences, The University of Manchester, Oxford Road, M13 9PT Manchester (United Kingdom); Yin, John Liu [Department of Haematology, Manchester Royal Infirmary, Oxford Road, Manchester, M13 9WL (United Kingdom); Byers, Richard, E-mail: richard.byers@cmft.nhs.uk [School of Cancer and Enabling Sciences, Faculty of Medical and Human Sciences, The University of Manchester, Stopford Building, Oxford Road, M13 9PT Manchester (United Kingdom)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Development of a quantitative high throughput in situ expression profiling method. Black-Right-Pointing-Pointer Application to a tissue microarray of 242 AML bone marrow samples. Black-Right-Pointing-Pointer Identification of HOXA4, HOXA9, Meis1 and DNMT3A as prognostic markers in AML. -- Abstract: Measurement and validation of microarray gene signatures in routine clinical samples is problematic and a rate limiting step in translational research. In order to facilitate measurement of microarray identified gene signatures in routine clinical tissue a novel method combining quantum dot based oligonucleotide in situ hybridisation (QD-ISH) and post-hybridisation spectral image analysis was used for multiplex in-situ transcript detection in archival bone marrow trephine samples from patients with acute myeloid leukaemia (AML). Tissue-microarrays were prepared into which white cell pellets were spiked as a standard. Tissue microarrays were made using routinely processed bone marrow trephines from 242 patients with AML. QD-ISH was performed for six candidate prognostic genes using triplex QD-ISH for DNMT1, DNMT3A, DNMT3B, and for HOXA4, HOXA9, Meis1. Scrambled oligonucleotides were used to correct for background staining followed by normalisation of expression against the expression values for the white cell pellet standard. Survival analysis demonstrated that low expression of HOXA4 was associated with poorer overall survival (p = 0.009), whilst high expression of HOXA9 (p < 0.0001), Meis1 (p = 0.005) and DNMT3A (p = 0.04) were associated with early treatment failure. These results demonstrate application of a standardised, quantitative multiplex QD-ISH method for identification of prognostic markers in formalin-fixed paraffin-embedded clinical samples, facilitating measurement of gene expression signatures in routine clinical samples.

  16. Multicolor bioluminescence boosts malaria research: quantitative dual-color assay and single-cell imaging in Plasmodium falciparum parasites.

    Science.gov (United States)

    Cevenini, Luca; Camarda, Grazia; Michelini, Elisa; Siciliano, Giulia; Calabretta, Maria Maddalena; Bona, Roberta; Kumar, T R Santha; Cara, Andrea; Branchini, Bruce R; Fidock, David A; Roda, Aldo; Alano, Pietro

    2014-09-02

    New reliable and cost-effective antimalarial drug screening assays are urgently needed to identify drugs acting on different stages of the parasite Plasmodium falciparum, and particularly those responsible for human-to-mosquito transmission, that is, the P. falciparum gametocytes. Low Z' factors, narrow dynamic ranges, and/or extended assay times are commonly reported in current gametocyte assays measuring gametocyte-expressed fluorescent or luciferase reporters, endogenous ATP levels, activity of gametocyte enzymes, or redox-dependent dye fluorescence. We hereby report on a dual-luciferase gametocyte assay with immature and mature P. falciparum gametocyte stages expressing red and green-emitting luciferases from Pyrophorus plagiophthalamus under the control of the parasite sexual stage-specific pfs16 gene promoter. The assay was validated with reference antimalarial drugs and allowed to quantitatively and simultaneously measure stage-specific drug effects on parasites at different developmental stages. The optimized assay, requiring only 48 h incubation with drugs and using a cost-effective luminogenic substrate, significantly reduces assay cost and time in comparison to state-of-the-art analogous assays. The assay had a Z' factor of 0.71 ± 0.03, and it is suitable for implementation in 96- and 384-well microplate formats. Moreover, the use of a nonlysing D-luciferin substrate significantly improved the reliability of the assay and allowed one to perform, for the first time, P. falciparum bioluminescence imaging at single-cell level.

