WorldWideScience

Sample records for quantitative genetics

  1. Quantitative genetics of disease traits.

    Science.gov (United States)

    Wray, N R; Visscher, P M

    2015-04-01

    John James authored two key papers on the theory of risk to relatives for binary disease traits and the relationship between parameters on the observed binary scale and an unobserved scale of liability (James Annals of Human Genetics, 1971; 35: 47; Reich, James and Morris Annals of Human Genetics, 1972; 36: 163). These two papers are John James' most cited papers (198 and 328 citations, November 2014). They have been influential in human genetics and have recently gained renewed popularity because of their relevance to the estimation of quantitative genetics parameters for disease traits using SNP data. In this review, we summarize the two early papers and put them into context. We show recent extensions of the theory for ascertained case-control data and review recent applications in human genetics.

  2. Theory and Practice in Quantitative Genetics

    DEFF Research Database (Denmark)

    Posthuma, Daniëlle; Beem, A Leo; de Geus, Eco J C

    2003-01-01

    With the rapid advances in molecular biology, the near completion of the human genome, the development of appropriate statistical genetic methods and the availability of the necessary computing power, the identification of quantitative trait loci has now become a realistic prospect for quantitative...... geneticists. We briefly describe the theoretical biometrical foundations underlying quantitative genetics. These theoretical underpinnings are translated into mathematical equations that allow the assessment of the contribution of observed (using DNA samples) and unobserved (using known genetic relationships......) genetic variation to population variance in quantitative traits. Several statistical models for quantitative genetic analyses are described, such as models for the classical twin design, multivariate and longitudinal genetic analyses, extended twin analyses, and linkage and association analyses. For each...

  3. Quantitative genetic studies of antisocial behaviour.

    Science.gov (United States)

    Viding, Essi; Larsson, Henrik; Jones, Alice P

    2008-08-12

    This paper will broadly review the currently available twin and adoption data on antisocial behaviour (AB). It is argued that quantitative genetic research can make a significant contribution to further the understanding of how AB develops. Genetically informative study designs are particularly useful for investigating several important questions such as whether: the heritability estimates vary as a function of assessment method or gender; the relative importance of genetic and environmental influences varies for different types of AB; the environmental risk factors are truly environmental; and genetic vulnerability influences susceptibility to environmental risk. While the current data are not yet directly translatable for prevention and treatment programmes, quantitative genetic research has concrete translational potential. Quantitative genetic research can supplement neuroscience research in informing about different subtypes of AB, such as AB coupled with callous-unemotional traits. Quantitative genetic research is also important in advancing the understanding of the mechanisms by which environmental risk operates.

  4. Strategies for MCMC computation in quantitative genetics

    DEFF Research Database (Denmark)

    Waagepetersen, Rasmus; Ibánez, N.; Sorensen, Daniel

    2006-01-01

    Given observations of a trait and a pedigree for a group of animals, the basic model in quantitative genetics is a linear mixed model with genetic random effects. The correlation matrix of the genetic random effects is determined by the pedigree and is typically very highdimensional...

  5. Theory and practice in quantitative genetics.

    Science.gov (United States)

    Posthuma, Daniëlle; Beem, A Leo; de Geus, Eco J C; van Baal, G Caroline M; von Hjelmborg, Jacob B; Iachine, Ivan; Boomsma, Dorret I

    2003-10-01

    With the rapid advances in molecular biology, the near completion of the human genome, the development of appropriate statistical genetic methods and the availability of the necessary computing power, the identification of quantitative trait loci has now become a realistic prospect for quantitative geneticists. We briefly describe the theoretical biometrical foundations underlying quantitative genetics. These theoretical underpinnings are translated into mathematical equations that allow the assessment of the contribution of observed (using DNA samples) and unobserved (using known genetic relationships) genetic variation to population variance in quantitative traits. Several statistical models for quantitative genetic analyses are described, such as models for the classical twin design, multivariate and longitudinal genetic analyses, extended twin analyses, and linkage and association analyses. For each, we show how the theoretical biometrical model can be translated into algebraic equations that may be used to generate scripts for statistical genetic software packages, such as Mx, Lisrel, SOLAR, or MERLIN. For using the former program a web-library (available from http://www.psy.vu.nl/mxbib) has been developed of freely available scripts that can be used to conduct all genetic analyses described in this paper.

  6. Quantitative genetic studies of antisocial behaviour

    OpenAIRE

    Viding, Essi; Larsson, Henrik; Jones, Alice P.

    2008-01-01

    This paper will broadly review the currently available twin and adoption data on antisocial behaviour (AB). It is argued that quantitative genetic research can make a significant contribution to further the understanding of how AB develops. Genetically informative study designs are particularly useful for investigating several important questions such as whether: the heritability estimates vary as a function of assessment method or gender; the relative importance of genetic and environmental ...

  7. Evolutionary quantitative genetics of nonlinear developmental systems.

    Science.gov (United States)

    Morrissey, Michael B

    2015-08-01

    In quantitative genetics, the effects of developmental relationships among traits on microevolution are generally represented by the contribution of pleiotropy to additive genetic covariances. Pleiotropic additive genetic covariances arise only from the average effects of alleles on multiple traits, and therefore the evolutionary importance of nonlinearities in development is generally neglected in quantitative genetic views on evolution. However, nonlinearities in relationships among traits at the level of whole organisms are undeniably important to biology in general, and therefore critical to understanding evolution. I outline a system for characterizing key quantitative parameters in nonlinear developmental systems, which yields expressions for quantities such as trait means and phenotypic and genetic covariance matrices. I then develop a system for quantitative prediction of evolution in nonlinear developmental systems. I apply the system to generating a new hypothesis for why direct stabilizing selection is rarely observed. Other uses will include separation of purely correlative from direct and indirect causal effects in studying mechanisms of selection, generation of predictions of medium-term evolutionary trajectories rather than immediate predictions of evolutionary change over single generation time-steps, and the development of efficient and biologically motivated models for separating additive from epistatic genetic variances and covariances.

  8. Whole genome approaches to quantitative genetics.

    Science.gov (United States)

    Visscher, Peter M

    2009-06-01

    Apart from parent-offspring pairs and clones, relative pairs vary in the proportion of the genome that they share identical by descent. In the past, quantitative geneticists have used the expected value of sharing genes by descent to estimate genetic parameters and predict breeding values. With the possibility to genotype individuals for many markers across the genome it is now possible to empirically estimate the actual relationship between relatives. We review some of the theory underlying the variation in genetic identity, show applications to estimating genetic variance for height in humans and discuss other applications.

  9. Next generation quantitative genetics in plants.

    Science.gov (United States)

    Jiménez-Gómez, José M

    2011-01-01

    Most characteristics in living organisms show continuous variation, which suggests that they are controlled by multiple genes. Quantitative trait loci (QTL) analysis can identify the genes underlying continuous traits by establishing associations between genetic markers and observed phenotypic variation in a segregating population. The new high-throughput sequencing (HTS) technologies greatly facilitate QTL analysis by providing genetic markers at genome-wide resolution in any species without previous knowledge of its genome. In addition HTS serves to quantify molecular phenotypes, which aids to identify the loci responsible for QTLs and to understand the mechanisms underlying diversity. The constant improvements in price, experimental protocols, computational pipelines, and statistical frameworks are making feasible the use of HTS for any research group interested in quantitative genetics. In this review I discuss the application of HTS for molecular marker discovery, population genotyping, and expression profiling in QTL analysis.

  10. Genetic variability, heritability and genetic advance of quantitative ...

    African Journals Online (AJOL)

    ONOS

    2010-05-10

    May 10, 2010 ... clusters/plant, number of pods/plant, number of seeds/pod, yield/plant and 100 seed weight of black gram in M2 ... Key words: Genetic variability, gamma rays, quantitative traits, black gram. ... MATERIALS AND METHODS.

  11. The quantitative genetics of phenotypic robustness.

    Directory of Open Access Journals (Sweden)

    Hunter B Fraser

    Full Text Available Phenotypic robustness, or canalization, has been extensively investigated both experimentally and theoretically. However, it remains unknown to what extent robustness varies between individuals, and whether factors buffering environmental variation also buffer genetic variation. Here we introduce a quantitative genetic approach to these issues, and apply this approach to data from three species. In mice, we find suggestive evidence that for hundreds of gene expression traits, robustness is polymorphic and can be genetically mapped to discrete genomic loci. Moreover, we find that the polymorphisms buffering genetic variation are distinct from those buffering environmental variation. In fact, these two classes have quite distinct mechanistic bases: environmental buffers of gene expression are predominantly sex-specific and trans-acting, whereas genetic buffers are not sex-specific and often cis-acting. Data from studies of morphological and life-history traits in plants and yeast support the distinction between polymorphisms buffering genetic and environmental variation, and further suggest that loci buffering different types of environmental variation do overlap with one another. These preliminary results suggest that naturally occurring polymorphisms affecting phenotypic robustness could be abundant, and that these polymorphisms may generally buffer either genetic or environmental variation, but not both.

  12. Integration of molecular genetic technology with quantitative genetic technology for maximizing the speed of genetic improvement

    Institute of Scientific and Technical Information of China (English)

    Jack; C.M.; DEKKERS

    2005-01-01

    To date,most genetic progress for quantita-tive traits in livestock has been made by selec-tion on phenotype or on estimates of breedingvalues(BBV)derived from phenotype,withoutknowledge of the number of genes that affect thetrait or the effects of each gene.In this quantita-tive genetic approach to genetic improvement,the genetic architecture of traits of interest hasessentially been treated as a‘black box’.De-spite this,the substantial rates of genetic im-provement that have been and continue to be a-chie...

  13. Interacting personalities: behavioural ecology meets quantitative genetics.

    Science.gov (United States)

    Dingemanse, Niels J; Araya-Ajoy, Yimen G

    2015-02-01

    Behavioural ecologists increasingly study behavioural variation within and among individuals in conjunction, thereby integrating research on phenotypic plasticity and animal personality within a single adaptive framework. Interactions between individuals (cf. social environments) constitute a major causative factor of behavioural variation at both of these hierarchical levels. Social interactions give rise to complex 'interactive phenotypes' and group-level emergent properties. This type of phenotype has intriguing evolutionary implications, warranting a cohesive framework for its study. We detail here how a reaction-norm framework might be applied to usefully integrate social environment theory developed in behavioural ecology and quantitative genetics. The proposed emergent framework facilitates firm integration of social environments in adaptive research on phenotypic characters that vary within and among individuals.

  14. Developments in statistical analysis in quantitative genetics

    DEFF Research Database (Denmark)

    Sorensen, Daniel

    2009-01-01

    A remarkable research impetus has taken place in statistical genetics since the last World Conference. This has been stimulated by breakthroughs in molecular genetics, automated data-recording devices and computer-intensive statistical methods. The latter were revolutionized by the bootstrap and ...

  15. Event History Analysis in Quantitative Genetics

    DEFF Research Database (Denmark)

    Maia, Rafael Pimentel

    Event history analysis is a clas of statistical methods specially designed to analyze time-to-event characteristics, e.g. the time until death. The aim of the thesis was to present adequate multivariate versions of mixed survival models that properly represent the genetic aspects related to a given...... time-to-event characteristic of interest. Real genetic longevity studies based on female animals of different species (sows, dairy cows, and sheep) exemplifies the use of the methods. Moreover these studies allow to understand som genetic mechanisms related to the lenght of the productive life...

  16. The quantitative genetics of disgust sensitivity.

    Science.gov (United States)

    Sherlock, James M; Zietsch, Brendan P; Tybur, Joshua M; Jern, Patrick

    2016-02-01

    [Correction Notice: An Erratum for this article was reported in Vol 16(1) of Emotion (see record 2015-57029-001). In the article, the name of author Joshua M. Tybur was misspelled as Joshua M. Tyber. All versions of this article have been corrected.] Response sensitivity to common disgust elicitors varies considerably among individuals. The sources of these individual differences are largely unknown. In the current study, we use a large sample of female identical and nonidentical twins (N = 1,041 individuals) and their siblings (N = 170) to estimate the proportion of variation due to genetic effects, the shared environment, and other (residual) sources across multiple domains of disgust sensitivity. We also investigate the genetic and environmental influences on the covariation between the different disgust domains. Twin modeling revealed that approximately half of the variation in pathogen, sexual, and moral disgust is due to genetic effects. An independent pathways twin model also revealed that sexual and pathogen disgust sensitivity were influenced by unique sources of genetic variation, while also being significantly affected by a general genetic factor underlying all 3 disgust domains. Moral disgust sensitivity, in contrast, did not exhibit domain-specific genetic variation. These findings are discussed in light of contemporary evolutionary approaches to disgust sensitivity.

  17. Data-driven encoding for quantitative genetic trait prediction.

    Science.gov (United States)

    He, Dan; Wang, Zhanyong; Parida, Laxmi

    2015-01-01

    Given a set of biallelic molecular markers, such as SNPs, with genotype values on a collection of plant, animal or human samples, the goal of quantitative genetic trait prediction is to predict the quantitative trait values by simultaneously modeling all marker effects. Quantitative genetic trait prediction is usually represented as linear regression models which require quantitative encodings for the genotypes: the three distinct genotype values, corresponding to one heterozygous and two homozygous alleles, are usually coded as integers, and manipulated algebraically in the model. Further, epistasis between multiple markers is modeled as multiplication between the markers: it is unclear that the regression model continues to be effective under this. In this work we investigate the effects of encodings to the quantitative genetic trait prediction problem. We first showed that different encodings lead to different prediction accuracies, in many test cases. We then proposed a data-driven encoding strategy, where we encode the genotypes according to their distribution in the phenotypes and we allow each marker to have different encodings. We show in our experiments that this encoding strategy is able to improve the performance of the genetic trait prediction method and it is more helpful for the oligogenic traits, whose values rely on a relatively small set of markers. To the best of our knowledge, this is the first paper that discusses the effects of encodings to the genetic trait prediction problem.

  18. Genetic architecture of quantitative traits and complex diseases.

    Science.gov (United States)

    Fu, Wenqing; O'Connor, Timothy D; Akey, Joshua M

    2013-12-01

    More than 150 years after Mendel discovered the laws of heredity, the genetic architecture of phenotypic variation remains elusive. Here, we discuss recent progress in deciphering how genotypes map onto phenotypes, sources of genetic complexity, and how model organisms are illuminating general principles about the relationship between genetic and phenotypic variation. Moreover, we highlight insights gleaned from large-scale sequencing studies in humans, and how this knowledge informs outstanding questions about the genetic architecture of quantitative traits and complex diseases. Finally, we articulate how the confluence of technologies enabling whole-genome sequencing, comprehensive phenotyping, and high-throughput functional assays of polymorphisms will facilitate a more principled and mechanistic understanding of the genetic architecture of phenotypic variation.

  19. Complex genetic interactions in a quantitative trait locus.

    Directory of Open Access Journals (Sweden)

    Himanshu Sinha

    2006-02-01

    Full Text Available Whether in natural populations or between two unrelated members of a species, most phenotypic variation is quantitative. To analyze such quantitative traits, one must first map the underlying quantitative trait loci. Next, and far more difficult, one must identify the quantitative trait genes (QTGs, characterize QTG interactions, and identify the phenotypically relevant polymorphisms to determine how QTGs contribute to phenotype. In this work, we analyzed three Saccharomyces cerevisiae high-temperature growth (Htg QTGs (MKT1, END3, and RHO2. We observed a high level of genetic interactions among QTGs and strain background. Interestingly, while the MKT1 and END3 coding polymorphisms contribute to phenotype, it is the RHO2 3'UTR polymorphisms that are phenotypically relevant. Reciprocal hemizygosity analysis of the Htg QTGs in hybrids between S288c and ten unrelated S. cerevisiae strains reveals that the contributions of the Htg QTGs are not conserved in nine other hybrids, which has implications for QTG identification by marker-trait association. Our findings demonstrate the variety and complexity of QTG contributions to phenotype, the impact of genetic background, and the value of quantitative genetic studies in S. cerevisiae.

  20. Genetic mapping of quantitative phenotypic traits in Saccharomyces cerevisiae.

    Science.gov (United States)

    Swinnen, Steve; Thevelein, Johan M; Nevoigt, Elke

    2012-03-01

    Saccharomyces cerevisiae has become a favorite production organism in industrial biotechnology presenting new challenges to yeast engineers in terms of introducing advantageous traits such as stress tolerances. Exploring subspecies diversity of S. cerevisiae has identified strains that bear industrially relevant phenotypic traits. Provided that the genetic basis of such phenotypic traits can be identified inverse engineering allows the targeted modification of production strains. Most phenotypic traits of interest in S. cerevisiae strains are quantitative, meaning that they are controlled by multiple genetic loci referred to as quantitative trait loci (QTL). A straightforward approach to identify the genetic basis of quantitative traits is QTL mapping which aims at the allocation of the genetic determinants to regions in the genome. The application of high-density oligonucleotide arrays and whole-genome re-sequencing to detect genetic variations between strains has facilitated the detection of large numbers of molecular markers thus allowing high-resolution QTL mapping over the entire genome. This review focuses on the basic principle and state of the art of QTL mapping in S. cerevisiae. Furthermore we discuss several approaches developed during the last decade that allow down-scaling of the regions identified by QTL mapping to the gene level. We also emphasize the particular challenges of QTL mapping in nonlaboratory strains of S. cerevisiae.

  1. Segregation Analysis on Genetic System of Quantitative Traits in Plants

    Institute of Scientific and Technical Information of China (English)

    Gai Junyi

    2006-01-01

    Based on the traditional polygene inheritance model of quantitative traits,the author suggests the major gene and polygene mixed inheritance model.The model was considered as a general one,while the pure major gene and pure polygene inheritance model was a specific case of the general model.Based on the proposed theory,the author established the segregation analysis procedure to study the genetic system of quantitative traits of plants.At present,this procedure can be used to evaluate the genetic effect of individual major genes (up to two to three major genes),the collective genetic effect of polygene,and their heritability value.This paper introduces how to establish the procedure,its main achievements,and its applications.An example is given to illustrate the steps,methods,and effectiveness of the procedure.

  2. Quantitative Genetics in the Era of Molecular Genetics: Learning Abilities and Disabilities as an Example

    Science.gov (United States)

    Haworth, Claire M. A.; Plomin, Robert

    2010-01-01

    Objective: To consider recent findings from quantitative genetic research in the context of molecular genetic research, especially genome-wide association studies. We focus on findings that go beyond merely estimating heritability. We use learning abilities and disabilities as examples. Method: Recent twin research in the area of learning…

  3. The nature of quantitative genetic variation for Drosophila longevity.

    Science.gov (United States)

    Mackay, Trudy F C

    2002-01-01

    Longevity is a typical quantitative trait: the continuous variation in life span observed in natural populations is attributable to genetic variation at multiple quantitative trait loci (QTL), environmental sensitivity of QTL alleles, and truly continuous environmental variation. To begin to understand the genetic architecture of longevity at the level of individual QTL, we have mapped QTL for Drosophila life span that segregate between two inbred strains that were not selected for longevity. A mapping population of 98 recombinant inbred lines (RIL) was derived from these strains, and life span of virgin male and female flies measured under control culture conditions, chronic heat and cold stress, heat shock and starvation stress, and high and low density larval environments. The genotypes of the RIL were determined for polymorphic roo transposable element insertion sites, and life span QTL were mapped using composite interval mapping methods. A minimum of 19 life span QTL were detected by recombination mapping. The life span QTL exhibited strong genotype by sex, genotype by environment, and genotype by genotype (epistatic) interactions. These interactions complicate mapping efforts, but evolutionary theory predicts such properties of segregating QTL alleles. Quantitative deficiency mapping of four longevity QTL detected in the control environment by recombination mapping revealed a minimum of 11 QTL in these regions. Clearly, longevity is a complex quantitative trait. In the future, linkage disequilibrium mapping can be used to determine which candidate genes in a QTL region correspond to the genetic loci affecting variation in life span, and define the QTL alleles at the molecular level.

  4. Quantitative genetic analysis of injury liability in infants and toddlers

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, K.; Matheny, A.P. Jr. [Univ. of Louisville Medical School, KY (United States)

    1995-02-27

    A threshold model of latent liability was applied to infant and toddler twin data on total count of injuries sustained during the interval from birth to 36 months of age. A quantitative genetic analysis of estimated twin correlations in injury liability indicated strong genetic dominance effects, but no additive genetic variance was detected. Because interpretations involving overdominance have little research support, the results may be due to low order epistasis or other interaction effects. Boys had more injuries than girls, but this effect was found only for groups whose parents were prompted and questioned in detail about their children`s injuries. Activity and impulsivity are two behavioral predictors of childhood injury, and the results are discussed in relation to animal research on infant and adult activity levels, and impulsivity in adult humans. Genetic epidemiological approaches to childhood injury should aid in targeting higher risk children for preventive intervention. 30 refs., 4 figs., 3 tabs.

  5. Quantitative genetic activity graphical profiles for use in chemical evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Waters, M.D. [Environmental Protection Agency, Washington, DC (United States); Stack, H.F.; Garrett, N.E.; Jackson, M.A. [Environmental Health Research and Testing, Inc., Research Triangle Park, NC (United States)

    1990-12-31

    A graphic approach, terms a Genetic Activity Profile (GAP), was developed to display a matrix of data on the genetic and related effects of selected chemical agents. The profiles provide a visual overview of the quantitative (doses) and qualitative (test results) data for each chemical. Either the lowest effective dose or highest ineffective dose is recorded for each agent and bioassay. Up to 200 different test systems are represented across the GAP. Bioassay systems are organized according to the phylogeny of the test organisms and the end points of genetic activity. The methodology for producing and evaluating genetic activity profile was developed in collaboration with the International Agency for Research on Cancer (IARC). Data on individual chemicals were compiles by IARC and by the US Environmental Protection Agency (EPA). Data are available on 343 compounds selected from volumes 1-53 of the IARC Monographs and on 115 compounds identified as Superfund Priority Substances. Software to display the GAPs on an IBM-compatible personal computer is available from the authors. Structurally similar compounds frequently display qualitatively and quantitatively similar profiles of genetic activity. Through examination of the patterns of GAPs of pairs and groups of chemicals, it is possible to make more informed decisions regarding the selection of test batteries to be used in evaluation of chemical analogs. GAPs provided useful data for development of weight-of-evidence hazard ranking schemes. Also, some knowledge of the potential genetic activity of complex environmental mixtures may be gained from an assessment of the genetic activity profiles of component chemicals. The fundamental techniques and computer programs devised for the GAP database may be used to develop similar databases in other disciplines. 36 refs., 2 figs.

  6. Genetic Architectures of Quantitative Variation in RNA Editing Pathways.

    Science.gov (United States)

    Gu, Tongjun; Gatti, Daniel M; Srivastava, Anuj; Snyder, Elizabeth M; Raghupathy, Narayanan; Simecek, Petr; Svenson, Karen L; Dotu, Ivan; Chuang, Jeffrey H; Keller, Mark P; Attie, Alan D; Braun, Robert E; Churchill, Gary A

    2016-02-01

    RNA editing refers to post-transcriptional processes that alter the base sequence of RNA. Recently, hundreds of new RNA editing targets have been reported. However, the mechanisms that determine the specificity and degree of editing are not well understood. We examined quantitative variation of site-specific editing in a genetically diverse multiparent population, Diversity Outbred mice, and mapped polymorphic loci that alter editing ratios globally for C-to-U editing and at specific sites for A-to-I editing. An allelic series in the C-to-U editing enzyme Apobec1 influences the editing efficiency of Apob and 58 additional C-to-U editing targets. We identified 49 A-to-I editing sites with polymorphisms in the edited transcript that alter editing efficiency. In contrast to the shared genetic control of C-to-U editing, most of the variable A-to-I editing sites were determined by local nucleotide polymorphisms in proximity to the editing site in the RNA secondary structure. Our results indicate that RNA editing is a quantitative trait subject to genetic variation and that evolutionary constraints have given rise to distinct genetic architectures in the two canonical types of RNA editing.

  7. Introduction to Focus Issue: Quantitative Approaches to Genetic Networks

    Science.gov (United States)

    Albert, Réka; Collins, James J.; Glass, Leon

    2013-06-01

    All cells of living organisms contain similar genetic instructions encoded in the organism's DNA. In any particular cell, the control of the expression of each different gene is regulated, in part, by binding of molecular complexes to specific regions of the DNA. The molecular complexes are composed of protein molecules, called transcription factors, combined with various other molecules such as hormones and drugs. Since transcription factors are coded by genes, cellular function is partially determined by genetic networks. Recent research is making large strides to understand both the structure and the function of these networks. Further, the emerging discipline of synthetic biology is engineering novel gene circuits with specific dynamic properties to advance both basic science and potential practical applications. Although there is not yet a universally accepted mathematical framework for studying the properties of genetic networks, the strong analogies between the activation and inhibition of gene expression and electric circuits suggest frameworks based on logical switching circuits. This focus issue provides a selection of papers reflecting current research directions in the quantitative analysis of genetic networks. The work extends from molecular models for the binding of proteins, to realistic detailed models of cellular metabolism. Between these extremes are simplified models in which genetic dynamics are modeled using classical methods of systems engineering, Boolean switching networks, differential equations that are continuous analogues of Boolean switching networks, and differential equations in which control is based on power law functions. The mathematical techniques are applied to study: (i) naturally occurring gene networks in living organisms including: cyanobacteria, Mycoplasma genitalium, fruit flies, immune cells in mammals; (ii) synthetic gene circuits in Escherichia coli and yeast; and (iii) electronic circuits modeling genetic networks

  8. A comparison of strategies for Markov chain Monte Carlo computation in quantitative genetics

    DEFF Research Database (Denmark)

    Waagepetersen, Rasmus; Ibánez-Escriche, Noelia; Sorensen, Daniel

    2008-01-01

    In quantitative genetics, Markov chain Monte Carlo (MCMC) methods are indispensable for statistical inference in non-standard models like generalized linear models with genetic random effects or models with genetically structured variance heterogeneity. A particular challenge for MCMC applications...

  9. Automated identification of pathways from quantitative genetic interaction data

    Science.gov (United States)

    Battle, Alexis; Jonikas, Martin C; Walter, Peter; Weissman, Jonathan S; Koller, Daphne

    2010-01-01

    High-throughput quantitative genetic interaction (GI) measurements provide detailed information regarding the structure of the underlying biological pathways by reporting on functional dependencies between genes. However, the analytical tools for fully exploiting such information lag behind the ability to collect these data. We present a novel Bayesian learning method that uses quantitative phenotypes of double knockout organisms to automatically reconstruct detailed pathway structures. We applied our method to a recent data set that measures GIs for endoplasmic reticulum (ER) genes, using the unfolded protein response as a quantitative phenotype. The results provided reconstructions of known functional pathways including N-linked glycosylation and ER-associated protein degradation. It also contained novel relationships, such as the placement of SGT2 in the tail-anchored biogenesis pathway, a finding that we experimentally validated. Our approach should be readily applicable to the next generation of quantitative GI data sets, as assays become available for additional phenotypes and eventually higher-level organisms. PMID:20531408

  10. Quantitative genetic-interaction mapping in mammalian cells

    Science.gov (United States)

    Roguev, Assen; Talbot, Dale; Negri, Gian Luca; Shales, Michael; Cagney, Gerard; Bandyopadhyay, Sourav; Panning, Barbara; Krogan, Nevan J

    2013-01-01

    Mapping genetic interactions (GIs) by simultaneously perturbing pairs of genes is a powerful tool for understanding complex biological phenomena. Here we describe an experimental platform for generating quantitative GI maps in mammalian cells using a combinatorial RNA interference strategy. We performed ~11,000 pairwise knockdowns in mouse fibroblasts, focusing on 130 factors involved in chromatin regulation to create a GI map. Comparison of the GI and protein-protein interaction (PPI) data revealed that pairs of genes exhibiting positive GIs and/or similar genetic profiles were predictive of the corresponding proteins being physically associated. The mammalian GI map identified pathways and complexes but also resolved functionally distinct submodules within larger protein complexes. By integrating GI and PPI data, we created a functional map of chromatin complexes in mouse fibroblasts, revealing that the PAF complex is a central player in the mammalian chromatin landscape. PMID:23407553

  11. Quantitative Genetic Interactions Reveal Layers of Biological Modularity

    Science.gov (United States)

    Beltrao, Pedro; Cagney, Gerard; Krogan, Nevan J.

    2010-01-01

    In the past, biomedical research has embraced a reductionist approach, primarily focused on characterizing the individual components that comprise a system of interest. Recent technical developments have significantly increased the size and scope of data describing biological systems. At the same time, advances in the field of systems biology have evoked a broader view of how the underlying components are interconnected. In this essay, we discuss how quantitative genetic interaction mapping has enhanced our view of biological systems, allowing a deeper functional interrogation at different biological scales. PMID:20510918

  12. From classical genetics to quantitative genetics to systems biology: modeling epistasis.

    Directory of Open Access Journals (Sweden)

    David L Aylor

    2008-03-01

    Full Text Available Gene expression data has been used in lieu of phenotype in both classical and quantitative genetic settings. These two disciplines have separate approaches to measuring and interpreting epistasis, which is the interaction between alleles at different loci. We propose a framework for estimating and interpreting epistasis from a classical experiment that combines the strengths of each approach. A regression analysis step accommodates the quantitative nature of expression measurements by estimating the effect of gene deletions plus any interaction. Effects are selected by significance such that a reduced model describes each expression trait. We show how the resulting models correspond to specific hierarchical relationships between two regulator genes and a target gene. These relationships are the basic units of genetic pathways and genomic system diagrams. Our approach can be extended to analyze data from a variety of experiments, multiple loci, and multiple environments.

  13. A census of cells in time: quantitative genetics meets developmental biology.

    Science.gov (United States)

    Chitwood, Daniel H; Sinha, Neelima R

    2013-02-01

    Quantitative genetics has become a popular method for determining the genetic basis of natural variation. Combined with genomic methods, it provides a tool for discerning the genetic basis of gene expression. So-called genetical genomics approaches yield a wealth of genomic information, but by necessity, because of cost and time, fail to resolve the differences between organs, tissues, and/or cell types. Similarly, quantitative approaches in development that might potentially address these issues are seldom applied to quantitative genetics. We discuss recent advances in cell type-specific isolation methods, the quantitative analysis of phenotype, and developmental modeling that are compatible with quantitative genetics and, with time, promise to bridge the gap between these two powerful disciplines yielding unprecedented biological insight.

  14. A comparison of strategies for Markov chain Monte Carlo computation in quantitative genetics

    DEFF Research Database (Denmark)

    Waagepetersen, Rasmus; Ibánez-Escriche, Noelia; Sorensen, Daniel

    2008-01-01

    In quantitative genetics, Markov chain Monte Carlo (MCMC) methods are indispensable for statistical inference in non-standard models like generalized linear models with genetic random effects or models with genetically structured variance heterogeneity. A particular challenge for MCMC applications...... in quantitative genetics is to obtain efficient updates of the high-dimensional vectors of genetic random effects and the associated covariance parameters. We discuss various strategies to approach this problem including reparameterization, Langevin-Hastings updates, and updates based on normal approximations....... The methods are compared in applications to Bayesian inference for three data sets using a model with genetically structured variance heterogeneity...

  15. Entering the second century of maize quantitative genetics

    Science.gov (United States)

    Maize is the most widely grown cereal in the world. In addition to its role in global agriculture, it has also long served as a model organism for genetic research. Maize stands at a genetic crossroads, as it has access to all the tools available for plant genetics but exhibits a genetic architectur...

  16. Advancing genetic theory and application by metabolic quantitative trait loci analysis.

    Science.gov (United States)

    Kliebenstein, Danielj

    2009-06-01

    This review describes recent advances in the analysis of metabolism using quantitative genetics. It focuses on how recent metabolic quantitative trait loci (QTL) studies enhance our understanding of the genetic architecture underlying naturally variable phenotypes and the impact of this fundamental research on agriculture, specifically crop breeding. In particular, the role of whole-genome duplications in generating quantitative genetic variation within a species is highlighted and the potential uses of this phenomenon presented. Additionally, the review describes how new observations from metabolic QTL mapping analyses are helping to shape and expand the concepts of genetic epistasis.

  17. The Genetic Architecture of Quantitative Traits Cannot Be Inferred from Variance Component Analysis

    Science.gov (United States)

    Huang, Wen; Mackay, Trudy F. C.

    2016-01-01

    Classical quantitative genetic analyses estimate additive and non-additive genetic and environmental components of variance from phenotypes of related individuals without knowing the identities of quantitative trait loci (QTLs). Many studies have found a large proportion of quantitative trait variation can be attributed to the additive genetic variance (VA), providing the basis for claims that non-additive gene actions are unimportant. In this study, we show that arbitrarily defined parameterizations of genetic effects seemingly consistent with non-additive gene actions can also capture the majority of genetic variation. This reveals a logical flaw in using the relative magnitudes of variance components to indicate the relative importance of additive and non-additive gene actions. We discuss the implications and propose that variance component analyses should not be used to infer the genetic architecture of quantitative traits. PMID:27812106

  18. The Genetic Architecture of Quantitative Traits Cannot Be Inferred from Variance Component Analysis.

    Directory of Open Access Journals (Sweden)

    Wen Huang

    2016-11-01

    Full Text Available Classical quantitative genetic analyses estimate additive and non-additive genetic and environmental components of variance from phenotypes of related individuals without knowing the identities of quantitative trait loci (QTLs. Many studies have found a large proportion of quantitative trait variation can be attributed to the additive genetic variance (VA, providing the basis for claims that non-additive gene actions are unimportant. In this study, we show that arbitrarily defined parameterizations of genetic effects seemingly consistent with non-additive gene actions can also capture the majority of genetic variation. This reveals a logical flaw in using the relative magnitudes of variance components to indicate the relative importance of additive and non-additive gene actions. We discuss the implications and propose that variance component analyses should not be used to infer the genetic architecture of quantitative traits.

  19. Multiple mating but not recombination causes quantitative increase in offspring genetic diversity for varying genetic architectures.

    Directory of Open Access Journals (Sweden)

    Olav Rueppell

    Full Text Available Explaining the evolution of sex and recombination is particularly intriguing for some species of eusocial insects because they display exceptionally high mating frequencies and genomic recombination rates. Explanations for both phenomena are based on the notion that both increase colony genetic diversity, with demonstrated benefits for colony disease resistance and division of labor. However, the relative contributions of mating number and recombination rate to colony genetic diversity have never been simultaneously assessed. Our study simulates colonies, assuming different mating numbers, recombination rates, and genetic architectures, to assess their worker genotypic diversity. The number of loci has a strong negative effect on genotypic diversity when the allelic effects are inversely scaled to locus number. In contrast, dominance, epistasis, lethal effects, or limiting the allelic diversity at each locus does not significantly affect the model outcomes. Mating number increases colony genotypic variance and lowers variation among colonies with quickly diminishing returns. Genomic recombination rate does not affect intra- and inter-colonial genotypic variance, regardless of mating frequency and genetic architecture. Recombination slightly increases the genotypic range of colonies and more strongly the number of workers with unique allele combinations across all loci. Overall, our study contradicts the argument that the exceptionally high recombination rates cause a quantitative increase in offspring genotypic diversity across one generation. Alternative explanations for the evolution of high recombination rates in social insects are therefore needed. Short-term benefits are central to most explanations of the evolution of multiple mating and high recombination rates in social insects but our results also apply to other species.

  20. Functional genomics bridges the gap between quantitative genetics and molecular biology.

    Science.gov (United States)

    Lappalainen, Tuuli

    2015-10-01

    Deep characterization of molecular function of genetic variants in the human genome is becoming increasingly important for understanding genetic associations to disease and for learning to read the regulatory code of the genome. In this paper, I discuss how recent advances in both quantitative genetics and molecular biology have contributed to understanding functional effects of genetic variants, lessons learned from eQTL studies, and future challenges in this field.

  1. [The study of tomato fruit weight quantitative trait locus and its application in genetics teaching].

    Science.gov (United States)

    Wang, Haiyan

    2015-08-01

    The classical research cases, which have greatly promoted the development of genetics in history, can be combined with the content of courses in genetics teaching to train students' ability of scientific thinking and genetic analysis. The localization and clone of gene controlling tomato fruit weight is a pioneer work in quantitative trait locus (QTL) studies and represents a complete process of QTL research in plants. Application of this integrated case in genetics teaching, which showed a wonderful process of scientific discovery and the fascination of genetic research, has inspired students' interest in genetics and achieved a good teaching effect.

  2. A quantitative genetic analysis of intermediate asthma phenotypes

    DEFF Research Database (Denmark)

    Thomsen, S.F.; Ferreira, M.A.R.; Kyvik, K.O.

    2009-01-01

    to the observed data using maximum likelihood methods. RESULTS: Additive genetic factors explained 67% of the variation in FeNO, 43% in airway responsiveness, 22% in airway obstruction, and 81% in serum total IgE. In general, traits had genetically and environmentally distinct variance structures. The most...

  3. A century after Fisher: time for a new paradigm in quantitative genetics.

    Science.gov (United States)

    Nelson, Ronald M; Pettersson, Mats E; Carlborg, Örjan

    2013-12-01

    Quantitative genetics traces its roots back through more than a century of theory, largely formed in the absence of directly observable genotype data, and has remained essentially unchanged for decades. By contrast, molecular genetics arose from direct observations and is currently undergoing rapid changes, making the amount of available data ever greater. Thus, the two disciplines are disparate both in their origins and their current states, yet they address the same fundamental question: how does the genotype affect the phenotype? The rapidly accumulating genomic data necessitate sophisticated analysis, but many of the current tools are adaptations of methods designed during the early days of quantitative genetics. We argue here that the present analysis paradigm in quantitative genetics is at its limits in regards to unraveling complex traits and it is necessary to re-evaluate the direction that genetic research is taking for the field to realize its full potential.

  4. Genotype-by-environment interaction in genetic mapping of multiple quantitative trait loci

    NARCIS (Netherlands)

    Jansen, R.C.; Ooijen, J.W. van; Stam, P.; Lister, C.; Dean, C.

    1995-01-01

    The interval mapping method is widely used for the genetic mapping of quantitative trait loci (QTLs), though true resolution of quantitative variation into QTLs is hampered with this method. Separation of QTLs is troublesome, because single-QTL is models are fitted. Further, genotype-by-environment

  5. Genetic mapping of quantitative trait loci in plants - a novel statistical approach.

    NARCIS (Netherlands)

    Jansen, R.C.

    1995-01-01

    Quantitative variation is a feature of many important traits such as yield, quality and disease resistance in crop plants and farm animals, and diseases in humans. The genetic mapping, understanding and manipulation of quantitative trait loci (QTLs) are therefore of prime importance. Only by using g

  6. Integrating Quantitative Genetics and Practical Aspects in a Fish Breeding Network in Denmark

    DEFF Research Database (Denmark)

    Meier, Kristian; Sørensen, Anders Christian; Norberg, Elise;

    simulations are given to show how different practical aspects of a breeding plan can be optimized. By combining quantitative genetic theory with current breeding practice we are able to optimize different breeding plans increasing genetic gain while controlling the level of inbreeding and building up...

  7. Contribution and perspectives of quantitative genetics to plant breeding in Brazil

    Directory of Open Access Journals (Sweden)

    Fernando Henrique Ribeiro Barrozo Toledo

    2012-12-01

    Full Text Available The purpose of this article is to show how quantitative genetics has contributed to the huge genetic progress obtained inplant breeding in Brazil in the last forty years. The information obtained through quantitative genetics has given Brazilian breedersthe possibility of responding to innumerable questions in their work in a much more informative way, such as the use or not of hybridcultivars, which segregating population to use, which breeding method to employ, alternatives for improving the efficiency of selectionprograms, and how to handle the data of progeny and/or cultivars evaluations to identify the most stable ones and thus improverecommendations.

  8. Genetic mapping of quantitative trait loci (QTLs) with effects on ...

    African Journals Online (AJOL)

    SERVER

    2008-02-05

    Feb 5, 2008 ... 2Department of Crop Protection and Environmental Biology, ... identify genetic loci associated with the expression of resistance to FTh. ... indicated that resistance to FTh may be controlled by ... population or to pyramid resistance into new populations. .... environment and human health (Eigenbrode and.

  9. Genetic toxicology at the crossroads-from qualitative hazard evaluation to quantitative risk assessment.

    Science.gov (United States)

    White, Paul A; Johnson, George E

    2016-05-01

    Applied genetic toxicology is undergoing a transition from qualitative hazard identification to quantitative dose-response analysis and risk assessment. To facilitate this change, the Health and Environmental Sciences Institute (HESI) Genetic Toxicology Technical Committee (GTTC) sponsored a workshop held in Lancaster, UK on July 10-11, 2014. The event included invited speakers from several institutions and the contents was divided into three themes-1: Point-of-departure Metrics for Quantitative Dose-Response Analysis in Genetic Toxicology; 2: Measurement and Estimation of Exposures for Better Extrapolation to Humans and 3: The Use of Quantitative Approaches in Genetic Toxicology for human health risk assessment (HHRA). A host of pertinent issues were discussed relating to the use of in vitro and in vivo dose-response data, the development of methods for in vitro to in vivo extrapolation and approaches to use in vivo dose-response data to determine human exposure limits for regulatory evaluations and decision-making. This Special Issue, which was inspired by the workshop, contains a series of papers that collectively address topics related to the aforementioned themes. The Issue includes contributions that collectively evaluate, describe and discuss in silico, in vitro, in vivo and statistical approaches that are facilitating the shift from qualitative hazard evaluation to quantitative risk assessment. The use and application of the benchmark dose approach was a central theme in many of the workshop presentations and discussions, and the Special Issue includes several contributions that outline novel applications for the analysis and interpretation of genetic toxicity data. Although the contents of the Special Issue constitutes an important step towards the adoption of quantitative methods for regulatory assessment of genetic toxicity, formal acceptance of quantitative methods for HHRA and regulatory decision-making will require consensus regarding the

  10. Functional Maps of Protein Complexes from Quantitative Genetic Interaction Data

    OpenAIRE

    Sourav Bandyopadhyay; Ryan Kelley; Krogan, Nevan J.; Trey Ideker

    2008-01-01

    Recently, a number of advanced screening technologies have allowed for the comprehensive quantification of aggravating and alleviating genetic interactions among gene pairs. In parallel, TAP-MS studies (tandem affinity purification followed by mass spectroscopy) have been successful at identifying physical protein interactions that can indicate proteins participating in the same molecular complex. Here, we propose a method for the joint learning of protein complexes and their functional relat...

  11. Developmental quantitative genetic analysis of body weights and morphological traits in the turbot, Scophthalmusmaximus

    Institute of Scientific and Technical Information of China (English)

    WANG Xinan; MA Aijun; MA Deyou

    2015-01-01

    In order to elucidate the genetic mechanism of growth traits in turbot during ontogeny, developmental genetic analysis of the body weights, total lengths, standard lengths and body heights of turbots was conducted by mixed genetic models with additive-dominance effects, based on complete diallel crosses with four different strains of Scophthalmus maximus from Denmark, Norway, Britain, and France. Unconditional genetic analysis revealed that the unconditional additive effects for the four traits were more significant than unconditional dominance effects, meanwhile, the alternative expressions were also observed between the additive and dominant effects for body weights, total lengths and standard lengths. Conditional analysis showed that the developmental periods with active gene expression for body weights, total lengths, standard lengths and body heights were 15–18, 15 and 21–24, 15 and 24, and 21 and 27 months of age, respectively. The proportions of unconditional/conditional variances indicated that the narrow-sense heritabilities of body weights, total lengths and standard lengths were all increased systematically. The accumulative effects of genes controlling the four quantitative traits were mainly additive effects, suggesting that the selection is more efficient for the genetic improvement of turbots. The conditional genetic procedure is a useful tool to understand the expression of genes controlling developmental quantitative traits at a specific developmental period (t-1→t) during ontogeny. It is also important to determine the appropriate developmental period (t-1→t) for trait measurement in developmental quantitative genetic analysis in fish.

  12. Quantitative trait locus mapping reveals complex genetic architecture of quantitative virulence in the wheat pathogen Zymoseptoria tritici.

    Science.gov (United States)

    Stewart, Ethan L; Croll, Daniel; Lendenmann, Mark H; Sanchez-Vallet, Andrea; Hartmann, Fanny E; Palma-Guerrero, Javier; Ma, Xin; McDonald, Bruce A

    2016-11-21

    We conducted a comprehensive analysis of virulence in the fungal wheat pathogen Zymoseptoria tritici using quantitative trait locus (QTL) mapping. High-throughput phenotyping based on automated image analysis allowed the measurement of pathogen virulence on a scale and with a precision that was not previously possible. Across two mapping populations encompassing more than 520 progeny, 540 710 pycnidia were counted and their sizes and grey values were measured. A significant correlation was found between pycnidia size and both spore size and number. Precise measurements of percentage leaf area covered by lesions provided a quantitative measure of host damage. Combining these large and accurate phenotypic datasets with a dense panel of restriction site-associated DNA sequencing (RADseq) genetic markers enabled us to genetically dissect pathogen virulence into components related to host damage and those related to pathogen reproduction. We showed that different components of virulence can be under separate genetic control. Large- and small-effect QTLs were identified for all traits, with some QTLs specific to mapping populations, cultivars and traits and other QTLs shared among traits within the same mapping population. We associated the presence of four accessory chromosomes with small, but significant, increases in several virulence traits, providing the first evidence for a meaningful function associated with accessory chromosomes in this organism. A large-effect QTL involved in host specialization was identified on chromosome 7, leading to the identification of candidate genes having a large effect on virulence.

  13. Parent-offspring conflict and co-adaptation: behavioural ecology meets quantitative genetics.

    Science.gov (United States)

    Smiseth, Per T; Wright, Jonathan; Kölliker, Mathias

    2008-08-22

    The evolution of the complex and dynamic behavioural interactions between caring parents and their dependent offspring is a major area of research in behavioural ecology and quantitative genetics. While behavioural ecologists examine the evolution of interactions between parents and offspring in the light of parent-offspring conflict and its resolution, quantitative geneticists explore the evolution of such interactions in the light of parent-offspring co-adaptation due to combined effects of parental and offspring behaviours on fitness. To date, there is little interaction or integration between these two fields. Here, we first review the merits and limitations of each of these two approaches and show that they provide important complementary insights into the evolution of strategies for offspring begging and parental resource provisioning. We then outline how central ideas from behavioural ecology and quantitative genetics can be combined within a framework based on the concept of behavioural reaction norms, which provides a common basis for behavioural ecologists and quantitative geneticists to study the evolution of parent-offspring interactions. Finally, we discuss how the behavioural reaction norm approach can be used to advance our understanding of parent-offspring conflict by combining information about the genetic basis of traits from quantitative genetics with key insights regarding the adaptive function and dynamic nature of parental and offspring behaviours from behavioural ecology.

  14. Genetic influences on attention deficit hyperactivity disorder symptoms from age 2 to 3: A quantitative and molecular genetic investigation

    Directory of Open Access Journals (Sweden)

    Saudino Kimberly J

    2010-12-01

    Full Text Available Abstract Background A twin study design was used to assess the degree to which additive genetic variance influences ADHD symptom scores across two ages during infancy. A further objective in the study was to observe whether genetic association with a number of candidate markers reflects results from the quantitative genetic analysis. Method We have studied 312 twin pairs at two time-points, age 2 and age 3. A composite measure of ADHD symptoms from two parent-rating scales: The Child Behavior Checklist/1.5 - 5 years (CBCL hyperactivity scale and the Revised Rutter Parent Scale for Preschool Children (RRPSPC was used for both quantitative and molecular genetic analyses. Results At ages 2 and 3 ADHD symptoms are highly heritable (h2 = 0.79 and 0.78, respectively with a high level of genetic stability across these ages. However, we also observe a significant level of genetic change from age 2 to age 3. There are modest influences of non-shared environment at each age independently (e2 = 0.22 and 0.21, respectively, with these influences being largely age-specific. In addition, we find modest association signals in DAT1 and NET1 at both ages, along with suggestive specific effects of 5-HTT and DRD4 at age 3. Conclusions ADHD symptoms are heritable at ages 2 and 3. Additive genetic variance is largely shared across these ages, although there are significant new effects emerging at age 3. Results from our genetic association analysis reflect these levels of stability and change and, more generally, suggest a requirement for consideration of age-specific genotypic effects in future molecular studies.

  15. Estimating quantitative genetic parameters in wild populations: a comparison of pedigree and genomic approaches.

    Science.gov (United States)

    Bérénos, Camillo; Ellis, Philip A; Pilkington, Jill G; Pemberton, Josephine M

    2014-07-01

    The estimation of quantitative genetic parameters in wild populations is generally limited by the accuracy and completeness of the available pedigree information. Using relatedness at genomewide markers can potentially remove this limitation and lead to less biased and more precise estimates. We estimated heritability, maternal genetic effects and genetic correlations for body size traits in an unmanaged long-term study population of Soay sheep on St Kilda using three increasingly complete and accurate estimates of relatedness: (i) Pedigree 1, using observation-derived maternal links and microsatellite-derived paternal links; (ii) Pedigree 2, using SNP-derived assignment of both maternity and paternity; and (iii) whole-genome relatedness at 37 037 autosomal SNPs. In initial analyses, heritability estimates were strikingly similar for all three methods, while standard errors were systematically lower in analyses based on Pedigree 2 and genomic relatedness. Genetic correlations were generally strong, differed little between the three estimates of relatedness and the standard errors declined only very slightly with improved relatedness information. When partitioning maternal effects into separate genetic and environmental components, maternal genetic effects found in juvenile traits increased substantially across the three relatedness estimates. Heritability declined compared to parallel models where only a maternal environment effect was fitted, suggesting that maternal genetic effects are confounded with direct genetic effects and that more accurate estimates of relatedness were better able to separate maternal genetic effects from direct genetic effects. We found that the heritability captured by SNP markers asymptoted at about half the SNPs available, suggesting that denser marker panels are not necessarily required for precise and unbiased heritability estimates. Finally, we present guidelines for the use of genomic relatedness in future quantitative genetics

  16. The Quantitative Basis of the Arabidopsis Innate Immune System to Endemic Pathogens Depends on Pathogen Genetics.

    Directory of Open Access Journals (Sweden)

    Jason A Corwin

    2016-02-01

    Full Text Available The most established model of the eukaryotic innate immune system is derived from examples of large effect monogenic quantitative resistance to pathogens. However, many host-pathogen interactions involve many genes of small to medium effect and exhibit quantitative resistance. We used the Arabidopsis-Botrytis pathosystem to explore the quantitative genetic architecture underlying host innate immune system in a population of Arabidopsis thaliana. By infecting a diverse panel of Arabidopsis accessions with four phenotypically and genotypically distinct isolates of the fungal necrotroph B. cinerea, we identified a total of 2,982 genes associated with quantitative resistance using lesion area and 3,354 genes associated with camalexin production as measures of the interaction. Most genes were associated with resistance to a specific Botrytis isolate, which demonstrates the influence of pathogen genetic variation in analyzing host quantitative resistance. While known resistance genes, such as receptor-like kinases (RLKs and nucleotide-binding site leucine-rich repeat proteins (NLRs, were found to be enriched among associated genes, they only account for a small fraction of the total genes associated with quantitative resistance. Using publically available co-expression data, we condensed the quantitative resistance associated genes into co-expressed gene networks. GO analysis of these networks implicated several biological processes commonly connected to disease resistance, including defense hormone signaling and ROS production, as well as novel processes, such as leaf development. Validation of single gene T-DNA knockouts in a Col-0 background demonstrate a high success rate (60% when accounting for differences in environmental and Botrytis genetic variation. This study shows that the genetic architecture underlying host innate immune system is extremely complex and is likely able to sense and respond to differential virulence among pathogen

  17. The current and future use of ridge regression for prediction in quantitative genetics

    NARCIS (Netherlands)

    R. de Vlaming (Ronald); P.J.F. Groenen (Patrick)

    2015-01-01

    textabstractIn recent years, there has been a considerable amount of research on the use of regularization methods for inference and prediction in quantitative genetics. Such research mostly focuses on selection of markers and shrinkage of their effects. In this review paper, the use of ridge

  18. Quantitative PCR for Detection and Enumeration of Genetic Markers of Bovine Fecal Pollution

    Science.gov (United States)

    Accurate assessment of health risks associated with bovine (cattle) fecal pollution requires a reliable host-specific genetic marker and a rapid quantification method. We report the development of quantitative PCR assays for the detection of two recently described cow feces-spec...

  19. Multilevel selection 1: Quantitative genetics of inheritance and response to selection

    NARCIS (Netherlands)

    Bijma, P.; Muir, W.M.; Arendonk, van J.A.M.

    2007-01-01

    Interaction among individuals is universal, both in animals and in plants, and substantially affects evolution of natural populations and responses to artificial selection in agriculture. Although quantitative genetics has successfully been applied to many traits, it does not provide a general theor

  20. Quantitative genetic bases of anthocyanin variation in grape (Vitis vinifera L. ssp. sativa) berry: a quantitative trait locus to quantitative trait nucleotide integrated study.

    Science.gov (United States)

    Fournier-Level, Alexandre; Le Cunff, Loïc; Gomez, Camila; Doligez, Agnès; Ageorges, Agnès; Roux, Catherine; Bertrand, Yves; Souquet, Jean-Marc; Cheynier, Véronique; This, Patrice

    2009-11-01

    The combination of QTL mapping studies of synthetic lines and association mapping studies of natural diversity represents an opportunity to throw light on the genetically based variation of quantitative traits. With the positional information provided through quantitative trait locus (QTL) mapping, which often leads to wide intervals encompassing numerous genes, it is now feasible to directly target candidate genes that are likely to be responsible for the observed variation in completely sequenced genomes and to test their effects through association genetics. This approach was performed in grape, a newly sequenced genome, to decipher the genetic architecture of anthocyanin content. Grapes may be either white or colored, ranging from the lightest pink to the darkest purple tones according to the amount of anthocyanin accumulated in the berry skin, which is a crucial trait for both wine quality and human nutrition. Although the determinism of the white phenotype has been fully identified, the genetic bases of the quantitative variation of anthocyanin content in berry skin remain unclear. A single QTL responsible for up to 62% of the variation in the anthocyanin content was mapped on a Syrah x Grenache F(1) pseudo-testcross. Among the 68 unigenes identified in the grape genome within the QTL interval, a cluster of four Myb-type genes was selected on the basis of physiological evidence (VvMybA1, VvMybA2, VvMybA3, and VvMybA4). From a core collection of natural resources (141 individuals), 32 polymorphisms revealed significant association, and extended linkage disequilibrium was observed. Using a multivariate regression method, we demonstrated that five polymorphisms in VvMybA genes except VvMybA4 (one retrotransposon, three single nucleotide polymorphisms and one 2-bp insertion/deletion) accounted for 84% of the observed variation. All these polymorphisms led to either structural changes in the MYB proteins or differences in the VvMybAs promoters. We concluded that

  1. Prediction of quantitative phenotypes based on genetic networks: a case study in yeast sporulation

    Directory of Open Access Journals (Sweden)

    Shen Li

    2010-09-01

    Full Text Available Abstract Background An exciting application of genetic network is to predict phenotypic consequences for environmental cues or genetic perturbations. However, de novo prediction for quantitative phenotypes based on network topology is always a challenging task. Results Using yeast sporulation as a model system, we have assembled a genetic network from literature and exploited Boolean network to predict sporulation efficiency change upon deleting individual genes. We observe that predictions based on the curated network correlate well with the experimentally measured values. In addition, computational analysis reveals the robustness and hysteresis of the yeast sporulation network and uncovers several patterns of sporulation efficiency change caused by double gene deletion. These discoveries may guide future investigation of underlying mechanisms. We have also shown that a hybridized genetic network reconstructed from both temporal microarray data and literature is able to achieve a satisfactory prediction accuracy of the same quantitative phenotypes. Conclusions This case study illustrates the value of predicting quantitative phenotypes based on genetic network and provides a generic approach.

  2. Quantitative Genetic Analysis of Biomass and Wood Chemistry of Populus under Different Nitrogen Levels

    Energy Technology Data Exchange (ETDEWEB)

    Novaes, E.; Osorio, L.; Drost, D. R.; Miles, B. L.; Boaventura-Novaes, C. R. D.; Benedict, C.; Dervinis, C.; Yu, Q.; Sykes, R.; Davis, M.; Martin, T. A.; Peter, G. F.; Kirst, M.

    2009-01-01

    The genetic control of carbon allocation and partitioning in woody perennial plants is poorly understood despite its importance for carbon sequestration, biofuels and other wood-based industries. It is also unclear how environmental cues, such as nitrogen availability, impact the genes that regulate growth, biomass allocation and wood composition in trees. We phenotyped 396 clonally replicated genotypes of an interspecific pseudo-backcross pedigree of Populus for wood composition and biomass traits in above- and below-ground organs. The loci that regulate growth, carbon allocation and partitioning under two nitrogen conditions were identified, defining the contribution of environmental cues to their genetic control. Sixty-three quantitative trait loci were identified for the 20 traits analyzed. The majority of quantitative trait loci are specific to one of the two nitrogen treatments, demonstrating significant nitrogen-dependent genetic control. A highly significant genetic correlation was observed between plant growth and lignin/cellulose composition, and quantitative trait loci co-localization identified the genomic position of potential pleiotropic regulators. Pleiotropic loci linking higher growth rates to wood with less lignin are excellent targets to engineer tree germplasm improved for pulp, paper and cellulosic ethanol production. The causative genes are being identified with a genetical genomics approach.

  3. Investigation of the genetic association between quantitative measures of psychosis and schizophrenia

    DEFF Research Database (Denmark)

    Derks, Eske M; Vorstman, Jacob A S; Ripke, Stephan

    2012-01-01

    The presence of subclinical levels of psychosis in the general population may imply that schizophrenia is the extreme expression of more or less continuously distributed traits in the population. In a previous study, we identified five quantitative measures of schizophrenia (positive, negative......, disorganisation, mania, and depression scores). The aim of this study is to examine the association between a direct measure of genetic risk of schizophrenia and the five quantitative measures of psychosis. Estimates of the log of the odds ratios of case/control allelic association tests were obtained from...... the Psychiatric GWAS Consortium (PGC) (minus our sample) which included genome-wide genotype data of 8,690 schizophrenia cases and 11,831 controls. These data were used to calculate genetic risk scores in 314 schizophrenia cases and 148 controls from the Netherlands for whom genotype data and quantitative symptom...

  4. Spontaneous mutations and the origin and maintenance of quantitative genetic variation.

    Science.gov (United States)

    Huang, Wen; Lyman, Richard F; Lyman, Rachel A; Carbone, Mary Anna; Harbison, Susan T; Magwire, Michael M; Mackay, Trudy Fc

    2016-05-23

    Mutation and natural selection shape the genetic variation in natural populations. Here, we directly estimated the spontaneous mutation rate by sequencing new Drosophila mutation accumulation lines maintained with minimal natural selection. We inferred strong stabilizing natural selection on quantitative traits because genetic variation among wild-derived inbred lines was much lower than predicted from a neutral model and the mutational effects were much larger than allelic effects of standing polymorphisms. Stabilizing selection could act directly on the traits, or indirectly from pleiotropic effects on fitness. However, our data are not consistent with simple models of mutation-stabilizing selection balance; therefore, further empirical work is needed to assess the balance of evolutionary forces responsible for quantitative genetic variation.

  5. The quantitative basis of the Arabidopsis innate immune system to endemic pathogens depends on pathogen genetics

    DEFF Research Database (Denmark)

    Corwin, Jason A; Copeland, Daniel; Feusier, Julie

    2016-01-01

    the Arabidopsis-Botrytis pathosystem to explore the quantitative genetic architecture underlying host innate immune system in a population of Arabidopsis thaliana. By infecting a diverse panel of Arabidopsis accessions with four phenotypically and genotypically distinct isolates of the fungal necrotroph B...... of pathogen genetic variation in analyzing host quantitative resistance. While known resistance genes, such as receptor-like kinases (RLKs) and nucleotide-binding site leucine-rich repeat proteins (NLRs), were found to be enriched among associated genes, they only account for a small fraction of the total......, including defense hormone signaling and ROS production, as well as novel processes, such as leaf development. Validation of single gene T-DNA knockouts in a Col-0 background demonstrate a high success rate (60%) when accounting for differences in environmental and Botrytis genetic variation. This study...

  6. The quantitative genetic basis of polyandry in the parasitoid wasp, Nasonia vitripennis.

    Science.gov (United States)

    Shuker, D M; Phillimore, A J; Burton-Chellew, M N; Hodge, S E; West, S A

    2007-02-01

    Understanding the evolution of female multiple mating (polyandry) is crucial for understanding sexual selection and sexual conflict. Despite this interest, little is known about its genetic basis or whether genetics influences the evolutionary origin or maintenance of polyandry. Here, we explore the quantitative genetic basis of polyandry in the parasitoid wasp Nasonia vitripennis, a species in which female re-mating has been observed to evolve in the laboratory. We performed a quantitative genetic experiment on a recently collected population of wasps. We found low heritabilities of female polyandry (re-mating frequency after 18 h), low heritability of courtship duration and a slightly higher heritability of copulation duration. However, the coefficients of additive genetic variance for these traits were all reasonably large (CV(A)>7.0). We also found considerable dam effects for all traits after controlling for common environment, suggesting either dominance or maternal effects. Our work adds to the evidence that nonadditive genetic effects may influence the evolution of mating behaviour in Nasonia vitripennis, and the evolution of polyandry more generally.

  7. Quantitative genetics of shape in cricket wings: developmental integration in a functional structure.

    Science.gov (United States)

    Klingenberg, Christian Peter; Debat, Vincent; Roff, Derek A

    2010-10-01

    The role of developmental and genetic integration for evolution is contentious. One hypothesis states that integration acts as a constraint on evolution, whereas an alternative is that developmental and genetic systems evolve to match the functional modularity of organisms. This study examined a morphological structure, the cricket wing, where developmental and functional modules are discordant, making it possible to distinguish the two alternatives. Wing shape was characterized with geometric morphometrics, quantitative genetic information was extracted using a full-sibling breeding design, and patterns of developmental integration were inferred from fluctuating asymmetry of wing shape. The patterns of genetic, phenotypic, and developmental integration were clearly similar, but not identical. Heritabilities for different shape variables varied widely, but no shape variables were devoid of genetic variation. Simulated selection for specific shape changes produced predicted responses with marked deflections due to the genetic covariance structure. Three hypotheses of modularity according to the wing structures involved in sound production were inconsistent with the genetic, phenotypic, or developmental covariance structure. Instead, there appears to be strong integration throughout the wing. The hypothesis that genetic and developmental integration evolve to match functional modularity can therefore be rejected for this example.

  8. The quantitative basis of the Arabidopsis innate immune system to endemic pathogens depends on pathogen genetics

    DEFF Research Database (Denmark)

    Corwin, Jason A; Copeland, Daniel; Feusier, Julie;

    2016-01-01

    The most established model of the eukaryotic innate immune system is derived from examples of large effect monogenic quantitative resistance to pathogens. However, many host-pathogen interactions involve many genes of small to medium effect and exhibit quantitative resistance. We used...... the Arabidopsis-Botrytis pathosystem to explore the quantitative genetic architecture underlying host innate immune system in a population of Arabidopsis thaliana. By infecting a diverse panel of Arabidopsis accessions with four phenotypically and genotypically distinct isolates of the fungal necrotroph B....... cinerea, we identified a total of 2,982 genes associated with quantitative resistance using lesion area and 3,354 genes associated with camalexin production as measures of the interaction. Most genes were associated with resistance to a specific Botrytis isolate, which demonstrates the influence...

  9. Are Genetically Informed Designs Genetically Informative?: Comment on McGue, Elkins, Walden, and Iacono (2005) and Quantitative Behavioral Genetics

    Science.gov (United States)

    Partridge, Ty

    2005-01-01

    M. McGue, I. Elkins, B. Walden, and W. G. Iacono (see record 2005-14938-011) presented the findings from a twin study examining the relative contributions of genetic and environmental factors to the developmental trajectories of parent-adolescent relationships. From a behavioral genetics perspective, this study is well conceptualized, is well…

  10. Quantitative Genetics Identifies Cryptic Genetic Variation Involved in the Paternal Regulation of Seed Development

    NARCIS (Netherlands)

    Pires, Nuno D.; Bemer, Marian; Müller, Lena M.; Baroux, Célia; Spillane, Charles; Grossniklaus, Ueli

    2016-01-01

    Embryonic development requires a correct balancing of maternal and paternal genetic information. This balance is mediated by genomic imprinting, an epigenetic mechanism that leads to parent-of-origin-dependent gene expression. The parental conflict (or kinship) theory proposes that imprinting can

  11. Quantitative Genetics Identifies Cryptic Genetic Variation Involved in the Paternal Regulation of Seed Development.

    Science.gov (United States)

    Pires, Nuno D; Bemer, Marian; Müller, Lena M; Baroux, Célia; Spillane, Charles; Grossniklaus, Ueli

    2016-01-01

    Embryonic development requires a correct balancing of maternal and paternal genetic information. This balance is mediated by genomic imprinting, an epigenetic mechanism that leads to parent-of-origin-dependent gene expression. The parental conflict (or kinship) theory proposes that imprinting can evolve due to a conflict between maternal and paternal alleles over resource allocation during seed development. One assumption of this theory is that paternal alleles can regulate seed growth; however, paternal effects on seed size are often very low or non-existent. We demonstrate that there is a pool of cryptic genetic variation in the paternal control of Arabidopsis thaliana seed development. Such cryptic variation can be exposed in seeds that maternally inherit a medea mutation, suggesting that MEA acts as a maternal buffer of paternal effects. Genetic mapping using recombinant inbred lines, and a novel method for the mapping of parent-of-origin effects using whole-genome sequencing of segregant bulks, indicate that there are at least six loci with small, paternal effects on seed development. Together, our analyses reveal the existence of a pool of hidden genetic variation on the paternal control of seed development that is likely shaped by parental conflict.

  12. Quantitative Genetics Identifies Cryptic Genetic Variation Involved in the Paternal Regulation of Seed Development.

    Directory of Open Access Journals (Sweden)

    Nuno D Pires

    2016-01-01

    Full Text Available Embryonic development requires a correct balancing of maternal and paternal genetic information. This balance is mediated by genomic imprinting, an epigenetic mechanism that leads to parent-of-origin-dependent gene expression. The parental conflict (or kinship theory proposes that imprinting can evolve due to a conflict between maternal and paternal alleles over resource allocation during seed development. One assumption of this theory is that paternal alleles can regulate seed growth; however, paternal effects on seed size are often very low or non-existent. We demonstrate that there is a pool of cryptic genetic variation in the paternal control of Arabidopsis thaliana seed development. Such cryptic variation can be exposed in seeds that maternally inherit a medea mutation, suggesting that MEA acts as a maternal buffer of paternal effects. Genetic mapping using recombinant inbred lines, and a novel method for the mapping of parent-of-origin effects using whole-genome sequencing of segregant bulks, indicate that there are at least six loci with small, paternal effects on seed development. Together, our analyses reveal the existence of a pool of hidden genetic variation on the paternal control of seed development that is likely shaped by parental conflict.

  13. Quantitative Genetics Identifies Cryptic Genetic Variation Involved in the Paternal Regulation of Seed Development.

    Directory of Open Access Journals (Sweden)

    Nuno D Pires

    2016-01-01

    Full Text Available Embryonic development requires a correct balancing of maternal and paternal genetic information. This balance is mediated by genomic imprinting, an epigenetic mechanism that leads to parent-of-origin-dependent gene expression. The parental conflict (or kinship theory proposes that imprinting can evolve due to a conflict between maternal and paternal alleles over resource allocation during seed development. One assumption of this theory is that paternal alleles can regulate seed growth; however, paternal effects on seed size are often very low or non-existent. We demonstrate that there is a pool of cryptic genetic variation in the paternal control of Arabidopsis thaliana seed development. Such cryptic variation can be exposed in seeds that maternally inherit a medea mutation, suggesting that MEA acts as a maternal buffer of paternal effects. Genetic mapping using recombinant inbred lines, and a novel method for the mapping of parent-of-origin effects using whole-genome sequencing of segregant bulks, indicate that there are at least six loci with small, paternal effects on seed development. Together, our analyses reveal the existence of a pool of hidden genetic variation on the paternal control of seed development that is likely shaped by parental conflict.

