WorldWideScience

Sample records for quantitative gene detection

  1. Detection of exogenous gene doping of IGF-I by a real-time quantitative PCR assay.

    Science.gov (United States)

    Zhang, Jin-Ju; Xu, Jing-Feng; Shen, Yong-Wei; Ma, Shi-Jiao; Zhang, Ting-Ting; Meng, Qing-Lin; Lan, Wen-Jun; Zhang, Chun; Liu, Xiao-Mei

    2017-07-01

    Gene doping can be easily concealed since its product is similar to endogenous protein, making its effective detection very challenging. In this study, we selected insulin-like growth factor I (IGF-I) exogenous gene for gene doping detection. First, the synthetic IGF-I gene was subcloned to recombinant adeno-associated virus (rAAV) plasmid to produce recombinant rAAV2/IGF-I-GFP vectors. Second, in an animal model, rAAV2/IGF-I-GFP vectors were injected into the thigh muscle tissue of mice, and then muscle and blood specimens were sampled at different time points for total DNA isolation. Finally, real-time quantitative PCR was employed to detect the exogenous gene doping of IGF-I. In view of the characteristics of endogenous IGF-I gene sequences, a TaqMan probe was designed at the junction of exons 2 and 3 of IGF-I gene to distinguish it from the exogenous IGF-I gene. In addition, an internal reference control plasmid and its probe were used in PCR to rule out false-positive results through comparison of their threshold cycle (Ct) values. Thus, an accurate exogenous IGF-I gene detection approach was developed in this study. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  2. Identification of pyrG Used as an Endogenous Reference Gene in Qualitative and Real-Time Quantitative PCR Detection of Pleurotus ostreatus.

    Science.gov (United States)

    Zheng, Shi; Shan, Luying; Zhuang, Yongliang; Shang, Ying

    2018-03-01

    As a well-known edible fungus rich in nutrients, Pleurotus ostreatus has been used as an alternative to expensive wild edible fungi. Specifically, the fact that using P. ostreatus instead of other expensive wild edible fungi has damaged the rights and interests of consumers. Among the existing methods for detection of food adulteration, the amplification of endogenous reference gene is the most accurate method. However, an ideal endogenous reference gene for P. ostreatus has yet to be developed. In this study, a DNA extraction method for P. ostreatus was optimized, and pyrG was selected as a species-specific gene through sequence alignment. This gene was subsequently subjected to qualitative and quantitative Polymerase Chain Reaction (PCR) assays with 3 different P. ostreatus varieties and 7 other species. A low detection limit of 5 pg/μL was obtained by TaqMan quantitative PCR, and no pyrG amplification product was observed in the 7 other species. No allelic variation was detected in P. ostreatus varieties. These experiments confirmed that pyrG was an ideal endogenous reference gene for the qualitative and real-time quantitative PCR detection of P. ostreatus. This method was also suitable for the examination of processed P. ostreatus samples and determination of adulteration in wild mushrooms. The pyrG gene was chosen as an ideal endogenous reference gene for the qualitative and real-time quantitative PCR detection of P. ostreatus, and the detection limit was 5 pg/μL for the quantification. This method is used not only for raw materials but also for processed P. ostreatus products and other processed mushroom foods. © 2018 Institute of Food Technologists®.

  3. Detection of medically important Candida species by absolute quantitation real-time polymerase chain reaction.

    Science.gov (United States)

    Than, Leslie Thian Lung; Chong, Pei Pei; Ng, Kee Peng; Seow, Heng Fong

    2015-01-01

    The number of invasive candidiasis cases has risen especially with an increase in the number of immunosuppressed and immunocom promised patients. The early detection of Candida species which is specific and sensitive is important in determining the correct administration of antifungal drugs to patients. This study aims to develop a method for the detection, identification and quantitation of medically important Candida species through quantitative polymerase chain reaction (qPCR). The isocitrate lyase (ICL) gene which is not found in mammals was chosen as the target gene of real-time PCR. Absolute quantitation of the gene copy number was achieved by constructing the plasmid containing the ICL gene which is used to generate standard curve. Twenty fungal species, two bacterial species and human DNA were tested to check the specificity of the detection method. All eight Candida species were successfully detected, identified and quantitated based on the ICL gene. A seven-log range of the gene copy number and a minimum detection limit of 10(3) copies were achieved. A one-tube absolute quantification real-time PCR that differentiates medically important Candida species via individual unique melting temperature was achieved. Analytical sensitivity and specificity were not compromised.

  4. Quantitative fucK gene polymerase chain reaction on sputum and nasopharyngeal secretions to detect Haemophilus influenzae pneumonia.

    Science.gov (United States)

    Abdeldaim, Guma M K; Strålin, Kristoffer; Olcén, Per; Blomberg, Jonas; Mölling, Paula; Herrmann, Björn

    2013-06-01

    A quantitative polymerase chain reaction (PCR) for the fucK gene was developed for specific detection of Haemophilus influenzae. The method was tested on sputum and nasopharyngeal aspirate (NPA) from 78 patients with community-acquired pneumonia (CAP). With a reference standard of sputum culture and/or serology against the patient's own nasopharyngeal isolate, H. influenzae etiology was detected in 20 patients. Compared with the reference standard, fucK PCR (using the detection limit 10(5) DNA copies/mL) on sputum and NPA showed a sensitivity of 95.0% (19/20) in both cases, and specificities of 87.9% (51/58) and 89.5% (52/58), respectively. In a receiver operating characteristic curve analysis, sputum fucK PCR was found to be significantly superior to sputum P6 PCR for detection of H. influenzae CAP. NPA fucK PCR was positive in 3 of 54 adult controls without respiratory symptoms. In conclusion, quantitative fucK real-time PCR provides a sensitive and specific identification of H. influenzae in respiratory secretions. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Wheat-specific gene, ribosomal protein l21, used as the endogenous reference gene for qualitative and real-time quantitative polymerase chain reaction detection of transgenes.

    Science.gov (United States)

    Liu, Yi-Ke; Li, He-Ping; Huang, Tao; Cheng, Wei; Gao, Chun-Sheng; Zuo, Dong-Yun; Zhao, Zheng-Xi; Liao, Yu-Cai

    2014-10-29

    Wheat-specific ribosomal protein L21 (RPL21) is an endogenous reference gene suitable for genetically modified (GM) wheat identification. This taxon-specific RPL21 sequence displayed high homogeneity in different wheat varieties. Southern blots revealed 1 or 3 copies, and sequence analyses showed one amplicon in common wheat. Combined analyses with sequences from common wheat (AABBDD) and three diploid ancestral species, Triticum urartu (AA), Aegilops speltoides (BB), and Aegilops tauschii (DD), demonstrated the presence of this amplicon in the AA genome. Using conventional qualitative polymerase chain reaction (PCR), the limit of detection was 2 copies of wheat haploid genome per reaction. In the quantitative real-time PCR assay, limits of detection and quantification were about 2 and 8 haploid genome copies, respectively, the latter of which is 2.5-4-fold lower than other reported wheat endogenous reference genes. Construct-specific PCR assays were developed using RPL21 as an endogenous reference gene, and as little as 0.5% of GM wheat contents containing Arabidopsis NPR1 were properly quantified.

  6. Detecting Genetic Interactions for Quantitative Traits Using m-Spacing Entropy Measure

    Directory of Open Access Journals (Sweden)

    Jaeyong Yee

    2015-01-01

    Full Text Available A number of statistical methods for detecting gene-gene interactions have been developed in genetic association studies with binary traits. However, many phenotype measures are intrinsically quantitative and categorizing continuous traits may not always be straightforward and meaningful. Association of gene-gene interactions with an observed distribution of such phenotypes needs to be investigated directly without categorization. Information gain based on entropy measure has previously been successful in identifying genetic associations with binary traits. We extend the usefulness of this information gain by proposing a nonparametric evaluation method of conditional entropy of a quantitative phenotype associated with a given genotype. Hence, the information gain can be obtained for any phenotype distribution. Because any functional form, such as Gaussian, is not assumed for the entire distribution of a trait or a given genotype, this method is expected to be robust enough to be applied to any phenotypic association data. Here, we show its use to successfully identify the main effect, as well as the genetic interactions, associated with a quantitative trait.

  7. Detection of growth hormone doping by gene expression profiling of peripheral blood.

    Science.gov (United States)

    Mitchell, Christopher J; Nelson, Anne E; Cowley, Mark J; Kaplan, Warren; Stone, Glenn; Sutton, Selina K; Lau, Amie; Lee, Carol M Y; Ho, Ken K Y

    2009-12-01

    GH abuse is a significant problem in many sports, and there is currently no robust test that allows detection of doping beyond a short window after administration. Our objective was to evaluate gene expression profiling in peripheral blood leukocytes in-vivo as a test for GH doping in humans. Seven men and thirteen women were administered GH, 2 mg/d sc for 8 wk. Blood was collected at baseline and at 8 wk. RNA was extracted from the white cell fraction. Microarray analysis was undertaken using Agilent 44K G4112F arrays using a two-color design. Quantitative RT-PCR using TaqMan gene expression assays was performed for validation of selected differentially expressed genes. GH induced an approximately 2-fold increase in circulating IGF-I that was maintained throughout the 8 wk of the study. GH induced significant changes in gene expression with 353 in women and 41 in men detected with a false discovery rate of less than 5%. None of the differentially expressed genes were common between men and women. The maximal changes were a doubling for up-regulated or halving for down-regulated genes, similar in magnitude to the variation between individuals. Quantitative RT-PCR for seven target genes showed good concordance between microarray and quantitative PCR data in women but not in men. Gene expression analysis of peripheral blood leukocytes is unlikely to be a viable approach for the detection of GH doping.

  8. A quantitative and direct PCR assay for the subspecies-specific detection of Clavibacter michiganensis subsp. michiganensis based on a ferredoxin reductase gene.

    Science.gov (United States)

    Cho, Min Seok; Lee, Jang Ha; Her, Nam Han; Kim, Changkug; Seol, Young-Joo; Hahn, Jang Ho; Baeg, Ji Hyoun; Kim, Hong Gi; Park, Dong Suk

    2012-06-01

    The Gram-positive bacterium Clavibacter michiganensis subsp. michiganensis is the causal agent of canker disease in tomato. Because it is very important to control newly introduced inoculum sources from commercial materials, the specific detection of this pathogen in seeds and seedlings is essential for effective disease control. In this study, a novel and efficient assay for the detection and quantitation of C. michiganensis subsp. michiganensis in symptomless tomato and red pepper seeds was developed. A pair of polymerase chain reaction (PCR) primers (Cmm141F/R) was designed to amplify a specific 141 bp fragment on the basis of a ferredoxin reductase gene of C. michiganensis subsp. michiganensis NCPPB 382. The specificity of the primer set was evaluated using purified DNA from 16 isolates of five C. michiganensis subspecies, one other Clavibacter species, and 17 other reference bacteria. The primer set amplified a single band of expected size from the genomic DNA obtained from the C. michiganensis subsp. michiganensis strains but not from the other C. michiganensis subspecies or from other Clavibacter species. The detection limit was a single cloned copy of the ferredoxin reductase gene of C. michiganensis subsp. michiganensis. In conclusion, this quantitative direct PCR assay can be applied as a practical diagnostic method for epidemiological research and the sanitary management of seeds and seedlings with a low level or latent infection of C. michiganensis subsp. michiganensis.

  9. Selection of appropriate reference genes for the detection of rhythmic gene expression via quantitative real-time PCR in Tibetan hulless barley.

    Directory of Open Access Journals (Sweden)

    Jing Cai

    Full Text Available Hulless barley (Hordeum vulgare L. var. nudum. hook. f. has been cultivated as a major crop in the Qinghai-Tibet plateau of China for thousands of years. Compared to other cereal crops, the Tibetan hulless barley has developed stronger endogenous resistances to survive in the severe environment of its habitat. To understand the unique resistant mechanisms of this plant, detailed genetic studies need to be performed. The quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR is the most commonly used method in detecting gene expression. However, the selection of stable reference genes under limited experimental conditions was considered to be an essential step for obtaining accurate results in qRT-PCR. In this study, 10 candidate reference genes-ACT (Actin, E2 (Ubiquitin conjugating enzyme 2, TUBα (Alpha-tubulin, TUBβ6 (Beta-tubulin 6, GAPDH (Glyceraldehyde 3-phosphate dehydrogenase, EF-1α (Elongation factor 1-alpha, SAMDC (S-adenosylmethionine decarboxylase, PKABA1 (Gene for protein kinase HvPKABA1, PGK (Phosphoglycerate kinase, and HSP90 (Heat shock protein 90-were selected from the NCBI gene database of barley. Following qRT-PCR amplifications of all candidate reference genes in Tibetan hulless barley seedlings under various stressed conditions, the stabilities of these candidates were analyzed by three individual software packages including geNorm, NormFinder, and BestKeeper. The results demonstrated that TUBβ6, E2, TUBα, and HSP90 were generally the most suitable sets under all tested conditions; similarly, TUBα and HSP90 showed peak stability under salt stress, TUBα and EF-1α were the most suitable reference genes under cold stress, and ACT and E2 were the most stable under drought stress. Finally, a known circadian gene CCA1 was used to verify the service ability of chosen reference genes. The results confirmed that all recommended reference genes by the three software were suitable for gene expression

  10. Selection of appropriate reference genes for the detection of rhythmic gene expression via quantitative real-time PCR in Tibetan hulless barley.

    Science.gov (United States)

    Cai, Jing; Li, Pengfei; Luo, Xiao; Chang, Tianliang; Li, Jiaxing; Zhao, Yuwei; Xu, Yao

    2018-01-01

    Hulless barley (Hordeum vulgare L. var. nudum. hook. f.) has been cultivated as a major crop in the Qinghai-Tibet plateau of China for thousands of years. Compared to other cereal crops, the Tibetan hulless barley has developed stronger endogenous resistances to survive in the severe environment of its habitat. To understand the unique resistant mechanisms of this plant, detailed genetic studies need to be performed. The quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) is the most commonly used method in detecting gene expression. However, the selection of stable reference genes under limited experimental conditions was considered to be an essential step for obtaining accurate results in qRT-PCR. In this study, 10 candidate reference genes-ACT (Actin), E2 (Ubiquitin conjugating enzyme 2), TUBα (Alpha-tubulin), TUBβ6 (Beta-tubulin 6), GAPDH (Glyceraldehyde 3-phosphate dehydrogenase), EF-1α (Elongation factor 1-alpha), SAMDC (S-adenosylmethionine decarboxylase), PKABA1 (Gene for protein kinase HvPKABA1), PGK (Phosphoglycerate kinase), and HSP90 (Heat shock protein 90)-were selected from the NCBI gene database of barley. Following qRT-PCR amplifications of all candidate reference genes in Tibetan hulless barley seedlings under various stressed conditions, the stabilities of these candidates were analyzed by three individual software packages including geNorm, NormFinder, and BestKeeper. The results demonstrated that TUBβ6, E2, TUBα, and HSP90 were generally the most suitable sets under all tested conditions; similarly, TUBα and HSP90 showed peak stability under salt stress, TUBα and EF-1α were the most suitable reference genes under cold stress, and ACT and E2 were the most stable under drought stress. Finally, a known circadian gene CCA1 was used to verify the service ability of chosen reference genes. The results confirmed that all recommended reference genes by the three software were suitable for gene expression analysis

  11. Suitability of two-dimensional electrophoretic protein separations for quantitative detection of mutations

    International Nuclear Information System (INIS)

    Taylor, J.; Anderson, N.L.; Anderson, N.G.; Gemmell, A.; Giometti, C.S.; Nance, S.L.; Tollaksen, S.L.

    1986-01-01

    Separation of proteins by two-dimensional electrophoresis (2DE) provides a powerful method for mutagenesis studies, since hundreds of proteins can be monitored simultaneously. In previous mutation studies in which 2DE has been used, only qualitative protein differences were monitored; quantitative protein variations were not evaluated. Although significant differences in protein abundance can be detected by eye, the large number of protein spots present in 2DE patterns together with the large number of individual patterns required for a mutagenesis study would necessitate the use of a computerized analysis system to detect the rare quantitative protein changes indicative of gene deletions or inactivation of genes by point mutations in regulatory genes. A pilot study to search for heritable mutations induced by treatment of mice with either ethylnitrosourea or gamma radiation is underway. Samples are being monitored for quantitative changes that reduce the amount of protein by about 50%. The results of this study indicate that the key methods to improve the application of 2DE to mutation screening are to increase the number of measurable spots (i.e., improve stain sensitivity) and to decrease the spread of values for the volume measurements. Even small improvements in these areas could greatly increase the number of monitorable spots. 9 refs., 4 figs

  12. Fast detection of deletion breakpoints using quantitative PCR

    Directory of Open Access Journals (Sweden)

    Gulshara Abildinova

    2016-01-01

    Full Text Available Abstract The routine detection of large and medium copy number variants (CNVs is well established. Hemizygotic deletions or duplications in the large Duchenne muscular dystrophy DMD gene responsible for Duchenne and Becker muscular dystrophies are routinely identified using multiple ligation probe amplification and array-based comparative genomic hybridization. These methods only map deleted or duplicated exons, without providing the exact location of breakpoints. Commonly used methods for the detection of CNV breakpoints include long-range PCR and primer walking, their success being limited by the deletion size, GC content and presence of DNA repeats. Here, we present a strategy for detecting the breakpoints of medium and large CNVs regardless of their size. The hemizygous deletion of exons 45-50 in the DMD gene and the large autosomal heterozygous PARK2 deletion were used to demonstrate the workflow that relies on real-time quantitative PCR to narrow down the deletion region and Sanger sequencing for breakpoint confirmation. The strategy is fast, reliable and cost-efficient, making it amenable to widespread use in genetic laboratories.

  13. Coincidence in map positions between pathogen-induced defense-responsive genes and quantitative resistance loci in rice

    Institute of Scientific and Technical Information of China (English)

    熊敏; 王石平; 张启发

    2002-01-01

    Quantitative disease resistance conferred by quantitative trait loci (QTLs) is presumably of wider spectrum and durable. Forty-four cDNA clones, representing 44 defense-responsive genes, were fine mapped to 56 loci distributed on 9 of the 12 rice chromosomes. The locations of 32 loci detected by 27 cDNA clones were associated with previously identified resistance QTLs for different rice diseases, including blast, bacterial blight, sheath blight and yellow mottle virus. The loci detected by the same multiple-copy cDNA clones were frequently located on similar locations of different chromosomes. Some of the multiple loci detected by the same clones were all associated with resistance QTLs. These results suggest that some of the genes may be important components in regulation of defense responses against pathogen invasion and they may be the candidates for studying the mechanism of quantitative disease resistance in rice.

  14. Quantitative secondary electron detection

    Science.gov (United States)

    Agrawal, Jyoti; Joy, David C.; Nayak, Subuhadarshi

    2018-05-08

    Quantitative Secondary Electron Detection (QSED) using the array of solid state devices (SSD) based electron-counters enable critical dimension metrology measurements in materials such as semiconductors, nanomaterials, and biological samples (FIG. 3). Methods and devices effect a quantitative detection of secondary electrons with the array of solid state detectors comprising a number of solid state detectors. An array senses the number of secondary electrons with a plurality of solid state detectors, counting the number of secondary electrons with a time to digital converter circuit in counter mode.

  15. Quantitative analysis of the dystrophin gene by real-time PCR

    Directory of Open Access Journals (Sweden)

    Maksimovic Nela

    2012-01-01

    Full Text Available Duchenne and Becker muscular dystrophy (DMD/BMD are severe X-linked neuromuscular disorders caused by mutations in the dystrophin gene. Our aim was to optimize a quantitative real-time PCR method based on SYBR® Green I chemistry for routine diagnostics of DMD/BMD deletion carriers. Twenty female relatives of DMD/BMD patients with previously detected partial gene deletions were studied. The relative quantity of the target exons was calculated by a comparative threshold cycle method (ΔΔCt. The carrier status of all subjects was successfully determined. The gene dosage ratio for non-carriers was 1.07±0.20, and for carriers 0.56±0.11. This assay proved to be simple, rapid, reliable and cost-effective.

  16. Quantitative Detection of ID4 Gene Aberrant Methylation in the Differentiation of Myelodysplastic Syndrome from Aplastic Anemia

    Directory of Open Access Journals (Sweden)

    Mian-Yang Li

    2015-01-01

    Full Text Available Background: The diagnosis of myelodysplastic syndrome (MDS, especially hypoplastic MDS, and MDS with low blast counts or normal karyotype may be problematic. This study characterized ID4 gene methylation in patients with MDS and aplastic anemia (AA. Methods: The methylation status of ID4 was analyzed by bisulfite sequencing polymerase chain reaction (PCR and quantitative real-time methylation-specific PCR (MethyLight PCR in 100 patients with MDS and 31 patients with AA. Results: The MDS group had a higher ID4 gene methylation positivity rate (22.22% and higher methylation levels (0.21 [0-3.79] than the AA group (P < 0.05. Furthermore, there were significant differences between the hypoplastic MDS and AA groups, the MDS with low blast count and the AA groups, and the MDS with normal karyotype and the AA groups. The combination of genetic and epigenetic markers was used in much more patients with MDS (62.5% [35/56] than the use of genetic markers only (51.79% [29/56]. Conclusions: These results showed that the detection of ID4 methylation positivity rates and levels could be a useful biomarker for MDS diagnosis.

  17. Quantitative DNA methylation analysis of candidate genes in cervical cancer.

    Directory of Open Access Journals (Sweden)

    Erin M Siegel

    Full Text Available Aberrant DNA methylation has been observed in cervical cancer; however, most studies have used non-quantitative approaches to measure DNA methylation. The objective of this study was to quantify methylation within a select panel of genes previously identified as targets for epigenetic silencing in cervical cancer and to identify genes with elevated methylation that can distinguish cancer from normal cervical tissues. We identified 49 women with invasive squamous cell cancer of the cervix and 22 women with normal cytology specimens. Bisulfite-modified genomic DNA was amplified and quantitative pyrosequencing completed for 10 genes (APC, CCNA, CDH1, CDH13, WIF1, TIMP3, DAPK1, RARB, FHIT, and SLIT2. A Methylation Index was calculated as the mean percent methylation across all CpG sites analyzed per gene (~4-9 CpG site per sequence. A binary cut-point was defined at >15% methylation. Sensitivity, specificity and area under ROC curve (AUC of methylation in individual genes or a panel was examined. The median methylation index was significantly higher in cases compared to controls in 8 genes, whereas there was no difference in median methylation for 2 genes. Compared to HPV and age, the combination of DNA methylation level of DAPK1, SLIT2, WIF1 and RARB with HPV and age significantly improved the AUC from 0.79 to 0.99 (95% CI: 0.97-1.00, p-value = 0.003. Pyrosequencing analysis confirmed that several genes are common targets for aberrant methylation in cervical cancer and DNA methylation level of four genes appears to increase specificity to identify cancer compared to HPV detection alone. Alterations in DNA methylation of specific genes in cervical cancers, such as DAPK1, RARB, WIF1, and SLIT2, may also occur early in cervical carcinogenesis and should be evaluated.