  17. Comparison of colorimetric assays with quantitative amino acid analysis for protein quantification of Generalized Modules for Membrane Antigens (GMMA).

    Science.gov (United States)

    Rossi, Omar; Maggiore, Luana; Necchi, Francesca; Koeberling, Oliver; MacLennan, Calman A; Saul, Allan; Gerke, Christiane

    2015-01-01

    Genetically induced outer membrane particles from Gram-negative bacteria, called Generalized Modules for Membrane Antigens (GMMA), are being investigated as vaccines. Rapid methods are required for estimating the protein content for in-process assays during production. Since GMMA are complex biological structures containing lipid and polysaccharide as well as protein, protein determinations are not necessarily straightforward. We compared protein quantification by Bradford, Lowry, and Non-Interfering assays using bovine serum albumin (BSA) as standard with quantitative amino acid (AA) analysis, the most accurate currently available method for protein quantification. The Lowry assay has the lowest inter- and intra-assay variation and gives the best linearity between protein amount and absorbance. In all three assays, the color yield (optical density per mass of protein) of GMMA was markedly different from that of BSA with a ratio of approximately 4 for the Bradford assay, and highly variable between different GMMA; and approximately 0.7 for the Lowry and Non-Interfering assays, highlighting the need for calibrating the standard used in the colorimetric assay against GMMA quantified by AA analysis. In terms of a combination of ease, reproducibility, and proportionality of protein measurement, and comparability between samples, the Lowry assay was superior to Bradford and Non-Interfering assays for GMMA quantification.

  18. Development of a Rapid Real-Time PCR Assay for Quantitation of Pneumocystis carinii f. sp. Carinii

    DEFF Research Database (Denmark)

    Larsen, Hans Henrik; Kovacs, Joseph A; Stock, Frida

    2002-01-01

    A method for reliable quantification of Pneumocystis carinii in research models of P. carinii pneumonia (PCP) that is more convenient and reproducible than microscopic enumeration of organisms would greatly facilitate investigations of this organism. We developed a rapid quantitative touchdown (QTD....... In conclusion, a rapid, sensitive, and reproducible quantitative PCR assay for P. carinii f. sp. carinii has been developed and is applicable to in vivo as well as in vitro systems. The assay should prove useful for conducting studies in which quantification of organism burden or growth assessment is critical...

  19. A rapid colorimetric assay for the quantitation of the viability of free-living larvae of nematodes in vitro.

    Science.gov (United States)

    James, Catherine E; Davey, Mary W

    2007-09-01

    With increasing drug resistance in gastrointestinal parasites, identification of new anthelmintics is essential. The non-parasitic nematode Caenorhabditis elegans is used extensively as a model to identify drug targets and potential novel anthelmintics because it can be readily cultured in vitro. Traditionally, the assessment of worm viability has relied on labour-intensive developmental and behavioral assays. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide-formazan (MTT-formazan) colorimetric assay uses metabolic activity as a marker of viability in mammalian cell culture systems and has been applied for use with filarial nematodes. In the present study, this assay has been optimized and validated to rapidly assess the viability of C. elegans after drug treatment. Living, but not dead, C. elegans take up MTT and reduce it to the blue formazan, providing visual, qualitative, and quantitative assessment of viability. MTT at a concentration of 5 mg/ml with 3 h incubation was optimal for detecting changes in viability with drug treatment. We have applied this assay to quantitate the effects of ivermectin and short-chain alcohols on the viability of C. elegans. This assay is also applicable to first-stage larvae of the parasitic nematode Haemonchus contortus. The advantage of this assay is the rapid quantitation in screening drugs to identify potential anthelmintics.

  20. Development and validation of two SYBR green PCR assays and a multiplex real-time PCR for the detection of Shiga toxin-producing Escherichia coli in meat.