  14. The quantitative genetics of indirect genetic effects: a selective review of modelling issues : Review

    NARCIS (Netherlands)

    Bijma, P.

    2014-01-01

    Indirect genetic effects (IGE) occur when the genotype of an individual affects the phenotypic trait value of another conspecific individual. IGEs can have profound effects on both the magnitude and the direction of response to selection. Models of inheritance and response to selection in traits sub

  15. The quantitative genetic architecture of the bold-shy continuum in zebrafish, Danio rerio.

    Directory of Open Access Journals (Sweden)

    Mary E Oswald

    Full Text Available In studies of consistent individual differences (personality along the bold-shy continuum, a pattern of behavioral correlations frequently emerges: individuals towards the bold end of the continuum are more likely to utilize risky habitat, approach potential predators, and feed under risky conditions. Here, we address the hypothesis that observed phenotypic correlations among component behaviors of the bold-shy continuum are a result of underlying genetic correlations (quantitative genetic architecture. We used a replicated three-generation pedigree of zebrafish (Danio rerio to study three putative components of the bold-shy continuum: horizontal position, swim level, and feeding latency. We detected significant narrow-sense heritabilities as well as significant genetic and phenotypic correlations among all three behaviors, such that fish selected for swimming at the front of the tank swam closer to the observer, swam higher in the water column, and fed more quickly than fish selected for swimming at the back of the tank. Further, the lines varied in their initial open field behavior (swim level and activity level. The quantitative genetic architecture of the bold-shy continuum indicates that the multivariate behavioral phenotype characteristic of a "bold" personality type may be a result of correlated evolution via underlying genetic correlations.

  16. A consensus map of rapeseed (Brassica napus L.) based on diversity array technology markers: applications in genetic dissection of qualitative and quantitative traits

    National Research Council Canada - National Science Library

    Raman, Harsh; Raman, Rosy; Kilian, Andrzej; Detering, Frank; Long, Yan; Edwards, David; Parkin, Isobel A P; Sharpe, Andrew G; Nelson, Matthew N; Larkan, Nick; Zou, Jun; Meng, Jinling; Aslam, M Naveed; Batley, Jacqueline; Cowling, Wallace A; Lydiate, Derek

    2013-01-01

    Dense consensus genetic maps based on high-throughput genotyping platforms are valuable for making genetic gains in Brassica napus through quantitative trait locus identification, efficient predictive...

  17. Quantitative autistic trait measurements index background genetic risk for ASD in Hispanic families.

    Science.gov (United States)

    Page, Joshua; Constantino, John Nicholas; Zambrana, Katherine; Martin, Eden; Tunc, Ilker; Zhang, Yi; Abbacchi, Anna; Messinger, Daniel

    2016-01-01

    Recent studies have indicated that quantitative autistic traits (QATs) of parents reflect inherited liabilities that may index background genetic risk for clinical autism spectrum disorder (ASD) in their offspring. Moreover, preferential mating for QATs has been observed as a potential factor in concentrating autistic liabilities in some families across generations. Heretofore, intergenerational studies of QATs have focused almost exclusively on Caucasian populations-the present study explored these phenomena in a well-characterized Hispanic population. The present study examined QAT scores in siblings and parents of 83 Hispanic probands meeting research diagnostic criteria for ASD, and 64 non-ASD controls, using the Social Responsiveness Scale-2 (SRS-2). Ancestry of the probands was characterized by genotype, using information from 541,929 single nucleotide polymorphic markers. In families of Hispanic children with an ASD diagnosis, the pattern of quantitative trait correlations observed between ASD-affected children and their first-degree relatives (ICCs on the order of 0.20), between unaffected first-degree relatives in ASD-affected families (sibling/mother ICC = 0.36; sibling/father ICC = 0.53), and between spouses (mother/father ICC = 0.48) were in keeping with the influence of transmitted background genetic risk and strong preferential mating for variation in quantitative autistic trait burden. Results from analysis of ancestry-informative genetic markers among probands in this sample were consistent with that from other Hispanic populations. Quantitative autistic traits represent measurable indices of inherited liability to ASD in Hispanic families. The accumulation of autistic traits occurs within generations, between spouses, and across generations, among Hispanic families affected by ASD. The occurrence of preferential mating for QATs-the magnitude of which may vary across cultures-constitutes a mechanism by which background genetic liability

  18. Quantitative Chemical-Genetic Interaction Map Connects Gene Alterations to Drug Responses | Office of Cancer Genomics

    Science.gov (United States)

    In a recent Cancer Discovery report, CTD2 researchers at the University of California in San Francisco developed a new quantitative chemical-genetic interaction mapping approach to evaluate drug sensitivity or resistance in isogenic cell lines. Performing a high-throughput screen with isogenic cell lines allowed the researchers to explore the impact of a panel of emerging and established drugs on cells overexpressing a single cancer-associated gene in isolation.

  19. Genetic diversity among exotic cotton accessions as for qualitative and quantitative traits.

    Science.gov (United States)

    de Carvalho, L P; Farias, F J C; Rodrigues, J I S; Suassuna, N D; Teodoro, P E

    2017-02-08

    Studying genetic diversity among a group of genotypes is important in genetic breeding because identifying hybrid combinations of greater heterotic effect also increases the chance of obtaining plants with favorable allele combinations in an intra-population selection program. The objective of this study was to compare different types of long and extra-long staple cotton and their genetic diversity in relation to the fiber traits and some agronomic traits in order to grant breeding programs. Diversity analysis among 29 cotton accessions based on qualitative and quantitative traits and joint including qualitative and quantitative traits was performed. Analysis based on qualitative and quantitative traits and joint met the accessions in three, two, and three groups, respectively. The cross between genotypes Giza 59 and Pima unknown was the most promising to generate segregating populations, comprising simultaneously resistance (based on molecular markers) to blue disease and bacterial blight, partial resistance to root-knot nematode, smaller size, in addition to good fiber characteristics. These populations can be used in recurrent selection programs as donors of alleles for development of long-staple cotton genotypes.

  20. Uncovering the genetic signature of quantitative trait evolution with replicated time series data.

    Science.gov (United States)

    Franssen, S U; Kofler, R; Schlötterer, C

    2017-01-01

    The genetic architecture of adaptation in natural populations has not yet been resolved: it is not clear to what extent the spread of beneficial mutations (selective sweeps) or the response of many quantitative trait loci drive adaptation to environmental changes. Although much attention has been given to the genomic footprint of selective sweeps, the importance of selection on quantitative traits is still not well studied, as the associated genomic signature is extremely difficult to detect. We propose 'Evolve and Resequence' as a promising tool, to study polygenic adaptation of quantitative traits in evolving populations. Simulating replicated time series data we show that adaptation to a new intermediate trait optimum has three characteristic phases that are reflected on the genomic level: (1) directional frequency changes towards the new trait optimum, (2) plateauing of allele frequencies when the new trait optimum has been reached and (3) subsequent divergence between replicated trajectories ultimately leading to the loss or fixation of alleles while the trait value does not change. We explore these 3 phase characteristics for relevant population genetic parameters to provide expectations for various experimental evolution designs. Remarkably, over a broad range of parameters the trajectories of selected alleles display a pattern across replicates, which differs both from neutrality and directional selection. We conclude that replicated time series data from experimental evolution studies provide a promising framework to study polygenic adaptation from whole-genome population genetics data.

  1. Multilevel selection 1: Quantitative genetics of inheritance and response to selection.

    Science.gov (United States)

    Bijma, Piter; Muir, William M; Van Arendonk, Johan A M

    2007-01-01

    Interaction among individuals is universal, both in animals and in plants, and substantially affects evolution of natural populations and responses to artificial selection in agriculture. Although quantitative genetics has successfully been applied to many traits, it does not provide a general theory accounting for interaction among individuals and selection acting on multiple levels. Consequently, current quantitative genetic theory fails to explain why some traits do not respond to selection among individuals, but respond greatly to selection among groups. Understanding the full impacts of heritable interactions on the outcomes of selection requires a quantitative genetic framework including all levels of selection and relatedness. Here we present such a framework and provide expressions for the response to selection. Results show that interaction among individuals may create substantial heritable variation, which is hidden to classical analyses. Selection acting on higher levels of organization captures this hidden variation and therefore always yields positive response, whereas individual selection may yield response in the opposite direction. Our work provides testable predictions of response to multilevel selection and reduces to classical theory in the absence of interaction. Statistical methodology provided elsewhere enables empirical application of our work to both natural and domestic populations.

  2. Detecting Genetic Interactions for Quantitative Traits Using m-Spacing Entropy Measure

    Directory of Open Access Journals (Sweden)

    Jaeyong Yee

    2015-01-01

    Full Text Available A number of statistical methods for detecting gene-gene interactions have been developed in genetic association studies with binary traits. However, many phenotype measures are intrinsically quantitative and categorizing continuous traits may not always be straightforward and meaningful. Association of gene-gene interactions with an observed distribution of such phenotypes needs to be investigated directly without categorization. Information gain based on entropy measure has previously been successful in identifying genetic associations with binary traits. We extend the usefulness of this information gain by proposing a nonparametric evaluation method of conditional entropy of a quantitative phenotype associated with a given genotype. Hence, the information gain can be obtained for any phenotype distribution. Because any functional form, such as Gaussian, is not assumed for the entire distribution of a trait or a given genotype, this method is expected to be robust enough to be applied to any phenotypic association data. Here, we show its use to successfully identify the main effect, as well as the genetic interactions, associated with a quantitative trait.

  3. EVOLUTION AND EXTINCTION IN A CHANGING ENVIRONMENT: A QUANTITATIVE-GENETIC ANALYSIS.

    Science.gov (United States)

    Bürger, Reinhard; Lynch, Michael

    1995-02-01

    Because of the ubiquity of genetic variation for quantitative traits, virtually all populations have some capacity to respond evolutionarily to selective challenges. However, natural selection imposes demographic costs on a population, and if these costs are sufficiently large, the likelihood of extinction will be high. We consider how the mean time to extinction depends on selective pressures (rate and stochasticity of environmental change, and strength of selection), population parameters (carrying capacity, and reproductive capacity), and genetics (rate of polygenic mutation). We assume that in a randomly mating, finite population subject to density-dependent population growth, individual fitness is determined by a single quantitative-genetic character under Gaussian stabilizing selection with the optimum phenotype exhibiting directional change, or random fluctuations, or both. The quantitative trait is determined by a finite number of freely recombining, mutationally equivalent, additive loci. The dynamics of evolution and extinction are investigated, assuming that the population is initially under mutation-selection-drift balance. Under this model, in a directionally changing environment, the mean phenotype lags behind the optimum, but on the average evolves parallel to it. The magnitude of the lag determines the vulnerability to extinction. In finite populations, stochastic variation in the genetic variance can be quite pronounced, and bottlenecks in the genetic variance temporarily can impair the population's adaptive capacity enough to cause extinction when it would otherwise be unlikely in an effectively infinite population. We find that maximum sustainable rates of evolution or, equivalently, critical rates of environmental change, may be considerably less than 10% of a phenotypic standard deviation per generation. © 1995 The Society for the Study of Evolution.

  4. A bivariate quantitative genetic model for a linear Gaussian trait and a survival trait

    Directory of Open Access Journals (Sweden)

    Damgaard Lars

    2005-12-01

    Full Text Available Abstract With the increasing use of survival models in animal breeding to address the genetic aspects of mainly longevity of livestock but also disease traits, the need for methods to infer genetic correlations and to do multivariate evaluations of survival traits and other types of traits has become increasingly important. In this study we derived and implemented a bivariate quantitative genetic model for a linear Gaussian and a survival trait that are genetically and environmentally correlated. For the survival trait, we considered the Weibull log-normal animal frailty model. A Bayesian approach using Gibbs sampling was adopted. Model parameters were inferred from their marginal posterior distributions. The required fully conditional posterior distributions were derived and issues on implementation are discussed. The twoWeibull baseline parameters were updated jointly using a Metropolis-Hastingstep. The remaining model parameters with non-normalized fully conditional distributions were updated univariately using adaptive rejection sampling. Simulation results showed that the estimated marginal posterior distributions covered well and placed high density to the true parameter values used in the simulation of data. In conclusion, the proposed method allows inferring additive genetic and environmental correlations, and doing multivariate genetic evaluation of a linear Gaussian trait and a survival trait.

  5. A bivariate quantitative genetic model for a linear Gaussian trait and a survival trait.

    Science.gov (United States)

    Damgaard, Lars Holm; Korsgaard, Inge Riis

    2006-01-01

    With the increasing use of survival models in animal breeding to address the genetic aspects of mainly longevity of livestock but also disease traits, the need for methods to infer genetic correlations and to do multivariate evaluations of survival traits and other types of traits has become increasingly important. In this study we derived and implemented a bivariate quantitative genetic model for a linear Gaussian and a survival trait that are genetically and environmentally correlated. For the survival trait, we considered the Weibull log-normal animal frailty model. A Bayesian approach using Gibbs sampling was adopted. Model parameters were inferred from their marginal posterior distributions. The required fully conditional posterior distributions were derived and issues on implementation are discussed. The two Weibull baseline parameters were updated jointly using a Metropolis-Hasting step. The remaining model parameters with non-normalized fully conditional distributions were updated univariately using adaptive rejection sampling. Simulation results showed that the estimated marginal posterior distributions covered well and placed high density to the true parameter values used in the simulation of data. In conclusion, the proposed method allows inferring additive genetic and environmental correlations, and doing multivariate genetic evaluation of a linear Gaussian trait and a survival trait.

  6. Modeling development and quantitative trait mapping reveal independent genetic modules for leaf size and shape.

    Science.gov (United States)

    Baker, Robert L; Leong, Wen Fung; Brock, Marcus T; Markelz, R J Cody; Covington, Michael F; Devisetty, Upendra K; Edwards, Christine E; Maloof, Julin; Welch, Stephen; Weinig, Cynthia

    2015-10-01

    Improved predictions of fitness and yield may be obtained by characterizing the genetic controls and environmental dependencies of organismal ontogeny. Elucidating the shape of growth curves may reveal novel genetic controls that single-time-point (STP) analyses do not because, in theory, infinite numbers of growth curves can result in the same final measurement. We measured leaf lengths and widths in Brassica rapa recombinant inbred lines (RILs) throughout ontogeny. We modeled leaf growth and allometry as function valued traits (FVT), and examined genetic correlations between these traits and aspects of phenology, physiology, circadian rhythms and fitness. We used RNA-seq to construct a SNP linkage map and mapped trait quantitative trait loci (QTL). We found genetic trade-offs between leaf size and growth rate FVT and uncovered differences in genotypic and QTL correlations involving FVT vs STPs. We identified leaf shape (allometry) as a genetic module independent of length and width and identified selection on FVT parameters of development. Leaf shape is associated with venation features that affect desiccation resistance. The genetic independence of leaf shape from other leaf traits may therefore enable crop optimization in leaf shape without negative effects on traits such as size, growth rate, duration or gas exchange.

  7. WOMBAT: a tool for mixed model analyses in quantitative genetics by restricted maximum likelihood (REML).

    Science.gov (United States)

    Meyer, Karin

    2007-11-01

    WOMBAT is a software package for quantitative genetic analyses of continuous traits, fitting a linear, mixed model; estimates of covariance components and the resulting genetic parameters are obtained by restricted maximum likelihood. A wide range of models, comprising numerous traits, multiple fixed and random effects, selected genetic covariance structures, random regression models and reduced rank estimation are accommodated. WOMBAT employs up-to-date numerical and computational methods. Together with the use of efficient compilers, this generates fast executable programs, suitable for large scale analyses. Use of WOMBAT is illustrated for a bivariate analysis. The package consists of the executable program, available for LINUX and WINDOWS environments, manual and a set of worked example, and can be downloaded free of charge from (http://agbu. une.edu.au/~kmeyer/wombat.html).

  8. Genetic algorithm based image binarization approach and its quantitative evaluation via pooling

    Science.gov (United States)

    Hu, Huijun; Liu, Ya; Liu, Maofu

    2015-12-01

    The binarized image is very critical to image visual feature extraction, especially shape feature, and the image binarization approaches have been attracted more attentions in the past decades. In this paper, the genetic algorithm is applied to optimizing the binarization threshold of the strip steel defect image. In order to evaluate our genetic algorithm based image binarization approach in terms of quantity, we propose the novel pooling based evaluation metric, motivated by information retrieval community, to avoid the lack of ground-truth binary image. Experimental results show that our genetic algorithm based binarization approach is effective and efficiency in the strip steel defect images and our quantitative evaluation metric on image binarization via pooling is also feasible and practical.

  9. Validation of PCR methods for quantitation of genetically modified plants in food.

    Science.gov (United States)

    Hübner, P; Waiblinger, H U; Pietsch, K; Brodmann, P

    2001-01-01

    For enforcement of the recently introduced labeling threshold for genetically modified organisms (GMOs) in food ingredients, quantitative detection methods such as quantitative competitive (QC-PCR) and real-time PCR are applied by official food control laboratories. The experiences of 3 European food control laboratories in validating such methods were compared to describe realistic performance characteristics of quantitative PCR detection methods. The limit of quantitation (LOQ) of GMO-specific, real-time PCR was experimentally determined to reach 30-50 target molecules, which is close to theoretical prediction. Starting PCR with 200 ng genomic plant DNA, the LOQ depends primarily on the genome size of the target plant and ranges from 0.02% for rice to 0.7% for wheat. The precision of quantitative PCR detection methods, expressed as relative standard deviation (RSD), varied from 10 to 30%. Using Bt176 corn containing test samples and applying Bt176 specific QC-PCR, mean values deviated from true values by -7to 18%, with an average of 2+/-10%. Ruggedness of real-time PCR detection methods was assessed in an interlaboratory study analyzing commercial, homogeneous food samples. Roundup Ready soybean DNA contents were determined in the range of 0.3 to 36%, relative to soybean DNA, with RSDs of about 25%. Taking the precision of quantitative PCR detection methods into account, suitable sample plans and sample sizes for GMO analysis are suggested. Because quantitative GMO detection methods measure GMO contents of samples in relation to reference material (calibrants), high priority must be given to international agreements and standardization on certified reference materials.

  10. A Novel Approach for Discovery Quantitative Fuzzy Multi-Level Association Rules Mining Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Saad M. Darwish

    2016-10-01

    Full Text Available Quantitative multilevel association rules mining is a central field to realize motivating associations among data components with multiple levels abstractions. The problem of expanding procedures to handle quantitative data has been attracting the attention of many researchers. The algorithms regularly discretize the attribute fields into sharp intervals, and then implement uncomplicated algorithms established for Boolean attributes. Fuzzy association rules mining approaches are intended to defeat such shortcomings based on the fuzzy set theory. Furthermore, most of the current algorithms in the direction of this topic are based on very tiring search methods to govern the ideal support and confidence thresholds that agonize from risky computational cost in searching association rules. To accelerate quantitative multilevel association rules searching and escape the extreme computation, in this paper, we propose a new genetic-based method with significant innovation to determine threshold values for frequent item sets. In this approach, a sophisticated coding method is settled, and the qualified confidence is employed as the fitness function. With the genetic algorithm, a comprehensive search can be achieved and system automation is applied, because our model does not need the user-specified threshold of minimum support. Experiment results indicate that the recommended algorithm can powerfully generate non-redundant fuzzy multilevel association rules.

  11. The Current and Future Use of Ridge Regression for Prediction in Quantitative Genetics

    Directory of Open Access Journals (Sweden)

    Ronald de Vlaming

    2015-01-01

    Full Text Available In recent years, there has been a considerable amount of research on the use of regularization methods for inference and prediction in quantitative genetics. Such research mostly focuses on selection of markers and shrinkage of their effects. In this review paper, the use of ridge regression for prediction in quantitative genetics using single-nucleotide polymorphism data is discussed. In particular, we consider (i the theoretical foundations of ridge regression, (ii its link to commonly used methods in animal breeding, (iii the computational feasibility, and (iv the scope for constructing prediction models with nonlinear effects (e.g., dominance and epistasis. Based on a simulation study we gauge the current and future potential of ridge regression for prediction of human traits using genome-wide SNP data. We conclude that, for outcomes with a relatively simple genetic architecture, given current sample sizes in most cohorts (i.e., N<10,000 the predictive accuracy of ridge regression is slightly higher than the classical genome-wide association study approach of repeated simple regression (i.e., one regression per SNP. However, both capture only a small proportion of the heritability. Nevertheless, we find evidence that for large-scale initiatives, such as biobanks, sample sizes can be achieved where ridge regression compared to the classical approach improves predictive accuracy substantially.

  12. The Current and Future Use of Ridge Regression for Prediction in Quantitative Genetics.

    Science.gov (United States)

    de Vlaming, Ronald; Groenen, Patrick J F

    2015-01-01

    In recent years, there has been a considerable amount of research on the use of regularization methods for inference and prediction in quantitative genetics. Such research mostly focuses on selection of markers and shrinkage of their effects. In this review paper, the use of ridge regression for prediction in quantitative genetics using single-nucleotide polymorphism data is discussed. In particular, we consider (i) the theoretical foundations of ridge regression, (ii) its link to commonly used methods in animal breeding, (iii) the computational feasibility, and (iv) the scope for constructing prediction models with nonlinear effects (e.g., dominance and epistasis). Based on a simulation study we gauge the current and future potential of ridge regression for prediction of human traits using genome-wide SNP data. We conclude that, for outcomes with a relatively simple genetic architecture, given current sample sizes in most cohorts (i.e., N < 10,000) the predictive accuracy of ridge regression is slightly higher than the classical genome-wide association study approach of repeated simple regression (i.e., one regression per SNP). However, both capture only a small proportion of the heritability. Nevertheless, we find evidence that for large-scale initiatives, such as biobanks, sample sizes can be achieved where ridge regression compared to the classical approach improves predictive accuracy substantially.

  13. 59. Cold Spring Harbor symposium on quantitative biology: Molecular genetics of cancer

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Investigation of the mechanistic aspects of cancer has its roots in the studies on tumor viruses and their effects on cell proliferation, function, and growth. This outstanding progress was well documented in previous Cold Spring Harbor Symposia on Quantitative Biology. In the early to mid 1980s, progress on the development of chromosome mapping strategies and the accumulation of DNA probes that identified polymorphisms, encouraged by the international Human Genome Project, enabled the identification of other genes that contributed to familial inheritance of high susceptibility to specific cancers. This approach was very successful and led to a degree of optimism that one aspect of cancer, the multistep genetic process from early neoplasia to metastatic tumors, was beginning to be understood. It therefore seemed appropriate that the 59th Symposium on Quantitative Biology focus attention on the Molecular Genetics of Cancer. The concept was to combine the exciting progress on the identification of new genetic alterations in human tumor cells with studies on the function of the cancer gene products and how they go awry in tumor cells.

  14. Quantitative analysis of terahertz spectra for illicit drugs using adaptive-range micro-genetic algorithm

    Science.gov (United States)

    Chen, Yi; Ma, Yong; Lu, Zheng; Peng, Bei; Chen, Qin

    2011-08-01

    In the field of anti-illicit drug applications, many suspicious mixture samples might consist of various drug components—for example, a mixture of methamphetamine, heroin, and amoxicillin—which makes spectral identification very difficult. A terahertz spectroscopic quantitative analysis method using an adaptive range micro-genetic algorithm with a variable internal population (ARVIPɛμGA) has been proposed. Five mixture cases are discussed using ARVIPɛμGA driven quantitative terahertz spectroscopic analysis in this paper. The devised simulation results show agreement with the previous experimental results, which suggested that the proposed technique has potential applications for terahertz spectral identifications of drug mixture components. The results show agreement with the results obtained using other experimental and numerical techniques.

  15. Quantitative estimation of activity and quality for collections of functional genetic elements.

    Science.gov (United States)

    Mutalik, Vivek K; Guimaraes, Joao C; Cambray, Guillaume; Mai, Quynh-Anh; Christoffersen, Marc Juul; Martin, Lance; Yu, Ayumi; Lam, Colin; Rodriguez, Cesar; Bennett, Gaymon; Keasling, Jay D; Endy, Drew; Arkin, Adam P

    2013-04-01

    The practice of engineering biology now depends on the ad hoc reuse of genetic elements whose precise activities vary across changing contexts. Methods are lacking for researchers to affordably coordinate the quantification and analysis of part performance across varied environments, as needed to identify, evaluate and improve problematic part types. We developed an easy-to-use analysis of variance (ANOVA) framework for quantifying the performance of genetic elements. For proof of concept, we assembled and analyzed combinations of prokaryotic transcription and translation initiation elements in Escherichia coli. We determined how estimation of part activity relates to the number of unique element combinations tested, and we show how to estimate expected ensemble-wide part activity from just one or two measurements. We propose a new statistic, biomolecular part 'quality', for tracking quantitative variation in part performance across changing contexts.

  16. Genes and quantitative genetic variation involved with senescence in cells, organs and the whole plant

    Directory of Open Access Journals (Sweden)

    Benoit ePujol

    2015-02-01

    Full Text Available Senescence, the deterioration of morphological, physiological and reproductive functions with age that ends with the death of the organism, was widely studied in plants. Genes were identified that are linked to the deterioration of cells, organs and the whole plant. It is however unclear whether those genes are the source of age dependent deterioration or get activated to regulate such deterioration. Furthermore, it is also unclear whether such genes are active as a direct consequence of age or because they are specifically involved in some developmental stages. At the individual level, it is the relationship between quantitative genetic variation and age that can be used to detect the genetic signature of senescence. Surprisingly, the latter approach was only scarcely applied to plants. This may be the consequence of the demanding requirements for such approaches and/or the fact that most research interest was directed towards plants that avoid senescence. Here, I review those aspects in turn and call for an integrative genetic theory of senescence in plants. Such conceptual development would have implications for the management of plant genetic resources and generate progress on fundamental questions raised by ageing research.

  17. Quantitative genetics of functional characters in Drosophila melanogaster populations subjected to laboratory selection

    Indian Academy of Sciences (India)

    Henrique Teotónio; Margarida Matos; Michael R. Rose

    2004-12-01

    What are the genetics of phenotypes other than fitness, in outbred populations? To answer this question, the quantitative-genetic basis of divergence was characterized for outbred Drosophila melanogaster populations that had previously undergone selection to enhance characters related to fitness. Line-cross analysis using first-generation and second-generation hybrids from reciprocal crosses was conducted for two types of cross, each replicated fivefold. One type of cross was between representatives of the ancestral population, a set of five populations maintained for several hundred generations on a two-week discrete-generation life cycle and a set of five populations adapted to starvation stress. The other type of cross was between the same set of ancestral-representative populations and another set of five populations selected for accelerated development from egg to egg. Developmental time from egg to eclosion, starvation resistance, dry body weight and fecundity at day 14 from egg were fit to regression models estimating single-locus additive and dominant effects, maternal and paternal effects, and digenic additive and dominance epistatic effects. Additive genetic variation explained most of the differences between populations, with additive maternal and cytoplasmic effects also commonly found. Both within-locus and between-locus dominance effects were inferred in some cases, as well as one instance of additive epistasis. Some of these effects may have been caused by linkage disequilibrium. We conclude with a brief discussion concerning the relationship of the genetics of population differentiation to adaptation.

  18. Determination of Mycotoxin Production of Fusarium Species in Genetically Modified Maize Varieties by Quantitative Flow Immunocytometry

    Science.gov (United States)

    Bánáti, Hajnalka; Darvas, Béla; Fehér-Tóth, Szilvia; Czéh, Árpád; Székács, András

    2017-01-01

    Levels of mycotoxins produced by Fusarium species in genetically modified (GM) and near-isogenic maize, were determined using multi-analyte, microbead-based flow immunocytometry with fluorescence detection, for the parallel quantitative determination of fumonisin B1, deoxynivalenol, zearalenone, T-2, ochratoxin A, and aflatoxin B1. Maize varieties included the genetic events MON 810 and DAS-59122-7, and their isogenic counterparts. Cobs were artificially infested by F. verticillioides and F. proliferatum conidia, and contained F. graminearum and F. sporotrichoides natural infestation. The production of fumonisin B1 and deoxynivalenol was substantially affected in GM maize lines: F. verticillioides, with the addition of F. graminearum and F. sporotrichoides, produced significantly lower levels of fumonisin B1 (~300 mg·kg−1) in DAS-59122-7 than in its isogenic line (~580 mg·kg−1), while F. proliferatum, in addition to F. graminearum and F. sporotrichoides, produced significantly higher levels of deoxynivalenol (~18 mg·kg−1) in MON 810 than in its isogenic line (~5 mg·kg−1). Fusarium verticillioides, with F. graminearum and F. sporotrichoides, produced lower amounts of deoxynivalenol and zearalenone than F. proliferatum, with F. graminearum and F. sporotrichoides. T-2 toxin production remained unchanged when considering the maize variety. The results demonstrate the utility of the Fungi-Plex™ quantitative flow immunocytometry method, applied for the high throughput parallel determination of the target mycotoxins. PMID:28241411

  19. The genetic architecture of heterochronsy as a quantitative trait: lessons from a computational model.

    Science.gov (United States)

    Sun, Lidan; Sang, Mengmeng; Zheng, Chenfei; Wang, Dongyang; Shi, Hexin; Liu, Kaiyue; Guo, Yanfang; Cheng, Tangren; Zhang, Qixiang; Wu, Rongling

    2017-05-30

    Heterochrony is known as a developmental change in the timing or rate of ontogenetic events across phylogenetic lineages. It is a key concept synthesizing development into ecology and evolution to explore the mechanisms of how developmental processes impact on phenotypic novelties. A number of molecular experiments using contrasting organisms in developmental timing have identified specific genes involved in heterochronic variation. Beyond these classic approaches that can only identify single genes or pathways, quantitative models derived from current next-generation sequencing data serve as a more powerful tool to precisely capture heterochronic variation and systematically map a complete set of genes that contribute to heterochronic processes. In this opinion note, we discuss a computational framework of genetic mapping that can characterize heterochronic quantitative trait loci that determine the pattern and process of development. We propose a unifying model that charts the genetic architecture of heterochrony that perceives and responds to environmental perturbations and evolves over geologic time. The new model may potentially enhance our understanding of the adaptive value of heterochrony and its evolutionary origins, providing a useful context for designing new organisms that can best use future resources. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. FRET-based genetically-encoded sensors for quantitative monitoring of metabolites.

    Science.gov (United States)

    Mohsin, Mohd; Ahmad, Altaf; Iqbal, Muhammad

    2015-10-01

    Neighboring cells in the same tissue can exist in different states of dynamic activities. After genomics, proteomics and metabolomics, fluxomics is now equally important for generating accurate quantitative information on the cellular and sub-cellular dynamics of ions and metabolite, which is critical for functional understanding of organisms. Various spectrometry techniques are used for monitoring ions and metabolites, although their temporal and spatial resolutions are limited. Discovery of the fluorescent proteins and their variants has revolutionized cell biology. Therefore, novel tools and methods targeting sub-cellular compartments need to be deployed in specific cells and targeted to sub-cellular compartments in order to quantify the target-molecule dynamics directly. We require tools that can measure cellular activities and protein dynamics with sub-cellular resolution. Biosensors based on fluorescence resonance energy transfer (FRET) are genetically encoded and hence can specifically target sub-cellular organelles by fusion to proteins or targetted sequences. Since last decade, FRET-based genetically encoded sensors for molecules involved in energy production, reactive oxygen species and secondary messengers have helped to unravel key aspects of cellular physiology. This review, describing the design and principles of sensors, presents a database of sensors for different analytes/processes, and illustrate examples of application in quantitative live cell imaging.

  1. Quantitative genetics theory for non-inbred populations in linkage disequilibrium

    Directory of Open Access Journals (Sweden)

    José Marcelo Soriano Viana

    2004-01-01

    Full Text Available Although linkage disequilibrium, epistasis and inbreeding are common phenomena in genetic systems that control quantitative traits, theory development and analysis are very complex, especially when they are considered together. The objective of this study is to offer additional quantitative genetics theory to define and analyze, in relation to non-inbred cross pollinating populations, components of genotypic variance, heritabilities and predicted gains, assuming linkage disequilibrium and absence of epistasis. The genotypic variance and its components, additive and due to dominance genetic variances, are invariant over the generations only in regard to completely linked genes and to those in equilibrium. When the population is structured in half-sib families, the additive variance in the parents' generation and the genotypic variance in the population can be estimated. When the population is structured in full-sib families, none of the components of genotypic variance can be estimated. The narrow sense heritability level at plant level can be estimated from the parent-offspring or mid parent-offspring regression. When there is dominance, the narrow sense heritability estimate in the in F2 is biased due to linkage disequilibrium when estimated by the Warner method, but not when estimated by means of the plant F2-family F3 regression. The bias is proportional to the number of pairs of linked genes, without independent assortment, and to the degree of dominance, and tends to be positive when genes in the coupling phase predominate or negative and of higher value when genes in the repulsion phase predominate. Linkage disequilibrium is also cause of bias in estimates of the narrow sense heritabilities at full-sib family mean and at plant within half-sib and full-sib families levels. Generally, the magnitude of the bias is proportional to the number of pairs of genes in disequilibrium and to the frequency of recombining gametes.

  2. Quantitative Assessment of Eye Phenotypes for Functional Genetic Studies Using Drosophila melanogaster

    Science.gov (United States)

    Iyer, Janani; Wang, Qingyu; Le, Thanh; Pizzo, Lucilla; Grönke, Sebastian; Ambegaokar, Surendra S.; Imai, Yuzuru; Srivastava, Ashutosh; Troisí, Beatriz Llamusí; Mardon, Graeme; Artero, Ruben; Jackson, George R.; Isaacs, Adrian M.; Partridge, Linda; Lu, Bingwei; Kumar, Justin P.; Girirajan, Santhosh

    2016-01-01

    About two-thirds of the vital genes in the Drosophila genome are involved in eye development, making the fly eye an excellent genetic system to study cellular function and development, neurodevelopment/degeneration, and complex diseases such as cancer and diabetes. We developed a novel computational method, implemented as Flynotyper software (http://flynotyper.sourceforge.net), to quantitatively assess the morphological defects in the Drosophila eye resulting from genetic alterations affecting basic cellular and developmental processes. Flynotyper utilizes a series of image processing operations to automatically detect the fly eye and the individual ommatidium, and calculates a phenotypic score as a measure of the disorderliness of ommatidial arrangement in the fly eye. As a proof of principle, we tested our method by analyzing the defects due to eye-specific knockdown of Drosophila orthologs of 12 neurodevelopmental genes to accurately document differential sensitivities of these genes to dosage alteration. We also evaluated eye images from six independent studies assessing the effect of overexpression of repeats, candidates from peptide library screens, and modifiers of neurotoxicity and developmental processes on eye morphology, and show strong concordance with the original assessment. We further demonstrate the utility of this method by analyzing 16 modifiers of sine oculis obtained from two genome-wide deficiency screens of Drosophila and accurately quantifying the effect of its enhancers and suppressors during eye development. Our method will complement existing assays for eye phenotypes, and increase the accuracy of studies that use fly eyes for functional evaluation of genes and genetic interactions. PMID:26994292

  3. Quantitative resistance against Bemisia tabaci in Solanum pennellii:Genetics and metabolomics

    Institute of Scientific and Technical Information of China (English)

    Alejandro F Lucatti; Sjaak van Heusden; Colette Broekgaarden; Roland Mumm; Marcel Dicke; Ben Vosman

    2016-01-01

    The whitefly Bemisia tabaci is a serious threat in tomato cultivation worldwide as all varieties grown today are highly susceptible to this devastating herbivorous insect. Many accessions of the tomato wild relative Solanum pennellii show a high resistance towards B. tabaci. A mapping approach was used to elucidate the genetic background of whitefly-resistance related traits and associated biochemical traits in this species. Minor quantitative trait loci (QTLs) for whitefly adult survival (AS) and oviposition rate (OR) were identified and some were confirmed in an F2BC1 population, where they showed increased percentages of explained variance (more than 30%). Bulked segregant analyses on pools of whitefly-resistant and-susceptible F2 plants enabled the identification of metabolites that correlate either with resistance or susceptibility. Genetic mapping of these metabolites showed that a large number of them co-localize with whitefly-resistance QTLs. Some of these whitefly-resistance QTLs are hotspots for metabolite QTLs. Although a large number of metabolite QTLs correlated to whitefly resistance or suscepti-bility, most of them are yet unknown compounds and further studies are needed to identify the metabolic pathways and genes involved. The results indicate a direct genetic correla-tion between biochemical-based resistance characteristics and reduced whitefly incidence in S. pennellii.

  4. Impact of measurement error on testing genetic association with quantitative traits.

    Directory of Open Access Journals (Sweden)

    Jiemin Liao

    Full Text Available Measurement error of a phenotypic trait reduces the power to detect genetic associations. We examined the impact of sample size, allele frequency and effect size in presence of measurement error for quantitative traits. The statistical power to detect genetic association with phenotype mean and variability was investigated analytically. The non-centrality parameter for a non-central F distribution was derived and verified using computer simulations. We obtained equivalent formulas for the cost of phenotype measurement error. Effects of differences in measurements were examined in a genome-wide association study (GWAS of two grading scales for cataract and a replication study of genetic variants influencing blood pressure. The mean absolute difference between the analytic power and simulation power for comparison of phenotypic means and variances was less than 0.005, and the absolute difference did not exceed 0.02. To maintain the same power, a one standard deviation (SD in measurement error of a standard normal distributed trait required a one-fold increase in sample size for comparison of means, and a three-fold increase in sample size for comparison of variances. GWAS results revealed almost no overlap in the significant SNPs (p<10(-5 for the two cataract grading scales while replication results in genetic variants of blood pressure displayed no significant differences between averaged blood pressure measurements and single blood pressure measurements. We have developed a framework for researchers to quantify power in the presence of measurement error, which will be applicable to studies of phenotypes in which the measurement is highly variable.

  5. A bivariate quantitative genetic model for a threshold trait and a survival trait

    Directory of Open Access Journals (Sweden)

    Damgaard Lars

    2006-11-01

    Full Text Available Abstract Many of the functional traits considered in animal breeding can be analyzed as threshold traits or survival traits with examples including disease traits, conformation scores, calving difficulty and longevity. In this paper we derive and implement a bivariate quantitative genetic model for a threshold character and a survival trait that are genetically and environmentally correlated. For the survival trait, we considered the Weibull log-normal animal frailty model. A Bayesian approach using Gibbs sampling was adopted in which model parameters were augmented with unobserved liabilities associated with the threshold trait. The fully conditional posterior distributions associated with parameters of the threshold trait reduced to well known distributions. For the survival trait the two baseline Weibull parameters were updated jointly by a Metropolis-Hastings step. The remaining model parameters with non-normalized fully conditional distributions were updated univariately using adaptive rejection sampling. The Gibbs sampler was tested in a simulation study and illustrated in a joint analysis of calving difficulty and longevity of dairy cattle. The simulation study showed that the estimated marginal posterior distributions covered well and placed high density to the true values used in the simulation of data. The data analysis of calving difficulty and longevity showed that genetic variation exists for both traits. The additive genetic correlation was moderately favorable with marginal posterior mean equal to 0.37 and 95% central posterior credibility interval ranging between 0.11 and 0.61. Therefore, this study suggests that selection for improving one of the two traits will be beneficial for the other trait as well.

  6. A bivariate quantitative genetic model for a threshold trait and a survival trait.

    Science.gov (United States)

    Damgaard, Lars Holm; Korsgaard, Inge Riis

    2006-01-01

    Many of the functional traits considered in animal breeding can be analyzed as threshold traits or survival traits with examples including disease traits, conformation scores, calving difficulty and longevity. In this paper we derive and implement a bivariate quantitative genetic model for a threshold character and a survival trait that are genetically and environmentally correlated. For the survival trait, we considered the Weibull log-normal animal frailty model. A Bayesian approach using Gibbs sampling was adopted in which model parameters were augmented with unobserved liabilities associated with the threshold trait. The fully conditional posterior distributions associated with parameters of the threshold trait reduced to well known distributions. For the survival trait the two baseline Weibull parameters were updated jointly by a Metropolis-Hastings step. The remaining model parameters with non-normalized fully conditional distributions were updated univariately using adaptive rejection sampling. The Gibbs sampler was tested in a simulation study and illustrated in a joint analysis of calving difficulty and longevity of dairy cattle. The simulation study showed that the estimated marginal posterior distributions covered well and placed high density to the true values used in the simulation of data. The data analysis of calving difficulty and longevity showed that genetic variation exists for both traits. The additive genetic correlation was moderately favorable with marginal posterior mean equal to 0.37 and 95% central posterior credibility interval ranging between 0.11 and 0.61. Therefore, this study suggests that selection for improving one of the two traits will be beneficial for the other trait as well.

  7. Estimation of genetic parameters and their sampling variances for quantitative traits in the type 2 modified augmented design

    Institute of Scientific and Technical Information of China (English)

    Frank M. You; Qijian Song; Gaofeng Jia; Yanzhao Cheng; Scott Duguid; Helen Booker; Sylvie Cloutier

    2016-01-01

    The type 2 modified augmented design (MAD2) is an efficient unreplicated experimental design used for evaluating large numbers of lines in plant breeding and for assessing genetic variation in a population. Statistical methods and data adjustment for soil heterogeneity have been previously described for this design. In the absence of replicated test genotypes in MAD2, their total variance cannot be partitioned into genetic and error components as required to estimate heritability and genetic correlation of quantitative traits, the two conventional genetic parameters used for breeding selection. We propose a method of estimating the error variance of unreplicated genotypes that uses replicated controls, and then of estimating the genetic parameters. Using the Delta method, we also derived formulas for estimating the sampling variances of the genetic parameters. Computer simulations indicated that the proposed method for estimating genetic parameters and their sampling variances was feasible and the reliability of the estimates was positively associated with the level of heritability of the trait. A case study of estimating the genetic parameters of three quantitative traits, iodine value, oil content, and linolenic acid content, in a biparental recombinant inbred line population of flax with 243 individuals, was conducted using our statistical models. A joint analysis of data over multiple years and sites was suggested for genetic parameter estimation. A pipeline module using SAS and Perl was developed to facilitate data analysis and appended to the previously developed MAD data analysis pipeline (http://probes.pw.usda.gov/bioinformatics_ tools/MADPipeline/index.html).

  8. Estimation of genetic parameters and their sampling variances for quantitative traits in the type 2 modified augmented design

    Institute of Scientific and Technical Information of China (English)

    Frank M.You; Qijian Song; Gaofeng Jia; Yanzhao Cheng; Scott Duguid; Helen Booker; Sylvie Cloutier

    2016-01-01

    The type 2 modified augmented design(MAD2) is an efficient unreplicated experimental design used for evaluating large numbers of lines in plant breeding and for assessing genetic variation in a population. Statistical methods and data adjustment for soil heterogeneity have been previously described for this design. In the absence of replicated test genotypes in MAD2, their total variance cannot be partitioned into genetic and error components as required to estimate heritability and genetic correlation of quantitative traits, the two conventional genetic parameters used for breeding selection. We propose a method of estimating the error variance of unreplicated genotypes that uses replicated controls, and then of estimating the genetic parameters. Using the Delta method, we also derived formulas for estimating the sampling variances of the genetic parameters.Computer simulations indicated that the proposed method for estimating genetic parameters and their sampling variances was feasible and the reliability of the estimates was positively associated with the level of heritability of the trait. A case study of estimating the genetic parameters of three quantitative traits, iodine value, oil content, and linolenic acid content, in a biparental recombinant inbred line population of flax with 243 individuals, was conducted using our statistical models. A joint analysis of data over multiple years and sites was suggested for genetic parameter estimation. A pipeline module using SAS and Perl was developed to facilitate data analysis and appended to the previously developed MAD data analysis pipeline(http://probes.pw.usda.gov/bioinformatics_ tools/MADPipeline/index.html).

  9. Estimation of genetic parameters and their sampling variances for quantitative traits in the type 2 modified augmented design

    Directory of Open Access Journals (Sweden)

    Frank M. You

    2016-04-01

    Full Text Available The type 2 modified augmented design (MAD2 is an efficient unreplicated experimental design used for evaluating large numbers of lines in plant breeding and for assessing genetic variation in a population. Statistical methods and data adjustment for soil heterogeneity have been previously described for this design. In the absence of replicated test genotypes in MAD2, their total variance cannot be partitioned into genetic and error components as required to estimate heritability and genetic correlation of quantitative traits, the two conventional genetic parameters used for breeding selection. We propose a method of estimating the error variance of unreplicated genotypes that uses replicated controls, and then of estimating the genetic parameters. Using the Delta method, we also derived formulas for estimating the sampling variances of the genetic parameters. Computer simulations indicated that the proposed method for estimating genetic parameters and their sampling variances was feasible and the reliability of the estimates was positively associated with the level of heritability of the trait. A case study of estimating the genetic parameters of three quantitative traits, iodine value, oil content, and linolenic acid content, in a biparental recombinant inbred line population of flax with 243 individuals, was conducted using our statistical models. A joint analysis of data over multiple years and sites was suggested for genetic parameter estimation. A pipeline module using SAS and Perl was developed to facilitate data analysis and appended to the previously developed MAD data analysis pipeline (http://probes.pw.usda.gov/bioinformatics_ tools/MADPipeline/index.html.

  10. Genetic programming:  a novel method for the quantitative analysis of pyrolysis mass spectral data.

    Science.gov (United States)

    Gilbert, R J; Goodacre, R; Woodward, A M; Kell, D B

    1997-11-01

    A technique for the analysis of multivariate data by genetic programming (GP) is described, with particular reference to the quantitative analysis of orange juice adulteration data collected by pyrolysis mass spectrometry (PyMS). The dimensionality of the input space was reduced by ranking variables according to product moment correlation or mutual information with the outputs. The GP technique as described gives predictive errors equivalent to, if not better than, more widespread methods such as partial least squares and artificial neural networks but additionally can provide a means for easing the interpretation of the correlation between input and output variables. The described application demonstrates that by using the GP method for analyzing PyMS data the adulteration of orange juice with 10% sucrose solution can be quantified reliably over a 0-20% range with an RMS error in the estimate of ∼1%.

  11. Parameter estimation using the genetic algorithm and its impact on quantitative precipitation forecast

    Directory of Open Access Journals (Sweden)

    Y. H. Lee

    2006-12-01

    Full Text Available In this study, optimal parameter estimations are performed for both physical and computational parameters in a mesoscale meteorological model, and their impacts on the quantitative precipitation forecasting (QPF are assessed for a heavy rainfall case occurred at the Korean Peninsula in June 2005. Experiments are carried out using the PSU/NCAR MM5 model and the genetic algorithm (GA for two parameters: the reduction rate of the convective available potential energy in the Kain-Fritsch (KF scheme for cumulus parameterization, and the Asselin filter parameter for numerical stability. The fitness function is defined based on a QPF skill score. It turns out that each optimized parameter significantly improves the QPF skill. Such improvement is maximized when the two optimized parameters are used simultaneously. Our results indicate that optimizations of computational parameters as well as physical parameters and their adequate applications are essential in improving model performance.

  12. Developmental Patterning as a Quantitative Trait: Genetic Modulation of the Hoxb6 Mutant Skeletal Phenotype.

    Directory of Open Access Journals (Sweden)

    Claudia Kappen

    Full Text Available The process of patterning along the anterior-posterior axis in vertebrates is highly conserved. The function of Hox genes in the axis patterning process is particularly well documented for bone development in the vertebral column and the limbs. We here show that Hoxb6, in skeletal elements at the cervico-thoracic junction, controls multiple independent aspects of skeletal pattern, implicating discrete developmental pathways as substrates for this transcription factor. In addition, we demonstrate that Hoxb6 function is subject to modulation by genetic factors. These results establish Hox-controlled skeletal pattern as a quantitative trait modulated by gene-gene interactions, and provide evidence that distinct modifiers influence the function of conserved developmental genes in fundamental patterning processes.

  13. Estimation of genetic parameters and detection of quantitative trait loci for metabolites in Danish Holstein milk

    DEFF Research Database (Denmark)

    Buitenhuis, Albert Johannes; Sundekilde, Ulrik; Poulsen, Nina Aagaard;

    2013-01-01

    Small components and metabolites in milk are significant for the utilization of milk, not only in dairy food production but also as disease predictors in dairy cattle. This study focused on estimation of genetic parameters and detection of quantitative trait loci for metabolites in bovine milk....... For this purpose, milk samples were collected in mid lactation from 371 Danish Holstein cows in first to third parity. A total of 31 metabolites were detected and identified in bovine milk by using 1H nuclear magnetic resonance (NMR) spectroscopy. Cows were genotyped using a bovine high-density single nucleotide...... polymorphism (SNP) chip. Based on the SNP data, a genomic relationship matrix was calculated and used as a random factor in a model together with 2 fixed factors (herd and lactation stage) to estimate the heritability and breeding value for individual metabolites in the milk. Heritability was in the range of 0...

  14. Partial least squares modeling and genetic algorithm optimization in quantitative structure-activity relationships.

    Science.gov (United States)

    Hasegawa, K; Funatsu, K

    2000-01-01

    Quantitative structure-activity relationship (QSAR) studies based on chemometric techniques are reviewed. Partial least squares (PLS) is introduced as a novel robust method to replace classical methods such as multiple linear regression (MLR). Advantages of PLS compared to MLR are illustrated with typical applications. Genetic algorithm (GA) is a novel optimization technique which can be used as a search engine in variable selection. A novel hybrid approach comprising GA and PLS for variable selection developed in our group (GAPLS) is described. The more advanced method for comparative molecular field analysis (CoMFA) modeling called GA-based region selection (GARGS) is described as well. Applications of GAPLS and GARGS to QSAR and 3D-QSAR problems are shown with some representative examples. GA can be hybridized with nonlinear modeling methods such as artificial neural networks (ANN) for providing useful tools in chemometric and QSAR.

  15. Quantitative Recognizing Dissolved Hydrocarbons with Genetic Algorithm-Support Vector Regression

    Directory of Open Access Journals (Sweden)

    Qu Zhou

    2013-09-01

    Full Text Available Online monitoring of dissolved fault characteristic hydrocarbon gases, such as methane, ethane, ethylene and acetylene in power transformer oil has significant meaning for condition assessment of transformer. Recently, semiconductor tin oxide based gas sensor array has been widely applied in online monitoring apparatus, while cross sensitivity of the gas sensor array is inevitable due to same compositions and similar structures among the four hydrocarbon gases. Based on support vector regression (SVR with genetic algorithm (GA, a new pattern recognition method was proposed to reduce the cross sensitivity of the gas sensor array and further quantitatively recognize the concentration of dissolved hydrocarbon gases. The experimental data from a certain online monitoring device in China is used to illustrate the performance of the proposed GA-SVR model. Experimental results indicate that the GA-SVR method can effectively decrease the cross sensitivity and the regressed data is much more closed to the real values.

  16. Quantitative genetic analysis of chlorophyll a fluorescence parameters in maize in the field environments

    Institute of Scientific and Technical Information of China (English)

    Domagojimi; Hrvoje Lepedu; Vlatka Jurkovi; Jasenka Antunovi; Vera Cesar

    2014-01-01

    Chlorophyl fluorescence transient from initial to maximum fluorescence (“P”step) throughout two intermedi-ate steps (“J”and“I”) (JIP-test) is considered a reliable early quantitative indicator of stress in plants. The JIP-test is particularly useful for crop plants when applied in variable field environments. The aim of the present study was to conduct a quantitative trait loci (QTL) analysis for nine JIP-test parameters in maize during flowering in four field environ-ments differing in weather conditions. QTL analysis and identification of putative candidate genes might help to explain the genetic relationship between photosynthesis and different field scenarios in maize plants. The JIP-test param-eters were analyzed in the intermated B73 ? Mo17 (IBM) maize population of 205 recombinant inbred lines. A set of 2,178 molecular markers across the whole maize genome was used for QTL analysis revealing 10 significant QTLs for seven JIP-test parameters, of which five were co-localized when combined over the four environments indicating polygenic inheritance and pleiotropy. Our results demonstrate that QTL analysis of chlorophyl fluorescence parameters was capable of detecting one pleiotropic locus on chromosome 7, coinciding with the gene gst23 that may be associated with efficient photosynthe-sis under different field scenarios.

  17. Genetic heterogeneity, modifier genes, and quantitative phenotypes in psychiatric illness: searching for a framework.

    Science.gov (United States)

    Fanous, A H; Kendler, K S

    2005-01-01

    Schizophrenia has long been thought to be clinically heterogeneous. A range of studies suggests that this is due to genetic heterogeneity. Some clinical features, such as negative symptoms, are associated with a greater risk of illness in relatives. Affected sibling pairs are correlated for clinical and course features as well as subforms of illness, and twin studies suggest that this is due to genetic factors. This is further supported by findings that subjects from families linked to some chromosomal regions may differ clinically from those from unlinked families. Moreover, some genes may affect clinical features without altering susceptibility (ie are modifier genes). High-risk genotypes may have quantitative, rather than categorical effects, and may influence milder or subclinical phenotypes. Another recent finding is that nonpsychotic relatives may have personality features that resemble those of their affected relatives. These findings taken together suggest that there may be several classes of gene action in schizophrenia: some genes may influence susceptibility only, others may influence clinical features only, and still others may have a mixed effect. Furthermore, subsets of these classes may affect personality and other traits in nonpsychotic relatives. Understanding these classes of gene action may help guide the design of linkage and association studies that have increased power. We describe five classes of genes and their predictions of the outcomes of family, twin, and several types of linkage studies. We go on to explore how these predictions can in turn be used to aid in the design of linkage studies.

  18. The Evaluation Criteria of Some Botanical Quantitative Characters of Peach Genetic Resources

    Institute of Scientific and Technical Information of China (English)

    WANG Li-rong; ZHU Geng-rui; FANG Wei-chao

    2006-01-01

    There were two peach descriptors systems: one from IPRGI in 1980 and the other from China in 1990. The former had only reference cultivars without quantity grades; the latter had only a list of some characteristics. This makes it difficult sharing of genetic resource information for breeders. To describe the main quantitative characteristics, a new system was established. Ten characteristics of 346-476 peach cultivars were investigated from 1986 to 2002 in the National Peach Genetic Collection in Zhengzhou City, China. These characteristics and their coefficients of variation were as follows: flower diameter 19.55%, vertical diameter of fruit 14.24%, cheek diameter of fruit 10.36%, suture diameter of fruit 11.44%, stone length 19.04%, stone width 10.86%, stone thickness 11.19%, leaf length 7.9%, leaf width 10.55%, and leaf stalk length 19.03%, respectively. Grade index and reference cultivars were given by statistical data for peach description.These grade indexes were recorded on 1-5 grades, and the third grade as a middle one occupied 39% or more of the distribution. In general, two reference cultivars for each grade were chosen, one is USA cultivar and the other is Chinese cultivar. This paper tried to use them as the reference cultivars, which are planted or used widely by Chinese breeders.

  19. EvolQG - An R package for evolutionary quantitative genetics [version 2; referees: 1 approved, 2 approved with reservations

    Directory of Open Access Journals (Sweden)

    Diogo Melo

    2016-06-01

    Full Text Available We present an open source package for performing evolutionary quantitative genetics analyses in the R environment for statistical computing. Evolutionary theory shows that evolution depends critically on the available variation in a given population. When dealing with many quantitative traits this variation is expressed in the form of a covariance matrix, particularly the additive genetic covariance matrix or sometimes the phenotypic matrix, when the genetic matrix is unavailable and there is evidence the phenotypic matrix is sufficiently similar to the genetic matrix. Given this mathematical representation of available variation, the EvolQG package provides functions for calculation of relevant evolutionary statistics; estimation of sampling error; corrections for this error; matrix comparison via correlations, distances and matrix decomposition; analysis of modularity patterns; and functions for testing evolutionary hypotheses on taxa diversification.

  20. The quantitative genetic basis of adaptive divergence in the moor frog (Rana arvalis) and its implications for gene flow.

    Science.gov (United States)

    Hangartner, S; Laurila, A; Räsänen, K

    2012-08-01

    Knowledge on the relative contribution of direct genetic, maternal and environmental effects to adaptive divergence is important for understanding the drivers of biological diversification. The moor frog (Rana arvalis) shows adaptive divergence in embryonic and larval fitness traits along an acidification gradient in south-western Sweden. To understand the quantitative genetic basis of this divergence, we performed reciprocal crosses between three divergent population pairs and reared embryos and larvae at acid and neutral pH in the laboratory. Divergence in embryonic acid tolerance (survival) was mainly determined by maternal effects, whereas the relative contributions of maternal, additive and nonadditive genetic effects in larval life-history traits differed between traits, population pairs and rearing environments. These results emphasize the need to investigate the quantitative genetic basis of adaptive divergence in multiple populations and traits, as well as different environments. We discuss the implications of our findings for maintenance of local adaptation in the context of migrant and hybrid fitness.

  1. Genetic parameters and mapping quantitative trait loci associated with tibia traits in broilers.

    Science.gov (United States)

    Ragognetti, B N N; Stafuzza, N B; Silva, T B R; Chud, T C S; Grupioni, N V; Cruz, V A R; Peixoto, J O; Nones, K; Ledur, M C; Munari, D P

    2015-12-21

    Selection among broilers for performance traits is resulting in locomotion problems and bone disorders, once skeletal structure is not strong enough to support body weight in broilers with high growth rates. In this study, genetic parameters were estimated for body weight at 42 days of age (BW42), and tibia traits (length, width, and weight) in a population of broiler chickens. Quantitative trait loci (QTL) were identified for tibia traits to expand our knowledge of the genetic architecture of the broiler population. Genetic correlations ranged from 0.56 ± 0.18 (between tibia length and BW42) to 0.89 ± 0.06 (between tibia width and weight), suggesting that these traits are either controlled by pleiotropic genes or by genes that are in linkage disequilibrium. For QTL mapping, the genome was scanned with 127 microsatellites, representing a coverage of 2630 cM. Eight QTL were mapped on Gallus gallus chromosomes (GGA): GGA1, GGA4, GGA6, GGA13, and GGA24. The QTL regions for tibia length and weight were mapped on GGA1, between LEI0079 and MCW145 markers. The gene DACH1 is located in this region; this gene acts to form the apical ectodermal ridge, responsible for limb development. Body weight at 42 days of age was included in the model as a covariate for selection effect of bone traits. Two QTL were found for tibia weight on GGA2 and GGA4, and one for tibia width on GGA3. Information originating from these QTL will assist in the search for candidate genes for these bone traits in future studies.

  2. Genetic Studies of Quantitative MCI and AD Phenotypes in ADNI: Progress, Opportunities, and Plans

    Science.gov (United States)

    Saykin, Andrew J.; Shen, Li; Yao, Xiaohui; Kim, Sungeun; Nho, Kwangsik; Risacher, Shannon L.; Ramanan, Vijay K.; Foroud, Tatiana M.; Faber, Kelly M.; Sarwar, Nadeem; Munsie, Leanne M.; Hu, Xiaolan; Soares, Holly D.; Potkin, Steven G.; Thompson, Paul M.; Kauwe, John S.K.; Kaddurah-Daouk, Rima; Green, Robert C.; Toga, Arthur W.; Weiner, Michael W.

    2015-01-01

    INTRODUCTION Genetic data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) has been crucial in advancing the understanding of AD pathophysiology. Here we provide an update on sample collection, scientific progress and opportunities, conceptual issues, and future plans. METHODS Lymphoblastoid cell lines and DNA and RNA samples from blood have been collected and banked, and data and biosamples have been widely disseminated. To date, APOE genotyping, genome-wide association study (GWAS), and whole exome and whole genome sequencing (WES, WGS) data have been obtained and disseminated. RESULTS ADNI genetic data have been downloaded thousands of times and over 300 publications have resulted, including reports of large scale GWAS by consortia to which ADNI contributed. Many of the first applications of quantitative endophenotype association studies employed ADNI data, including some of the earliest GWAS and pathway-based studies of biospecimen and imaging biomarkers, as well as memory and other clinical/cognitive variables. Other contributions include some of the first WES and WGS data sets and reports in healthy controls, MCI, and AD. DISCUSSION Numerous genetic susceptibility and protective markers for AD and disease biomarkers have been identified and replicated using ADNI data, and have heavily implicated immune, mitochondrial, cell cycle/fate, and other biological processes. Early sequencing studies suggest that rare and structural variants are likely to account for significant additional phenotypic variation. Longitudinal analyses of transcriptomic, proteomic, metabolomic, and epigenomic changes will also further elucidate dynamic processes underlying preclinical and prodromal stages of disease. Integration of this unique collection of multi-omics data within a systems biology framework will help to separate truly informative markers of early disease mechanisms and potential novel therapeutic targets from the vast background of less relevant biological

  3. Quantitative genetic analysis of retinal degeneration in the blind cavefish Astyanax mexicanus.

    Directory of Open Access Journals (Sweden)

    Kelly E O'Quin

    Full Text Available The retina is the light-sensitive tissue of the eye that facilitates vision. Mutations within genes affecting eye development and retinal function cause a host of degenerative visual diseases, including retinitis pigmentosa and anophthalmia/microphthalmia. The characin fish Astyanax mexicanus includes both eyed (surface fish and eyeless (cavefish morphs that initially develop eyes with normal retina; however, early in development, the eyes of cavefish degenerate. Since both surface and cave morphs are members of the same species, they serve as excellent evolutionary mutant models with which to identify genes causing retinal degeneration. In this study, we crossed the eyed and eyeless forms of A. mexicanus and quantified the thickness of individual retinal layers among 115 F(2 hybrid progeny. We used next generation sequencing (RAD-seq and microsatellite mapping to construct a dense genetic map of the Astyanax genome, scan for quantitative trait loci (QTL affecting retinal thickness, and identify candidate genes within these QTL regions. The map we constructed for Astyanax includes nearly 700 markers assembled into 25 linkage groups. Based on our scans with this map, we identified four QTL, one each associated with the thickness of the ganglion, inner nuclear, outer plexiform, and outer nuclear layers of the retina. For all but one QTL, cavefish alleles resulted in a clear reduction in the thickness of the affected layer. Comparative mapping of genetic markers within each QTL revealed that each QTL corresponds to an approximately 35 Mb region of the zebrafish genome. Within each region, we identified several candidate genes associated with the function of each affected retinal layer. Our study is the first to examine Astyanax retinal degeneration in the context of QTL mapping. The regions we identify serve as a starting point for future studies on the genetics of retinal degeneration and eye disease using the evolutionary mutant model Astyanax.

  4. Quantitative Genetics and Functional-Structural Plant Growth Models: Simulation of Quantitative Trait Loci Detection for Model Parameters and Application to Potential Yield Optimization

    CERN Document Server

    Letort, Veronique; Cournède, Paul-Henry; De Reffye, Philippe; Courtois, Brigitte; 10.1093/aob/mcm197

    2010-01-01

    Background and Aims: Prediction of phenotypic traits from new genotypes under untested environmental conditions is crucial to build simulations of breeding strategies to improve target traits. Although the plant response to environmental stresses is characterized by both architectural and functional plasticity, recent attempts to integrate biological knowledge into genetics models have mainly concerned specific physiological processes or crop models without architecture, and thus may prove limited when studying genotype x environment interactions. Consequently, this paper presents a simulation study introducing genetics into a functional-structural growth model, which gives access to more fundamental traits for quantitative trait loci (QTL) detection and thus to promising tools for yield optimization. Methods: The GreenLab model was selected as a reasonable choice to link growth model parameters to QTL. Virtual genes and virtual chromosomes were defined to build a simple genetic model that drove the settings ...

  5. Effects of long-term averaging of quantitative blood pressure traits on the detection of genetic associations

    NARCIS (Netherlands)

    S.K. Ganesh (Santhi); D.I. Chasman (Daniel); M.G. Larson (Martin); X. Guo (Xiuqing); G.C. Verwoert (Germaine); J.C. Bis (Joshua); X. Gu (Xiangjun); G.D. Smith; M.-L. Yang (Min-Lee); Y. Zhang (Yan); G.B. Ehret (Georg); L.M. Rose (Lynda); S.J. Hwang; G.J. Papanicolau (George); E.J.G. Sijbrands (Eric); K. Rice (Kenneth); G. Eiriksdottir (Gudny); V. Pihur (Vasyl); P.M. Ridker (Paul); R.S. Vasan (Ramachandran Srini); C. Newton-Cheh (Christopher); L.J. Raffel (Leslie); N. Amin (Najaf); J.I. Rotter (Jerome); K. Liu (Kiang); L.J. Launer (Lenore); M. Xu (Ming); M. Caulfield (Mark); A.C. Morrison (Alanna); A.D. Johnson (Andrew); D. Vaidya (Dhananjay); A. Dehghan (Abbas); G. Li (Guo); C. Bouchard (Claude); T.B. Harris (Tamara); H. Zhang (He); E.A. Boerwinkle (Eric); D.S. Siscovick (David); W. Gao (Wei); A.G. Uitterlinden (André); F. Rivadeneira Ramirez (Fernando); A. Hofman (Albert); E.M. Schmidt (Ellen); O.H. Franco (Oscar); Y. Huo (Yong); J.C.M. Witteman (Jacqueline); P. Munroe (Patricia); V. Gudnason (Vilmundur); W. Palmas (Walter); C.M. van Duijn (Cock); M. Fornage (Myriam); D. Levy (Daniel); B.M. Psaty (Bruce); A. Chakravarti (Aravinda)

    2014-01-01

    textabstractBlood pressure (BP) is a heritable, quantitative trait with intraindividual variability and susceptibility to measurement error. Genetic studies of BP generally use single-visit measurements and thus cannot remove variability occurring over months or years. We leveraged the idea that ave

  6. Study of quantitative genetics of gum arabic production complicated by variability in ploidy level of Acacia senegal (L.) Willd

    DEFF Research Database (Denmark)

    Diallo, Adja Madjiguene; Nielsen, Lene Rostgaard; Hansen, Jon Kehlet

    2015-01-01

    Gum arabic is an important international commodity produced by trees of Acacia senegal across Sahelian Africa, but documented results of breeding activities are limited. The objective of this study was to provide reliable estimates of quantitative genetic parameters in order to shed light...

  7. A Creative Helicobacter pylori Diagnosis Scheme Based on Multiple Genetic Analysis System: Qualification and Quantitation.

    Science.gov (United States)

    Zhou, Lifang; Zhao, Fuju; Hu, Binjie; Fang, Yi; Miao, Yingxin; Huang, Yiqin; Ji, Da'nian; Zhang, Jinghao; Xu, Lingli; Zhang, Yanmei; Bao, Zhijun; Zhao, Hu

    2015-10-01

    Currently, several diagnostic assays for Helicobacter pylori (H. pylori) are available, but each has some limitations. Further, a high-flux quantitative assay is required to assist clinical diagnosis and monitor the effectiveness of therapy and novel vaccine candidates. Three hundred and eighty-seven adult patients [nonulcer dyspepsia (NUD) 295, peptic ulcer disease (PUD) 77, gastric cancer (GC) 15] were enrolled for gastrointestinal endoscopies. Three biopsy samples from gastric antrum were collected for the following tests: culture, rapid urease test (RUT), histopathology, conventional polymerase chain reaction (PCR), and Multiple Genetic Analysis System (MGAS). The diagnostic capability of H. pylori for all methods was evaluated through the receiver operating characteristic (ROC) curves. Based on the gold standard, the sensitivity and specificity of MGAS were 92.9 and 92.4%, and positive predict value (PPV) and negative predict value (NPV) were 96.0 and 87.1%, respectively. All the above parameters of MGAS were higher than that of culture (except its specificity), RUT and histopathology, and nearly closed to that of conventional PCR. The area under curve (AUC) was 0.7575 (Culture), 0.8870 (RUT), 0.9000 (Histopathology), 0.9496 (Conventional PCR), and 0.9277 (MGAS). No significant statistical difference was observed for the H. pylori DNA load in different disease groups (p = .067). In contrast, a statistically significant difference in the H. pylori DNA copy number was observed based on age (p = .043) and gender (p = .021). The data showed that MGAS performed well in detecting H. pylori infection. Furthermore, the quantitative analysis showed that the load of H. pylori was significantly different within both age and gender groups. These results suggested that MGAS could be a potential alternative method for clinical detection and monitoring of the effectiveness of H. pylori therapy. © 2015 John Wiley & Sons Ltd.