  18. Applying real-time quantitative PCR to diagnosis of freemartin in Holstein cattle by quantifying SRY gene: a comparison experiment

    Directory of Open Access Journals (Sweden)

    Qinghua Qiu

    2018-04-01

    Full Text Available Background Freemartinism generally occurs in female offspring of dizygotic twins in a mixed-sex pregnancy. Most bovine heterosexual twin females are freemartins. However, about 10% of bovine heterosexual twin females are fertile. Farmers mostly cull bovine fertile heterosexual twin females due to the lack of a practical diagnostic approach. Culling of such animals results in economic and genetic-material losses both for dairy and beef industry. Methods In this study, a comparative test, including qualitative detection of SRY gene by polymerase chain reaction (PCR, quantitative detection of relative content of SRY by real-time quantitative polymerase chain reaction (qPCR, and quantitative detection of H-Y antigen, was performed to establish the most accurate diagnosis for freemartin. Twelve Holstein heterosexual twin females were used in this study, while three normal Holstein bulls and three normal Holstein cows were used as a positive and negative control, respectively. Results Polymerase chain reaction results revealed that SRY gene were absent in three heterosexual twin females and only two of them were verified as fertile in later age. The qPCR results showed that relative content of SRY was more than 14.2% in freemartins and below 0.41% in fertile heterosexual twin females. The H-Y antigen test showed no significant numerical difference between freemartin and fertile heterosexual twin female. Discussion Our results show that relative content of SRY quantified by qPCR is a better detection method for diagnosis of freemartin in Holstein cattle as compare to qualitative detection of SRY gene by PCR or quantitative detection of H-Y antigen. To the authors’ knowledge, this is the first time we applied qPCR to diagnosing freemartin by quantifying SRY gene and got relative SRY content of each freemartin and fertile heterosexual twin female. We concluded that low-level of SRY would not influence fertility of bovine heterosexual twin female.

  19. Development and accuracy of quantitative real-time polymerase chain reaction assays for detection and quantification of enterotoxigenic Escherichia coli (ETEC) heat labile and heat stable toxin genes in travelers' diarrhea samples.

    Science.gov (United States)

    Youmans, Bonnie P; Ajami, Nadim J; Jiang, Zhi-Dong; Petrosino, Joseph F; DuPont, Herbert L; Highlander, Sarah K

    2014-01-01

    Enterotoxigenic Escherichia coli (ETEC), the leading bacterial pathogen of travelers' diarrhea, is routinely detected by an established DNA hybridization protocol that is neither sensitive nor quantitative. Quantitative real-time polymerase chain reaction (qPCR) assays that detect the ETEC toxin genes eltA, sta1, and sta2 in clinical stool samples were developed and tested using donor stool inoculated with known quantities of ETEC bacteria. The sensitivity of the qPCR assays is 89%, compared with 22% for the DNA hybridization assay, and the limits of detection are 10,000-fold lower than the DNA hybridization assays performed in parallel. Ninety-three clinical stool samples, previously characterized by DNA hybridization, were tested using the new ETEC qPCR assays. Discordant toxin profiles were observed for 22 samples, notably, four samples originally typed as ETEC negative were ETEC positive. The qPCR assays are unique in their sensitivity and ability to quantify the three toxin genes in clinical stool samples.

  20. Quantitative Methylation Profiles for Multiple Tumor Suppressor Gene Promoters in Salivary Gland Tumors

    Science.gov (United States)

    Durr, Megan L.; Mydlarz, Wojciech K.; Shao, Chunbo; Zahurak, Marianna L.; Chuang, Alice Y.; Hoque, Mohammad O.; Westra, William H.; Liegeois, Nanette J.; Califano, Joseph A.; Sidransky, David; Ha, Patrick K.

    2010-01-01

    Background Methylation profiling of tumor suppressor gene (TSGs) promoters is quickly becoming a powerful diagnostic tool for the early detection, prognosis, and even prediction of clinical response to treatment. Few studies address this in salivary gland tumors (SGTs); hence the promoter methylation profile of various TSGs was quantitatively assessed in primary SGT tissue to determine if tumor-specific alterations could be detected. Methodology DNA isolated from 78 tumor and 17 normal parotid gland specimens was assayed for promoter methylation status of 19 TSGs by fluorescence-based, quantitative methylation-specific PCR (qMSP). The data were utilized in a binary fashion as well as quantitatively (using a methylation quotient) allowing for better profiling and interpretation of results. Principal Findings The average number of methylation events across the studied genes was highest in salivary duct carcinoma (SDC), with a methylation value of 9.6, compared to the normal 4.5 (ptrend for increasing methylation in APC, Mint 1, PGP9.5, RAR-β, and Timp3. Conclusions/Significance Screening promoter methylation profiles in SGTs showed considerable heterogeneity. The methylation status of certain markers was surprisingly high in even normal salivary tissue, confirming the need for such controls. Several TSGs were found to be associated with malignant SGTs, especially SDC. Further study is needed to evaluate the potential use of these associations in the detection, prognosis, and therapeutic outcome of these rare tumors. PMID:20520817

  1. Quantitative detection of Fusarium spp. and its correlation with fumonisin content in maize from South African subsistence farmers

    NARCIS (Netherlands)

    Waalwijk, C.; Koch, S.H.; Ncube, E.; Allwood, J.; Flett, B.; Vries, de P.M.; Kema, G.H.J.

    2008-01-01

    A quantitative detection tool was developed to enable the monitoring of fumonisin-producing fungi in food and feed commodities. To this end, a quantitative PCR (TaqMan) was developed that targets a conserved region in the polyketide synthase gene fum1, which is involved in the biosynthesis of

  2. Quantitative analysis of gene-specific DNA damage in human spermatozoa

    International Nuclear Information System (INIS)

    Sawyer, Dennis E.; Mercer, Belinda G.; Wiklendt, Agnieszka M.; Aitken, R. John

    2003-01-01

    Recent studies have suggested that human spermatozoa are highly susceptible to DNA damage induced by oxidative stress. However, a detailed analysis of the precise nature of this damage and the extent to which it affects the mitochondrial and nuclear genomes has not been reported. To induce DNA damage, human spermatozoa were treated in vitro with hydrogen peroxide (H 2 O 2 ; 0-5 mM) or iron (as Fe(II)SO 4 , 0-500 μM). Quantitative PCR (QPCR) was used to measure DNA damage in individual nuclear genes (hprt, β-pol and β-globin) and mitochondrial DNA. Single strand breaks were also assessed by alkaline gel electrophoresis. H 2 O 2 was found to be genotoxic toward spermatozoa at concentrations as high as 1.25 mM, but DNA damage was not detected in these cells with lower concentrations of H 2 O 2 . The mitochondrial genome of human spermatozoa was significantly (P 2 O 2 -induced DNA damage than the nuclear genome. However, both nDNA and mtDNA in human spermatozoa were significantly (P<0.001) more resistant to damage than DNA from a variety of cell lines of germ cell and myoblastoid origin. Interestingly, significant DNA damage was also not detected in human spermatozoa treated with iron. These studies report, for the first time, quantitative measurements of DNA damage in specific genes of male germ cells, and challenge the commonly held belief that human spermatozoa are particularly vulnerable to DNA damage

  3. A Strategy for Identifying Quantitative Trait Genes Using Gene Expression Analysis and Causal Analysis

    Directory of Open Access Journals (Sweden)

    Akira Ishikawa

    2017-11-01

    Full Text Available Large numbers of quantitative trait loci (QTL affecting complex diseases and other quantitative traits have been reported in humans and model animals. However, the genetic architecture of these traits remains elusive due to the difficulty in identifying causal quantitative trait genes (QTGs for common QTL with relatively small phenotypic effects. A traditional strategy based on techniques such as positional cloning does not always enable identification of a single candidate gene for a QTL of interest because it is difficult to narrow down a target genomic interval of the QTL to a very small interval harboring only one gene. A combination of gene expression analysis and statistical causal analysis can greatly reduce the number of candidate genes. This integrated approach provides causal evidence that one of the candidate genes is a putative QTG for the QTL. Using this approach, I have recently succeeded in identifying a single putative QTG for resistance to obesity in mice. Here, I outline the integration approach and discuss its usefulness using my studies as an example.

  4. A Strategy for Identifying Quantitative Trait Genes Using Gene Expression Analysis and Causal Analysis.

    Science.gov (United States)

    Ishikawa, Akira

    2017-11-27

    Large numbers of quantitative trait loci (QTL) affecting complex diseases and other quantitative traits have been reported in humans and model animals. However, the genetic architecture of these traits remains elusive due to the difficulty in identifying causal quantitative trait genes (QTGs) for common QTL with relatively small phenotypic effects. A traditional strategy based on techniques such as positional cloning does not always enable identification of a single candidate gene for a QTL of interest because it is difficult to narrow down a target genomic interval of the QTL to a very small interval harboring only one gene. A combination of gene expression analysis and statistical causal analysis can greatly reduce the number of candidate genes. This integrated approach provides causal evidence that one of the candidate genes is a putative QTG for the QTL. Using this approach, I have recently succeeded in identifying a single putative QTG for resistance to obesity in mice. Here, I outline the integration approach and discuss its usefulness using my studies as an example.

  5. Quantitative Trait Loci in Inbred Lines

    NARCIS (Netherlands)

    Jansen, R.C.

    2001-01-01

    Quantitative traits result from the influence of multiple genes (quantitative trait loci) and environmental factors. Detecting and mapping the individual genes underlying such 'complex' traits is a difficult task. Fortunately, populations obtained from crosses between inbred lines are relatively

  6. A multiplex branched DNA assay for parallel quantitative gene expression profiling.

    Science.gov (United States)

    Flagella, Michael; Bui, Son; Zheng, Zhi; Nguyen, Cung Tuong; Zhang, Aiguo; Pastor, Larry; Ma, Yunqing; Yang, Wen; Crawford, Kimberly L; McMaster, Gary K; Witney, Frank; Luo, Yuling

    2006-05-01

    We describe a novel method to quantitatively measure messenger RNA (mRNA) expression of multiple genes directly from crude cell lysates and tissue homogenates without the need for RNA purification or target amplification. The multiplex branched DNA (bDNA) assay adapts the bDNA technology to the Luminex fluorescent bead-based platform through the use of cooperative hybridization, which ensures an exceptionally high degree of assay specificity. Using in vitro transcribed RNA as reference standards, we demonstrated that the assay is highly specific, with cross-reactivity less than 0.2%. We also determined that the assay detection sensitivity is 25,000 RNA transcripts with intra- and interplate coefficients of variance of less than 10% and less than 15%, respectively. Using three 10-gene panels designed to measure proinflammatory and apoptosis responses, we demonstrated sensitive and specific multiplex gene expression profiling directly from cell lysates. The gene expression change data demonstrate a high correlation coefficient (R(2)=0.94) compared with measurements obtained using the single-plex bDNA assay. Thus, the multiplex bDNA assay provides a powerful means to quantify the gene expression profile of a defined set of target genes in large sample populations.

  7. Selection of Suitable Endogenous Reference Genes for Relative Copy Number Detection in Sugarcane

    Directory of Open Access Journals (Sweden)

    Bantong Xue

    2014-05-01

    Full Text Available Transgene copy number has a great impact on the expression level and stability of exogenous gene in transgenic plants. Proper selection of endogenous reference genes is necessary for detection of genetic components in genetically modification (GM crops by quantitative real-time PCR (qPCR or by qualitative PCR approach, especially in sugarcane with polyploid and aneuploid genomic structure. qPCR technique has been widely accepted as an accurate, time-saving method on determination of copy numbers in transgenic plants and on detection of genetically modified plants to meet the regulatory and legislative requirement. In this study, to find a suitable endogenous reference gene and its real-time PCR assay for sugarcane (Saccharum spp. hybrids DNA content quantification, we evaluated a set of potential “single copy” genes including P4H, APRT, ENOL, CYC, TST and PRR, through qualitative PCR and absolute quantitative PCR. Based on copy number comparisons among different sugarcane genotypes, including five S. officinarum, one S. spontaneum and two S. spp. hybrids, these endogenous genes fell into three groups: ENOL-3—high copy number group, TST-1 and PRR-1—medium copy number group, P4H-1, APRT-2 and CYC-2—low copy number group. Among these tested genes, P4H, APRT and CYC were the most stable, while ENOL and TST were the least stable across different sugarcane genotypes. Therefore, three primer pairs of P4H-3, APRT-2 and CYC-2 were then selected as the suitable reference gene primer pairs for sugarcane. The test of multi-target reference genes revealed that the APRT gene was a specific amplicon, suggesting this gene is the most suitable to be used as an endogenous reference target for sugarcane DNA content quantification. These results should be helpful for establishing accurate and reliable qualitative and quantitative PCR analysis of GM sugarcane.

  8. Detection and quantification of Plasmodium falciparum in blood samples using quantitative nucleic acid sequence-based amplification

    NARCIS (Netherlands)

    Schoone, G. J.; Oskam, L.; Kroon, N. C.; Schallig, H. D.; Omar, S. A.

    2000-01-01

    A quantitative nucleic acid sequence-based amplification (QT-NASBA) assay for the detection of Plasmodium parasites has been developed. Primers and probes were selected on the basis of the sequence of the small-subunit rRNA gene. Quantification was achieved by coamplification of the RNA in the

  9. Selection and validation of a set of reliable reference genes for quantitative sod gene expression analysis in C. elegans

    Directory of Open Access Journals (Sweden)

    Vandesompele Jo

    2008-01-01

    Full Text Available Abstract Background In the nematode Caenorhabditis elegans the conserved Ins/IGF-1 signaling pathway regulates many biological processes including life span, stress response, dauer diapause and metabolism. Detection of differentially expressed genes may contribute to a better understanding of the mechanism by which the Ins/IGF-1 signaling pathway regulates these processes. Appropriate normalization is an essential prerequisite for obtaining accurate and reproducible quantification of gene expression levels. The aim of this study was to establish a reliable set of reference genes for gene expression analysis in C. elegans. Results Real-time quantitative PCR was used to evaluate the expression stability of 12 candidate reference genes (act-1, ama-1, cdc-42, csq-1, eif-3.C, mdh-1, gpd-2, pmp-3, tba-1, Y45F10D.4, rgs-6 and unc-16 in wild-type, three Ins/IGF-1 pathway mutants, dauers and L3 stage larvae. After geNorm analysis, cdc-42, pmp-3 and Y45F10D.4 showed the most stable expression pattern and were used to normalize 5 sod expression levels. Significant differences in mRNA levels were observed for sod-1 and sod-3 in daf-2 relative to wild-type animals, whereas in dauers sod-1, sod-3, sod-4 and sod-5 are differentially expressed relative to third stage larvae. Conclusion Our findings emphasize the importance of accurate normalization using stably expressed reference genes. The methodology used in this study is generally applicable to reliably quantify gene expression levels in the nematode C. elegans using quantitative PCR.

  10. Lesion detection and quantitation of positron emission mammography

    International Nuclear Information System (INIS)

    Qi, Jinyi; Huesman, Ronald H.

    2001-01-01

    A Positron Emission Mammography (PEM) scanner dedicated to breast imaging is being developed at our laboratory. We have developed a list mode likelihood reconstruction algorithm for this scanner. Here we theoretically study the lesion detection and quantitation. The lesion detectability is studied theoretically using computer observers. We found that for the zero-order quadratic prior, the region of interest observer can achieve the performance of the prewhitening observer with a properly selected smoothing parameter. We also study the lesion quantitation using the test statistic of the region of interest observer. The theoretical expressions for the bias, variance, and ensemble mean squared error of the quantitation are derived. Computer simulations show that the theoretical predictions are in good agreement with the Monte Carlo results for both lesion detection and quantitation

  11. [Quantitative fluorogenic real-time PCR assay for respiratory syncytial virus detection].

    Science.gov (United States)

    Zhang, Qi-wei; You, Shang-you; Sun, Ji-min; Wu, Qi; Yu, Chun-hua; Zhang, Chu-yu

    2005-07-01

    To Establish a rapid and objective quantitative fluorogenic real-time PCR assay for early detection of human respiratory syncytial virus (hRSV). Two pairs of primers and one TaqMan Fluorogenic probe that are specific for the recognition of the most conservative N gene of hRSV for virus detection with LighCycler PCR in 93 nasopharyngeal secretion specimens collected from infants and young children. The assay was compared with virus isolation, routine PCR, nested PCR, and enzyme-linked immunosorbent assay (ELISA). This TaqMan assay had a sensitivity of 1 x 10(2) cDNA copies/microl with a dynamic range between 1 x 10(2) and 1 x 10(7) cDNA copies/microl, which was the same as that of nested PCR, but 10 times more sensitive than routine PCR. The specificity of the assay was evaluated by comparing hRSV with polivirus type 1, coxsackie virus type 2, influenza A, influenza B and adenovirus type 7. A PCR product of the expected size (195 bp) was produced and fluorescence signal detected for hRSV, but not for any of the other viruses. The results in LightCycler and Rotor-Gene instrument were consistent. Forty-four specimens (43.9%) were hRSV-positive with this assay and 4 (4/93,4.3%) were hRSV-positive with ELISA, showing rather low correlation between the two methods. No visible relation was found between the concentration of hRSV RNA and severity of the disease. This assay is rapid, sensitive, specific and quantitative, and has the potential of wide application for early diagnosis of hRSV infection and evaluation of the therapeutic effect.

  12. Link-based quantitative methods to identify differentially coexpressed genes and gene Pairs

    Directory of Open Access Journals (Sweden)

    Ye Zhi-Qiang

    2011-08-01

    Full Text Available Abstract Background Differential coexpression analysis (DCEA is increasingly used for investigating the global transcriptional mechanisms underlying phenotypic changes. Current DCEA methods mostly adopt a gene connectivity-based strategy to estimate differential coexpression, which is characterized by comparing the numbers of gene neighbors in different coexpression networks. Although it simplifies the calculation, this strategy mixes up the identities of different coexpression neighbors of a gene, and fails to differentiate significant differential coexpression changes from those trivial ones. Especially, the correlation-reversal is easily missed although it probably indicates remarkable biological significance. Results We developed two link-based quantitative methods, DCp and DCe, to identify differentially coexpressed genes and gene pairs (links. Bearing the uniqueness of exploiting the quantitative coexpression change of each gene pair in the coexpression networks, both methods proved to be superior to currently popular methods in simulation studies. Re-mining of a publicly available type 2 diabetes (T2D expression dataset from the perspective of differential coexpression analysis led to additional discoveries than those from differential expression analysis. Conclusions This work pointed out the critical weakness of current popular DCEA methods, and proposed two link-based DCEA algorithms that will make contribution to the development of DCEA and help extend it to a broader spectrum.

  13. Research progress in machine learning methods for gene-gene interaction detection.

    Science.gov (United States)

    Peng, Zhe-Ye; Tang, Zi-Jun; Xie, Min-Zhu

    2018-03-20

    Complex diseases are results of gene-gene and gene-environment interactions. However, the detection of high-dimensional gene-gene interactions is computationally challenging. In the last two decades, machine-learning approaches have been developed to detect gene-gene interactions with some successes. In this review, we summarize the progress in research on machine learning methods, as applied to gene-gene interaction detection. It systematically examines the principles and limitations of the current machine learning methods used in genome wide association studies (GWAS) to detect gene-gene interactions, such as neural networks (NN), random forest (RF), support vector machines (SVM) and multifactor dimensionality reduction (MDR), and provides some insights on the future research directions in the field.

  14. Application of droplet digital PCR for quantitative detection of Spiroplasma citri in comparison with real time PCR.

    Directory of Open Access Journals (Sweden)

    Yogita Maheshwari

    Full Text Available Droplet digital polymerase chain reaction (ddPCR is a method for performing digital PCR that is based on water-oil emulsion droplet technology. It is a unique approach to measure the absolute copy number of nucleic acid targets without the need of external standards. This study evaluated the applicability of ddPCR as a quantitative detection tool for the Spiroplasma citri, causal agent of citrus stubborn disease (CSD in citrus. Two sets of primers, SP1, based on the spiral in housekeeping gene, and a multicopy prophage gene, SpV1 ORF1, were used to evaluate ddPCR in comparison with real time (quantitative PCR (qPCR for S. citri detection in citrus tissues. Standard curve analyses on tenfold dilution series showed that both ddPCR and qPCR exhibited good linearity and efficiency. However, ddPCR had a tenfold greater sensitivity than qPCR and accurately quantified up to one copy of spiralin gene. Receiver operating characteristic analysis indicated that the ddPCR methodology was more robust for diagnosis of CSD and the area under the curve was significantly broader compared to qPCR. Field samples were used to validate ddPCR efficacy and demonstrated that it was equal or better than qPCR to detect S. citri infection in fruit columella due to a higher pathogen titer. The ddPCR assay detected both the S. citri spiralin and the SpV1 ORF1 targets quantitatively with high precision and accuracy compared to qPCR assay. The ddPCR was highly reproducible and repeatable for both the targets and showed higher resilience to PCR inhibitors in citrus tissue extract for the quantification of S. citri compare to qPCR.

  15. International collaborative study of the endogenous reference gene, sucrose phosphate synthase (SPS), used for qualitative and quantitative analysis of genetically modified rice.