    Science.gov (United States)

    Brusa, Victoria; Galli, Lucía; Linares, Luciano H; Ortega, Emanuel E; Lirón, Juan P; Leotta, Gerardo A

    2015-12-01

    Shiga toxin-producing Escherichia coli (STEC) are recognized as food-borne pathogens. We developed and validated two SYBR green PCR (SYBR-PCR) and a real-time multiplex PCR (RT-PCR) to detect stx1 and stx2 genes in meat samples, and compared these techniques in ground beef samples from retail stores. One set of primers and one hydrolysis probe were designed for each stx gene. For RT-PCR, an internal amplification control (IAC) was used. All PCR intra-laboratory validations were performed using pure strains and artificially contaminated ground beef samples. A total of 50 STEC and 30 non-STEC strains were used. Naturally contaminated ground beef samples (n=103) were obtained from retail stores and screened with SYBR-PCR and RT-PCR, and stx-positive samples were processed for STEC isolation. In the intra-laboratory validation, each PCR obtained a 1×10(2) CFU mL(-1) limit of detection and 100% inclusivity and exclusivity. The same results were obtained when different laboratory analysts in alternate days performed the assay. The level of agreement obtained with SYBR-PCR and RT-PCR was kappa=0.758 and 0.801 (P<0.001) for stx1 and stx2 gene detection, respectively. Two PCR strategies were developed and validated, and excellent performance with artificially contaminated ground beef samples was obtained. However, the efforts made to isolate STEC from retail store samples were not enough. Only 11 STEC strains were isolated from 35 stx-positive ground beef samples identically detected by all PCRs. The combination of molecular approaches based on the identification of a virulence genotypic profile of STEC must be considered to improve isolation.

  1. Development and validation of a multiplex PCR assay for identification of the epidemic ST-258/512 KPC-producing Klebsiella pneumoniae clone.

    Science.gov (United States)

    Adler, Amos; Khabra, Efrat; Chmelnitsky, Inna; Giakkoupi, Panagiota; Vatopoulos, Alkiviadis; Mathers, Amy J; Yeh, Anthony J; Sifri, Costi D; De Angelis, Giulia; Tacconelli, Evelina; Villegas, Maria-Virginia; Quinn, John; Carmeli, Yehuda

    2014-01-01

    The Klebsiella pneumoniae carbapenemase-producing Klebsiella pneumoniae (KPC-KP) sequence type (ST)-258/512 clone is the dominant clone by which KPC has disseminated worldwide. Standard typing methods are time-consuming and are therefore impractical for identification of this clone in the course of an outbreak. Through comparative genomic study, we have previously identified several presumably unique genes of this clone: 1) PILV-like protein (pilv-l), 2) transposase, IS66-family (is-66), and a 3) phage-related protein (prp). Our aims were to 1) test for the presence of these genes using a multiplex PCR in a large, multinational collection of KPC-KP isolates and to 2) validate this assay as a typing method for the identification of the ST-258/512 clone. KPC-KP isolates (n=160) that included both ST-258/512 (group A, n=114) and non-ST-258 (group B, n=46) strains were collected from the following countries: Greece, 20; Israel, 93; Italy, 19; USA, 25; and Colombia, 3. Group B included 30 different STs from various lineages. The pilv-l gene was present in 111/114 of ST-258 isolates, including all of the KPC-negative isolates resulting in a sensitivity of 97%. Using primers for a unique ST-258 pilv-l allele resulted in a specificity of 100%. The sensitivity values of is-66 and prp genes for detecting KPC-KP ST-258 were 83 and 89%, respectively, and the specificity values were 67 and 93%, respectively. PCR for the unique pilv-l ST-258 allele provides a reliable tool for rapid detection of the ST-258 clone. This method can be helpful both in the setting of an outbreak and in a large-scale survey of KPC-KP strains.

  2. Genetic and epigenetic states of the GNAS complex in pseudohypoparathyroidism type Ib using methylation-specific multiplex ligation-dependent probe amplification assay.