  8. Genetic programming based quantitative structure-retention relationships for the prediction of Kovats retention indices.

    Science.gov (United States)

    Goel, Purva; Bapat, Sanket; Vyas, Renu; Tambe, Amruta; Tambe, Sanjeev S

    2015-11-13

    The development of quantitative structure-retention relationships (QSRR) aims at constructing an appropriate linear/nonlinear model for the prediction of the retention behavior (such as Kovats retention index) of a solute on a chromatographic column. Commonly, multi-linear regression and artificial neural networks are used in the QSRR development in the gas chromatography (GC). In this study, an artificial intelligence based data-driven modeling formalism, namely genetic programming (GP), has been introduced for the development of quantitative structure based models predicting Kovats retention indices (KRI). The novelty of the GP formalism is that given an example dataset, it searches and optimizes both the form (structure) and the parameters of an appropriate linear/nonlinear data-fitting model. Thus, it is not necessary to pre-specify the form of the data-fitting model in the GP-based modeling. These models are also less complex, simple to understand, and easy to deploy. The effectiveness of GP in constructing QSRRs has been demonstrated by developing models predicting KRIs of light hydrocarbons (case study-I) and adamantane derivatives (case study-II). In each case study, two-, three- and four-descriptor models have been developed using the KRI data available in the literature. The results of these studies clearly indicate that the GP-based models possess an excellent KRI prediction accuracy and generalization capability. Specifically, the best performing four-descriptor models in both the case studies have yielded high (>0.9) values of the coefficient of determination (R(2)) and low values of root mean squared error (RMSE) and mean absolute percent error (MAPE) for training, test and validation set data. The characteristic feature of this study is that it introduces a practical and an effective GP-based method for developing QSRRs in gas chromatography that can be gainfully utilized for developing other types of data-driven models in chromatography science.

  9. Quantitative genetics approaches to study evolutionary processes in ecotoxicology; a perspective from research on the evolution of resistance.

    Science.gov (United States)

    Klerks, Paul L; Xie, Lingtian; Levinton, Jeffrey S

    2011-05-01

    Quantitative genetic approaches are often used to study evolutionary processes in ecotoxicology. This paper focuses on the evolution of resistance to environmental contaminants-an important evolutionary process in ecotoxicology. Three approaches are commonly employed to study the evolution of resistance: (1) Assessing whether a contaminant-exposed population has an increased resistance relative to a control population, using either spatial or temporal comparisons. (2) Estimating a population's heritability of resistance. (3) Investigating responses in a laboratory selection experiment. All three approaches provide valuable information on the potential for contaminants to affect a population's evolutionary trajectory via natural selection. However, all three approaches have inherent limitations, including difficulty in separating the various genetic and environmental variance components, responses being dependent on specific population and testing conditions, and inability to fully capture natural conditions in the laboratory. In order to maximize insights into the long-term consequences of adaptation, it is important to not just look at resistance itself, but also at the fitness consequences and at correlated responses in characteristics other than resistance. The rapid development of molecular genetics has yielded alternatives to the "black box" approach of quantitative genetics, but the presence of different limitations and strengths in the two fields means that they should be viewed as complementary rather than exchangeable. Quantitative genetics is benefiting from the incorporation of molecular tools and remains an important field for studying evolutionary toxicology.

  10. Clarifying CLARITY: Quantitative Optimization of the Diffusion Based Delipidation Protocol for Genetically Labeled Tissue.

    Science.gov (United States)

    Magliaro, Chiara; Callara, Alejandro L; Mattei, Giorgio; Morcinelli, Marco; Viaggi, Cristina; Vaglini, Francesca; Ahluwalia, Arti

    2016-01-01

    Tissue clarification has been recently proposed to allow deep tissue imaging without light scattering. The clarification parameters are somewhat arbitrary and dependent on tissue type, source and dimension: every laboratory has its own protocol, but a quantitative approach to determine the optimum clearing time is still lacking. Since the use of transgenic mouse lines that express fluorescent proteins to visualize specific cell populations is widespread, a quantitative approach to determine the optimum clearing time for genetically labeled neurons from thick murine brain slices using CLARITY2 is described. In particular, as the main objective of the delipidation treatment is to clarify tissues, while limiting loss of fluorescent signal, the "goodness" of clarification was evaluated by considering the bulk tissue clarification index (BTCi) and the fraction of the fluorescent marker retained in the slice as easily quantifiable macroscale parameters. Here we describe the approach, illustrating an example of how it can be used to determine the optimum clearing time for 1 mm-thick cerebellar slice from transgenic L7GFP mice, in which Purkinje neurons express the GFP (green fluorescent protein) tag. To validate the method, we evaluated confocal stacks of our samples using standard image processing indices (i.e., the mean pixel intensity of neurons and the contrast-to-noise ratio) as figures of merit for image quality. The results show that detergent-based delipidation for more than 5 days does not increase tissue clarity but the fraction of GFP in the tissue continues to diminish. The optimum clearing time for 1 mm-thick slices was thus identified as 5 days, which is the best compromise between the increase in light penetration depth due to removal of lipids and a decrease in fluorescent signal as a consequence of protein loss: further clearing does not improve tissue transparency, but only leads to more protein removal or degradation. The rigorous quantitative approach

  11. Genetic mapping of quantitative trait loci for milk production in sheep.

    Science.gov (United States)

    Mateescu, R G; Thonney, M L

    2010-10-01

    A backcross pedigree using dairy East Friesian rams and non-dairy Dorset ewes was established specifically to map quantitative trait loci (QTL) affecting milk production in sheep. Ninety nine microsatellite markers of an initial set of 120 were successfully genotyped and informative on 188 animals of this backcross pedigree. Test-day milk records on individual ewes were used to estimate several milk yield related traits, including peak milk yield and cumulative milk yield to 50 (MY50), 100 (MY100) and 250 days (MY250). These traits, as well as estimated breeding value of backcross ewes extracted from the genetic evaluation file of the entire flock, were used in interval mapping. Ovine chromosomes 2, 12, 18, 20 and 24 were identified to harbour putative QTL for different measures of milk production. The QTL on Ovis aries chromosomes (OAR) 2 and 20 mapped to locations where similar trait QTL have already been mapped in other studies, whereas QTL on OAR 12, 18 and 24 were unique to our backcross pedigree and have not been reported previously. In addition, all identified QTL regions were syntenic with bovine chromosomal segments revealed to harbour QTL affecting milk production traits, providing supporting evidence for the QTL identified here.

  12. Genetic modifier loci of mouse Mfrp(rd6) identified by quantitative trait locus analysis.

    Science.gov (United States)

    Won, Jungyeon; Charette, Jeremy R; Philip, Vivek M; Stearns, Timothy M; Zhang, Weidong; Naggert, Jürgen K; Krebs, Mark P; Nishina, Patsy M

    2014-01-01

    The identification of genes that modify pathological ocular phenotypes in mouse models may improve our understanding of disease mechanisms and lead to new treatment strategies. Here, we identify modifier loci affecting photoreceptor cell loss in homozygous Mfrp(rd6) mice, which exhibit a slowly progressive photoreceptor degeneration. A cohort of 63 F2 homozygous Mfrp(rd6) mice from a (B6.C3Ga-Mfrp(rd6)/J × CAST/EiJ) F1 intercross exhibited a variable number of cell bodies in the retinal outer nuclear layer at 20 weeks of age. Mice were genotyped with a panel of single nucleotide polymorphism markers, and genotypes were correlated with phenotype by quantitative trait locus (QTL) analysis to map modifier loci. A genome-wide scan revealed a statistically significant, protective candidate locus on CAST/EiJ Chromosome 1 and suggestive modifier loci on Chromosomes 6 and 11. Multiple regression analysis of a three-QTL model indicated that the modifier loci on Chromosomes 1 and 6 together account for 26% of the observed phenotypic variation, while the modifier locus on Chromosome 11 explains only an additional 4%. Our findings indicate that the severity of the Mfrp(rd6) retinal degenerative phenotype in mice depends on the strain genetic background and that a significant modifier locus on CAST/EiJ Chromosome 1 protects against Mfrp(rd6)-associated photoreceptor loss.

  13. The first genetic map of the American cranberry: exploration of synteny conservation and quantitative trait loci.

    Science.gov (United States)

    Georgi, Laura; Johnson-Cicalese, Jennifer; Honig, Josh; Das, Sushma Parankush; Rajah, Veeran D; Bhattacharya, Debashish; Bassil, Nahla; Rowland, Lisa J; Polashock, James; Vorsa, Nicholi

    2013-03-01

    The first genetic map of cranberry (Vaccinium macrocarpon) has been constructed, comprising 14 linkage groups totaling 879.9 cM with an estimated coverage of 82.2 %. This map, based on four mapping populations segregating for field fruit-rot resistance, contains 136 distinct loci. Mapped markers include blueberry-derived simple sequence repeat (SSR) and cranberry-derived sequence-characterized amplified region markers previously used for fingerprinting cranberry cultivars. In addition, SSR markers were developed near cranberry sequences resembling genes involved in flavonoid biosynthesis or defense against necrotrophic pathogens, or conserved orthologous set (COS) sequences. The cranberry SSRs were developed from next-generation cranberry genomic sequence assemblies; thus, the positions of these SSRs on the genomic map provide information about the genomic location of the sequence scaffold from which they were derived. The use of SSR markers near COS and other functional sequences, plus 33 SSR markers from blueberry, facilitates comparisons of this map with maps of other plant species. Regions of the cranberry map were identified that showed conservation of synteny with Vitis vinifera and Arabidopsis thaliana. Positioned on this map are quantitative trait loci (QTL) for field fruit-rot resistance (FFRR), fruit weight, titratable acidity, and sound fruit yield (SFY). The SFY QTL is adjacent to one of the fruit weight QTL and may reflect pleiotropy. Two of the FFRR QTL are in regions of conserved synteny with grape and span defense gene markers, and the third FFRR QTL spans a flavonoid biosynthetic gene.

  14. Quantitative genetics model as the unifying model for defining genomic relationship and inbreeding coefficient.

    Science.gov (United States)

    Wang, Chunkao; Da, Yang

    2014-01-01

    The traditional quantitative genetics model was used as the unifying approach to derive six existing and new definitions of genomic additive and dominance relationships. The theoretical differences of these definitions were in the assumptions of equal SNP effects (equivalent to across-SNP standardization), equal SNP variances (equivalent to within-SNP standardization), and expected or sample SNP additive and dominance variances. The six definitions of genomic additive and dominance relationships on average were consistent with the pedigree relationships, but had individual genomic specificity and large variations not observed from pedigree relationships. These large variations may allow finding least related genomes even within the same family for minimizing genomic relatedness among breeding individuals. The six definitions of genomic relationships generally had similar numerical results in genomic best linear unbiased predictions of additive effects (GBLUP) and similar genomic REML (GREML) estimates of additive heritability. Predicted SNP dominance effects and GREML estimates of dominance heritability were similar within definitions assuming equal SNP effects or within definitions assuming equal SNP variance, but had differences between these two groups of definitions. We proposed a new measure of genomic inbreeding coefficient based on parental genomic co-ancestry coefficient and genomic additive correlation as a genomic approach for predicting offspring inbreeding level. This genomic inbreeding coefficient had the highest correlation with pedigree inbreeding coefficient among the four methods evaluated for calculating genomic inbreeding coefficient in a Holstein sample and a swine sample.

  15. Determinants of Neurotransmitters in Cerebrospinal Fluid and Plasma : from Seasonality to Quantitative Genetics

    NARCIS (Netherlands)

    Luykx, J.J.

    2013-01-01

    Most psychiatric conditions are complex genetic as the largest proportion of genetic variance is likely to derive from many genetic variants of small effect. Nonetheless, given the intricacies of the human brain and the heterogeneous nature of psychiatric disease entities, dissecting the genetic mec

  16. A quantitative genetic approach to assess the evolutionary potential of a coastal marine fish to ocean acidification

    Science.gov (United States)

    Malvezzi, Alex J; Murray, Christopher S; Feldheim, Kevin A; DiBattista, Joseph D; Garant, Dany; Gobler, Christopher J; Chapman, Demian D; Baumann, Hannes

    2015-01-01

    Assessing the potential of marine organisms to adapt genetically to increasing oceanic CO2 levels requires proxies such as heritability of fitness-related traits under ocean acidification (OA). We applied a quantitative genetic method to derive the first heritability estimate of survival under elevated CO2 conditions in a metazoan. Specifically, we reared offspring, selected from a wild coastal fish population (Atlantic silverside, Menidia menidia), at high CO2 conditions (∼2300 μatm) from fertilization to 15 days posthatch, which significantly reduced survival compared to controls. Perished and surviving offspring were quantitatively sampled and genotyped along with their parents, using eight polymorphic microsatellite loci, to reconstruct a parent–offspring pedigree and estimate variance components. Genetically related individuals were phenotypically more similar (i.e., survived similarly long at elevated CO2 conditions) than unrelated individuals, which translated into a significantly nonzero heritability (0.20 ± 0.07). The contribution of maternal effects was surprisingly small (0.05 ± 0.04) and nonsignificant. Survival among replicates was positively correlated with genetic diversity, particularly with observed heterozygosity. We conclude that early life survival of M. menidia under high CO2 levels has a significant additive genetic component that could elicit an evolutionary response to OA, depending on the strength and direction of future selection. PMID:25926880

  17. A quantitative genetic approach to assess the evolutionary potential of a coastal marine fish to ocean acidification.

    Science.gov (United States)

    Malvezzi, Alex J; Murray, Christopher S; Feldheim, Kevin A; DiBattista, Joseph D; Garant, Dany; Gobler, Christopher J; Chapman, Demian D; Baumann, Hannes

    2015-04-01

    Assessing the potential of marine organisms to adapt genetically to increasing oceanic CO2 levels requires proxies such as heritability of fitness-related traits under ocean acidification (OA). We applied a quantitative genetic method to derive the first heritability estimate of survival under elevated CO2 conditions in a metazoan. Specifically, we reared offspring, selected from a wild coastal fish population (Atlantic silverside, Menidia menidia), at high CO2 conditions (∼2300 μatm) from fertilization to 15 days posthatch, which significantly reduced survival compared to controls. Perished and surviving offspring were quantitatively sampled and genotyped along with their parents, using eight polymorphic microsatellite loci, to reconstruct a parent-offspring pedigree and estimate variance components. Genetically related individuals were phenotypically more similar (i.e., survived similarly long at elevated CO2 conditions) than unrelated individuals, which translated into a significantly nonzero heritability (0.20 ± 0.07). The contribution of maternal effects was surprisingly small (0.05 ± 0.04) and nonsignificant. Survival among replicates was positively correlated with genetic diversity, particularly with observed heterozygosity. We conclude that early life survival of M. menidia under high CO2 levels has a significant additive genetic component that could elicit an evolutionary response to OA, depending on the strength and direction of future selection.

  18. A quantitative genetic approach to assess the evolutionary potential of a coastal marine fish to ocean acidification

    KAUST Repository

    Malvezzi, Alex J.

    2015-02-01

    Assessing the potential of marine organisms to adapt genetically to increasing oceanic CO2 levels requires proxies such as heritability of fitness-related traits under ocean acidification (OA). We applied a quantitative genetic method to derive the first heritability estimate of survival under elevated CO2 conditions in a metazoan. Specifically, we reared offspring, selected from a wild coastal fish population (Atlantic silverside, Menidia menidia), at high CO2 conditions (~2300 μatm) from fertilization to 15 days posthatch, which significantly reduced survival compared to controls. Perished and surviving offspring were quantitatively sampled and genotyped along with their parents, using eight polymorphic microsatellite loci, to reconstruct a parent-offspring pedigree and estimate variance components. Genetically related individuals were phenotypically more similar (i.e., survived similarly long at elevated CO2 conditions) than unrelated individuals, which translated into a significantly nonzero heritability (0.20 ± 0.07). The contribution of maternal effects was surprisingly small (0.05 ± 0.04) and nonsignificant. Survival among replicates was positively correlated with genetic diversity, particularly with observed heterozygosity. We conclude that early life survival of M. menidia under high CO2 levels has a significant additive genetic component that could elicit an evolutionary response to OA, depending on the strength and direction of future selection.

  19. Challenges and prospects in genome-wide quantitative trait loci mapping of standing genetic variation in natural populations.

    Science.gov (United States)

    Schielzeth, Holger; Husby, Arild

    2014-07-01

    A considerable challenge in evolutionary genetics is to understand the genetic mechanisms that facilitate or impede evolutionary adaptation in natural populations. For this, we must understand the genetic loci contributing to trait variation and the selective forces acting on them. The decreased costs and increased feasibility of obtaining genotypic data on a large number of individuals have greatly facilitated gene mapping in natural populations, particularly because organisms whose genetics have been historically difficult to study are now within reach. Here we review the methods available to evolutionary ecologists interested in dissecting the genetic basis of traits in natural populations. Our focus lies on standing genetic variation in outbred populations. We present an overview of the current state of research in the field, covering studies on both plants and animals. We also draw attention to particular challenges associated with the discovery of quantitative trait loci and discuss parallels to studies on crops, livestock, and humans. Finally, we point to some likely future developments in genetic mapping studies.

  20. Quantitative trait loci mapping and genetic dissection for lint percentage in upland cotton (Gossypium hirsutum)

    Indian Academy of Sciences (India)

    Min Wang; Chengqi Li; Qinglian Wang

    2014-08-01

    Lint percentage is an important character of cotton yield components and it is also correlated with cotton fibre development. In this study, we used a high lint percentage variety, Baimian1, and a low lint percentage, TM-1 genetic standard for Gossypium hirsutum, as parents to construct a mapping populations in upland cotton (G. hirsutum). A quantitative trait locus/loci (QTL) analysis of lint percentage was performed by using two mapping procedures; composite interval mapping (CIM), inclusive composite interval mapping (ICIM) and the F2:3 populations in 2 years. Six main-effect QTL (M-QTL) for lint percentage (four significant and two suggestive) were detected in both years by CIM, and were located on chr. 3, chr. 19, chr. 26 and chr. 5 /chr. 19. Of the six QTL, marker intervals and favourable gene sources of the significant M-QTL, qLP-3(2010) and qLP-3(2011) were consistent. These QTL were also detected by ICIM, and therefore, should preferentially be used for marker-assisted selection (MAS) of lint percentage. Another M-QTL, qLP-19(2010), was detected by two mapping procedures, and it could also be a candidate for MAS. We detected the interaction between two M-QTL and environment, and 11 epistatic QTL (E-QTL) and their interaction with environment by using ICIM. The study also found two EST-SSRs, NAU1187 and NAU1255, linked to M-QTL for lint percentage that could be candidate markers affecting cotton fibre development.

  1. Establishment of Quantitative Analysis Method for Genetically Modified Maize Using a Reference Plasmid and Novel Primers

    Science.gov (United States)

    Moon, Gi-Seong; Shin, Weon-Sun

    2012-01-01

    For the quantitative analysis of genetically modified (GM) maize in processed foods, primer sets and probes based on the 35S promoter (p35S), nopaline synthase terminator (tNOS), p35S-hsp70 intron, and zSSIIb gene encoding starch synthase II for intrinsic control were designed. Polymerase chain reaction (PCR) products (80~101 bp) were specifically amplified and the primer sets targeting the smaller regions (80 or 81 bp) were more sensitive than those targeting the larger regions (94 or 101 bp). Particularly, the primer set 35F1-R1 for p35S targeting 81 bp of sequence was even more sensitive than that targeting 101 bp of sequence by a 3-log scale. The target DNA fragments were also specifically amplified from all GM labeled food samples except for one item we tested when 35F1-R1 primer set was applied. A reference plasmid pGMmaize (3 kb) including the smaller PCR products for p35S, tNOS, p35S-hsp70 intron, and the zSSIIb gene was constructed for real-time PCR (RT-PCR). The linearity of standard curves was confirmed by using diluents ranging from 2×101~105 copies of pGMmaize and the R2 values ranged from 0.999~1.000. In the RT-PCR, the detection limit using the novel primer/probe sets was 5 pg of genomic DNA from MON810 line indicating that the primer sets targeting the smaller regions (80 or 81 bp) could be used for highly sensitive detection of foreign DNA fragments from GM maize in processed foods. PMID:24471096

  2. Quantitative trait loci mapping and genetic dissection for lint percentage in upland cotton (Gossypium hirsutum).

    Science.gov (United States)

    Wang, Min; Li, Chengqi; Wang, Qinglian

    2014-08-01

    Lint percentage is an important character of cotton yield components and it is also correlated with cotton fibre development. In this study, we used a high lint percentage variety, Baimian1, and a low lint percentage, TM-1 genetic standard for Gossypium hirsutum, as parents to construct a mapping populations in upland cotton (G. hirsutum). A quantitative trait locus/loci (QTL) analysis of lint percentage was performed by using two mapping procedures; composite interval mapping (CIM), inclusive composite interval mapping (ICIM) and the F2:3 populations in 2 years. Six main-effect QTL (M-QTL) for lint percentage (four significant and two suggestive) were detected in both years by CIM, and were located on chr. 3, chr. 19, chr. 26 and chr. 5/chr. 19. Of the six QTL, marker intervals and favourable gene sources of the significant M-QTL, qLP-3(2010) and qLP-3(2011) were consistent. These QTL were also detected by ICIM, and therefore, should preferentially be used for markerassisted selection (MAS) of lint percentage. Another M-QTL, qLP-19(2010), was detected by two mapping procedures, and it could also be a candidate for MAS. We detected the interaction between two M-QTL and environment, and 11 epistatic QTL (E-QTL) and their interaction with environment by using ICIM. The study also found two EST-SSRs, NAU1187 and NAU1255, linked to M-QTL for lint percentage that could be candidate markers affecting cotton fibre development.

  3. The quantitative genetics of incipient speciation: heritability and genetic correlations of skeletal traits in populations of diverging Favia fragum ecomorphs.

    Science.gov (United States)

    Carlon, David B; Budd, Ann F; Lippé, Catherine; Andrew, Rose L

    2011-12-01

    Recent speciation events provide potential opportunities to understand the microevolution of reproductive isolation. We used a marker-based approach and a common garden to estimate the additive genetic variation in skeletal traits in a system of two ecomorphs within the coral species Favia fragum: a Tall ecomorph that is a seagrass specialist, and a Short ecomorph that is most abundant on coral reefs. Considering both ecomorphs, we found significant narrow-sense heritability (h(2) ) in a suite of measurements that define corallite architecture, and could partition additive and nonadditive variation for some traits. We found positive genetic correlations for homologous height and length measurements among different types of vertical plates (costosepta) within corallites, but negative correlations between height and length within, as well as between costosepta. Within ecomorphs, h(2) estimates were generally lower, compared to the combined ecomorph analysis. Marker-based estimates of h(2) were comparable to broad-sense heritability (H) obtained from parent-offspring regressions in a common garden for most traits, and similar genetic co-variance matrices for common garden and wild populations may indicate relatively small G × E interactions. The patterns of additive genetic variation in this system invite hypotheses of divergent selection or genetic drift as potential evolutionary drivers of reproductive isolation.

  4. Quantitative Trait Locus and Genetical Genomics Analysis Identifies Putatively Causal Genes for Fecundity and Brooding in the Chicken

    Directory of Open Access Journals (Sweden)

    Martin Johnsson

    2016-02-01

    Full Text Available Life history traits such as fecundity are important to evolution because they make up components of lifetime fitness. Due to their polygenic architectures, such traits are difficult to investigate with genetic mapping. Therefore, little is known about their molecular basis. One possible way toward finding the underlying genes is to map intermediary molecular phenotypes, such as gene expression traits. We set out to map candidate quantitative trait genes for egg fecundity in the chicken by combining quantitative trait locus mapping in an advanced intercross of wild by domestic chickens with expression quantitative trait locus mapping in the same birds. We measured individual egg fecundity in 232 intercross chickens in two consecutive trials, the second one aimed at measuring brooding. We found 12 loci for different aspects of egg fecundity. We then combined the genomic confidence intervals of these loci with expression quantitative trait loci from bone and hypothalamus in the same intercross. Overlaps between egg loci and expression loci, and trait–gene expression correlations identify 29 candidates from bone and five from hypothalamus. The candidate quantitative trait genes include fibroblast growth factor 1, and mitochondrial ribosomal proteins L42 and L32. In summary, we found putative quantitative trait genes for egg traits in the chicken that may have been affected by regulatory variants under chicken domestication. These represent, to the best of our knowledge, some of the first candidate genes identified by genome-wide mapping for life history traits in an avian species.

  5. Quantitative Trait Locus and Genetical Genomics Analysis Identifies Putatively Causal Genes for Fecundity and Brooding in the Chicken.

    Science.gov (United States)

    Johnsson, Martin; Jonsson, Kenneth B; Andersson, Leif; Jensen, Per; Wright, Dominic

    2015-12-04

    Life history traits such as fecundity are important to evolution because they make up components of lifetime fitness. Due to their polygenic architectures, such traits are difficult to investigate with genetic mapping. Therefore, little is known about their molecular basis. One possible way toward finding the underlying genes is to map intermediary molecular phenotypes, such as gene expression traits. We set out to map candidate quantitative trait genes for egg fecundity in the chicken by combining quantitative trait locus mapping in an advanced intercross of wild by domestic chickens with expression quantitative trait locus mapping in the same birds. We measured individual egg fecundity in 232 intercross chickens in two consecutive trials, the second one aimed at measuring brooding. We found 12 loci for different aspects of egg fecundity. We then combined the genomic confidence intervals of these loci with expression quantitative trait loci from bone and hypothalamus in the same intercross. Overlaps between egg loci and expression loci, and trait-gene expression correlations identify 29 candidates from bone and five from hypothalamus. The candidate quantitative trait genes include fibroblast growth factor 1, and mitochondrial ribosomal proteins L42 and L32. In summary, we found putative quantitative trait genes for egg traits in the chicken that may have been affected by regulatory variants under chicken domestication. These represent, to the best of our knowledge, some of the first candidate genes identified by genome-wide mapping for life history traits in an avian species.

  6. Calculation of measurement uncertainty in quantitative analysis of genetically modified organisms using intermediate precision--a practical approach.

    Science.gov (United States)

    Zel, Jana; Gruden, Kristina; Cankar, Katarina; Stebih, Dejan; Blejec, Andrej

    2007-01-01

    Quantitative characterization of nucleic acids is becoming a frequently used method in routine analysis of biological samples, one use being the detection of genetically modified organisms (GMOs). Measurement uncertainty is an important factor to be considered in these analyses, especially where precise thresholds are set in regulations. Intermediate precision, defined as a measure between repeatability and reproducibility, is a parameter describing the real situation in laboratories dealing with quantitative aspects of molecular biology methods. In this paper, we describe the top-down approach to calculating measurement uncertainty, using intermediate precision, in routine GMO testing of food and feed samples. We illustrate its practicability in defining compliance of results with regulations. The method described is also applicable to other molecular methods for a variety of laboratory diagnostics where quantitative characterization of nucleic acids is needed.

  7. WOMBAT——A tool for mixed model analyses in quantitative genetics by restricted maximum likelihood (REML)

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    WOMBAT is a software package for quantitative genetic analyses of continuous traits, fitting a linear, mixed model;estimates of covariance components and the resulting genetic parameters are obtained by restricted maximum likelihood. A wide range of models, comprising numerous traits, multiple fixed and random effects, selected genetic covariance structures, random regression models and reduced rank estimation are accommodated. WOMBAT employs up-to-date numerical and computational methods. Together with the use of efficient compilers, this generates fast executable programs, suitable for large scale analyses.Use of WOMBAT is illustrated for a bivariate analysis. The package consists of the executable program, available for LINUX and WINDOWS environments, manual and a set of worked example, and can be downloaded free of charge from http://agbu.une.edu.au/~kmeyer/wombat.html

  8. Quantitative Genetic Analysis for Yield and Yield Components in Boro Rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Supriyo CHAKRABORTY

    2010-03-01

    Full Text Available Twenty-nine genotypes of boro rice (Oryza sativa L. were grown in a randomized block design with three replications in plots of 4m x 1m with a crop geometry of 20 cm x 20 cm between November-April, in Regional Agricultural Research Station, Nagaon, India. Quantitative data were collected on five randomly selected plants of each genotype per replication for yield/plant, and six other yield components, namely plant height, panicles/plant, panicle length, effective grains/panicle, 100 grain weight and harvest index. Mean values of the characters for each genotype were used for analysis of variance and covariance to obtain information on genotypic and phenotypic correlation along with coheritability between two characters. Path analyses were carried out to estimate the direct and indirect effects of boro rice�s yield components. The objective of the study was to identify the characters that mostly influence the yield for increasing boro rice productivity through breeding program. Correlation analysis revealed significant positive genotypic correlation of yield/plant with plant height (0.21, panicles/plant (0.53, panicle length (0.53, effective grains/panicle (0.57 and harvest index (0.86. Path analysis based on genotypic correlation coefficients elucidated high positive direct effect of harvest index (0.8631, panicle length (0.2560 and 100 grain weight (0.1632 on yield/plant with a residual effect of 0.33. Plant height and panicles/plant recorded high positive indirect effect on yield/plant via harvest index whereas effective grains/panicle on yield/plant via harvest index and panicle length. Results of the present study suggested that five component characters, namely harvest index, effective grains/plant, panicle length, panicles/plant and plant height influenced the yield of boro rice. A genotype with higher magnitude of these component characters could be either selected from the existing genotypes or evolved by breeding program for genetic

  9. The genetic variance for multiple linked quantitative trait loci conditional on marker information in a crossed population.

    Science.gov (United States)

    Matsuda, H; Iwaisaki, H

    2002-01-01

    In the prediction of genetic values and quantitative trait loci (QTLs) mapping via the mixed model method incorporating marker information in animal populations, it is important to model the genetic variance for individuals with an arbitrary pedigree structure. In this study, for a crossed population originated from different genetic groups such as breeds or outbred strains, the variance of additive genetic values for multiple linked QTLs that are contained in a chromosome segment, especially the segregation variance, is investigated assuming the use of marker data. The variance for a finite number of QTLs in one chromosomal segment is first examined for the crossed population with the general pedigree. Then, applying the concept of the expectation of identity-by-descent proportion, an approximation to the mean of the conditional probabilities for the linked QTLs over all loci is obtained, and using it an expression for the variance in the case of an infinite number of linked QTLs marked by flanking markers is derived. It appears that the approach presented can be useful in the segment mapping using, and in the genetic evaluation of, crosses with general pedigrees in the population of concern. The calculation of the segregation variance through the current approach is illustrated numerically, using a small data-set.

  10. Quantitative genetics theory for genomic selection and efficiency of breeding value prediction in open-pollinated populations

    Directory of Open Access Journals (Sweden)

    José Marcelo Soriano Viana

    2016-06-01

    Full Text Available ABSTRACT To date, the quantitative genetics theory for genomic selection has focused mainly on the relationship between marker and additive variances assuming one marker and one quantitative trait locus (QTL. This study extends the quantitative genetics theory to genomic selection in order to prove that prediction of breeding values based on thousands of single nucleotide polymorphisms (SNPs depends on linkage disequilibrium (LD between markers and QTLs, assuming dominance. We also assessed the efficiency of genomic selection in relation to phenotypic selection, assuming mass selection in an open-pollinated population, all QTLs of lower effect, and reduced sample size, based on simulated data. We show that the average effect of a SNP substitution is proportional to LD measure and to average effect of a gene substitution for each QTL that is in LD with the marker. Weighted (by SNP frequencies and unweighted breeding value predictors have the same accuracy. Efficiency of genomic selection in relation to phenotypic selection is inversely proportional to heritability. Accuracy of breeding value prediction is not affected by the dominance degree and the method of analysis, however, it is influenced by LD extent and magnitude of additive variance. The increase in the number of markers asymptotically improved accuracy of breeding value prediction. The decrease in the sample size from 500 to 200 did not reduce considerably accuracy of breeding value prediction.

  11. PCR-free quantitative detection of genetically modified organism from raw materials. An electrochemiluminescence-based bio bar code method.

    Science.gov (United States)

    Zhu, Debin; Tang, Yabing; Xing, Da; Chen, Wei R

    2008-05-15

    A bio bar code assay based on oligonucleotide-modified gold nanoparticles (Au-NPs) provides a PCR-free method for quantitative detection of nucleic acid targets. However, the current bio bar code assay requires lengthy experimental procedures including the preparation and release of bar code DNA probes from the target-nanoparticle complex and immobilization and hybridization of the probes for quantification. Herein, we report a novel PCR-free electrochemiluminescence (ECL)-based bio bar code assay for the quantitative detection of genetically modified organism (GMO) from raw materials. It consists of tris-(2,2'-bipyridyl) ruthenium (TBR)-labeled bar code DNA, nucleic acid hybridization using Au-NPs and biotin-labeled probes, and selective capture of the hybridization complex by streptavidin-coated paramagnetic beads. The detection of target DNA is realized by direct measurement of ECL emission of TBR. It can quantitatively detect target nucleic acids with high speed and sensitivity. This method can be used to quantitatively detect GMO fragments from real GMO products.

  12. Study of quantitative genetics of gum arabic production complicated by variability in ploidy level of Acacia senegal (L.) Willd

    DEFF Research Database (Denmark)

    Diallo, Adja Madjiguene; Nielsen, Lene Rostgaard; Hansen, Jon Kehlet;

    2015-01-01

    sibs, while the open-pollinated families of polyploids showed low variation within families. The difference in sibling relationship observed between ploidy levels complicated estimation of genetic parameters. However, based on the diploid trees, we conclude that heritability in gum arabic production......Gum arabic is an important international commodity produced by trees of Acacia senegal across Sahelian Africa, but documented results of breeding activities are limited. The objective of this study was to provide reliable estimates of quantitative genetic parameters in order to shed light...... on the breeding potential for improvement of gum yield and quality. For this purpose, we measured growth on 617 offspring from 60 open-pollinated trees after 18 years, and gum yield and quality based on two seasons, 18 and 19 years after establishment. Genotyping with eight microsatellite markers revealed...

  13. Quantitative Seq-LGS: Genome-Wide Identification of Genetic Drivers of Multiple Phenotypes in Malaria Parasites

    KAUST Repository

    Abkallo, Hussein M.

    2016-10-01

    Identifying the genetic determinants of phenotypes that impact on disease severity is of fundamental importance for the design of new interventions against malaria. Traditionally, such discovery has relied on labor-intensive approaches that require significant investments of time and resources. By combining Linkage Group Selection (LGS), quantitative whole genome population sequencing and a novel mathematical modeling approach (qSeq-LGS), we simultaneously identified multiple genes underlying two distinct phenotypes, identifying novel alleles for growth rate and strain specific immunity (SSI), while removing the need for traditionally required steps such as cloning, individual progeny phenotyping and marker generation. The detection of novel variants, verified by experimental phenotyping methods, demonstrates the remarkable potential of this approach for the identification of genes controlling selectable phenotypes in malaria and other apicomplexan parasites for which experimental genetic crosses are amenable.

  14. High-Density Genetic Linkage Map Construction and Quantitative Trait Locus Mapping for Hawthorn (Crataegus pinnatifida Bunge).

    Science.gov (United States)

    Zhao, Yuhui; Su, Kai; Wang, Gang; Zhang, Liping; Zhang, Jijun; Li, Junpeng; Guo, Yinshan

    2017-07-14

    Genetic linkage maps are an important tool in genetic and genomic research. In this study, two hawthorn cultivars, Qiujinxing and Damianqiu, and 107 progenies from a cross between them were used for constructing a high-density genetic linkage map using the 2b-restriction site-associated DNA (2b-RAD) sequencing method, as well as for mapping quantitative trait loci (QTL) for flavonoid content. In total, 206,411,693 single-end reads were obtained, with an average sequencing depth of 57× in the parents and 23× in the progeny. After quality trimming, 117,896 high-quality 2b-RAD tags were retained, of which 42,279 were polymorphic; of these, 12,951 markers were used for constructing the genetic linkage map. The map contained 17 linkage groups and 3,894 markers, with a total map length of 1,551.97 cM and an average marker interval of 0.40 cM. QTL mapping identified 21 QTLs associated with flavonoid content in 10 linkage groups, which explained 16.30-59.00% of the variance. This is the first high-density linkage map for hawthorn, which will serve as a basis for fine-scale QTL mapping and marker-assisted selection of important traits in hawthorn germplasm and will facilitate chromosome assignment for hawthorn whole-genome assemblies in the future.

  15. Quantitative genetic analysis indicates natural selection on leaf phenotypes across wild tomato species (Solanum sect. Lycopersicon; Solanaceae).

    Science.gov (United States)

    Muir, Christopher D; Pease, James B; Moyle, Leonie C

    2014-12-01

    Adaptive evolution requires both raw genetic material and an accessible path of high fitness from one fitness peak to another. In this study, we used an introgression line (IL) population to map quantitative trait loci (QTL) for leaf traits thought to be associated with adaptation to precipitation in wild tomatoes (Solanum sect. Lycopersicon; Solanaceae). A QTL sign test showed that several traits likely evolved under directional natural selection. Leaf traits correlated across species do not share a common genetic basis, consistent with a scenario in which selection maintains trait covariation unconstrained by pleiotropy or linkage disequilibrium. Two large effect QTL for stomatal distribution colocalized with key genes in the stomatal development pathway, suggesting promising candidates for the molecular bases of adaptation in these species. Furthermore, macroevolutionary transitions between vastly different stomatal distributions may not be constrained when such large-effect mutations are available. Finally, genetic correlations between stomatal traits measured in this study and data on carbon isotope discrimination from the same ILs support a functional hypothesis that the distribution of stomata affects the resistance to CO2 diffusion inside the leaf, a trait implicated in climatic adaptation in wild tomatoes. Along with evidence from previous comparative and experimental studies, this analysis indicates that leaf traits are an important component of climatic niche adaptation in wild tomatoes and demonstrates that some trait transitions between species could have involved few, large-effect genetic changes, allowing rapid responses to new environmental conditions.

  16. The genetic basis of adaptive population differentiation: A quantitative trait locus analysis of fitness traits in two wild barley populations from contrasting habitats

    NARCIS (Netherlands)

    Verhoeven, K.J.F.; Vanhala, T.K.; Biere, A.; Nevo, E.; Damme, van J.M.M.

    2004-01-01

    We used a quantitative trait locus (QTL) approach to study the genetic basis of population differentiation in wild barley, Hordeum spontaneum. Several ecotypes are recognized in this model species, and population genetic studies and reciprocal transplant experiments have indicated the role of local

  17. Beyond Punnett Squares: Student Word Association and Explanations of Phenotypic Variation through an Integrative Quantitative Genetics Unit Investigating Anthocyanin Inheritance and Expression in "Brassica rapa" Fast Plants

    Science.gov (United States)

    Batzli, Janet M.; Smith, Amber R.; Williams, Paul H.; McGee, Seth A.; Dosa, Katalin; Pfammatter, Jesse

    2014-01-01

    Genetics instruction in introductory biology is often confined to Mendelian genetics and avoids the complexities of variation in quantitative traits. Given the driving question "What determines variation in phenotype (Pv)? (Pv=Genotypic variation Gv + environmental variation Ev)," we developed a 4-wk unit for an inquiry-based laboratory…

  18. Beyond Punnett Squares: Student Word Association and Explanations of Phenotypic Variation through an Integrative Quantitative Genetics Unit Investigating Anthocyanin Inheritance and Expression in "Brassica rapa" Fast Plants

    Science.gov (United States)

    Batzli, Janet M.; Smith, Amber R.; Williams, Paul H.; McGee, Seth A.; Dosa, Katalin; Pfammatter, Jesse

    2014-01-01

    Genetics instruction in introductory biology is often confined to Mendelian genetics and avoids the complexities of variation in quantitative traits. Given the driving question "What determines variation in phenotype (Pv)? (Pv=Genotypic variation Gv + environmental variation Ev)," we developed a 4-wk unit for an inquiry-based laboratory…

  19. Quantitative determination of casein genetic variants in goat milk: Application in Girgentana dairy goat breed.

    Science.gov (United States)

    Montalbano, Maria; Segreto, Roberta; Di Gerlando, Rosalia; Mastrangelo, Salvatore; Sardina, Maria Teresa

    2016-02-01

    The study was conducted to develop a high-performance liquid chromatographic (HPLC) method to quantify casein genetic variants (αs2-, β-, and κ-casein) in milk of homozygous individuals of Girgentana goat breed. For calibration experiments, pure genetic variants were extracted from individual milk samples of animals with known genotypes. The described HPLC approach was precise, accurate and highly suitable for quantification of goat casein genetic variants of homozygous individuals. The amount of each casein per allele was: αs2-casein A = 2.9 ± 0.8 g/L and F = 1.8 ± 0.4 g/L; β-casein C = 3.0 ± 0.8 g/L and C1 = 2.0 ± 0.7 g/L and κ-casein A = 1.6 ± 0.3 g/L and B = 1.1 ± 0.2 g/L. A good correlation was found between the quantities of αs2-casein genetic variants A and F, and β-casein C and C1 with other previously described method. The main important result was obtained for κ-casein because, till now, no data were available on quantification of single genetic variants for this protein.

  20. Quantitative genetics of migration syndromes: a study of two barn swallow populations.

    Science.gov (United States)

    Teplitsky, C; Mouawad, N G; Balbontin, J; De Lope, F; Møller, A P

    2011-09-01

    Migration is a complex trait although little is known about genetic correlations between traits involved in such migration syndromes. To assess the migratory responses to climate change, we need information on genetic constraints on evolutionary potential of arrival dates in migratory birds. Using two long-term data sets on barn swallows Hirundo rustica (from Spain and Denmark), we show for the first time in wild populations that spring arrival dates are phenotypically and genetically correlated with morphological and life history traits. In the Danish population, length of outermost tail feathers and wing length were negatively genetically correlated with arrival date. In the Spanish population, we found a negative genetic correlation between arrival date and time elapsed between arrival date and laying date, constraining response to selection that favours both early arrival and shorter delays. This results in a decreased rate of adaptation, not because of constraints on arrival date, but constraints on delay before breeding, that is, a trait that can be equally important in the context of climate change.

  1. Logistics for Working Together to Facilitate Genomic/Quantitative Genetic Prediction

    Science.gov (United States)

    The incorporation of DNA tests into the national cattle evaluation system will require estimation of variances of and covariances among the additive genetic components of the DNA tests and the phenotypic traits they are intended to predict. Populations with both DNA test results and phenotypes will ...

  2. [Attempt at quantitative estimation of genetic effects of chemical pollution of atmospheric air in urban populations].

    Science.gov (United States)

    Antypenko, Ie M; Kohut, N M; Oleksiienko, P L

    1992-01-01

    Epidemiological investigation of spontaneous abortions and congenital anomalies in three towns of Ukraine has shown that mutation rate in Mariupol, the most contaminated town, as compared with relatively clean town is essentially higher. Genetical consequences due to environmental chemical pollution in Mariupol proved to be equivalent to the chronic influence of ionizing radiation for 30 years in the dose of 230 REM.

  3. Genetic analysis identifies quantitative trait loci controlling rosette mineral concentrations in Arabidopsis thaliana under drought

    NARCIS (Netherlands)

    Ghandilyan, A.; Barboza, L.; Tisne, S.; Granier, C.; Reymond, M.; Koornneef, M.; Schat, H.; Aarts, M.G.M.

    2009-01-01

    • Rosettes of 25 Arabidopsis thaliana accessions and an Antwerp-1 (An-1) × Landsberg erecta (Ler) population of recombinant inbred lines (RILs) grown in optimal watering conditions (OWC) and water deficit conditions (WDC) were analysed for mineral concentrations to identify genetic loci involved in

  4. Effects of long-term averaging of quantitative blood pressure traits on the detection of genetic associations.

    Science.gov (United States)

    Ganesh, Santhi K; Chasman, Daniel I; Larson, Martin G; Guo, Xiuqing; Verwoert, Germain; Bis, Joshua C; Gu, Xiangjun; Smith, Albert V; Yang, Min-Lee; Zhang, Yan; Ehret, Georg; Rose, Lynda M; Hwang, Shih-Jen; Papanicolau, George J; Sijbrands, Eric J; Rice, Kenneth; Eiriksdottir, Gudny; Pihur, Vasyl; Ridker, Paul M; Vasan, Ramachandran S; Newton-Cheh, Christopher; Raffel, Leslie J; Amin, Najaf; Rotter, Jerome I; Liu, Kiang; Launer, Lenore J; Xu, Ming; Caulfield, Mark; Morrison, Alanna C; Johnson, Andrew D; Vaidya, Dhananjay; Dehghan, Abbas; Li, Guo; Bouchard, Claude; Harris, Tamara B; Zhang, He; Boerwinkle, Eric; Siscovick, David S; Gao, Wei; Uitterlinden, Andre G; Rivadeneira, Fernando; Hofman, Albert; Willer, Cristen J; Franco, Oscar H; Huo, Yong; Witteman, Jacqueline C M; Munroe, Patricia B; Gudnason, Vilmundur; Palmas, Walter; van Duijn, Cornelia; Fornage, Myriam; Levy, Daniel; Psaty, Bruce M; Chakravarti, Aravinda

    2014-07-03

    Blood pressure (BP) is a heritable, quantitative trait with intraindividual variability and susceptibility to measurement error. Genetic studies of BP generally use single-visit measurements and thus cannot remove variability occurring over months or years. We leveraged the idea that averaging BP measured across time would improve phenotypic accuracy and thereby increase statistical power to detect genetic associations. We studied systolic BP (SBP), diastolic BP (DBP), mean arterial pressure (MAP), and pulse pressure (PP) averaged over multiple years in 46,629 individuals of European ancestry. We identified 39 trait-variant associations across 19 independent loci (p < 5 × 10(-8)); five associations (in four loci) uniquely identified by our LTA analyses included those of SBP and MAP at 2p23 (rs1275988, near KCNK3), DBP at 2q11.2 (rs7599598, in FER1L5), and PP at 6p21 (rs10948071, near CRIP3) and 7p13 (rs2949837, near IGFBP3). Replication analyses conducted in cohorts with single-visit BP data showed positive replication of associations and a nominal association (p < 0.05). We estimated a 20% gain in statistical power with long-term average (LTA) as compared to single-visit BP association studies. Using LTA analysis, we identified genetic loci influencing BP. LTA might be one way of increasing the power of genetic associations for continuous traits in extant samples for other phenotypes that are measured serially over time. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  5. Quantitative genetics, version 3.0: where have we gone since 1987 and where are we headed?

    Science.gov (United States)

    Walsh, Bruce

    2009-06-01

    The last 20 years since the previous World Congress have seen tremendous advancements in quantitative genetics, in large part due to the advancements in genomics, computation, and statistics. One central theme of this last 20 years has been the exploitation of the vast harvest of molecular markers--examples include QTL and association mapping, marker-assisted selection and introgression, scans for loci under selection, and methods to infer degree of coancestry, population membership, and past demographic history. One consequence of this harvest is that phenotyping, rather than genotyping, is now the bottleneck in molecular quantitative genetics studies. Equally important have been advances in statistics, many developed to effectively use this treasure trove of markers. Computational improvements in statistics, and in particular Markov Chain Monte Carlo (MCMC) methods, have facilitated many of these methods, as have significantly improved computational abilities for mixed models. Indeed, one could argue that mixed models have had at least as great an impact in quantitative genetics as have molecular markers. A final important theme over the past 20 years has been the fusion of population and quantitative genetics, in particular the importance of coalescence theory with its applications for association mapping, scans for loci under selection, and estimation of the demography history of a population. What are the future directions of the field? While obviously important surprises await us, the general trend seems to be moving into higher and higher dimensional traits and, in general, dimensional considerations. We have methods to deal with infinite-dimensional traits indexed by a single variable (such as a trait varying over time), but the future will require us to treat much more complex objects, such as infinite-dimensional traits indexed over several variables and with graphs and dynamical networks. A second important direction is the interfacing of quantitative

  6. Development and evaluation of event-specific quantitative PCR method for genetically modified soybean A2704-12.

    Science.gov (United States)

    Takabatake, Reona; Akiyama, Hiroshi; Sakata, Kozue; Onishi, Mari; Koiwa, Tomohiro; Futo, Satoshi; Minegishi, Yasutaka; Teshima, Reiko; Mano, Junichi; Furui, Satoshi; Kitta, Kazumi

    2011-01-01

    A novel real-time PCR-based analytical method was developed for the event-specific quantification of a genetically modified (GM) soybean event; A2704-12. During the plant transformation, DNA fragments derived from pUC19 plasmid were integrated in A2704-12, and the region was found to be A2704-12 specific. The pUC19-derived DNA sequences were used as primers for the specific detection of A2704-12. We first tried to construct a standard plasmid for A2704-12 quantification using pUC19. However, non-specific signals appeared with both qualitative and quantitative PCR analyses using the specific primers with pUC19 as a template, and we then constructed a plasmid using pBR322. The conversion factor (C(f)), which is required to calculate the amount of the genetically modified organism (GMO), was experimentally determined with two real-time PCR instruments, the Applied Biosystems 7900HT and the Applied Biosystems 7500. The determined C(f) values were both 0.98. The quantitative method was evaluated by means of blind tests in multi-laboratory trials using the two real-time PCR instruments. The limit of quantitation for the method was estimated to be 0.1%. The trueness and precision were evaluated as the bias and reproducibility of relative standard deviation (RSD(R)), and the determined bias and RSD(R) values for the method were each less than 20%. These results suggest that the developed method would be suitable for practical analyses for the detection and quantification of A2704-12.

  7. [Development and validation of event-specific quantitative PCR method for genetically modified maize LY038].

    Science.gov (United States)

    Mano, Junichi; Masubuchi, Tomoko; Hatano, Shuko; Futo, Satoshi; Koiwa, Tomohiro; Minegishi, Yasutaka; Noguchi, Akio; Kondo, Kazunari; Akiyama, Hiroshi; Teshima, Reiko; Kurashima, Takeyo; Takabatake, Reona; Kitta, Kazumi

    2013-01-01

    In this article, we report a novel real-time PCR-based analytical method for quantitation of the GM maize event LY038. We designed LY038-specific and maize endogenous reference DNA-specific PCR amplifications. After confirming the specificity and linearity of the LY038-specific PCR amplification, we determined the conversion factor required to calculate the weight-based content of GM organism (GMO) in a multilaboratory evaluation. Finally, in order to validate the developed method, an interlaboratory collaborative trial according to the internationally harmonized guidelines was performed with blind DNA samples containing LY038 at the mixing levels of 0, 0.5, 1.0, 5.0 and 10.0%. The precision of the method was evaluated as the RSD of reproducibility (RSDR), and the values obtained were all less than 25%. The limit of quantitation of the method was judged to be 0.5% based on the definition of ISO 24276 guideline. The results from the collaborative trial suggested that the developed quantitative method would be suitable for practical testing of LY038 maize.

  8. A quantitative genetic study of starvation resistance at different geographic scales in natural populations of Drosophila melanogaster.

    Science.gov (United States)

    Goenaga, Julieta; José Fanara, Juan; Hasson, Esteban

    2010-08-01

    Food shortage is a stress factor that commonly affects organisms in nature. Resistance to food shortage or starvation resistance (SR) is a complex quantitative trait with direct implications on fitness. However, surveys of natural genetic variation in SR at different geographic scales are scarce. Here, we have measured variation in SR in sets of lines derived from nine natural populations of Drosophila melanogaster collected in western Argentina. Our study shows that within population variation explained a larger proportion of overall phenotypic variance (80%) than among populations (7·2%). We also noticed that an important fraction of variation was sex-specific. Overall females were more resistant to starvation than males; however, the magnitude of the sexual dimorphism (SD) in SR varied among lines and explained a significant fraction of phenotypic variance in all populations. Estimates of cross-sex genetic correlations suggest that the genetic architecture of SR is only partially shared between sexes in the populations examined, thus, facilitating further evolution of the SD.

  9. Quantitative genome-wide genetic interaction screens reveal global epistatic relationships of protein complexes in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Mohan Babu

    2014-02-01

    Full Text Available Large-scale proteomic analyses in Escherichia coli have documented the composition and physical relationships of multiprotein complexes, but not their functional organization into biological pathways and processes. Conversely, genetic interaction (GI screens can provide insights into the biological role(s of individual gene and higher order associations. Combining the information from both approaches should elucidate how complexes and pathways intersect functionally at a systems level. However, such integrative analysis has been hindered due to the lack of relevant GI data. Here we present a systematic, unbiased, and quantitative synthetic genetic array screen in E. coli describing the genetic dependencies and functional cross-talk among over 600,000 digenic mutant combinations. Combining this epistasis information with putative functional modules derived from previous proteomic data and genomic context-based methods revealed unexpected associations, including new components required for the biogenesis of iron-sulphur and ribosome integrity, and the interplay between molecular chaperones and proteases. We find that functionally-linked genes co-conserved among γ-proteobacteria are far more likely to have correlated GI profiles than genes with divergent patterns of evolution. Overall, examining bacterial GIs in the context of protein complexes provides avenues for a deeper mechanistic understanding of core microbial systems.

  10. Genetic diversity of upland rice germplasm in Malaysia based on quantitative traits.

    Science.gov (United States)

    Sohrabi, M; Rafii, M Y; Hanafi, M M; Siti Nor Akmar, A; Latif, M A

    2012-01-01

    Genetic diversity is prerequisite for any crop improvement program as it helps in the development of superior recombinants. Fifty Malaysian upland rice accessions were evaluated for 12 growth traits, yield and yield components. All of the traits were significant and highly significant among the accessions. The higher magnitudes of genotypic and phenotypic coefficients of variation were recorded for flag leaf length-to-width ratio, spikelet fertility, and days to flowering. High heritability along with high genetic advance was registered for yield of plant, days to flowering, and flag leaf length-to-width ratio suggesting preponderance of additive gene action in the gene expression of these characters. Plant height showed highly significant positive correlation with most of the traits. According to UPGMA cluster analysis all accessions were clustered into six groups. Twelve morphological traits provided around 77% of total variation among the accessions.

  11. Genetic Diversity of Upland Rice Germplasm in Malaysia Based on Quantitative Traits

    Directory of Open Access Journals (Sweden)

    M. Sohrabi

    2012-01-01

    Full Text Available Genetic diversity is prerequisite for any crop improvement program as it helps in the development of superior recombinants. Fifty Malaysian upland rice accessions were evaluated for 12 growth traits, yield and yield components. All of the traits were significant and highly significant among the accessions. The higher magnitudes of genotypic and phenotypic coefficients of variation were recorded for flag leaf length-to-width ratio, spikelet fertility, and days to flowering. High heritability along with high genetic advance was registered for yield of plant, days to flowering, and flag leaf length-to-width ratio suggesting preponderance of additive gene action in the gene expression of these characters. Plant height showed highly significant positive correlation with most of the traits. According to UPGMA cluster analysis all accessions were clustered into six groups. Twelve morphological traits provided around 77% of total variation among the accessions.

  12. Estimates of genetic variability and association studies in quantitative plant traits of Eruca spp. landraces

    Directory of Open Access Journals (Sweden)

    Bozokalfa Kadri Mehmet

    2010-01-01

    Full Text Available Despite the increasing of economical importance of rocket plant limited information is available on genetic variability for the agronomic traits among Eruca spp. Hence, heritability and association studies of plant properties are necessities for a successful further rocket breeding programme. The objective of this study was to examine phenotypic and genotypic variability, broad sense heritability, genetic advance, genotypic and phenotypic correlation and mean for agronomic traits of rocket plant. The magnitude of phenotypic coefficient of variation values for all the traits were higher than the corresponding values and broad sense heritability estimates exceeded 65% for all traits. Phenotypic coefficients of variability (PCV ranged from 7.60 to 34.34% and genotypic coefficients of variability (GCV ranged between 5.58% for petiole thickness and 34.30% for plant weight. The results stated that plant weight, siliqua width, seed per siliqua and seed weight could be useful character for improved Eruca spp. breeding programme.

  13. Dissection of Genetic Effects of Quantitative Trait Loci (QTL) in Transgenic Cotton

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong-shan

    2008-01-01

    @@ When alien DNA inserts into cotton genome in multi-copy manner,several QTL in cotton genome are disrupted,which are called dQTL in this study.Transgenic mutant line is near-isogenic to its recipient which is divergent for the dQTL from remaining QTL.So,a set of data from a transgenic QTL mutant line produced by Agrobacterium-mediated transformation,30074,its recipient,their F1 hybrids between them,and three elite lines were analyzed under a modified additive-dominance model with genotype by environment interactions in three different environments to dissect the genetic effects due to dQTL from the whole genome based genetic effects.

  14. Quantitative genetic variation for oviposition preference with respect to phenylthiocarbamide in Drosophila melanogaster.

    Science.gov (United States)

    Possidente, B; Mustafa, M; Collins, L

    1999-05-01

    Seven isogenic strains of Drosophila melanogaster were assayed for oviposition preference on food with phenylthiocarbamide (PTC) versus plain food. There was significant variation among strains for the percentage of eggs oviposited on each medium, ranging from 70 +/- 4% (SE) preference for plain food to no significant preference. Reciprocal hybrid, backcross, and F2 generations derived from two extreme parent strains revealed significant additive and nonadditive genetic variation but no evidence of maternal, paternal, or sex-chromosome effects.

  15. Kernel Approach for Modeling Interaction Effects in Genetic Association Studies of Complex Quantitative Traits.

    Science.gov (United States)

    Broadaway, K Alaine; Duncan, Richard; Conneely, Karen N; Almli, Lynn M; Bradley, Bekh; Ressler, Kerry J; Epstein, Michael P

    2015-07-01

    The etiology of complex traits likely involves the effects of genetic and environmental factors, along with complicated interaction effects between them. Consequently, there has been interest in applying genetic association tests of complex traits that account for potential modification of the genetic effect in the presence of an environmental factor. One can perform such an analysis using a joint test of gene and gene-environment interaction. An optimal joint test would be one that remains powerful under a variety of models ranging from those of strong gene-environment interaction effect to those of little or no gene-environment interaction effect. To fill this demand, we have extended a kernel machine based approach for association mapping of multiple SNPs to consider joint tests of gene and gene-environment interaction. The kernel-based approach for joint testing is promising, because it incorporates linkage disequilibrium information from multiple SNPs simultaneously in analysis and permits flexible modeling of interaction effects. Using simulated data, we show that our kernel machine approach typically outperforms the traditional joint test under strong gene-environment interaction models and further outperforms the traditional main-effect association test under models of weak or no gene-environment interaction effects. We illustrate our test using genome-wide association data from the Grady Trauma Project, a cohort of highly traumatized, at-risk individuals, which has previously been investigated for interaction effects. © 2015 WILEY PERIODICALS, INC.

  16. Quantitative genetics of plumage color: lifetime effects of early nest environment on a colorful sexual signal

    Science.gov (United States)

    Hubbard, Joanna K; Jenkins, Brittany R; Safran, Rebecca J

    2015-01-01

    Phenotypic differences among individuals are often linked to differential survival and mating success. Quantifying the relative influence of genetic and environmental variation on phenotype allows evolutionary biologists to make predictions about the potential for a given trait to respond to selection and various aspects of environmental variation. In particular, the environment individuals experience during early development can have lasting effects on phenotype later in life. Here, we used a natural full-sib/half-sib design as well as within-individual longitudinal analyses to examine genetic and various environmental influences on plumage color. We find that variation in melanin-based plumage color – a trait known to influence mating success in adult North American barn swallows (Hirundo rustica erythrogaster) – is influenced by both genetics and aspects of the developmental environment, including variation due to the maternal phenotype and the nest environment. Within individuals, nestling color is predictive of adult color. Accordingly, these early environmental influences are relevant to the sexually selected plumage color variation in adults. Early environmental conditions appear to have important lifelong implications for individual reproductive performance through sexual signal development in barn swallows. Our results indicate that feather color variation conveys information about developmental conditions and maternal care alleles to potential mates in North American barn swallows. Melanin-based colors are used for sexual signaling in many organisms, and our study suggests that these signals may be more sensitive to environmental variation than previously thought. PMID:26380676

  17. Quantitative genetics of plumage color: lifetime effects of early nest environment on a colorful sexual signal.

    Science.gov (United States)

    Hubbard, Joanna K; Jenkins, Brittany R; Safran, Rebecca J

    2015-08-01

    Phenotypic differences among individuals are often linked to differential survival and mating success. Quantifying the relative influence of genetic and environmental variation on phenotype allows evolutionary biologists to make predictions about the potential for a given trait to respond to selection and various aspects of environmental variation. In particular, the environment individuals experience during early development can have lasting effects on phenotype later in life. Here, we used a natural full-sib/half-sib design as well as within-individual longitudinal analyses to examine genetic and various environmental influences on plumage color. We find that variation in melanin-based plumage color - a trait known to influence mating success in adult North American barn swallows (Hirundo rustica erythrogaster) - is influenced by both genetics and aspects of the developmental environment, including variation due to the maternal phenotype and the nest environment. Within individuals, nestling color is predictive of adult color. Accordingly, these early environmental influences are relevant to the sexually selected plumage color variation in adults. Early environmental conditions appear to have important lifelong implications for individual reproductive performance through sexual signal development in barn swallows. Our results indicate that feather color variation conveys information about developmental conditions and maternal care alleles to potential mates in North American barn swallows. Melanin-based colors are used for sexual signaling in many organisms, and our study suggests that these signals may be more sensitive to environmental variation than previously thought.

  18. Quantitative genetic modeling and inference in the presence of nonignorable missing data.

    Science.gov (United States)

    Steinsland, Ingelin; Larsen, Camilla Thorrud; Roulin, Alexandre; Jensen, Henrik

    2014-06-01

    Natural selection is typically exerted at some specific life stages. If natural selection takes place before a trait can be measured, using conventional models can cause wrong inference about population parameters. When the missing data process relates to the trait of interest, a valid inference requires explicit modeling of the missing process. We propose a joint modeling approach, a shared parameter model, to account for nonrandom missing data. It consists of an animal model for the phenotypic data and a logistic model for the missing process, linked by the additive genetic effects. A Bayesian approach is taken and inference is made using integrated nested Laplace approximations. From a simulation study we find that wrongly assuming that missing data are missing at random can result in severely biased estimates of additive genetic variance. Using real data from a wild population of Swiss barn owls Tyto alba, our model indicates that the missing individuals would display large black spots; and we conclude that genes affecting this trait are already under selection before it is expressed. Our model is a tool to correctly estimate the magnitude of both natural selection and additive genetic variance.

  19. Genetic counseling follow-up - a retrospective study with a quantitative approach

    Directory of Open Access Journals (Sweden)

    De Pina-Neto João M.

    1999-01-01

    Full Text Available The impact of genetic counseling (GC was evaluated in families, who were interviewed at least two and half years and at most seven years after GC at the Genetics Service of the University Hospital, Faculty of Medicine of Ribeirão Preto, University of São Paulo (HC, FMRP, USP. The 113 families interviewed in this study were asked 48 questions and all children born after GC were studied clinically. We evaluated the families for spontaneous motivation for GC and understanding of GC information, their reproductive decisions, changes in the family after GC and the health status of new children. The majority of families seen at the Hospital das Clínicas de Ribeirão Preto were not spontaneously motivated to undergo GC. They had a low level of understanding about the information they received during GC. Generally families were using contraceptive methods (even when at low genetic risk with a consequent low rate of pregnancies and children born after GC. These families also had a very low rate of child adoption and divorces when compared to other studies.

  20. Identification of quantitative genetic components of fitness variation in farmed, hybrid and native salmon in the wild.

    Science.gov (United States)

    Besnier, F; Glover, K A; Lien, S; Kent, M; Hansen, M M; Shen, X; Skaala, Ø

    2015-07-01

    Feral animals represent an important problem in many ecosystems due to interbreeding with wild conspecifics. Hybrid offspring from wild and domestic parents are often less adapted to local environment and ultimately, can reduce the fitness of the native population. This problem is an important concern in Norway, where each year, hundreds of thousands of farm Atlantic salmon escape from fish farms. Feral fish outnumber wild populations, leading to a possible loss of local adaptive genetic variation and erosion of genetic structure in wild populations. Studying the genetic factors underlying relative performance between wild and domesticated conspecific can help to better understand how domestication modifies the genetic background of populations, and how it may alter their ability to adapt to the natural environment. Here, based upon a large-scale release of wild, farm and wild x farm salmon crosses into a natural river system, a genome-wide quantitative trait locus (QTL) scan was performed on the offspring of 50 full-sib families, for traits related to fitness (length, weight, condition factor and survival). Six QTLs were detected as significant contributors to the phenotypic variation of the first three traits, explaining collectively between 9.8 and 14.8% of the phenotypic variation. The seventh QTL had a significant contribution to the variation in survival, and is regarded as a key factor to understand the fitness variability observed among salmon in the river. Interestingly, strong allelic correlation within one of the QTL regions in farmed salmon might reflect a recent selective sweep due to artificial selection.

  1. Development of quantitative duplex real-time PCR method for screening analysis of genetically modified maize.

    Science.gov (United States)

    Oguchi, Taichi; Onishi, Mari; Minegishi, Yasutaka; Kurosawa, Yasunori; Kasahara, Masaki; Akiyama, Hiroshi; Teshima, Reiko; Futo, Satoshi; Furui, Satoshi; Hino, Akihiro; Kitta, Kazumi

    2009-06-01

    A duplex real-time PCR method was developed for quantitative screening analysis of GM maize. The duplex real-time PCR simultaneously detected two GM-specific segments, namely the cauliflower mosaic virus (CaMV) 35S promoter (P35S) segment and an event-specific segment for GA21 maize which does not contain P35S. Calibration was performed with a plasmid calibrant specially designed for the duplex PCR. The result of an in-house evaluation suggested that the analytical precision of the developed method was almost equivalent to those of simplex real-time PCR methods, which have been adopted as ISO standard methods for the analysis of GMOs in foodstuffs and have also been employed for the analysis of GMOs in Japan. In addition, this method will reduce both the cost and time requirement of routine GMO analysis by half. The high analytical performance demonstrated in the current study would be useful for the quantitative screening analysis of GM maize. We believe the developed method will be useful for practical screening analysis of GM maize, although interlaboratory collaborative studies should be conducted to confirm this.

  2. Genetic influences on type 2 diabetes and metabolic syndrome related quantitative traits in Mauritius.

    Science.gov (United States)

    Jowett, Jeremy B; Diego, Vincent P; Kotea, Navaratnam; Kowlessur, Sudhir; Chitson, Pierrot; Dyer, Thomas D; Zimmet, Paul; Blangero, John

    2009-02-01

    Epidemiological studies report a high prevalence of type 2 diabetes and metabolic syndrome in the island nation of Mauritius. The Mauritius Family Study was initiated to examine heritable factors that contribute to these high rates of prevalence and consists of 400 individuals in 24 large extended multigenerational pedigrees. Anthropometric and biochemical measurements relating to the metabolic syndrome were undertaken in addition to family and lifestyle based information for each individual. Variance components methods were used to determine the heritability of the type 2 diabetes and metabolic syndrome related quantitative traits. The cohort was made up of 218 females (55%) and 182 males with 22% diagnosed with type 2 diabetes and a further 30% having impaired glucose tolerance or impaired fasting glucose. Notably BMI was not significantly increased in those with type 2 diabetes (P= .12), however a significant increase in waist circumference was observed in these groups (P= .02). The heritable proportion of trait variance was substantial and greater than values previously published for hip circumference, LDL and total cholesterol, diastolic and systolic blood pressure and serum creatinine. Height, weight and BMI heritabilities were all in the upper range of those previously reported. The phenotypic characteristics of the Mauritius family cohort are similar to those previously reported in the Mauritian population with a high observed prevalence rate of type 2 diabetes. A high heritability for key type 2 diabetes and metabolic syndrome related phenotypes (range 0.23 to 0.68), suggest the cohort will have utility in identifying genes that influence these quantitative traits.