    Science.gov (United States)

    Jiang, Lingxi; Yang, Litao; Zhang, Haibo; Guo, Jinchao; Mazzara, Marco; Van den Eede, Guy; Zhang, Dabing

    2009-05-13

    One rice ( Oryza sativa ) gene, sucrose phosphate synthase (SPS), has been proven to be a suitable endogenous reference gene for genetically modified (GM) rice detection in a previous study. Herein are the reported results of an international collaborative ring trial for validation of the SPS gene as an endogenous reference gene and its optimized qualitative and quantitative polymerase chain reaction (PCR) systems. A total of 12 genetically modified organism (GMO) detection laboratories from seven countries participated in the ring trial and returned their results. The validated results confirmed the species specificity of the method through testing 10 plant genomic DNAs, low heterogeneity, and a stable single-copy number of the rice SPS gene among 7 indica varieties and 5 japonica varieties. The SPS qualitative PCR assay was validated with a limit of detection (LOD) of 0.1%, which corresponded to about 230 copies of haploid rice genomic DNA, while the limit of quantification (LOQ) for the quantitative PCR system was about 23 copies of haploid rice genomic DNA, with acceptable PCR efficiency and linearity. Furthermore, the bias between the test and true values of eight blind samples ranged from 5.22 to 26.53%. Thus, we believe that the SPS gene is suitable for use as an endogenous reference gene for the identification and quantification of GM rice and its derivates.

  16. Detection of 22 common leukemic fusion genes using a single-step multiplex qRT-PCR-based assay.

    Science.gov (United States)

    Lyu, Xiaodong; Wang, Xianwei; Zhang, Lina; Chen, Zhenzhu; Zhao, Yu; Hu, Jieying; Fan, Ruihua; Song, Yongping

    2017-07-25

    Fusion genes generated from chromosomal translocation play an important role in hematological malignancies. Detection of fusion genes currently employ use of either conventional RT-PCR methods or fluorescent in situ hybridization (FISH), where both methods involve tedious methodologies and require prior characterization of chromosomal translocation events as determined by cytogenetic analysis. In this study, we describe a real-time quantitative reverse transcription PCR (qRT-PCR)-based multi-fusion gene screening method with the capacity to detect 22 fusion genes commonly found in leukemia. This method does not require pre-characterization of gene translocation events, thereby facilitating immediate diagnosis and therapeutic management. We performed fluorescent qRT-PCR (F-qRT-PCR) using a commercially-available multi-fusion gene detection kit on a patient cohort of 345 individuals comprising 108 cases diagnosed with acute myeloid leukemia (AML) for initial evaluation; remaining patients within the cohort were assayed for confirmatory diagnosis. Results obtained by F-qRT-PCR were compared alongside patient analysis by cytogenetic characterization. Gene translocations detected by F-qRT-PCR in AML cases were diagnosed in 69.4% of the patient cohort, which was comparatively similar to 68.5% as diagnosed by cytogenetic analysis, thereby demonstrating 99.1% concordance. Overall gene fusion was detected in 53.7% of the overall patient population by F-qRT-PCR, 52.9% by cytogenetic prediction in leukemia, and 9.1% in non-leukemia patients by both methods. The overall concordance rate was calculated to be 99.0%. Fusion genes were detected by F-qRT-PCR in 97.3% of patients with CML, followed by 69.4% with AML, 33.3% with acute lymphoblastic leukemia (ALL), 9.1% with myelodysplastic syndromes (MDS), and 0% with chronic lymphocytic leukemia (CLL). We describe the use of a F-qRT-PCR-based multi-fusion gene screening method as an efficient one-step diagnostic procedure as an

  17. An endogenous reference gene of common and durum wheat for detection of genetically modified wheat.

    Science.gov (United States)

    Imai, Shinjiro; Tanaka, Keiko; Nishitsuji, Yasuyuki; Kikuchi, Yosuke; Matsuoka, Yasuyuki; Arami, Shin-Ichiro; Sato, Megumi; Haraguchi, Hiroyuki; Kurimoto, Youichi; Mano, Junichi; Furui, Satoshi; Kitta, Kazumi

    2012-01-01

    To develop a method for detecting GM wheat that may be marketed in the near future, we evaluated the proline-rich protein (PRP) gene as an endogenous reference gene of common wheat (Triticum aestivum L.) and durum wheat (Triticum durum L.). Real-time PCR analysis showed that only DNA of wheat was amplified and no amplification product was observed for phylogenetically related cereals, indicating that the PRP detection system is specific to wheat. The intensities of the amplification products and Ct values among all wheat samples used in this study were very similar, with no nonspecific or additional amplification, indicating that the PRP detection system has high sequence stability. The limit of detection was estimated at 5 haploid genome copies. The PRP region was demonstrated to be present as a single or double copy in the common wheat haploid genome. Furthermore, the PRP detection system showed a highly linear relationship between Ct values and the amount of plasmid DNA, indicating that an appropriate calibration curve could be constructed for quantitative detection of GM wheat. All these results indicate that the PRP gene is a suitable endogenous reference gene for PCR-based detection of GM wheat.

  18. Using multiple PCR and CE with chemiluminescence detection for simultaneous qualitative and quantitative analysis of genetically modified organism.

    Science.gov (United States)

    Guo, Longhua; Qiu, Bin; Chi, Yuwu; Chen, Guonan

    2008-09-01

    In this paper, an ultrasensitive CE-CL detection system coupled with a novel double-on-column coaxial flow detection interface was developed for the detection of PCR products. A reliable procedure based on this system had been demonstrated for qualitative and quantitative analysis of genetically modified organism-the detection of Roundup Ready Soy (RRS) samples was presented as an example. The promoter, terminator, function and two reference genes of RRS were amplified with multiplex PCR simultaneously. After that, the multiplex PCR products were labeled with acridinium ester at the 5'-terminal through an amino modification and then analyzed by the proposed CE-CL system. Reproducibility of analysis times and peak heights for the CE-CL analysis were determined to be better than 0.91 and 3.07% (RSD, n=15), respectively, for three consecutive days. It was shown that this method could accurately and qualitatively detect RRS standards and the simulative samples. The evaluation in terms of quantitative analysis of RRS provided by this new method was confirmed by comparing our assay results with those of the standard real-time quantitative PCR (RT-QPCR) using SYBR Green I dyes. The results showed a good coherence between the two methods. This approach demonstrated the possibility for accurate qualitative and quantitative detection of GM plants in a single run.

  19. [Detecting HB-1 Expression Level in Bone Marrow of Acute Leukemia Patients by Real-Time Fluorescence Quantitative RT-PCR].

    Science.gov (United States)

    Wang, Qing-Yun; Li, Yuan; Ji, Li; Liang, Ze-Yin; Liu, Wei; Ren, Han-Yun; Qiu, Zhi-Xiang

    2018-02-01

    To investigate the expression level of HB-1 gene in patients with acute lymphoblastic leukemia (ALL) and the significance of HB-1 gene in monitoring of minimal residual disease (MRD). The method of real-time fluorescence quantitative RT-PCR (Taqman probe) was established to detect the expression levels of HB-1 gene; then the sensitivity, specificity and repeatability of this assay were evaluated and verified. The HB-1 gene expression levels in bone marrow of 183 cases of ALL, 70 cases of acute myeloid leukemias (AML), 52 cases of non-malignant hematologic diseases and 24 healthy hematopoietic stem cell donors were detected. The correlation of HB-1 level with diagnosis and relapse was analyzed by detecting bone marrow samples of 33 B-ALL. The sensitivity of this assay reached the 10 -4 level. The coefficient of variation for inter-batch and inter-tube of HB-1 were 6.79% and 4.80%, respectively. It was found that HB-1 gene specifically expressed in acute B lymphoblastic leukemia. The median expression levels of HB-1 gene in newly diagnosed and relapsed B-ALL patients were statistically significantly higher than those in ALL in complete remission(CR), newly diagnosed T-ALL, newly diagnosed AML, non-malignant hematologic diseases, and healthy hematopoietic stem cell donors(33.0% vs 0.68%, 0.07%, 0.02%, 0.58% and 0, respectively) (P0.05). The expression level of HB-1 gene declined sharply when B-ALL patients reached complete remission (0-7.99%, with median level 0.68%), but increased when relapsed (7.69%, 8.08% and 484.0% in 3 relapsed samples), which was in accordance with results of flow cytometry. HB-1 gene specifically expressed in acute B lymphoblastic leukemia cells. The established real-time fluorescence quantitative RT-PCR assay shows good sensitivity, specificity and repeatability, thus, can be used as a biological marker in the clinical detection, monitoring MRD and predicting of early relapse for B-ALL patients.

  20. [Advances and strategies in gene doping detection].

    Science.gov (United States)

    He, Jiangang; Liu, Zhen; Liu, Jing; Dou, Peng; Chen, Hong-Yuan

    2008-07-01

    This review surveys the recent status of gene doping detection and the strategies for anti-gene doping. The main gene doping candidates for athletes are summarized, and the advances in the detection of the proteins expressed by these genes such as erythropoietin (EPO) and human growth hormone (hGH) are reviewed. The potential detection strategies for further gene doping analysis are also discussed.

  1. Human lymphocyte polymorphisms detected by quantitative two-dimensional electrophoresis

    International Nuclear Information System (INIS)

    Goldman, D.; Merril, C.R.

    1983-01-01

    A survey of 186 soluble lymphocyte proteins for genetic polymorphism was carried out utilizing two-dimensional electrophoresis of 14 C-labeled phytohemagglutinin (PHA)-stimulated human lymphocyte proteins. Nineteen of these proteins exhibited positional variation consistent with independent genetic polymorphism in a primary sample of 28 individuals. Each of these polymorphisms was characterized by quantitative gene-dosage dependence insofar as the heterozygous phenotype expressed approximately 50% of each allelic gene product as was seen in homozygotes. Patterns observed were also identical in monozygotic twins, replicate samples, and replicate gels. The three expected phenotypes (two homozygotes and a heterozygote) were observed in each of 10 of these polymorphisms while the remaining nine had one of the homozygous classes absent. The presence of the three phenotypes, the demonstration of gene-dosage dependence, and our own and previous pedigree analysis of certain of these polymorphisms supports the genetic basis of these variants. Based on this data, the frequency of polymorphic loci for man is: P . 19/186 . .102, and the average heterozygosity is .024. This estimate is approximately 1/3 to 1/2 the rate of polymorphism previously estimated for man in other studies using one-dimensional electrophoresis of isozyme loci. The newly described polymorphisms and others which should be detectable in larger protein surveys with two-dimensional electrophoresis hold promise as genetic markers of the human genome for use in gene mapping and pedigree analyses

  2. Gene doping detection: evaluation of approach for direct detection of gene transfer using erythropoietin as a model system.

    Science.gov (United States)

    Baoutina, A; Coldham, T; Bains, G S; Emslie, K R

    2010-08-01

    As clinical gene therapy has progressed toward realizing its potential, concern over misuse of the technology to enhance performance in athletes is growing. Although 'gene doping' is banned by the World Anti-Doping Agency, its detection remains a major challenge. In this study, we developed a methodology for direct detection of the transferred genetic material and evaluated its feasibility for gene doping detection in blood samples from athletes. Using erythropoietin (EPO) as a model gene and a simple in vitro system, we developed real-time PCR assays that target sequences within the transgene complementary DNA corresponding to exon/exon junctions. As these junctions are absent in the endogenous gene due to their interruption by introns, the approach allows detection of trace amounts of a transgene in a large background of the endogenous gene. Two developed assays and one commercial gene expression assay for EPO were validated. On the basis of ability of these assays to selectively amplify transgenic DNA and analysis of literature on testing of gene transfer in preclinical and clinical gene therapy, it is concluded that the developed approach would potentially be suitable to detect gene doping through gene transfer by analysis of small volumes of blood using regular out-of-competition testing.

  3. Developing strategies for detection of gene doping.

    Science.gov (United States)

    Baoutina, Anna; Alexander, Ian E; Rasko, John E J; Emslie, Kerry R

    2008-01-01

    It is feared that the use of gene transfer technology to enhance athletic performance, the practice that has received the term 'gene doping', may soon become a real threat to the world of sport. As recognised by the anti-doping community, gene doping, like doping in any form, undermines principles of fair play in sport and most importantly, involves major health risks to athletes who partake in gene doping. One attraction of gene doping for such athletes and their entourage lies in the apparent difficulty of detecting its use. Since the realisation of the threat of gene doping to sport in 2001, the anti-doping community and scientists from different disciplines concerned with potential misuse of gene therapy technologies for performance enhancement have focused extensive efforts on developing robust methods for gene doping detection which could be used by the World Anti-Doping Agency to monitor athletes and would meet the requirements of a legally defensible test. Here we review the approaches and technologies which are being evaluated for the detection of gene doping, as well as for monitoring the efficacy of legitimate gene therapy, in relation to the detection target, the type of sample required for analysis and detection methods. We examine the accumulated knowledge on responses of the body, at both cellular and systemic levels, to gene transfer and evaluate strategies for gene doping detection based on current knowledge of gene technology, immunology, transcriptomics, proteomics, biochemistry and physiology. (c) 2008 John Wiley & Sons, Ltd.

  4. Can subtle changes in gene expression be consistently detected with different microarray platforms?

    Directory of Open Access Journals (Sweden)

    Kuiper Rowan

    2008-03-01

    Full Text Available Abstract Background The comparability of gene expression data generated with different microarray platforms is still a matter of concern. Here we address the performance and the overlap in the detection of differentially expressed genes for five different microarray platforms in a challenging biological context where differences in gene expression are few and subtle. Results Gene expression profiles in the hippocampus of five wild-type and five transgenic δC-doublecortin-like kinase mice were evaluated with five microarray platforms: Applied Biosystems, Affymetrix, Agilent, Illumina, LGTC home-spotted arrays. Using a fixed false discovery rate of 10% we detected surprising differences between the number of differentially expressed genes per platform. Four genes were selected by ABI, 130 by Affymetrix, 3,051 by Agilent, 54 by Illumina, and 13 by LGTC. Two genes were found significantly differentially expressed by all platforms and the four genes identified by the ABI platform were found by at least three other platforms. Quantitative RT-PCR analysis confirmed 20 out of 28 of the genes detected by two or more platforms and 8 out of 15 of the genes detected by Agilent only. We observed improved correlations between platforms when ranking the genes based on the significance level than with a fixed statistical cut-off. We demonstrate significant overlap in the affected gene sets identified by the different platforms, although biological processes were represented by only partially overlapping sets of genes. Aberrances in GABA-ergic signalling in the transgenic mice were consistently found by all platforms. Conclusion The different microarray platforms give partially complementary views on biological processes affected. Our data indicate that when analyzing samples with only subtle differences in gene expression the use of two different platforms might be more attractive than increasing the number of replicates. Commercial two-color platforms seem to

  5. Quantitative multiplex detection of pathogen biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Mukundan, Harshini; Xie, Hongzhi; Swanson, Basil I.; Martinez, Jennifer; Grace, Wynne K.

    2016-02-09

    The present invention addresses the simultaneous detection and quantitative measurement of multiple biomolecules, e.g., pathogen biomarkers through either a sandwich assay approach or a lipid insertion approach. The invention can further employ a multichannel, structure with multi-sensor elements per channel.

  6. Quantitative multiplex detection of pathogen biomarkers

    Science.gov (United States)

    Mukundan, Harshini; Xie, Hongzhi; Swanson, Basil I; Martinez, Jennifer; Grace, Wynne K

    2014-10-14

    The present invention addresses the simultaneous detection and quantitative measurement of multiple biomolecules, e.g., pathogen biomarkers through either a sandwich assay approach or a lipid insertion approach. The invention can further employ a multichannel, structure with multi-sensor elements per channel.

  7. Detection of EPO gene doping in blood.

    Science.gov (United States)

    Neuberger, Elmo W I; Jurkiewicz, Magdalena; Moser, Dirk A; Simon, Perikles

    2012-11-01

    Gene doping--or the abuse of gene therapy--will continue to threaten the sports world. History has shown that progress in medical research is likely to be abused in order to enhance human performance. In this review, we critically discuss the progress and the risks associated with the field of erythropoietin (EPO) gene therapy and its applicability to EPO gene doping. We present typical vector systems that are employed in ex vivo and in vivo gene therapy trials. Due to associated risks, gene doping is not a feasible alternative to conventional EPO or blood doping at this time. Nevertheless, it is well described that about half of the elite athlete population is in principle willing to risk its health to gain a competitive advantage. This includes the use of technologies that lack safety approval. Sophisticated detection approaches are a prerequisite for prevention of unapproved and uncontrolled use of gene therapy technology. In this review, we present current detection approaches for EPO gene doping, with a focus on blood-based direct and indirect approaches. Gene doping is detectable in principle, and recent DNA-based detection strategies enable long-term detection of transgenic DNA (tDNA) following in vivo gene transfer. Copyright © 2012 John Wiley & Sons, Ltd.

  8. A Novel Pretreatment-Free Duplex Chamber Digital PCR Detection System for the Absolute Quantitation of GMO Samples.

    Science.gov (United States)

    Zhu, Pengyu; Wang, Chenguang; Huang, Kunlun; Luo, Yunbo; Xu, Wentao

    2016-03-18

    Digital polymerase chain reaction (PCR) has developed rapidly since it was first reported in the 1990s. However, pretreatments are often required during preparation for digital PCR, which can increase operation error. The single-plex amplification of both the target and reference genes may cause uncertainties due to the different reaction volumes and the matrix effect. In the current study, a quantitative detection system based on the pretreatment-free duplex chamber digital PCR was developed. The dynamic range, limit of quantitation (LOQ), sensitivity and specificity were evaluated taking the GA21 event as the experimental object. Moreover, to determine the factors that may influence the stability of the duplex system, we evaluated whether the pretreatments, the primary and secondary structures of the probes and the SNP effect influence the detection. The results showed that the LOQ was 0.5% and the sensitivity was 0.1%. We also found that genome digestion and single nucleotide polymorphism (SNP) sites affect the detection results, whereas the unspecific hybridization within different probes had little side effect. This indicated that the detection system was suited for both chamber-based and droplet-based digital PCR. In conclusion, we have provided a simple and flexible way of achieving absolute quantitation for genetically modified organism (GMO) genome samples using commercial digital PCR detection systems.

  9. A Novel Pretreatment-Free Duplex Chamber Digital PCR Detection System for the Absolute Quantitation of GMO Samples

    Directory of Open Access Journals (Sweden)

    Pengyu Zhu

    2016-03-01

    Full Text Available Digital polymerase chain reaction (PCR has developed rapidly since it was first reported in the 1990s. However, pretreatments are often required during preparation for digital PCR, which can increase operation error. The single-plex amplification of both the target and reference genes may cause uncertainties due to the different reaction volumes and the matrix effect. In the current study, a quantitative detection system based on the pretreatment-free duplex chamber digital PCR was developed. The dynamic range, limit of quantitation (LOQ, sensitivity and specificity were evaluated taking the GA21 event as the experimental object. Moreover, to determine the factors that may influence the stability of the duplex system, we evaluated whether the pretreatments, the primary and secondary structures of the probes and the SNP effect influence the detection. The results showed that the LOQ was 0.5% and the sensitivity was 0.1%. We also found that genome digestion and single nucleotide polymorphism (SNP sites affect the detection results, whereas the unspecific hybridization within different probes had little side effect. This indicated that the detection system was suited for both chamber-based and droplet-based digital PCR. In conclusion, we have provided a simple and flexible way of achieving absolute quantitation for genetically modified organism (GMO genome samples using commercial digital PCR detection systems.

  10. Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.

    Directory of Open Access Journals (Sweden)

    Neutelings Godfrey

    2010-04-01

    Full Text Available Abstract Background Quantitative real-time PCR (qRT-PCR is currently the most accurate method for detecting differential gene expression. Such an approach depends on the identification of uniformly expressed 'housekeeping genes' (HKGs. Extensive transcriptomic data mining and experimental validation in different model plants have shown that the reliability of these endogenous controls can be influenced by the plant species, growth conditions and organs/tissues examined. It is therefore important to identify the best reference genes to use in each biological system before using qRT-PCR to investigate differential gene expression. In this paper we evaluate different candidate HKGs for developmental transcriptomic studies in the economically-important flax fiber- and oil-crop (Linum usitatissimum L. Results Specific primers were designed in order to quantify the expression levels of 20 different potential housekeeping genes in flax roots, internal- and external-stem tissues, leaves and flowers at different developmental stages. After calculations of PCR efficiencies, 13 HKGs were retained and their expression stabilities evaluated by the computer algorithms geNorm and NormFinder. According to geNorm, 2 Transcriptional Elongation Factors (TEFs and 1 Ubiquitin gene are necessary for normalizing gene expression when all studied samples are considered. However, only 2 TEFs are required for normalizing expression in stem tissues. In contrast, NormFinder identified glyceraldehyde-3-phosphate dehydrogenase (GADPH as the most stably expressed gene when all samples were grouped together, as well as when samples were classed into different sub-groups. qRT-PCR was then used to investigate the relative expression levels of two splice variants of the flax LuMYB1 gene (homologue of AtMYB59. LuMYB1-1 and LuMYB1-2 were highly expressed in the internal stem tissues as compared to outer stem tissues and other samples. This result was confirmed with both ge

  11. Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.).

    Science.gov (United States)

    Huis, Rudy; Hawkins, Simon; Neutelings, Godfrey

    2010-04-19

    Quantitative real-time PCR (qRT-PCR) is currently the most accurate method for detecting differential gene expression. Such an approach depends on the identification of uniformly expressed 'housekeeping genes' (HKGs). Extensive transcriptomic data mining and experimental validation in different model plants have shown that the reliability of these endogenous controls can be influenced by the plant species, growth conditions and organs/tissues examined. It is therefore important to identify the best reference genes to use in each biological system before using qRT-PCR to investigate differential gene expression. In this paper we evaluate different candidate HKGs for developmental transcriptomic studies in the economically-important flax fiber- and oil-crop (Linum usitatissimum L). Specific primers were designed in order to quantify the expression levels of 20 different potential housekeeping genes in flax roots, internal- and external-stem tissues, leaves and flowers at different developmental stages. After calculations of PCR efficiencies, 13 HKGs were retained and their expression stabilities evaluated by the computer algorithms geNorm and NormFinder. According to geNorm, 2 Transcriptional Elongation Factors (TEFs) and 1 Ubiquitin gene are necessary for normalizing gene expression when all studied samples are considered. However, only 2 TEFs are required for normalizing expression in stem tissues. In contrast, NormFinder identified glyceraldehyde-3-phosphate dehydrogenase (GADPH) as the most stably expressed gene when all samples were grouped together, as well as when samples were classed into different sub-groups.qRT-PCR was then used to investigate the relative expression levels of two splice variants of the flax LuMYB1 gene (homologue of AtMYB59). LuMYB1-1 and LuMYB1-2 were highly expressed in the internal stem tissues as compared to outer stem tissues and other samples. This result was confirmed with both geNorm-designated- and Norm

  12. Quantitative Structure-Activity Relationships and Docking Studies of Calcitonin Gene-Related Peptide Antagonists

    DEFF Research Database (Denmark)

    Jenssen, Håvard; Mehrabian, Mohadeseh; Kyani, Anahita

    2012-01-01

    Defining the role of calcitonin gene-related peptide in migraine pathogenesis could lead to the application of calcitonin gene-related peptide antagonists as novel migraine therapeutics. In this work, quantitative structure-activity relationship modeling of biological activities of a large range...... of calcitonin gene-related peptide antagonists was performed using a panel of physicochemical descriptors. The computational studies evaluated different variable selection techniques and demonstrated shuffling stepwise multiple linear regression to be superior over genetic algorithm-multiple linear regression....... The linear quantitative structure-activity relationship model revealed better statistical parameters of cross-validation in comparison with the non-linear support vector regression technique. Implementing only five peptide descriptors into this linear quantitative structure-activity relationship model...