    Science.gov (United States)

    Yuno, Akiko; Usui, Takeshi; Yambe, Yuko; Higashi, Kiichiro; Ugi, Satoshi; Shinoda, Junji; Mashio, Yasuo; Shimatsu, Akira

    2013-02-01

    Pseudohypoparathyroidism type Ib (PHP-Ib) is a rare disorder resulting from genetic and epigenetic aberrations in the GNAS complex. PHP-Ib, usually defined by renal resistance to parathyroid hormone, is due to a maternal loss of GNAS exon A/B methylation and leads to decreased expression of the stimulatory G protein α (Gsα) in specific tissues. To clarify the usefulness of methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA), we evaluated genetic and epigenetic changes of the GNAS locus in Japanese PHP-Ib patients. Retrospective case series. We studied 13 subjects with PHP-Ib (three families with eight affected members and one unaffected member and four sporadic cases). The methylation status of GNAS differentially methylated regions (DMRs) was evaluated using MS-MLPA. The main outcome measure was the presence of deletion mutations in the GNAS locus and STX16, which were assessed using MLPA. In all familial PHP-Ib cases, a ~3 kb deletion of STX16 and demethylation of the A/B domain were identified. In contrast, no deletion was detected throughout the entire GNAS locus region in the sporadic cases. Broad methylation abnormalities were observed in the GNAS DMRs. MS-MLPA allows for precise and rapid analysis of the methylation status in GNAS DMRs as well as the detection of microdeletion mutations in PHP-Ib. Results confirm the previous findings in this disorder and demonstrate that this method is valuable for the genetic evaluation and visualizing the methylation status. The MS-MLPA assay is a useful tool that may facilitate making the molecular diagnosis of PHP-Ib.

  3. Practical Prediction of Ten Common Streptococcus pneumoniae Serotypes/Serogroups in One PCR Reaction by Multiplex Ligation-Dependent Probe Amplification and Melting Curve (MLPA-MC Assay in Shenzhen, China.

    Directory of Open Access Journals (Sweden)

    Lijuan Wu

    Full Text Available Streptococcus pneumoniae has more than 95 distinct serotypes described to date. However, only certain serotypes are more likely to cause pneumococcal diseases. Thus serotype surveillance is important for vaccine formula design as well as in post-vaccine serotype shift monitor. The goal of this study was to develop a practical screening assay for ten Shenzhen China common pneumococcal serotypes/serogroups in one molecular reaction.A molecular assay, based on multiplex ligation-dependent probe amplification (MLPA and melting curve (MC analysis, was developed in an integrated approach (MLPA-MC for the detection of ten capsular serotypes/serogroups 4, 6 (6A/6B/6C/6D, 9V/9A, 14, 15F/15A, 15B/15C, 18 (18F/18A/18B/18C, 19F, 19A and 23F. We designed serotype/serogroup-specific MLPA probes and fluorescent detection probes to discriminate the different serotypes/serogroups in one molecular reaction. The three steps of MLPA-MC assay are continuous reactions in one well detected by LightCycler 480. A total of 210 S. pneumoniae isolates from our local Maternity and Child Health Hospital were randomly chosen to evaluate the assay against published multiplex PCR assays.Our results showed that 198 (94.3% of S. pneumoniae isolates were type-able by our assays and the results were in complete concordance with the published multiplex PCRs. Using the MLPA-MC assay, 96 S. pneumoniae isolates could be typed within 3 hours with limited hands-on time. This serotype/serogroup-screening assay can be easily modified or extended by modification of the serotype/serogroup-specific MLPA probes combinations according to the needs of different laboratories.We recommend use of this assay as a starting point for screening serotype/serogroup frequencies. There is a need for this assay to be combined with other molecular typing assays, like published serotype specific PCRs, or even the Quellung reaction for serotype confirmation.