  3. GENES - a software package for analysis in experimental statistics and quantitative genetics

    Directory of Open Access Journals (Sweden)

    Cosme Damião Cruz

    2013-06-01

    Full Text Available GENES is a software package used for data analysis and processing with different biometricmodels and is essential in genetic studies applied to plant and animal breeding. It allows parameterestimation to analyze biologicalphenomena and is fundamental for the decision-making process andpredictions of success and viability of selection strategies. The program can be downloaded from theInternet (http://www.ufv.br/dbg/genes/genes.htm orhttp://www.ufv.br/dbg/biodata.htm and is available inPortuguese, English and Spanish. Specific literature (http://www.livraria.ufv.br/ and a set of sample filesare also provided, making GENES easy to use. The software is integrated into the programs MS Word, MSExcel and Paint, ensuring simplicity and effectiveness indata import and export ofresults, figures and data.It is also compatible with the free software R and Matlab, through the supply of useful scripts available forcomplementary analyses in different areas, including genome wide selection, prediction of breeding valuesand use of neural networks in genetic improvement.

  4. Quantitative genetic insights into the coevolutionary dynamics of male and female genitalia.

    Science.gov (United States)

    Evans, Jonathan P; van Lieshout, Emile; Gasparini, Clelia

    2013-07-22

    The spectacular variability that typically characterizes male genital traits has largely been attributed to the role of sexual selection. Among the evolutionary mechanisms proposed to account for this diversity, two processes in particular have generated considerable interest. On the one hand, females may exploit postcopulatory mechanisms of selection to favour males with preferred genital traits (cryptic female choice; CFC), while on the other hand females may evolve structures or behaviours that mitigate the direct costs imposed by male genitalia (sexual conflict; SC). A critical but rarely explored assumption underlying both processes is that male and female reproductive traits coevolve, either via the classic Fisherian model of preference-trait coevolution (CFC) or through sexually antagonistic selection (SC). Here, we provide evidence for this prediction in the guppy (Poecilia reticulata), a polyandrous livebearing fish in which males transfer sperm internally to females via consensual and forced matings. Our results from a paternal half-sibling breeding design reveal substantial levels of additive genetic variation underlying male genital size and morphology-two traits known to predict mating success during non-consensual matings. Our subsequent finding that physically interacting female genital traits exhibit corresponding levels of genetic (co)variation reveals the potential intersexual coevolutionary dynamics of male and female genitalia, thereby fulfilling a fundamental assumption underlying CFC and SC theory.

  5. Simulation of collaborative studies for real-time PCR-based quantitation methods for genetically modified crops.

    Science.gov (United States)

    Watanabe, Satoshi; Sawada, Hiroshi; Naito, Shigehiro; Akiyama, Hiroshi; Teshima, Reiko; Furui, Satoshi; Kitta, Kazumi; Hino, Akihiro

    2013-01-01

    To study impacts of various random effects and parameters of collaborative studies on the precision of quantitation methods of genetically modified (GM) crops, we developed a set of random effects models for cycle time values of a standard curve-based relative real-time PCR that makes use of an endogenous gene sequence as the internal standard. The models and data from a published collaborative study for six GM lines at four concentration levels were used to simulate collaborative studies under various conditions. Results suggested that by reducing the numbers of well replications from three to two, and standard levels of endogenous sequence from five to three, the number of unknown samples analyzable on a 96-well PCR plate in routine analyses could be almost doubled, and still the acceptable repeatability RSD (RSDr crops by real-time PCR and their collaborative studies.

  6. Gene set analyses of genome-wide association studies on 49 quantitative traits measured in a single genetic epidemiology dataset.

    Science.gov (United States)

    Kim, Jihye; Kwon, Ji-Sun; Kim, Sangsoo

    2013-09-01

    Gene set analysis is a powerful tool for interpreting a genome-wide association study result and is gaining popularity these days. Comparison of the gene sets obtained for a variety of traits measured from a single genetic epidemiology dataset may give insights into the biological mechanisms underlying these traits. Based on the previously published single nucleotide polymorphism (SNP) genotype data on 8,842 individuals enrolled in the Korea Association Resource project, we performed a series of systematic genome-wide association analyses for 49 quantitative traits of basic epidemiological, anthropometric, or blood chemistry parameters. Each analysis result was subjected to subsequent gene set analyses based on Gene Ontology (GO) terms using gene set analysis software, GSA-SNP, identifying a set of GO terms significantly associated to each trait (pcorr neuronal or nerve systems.

  7. [Genetic selection of mice for quantitative responsiveness of lymphocytes to phytohemagglutinin].

    Science.gov (United States)

    Stiffel, C; Liacopoulos-Briot, M; Decreusefond, C; Lambert, F

    1977-01-01

    A two-way selection was performed in mice according to the quantitative response of small lymphocytes to the mitogenic activity of phytohaemagglutinin (PHA). The response of inguinal lymph node cells of each mouse to an optimal dose of PHA was measured by 3H-thymidine incorporation using a micro-plate method. Starting from four outbred mouse strains we mated on the one hand mice getting the best response and on the other hand mice getting the poorest response. A progressive separation of the two lines was observed. At the 7th generation a 3-fold difference was found between the two lines. A similar interline difference was observed when concanavalin A (ConA) was used as mitogen. The separation of the two lines was also evident when spleen cells or thymus cells were cultured with PHA or ConA.

  8. How can we harness quantitative genetic variation in crop root systems for agricultural improvement?

    Institute of Scientific and Technical Information of China (English)

    Christopher N. Topp; Adam L. Bray

    2016-01-01

    Root systems are a black box obscuring a comprehensive understanding of plant function, from the ecosystem scale down to the individual. In particular, a lack of knowledge about the genetic mechanisms and environmental effects that condition root system growth hinders our ability to develop the next generation of crop plants for improved agricultural productivity and sustainability. We discuss how the methods and metrics we use to quantify root systems can affect our ability to understand them, how we can bridge knowledge gaps and accelerate the derivation of structure-function relationships for roots, and why a detailed mecha-nistic understanding of root growth and function will be important for future agricultural gains.

  9. Interlaboratory validation of quantitative duplex real-time PCR method for screening analysis of genetically modified maize.

    Science.gov (United States)

    Takabatake, Reona; Koiwa, Tomohiro; Kasahara, Masaki; Takashima, Kaori; Futo, Satoshi; Minegishi, Yasutaka; Akiyama, Hiroshi; Teshima, Reiko; Oguchi, Taichi; Mano, Junichi; Furui, Satoshi; Kitta, Kazumi

    2011-01-01

    To reduce the cost and time required to routinely perform the genetically modified organism (GMO) test, we developed a duplex quantitative real-time PCR method for a screening analysis simultaneously targeting an event-specific segment for GA21 and Cauliflower Mosaic Virus 35S promoter (P35S) segment [Oguchi et al., J. Food Hyg. Soc. Japan, 50, 117-125 (2009)]. To confirm the validity of the method, an interlaboratory collaborative study was conducted. In the collaborative study, conversion factors (Cfs), which are required to calculate the GMO amount (%), were first determined for two real-time PCR instruments, the ABI PRISM 7900HT and the ABI PRISM 7500. A blind test was then conducted. The limit of quantitation for both GA21 and P35S was estimated to be 0.5% or less. The trueness and precision were evaluated as the bias and reproducibility of the relative standard deviation (RSD(R)). The determined bias and RSD(R) were each less than 25%. We believe the developed method would be useful for the practical screening analysis of GM maize.

  10. Development and validation of an event-specific quantitative PCR method for genetically modified maize MIR162.

    Science.gov (United States)

    Takabatake, Reona; Masubuchi, Tomoko; Futo, Satoshi; Minegishi, Yasutaka; Noguchi, Akio; Kondo, Kazunari; Teshima, Reiko; Kurashima, Takeyo; Mano, Junichi; Kitta, Kazumi

    2014-01-01

    A novel real-time PCR-based analytical method was developed for the event-specific quantification of a genetically modified (GM) maize event, MIR162. We first prepared a standard plasmid for MIR162 quantification. The conversion factor (Cf) required to calculate the genetically modified organism (GMO) amount was empirically determined for two real-time PCR instruments, the Applied Biosystems 7900HT (ABI7900) and the Applied Biosystems 7500 (ABI7500) for which the determined Cf values were 0.697 and 0.635, respectively. To validate the developed method, a blind test was carried out in an interlaboratory study. The trueness and precision were evaluated as the bias and reproducibility of relative standard deviation (RSDr). The determined biases were less than 25% and the RSDr values were less than 20% at all evaluated concentrations. These results suggested that the limit of quantitation of the method was 0.5%, and that the developed method would thus be suitable for practical analyses for the detection and quantification of MIR162.

  11. Arms race between selfishness and policing: two-trait quantitative genetic model for caste fate conflict in eusocial Hymenoptera.

    Science.gov (United States)

    Dobata, Shigeto

    2012-12-01

    Policing against selfishness is now regarded as the main force maintaining cooperation, by reducing costly conflict in complex social systems. Although policing has been studied extensively in social insect colonies, its coevolution against selfishness has not been fully captured by previous theories. In this study, I developed a two-trait quantitative genetic model of the conflict between selfish immature females (usually larvae) and policing workers in eusocial Hymenoptera over the immatures' propensity to develop into new queens. This model allows for the analysis of coevolution between genomes expressed in immatures and workers that collectively determine the immatures' queen caste fate. The main prediction of the model is that a higher level of polyandry leads to a smaller fraction of queens produced among new females through caste fate policing. The other main prediction of the present model is that, as a result of arms race, caste fate policing by workers coevolves with exaggerated selfishness of the immatures achieving maximum potential to develop into queens. Moreover, the model can incorporate genetic correlation between traits, which has been largely unexplored in social evolution theory. This study highlights the importance of understanding social traits as influenced by the coevolution of conflicting genomes. © 2012 The Author. Evolution© 2012 The Society for the Study of Evolution.

  12. Construction of a genetic linkage map of Thlaspi caerulescens and quantitative trait loci analysis of zinc accumulation.

    Science.gov (United States)

    Assunção, Ana G L; Pieper, Bjorn; Vromans, Jaap; Lindhout, Pim; Aarts, Mark G M; Schat, Henk

    2006-01-01

    Zinc (Zn) hyperaccumulation seems to be a constitutive species-level trait in Thlaspi caerulescens. When compared under conditions of equal Zn availability, considerable variation in the degree of hyperaccumulation is observed among accessions originating from different soil types. This variation offers an excellent opportunity for further dissection of the genetics of this trait. A T. caerulescens intraspecific cross was made between a plant from a nonmetallicolous accession [Lellingen (LE)], characterized by relatively high Zn accumulation, and a plant from a calamine accession [La Calamine (LC)], characterized by relatively low Zn accumulation. Zinc accumulation in roots and shoots segregated in the F3 population. This population was used to construct an LE/LC amplified fragment length polymorphism (AFLP)-based genetic linkage map and to map quantitative trait loci (QTL) for Zn accumulation. Two QTL were identified for root Zn accumulation, with the trait-enhancing alleles being derived from each of the parents, and explaining 21.7 and 16.6% of the phenotypic variation observed in the mapping population. Future development of more markers, based on Arabidopsis orthologous genes localized in the QTL regions, will allow fine-mapping and map-based cloning of the genes underlying the QTL.

  13. Systems genetics of liver fibrosis: identification of fibrogenic and expression quantitative trait loci in the BXD murine reference population.

    Directory of Open Access Journals (Sweden)

    Rabea A Hall

    Full Text Available The progression of liver fibrosis in response to chronic injury varies considerably among individual patients. The underlying genetics is highly complex due to large numbers of potential genes, environmental factors and cell types involved. Here, we provide the first toxicogenomic analysis of liver fibrosis induced by carbon tetrachloride in the murine 'genetic reference panel' of recombinant inbred BXD lines. Our aim was to define the core of risk genes and gene interaction networks that control fibrosis progression. Liver fibrosis phenotypes and gene expression profiles were determined in 35 BXD lines. Quantitative trait locus (QTL analysis identified seven genomic loci influencing fibrosis phenotypes (pQTLs with genome-wide significance on chromosomes 4, 5, 7, 12, and 17. Stepwise refinement was based on expression QTL mapping with stringent selection criteria, reducing the number of 1,351 candidate genes located in the pQTLs to a final list of 11 cis-regulated genes. Our findings demonstrate that the BXD reference population represents a powerful experimental resource for shortlisting the genes within a regulatory network that determine the liver's vulnerability to chronic injury.

  14. Detection of nonauthorized genetically modified organisms using differential quantitative polymerase chain reaction: application to 35S in maize.

    Science.gov (United States)

    Cankar, Katarina; Chauvensy-Ancel, Valérie; Fortabat, Marie-Noelle; Gruden, Kristina; Kobilinsky, André; Zel, Jana; Bertheau, Yves

    2008-05-15

    Detection of nonauthorized genetically modified organisms (GMOs) has always presented an analytical challenge because the complete sequence data needed to detect them are generally unavailable although sequence similarity to known GMOs can be expected. A new approach, differential quantitative polymerase chain reaction (PCR), for detection of nonauthorized GMOs is presented here. This method is based on the presence of several common elements (e.g., promoter, genes of interest) in different GMOs. A statistical model was developed to study the difference between the number of molecules of such a common sequence and the number of molecules identifying the approved GMO (as determined by border-fragment-based PCR) and the donor organism of the common sequence. When this difference differs statistically from zero, the presence of a nonauthorized GMO can be inferred. The interest and scope of such an approach were tested on a case study of different proportions of genetically modified maize events, with the P35S promoter as the Cauliflower Mosaic Virus common sequence. The presence of a nonauthorized GMO was successfully detected in the mixtures analyzed and in the presence of (donor organism of P35S promoter). This method could be easily transposed to other common GMO sequences and other species and is applicable to other detection areas such as microbiology.

  15. A Quantitative Volumetric Micro-Computed Tomography Method to Analyze Lung Tumors in Genetically Engineered Mouse Models

    Directory of Open Access Journals (Sweden)

    Brian B. Haines

    2009-01-01

    Full Text Available Two genetically engineered, conditional mouse models of lung tumor formation, K-rasLSL-G12D and K-rasLSL-G12D/p53LSL-R270H, are commonly used to model human lung cancer. Developed by Tyler Jacks and colleagues, these models have been invaluable to study in vivo lung cancer initiation and progression in a genetically and physiologically relevant context. However, heterogeneity, multiplicity and complexity of tumor formation in these models make it challenging to monitor tumor growth in vivo and have limited the application of these models in oncology drug discovery. Here, we describe a novel analytical method to quantitatively measure total lung tumor burden in live animals using micro-computed tomography imaging. Applying this methodology, we studied the kinetics of tumor development and response to targeted therapy in vivo in K-ras and K-ras/p53 mice. Consistent with previous reports, lung tumors in both models developed in a time- and dose (Cre recombinase-dependent manner. Furthermore, the compound K-rasLSL-G12D/p53LSL-R270H mice developed tumors faster and more robustly than mice harboring a single K-rasLSL-G12D oncogene, as expected. Erlotinib, a small molecule inhibitor of the epidermal growth factor receptor, significantly inhibited tumor growth in K-rasLSL-G12D/p53LSL-R270H mice. These results demonstrate that this novel imaging technique can be used to monitor both tumor progression and response to treatment and therefore supports a broader application of these genetically engineered mouse models in oncology drug discovery and development.

  16. Genetic Identification of Quantitative Trait Loci for Contents of Mineral Nutrients in Rice Grain

    Institute of Scientific and Technical Information of China (English)

    Ana Luisa Garcia-Oliveira; Lubin Tan; Yongcai Fu; Chuanqing Sun

    2009-01-01

    In present study, Fe, Zn, Mn, Cu, Ca, Mg, P and K contents of 85 Introgression linee (ILs) derived from a cross between an elite indica cultivar Teqing and the wild rice (Oryza rufipogon) were measured by inductively coupled argon plasma (ICAP) spectrometry. Substantial variation was observed for all traits and most of the mineral elements were significantly positive correlated or independent except for Fe with Cu. A total of 31 putative quantitative trait loci (QTLs) were detected for these eight mineral elements by single point analysis. Wild rice (O. rufipogon) contributed favorable alleles for most of the QTLs (26 QTLs), and chromosomes 1, 9 and 12 exhibited 14 QTLs (45%) for these traits. One major effect of QTL for zinc content accounted for the largest proportion of phenotypic variation (11%-19%) was detected near the simple sequence repeats marker RM152 on chromosome 8. The co-locations of QTLs for some mineral elements observed in this mapping population suggested the relationship was at a molecular level among these traits and could be helpful for simultaneous improvement of these traits in rice grain by marker assisted selection.

  17. Genetic selection of mice for quantitative responsiveness of lymphocytes to phytohemagglutinin.

    Science.gov (United States)

    Stiffel, C; Liacopoulos-Briot, M; Decreusefond, C; Lambert, F

    1977-05-01

    A two-way selection was performed in mice according to the quantitative in vitro response of lymph node lymphocytes to the mitogenic activity of phytohemagglutinin (PHA). The foundation population was composed of outbred mice produced by reciprocal mating of equal numbers of mice from four different colonies. The selective breeding was carried out by mating of mice at each generation giving the best or the lowest response, respectively. The progressive interline separation produced by 6 generations of selective breeding demonstrates that responsiveness to PHA is submitted to polygenic regulation. The heritability of the character investigated is 0.28 +/- 0.08. The interline separation is also found with another T mitogen, concanavalin A (Con A). In spleen cells PHA and Con A produce a similar interline difference. In contrast, the purified protein derivative of tuberculin (PPD) stimulated both lines equally, and E. coli lipopolysaccharide gave only a slightly higher response in high line. This finding implies that our selection based upon response to PHA did not influence B cell function.

  18. Prediction of Genetic Values of Quantitative Traits in Plant Breeding Using Pedigree and Molecular Markers

    Science.gov (United States)

    Crossa, José; Campos, Gustavo de los; Pérez, Paulino; Gianola, Daniel; Burgueño, Juan; Araus, José Luis; Makumbi, Dan; Singh, Ravi P.; Dreisigacker, Susanne; Yan, Jianbing; Arief, Vivi; Banziger, Marianne; Braun, Hans-Joachim

    2010-01-01

    The availability of dense molecular markers has made possible the use of genomic selection (GS) for plant breeding. However, the evaluation of models for GS in real plant populations is very limited. This article evaluates the performance of parametric and semiparametric models for GS using wheat (Triticum aestivum L.) and maize (Zea mays) data in which different traits were measured in several environmental conditions. The findings, based on extensive cross-validations, indicate that models including marker information had higher predictive ability than pedigree-based models. In the wheat data set, and relative to a pedigree model, gains in predictive ability due to inclusion of markers ranged from 7.7 to 35.7%. Correlation between observed and predictive values in the maize data set achieved values up to 0.79. Estimates of marker effects were different across environmental conditions, indicating that genotype × environment interaction is an important component of genetic variability. These results indicate that GS in plant breeding can be an effective strategy for selecting among lines whose phenotypes have yet to be observed. PMID:20813882

  19. Quantitative criteria for improving performance of buccal DNA for high-throughput genetic analysis

    Directory of Open Access Journals (Sweden)

    Woo Jessica G

    2012-08-01

    Full Text Available Abstract Background DNA from buccal brush samples is being used for high-throughput analyses in a variety of applications, but the impact of sample type on genotyping success and downstream statistical analysis remains unclear. The objective of the current study was to determine laboratory predictors of genotyping failure among buccal DNA samples, and to evaluate the successfully genotyped results with respect to analytic quality control metrics. Sample and genotyping characteristics were compared between buccal and blood samples collected in the population-based Genetic and Environmental Risk Factors for Hemorrhagic Stroke (GERFHS study (https://gerfhs.phs.wfubmc.edu/public/index.cfm. Results Seven-hundred eight (708 buccal and 142 blood DNA samples were analyzed for laboratory-based and analysis metrics. Overall genotyping failure rates were not statistically different between buccal (11.3% and blood (7.0%, p = 0.18 samples; however, both the Contrast Quality Control (cQC rate and the dynamic model (DM call rates were lower among buccal DNA samples (p  Conclusions We identified a buccal sample characteristic, a ratio of ds/total DNA

  20. Breeding maize as biogas substrate in Central Europe: I. Quantitative-genetic parameters for testcross performance.

    Science.gov (United States)

    Grieder, Christoph; Dhillon, Baldev S; Schipprack, Wolfgang; Melchinger, Albrecht E

    2012-04-01

    Biofuels have gained importance recently and the use of maize biomass as substrate in biogas plants for production of methane has increased tremendously in Germany. The objectives of our research were to (1) estimate variance components and heritability for different traits relevant to biogas production in testcrosses (TCs) of maize, (2) study correlations among traits, and (3) discuss strategies to breed maize as a substrate for biogas fermenters. We evaluated 570 TCs of 285 diverse dent maize lines crossed with two flint single-cross testers in six environments. Data were recorded on agronomic and quality traits, including dry matter yield (DMY), methane fermentation yield (MFY), and methane yield (MY), the product of DMY and MFY, as the main target trait. Estimates of variance components showed general combining ability (GCA) to be the major source of variation. Estimates of heritability exceeded 0.67 for all traits and were even much greater in most instances. Methane yield was perfectly correlated with DMY but not with MFY, indicating that variation in MY is primarily determined by DMY. Further, DMY had a larger heritability and coefficient of genetic variation than MFY. Hence, for improving MY, selection should primarily focus on DMY rather than MFY. Further, maize breeding for biogas production may diverge from that for forage production because in the former case, quality traits seem to be of much lower importance.

  1. Genetics

    Science.gov (United States)

    ... Inheritance; Heterozygous; Inheritance patterns; Heredity and disease; Heritable; Genetic markers ... The chromosomes are made up of strands of genetic information called DNA. Each chromosome contains sections of ...

  2. Automated, quantitative cognitive/behavioral screening of mice: for genetics, pharmacology, animal cognition and undergraduate instruction.

    Science.gov (United States)

    Gallistel, C R; Balci, Fuat; Freestone, David; Kheifets, Aaron; King, Adam

    2014-02-26

    We describe a high-throughput, high-volume, fully automated, live-in 24/7 behavioral testing system for assessing the effects of genetic and pharmacological manipulations on basic mechanisms of cognition and learning in mice. A standard polypropylene mouse housing tub is connected through an acrylic tube to a standard commercial mouse test box. The test box has 3 hoppers, 2 of which are connected to pellet feeders. All are internally illuminable with an LED and monitored for head entries by infrared (IR) beams. Mice live in the environment, which eliminates handling during screening. They obtain their food during two or more daily feeding periods by performing in operant (instrumental) and Pavlovian (classical) protocols, for which we have written protocol-control software and quasi-real-time data analysis and graphing software. The data analysis and graphing routines are written in a MATLAB-based language created to simplify greatly the analysis of large time-stamped behavioral and physiological event records and to preserve a full data trail from raw data through all intermediate analyses to the published graphs and statistics within a single data structure. The data-analysis code harvests the data several times a day and subjects it to statistical and graphical analyses, which are automatically stored in the "cloud" and on in-lab computers. Thus, the progress of individual mice is visualized and quantified daily. The data-analysis code talks to the protocol-control code, permitting the automated advance from protocol to protocol of individual subjects. The behavioral protocols implemented are matching, autoshaping, timed hopper-switching, risk assessment in timed hopper-switching, impulsivity measurement, and the circadian anticipation of food availability. Open-source protocol-control and data-analysis code makes the addition of new protocols simple. Eight test environments fit in a 48 in x 24 in x 78 in cabinet; two such cabinets (16 environments) may be

  3. A non-parametric mixture model for genome-enabled prediction of genetic value for a quantitative trait.

    Science.gov (United States)

    Gianola, Daniel; Wu, Xiao-Lin; Manfredi, Eduardo; Simianer, Henner

    2010-10-01

    A Bayesian nonparametric form of regression based on Dirichlet process priors is adapted to the analysis of quantitative traits possibly affected by cryptic forms of gene action, and to the context of SNP-assisted genomic selection, where the main objective is to predict a genomic signal on phenotype. The procedure clusters unknown genotypes into groups with distinct genetic values, but in a setting in which the number of clusters is unknown a priori, so that standard methods for finite mixture analysis do not work. The central assumption is that genetic effects follow an unknown distribution with some "baseline" family, which is a normal process in the cases considered here. A Bayesian analysis based on the Gibbs sampler produces estimates of the number of clusters, posterior means of genetic effects, a measure of credibility in the baseline distribution, as well as estimates of parameters of the latter. The procedure is illustrated with a simulation representing two populations. In the first one, there are 3 unknown QTL, with additive, dominance and epistatic effects; in the second, there are 10 QTL with additive, dominance and additive × additive epistatic effects. In the two populations, baseline parameters are inferred correctly. The Dirichlet process model infers the number of unique genetic values correctly in the first population, but it produces an understatement in the second one; here, the true number of clusters is over 900, and the model gives a posterior mean estimate of about 140, probably because more replication of genotypes is needed for correct inference. The impact on inferences of the prior distribution of a key parameter (M), and of the extent of replication, was examined via an analysis of mean body weight in 192 paternal half-sib families of broiler chickens, where each sire was genotyped for nearly 7,000 SNPs. In this small sample, it was found that inference about the number of clusters was affected by the prior distribution of M. For a

  4. A common genetic determinism for sensitivities to soil water deficit and evaporative demand: meta-analysis of quantitative trait Loci and introgression lines of maize.

    Science.gov (United States)

    Welcker, Claude; Sadok, Walid; Dignat, Grégoire; Renault, Morgan; Salvi, Silvio; Charcosset, Alain; Tardieu, François

    2011-10-01

    Evaporative demand and soil water deficit equally contribute to water stress and to its effect on plant growth. We have compared the genetic architectures of the sensitivities of maize (Zea mays) leaf elongation rate with evaporative demand and soil water deficit. The former was measured via the response to leaf-to-air vapor pressure deficit in well-watered plants, the latter via the response to soil water potential in the absence of evaporative demand. Genetic analyses of each sensitivity were performed over 21 independent experiments with (1) three mapping populations, with temperate or tropical materials, (2) one population resulting from the introgression of a tropical drought-tolerant line in a temperate line, and (3) two introgression libraries genetically independent from mapping populations. A very large genetic variability was observed for both sensitivities. Some lines maintained leaf elongation at very high evaporative demand or water deficit, while others stopped elongation in mild conditions. A complex architecture arose from analyses of mapping populations, with 19 major meta-quantitative trait loci involving strong effects and/or more than one mapping population. A total of 68% of those quantitative trait loci affected sensitivities to both evaporative demand and soil water deficit. In introgressed lines, 73% of the tested genomic regions affected both sensitivities. To our knowledge, this study is the first genetic demonstration that hydraulic processes, which drive the response to evaporative demand, also have a large contribution to the genetic variability of plant growth under water deficit in a large range of genetic material.

  5. Genetic control of environmental variation of two quantitative traits of Drosophila melanogaster revealed by whole-genome sequencing

    DEFF Research Database (Denmark)

    Sørensen, Peter; de los Campos, Gustavo; Morgante, Fabio

    2015-01-01

    Genetic studies usually focus on quantifying and understanding the existence of genetic control on expected phenotypic outcomes. However, there is compelling evidence suggesting the existence of genetic control at the level of environmental variability, with some genotypes exhibiting more stable ...

  6. QTL IciMapping:Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations

    Institute of Scientific and Technical Information of China (English)

    Lei; Meng; Huihui; Li; Luyan; Zhang; Jiankang; Wang

    2015-01-01

    QTL Ici Mapping is freely available public software capable of building high-density linkage maps and mapping quantitative trait loci(QTL) in biparental populations. Eight functionalities are integrated in this software package:(1) BIN: binning of redundant markers;(2) MAP: construction of linkage maps in biparental populations;(3) CMP: consensus map construction from multiple linkage maps sharing common markers;(4) SDL: mapping of segregation distortion loci;(5) BIP: mapping of additive, dominant, and digenic epistasis genes;(6) MET: QTL-by-environment interaction analysis;(7) CSL: mapping of additive and digenic epistasis genes with chromosome segment substitution lines; and(8) NAM: QTL mapping in NAM populations. Input files can be arranged in plain text, MS Excel 2003, or MS Excel 2007 formats. Output files have the same prefix name as the input but with different extensions. As examples, there are two output files in BIN, one for summarizing the identified bin groups and deleted markers in each bin, and the other for using the MAP functionality. Eight output files are generated by MAP, including summary of the completed linkage maps, Mendelian ratio test of individual markers, estimates of recombination frequencies, LOD scores, and genetic distances, and the input files for using the BIP, SDL,and MET functionalities. More than 30 output files are generated by BIP, including results at all scanning positions, identified QTL, permutation tests, and detection powers for up to six mapping methods. Three supplementary tools have also been developed to display completed genetic linkage maps, to estimate recombination frequency between two loci,and to perform analysis of variance for multi-environmental trials.

  7. QTL IciMapping:Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations

    Institute of Scientific and Technical Information of China (English)

    Lei Meng; Huihui Li; Luyan Zhang; Jiankang Wang

    2015-01-01

    QTL IciMapping is freely available public software capable of building high-density linkage maps and mapping quantitative trait loci (QTL) in biparental populations. Eight func-tionalities are integrated in this software package: (1) BIN:binning of redundant markers;(2) MAP: construction of linkage maps in biparental populations; (3) CMP: consensus map construction from multiple linkage maps sharing common markers; (4) SDL: mapping of segregation distortion loci;(5) BIP:mapping of additive, dominant, and digenic epistasis genes;(6) MET:QTL-by-environment interaction analysis;(7) CSL:mapping of additive and digenic epistasis genes with chromosome segment substitution lines; and (8) NAM: QTL mapping in NAM populations. Input files can be arranged in plain text, MS Excel 2003, or MS Excel 2007 formats. Output files have the same prefix name as the input but with different extensions. As examples, there are two output files in BIN, one for summarizing the identified bin groups and deleted markers in each bin, and the other for using the MAP functionality. Eight output files are generated by MAP, including summary of the completed linkage maps, Mendelian ratio test of individual markers, estimates of recombination frequencies, LOD scores, and genetic distances, and the input files for using the BIP, SDL, and MET functionalities. More than 30 output files are generated by BIP, including results at all scanning positions, identified QTL, permutation tests, and detection powers for up to six mapping methods. Three supplementary tools have also been developed to display completed genetic linkage maps, to estimate recombination frequency between two loci, and to perform analysis of variance for multi-environmental trials.

  8. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations

    Directory of Open Access Journals (Sweden)

    Lei Meng

    2015-06-01

    Full Text Available QTL IciMapping is freely available public software capable of building high-density linkage maps and mapping quantitative trait loci (QTL in biparental populations. Eight functionalities are integrated in this software package: (1 BIN: binning of redundant markers; (2 MAP: construction of linkage maps in biparental populations; (3 CMP: consensus map construction from multiple linkage maps sharing common markers; (4 SDL: mapping of segregation distortion loci; (5 BIP: mapping of additive, dominant, and digenic epistasis genes; (6 MET: QTL-by-environment interaction analysis; (7 CSL: mapping of additive and digenic epistasis genes with chromosome segment substitution lines; and (8 NAM: QTL mapping in NAM populations. Input files can be arranged in plain text, MS Excel 2003, or MS Excel 2007 formats. Output files have the same prefix name as the input but with different extensions. As examples, there are two output files in BIN, one for summarizing the identified bin groups and deleted markers in each bin, and the other for using the MAP functionality. Eight output files are generated by MAP, including summary of the completed linkage maps, Mendelian ratio test of individual markers, estimates of recombination frequencies, LOD scores, and genetic distances, and the input files for using the BIP, SDL, and MET functionalities. More than 30 output files are generated by BIP, including results at all scanning positions, identified QTL, permutation tests, and detection powers for up to six mapping methods. Three supplementary tools have also been developed to display completed genetic linkage maps, to estimate recombination frequency between two loci, and to perform analysis of variance for multi-environmental trials.

  9. Construction of measurement uncertainty profiles for quantitative analysis of genetically modified organisms based on interlaboratory validation data.

    Science.gov (United States)

    Macarthur, Roy; Feinberg, Max; Bertheau, Yves

    2010-01-01

    A method is presented for estimating the size of uncertainty associated with the measurement of products derived from genetically modified organisms (GMOs). The method is based on the uncertainty profile, which is an extension, for the estimation of uncertainty, of a recent graphical statistical tool called an accuracy profile that was developed for the validation of quantitative analytical methods. The application of uncertainty profiles as an aid to decision making and assessment of fitness for purpose is also presented. Results of the measurement of the quantity of GMOs in flour by PCR-based methods collected through a number of interlaboratory studies followed the log-normal distribution. Uncertainty profiles built using the results generally give an expected range for measurement results of 50-200% of reference concentrations for materials that contain at least 1% GMO. This range is consistent with European Network of GM Laboratories and the European Union (EU) Community Reference Laboratory validation criteria and can be used as a fitness for purpose criterion for measurement methods. The effect on the enforcement of EU labeling regulations is that, in general, an individual analytical result needs to be 1.8% to demonstrate noncompliance with a labeling threshold of 0.9%.

  10. International collaborative study of the endogenous reference gene LAT52 used for qualitative and quantitative analyses of genetically modified tomato.

    Science.gov (United States)

    Yang, Litao; Zhang, Haibo; Guo, Jinchao; Pan, Liangwen; Zhang, Dabing

    2008-05-28

    One tomato ( Lycopersicon esculentum) gene, LAT52, has been proved to be a suitable endogenous reference gene for genetically modified (GM) tomato detection in a previous study. Herein are reported the results of a collaborative ring trial for international validation of the LAT52 gene as endogenous reference gene and its analytical systems; 14 GMO detection laboratories from 8 countries were invited, and results were finally received from 13. These data confirmed the species specificity by testing 10 plant genomic DNAs, less allelic variation and stable single copy number of the LAT52 gene, among 12 different tomato cultivars. Furthermore, the limit of detection of LAT52 qualitative PCR was proved to be 0.1%, which corresponded to 11 copies of haploid tomato genomic DNA, and the limit of quantification for the quantitative PCR system was about 10 copies of haploid tomato genomic DNA with acceptable PCR efficiency and linearity. Additionally, the bias between the test and true values of 8 blind samples ranged from 1.94 to 10.64%. All of these validated results indicated that the LAT52 gene is suitable for use as an endogenous reference gene for the identification and quantification of GM tomato and its derivates.

  11. Genetic dissection of milk yield traits and mastitis resistance quantitative trait loci on chromosome 20 in dairy cattle.

    Science.gov (United States)

    Kadri, Naveen K; Guldbrandtsen, Bernt; Lund, Mogens S; Sahana, Goutam

    2015-12-01

    Intense selection to increase milk yield has had negative consequences for mastitis incidence in dairy cattle. Due to low heritability of mastitis resistance and an unfavorable genetic correlation with milk yield, a reduction in mastitis through traditional breeding has been difficult to achieve. Here, we examined quantitative trait loci (QTL) that segregate for clinical mastitis and milk yield on Bos taurus autosome 20 (BTA20) to determine whether both traits are affected by a single polymorphism (pleiotropy) or by multiple closely linked polymorphisms. In the latter but not the former situation, undesirable genetic correlation could potentially be broken by selecting animals that have favorable variants for both traits. First, we performed a within-breed association study using a haplotype-based method in Danish Holstein cattle (HOL). Next, we analyzed Nordic Red dairy cattle (RDC) and Danish Jersey cattle (JER) with the goal of determining whether these QTL identified in Holsteins were segregating across breeds. Genotypes for 12,566 animals (5,966 HOL, 5,458 RDC, and 1,142 JER) were determined by using the Illumina Bovine SNP50 BeadChip (50K; Illumina, San Diego, CA), which identifies 1,568 single nucleotide polymorphisms on BTA20. Data were combined, phased, and clustered into haplotype states, followed by within- and across-breed haplotype-based association analyses using a linear mixed model. Association signals for both clinical mastitis and milk yield peaked in the 26- to 40-Mb region on BTA20 in HOL. Single-variant association analyses were carried out in the QTL region using whole sequence level variants imputed from references of 2,036 HD genotypes (BovineHD BeadChip; Illumina) and 242 whole-genome sequences. The milk QTL were also segregating in RDC and JER on the BTA20-targeted region; however, an indication of differences in the causal factor(s) was observed across breeds. A previously reported F279Y mutation (rs385640152) within the growth hormone

  12. MaGelLAn 1.0: a software to facilitate quantitative and population genetic analysis of maternal inheritance by combination of molecular and pedigree information.

    Science.gov (United States)

    Ristov, Strahil; Brajkovic, Vladimir; Cubric-Curik, Vlatka; Michieli, Ivan; Curik, Ino

    2016-09-10

    Identification of genes or even nucleotides that are responsible for quantitative and adaptive trait variation is a difficult task due to the complex interdependence between a large number of genetic and environmental factors. The polymorphism of the mitogenome is one of the factors that can contribute to quantitative trait variation. However, the effects of the mitogenome have not been comprehensively studied, since large numbers of mitogenome sequences and recorded phenotypes are required to reach the adequate power of analysis. Current research in our group focuses on acquiring the necessary mitochondria sequence information and analysing its influence on the phenotype of a quantitative trait. To facilitate these tasks we have produced software for processing pedigrees that is optimised for maternal lineage analysis. We present MaGelLAn 1.0 (maternal genealogy lineage analyser), a suite of four Python scripts (modules) that is designed to facilitate the analysis of the impact of mitogenome polymorphism on quantitative trait variation by combining molecular and pedigree information. MaGelLAn 1.0 is primarily used to: (1) optimise the sampling strategy for molecular analyses; (2) identify and correct pedigree inconsistencies; and (3) identify maternal lineages and assign the corresponding mitogenome sequences to all individuals in the pedigree, this information being used as input to any of the standard software for quantitative genetic (association) analysis. In addition, MaGelLAn 1.0 allows computing the mitogenome (maternal) effective population sizes and probability of mitogenome (maternal) identity that are useful for conservation management of small populations. MaGelLAn is the first tool for pedigree analysis that focuses on quantitative genetic analyses of mitogenome data. It is conceived with the purpose to significantly reduce the effort in handling and preparing large pedigrees for processing the information linked to maternal lines. The software source

  13. Array-CGH and quantitative PCR genetic analysis in a case with bilateral hypoplasia of pulmonary arteries and lungs and simultaneous unilateral renal agenesis.

    Science.gov (United States)

    Hussein, Kais; Steinemann, Doris; Scholz, Henrike; Menkhaus, Ralf; Feist, Henning; Kreipe, Hans

    2010-08-18

    We describe the clinical course and have characterised anatomically and genetically a unique case of a newborn with bilateral hypoplasia of pulmonary arteries, consecutive extremely hypoplastic lung tissue and associated unilateral renal agenesis. Intrauterine oxygenation by the placenta seemed to have allowed normotrophic body maturity but immediately after delivery, in the third trimester, progressive hypoxemia developed and the newborn succumbed to acute respiratory failure. Genetic analysis by array-based comparative genomic hybridisation and quantitative PCR revealed duplication of 1p21, which, however, might not be the disease causing aberration. This case might represent an extreme form of previously reported, rare cases with simultaneous dysorganogenesis of lungs and kidneys.

  14. Evaluation of stable isotope labelling strategies for the quantitation of CP4 EPSPS in genetically modified soya

    Energy Technology Data Exchange (ETDEWEB)

    Ocana, Mireia Fernandez [Centre for Chemical and Bioanalytical Sciences, Royal Holloway, University of London, Egham TW20 0EX (United Kingdom)], E-mail: Mireia.FernandezOcana@pfizer.com; Fraser, Paul D. [Centre for Chemical and Bioanalytical Sciences, Royal Holloway, University of London, Egham TW20 0EX (United Kingdom); Patel, Raj K.P.; Halket, John M. [Specialist Bioanalytical Services Ltd., Royal Holloway, University of London, Egham TW20 0EX (United Kingdom); Bramley, Peter M. [Centre for Chemical and Bioanalytical Sciences, Royal Holloway, University of London, Egham TW20 0EX (United Kingdom)

    2009-02-16

    The introduction of genetically modified (GM) crops into the market has raised a general alertness relating to the control and safety of foods. The applicability of protein separation hyphenated to mass spectrometry to identify the bacterial enolpyruvylshikimate-3-phosphate synthase (CP4 EPSPS) protein expressed in GM crops has been previously reported [M.F. Ocana, P.D. Fraser, R.K.P. Patel, J.M. Halket, P.M. Bramley, Rapid Commun. Mass Spectrom. 21 (2007) 319.]. Herein, we investigate the suitability of two strategies that employ heavy stable isotopes, i.e. AQUA and iTRAQ, to quantify different levels of CP4 EPSPS in up to four GM preparations. Both quantification strategies showed potential to determine whether the presence of GM material is above the limits established by the European Union. The AQUA quantification procedure involved protein solubilisation/fractionation and subsequent separation using SDS-PAGE. A segment of the gel in which the protein of interest was located was excised, the stable isotope labeled peptide added at a known concentration and proteolytic digestion initiated. Following recovery of the peptides, on-line separation and detection using LC-MS was carried out. A similar approach was used for the iTRAQ workflow with the exception that proteins were digested in solution and generated tryptic peptides were chemically tagged. Both procedures demonstrated the potential for quantitative detection at 0.5% (w/w) GM soya which is a level below the current European Union's threshold for food-labelling. In this context, a comparison between the two procedures is provided within the present study.

  15. Quantitative ultrasound of the hand phalanges in a cohort of monozygotic twins: influence of genetic and environmental factors

    Energy Technology Data Exchange (ETDEWEB)

    Guglielmi, G. [Scientific Institute Hospital, Department of Radiology, San Giovanni Rotondo (Italy); Terlizzi, F. de [IGEA Biophysics Lab, Carpi (Italy); Torrente, I.; Mingarelli, R. [Mendel Institute, Rome (Italy); Dallapiccola, B. [Scientific Institute Hospital, Department of Radiology, San Giovanni Rotondo (Italy); Mendel Institute, Rome (Italy)

    2005-11-01

    Our objective was to evaluate the similarities and differences in bone mass and structure between pairs of monozygotic twins as measured by means of the quantitative ultrasound (QUS) technique. A cohort of monozygotic twins was measured by QUS of the hand phalanges using the DBM sonic bone profiler (IGEA, Carpi, Italy). The parameters studied were amplitude-dependent speed of sound (AD-SoS), ultrasound bone profile index (UBPI), signal dynamics (SDy) and bone transmission time (BTT). Linear correlation coefficients, multivariate linear analysis and the ANOVA test were used to assess intrapair associations between variables and to determine which factors influence the intrapair differences in QUS variables. One hundred and six pairs of monozygotic twins were enrolled in the study, 68 females and 38 males in the age range 5 to 71 years. Significant intrapair correlations were obtained in the whole population and separately for males and females, regarding height (r =0.98-0.99, p <0.0001), weight (r =0.95-0.96, p <0.0001), AD-SoS (r =0.90-0.92, p <0.0001), BTT (r =0.94-0.95, p <0.0001) and other QUS parameters (r >0.74, p <0.0001). Multivariate analysis revealed that intrapair differences between AD-SoS, SDy, UBPI and BTT are significantly influenced by age in the whole population and in the female population. Furthermore, the ANOVA test showed, for the female group, a significant increase in the intrapair differences in SDy and UBPI above 40 years. A relative contribution of genetic factors to skeletal status could be observed by phalangeal QUS measurement in monozygotic twins. A significant increase in the intrapair difference in QUS parameters with increasing age and onset of menopause also suggests the importance of environmental factors in the female twin population. (orig.)

  16. PROSPECTIVE STUDY OF MULTIPLE GENETIC TUMOR MARKER ASSAY BY QUANTITATIVE REAL-TIME PCR TO PREDICT RECURRENCE IN COLORECTAL CANCER PATIENTS

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Objective To describe correlation between multiple genetic tumor markers,carcinoembryonic antigen (CEA),cytokeratin 20 (CK20),and Survivin,and clinicopathological features of colorectal cancer (CRC) and to assess prognostic diagnosis value in cancer recurrence and metastasis.Methods A total of 92 patients with CRC,68 patients with precancerous lesions,and 29 control volunteers were collected for the detection of CEA,CK20,and Survivin expressions by using quantitative Real-Time PCR technology.Associations am...

  17. Beyond Punnett Squares: Student Word Association and Explanations of Phenotypic Variation through an Integrative Quantitative Genetics Unit Investigating Anthocyanin Inheritance and Expression in Brassica rapa Fast Plants

    Science.gov (United States)

    Smith, Amber R.; Williams, Paul H.; McGee, Seth A.; Dósa, Katalin; Pfammatter, Jesse

    2014-01-01

    Genetics instruction in introductory biology is often confined to Mendelian genetics and avoids the complexities of variation in quantitative traits. Given the driving question “What determines variation in phenotype (Pv)? (Pv=Genotypic variation Gv + environmental variation Ev),” we developed a 4-wk unit for an inquiry-based laboratory course focused on the inheritance and expression of a quantitative trait in varying environments. We utilized Brassica rapa Fast Plants as a model organism to study variation in the phenotype anthocyanin pigment intensity. As an initial curriculum assessment, we used free word association to examine students’ cognitive structures before and after the unit and explanations in students’ final research posters with particular focus on variation (Pv = Gv + Ev). Comparison of pre- and postunit word frequency revealed a shift in words and a pattern of co-occurring concepts indicative of change in cognitive structure, with particular focus on “variation” as a proposed threshold concept and primary goal for students’ explanations. Given review of 53 posters, we found ∼50% of students capable of intermediate to high-level explanations combining both Gv and Ev influence on expression of anthocyanin intensity (Pv). While far from “plug and play,” this conceptually rich, inquiry-based unit holds promise for effective integration of quantitative and Mendelian genetics. PMID:25185225

  18. Bigger Is Fitter? Quantitative Genetic Decomposition of Selection Reveals an Adaptive Evolutionary Decline of Body Mass in a Wild Rodent Population.

    Science.gov (United States)

    Bonnet, Timothée; Wandeler, Peter; Camenisch, Glauco; Postma, Erik

    2017-01-01

    In natural populations, quantitative trait dynamics often do not appear to follow evolutionary predictions. Despite abundant examples of natural selection acting on heritable traits, conclusive evidence for contemporary adaptive evolution remains rare for wild vertebrate populations, and phenotypic stasis seems to be the norm. This so-called "stasis paradox" highlights our inability to predict evolutionary change, which is especially concerning within the context of rapid anthropogenic environmental change. While the causes underlying the stasis paradox are hotly debated, comprehensive attempts aiming at a resolution are lacking. Here, we apply a quantitative genetic framework to individual-based long-term data for a wild rodent population and show that despite a positive association between body mass and fitness, there has been a genetic change towards lower body mass. The latter represents an adaptive response to viability selection favouring juveniles growing up to become relatively small adults, i.e., with a low potential adult mass, which presumably complete their development earlier. This selection is particularly strong towards the end of the snow-free season, and it has intensified in recent years, coinciding which a change in snowfall patterns. Importantly, neither the negative evolutionary change, nor the selective pressures that drive it, are apparent on the phenotypic level, where they are masked by phenotypic plasticity and a non causal (i.e., non genetic) positive association between body mass and fitness, respectively. Estimating selection at the genetic level enabled us to uncover adaptive evolution in action and to identify the corresponding phenotypic selective pressure. We thereby demonstrate that natural populations can show a rapid and adaptive evolutionary response to a novel selective pressure, and that explicitly (quantitative) genetic models are able to provide us with an understanding of the causes and consequences of selection that is

  19. Genetic Parameters and Combining Ability Effects of Parents for Seed Yield and other Quantitative Traits in Black Gram [Vigna mungo (L. Hepper

    Directory of Open Access Journals (Sweden)

    Supriyo CHAKRABORTY

    2010-06-01

    Full Text Available Line x tester analysis was carried out in black gram [Vigna mungo (L. Hepper], an edible legume, to estimate the gca (general combining ability effects of parents (3 lines and 3 testers and the SCA (specific combining ability effects of 9 crosses for seed yield and other eleven quantitative traits. Though additive and nonadditive gene actions governed the expression of quantitative traits, the magnitude of nonadditive gene action was higher than that of additive gene action for each quantitative trait. Two parents viz. UG157 and DPU915 were good general combiners. Two crosses namely PDB 88-31/DPU 915 and PLU 277/KAU7 had high per se performance along with positive significant SCA effect for seed yield/plant. The degree of dominance revealed overdominance for all the traits except clusters/plant with partial dominance. The predictability ratio also revealed the predominant role of nonadditive gene action in the genetic control of quantitative traits. Narrow sense heritability was also low for each trait. Recurrent selection or biparental mating followed by selection which can exploit both additive and nonadditive gene actions would be of interest for yield improvement in black gram. Due to presence of high magnitude of nonadditive gene action, heterosis breeding could also be attempted to develop low cost hybrid variety using genetic male sterility system in black gram.

  20. Genetic Parameters and Combining Ability Effects of Parents for Seed Yield and other Quantitative Traits in Black Gram [Vigna mungo (L. Hepper

    Directory of Open Access Journals (Sweden)

    Supriyo CHAKRABORTY

    2010-06-01

    Full Text Available Line x tester analysis was carried out in black gram [Vigna mungo (L. Hepper], an edible legume, to estimate the gca (general combining ability effects of parents (3 lines and 3 testers and the SCA (specific combining ability effects of 9 crosses for seed yield and other eleven quantitative traits. Though additive and nonadditive gene actions governed the expression of quantitative traits, the magnitude of nonadditive gene action was higher than that of additive gene action for each quantitative trait. Two parents viz. �UG157� and �DPU915� were good general combiners. Two crosses namely �PDB 88-31�/�DPU 915� and �PLU 277�/�KAU7� had high per se performance along with positive significant SCA effect for seed yield/plant. The degree of dominance revealed overdominance for all the traits except clusters/plant with partial dominance. The predictability ratio also revealed the predominant role of nonadditive gene action in the genetic control of quantitative traits. Narrow sense heritability was also low for each trait. Recurrent selection or biparental mating followed by selection which can exploit both additive and nonadditive gene actions would be of interest for yield improvement in black gram. Due to presence of high magnitude of nonadditive gene action, heterosis breeding could also be attempted to develop low cost hybrid variety using genetic male sterility system in black gram.

  1. Genome-wide conserved non-coding microsatellite (CNMS) marker-based integrative genetical genomics for quantitative dissection of seed weight in chickpea

    Science.gov (United States)

    Bajaj, Deepak; Saxena, Maneesha S.; Kujur, Alice; Das, Shouvik; Badoni, Saurabh; Tripathi, Shailesh; Upadhyaya, Hari D.; Gowda, C. L. L.; Sharma, Shivali; Singh, Sube; Tyagi, Akhilesh K.; Parida, Swarup K.

    2015-01-01

    Phylogenetic footprinting identified 666 genome-wide paralogous and orthologous CNMS (conserved non-coding microsatellite) markers from 5′-untranslated and regulatory regions (URRs) of 603 protein-coding chickpea genes. The (CT)n and (GA)n CNMS carrying CTRMCAMV35S and GAGA8BKN3 regulatory elements, respectively, are abundant in the chickpea genome. The mapped genic CNMS markers with robust amplification efficiencies (94.7%) detected higher intraspecific polymorphic potential (37.6%) among genotypes, implying their immense utility in chickpea breeding and genetic analyses. Seventeen differentially expressed CNMS marker-associated genes showing strong preferential and seed tissue/developmental stage-specific expression in contrasting genotypes were selected to narrow down the gene targets underlying seed weight quantitative trait loci (QTLs)/eQTLs (expression QTLs) through integrative genetical genomics. The integration of transcript profiling with seed weight QTL/eQTL mapping, molecular haplotyping, and association analyses identified potential molecular tags (GAGA8BKN3 and RAV1AAT regulatory elements and alleles/haplotypes) in the LOB-domain-containing protein- and KANADI protein-encoding transcription factor genes controlling the cis-regulated expression for seed weight in the chickpea. This emphasizes the potential of CNMS marker-based integrative genetical genomics for the quantitative genetic dissection of complex seed weight in chickpea. PMID:25504138

  2. From beavis to beak color: a simulation study to examine how much qtl mapping can reveal about the genetic architecture of quantitative traits.

    Science.gov (United States)

    Slate, Jon

    2013-05-01

    Quantitative trait locus (QTL) mapping is frequently used in evolutionary studies to understand the genetic architecture of continuously varying traits. The majority of studies have been conducted in specially created crosses, in which genetic differences between parental lines are identified by linkage analysis. Detecting QTL segregating within populations is more problematic, especially in wild populations, because these populations typically have complicated and unbalanced multigenerational pedigrees. However, QTL mapping can still be conducted in such populations using a variance components mixed model approach, and the advent of appropriate statistical frameworks and better genotyping methods mean that the approach is gaining popularity. In this study it is shown that all studies described to date report evidence of QTL of major effect on trait variation, but that these findings are probably caused by inflated estimates of QTL effect sizes due to the Beavis effect. Using simulations I show that even the most powerful studies conducted to date are likely to give misleading descriptions of the genetic architecture of a trait. I show that an interpretation of a mapping study of beak color in the zebra finch (Taeniopygia guttata), that suggested genetic variation was determined by a small number of loci of large effect, which are possibly maintained by antagonistic pleiotropy, is likely to be incorrect. More generally, recommendations are made to how QTL mapping can be combined with other approaches to provide more accurate descriptions of a trait's genetic architecture.

  3. Genetic Dissection and Molecular Dissection of Quantitative Traits%数量性状的遗传剖析和分子剖析

    Institute of Scientific and Technical Information of China (English)

    吴为人; 唐定中; 李维明

    2000-01-01

    生物的大多数重要性状都是数量性状,遗传基础复杂,遗传研究非常困难。近20年来,由于分子生物技术飞速发展,特别是分子标记技术和大片段DNA克隆和分析技术的出现,使遗传学开始向阐明人类和一些模式动植物整个基因组的宏伟目标进军,也使得数量性状的遗传剖析(即系统地对各个数量性状基因或QTL的遗传定位和效应分析)和分子剖析(即对QTL的克隆分离)成为可能,并在短短的10余年内取得了重大的进展。该领域的研究将使我们能精确地分析QTL的效应,可靠地对QTL进行标记辅助选择以及实现对数量性状的基因工程,从而使现代分子生物技术在动植物遗传改良和人类遗传病治疗方面发挥更大的作用。本文综述了近年来在数量性状遗传剖析和分子剖析的方法方面的研究进展。%Most of the important characters in living beings are quantitative traits,which have complicated genetic basis and are very difficult for genetic research.Due to the rapid progress of molecular biological technology in the last two decades,especially dne to the advent of molecularmarker techniques and the techniques for the analysis and clonning of large DNA fragments,genetics has begun to march towards the great goal of elncidating the whole genomes of human and some model animals and plants,and the genetic and molecular dissection of quantitative traits(mapping and cloning of individual quantitative trait loci orQTL)has therefore becomepossible,and great progress has been achieved since late 1980's.Studies in this will enable us to perfirm precise analysis of QTL's effects and reliable marker-assisted selection of QTL and to realize genetic engineering of quantitative traits so as to make modern molecular biotechnologyplay even greater role in the genetic improvement of animals and plants d in the terapy of human's genetic diseases.In this paper

  4. Using quantitative mass spectrometry to better understand the influence of genetics and nutritional perturbations on the virulence potential of Staphylococcus aureus.

    Science.gov (United States)

    Chapman, Jessica R; Balasubramanian, Divya; Tam, Kayan; Askenazi, Manor; Copin, Richard; Shopsin, Bo; Torres, Victor J; Ueberheide, Beatrix

    2017-02-14

    Staphylococcus aureus (Sa) is the leading cause of a variety of bacterial infections ranging from superficial skin infections to invasive and life threatening diseases such as septic bacteremia, necrotizing pneumonia, and endocarditis. The success of Sa as a human pathogen is due to its ability to adapt to the environment by changing expression, production, or secretion of virulence factors. Although Sa immune evasion is well-studied, the regulation of virulence factors under different nutrient and growth conditions is still not well understood. Here, we used label-free quantitative mass spectrometry to quantify and compare the secreted Sa proteins (i.e. exoproteomes) of master regulator mutants or established reference strains. Different environmental conditions were addressed by growing the bacteria in rich or minimal media at different phases of growth. We observed clear differences in the composition of the exoproteomes depending on the genetic background or growth conditions. The relative abundance of cytotoxins determined in our study correlated well with differences in cytotoxicity measured by lysis of human neutrophils. Our findings demonstrate that label-free quantitative mass spectrometry is a versatile tool for predicting the virulence of bacterial strains and highlights the importance of the experimental design for in vitro studies. Furthermore, the results indicate that label-free proteomics can be used to cluster isolates into groups with similar virulence properties and genetic lineages, highlighting the power of label-free quantitative mass spectrometry to distinguish Sa strains.

  5. Development of an event-specific hydrolysis probe quantitative real-time polymerase chain reaction assay for Embrapa 5.1 genetically modified common bean (Phaseolus vulgaris).

    Science.gov (United States)

    Treml, Diana; Venturelli, Gustavo L; Brod, Fábio C A; Faria, Josias C; Arisi, Ana C M

    2014-12-10

    A genetically modified (GM) common bean event, namely Embrapa 5.1, resistant to the bean golden mosaic virus (BGMV), was approved for commercialization in Brazil. Brazilian regulation for genetically modified organism (GMO) labeling requires that any food containing more than 1% GMO be labeled. The event-specific polymerase chain reaction (PCR) method has been the primary trend for GMO identification and quantitation because of its high specificity based on the flanking sequence. This work reports the development of an event-specific assay, named FGM, for Embrapa 5.1 detection and quantitation by use of SYBR Green or hydrolysis probe. The FGM assay specificity was tested for Embrapa 2.3 event (a noncommercial GM common bean also resistant to BGMV), 46 non-GM common bean varieties, and other crop species including maize, GM maize, soybean, and GM soybean. The FGM assay showed high specificity to detect the Embrapa 5.1 event. Standard curves for the FGM assay presented a mean efficiency of 95% and a limit of detection (LOD) of 100 genome copies in the presence of background DNA. The primers and probe developed are suitable for the detection and quantitation of Embrapa 5.1.

  6. Quantitative genetic analysis of brain size variation in sticklebacks: support for the mosaic model of brain evolution.

    Science.gov (United States)

    Noreikiene, Kristina; Herczeg, Gábor; Gonda, Abigél; Balázs, Gergely; Husby, Arild; Merilä, Juha

    2015-07-07

    The mosaic model of brain evolution postulates that different brain regions are relatively free to evolve independently from each other. Such independent evolution is possible only if genetic correlations among the different brain regions are less than unity. We estimated heritabilities, evolvabilities and genetic correlations of relative size of the brain, and its different regions in the three-spined stickleback (Gasterosteus aculeatus). We found that heritabilities were low (average h(2) = 0.24), suggesting a large plastic component to brain architecture. However, evolvabilities of different brain parts were moderate, suggesting the presence of additive genetic variance to sustain a response to selection in the long term. Genetic correlations among different brain regions were low (average rG = 0.40) and significantly less than unity. These results, along with those from analyses of phenotypic and genetic integration, indicate a high degree of independence between different brain regions, suggesting that responses to selection are unlikely to be severely constrained by genetic and phenotypic correlations. Hence, the results give strong support for the mosaic model of brain evolution. However, the genetic correlation between brain and body size was high (rG = 0.89), suggesting a constraint for independent evolution of brain and body size in sticklebacks.

  7. Quantitative analysis of fatty-acid-based biofuels produced by wild-type and genetically engineered cyanobacteria by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Guan, Wenna; Zhao, Hui; Lu, Xuefeng; Wang, Cong; Yang, Menglong; Bai, Fali

    2011-11-11

    Simple and rapid quantitative determination of fatty-acid-based biofuels is greatly important for the study of genetic engineering progress for biofuels production by microalgae. Ideal biofuels produced from biological systems should be chemically similar to petroleum, like fatty-acid-based molecules including free fatty acids, fatty acid methyl esters, fatty acid ethyl esters, fatty alcohols and fatty alkanes. This study founded a gas chromatography-mass spectrometry (GC-MS) method for simultaneous quantification of seven free fatty acids, nine fatty acid methyl esters, five fatty acid ethyl esters, five fatty alcohols and three fatty alkanes produced by wild-type Synechocystis PCC 6803 and its genetically engineered strain. Data obtained from GC-MS analyses were quantified using internal standard peak area comparisons. The linearity, limit of detection (LOD) and precision (RSD) of the method were evaluated. The results demonstrated that fatty-acid-based biofuels can be directly determined by GC-MS without derivation. Therefore, rapid and reliable quantitative analysis of fatty-acid-based biofuels produced by wild-type and genetically engineered cyanobacteria can be achieved using the GC-MS method founded in this work. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Genetics

    DEFF Research Database (Denmark)

    Christensen, Kaare; McGue, Matt

    2016-01-01

    The sequenced genomes of individuals aged ≥80 years, who were highly educated, self-referred volunteers and with no self-reported chronic diseases were compared to young controls. In these data, healthy ageing is a distinct phenotype from exceptional longevity and genetic factors that protect...

  9. Quantitation of 35S promoter in maize DNA extracts from genetically modified organisms using real-time polymerase chain reaction, part 2: interlaboratory study.

    Science.gov (United States)

    Feinberg, Max; Fernandez, Sophie; Cassard, Sylvanie; Bertheau, Yves

    2005-01-01

    The European Committee for Standardization (CEN) and the European Network of GMO Working Laboratories have proposed development of a modular strategy for stepwise validation of complex analytical techniques. When applied to the quantitation of genetically modified organisms (GMOs) in food products, the instrumental quantitation step of the technique is separately validated from the DNA extraction step to better control the sources of uncertainty and facilitate the validation of GMO-specific polymerase chain reaction (PCR) tests. This paper presents the results of an interlaboratory study on the quantitation step of the method standardized by CEN for the detection of a regulatory element commonly inserted in GMO maize-based foods. This is focused on the quantitation of P35S promoter through using the quantitative real-time PCR (QRT-PCR). Fifteen French laboratories participated in the interlaboratory study of the P35S quantitation operating procedure on DNA extract samples using either the thermal cycler ABI Prism 7700 (Applied Biosystems, Foster City, CA) or Light Cycler (Roche Diagnostics, Indianapolis, IN). Attention was focused on DNA extract samples used to calibrate the method and unknown extract samples. Data were processed according to the recommendations of ISO 5725 standard. Performance criteria, obtained using the robust algorithm, were compared to the classic data processing after rejection of outliers by the Cochran and Grubbs tests. Two laboratories were detected as outliers by the Grubbs test. The robust precision criteria gave values between the classical values estimated before and after rejection of the outliers. Using the robust method, the relative expanded uncertainty by the quantitation method is about 20% for a 1% Bt176 content, whereas it can reach 40% for a 0.1% Bt176. The performances of the quantitation assay are relevant to the application of the European regulation, which has an accepted tolerance interval of about +/-50%. These data

  10. Genetic mapping and confirmation of quantitative trait loci for seed protein and oil contents and seed weight in soybean

    Science.gov (United States)

    Demand for soybean [Glycine max (L.) Merr.] meal has increased worldwide and soybean importers often offer premiums for soybean containing higher contents of protein and oil. Objectives were to detect quantitative trait loci (QTL) associated with soybean seed protein, oil, and seed weight in a soyb...

  11. An integrated genetic map based on four mapping populations and quantitative trait loci associated with economically important traits in watermelon (Citrullus lanatus).

    Science.gov (United States)

    Ren, Yi; McGregor, Cecilia; Zhang, Yan; Gong, Guoyi; Zhang, Haiying; Guo, Shaogui; Sun, Honghe; Cai, Wantao; Zhang, Jie; Xu, Yong

    2014-01-20

    Modern watermelon (Citrullus lanatus L.) cultivars share a narrow genetic base due to many years of selection for desirable horticultural qualities. Wild subspecies within C. lanatus are important potential sources of novel alleles for watermelon breeding, but successful trait introgression into elite cultivars has had limited success. The application of marker assisted selection (MAS) in watermelon is yet to be realized, mainly due to the past lack of high quality genetic maps. Recently, a number of useful maps have become available, however these maps have few common markers, and were constructed using different marker sets, thus, making integration and comparative analysis among maps difficult. The objective of this research was to use single-nucleotide polymorphism (SNP) anchor markers to construct an integrated genetic map for C. lanatus. Under the framework of the high density genetic map, an integrated genetic map was constructed by merging data from four independent mapping experiments using a genetically diverse array of parental lines, which included three subspecies of watermelon. The 698 simple sequence repeat (SSR), 219 insertion-deletion (InDel), 36 structure variation (SV) and 386 SNP markers from the four maps were used to construct an integrated map. This integrated map contained 1339 markers, spanning 798 cM with an average marker interval of 0.6 cM. Fifty-eight previously reported quantitative trait loci (QTL) for 12 traits in these populations were also integrated into the map. In addition, new QTL identified for brix, fructose, glucose and sucrose were added. Some QTL associated with economically important traits detected in different genetic backgrounds mapped to similar genomic regions of the integrated map, suggesting that such QTL are responsible for the phenotypic variability observed in a broad array of watermelon germplasm. The integrated map described herein enhances the utility of genomic tools over previous watermelon genetic maps. A

  12. Genetic mapping of quantitative trait loci affecting susceptibility in chicken to develop the Pulmonary Hypertension Syndrome (PHS)

    NARCIS (Netherlands)

    Rabie, T.S.K.M.; Crooijmans, R.P.M.A.; Bovenhuis, H.; Vereijken, A.L.J.; Veenendaal, A.; Poel, van der J.J.; Arendonk, van J.A.M.; Pakdel, A.; Groenen, M.A.M.

    2005-01-01

    Pulmonary hypertension syndrome (PHS), also referred to as ascites syndrome, is a growth-related disorder of chickens frequently observed in fast-growing broilers with insufficient pulmonary vascular capacity at low temperature and/or at high altitude. A cross between two genetically different

  13. Quantitative-genetic analysis of wing form and bilateral asymmetry in isochromosomal lines of Drosophila subobscura using Procrustes methods

    Indian Academy of Sciences (India)

    Pedro Fernández Iriarte; Walkiria Céspedes; Mauro Santos

    2003-12-01

    Fluctuating asymmetry (FA) is often used as a measure of underlying developmental instability (DI), motivated by the idea that morphological variance is maladaptive. Whether or not DI has evolutionary potential is a highly disputed topic, marred by methodological problems and fuzzy prejudices. We report here some results from an ongoing study of the effects of karyotype, homozygosity and temperature on wing form and bilateral asymmetry using isochromosomal lines of Drosophila subobscura. Our approach uses the recently developed methodologies in geometric morphometrics to analyse shape configurations of landmarks within the standard statistical framework employed in studies of bilateral asymmetries, and we have extended these methods to partition the individual variation and the variation in asymmetries into genetic and environmental causal components. The analyses revealed temperature-dependent expression of genetic variation for wing size and wing shape, directional asymmetry (DA) of wing size, increased asymmetries at suboptimal temperature, and a transition from FA to DA in males as a result of increase in the rearing temperature. No genetic variation was generally detected for FA in our samples, but these are preliminary results because no crosses between lines were carried out and, therefore, the contribution of dominance was not taken into account. In addition, only a subset of the standing genetic variation was represented in the experiments.

  14. Factor analysis in the Genetics of Asthma International Network family study identifies five major quantitative asthma phenotypes

    NARCIS (Netherlands)

    Pillai, S. G.; Tang, Y.; van den Oord, E.; Klotsman, M.; Barnes, K.; Carlsen, K.; Gerritsen, J.; Lenney, W.; Silverman, M.; Sly, P.; Sundy, J.; Tsanakas, J.; von Berg, A.; Whyte, M.; Ortega, H. G.; Anderson, W. H.; Helms, P. J.