  13. TaqMan MGB probe fluorescence real-time quantitative PCR for rapid detection of Chinese Sacbrood virus.

    Directory of Open Access Journals (Sweden)

    Ma Mingxiao

    Full Text Available Sacbrood virus (SBV is a picorna-like virus that affects honey bees (Apis mellifera and results in the death of the larvae. Several procedures are available to detect Chinese SBV (CSBV in clinical samples, but not to estimate the level of CSBV infection. The aim of this study was develop an assay for rapid detection and quantification of this virus. Primers and probes were designed that were specific for CSBV structural protein genes. A TaqMan minor groove binder (MGB probe-based, fluorescence real-time quantitative PCR was established. The specificity, sensitivity and stability of the assay were assessed; specificity was high and there were no cross-reactivity with healthy larvae or other bee viruses. The assay was applied to detect CSBV in 37 clinical samples and its efficiency was compared with clinical diagnosis, electron microscopy observation, and conventional RT-PCR. The TaqMan MGB-based probe fluorescence real-time quantitative PCR for CSBV was more sensitive than other methods tested. This assay was a reliable, fast, and sensitive method that was used successfully to detect CSBV in clinical samples. The technology can provide a useful tool for rapid detection of CSBV. This study has established a useful protocol for CSBV testing, epidemiological investigation, and development of animal models.

  14. Use of quantitative real-time PCR for direct detection of serratia marcescens in marine and other aquatic environments.

    Science.gov (United States)

    Joyner, Jessica; Wanless, David; Sinigalliano, Christopher D; Lipp, Erin K

    2014-03-01

    Serratia marcescens is the etiological agent of acroporid serratiosis, a distinct form of white pox disease in the threatened coral Acropora palmata. The pathogen is commonly found in untreated human waste in the Florida Keys, which may contaminate both nearshore and offshore waters. Currently there is no direct method for detection of this bacterium in the aquatic or reef environment, and culture-based techniques may underestimate its abundance in marine waters. A quantitative real-time PCR assay was developed to detect S. marcescens directly from environmental samples, including marine water, coral mucus, sponge tissue, and wastewater. The assay targeted the luxS gene and was able to distinguish S. marcescens from other Serratia species with a reliable quantitative limit of detection of 10 cell equivalents (CE) per reaction. The method could routinely discern the presence of S. marcescens for as few as 3 CE per reaction, but it could not be reliably quantified at this level. The assay detected environmental S. marcescens in complex sewage influent samples at up to 761 CE ml(-1) and in septic system-impacted residential canals in the Florida Keys at up to 4.1 CE ml(-1). This detection assay provided rapid quantitative abilities and good sensitivity and specificity, which should offer an important tool for monitoring this ubiquitous pathogen that can potentially impact both human health and coral health.

  15. Identification of Phosphoglycerate Kinase 1 (PGK1 as a reference gene for quantitative gene expression measurements in human blood RNA

    Directory of Open Access Journals (Sweden)

    Unger Elizabeth R

    2011-09-01

    Full Text Available Abstract Background Blood is a convenient sample and increasingly used for quantitative gene expression measurements with a variety of diseases including chronic fatigue syndrome (CFS. Quantitative gene expression measurements require normalization of target genes to reference genes that are stable and independent from variables being tested in the experiment. Because there are no genes that are useful for all situations, reference gene selection is an essential step to any quantitative reverse transcription-PCR protocol. Many publications have described appropriate genes for a wide variety of tissues and experimental conditions, however, reference genes that may be suitable for the analysis of CFS, or human blood RNA derived from whole blood as well as isolated peripheral blood mononuclear cells (PBMCs, have not been described. Findings Literature review and analyses of our unpublished microarray data were used to narrow down the pool of candidate reference genes to six. We assayed whole blood RNA from Tempus tubes and cell preparation tube (CPT-collected PBMC RNA from 46 subjects, and used the geNorm and NormFinder algorithms to select the most stable reference genes. Phosphoglycerate kinase 1 (PGK1 was one of the optimal normalization genes for both whole blood and PBMC RNA, however, additional genes differed for the two sample types; Ribosomal protein large, P0 (RPLP0 for PBMC RNA and Peptidylprolyl isomerase B (PPIB for whole blood RNA. We also show that the use of a single reference gene is sufficient for normalization when the most stable candidates are used. Conclusions We have identified PGK1 as a stable reference gene for use with whole blood RNA and RNA derived from PBMC. When stable genes are selected it is possible to use a single gene for normalization rather than two or three. Optimal normalization will improve the ability of results from PBMC RNA to be compared with those from whole blood RNA and potentially allows comparison of

  16. Network-based group variable selection for detecting expression quantitative trait loci (eQTL

    Directory of Open Access Journals (Sweden)

    Zhang Xuegong

    2011-06-01

    Full Text Available Abstract Background Analysis of expression quantitative trait loci (eQTL aims to identify the genetic loci associated with the expression level of genes. Penalized regression with a proper penalty is suitable for the high-dimensional biological data. Its performance should be enhanced when we incorporate biological knowledge of gene expression network and linkage disequilibrium (LD structure between loci in high-noise background. Results We propose a network-based group variable selection (NGVS method for QTL detection. Our method simultaneously maps highly correlated expression traits sharing the same biological function to marker sets formed by LD. By grouping markers, complex joint activity of multiple SNPs can be considered and the dimensionality of eQTL problem is reduced dramatically. In order to demonstrate the power and flexibility of our method, we used it to analyze two simulations and a mouse obesity and diabetes dataset. We considered the gene co-expression network, grouped markers into marker sets and treated the additive and dominant effect of each locus as a group: as a consequence, we were able to replicate results previously obtained on the mouse linkage dataset. Furthermore, we observed several possible sex-dependent loci and interactions of multiple SNPs. Conclusions The proposed NGVS method is appropriate for problems with high-dimensional data and high-noise background. On eQTL problem it outperforms the classical Lasso method, which does not consider biological knowledge. Introduction of proper gene expression and loci correlation information makes detecting causal markers more accurate. With reasonable model settings, NGVS can lead to novel biological findings.

  17. Detection of expression quantitative trait Loci in complex mouse crosses: impact and alleviation of data quality and complex population substructure.

    Science.gov (United States)

    Iancu, Ovidiu D; Darakjian, Priscila; Kawane, Sunita; Bottomly, Daniel; Hitzemann, Robert; McWeeney, Shannon

    2012-01-01

    Complex Mus musculus crosses, e.g., heterogeneous stock (HS), provide increased resolution for quantitative trait loci detection. However, increased genetic complexity challenges detection methods, with discordant results due to low data quality or complex genetic architecture. We quantified the impact of theses factors across three mouse crosses and two different detection methods, identifying procedures that greatly improve detection quality. Importantly, HS populations have complex genetic architectures not fully captured by the whole genome kinship matrix, calling for incorporating chromosome specific relatedness information. We analyze three increasingly complex crosses, using gene expression levels as quantitative traits. The three crosses were an F(2) intercross, a HS formed by crossing four inbred strains (HS4), and a HS (HS-CC) derived from the eight lines found in the collaborative cross. Brain (striatum) gene expression and genotype data were obtained using the Illumina platform. We found large disparities between methods, with concordance varying as genetic complexity increased; this problem was more acute for probes with distant regulatory elements (trans). A suite of data filtering steps resulted in substantial increases in reproducibility. Genetic relatedness between samples generated overabundance of detected eQTLs; an adjustment procedure that includes the kinship matrix attenuates this problem. However, we find that relatedness between individuals is not evenly distributed across the genome; information from distinct chromosomes results in relatedness structure different from the whole genome kinship matrix. Shared polymorphisms from distinct chromosomes collectively affect expression levels, confounding eQTL detection. We suggest that considering chromosome specific relatedness can result in improved eQTL detection.

  18. Quantitation of apolipoprotein epsilon gene expression by competitive polymerase chain reaction in a patient with familial apolipoprotein E deficiency.

    Science.gov (United States)

    Dobmeyer, J M; Rexin, M; Dobmeyer, T S; Klein, S A; Rossol, R; Feussner, G

    1998-06-22

    A simple method of obtaining semiquantitative and reliable data on apolipoprotein (apo) sigma gene expression is described. We detected apo sigma specific sequences by reverse transcription (rT)-PCR. For quantitative measurement, an apo sigma DNA standard was produced allowing the development of a competitive PCR-method. The efficiency of RNA extraction and cDNA synthesis was controlled by quantitation of a housekeeping gene (glyceraldehyde-3-phosphatedehydrogenase, G3PDH) in separate reactions. To imitate a defined induction of apo sigma gene expression, serial twofold dilutions of total RNA were reversely transcribed and the respective cDNAs used to perform a competitive apo sigma and G3PDH PCR. The change in apo sigma cDNA and G3PDH cDNA was 1.7-2.3-fold with an expected value of 2.0-fold. Standard deviations in three independently performed experiments were within a range of < 15% of the mean, indicating low intra-assay variation and high reproducibility. To illustrate this method, apo sigma gene expression was measured in a patient with complete lack of functional active apo E in comparison to healthy controls. The method presented here might be valuable in assessment of apo sigma gene expression in human disease.

  19. Complementary techniques: validation of gene expression data by quantitative real time PCR.

    Science.gov (United States)

    Provenzano, Maurizio; Mocellin, Simone

    2007-01-01

    Microarray technology can be considered the most powerful tool for screening gene expression profiles of biological samples. After data mining, results need to be validated with highly reliable biotechniques allowing for precise quantitation of transcriptional abundance of identified genes. Quantitative real time PCR (qrt-PCR) technology has recently reached a level of sensitivity, accuracy and practical ease that support its use as a routine bioinstrumentation for gene level measurement. Currently, qrt-PCR is considered by most experts the most appropriate method to confirm or confute microarray-generated data. The knowledge of the biochemical principles underlying qrt-PCR as well as some related technical issues must be beard in mind when using this biotechnology.

  20. Event-specific qualitative and quantitative detection of five genetically modified rice events using a single standard reference molecule.

    Science.gov (United States)

    Kim, Jae-Hwan; Park, Saet-Byul; Roh, Hyo-Jeong; Shin, Min-Ki; Moon, Gui-Im; Hong, Jin-Hwan; Kim, Hae-Yeong

    2017-07-01

    One novel standard reference plasmid, namely pUC-RICE5, was constructed as a positive control and calibrator for event-specific qualitative and quantitative detection of genetically modified (GM) rice (Bt63, Kemingdao1, Kefeng6, Kefeng8, and LLRice62). pUC-RICE5 contained fragments of a rice-specific endogenous reference gene (sucrose phosphate synthase) as well as the five GM rice events. An existing qualitative PCR assay approach was modified using pUC-RICE5 to create a quantitative method with limits of detection correlating to approximately 1-10 copies of rice haploid genomes. In this quantitative PCR assay, the square regression coefficients ranged from 0.993 to 1.000. The standard deviation and relative standard deviation values for repeatability ranged from 0.02 to 0.22 and 0.10% to 0.67%, respectively. The Ministry of Food and Drug Safety (Korea) validated the method and the results suggest it could be used routinely to identify five GM rice events. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Gold nanoparticle immunochromatographic assay for quantitative detection of urinary RBP

    Directory of Open Access Journals (Sweden)

    XU Kuan

    2013-04-01

    Full Text Available A rapid quantitative detection of urinary RBP was established by using nano-gold immunochromatography (sandwich method and trisodium citrate reduction method and a rapid immunochromatographic test strip was developed. Theimmunochromatographic test strip can quantitatively detect RBP within 15 minutes. The detection limit was 150ng/mL and detection range was from 150 to 5000 ng/mL. There were no cross-reactions with others kidney disease markers,such as urinary albumin (ALB,transferrin protein (TRF,β2-microglobulin (β2-MG,urinary fiber connecting protein (FN,and lysozyme (LZM. The results indicate that it is a quick and simple method with strong specificity,high sensitivity,and wide detection range. The rapid detection method will have extensive clinical applications in the early diagnosis of proximal tubular damage,kidney disease,diabetic nephropathy,and process monitoring.

  2. [Current status and prospects of gene doping detection].

    Science.gov (United States)

    Wang, Wenjun; Zhang, Sichun; Xu, Jingjuan; Xia, Xinghua; Tian, Yaping; Zhang, Xinrong; Chen, Hong-Yuan

    2008-07-01

    The fast development of biotechnology promotes the development of doping. From recombinant protein to gene doping, there is a great challenge to their detection. The improvement of gene therapy and potential to enhance athletic performance open the door for gene doping. After a brief introduction of the concept of gene doping, the current status and prospects of gene doping detection are reviewed.

  3. Fast real-time polymerase chain reaction for quantitative detection of Lactobacillus delbrueckii bacteriophages in milk.

    Science.gov (United States)

    Martín, Maria Cruz; del Rio, Beatriz; Martínez, Noelia; Magadán, Alfonso H; Alvarez, Miguel A

    2008-12-01

    One of the main microbiological problems of the dairy industry is the susceptibility of starter bacteria to virus infections. Lactobacillus delbrueckii, a component of thermophilic starter cultures used in the manufacture of several fermented dairy products, including yogurt, is also sensitive to bacteriophage attacks. To avoid the problems associated with these viruses, quick and sensitive detection methods are necessary. In the present study, a fast real-time quantitative polymerase chain reaction assay for the direct detection and quantification of L. delbrueckii phages in milk was developed. A set of primers and a TaqMan MGB probe was designed, based on the lysin gene sequence of different L. delbrueckii phages. The results show the proposed method to be a rapid (total processing time 30 min), specific and highly sensitive technique for detecting L. delbrueckii phages in milk.

  4. Quantitative detection of DNA by autocatalytic enlargement of hybridized gold nanoprobes

    DEFF Research Database (Denmark)

    Zhan, Zongrui; Cao, Cuong; Sim, Sang Jun

    2010-01-01

    Quantitative detection of specific viral DNA has become a pressing issue for the earlier clinical diagnosis of viral infectious diseases. Therefore, in this paper, we report a simple, sensitive, and inexpensive quantitative approach for DNA detection based on the autocatalytic Au deposition of go...... to the concentration of the target DNA, could easily be confirmed by a UV–vis scanning spectrophotometer. Limit of detection could be obtained as low as 1.0 fM by this simple method....

  5. PCR-based detection of gene transfer vectors: application to gene doping surveillance.

    Science.gov (United States)

    Perez, Irene C; Le Guiner, Caroline; Ni, Weiyi; Lyles, Jennifer; Moullier, Philippe; Snyder, Richard O

    2013-12-01

    Athletes who illicitly use drugs to enhance their athletic performance are at risk of being banned from sports competitions. Consequently, some athletes may seek new doping methods that they expect to be capable of circumventing detection. With advances in gene transfer vector design and therapeutic gene transfer, and demonstrations of safety and therapeutic benefit in humans, there is an increased probability of the pursuit of gene doping by athletes. In anticipation of the potential for gene doping, assays have been established to directly detect complementary DNA of genes that are top candidates for use in doping, as well as vector control elements. The development of molecular assays that are capable of exposing gene doping in sports can serve as a deterrent and may also identify athletes who have illicitly used gene transfer for performance enhancement. PCR-based methods to detect foreign DNA with high reliability, sensitivity, and specificity include TaqMan real-time PCR, nested PCR, and internal threshold control PCR.

  6. Validation of putative reference genes for gene expression studies in human hepatocellular carcinoma using real-time quantitative RT-PCR

    International Nuclear Information System (INIS)

    Cicinnati, Vito R; Shen, Qingli; Sotiropoulos, Georgios C; Radtke, Arnold; Gerken, Guido; Beckebaum, Susanne

    2008-01-01

    Reference genes, which are often referred to as housekeeping genes are frequently used to normalize mRNA levels between different samples in quantitative reverse transcription polymerase chain reaction (qRT-PCR). The selection of reference genes is critical for gene expression studies because the expression of these genes may vary among tissues or cells and may change under certain circumstances. Here, a systematic evaluation of six putative reference genes for gene expression studies in human hepatocellular carcinoma (HCC) is presented. Six genes, beta-2-microglobulin (B2M), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), hydroxymethyl-bilane synthase (HMBS), hypoxanthine phosphoribosyl-transferase 1 (HPRT1), succinate dehydrogenase complex, subunit A (SDHA) and ubiquitin C (UBC), with distinct functional characteristics and expression patterns were evaluated by qRT-PCR. Inhibitory substances in RNA samples were quantitatively assessed and controlled using an external RNA control. The stability of selected reference genes was analyzed using both geNorm and NormFinder software. HMBS and GAPDH were identified as the optimal reference genes for normalizing gene expression data between paired tumoral and adjacent non-tumoral tissues derived from patients with HCC. HMBS, GAPDH and UBC were identified to be suitable for the normalization of gene expression data among tumor tissues; whereas the combination of HMBS, B2M, SDHA and GAPDH was suitable for normalizing gene expression data among five liver cancer cell lines, namely Hep3B, HepG2, HuH7, SK-HEP-1 and SNU-182. The determined gene stability was increased after exclusion of RNA samples containing relatively higher inhibitory substances. Of six genes studied, HMBS was found to be the single best reference gene for gene expression studies in HCC. The appropriate choice of combination of more than one reference gene to improve qRT-PCR accuracy depends on the kind of liver tissues or cells under investigation

  7. Validation of putative reference genes for gene expression studies in human hepatocellular carcinoma using real-time quantitative RT-PCR

    Directory of Open Access Journals (Sweden)

    Radtke Arnold

    2008-11-01

    Full Text Available Abstract Background Reference genes, which are often referred to as housekeeping genes are frequently used to normalize mRNA levels between different samples in quantitative reverse transcription polymerase chain reaction (qRT-PCR. The selection of reference genes is critical for gene expression studies because the expression of these genes may vary among tissues or cells and may change under certain circumstances. Here, a systematic evaluation of six putative reference genes for gene expression studies in human hepatocellular carcinoma (HCC is presented. Methods Six genes, beta-2-microglobulin (B2M, glyceraldehyde-3-phosphate dehydrogenase (GAPDH, hydroxymethyl-bilane synthase (HMBS, hypoxanthine phosphoribosyl-transferase 1 (HPRT1, succinate dehydrogenase complex, subunit A (SDHA and ubiquitin C (UBC, with distinct functional characteristics and expression patterns were evaluated by qRT-PCR. Inhibitory substances in RNA samples were quantitatively assessed and controlled using an external RNA control. The stability of selected reference genes was analyzed using both geNorm and NormFinder software. Results HMBS and GAPDH were identified as the optimal reference genes for normalizing gene expression data between paired tumoral and adjacent non-tumoral tissues derived from patients with HCC. HMBS, GAPDH and UBC were identified to be suitable for the normalization of gene expression data among tumor tissues; whereas the combination of HMBS, B2M, SDHA and GAPDH was suitable for normalizing gene expression data among five liver cancer cell lines, namely Hep3B, HepG2, HuH7, SK-HEP-1 and SNU-182. The determined gene stability was increased after exclusion of RNA samples containing relatively higher inhibitory substances. Conclusion Of six genes studied, HMBS was found to be the single best reference gene for gene expression studies in HCC. The appropriate choice of combination of more than one reference gene to improve qRT-PCR accuracy depends on the

  8. Validation of putative reference genes for gene expression studies in human hepatocellular carcinoma using real-time quantitative RT-PCR

    Science.gov (United States)

    Cicinnati, Vito R; Shen, Qingli; Sotiropoulos, Georgios C; Radtke, Arnold; Gerken, Guido; Beckebaum, Susanne

    2008-01-01

    Background Reference genes, which are often referred to as housekeeping genes are frequently used to normalize mRNA levels between different samples in quantitative reverse transcription polymerase chain reaction (qRT-PCR). The selection of reference genes is critical for gene expression studies because the expression of these genes may vary among tissues or cells and may change under certain circumstances. Here, a systematic evaluation of six putative reference genes for gene expression studies in human hepatocellular carcinoma (HCC) is presented. Methods Six genes, beta-2-microglobulin (B2M), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), hydroxymethyl-bilane synthase (HMBS), hypoxanthine phosphoribosyl-transferase 1 (HPRT1), succinate dehydrogenase complex, subunit A (SDHA) and ubiquitin C (UBC), with distinct functional characteristics and expression patterns were evaluated by qRT-PCR. Inhibitory substances in RNA samples were quantitatively assessed and controlled using an external RNA control. The stability of selected reference genes was analyzed using both geNorm and NormFinder software. Results HMBS and GAPDH were identified as the optimal reference genes for normalizing gene expression data between paired tumoral and adjacent non-tumoral tissues derived from patients with HCC. HMBS, GAPDH and UBC were identified to be suitable for the normalization of gene expression data among tumor tissues; whereas the combination of HMBS, B2M, SDHA and GAPDH was suitable for normalizing gene expression data among five liver cancer cell lines, namely Hep3B, HepG2, HuH7, SK-HEP-1 and SNU-182. The determined gene stability was increased after exclusion of RNA samples containing relatively higher inhibitory substances. Conclusion Of six genes studied, HMBS was found to be the single best reference gene for gene expression studies in HCC. The appropriate choice of combination of more than one reference gene to improve qRT-PCR accuracy depends on the kind of liver tissues

  9. Differentially expressed genes of Tetrahymena thermophila in response to tributyltin (TBT) identified by suppression subtractive hybridization and real time quantitative PCR.