  4. Design and Construction of a Single-Tube, LATE-PCR, Multiplex Endpoint Assay with Lights-On/Lights-Off Probes for the Detection of Pathogens Associated with Sepsis

    Directory of Open Access Journals (Sweden)

    Rachel K. Carver-Brown

    2012-01-01

    Full Text Available Aims. The goal of this study was to construct a single tube molecular diagnostic multiplex assay for the detection of microbial pathogens commonly associated with septicemia, using LATE-PCR and Lights-On/Lights-Off probe technology. Methods and Results. The assay described here identified pathogens associated with sepsis by amplification and analysis of the 16S ribosomal DNA gene sequence for bacteria and specific gene sequences for fungi. A sequence from an unidentified gene in Lactococcus lactis subsp. cremoris served as a positive control for assay function. LATE-PCR was used to generate single-stranded amplicons that were then analyzed at endpoint over a wide temperature range in a specific fluorescent color. Each bacterial target was identified by its pattern of hybridization to Lights-On/Lights-Off probes derived from molecular beacons. Complex mixtures of targets were also detected. Conclusions. All microbial targets were identified in samples containing low starting copy numbers of pathogen genomic DNA, both as individual targets and in complex mixtures. Significance and Impact of the Study. This assay uses new technology to achieve an advance in the field of molecular diagnostics: a single-tube multiplex assay for identification of pathogens commonly associated with sepsis.

  5. Development of conventional and real-time multiplex PCR-based assays for estimation of natural infection rates and Trypanosoma cruzi load in triatomine vectors.

    Science.gov (United States)

    Moreira, Otacilio C; Verly, Thaiane; Finamore-Araujo, Paula; Gomes, Suzete A O; Lopes, Catarina M; de Sousa, Danielle M; Azevedo, Lívia R; da Mota, Fabio F; d'Avila-Levy, Claudia M; Santos-Mallet, Jacenir R; Britto, Constança

    2017-08-29

    Chagas disease is a complex anthropozoonosis with distinct domestic and sylvatic mammal species acting as potential reservoirs. The diversity of vector species and their habitats are among the factors that hinder the control of the disease. Control programs periodically monitor the prevalence of T. cruzi infection in insect bugs through microscopical observation of diluted feces. However, microscopy presents limited sensitivity in samples with low parasite numbers, difficulties in examining all evolutionary stages of the insect and may in turn be limited to differentiate T. cruzi from other morphologically similar trypanosomatids. Here, we report two highly sensitive and accurate methodologies to infer T. cruzi infection rates and to quantify parasite load in the gut of field-collected triatomines. Triatomines were manually collected in the period 2011-2012 and 2014-2015, in domestic, peridomestic or sylvatic habitats in rural areas of 26 municipalities, encompassing three distinct Brazilian biomes: Caatinga, Cerrado and Atlantic Rainforest. Following morphological and taxonomical identification, the search for flagellated protozoa was performed by optical microscopy. A conventional PCR targeting T. cruzi kDNA and a TaqMan qPCR directed to the parasite nuclear satellite DNA (SAT) were developed, both in multiplex, with the triatomine 12S subunit ribosomal RNA gene, used as internal amplification control. Both methods were used for detection (kDNA-PCR) and parasite load quantification (SAT-DNA-qPCR), to investigate T. cruzi infection in captured triatomines. The combined methods were assayed on a panel of 205 field-collected triatomine samples. Diagnostic analysis revealed 21% positivity for the kDNA-PCR, whereas microscopic examination enabled identification of T. cruzi in only 7.0% of the PCR-positive samples. Negative PCR results were confirmed by the absence of T. cruzi flagellates using microscopy. Caatinga biome yielded the highest T. cruzi infection rate (60

  6. Development of a multiplex assay for genus- and species-specific detection of Phytophthora based on differences in mitochondrial gene order.