    2008-01-01

    Background Asthma is a clinically heterogeneous disease caused by a complex interaction between genetic susceptibility and diverse environmental factors. In common with other complex diseases the lack of a standardized scheme to evaluate the phenotypic variability poses challenges in identifying the

  15. An ultra-high-density map as a community resource for discerning the genetic basis of quantitative traits in maize

    Science.gov (United States)

    In this study, we generated a linkage map containing 1,151,856 high quality SNPs between Mo17 and B73, which were verified in the maize intermated B73'×'Mo17 (IBM) Syn10 population. This resource is an excellent complement to existing maize genetic maps available in an online database (iPlant, http:...

  16. Selection of Suitable DNA Extraction Methods for Genetically Modified Maize 3272, and Development and Evaluation of an Event-Specific Quantitative PCR Method for 3272.

    Science.gov (United States)

    Takabatake, Reona; Masubuchi, Tomoko; Futo, Satoshi; Minegishi, Yasutaka; Noguchi, Akio; Kondo, Kazunari; Teshima, Reiko; Kurashima, Takeyo; Mano, Junichi; Kitta, Kazumi

    2016-01-01

    A novel real-time PCR-based analytical method was developed for the event-specific quantification of a genetically modified (GM) maize, 3272. We first attempted to obtain genome DNA from this maize using a DNeasy Plant Maxi kit and a DNeasy Plant Mini kit, which have been widely utilized in our previous studies, but DNA extraction yields from 3272 were markedly lower than those from non-GM maize seeds. However, lowering of DNA extraction yields was not observed with GM quicker or Genomic-tip 20/G. We chose GM quicker for evaluation of the quantitative method. We prepared a standard plasmid for 3272 quantification. The conversion factor (Cf), which is required to calculate the amount of a genetically modified organism (GMO), was experimentally determined for two real-time PCR instruments, the Applied Biosystems 7900HT (the ABI 7900) and the Applied Biosystems 7500 (the ABI7500). The determined Cf values were 0.60 and 0.59 for the ABI 7900 and the ABI 7500, respectively. To evaluate the developed method, a blind test was conducted as part of an interlaboratory study. The trueness and precision were evaluated as the bias and reproducibility of the relative standard deviation (RSDr). The determined values were similar to those in our previous validation studies. The limit of quantitation for the method was estimated to be 0.5% or less, and we concluded that the developed method would be suitable and practical for detection and quantification of 3272.

  17. International collaborative study of the endogenous reference gene, sucrose phosphate synthase (SPS), used for qualitative and quantitative analysis of genetically modified rice.

    Science.gov (United States)

    Jiang, Lingxi; Yang, Litao; Zhang, Haibo; Guo, Jinchao; Mazzara, Marco; Van den Eede, Guy; Zhang, Dabing

    2009-05-13

    One rice ( Oryza sativa ) gene, sucrose phosphate synthase (SPS), has been proven to be a suitable endogenous reference gene for genetically modified (GM) rice detection in a previous study. Herein are the reported results of an international collaborative ring trial for validation of the SPS gene as an endogenous reference gene and its optimized qualitative and quantitative polymerase chain reaction (PCR) systems. A total of 12 genetically modified organism (GMO) detection laboratories from seven countries participated in the ring trial and returned their results. The validated results confirmed the species specificity of the method through testing 10 plant genomic DNAs, low heterogeneity, and a stable single-copy number of the rice SPS gene among 7 indica varieties and 5 japonica varieties. The SPS qualitative PCR assay was validated with a limit of detection (LOD) of 0.1%, which corresponded to about 230 copies of haploid rice genomic DNA, while the limit of quantification (LOQ) for the quantitative PCR system was about 23 copies of haploid rice genomic DNA, with acceptable PCR efficiency and linearity. Furthermore, the bias between the test and true values of eight blind samples ranged from 5.22 to 26.53%. Thus, we believe that the SPS gene is suitable for use as an endogenous reference gene for the identification and quantification of GM rice and its derivates.

  18. Genetic map construction and quantitative trait locus (QTL detection of growth-related traits in Litopenaeus vannamei for selective breeding applications.

    Directory of Open Access Journals (Sweden)

    Farafidy Andriantahina

    Full Text Available Growth is a priority trait from the point of view of genetic improvement. Molecular markers linked to quantitative trait loci (QTL have been regarded as useful for marker-assisted selection (MAS in complex traits as growth. Using an intermediate F2 cross of slow and fast growth parents, a genetic linkage map of Pacific whiteleg shrimp, Litopenaeusvannamei, based on amplified fragment length polymorphisms (AFLP and simple sequence repeats (SSR markers was constructed. Meanwhile, QTL analysis was performed for growth-related traits. The linkage map consisted of 451 marker loci (429 AFLPs and 22 SSRs which formed 49 linkage groups with an average marker space of 7.6 cM; they spanned a total length of 3627.6 cM, covering 79.50% of estimated genome size. 14 QTLs were identified for growth-related traits, including three QTLs for body weight (BW, total length (TL and partial carapace length (PCL, two QTLs for body length (BL, one QTL for first abdominal segment depth (FASD, third abdominal segment depth (TASD and first abdominal segment width (FASW, which explained 2.62 to 61.42% of phenotypic variation. Moreover, comparison of linkage maps between L. vannamei and Penaeusjaponicus was applied, providing a new insight into the genetic base of QTL affecting the growth-related traits. The new results will be useful for conducting MAS breeding schemes in L. vannamei .

  19. Estimation of genetic parameters and detection of quantitative trait loci for minerals in Danish Holstein and Danish Jersey milk

    DEFF Research Database (Denmark)

    Buitenhuis, Albert Johannes; Poulsen, Nina Aagaard; Sehested, Jakob

    2015-01-01

    Background Bovine milk provides important minerals, essential for human nutrition and dairy product quality. For changing the mineral composition of the milk to improve dietary needs in human nutrition and technological properties of milk, a thorough understanding of the genetics underlying milk...... mineral contents is important. Therefore the aim of this study was to 1) estimate the genetic parameters for individual minerals in Danish Holstein (DH) (n = 371) and Danish Jersey (DJ) (n = 321) milk, and 2) detect genomic regions associated with mineral content in the milk using a genome...... The results show that Ca, Zn, P and Mg show high heritabilities. In combination with the GWAS results this opens up possibilities to select for specific minerals in bovine milk....

  20. Construction of a High-Density Genetic Map and Quantitative Trait Locus Mapping in the Sea Cucumber Apostichopus japonicus.

    Science.gov (United States)

    Tian, Meilin; Li, Yangping; Jing, Jing; Mu, Chuang; Du, Huixia; Dou, Jinzhuang; Mao, Junxia; Li, Xue; Jiao, Wenqian; Wang, Yangfan; Hu, Xiaoli; Wang, Shi; Wang, Ruijia; Bao, Zhenmin

    2015-10-06

    Genetic linkage maps are critical and indispensable tools in a wide range of genetic and genomic research. With the advancement of genotyping-by-sequencing (GBS) methods, the construction of a high-density and high-resolution linkage maps has become achievable in marine organisms lacking sufficient genomic resources, such as echinoderms. In this study, high-density, high-resolution genetic map was constructed for a sea cucumber species, Apostichopus japonicus, utilizing the 2b-restriction site-associated DNA (2b-RAD) method. A total of 7839 markers were anchored to the linkage map with the map coverage of 99.57%, to our knowledge, this is the highest marker density among echinoderm species. QTL mapping and association analysis consistently captured one growth-related QTL located in a 5 cM region of linkage group (LG) 5. An annotated candidate gene, retinoblastoma-binding protein 5 (RbBP5), which has been reported to be an important regulator of cell proliferation, was recognized in the QTL region. This linkage map represents a powerful tool for research involving both fine-scale QTL mapping and marker assisted selection (MAS), and will facilitate chromosome assignment and improve the whole-genome assembly of sea cucumber in the future.

  1. Contrasting patterns of quantitative and neutral genetic variation in locally adapted populations of the natterjack toad, Bufo calamita.

    Science.gov (United States)

    Gomez-Mestre, Ivan; Tejedo, Miguel

    2004-10-01

    The relative importance of natural selection and genetic drift in determining patterns of phenotypic diversity observed in nature is still unclear. The natterjack toad (Bufo calamita) is one of a few amphibian species capable of breeding in saline ponds, even though water salinity represents a considerable stress for them. Results from two common-garden experiments showed a pattern of geographic variation in embryonic salinity tolerance among populations from either fresh or brackish environments, consistent with the hypothesis of local adaptation. Full-sib analysis showed increased variation in survival among sibships within population for all populations as osmotic stress was increased (broad-sense heritability increased as salinity raised). Nevertheless, toads native to the brackish water environment had the highest overall survival under brackish conditions. Levels of population genetic differentiation for salinity tolerance were higher than those of neutral genetic differentiation, the latter obtained through the analysis of eight microsatellite loci. Microsatellite markers also revealed little population differentiation, lack of an isolation-by-distance pattern, and moderate gene flow connecting the populations. Therefore, environmental stress tolerance appears to have evolved in absence of geographic isolation, and consequently we reject the null hypothesis of neutral differentiation.

  2. The roles of genetic drift and natural selection in quantitative trait divergence along an altitudinal gradient in Arabidopsis thaliana.

    Science.gov (United States)

    Luo, Y; Widmer, A; Karrenberg, S

    2015-02-01

    Understanding how natural selection and genetic drift shape biological variation is a central topic in biology, yet our understanding of the agents of natural selection and their target traits is limited. We investigated to what extent selection along an altitudinal gradient or genetic drift contributed to variation in ecologically relevant traits in Arabidopsis thaliana. We collected seeds from 8 to 14 individuals from each of 14 A. thaliana populations originating from sites between 800 and 2700 m above sea level in the Swiss Alps. Seed families were grown with and without vernalization, corresponding to winter-annual and summer-annual life histories, respectively. We analyzed putatively neutral genetic divergence between these populations using 24 simple sequence repeat markers. We measured seven traits related to growth, phenology and leaf morphology that are rarely reported in A. thaliana and performed analyses of altitudinal clines, as well as overall QST-FST comparisons and correlation analyses among pair-wise QST, FST and altitude of origin differences. Multivariate analyses suggested adaptive differentiation along altitude in the entire suite of traits, particularly when expressed in the summer-annual life history. Of the individual traits, a decrease in rosette leaf number in the vegetative state and an increase in leaf succulence with increasing altitude could be attributed to adaptive divergence. Interestingly, these patterns relate well to common within- and between-species trends of smaller plant size and thicker leaves at high altitude. Our results thus offer exciting possibilities to unravel the underlying mechanisms for these conspicuous trends using the model species A. thaliana.

  3. Utilization of a quantitative mammalian cell mutation system, CHO/HGPRT, in experimental mutagenesis and genetic toxicology

    Energy Technology Data Exchange (ETDEWEB)

    Hsie, A. W.; Couch, D. B.; O' Neill, J. P.

    1977-01-01

    Development of the CHO/HGPRT system is described and a host-mediated CHO/HGPRT assay is discussed. The following topics are discussed: evidence for the genetic origin of mutation induction in the CHO/HGPRT system; dose-response relationship for EMS-mediated mutation induction and cell lethality; apparent dosimetry of EMS-induced mutagenesis; structure-activity relationship of alkylating agents and ICR compounds; mutagenicity and cytotoxicity of congeners of two classes of nitrosi compounds; and preliminary validation of the CHO/HGPRT assay in predicting chemical carcinogenicity. (HLW)

  4. "Are we there yet?": Deciding when one has demonstrated specific genetic causation in complex diseases and quantitative traits.

    Science.gov (United States)

    Page, Grier P; George, Varghese; Go, Rodney C; Page, Patricia Z; Allison, David B

    2003-10-01

    Although mathematical relationships can be proven by deductive logic, biological relationships can only be inferred from empirical observations. This is a distinct disadvantage for those of us who strive to identify the genes involved in complex diseases and quantitative traits. If causation cannot be proven, however, what does constitute sufficient evidence for causation? The philosopher Karl Popper said, "Our belief in a hypothesis can have no stronger basis than our repeated unsuccessful critical attempts to refute it." We believe that to establish causation, as scientists, we must make a serious attempt to refute our own hypotheses and to eliminate all known sources of bias before association becomes causation. In addition, we suggest that investigators must provide sufficient data and evidence of their unsuccessful efforts to find any confounding biases. In this editorial, we discuss what "causation" means in the context of complex diseases and quantitative traits, and we suggest guidelines for steps that may be taken to address possible confounders of association before polymorphisms may be called "causative."

  5. Quantitative trait locus mapping with background control in genetic populations of clonal F1 and double cross.

    Science.gov (United States)

    Zhang, Luyan; Li, Huihui; Ding, Junqiang; Wu, Jianyu; Wang, Jiankang

    2015-12-01

    In this study, we considered five categories of molecular markers in clonal F1 and double cross populations, based on the number of distinguishable alleles and the number of distinguishable genotypes at the marker locus. Using the completed linkage maps, incomplete and missing markers were imputed as fully informative markers in order to simplify the linkage mapping approaches of quantitative trait genes. Under the condition of fully informative markers, we demonstrated that dominance effect between the female and male parents in clonal F1 and double cross populations can cause the interactions between markers. We then developed an inclusive linear model that includes marker variables and marker interactions so as to completely control additive effects of the female and male parents, as well as the dominance effect between the female and male parents. The linear model was finally used for background control in inclusive composite interval mapping (ICIM) of quantitative trait locus (QTL). The efficiency of ICIM was demonstrated by extensive simulations and by comparisons with simple interval mapping, multiple-QTL models and composite interval mapping. Finally, ICIM was applied in one actual double cross population to identify QTL on days to silking in maize.

  6. Quantitative structure-property relationship study of the solubility of thiazolidine-4-carboxylic acid derivatives using ab initio and genetic algorithm-partial least squares

    Institute of Scientific and Technical Information of China (English)

    Ali Niazi; Saeed Jameh-Bozorghi; Davood Nori-Shargh

    2007-01-01

    A quantitative structure-activity relationships (QSAR) study is suggested for the prediction of solubility of some thiazolidine-4-carboxylic acid derivatives in aqueous solution. Ab initio theory was used to calculate some quantum chemical descriptors including electrostatic potentials and local charges at each atom, HOMO and LUMO energies, etc. Modeling of the solubility of thiazolidine4-carboxylic acid derivatives as a function of molecular structures was established by means of the partial least squares (PLS). The subset of descriptors, which resulted in the low prediction error, was selected by genetic algorithm. This model was applied for the prediction of the solubility of some thiazolidine-4-carboxylic acid derivatives, which were not in the modeling procedure. The relative errors of prediction lower that -4% was obtained by using GA-PLS method. The resulted model showed high prediction ability with RMSEP of 3.8836 and 2.9500 for PLS and GA-PLS models, respectively.

  7. Quantitative EEG and Current Source Density Analysis of Combined Antiepileptic Drugs and Dopaminergic Agents in Genetic Epilepsy: Two Case Studies.

    Science.gov (United States)

    Emory, Hamlin; Wells, Christopher; Mizrahi, Neptune

    2015-07-01

    Two adolescent females with absence epilepsy were classified, one as attention deficit and the other as bipolar disorder. Physical and cognitive exams identified hypotension, bradycardia, and cognitive dysfunction. Their initial electroencephalograms (EEGs) were considered slightly slow, but within normal limits. Quantitative EEG (QEEG) data included relative theta excess and low alpha mean frequencies. A combined treatment of antiepileptic drugs with a catecholamine agonist/reuptake inhibitor was sequentially used. Both patients' physical and cognitive functions improved and they have remained seizure free. The clinical outcomes were correlated with statistically significant changes in QEEG measures toward normal Z-scores in both anterior and posterior regions. In addition, low resolution electromagnetic tomography (LORETA) Z-scored source correlation analyses of the initial and treated QEEG data showed normalized patterns, supporting a neuroanatomic resolution. This study presents preliminary evidence for a neurophysiologic approach to patients with absence epilepsy and comorbid disorders and may provide a method for further research.

  8. A Study of Mercury Methylation Genetics: Qualitative and Quantitative Analysis of hgcAB in Pure Culture

    Science.gov (United States)

    Christensen, G. A.; Wymore, A. M.; King, A. J.; Podar, M.; Hurt, R. A., Jr.; Santillan, E. F. U.; Gilmour, C. C.; Brandt, C. C.; Brown, S. D.; Palumbo, A. V.; Elias, D. A.

    2015-12-01

    Two proteins (HgcA and HgcB) have been determined to be essential for mercury (Hg)-methylation and either one alone is not sufficient for this process. Detection and quantification of these genes to determine at risk environments is critical. Universal degenerate polymerase chain reaction (PCR) primers spanning hgcAB were developed to ascertain organismal diversity and validate that both genes were present as an established prerequisite for Hg-methylation. To confirm this approach, an extensive set of pure cultures with published genomes (including methylators and non-methylators: 13 Deltaproteobacteria, 9 Firmicutes, and 10 methanogenic Archaea) were assayed with the newly designed universal hgcAB primer set. A single band within an agarose gel was observed for the majority of the cultures with known hgcAB and confirmed via Sanger sequencing. For environmental applications, once the potential for Hg-methylation is established from PCR amplification with the universal hgcAB primer set, quantification of clade-specific hgcAB gene abundance is desirable. We developed quantitative polymerase chain reaction (qPCR) degenerate primers targeting hgcA from each of the three dominate clades (Deltaproteobacteria, Firmicutes and methanogenic Archaea) known to be associated with anaerobic Hg-methylation. The qPCR primers amplify virtually all hgcA positive cultures overall and are specific for their designed clade. Finally, to ensure the procedure is robust and sensitive in complex environmental matrices, cells from all clades were mixed in different combinations and ratios to assess qPCR primer specificity. The development and validation of these high fidelity quantitative molecular tools now allows for rapid and accurate risk management assessment in any environment.

  9. MR brain image analysis in dementia: From quantitative imaging biomarkers to ageing brain models and imaging genetics.

    Science.gov (United States)

    Niessen, Wiro J

    2016-10-01

    MR brain image analysis has constantly been a hot topic research area in medical image analysis over the past two decades. In this article, it is discussed how the field developed from the construction of tools for automatic quantification of brain morphology, function, connectivity and pathology, to creating models of the ageing brain in normal ageing and disease, and tools for integrated analysis of imaging and genetic data. The current and future role of the field in improved understanding of the development of neurodegenerative disease is discussed, and its potential for aiding in early and differential diagnosis and prognosis of different types of dementia. For the latter, the use of reference imaging data and reference models derived from large clinical and population imaging studies, and the application of machine learning techniques on these reference data, are expected to play a key role. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Development and optimisation of a label-free quantitative proteomic procedure and its application in the assessment of genetically modified tomato fruit.

    Science.gov (United States)

    Mora, Leticia; Bramley, Peter M; Fraser, Paul D

    2013-06-01

    A key global challenge for plant biotechnology is addressing food security, whereby provision must be made to feed 9 billion people with nutritional feedstuffs by 2050. To achieve this step change in agricultural production new crop varieties are required that are tolerant to environmental stresses imposed by climate change, have better yields, are more nutritious and require less resource input. Genetic modification (GM) and marker-assisted screening will need to be fully utilised to deliver these new crop varieties. To evaluate these varieties both in terms of environmental and food safety and the rational design of traits a systems level characterisation is necessary. To link the transcriptome to the metabolome, quantitative proteomics is required. Routine quantitative proteomics is an important challenge. Gel-based densitometry and MS analysis after stable isotope labeling have been employed. In the present article, we describe the application of a label-free approach that can be used in combination with SDS-PAGE and reverse-phase chromatography to evaluate the changes in the proteome of new crop varieties. The workflow has been optimised for protein coverage, accuracy and robustness, then its application demonstrated using a GM tomato variety engineered to deliver nutrient dense fruit.

  11. A wheat intervarietal genetic linkage map based on microsatellite and target region amplified polymorphism markers and its utility for detecting quantitative trait loci.

    Science.gov (United States)

    Liu, Z H; Anderson, J A; Hu, J; Friesen, T L; Rasmussen, J B; Faris, J D

    2005-08-01

    Efficient user-friendly methods for mapping plant genomes are highly desirable for the identification of quantitative trait loci (QTLs), genotypic profiling, genomic studies, and marker-assisted selection. SSR (microsatellite) markers are user-friendly and efficient in detecting polymorphism, but they detect few loci. Target region amplification polymorphism (TRAP) is a relatively new PCR-based technique that detects a large number of loci from a single reaction without extensive pre-PCR processing of samples. In the investigation reported here, we used both SSRs and TRAPs to generate over 700 markers for the construction of a genetic linkage map in a hard red spring wheat intervarietal recombinant inbred population. A framework map consisting of 352 markers accounted for 3,045 cM with an average density of one marker per 8.7 cM. On average, SSRs detected 1.9 polymorphic loci per reaction, while TRAPs detected 24. Both marker systems were suitable for assigning linkage groups to chromosomes using wheat aneuploid stocks. We demonstrated the utility of the maps by identifying major QTLs for days to heading and reduced plant height on chromosomes 5A and 4B, respectively. Our results indicate that TRAPs are highly efficient for genetic mapping in wheat. The maps developed will be useful for the identification of quality and disease resistance QTLs that segregate in this population.

  12. Receptor-based modeling and 3D-QSAR for a quantitative production of the butyrylcholinesterase inhibitors based on genetic algorithm.

    Science.gov (United States)

    Zaheer-ul, Haq; Uddin, Reaz; Yuan, Hongbin; Petukhov, Pavel A; Choudhary, M Iqbal; Madura, Jeffry D

    2008-05-01

    Three-dimensional quantitative structure-activity relationship (3D-QSAR) models have been constructed using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) for a series of structurally related steroidal alkaloids as butyrylcholinesterase (BuChE) inhibitors. Docking studies were employed to position the inhibitors into the BuChE active site to determine the most probable binding mode. The strategy was to explore multiple inhibitor conformations in producing a more reliable 3D-QSAR model. These multiple conformations were derived using the FlexS program. The conformation selection step for CoMFA was done by genetic algorithm. The genetic algorithm based CoMFA approach was found to be the best. Both CoMFA and CoMSIA yielded significant cross-validated q(2) values of 0.701 and 0.627 and the r(2) values of 0.979 and 0.982, respectively. These statistically significant models were validated by a test set of five compounds. Comparison of CoMFA and CoMSIA contour maps helped to identify structural requirements for the inhibitors and serves as a basis for the design of the next generation of the inhibitor analogues. The results demonstrate that the combination of ligand-based and receptor-based modeling with use of a genetic algorithm is a powerful approach to build 3D-QSAR models. These data can be used for the lead optimization process with respect to inhibition enhancement which is important for the drug discovery and development for Alzheimer's disease.

  13. High-resolution genetic linkage mapping, high-temperature tolerance and growth-related quantitative trait locus (QTL) identification in Marsupenaeus japonicus.

    Science.gov (United States)

    Lu, Xia; Luan, Sheng; Hu, Long Yang; Mao, Yong; Tao, Ye; Zhong, Sheng Ping; Kong, Jie

    2016-06-01

    The Kuruma prawn, Marsupenaeus japonicus, is one of the most promising marine invertebrates in the industry in Asia, Europe and Australia. However, the increasing global temperatures result in considerable economic losses in M. japonicus farming. In the present study, to select genetically improved animals for the sustainable development of the Kuruma prawn industry, a high-resolution genetic linkage map and quantitative trait locus (QTL) identification were performed using the RAD technology. The maternal map contained 5849 SNP markers and spanned 3127.23 cM, with an average marker interval of 0.535 cM. Instead, the paternal map contained 3927 SNP markers and spanned 3326.19 cM, with an average marker interval of 0.847 cM. The consensus map contained 9289 SNP markers and spanned 3610.90 cM, with an average marker interval of 0.388 cM and coverage of 99.06 % of the genome. The markers were grouped into 41 linkage groups in the maps. Significantly, negative correlation was detected between high-temperature tolerance (UTT) and body weight (BW). The QTL mapping revealed 129 significant QTL loci for UTT and four significant QTL loci for BW at the genome-wide significance threshold. Among these QTLs, 129 overlapped with linked SNPs, and the remaining four were located in regions between contiguous SNPs. They explained the total phenotypic variance ranging from 8.9 to 12.4 %. Because of a significantly negative correlation between growth and high-temperature tolerance, we demonstrate that this high-resolution linkage map and QTLs would be useful for further marker-assisted selection in the genetic improvement of M. japonicus.

  14. Genetic analysis of ecological relevant morphological variability in Plantago lanceolata L. : 2. Localisation and organisation of quantitative trait loci.

    Science.gov (United States)

    Wolff, K

    1987-04-01

    Morphological variability was analysed in an F2-generation derived from crosses between two ecotypes of Plantago lanceolata L. Six allozyme loci, localised in five linkage groups, were used as markers. For two marker loci, Got-2 and Gpi-1, segregations did not fit monogenic ratios. In the linkage groups to which these two loci belonged, male sterility genes appeared to be present. In these crosses, male sterility (type 3, as described by Van Damme 1983) may be determined by two recessive loci located in the linkage groups of Got-2 and of Gpi-1. Many correlations of morphological and life history characters with allozyme markers were observed. The quantitative trait loci did not appear to be concentrated in major gene complexes. Often many loci were involved, sometimes with effects opposite to those expected from the population values. Main effects of the linkage groups appeared to be more important than interaction effects in determining variability. It also appeared that there is a positive correlation between the number of heterozygous allozyme loci and generative growth.

  15. Genetic Variation, Heritability, and Diversity Analysis of Upland Rice (Oryza sativa L. Genotypes Based on Quantitative Traits

    Directory of Open Access Journals (Sweden)

    Mst. Tuhina-Khatun

    2015-01-01

    Full Text Available Upland rice is important for sustainable crop production to meet future food demands. The expansion in area of irrigated rice faces limitations due to water scarcity resulting from climate change. Therefore, this research aimed to identify potential genotypes and suitable traits of upland rice germplasm for breeding programmes. Forty-three genotypes were evaluated in a randomised complete block design with three replications. All genotypes exhibited a wide and significant variation for 22 traits. The highest phenotypic and genotypic coefficient of variation was recorded for the number of filled grains/panicle and yields/plant (g. The highest heritability was found for photosynthetic rate, transpiration rate, stomatal conductance, intercellular CO2, and number of filled grains/panicle and yields/plant (g. Cluster analysis based on 22 traits grouped the 43 rice genotypes into five clusters. Cluster II was the largest and consisted of 20 genotypes mostly originating from the Philippines. The first four principle components of 22 traits accounted for about 72% of the total variation and indicated a wide variation among the genotypes. The selected best trait of the number of filled grains/panicle and yields/plant (g, which showed high heritability and high genetic advance, could be used as a selection criterion for hybridisation programmes in the future.

  16. Genetic Variation, Heritability, and Diversity Analysis of Upland Rice (Oryza sativa L.) Genotypes Based on Quantitative Traits.

    Science.gov (United States)

    Tuhina-Khatun, Mst; Hanafi, Mohamed M; Rafii Yusop, Mohd; Wong, M Y; Salleh, Faezah M; Ferdous, Jannatul

    2015-01-01

    Upland rice is important for sustainable crop production to meet future food demands. The expansion in area of irrigated rice faces limitations due to water scarcity resulting from climate change. Therefore, this research aimed to identify potential genotypes and suitable traits of upland rice germplasm for breeding programmes. Forty-three genotypes were evaluated in a randomised complete block design with three replications. All genotypes exhibited a wide and significant variation for 22 traits. The highest phenotypic and genotypic coefficient of variation was recorded for the number of filled grains/panicle and yields/plant (g). The highest heritability was found for photosynthetic rate, transpiration rate, stomatal conductance, intercellular CO₂, and number of filled grains/panicle and yields/plant (g). Cluster analysis based on 22 traits grouped the 43 rice genotypes into five clusters. Cluster II was the largest and consisted of 20 genotypes mostly originating from the Philippines. The first four principle components of 22 traits accounted for about 72% of the total variation and indicated a wide variation among the genotypes. The selected best trait of the number of filled grains/panicle and yields/plant (g), which showed high heritability and high genetic advance, could be used as a selection criterion for hybridisation programmes in the future.

  17. Ex vivo multiscale quantitation of skin biomechanics in wild-type and genetically-modified mice using multiphoton microscopy

    Science.gov (United States)

    Bancelin, Stéphane; Lynch, Barbara; Bonod-Bidaud, Christelle; Ducourthial, Guillaume; Psilodimitrakopoulos, Sotiris; Dokládal, Petr; Allain, Jean-Marc; Schanne-Klein, Marie-Claire; Ruggiero, Florence

    2015-12-01

    Soft connective tissues such as skin, tendon or cornea are made of about 90% of extracellular matrix proteins, fibrillar collagens being the major components. Decreased or aberrant collagen synthesis generally results in defective tissue mechanical properties as the classic form of Elhers-Danlos syndrome (cEDS). This connective tissue disorder is caused by mutations in collagen V genes and is mainly characterized by skin hyperextensibility. To investigate the relationship between the microstructure of normal and diseased skins and their macroscopic mechanical properties, we imaged and quantified the microstructure of dermis of ex vivo murine skin biopsies during uniaxial mechanical assay using multiphoton microscopy. We used two genetically-modified mouse lines for collagen V: a mouse model for cEDS harboring a Col5a2 deletion (a.k.a. pN allele) and the transgenic K14-COL5A1 mice which overexpress the human COL5A1 gene in skin. We showed that in normal skin, the collagen fibers continuously align with stretch, generating the observed increase in mechanical stress. Moreover, dermis from both transgenic lines exhibited altered collagen reorganization upon traction, which could be linked to microstructural modifications. These findings show that our multiscale approach provides new crucial information on the biomechanics of dermis that can be extended to all collagen-rich soft tissues.

  18. Significant impact of non-B HIV-1 variants genetic diversity in Gabon on plasma HIV-1 RNA quantitation.

    Science.gov (United States)

    Mouinga-Ondémé, Augustin; Mabika-Mabika, Arsène; Alalade, Patrick; Mongo, Arnaud Delis; Sica, Jeanne; Liégeois, Florian; Rouet, François

    2014-01-01

    Evaluations of HIV-1 RNA viral load assays are lacking in Central Africa. The main objective of our study was to assess the reliability of HIV-1 RNA results obtained with three different assays for samples collected in Gabon. A total of 137 plasma specimens were assessed for HIV-1 RNA using the Abbott RealTime HIV-1® and Nuclisens HIV-1 EasyQ® version 2.0 assays. It included HIV-1 non-B samples (n = 113) representing six subtypes, 10 CRFs and 18 URFs from patients infected with HIV-1 and treated with antiretrovirals that were found HIV-1 RNA positive (≥300 copies/ml) with the Generic HIV viral load® assay; and samples (n = 24) from untreated individuals infected with HIV-1 but showing undetectable (<300 copies/ml) results with the Biocentric kit. For samples found positive with the Generic HIV viral load® test, correlation coefficients obtained between the three techniques were relatively low (R = 0.65 between Generic HIV viral load® and Abbott RealTime HIV-1®, 0.50 between Generic HIV viral load® and Nuclisens HIV-1 EasyQ®, and 0.66 between Abbott RealTime HIV-1® and Nuclisens HIV-1 EasyQ®). Discrepancies by at least one log10 were obtained for 19.6%, 33.7%, and 20% of samples, respectively, irrespective of genotype. Most of samples (22/24) from untreated study patients, found negative with the Biocentric kit, were also found negative with the two other techniques. In Central Africa, HIV-1 genetic diversity remains challenging for viral load testing. Further studies are required in the same area to confirm the presence of HIV-1 strains that are not amplified with at least two different viral load assays.

  19. Ecologically relevant stress resistance: from microarrays and quantitative trait loci to candidate genes – A research plan and preliminary results using Drosophila as a model organism and climatic and genetic stress as model stresses

    Indian Academy of Sciences (India)

    Volker Loeschcke; Jesper G Sørensen; Torsten N Kristensen

    2004-12-01

    We aim at studying adaptation to genetic and environmental stress and its evolutionary implications at different levels of biological organization. Stress influences cellular processes, individual physiology, genetic variation at the population level, and the process of natural selection. To investigate these highly connected levels of stress effects, it is advisable – if not critical – to integrate approaches from ecology, evolution, physiology, molecular biology and genetics. To investigate the mechanisms of stress resistance, how resistance evolves, and what factors contribute to and constrain its evolution, we use the well-defined model systems of Drosophila species, representing both cosmopolitan species such as D. melanogaster with a known genome map, and more specialized and ecologically well described species such as the cactophilic D. buzzatii. Various climate-related stresses are used as model stresses including desiccation, starvation, cold and heat. Genetic stress or genetic load is modelled by studying the consequences of inbreeding, the accumulation of (slightly) deleterious mutations, hybridization or the loss of genetic variability. We present here a research plan and preliminary results combining various approaches: molecular techniques such as microarrays, quantitative trait loci (QTL) analyses, quantitative PCR, ELISA or Western blotting are combined with population studies of resistance to climatic and genetic stress in natural populations collected across climatic gradients as well as in selection lines maintained in the laboratory.

  20. Application of a qualitative and quantitative real-time polymerase chain reaction method for detecting genetically modified papaya line 55-1 in papaya products.

    Science.gov (United States)

    Nakamura, Kosuke; Akiyama, Hiroshi; Takahashi, Yuki; Kobayashi, Tomoko; Noguchi, Akio; Ohmori, Kiyomi; Kasahara, Masaki; Kitta, Kazumi; Nakazawa, Hiroyuki; Kondo, Kazunari; Teshima, Reiko

    2013-01-15

    Genetically modified (GM) papaya (Carica papaya L.) line 55-1 (55-1), which is resistant to papaya ringspot virus infection, has been marketed internationally. Many countries have mandatory labeling regulations for GM foods, and there is a need for specific methods for detecting 55-1. Here, an event- and construct-specific real-time polymerase chain reaction (PCR) method was developed for detecting 55-1 in papaya products. Quantitative detection was possible for fresh papaya fruit up to dilutions of 0.001% and 0.01% (weight per weight [w/w]) for homozygous SunUp and heterozygous Rainbow cultivars, respectively, in non-GM papaya. The limit of detection and quantification was as low as 250 copies of the haploid genome according to a standard reference plasmid. The method was applicable to qualitative detection of 55-1 in eight types of processed products (canned papaya, pickled papaya, dried fruit, papaya-leaf tea, jam, puree, juice, and frozen dessert) containing papaya as a main ingredient. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. IDENTIFYING GENETIC ASSOCIATIONS WITH VARIABILITY IN METABOLIC HEALTH AND BLOOD COUNT LABORATORY VALUES: DIVING INTO THE QUANTITATIVE TRAITS BY LEVERAGING LONGITUDINAL DATA FROM AN EHR.

    Science.gov (United States)

    Verma, Shefali S; Lucas, Anastasia M; Lavage, Daniel R; Leader, Joseph B; Metpally, Raghu; Krishnamurthy, Sarathbabu; Dewey, Frederick; Borecki, Ingrid; Lopez, Alexander; Overton, John; Penn, John; Reid, Jeffrey; Pendergrass, Sarah A; Breitwieser, Gerda; Ritchie, Marylyn D

    2016-01-01

    variance group and the low variance group for each lab variable. We found 717 PheWAS associations that replicated at a p-value less than 0.001. Next, we evaluated the results of this study by comparing the association results between the high and low variance groups. For example, we found 39 SNPs (in multiple genes) associated with ICD-9 250.01 (Type-I diabetes) in patients with high variance of plasma glucose levels, but not in patients with low variance in plasma glucose levels. Another example is the association of 4 SNPs in UMOD with chronic kidney disease in patients with high variance for aspartate aminotransferase (discovery p-value: 8.71×10-09 and replication p-value: 2.03×10-06). In general, we see a pattern of many more statistically significant associations from patients with high variance in the quantitative lab variables, in comparison with the low variance group across all of the 25 laboratory measurements. This study is one of the first of its kind to utilize quantitative trait variance from longitudinal laboratory data to find associations among genetic variants and clinical phenotypes obtained from an EHR, integrating laboratory values and diagnosis codes to understand the genetic complexities of common diseases.

  2. A quantitative structure–activity relationship study on HIV-1 integrase inhibitors using genetic algorithm, artificial neural networks and different statistical methods

    Directory of Open Access Journals (Sweden)

    Ghasem Ghasemi

    2016-09-01

    Full Text Available In this work, quantitative structure–activity relationship (QSAR study has been done on tricyclic phthalimide analogues acting as HIV-1 integrase inhibitors. Forty compounds were used in this study. Genetic algorithm (GA, artificial neural network (ANN and multiple linear regressions (MLR were utilized to construct the non-linear and linear QSAR models. It revealed that the GA–ANN model was much better than other models. For this purpose, ab initio geometry optimization performed at B3LYP level with a known basis set 6–31G (d. Hyperchem, ChemOffice and Gaussian 98W softwares were used for geometry optimization of the molecules and calculation of the quantum chemical descriptors. To include some of the correlation energy, the calculation was done with the density functional theory (DFT with the same basis set and Becke’s three parameter hybrid functional using the LYP correlation functional (B3LYP/6–31G (d. For the calculations in solution phase, the polarized continuum model (PCM was used and also included optimizations at gas-phase B3LYP/6–31G (d level for comparison. In the aqueous phase, the root–mean–square errors of the training set and the test set for GA–ANN model using jack–knife method, were 0.1409, 0.1804, respectively. In the gas phase, the root–mean–square errors of the training set and the test set for GA–ANN model were 0.1408, 0.3103, respectively. Also, the R2 values in the aqueous and the gas phase were obtained as 0.91, 0.82, respectively.

  3. Detection of somatic quantitative genetic alterations by multiplex polymerase chain reaction for the prediction of outcome in diffuse large B-cell lymphomas.

    Science.gov (United States)

    Jardin, Fabrice; Ruminy, Philippe; Kerckaert, Jean-Pierre; Parmentier, Françoise; Picquenot, Jean-Michel; Quief, Sabine; Villenet, Céline; Buchonnet, Gérard; Tosi, Mario; Frebourg, Thierry; Bastard, Christian; Tilly, Hervé

    2008-04-01

    Genomic gains and losses play a crucial role in the development of diffuse large B-cell lymphomas. High resolution array comparative genomic hybridization provides a comprehensive view of these genomic imbalances but is not routinely applicable. We developed a polymerase chain reaction assay to provide information regarding gains or losses of relevant genes and prognosis in diffuse large B-cell lymphomas. Two polymerase chain reaction assays (multiplex polymerase chain reaction of short fluorescent fragments, QMPSF) were designed to detect gains or losses of c-REL, BCL6, SIM1, PTPRK, MYC, CDKN2A, MDM2, CDKN1B, TP53 and BCL2. Array comparative genomic hybridization was simultaneously performed to evaluate the sensitivity and predictive value of the QMPSF assay. The biological and clinical relevance of this assay were assessed. The predictive value of the QMPSF assay for detecting abnormal DNA copy numbers ranged between 88-97%, giving an overall concordance rate of 92% with comparative genomic hybridization results. In 77 cases of diffuse large B-cell lymphomas, gains of MYC, CDKN1B, c-REL and BCL2 were detected in 12%, 40%, 27% and 29%, respectively. TP53 and CDKN2A deletions were observed in 22% and 36% respectively. BCL2 and CDKN2A allelic status correlated with protein expression. TP53 mutations were associated with allelic deletions in 45% of cases. The prognostic value of a single QMPSF assay including TP53, MYC, CDKN2A, SIM1 and CDKN1B was predictive of the outcome independently of the germinal center B-cell like/non-germinal center B-cell like subtype or the International Prognostic Index. QMPSF is a reliable and flexible method for detecting somatic quantitative genetic alterations in diffuse large B-cell lymphomas and could be integrated in future prognostic predictive models.

  4. The role of quantitative genetic studies in animal physiological ecology El rol de los estudios genético-cuantitativos en ecología fisiológica animal

    OpenAIRE

    2005-01-01

    Evolutionary physiology is a new discipline with roots in comparative physiology. One major change in the emergence of this discipline was an explicit new focus on viewing organisms as the evolutionary products of natural selection. The shift in research emphasis from comparative physiology to evolutionary physiology has resulted in physiological traits becoming important elements in broad research programs of evolution and ecology. Evolutionary quantitative genetics is a theory-based biologi...

  5. Integration of gene-based markers in a pearl millet genetic map for identification of candidate genes underlying drought tolerance quantitative trait loci

    Directory of Open Access Journals (Sweden)

    Sehgal Deepmala

    2012-01-01

    Full Text Available Abstract Background Identification of genes underlying drought tolerance (DT quantitative trait loci (QTLs will facilitate understanding of molecular mechanisms of drought tolerance, and also will accelerate genetic improvement of pearl millet through marker-assisted selection. We report a map based on genes with assigned functional roles in plant adaptation to drought and other abiotic stresses and demonstrate its use in identifying candidate genes underlying a major DT-QTL. Results Seventy five single nucleotide polymorphism (SNP and conserved intron spanning primer (CISP markers were developed from available expressed sequence tags (ESTs using four genotypes, H 77/833-2, PRLT 2/89-33, ICMR 01029 and ICMR 01004, representing parents of two mapping populations. A total of 228 SNPs were obtained from 30.5 kb sequenced region resulting in a SNP frequency of 1/134 bp. The positions of major pearl millet linkage group (LG 2 DT-QTLs (reported from crosses H 77/833-2 × PRLT 2/89-33 and 841B × 863B were added to the present consensus function map which identified 18 genes, coding for PSI reaction center subunit III, PHYC, actin, alanine glyoxylate aminotransferase, uridylate kinase, acyl-CoA oxidase, dipeptidyl peptidase IV, MADS-box, serine/threonine protein kinase, ubiquitin conjugating enzyme, zinc finger C- × 8-C × 5-C × 3-H type, Hd3, acetyl CoA carboxylase, chlorophyll a/b binding protein, photolyase, protein phosphatase1 regulatory subunit SDS22 and two hypothetical proteins, co-mapping in this DT-QTL interval. Many of these candidate genes were found to have significant association with QTLs of grain yield, flowering time and leaf rolling under drought stress conditions. Conclusions We have exploited available pearl millet EST sequences to generate a mapped resource of seventy five new gene-based markers for pearl millet and demonstrated its use in identifying candidate genes underlying a major DT-QTL in this species. The reported gene

  6. A quantitative, high-throughput reverse genetic screen reveals novel connections between Pre-mRNA splicing and 5' and 3' end transcript determinants.

    Directory of Open Access Journals (Sweden)

    Laura-Oana Albulescu

    Full Text Available Here we present the development and implementation of a genome-wide reverse genetic screen in the budding yeast, Saccharomyces cerevisiae, that couples high-throughput strain growth, robotic RNA isolation and cDNA synthesis, and quantitative PCR to allow for a robust determination of the level of nearly any cellular RNA in the background of ~5,500 different mutants. As an initial test of this approach, we sought to identify the full complement of factors that impact pre-mRNA splicing. Increasing lines of evidence suggest a relationship between pre-mRNA splicing and other cellular pathways including chromatin remodeling, transcription, and 3' end processing, yet in many cases the specific proteins responsible for functionally connecting these pathways remain unclear. Moreover, it is unclear whether all pathways that are coupled to splicing have been identified. As expected, our approach sensitively detects pre-mRNA accumulation in the vast majority of strains containing mutations in known splicing factors. Remarkably, however, several additional candidates were found to cause increases in pre-mRNA levels similar to that seen for canonical splicing mutants, none of which had previously been implicated in the splicing pathway. Instead, several of these factors have been previously implicated to play roles in chromatin remodeling, 3' end processing, and other novel categories. Further analysis of these factors using splicing-sensitive microarrays confirms that deletion of Bdf1, a factor that links transcription initiation and chromatin remodeling, leads to a global splicing defect, providing evidence for a novel connection between pre-mRNA splicing and this component of the SWR1 complex. By contrast, mutations in 3' end processing factors such as Cft2 and Yth1 also result in pre-mRNA splicing defects, although only for a subset of transcripts, suggesting that spliceosome assembly in S. cerevisiae may more closely resemble mammalian models of exon

  7. Development and application of absolute quantitative detection by duplex chamber-based digital PCR of genetically modified maize events without pretreatment steps.

    Science.gov (United States)

    Zhu, Pengyu; Fu, Wei; Wang, Chenguang; Du, Zhixin; Huang, Kunlun; Zhu, Shuifang; Xu, Wentao

    2016-04-15

    The possibility of the absolute quantitation of GMO events by digital PCR was recently reported. However, most absolute quantitation methods based on the digital PCR required pretreatment steps. Meanwhile, singleplex detection could not meet the demand of the absolute quantitation of GMO events that is based on the ratio of foreign fragments and reference genes. Thus, to promote the absolute quantitative detection of different GMO events by digital PCR, we developed a quantitative detection method based on duplex digital PCR without pretreatment. Moreover, we tested 7 GMO events in our study to evaluate the fitness of our method. The optimized combination of foreign and reference primers, limit of quantitation (LOQ), limit of detection (LOD) and specificity were validated. The results showed that the LOQ of our method for different GMO events was 0.5%, while the LOD is 0.1%. Additionally, we found that duplex digital PCR could achieve the detection results with lower RSD compared with singleplex digital PCR. In summary, the duplex digital PCR detection system is a simple and stable way to achieve the absolute quantitation of different GMO events. Moreover, the LOQ and LOD indicated that this method is suitable for the daily detection and quantitation of GMO events. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Genetic mapping and quantitative trait loci analysis for disease resistance using F2 and F5 generation-based genetic maps derived from 'Tifrunner' x'GT-C20' in peanut

    Science.gov (United States)

    One mapping population derived from Tifrunner × GT-C20 has shown great potential in developing a high dense genetic map and identification of QTLs for important disease resistance, Tomato spotted wilt virus (TSWV) and leaf spot (LS). Both F2 and F5 generation-based genetic maps were constructed prev...

  9. Quantitative genetic and translocation experiments reveal genotype-by-environment effects on juvenile life-history traits in two populations of Chinook salmon (Oncorhynchus tshawytscha)

    National Research Council Canada - National Science Library

    Evans, M L; Neff, B D; Heath, D D

    2010-01-01

    .... Here, we use the North Carolina II breeding design and translocation experiments between two populations of Chinook salmon to detail the genetic architecture and plasticity of offspring survival and growth...

  10. Quantitative genetics of growth and development time in the burying beetle Nicrophorus pustulatus in the presence and absence of post-hatching parental care.

    Science.gov (United States)

    Rauter, Claudia M; Moore, Allen J

    2002-01-01

    Despite a growing interest in the evolutionary aspects of maternal effects, few studies have examined the genetic consequences of maternal effects associated with parental care. To begin to provide data on nonlaboratory or nondomestic animals, we compared the effect of presence and absence of parental care on phenotype expression of larval mass and development time at different life-history stages in the burying beetle Nicrophorus pustulatus. This beetle has facultative care; parents can feed their larvae through regurgitation of digested carrion or offspring can feed by themselves from previously prepared carrion. To investigate larval responses to these two levels of care, including estimates of additive genetic effects, maternal effects, and genotype-by-environment interactions, we used a half-sibling split-family breeding experiment-raising half of the offspring of a family in the presence of their mother and the other half without their mother present. Larvae reared with their mother present were on average heavier and developed faster, although some of the differences in development decreased or were eliminated by the adult stage. These results suggest that presence or absence of post-hatching maternal care plays an important role in phenotype expression early in life, whereas later the phenotype of the offspring is determined mainly by the genotype and/or unshared environmental effects. Our study also permitted us to examine the differences in genetic effects between the two care environments. Heritabilities, maternal/common environment effect, and most genetic correlations did not differ between the care treatments. Genetic analyses revealed substantial additive genetic effects for development time but small effects for measures of body mass. Maternal plus common environment effects were high for measures of mass but low for development time, suggesting that indirect genetic effects of maternal and/or common environment are less important for the evolution

  11. Genetic mapping of semi-polar metabolites in pepper fruits (Capsicum sp.): towards unravelling the molecular regulation of flavonoid quantitative trait loci

    NARCIS (Netherlands)

    Wahyuni, Y.; Stahl-Hermes, V.; Ballester, A.R.; Vos, de C.H.; Voorrips, R.E.; Maharijaya, A.; Molthoff, J.W.; Víquez Zamora, A.M.; Sudarmonowati, E.; Arisi, A.C.M.; Bino, R.J.; Bovy, A.G.

    2014-01-01

    Untargeted LCMS profiling of semi-polar metabolites followed by metabolite quantitative trait locus (mQTL) analysis was performed in ripe pepper fruits of 113 F2 plants derived from a cross between Capsicum annuum AC1979 (no. 19) and Capsicum chinense No. 4661 Selection (no. 18). The parental

  12. Comparison of the training of neural networks for quantitative X-ray fluorescence spectrometry by a genetic algorith and backward error propagation

    NARCIS (Netherlands)

    Bos, M.; Weber, H.T.; Weber, H.T.

    1991-01-01

    Neural networks are shown to be useful as empirical mathematical models in the calculation of quantitative analytical results, giving sufficient accuracy to compete successfully with various common calibration procedures. The performance of these neural-network models for calibration data from x-ray

  13. Genetic mapping of semi-polar metabolites in pepper fruits (Capsicum sp.): towards unravelling the molecular regulation of flavonoid quantitative trait loci

    NARCIS (Netherlands)

    Wahyuni, Y.; Stahl-Hermes, V.; Ballester, A.R.; Vos, de C.H.; Voorrips, R.E.; Maharijaya, A.; Molthoff, J.W.; Víquez Zamora, A.M.; Sudarmonowati, E.; Arisi, A.C.M.; Bino, R.J.; Bovy, A.G.

    2014-01-01

    Untargeted LCMS profiling of semi-polar metabolites followed by metabolite quantitative trait locus (mQTL) analysis was performed in ripe pepper fruits of 113 F2 plants derived from a cross between Capsicum annuum AC1979 (no. 19) and Capsicum chinense No. 4661 Selection (no. 18). The parental access

  14. MONITORING MYCOTOXIN PRODUCTION AT THE GENETIC LEVEL ON VARIOUS GROWTH SUBSTRATES USING QUANTITATIVE REVERSE TRANSCRIPTION POLYMERASE CHAIN REACTION?EXPERIMENT DESIGN

    Science.gov (United States)

    The paper describes a method of analyzing the production of mycotoxins at the genetic level by monitoring the intracellular levels of messenger RNA (mRNA). Initial work will focus on threshing out the mycotoxin gene clusters in Stachybotrys chartarum followed by analysis of toxin...

  15. MONITORING MYCOTOXIN PRODUCTION AT THE GENETIC LEVEL ON VARIOUS GROWTH SUBSTRATES USING QUANTITATIVE REVERSE TRANSCRIPTION POLYMERASE CHAIN REACTION?EXPERIMENT DESIGN

    Science.gov (United States)

    The paper describes a method of analyzing the production of mycotoxins at the genetic level by monitoring the intracellular levels of messenger RNA (mRNA). Initial work will focus on threshing out the mycotoxin gene clusters in Stachybotrys chartarum followed by analysis of toxin...

  16. Association of genetic variants of the incretin-related genes with quantitative traits and occurrence of type 2 diabetes in Japanese

    Directory of Open Access Journals (Sweden)

    Mayumi Enya

    2014-01-01

    Conclusion: Rare variants of GIPR may contribute to the development of type 2 diabetes, possibly through insulin secretory defects. Furthermore, the genetic variant of PCSK1 might influence glucose homeostasis by altered insulin resistance independently of BMI, incretin level or proinsulin conversion, and may be associated with the occurrence of type 2 diabetes in Japanese.

  17. Revised sections F7.5 (quantitative amino acid analysis) and F7.6 (qualitative amino acid analysis): American College of Medical Genetics Standards and Guidelines for Clinical Genetics Laboratories, 2003.

    Science.gov (United States)

    Grier, Robert E; Gahl, William A; Cowan, Tina; Bernardini, Isa; McDowell, Geraldine A; Rinaldo, Piero

    2004-01-01

    Determination of plasma amino acid levels has become a key piece of information in the diagnosis and clinical management of a group of metabolic genetic disorders. Appropriate laboratory methodologies have been published for amino acid analysis, yet there is a need for direction for the laboratory in performing this testing. The following guidelines were generated by a working group of the American College of Medical Genetics Laboratory Quality Assurance Committee. Based upon a body of knowledge and professional experience, these guidelines and standards are to be the benchmark for performance of amino acid analysis for clinical interpretation.

  18. Application of Jena fluorescence quantitative PCR in the detection of genetically modified feed%耶拿荧光定量PCR在转基因饲料检测中的应用

    Institute of Scientific and Technical Information of China (English)

    甄珍

    2016-01-01

    目的:优化耶拿荧光定量PCR在转基因饲料检测中的检测条件。方法采用已知转基因品系的玉米蛋白粉样品,通过选择常用的不同品牌的Premix溶液、8连管及不同的反应程序进行Ct值对比,得出最佳的检测方案。结果最佳的检测方案如下:Takara Premix溶液、LightCycler 8-Tube Strips (white)八连管及95℃30 s,95℃5 s-60℃30 s,40个循环的反应程序,在此条件下可检测出饲料产品中痕量的转基因成分。结论耶拿荧光定量PCR对饲料中痕量转基因成分的检测结果可靠,适用于饲料转基因成分的检测。%ABSTRACT:Objective To optimize the detection conditions of Jena fluorescent quantitative PCR for detection of genetically modified feed. Method Using the corn gluten meal samples with known genetically modified strains, 2 brands of Premix solutions, 8-Tube Strip and different reaction procedures were selected to perform Ct value comparison to obtain the best detection scheme. Results The optimum detection scheme was as follows: Takara Premix solution, LightCycler 8-Tube Strips (white) and 95 ℃ 30 s, 95 ℃ 5 s~60 ℃ 30 s for 40 cycles, and trace amounts of genetically modified components in feed products could be detected. Conclusion The detection result of the genetically modified components in feed detected by Jena fluorescent quantitative PCR is reliable, which is suitable for the detection of genetically modified components in feed.

  19. Comparative genetic analysis of quantitative traits in sunflower (Helianthus annuus L.). 2. Characterisation of QTL involved in developmental and agronomic traits.

    Science.gov (United States)

    Bert, P-F; Jouan, I; Tourvieille de Labrouhe, D; Serre, F; Philippon, J; Nicolas, P; Vear, F

    2003-06-01

    Seed weight and oil content are important properties of cultivated sunflower under complex genetic and environmental control, and associated with morphological and developmental characteristics such as plant height or flowering dates. Using a genetic map with 290 markers for a cross between two inbred sunflower lines and 2 years of observations on F3 families, QTL controlling seed weight, oil content, plant height, plant lodging, flowering dates, maturity dates and delay from flowering to maturity were detected. QTL detected were compared between the F2 and F3 generations and between the 2 years of testing for the F3 families in 1997 and 1999. Some of the QTL controlling seed weight overlapped with those controlling oil content. Several other co-localisations of QTL controlling developmental or morphological characteristics were observed and the relationships between the traits were also shown by correlation analyses. The relationships between all these traits and with resistance to Sclerotinia sclerotiorum and Diaporthe helianthi are discussed.

  20. Genetic diversity analysis based on molecular marker and quantitative traits of the response of different tomato (Lycopersicon esculentum Mill. cultivars to drought stress

    Directory of Open Access Journals (Sweden)

    Metwali Ehab M.R.

    2016-01-01

    Full Text Available The drought tolerance of tomato (Lycopersicon esculentum Mill. is a trait needing urgent improvement due to recent climate changes and limited water availability. We therefore conducted a greenhouse screening experiment to identify tomato cultivars with improved drought tolerance. Several sensitivity and tolerance indices were computed based on morphological markers. With the aim of establishing a correlation to these markers, a total of 16 inter-simple sequence repeat (ISSR primers were used, the genetic diversity among cultivars was elucidated and clustering the cultivars into groups based on their molecular profiles was performed. The obtained results indicated that selection indices, such as geometric mean productivity (GMP, mean productivity (MP, tolerance index (TOL,and stress tolerance index (STI, represented suitable indices for screening the drought tolerance of tomato cultivars. An interesting correlation of the ISSR analyses to these morphological findings was established according to 83 detectable fragments derived from 10 primers. The highest value of the effective multiplex ratio (EMR and marker index (MI was detected for primer INC7 followed by INC1. Based on Jaccard's similarity coefficients, the genetic distance of the genotypes varied from 0.702 to 0.942 with a mean value of 0.882. The results showed a clear-cut separation of the 15 tomato cultivars due to their genetic variability, making them a valuable genetic source for their incorporation into potential breeding programs. Molecular data were in good agreement with the results as regards selection indices, and both of them will be useful tools for improvement of the tomato germplasm.

  1. Genetic variability and association pattern among quantitative nutritional traits in Swiss chard (Beta vulgaris subsp. L. var. cicla accessions and its implication for breeding

    Directory of Open Access Journals (Sweden)

    Bozokalfa Kadri M.

    2014-01-01

    Full Text Available In addition to improving agronomic traits, enriched cultivar such as nutritional elements and health promoting compounds are new demands for today's and the future's perspectives of crop breeding. In this respect, among leafy vegetables Swiss chard is a good source of nutritional elements and supplies large amounts of health promoting compounds. The existing knowledge of genetic variability for mineral composition both at the phenotype and genotype level, heritability of characters and also relationships among investigated minerals is fundamental for variety selection in Swiss chard. This also applies for the assurance of desirable agronomic traits with optimum mineral concentrations. This research analysis of variance indicated highly significant differences among Swiss chard accessions for all investigated mineral concentrations and the accessions display higher phenotype coefficient variation than genotype coefficient variation for all traits. The results revealed that phosphorus, magnesium, sodium, iron, copper, zinc, manganese, nitrate and nitrite exhibited high genetic advance accompanied with high heritability (>60%. The remaining mineral content demonstrated high heritability with moderate genetic advance. Genotype correlations were higher than the phenotype correlation for significant mineral concentrations. Genotype and phenotype correlations followed similar trends in all significant cases indicating the high heritable nature of the characters and the results showed that Swiss chard accessions should allow for the selection of individuals for enriched mineral concentration in edible parts of the plant.

  2. Construction of a high-density genetic map using specific length amplified fragment markers and identification of a quantitative trait locus for anthracnose resistance in walnut (Juglans regia L.).

    Science.gov (United States)

    Zhu, Yufeng; Yin, Yanfei; Yang, Keqiang; Li, Jihong; Sang, Yalin; Huang, Long; Fan, Shu

    2015-08-18

    Walnut (Juglans regia, 2n = 32, approximately 606 Mb per 1C genome) is an economically important tree crop. Resistance to anthracnose, caused by Colletotrichum gloeosporioides, is a major objective of walnut genetic improvement in China. The recently developed specific length amplified fragment sequencing (SLAF-seq) is an efficient strategy that can obtain large numbers of markers with sufficient sequence information to construct high-density genetic maps and permits detection of quantitative trait loci (QTLs) for molecular breeding. SLAF-seq generated 161.64 M paired-end reads. 153,820 SLAF markers were obtained, of which 49,174 were polymorphic. 13,635 polymorphic markers were sorted into five segregation types and 2,577 markers of them were used to construct genetic linkage maps: 2,395 of these fell into 16 linkage groups (LGs) for the female map, 448 markers for the male map, and 2,577 markers for the integrated map. Taking into account the size of all LGs, the marker coverage was 2,664.36 cM for the female map, 1,305.58 cM for the male map, and 2,457.82 cM for the integrated map. The average intervals between two adjacent mapped markers were 1.11 cM, 2.91 cM and 0.95 cM for three maps, respectively. 'SNP_only' markers accounted for 89.25% of the markers on the integrated map. Mapping markers contained 5,043 single nucleotide polymorphisms (SNPs) loci, which corresponded to two SNP loci per SLAF marker. According to the integrated map, we used interval mapping (Logarithm of odds, LOD > 3.0) to detect our quantitative trait. One QTL was detected for anthracnose resistance. The interval of this QTL ranged from 165.51 cM to 176.33 cM on LG14, and ten markers in this interval that were above the threshold value were considered to be linked markers to the anthracnose resistance trait. The phenotypic variance explained by each marker ranged from 16.2 to 19.9%, and their LOD scores varied from 3.22 to 4.04. High-density genetic maps for walnut containing 16

  3. Parentage assignment with genomic markers: a major advance for understanding and exploiting genetic variation of quantitative traits in farmed aquatic animals.

    Science.gov (United States)

    Vandeputte, Marc; Haffray, Pierrick

    2014-01-01

    Since the middle of the 1990s, parentage assignment using microsatellite markers has been introduced as a tool in aquaculture breeding. It now allows close to 100% assignment success, and offered new ways to develop aquaculture breeding using mixed family designs in commercial conditions. Its main achievements are the knowledge and control of family representation and inbreeding, especially in mass spawning species, above all the capacity to estimate reliable genetic parameters in any species and rearing system with no prior investment in structures, and the development of new breeding programs in many species. Parentage assignment should not be seen as a way to replace physical tagging, but as a new way to conceive breeding programs, which have to be optimized with its specific constraints, one of the most important being to well define the number of individuals to genotype to limit costs, maximize genetic gain while minimizing inbreeding. The recent possible shift to (for the moment) more costly single nucleotide polymorphism markers should benefit from future developments in genomics and marker-assisted selection to combine parentage assignment and indirect prediction of breeding values.

  4. Quantitative assessment of timing, efficiency, specificity and genetic mosaicism of CRISPR/Cas9-mediated gene editing of hemoglobin beta gene in rhesus monkey embryos.

    Science.gov (United States)

    Midic, Uros; Hung, Pei-Hsuan; Vincent, Kailey A; Goheen, Benjamin; Schupp, Patrick G; Chen, Diane D; Bauer, Daniel E; VandeVoort, Catherine A; Latham, Keith E

    2017-07-15

    Gene editing technologies offer new options for developing novel biomedical research models and for gene and stem cell based therapies. However, applications in many species demand high efficiencies, specificity, and a thorough understanding of likely editing outcomes. To date, overall efficiencies, rates of off-targeting and degree of genetic mosaicism have not been well-characterized for most species, limiting our ability to optimize methods. As a model gene for measuring these parameters of the CRISPR/Cas9 application in a primate species (rhesus monkey), we selected the β-hemoglobin gene (HBB), which also has high relevance to the potential application of gene editing and stem-cell technologies for treating human disease. Our data demonstrate an ability to achieve a high efficiency of gene editing in rhesus monkey zygotes, with no detected off-target effects at selected off-target loci. Considerable genetic mosaicism and variation in the fraction of embryonic cells bearing targeted alleles are observed, and the timing of editing events is revealed using a new model. The uses of Cas9-WT protein combined with optimized concentrations of sgRNAs are two likely areas for further refinement to enhance efficiency while limiting unfavorable outcomes that can be exceedingly costly for application of gene editing in primate species. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Parentage assignment with genomic markers: a major advance for understanding and exploiting genetic variation of quantitative traits in farmed aquatic animals

    Directory of Open Access Journals (Sweden)

    Marc eVandeputte

    2014-12-01

    Full Text Available Since the middle of the 1990s, parentage assignment using microsatellite markers has been introduced as a tool in aquaculture breeding. It now allows close to 100% assignment success, and offered new ways to develop aquaculture breeding using mixed family designs in industry conditions. Its main achievements are the knowledge and control of family representation and inbreeding, especially in mass spawning species, above all the capacity to estimate reliable genetic parameters in any species and rearing system with no prior investment in structures, and the development of new breeding programs in many species. Parentage assignment should not be seen as a way to replace physical tagging, but as a new way to conceive breeding programs, which have to be optimized with its specific constraints, one of the most important being to well define the number of individuals to genotype to limit costs, maximize genetic gain while minimizing inbreeding. The recent possible shift to (for the moment more costly SNP markers should benefit from future developments in genomics and MAS selection to combine parentage assignment and indirect prediction of breeding values.

  6. Quantitative structure-activity relationship (QSAR) study of interleukin-1 receptor associated kinase 4 (IRAK-4) inhibitor activity by the genetic algorithm and multiple linear regression (GA-MLR) method.

    Science.gov (United States)

    Pourbasheer, Eslam; Riahi, Siavash; Ganjali, Mohammad Reza; Norouzi, Parviz

    2010-12-01

    A linear quantitative structure-activity relationship (QSAR) model is presented for the modelling and prediction for the interleukin-1 receptor associated kinase 4 (IRAK-4) inhibition activity of amides and imidazo[1,2-α] pyridines. The model was produced using the multiple linear regression (MLR) technique on a database that consisted of 65 recently discovered amides and imidazo[1,2- α] pyridines. Among the different constitutional, topological, geometrical, electrostatic and quantum-chemical descriptors that were considered as inputs to the model, seven variables were selected using the genetic algorithm subset selection method (GA). The accuracy of the proposed MLR model was illustrated using the following evaluation techniques: cross-validation, validation through an external test set, and Y-randomisation. The predictive ability of the model was found to be satisfactory and could be used for designing a similar group of compounds.

  7. The role of quantitative genetic studies in animal physiological ecology El rol de los estudios genético-cuantitativos en ecología fisiológica animal

    Directory of Open Access Journals (Sweden)

    Paulina Artacho

    2005-03-01

    Full Text Available Evolutionary physiology is a new discipline with roots in comparative physiology. One major change in the emergence of this discipline was an explicit new focus on viewing organisms as the evolutionary products of natural selection. The shift in research emphasis from comparative physiology to evolutionary physiology has resulted in physiological traits becoming important elements in broad research programs of evolution and ecology. Evolutionary quantitative genetics is a theory-based biological discipline that has developed the quantitative tools to test explicit evolutionary hypotheses. The role of quantitative genetics has been paramount, in studying the microevolution of morphology, behavior and life history, but not comparative physiology. As a consequence, little basic information is known such as additive genetic variation of physiological traits and the magnitude of genetically based trade-offs (i.e., genetic correlations with other traits. Here we explore possible causes for such gap, which we believe are related with the inconsistency of what we call physiological traits across taxonomic and organizational divisions, combined with logistical problems of pedigree_based analyses in complex traitsLa fisiología evolutiva es una nueva disciplina con raíces en la fisiología comparada. Uno de los principales cambios introducidos con esta disciplina es un enfoque donde los organismos son analizados en forma explícita como el producto de selección natural. Este cambio de énfasis desde fisiología comparada a fisiología evolutiva ha resultado en que los rasgos fisiológicos son elementos importantes en el programa de investigación de la evolución y la ecología. La genética cuantitativa evolutiva es una disciplina biológica con bases teóricas que ha desarrollado las herramientas cuantitativas para someter a prueba hipótesis evolutivas en forma explícita. El rol de la genética cuantitativa ha sido notable en el estudio de la

  8. Genetic analyses and quantitative trait loci detection, using a partial genome scan, for intramuscular fatty acid composition in Scottish Blackface sheep.