    Science.gov (United States)

    Feng, Lifang; Miao, Wei; Wu, Yuxuan

    2007-02-15

    Tributyltin (TBT) is widely used as antifouling paints, agriculture biocides, and plastic stabilizers around the world, resulting in great pollution problem in aquatic environments. However, it has been short of the biomonitor to detect TBT in freshwater. We constructed the suppression subtractive hybridization library of Tetrahymena thermophila exposed to TBT, and screened out 101 Expressed Sequence Tags whose expressions were significantly up- or down-regulated with TBT treatment. From this, a series of genes related to the TBT toxicity were discovered, such as glutathione-S-transferase gene (down-regulated), plasma membrane Ca2+ ATPase isoforms 3 gene (up-regulated) and NgoA (up-regulated). Furthermore, their expressions under different concentrations of TBT treatment (0.5-40 ppb) were detected by real time fluorescent quantitative PCR. The differentially expressed genes of T. thermophila in response to TBT were identified, which provide the basic to make Tetrahymena as a sensitive, rapid and convenient TBT biomonitor in freshwater based on rDNA inducible expression system.

  10. Videodensitometric quantitative angiography after coronary balloon angioplasty, compared to edge-detection quantitative angiography and intracoronary ultrasound imaging

    NARCIS (Netherlands)

    Peters, R. J.; Kok, W. E.; Pasterkamp, G.; von Birgelen, C.; Prins, M. [=Martin H.; Serruys, P. W.

    2000-01-01

    AIMS: To assess the value of videodensitometric quantification of the coronary lumen after angioplasty by comparison to two other techniques of coronary artery lumen quantification. METHODS AND RESULTS: Videodensitometric quantitative angiography, edge detection quantitative angiography and 30 MHz

  11. Distance-based microfluidic quantitative detection methods for point-of-care testing.

    Science.gov (United States)

    Tian, Tian; Li, Jiuxing; Song, Yanling; Zhou, Leiji; Zhu, Zhi; Yang, Chaoyong James

    2016-04-07

    Equipment-free devices with quantitative readout are of great significance to point-of-care testing (POCT), which provides real-time readout to users and is especially important in low-resource settings. Among various equipment-free approaches, distance-based visual quantitative detection methods rely on reading the visual signal length for corresponding target concentrations, thus eliminating the need for sophisticated instruments. The distance-based methods are low-cost, user-friendly and can be integrated into portable analytical devices. Moreover, such methods enable quantitative detection of various targets by the naked eye. In this review, we first introduce the concept and history of distance-based visual quantitative detection methods. Then, we summarize the main methods for translation of molecular signals to distance-based readout and discuss different microfluidic platforms (glass, PDMS, paper and thread) in terms of applications in biomedical diagnostics, food safety monitoring, and environmental analysis. Finally, the potential and future perspectives are discussed.

  12. Response of a diuron-degrading community to diuron exposure assessed by real-time quantitative PCR monitoring of phenylurea hydrolase A and B encoding genes.

    Science.gov (United States)

    Pesce, Stéphane; Beguet, Jérémie; Rouard, Nadine; Devers-Lamrani, Marion; Martin-Laurent, Fabrice

    2013-02-01

    A real-time quantitative PCR method was developed to detect and quantify phenlylurea hydrolase genes' (puhA and puhB) sequences from environmental DNA samples to assess diuron-degrading genetic potential in some soil and sediment microbial communities. In the soil communities, mineralization rates (determined with [ring-¹⁴C]-labeled diuron) were linked to diuron-degrading genetic potentials estimated from puhB number copies, which increased following repeated diuron treatments. In the sediment communities, mineralization potential did not depend solely on the quantity of puhB copies, underlining the need to assess gene expression. In the sediment samples, both puhB copy numbers and mineralization capacities were highly conditioned by whether or not diuron-treated soil was added. This points to transfers of degradative potential from soils to sediments. No puhA gene was detected in soil and sediment DNA extracts. Moreover, some sediments exhibited high diuron mineralization potential even though puhB genes were not detected, suggesting the existence of alternative diuron degradation pathways.

  13. Quantitative statistical analysis of cis-regulatory sequences in ABA/VP1- and CBF/DREB1-regulated genes of Arabidopsis.

    Science.gov (United States)

    Suzuki, Masaharu; Ketterling, Matthew G; McCarty, Donald R

    2005-09-01

    We have developed a simple quantitative computational approach for objective analysis of cis-regulatory sequences in promoters of coregulated genes. The program, designated MotifFinder, identifies oligo sequences that are overrepresented in promoters of coregulated genes. We used this approach to analyze promoter sequences of Viviparous1 (VP1)/abscisic acid (ABA)-regulated genes and cold-regulated genes, respectively, of Arabidopsis (Arabidopsis thaliana). We detected significantly enriched sequences in up-regulated genes but not in down-regulated genes. This result suggests that gene activation but not repression is mediated by specific and common sequence elements in promoters. The enriched motifs include several known cis-regulatory sequences as well as previously unidentified motifs. With respect to known cis-elements, we dissected the flanking nucleotides of the core sequences of Sph element, ABA response elements (ABREs), and the C repeat/dehydration-responsive element. This analysis identified the motif variants that may correlate with qualitative and quantitative differences in gene expression. While both VP1 and cold responses are mediated in part by ABA signaling via ABREs, these responses correlate with unique ABRE variants distinguished by nucleotides flanking the ACGT core. ABRE and Sph motifs are tightly associated uniquely in the coregulated set of genes showing a strict dependence on VP1 and ABA signaling. Finally, analysis of distribution of the enriched sequences revealed a striking concentration of enriched motifs in a proximal 200-base region of VP1/ABA and cold-regulated promoters. Overall, each class of coregulated genes possesses a discrete set of the enriched motifs with unique distributions in their promoters that may account for the specificity of gene regulation.

  14. NAIMA: target amplification strategy allowing quantitative on-chip detection of GMOs.

    Science.gov (United States)

    Morisset, Dany; Dobnik, David; Hamels, Sandrine; Zel, Jana; Gruden, Kristina

    2008-10-01

    We have developed a novel multiplex quantitative DNA-based target amplification method suitable for sensitive, specific and quantitative detection on microarray. This new method named NASBA Implemented Microarray Analysis (NAIMA) was applied to GMO detection in food and feed, but its application can be extended to all fields of biology requiring simultaneous detection of low copy number DNA targets. In a first step, the use of tailed primers allows the multiplex synthesis of template DNAs in a primer extension reaction. A second step of the procedure consists of transcription-based amplification using universal primers. The cRNA product is further on directly ligated to fluorescent dyes labelled 3DNA dendrimers allowing signal amplification and hybridized without further purification on an oligonucleotide probe-based microarray for multiplex detection. Two triplex systems have been applied to test maize samples containing several transgenic lines, and NAIMA has shown to be sensitive down to two target copies and to provide quantitative data on the transgenic contents in a range of 0.1-25%. Performances of NAIMA are comparable to singleplex quantitative real-time PCR. In addition, NAIMA amplification is faster since 20 min are sufficient to achieve full amplification.

  15. AffyMiner: mining differentially expressed genes and biological knowledge in GeneChip microarray data

    Directory of Open Access Journals (Sweden)

    Xia Yuannan

    2006-12-01

    Full Text Available Abstract Background DNA microarrays are a powerful tool for monitoring the expression of tens of thousands of genes simultaneously. With the advance of microarray technology, the challenge issue becomes how to analyze a large amount of microarray data and make biological sense of them. Affymetrix GeneChips are widely used microarrays, where a variety of statistical algorithms have been explored and used for detecting significant genes in the experiment. These methods rely solely on the quantitative data, i.e., signal intensity; however, qualitative data are also important parameters in detecting differentially expressed genes. Results AffyMiner is a tool developed for detecting differentially expressed genes in Affymetrix GeneChip microarray data and for associating gene annotation and gene ontology information with the genes detected. AffyMiner consists of the functional modules, GeneFinder for detecting significant genes in a treatment versus control experiment and GOTree for mapping genes of interest onto the Gene Ontology (GO space; and interfaces to run Cluster, a program for clustering analysis, and GenMAPP, a program for pathway analysis. AffyMiner has been used for analyzing the GeneChip data and the results were presented in several publications. Conclusion AffyMiner fills an important gap in finding differentially expressed genes in Affymetrix GeneChip microarray data. AffyMiner effectively deals with multiple replicates in the experiment and takes into account both quantitative and qualitative data in identifying significant genes. AffyMiner reduces the time and effort needed to compare data from multiple arrays and to interpret the possible biological implications associated with significant changes in a gene's expression.

  16. Quantitative multiplex quantum dot in-situ hybridisation based gene expression profiling in tissue microarrays identifies prognostic genes in acute myeloid leukaemia

    Energy Technology Data Exchange (ETDEWEB)

    Tholouli, Eleni [Department of Haematology, Manchester Royal Infirmary, Oxford Road, Manchester, M13 9WL (United Kingdom); MacDermott, Sarah [The Medical School, The University of Manchester, Oxford Road, M13 9PT Manchester (United Kingdom); Hoyland, Judith [School of Biomedicine, Faculty of Medical and Human Sciences, The University of Manchester, Oxford Road, M13 9PT Manchester (United Kingdom); Yin, John Liu [Department of Haematology, Manchester Royal Infirmary, Oxford Road, Manchester, M13 9WL (United Kingdom); Byers, Richard, E-mail: richard.byers@cmft.nhs.uk [School of Cancer and Enabling Sciences, Faculty of Medical and Human Sciences, The University of Manchester, Stopford Building, Oxford Road, M13 9PT Manchester (United Kingdom)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Development of a quantitative high throughput in situ expression profiling method. Black-Right-Pointing-Pointer Application to a tissue microarray of 242 AML bone marrow samples. Black-Right-Pointing-Pointer Identification of HOXA4, HOXA9, Meis1 and DNMT3A as prognostic markers in AML. -- Abstract: Measurement and validation of microarray gene signatures in routine clinical samples is problematic and a rate limiting step in translational research. In order to facilitate measurement of microarray identified gene signatures in routine clinical tissue a novel method combining quantum dot based oligonucleotide in situ hybridisation (QD-ISH) and post-hybridisation spectral image analysis was used for multiplex in-situ transcript detection in archival bone marrow trephine samples from patients with acute myeloid leukaemia (AML). Tissue-microarrays were prepared into which white cell pellets were spiked as a standard. Tissue microarrays were made using routinely processed bone marrow trephines from 242 patients with AML. QD-ISH was performed for six candidate prognostic genes using triplex QD-ISH for DNMT1, DNMT3A, DNMT3B, and for HOXA4, HOXA9, Meis1. Scrambled oligonucleotides were used to correct for background staining followed by normalisation of expression against the expression values for the white cell pellet standard. Survival analysis demonstrated that low expression of HOXA4 was associated with poorer overall survival (p = 0.009), whilst high expression of HOXA9 (p < 0.0001), Meis1 (p = 0.005) and DNMT3A (p = 0.04) were associated with early treatment failure. These results demonstrate application of a standardised, quantitative multiplex QD-ISH method for identification of prognostic markers in formalin-fixed paraffin-embedded clinical samples, facilitating measurement of gene expression signatures in routine clinical samples.

  17. Quantitative Real Time PCR approach to study gene expression profile during prenatal growth of skeletal muscle in pig of Duroc and Pietrain breeds

    Directory of Open Access Journals (Sweden)

    M. Cagnazzo

    2010-01-01

    Full Text Available The quantitative real time-PCR (QRT-PCR is a very sensitive method used to quantify mRNA level in gene expression analysis. Combining amplification, detection and quantification in a single step, allows a more accurate measurement compared to the traditional PCR end point analysis (Pfaffl, 2001; Bustin, 2002.

  18. Candidate gene biodosimeters of mice and human exposure to ionizing radiation by quantitative reverse transcription polymerase chain reaction

    Directory of Open Access Journals (Sweden)

    Hamed Rezaeejam

    2015-01-01

    Full Text Available Understanding of cellular responses to ionizing radiation (IR is essential for the development of predictive markers useful for assessing human exposure. Biological markers of exposure to IR in human populations are of great interest for assessing normal tissue injury in radiation oncology and for biodosimetry in nuclear incidents and accidental radiation exposures. Traditional radiation exposure biomarkers based on cytogenetic assays (biodosimetry, are time-consuming and do not provide results fast enough and requires highly trained personnel for scoring. Hence, the development of rapid biodosimetry methods is one of the highest priorities. Exposure of cells to IR activates multiple signal transduction pathways, which result in complex alterations in gene-expression. Real-time quantitative reverse transcription-polymerase chain reaction (RT-qPCR has become the benchmark for the detection and quantification of RNA targets and is being utilized increasingly in monitoring the specific genes with more accurately and sensitively. This review evaluates the RT-qPCR as a biodosimetry method and we investigated the papers from 2000 up to now, which identified the genes-expression related the DNA repair, cell cycle checkpoint, and apoptosis induced by ionization radiation in peripheral blood and determined as biodosimeters. In conclusion, it could be say that RT-qPCR technique for determining the specific genes as biodosimeters could be a fully quantitative reliable and sensitive method. Furthermore, the results of the current review will help the researchers to recognize the most expressed genes induced by ionization radiation.

  19. Selection and validation of reference genes for gene expression analysis in switchgrass (Panicum virgatum using quantitative real-time RT-PCR.

    Directory of Open Access Journals (Sweden)

    Jacinta Gimeno

    Full Text Available Switchgrass (Panicum virgatum has received a lot of attention as a forage and bioenergy crop during the past few years. Gene expression studies are in progress to improve new traits and develop new cultivars. Quantitative real time PCR (qRT-PCR has emerged as an important technique to study gene expression analysis. For accurate and reliable results, normalization of data with reference genes is essential. In this work, we evaluate the stability of expression of genes to use as reference for qRT-PCR in the grass P. virgatum. Eleven candidate reference genes, including eEF-1α, UBQ6, ACT12, TUB6, eIF-4a, GAPDH, SAMDC, TUA6, CYP5, U2AF, and FTSH4, were validated for qRT-PCR normalization in different plant tissues and under different stress conditions. The expression stability of these genes was verified by the use of two distinct algorithms, geNorm and NormFinder. Differences were observed after comparison of the ranking of the candidate reference genes identified by both programs but eEF-1α, eIF-4a, CYP5 and U2AF are ranked as the most stable genes in the samples sets under study. Both programs discard the use of SAMDC and TUA6 for normalization. Validation of the reference genes proposed by geNorm and NormFinder were performed by normalization of transcript abundance of a group of target genes in different samples. Results show similar expression patterns when the best reference genes selected by both programs were used but differences were detected in the transcript abundance of the target genes. Based on the above research, we recommend the use of different statistical algorithms to identify the best reference genes for expression data normalization. The best genes selected in this study will help to improve the quality of gene expression data in a wide variety of samples in switchgrass.

  20. Detecting Horizontal Gene Transfer between Closely Related Taxa.

    Directory of Open Access Journals (Sweden)

    Orit Adato

    2015-10-01

    Full Text Available Horizontal gene transfer (HGT, the transfer of genetic material between organisms, is crucial for genetic innovation and the evolution of genome architecture. Existing HGT detection algorithms rely on a strong phylogenetic signal distinguishing the transferred sequence from ancestral (vertically derived genes in its recipient genome. Detecting HGT between closely related species or strains is challenging, as the phylogenetic signal is usually weak and the nucleotide composition is normally nearly identical. Nevertheless, there is a great importance in detecting HGT between congeneric species or strains, especially in clinical microbiology, where understanding the emergence of new virulent and drug-resistant strains is crucial, and often time-sensitive. We developed a novel, self-contained technique named Near HGT, based on the synteny index, to measure the divergence of a gene from its native genomic environment and used it to identify candidate HGT events between closely related strains. The method confirms candidate transferred genes based on the constant relative mutability (CRM. Using CRM, the algorithm assigns a confidence score based on "unusual" sequence divergence. A gene exhibiting exceptional deviations according to both synteny and mutability criteria, is considered a validated HGT product. We first employed the technique to a set of three E. coli strains and detected several highly probable horizontally acquired genes. We then compared the method to existing HGT detection tools using a larger strain data set. When combined with additional approaches our new algorithm provides richer picture and brings us closer to the goal of detecting all newly acquired genes in a particular strain.

  1. Characterization of vitellogenin gene expression in round goby (Neogobius melanostomus) using a quantitative polymerase chain reaction assay.

    Science.gov (United States)

    Bowley, Lucas A; Alam, Farhana; Marentette, Julie R; Balshine, Sigal; Wilson, Joanna Y

    2010-12-01

    A growing concern over endocrine disruption in aquatic species has prompted the development of molecular assays to monitor environmental impacts. This study describes the development of quantitative polymerase chain reaction (qPCR) assays to characterize the expression of two vitellogenin (Vtg) genes in the invasive round goby (Neogobius melanostomus). Fragments from the 18SrRNA (housekeeping gene), Vtg II, and Vtg III genes were cloned and sequenced. The qPCR assays were developed to detect hepatic Vtg expression in goby. The assays detected induction of both Vtg genes in nonreproductive males following a two-week laboratory exposure to 17β-estradiol (≥1 mg/kg i.p. injection). The assays were applied to goby from Hamilton Harbour, Lake Ontario (Canada), including those from sites where feminization and intersex of goby has been documented. Both Vtg genes had significantly higher expression in females compared to males. Male reproductive goby adopt either parental or sneaker tactics; Vtg II expression was higher in sneaker than in parental males but parental and nonreproductive males did not differ from each other. The Vtg III expression was significantly higher in sneaker males followed by parental males and nonreproductive males, respectively. The Vtg II and III expression in nonreproductive males was elevated in the contaminated site with documented intersex. This assay provides an important tool for the use of an invasive species in monitoring endocrine disruption in the Great Lakes region. Copyright © 2010 SETAC.

  2. Detection of stx1 and stx2 Genes in Pennsylvanian White-Tailed Deer

    Directory of Open Access Journals (Sweden)

    Steven A. Mauro

    2011-06-01

    Full Text Available Shiga toxin-producing E. coli carrying the stx1 and/or stx2 genes can cause multi-symptomatic illness in humans. A variety of terrestrial and aquatic environmental reservoirs of stx have been described. Culture based detection of microbes in deer species have found a low percentage of samples that have tested positive for Stx-producing microbes, suggesting that while deer may contain these microbes, their overall abundance in deer is low. In this study, quantitative PCR (qPCR was utilized to test for the presence of stx genes in white-tailed deer fecal matter in western Pennsylvania. In this culture independent screening, nearly half of the samples tested positive for the stx2 gene, with a bias towards samples that were concentrated with stx2. This study, while limited in scope, suggests that deer may be a greater reservoir for stx than was previously thought.

  3. An effective method for the quantitative detection of porcine endogenous retrovirus in pig tissues.

    Science.gov (United States)

    Zhang, Peng; Yu, Ping; Wang, Wei; Zhang, Li; Li, Shengfu; Bu, Hong

    2010-05-01

    Xenotransplantation shows great promise for providing a virtually limitless supply of cells, tissues, and organs for a variety of therapeutical procedures. However, the potential of porcine endogenous retrovirus (PERV) as a human-tropic pathogen, particularly as a public health risk, is a major concern for xenotransplantation. This study focus on the detection of copy number in various tissues and organs in Banna Minipig Inbreed (BMI) from 2006 to 2007 in West China Hospital, Sichuan University. Real-time quantitative polymerase chain reaction (SYBR Green I) was performed in this study. The results showed that the pol gene had the most copy number in tissues compared with gag, envA, and envB. Our experiment will offer a rapid and accurate method for the detection of the copy number in various tissues and was especially suitable for the selection of tissues or organs in future clinical xenotransplantation.

  4. Development and application of an oligonucleotide microarray and real-time quantitative PCR for detection of wastewater bacterial pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae-Young [National Water Research Institute, Environment Canada, 867 Lakeshore Road, Burlington, Ontario, L7R 4A6 (Canada)], E-mail: daeyoung.lee@ec.gc.ca; Lauder, Heather; Cruwys, Heather; Falletta, Patricia [National Water Research Institute, Environment Canada, 867 Lakeshore Road, Burlington, Ontario, L7R 4A6 (Canada); Beaudette, Lee A. [Environmental Science and Technology Centre, Environment Canada, 335 River Road South, Ottawa, Ontario, K1A 0H3 (Canada)], E-mail: lee.beaudette@ec.gc.ca

    2008-07-15

    Conventional microbial water quality test methods are well known for their technical limitations, such as lack of direct pathogen detection capacity and low throughput capability. The microarray assay has recently emerged as a promising alternative for environmental pathogen monitoring. In this study, bacterial pathogens were detected in municipal wastewater using a microarray equipped with short oligonucleotide probes targeting 16S rRNA sequences. To date, 62 probes have been designed against 38 species, 4 genera, and 1 family of pathogens. The detection sensitivity of the microarray for a waterborne pathogen Aeromonas hydrophila was determined to be approximately 1.0% of the total DNA, or approximately 10{sup 3}A. hydrophila cells per sample. The efficacy of the DNA microarray was verified in a parallel study where pathogen genes and E. coli cells were enumerated using real-time quantitative PCR (qPCR) and standard membrane filter techniques, respectively. The microarray and qPCR successfully detected multiple wastewater pathogen species at different stages of the disinfection process (i.e. secondary effluents vs. disinfected final effluents) and at two treatment plants employing different disinfection methods (i.e. chlorination vs. UV irradiation). This result demonstrates the effectiveness of the DNA microarray as a semi-quantitative, high throughput pathogen monitoring tool for municipal wastewater.