    Science.gov (United States)

    Bilodeau, Guillaume J; Martin, Frank N; Coffey, Michael D; Blomquist, Cheryl L

    2014-07-01

    A molecular diagnostic assay for Phytophthora spp. that is specific, sensitive, has both genus- and species-specific detection capabilities multiplexed, and can be used to systematically develop markers for detection of a wide range of species would facilitate research and regulatory efforts. To address this need, a marker system was developed based on the high copy sequences of the mitochondrial DNA utilizing gene orders that were highly conserved in the genus Phytophthora but different in the related genus Pythium and plants to reduce the importance of highly controlled annealing temperatures for specificity. An amplification primer pair designed from conserved regions of the atp9 and nad9 genes produced an amplicon of ≈340 bp specific for the Phytophthora spp. tested. The TaqMan probe for the genus-specific Phytophthora test was designed from a conserved portion of the atp9 gene whereas variable intergenic spacer sequences were used for designing the species-specific TaqMan probes. Specific probes were developed for 13 species and the P. citricola species complex. In silico analysis suggests that species-specific probes could be developed for at least 70 additional described and provisional species; the use of locked nucleic acids in TaqMan probes should expand this list. A second locus spanning three tRNAs (trnM-trnP-trnM) was also evaluated for genus-specific detection capabilities. At 206 bp, it was not as useful for systematic development of a broad range of species-specific probes as the larger 340-bp amplicon. All markers were validated against a test panel that included 87 Phytophthora spp., 14 provisional Phytophthora spp., 29 Pythium spp., 1 Phytopythium sp., and 39 plant species. Species-specific probes were validated further against a range of geographically diverse isolates to ensure uniformity of detection at an intraspecific level, as well as with other species having high levels of sequence similarity to ensure specificity. Both diagnostic

  7. Comparison of multiplex real-time PCR and PCR-reverse blot hybridization assay for the direct and rapid detection of bacteria and antibiotic resistance determinants in positive culture bottles.

    Science.gov (United States)

    Wang, Hye-Young; Kim, Seoyong; Kim, Jungho; Park, Soon Deok; Kim, Hyo Youl; Uh, Young; Lee, Hyeyoung

    2016-09-01

    The aim of this study was to evaluate the performance of a commercially available multiplex real-time PCR assay and a PCR-reverse blot hybridization assay (PCR-REBA) for the rapid detection of bacteria and identification of antibiotic resistance genes directly from blood culture bottles and to compare the results of these molecular assays with conventional culture methods. The molecular diagnostic methods were used to evaluate 593 blood culture bottles from patients with bloodstream infections. The detection positivity of multiplex real-time PCR assay for Gram-positive bacteria, Gram-negative bacteria and Candida spp. was equivalent to PCR-REBA as 99.6 %, 99.1 % and 100 %, respectively. Using conventional bacterial cultures as the gold standard, the sensitivity, specificity, positive predictive value and negative predictive value of these two molecular methods were 99.5 % [95 % confidence interval (CI), 0.980-1.000; PReal-methicillin-resistant Staphylococcusaureus multiplex real-time PCR assay targeting the mecA gene to detect methicillin resistance was lower than that of the PCR-REBA method, detecting an overall positivity of 98.4 % (n=182; 95 % CI, 0.964-1.000; P<0.009) and 99.5 % (n=184; 95 % CI, 0.985-1.000; P<0.0001), respectively. The entire two methods take about 3 h, while results from culture can take up to 48-72 h. Therefore, the use of these two molecular methods was rapid and reliable for the characterization of causative pathogens in bloodstream infections.

  8. Quantitative lateral flow strip assays as User-Friendly Tools To Detect Biomarker Profiles For Leprosy

    Science.gov (United States)

    van Hooij, Anouk; Tjon Kon Fat, Elisa M.; Richardus, Renate; van den Eeden, Susan J. F.; Wilson, Louis; de Dood, Claudia J.; Faber, Roel; Alam, Korshed; Richardus, Jan Hendrik; Corstjens, Paul L. A. M.; Geluk, Annemieke