    Science.gov (United States)

    Karamichou, E; Richardson, R I; Nute, G R; Gibson, K P; Bishop, S C

    2006-12-01

    Genetic parameters for LM fatty acid composition were estimated in Scottish Blackface sheep, previously divergently selected for carcass lean content (LEAN and FAT lines). Furthermore, QTL were identified for the same fatty acids. Fatty acid phenotypic measurements were made on 350 male lambs, at approximately 8 mo of age, and 300 of these lambs were genotyped across candidate regions on chromosomes 1, 2, 3, 5, 14, 18, 20, and 21. Fatty acid composition measurements included in total 17 fatty acids of 3 categories: saturated, monounsaturated, and polyunsaturated. Total i.m. fat content was estimated as the sum of the fatty acids. The FAT line had a greater i.m. fat content and more oleic acid, but less linoleic acid (18:2 n-6) and docosapentaenoic acid (22:5 n-3) than did the LEAN line. Saturated fatty acids were moderately heritable, ranging from 0.19 to 0.29, and total SFA were highly heritable (0.90). Monounsaturated fatty acids were moderately to highly heritable, with cis-vaccenic acid (18:1 n-7) being the most heritable (0.67), and total MUFA were highly heritable (0.73). Polyunsaturated fatty acids were also moderately to highly heritable; arachidonic acid (20:4 n-6) and CLA were the most heritable, with values of 0.60 and 0.48, respectively. The total PUFA were moderately heritable (0.40). The QTL analyses were performed using regression interval mapping techniques. In total, 21 chromosome-wide QTL were detected in 6 out of 8 chromosomal regions. The chromosome-wide, significant QTL affected 3 SFA, 5 MUFA, and 13 PUFA. The most significant result was a QTL affecting linolenic acid (18:3 n-3) on chromosome 2. This QTL segregated in 2 of the 9 families and explained 37.6% of the phenotypic variance. Also, 10 significant QTL were identified on chromosome 21, where 8 out of 10 QTL were segregating in the same families and detected at the same position. The results of this study demonstrate that altering carcass fatness will simultaneously change i.m. fat

  9. Development of Real-Time Fluorescent Quantitative PCR in the Field of Genetically Modified Food Detection%实时荧光定量PCR技术在转基因食品检测领域中的应用

    Institute of Scientific and Technical Information of China (English)

    吴永彬; 肖维威; 马文丽

    2011-01-01

    With wide application of genetic engineering technology in agricultural production, more and more improved characteristics of transgenic plants have been widely planted on a global scale, followed by genetically modified(GM) foods have to be developed rapidly. Because of security issues caused by large-scale commercialization of GM products, and ensuring GMO labeling system implement smoothly, a rapid, accurate, high-throughput quantitative assay is necessary. In this paper we reviewed the development of GM foods detection at home and abroad research progress, and focused on the application of real-time fluorescent quantitative PCR in the field of GM foods detection, and in its application prospects, constructing standard reference molecules were proposed to achieve more transgenic plant lines for quantitative detection.%随着基因工程技术在农业生产中应用的深入,越来越多具有改良特征的转基因植物在全球范围内得到广泛种植,随之而来的转基因食品也迅猛发展,转基因产品大规模商业化引起了对安全性问题的担忧.为保证转基因产品标签制度的顺利实施,建立快速、准确、高通量的定量检测方法十分必要.我们综述了国内外转基因食品检测技术的研究进展,重点阐述了实时荧光定量PCR技术在转基因食品检测领域中的应用,并展望了通过构建质粒标准分子的方法来实现对更多转基因植物品系的定量检测.

  10. Estimates of genetic and environmental contribution to 43 quantitative traits support sharing of a homogeneous environment in an isolated population from South Tyrol, Italy.

    Science.gov (United States)

    Marroni, Fabio; Grazio, Daniela; Pattaro, Cristian; Devoto, Marcella; Pramstaller, Peter

    2008-01-01

    As part of the genomic health care program 'GenNova', we measured 43 quantitative traits in 1,136 subjects living in three isolated villages in South Tyrol (Italy), for which extended genealogical information was available. Thirty-seven of the studied traits had been previously investigated in other populations, while six of them are, to the best of our knowledge, studied here for the first time. For all 43 traits we estimated narrow-sense heritability, individual-specific environmental effects, and shared environmental effects. Estimates of narrow-sense heritability were in good agreement with previous findings. We found significant heritability for all traits; after correcting for multiple testing, all traits except serum concentration of glutamic oxaloacetic transaminase (GOT) and potassium still showed significant heritability. In contrast, the effect of living in the same sibship or village (the so-called sibship and household effects, respectively) was significant for a few traits only, and after correcting for multiple testing no trait showed significant shared environment effect. We suggest that the sharing of a highly similar environment by the subjects included in this study explains the low contribution of the household effects to the overall trait variation. This peculiarity should provide an advantage in gene-mapping projects by reducing environmental bias.

  11. Studies of a genetic variant in HK1 in relation to quantitative metabolic traits and to the prevalence of type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Bonnefond Amélie

    2011-07-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs within the gene encoding Hexokinase 1 (HK1 are associated with changes in glycated haemoglobin (HbA1c levels. Our aim was to investigate the effect of HK1 rs7072268 on measures of glucose- and lipid-metabolism in a Danish non-diabetic population and combine the outcome of these analyses in a meta-analysis with previously published results. Furthermore, our aim was to perform a type 2 diabetes case-control analysis and meta-analysis with two previous case-control studies. Methods SNP rs7072268 was genotyped in 9,724 Danes. The quantitative trait study included 5,604 non-diabetic individuals from the Inter99 cohort. The case-control study included 4,449 glucose tolerant individuals and 3,398 patients with type 2 diabetes. Meta-analyses on quantitative traits included 24,560 Caucasian individuals and 30,802 individuals were included in the combined analysis of present and previous type 2 diabetes case-control studies. Results Using an additive model, we confirmed that the T-allele of rs7072268 associates with increased HbA1c of 0.6% (CI: 0.4 - 0.9, p = 3*10-7 per allele. The same allele associated with an increased area under the curve (AUC for glucose of 5.0 mmol/l*min (0.1 - 10.0, p = 0.045 following an oral glucose tolerance test (OGTT and increased fasting levels of cholesterol of 0.06 mmol/l (0.03 - 1.0, p = 0.001 and triglycerides of 2.0% (0.2 - 3.8, p = 0.03 per allele in the same study sample of non-diabetic individuals from the Inter99 cohort. However, the T-allele did not show any association with estimates of insulin release or insulin sensitivity neither in Inter99 nor in combined analyses. The prevalence of type 2 diabetes was increased among carriers of the rs7072268 T-allele both in the Danish study-population with an OR of 1.11 (1.02-1.21 and in a meta-analysis including the two additional sample sets with an OR of 1.06 (1.02-1.11. However, after Bonferroni correction the T

  12. Genetic mapping of semi-polar metabolites in pepper fruits (Capsicum sp.): towards unravelling the molecular regulation of flavonoid quantitative trait loci.

    Science.gov (United States)

    Wahyuni, Yuni; Stahl-Hermes, Vanessa; Ballester, Ana-Rosa; de Vos, Ric C H; Voorrips, Roeland E; Maharijaya, Awang; Molthoff, Jos; Zamora, Marcela Viquez; Sudarmonowati, Enny; Arisi, Ana Carolina Maisonnave; Bino, Raoul J; Bovy, Arnaud G

    2014-01-01

    Untargeted LCMS profiling of semi-polar metabolites followed by metabolite quantitative trait locus (mQTL) analysis was performed in ripe pepper fruits of 113 F2 plants derived from a cross between Capsicum annuum AC1979 (no. 19) and Capsicum chinense No. 4661 Selection (no. 18). The parental accessions were selected based on their variation in fruit morphological characteristics and fruit content of some target phytonutrients. Clear segregation of fruit colour and fruit metabolite profiles was observed in the F2 population. The F2 plants formed three clusters based on their metabolite profiles. Of the total of 542 metabolites, 52 could be annotated, including a range of flavonoids, such as flavone C-glycosides, flavonol O-glycosides and naringenin chalcone, as well as several phenylpropanoids, a capsaicin analogue, fatty acid derivatives and amino acid derivatives. Interval mapping revealed 279 mQTLs in total. Two mQTL hotspots were found on chromosome 9. These two chromosomal regions regulated the relative levels of 35 and 103 metabolites, respectively. Analysis also revealed an mQTL for a capsaicin analogue, located on chromosome 7. Confirmation of flavonoid mQTLs using a set of six flavonoid candidate gene markers and their corresponding expression data (expression QTLs) indicated the Ca-MYB12 transcription factor gene on chromosome 1 and the gene encoding flavone synthase (FS-2) on chromosome 6 as likely causative genes determining the variation in naringenin chalcone and flavone C-glycosides, respectively, in this population. The combination of large-scale metabolite profiling and QTL analysis provided valuable insight into the genomic regions and genes important for the production of (secondary) metabolites in pepper fruit. This will impact breeding strategies aimed at optimising the content of specific metabolites in pepper fruit.

  13. Genome-scan analysis for genetic mapping of quantitative trait loci underlying birth weight and onset of puberty in doe kids (Capra hircus).

    Science.gov (United States)

    Esmailizadeh, A K

    2014-12-01

    The objective of this study was to locate quantitative trait loci (QTL) causing variation in birth weight and age of puberty of doe kids in a population of Rayini cashmere goats. Four hundred and thirty kids from five half-sib families were genotyped for 116 microsatellite markers located on the caprine autosomes. The traits recorded were birth weight of the male and female kids, body weight at puberty, average daily gain from birth to age of puberty and age at puberty of the doe kids. QTL analysis was conducted using the least squares interval mapping approach. Linkage analysis indicated significant QTL for birth weight on Capra hircus chromosomes (CHI) 4, 5, 6, 18 and 21. Five QTL located on CHI 5, 14 and 29 were associated with age at puberty. Across-family analysis revealed evidence for overlapping QTL affecting birth weight (78 cM), body weight at puberty (72 cM), average daily gain from birth to age of puberty (72 cM) and age at puberty (76 cM) on CHI 5 and overlapping QTL controlling body weight at puberty and age at puberty on CHI 14 at 18-19 cM. The proportion of the phenotypic variance explained by the detected QTL ranged between 7.9% and 14.4%. Confirming some of the previously reported results for birth weight and growth QTL in goats, this study identified more QTL for these traits and is the first report of QTL for onset of puberty in doe kids.

  14. Occurrence and genetic diversity of Arcobacter spp. in a spinach-processing plant and evaluation of two Arcobacter-specific quantitative PCR assays.

    Science.gov (United States)

    Hausdorf, Lena; Neumann, Maria; Bergmann, Ingo; Sobiella, Kerstin; Mundt, Kerstin; Fröhling, Antje; Schlüter, Oliver; Klocke, Michael

    2013-06-01

    Some species of the genus Arcobacter are considered to be emerging food pathogens. With respect to recent vegetable-borne outbreaks, the aim of this work was to investigate the occurrence and diversity of Arcobacter within the production chain of a spinach-processing plant by a combination of cultivation and molecular methods. Samples including spinach, water, and surface biofilm were taken over a period of three years from the entire processing line. Ten 16S rRNA (rrs) gene clone libraries were constructed and analysed using amplified rRNA gene restriction analysis (ARDRA). Approximately 1200 clones were studied that resulted in 44 operational taxonomic units (OTUs). Sequences with high similarities to Arcobacter cryaerophilus (13% of clones, 3 OTUs), A. ellisii (4%, 6 OTUs), A. suis (15%, 3 OTUs), and the type strain of A. nitrofigilis (1%, 7 OTUs) were identified. This represents the first report of the detection of the recently described species A. ellisii, A. suis and, in addition, A. venerupis from alternative habitats. A total of 67% of the clones (22 OTUs) could not be assigned to a genus, which indicated the presence of uncharacterised Arcobacter species. For the cultivation-independent detection of Arcobacter, two genus-specific quantitative PCR (qPCR) assays were developed and tested on 15 Arcobacter species. When these assays were applied to samples from the spinach-processing plant, they showed positive results for up to 35% of the samples and supported the conclusion that there is a considerable risk for the transfer of pathogenic Arcobacter species on vegetables, which was also verified by a cultivation approach.

  15. Genetic Basis of Differential Heat Resistance between Two Species of Congeneric Freshwater Snails: Insights from Quantitative Proteomics and Base Substitution Rate Analysis.

    Science.gov (United States)

    Mu, Huawei; Sun, Jin; Fang, Ling; Luan, Tiangang; Williams, Gray A; Cheung, Siu Gin; Wong, Chris K C; Qiu, Jian-Wen

    2015-10-02

    We compared the heat tolerance, proteomic responses to heat stress, and adaptive sequence divergence in the invasive snail Pomacea canaliculata and its noninvasive congener Pomacea diffusa. The LT50 of P. canaliculata was significantly higher than that of P. diffusa. More than 3350 proteins were identified from the hepatopancreas of the snails exposed to acute and chronic thermal stress using iTRAQ-coupled mass spectrometry. Acute exposure (3 h exposure at 37 °C with 25 °C as control) resulted in similar numbers (27 in P. canaliculata and 23 in P. diffusa) of differentially expressed proteins in the two species. Chronic exposure (3 weeks of exposure at 35 °C with 25 °C as control) caused differential expression of more proteins (58 in P. canaliculata and 118 in P. diffusa), with many of them related to restoration of damaged molecules, ubiquitinating dysfunctional molecules, and utilization of energy reserves in both species; but only in P. diffusa was there a shift from carbohydrate to lipid catabolism. Analysis of orthologous genes encoding the differentially expressed proteins revealed two genes having clear evidence of positive selection (Ka/Ks > 1) and seven candidates for more detailed analysis of positive selection (Ka/Ks between 0.5 and 1). These nine genes are related to energy metabolism, cellular oxidative homeostasis, signaling, and binding processes. Overall, the proteomic and base substitution rate analyses indicate genetic basis of differential resistance to heat stress between the two species, and such differences could affect their further range expansion in a warming climate.

  16. Systems genetics of the nuclear factor-κB signal transduction network. I. Detection of several quantitative trait loci potentially relevant to aging.

    Science.gov (United States)

    Diego, Vincent P; Curran, Joanne E; Charlesworth, Jac; Peralta, Juan M; Voruganti, V Saroja; Cole, Shelley A; Dyer, Thomas D; Johnson, Matthew P; Moses, Eric K; Göring, Harald H H; Williams, Jeff T; Comuzzie, Anthony G; Almasy, Laura; Blangero, John; Williams-Blangero, Sarah

    2012-01-01

    A theory of aging holds that senescence is caused by a dysregulated nuclear factor kappa B (NF-κB) signal transduction network (STN). We adopted a systems genetics approach in our study of the NF-κB STN. Ingenuity Pathways Analysis (IPA) was used to identify gene/gene product interactions between NF-κB and the genes in our transcriptional profiling array. Principal components factor analysis (PCFA) was performed on a sub-network of 19 genes, including two initiators of the toll-like receptor (TLR) pathway, myeloid differentiation primary response gene (88) (MyD88) and TIR (Toll/interleukin-1 receptor)-domain-containing adapter-inducing interferon-β (TRIF). TLR pathways are either MyD88-dependent or TRIF-dependent. Therefore, we also performed PCFA on a subset excluding the MyD88 transcript, and on another subset excluding two TRIF transcripts. Using linkage analysis we found that each set gave rise to at least one factor with a logarithm of the odds (LOD) score greater than 3, two on chromosome 15 at 15q12 and 15q22.2, and another two on chromosome 17 at 17p13.3 and 17q25.3. We also found several suggestive signals (2

  17. Salinity tolerance in plants. Quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes

    Directory of Open Access Journals (Sweden)

    Vadim eVolkov

    2015-10-01

    Full Text Available Ion transport is the fundamental factor determining salinity tolerance in plants. The Review starts from differences in ion transport between salt tolerant halophytes and salt-sensitive plants with an emphasis on transport of potassium and sodium via plasma membranes. The comparison provides introductory information for increasing salinity tolerance. Effects of salt stress on ion transport properties of membranes show huge opportunities for manipulating ion fluxes. Further steps require knowledge about mechanisms of ion transport and individual genes of ion transport proteins. Initially, the Review describes methods to measure ion fluxes, the independent set of techniques ensures robust and reliable basement for quantitative approach. The Review briefly summarises current data concerning Na+ and K+ concentrations in cells, refers to primary thermodynamics of ion transport and gives special attention to individual ion channels and transporters. Simplified scheme of a plant cell with known transport systems at the plasma membrane and tonoplast helps to imagine the complexity of ion transport and allows to choose specific transporters for modulating ion transport. The complexity is enhanced by the influence of cell size and cell wall on ion transport. Special attention is given to ion transporters and to potassium and sodium transport by HKT, HAK, NHX and SOS1 proteins. Comparison between nonselective cation channels and ion transporters reveals potential importance of ion transporters and the balance between the two pathways of ion transport. Further on the Review describes in detail several successful attempts to overexpress or knockout ion transporters for changing salinity tolerance. Future perspectives are questioned with more attention given to promising candidate ion channels and transporters for altered expression. Potential direction of increasing salinity tolerance by modifying ion channels and transporters using single point mutations is

  18. Quantitative research.

    Science.gov (United States)

    Watson, Roger

    2015-04-01

    This article describes the basic tenets of quantitative research. The concepts of dependent and independent variables are addressed and the concept of measurement and its associated issues, such as error, reliability and validity, are explored. Experiments and surveys – the principal research designs in quantitative research – are described and key features explained. The importance of the double-blind randomised controlled trial is emphasised, alongside the importance of longitudinal surveys, as opposed to cross-sectional surveys. Essential features of data storage are covered, with an emphasis on safe, anonymous storage. Finally, the article explores the analysis of quantitative data, considering what may be analysed and the main uses of statistics in analysis.

  19. Factors affecting the development of genetic testing service by using quantitative SWOT analysis%定量态势分析法分析我国基因检测服务发展影响因素的研究

    Institute of Scientific and Technical Information of China (English)

    包鹤龄; 王红漫

    2011-01-01

    目的 研究我国以基因组技术为基础的基因检测服务发展影响因素及发展策略.方法 通过目的 抽样的方法选择基因组学和基因检测领域相关专家,对11名专家进行深入访谈并设计问卷,通过调查问卷获取25名专家的数据信息,态势分析法、层次分析法、内部因素评价矩阵和外部因素评价矩阵相结合的定量态势分析法进行数据分析,随机一致性比率(CR)检验逻辑一致性(CR<10%).结果 共确定15项关键影响因素,其中重要性排在前三位的分别是法律与市场规范缺失、国家已出台政策扶持和缺少知识产权保护,权重分别为0.099、0.091和0.087,国内基因检测服务发展处于战略态势图的第三象限.结论 国内基因检测服务发展宜采取防御性战略,回避外部威胁,克服自身缺点,降低基因检测所带来的风险.%Objective To analyze the factors affecting the development of genome technology-based genetic testing services. Methods Purposive sampling was used to select experts in the field of genome or genetic testing. Following interview with 11 experts,data was obtained from 25 individuals and analyzed by using quantitative SWOT analysis, including the concept of SWOT method, Analytic Hierarchy Process,Internal Factor Evaluation ( IFE ) Matrix, and External Factor Evaluation ( EFE ) Matrix. Consistent ratio (CR) was chosen to test the logic. Results Of the 15 critical affecting factors, the weighting coefficient of deficiency of laws and market regulations, state supporting policies, and lack of intellectual property protection was 0. 099,0. 091 and 0. 087, respectively. The development of genetic testing services was found in the third quadrant of SWOT analysis. Conclusion These findings suggest that defensive strategy should be taken to improve genetic testing services and to reduce the risk of genetic testing.

  20. Genetic analysis of environmental variation

    NARCIS (Netherlands)

    Hill, W.G.; Mulder, H.A.

    2010-01-01

    Environmental variation (VE) in a quantitative trait – variation in phenotype that cannot be explained by genetic variation or identifiable genetic differences – can be regarded as being under some degree of genetic control. Such variation may be either between repeated expressions of the same trait

  1. Genetic analysis of environmental variation

    NARCIS (Netherlands)

    Hill, W.G.; Mulder, H.A.

    2010-01-01

    Environmental variation (VE) in a quantitative trait – variation in phenotype that cannot be explained by genetic variation or identifiable genetic differences – can be regarded as being under some degree of genetic control. Such variation may be either between repeated expressions of the same trait

  2. Uncovering the Genetic Architectures of Quantitative Traits.

    Science.gov (United States)

    Lee, James J; Vattikuti, Shashaank; Chow, Carson C

    2016-01-01

    The aim of a genome-wide association study (GWAS) is to identify loci in the human genome affecting a phenotype of interest. This review summarizes some recent work on conceptual and methodological aspects of GWAS. The average effect of gene substitution at a given causal site in the genome is the key estimand in GWAS, and we argue for its fundamental importance. Implicit in the definition of average effect is a linear model relating genotype to phenotype. The fraction of the phenotypic variance ascribable to polymorphic sites with nonzero average effects in this linear model is called the heritability, and we describe methods for estimating this quantity from GWAS data. Finally, we show that the theory of compressed sensing can be used to provide a sharp estimate of the sample size required to identify essentially all sites contributing to the heritability of a given phenotype.

  3. Uncovering the Genetic Architectures of Quantitative Traits

    Directory of Open Access Journals (Sweden)

    James J. Lee

    2016-01-01

    Full Text Available The aim of a genome-wide association study (GWAS is to identify loci in the human genome affecting a phenotype of interest. This review summarizes some recent work on conceptual and methodological aspects of GWAS. The average effect of gene substitution at a given causal site in the genome is the key estimand in GWAS, and we argue for its fundamental importance. Implicit in the definition of average effect is a linear model relating genotype to phenotype. The fraction of the phenotypic variance ascribable to polymorphic sites with nonzero average effects in this linear model is called the heritability, and we describe methods for estimating this quantity from GWAS data. Finally, we show that the theory of compressed sensing can be used to provide a sharp estimate of the sample size required to identify essentially all sites contributing to the heritability of a given phenotype.

  4. Major Quantitative Trait Loci and Putative Candidate Genes for Powdery Mildew Resistance and Fruit-Related Traits Revealed by an Intraspecific Genetic Map for Watermelon (Citrullus lanatus var. lanatus).

    Science.gov (United States)

    Kim, Kwang-Hwan; Hwang, Ji-Hyun; Han, Dong-Yeup; Park, Minkyu; Kim, Seungill; Choi, Doil; Kim, Yongjae; Lee, Gung Pyo; Kim, Sun-Tae; Park, Young-Hoon

    2015-01-01

    An intraspecific genetic map for watermelon was constructed using an F2 population derived from 'Arka Manik' × 'TS34' and transcript sequence variants and quantitative trait loci (QTL) for resistance to powdery mildew (PMR), seed size (SS), and fruit shape (FS) were analyzed. The map consists of 14 linkage groups (LGs) defined by 174 cleaved amplified polymorphic sequences (CAPS), 2 derived-cleaved amplified polymorphic sequence markers, 20 sequence-characterized amplified regions, and 8 expressed sequence tag-simple sequence repeat markers spanning 1,404.3 cM, with a mean marker interval of 6.9 cM and an average of 14.6 markers per LG. Genetic inheritance and QTL analyses indicated that each of the PMR, SS, and FS traits is controlled by an incompletely dominant effect of major QTLs designated as pmr2.1, ss2.1, and fsi3.1, respectively. The pmr2.1, detected on chromosome 2 (Chr02), explained 80.0% of the phenotypic variation (LOD = 30.76). This QTL was flanked by two CAPS markers, wsb2-24 (4.00 cM) and wsb2-39 (13.97 cM). The ss2.1, located close to pmr2.1 and CAPS marker wsb2-13 (1.00 cM) on Chr02, explained 92.3% of the phenotypic variation (LOD = 68.78). The fsi3.1, detected on Chr03, explained 79.7% of the phenotypic variation (LOD = 31.37) and was flanked by two CAPS, wsb3-24 (1.91 cM) and wsb3-9 (7.00 cM). Candidate gene-based CAPS markers were developed from the disease resistance and fruit shape gene homologs located on Chr.02 and Chr03 and were mapped on the intraspecific map. Colocalization of these markers with the major QTLs indicated that watermelon orthologs of a nucleotide-binding site-leucine-rich repeat class gene containing an RPW8 domain and a member of SUN containing the IQ67 domain are candidate genes for pmr2.1 and fsi3.1, respectively. The results presented herein provide useful information for marker-assisted breeding and gene cloning for PMR and fruit-related traits.

  5. Using high-throughput DNA sequencing, genetic fingerprinting, and quantitative PCR as tools for monitoring bloom-forming and toxigenic cyanobacteria in Upper Klamath Lake, Oregon, 2013 and 2014

    Science.gov (United States)

    Caldwell Eldridge, Sara L.; Driscoll, Conner; Dreher, Theo W.

    2017-06-05

    Monitoring the community structure and metabolic activities of cyanobacterial blooms in Upper Klamath Lake, Oregon, is critical to lake management because these blooms degrade water quality and produce toxic microcystins that are harmful to humans, domestic animals, and wildlife. Genetic tools, such as DNA fingerprinting by terminal restriction fragment length polymorphism (T-RFLP) analysis, high-throughput DNA sequencing (HTS), and real-time, quantitative polymerase chain reaction (qPCR), provide more sensitive and rapid assessments of bloom ecology than traditional techniques. The objectives of this study were (1) to characterize the microbial community at one site in Upper Klamath Lake and determine changes in the cyanobacterial community through time using T-RFLP and HTS in comparison with traditional light microscopy; (2) to determine relative abundances and changes in abundance over time of toxigenic Microcystis using qPCR; and (3) to determine relative abundances and changes in abundance over time of Aphanizomenon, Microcystis, and total cyanobacteria using qPCR. T-RFLP analysis of total cyanobacteria showed a dominance of only one or two distinct genotypes in samples from 2013, but results of HTS in 2013 and 2014 showed more variations in the bloom cycle that fit with the previous understanding of bloom dynamics in Upper Klamath Lake and indicated that potentially toxigenic Microcystis was more prevalent in 2014 than in years prior. The qPCR-estimated copy numbers of all target genes were higher in 2014 than in 2013, when microcystin concentrations also were higher. Total Microcystis density was shown with qPCR to be a better predictor of late-season increases in microcystin concentrations than the relative proportions of potentially toxigenic cells. In addition, qPCR targeting Aphanizomenon at one site in Upper Klamath Lake indicated a moderate bloom of this species (corresponding to chlorophyll a concentrations between approximately 75 and 200 micrograms

  6. Genetic Discrimination

    Science.gov (United States)

    ... in Genetics Archive Regulation of Genetic Tests Genetic Discrimination Overview Many Americans fear that participating in research ... I) and employment (Title II). Read more Genetic Discrimination and Other Laws Genetic Discrimination and Other Laws ...

  7. Genetic Pathways to Insomnia

    Directory of Open Access Journals (Sweden)

    Mackenzie J. Lind

    2016-12-01

    Full Text Available This review summarizes current research on the genetics of insomnia, as genetic contributions are thought to be important for insomnia etiology. We begin by providing an overview of genetic methods (both quantitative and measured gene, followed by a discussion of the insomnia genetics literature with regard to each of the following common methodologies: twin and family studies, candidate gene studies, and genome-wide association studies (GWAS. Next, we summarize the most recent gene identification efforts (primarily GWAS results and propose several potential mechanisms through which identified genes may contribute to the disorder. Finally, we discuss new genetic approaches and how these may prove useful for insomnia, proposing an agenda for future insomnia genetics research.

  8. The quantitative Morse theorem

    OpenAIRE

    Loi, Ta Le; Phien, Phan

    2013-01-01

    In this paper, we give a proof of the quantitative Morse theorem stated by {Y. Yomdin} in \\cite{Y1}. The proof is based on the quantitative Sard theorem, the quantitative inverse function theorem and the quantitative Morse lemma.

  9. Establishment of Event-specific Quantitative PCR of Genetically Modified Maize (Zea mays) Event MON863%转基因玉米MON863品系特异定量PCR方法的建立

    Institute of Scientific and Technical Information of China (English)

    宋君; 雷绍荣; 刘勇; 尹全; 王东; 张富丽; 刘文娟; 常丽娟

    2011-01-01

    Event-specific quantitative PCR detection method of genetically modified maize (Event MON863) was established. PCR primers and Taqman probe were designed according to the flanking sequence of exogenous gene of Event MON863. Sample (CRM) containing 1% of Event MON863 (uncertainty was 10%) was tested. The results showed that the slope of standard curve obtained was in the range of -3.6-3.1. Correlation coefficient was greater than 0.99; And the amplification efficiency of this method was 90%~l 10% (averaged at 102.2%). The detection result of sample was 1.113%, closed to the true content (1%). It was proved that the sensitivity and precision of this method was relatively high and could be used to test GMO samples.%根据转基因玉米MON863外源基因的旁侧序列,设计引物和TaqMan探针,建立了转基因玉米MON863品系特异定量PCR检测方法,并采用该法检测了1%含量的MON863玉米粉末(不确定度为10%).结果显示,采用构建的方法获得的标准曲线斜率为-3.6~-3.1,相关系数大于0.99,扩增效率为102.2%,在90%~110%内.样品的定量检测结果1.113%接近已知含量1%(不确定度为10%),表明建立的转基因玉米MON863品系特异定量PCR检测方法的灵敏度和准确度高可以在日常检验中推产应用.

  10. 转基因玉米NK603结构特异定量PCR方法的建立%Establishment of Construct Specific Quantitative PCR of Genetically Modified Maize (Zea mays), Event NK603

    Institute of Scientific and Technical Information of China (English)

    宋君; 雷绍荣; 向冰; 刘勇; 王东; 尹全

    2011-01-01

    根据转基因玉米NK603载体构建特异序列,设计引物和Taqman探针,建立了转基因玉米NK603载体构建特异结构定量PCR检测方法,并采用该法检测了2%含量的NK603标准品(不确定度为10%).结果显示,采用本文构建的方法获得的标准曲线斜率,在-3.6- -3.1之间,相关系数大于0.99,扩增效率为98.1%,在90%~110%的范围内.样品检测结果(1.6%)接近已知含量(2%,不确定度为10%).表明本文建立的转基因玉米NK603结构特异定量PCR检测方法,可以在日常检验中推广应用.%The construct specific quantitative PCR detection method of genetically modified maize, Event NK603, was established according to the sequence of the vector of the event NK603 and the sample ( CRM ) containing two percentage of event NK603 component ( uncertainty was 10%) was tested using the established method. "Hie results showed the slope of standard curve was in the range of -3.6- -3.1. Correlation coefficient was greater than 0.99. The amplified efficiency of this method fell between the scope of 90 % -110 % (98.1%). The detection results of the sample were 1.6%, close to the true content (2 % ). It proved that the sensitivity and precision of the method was relatively high and the method could be used to test GMO samples.

  11. Genetic background (DDD/Sgn versus C57BL/6J) strongly influences postnatal growth of male mice carrying the Ay allele at the agouti locus: identification of quantitative trait loci associated with diabetes and body weight loss

    Science.gov (United States)

    2013-01-01

    Background Mice carrying the Ay allele at the agouti locus become obese and are heavier than their non-Ay littermates. However, this does not hold true for the genetic background of the DDD mouse strain. At 22 weeks of age, DDD.Cg-Ay females are heavier than DDD females, whereas DDD.Cg-Ay males are lighter than DDD males. This study aimed to determine the possible cause and identify the genes responsible for the lower body weight of DDD.Cg-Ay males. Results Growth curves of DDD.Cg-Ay mice were analyzed and compared with those of B6.Cg-Ay mice from 5 to 25 weeks. In DDD.Cg-Ay males, body weight gain stopped between 16 and 17 weeks and the body weight gradually decreased; thus, the lower body weight was a consequence of body weight loss. Quantitative trait locus (QTL) mapping was performed in backcrossed (BC) males of DDD × (B6 × DDD.Cg-Ay) F1-Ay mice. For the body weight at 25 weeks, significant QTLs were identified on chromosomes 1 and 4. The DDD allele was associated with a lower body weight at both loci. In particular, the QTL on chromosome 4 interacted with the Ay allele. Furthermore, suggestive QTLs for plasma glucose and high molecular weight adiponectin levels were coincidentally mapped to chromosome 4. The DDD allele was associated with increased glucose and decreased adiponectin levels. When the body weight at 25 weeks and plasma glucose levels were considered as dependent and independent variables, respectively, BC Ay males were classified into two groups according to statistical analysis using the partition method. Mice of one group had significantly higher glucose and lower adiponectin levels than those of the other group and exhibited body weight loss as observed with DDD-Ay males. Conclusions The lower body weight of DDD.Cg-Ay male mice was a consequence of body weight loss. Diabetes mellitus has been suggested to be a possible contributory factor causing body weight loss. The QTL on distal chromosome 4 contained the major responsible genes

  12. Genetic background (DDD/Sgn versus C57BL/6J) strongly influences postnatal growth of male mice carrying the A(y) allele at the agouti locus: identification of quantitative trait loci associated with diabetes and body weight loss.

    Science.gov (United States)

    Suto, Jun-ichi; Satou, Kunio

    2013-05-04

    Mice carrying the A(y) allele at the agouti locus become obese and are heavier than their non-A(y) littermates. However, this does not hold true for the genetic background of the DDD mouse strain. At 22 weeks of age, DDD.Cg-A(y) females are heavier than DDD females, whereas DDD.Cg-A(y) males are lighter than DDD males. This study aimed to determine the possible cause and identify the genes responsible for the lower body weight of DDD.Cg-A(y) males. Growth curves of DDD.Cg-A(y) mice were analyzed and compared with those of B6.Cg-A(y) mice from 5 to 25 weeks. In DDD.Cg-A(y) males, body weight gain stopped between 16 and 17 weeks and the body weight gradually decreased; thus, the lower body weight was a consequence of body weight loss. Quantitative trait locus (QTL) mapping was performed in backcrossed (BC) males of DDD × (B6 × DDD.Cg-A(y)) F(1)-A(y) mice. For the body weight at 25 weeks, significant QTLs were identified on chromosomes 1 and 4. The DDD allele was associated with a lower body weight at both loci. In particular, the QTL on chromosome 4 interacted with the A(y) allele. Furthermore, suggestive QTLs for plasma glucose and high molecular weight adiponectin levels were coincidentally mapped to chromosome 4. The DDD allele was associated with increased glucose and decreased adiponectin levels. When the body weight at 25 weeks and plasma glucose levels were considered as dependent and independent variables, respectively, BC A(y) males were classified into two groups according to statistical analysis using the partition method. Mice of one group had significantly higher glucose and lower adiponectin levels than those of the other group and exhibited body weight loss as observed with DDD-A(y) males. The lower body weight of DDD.Cg-A(y) male mice was a consequence of body weight loss. Diabetes mellitus has been suggested to be a possible contributory factor causing body weight loss. The QTL on distal chromosome 4 contained the major responsible genes. This QTL

  13. New Genetics

    Science.gov (United States)

    ... Home > Science Education > The New Genetics The New Genetics Living Laboratories Classroom Poster Order a Free Copy ... Piece to a Century-Old Evolutionary Puzzle Computing Genetics Model Organisms RNA Interference The New Genetics is ...

  14. GENETICS AND GENOMICS OF PLANT GENETIC RESOURCES

    Directory of Open Access Journals (Sweden)

    Börner A.

    2012-08-01

    Full Text Available Plant genetic resources play a major role for global food security. The most significant and widespread mean of conserving plant genetic resources is ex situ conservation. Most conserved accessions are kept in specialized facilities known as genebanks maintained by public or private institutions. World-wide 7.4 million accessions are stored in about 1,500 ex situ genebanks.In addition, series of genetic stocks including chromosome substitution lines, alloplasmic lines, single chromosome recombinant lines, introgression lines, etc. have been created. Analysing these genetic stocks many qualitative and quantitative inherited traits were associated to certain chromosomes, chromosome arms or introgressed segments. Today, genetic stocks are supplemented by a huge number of genotyped mapping populations. Beside progenies of bi-parental crosses (doubled haploid lines, recombinant inbred lines, etc. panels for association mapping were created recently.In our presentation we give examples for the successful utilisation of genebank accessions and genetic stocks for genetic and genomic studies. Using both segregation and association mapping approaches, data on mapping of loci/marker trait associations for a range of different traits are presented.

  15. Genetical Genomics for Evolutionary Studies

    NARCIS (Netherlands)

    Prins, J.C.P.; Smant, G.; Jansen, R.C.

    2012-01-01

    enetical genomics combines acquired high-throughput genomic data with genetic analysis. In this chapter, we discuss the application of genetical genomics for evolutionary studies, where new high-throughput molecular technologies are combined with mapping quantitative trait loci (QTL) on the genome

  16. Genetic algorithms

    Science.gov (United States)

    Wang, Lui; Bayer, Steven E.

    1991-01-01

    Genetic algorithms are mathematical, highly parallel, adaptive search procedures (i.e., problem solving methods) based loosely on the processes of natural genetics and Darwinian survival of the fittest. Basic genetic algorithms concepts are introduced, genetic algorithm applications are introduced, and results are presented from a project to develop a software tool that will enable the widespread use of genetic algorithm technology.

  17. Genetic Mapping

    Science.gov (United States)

    ... Fact Sheets Fact Sheets En Español: Mapeo Genético Genetic Mapping What is genetic mapping? How do researchers create ... genetic map? What are genetic markers? What is genetic mapping? Among the main goals of the Human Genome ...

  18. Cryptic Genetic Variation in Evolutionary Developmental Genetics

    Directory of Open Access Journals (Sweden)

    Annalise B. Paaby

    2016-06-01

    Full Text Available Evolutionary developmental genetics has traditionally been conducted by two groups: Molecular evolutionists who emphasize divergence between species or higher taxa, and quantitative geneticists who study variation within species. Neither approach really comes to grips with the complexities of evolutionary transitions, particularly in light of the realization from genome-wide association studies that most complex traits fit an infinitesimal architecture, being influenced by thousands of loci. This paper discusses robustness, plasticity and lability, phenomena that we argue potentiate major evolutionary changes and provide a bridge between the conceptual treatments of macro- and micro-evolution. We offer cryptic genetic variation and conditional neutrality as mechanisms by which standing genetic variation can lead to developmental system drift and, sheltered within canalized processes, may facilitate developmental transitions and the evolution of novelty. Synthesis of the two dominant perspectives will require recognition that adaptation, divergence, drift and stability all depend on similar underlying quantitative genetic processes—processes that cannot be fully observed in continuously varying visible traits.

  19. Cryptic Genetic Variation in Evolutionary Developmental Genetics.

    Science.gov (United States)

    Paaby, Annalise B; Gibson, Greg

    2016-06-13

    Evolutionary developmental genetics has traditionally been conducted by two groups: Molecular evolutionists who emphasize divergence between species or higher taxa, and quantitative geneticists who study variation within species. Neither approach really comes to grips with the complexities of evolutionary transitions, particularly in light of the realization from genome-wide association studies that most complex traits fit an infinitesimal architecture, being influenced by thousands of loci. This paper discusses robustness, plasticity and lability, phenomena that we argue potentiate major evolutionary changes and provide a bridge between the conceptual treatments of macro- and micro-evolution. We offer cryptic genetic variation and conditional neutrality as mechanisms by which standing genetic variation can lead to developmental system drift and, sheltered within canalized processes, may facilitate developmental transitions and the evolution of novelty. Synthesis of the two dominant perspectives will require recognition that adaptation, divergence, drift and stability all depend on similar underlying quantitative genetic processes-processes that cannot be fully observed in continuously varying visible traits.

  20. Genetic Counseling

    Science.gov (United States)

    Genetic counseling provides information and support to people who have, or may be at risk for, genetic disorders. A ... meets with you to discuss genetic risks. The counseling may be for yourself or a family member. ...

  1. Interval Mapping of Multiple Quantitative Trait Loci

    NARCIS (Netherlands)

    Jansen, Ritsert C.

    1993-01-01

    The interval mapping method is widely used for the mapping of quantitative trait loci (QTLs) in segregating generations derived from crosses between inbred lines. The efficiency of detecting and the accuracy of mapping multiple QTLs by using genetic markers are much increased by employing multiple Q

  2. Quantitative Resistance: More Than Just Perception of a Pathogen.

    Science.gov (United States)

    Corwin, Jason A; Kliebenstein, Daniel J

    2017-04-01

    Molecular plant pathology has focused on studying large-effect qualitative resistance loci that predominantly function in detecting pathogens and/or transmitting signals resulting from pathogen detection. By contrast, less is known about quantitative resistance loci, particularly the molecular mechanisms controlling variation in quantitative resistance. Recent studies have provided insight into these mechanisms, showing that genetic variation at hundreds of causal genes may underpin quantitative resistance. Loci controlling quantitative resistance contain some of the same causal genes that mediate qualitative resistance, but the predominant mechanisms of quantitative resistance extend beyond pathogen recognition. Indeed, most causal genes for quantitative resistance encode specific defense-related outputs such as strengthening of the cell wall or defense compound biosynthesis. Extending previous work on qualitative resistance to focus on the mechanisms of quantitative resistance, such as the link between perception of microbe-associated molecular patterns and growth, has shown that the mechanisms underlying these defense outputs are also highly polygenic. Studies that include genetic variation in the pathogen have begun to highlight a potential need to rethink how the field considers broad-spectrum resistance and how it is affected by genetic variation within pathogen species and between pathogen species. These studies are broadening our understanding of quantitative resistance and highlighting the potentially vast scale of the genetic basis of quantitative resistance. © 2017 American Society of Plant Biologists. All rights reserved.

  3. Quantitative lithofacies palaeogeography

    Institute of Scientific and Technical Information of China (English)

    Zeng-Zhao; Feng; Xiu-Juan; Zheng; Zhi-Dong; Bao; Zhen-Kui; Jin; Sheng-He; Wu; You-Bin; He; Yong-Min; Peng; Yu-Qing; Yang; Jia-Qiang; Zhang; Yong-Sheng; Zhang

    2014-01-01

    Quantitative lithofacies palaeogeography is an important discipline of palaeogeography.It is developed on the foundation of traditional lithofacies palaeogeography and palaeogeography,the core of which is the quantitative lithofacies palaeogeographic map.Quantity means that in the palaeogeographic map,the division and identification of each palaeogeographic unit are supported by quantitative data and quantitative fundamental maps.Our lithofacies palaeogeographic maps are quantitative or mainly quantitative.A great number of quantitative lithofacies palaeogeographic maps have been published,and articles and monographs of quantitative lithofacies palaeogeography have been published successively,thus the quantitative lithofacies palaeogeography was formed and established.It is an important development in lithofacies palaeogeography.In composing quantitative lithofacies palaeogeographic maps,the key measure is the single factor analysis and multifactor comprehensive mapping method—methodology of quantitative lithofacies palaeogeography.In this paper,the authors utilize two case studies,one from the Early Ordovician of South China and the other from the Early Ordovician of Ordos,North China,to explain how to use this methodology to compose the quantitative lithofacies palaeogeographic maps,and to discuss the palaeogeographic units in these maps.Finally,three characteristics,i.e.,quantification,multiple orders and multiple types,of quantitative lithofacies palaeogeographic maps are conclusively discussed.

  4. Quantitative investment analysis

    CERN Document Server

    DeFusco, Richard

    2007-01-01

    In the "Second Edition" of "Quantitative Investment Analysis," financial experts Richard DeFusco, Dennis McLeavey, Jerald Pinto, and David Runkle outline the tools and techniques needed to understand and apply quantitative methods to today's investment process.

  5. A two-step genetic study on quantitative precursors of coronary artery disease in a homogeneous Indian population: Case–control association discovery and validation by transmission-disequilibrium test

    Indian Academy of Sciences (India)

    Sanjukta Mallik; Partha P Majumder

    2011-12-01

    In spite of its strong familiality, gene identification for coronary artery disease (CAD) has not yielded a consistent picture. One major reason for this is that families or cases and controls were not recruited from a homogeneous population. We, therefore, attempted to map genes underlying 10 quantitative traits (QTs) that are known precursors of CAD in a homogeneous population (Marwari) of India. The QTs are apolipoprotein B (ApoB), C-reactive protein (CRP), fibrinogen (FBG), homocysteine (HCY), lipoprotein (a) (LPA), cholesterol – total (CHOL-T), cholesterol – HDL (CHOL-H), cholesterol – LDL (CHOL-L), cholesterol – VLDL (CHOL-V) and triglyceride (TG). We assayed 209 SNPs in 31 genes among members of Marwari families. After log-transformation and covariate-adjustment of the QTs, a two-step analysis was performed. In Step-1, data on unrelated individuals were analysed for association with the SNPs. In Step-2, for validation of Step-1 results, a quantitative transmission-disequilibrium test on parent–offspring data was performed for each SNP found to be significantly associated with a QT in Step-1 on an independent sample set drawn from the same population. Statistically significant results found for the various QTs and SNPs were: rs3774933, rs230528, rs230521, rs1005819 and rs1609798 (intronic, NFKB1) with APOB; rs5361 (Missense, R > S, SELE) and rs4648004 (Intronic, NFKB1) with FBG; rs4220 (Missense, K > R, FGB) with HCY; and rs3025035 (Intronic, VEGFA) with CHOL-H. SNPs in SELE, VEGFA, FGB and NFKB1 genes impact significantly on levels of quantitative precursors of CAD in Marwaris.

  6. Quantitative disease resistance and quantitative resistance Loci in breeding.

    Science.gov (United States)

    St Clair, Dina A

    2010-01-01

    Quantitative disease resistance (QDR) has been observed within many crop plants but is not as well understood as qualitative (monogenic) disease resistance and has not been used as extensively in breeding. Mapping quantitative trait loci (QTLs) is a powerful tool for genetic dissection of QDR. DNA markers tightly linked to quantitative resistance loci (QRLs) controlling QDR can be used for marker-assisted selection (MAS) to incorporate these valuable traits. QDR confers a reduction, rather than lack, of disease and has diverse biological and molecular bases as revealed by cloning of QRLs and identification of the candidate gene(s) underlying QRLs. Increasing our biological knowledge of QDR and QRLs will enhance understanding of how QDR differs from qualitative resistance and provide the necessary information to better deploy these resources in breeding. Application of MAS for QRLs in breeding for QDR to diverse pathogens is illustrated by examples from wheat, barley, common bean, tomato, and pepper. Strategies for optimum deployment of QRLs require research to understand effects of QDR on pathogen populations over time.

  7. Rigour in quantitative research.

    Science.gov (United States)

    Claydon, Leica Sarah

    2015-07-22

    This article which forms part of the research series addresses scientific rigour in quantitative research. It explores the basis and use of quantitative research and the nature of scientific rigour. It examines how the reader may determine whether quantitative research results are accurate, the questions that should be asked to determine accuracy and the checklists that may be used in this process. Quantitative research has advantages in nursing, since it can provide numerical data to help answer questions encountered in everyday practice.

  8. Quantitative estimation of genetic risk for atypical scrapie in French sheep and potential consequences of the current breeding programme for resistance to scrapie on the risk of atypical scrapie

    Directory of Open Access Journals (Sweden)

    Laurent Pascal

    2010-05-01

    Full Text Available Abstract Background Since 2002, active surveillance programmes have detected numerous atypical scrapie (AS and classical scrapie cases (CS in French sheep with almost all the PrP genotypes. The aim of this study was 1 to quantify the genetic risk of AS in French sheep and to compare it with the risk of CS, 2 to quantify the risk of AS associated with the increase of the ARR allele frequency as a result of the current genetic breeding programme against CS. Methods We obtained genotypes at codons 136, 141, 154 and 171 of the PRNP gene for representative samples of 248 AS and 245 CS cases. We used a random sample of 3,317 scrapie negative animals genotyped at codons 136, 154 and 171 and we made inferences on the position 141 by multiple imputations, using external data. To estimate the risk associated with PrP genotypes, we fitted multivariate logistic regression models and we estimated the prevalence of AS for the different genotypes. Then, we used the risk of AS estimated for the ALRR-ALRR genotype to analyse the risk of detecting an AS case in a flock homogenous for this genotype. Results Genotypes most at risk for AS were those including an AFRQ or ALHQ allele while genotypes including a VLRQ allele were less commonly associated with AS. Compared to ALRQ-ALRQ, the ALRR-ALRR genotype was significantly at risk for AS and was very significantly protective for CS. The prevalence of AS among ALRR-ALRR animals was 0.6‰ and was not different from the prevalence in the general population. Conclusion In conclusion, further selection of ALRR-ALRR animals will not result in an overall increase of AS prevalence in the French sheep population although this genotype is clearly susceptible to AS. However the probability of detecting AS cases in flocks participating in genetic breeding programme against CS should be considered.

  9. Genetic map construction and quantitative trait loci (QTL) mapping for nitrogen use efficiency and its relationship with productivity and quality of the biennial crop Belgian endive (Cichorium intybus L.).

    Science.gov (United States)

    Cassan, Laurent; Moreau, Laurence; Segouin, Samuel; Bellamy, Annick; Falque, Mathieu; Limami, Anis M

    2010-10-15

    A genetic study of the biennial crop Belgian endive (Cichorium intybus) was carried out to examine the effect of nitrogen nutrition during the vegetative phase in the control of the productivity and quality of the chicon (etiolated bud), a crop that grows during the second phase of development (forcing process). A population of 302 recombinant inbred lines (RIL) was obtained from the cross between contrasting lines "NS1" and "NR2". A genetic map was constructed and QTLs of several physiological and agronomical traits were mapped under two levels of nitrogen fertilization during the vegetative phase (N- and N+). The agronomical traits showed high broad sense heritability, whereas the physiological traits were characterized by low broad sense heritability. Nitrogen reserves mobilization during the forcing process was negatively correlated with nitrogen reserves content of the tuberized root and common QTLs were detected for these traits. The chicon productivity and quality were not correlated, but showed one common QTL. This study revealed that chicon productivity and quality were genetically associated with nitrogen reserves mobilization that exerts opposite effects on both traits. Chicon productivity was positively correlated with N reserves mobilization under N- and N+ and a common QTL with the same additive effects was detected for both traits. Chicon quality was negatively correlated with N reserves mobilization under N- and N+ and a common QTL with opposite additive effects was detected for both traits. These results lead to the conclusion that N reserves mobilization is a more effective trait than N reserves content in predicting chicon productivity and quality. Finally, this study revealed agronomical and physiological QTLs utilizable by breeders via marker-assisted selection to aid the optimization of chicon quality under adapted N fertilization.

  10. Quantitative trait loci associated with anthracnose resistance in sorghum

    Science.gov (United States)

    With an aim to develop a durable resistance to the fungal disease anthracnose, two unique genetic sources of resistance were selected to create genetic mapping populations to identify regions of the sorghum genome that encode anthracnose resistance. A series of quantitative trait loci were identifi...

  11. A construct-specific real-time PCR for quantitative detection of genetically modified maize MIR604%转基因玉米MIR604结构特异片段实时荧光定量检测方法的建立

    Institute of Scientific and Technical Information of China (English)

    常丽娟; 宋君; 雷绍荣; 尹全; 王东; 刘文娟; 张富丽

    2015-01-01

    根据转基因玉米 MIR604外源载体序列,设计引物和探针,并优化反应体系和热循环条件,建立了MIR604结构特异片断实时荧光定量PCR检测方法。采用该方法对6种非转基因作物、MIR604及其他非目标转基因作物进行检测,除MIR604外,其余样品均未检测到MIR604分子片段的扩增信号;对含量为1%的MIR604标准品进行定量检测,测试样品平均含量为1.05%;灵敏度测试结果显示该方法能检测到仅5个拷贝的MIR604分子片段。因此,本研究建立的方法具有较高的特异性、准确度及灵敏度,能为中国转基因生物安全监管提供技术支持。%A structure-specific quantitative PCR technique for the detection of genetically modified maize MIR604 was developed in this study to provide supports for genetically modified organism safety supervision in China by optimizing reaction system and thermal cycling condition. Six kinds of non-genetically modified crops, MIR604 and other non-target transgenic crops were detected. The fluorescent signal was only detected in MIR604. The measured value of 1% MIR604 was 1. 05%. The sensitivity experiment revealed the method could detect only 5 copies of MIR604 molecular fragments. In conclusion, the structure-specific quantitative PCR detection method for genetically modified maize MIR604 is of high spe-cificity, accuracy and sensitivity.

  12. Genetic Disorders

    Science.gov (United States)

    ... This can cause a medical condition called a genetic disorder. You can inherit a gene mutation from ... during your lifetime. There are three types of genetic disorders: Single-gene disorders, where a mutation affects ...

  13. Genetic modification and genetic determinism.

    Science.gov (United States)

    Resnik, David B; Vorhaus, Daniel B

    2006-06-26

    In this article we examine four objections to the genetic modification of human beings: the freedom argument, the giftedness argument, the authenticity argument, and the uniqueness argument. We then demonstrate that each of these arguments against genetic modification assumes a strong version of genetic determinism. Since these strong deterministic assumptions are false, the arguments against genetic modification, which assume and depend upon these assumptions, are therefore unsound. Serious discussion of the morality of genetic modification, and the development of sound science policy, should be driven by arguments that address the actual consequences of genetic modification for individuals and society, not by ones propped up by false or misleading biological assumptions.

  14. Imaging Genetics

    Science.gov (United States)

    Munoz, Karen E.; Hyde, Luke W.; Hariri, Ahmad R.

    2009-01-01

    Imaging genetics is an experimental strategy that integrates molecular genetics and neuroimaging technology to examine biological mechanisms that mediate differences in behavior and the risks for psychiatric disorder. The basic principles in imaging genetics and the development of the field are discussed.

  15. Genetic principles.

    Science.gov (United States)

    Abuelo, D

    1987-01-01

    The author discusses the basic principles of genetics, including the classification of genetic disorders and a consideration of the rules and mechanisms of inheritance. The most common pitfalls in clinical genetic diagnosis are described, with emphasis on the problem of the negative or misleading family history.

  16. Imaging Genetics

    Science.gov (United States)

    Munoz, Karen E.; Hyde, Luke W.; Hariri, Ahmad R.

    2009-01-01

    Imaging genetics is an experimental strategy that integrates molecular genetics and neuroimaging technology to examine biological mechanisms that mediate differences in behavior and the risks for psychiatric disorder. The basic principles in imaging genetics and the development of the field are discussed.

  17. Aspectos genético-quantitativos de características de desempenho, carcaça e composição corporal em frangos Genetic-quantitative aspects of performance, carcass and body composition traits in broilers

    Directory of Open Access Journals (Sweden)

    Leila de Genova Gaya

    2006-04-01

    Full Text Available Os parâmetros genéticos são ferramentas importantes para se conhecer melhor as características utilizadas nos programas de melhoramento genético e para a avaliação do plano de seleção empregado, permitindo o direcionamento das estratégias a serem aplicadas. As características de desempenho e de carcaça vêm sendo utilizadas como critério durante a seleção genética dos frangos, a exemplo do peso vivo, do peso de peito e da conversão alimentar. Entretanto, algumas características de composição corporal vêm trazendo entraves para a produção e a indústria avícolas, especialmente o peso da gordura e o peso do coração. Assim, nesta revisão, são abordados os principais aspectos relacionados aos parâmetros genéticos das características de desempenho, de carcaça e de composição corporal em frangos com o objetivo de proporcionar um melhor entendimento das conseqüências trazidas pelos esquemas de seleção empregados e suas implicações na cadeia produtiva destes animais.Genetic parameters are important tools to know better the traits used in animal breeding programs and for assessment of the employed selection plan. Then, these parameters allow the establishment of strategies to be used in these programs. The performance and carcass traits are being used as criteria during broiler genetic selection, as body weight, breast weight and feeding conversion ratio. However, some of the body composition traits represent obstacles for avian production and processing, especially fat content and heart weight. Thus, in this review, the main aspects related to genetic parameters of these traits in broiler are addressed to provide a better understanding of the consequences brought from selection schemes employed and its involvement on the avian production.

  18. Genetic modification and genetic determinism

    OpenAIRE

    Vorhaus Daniel B; Resnik David B

    2006-01-01

    Abstract In this article we examine four objections to the genetic modification of human beings: the freedom argument, the giftedness argument, the authenticity argument, and the uniqueness argument. We then demonstrate that each of these arguments against genetic modification assumes a strong version of genetic determinism. Since these strong deterministic assumptions are false, the arguments against genetic modification, which assume and depend upon these assumptions, are therefore unsound....

  19. Advances in Genetical Genomics of Plants

    NARCIS (Netherlands)

    Joosen, R.V.L.; Ligterink, W.; Hilhorst, H.W.M.; Keurentjes, J.J.B.

    2009-01-01

    Natural variation provides a valuable resource to study the genetic regulation of quantitative traits. In quantitative trait locus (QTL) analyses this variation, captured in segregating mapping populations, is used to identify the genomic regions affecting these traits. The identification of the cau

  20. Quantitative Autonomic Testing

    OpenAIRE

    Novak, Peter

    2011-01-01

    Disorders associated with dysfunction of autonomic nervous system are quite common yet frequently unrecognized. Quantitative autonomic testing can be invaluable tool for evaluation of these disorders, both in clinic and research. There are number of autonomic tests, however, only few were validated clinically or are quantitative. Here, fully quantitative and clinically validated protocol for testing of autonomic functions is presented. As a bare minimum the clinical autonomic laboratory shoul...

  1. Quantitative Algebraic Reasoning

    DEFF Research Database (Denmark)

    Mardare, Radu Iulian; Panangaden, Prakash; Plotkin, Gordon

    2016-01-01

    We develop a quantitative analogue of equational reasoning which we call quantitative algebra. We define an equality relation indexed by rationals: a =ε b which we think of as saying that “a is approximately equal to b up to an error of ε”. We have 4 interesting examples where we have a quantitative...... equational theory whose free algebras correspond to well known structures. In each case we have finitary and continuous versions. The four cases are: Hausdorff metrics from quantitive semilattices; pWasserstein metrics (hence also the Kantorovich metric) from barycentric algebras and also from pointed...

  2. Biology Undergraduates' Misconceptions about Genetic Drift

    Science.gov (United States)

    Andrews, T. M.; Price, R. M.; Mead, L. S.; McElhinny, T. L.; Thanukos, A.; Perez, K. E.; Herreid, C. F.; Terry, D. R.; Lemons, P. P.

    2012-01-01

    This study explores biology undergraduates' misconceptions about genetic drift. We use qualitative and quantitative methods to describe students' definitions, identify common misconceptions, and examine differences before and after instruction on genetic drift. We identify and describe five overarching categories that include 16 distinct…

  3. Identification of the Homozygosis of Genetically Modified Crop by Real-time Quantitative PCR%实时定量 PCR 鉴定转基因作物纯合体

    Institute of Scientific and Technical Information of China (English)

    张丽; 刘丽丽; 梁晓声; 王海英

    2015-01-01

    Rice endogenous reference gene phospholipase D gene ( PLD) and genetically modified ( GM) rice TT51-1 event-specific flanking sequence were used as PCR detection targets.And the homozygosis of GM rice TT51-1 plants originated from single plant seeds were analyzed through real-time PCR assays, which analyzed the Ct value of the endogenous reference gene and the flanking sequences.The reliability of this method was verified by calculation of GM copy number ratio based on the standard curves.It was concluded that the method was simple and accurate to identify the homozygosis of GM crops.%以水稻内标准基因磷脂酶D基因( phospholipase D, PLD)和转基因水稻TT51-1特异性旁侧序列为检测靶标,对单株转基因水稻的种子播种后长出的单株进行了荧光定量PCR,以其内标准基因和旁侧序列Ct值的差值判断了植株的纯合体,并用标准曲线计算了转基因含量,证实了此法的可靠性,说明此法用于鉴定植株的纯合体简便准确。

  4. Genetic barcodes

    Energy Technology Data Exchange (ETDEWEB)

    Weier, Heinz -Ulrich G

    2015-08-04

    Herein are described multicolor FISH probe sets termed "genetic barcodes" targeting several cancer or disease-related loci to assess gene rearrangements and copy number changes in tumor cells. Two, three or more different fluorophores are used to detect the genetic barcode sections thus permitting unique labeling and multilocus analysis in individual cell nuclei. Gene specific barcodes can be generated and combined to provide both numerical and structural genetic information for these and other pertinent disease associated genes.

  5. Quantitative genetic analysis of methylxanthines and phenolic compounds in mate progenies Análise genética quantitativa de metilxantinas e compostos fenólicos em progênies de erva-mate

    Directory of Open Access Journals (Sweden)

    Euclides Lara Cardozo Junior

    2010-02-01

    Full Text Available The objective of this work was to determine the contents of methylxanthines, caffeine and theobromine, and phenolic compounds, chlorogenic and caffeic acids, in 51 mate progenies (half-sib families and estimate the heritability of genetic parameters. Mate progenies were from five Brazilian municipalities: Pinhão, Ivaí, Barão de Cotegipe, Quedas do Iguaçu, and Cascavel. The progenies were grown in the Ivaí locality. The contents of the compounds were obtained by high performance liquid chromatography (HPLC. The estimation of genetic parameters by the restricted maximum likelihood (REML and the prediction of genotypic values via best linear unbiased prediction (BLUP were obtained by the Selegen - REML/BLUP software. Caffeine (0.248-1.663% and theobromine (0.106-0.807% contents were significantly different (p0.5. The two different progeny groups determined for chlorogenic (1.365-2.281% and caffeic (0.027-0.037% acid contents were not significantly different (pO objetivo deste trabalho foi determinar o teor de metilxantinas, cafeína e teobromina, e de compostos fenólicos, ácido clorogênico e ácido cafeico, em 51 progênies de erva-mate e estimar componentes de variância e herdabilidade. As progênies de erva-mate eram oriundas de cinco municipios brasileiros: Pinhão, Ivaí, Barão do Cotegipe, Quedas do Iguaçu e Cascavel. Essas progênies foram cultivadas na localidade de Ivaí. O conteúdo dos compostos foi obtido por cromatografia líquida de alta eficiência (CLAE. Na estimativa dos componentes da variância e dos parâmetros genotípicos, utilizou-se a metodologia de modelos mistos para a obtenção da melhor predição linear não viciada (BLUP dos efeitos genotípicos e o processo da máxima verossimilhança restrita (REML, processados pelo programa Selegen - REML/BLUP. Os conteúdos de cafeína (0,248-1,663 % e teobromina (0,106-0.807% foram significativamente (p0,5. Foram determinados dois diferentes grupos de progênie para

  6. The Genetic Landscape of a Cell

    Science.gov (United States)

    Bellay, Jeremy; Kim, Yungil; Spear, Eric D.; Sevier, Carolyn S.; Ding, Huiming; Koh, Judice L.Y.; Toufighi, Kiana; Mostafavi, Sara; Prinz, Jeany; St. Onge, Robert P.; VanderSluis, Benjamin; Makhnevych, Taras; Vizeacoumar, Franco J.; Alizadeh, Solmaz; Bahr, Sondra; Brost, Renee L.; Chen, Yiqun; Cokol, Murat; Deshpande, Raamesh; Li, Zhijian; Lin, Zhen-Yuan; Liang, Wendy; Marback, Michaela; Paw, Jadine; San Luis, Bryan-Joseph; Shuteriqi, Ermira; Hin Yan Tong, Amy; van Dyk, Nydia; Wallace, Iain M.; Whitney, Joseph A.; Weirauch, Matthew T.; Zhong, Guoqing; Zhu, Hongwei; Houry, Walid A.; Brudno, Michael; Ragibizadeh, Sasan; Papp, Balázs; Pál, Csaba; Roth, Frederick P.; Giaever, Guri; Nislow, Corey; Troyanskaya, Olga G.; Bussey, Howard; Bader, Gary D.; Gingras, Anne-Claude; Morris, Quaid D.; Kim, Philip M.; Kaiser, Chris A.; Myers, Chad L.; Andrews, Brenda J.; Boone, Charles

    2017-01-01

    A genome-scale genetic interaction map was constructed by examining 5.4 million gene-gene pairs for synthetic genetic interactions, generating quantitative genetic interaction profiles for ~75% of all genes in the budding yeast, Saccharomyces cerevisiae. A network based on genetic interaction profiles reveals a functional map of the cell in which genes of similar biological processes cluster together in coherent subsets, and highly correlated profiles delineate specific pathways to define gene function. The global network identifies functional cross-connections between all bioprocesses, mapping a cellular wiring diagram of pleiotropy. Genetic interaction degree correlated with a number of different gene attributes, which may be informative about genetic network hubs in other organisms. We also demonstrate that extensive and unbiased mapping of the genetic landscape provides a key for interpretation of chemical-genetic interactions and drug target identification. PMID:20093466

  7. Genetic modification and genetic determinism

    Directory of Open Access Journals (Sweden)

    Vorhaus Daniel B

    2006-06-01

    Full Text Available Abstract In this article we examine four objections to the genetic modification of human beings: the freedom argument, the giftedness argument, the authenticity argument, and the uniqueness argument. We then demonstrate that each of these arguments against genetic modification assumes a strong version of genetic determinism. Since these strong deterministic assumptions are false, the arguments against genetic modification, which assume and depend upon these assumptions, are therefore unsound. Serious discussion of the morality of genetic modification, and the development of sound science policy, should be driven by arguments that address the actual consequences of genetic modification for individuals and society, not by ones propped up by false or misleading biological assumptions.

  8. Genetic Engineering

    Science.gov (United States)

    Phillips, John

    1973-01-01

    Presents a review of genetic engineering, in which the genotypes of plants and animals (including human genotypes) may be manipulated for the benefit of the human species. Discusses associated problems and solutions and provides an extensive bibliography of literature relating to genetic engineering. (JR)

  9. Genetic Counseling

    Science.gov (United States)

    ... for certain types of genetic conditions (such as Down syndrome) in the baby if mother-to-be is 35 years of age or more, or is concerned at any age about her chances of having a child with a genetic condition To learn about the ...

  10. Mapping Quantitative Trait Loci in Yeast.

    Science.gov (United States)

    Liti, Gianni; Warringer, Jonas; Blomberg, Anders

    2017-08-01

    Natural Saccharomyces strains isolated from the wild differ quantitatively in molecular and organismal phenotypes. Quantitative trait loci (QTL) mapping is a powerful approach for identifying sequence variants that alter gene function. In yeast, QTL mapping has been used in designed crosses to map functional polymorphisms. This approach, outlined here, is often the first step in understanding the molecular basis of quantitative traits. New large-scale sequencing surveys have the potential to directly associate genotypes with organismal phenotypes, providing a broader catalog of causative genetic variants. Additional analysis of intermediate phenotypes (e.g., RNA, protein, or metabolite levels) can produce a multilayered and integrated view of individual variation, producing a high-resolution view of the genotype-phenotype map. © 2017 Cold Spring Harbor Laboratory Press.

  11. Classification of cassava genotypes based on qualitative and quantitative data.

    Science.gov (United States)

    Oliveira, E J; Oliveira Filho, O S; Santos, V S

    2015-02-02

    We evaluated the genetic variation of cassava accessions based on qualitative (binomial and multicategorical) and quantitative traits (continuous). We characterized 95 accessions obtained from the Cassava Germplasm Bank of Embrapa Mandioca e Fruticultura; we evaluated these accessions for 13 continuous, 10 binary, and 25 multicategorical traits. First, we analyzed the accessions based only on quantitative traits; next, we conducted joint analysis (qualitative and quantitative traits) based on the Ward-MLM method, which performs clustering in two stages. According to the pseudo-F, pseudo-t2, and maximum likelihood criteria, we identified five and four groups based on quantitative trait and joint analysis, respectively. The smaller number of groups identified based on joint analysis may be related to the nature of the data. On the other hand, quantitative data are more subject to environmental effects in the phenotype expression; this results in the absence of genetic differences, thereby contributing to greater differentiation among accessions. For most of the accessions, the maximum probability of classification was >0.90, independent of the trait analyzed, indicating a good fit of the clustering method. Differences in clustering according to the type of data implied that analysis of quantitative and qualitative traits in cassava germplasm might explore different genomic regions. On the other hand, when joint analysis was used, the means and ranges of genetic distances were high, indicating that the Ward-MLM method is very useful for clustering genotypes when there are several phenotypic traits, such as in the case of genetic resources and breeding programs.

  12. Genetic Romanticism

    DEFF Research Database (Denmark)

    Tupasela, Aaro

    2016-01-01

    . This article compares and contrasts the work of two doctors in Finland, Elias Lönnrot and Reijo Norio, working over a century and a half apart, to examine the ways in which they have contributed to the formation of national identity and unity. The notion of genetic romanticism is introduced as a term...... to complement the notion of national romanticism that has been used to describe the ways in which nineteenth-century scholars sought to create and deploy common traditions for national-romantic purposes. Unlike national romanticism, however, strategies of genetic romanticism rely on the study of genetic...... inheritance as a way to unify populations within politically and geographically bounded areas. Thus, new genetics have contributed to the development of genetic romanticisms, whereby populations (human, plant, and animal) can be delineated and mobilized through scientific and medical practices to represent...