  5. A quantitative and dynamic model of the Arabidopsis flowering time gene regulatory network.

    Directory of Open Access Journals (Sweden)

    Felipe Leal Valentim

    Full Text Available Various environmental signals integrate into a network of floral regulatory genes leading to the final decision on when to flower. Although a wealth of qualitative knowledge is available on how flowering time genes regulate each other, only a few studies incorporated this knowledge into predictive models. Such models are invaluable as they enable to investigate how various types of inputs are combined to give a quantitative readout. To investigate the effect of gene expression disturbances on flowering time, we developed a dynamic model for the regulation of flowering time in Arabidopsis thaliana. Model parameters were estimated based on expression time-courses for relevant genes, and a consistent set of flowering times for plants of various genetic backgrounds. Validation was performed by predicting changes in expression level in mutant backgrounds and comparing these predictions with independent expression data, and by comparison of predicted and experimental flowering times for several double mutants. Remarkably, the model predicts that a disturbance in a particular gene has not necessarily the largest impact on directly connected genes. For example, the model predicts that SUPPRESSOR OF OVEREXPRESSION OF CONSTANS (SOC1 mutation has a larger impact on APETALA1 (AP1, which is not directly regulated by SOC1, compared to its effect on LEAFY (LFY which is under direct control of SOC1. This was confirmed by expression data. Another model prediction involves the importance of cooperativity in the regulation of APETALA1 (AP1 by LFY, a prediction supported by experimental evidence. Concluding, our model for flowering time gene regulation enables to address how different quantitative inputs are combined into one quantitative output, flowering time.

  6. Reverse transcriptase-quantitative polymerase chain reaction (RT ...

    African Journals Online (AJOL)

    The reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) is a highly specific polymerase chain reaction (PCR) method that allows one to detect very low transcription levels of functional gene(s) in soil. RT-qPCR helps us to know the active members of the microbial community, and their activities can be ...

  7. A quantitative TaqMan PCR assay for the detection of Ureaplasma diversum.

    Science.gov (United States)

    Marques, Lucas M; Amorim, Aline T; Martins, Hellen Braga; Rezende, Izadora Souza; Barbosa, Maysa Santos; Lobão, Tassia Neves; Campos, Guilherme B; Timenetsky, Jorge

    2013-12-27

    Ureaplasma diversum in veterinary studies is an undesirable microbe, which may cause infection in bulls and may result in seminal vesiculitis, balanopostitis, and alterations in spermatozoids, whereas in cows, it may cause placentitis, fetal alveolitis, abortion, and birth of weak calves. U. diversum is released through organic secretions, especially semen, preputial and vaginal mucus, conjunctival secretion, and milk. The aim of the present study was to develop a TaqMan probe, highly sensitive and specific quantitative PCR (qPCR) assay for the detection and quantification of U. diversum from genital swabs of bovines. Primers and probes specific to U. diversum 16S rRNA gene were designed. The specificity, detection limit, intra- and inter-assay variability of qPCR to detect this ureaplasma was compared with the results of the conventional PCR assay (cPCR). Swabs of vaginal mucus from 169 cows were tested. The qPCR assay detected as few as 10 copies of U. diversum and was 100-fold more sensitive than the cPCR. No cross-reactivity with other Mollicutes or eubacteria was observed. U. diversum was detected in 79 swabs (46.42%) by qPCR, while using cPCR it was detected in 42 (25%) samples. The difference in cPCR and qPCR ureaplasma detection between healthy and sick animals was not statistically significant. But the U. diversum load in samples from animals with genital disorders was higher than in healthy animals. The qPCR assay developed herein is highly sensitive and specific for the detection and quantification of U. diversum in vaginal bovine samples. Copyright © 2013. Published by Elsevier B.V.

  8. Gene expression of the mismatch repair gene MSH2 in primary colorectal cancer

    DEFF Research Database (Denmark)

    Jensen, Lars Henrik; Kuramochi, Hidekazu; Crüger, Dorthe Gylling

    2011-01-01

    promoter was only detected in 14 samples and only at a low level with no correlation to gene expression. MSH2 gene expression was not a prognostic factor for overall survival in univariate or multivariate analysis. The gene expression of MSH2 is a potential quantitative marker ready for further clinical...

  9. Improved assay to detect Plasmodium falciparum using an uninterrupted, semi-nested PCR and quantitative lateral flow analysis

    Science.gov (United States)

    2013-01-01

    Background A rapid, non-invasive, and inexpensive point-of-care (POC) diagnostic for malaria followed by therapeutic intervention would improve the ability to control infection in endemic areas. Methods A semi-nested PCR amplification protocol is described for quantitative detection of Plasmodium falciparum and is compared to a traditional nested PCR. The approach uses primers that target the P. falciparum dihydrofolate reductase gene. Results This study demonstrates that it is possible to perform an uninterrupted, asymmetric, semi-nested PCR assay with reduced assay time to detect P. falciparum without compromising the sensitivity and specificity of the assay using saliva as a testing matrix. Conclusions The development of this PCR allows nucleic acid amplification without the need to transfer amplicon from the first PCR step to a second reaction tube with nested primers, thus reducing both the chance of contamination and the time for analysis to PCR amplicon yield was adapted to lateral flow detection using the quantitative up-converting phosphor (UCP) reporter technology. This approach provides a basis for migration of the assay to a POC microfluidic format. In addition the assay was successfully evaluated with oral samples. Oral fluid collection provides a simple non-invasive method to collect clinical samples. PMID:23433252

  10. A Resource of Quantitative Functional Annotation for Homo sapiens Genes.

    Science.gov (United States)

    Taşan, Murat; Drabkin, Harold J; Beaver, John E; Chua, Hon Nian; Dunham, Julie; Tian, Weidong; Blake, Judith A; Roth, Frederick P

    2012-02-01

    The body of human genomic and proteomic evidence continues to grow at ever-increasing rates, while annotation efforts struggle to keep pace. A surprisingly small fraction of human genes have clear, documented associations with specific functions, and new functions continue to be found for characterized genes. Here we assembled an integrated collection of diverse genomic and proteomic data for 21,341 human genes and make quantitative associations of each to 4333 Gene Ontology terms. We combined guilt-by-profiling and guilt-by-association approaches to exploit features unique to the data types. Performance was evaluated by cross-validation, prospective validation, and by manual evaluation with the biological literature. Functional-linkage networks were also constructed, and their utility was demonstrated by identifying candidate genes related to a glioma FLN using a seed network from genome-wide association studies. Our annotations are presented-alongside existing validated annotations-in a publicly accessible and searchable web interface.

  11. Reference gene selection for quantitative gene expression studies during biological invasions: A test on multiple genes and tissues in a model ascidian Ciona savignyi.

    Science.gov (United States)

    Huang, Xuena; Gao, Yangchun; Jiang, Bei; Zhou, Zunchun; Zhan, Aibin

    2016-01-15

    As invasive species have successfully colonized a wide range of dramatically different local environments, they offer a good opportunity to study interactions between species and rapidly changing environments. Gene expression represents one of the primary and crucial mechanisms for rapid adaptation to local environments. Here, we aim to select reference genes for quantitative gene expression analysis based on quantitative Real-Time PCR (qRT-PCR) for a model invasive ascidian, Ciona savignyi. We analyzed the stability of ten candidate reference genes in three tissues (siphon, pharynx and intestine) under two key environmental stresses (temperature and salinity) in the marine realm based on three programs (geNorm, NormFinder and delta Ct method). Our results demonstrated only minor difference for stability rankings among the three methods. The use of different single reference gene might influence the data interpretation, while multiple reference genes could minimize possible errors. Therefore, reference gene combinations were recommended for different tissues - the optimal reference gene combination for siphon was RPS15 and RPL17 under temperature stress, and RPL17, UBQ and TubA under salinity treatment; for pharynx, TubB, TubA and RPL17 were the most stable genes under temperature stress, while TubB, TubA and UBQ were the best under salinity stress; for intestine, UBQ, RPS15 and RPL17 were the most reliable reference genes under both treatments. Our results suggest that the necessity of selection and test of reference genes for different tissues under varying environmental stresses. The results obtained here are expected to reveal mechanisms of gene expression-mediated invasion success using C. savignyi as a model species. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Cloning and evaluation of reference genes for quantitative real-time PCR analysis in Amorphophallus

    Directory of Open Access Journals (Sweden)

    Kai Wang

    2017-04-01

    Full Text Available Quantitative real-time reverse transcription PCR (RT-qPCR has been widely used in the detection and quantification of gene expression levels because of its high accuracy, sensitivity, and reproducibility as well as its large dynamic range. However, the reliability and accuracy of RT-qPCR depends on accurate transcript normalization using stably expressed reference genes. Amorphophallus is a perennial plant with a high content of konjac glucomannan (KGM in its corm. This crop has been used as a food source and as a traditional medicine for thousands of years. Without adequate knowledge of gene expression profiles, there has been no report of validated reference genes in Amorphophallus. In this study, nine genes that are usually used as reference genes in other crops were selected as candidate reference genes. These putative sequences of these genes Amorphophallus were cloned by the use of degenerate primers. The expression stability of each gene was assessed in different tissues and under two abiotic stresses (heat and waterlogging in A. albus and A. konjac. Three distinct algorithms were used to evaluate the expression stability of the candidate reference genes. The results demonstrated that EF1-a, EIF4A, H3 and UBQ were the best reference genes under heat stress in Amorphophallus. Furthermore, EF1-a, EIF4A, TUB, and RP were the best reference genes in waterlogged conditions. By comparing different tissues from all samples, we determined that EF1-α, EIF4A, and CYP were stable in these sets. In addition, the suitability of these reference genes was confirmed by validating the expression of a gene encoding the small heat shock protein SHSP, which is related to heat stress in Amorphophallus. In sum, EF1-α and EIF4A were the two best reference genes for normalizing mRNA levels in different tissues and under various stress treatments, and we suggest using one of these genes in combination with 1 or 2 reference genes associated with different

  13. Quantitative multiplex assay for simultaneous detection and identification of Indiana and New Jersey serotypes of vesicular stomatitis virus

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bruun; Uttenthal, Åse; Fernandez, Jovita

    2005-01-01

    In order to establish a rapid and reliable system for the detection of vesicular stomatitis virus (VSV), we developed a quantitative reverse transcription-PCR assay for the detection, quantification, and differentiation of the major serotypes, VSV Indiana and VSV New Jersey, using a closed......-tube multiplex format. The detection system is based on the recently invented primer-probe energy transfer (PriProET) system. A region of the gene encoding the RNA-dependent RNA polymerase was amplified by using VSV-specific primers in the presence of two serotype-specific fluorescent probes. By incorporating...... probes. The limits of detection ware found to be less than 10 50% tissue culture infective doses/ml for both serotypes. The diagnostic value of the new method was tested with clinical materials from experimentally infected pigs, and it is concluded that the method is a powerful tool for the rapid...

  14. Quantitative PCR analysis reveals a high incidence of large intragenic deletions in the FANCA gene in Spanish Fanconi anemia patients.

    Science.gov (United States)

    Callén, E; Tischkowitz, M D; Creus, A; Marcos, R; Bueren, J A; Casado, J A; Mathew, C G; Surrallés, J

    2004-01-01

    Fanconi anaemia is an autosomal recessive disease characterized by chromosome fragility, multiple congenital abnormalities, progressive bone marrow failure and a high predisposition to develop malignancies. Most of the Fanconi anaemia patients belong to complementation group FA-A due to mutations in the FANCA gene. This gene contains 43 exons along a 4.3-kb coding sequence with a very heterogeneous mutational spectrum that makes the mutation screening of FANCA a difficult task. In addition, as the FANCA gene is rich in Alu sequences, it was reported that Alu-mediated recombination led to large intragenic deletions that cannot be detected in heterozygous state by conventional PCR, SSCP analysis, or DNA sequencing. To overcome this problem, a method based on quantitative fluorescent multiplex PCR was proposed to detect intragenic deletions in FANCA involving the most frequently deleted exons (exons 5, 11, 17, 21 and 31). Here we apply the proposed method to detect intragenic deletions in 25 Spanish FA-A patients previously assigned to complementation group FA-A by FANCA cDNA retroviral transduction. A total of eight heterozygous deletions involving from one to more than 26 exons were detected. Thus, one third of the patients carried a large intragenic deletion that would have not been detected by conventional methods. These results are in agreement with previously published data and indicate that large intragenic deletions are one of the most frequent mutations leading to Fanconi anaemia. Consequently, this technology should be applied in future studies on FANCA to improve the mutation detection rate. Copyright 2003 S. Karger AG, Basel

  15. Quantitative profiling of housekeeping and Epstein-Barr virus gene transcription in Burkitt lymphoma cell lines using an oligonucleotide microarray

    Directory of Open Access Journals (Sweden)

    Niggli Felix K

    2006-06-01

    Full Text Available Abstract Background The Epstein-Barr virus (EBV is associated with lymphoid malignancies, including Burkitt's lymphoma (BL, and can transform human B cells in vitro. EBV-harboring cell lines are widely used to investigate lymphocyte transformation and oncogenesis. Qualitative EBV gene expression has been extensively described, but knowledge of quantitative transcription is lacking. We hypothesized that transcription levels of EBNA1, the gene essential for EBV persistence within an infected cell, are similar in BL cell lines. Results To compare quantitative gene transcription in the BL cell lines Namalwa, Raji, Akata, Jijoye, and P3HR1, we developed an oligonucleotide microarray chip, including 17 housekeeping genes, six latent EBV genes (EBNA1, EBNA2, EBNA3A, EBNA3C, LMP1, LMP2, and four lytic EBV genes (BZLF1, BXLF2, BKRF2, BZLF2, and used the cell line B95.8 as a reference for EBV gene transcription. Quantitative polymerase chain reaction assays were used to validate microarray results. We found that transcription levels of housekeeping genes differed considerably among BL cell lines. Using a selection of housekeeping genes with similar quantitative transcription in the tested cell lines to normalize EBV gene transcription data, we showed that transcription levels of EBNA1 were quite similar in very different BL cell lines, in contrast to transcription levels of other EBV genes. As demonstrated with Akata cells, the chip allowed us to accurately measure EBV gene transcription changes triggered by treatment interventions. Conclusion Our results suggest uniform EBNA1 transcription levels in BL and that microarray profiling can reveal novel insights on quantitative EBV gene transcription and its impact on lymphocyte biology.

  16. Detection of Quantitative Trait Loci Affecting Fat Deposition Traits in Pigs

    Directory of Open Access Journals (Sweden)

    B. H. Choi

    2012-11-01

    Full Text Available Quantitative trait loci (QTL associated with fat deposition traits in pigs are important gene positions in a chromosome that influence meat quality of pork. For QTL study, a three generation resource population was constructed from a cross between Korean native boars and Landrace sows. A total of 240 F2 animals from intercross of F1 were produced. 80 microsatellite markers covering chromosomes 1 to 10 were selected to genotype the resource population. Intervals between adjacent markers were approximately 19 cM. Linkage analysis was performed using CRIMAP software version 2.4 with a FIXED option to obtain the map distances. For QTL analysis, the public web-based software, QTL express (http://www.qtl.cap.ed.ac.uk was used. Two significant and two suggestive QTL were identified on SSC 6, 7, and 8 as affecting body fat and IMF traits. For QTL affecting IMF, the most significant association was detected between marker sw71 and sw1881 on SSC 6, and a suggestive QTL was identified between sw268 and sw205 on SSC8. These QTL accounted for 26.58% and 12.31% of the phenotypic variance, respectively. A significant QTL affecting IMF was detected at position 105 cM between markers sw71 and sw1881 on SSC 6.

  17. Identification of reference genes for quantitative expression analysis using large-scale RNA-seq data of Arabidopsis thaliana and model crop plants.

    Science.gov (United States)

    Kudo, Toru; Sasaki, Yohei; Terashima, Shin; Matsuda-Imai, Noriko; Takano, Tomoyuki; Saito, Misa; Kanno, Maasa; Ozaki, Soichi; Suwabe, Keita; Suzuki, Go; Watanabe, Masao; Matsuoka, Makoto; Takayama, Seiji; Yano, Kentaro

    2016-10-13

    In quantitative gene expression analysis, normalization using a reference gene as an internal control is frequently performed for appropriate interpretation of the results. Efforts have been devoted to exploring superior novel reference genes using microarray transcriptomic data and to evaluating commonly used reference genes by targeting analysis. However, because the number of specifically detectable genes is totally dependent on probe design in the microarray analysis, exploration using microarray data may miss some of the best choices for the reference genes. Recently emerging RNA sequencing (RNA-seq) provides an ideal resource for comprehensive exploration of reference genes since this method is capable of detecting all expressed genes, in principle including even unknown genes. We report the results of a comprehensive exploration of reference genes using public RNA-seq data from plants such as Arabidopsis thaliana (Arabidopsis), Glycine max (soybean), Solanum lycopersicum (tomato) and Oryza sativa (rice). To select reference genes suitable for the broadest experimental conditions possible, candidates were surveyed by the following four steps: (1) evaluation of the basal expression level of each gene in each experiment; (2) evaluation of the expression stability of each gene in each experiment; (3) evaluation of the expression stability of each gene across the experiments; and (4) selection of top-ranked genes, after ranking according to the number of experiments in which the gene was expressed stably. Employing this procedure, 13, 10, 12 and 21 top candidates for reference genes were proposed in Arabidopsis, soybean, tomato and rice, respectively. Microarray expression data confirmed that the expression of the proposed reference genes under broad experimental conditions was more stable than that of commonly used reference genes. These novel reference genes will be useful for analyzing gene expression profiles across experiments carried out under various

  18. Development of real-time PCR for detection and quantitation of Streptococcus parauberis.

    Science.gov (United States)

    Nguyen, T L; Lim, Y J; Kim, D-H; Austin, B

    2016-01-01

    Streptococcus parauberis is an increasing threat to aquaculture of olive flounder, Paralichthys olivaceus Temminck & Schlegel, in South Korea. We developed a real-time polymerase chain reaction (PCR) method using the TaqMan probe assay to detect and quantify S. parauberis by targeting the gyrB gene sequences, which are effective for molecular analysis of the genus Streptococcus. Our real-time PCR assay is capable of detecting 10 fg of genomic DNA per reaction. The intra- and interassay coefficient of variation (CV) values ranged from 0.42-1.95%, demonstrating that the assay has good reproducibility. There was not any cross-reactivity to Streptococcus iniae or to other streptococcal/lactococcal fish pathogens, such as S. agalactiae and Lactococcus garvieae, indicating that the assay is highly specific to S. parauberis. The results of the real-time PCR assay corresponded well to those of conventional culture assays for S. parauberis from inoculated tissue homogenates (r = 0.957; P < 0.05). Hence, this sensitive and specific real-time PCR is a valuable tool for diagnostic quantitation of S. parauberis in clinical samples. © 2014 John Wiley & Sons Ltd.

  19. Detection of the intercellular adhesion gene cluster (ica in clinical Staphylococcus aureus isolates

    Directory of Open Access Journals (Sweden)

    Namvar, Amirmorteza Ebrahimzadeh

    2013-04-01

    Full Text Available [english] is a major hospital and community pathogen having the aptitude to cause a wide variety of infections in men. The ability of microorganisms to produce biofilm facilitates them to withstand the host immune response and is recognized as one factor contributing to chronic or persistent infections. It was demonstrated that the -encoded genes lead to the biosynthesis of polysaccharide intercellular adhesion (PIA molecules, and may be involved in the accumulation phase of biofilm formation. Different studies have shown the decisive role of the gene as virulence factors in staphylococcal infections. This study was carried out to demonstrate the relationship between gene and production of slime layer in strains. Sixty strains were isolated from patients. The isolates were identified morphologically and biochemically following standard laboratory methods. After identification, the staphylococcal isolates were maintained in trypticase soy broth (TSB, to which 15% glycerol was added, and stored at –20°C. Slime formation and biofilm assay was monitored. A PCR assay was developed to identify the presence of (intercellular adhesion gene gene in all isolates. Thirty-nine slime producing colonies with CRA plates (65% formed black colors, the remaining 21 isolates were pink (35%. In the quantitative biofilm assay 35 (58% produced biofilm while 25 (42% isolates did not exhibit this property. All isolates were positive for detection of gene by PCR method. The interaction of and in the investigated isolates may be important in slime layer formation and biofilm phenomena.We propose PCR detection of the gene locus as a rapid and effective method to be used for discrimination between potentially virulent and nonvirulent isolates, with implications for therapeutic and preventive measures pertainin to the management of colonized indwelling catheters.

  20. Evaluation and validation of candidate endogenous control genes for real-time quantitative PCR studies of breast cancer

    Directory of Open Access Journals (Sweden)

    Miller Nicola

    2007-11-01

    quantitation of gene expression data, facilitating the detection of smaller changes in gene expression than otherwise possible. The combination identified here is a good candidate for use as a two-gene endogenous control in a broad spectrum of future research and diagnostic applications in breast cancer.

  1. Selection of reference genes for quantitative real-time PCR in bovine preimplantation embryos

    Directory of Open Access Journals (Sweden)

    Van Zeveren Alex

    2005-12-01

    Full Text Available Abstract Background Real-time quantitative PCR is a sensitive and very efficient technique to examine gene transcription patterns in preimplantation embryos, in order to gain information about embryo development and to optimize assisted reproductive technologies. Critical to the succesful application of real-time PCR is careful assay design, reaction optimization and validation to maximize sensitivity and accuracy. In most of the studies published GAPD, ACTB or 18S rRNA have been used as a single reference gene without prior verification of their expression stability. Normalization of the data using unstable controls can result in erroneous conclusions, especially when only one reference gene is used. Results In this study the transcription levels of 8 commonly used reference genes (ACTB, GAPD, Histone H2A, TBP, HPRT1, SDHA, YWHAZ and 18S rRNA were determined at different preimplantation stages (2-cell, 8-cell, blastocyst and hatched blastocyst in order to select the most stable genes to normalize quantitative data within different preimplantation embryo stages. Conclusion Using the geNorm application YWHAZ, GAPD and SDHA were found to be the most stable genes across the examined embryonic stages, while the commonly used ACTB was shown to be highly regulated. We recommend the use of the geometric mean of those 3 reference genes as an accurate normalization factor, which allows small expression differences to be reliably measured.