    2016-01-01

    Leprosy is a debilitating, infectious disease caused by Mycobacterium leprae. Despite the availability of multidrug therapy, transmission is unremitting. Thus, early identification of M. leprae infection is essential to reduce transmission. The immune response to M. leprae is determined by host genetics, resulting in paucibacillary (PB) and multibacillary (MB) leprosy associated with dominant cellular or humoral immunity, respectively. This spectral pathology of leprosy compels detection of immunity to M. leprae to be based on multiple, diverse biomarkers. In this study we have applied quantitative user friendly lateral flow assays (LFAs) for four immune markers (anti-PGL-I antibodies, IL-10, CCL4 and IP-10) for whole blood samples from a longitudinal BCG vaccination field-trial in Bangladesh. Different biomarker profiles, in contrast to single markers, distinguished M. leprae infected from non-infected test groups, patients from household contacts (HHC) and endemic controls (EC), or MB from PB patients. The test protocol presented in this study merging detection of innate, adaptive cellular as well as humoral immunity, thus provides a convenient tool to measure specific biomarker profiles for M. leprae infection and leprosy utilizing a field-friendly technology. PMID:27682181

  9. Quantitative Measurement of Serum Hepatitis B Surface Antigen Using an Immunoradiometric Assay in Chronic Hepatitis B

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyun Woo; Lee, Ho Young; Kim, Seog Gyun; Kim, Won; Jung, Wong Jin; Kang, Keon Wook; Chung, June Key; Lee, Myung Chul; Lee, Dong Soo [Seoul National Univ. Seoul (Korea, Republic of)

    2011-03-15

    Measurement of serum hepatitis B virus surface antigen (HBsAg) levels is important for the management of chronic hepatitis D patients in terms of monitoring response to antiviral therapy. This study aimed to evaluate the diagnostic performance of a new diagnostic kit, which quantitatively measures serum HBsAg level using an immunoradiometric assay (IRMA) based method. Measurements were compared with those obtained using a chemiluminescent microparticle immunoassay (CMIA) based method. The blood samples of 96 patients with chronic hepatitis B were used in this study. Copy numbers of serum hepatitis B virus (HBV) DNA were determined in 23 of these samples. The correlation between and the concordance of IRMA and CMIA results were determined using Pearson's correlation coefficients. P values of 0.05 were considered to be statistically significant throughout. Laboratory diagnoses based on CMIA. Furthermors, serum HBsAg levels by IRMA were found to be highly correlated with those determined by CMIA (correlation coefficient R{sup 2=}0.838, P<0.001). Serum HBsAg level and serum HBV DNA copies were found to be linearly related by both methods (R{sup 2=}0.067, P=0.316 by IRMA, and R{sup 2=}0.101, P=0.215 by CMIA). The diagnostic performance of the investigated IRMA method of determining HBsAg levels was found to be comparable with that of a CMIA based method in chronic hepatitis B patients.

  10. Edesign: Primer and Enhanced Internal Probe Design Tool for Quantitative PCR Experiments and Genotyping Assays.

    Directory of Open Access Journals (Sweden)

    Yasumasa Kimura

    Full Text Available Analytical PCR experiments preferably use internal probes for monitoring the amplification reaction and specific detection of the amplicon. Such internal probes have to be designed in close context with the amplification primers, and may require additional considerations for the detection of genetic variations. Here we describe Edesign, a new online and stand-alone tool for designing sets of PCR primers together with an internal probe for conducting quantitative real-time PCR (qPCR and genotypic experiments. Edesign can be used for selecting standard DNA oligonucleotides like for instance TaqMan probes, but has been further extended with new functions and enhanced design features for Eprobes. Eprobes, with their single thiazole orange-labelled nucleotide, allow for highly sensitive genotypic assays because of their higher DNA binding affinity as compared to standard DNA oligonucleotides. Using new thermodynamic parameters, Edesign considers unique features of Eprobes during primer and probe design for establishing qPCR experiments and genotyping by melting curve analysis. Additional functions in Edesign allow probe design for effective discrimination between wild-type sequences and genetic variations either using standard DNA oligonucleotides or Eprobes. Edesign can be freely accessed online at http://www.dnaform.com/edesign2/, and the source code is available for download.

  11. Are extraction methods in quantitative assays of pharmacopoeia monographs exhaustive? A comparison with pressurized liquid extraction.