  13. "Genetically Engineered" Nanoelectronics

    Science.gov (United States)

    Klimeck, Gerhard; Salazar-Lazaro, Carlos H.; Stoica, Adrian; Cwik, Thomas

    2000-01-01

    The quantum mechanical functionality of nanoelectronic devices such as resonant tunneling diodes (RTDs), quantum well infrared-photodetectors (QWIPs), quantum well lasers, and heterostructure field effect transistors (HFETs) is enabled by material variations on an atomic scale. The design and optimization of such devices requires a fundamental understanding of electron transport in such dimensions. The Nanoelectronic Modeling Tool (NEMO) is a general-purpose quantum device design and analysis tool based on a fundamental non-equilibrium electron transport theory. NEW was combined with a parallelized genetic algorithm package (PGAPACK) to evolve structural and material parameters to match a desired set of experimental data. A numerical experiment that evolves structural variations such as layer widths and doping concentrations is performed to analyze an experimental current voltage characteristic. The genetic algorithm is found to drive the NEMO simulation parameters close to the experimentally prescribed layer thicknesses and doping profiles. With such a quantitative agreement between theory and experiment design synthesis can be performed.

  14. Genetics of osteoporosis.

    Science.gov (United States)

    Jin, Huilin; Ralston, Stuart H

    2005-03-01

    Genetic factors play an important role in regulating bone mineral density and other phenotypes relevant to the pathogenesis of osteoporosis such as ultrasound properties of bone, skeletal geometry, and bone turnover. Progress has been made in identifying quantitative traits for regulation of bone mineral density by linkage studies in man and mouse, but relatively few causal genes have been identified. Dramatic progress has been made in identifying the genes responsible for monogenic bone diseases and it appears that polymorphisms in many of these genes also play a role in regulating bone mineral density in the general population. Advances in knowledge about the genetic basis of osteoporosis and other bone diseases offer the prospect of developing new markers for assessment of fracture risk and the identification of novel molecular targets for the design of new drug treatments for osteoporosis.

  15. Genetics of alcoholism.

    Science.gov (United States)

    Edenberg, Howard J; Foroud, Tatiana

    2014-01-01

    Multiple lines of evidence strongly indicate that genetic factors contribute to the risk for alcohol use disorders (AUD). There is substantial heterogeneity in AUD, which complicates studies seeking to identify specific genetic factors. To identify these genetic effects, several different alcohol-related phenotypes have been analyzed, including diagnosis and quantitative measures related to AUDs. Study designs have used candidate gene analyses, genetic linkage studies, genomewide association studies (GWAS), and analyses of rare variants. Two genes that encode enzymes of alcohol metabolism have the strongest effect on AUD: aldehyde dehydrogenase 2 and alcohol dehydrogenase 1B each has strongly protective variants that reduce risk, with odds ratios approximately 0.2-0.4. A number of other genes important in AUD have been identified and replicated, including GABRA2 and alcohol dehydrogenases 1B and 4. GWAS have identified additional candidates. Rare variants are likely also to play a role; studies of these are just beginning. A multifaceted approach to gene identification, targeting both rare and common variations and assembling much larger datasets for meta-analyses, is critical for identifying the key genes and pathways important in AUD.

  16. Education modifies genetic and environmental influences on BMI

    DEFF Research Database (Denmark)

    Johnson, Wendy; Kyvik, Kirsten Ohm; Skytthe, Axel

    2011-01-01

    , and education data. Body mass index (BMI = kg weight/ m height(2)) was used to measure degree of obesity. We used quantitative genetic modeling to examine how genetic and shared and nonshared environmental variance in BMI differed by level of education and to estimate how genetic and shared and nonshared...

  17. Joint association analysis of bivariate quantitative and qualitative traits.

    Science.gov (United States)

    Yuan, Mengdie; Diao, Guoqing

    2011-11-29

    Univariate genome-wide association analysis of quantitative and qualitative traits has been investigated extensively in the literature. In the presence of correlated phenotypes, it is more intuitive to analyze all phenotypes simultaneously. We describe an efficient likelihood-based approach for the joint association analysis of quantitative and qualitative traits in unrelated individuals. We assume a probit model for the qualitative trait, under which an unobserved latent variable and a prespecified threshold determine the value of the qualitative trait. To jointly model the quantitative and qualitative traits, we assume that the quantitative trait and the latent variable follow a bivariate normal distribution. The latent variable is allowed to be correlated with the quantitative phenotype. Simultaneous modeling of the quantitative and qualitative traits allows us to make more precise inference on the pleiotropic genetic effects. We derive likelihood ratio tests for the testing of genetic effects. An application to the Genetic Analysis Workshop 17 data is provided. The new method yields reasonable power and meaningful results for the joint association analysis of the quantitative trait Q1 and the qualitative trait disease status at SNPs with not too small MAF.

  18. Quantitative film radiography

    Energy Technology Data Exchange (ETDEWEB)

    Devine, G.; Dobie, D.; Fugina, J.; Hernandez, J.; Logan, C.; Mohr, P.; Moss, R.; Schumacher, B.; Updike, E.; Weirup, D.

    1991-02-26

    We have developed a system of quantitative radiography in order to produce quantitative images displaying homogeneity of parts. The materials that we characterize are synthetic composites and may contain important subtle density variations not discernible by examining a raw film x-radiograph. In order to quantitatively interpret film radiographs, it is necessary to digitize, interpret, and display the images. Our integrated system of quantitative radiography displays accurate, high-resolution pseudo-color images in units of density. We characterize approximately 10,000 parts per year in hundreds of different configurations and compositions with this system. This report discusses: the method; film processor monitoring and control; verifying film and processor performance; and correction of scatter effects.

  19. On Quantitative Rorschach Scales.

    Science.gov (United States)

    Haggard, Ernest A.

    1978-01-01

    Two types of quantitative Rorschach scales are discussed: first, those based on the response categories of content, location, and the determinants, and second, global scales based on the subject's responses to all ten stimulus cards. (Author/JKS)

  20. Genetic divergence among pumpkin landraces

    Directory of Open Access Journals (Sweden)

    Rebeca Lourenço de Oliveira

    2016-04-01

    Full Text Available Estimating the genetic variability in germplasm collections is important not only for conserving genetic resources, but also for plant breeding purposes. However, generating a large number of different categories data (qualitative and quantitative often complicate the analysis and results interpretation, resulting in an incomplete distinction of accessions. This study reports the characterization and evaluation of 14 pumpkin (Cucurbita moschata accessions collected from farms in the northern region of Rio de Janeiro state. Genetic diversity among accessions was also estimated using qualitative and quantitative variables considering joint analysis. The plants were grown under field conditions in a randomized block design with three replications and six plants per plot. Eight qualitative traits (leaf size; seed shape; seed color; color of the fruit pulp; hollow; fruit shape; skin color, and fruit skin texture and eight quantitative traits (fruit weight; fruit length; fruit diameter; soluble solids, 100 seed weight, and wall thickness measured in the middle and in the lower stem were evaluated. The data were analyzed considering the Gower distance, and cluster analysis was performed using unweighted pair group method with arithmetic mean (UPGMA. Variability among accessions was observed considering morphoagronomic data. The Gower distance together with UPGMA cluster allowed for good discrimination between accessions in the groups, demonstrating that the simultaneous analysis of qualitative and quantitative data is feasible and may increase the understanding of the variation among accessions.

  1. Multivariate Quantitative Chemical Analysis

    Science.gov (United States)

    Kinchen, David G.; Capezza, Mary

    1995-01-01

    Technique of multivariate quantitative chemical analysis devised for use in determining relative proportions of two components mixed and sprayed together onto object to form thermally insulating foam. Potentially adaptable to other materials, especially in process-monitoring applications in which necessary to know and control critical properties of products via quantitative chemical analyses of products. In addition to chemical composition, also used to determine such physical properties as densities and strengths.

  2. Multivariate Quantitative Chemical Analysis

    Science.gov (United States)

    Kinchen, David G.; Capezza, Mary

    1995-01-01

    Technique of multivariate quantitative chemical analysis devised for use in determining relative proportions of two components mixed and sprayed together onto object to form thermally insulating foam. Potentially adaptable to other materials, especially in process-monitoring applications in which necessary to know and control critical properties of products via quantitative chemical analyses of products. In addition to chemical composition, also used to determine such physical properties as densities and strengths.

  3. Genetic Breakthrough

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A new calf breeding technique shows promise for treating malignant tumors Chinese scientists have successfully bred a genetically altered cow capable of producing cancer-curing proteins for human beings.

  4. Mitochondrial genetics

    OpenAIRE

    Chinnery, Patrick Francis; Hudson, Gavin

    2013-01-01

    Introduction In the last 10 years the field of mitochondrial genetics has widened, shifting the focus from rare sporadic, metabolic disease to the effects of mitochondrial DNA (mtDNA) variation in a growing spectrum of human disease. The aim of this review is to guide the reader through some key concepts regarding mitochondria before introducing both classic and emerging mitochondrial disorders. Sources of data In this article, a review of the current mitochondrial genetics literature was con...

  5. Quantitative autonomic testing.

    Science.gov (United States)

    Novak, Peter

    2011-07-19

    Disorders associated with dysfunction of autonomic nervous system are quite common yet frequently unrecognized. Quantitative autonomic testing can be invaluable tool for evaluation of these disorders, both in clinic and research. There are number of autonomic tests, however, only few were validated clinically or are quantitative. Here, fully quantitative and clinically validated protocol for testing of autonomic functions is presented. As a bare minimum the clinical autonomic laboratory should have a tilt table, ECG monitor, continuous noninvasive blood pressure monitor, respiratory monitor and a mean for evaluation of sudomotor domain. The software for recording and evaluation of autonomic tests is critical for correct evaluation of data. The presented protocol evaluates 3 major autonomic domains: cardiovagal, adrenergic and sudomotor. The tests include deep breathing, Valsalva maneuver, head-up tilt, and quantitative sudomotor axon test (QSART). The severity and distribution of dysautonomia is quantitated using Composite Autonomic Severity Scores (CASS). Detailed protocol is provided highlighting essential aspects of testing with emphasis on proper data acquisition, obtaining the relevant parameters and unbiased evaluation of autonomic signals. The normative data and CASS algorithm for interpretation of results are provided as well.

  6. Quantitative Trait Locus Analysis of the Early Domestication of Sunflower

    OpenAIRE

    David M Wills; Burke, John M.

    2007-01-01

    Genetic analyses of the domestication syndrome have revealed that domestication-related traits typically have a very similar genetic architecture across most crops, being conditioned by a small number of quantitative trait loci (QTL), each with a relatively large effect on the phenotype. To date, the domestication of sunflower (Helianthus annuus L.) stands as the only counterexample to this pattern. In previous work involving a cross between wild sunflower (also H. annuus) and a highly improv...

  7. Quantitative Hydrocarbon Surface Analysis

    Science.gov (United States)

    Douglas, Vonnie M.

    2000-01-01

    The elimination of ozone depleting substances, such as carbon tetrachloride, has resulted in the use of new analytical techniques for cleanliness verification and contamination sampling. The last remaining application at Rocketdyne which required a replacement technique was the quantitative analysis of hydrocarbons by infrared spectrometry. This application, which previously utilized carbon tetrachloride, was successfully modified using the SOC-400, a compact portable FTIR manufactured by Surface Optics Corporation. This instrument can quantitatively measure and identify hydrocarbons from solvent flush of hardware as well as directly analyze the surface of metallic components without the use of ozone depleting chemicals. Several sampling accessories are utilized to perform analysis for various applications.

  8. Genetics of osteoporosis

    Energy Technology Data Exchange (ETDEWEB)

    Urano, Tomohiko [Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655 (Japan); Inoue, Satoshi, E-mail: INOUE-GER@h.u-tokyo.ac.jp [Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655 (Japan); Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655 (Japan); Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama (Japan)

    2014-09-19

    Highlights: • Single-nucleotide polymorphisms (SNPs) associated with osteoporosis were identified. • SNPs mapped close to or within VDR and ESR1 are associated with bone mineral density. • WNT signaling pathway plays a pivotal role in regulating bone mineral density. • Genetic studies will be useful for identification of new therapeutic targets. - Abstract: Osteoporosis is a skeletal disease characterized by low bone mineral density (BMD) and microarchitectural deterioration of bone tissue, which increases susceptibility to fractures. BMD is a complex quantitative trait with normal distribution and seems to be genetically controlled (in 50–90% of the cases), according to studies on twins and families. Over the last 20 years, candidate gene approach and genome-wide association studies (GWAS) have identified single-nucleotide polymorphisms (SNPs) that are associated with low BMD, osteoporosis, and osteoporotic fractures. These SNPs have been mapped close to or within genes including those encoding nuclear receptors and WNT-β-catenin signaling proteins. Understanding the genetics of osteoporosis will help identify novel candidates for diagnostic and therapeutic targets.

  9. Genetic GIScience

    DEFF Research Database (Denmark)

    Jacquez, Geoffrey; Sabel, Clive E; Shi, Chen

    2015-01-01

    The exposome, defined as the totality of an individual's exposures over the life course, is a seminal concept in the environmental health sciences. Although inherently geographic, the exposome as yet is unfamiliar to many geographers. This article proposes a place-based synthesis, genetic...... geographic information science (genetic GIScience), that is founded on the exposome, genome+, and behavome. It provides an improved understanding of human health in relation to biology (the genome+), environmental exposures (the exposome), and their social, societal, and behavioral determinants (the behavome......). Genetic GIScience poses three key needs: first, a mathematical foundation for emergent theory; second, process-based models that bridge biological and geographic scales; third, biologically plausible estimates of space?time disease lags. Compartmental models are a possible solution; this article develops...

  10. Quantitative Decision Support Requires Quantitative User Guidance

    Science.gov (United States)

    Smith, L. A.

    2009-12-01

    Is it conceivable that models run on 2007 computer hardware could provide robust and credible probabilistic information for decision support and user guidance at the ZIP code level for sub-daily meteorological events in 2060? In 2090? Retrospectively, how informative would output from today’s models have proven in 2003? or the 1930’s? Consultancies in the United Kingdom, including the Met Office, are offering services to “future-proof” their customers from climate change. How is a US or European based user or policy maker to determine the extent to which exciting new Bayesian methods are relevant here? or when a commercial supplier is vastly overselling the insights of today’s climate science? How are policy makers and academic economists to make the closely related decisions facing them? How can we communicate deep uncertainty in the future at small length-scales without undermining the firm foundation established by climate science regarding global trends? Three distinct aspects of the communication of the uses of climate model output targeting users and policy makers, as well as other specialist adaptation scientists, are discussed. First, a brief scientific evaluation of the length and time scales at which climate model output is likely to become uninformative is provided, including a note on the applicability the latest Bayesian methodology to current state-of-the-art general circulation models output. Second, a critical evaluation of the language often employed in communication of climate model output, a language which accurately states that models are “better”, have “improved” and now “include” and “simulate” relevant meteorological processed, without clearly identifying where the current information is thought to be uninformative and misleads, both for the current climate and as a function of the state of the (each) climate simulation. And thirdly, a general approach for evaluating the relevance of quantitative climate model output

  11. A quantitative genetic analysis of intermediate asthma phenotypes

    DEFF Research Database (Denmark)

    Thomsen, S F; Ferreira, M A R; Kyvik, K O;

    2009-01-01

    the Danish Twin Registry, a total of 575 subjects (256 intact pairs and 63 single twins) who either themselves and/or their co-twins reported a history of asthma at a nationwide questionnaire survey, were clinically examined. Traits were measured using standard techniques. Latent factor models were fitted...... responsiveness, rho(E) = 0.34. Conclusions: Asthma is a complex disease characterized by a set of etiologically heterogeneous biomarkers, which likely constitute diverse targets of intervention....

  12. Adaptive Fixation in Two-Locus Models of Stabilizing Selection and Genetic Drift

    OpenAIRE

    Wollstein, Andreas; Stephan, Wolfgang

    2014-01-01

    The relationship between quantitative genetics and population genetics has been studied for nearly a century, almost since the existence of these two disciplines. Here we ask to what extent quantitative genetic models in which selection is assumed to operate on a polygenic trait predict adaptive fixations that may lead to footprints in the genome (selective sweeps). We study two-locus models of stabilizing selection (with and without genetic drift) by simulations and analytically. For symmetr...

  13. Quantitative Intracerebral Hemorrhage Localization

    Science.gov (United States)

    Muschelli, John; Ullman, Natalie L.; Sweeney, Elizabeth M.; Eloyan, Ani; Martin, Neil; Vespa, Paul; Hanley, Daniel F.; Crainiceanu, Ciprian M.

    2015-01-01

    Background and Purpose The location of intracerebral hemorrhage (ICH) is currently described in a qualitative way; we provide a quantitative framework for estimating ICH engagement and its relevance to stroke outcomes. Methods We analyzed 111 patients with ICH from the MISTIE II clinical trial. We estimated ICH engagement at a population level using image registration of CT scans to a template and a previously labeled atlas. Predictive regions of NIHSS and GCS stroke severity scores, collected at enrollment, were estimated. Results The percent coverage of the ICH by these regions strongly outperformed the reader-labeled locations. The adjusted R2 almost doubled from 0.129 (reader-labeled model) to 0.254 (quantitative-location model) for NIHSS and more than tripled from 0.069 (reader-labeled model) to 0.214 (quantitative-location model). A permutation test confirmed that the new predictive regions are more predictive than chance: p<.001 for NIHSS and p<.01 for GCS. Conclusions Objective measures of ICH location and engagement using advanced CT imaging processing provide finer, objective, and more quantitative anatomic information than that provided by human readers. PMID:26451031

  14. Critical Quantitative Inquiry in Context

    Science.gov (United States)

    Stage, Frances K.; Wells, Ryan S.

    2014-01-01

    This chapter briefly traces the development of the concept of critical quantitative inquiry, provides an expanded conceptualization of the tasks of critical quantitative research, offers theoretical explanation and justification for critical research using quantitative methods, and previews the work of quantitative criticalists presented in this…

  15. Critical Quantitative Inquiry in Context

    Science.gov (United States)

    Stage, Frances K.; Wells, Ryan S.

    2014-01-01

    This chapter briefly traces the development of the concept of critical quantitative inquiry, provides an expanded conceptualization of the tasks of critical quantitative research, offers theoretical explanation and justification for critical research using quantitative methods, and previews the work of quantitative criticalists presented in this…

  16. Imaging genetics and psychiatric disorders.

    Science.gov (United States)

    Hashimoto, R; Ohi, K; Yamamori, H; Yasuda, Y; Fujimoto, M; Umeda-Yano, S; Watanabe, Y; Fukunaga, M; Takeda, M

    2015-01-01

    Imaging genetics is an integrated research method that uses neuroimaging and genetics to assess the impact of genetic variation on brain function and structure. Imaging genetics is both a tool for the discovery of risk genes for psychiatric disorders and a strategy for characterizing the neural systems affected by risk gene variants to elucidate quantitative and mechanistic aspects of brain function implicated in psychiatric disease. Early studies of imaging genetics included association analyses between brain morphology and single nucleotide polymorphisms whose function is well known, such as catechol-Omethyltransferase (COMT) and brain-derived neurotrophic factor (BDNF). GWAS of psychiatric disorders have identified genes with unknown functions, such as ZNF804A, and imaging genetics has been used to investigate clues of the biological function of these genes. The difficulty in replicating the findings of studies with small sample sizes has motivated the creation of largescale collaborative consortiums, such as ENIGMA, CHARGE and IMAGEN, to collect thousands of images. In a genome-wide association study, the ENIGMA consortium successfully identified common variants in the genome associated with hippocampal volume at 12q24, and the CHARGE consortium replicated this finding. The new era of imaging genetics has just begun, and the next challenge we face is the discovery of small effect size signals from large data sets obtained from genetics and neuroimaging. New methods and technologies for data reduction with appropriate statistical thresholds, such as polygenic analysis and parallel independent component analysis (ICA), are warranted. Future advances in imaging genetics will aid in the discovery of genes and provide mechanistic insight into psychiatric disorders.

  17. Imaging Genetics and Psychiatric Disorders

    Science.gov (United States)

    Hashimoto, R; Ohi, K; Yamamori, H; Yasuda, Y; Fujimoto, M; Umeda-Yano, S; Watanabe, Y; Fukunaga, M; Takeda, M

    2015-01-01

    Imaging genetics is an integrated research method that uses neuroimaging and genetics to assess the impact of genetic variation on brain function and structure. Imaging genetics is both a tool for the discovery of risk genes for psychiatric disorders and a strategy for characterizing the neural systems affected by risk gene variants to elucidate quantitative and mechanistic aspects of brain function implicated in psychiatric disease. Early studies of imaging genetics included association analyses between brain morphology and single nucleotide polymorphisms whose function is well known, such as catechol-O-methyltransferase (COMT) and brain-derived neurotrophic factor (BDNF). GWAS of psychiatric disorders have identified genes with unknown functions, such as ZNF804A, and imaging genetics has been used to investigate clues of the biological function of these genes. The difficulty in replicating the findings of studies with small sample sizes has motivated the creation of large-scale collaborative consortiums, such as ENIGMA, CHARGE and IMAGEN, to collect thousands of images. In a genome-wide association study, the ENIGMA consortium successfully identified common variants in the genome associated with hippocampal volume at 12q24, and the CHARGE consortium replicated this finding. The new era of imaging genetics has just begun, and the next challenge we face is the discovery of small effect size signals from large data sets obtained from genetics and neuroimaging. New methods and technologies for data reduction with appropriate statistical thresholds, such as polygenic analysis and parallel independent component analysis (ICA), are warranted. Future advances in imaging genetics will aid in the discovery of genes and provide mechanistic insight into psychiatric disorders. PMID:25732148

  18. Quantitative aspects of gene regulation by small RNAs

    Science.gov (United States)

    Mehta, Pankaj

    2007-03-01

    Small, non-coding RNAs (sRNAs) play an important role as genetic regulators in both prokaryotes and eukaryotes. Many sRNAs act through base-pairing interaction with target messenger RNAs (mRNAs) to regulate transcription, translation, and mRNA stability. sRNAs represent a novel form of genetic regulation distinct from more thoroughly studied protein regulators. This talk addresses quantitative aspectsof sRNA-mediated genetic regulation, focusing on noise, tunability, and feedback. In particular, we compare and contrast sRNA and protein regulators in an attempt to understand the compartive advantages of each form of regulation.

  19. Towards in vivo focal cortical dysplasia phenotyping using quantitative MRI.

    Science.gov (United States)

    Adler, Sophie; Lorio, Sara; Jacques, Thomas S; Benova, Barbora; Gunny, Roxana; Cross, J Helen; Baldeweg, Torsten; Carmichael, David W

    2017-01-01

    Focal cortical dysplasias (FCDs) are a range of malformations of cortical development each with specific histopathological features. Conventional radiological assessment of standard structural MRI is useful for the localization of lesions but is unable to accurately predict the histopathological features. Quantitative MRI offers the possibility to probe tissue biophysical properties in vivo and may bridge the gap between radiological assessment and ex-vivo histology. This review will cover histological, genetic and radiological features of FCD following the ILAE classification and will explain how quantitative voxel- and surface-based techniques can characterise these features. We will provide an overview of the quantitative MRI measures available, their link with biophysical properties and finally the potential application of quantitative MRI to the problem of FCD subtyping. Future research linking quantitative MRI to FCD histological properties should improve clinical protocols, allow better characterisation of lesions in vivo and tailored surgical planning to the individual.

  20. MALDI-TOF MS: a platform technology for genetic discovery

    Science.gov (United States)

    Boom, Dirk Van Den; Beaulieu, Martin; Oeth, Paul; Roth, Rich; Honisch, Christiane; Nelson, Matthew R.; Jurinke, Christian; Cantor, Charles

    2004-11-01

    Matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) has been applied as a high-throughput platform technology for qualitative and quantitative nucleic acid analysis in the genetic discovery of target genes and their biological validation. Mass spectrometric methods for the elucidation of genetic variability and for subsequent large-scale genotyping of genetic markers are exemplified. The use of quantitative MALDI-TOF MS is described for large-scale validation of SNP markers and their analysis in DNA sample pools. Initial results of genome-wide association studies employing this technology are provided exemplifying a genetics-driven approach to drug discovery.

  1. RNA genetics

    Energy Technology Data Exchange (ETDEWEB)

    Domingo, E. (Instituto de Biologia Molecular, Facultad de Ciencias, Universidad Autonoma de Madrid, Canto Blanco, Madrid (ES)); Holland, J.J. (California Univ., San Diego, La Jolla, CA (USA). Dept. of Biology); Ahlquist, P. (Wisconsin Univ., Madison, WI (USA). Dept. of Plant Pathology)

    1988-01-01

    This book contains the proceedings on RNA genetics: RNA-directed virus replication Volume 1. Topics covered include: Replication of the poliovirus genome; Influenza viral RNA transcription and replication; and Relication of the reoviridal: Information derived from gene cloning and expression.

  2. Genetic counseling

    Science.gov (United States)

    ... MF, eds. Creasy and Resnik's Maternal-Fetal Medicine: Principles and Practice . 7th ed. Philadelphia, PA: Elsevier Saunders; 2014:chap 30. Review Date 1/25/2016 Updated by: Chad Haldeman-Englert, MD, FACMG, Fullerton Genetics Center, Asheville, NC. Review provided by VeriMed Healthcare ...

  3. Genetic studies in alcohol research

    Energy Technology Data Exchange (ETDEWEB)

    Karp, R.W. [National Institute on Alcohol Abuse and Alcoholism, Rockville, MD (United States)

    1994-12-15

    The National Institute on Alcohol Abuse and Alcoholism (NIAAA) supports research to elucidate the specific genetic factors, now largely unknown, which underlie susceptibility to alcoholism and its medical complications (including fetal alcohol syndrome). Because of the genetic complexity and heterogeneity of alcoholism, identification of the multiple underlying factors will require the development of new study designs and methods of analysis of data from human families. While techniques of genetic analysis of animal behavioral traits (e.g., targeted gene disruption, quantitative trait locus (QTL) mapping) are more powerful that those applicable to humans (e.g., linkage and allelic association studies), the validation of animal behaviors as models of aspects of human alcoholism has been problematic. Newly developed methods for mapping QTL influencing animal behavioral traits can not only permit analyses of human family data to be directly informed by the results of animal studies, but can also serve as a novel means of validating animal models of aspects of alcoholism. 55 refs.

  4. Proposal for qualitative and quantitative descriptors to characterise bamboo germplasm

    Directory of Open Access Journals (Sweden)

    Andressa Leal Generoso

    Full Text Available ABSTRACT Bamboo is a genetic resource with evident potential for use from construction until the recovery of degraded areas. Although, characterization and evaluation studies involving bamboo species are scarce and it is difficult to define a list of specific descriptors to better meet the different genres and or bamboo species. Thus, the objective of this work were propose and test the effectiveness of qualitative and quantitative descriptors for phenotypic characterization and the study of genetic diversity among six species of bamboo introduced in Brazil. Fifteen qualitative and nine quantitative descriptors were proposed and tested in clones with one year of planting. Individuals belonging to six species of bamboo (Bambusa vulgaris, Bambusa vulgaris var. vittata, Drepanostachyum falcatum, Dendrocalamus latiforus, Phyllostachys aurea var. albovariegada and Phyllostachys edulis were characterized on the basis of vegetative descriptors, pseudopetiole, sheath, ligule, gems and culm. The genetic divergence between the clones was estimated by the methods of grouping of Tocher and UPGMA with use of average Euclidean distance and the principal component in two-dimensional plane. Qualitative and quantitative descriptors proposed were efficient to differentiate the six species studied and quantify genetic diversity. The quantitative descriptor of sheath length was the largest contributor to differentiate the species studied.

  5. Applied quantitative finance

    CERN Document Server

    Chen, Cathy; Overbeck, Ludger

    2017-01-01

    This volume provides practical solutions and introduces recent theoretical developments in risk management, pricing of credit derivatives, quantification of volatility and copula modeling. This third edition is devoted to modern risk analysis based on quantitative methods and textual analytics to meet the current challenges in banking and finance. It includes 14 new contributions and presents a comprehensive, state-of-the-art treatment of cutting-edge methods and topics, such as collateralized debt obligations, the high-frequency analysis of market liquidity, and realized volatility. The book is divided into three parts: Part 1 revisits important market risk issues, while Part 2 introduces novel concepts in credit risk and its management along with updated quantitative methods. The third part discusses the dynamics of risk management and includes risk analysis of energy markets and for cryptocurrencies. Digital assets, such as blockchain-based currencies, have become popular b ut are theoretically challenging...

  6. Energy & Climate: Getting Quantitative

    Science.gov (United States)

    Wolfson, Richard

    2011-11-01

    A noted environmentalist claims that buying an SUV instead of a regular car is energetically equivalent to leaving your refrigerator door open for seven years. A fossil-fuel apologist argues that solar energy is a pie-in-the-sky dream promulgated by na"ive environmentalists, because there's nowhere near enough solar energy to meet humankind's energy demand. A group advocating shutdown of the Vermont Yankee nuclear plant claims that 70% of its electrical energy is lost in transmission lines. Around the world, thousands agitate for climate action, under the numerical banner ``350.'' Neither the environmentalist, the fossil-fuel apologist, the antinuclear activists, nor most of those marching under the ``350'' banner can back up their assertions with quantitative arguments. Yet questions about energy and its environmental impacts almost always require quantitative answers. Physics can help! This poster gives some cogent examples, based on the newly published 2^nd edition of the author's textbook Energy, Environment, and Climate.

  7. Quantitation of signal transduction.

    Science.gov (United States)

    Krauss, S; Brand, M D

    2000-12-01

    Conventional qualitative approaches to signal transduction provide powerful ways to explore the architecture and function of signaling pathways. However, at the level of the complete system, they do not fully depict the interactions between signaling and metabolic pathways and fail to give a manageable overview of the complexity that is often a feature of cellular signal transduction. Here, we introduce a quantitative experimental approach to signal transduction that helps to overcome these difficulties. We present a quantitative analysis of signal transduction during early mitogen stimulation of lymphocytes, with steady-state respiration rate as a convenient marker of metabolic stimulation. First, by inhibiting various key signaling pathways, we measure their relative importance in regulating respiration. About 80% of the input signal is conveyed via identifiable routes: 50% through pathways sensitive to inhibitors of protein kinase C and MAP kinase and 30% through pathways sensitive to an inhibitor of calcineurin. Second, we quantify how each of these pathways differentially stimulates functional units of reactions that produce and consume a key intermediate in respiration: the mitochondrial membrane potential. Both the PKC and calcineurin routes stimulate consumption more strongly than production, whereas the unidentified signaling routes stimulate production more than consumption, leading to no change in membrane potential despite increased respiration rate. The approach allows a quantitative description of the relative importance of signal transduction pathways and the routes by which they activate a specific cellular process. It should be widely applicable.

  8. Quantitative traits and diversification.

    Science.gov (United States)

    FitzJohn, Richard G

    2010-12-01

    Quantitative traits have long been hypothesized to affect speciation and extinction rates. For example, smaller body size or increased specialization may be associated with increased rates of diversification. Here, I present a phylogenetic likelihood-based method (quantitative state speciation and extinction [QuaSSE]) that can be used to test such hypotheses using extant character distributions. This approach assumes that diversification follows a birth-death process where speciation and extinction rates may vary with one or more traits that evolve under a diffusion model. Speciation and extinction rates may be arbitrary functions of the character state, allowing much flexibility in testing models of trait-dependent diversification. I test the approach using simulated phylogenies and show that a known relationship between speciation and a quantitative character could be recovered in up to 80% of the cases on large trees (500 species). Consistent with other approaches, detecting shifts in diversification due to differences in extinction rates was harder than when due to differences in speciation rates. Finally, I demonstrate the application of QuaSSE to investigate the correlation between body size and diversification in primates, concluding that clade-specific differences in diversification may be more important than size-dependent diversification in shaping the patterns of diversity within this group.

  9. Melanoma genetics

    DEFF Research Database (Denmark)

    Read, Jazlyn; Wadt, Karin A W; Hayward, Nicholas K

    2016-01-01

    Approximately 10% of melanoma cases report a relative affected with melanoma, and a positive family history is associated with an increased risk of developing melanoma. Although the majority of genetic alterations associated with melanoma development are somatic, the underlying presence...... of heritable melanoma risk genes is an important component of disease occurrence. Susceptibility for some families is due to mutation in one of the known high penetrance melanoma predisposition genes: CDKN2A, CDK4, BAP1, POT1, ACD, TERF2IP and TERT. However, despite such mutations being implicated...... in a combined total of approximately 50% of familial melanoma cases, the underlying genetic basis is unexplained for the remainder of high-density melanoma families. Aside from the possibility of extremely rare mutations in a few additional high penetrance genes yet to be discovered, this suggests a likely...

  10. Genetics of Inflammatory Bowel Diseases.

    Science.gov (United States)

    McGovern, Dermot P B; Kugathasan, Subra; Cho, Judy H

    2015-10-01

    In this review, we provide an update on genome-wide association studies (GWAS) in inflammatory bowel disease (IBD). In addition, we summarize progress in defining the functional consequences of associated alleles for coding and noncoding genetic variation. In the small minority of loci where major association signals correspond to nonsynonymous variation, we summarize studies defining their functional effects and implications for therapeutic targeting. Importantly, the large majority of GWAS-associated loci involve noncoding variation, many of which modulate levels of gene expression. Recent expression quantitative trait loci (eQTL) studies have established that the expression of most human genes is regulated by noncoding genetic variations. Significant advances in defining the epigenetic landscape have demonstrated that IBD GWAS signals are highly enriched within cell-specific active enhancer marks. Studies in European ancestry populations have dominated the landscape of IBD genetics studies, but increasingly, studies in Asian and African-American populations are being reported. Common variation accounts for only a modest fraction of the predicted heritability and the role of rare genetic variation of higher effects (ie, odds ratios markedly deviating from 1) is increasingly being identified through sequencing efforts. These sequencing studies have been particularly productive in more severe very early onset cases. A major challenge in IBD genetics will be harnessing the vast array of genetic discovery for clinical utility through emerging precision medical initiatives. In this article, we discuss the rapidly evolving area of direct-to-consumer genetic testing and the current utility of clinical exome sequencing, especially in very early onset, severe IBD cases. We summarize recent progress in the pharmacogenetics of IBD with respect to partitioning patient responses to anti-TNF and thiopurine therapies. Highly collaborative studies across research centers and

  11. Genetical genomics identifies the genetic architecture for growth and weevil resistance in spruce.

    Science.gov (United States)

    Porth, Ilga; White, Richard; Jaquish, Barry; Alfaro, René; Ritland, Carol; Ritland, Kermit

    2012-01-01

    In plants, relationships between resistance to herbivorous insect pests and growth are typically controlled by complex interactions between genetically correlated traits. These relationships often result in tradeoffs in phenotypic expression. In this study we used genetical genomics to elucidate genetic relationships between tree growth and resistance to white pine terminal weevil (Pissodes strobi Peck.) in a pedigree population of interior spruce (Picea glauca, P. engelmannii and their hybrids) that was growing at Vernon, B.C. and segregating for weevil resistance. Genetical genomics uses genetic perturbations caused by allelic segregation in pedigrees to co-locate quantitative trait loci (QTLs) for gene expression and quantitative traits. Bark tissue of apical leaders from 188 trees was assayed for gene expression using a 21.8K spruce EST-spotted microarray; the same individuals were genotyped for 384 SNP markers for the genetic map. Many of the expression QTLs (eQTL) co-localized with resistance trait QTLs. For a composite resistance phenotype of six attack and oviposition traits, 149 positional candidate genes were identified. Resistance and growth QTLs also overlapped with eQTL hotspots along the genome suggesting that: 1) genetic pleiotropy of resistance and growth traits in interior spruce was substantial, and 2) master regulatory genes were important for weevil resistance in spruce. These results will enable future work on functional genetic studies of insect resistance in spruce, and provide valuable information about candidate genes for genetic improvement of spruce.

  12. Genetical genomics identifies the genetic architecture for growth and weevil resistance in spruce.

    Directory of Open Access Journals (Sweden)

    Ilga Porth

    Full Text Available In plants, relationships between resistance to herbivorous insect pests and growth are typically controlled by complex interactions between genetically correlated traits. These relationships often result in tradeoffs in phenotypic expression. In this study we used genetical genomics to elucidate genetic relationships between tree growth and resistance to white pine terminal weevil (Pissodes strobi Peck. in a pedigree population of interior spruce (Picea glauca, P. engelmannii and their hybrids that was growing at Vernon, B.C. and segregating for weevil resistance. Genetical genomics uses genetic perturbations caused by allelic segregation in pedigrees to co-locate quantitative trait loci (QTLs for gene expression and quantitative traits. Bark tissue of apical leaders from 188 trees was assayed for gene expression using a 21.8K spruce EST-spotted microarray; the same individuals were genotyped for 384 SNP markers for the genetic map. Many of the expression QTLs (eQTL co-localized with resistance trait QTLs. For a composite resistance phenotype of six attack and oviposition traits, 149 positional candidate genes were identified. Resistance and growth QTLs also overlapped with eQTL hotspots along the genome suggesting that: 1 genetic pleiotropy of resistance and growth traits in interior spruce was substantial, and 2 master regulatory genes were important for weevil resistance in spruce. These results will enable future work on functional genetic studies of insect resistance in spruce, and provide valuable information about candidate genes for genetic improvement of spruce.

  13. Genetic Testing for ALS

    Science.gov (United States)

    ... Involved Donate Familial Amyotrophic Lateral Sclerosis (FALS) and Genetic Testing By Deborah Hartzfeld, MS, CGC, Certified Genetic Counselor ... in your area, please visit www.nsgc.org . Genetic Testing Genetic testing can help determine the cause of ...

  14. Genetic Science Learning Center

    Science.gov (United States)

    ... Mouse Party on Learn.Genetics.utah.edu Students doing the Tree of Genetic Traits activity Learn.Genetics is one of the most widely used science education websites in the world The Community Genetics ...

  15. Directional and quantitative phosphorylation networks

    DEFF Research Database (Denmark)

    Jørgensen, Claus; Linding, Rune

    2008-01-01

    for unravelling phosphorylation-mediated cellular interaction networks. In particular, we will discuss how the combination of new quantitative mass-spectrometric technologies and computational algorithms together are enhancing mapping of these largely uncharted dynamic networks. By combining quantitative...

  16. F# for quantitative finance

    CERN Document Server

    Astborg, Johan

    2013-01-01

    To develop your confidence in F#, this tutorial will first introduce you to simpler tasks such as curve fitting. You will then advance to more complex tasks such as implementing algorithms for trading semi-automation in a practical scenario-based format.If you are a data analyst or a practitioner in quantitative finance, economics, or mathematics and wish to learn how to use F# as a functional programming language, this book is for you. You should have a basic conceptual understanding of financial concepts and models. Elementary knowledge of the .NET framework would also be helpful.

  17. Designing quantitative telemedicine research.

    Science.gov (United States)

    Wade, Victoria; Barnett, Adrian G; Martin-Khan, Melinda; Russell, Trevor

    2016-10-27

    When designing quantitative trials and evaluation of telehealth interventions, researchers should think ahead to the intended way that the intervention could be implemented in routine care and consider how trial participants with similar characteristics to the target population can be included. The telehealth intervention and the context in which it is placed should be clearly described, and consideration given to conducting pragmatic trials in order to show the effect of telehealth in complex environments with rapidly changing technology. Types of research designs, comparators and outcome measures are discussed and common statistical issues are introduced. © The Author(s) 2016.

  18. The nature and identification of quantitative trait loci : a community's view

    NARCIS (Netherlands)

    Abiola, O; Angel, JM; Avner, P; Bachmanov, AA; Belknap, JK; Bennett, B; Blankenhorn, EP; Blizard, DA; Bolivar, [No Value; Brockmann, GA; Buck, KJ; Bureau, JF; Casley, WL; Chesler, EJ; Cheverud, JM; Churchill, GA; Cook, M; Crabbe, JC; Crusio, WE; Darvasi, A; de Haan, G; Demant, P; Doerge, RW; Elliott, RW; Farber, CR; Flaherty, L; Flint, J; Gershenfeld, H; Gu, JPGJ; Gu, WK; Himmelbauer, H; Hitzemann, R; Hsu, HC; Hunter, K; Iraqi, FA; Jansen, RC; Johnson, TE; Jones, BC; Kempermann, G; Lammert, F; Lu, L; Manly, KF; Matthews, DB; Medrano, JF; Mehrabian, M; Mittleman, G; Mock, BA; Mogil, JS; Montagutelli, [No Value; Morahan, G; Mountz, JD; Nagase, H; Nowakowski, RS; O'Hara, BR; Osadchuk, AV; Paigen, B; Palmer, Abraham A.; Peirce, JL; Pomp, D; Rosemann, M; Rosen, GD; Schalkwyk, LC; Seltzer, Z; Settle, S; Shimomura, K; Shou, SM; Sikela, JM; Siracusa, LD; Spearow, JL; Teuscher, C; Threadgill, DW; Toth, LA; Toye, AA; Vadasz, C; Van Zant, G; Wakeland, E; Zhang, HG; Zou, F; Angel, Joe M.; Belknap, John K.; Blankenhorn, Elizabeth P.; Bolivar, Valerie; Brockmann, Gudrun A.; Buck, Kari J.; Bureau, Jean-Francois; Casley, William L.; Chesler, Elissa J.; Cheverud, James M.; Crabbe, John C.; Crusio, Wim E.; Elliott, Rosemary W.; Farber, Charles R.; Gibson, John P.; Gu, Jing; Gu, Weikuan; Hsu, Hui-Chen; Iraqi, Fuad A.; Johnson, Thomas E.; Jones, Byron C.; Manly, Kenneth F.; Matthews, Douglas B.; Medrano, Juan F.; Mock, Beverly A.; Mogil, Jeffrey S.; Montagutelli, Xavier; Mountz, John D.; Nowakowski, Richard S.; O’Hara, Bruce F.; Osadchuk, Alexander V.; Peirce, Jeremy L.; Rosen, Glenn D.; Shou, Siming; Siracusa, Linda D.; Spearow, Jimmy L.; Threadgill, David W.; Toth, Linda A.; Williams, Robert W.; Zhang, Huang-Ge; Williams, O.

    2003-01-01

    This white paper by eighty members of the Complex Trait Consortium presents a community’s view on the approaches and statistical analyses that are needed for the identification of genetic loci that determine quantitative traits. Quantitative trait loci (QTLs) can be identified in several ways, but i

  19. Complex pedigree analysis to detect quantitative trait loci in dairy cattle.

    NARCIS (Netherlands)

    Bink, M.C.A.M.

    1998-01-01

    In dairy cattle, many quantitative traits of economic importance show phenotypic variation. For breeding purposes the analysis of this phenotypic variation and uncovering the contribution of genetic factors is very important. Usually, the individual gene effects contributing to the quantitative gene

  20. Genetical Genomics of Plants: From Genotype to Phenotype

    NARCIS (Netherlands)

    Joosen, R.V.L.; Ligterink, W.; Hilhorst, H.W.M.; Keurentjes, J.J.B.

    2013-01-01

    Natural variation provides a valuable resource to study the genetic regulation of quantitative traits. In quantitative trait locus (QTL) analyses this variation, captured in segregating mapping populations, is used to identify the genomic regions affecting these traits. The identification of the cau

  1. Quantitative immunoglobulins in adulthood.

    Science.gov (United States)

    Crisp, Howard C; Quinn, James M

    2009-01-01

    Although age-related changes in serum immunoglobulins are well described in childhood, alterations in immunoglobulins in the elderly are less well described and published. This study was designed to better define expected immunoglobulin ranges and differences in adults of differing decades of life. Sera from 404 patients, aged 20-89 years old were analyzed for quantitative immunoglobulin G (IgG), immunoglobulin M (IgM), and immunoglobulin A (IgA). The patients with diagnoses or medications known to affect immunoglobulin levels were identified while blinded to their immunoglobulin levels. A two-factor ANOVA was performed using decade of life and gender on both the entire sample population as well as the subset without any disease or medication expected to alter immunoglobulin levels. A literature review was also performed on all English language articles evaluating quantitative immunoglobulin levels in adults >60 years old. For the entire population, IgM was found to be higher in women when compared with men (p immunoglobulin levels, the differences in IgM with gender and age were maintained (p immunoglobulin levels have higher serum IgA levels and lower serum IgM levels. Women have higher IgM levels than men throughout life. IgG levels are not significantly altered in an older population.

  2. Is quantitative electromyography reliable?

    Science.gov (United States)

    Cecere, F; Ruf, S; Pancherz, H

    1996-01-01

    The reliability of quantitative electromyography (EMG) of the masticatory muscles was investigated in 14 subjects without any signs or symptoms of temporomandibular disorders. Integrated EMG activity from the anterior temporalis and masseter muscles was recorded bilaterally by means of bipolar surface electrodes during chewing and biting activities. In the first experiment, the influence of electrode relocation was investigated. No influence of electrode relocation on the recorded EMG signal could be detected. In a second experiment, three sessions of EMG recordings during five different chewing and biting activities were performed in the morning (I); 1 hour later without intermediate removal of the electrodes (II); and in the afternoon, using new electrodes (III). The method errors for different time intervals (I-II and I-III errors) for each muscle and each function were calculated. Depending on the time interval between the EMG recordings, the muscles considered, and the function performed, the individual errors ranged from 5% to 63%. The method error increased significantly (P masseter (mean 27.2%) was higher than for the temporalis (mean 20.0%). The largest function error was found during maximal biting in intercuspal position (mean 23.1%). Based on the findings, quantitative electromyography of the masticatory muscles seems to have a limited value in diagnostics and in the evaluation of individual treatment results.

  3. Genetic landscape of open chromatin in yeast.

    Directory of Open Access Journals (Sweden)

    Kibaick Lee

    Full Text Available Chromatin regulation underlies a variety of DNA metabolism processes, including transcription, recombination, repair, and replication. To perform a quantitative genetic analysis of chromatin accessibility, we obtained open chromatin profiles across 96 genetically different yeast strains by FAIRE (formaldehyde-assisted isolation of regulatory elements assay followed by sequencing. While 5∼10% of open chromatin region (OCRs were significantly affected by variations in their underlying DNA sequences, subtelomeric areas as well as gene-rich and gene-poor regions displayed high levels of sequence-independent variation. We performed quantitative trait loci (QTL mapping using the FAIRE signal for each OCR as a quantitative trait. While individual OCRs were associated with a handful of specific genetic markers, gene expression levels were associated with many regulatory loci. We found multi-target trans-loci responsible for a very large number of OCRs, which seemed to reflect the widespread influence of certain chromatin regulators. Such regulatory hotspots were enriched for known regulatory functions, such as recombinational DNA repair, telomere replication, and general transcription control. The OCRs associated with these multi-target trans-loci coincided with recombination hotspots, telomeres, and gene-rich regions according to the function of the associated regulators. Our findings provide a global quantitative picture of the genetic architecture of chromatin regulation.

  4. Genetic constraints and sexual dimorphism in immune defense

    DEFF Research Database (Denmark)

    Rolff, Jens; Armitage, Sophie Alice Octavia; Coltman, David W.

    2005-01-01

    : a common genetic architecture constrains the response to selection on a trait subjected to sexually asymmetric selection pressures. Here we show that males and females of the mealworm beetle Tenebrio molitor differ in the quantitative genetic architecture of four traits related to immune defense...... and condition. Moreover, high genetic correlations between the sexes constitute a genetic constraint to the evolution of sexual dimorphism in immune defense. Our results suggest a general mechanism by which sexual conflict can promote evolutionary stasis. We furthermore show negative genetic correlations...

  5. Quantitative trait analysis of yeast biodiversity yields novel gene tools for metabolic engineering

    NARCIS (Netherlands)

    Hubmann, Georg; Foulquié-Moreno, Maria R.; Nevoigt, Elke; Duitama, Jorge; Meurens, Nicolas; Pais, Thiago M.; Mathé, Lotte; Saerens, Sofie; Nguyen, Huyen Thi Thanh; Swinnen, Steve; Verstrepen, Kevin J.; Concilio, Luigi; de Troostembergh, Jean-Claude; Thevelein, Johan M.

    2013-01-01

    Engineering of metabolic pathways by genetic modification has been restricted largely to enzyme-encoding structural genes. The product yield of such pathways is a quantitative genetic trait. Out of 52 Saccharomyces cerevisiae strains phenotyped in small-scale fermentations, we identified strain CBS6

  6. Genetic modulation of energy metabolism in birds through mitochondrial function

    NARCIS (Netherlands)

    Tieleman, B. Irene; Versteegh, Maaike A.; Fries, Anthony; Helm, Barbara; Dingemanse, Niels J.; Gibbs, H. Lisle; Williams, Joseph B.

    2009-01-01

    Despite their central importance for the evolution of physiological variation, the genetic mechanisms that determine energy expenditure in animals have largely remained unstudied. We used quantitative genetics to confirm that both mass-specific and whole-organism basal metabolic rate (BMR) were heri

  7. [Genetic amniocentesis].

    Science.gov (United States)

    Violante Díaz, M; Carrillo Hinojosa, M; García Necoechea, M P; Escobedo Aguirre, F; Lowenberg Favela, E; Ahued Ahued, J R

    1989-04-01

    179 patients were studied by genetic amniocentesis (GA) in sessions of 3 punctures each. This was done in order to follow a prenatal diagnosis (PD) program and study amniotic fluid at the Hospital Regional 20 de Novembre (ISSSTE) between May 1983 and December 1987. The parameters taken were: age, indications, number of sessions, number punctures, echosonographic studies for gestational age, placental insertion, punction site, amniotic fluid volume, blood contamination, failures and handling of the patient. A low incidence of abortion is reported. We don't have cases of dripping of amniotic fluid or transvaginal haemorrhage. Multiple insertion of the needle and placental or vessel lesions of the cord, as causes of a fetal death are still argued if we have in mind avoiding chances; we didn't have those complications in our cases. The percent is low if there are not previous spontaneous abortions. 79% of the amniotic fluid samples were sent between the 15th and 17th weeks of pregnancy. For alpha fetus protein determination 12 and for biochemical studies 1, specially for beta-galactosidase level. This was done at the Biomedical Investigation Institute of the National Autonomous University of Mexico (in parents with generalized gangliosidosis GM1). Even though results were good, the technique has still risks and complications. An ultrasonic study of the procedures made by physicians with trustable experience is needed. Our country has the need to create more Prenatal Genetic Diagnosis Centers.

  8. Características quantitativas da carcaça de bubalinos de três grupos genéticos terminados em confinamento e abatidos em diferentes estádios de maturidade Quantitative carcass traits of buffaloes from three genetic groups finished in feedlot and slaughtered at different maturities

    Directory of Open Access Journals (Sweden)

    André Mendes Jorge

    2005-12-01

    Full Text Available Objetivou-se estudar as características quantitativas da carcaça de 36 bubalinos (12 Murrah 12 Jafarabadi e 12 Mediterrâneo, com idade média de 18 meses e peso vivo inicial de 330 kg, terminados em confinamento. Os 12 animais de cada grupo genético foram divididos aleatoriamente em três subgrupos de quatro animais e submetidos aos seguintes tratamentos: Maturidade 1: 400 kg PV ao abate; Maturidade 2: 450 kg PV ao abate; Maturidade 3: 500 kg PV ao abate. Durante o experimento, uma ração única, em que 50% da MS foi composta por volumoso, foi fornecida, ad libitum, para todos os animais. Após os abates pré-fixados, determinou-se o peso corporal vazio (PCVZ dos animais pelo somatório das partes integrantes do corpo. Não houve diferença entre grupos genéticos e maturidades, em relação à porcentagem dos cortes dianteiro, paleta, traseiro total e alcatra completa. O rendimento de traseiro especial foi maior nos animais abatidos aos 400 kg PV e menor naqueles com 500 kg PV, enquanto o dos animais com 450 kg PV não diferiu dos demais. O rendimento de ponta-de-agulha, por sua vez, foi maior nos animais com 500 kg PV e menor nos com 400 kg PV. Os valores observados nesses dois pesos de abate não diferiram do obtido nos animais com 450 kg. A produção de carne a partir das raças Murrah, Jafarabadi e Mediterrâneo criadas no Brasil não difere quanto aos rendimentos de carcaça, traseiro, dianteiro e dos principais cortes básicos de interesse comercial.This work was conducted to study the quantitative carcass traits of 36 buffaloes (12 Murrah - MUR, 12 Jafarabadi - JAF and 12 Mediterranean - MED averaging 18 months old and initial body weight (BW of 330 kg finished in feedlot. Twelve animals of each genetic group were randomly assigned to three sub-groups (four animals and distributed to the following treatments: Maturity 1 - slaughter weight at 400 kg of BW, Maturity 2 - slaughter weight at 450 kg of BW, or Maturity 3 - slaughter

  9. Qualitative and quantitative assessment of genetically modified soy in enteral nutrition formulas by polymerase chain reaction based methods Avaliação qualitativa e quantitativa de soja geneticamente modificada em fórmulas de nutrição enteral

    Directory of Open Access Journals (Sweden)

    Natália Eudes Fagundes de Barros

    2010-02-01

    Full Text Available OBJECTIVE: The aim of this work was to investigate the occurrence of Roundup Ready soybean in enteral nutrition formulas sold in Brazil. METHODS: A duplex Polymerase Chain Reaction based on the amplification of the lectin gene and the construction of the recombinant deoxyribonucleic acid of transgenic glyphosate-tolerant soybean (35S promoter and chloroplast transit peptide gene was performed in order to analyze the deoxyribonucleic acid obtained from nine soy protein isolate-containing formulas. RESULTS: Despite the highly processed nature of the food matrices, amplifiable deoxyribonucleic acid templates were obtained from all tested samples, as judged by the amplification of the lectin gene sequence. However, amplicons relative to the presence of Roundup Ready soybean were restricted to one of the nine enteral nutrition formulas analyzed as well as to the soybean reference powder, as expected. Quantitative analysis of the genetically modified formula by real-time Polymerase Chain Reaction showed a content of approximately 0.3% (w/w of recombinant deoxyribonucleic acid from the Roundup Ready soybean. CONCLUSION: The results show that one of the formulas contained genetically modified soy, pointing to the need of regulating the use of transgenic substances and of specific labeling in this product category.OBJETIVO: Investigar a ocorrência de soja transgênica em fórmulas de suporte nutricional comercializadas no Brasil. MÉTODOS: Foi desenvolvido o método da reação em cadeia da polimerase duplex, com base na amplificação do gene na lectina, e na construção do ácido desoxirribonucléico recombinante da soja transgênica tolerante a glifosato (promotor 35S e gene de peptídeo de trânsito de cloroplasto, a fim de avaliar o ácido desoxirribonucléico extraído a partir das nove fórmulas contendo isolado protéico de soja. RESULTADOS: Apesar do alto grau de processamento aos quais os produtos avaliados foram submetidos, foi poss

  10. Genetic architecture of the dog: sexual size dimorphism and functional morphology.

    Science.gov (United States)

    Lark, Karl G; Chase, Kevin; Sutter, Nathan B

    2006-10-01

    Purebred dogs are a valuable resource for genetic analysis of quantitative traits. Quantitative traits are complex, controlled by many genes that are contained within regions of the genome known as quantitative trait loci (QTL). The genetic architecture of quantitative traits is defined by the characteristics of these genes: their number, the magnitude of their effects, their positions in the genome and their interactions with each other. QTL analysis is a valuable tool for exploring genetic architecture, and highlighting regions of the genome that contribute to the variation of a trait within a population.

  11. Multiple quantitative trait analysis using bayesian networks.

    Science.gov (United States)

    Scutari, Marco; Howell, Phil; Balding, David J; Mackay, Ian

    2014-09-01

    Models for genome-wide prediction and association studies usually target a single phenotypic trait. However, in animal and plant genetics it is common to record information on multiple phenotypes for each individual that will be genotyped. Modeling traits individually disregards the fact that they are most likely associated due to pleiotropy and shared biological basis, thus providing only a partial, confounded view of genetic effects and phenotypic interactions. In this article we use data from a Multiparent Advanced Generation Inter-Cross (MAGIC) winter wheat population to explore Bayesian networks as a convenient and interpretable framework for the simultaneous modeling of multiple quantitative traits. We show that they are equivalent to multivariate genetic best linear unbiased prediction (GBLUP) and that they are competitive with single-trait elastic net and single-trait GBLUP in predictive performance. Finally, we discuss their relationship with other additive-effects models and their advantages in inference and interpretation. MAGIC populations provide an ideal setting for this kind of investigation because the very low population structure and large sample size result in predictive models with good power and limited confounding due to relatedness.

  12. Insight into the Genetic Components of Community Genetics: QTL Mapping of Insect Association in a Fast-Growing Forest Tree

    NARCIS (Netherlands)

    DeWoody, J.; Viger, M.; Lakatos, F.; Tuba, K.; Taylor, G.; Smulders, M.J.M.

    2013-01-01

    Identifying genetic sequences underlying insect associations on forest trees will improve the understanding of community genetics on a broad scale. We tested for genomic regions associated with insects in hybrid poplar using quantitative trait loci (QTL) analyses conducted on data from a common gard

  13. Insight into the Genetic Components of Community Genetics: QTL Mapping of Insect Association in a Fast-Growing Forest Tree

    NARCIS (Netherlands)

    DeWoody, J.; Viger, M.; Lakatos, F.; Tuba, K.; Taylor, G.; Smulders, M.J.M.

    2013-01-01

    Identifying genetic sequences underlying insect associations on forest trees will improve the understanding of community genetics on a broad scale. We tested for genomic regions associated with insects in hybrid poplar using quantitative trait loci (QTL) analyses conducted on data from a common gard

  14. DATA SYNTHESIS AND METHOD EVALUATION FOR BRAIN IMAGING GENETICS

    OpenAIRE

    Sheng, Jinhua; Kim, Sungeun; Yan, Jingwen; Moore, Jason; Saykin, Andrew; Shen, Li

    2014-01-01

    Brain imaging genetics is an emergent research field where the association between genetic variations such as single nucleotide polymorphisms (SNPs) and neuroimaging quantitative traits (QTs) is evaluated. Sparse canonical correlation analysis (SCCA) is a bi-multivariate analysis method that has the potential to reveal complex multi-SNP-multi-QT associations. We present initial efforts on evaluating a few SCCA methods for brain imaging genetics. This includes a data synthesis method to create...

  15. Quantitative Risk Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Helms, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-02-10

    The US energy sector is vulnerable to multiple hazards including both natural disasters and malicious attacks from an intelligent adversary. The question that utility owners, operators and regulators face is how to prioritize their investments to mitigate the risks from a hazard that can have the most impact on the asset of interest. In order to be able to understand their risk landscape and develop a prioritized mitigation strategy, they must quantify risk in a consistent way across all hazards their asset is facing. Without being able to quantitatively measure risk, it is not possible to defensibly prioritize security investments or evaluate trade-offs between security and functionality. Development of a methodology that will consistently measure and quantify risk across different hazards is needed.

  16. Quantitative velocity modulation spectroscopy

    Science.gov (United States)

    Hodges, James N.; McCall, Benjamin J.

    2016-05-01

    Velocity Modulation Spectroscopy (VMS) is arguably the most important development in the 20th century for spectroscopic study of molecular ions. For decades, interpretation of VMS lineshapes has presented challenges due to the intrinsic covariance of fit parameters including velocity modulation amplitude, linewidth, and intensity. This limitation has stifled the growth of this technique into the quantitative realm. In this work, we show that subtle changes in the lineshape can be used to help address this complexity. This allows for determination of the linewidth, intensity relative to other transitions, velocity modulation amplitude, and electric field strength in the positive column of a glow discharge. Additionally, we explain the large homogeneous component of the linewidth that has been previously described. Using this component, the ion mobility can be determined.

  17. Quantitative metamaterial property extraction

    CERN Document Server

    Schurig, David

    2015-01-01

    We examine an extraction model for metamaterials, not previously reported, that gives precise, quantitative and causal representation of S parameter data over a broad frequency range, up to frequencies where the free space wavelength is only a modest factor larger than the unit cell dimension. The model is comprised of superposed, slab shaped response regions of finite thickness, one for each observed resonance. The resonance dispersion is Lorentzian and thus strictly causal. This new model is compared with previous models for correctness likelihood, including an appropriate Occam's factor for each fit parameter. We find that this new model is by far the most likely to be correct in a Bayesian analysis of model fits to S parameter simulation data for several classic metamaterial unit cells.

  18. Quantitative Hyperspectral Reflectance Imaging

    Directory of Open Access Journals (Sweden)

    Ted A.G. Steemers

    2008-09-01

    Full Text Available Hyperspectral imaging is a non-destructive optical analysis technique that can for instance be used to obtain information from cultural heritage objects unavailable with conventional colour or multi-spectral photography. This technique can be used to distinguish and recognize materials, to enhance the visibility of faint or obscured features, to detect signs of degradation and study the effect of environmental conditions on the object. We describe the basic concept, working principles, construction and performance of a laboratory instrument specifically developed for the analysis of historical documents. The instrument measures calibrated spectral reflectance images at 70 wavelengths ranging from 365 to 1100 nm (near-ultraviolet, visible and near-infrared. By using a wavelength tunable narrow-bandwidth light-source, the light energy used to illuminate the measured object is minimal, so that any light-induced degradation can be excluded. Basic analysis of the hyperspectral data includes a qualitative comparison of the spectral images and the extraction of quantitative data such as mean spectral reflectance curves and statistical information from user-defined regions-of-interest. More sophisticated mathematical feature extraction and classification techniques can be used to map areas on the document, where different types of ink had been applied or where one ink shows various degrees of degradation. The developed quantitative hyperspectral imager is currently in use by the Nationaal Archief (National Archives of The Netherlands to study degradation effects of artificial samples and original documents, exposed in their permanent exhibition area or stored in their deposit rooms.

  19. A strategy to apply quantitative epistasis analysis on developmental traits.

    Science.gov (United States)

    Labocha, Marta K; Yuan, Wang; Aleman-Meza, Boanerges; Zhong, Weiwei

    2017-05-15

    Genetic interactions are keys to understand complex traits and evolution. Epistasis analysis is an effective method to map genetic interactions. Large-scale quantitative epistasis analysis has been well established for single cells. However, there is a substantial lack of such studies in multicellular organisms and their complex phenotypes such as development. Here we present a method to extend quantitative epistasis analysis to developmental traits. In the nematode Caenorhabditis elegans, we applied RNA interference on mutants to inactivate two genes, used an imaging system to quantitatively measure phenotypes, and developed a set of statistical methods to extract genetic interactions from phenotypic measurement. Using two different C. elegans developmental phenotypes, body length and sex ratio, as examples, we showed that this method could accommodate various metazoan phenotypes with performances comparable to those methods in single cell growth studies. Comparing with qualitative observations, this method of quantitative epistasis enabled detection of new interactions involving subtle phenotypes. For example, several sex-ratio genes were found to interact with brc-1 and brd-1, the orthologs of the human breast cancer genes BRCA1 and BARD1, respectively. We confirmed the brc-1 interactions with the following genes in DNA damage response: C34F6.1, him-3 (ortholog of HORMAD1, HORMAD2), sdc-1, and set-2 (ortholog of SETD1A, SETD1B, KMT2C, KMT2D), validating the effectiveness of our method in detecting genetic interactions. We developed a reliable, high-throughput method for quantitative epistasis analysis of developmental phenotypes.

  20. A genetic engineering approach to genetic algorithms.

    Science.gov (United States)

    Gero, J S; Kazakov, V

    2001-01-01

    We present an extension to the standard genetic algorithm (GA), which is based on concepts of genetic engineering. The motivation is to discover useful and harmful genetic materials and then execute an evolutionary process in such a way that the population becomes increasingly composed of useful genetic material and increasingly free of the harmful genetic material. Compared to the standard GA, it provides some computational advantages as well as a tool for automatic generation of hierarchical genetic representations specifically tailored to suit certain classes of problems.

  1. DRIFTSEL: an R package for detecting signals of natural selection in quantitative traits.

    Science.gov (United States)

    Karhunen, M; Merilä, J; Leinonen, T; Cano, J M; Ovaskainen, O

    2013-07-01

    Approaches and tools to differentiate between natural selection and genetic drift as causes of population differentiation are of frequent demand in evolutionary biology. Based on the approach of Ovaskainen et al. (2011), we have developed an R package (DRIFTSEL) that can be used to differentiate between stabilizing selection, diversifying selection and random genetic drift as causes of population differentiation in quantitative traits when neutral marker and quantitative genetic data are available. Apart from illustrating the use of this method and the interpretation of results using simulated data, we apply the package on data from three-spined sticklebacks (Gasterosteus aculeatus) to highlight its virtues. DRIFTSEL can also be used to perform usual quantitative genetic analyses in common-garden study designs. © 2013 John Wiley & Sons Ltd.

  2. Quantitative Techniques in Volumetric Analysis

    Science.gov (United States)

    Zimmerman, John; Jacobsen, Jerrold J.

    1996-12-01

    Quantitative Techniques in Volumetric Analysis is a visual library of techniques used in making volumetric measurements. This 40-minute VHS videotape is designed as a resource for introducing students to proper volumetric methods and procedures. The entire tape, or relevant segments of the tape, can also be used to review procedures used in subsequent experiments that rely on the traditional art of quantitative analysis laboratory practice. The techniques included are: Quantitative transfer of a solid with a weighing spoon Quantitative transfer of a solid with a finger held weighing bottle Quantitative transfer of a solid with a paper strap held bottle Quantitative transfer of a solid with a spatula Examples of common quantitative weighing errors Quantitative transfer of a solid from dish to beaker to volumetric flask Quantitative transfer of a solid from dish to volumetric flask Volumetric transfer pipet A complete acid-base titration Hand technique variations The conventional view of contemporary quantitative chemical measurement tends to focus on instrumental systems, computers, and robotics. In this view, the analyst is relegated to placing standards and samples on a tray. A robotic arm delivers a sample to the analysis center, while a computer controls the analysis conditions and records the results. In spite of this, it is rare to find an analysis process that does not rely on some aspect of more traditional quantitative analysis techniques, such as careful dilution to the mark of a volumetric flask. Figure 2. Transfer of a solid with a spatula. Clearly, errors in a classical step will affect the quality of the final analysis. Because of this, it is still important for students to master the key elements of the traditional art of quantitative chemical analysis laboratory practice. Some aspects of chemical analysis, like careful rinsing to insure quantitative transfer, are often an automated part of an instrumental process that must be understood by the

  3. Developments in quantitative genetics methodology as applied to national genetic improvement programs for swine

    Institute of Scientific and Technical Information of China (English)

    Ignacy; MISZTAL

    2005-01-01

    For a long time,purebred pigs were evalua-ted in a nucleus for several growth,meat qualityand reproduction traits including growth,backfatand number of piglets alive[1].The evaluationwas using BLUP with all traits treated as linearand also assuming a normal distribution.Ani-mals down the pyramid were not evaluated;itwas assumed that most if not all of the gains ofselection at the nucleus level transferred to thecommercial level.The selection based on the e-valuations seemed to be successful as all thetraits...

  4. Quantitative approaches to uncover physical mechanisms of tissue morphogenesis

    Science.gov (United States)

    Gleghorn, Jason P.; Manivannan, Sriram; Nelson, Celeste M.

    2013-01-01

    Morphogenesis, the creation of tissue and organ architecture, is a series of complex and dynamic processes driven by genetic programs, microenvironmental cues, and intercellular interactions. Elucidating the physical mechanisms that generate tissue form is key to understanding development, disease, and the strategies needed for regenerative therapies. Advancements in imaging technologies, genetic recombination techniques, laser ablation, and microfabricated tissue models have enabled quantitative descriptions of the cellular motions and tissue deformations and stresses with unprecedented temporal and spatial resolution. Using these data synergistically with increasingly more sophisticated physical, mathematical, and computational models will unveil the physical mechanisms that drive morphogenesis. PMID:23647971

  5. Genetic control of cuticular wax compounds in Eucalyptus globulus.

    Science.gov (United States)

    Gosney, Benjamin J; Potts, Brad M; O'Reilly-Wapstra, Julianne M; Vaillancourt, René E; Fitzgerald, Hugh; Davies, Noel W; Freeman, Jules S

    2016-01-01

    Plant cuticular wax compounds perform functions that are essential for the survival of terrestrial plants. Despite their importance, the genetic control of these compounds is poorly understood outside of model taxa. Here we investigate the genetic basis of variation in cuticular compounds in Eucalyptus globulus using quantitative genetic and quantitative trait loci (QTL) analyses. Quantitative genetic analysis was conducted using 246 open-pollinated progeny from 13 native sub-races throughout the geographic range. QTL analysis was conducted using 112 clonally replicated progeny from an outcross F2 population. Nine compounds exhibited significant genetic variation among sub-races with three exhibiting signals of diversifying selection. Fifty-two QTL were found with co-location of QTL for related compounds commonly observed. Notable among these was the QTL for five wax esters, which co-located with a gene from the KCS family, previously implicated in the biosynthesis of cuticular waxes in Arabidopsis. In combination, the QTL and quantitative genetic analyses suggest the variation and differentiation in cuticular wax compounds within E. globulus has a complex genetic origin. Sub-races exhibited independent latitudinal and longitudinal differentiation in cuticular wax compounds, likely reflecting processes such as historic gene flow and diversifying selection acting upon genes that have diverse functions in distinct biochemical pathways.