  2. A powerful score-based test statistic for detecting gene-gene co-association.

    Science.gov (United States)

    Xu, Jing; Yuan, Zhongshang; Ji, Jiadong; Zhang, Xiaoshuai; Li, Hongkai; Wu, Xuesen; Xue, Fuzhong; Liu, Yanxun

    2016-01-29

    The genetic variants identified by Genome-wide association study (GWAS) can only account for a small proportion of the total heritability for complex disease. The existence of gene-gene joint effects which contains the main effects and their co-association is one of the possible explanations for the "missing heritability" problems. Gene-gene co-association refers to the extent to which the joint effects of two genes differ from the main effects, not only due to the traditional interaction under nearly independent condition but the correlation between genes. Generally, genes tend to work collaboratively within specific pathway or network contributing to the disease and the specific disease-associated locus will often be highly correlated (e.g. single nucleotide polymorphisms (SNPs) in linkage disequilibrium). Therefore, we proposed a novel score-based statistic (SBS) as a gene-based method for detecting gene-gene co-association. Various simulations illustrate that, under different sample sizes, marginal effects of causal SNPs and co-association levels, the proposed SBS has the better performance than other existed methods including single SNP-based and principle component analysis (PCA)-based logistic regression model, the statistics based on canonical correlations (CCU), kernel canonical correlation analysis (KCCU), partial least squares path modeling (PLSPM) and delta-square (δ (2)) statistic. The real data analysis of rheumatoid arthritis (RA) further confirmed its advantages in practice. SBS is a powerful and efficient gene-based method for detecting gene-gene co-association.

  3. Complex pedigree analysis to detect quantitative trait loci in dairy cattle

    NARCIS (Netherlands)

    Bink, M.C.A.M.

    1998-01-01

    In dairy cattle, many quantitative traits of economic importance show phenotypic variation. For breeding purposes the analysis of this phenotypic variation and uncovering the contribution of genetic factors is very important. Usually, the individual gene effects contributing to the

  4. A review for detecting gene-gene interactions using machine learning methods in genetic epidemiology.

    Science.gov (United States)

    Koo, Ching Lee; Liew, Mei Jing; Mohamad, Mohd Saberi; Salleh, Abdul Hakim Mohamed

    2013-01-01

    Recently, the greatest statistical computational challenge in genetic epidemiology is to identify and characterize the genes that interact with other genes and environment factors that bring the effect on complex multifactorial disease. These gene-gene interactions are also denoted as epitasis in which this phenomenon cannot be solved by traditional statistical method due to the high dimensionality of the data and the occurrence of multiple polymorphism. Hence, there are several machine learning methods to solve such problems by identifying such susceptibility gene which are neural networks (NNs), support vector machine (SVM), and random forests (RFs) in such common and multifactorial disease. This paper gives an overview on machine learning methods, describing the methodology of each machine learning methods and its application in detecting gene-gene and gene-environment interactions. Lastly, this paper discussed each machine learning method and presents the strengths and weaknesses of each machine learning method in detecting gene-gene interactions in complex human disease.

  5. A Review for Detecting Gene-Gene Interactions Using Machine Learning Methods in Genetic Epidemiology

    Directory of Open Access Journals (Sweden)

    Ching Lee Koo

    2013-01-01

    Full Text Available Recently, the greatest statistical computational challenge in genetic epidemiology is to identify and characterize the genes that interact with other genes and environment factors that bring the effect on complex multifactorial disease. These gene-gene interactions are also denoted as epitasis in which this phenomenon cannot be solved by traditional statistical method due to the high dimensionality of the data and the occurrence of multiple polymorphism. Hence, there are several machine learning methods to solve such problems by identifying such susceptibility gene which are neural networks (NNs, support vector machine (SVM, and random forests (RFs in such common and multifactorial disease. This paper gives an overview on machine learning methods, describing the methodology of each machine learning methods and its application in detecting gene-gene and gene-environment interactions. Lastly, this paper discussed each machine learning method and presents the strengths and weaknesses of each machine learning method in detecting gene-gene interactions in complex human disease.

  6. Edge detection versus densitometry for assessing coronary stenting quantitatively

    NARCIS (Netherlands)

    B.H. Strauss (Bradley); Y. Juilliere; B.J.W.M. Rensing (Benno); J.H.C. Reiber (Johan); P.W.J.C. Serruys (Patrick)

    1991-01-01

    textabstractThe optimal method used to analyze quantitatively the immediate angiographic results of coronary stenting in the coronary arteries has not been studied. Accordingly, minimal luminal cross-sectional area was determined by 2 methods, edge detection and densitometry, in 19 patients who

  7. Detection of Gene Interactions Based on Syntactic Relations

    Directory of Open Access Journals (Sweden)

    Mi-Young Kim

    2008-01-01

    Full Text Available Interactions between proteins and genes are considered essential in the description of biomolecular phenomena, and networks of interactions are applied in a system's biology approach. Recently, many studies have sought to extract information from biomolecular text using natural language processing technology. Previous studies have asserted that linguistic information is useful for improving the detection of gene interactions. In particular, syntactic relations among linguistic information are good for detecting gene interactions. However, previous systems give a reasonably good precision but poor recall. To improve recall without sacrificing precision, this paper proposes a three-phase method for detecting gene interactions based on syntactic relations. In the first phase, we retrieve syntactic encapsulation categories for each candidate agent and target. In the second phase, we construct a verb list that indicates the nature of the interaction between pairs of genes. In the last phase, we determine direction rules to detect which of two genes is the agent or target. Even without biomolecular knowledge, our method performs reasonably well using a small training dataset. While the first phase contributes to improve recall, the second and third phases contribute to improve precision. In the experimental results using ICML 05 Workshop on Learning Language in Logic (LLL05 data, our proposed method gave an F-measure of 67.2% for the test data, significantly outperforming previous methods. We also describe the contribution of each phase to the performance.

  8. Gold Nanoparticle Labeling Based ICP-MS Detection/Measurement of Bacteria, and Their Quantitative Photothermal Destruction

    Science.gov (United States)

    Lin, Yunfeng

    2015-01-01

    Bacteria such as Salmonella and E. coli present a great challenge in public health care in today’s society. Protection of public safety against bacterial contamination and rapid diagnosis of infection require simple and fast assays for the detection and elimination of bacterial pathogens. After utilizing Salmonella DT104 as an example bacterial strain for our investigation, we report a rapid and sensitive assay for the qualitative and quantitative detection of bacteria by using antibody affinity binding, popcorn shaped gold nanoparticle (GNPOPs) labeling, surfance enchanced Raman spectroscopy (SERS), and inductively coupled plasma mass spectrometry (ICP-MS) detection. For qualitative analysis, our assay can detect Salmonella within 10 min by Raman spectroscopy; for quantitative analysis, our assay has the ability to measure as few as 100 Salmonella DT104 in a 1 mL sample (100 CFU/mL) within 40 min. Based on the quantitative detection, we investigated the quantitative destruction of Salmonella DT104, and the assay’s photothermal efficiency in order to reduce the amount of GNPOPs in the assay to ultimately to eliminate any potential side effects/toxicity to the surrounding cells in vivo. Results suggest that our assay may serve as a promising candidate for qualitative and quantitative detection and elimination of a variety of bacterial pathogens. PMID:26417447

  9. Spectrophotometric, colorimetric and visually detection of Pseudomonas aeruginosa ETA gene based gold nanoparticles DNA probe and endonuclease enzyme

    Science.gov (United States)

    Amini, Bahram; Kamali, Mehdi; Salouti, Mojtaba; Yaghmaei, Parichehreh

    2018-06-01

    Colorimetric DNA detection is preferred over other methods for clinical molecular diagnosis because it does not require expensive equipment. In the present study, the colorimetric method based on gold nanoparticles (GNPs) and endonuclease enzyme was used for the detection of P. aeruginosa ETA gene. Firstly, the primers and probe for P. aeruginosa exotoxin A (ETA) gene were designed and checked for specificity by the PCR method. Then, GNPs were synthesized using the citrate reduction method and conjugated with the prepared probe to develop the new nano-biosensor. Next, the extracted target DNA of the bacteria was added to GNP-probe complex to check its efficacy for P. aeruginosa ETA gene diagnosis. A decrease in absorbance was seen when GNP-probe-target DNA cleaved into the small fragments of BamHI endonuclease due to the weakened electrostatic interaction between GNPs and the shortened DNA. The right shift of the absorbance peak from 530 to 562 nm occurred after adding the endonuclease. It was measured using a UV-VIS absorption spectroscopy that indicates the existence of the P. aeruginosa ETA gene. Sensitivity was determined in the presence of different concentrations of target DNA of P. aeruginosa. The results obtained from the optimized conditions showed that the absorbance value has linear correlation with concentration of target DNA (R: 0.9850) in the range of 10-50 ng mL-1 with the limit detection of 9.899 ng mL-1. Thus, the specificity of the new method for detection of P. aeruginosa was established in comparison with other bacteria. Additionally, the designed assay was quantitatively applied to detect the P. aeruginosa ETA gene from 103 to 108 CFU mL-1 in real samples with a detection limit of 320 CFU mL-1.

  10. Development of a duplex droplet digital PCR assay for absolute quantitative detection of "Candidatus Liberibacter asiaticus".

    Science.gov (United States)

    Selvaraj, Vijayanandraj; Maheshwari, Yogita; Hajeri, Subhas; Chen, Jianchi; McCollum, Thomas Greg; Yokomi, Raymond

    2018-01-01

    Huanglongbing (HLB, citrus greening) is a devastating citrus disease affecting citrus production worldwide. It is associated with the bacterium "Candidatus Liberibacter asiaticus" (CLas) and is vectored by the Asian citrus psyllid (ACP). Currently, diagnosis of CLas in regulatory samples is based on real-time quantitative polymerase chain reaction (qPCR) using 16S rRNA gene specific primers/probe. The detection of CLas using qPCR is challenging due to low pathogen titer and uneven distribution in infected plants and exacerbated by sampling issues and presence of inhibitors. This study evaluated a duplex droplet digital polymerase chain reaction (ddPCR) using multi-copy gene targets, 16S and RNR, to simultaneously detect CLas DNA targets in the same sample for unambiguous detection of the HLB pathogen in DNA extracts from citrus leaves and ACP. Standard curve analyses on tenfold dilution series with plasmid, citrus leaf and ACP DNA showed that both ddPCR and qPCR exhibited good linearity and efficiency in the duplex assay. CLas-infected low titer samples were used to validate the duplex ddPCR and qPCR performance and demonstrated that detection rate is higher when both 16S and RNR primers were used in duplex assay. However, the receiver operating characteristic analysis indicated that area under the curve for RNR primer was significantly broader, compared to 16S primers for CLas detection at low target titer. The absolute quantification of CLas at variable titers was reproducible and repeatable for both primer sets and the ddPCR showed higher resilience to PCR inhibitors with citrus leaf and ACP extracts. Hence, the resultant duplex ddPCR assay resulted in a significantly improved detection platform for diagnosis of CLas in samples with low pathogen titer.

  11. Glycosyltransferases as marker genes for the quantitative polymerase chain reaction-based detection of circulating tumour cells from blood samples of patients with breast cancer undergoing adjuvant therapy.

    Science.gov (United States)

    Kölbl, Alexandra C; Hiller, Roman A; Ilmer, Mathias; Liesche, Friederike; Heublein, Sabine; Schröder, Lennard; Hutter, Stefan; Friese, Klaus; Jeschke, Udo; Andergassen, Ulrich

    2015-08-01

    Altered glycosylation is a predominant feature of tumour cells; it serves for cell adhesion and detachment, respectively, and facilitates the immune escape of these cells. Therefore changes in the expression of glycosyltransferase genes could help to identify circulating tumour cells (CTCs) in the blood samples of cancer patients using a quantitative polymerase chain reaction (PCR) approach. Blood samples of healthy donors were inoculated with certain numbers of established breast cancer cell line cells, thus creating a model system. These samples were analysed by quantitative PCR for the expression of six different glycosyltransferase genes. The three genes with the best results in the model system were consecutively applied to samples from adjuvant breast cancer patients and of healthy donors. FUT3 and GALNT6 showed the highest increase in relative expression, while GALNT6 and ST3GAL3 were the first to reach statistically significant different ∆CT-values comparing the sample with and without addition of tumour cells. These three genes were applied to patient samples, but did not show any significant results that may suggest the presence of CTCs in the blood. Although the relative expression of some of the glycosyltransferase genes exhibited reasonable results in the model system, their application to breast cancer patient samples will have to be further improved, e.g. by co-analysis of patient blood samples by gold-standard methods.

  12. Reference Gene Screening for Analyzing Gene Expression Across Goat Tissue

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2013-12-01

    Full Text Available Real-time quantitative PCR (qRT-PCR is one of the important methods for investigating the changes in mRNA expression levels in cells and tissues. Selection of the proper reference genes is very important when calibrating the results of real-time quantitative PCR. Studies on the selection of reference genes in goat tissues are limited, despite the economic importance of their meat and dairy products. We used real-time quantitative PCR to detect the expression levels of eight reference gene candidates (18S, TBP, HMBS, YWHAZ, ACTB, HPRT1, GAPDH and EEF1A2 in ten tissues types sourced from Boer goats. The optimal reference gene combination was selected according to the results determined by geNorm, NormFinder and Bestkeeper software packages. The analyses showed that tissue is an important variability factor in genes expression stability. When all tissues were considered, 18S, TBP and HMBS is the optimal reference combination for calibrating quantitative PCR analysis of gene expression from goat tissues. Dividing data set by tissues, ACTB was the most stable in stomach, small intestine and ovary, 18S in heart and spleen, HMBS in uterus and lung, TBP in liver, HPRT1 in kidney and GAPDH in muscle. Overall, this study provided valuable information about the goat reference genes that can be used in order to perform a proper normalisation when relative quantification by qRT-PCR studies is undertaken.

  13. Quantitative Molecular Detection of Putative Periodontal Pathogens in Clinically Healthy and Periodontally Diseased Subjects

    Science.gov (United States)

    Göhler, André; Hetzer, Adrian; Holtfreter, Birte; Geisel, Marie Henrike; Schmidt, Carsten Oliver; Steinmetz, Ivo; Kocher, Thomas

    2014-01-01

    Periodontitis is a multi-microbial oral infection with high prevalence among adults. Putative oral pathogens are commonly found in periodontally diseased individuals. However, these organisms can be also detected in the oral cavity of healthy subjects. This leads to the hypothesis, that alterations in the proportion of these organisms relative to the total amount of oral microorganisms, namely their abundance, rather than their simple presence might be important in the transition from health to disease. Therefore, we developed a quantitative molecular method to determine the abundance of various oral microorganisms and the portion of bacterial and archaeal nucleic acid relative to the total nucleic acid extracted from individual samples. We applied quantitative real-time PCRs targeting single-copy genes of periodontal bacteria and 16S-rRNA genes of Bacteria and Archaea. Testing tongue scrapings of 88 matched pairs of periodontally diseased and healthy subjects revealed a significantly higher abundance of P. gingivalis and a higher total bacterial abundance in diseased subjects. In fully adjusted models the risk of being periodontally diseased was significantly higher in subjects with high P. gingivalis and total bacterial abundance. Interestingly, we found that moderate abundances of A. actinomycetemcomitans were associated with reduced risk for periodontal disease compared to subjects with low abundances, whereas for high abundances, this protective effect leveled off. Moderate archaeal abundances were health associated compared to subjects with low abundances. In conclusion, our methodological approach unraveled associations of the oral flora with periodontal disease, which would have gone undetected if only qualitative data had been determined. PMID:25029268

  14. Evaluation of reference genes for gene expression analysis using quantitative RT-PCR in Azospirillum brasilense.

    Science.gov (United States)

    McMillan, Mary; Pereg, Lily

    2014-01-01

    Azospirillum brasilense is a nitrogen fixing bacterium that has been shown to have various beneficial effects on plant growth and yield. Under normal conditions A. brasilense exists in a motile flagellated form, which, under starvation or stress conditions, can undergo differentiation into an encapsulated, cyst-like form. Quantitative RT-PCR can be used to analyse changes in gene expression during this differentiation process. The accuracy of quantification of mRNA levels by qRT-PCR relies on the normalisation of data against stably expressed reference genes. No suitable set of reference genes has yet been described for A. brasilense. Here we evaluated the expression of ten candidate reference genes (16S rRNA, gapB, glyA, gyrA, proC, pykA, recA, recF, rpoD, and tpiA) in wild-type and mutant A. brasilense strains under different culture conditions, including conditions that induce differentiation. Analysis with the software programs BestKeeper, NormFinder and GeNorm indicated that gyrA, glyA and recA are the most stably expressed reference genes in A. brasilense. The results also suggested that the use of two reference genes (gyrA and glyA) is sufficient for effective normalisation of qRT-PCR data.

  15. Evaluation of reference genes for gene expression analysis using quantitative RT-PCR in Azospirillum brasilense.

    Directory of Open Access Journals (Sweden)

    Mary McMillan

    Full Text Available Azospirillum brasilense is a nitrogen fixing bacterium that has been shown to have various beneficial effects on plant growth and yield. Under normal conditions A. brasilense exists in a motile flagellated form, which, under starvation or stress conditions, can undergo differentiation into an encapsulated, cyst-like form. Quantitative RT-PCR can be used to analyse changes in gene expression during this differentiation process. The accuracy of quantification of mRNA levels by qRT-PCR relies on the normalisation of data against stably expressed reference genes. No suitable set of reference genes has yet been described for A. brasilense. Here we evaluated the expression of ten candidate reference genes (16S rRNA, gapB, glyA, gyrA, proC, pykA, recA, recF, rpoD, and tpiA in wild-type and mutant A. brasilense strains under different culture conditions, including conditions that induce differentiation. Analysis with the software programs BestKeeper, NormFinder and GeNorm indicated that gyrA, glyA and recA are the most stably expressed reference genes in A. brasilense. The results also suggested that the use of two reference genes (gyrA and glyA is sufficient for effective normalisation of qRT-PCR data.

  16. Antibiotic Resistome: Improving Detection and Quantification Accuracy for Comparative Metagenomics.

    Science.gov (United States)

    Elbehery, Ali H A; Aziz, Ramy K; Siam, Rania

    2016-04-01

    The unprecedented rise of life-threatening antibiotic resistance (AR), combined with the unparalleled advances in DNA sequencing of genomes and metagenomes, has pushed the need for in silico detection of the resistance potential of clinical and environmental metagenomic samples through the quantification of AR genes (i.e., genes conferring antibiotic resistance). Therefore, determining an optimal methodology to quantitatively and accurately assess AR genes in a given environment is pivotal. Here, we optimized and improved existing AR detection methodologies from metagenomic datasets to properly consider AR-generating mutations in antibiotic target genes. Through comparative metagenomic analysis of previously published AR gene abundance in three publicly available metagenomes, we illustrate how mutation-generated resistance genes are either falsely assigned or neglected, which alters the detection and quantitation of the antibiotic resistome. In addition, we inspected factors influencing the outcome of AR gene quantification using metagenome simulation experiments, and identified that genome size, AR gene length, total number of metagenomics reads and selected sequencing platforms had pronounced effects on the level of detected AR. In conclusion, our proposed improvements in the current methodologies for accurate AR detection and resistome assessment show reliable results when tested on real and simulated metagenomic datasets.

  17. Identification of internal control genes for quantitative expression analysis by real-time PCR in bovine peripheral lymphocytes.

    Science.gov (United States)

    Spalenza, Veronica; Girolami, Flavia; Bevilacqua, Claudia; Riondato, Fulvio; Rasero, Roberto; Nebbia, Carlo; Sacchi, Paola; Martin, Patrice

    2011-09-01

    Gene expression studies in blood cells, particularly lymphocytes, are useful for monitoring potential exposure to toxicants or environmental pollutants in humans and livestock species. Quantitative PCR is the method of choice for obtaining accurate quantification of mRNA transcripts although variations in the amount of starting material, enzymatic efficiency, and the presence of inhibitors can lead to evaluation errors. As a result, normalization of data is of crucial importance. The most common approach is the use of endogenous reference genes as an internal control, whose expression should ideally not vary among individuals and under different experimental conditions. The accurate selection of reference genes is therefore an important step in interpreting quantitative PCR studies. Since no systematic investigation in bovine lymphocytes has been performed, the aim of the present study was to assess the expression stability of seven candidate reference genes in circulating lymphocytes collected from 15 dairy cows. Following the characterization by flow cytometric analysis of the cell populations obtained from blood through a density gradient procedure, three popular softwares were used to evaluate the gene expression data. The results showed that two genes are sufficient for normalization of quantitative PCR studies in cattle lymphocytes and that YWAHZ, S24 and PPIA are the most stable genes. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. FY 2000 Project of developing international standards for supporting new industries. Standardization of systems for detecting gene recombination products; 2000 nendo shinki sangyo shiengata kokusai hyojunka kaihatsu jigyo seika hokokusho. Idenshi kumikae seihin kenshutsu system no hyojunka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Described herein are the FY 2000 results of the studies on the basic conditions for gene recombination products, and methods of determining content of the purchased gene recombination products in agricultural products, conducted to promote the standardization of the gene recombination product detection systems. Soybean is taken up as the gene recombination product to be studied, in which the samples containing the gene recombination product at 5, 0.5, 0.1 and 0% are prepared, and qualitatively analyzed by the DNA extraction and PCR method. No band is detected. For the quantitative examination by the real-time PCR method, the SYBRGeen, Taqman and hybridization probe methods are used to study the PCR conditions. The sample DNA extracted by the DNA Extraction kit for GMO Detection Ver.2 from the sample containing the RoundupReady{sup TM} soybean is quantitatively analyzed by the real-time PCR method for GMO content, which has produced the results for promotion of the standardization. (NEDO)

  19. Supramolecular assembly affording a ratiometric two-photon fluorescent nanoprobe for quantitative detection and bioimaging.

    Science.gov (United States)

    Wang, Peng; Zhang, Cheng; Liu, Hong-Wen; Xiong, Mengyi; Yin, Sheng-Yan; Yang, Yue; Hu, Xiao-Xiao; Yin, Xia; Zhang, Xiao-Bing; Tan, Weihong

    2017-12-01

    Fluorescence quantitative analyses for vital biomolecules are in great demand in biomedical science owing to their unique detection advantages with rapid, sensitive, non-damaging and specific identification. However, available fluorescence strategies for quantitative detection are usually hard to design and achieve. Inspired by supramolecular chemistry, a two-photon-excited fluorescent supramolecular nanoplatform ( TPSNP ) was designed for quantitative analysis with three parts: host molecules (β-CD polymers), a guest fluorophore of sensing probes (Np-Ad) and a guest internal reference (NpRh-Ad). In this strategy, the TPSNP possesses the merits of (i) improved water-solubility and biocompatibility; (ii) increased tissue penetration depth for bioimaging by two-photon excitation; (iii) quantitative and tunable assembly of functional guest molecules to obtain optimized detection conditions; (iv) a common approach to avoid the limitation of complicated design by adjustment of sensing probes; and (v) accurate quantitative analysis by virtue of reference molecules. As a proof-of-concept, we utilized the two-photon fluorescent probe NHS-Ad-based TPSNP-1 to realize accurate quantitative analysis of hydrogen sulfide (H 2 S), with high sensitivity and good selectivity in live cells, deep tissues and ex vivo -dissected organs, suggesting that the TPSNP is an ideal quantitative indicator for clinical samples. What's more, TPSNP will pave the way for designing and preparing advanced supramolecular sensors for biosensing and biomedicine.