    Science.gov (United States)

    Basalo, Carlos; Mohn, Tobias; Hamburger, Matthias

    2006-10-01

    The extraction methods in selected monographs of the European and the Swiss Pharmacopoeia were compared to pressurized liquid extraction (PLE) with respect to the yield of constituents to be dosed in the quantitative assay for the respective herbal drugs. The study included five drugs, Belladonnae folium, Colae semen, Boldo folium, Tanaceti herba and Agni casti fructus. They were selected to cover different classes of compounds to be analyzed and different extraction methods to be used according to the monographs. Extraction protocols for PLE were optimized by varying the solvents and number of extraction cycles. In PLE, yields > 97 % of extractable analytes were typically achieved with two extraction cycles. For alkaloid-containing drugs, the addition of ammonia prior to extraction significantly increased the yield and reduced the number of extraction cycles required for exhaustive extraction. PLE was in all cases superior to the extraction protocol of the pharmacopoeia monographs (taken as 100 %), with differences ranging from 108 % in case of parthenolide in Tanaceti herba to 343 % in case of alkaloids in Boldo folium.

  12. Edesign: Primer and Enhanced Internal Probe Design Tool for Quantitative PCR Experiments and Genotyping Assays.

    Science.gov (United States)

    Kimura, Yasumasa; Soma, Takahiro; Kasahara, Naoko; Delobel, Diane; Hanami, Takeshi; Tanaka, Yuki; de Hoon, Michiel J L; Hayashizaki, Yoshihide; Usui, Kengo; Harbers, Matthias

    2016-01-01

    Analytical PCR experiments preferably use internal probes for monitoring the amplification reaction and specific detection of the amplicon. Such internal probes have to be designed in close context with the amplification primers, and may require additional considerations for the detection of genetic variations. Here we describe Edesign, a new online and stand-alone tool for designing sets of PCR primers together with an internal probe for conducting quantitative real-time PCR (qPCR) and genotypic experiments. Edesign can be used for selecting standard DNA oligonucleotides like for instance TaqMan probes, but has been further extended with new functions and enhanced design features for Eprobes. Eprobes, with their single thiazole orange-labelled nucleotide, allow for highly sensitive genotypic assays because of their higher DNA binding affinity as compared to standard DNA oligonucleotides. Using new thermodynamic parameters, Edesign considers unique features of Eprobes during primer and probe design for establishing qPCR experiments and genotyping by melting curve analysis. Additional functions in Edesign allow probe design for effective discrimination between wild-type sequences and genetic variations either using standard DNA oligonucleotides or Eprobes. Edesign can be freely accessed online at http://www.dnaform.com/edesign2/, and the source code is available for download.

  13. Tumor cell-collagen interactions: Identification and semi-quantitative evaluation of selectively-expressed genes by combination of differential display- and multiplex-PCR

    Directory of Open Access Journals (Sweden)

    Sirchia Rosalia

    2003-01-01

    Full Text Available It is widely acknowledged that the presence of extracellular matrix components as substrates can drastically modulate the phenotype and gene expression of cultured cells, including tumor cells. A number of published reports indicated that substrates made from two peculiar collagen species, i.e. type V and OF/LB, which are abnormally deposited in the stroma of primary ductal infiltrating carcinoma (d.i.c. of the breast “in vivo,” were able to exert marked and opposite effects on “in vitro” viability, growth and invasiveness of the 8701-BC cell line, isolated from d.i.c.-affected breast epithelium. To complement such functional data on the effect of cell-collagen interactions with information at molecular level, we have utilized a combination of differential display- and semi-quantitative multiplex-PCR techniques with the aim of detecting variations in the expression levels of selected genes by cells maintained in either culture condition. Here we report some prototypical data on the identification and semi-quantitation of three of the differentially-amplified PCR products found, i.e. HSP2A and MSF-B which are up-regulated in cells grown onto OF/LB collagen substrate, and SRCAP which is prominently down-regulated in the presence of type V collagen substrate. This protocol represents a powerful tool for evaluating changes in the levels and patterns of gene expression which can be theoretically adapted to any experimental model system.

  14. Development of a non invasion real-time PCR assay for the quantitation of chicken parvovirus