  6. Quantitative goals for monetary policy

    OpenAIRE

    Fatás, Antonio; Mihov, Ilian; ROSE, Andrew K.

    2006-01-01

    We study empirically the macroeconomic effects of an explicit de jure quantitative goal for monetary policy. Quantitative goals take three forms: exchange rates, money growth rates, and inflation targets. We analyze the effects on inflation of both having a quantitative target, and of hitting a declared target; we also consider effects on output volatility. Our empirical work uses an annual data set covering 42 countries between 1960 and 2000, and takes account of other determinants of inflat...

  7. Quantitative Risk - Phases 1 & 2

    Science.gov (United States)

    2013-11-12

    quantitative risk characterization”, " Risk characterization of microbiological hazards in food ", Chapter 4, 2009 314...State University, July 9, 2013 213. Albert I, Grenier E, Denis JB, Rousseau J., “ Quantitative Risk Assessment from Farm to Fork and Beyond: a...MELHEM, G., “Conduct Effective Quantitative Risk Assessment (QRA) Studies”, ioMosaic Corporation, 2006 233. Anderson, J., Brown, R., “ Risk

  8. Current developments in canine genetics.

    Science.gov (United States)

    Marschall, Yvonne; Distl, Ottmar

    2010-01-01

    In recent years, canine genetics had made huge progress. In 1999 the first complete karyotype and ideogram of the dog was published. Several linkage and RH maps followed. Using these maps, sets of microsatellite markers for whole genome scans were compiled. In 2003 the sequencing of the DNA of a female Boxer began. Now the second version of the dog genome assembly has been put online, and recently, a microchip SNP array became available. Parallel to these developments, some causal mutations for different traits have been identified. Most of the identified mutations were responsible for monogenic canine hereditary diseases. With the tools available now, it is possible to use the advantages of the population structure of the various dog breeds to unravel complex genetic traits. Furthermore, the dog is a suitable model for the research of a large number of human hereditary diseases and particularly for cancer genetics, heart and neurodegenerative diseases. There are some examples where it was possible to benefit from the knowledge of canine genetics for human research. The search for quantitative trait loci (QTL), the testing of candidate genes and genome-wide association studies can now be performed in dogs. QTL for skeletal size variations and for canine hip dysplasia have been already identified and for these complex traits the responsible genes and their possible interactions can now be identified.

  9. Quantitative Electron Nanodiffraction.

    Energy Technology Data Exchange (ETDEWEB)

    Spence, John [Arizona State Univ., Mesa, AZ (United States)

    2015-01-30

    This Final report summarizes progress under this award for the final reporting period 2002 - 2013 in our development of quantitive electron nanodiffraction to materials problems, especially devoted to atomistic processes in semiconductors and electronic oxides such as the new artificial oxide multilayers, where our microdiffraction is complemented with energy-loss spectroscopy (ELNES) and aberration-corrected STEM imaging (9). The method has also been used to map out the chemical bonds in the important GaN semiconductor (1) used for solid state lighting, and to understand the effects of stacking sequence variations and interfaces in digital oxide superlattices (8). Other projects include the development of a laser-beam Zernike phase plate for cryo-electron microscopy (5) (based on the Kapitza-Dirac effect), work on reconstruction of molecular images using the scattering from many identical molecules lying in random orientations (4), a review article on space-group determination for the International Tables on Crystallography (10), the observation of energy-loss spectra with millivolt energy resolution and sub-nanometer spatial resolution from individual point defects in an alkali halide, a review article for the Centenary of X-ray Diffration (17) and the development of a new method of electron-beam lithography (12). We briefly summarize here the work on GaN, on oxide superlattice ELNES, and on lithography by STEM.

  10. Programmable Quantitative DNA Nanothermometers.

    Science.gov (United States)

    Gareau, David; Desrosiers, Arnaud; Vallée-Bélisle, Alexis

    2016-07-13

    Developing molecules, switches, probes or nanomaterials that are able to respond to specific temperature changes should prove of utility for several applications in nanotechnology. Here, we describe bioinspired strategies to design DNA thermoswitches with programmable linear response ranges that can provide either a precise ultrasensitive response over a desired, small temperature interval (±0.05 °C) or an extended linear response over a wide temperature range (e.g., from 25 to 90 °C). Using structural modifications or inexpensive DNA stabilizers, we show that we can tune the transition midpoints of DNA thermometers from 30 to 85 °C. Using multimeric switch architectures, we are able to create ultrasensitive thermometers that display large quantitative fluorescence gains within small temperature variation (e.g., > 700% over 10 °C). Using a combination of thermoswitches of different stabilities or a mix of stabilizers of various strengths, we can create extended thermometers that respond linearly up to 50 °C in temperature range. Here, we demonstrate the reversibility, robustness, and efficiency of these programmable DNA thermometers by monitoring temperature change inside individual wells during polymerase chain reactions. We discuss the potential applications of these programmable DNA thermoswitches in various nanotechnology fields including cell imaging, nanofluidics, nanomedecine, nanoelectronics, nanomaterial, and synthetic biology.

  11. Quantitive DNA Fiber Mapping

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Chun-Mei; Wang, Mei; Greulich-Bode, Karin M.; Weier, Jingly F.; Weier, Heinz-Ulli G.

    2008-01-28

    Several hybridization-based methods used to delineate single copy or repeated DNA sequences in larger genomic intervals take advantage of the increased resolution and sensitivity of free chromatin, i.e., chromatin released from interphase cell nuclei. Quantitative DNA fiber mapping (QDFM) differs from the majority of these methods in that it applies FISH to purified, clonal DNA molecules which have been bound with at least one end to a solid substrate. The DNA molecules are then stretched by the action of a receding meniscus at the water-air interface resulting in DNA molecules stretched homogeneously to about 2.3 kb/{micro}m. When non-isotopically, multicolor-labeled probes are hybridized to these stretched DNA fibers, their respective binding sites are visualized in the fluorescence microscope, their relative distance can be measured and converted into kilobase pairs (kb). The QDFM technique has found useful applications ranging from the detection and delineation of deletions or overlap between linked clones to the construction of high-resolution physical maps to studies of stalled DNA replication and transcription.

  12. Genetics and Rheumatic Disease

    Science.gov (United States)

    ... Well with Rheumatic Disease Genetics and Rheumatic Disease Genetics and Rheumatic Disease Fast Facts Studying twins has ... 70%, and for non-identical pairs, even lower. Genetics and ankylosing spondylitis Each rheumatic disease has its ...

  13. Applying the New Genetics

    Science.gov (United States)

    Sorenson, James

    1976-01-01

    New developments in the prediction and treatment of genetic diseases are presented. Genetic counseling and the role of the counselor, and rights of individuals to reproduce versus societal impact of genetic disorders, are discussed. (RW)

  14. Genetics and Rheumatic Disease

    Science.gov (United States)

    ... Well with Rheumatic Disease Genetics and Rheumatic Disease Genetics and Rheumatic Disease Fast Facts Studying twins has ... 70%, and for non-identical pairs, even lower. Genetics and ankylosing spondylitis Each rheumatic disease has its ...

  15. Quantitative Literacy: Geosciences and Beyond

    Science.gov (United States)

    Richardson, R. M.; McCallum, W. G.

    2002-12-01

    Quantitative literacy seems like such a natural for the geosciences, right? The field has gone from its origin as a largely descriptive discipline to one where it is hard to imagine failing to bring a full range of mathematical tools to the solution of geological problems. Although there are many definitions of quantitative literacy, we have proposed one that is analogous to the UNESCO definition of conventional literacy: "A quantitatively literate person is one who, with understanding, can both read and represent quantitative information arising in his or her everyday life." Central to this definition is the concept that a curriculum for quantitative literacy must go beyond the basic ability to "read and write" mathematics and develop conceptual understanding. It is also critical that a curriculum for quantitative literacy be engaged with a context, be it everyday life, humanities, geoscience or other sciences, business, engineering, or technology. Thus, our definition works both within and outside the sciences. What role do geoscience faculty have in helping students become quantitatively literate? Is it our role, or that of the mathematicians? How does quantitative literacy vary between different scientific and engineering fields? Or between science and nonscience fields? We will argue that successful quantitative literacy curricula must be an across-the-curriculum responsibility. We will share examples of how quantitative literacy can be developed within a geoscience curriculum, beginning with introductory classes for nonmajors (using the Mauna Loa CO2 data set) through graduate courses in inverse theory (using singular value decomposition). We will highlight six approaches to across-the curriculum efforts from national models: collaboration between mathematics and other faculty; gateway testing; intensive instructional support; workshops for nonmathematics faculty; quantitative reasoning requirement; and individual initiative by nonmathematics faculty.

  16. Deterministic quantitative risk assessment development

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, Jane; Colquhoun, Iain [PII Pipeline Solutions Business of GE Oil and Gas, Cramlington Northumberland (United Kingdom)

    2009-07-01

    Current risk assessment practice in pipeline integrity management is to use a semi-quantitative index-based or model based methodology. This approach has been found to be very flexible and provide useful results for identifying high risk areas and for prioritizing physical integrity assessments. However, as pipeline operators progressively adopt an operating strategy of continual risk reduction with a view to minimizing total expenditures within safety, environmental, and reliability constraints, the need for quantitative assessments of risk levels is becoming evident. Whereas reliability based quantitative risk assessments can be and are routinely carried out on a site-specific basis, they require significant amounts of quantitative data for the results to be meaningful. This need for detailed and reliable data tends to make these methods unwieldy for system-wide risk k assessment applications. This paper describes methods for estimating risk quantitatively through the calibration of semi-quantitative estimates to failure rates for peer pipeline systems. The methods involve the analysis of the failure rate distribution, and techniques for mapping the rate to the distribution of likelihoods available from currently available semi-quantitative programs. By applying point value probabilities to the failure rates, deterministic quantitative risk assessment (QRA) provides greater rigor and objectivity than can usually be achieved through the implementation of semi-quantitative risk assessment results. The method permits a fully quantitative approach or a mixture of QRA and semi-QRA to suit the operator's data availability and quality, and analysis needs. For example, consequence analysis can be quantitative or can address qualitative ranges for consequence categories. Likewise, failure likelihoods can be output as classical probabilities or as expected failure frequencies as required. (author)

  17. Genetics and intelligence differences: five special findings.

    Science.gov (United States)

    Plomin, R; Deary, I J

    2015-02-01

    Intelligence is a core construct in differential psychology and behavioural genetics, and should be so in cognitive neuroscience. It is one of the best predictors of important life outcomes such as education, occupation, mental and physical health and illness, and mortality. Intelligence is one of the most heritable behavioural traits. Here, we highlight five genetic findings that are special to intelligence differences and that have important implications for its genetic architecture and for gene-hunting expeditions. (i) The heritability of intelligence increases from about 20% in infancy to perhaps 80% in later adulthood. (ii) Intelligence captures genetic effects on diverse cognitive and learning abilities, which correlate phenotypically about 0.30 on average but correlate genetically about 0.60 or higher. (iii) Assortative mating is greater for intelligence (spouse correlations ~0.40) than for other behavioural traits such as personality and psychopathology (~0.10) or physical traits such as height and weight (~0.20). Assortative mating pumps additive genetic variance into the population every generation, contributing to the high narrow heritability (additive genetic variance) of intelligence. (iv) Unlike psychiatric disorders, intelligence is normally distributed with a positive end of exceptional performance that is a model for 'positive genetics'. (v) Intelligence is associated with education and social class and broadens the causal perspectives on how these three inter-correlated variables contribute to social mobility, and health, illness and mortality differences. These five findings arose primarily from twin studies. They are being confirmed by the first new quantitative genetic technique in a century-Genome-wide Complex Trait Analysis (GCTA)-which estimates genetic influence using genome-wide genotypes in large samples of unrelated individuals. Comparing GCTA results to the results of twin studies reveals important insights into the genetic architecture

  18. Quantitative luminescence imaging system

    Science.gov (United States)

    Batishko, C. R.; Stahl, K. A.; Fecht, B. A.

    The goal of the Measurement of Chemiluminescence project is to develop and deliver a suite of imaging radiometric instruments for measuring spatial distributions of chemiluminescence. Envisioned deliverables include instruments working at the microscopic, macroscopic, and life-sized scales. Both laboratory and field portable instruments are envisioned. The project also includes development of phantoms as enclosures for the diazoluminomelanin (DALM) chemiluminescent chemistry. A suite of either phantoms in a variety of typical poses, or phantoms that could be adjusted to a variety of poses, is envisioned. These are to include small mammals (rats), mid-sized mammals (monkeys), and human body parts. A complete human phantom that can be posed is a long-term goal of the development. Taken together, the chemistry and instrumentation provide a means for imaging rf dosimetry based on chemiluminescence induced by the heat resulting from rf energy absorption. The first delivered instrument, the Quantitative Luminescence Imaging System (QLIS), resulted in a patent, and an R&D Magazine 1991 R&D 100 award, recognizing it as one of the 100 most significant technological developments of 1991. The current status of the project is that three systems have been delivered, several related studies have been conducted, two preliminary human hand phantoms have been delivered, system upgrades have been implemented, and calibrations have been maintained. Current development includes sensitivity improvements to the microscope-based system; extension of the large-scale (potentially life-sized targets) system to field portable applications; extension of the 2-D large-scale system to 3-D measurement; imminent delivery of a more refined human hand phantom and a rat phantom; rf, thermal and imaging subsystem integration; and continued calibration and upgrade support.

  19. Quantitative bioluminescence imaging of mouse tumor models.

    Science.gov (United States)

    Tseng, Jen-Chieh; Kung, Andrew L

    2015-01-05

    Bioluminescence imaging (BLI) has become an essential technique for preclinical evaluation of anticancer therapeutics and provides sensitive and quantitative measurements of tumor burden in experimental cancer models. For light generation, a vector encoding firefly luciferase is introduced into human cancer cells that are grown as tumor xenografts in immunocompromised hosts, and the enzyme substrate luciferin is injected into the host. Alternatively, the reporter gene can be expressed in genetically engineered mouse models to determine the onset and progression of disease. In addition to expression of an ectopic luciferase enzyme, bioluminescence requires oxygen and ATP, thus only viable luciferase-expressing cells or tissues are capable of producing bioluminescence signals. Here, we summarize a BLI protocol that takes advantage of advances in hardware, especially the cooled charge-coupled device camera, to enable detection of bioluminescence in living animals with high sensitivity and a large dynamic range.

  20. Genetics Home Reference: vitiligo

    Science.gov (United States)

    ... physical functioning. However, concerns about appearance and ethnic identity are significant issues for many affected ... What information about a genetic condition can statistics provide? Why are some genetic ...

  1. Study books on ADHD genetics: balanced or biased?

    Science.gov (United States)

    Te Meerman, Sanne; Batstra, Laura; Hoekstra, Rink; Grietens, Hans

    2017-06-01

    Academic study books are essential assets for disseminating knowledge about ADHD to future healthcare professionals. This study examined if they are balanced with regard to genetics. We selected and analyzed study books (N=43) used in (pre) master's programmes at 10 universities in the Netherlands. Because the mere behaviourally informed quantitative genetics give a much higher effect size of the genetic involvement in ADHD, it is important that study books contrast these findings with molecular genetics' outcomes. The latter studies use real genetic data, and their low effect sizes expose the potential weaknesses of quantitative genetics, like underestimating the involvement of the environment. Only a quarter of books mention both effect sizes and contrast these findings, while another quarter does not discuss any effect size. Most importantly, however, roughly half of the books in our sample mention only the effect sizes from quantitative genetic studies without addressing the low explained variance of molecular genetic studies. This may confuse readers by suggesting that the weakly associated genes support the quite spectacular, but potentially flawed estimates of twin, family and adoption studies, while they actually contradict them.

  2. Razões entre componentes da variabilidade de características quantitativas simuladas com efeitos genéticos de dominância e sobredominância Ratios between variability components of simulated quantitative traits with genetic effects of dominance and overdominance

    Directory of Open Access Journals (Sweden)

    Elizângela Emídio Cunha

    2009-10-01

    Full Text Available Foram avaliadas as razões entre componentes da variabilidade de características quantitativas simuladas a partir de genoma incorporando efeitos genéticos não-aditivos em populações de acasalamento ao acaso e de seleção fenotípica a curto prazo. Estudaram-se uma característica de baixa (h² = 0,10 e outra de alta herdabilidade (h² = 0,60 influenciadas por 600 locos bialélicos. Cinco modelos de ação gênica foram simulados, dos quais quatro incluíram dominância completa e positiva para 25, 50, 75 e 100% dos locos (D25, D50, D75 e D100, respectivamente; e um modelo incluiu sobredominância positiva para 50% dos locos. Todos os modelos incluíram efeitos aditivos dos alelos para 100% dos locos. As principais razões quantificadas foram d² (variância de dominância/variância fenotípica e d²a (variância de dominância/variância aditiva. Para as duas características, d² e d²a aumentaram de acordo com o acréscimo na variância de dominância, decorrente da inclusão crescente de locos com desvio da dominância e sob sobredominância. No mesmo modelo, ambas as razões, sobretudo d², são mais elevadas sob alta herdabilidade, o que indica que os efeitos da dominância explicam a maior parte da variabilidade total dessa característica sob seleção.Ratios were assessed between variability components of quantitative traits simulated from the genome incorporating non-additive genetic effects in random mating populations and short-term phenotypic selection. A trait of low (h² = 0.10 heritability and another of high (h² = 0.60 heritability were studied, both influenced by 600 bi-allelic loci. Five gene action models were simulated, of which four included complete and positive dominance for 25, 50, 75 and 100% of the loci (D25, D50, D75 and D100, respectively; and one model included positive overdominance for 50% of the loci. Every model included additive effects of the alleles for 100% of the loci. The main quantified ratios were

  3. Variabilidad y genética en fríjol común (Phuseolus vulgaris L.: I. análisis de variables morfológicas y agronómicas cuantitativas. Genetic variability on shrab bean (Phaseolus vulgaris L.: 1. Morphological and quantitative agronomicals analysis

    Directory of Open Access Journals (Sweden)

    Ligarreto M. Gustavo A.

    2002-08-01

    Full Text Available Based in the evaluation of quantitative variables it was carried out the identification of the genetic variability of a shrub bean Colombian collection. The investigation was carried out with 30 accessions of which three are improved varieties and one is an elite line, the evaluations were carried out in seven environments, six of them in cold climate and one in template climate. The results were analyzed by univariated and multivariated methods by principal components analysis for the group of variables and cluster analysis among agreements. In the principal components analysis the first six
    components represented 87.31% of the total variation, which discriminated the cultivars of the colIection for Andean and Meso-American gene pool. The morphological and agronomical differences were bigger among the Andean accessions, because of its dispersion degree in the first three components, which is higher than in the Meso-American ones.
    The diversity among the gene pools is represented mainly by the growth habit, precocity, foliate area, yield per plant and the number of seeds by podoThe variables of high heredability represented by high repetibility coefficient r> 1 (Goodman and Paterniani, 1969 were: number of knots, pod length, pod apex length, the number of pods per plant, time to physiological maturity and the weight of 100 seeds which can be used for studies of morphological similarity and evolution.
    Con base en la evaluacón de variables cuantitativas, se llevó a cabo la identificación de la variabilidad genética de una colección colombiana de fríjol de crecimiento arbustivo. La investigación se realizó con 30 accesiones, de las cuales tres son variedades mejoradas y una línea élite; las evaluaciones se realizaron en siete ambientes, seis de ellos en clima frío y uno en clima medio. Los resultados se analizaron por métodos univariados y multivariados de componentes principales para el conjunto de variables y por an

  4. Workshop on quantitative dynamic stratigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Cross, T.A.

    1988-04-01

    This document discusses the development of quantitative simulation models for the investigation of geologic systems. The selection of variables, model verification, evaluation, and future directions in quantitative dynamic stratigraphy (QDS) models are detailed. Interdisciplinary applications, integration, implementation, and transfer of QDS are also discussed. (FI)

  5. Mastering R for quantitative finance

    CERN Document Server

    Berlinger, Edina; Badics, Milán; Banai, Ádám; Daróczi, Gergely; Dömötör, Barbara; Gabler, Gergely; Havran, Dániel; Juhász, Péter; Margitai, István; Márkus, Balázs; Medvegyev, Péter; Molnár, Julia; Szucs, Balázs Árpád; Tuza, Ágnes; Vadász, Tamás; Váradi, Kata; Vidovics-Dancs, Ágnes

    2015-01-01

    This book is intended for those who want to learn how to use R's capabilities to build models in quantitative finance at a more advanced level. If you wish to perfectly take up the rhythm of the chapters, you need to be at an intermediate level in quantitative finance and you also need to have a reasonable knowledge of R.

  6. Understanding quantitative research: part 2

    OpenAIRE

    Hoare, Z.; Hoe, J.

    2013-01-01

    This article, which is the second in a two-part series, provides an introduction to understanding quantitative research, basic statistics and terminology used in research articles. Understanding statistical analysis will ensure that nurses can assess the credibility and significance of the evidence reported. This article focuses on explaining common statistical terms and the presentation of statistical data in quantitative research.

  7. Hypermethioninemias of genetic and non-genetic origin: A review.

    Science.gov (United States)

    Mudd, S Harvey

    2011-02-15

    This review covers briefly the major conditions, genetic and non-genetic, sometimes leading to abnormally elevated methionine, with emphasis on recent developments. A major aim is to assist in the differential diagnosis of hypermethioninemia. The genetic conditions are: (1) Homocystinuria due to cystathionine β-synthase (CBS) deficiency. At least 150 different mutations in the CBS gene have been identified since this deficiency was established in 1964. Hypermethioninemia is due chiefly to remethylation of the accumulated homocysteine. (2) Deficient activity of methionine adenosyltransferases I and III (MAT I/III), the isoenzymes the catalytic subunit of which are encoded by MAT1A. Methionine accumulates because its conversion to S-adenosylmethionine (AdoMet) is impaired. (3) Glycine N-methyltrasferase (GNMT) deficiency. Disruption of a quantitatively major pathway for AdoMet disposal leads to AdoMet accumulation with secondary down-regulation of methionine flux into AdoMet. (4) S-adenosylhomocysteine (AdoHcy) hydrolase (AHCY) deficiency. Not being catabolized normally, AdoHcy accumulates and inhibits many AdoMet-dependent methyltransferases, producing accumulation of AdoMet and, thereby, hypermethioninemia. (5) Citrin deficiency, found chiefly in Asian countries. Lack of this mitochondrial aspartate-glutamate transporter may produce (usually transient) hypermethioninemia, the immediate cause of which remains uncertain. (6) Fumarylacetoacetate hydrolase (FAH) deficiency (tyrosinemia type I) may lead to hypermethioninemia secondary either to liver damage and/or to accumulation of fumarylacetoacetate, an inhibitor of the high K(m) MAT. Additional possible genetic causes of hypermethioninemia accompanied by elevations of plasma AdoMet include mitochondrial disorders (the specificity and frequency of which remain to be elucidated). Non-genetic conditions include: (a) Liver disease, which may cause hypermethioninemia, mild, or severe. (b) Low-birth-weight and

  8. Genetic aspects and genetic epidemiology of parasomnias.

    Science.gov (United States)

    Hublin, Christer; Kaprio, Jaakko

    2003-10-01

    Parasomnias are undesirable phenomena associated with sleep. Many of them run in families, and genetic factors have been long suggested to be involved in their occurrence. This article reviews the present knowledge of the genetics of the major classical behavioral parasomnias as well as present results from genetic epidemiological studies. The level and type of evidence for genetic effects varies much from parasomnia to parasomnia. The genetic factors are best established in enuresis, with several linkages to chromosomal loci, but their functions are not so far known. Environmental causes and gene-environment interactions are most probably also of great importance in the origin of complex traits or disorders such as parasomnias.

  9. Pigmentary Markers in Danes – Associations with Quantitative Skin Colour, Nevi Count, Familial Atypical Multiple-Mole, and Melanoma Syndrome

    DEFF Research Database (Denmark)

    Johansen, Peter; Andersen, Jeppe Dyrberg; Madsen, Linnea Nørgård

    2016-01-01

    To investigate whether pigmentation genes involved in the melanogenic pathway (melanogenesis) contributed to melanoma predisposition, we compared pigmentary genetics with quantitative skin pigmentation measurements, the number of atypical nevi, the total nevus count, and the familial atypical mul...

  10. Transmission-disequilibrium tests for quantitative traits

    Energy Technology Data Exchange (ETDEWEB)

    Allison, D.B. [Columbia Univ. College of Physicians and Surgeons, New York, NY (United States)

    1997-03-01

    The transmission-disequilibrium test (TDT) of Spielman et al. is a family-based linkage-disequilibrium test that offers a powerful way to test for linkage between alleles and phenotypes that is either causal (i.e., the marker locus is the disease/trait allele) or due to linkage disequilibrium. The TDT is equivalent to a randomized experiment and, therefore, is resistant to confounding. When the marker is extremely close to the disease locus or is the disease locus itself, tests such as the TDT can be far more powerful than conventional linkage tests. To date, the TDT and most other family-based association tests have been applied only to dichotomous traits. This paper develops five TDT-type tests for use with quantitative traits. These tests accommodate either unselected sampling or sampling based on selection of phenotypically extreme offspring. Power calculations are provided and show that, when a candidate gene is available (1) these TDT-type tests are at least an order of magnitude more efficient than two common sib-pair tests of linkage; (2) extreme sampling results in substantial increases in power; and (3) if the most extreme 20% of the phenotypic distribution is selectively sampled, across a wide variety of plausible genetic models, quantitative-trait loci explaining as little as 5% of the phenotypic variation can be detected at the .0001 a level with <300 observations. 57 refs., 2 figs., 5 tabs.

  11. Spotsizer: High-throughput quantitative analysis of microbial growth

    Science.gov (United States)

    Jeffares, Daniel C.; Arzhaeva, Yulia; Bähler, Jürg

    2017-01-01

    Microbial colony growth can serve as a useful readout in assays for studying complex genetic interactions or the effects of chemical compounds. Although computational tools for acquiring quantitative measurements of microbial colonies have been developed, their utility can be compromised by inflexible input image requirements, non-trivial installation procedures, or complicated operation. Here, we present the Spotsizer software tool for automated colony size measurements in images of robotically arrayed microbial colonies. Spotsizer features a convenient graphical user interface (GUI), has both single-image and batch-processing capabilities, and works with multiple input image formats and different colony grid types. We demonstrate how Spotsizer can be used for high-throughput quantitative analysis of fission yeast growth. The user-friendly Spotsizer tool provides rapid, accurate, and robust quantitative analyses of microbial growth in a high-throughput format. Spotsizer is freely available at https://data.csiro.au/dap/landingpage?pid=csiro:15330 under a proprietary CSIRO license. PMID:27712582

  12. Mapping Quantitative Trait Loci Controlling Endosperm Traits with Molecular Marker

    Institute of Scientific and Technical Information of China (English)

    XU Chen-wu; LI Tao; SUN Chang-sen; GU Shi-liang

    2002-01-01

    Based on the genetic models for triploid endosperm traits and on the methods for mapping diploid quantitative traits loci (QTLs), the genetic constitutions, components of means and genetic variances of QTL controlling endosperm traits under flanking marker genotypes of different generations were presented. From these results, a multiple linear regression method for mapping QTL underlying endosperm traits in cereals was proposed, which used the means of endosperm traits under flanking marker genotypes as a dependent variable, the coefficient of additive effect ( d ) and dominance effect ( h 1 and/or h2 ) of a putative QTL in a given interval as independent variables. This method can work at any position in a genome covered by markers and increase the estimation precision of QTL location and their effects by eliminating the interference of other relative QTLs. This method can also be easily used in other uneven data such as markers and quantitative traits detected or measured in plants and tissues different either in generations or at chromosomal ploidy levels, and in endosperm traits controlled by complicated genetic models considering the effects produced by genotypes of both maternal plants and seeds on them.

  13. Factors affecting student performance in an undergraduate genetics course.

    Science.gov (United States)

    Bormann, J Minick; Moser, D W; Bates, K E

    2013-05-01

    The objective of this study was to determine some of the factors that affect student success in a genetics course. Genetics for the Kansas State University College of Agriculture is taught in the Department of Animal Sciences and Industry and covers Mendelian inheritance, molecular genetics, and quantitative/population genetics. Data collected from 1,516 students over 7 yr included year and semester of the course; age; gender; state of residence; population of hometown; Kansas City metro resident or not; instructor of course; American College Testing Program (ACT) scores; number of transfer credits; major; college; preveterinary student or not; freshman, sophomore, junior, and senior grade point average (GPA); semester credits when taking genetics; class standing when enrolled in genetics; cumulative GPA before and after taking genetics; semester GPA in semester taking genetics, number of semesters between the biology prerequisite and genetics; grade in biology; location of biology course; and final percentage in genetics. Final percentage in genetics did not differ due to instructor, gender, state of residence, major, or college (P > 0.16). Transfer students tended to perform better than nontransfer students (P = 0.09), and students from the Kansas City metro outscored students from other areas (P = 0.03). Preveterinary option students scored higher in genetics than non-preveterinary students (P genetics (P = 0.06). Students who took biology at Kansas State University performed better in genetics than students who transferred the credit (P genetics (P genetics, students should take biology from Kansas State, perform well in biology, and wait until at least sophomore standing to enroll in genetics.

  14. The genetics of immunity.

    Science.gov (United States)

    Lazzaro, Brian P; Schneider, David S

    2014-06-17

    In this commentary, Brian P. Lazzaro and David S. Schneider examine the topic of the Genetics of Immunity as explored in this month's issues of GENETICS and G3: Genes|Genomes|Genetics. These inaugural articles are part of a joint Genetics of Immunity collection (ongoing) in the GSA journals. Copyright © 2014 Lazzaro and Schneider.

  15. Quantitative EPR A Practitioners Guide

    CERN Document Server

    Eaton, Gareth R; Barr, David P; Weber, Ralph T

    2010-01-01

    This is the first comprehensive yet practical guide for people who perform quantitative EPR measurements. No existing book provides this level of practical guidance to ensure the successful use of EPR. There is a growing need in both industrial and academic research to provide meaningful and accurate quantitative EPR results. This text discusses the various sample, instrument and software related aspects required for EPR quantitation. Specific topics include: choosing a reference standard, resonator considerations (Q, B1, Bm), power saturation characteristics, sample positioning, and finally, putting all the factors together to obtain an accurate spin concentration of a sample.

  16. Quantitative approaches in developmental biology.

    Science.gov (United States)

    Oates, Andrew C; Gorfinkiel, Nicole; González-Gaitán, Marcos; Heisenberg, Carl-Philipp

    2009-08-01

    The tissues of a developing embryo are simultaneously patterned, moved and differentiated according to an exchange of information between their constituent cells. We argue that these complex self-organizing phenomena can only be fully understood with quantitative mathematical frameworks that allow specific hypotheses to be formulated and tested. The quantitative and dynamic imaging of growing embryos at the molecular, cellular and tissue level is the key experimental advance required to achieve this interaction between theory and experiment. Here we describe how mathematical modelling has become an invaluable method to integrate quantitative biological information across temporal and spatial scales, serving to connect the activity of regulatory molecules with the morphological development of organisms.

  17. Understanding quantitative research: part 1.

    Science.gov (United States)

    Hoe, Juanita; Hoare, Zoë

    This article, which is the first in a two-part series, provides an introduction to understanding quantitative research, basic statistics and terminology used in research articles. Critical appraisal of research articles is essential to ensure that nurses remain up to date with evidence-based practice to provide consistent and high-quality nursing care. This article focuses on developing critical appraisal skills and understanding the use and implications of different quantitative approaches to research. Part two of this article will focus on explaining common statistical terms and the presentation of statistical data in quantitative research.

  18. Quantitative vs qualitative research methods.

    Science.gov (United States)

    Lakshman, M; Sinha, L; Biswas, M; Charles, M; Arora, N K

    2000-05-01

    Quantitative methods have been widely used because of the fact that things that can be measured or counted gain scientific credibility over the unmeasurable. But the extent of biological abnormality, severity, consequences and the impact of illness cannot be satisfactorily captured and answered by the quantitative research alone. In such situations qualitative methods take a holistic perspective preserving the complexities of human behavior by addressing the "why" and "how" questions. In this paper an attempt has been made to highlight the strengths and weaknesses of both the methods and also that a balanced mix of both qualitative as well as quantitative methods yield the most valid and reliable results.

  19. The genetics of maternal care: direct and indirect genetic effects on phenotype in the dung beetle Onthophagus taurus.

    Science.gov (United States)

    Hunt, John; Simmons, Leigh W

    2002-05-14

    While theoretical models of the evolution of parental care are based on the assumption of underlying genetic variance, surprisingly few quantitative genetic studies of this life-history trait exist. Estimation of the degree of genetic variance in parental care is important because it can be a significant source of maternal effects, which, if genetically based, represent indirect genetic effects. A major prediction of indirect genetic effect theory is that traits without heritable variation can evolve because of the heritable environmental variation that indirect genetic effects provide. In the dung beetle, Onthophagus taurus, females provide care to offspring by provisioning a brood mass. The size of the brood mass has pronounced effects on offspring phenotype. Using a half-sib breeding design we show that the weight of the brood mass females produce exhibits significant levels of additive genetic variance due to sires. However, variance caused by dams is considerably larger, demonstrating that maternal effects are also important. Body size exhibited low additive genetic variance. However, body size exerts a strong maternal influence on the weight of brood masses produced, accounting for 22% of the nongenetic variance in offspring body size. Maternal body size also influenced the number of offspring produced but there was no genetic variance for this trait. Offspring body size and brood mass weight exhibited positive genetic and phenotypic correlations. We conclude that both indirect genetic effects, via maternal care, and nongenetic maternal effects, via female size, play important roles in the evolution of phenotype in this species.

  20. Genetic engineering, medicine and medical genetics.

    Science.gov (United States)

    Motulsky, A G

    1984-01-01

    The impact of DNA technology in the near future will be on the manufacture of biologic agents and reagents that will lead to improved therapy and diagnosis. The use of DNA technology for prenatal and preclinical diagnosis in genetic diseases is likely to affect management of genetic diseases considerably. New and old questions regarding selective abortion and the psychosocial impact of early diagnosis of late appearing diseases and of genetic susceptibilities are being raised. Somatic therapy with isolated genes to treat disease has not been achieved. True germinal genetic engineering is far off for humans but may find applications in animal agriculture.

  1. Molecular genetic framework for protophloem formation

    OpenAIRE

    Rodriguez-Villalon, Antia; Gujas, Bojan; Kang, Yeon Hee; Alice S. Breda; Cattaneo, Pietro; Depuydt, Stephen; Hardtke, Christian S

    2014-01-01

    The emergence of vascular tissues played a central role in the plant conquest of land. Both xylem and phloem are essential for the development of flowering plants, yet little is known about the molecular genetic control of phloem specification and differentiation. Here we show that delicate quantitative interplay between two opposing signaling pathways determines cellular commitment to protophloem sieve element fate in root meristems of the model plant Arabidopsis thaliana. Our data suggest t...

  2. Developing Geoscience Students' Quantitative Skills

    Science.gov (United States)

    Manduca, C. A.; Hancock, G. S.

    2005-12-01

    Sophisticated quantitative skills are an essential tool for the professional geoscientist. While students learn many of these sophisticated skills in graduate school, it is increasingly important that they have a strong grounding in quantitative geoscience as undergraduates. Faculty have developed many strong approaches to teaching these skills in a wide variety of geoscience courses. A workshop in June 2005 brought together eight faculty teaching surface processes and climate change to discuss and refine activities they use and to publish them on the Teaching Quantitative Skills in the Geosciences website (serc.Carleton.edu/quantskills) for broader use. Workshop participants in consultation with two mathematics faculty who have expertise in math education developed six review criteria to guide discussion: 1) Are the quantitative and geologic goals central and important? (e.g. problem solving, mastery of important skill, modeling, relating theory to observation); 2) Does the activity lead to better problem solving? 3) Are the quantitative skills integrated with geoscience concepts in a way that makes sense for the learning environment and supports learning both quantitative skills and geoscience? 4) Does the methodology support learning? (e.g. motivate and engage students; use multiple representations, incorporate reflection, discussion and synthesis) 5) Are the materials complete and helpful to students? 6) How well has the activity worked when used? Workshop participants found that reviewing each others activities was very productive because they thought about new ways to teach and the experience of reviewing helped them think about their own activity from a different point of view. The review criteria focused their thinking about the activity and would be equally helpful in the design of a new activity. We invite a broad international discussion of the criteria(serc.Carleton.edu/quantskills/workshop05/review.html).The Teaching activities can be found on the

  3. Functional mapping imprinted quantitative trait loci underlying developmental characteristics

    Directory of Open Access Journals (Sweden)

    Li Gengxin

    2008-03-01

    Full Text Available Abstract Background Genomic imprinting, a phenomenon referring to nonequivalent expression of alleles depending on their parental origins, has been widely observed in nature. It has been shown recently that the epigenetic modification of an imprinted gene can be detected through a genetic mapping approach. Such an approach is developed based on traditional quantitative trait loci (QTL mapping focusing on single trait analysis. Recent studies have shown that most imprinted genes in mammals play an important role in controlling embryonic growth and post-natal development. For a developmental character such as growth, current approach is less efficient in dissecting the dynamic genetic effect of imprinted genes during individual ontology. Results Functional mapping has been emerging as a powerful framework for mapping quantitative trait loci underlying complex traits showing developmental characteristics. To understand the genetic architecture of dynamic imprinted traits, we propose a mapping strategy by integrating the functional mapping approach with genomic imprinting. We demonstrate the approach through mapping imprinted QTL controlling growth trajectories in an inbred F2 population. The statistical behavior of the approach is shown through simulation studies, in which the parameters can be estimated with reasonable precision under different simulation scenarios. The utility of the approach is illustrated through real data analysis in an F2 family derived from LG/J and SM/J mouse stains. Three maternally imprinted QTLs are identified as regulating the growth trajectory of mouse body weight. Conclusion The functional iQTL mapping approach developed here provides a quantitative and testable framework for assessing the interplay between imprinted genes and a developmental process, and will have important implications for elucidating the genetic architecture of imprinted traits.

  4. Recent genetic discoveries in osteoporosis, sarcopenia and obesity.

    Science.gov (United States)

    Urano, Tomohiko; Inoue, Satoshi

    2015-01-01

    Osteoporosis is a skeletal disorder characterized by low bone mineral density (BMD) and an increased susceptibility to fractures. Evidence from genetic studies indicates that BMD, a complex quantitative trait with a normal distribution, is genetically controlled. Genome-wide association studies (GWAS) as well as studies using candidate gene approaches have identified single-nucleotide polymorphisms (SNPs) that are associated with BMD, osteoporosis and osteoporotic fractures. These SNPs have been mapped close to or within genes including those encoding WNT/β-catenin signaling proteins. Understanding the genetics of osteoporosis will help to identify novel candidates for diagnostic and therapeutic targets. Genetic factors are also important for the development of sarcopenia, which is characterized by a loss of lean body mass, and obesity, which is characterized by high fat mass. Hence, in this review, we discuss the genetic factors, identified by genetic studies, which regulate the body components related to osteoporosis, sarcopenia, and obesity.

  5. Basic genetics for dermatologists

    Directory of Open Access Journals (Sweden)

    Muthu Sendhil Kumaran

    2013-01-01

    Full Text Available During the past few decades, advances in the field of molecular genetics have enriched us in understanding the pathogenesis of diseases, their identification, and appropriate therapeutic interventions. In the last 20 years, genetic basis of more than 350 monogenic skin diseases have been elucidated and is counting. The widespread use of molecular genetics as a tool in diagnosis is not practiced routinely due to genetic heterogenicity, limited access and low sensitivity. In this review, we have presented the very basics of genetics so as to enable dermatologists to have working understanding of medical genetics.

  6. Análise genético-quantitativa de pesos aos 8, 12, 18 e 24 meses de idade em um rebanho da raça Guzerá Quantitative and genetic analysis of weights at 8, 12, 18 and 24 months of age in a Guzerat breed herd

    Directory of Open Access Journals (Sweden)

    Talita Buttarello Mucari

    2003-12-01

    Full Text Available O objetivo deste trabalho foi obter estimativas de herdabilidades, correlações genéticas, tendências genéticas e correlações de "rank" dos touros, para os pesos aos 8, 12, 18 e 24 meses de idade, no rebanho Guzerá do Campus da UNESP, Ilha Solteira, SP. As herdabilidades e os valores genéticos dos animais foram estimados por modelo animal, usando o programa computacional MTDFREML. As correlações genéticas (Pearson e de "rank" dos touros (Spearman foram obtidas pelo procedimento CORR do SAS, utilizando os valores genéticos dos animais, enquanto as tendências genéticas foram calculadas pelo procedimento REG do SAS, utilizando a média anual dos referidos valores genéticos. O modelo estatístico para a análise genética incluiu os efeitos fixos de grupo contemporâneo e a covariável idade da vaca ao parto (efeitos linear e quadrático, e os efeitos aleatórios genético aditivo direto, genético aditivo materno, de ambiente permanente da vaca e residual. As estimativas obtidas para a herdabilidade direta foram 0,14; 0,08; 0,08 e 0,13 e para materna, 0,01; 0,02; 0,02 e 0,05, respectivamente, para os pesos aos 8, 12, 18 e 24 meses de idade. As estimativas dos coeficientes de correlação genética foram positivas e de alta magnitude entre todos os pesos estudados. As tendências genéticas anuais foram baixas e significativas apenas para os pesos aos 8 e 18 meses de idade. As correlações de "rank" dos touros foram moderadas e significativas, implicando em razoável manutenção de posição de classificação dos touros, quando se comparam, dois a dois, os pesos estudados.The objective of this study was to estimate heritabilities, genetic correlations, genetic trends and rank correlations of the bulls, for weights at 8, 12, 18 and 24 months of age, in the Guzerat herd from UNESP Campus, Ilha Solteira, SP. The heritabilities and the breeding values were estimated by animal model, using the MTDFREML computational program. The genetic

  7. Quantitative analysis of bristle number in Drosophila mutants identifies genes involved in neural development

    Science.gov (United States)

    Norga, Koenraad K.; Gurganus, Marjorie C.; Dilda, Christy L.; Yamamoto, Akihiko; Lyman, Richard F.; Patel, Prajal H.; Rubin, Gerald M.; Hoskins, Roger A.; Mackay, Trudy F.; Bellen, Hugo J.

    2003-01-01

    BACKGROUND: The identification of the function of all genes that contribute to specific biological processes and complex traits is one of the major challenges in the postgenomic era. One approach is to employ forward genetic screens in genetically tractable model organisms. In Drosophila melanogaster, P element-mediated insertional mutagenesis is a versatile tool for the dissection of molecular pathways, and there is an ongoing effort to tag every gene with a P element insertion. However, the vast majority of P element insertion lines are viable and fertile as homozygotes and do not exhibit obvious phenotypic defects, perhaps because of the tendency for P elements to insert 5' of transcription units. Quantitative genetic analysis of subtle effects of P element mutations that have been induced in an isogenic background may be a highly efficient method for functional genome annotation. RESULTS: Here, we have tested the efficacy of this strategy by assessing the extent to which screening for quantitative effects of P elements on sensory bristle number can identify genes affecting neural development. We find that such quantitative screens uncover an unusually large number of genes that are known to function in neural development, as well as genes with yet uncharacterized effects on neural development, and novel loci. CONCLUSIONS: Our findings establish the use of quantitative trait analysis for functional genome annotation through forward genetics. Similar analyses of quantitative effects of P element insertions will facilitate our understanding of the genes affecting many other complex traits in Drosophila.

  8. Thinking positively: The genetics of high intelligence.

    Science.gov (United States)

    Shakeshaft, Nicholas G; Trzaskowski, Maciej; McMillan, Andrew; Krapohl, Eva; Simpson, Michael A; Reichenberg, Avi; Cederlöf, Martin; Larsson, Henrik; Lichtenstein, Paul; Plomin, Robert

    2015-01-01

    High intelligence (general cognitive ability) is fundamental to the human capital that drives societies in the information age. Understanding the origins of this intellectual capital is important for government policy, for neuroscience, and for genetics. For genetics, a key question is whether the genetic causes of high intelligence are qualitatively or quantitatively different from the normal distribution of intelligence. We report results from a sibling and twin study of high intelligence and its links with the normal distribution. We identified 360,000 sibling pairs and 9000 twin pairs from 3 million 18-year-old males with cognitive assessments administered as part of conscription to military service in Sweden between 1968 and 2010. We found that high intelligence is familial, heritable, and caused by the same genetic and environmental factors responsible for the normal distribution of intelligence. High intelligence is a good candidate for "positive genetics" - going beyond the negative effects of DNA sequence variation on disease and disorders to consider the positive end of the distribution of genetic effects.

  9. Quantitative Population Epigenetics in Screening and Development of Regulator-Active Factors of the Farming System

    OpenAIRE

    Stauss, R.

    2013-01-01

    Likewise, index selection based on statistical genetic theory in plant and animal breeding the methodology "Quantitative Population Epigenetics" can be appropriated to improve efficiency in screening and development of regulator-active factors of the farming system for potential to enhance quantitative characters such as yield, standability and resistance to unfavorable environmental influences (e.g., water stress, cold temperatures, disease resistance). For example, as was shown for an ef...

  10. Slow erosion of a quantitative apple resistance to Venturia inaequalis based on an isolate-specific Quantitative Trait Locus.

    Science.gov (United States)

    Caffier, Valérie; Le Cam, Bruno; Al Rifaï, Mehdi; Bellanger, Marie-Noëlle; Comby, Morgane; Denancé, Caroline; Didelot, Frédérique; Expert, Pascale; Kerdraon, Tifenn; Lemarquand, Arnaud; Ravon, Elisa; Durel, Charles-Eric

    2016-10-01

    Quantitative plant resistance affects the aggressiveness of pathogens and is usually considered more durable than qualitative resistance. However, the efficiency of a quantitative resistance based on an isolate-specific Quantitative Trait Locus (QTL) is expected to decrease over time due to the selection of isolates with a high level of aggressiveness on resistant plants. To test this hypothesis, we surveyed scab incidence over an eight-year period in an orchard planted with susceptible and quantitatively resistant apple genotypes. We sampled 79 Venturia inaequalis isolates from this orchard at three dates and we tested their level of aggressiveness under controlled conditions. Isolates sampled on resistant genotypes triggered higher lesion density and exhibited a higher sporulation rate on apple carrying the resistance allele of the QTL T1 compared to isolates sampled on susceptible genotypes. Due to this ability to select aggressive isolates, we expected the QTL T1 to be non-durable. However, our results showed that the quantitative resistance based on the QTL T1 remained efficient in orchard over an eight-year period, with only a slow decrease in efficiency and no detectable increase of the aggressiveness of fungal isolates over time. We conclude that knowledge on the specificity of a QTL is not sufficient to evaluate its durability. Deciphering molecular mechanisms associated with resistance QTLs, genetic determinants of aggressiveness and putative trade-offs within pathogen populations is needed to help in understanding the erosion processes.

  11. Quantitative imaging methods in osteoporosis.

    Science.gov (United States)

    Oei, Ling; Koromani, Fjorda; Rivadeneira, Fernando; Zillikens, M Carola; Oei, Edwin H G

    2016-12-01

    Osteoporosis is characterized by a decreased bone mass and quality resulting in an increased fracture risk. Quantitative imaging methods are critical in the diagnosis and follow-up of treatment effects in osteoporosis. Prior radiographic vertebral fractures and bone mineral density (BMD) as a quantitative parameter derived from dual-energy X-ray absorptiometry (DXA) are among the strongest known predictors of future osteoporotic fractures. Therefore, current clinical decision making relies heavily on accurate assessment of these imaging features. Further, novel quantitative techniques are being developed to appraise additional characteristics of osteoporosis including three-dimensional bone architecture with quantitative computed tomography (QCT). Dedicated high-resolution (HR) CT equipment is available to enhance image quality. At the other end of the spectrum, by utilizing post-processing techniques such as the trabecular bone score (TBS) information on three-dimensional architecture can be derived from DXA images. Further developments in magnetic resonance imaging (MRI) seem promising to not only capture bone micro-architecture but also characterize processes at the molecular level. This review provides an overview of various quantitative imaging techniques based on different radiological modalities utilized in clinical osteoporosis care and research.

  12. Quantitative mass spectrometry: an overview

    Science.gov (United States)

    Urban, Pawel L.

    2016-10-01

    Mass spectrometry (MS) is a mainstream chemical analysis technique in the twenty-first century. It has contributed to numerous discoveries in chemistry, physics and biochemistry. Hundreds of research laboratories scattered all over the world use MS every day to investigate fundamental phenomena on the molecular level. MS is also widely used by industry-especially in drug discovery, quality control and food safety protocols. In some cases, mass spectrometers are indispensable and irreplaceable by any other metrological tools. The uniqueness of MS is due to the fact that it enables direct identification of molecules based on the mass-to-charge ratios as well as fragmentation patterns. Thus, for several decades now, MS has been used in qualitative chemical analysis. To address the pressing need for quantitative molecular measurements, a number of laboratories focused on technological and methodological improvements that could render MS a fully quantitative metrological platform. In this theme issue, the experts working for some of those laboratories share their knowledge and enthusiasm about quantitative MS. I hope this theme issue will benefit readers, and foster fundamental and applied research based on quantitative MS measurements. This article is part of the themed issue 'Quantitative mass spectrometry'.

  13. Quantitative mass spectrometry: an overview

    Science.gov (United States)

    2016-01-01

    Mass spectrometry (MS) is a mainstream chemical analysis technique in the twenty-first century. It has contributed to numerous discoveries in chemistry, physics and biochemistry. Hundreds of research laboratories scattered all over the world use MS every day to investigate fundamental phenomena on the molecular level. MS is also widely used by industry—especially in drug discovery, quality control and food safety protocols. In some cases, mass spectrometers are indispensable and irreplaceable by any other metrological tools. The uniqueness of MS is due to the fact that it enables direct identification of molecules based on the mass-to-charge ratios as well as fragmentation patterns. Thus, for several decades now, MS has been used in qualitative chemical analysis. To address the pressing need for quantitative molecular measurements, a number of laboratories focused on technological and methodological improvements that could render MS a fully quantitative metrological platform. In this theme issue, the experts working for some of those laboratories share their knowledge and enthusiasm about quantitative MS. I hope this theme issue will benefit readers, and foster fundamental and applied research based on quantitative MS measurements. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644965

  14. [Genetic aspects of sickle cell anemia].

    Science.gov (United States)

    Labie, D

    1992-10-01

    The genetics of sickle cell anemia may be considered as a model. Its mendelian transmission was hypothesized even before the molecular era. Once the mutation identified, it could be studied at the protein and DNA level; a consistent pathophysiological mechanism was proposed; the various genetic forms of the disease could be identified; the way by which a balanced polymorphism with Plasmodium falciparum malaria is obtained was analyzed. More recently, investigations were run in order to understand how modulating, or epistatic factors could modify the pathophysiological mechanism and contribute to the high clinical diversity of the disease. Several factors have been identified, among which a concomitant alpha-thalassemia, an overproduction of fetal hemoglobin, due either to an activation of the gamma genes or to an increase of the F-cell number, and finally a quantitative control of the beta s chains themselves. Such a high number of genetic active factors questions the concept itself of a monogenic disease.

  15. Genetically Modified Foods and Consumer Perspective.

    Science.gov (United States)

    Boccia, Flavio; Sarnacchiaro, Pasquale

    2015-01-01

    Genetically modified food is able to oppose the world's hunger and preserve the environment, even if the patents in this matter are symptomatic of several doubts. And also, transgenic consumption causes problems and skepticism among consumers in several European countries, but above all in Italy, where there is a strong opposition over recent years. So, the present study conducted a research to study the consumption of genetically modified food products by Italian young generation. This research presented the following purposes: firstly, to analyze genetically modified products' consumption among a particular category of consumers; secondly, to implement a quantitative model to understand behaviour about this particular kind of consumption and identify the factors that determine their purchase. The proposed model shows that transgenic consumption is especially linked to knowledge and impact on environment and mankind's health.

  16. Genetic models of homosexuality: generating testable predictions.

    Science.gov (United States)

    Gavrilets, Sergey; Rice, William R

    2006-12-22

    Homosexuality is a common occurrence in humans and other species, yet its genetic and evolutionary basis is poorly understood. Here, we formulate and study a series of simple mathematical models for the purpose of predicting empirical patterns that can be used to determine the form of selection that leads to polymorphism of genes influencing homosexuality. Specifically, we develop theory to make contrasting predictions about the genetic characteristics of genes influencing homosexuality including: (i) chromosomal location, (ii) dominance among segregating alleles and (iii) effect sizes that distinguish between the two major models for their polymorphism: the overdominance and sexual antagonism models. We conclude that the measurement of the genetic characteristics of quantitative trait loci (QTLs) found in genomic screens for genes influencing homosexuality can be highly informative in resolving the form of natural selection maintaining their polymorphism.

  17. How to perform meaningful estimates of genetic effects.

    Science.gov (United States)

    Alvarez-Castro, José M; Le Rouzic, Arnaud; Carlborg, Orjan

    2008-05-02

    Although the genotype-phenotype map plays a central role both in Quantitative and Evolutionary Genetics, the formalization of a completely general and satisfactory model of genetic effects, particularly accounting for epistasis, remains a theoretical challenge. Here, we use a two-locus genetic system in simulated populations with epistasis to show the convenience of using a recently developed model, NOIA, to perform estimates of genetic effects and the decomposition of the genetic variance that are orthogonal even under deviations from the Hardy-Weinberg proportions. We develop the theory for how to use this model in interval mapping of quantitative trait loci using Halley-Knott regressions, and we analyze a real data set to illustrate the advantage of using this approach in practice. In this example, we show that departures from the Hardy-Weinberg proportions that are expected by sampling alone substantially alter the orthogonal estimates of genetic effects when other statistical models, like F2 or G2A, are used instead of NOIA. Finally, for the first time from real data, we provide estimates of functional genetic effects as sets of effects of natural allele substitutions in a particular genotype, which enriches the debate on the interpretation of genetic effects as implemented both in functional and in statistical models. We also discuss further implementations leading to a completely general genotype-phenotype map.

  18. How to perform meaningful estimates of genetic effects.

    Directory of Open Access Journals (Sweden)

    José M Alvarez-Castro

    2008-05-01

    Full Text Available Although the genotype-phenotype map plays a central role both in Quantitative and Evolutionary Genetics, the formalization of a completely general and satisfactory model of genetic effects, particularly accounting for epistasis, remains a theoretical challenge. Here, we use a two-locus genetic system in simulated populations with epistasis to show the convenience of using a recently developed model, NOIA, to perform estimates of genetic effects and the decomposition of the genetic variance that are orthogonal even under deviations from the Hardy-Weinberg proportions. We develop the theory for how to use this model in interval mapping of quantitative trait loci using Halley-Knott regressions, and we analyze a real data set to illustrate the advantage of using this approach in practice. In this example, we show that departures from the Hardy-Weinberg proportions that are expected by sampling alone substantially alter the orthogonal estimates of genetic effects when other statistical models, like F2 or G2A, are used instead of NOIA. Finally, for the first time from real data, we provide estimates of functional genetic effects as sets of effects of natural allele substitutions in a particular genotype, which enriches the debate on the interpretation of genetic effects as implemented both in functional and in statistical models. We also discuss further implementations leading to a completely general genotype-phenotype map.

  19. A Genetic Interpretation of the Variation in Inbreeding Depression

    OpenAIRE

    2005-01-01

    Inbreeding depression is expected to play an important but complicated role in evolution. If we are to understand the evolution of inbreeding depression (i.e., purging), we need quantitative genetic interpretations of its variation. We introduce an experimental design in which sires are mated to multiple dams, some of which are unrelated to the sire but others are genetically related owing to an arbitrary number of prior generations of selfing or sib-mating. In this way we introduce the conce...

  20. Distinct genetic regions modify specific muscle groups in muscular dystrophy

    OpenAIRE

    2010-01-01

    Phenotypic expression in the muscular dystrophies is variable, even with the identical mutation, providing strong evidence that genetic modifiers influence outcome. To identify genetic modifier loci, we used quantitative trait locus mapping in two differentially affected mouse strains with muscular dystrophy. Using the Sgcg model of limb girdle muscular dystrophy that lacks the dystrophin-associated protein γ-sarcoglycan, we evaluated chromosomal regions that segregated with two distinct quan...

  1. Genetics Home Reference

    Science.gov (United States)

    Skip Navigation Bar Home Current Issue Past Issues Genetics Home Reference Past Issues / Spring 2007 Table of ... of this page please turn Javascript on. The Genetics Home Reference (GHR) Web site — ghr.nlm.nih. ...

  2. Genetics of Hearing Loss

    Science.gov (United States)

    ... in Latin America Information For... Media Policy Makers Genetics of Hearing Loss Language: English Español (Spanish) Recommend ... of hearing loss in babies is due to genetic causes. There are also a number of things ...

  3. Frontotemporal Dementia: Genetics

    Science.gov (United States)

    ... Calendar of Events Fundraising Events Conferences Press Releases Genetics of FTD After receiving a diagnosis of FTD ... that recent advances in science have brought the genetics of FTD into much better focus. In 2012, ...

  4. Genetic Disease Foundation

    Science.gov (United States)

    ... mission to help prevent, manage and treat inherited genetic diseases. View our latest News Brief here . You can ... contributions to the diagnosis, prevention and treatment of genetic diseases. Learn how advances at Mount Sinai have impacted ...

  5. Genetic Brain Disorders

    Science.gov (United States)

    A genetic brain disorder is caused by a variation or a mutation in a gene. A variation is a different form ... mutation is a change in a gene. Genetic brain disorders affect the development and function of the ...

  6. Software For Genetic Algorithms

    Science.gov (United States)

    Wang, Lui; Bayer, Steve E.

    1992-01-01

    SPLICER computer program is genetic-algorithm software tool used to solve search and optimization problems. Provides underlying framework and structure for building genetic-algorithm application program. Written in Think C.

  7. Genetics Home Reference

    Science.gov (United States)

    ... changes Browse A–Z Chromosomes & mtDNA Autosomes, sex chromosomes, and mitochondrial DNA (mtDNA) Browse Help Me Understand Genetics Learn about the basics of human genetics Browse New & Updated Pages New Pages Omenn ...

  8. Genetically engineered foods

    Science.gov (United States)

    Bioengineered foods; GMOs; Genetically modified foods ... helps speed up the process of creating new foods with desired traits. The possible benefits of genetic engineering include: More nutritious food Tastier food Disease- and ...

  9. Genetics of Parkinson's disease

    National Research Council Canada - National Science Library

    Klein, Christine; Westenberger, Ana

    2012-01-01

    Fifteen years of genetic research in Parkinson's disease (PD) have led to the identification of several monogenic forms of the disorder and of numerous genetic risk factors increasing the risk to develop PD...

  10. Prenatal screening and genetics

    DEFF Research Database (Denmark)

    Alderson, P; Aro, A R; Dragonas, T

    2001-01-01

    Although the term 'genetic screening' has been used for decades, this paper discusses how, in its most precise meaning, genetic screening has not yet been widely introduced. 'Prenatal screening' is often confused with 'genetic screening'. As we show, these terms have different meanings, and we...... examine definitions of the relevant concepts in order to illustrate this point. The concepts are i) prenatal, ii) genetic screening, iii) screening, scanning and testing, iv) maternal and foetal tests, v) test techniques and vi) genetic conditions. So far, prenatal screening has little connection...... with precisely defined genetics. There are benefits but also disadvantages in overstating current links between them in the term genetic screening. Policy making and professional and public understandings about screening could be clarified if the distinct meanings of prenatal screening and genetic screening were...

  11. Genetics Home Reference: hyperprolinemia

    Science.gov (United States)

    ... can also occur with other conditions, such as malnutrition or liver disease. In particular, individuals with conditions ... Topic: Amino Acid Metabolism Disorders Health Topic: Genetic Brain Disorders Health Topic: Newborn Screening Genetic and Rare ...

  12. Genetics Home Reference: hypermethioninemia

    Science.gov (United States)

    ... C. Mutations in human glycine N-methyltransferase give insights into its role in methionine metabolism. Hum Genet. ... healthcare professional . About Genetics Home Reference Site Map Customer Support Selection Criteria for Links USA.gov Copyright ...

  13. Quantitative Proteome Mapping of Nitrotyrosines

    Energy Technology Data Exchange (ETDEWEB)

    Bigelow, Diana J.; Qian, Weijun

    2008-02-10

    An essential first step in the understanding disease and environmental perturbations is the early and quantitative detection of the increased levels of the inflammatory marker nitrotyrosine, as compared with its endogenous levels within the tissue or cellular proteome. Thus, methods that successfully address a proteome-wide quantitation of nitrotyrosine and related oxidative modifications can provide early biomarkers of risk and progression of disease as well as effective strategies for therapy. Multidimensional separations LC coupled with tandem mass spectrometry (LC-MS/MS) has, in recent years, significantly expanded our knowledge of human (and mammalian model system) proteomes including some nascent work in identification of post-translational modifications. In the following review, we discuss the application of LC-MS/MS for quantitation and identification of nitrotyrosine-modified proteins within the context of complex protein mixtures presented in mammalian proteomes.

  14. Genetics in psychiatry.

    Science.gov (United States)

    Umesh, Shreekantiah; Nizamie, Shamshul Haque

    2014-04-01

    Today, psychiatrists are focusing on genetics aspects of various psychiatric disorders not only for a future classification of psychiatric disorders but also a notion that genetics would aid in the development of new medications to treat these disabling illnesses. This review therefore emphasizes on the basics of genetics in psychiatry as well as focuses on the emerging picture of genetics in psychiatry and their future implications.

  15. Behavioral genetics and taste

    Directory of Open Access Journals (Sweden)

    Bachmanov Alexander A

    2007-09-01

    Full Text Available Abstract This review focuses on behavioral genetic studies of sweet, umami, bitter and salt taste responses in mammals. Studies involving mouse inbred strain comparisons and genetic analyses, and their impact on elucidation of taste receptors and transduction mechanisms are discussed. Finally, the effect of genetic variation in taste responsiveness on complex traits such as drug intake is considered. Recent advances in development of genomic resources make behavioral genetics a powerful approach for understanding mechanisms of taste.

  16. Global Genetic Robustness of the Alternative Splicing Machinery in Caenorhabditis elegans

    NARCIS (Netherlands)

    Li, Yang; Breitling, Rainer; Snoek, L. Basten; van der Velde, K. Joeri; Swertz, Morris A.; Riksen, Joost; Jansen, Ritsert C.; Kammenga, Jan E.; Borevitz, J.

    2010-01-01

    Alternative splicing is considered a major mechanism for creating multicellular diversity from a limited repertoire of genes. Here, we performed the first study of genetic variation controlling alternative splicing patterns by comprehensively identifying quantitative trait loci affecting the differe

  17. Marker-assisted-selection (MAS): A fast track to increase genetic ...

    African Journals Online (AJOL)

    MAS have been widely used for simple inherited traits than for polygenic traits, although there are few success stories in improving quantitative traits through MAS. ... Key words: DNA sequence, gene introgression, genetic maps, germplasm ...

  18. Context-dependent genetic benefits of polyandry in a marine hermaphrodite

    National Research Council Canada - National Science Library

    Dustin J Marshall; Jonathan P Evans

    2007-01-01

    .... Individuals were designated either sire (sperm producers) or dam (egg producers) at random and crossed in a North Carolina II breeding design to produce both paternal and maternal half siblings for our quantitative genetic analysis...

  19. Evolutionary Quantitative Genomics of Populus trichocarpa.

    Science.gov (United States)

    Porth, Ilga; Klápště, Jaroslav; McKown, Athena D; La Mantia, Jonathan; Guy, Robert D; Ingvarsson, Pär K; Hamelin, Richard; Mansfield, Shawn D; Ehlting, Jürgen; Douglas, Carl J; El-Kassaby, Yousry A

    2015-01-01

    Forest trees generally show high levels of local adaptation and efforts focusing on understanding adaptation to climate will be crucial for species survival and management. Here, we address fundamental questions regarding the molecular basis of adaptation in undomesticated forest tree populations to past climatic environments by employing an integrative quantitative genetics and landscape genomics approach. Using this comprehensive approach, we studied the molecular basis of climate adaptation in 433 Populus trichocarpa (black cottonwood) genotypes originating across western North America. Variation in 74 field-assessed traits (growth, ecophysiology, phenology, leaf stomata, wood, and disease resistance) was investigated for signatures of selection (comparing QST-FST) using clustering of individuals by climate of origin (temperature and precipitation). 29,354 SNPs were investigated employing three different outlier detection methods and marker-inferred relatedness was estimated to obtain the narrow-sense estimate of population differentiation in wild populations. In addition, we compared our results with previously assessed selection of candidate SNPs using the 25 topographical units (drainages) across the P. trichocarpa sampling range as population groupings. Narrow-sense QST for 53% of distinct field traits was significantly divergent from expectations of neutrality (indicating adaptive trait variation); 2,855 SNPs showed signals of diversifying selection and of these, 118 SNPs (within 81 genes) were associated with adaptive traits (based on significant QST). Many SNPs were putatively pleiotropic for functionally uncorrelated adaptive traits, such as autumn phenology, height, and disease resistance. Evolutionary quantitative genomics in P. trichocarpa provides an enhanced understanding regarding the molecular basis of climate-driven selection in forest trees and we highlight that important loci underlying adaptive trait variation also show relationship to climate

  20. Overdominant quantitative trait loci for yield and fitness in tomato.

    Science.gov (United States)

    Semel, Yaniv; Nissenbaum, Jonathan; Menda, Naama; Zinder, Michael; Krieger, Uri; Issman, Noa; Pleban, Tzili; Lippman, Zachary; Gur, Amit; Zamir, Dani

    2006-08-29

    Heterosis, or hybrid vigor, is a major genetic force that contributes to world food production. The genetic basis of heterosis is not clear, and the importance of loci with overdominant (ODO) effects is debated. One problem has been the use of whole-genome segregating populations, where interactions often mask the effects of individual loci. To assess the contribution of ODO to heterosis in the absence of epistasis, we carried out quantitative genetic and phenotypic analyses on a population of tomato (Solanum lycopersicum) introgression lines (ILs), which carry single marker-defined chromosome segments from the distantly related wild species Solanum pennellii. The ILs revealed 841 quantitative trait loci (QTL) for 35 diverse traits measured in the field on homozygous and heterozygous plants. ILs showing greater reproductive fitness were characterized by the prevalence of ODO QTL, which were virtually absent for the nonreproductive traits. ODO can result from true ODO due to allelic interactions of a single gene or from pseudoODO that involves linked loci with dominant alleles in repulsion. The fact that we detected dominant and recessive QTL for all phenotypic categories but ODO only for the reproductive traits indicates that pseudoODO due to random linkage is unlikely to explain heterosis in the ILs. Thus, we favor the true ODO model involving a single functional Mendelian locus. We propose that the alliance of ODO QTL with higher reproductive fitness was selected for in evolution and was domesticated by man to improve yields of crop plants.