  20. Limits of qualitative detection and quantitative determination

    International Nuclear Information System (INIS)

    Curie, L.A.

    1976-01-01

    The fact that one can find a series of disagreeing and limiting definitions of the detection limit leads to the reinvestigation of the problems of signal detection and signal processing in analytical and nuclear chemistry. Three cut-off levels were fixed: Lsub(C) - the net signal level (sensitivity of the equipment), above which an observed signal can be reliably recognized as 'detected'; Lsub(D) - the 'true' net signal level, from which one can a priori expect a detection; Lsub(Q) - the level at which the measuring accuracy is sufficient for quantitative determination. Exact definition equations as well as a series of working formulae are given for the general analytical case and for the investigation of radioactivity. As it is assumed that the radioactivity of the Poisson distribution is determined, it is dealt with in such a manner that precise limits can be derived for short-lived and long-lived radionuclides with or without disturbance. The fundamentals are made clear by simple examples for spectrophotometry and radioactivity and by a complicated example for activation analysis in which one must choose between alternative nuclear reactions. (orig./LH) [de

  1. Accounting for imperfect detection in ecology: a quantitative review.

    Science.gov (United States)

    Kellner, Kenneth F; Swihart, Robert K

    2014-01-01

    Detection in studies of species abundance and distribution is often imperfect. Assuming perfect detection introduces bias into estimation that can weaken inference upon which understanding and policy are based. Despite availability of numerous methods designed to address this assumption, many refereed papers in ecology fail to account for non-detection error. We conducted a quantitative literature review of 537 ecological articles to measure the degree to which studies of different taxa, at various scales, and over time have accounted for imperfect detection. Overall, just 23% of articles accounted for imperfect detection. The probability that an article incorporated imperfect detection increased with time and varied among taxa studied; studies of vertebrates were more likely to incorporate imperfect detection. Among articles that reported detection probability, 70% contained per-survey estimates of detection that were less than 0.5. For articles in which constancy of detection was tested, 86% reported significant variation. We hope that our findings prompt more ecologists to consider carefully the detection process when designing studies and analyzing results, especially for sub-disciplines where incorporation of imperfect detection in study design and analysis so far has been lacking.

  2. Quantitative Digital Tomosynthesis Mammography for Improved Breast Cancer Detection and Diagnosis

    National Research Council Canada - National Science Library

    Zhang, Yiheng

    2008-01-01

    .... When fully developed, the DTM can provide radiologists improved quantitative, three-dimensional volumetric information of the breast tissue, and assist in breast cancer detection and diagnosis...

  3. Quantitative Trait Locus Mapping of Salt Tolerance and Identification of Salt-Tolerant Genes in Brassica napus L

    Directory of Open Access Journals (Sweden)

    Lina Lang

    2017-06-01

    Full Text Available Salinity stress is one of typical abiotic stresses that seriously limit crop production. In this study, a genetic linkage map based on 532 molecular markers covering 1341.1 cM was constructed to identify the loci associated with salt tolerance in Brassica napus. Up to 45 quantitative trait loci (QTLs for 10 indicators were identified in the F2:3 populations. These QTLs can account for 4.80–51.14% of the phenotypic variation. A major QTL, qSPAD5 on LG5 associated with chlorophyll can be detected in three replicates. Two intron polymorphic (IP markers in this QTL region were developed successfully to narrow down the QTL location to a region of 390 kb. A salt tolerance related gene Bra003640 was primary identified as the candidate gene in this region. The full length of the candidate gene was 1,063 bp containing three exons and two introns in B. napus L. The open reading frame (ORF is 867 bp and encodes 287 amino acids. Three amino acid differences (34, 54, and 83 in the conserved domain (B-box were identified. RT-qPCR analysis showed that the gene expression had significant difference between the two parents. The study laid great foundation for salt tolerance related gene mapping and cloning in B. napus L.

  4. Reverse transcription quantitative real-time polymerase chain reaction reference genes in the spared nerve injury model of neuropathic pain: validation and literature search.

    Science.gov (United States)

    Piller, Nicolas; Decosterd, Isabelle; Suter, Marc R

    2013-07-10

    The reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is a widely used, highly sensitive laboratory technique to rapidly and easily detect, identify and quantify gene expression. Reliable RT-qPCR data necessitates accurate normalization with validated control genes (reference genes) whose expression is constant in all studied conditions. This stability has to be demonstrated.We performed a literature search for studies using quantitative or semi-quantitative PCR in the rat spared nerve injury (SNI) model of neuropathic pain to verify whether any reference genes had previously been validated. We then analyzed the stability over time of 7 commonly used reference genes in the nervous system - specifically in the spinal cord dorsal horn and the dorsal root ganglion (DRG). These were: Actin beta (Actb), Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal proteins 18S (18S), L13a (RPL13a) and L29 (RPL29), hypoxanthine phosphoribosyltransferase 1 (HPRT1) and hydroxymethylbilane synthase (HMBS). We compared the candidate genes and established a stability ranking using the geNorm algorithm. Finally, we assessed the number of reference genes necessary for accurate normalization in this neuropathic pain model. We found GAPDH, HMBS, Actb, HPRT1 and 18S cited as reference genes in literature on studies using the SNI model. Only HPRT1 and 18S had been once previously demonstrated as stable in RT-qPCR arrays. All the genes tested in this study, using the geNorm algorithm, presented gene stability values (M-value) acceptable enough for them to qualify as potential reference genes in both DRG and spinal cord. Using the coefficient of variation, 18S failed the 50% cut-off with a value of 61% in the DRG. The two most stable genes in the dorsal horn were RPL29 and RPL13a; in the DRG they were HPRT1 and Actb. Using a 0.15 cut-off for pairwise variations we found that any pair of stable reference gene was sufficient for the normalization process

  5. Efficient strategy for detecting gene × gene joint action and its application in schizophrenia.

    Science.gov (United States)

    Won, Sungho; Kwon, Min-Seok; Mattheisen, Manuel; Park, Suyeon; Park, Changsoon; Kihara, Daisuke; Cichon, Sven; Ophoff, Roel; Nöthen, Markus M; Rietschel, Marcella; Baur, Max; Uitterlinden, Andre G; Hofmann, A; Lange, Christoph

    2014-01-01

    We propose a new approach to detect gene × gene joint action in genome-wide association studies (GWASs) for case-control designs. This approach offers an exhaustive search for all two-way joint action (including, as a special case, single gene action) that is computationally feasible at the genome-wide level and has reasonable statistical power under most genetic models. We found that the presence of any gene × gene joint action may imply differences in three types of genetic components: the minor allele frequencies and the amounts of Hardy-Weinberg disequilibrium may differ between cases and controls, and between the two genetic loci the degree of linkage disequilibrium may differ between cases and controls. Using Fisher's method, it is possible to combine the different sources of genetic information in an overall test for detecting gene × gene joint action. The proposed statistical analysis is efficient and its simplicity makes it applicable to GWASs. In the current study, we applied the proposed approach to a GWAS on schizophrenia and found several potential gene × gene interactions. Our application illustrates the practical advantage of the proposed method. © 2013 WILEY PERIODICALS, INC.

  6. Quantitation of multiple myeloma oncogene 1/interferon-regulatory factor 4 gene expression in malignant B-cell proliferations and normal leukocytes.

    Science.gov (United States)

    Yamada, M; Asanuma, K; Kobayashi, D; Moriai, R; Yajima, T; Yagihashi, A; Yamamori, S; Watanabe, N

    2001-01-01

    We studied multiple myeloma oncogene 1/interferon-regulatory factor 4 (MUM1/IRF4) mRNA expression in various malignant human hematopoietic cell lines and normal leukocyte fractions. A quantitative reverse transcription-polymerase chain reaction was used to assess expression and chromosomes were examined for anomalies by fluorescent in situ hybridization. Among 12 cell lines examined, mRNA transcripts were expressed only in B-lymphoblastic and myeloma cell lines. Myeloma cells and malignant cell lines derived from mature B cells expressed more transcript than cell lines derived from immature B cells. Transcript levels, however, showed no association with chromosomal translocations. Expression in B-cell fractions from healthy donors was much less than in the malignant cells. In addition, MUM1/IRF4 mRNA expressed in samples from patients with acute lymphoblastic leukemia derived from B cells but not T cells. Our results suggested that MUM1/IRF4 gene expression is related to stage of differentiation of malignant B cells and they indicated the possibility that the quantitative analysis of MUM1/IRF4 gene is a useful tool for detection of malignant B-cell proliferations in clinical laboratory tests.

  7. A Quantitative Polymerase Chain Reaction Assay for the Detection and Quantification of Epizootic Epitheliotropic Disease Virus (EEDV; Salmonid Herpesvirus 3).

    Science.gov (United States)

    Glenney, Gavin W; Barbash, Patricia A; Coll, John A

    2016-03-01

    Epizootic epitheliotropic disease virus (EEDV; salmonid herpesvirus [SalHV3]; family Alloherpesviridae) causes a systemic disease of juvenile and yearling Lake Trout Salvelinus namaycush. No cell lines are currently available for the culture and propagation of EEDV, so primary diagnosis is limited to PCR and electron microscopy. To better understand the pervasiveness of EEDV (carrier or latent state of infection) in domesticated and wild Lake Trout populations, we developed a sensitive TaqMan quantitative PCR (qPCR) assay to detect the presence of the EEDV terminase gene in Lake Trout tissues. This assay was able to detect a linear standard curve over nine logs of plasmid dilution and was sensitive enough to detect single-digit copies of EEDV. The efficiency of the PCR assay was 99.4 ± 0.06% (mean ± SD), with a 95% confidence limit of 0.0296 (R(2) = 0.994). Methods were successfully applied to collect preliminary data from a number of species and water bodies in the states of Pennsylvania, New York, and Vermont, indicating that EEDV is more common in wild fish than previously known. In addition, through the development of this qPCR assay, we detected EEDV in a new salmonid species, the Cisco Coregonus artedi. The qPCR assay was unexpectedly able to detect two additional herpesviruses, the Atlantic Salmon papillomatosis virus (ASPV; SalHV4) and the Namaycush herpesvirus (NamHV; SalHV5), which both share high sequence identity with the EEDV terminase gene. With these unexpected findings, we subsequently designed three primer sets to confirm initial TaqMan qPCR assay positives and to differentiate among EEDV, ASPV, and NamHV by detecting the glycoprotein genes via SYBR Green qPCR. Received April 20, 2015; accepted November 10, 2015.

  8. The detection of large deletions or duplications in genomic DNA.

    Science.gov (United States)

    Armour, J A L; Barton, D E; Cockburn, D J; Taylor, G R

    2002-11-01

    While methods for the detection of point mutations and small insertions or deletions in genomic DNA are well established, the detection of larger (>100 bp) genomic duplications or deletions can be more difficult. Most mutation scanning methods use PCR as a first step, but the subsequent analyses are usually qualitative rather than quantitative. Gene dosage methods based on PCR need to be quantitative (i.e., they should report molar quantities of starting material) or semi-quantitative (i.e., they should report gene dosage relative to an internal standard). Without some sort of quantitation, heterozygous deletions and duplications may be overlooked and therefore be under-ascertained. Gene dosage methods provide the additional benefit of reporting allele drop-out in the PCR. This could impact on SNP surveys, where large-scale genotyping may miss null alleles. Here we review recent developments in techniques for the detection of this type of mutation and compare their relative strengths and weaknesses. We emphasize that comprehensive mutation analysis should include scanning for large insertions and deletions and duplications. Copyright 2002 Wiley-Liss, Inc.

  9. Efficient strategy for detecting gene × gene joint action and its application in schizophrenia

    NARCIS (Netherlands)

    Won, Sungho; Kwon, Min-Seok; Mattheisen, Manuel; Park, Suyeon; Park, Changsoon; Kihara, Daisuke; Cichon, Sven; Ophoff, Roel; Nöthen, Markus M.; Rietschel, Marcella; Baur, Max; Uitterlinden, Andre G.; Hofmann, A.; Lange, Christoph; Kahn, René S.; Linszen, Don H.; van Os, Jim; Wiersma, Durk; Bruggeman, Richard; Cahn, Wiepke; de Haan, Lieuwe; Krabbendam, Lydia; Myin-Germeys, Inez

    2014-01-01

    We propose a new approach to detect gene × gene joint action in genome-wide association studies (GWASs) for case-control designs. This approach offers an exhaustive search for all two-way joint action (including, as a special case, single gene action) that is computationally feasible at the

  10. Single-Cell Based Quantitative Assay of Chromosome Transmission Fidelity.

    Science.gov (United States)

    Zhu, Jin; Heinecke, Dominic; Mulla, Wahid A; Bradford, William D; Rubinstein, Boris; Box, Andrew; Haug, Jeffrey S; Li, Rong

    2015-03-30

    Errors in mitosis are a primary cause of chromosome instability (CIN), generating aneuploid progeny cells. Whereas a variety of factors can influence CIN, under most conditions mitotic errors are rare events that have been difficult to measure accurately. Here we report a green fluorescent protein-based quantitative chromosome transmission fidelity (qCTF) assay in budding yeast that allows sensitive and quantitative detection of CIN and can be easily adapted to high-throughput analysis. Using the qCTF assay, we performed genome-wide quantitative profiling of genes that affect CIN in a dosage-dependent manner and identified genes that elevate CIN when either increased (icCIN) or decreased in copy number (dcCIN). Unexpectedly, qCTF screening also revealed genes whose change in copy number quantitatively suppress CIN, suggesting that the basal error rate of the wild-type genome is not minimized, but rather, may have evolved toward an optimal level that balances both stability and low-level karyotype variation for evolutionary adaptation. Copyright © 2015 Zhu et al.

  11. Detection of virulence-associated genes in Brucella melitensis ...

    African Journals Online (AJOL)

    The current study involved detection of three virulence genes (bvfA, virB, ure) by PCR in 52 isolates of Brucella melitensis biovar 3, recovered from different animal species (28 sheep, 10 goats, 9 cattle and 5 buffaloes). Of the 52 B. melitensis strains; 48 (92.3%) isolates carried bvfA genes, 51 (98.1%) isolates had virB genes ...

  12. Evaluation of quantitative sacroiliac scintigraphy for the early detection of sacroiliitis

    International Nuclear Information System (INIS)

    Prakash, S.; Malaviya, A.N.; Gopinath, P.G.; Bhargava, S.; Mehra, N.K.

    1983-01-01

    Quantitative sacroliac scintigraphy (QSS) was evaluated for the detection of sacroiliac (SI) joint disease before the appearance of radiographic/changes. QSS with fractional quantitation was done in 13 age- and sexmatched controls and 28 patients with different grades of radiographic sacroliitis. The SI index of each joint was considered separately. The mean SI index values in patients with grade I radiographic sacroiliitis (1.54) and HLA-B27 positive patients with low back pain (1.50) were significantly (P 0.05). Thus a large overlap between the normal and abnormal ranges of sacroiliac ratios limits the utility of quantitative sacroiliac scintigraphy for the early diagnosis of sacroiliac joint disease. (orig.)

  13. Detection of Lsr2 gene of Mycobacterium leprae in nasal mucus

    Directory of Open Access Journals (Sweden)

    Luiz Antonio Custodio

    2012-06-01

    Full Text Available In the present study, nasal mucus from patients with leprosy were analyzed by PCR using specific primers for Lsr2 gene of Mycobacterium leprae. The presence of Lsr2 gene in the nasal mucus was detected in 25.80% of patients with paucibacillari leprosy, and 23.07% of contacts. Despite the absence of clinical features in the contact individuals, it was possible to detect the presence of Lsr2 gene in the nasal mucus of these individuals. Therefore, PCR detection of M. leprae targeting Lsr2 gene using nasal mucus samples could contribute to early diagnosis of leprosy.

  14. Detection and quantitative analysis of actin mRNA by in situ hybridization with an oligodeoxynucleotide probe

    International Nuclear Information System (INIS)

    Taneja, K.; Singer, R.

    1987-01-01

    In situ hybridization is a useful method for localizing specific nucleic acid sequences intracellularly and for studying regulation of gene expression. Recently synthetic oligonucleotides have been successfully used as probes in this technique. Since they can be made easily to specific nucleic acid regions, they may be the best approach for analysis of a gene family of highly conserved sequences. They have analyzed these probes for the development of an in situ hybridization method. Oligonucleotides were made to different regions of chick beta-actin mRNA and used for detection of these sequences in a culture of chicken fibroblasts and myoblasts. They found that synthetic DNAs have different efficiencies of hybridization, indicating that not all target sequences are equivalent. They have investigated in detail a particular probe to the actin mRNA coding region and have optimized hybridization parameters. When hybridization was quantitated it was found that an oligonucleotide end labelled with 35 S or 32 P was capable of detecting several thousand messages per cell with a signal-to-noise ratio of 10:1. In situ hybridization confirmed the specificity of the hybridization as well as the background level. Increase in the number of oligonucleotides used should increase the signal-to-noise ratio-proportionately. Under particular circumstances the specificity of oligonucleotides make them an important reagent for in situ hybridization

  15. Detection of Colorectal Cancer by a Quantitative Fluorescence Determination of DNA Amplification in Stool

    Directory of Open Access Journals (Sweden)

    Daniele Calistri

    2004-09-01

    Full Text Available DNA amplification of exfoliated cells in stool repre sents an inexpensive and rapid test, but has only 50% to 60% sensitivity. A new quantitative method, calle( fluorescence long DNA, was developed and validate( in our laboratory on stool obtained from 86 patient., with primary colorectal cancer and from 62 health individuals. It consists of the amplification of stoo DNA with fluorescence primers and the quantification of the amplification using a standard curve. Results are arbitrarily expressed in nanograms. The potential of thi new method compared to the conventional approact was analyzed in a subgroup of 94 individuals (51 patients and 38 healthy volunteers. In the presen series, DNA amplification analysis showed a specific ity of 97% and a sensitivity of only 50%. Conversely fluorescence DNA evaluation, using the best cutoff o 25 ng, showed a sensitivity of about 76% and a spec ificity of 93%. Similar sensitivity was observed regard less of Dukes stage, tumor location, and size, thu., also permitting the detection of early-stage tumors The present study seems to indicate that quantitative fluorescence DNA determination in stool successfully identifies colorectal cancer patients with a sensitivity comparable, if not superior, to that of multiple gene analysis but at a lower cost and in a shorter time.

  16. Quantitative Real-time PCR detection of putrescine-producing Gram-negative bacteria

    Directory of Open Access Journals (Sweden)

    Kristýna Maršálková

    2017-01-01

    Full Text Available Biogenic amines are indispensable components of living cells; nevertheless these compounds could be toxic for human health in higher concentrations. Putrescine is supposed to be the major biogenic amine associated with microbial food spoilage. Development of reliable, fast and culture-independent molecular methods to detect bacteria producing biogenic amines deserves the attention, especially of the food industry in purpose to protect health. The objective of this study was to verify the newly designed primer sets for detection of two inducible genes adiA and speF together in Salmonella enterica and Escherichia coli genome by Real-time PCR. These forenamed genes encode enzymes in the metabolic pathway which leads to production of putrescine in Gram-negative bacteria. Moreover, relative expression of these genes was studied in E. coli CCM 3954 strain using Real-time PCR. In this study, sets of new primers for the detection two inducible genes (speF and adiA in Salmonella enterica and E. coli by Real-time PCR were designed and tested. Amplification efficiency of a Real-time PCR was calculated from the slope of the standard curves (adiA, speF, gapA. An efficiency in a range from 95 to 105 % for all tested reactions was achieved. The gene expression (R of adiA and speF genes in E. coli was varied depending on culture conditions. The highest gene expression of adiA and speF was observed at 6, 24 and 36 h (RadiA ~ 3, 5, 9; RspeF ~11, 10, 9; respectively after initiation of growth of this bacteria in nutrient broth medium enchired with amino acids. The results show that these primers could be used for relative quantification analysis of E. coli.

  17. Response of a diuron-degrading community to diuron exposure assessed by real-time quantitative PCR monitoring of phenylurea hydrolase A and B encoding genes

    OpenAIRE

    Pesce , S.; Beguet , J.; Rouard , N.; Devers Lamrani , M.; Martin Laurent , F.

    2013-01-01

    A real-time quantitative PCR method was developed to detect and quantify phenlylurea hydrolase genes' (puhA and puhB) sequences from environmental DNA samples to assess diuron-degrading genetic potential in some soil and sediment microbial communities. In the soil communities, mineralization rates (determined with [ring-14C]-labeled diuron) were linked to diuron-degrading genetic potentials estimated from puhB number copies, which increased following repeated diuron treatments. In the sedimen...

  18. 21 CFR 866.5900 - Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation detection system.

    Science.gov (United States)

    2010-04-01

    ... regulator (CFTR) gene mutation detection system. 866.5900 Section 866.5900 Food and Drugs FOOD AND DRUG...) gene mutation detection system. (a) Identification. The CFTR gene mutation detection system is a device... Guidance Document: CFTR Gene Mutation Detection System.” See § 866.1(e) for the availability of this...

  19. Quantitative gene expression profiling of CD45+ and CD45- skeletal muscle-derived side population cells

    DEFF Research Database (Denmark)

    Ditte Caroline Andersen, Ditte Caroline; Kristiansen, Gitte Qvist; Jensen, Line

    2012-01-01

    The skeletal muscle-derived side population (mSP) which highly excludes Hoechst 33342 is composed of CD45(+) and CD45(-) subpopulations; yet, rareness of mSP cells in general has complicated extensive quantitative analysis of gene expression profiles in primarily isolated mSP cells. Here, we desc...... a satellite cell subpopulation) remain in the mSPCD45(-) fraction, and we show that these cells express high levels of many of the known myogenic precursor/stem cell related markers, including Pax7 and Myf5.......The skeletal muscle-derived side population (mSP) which highly excludes Hoechst 33342 is composed of CD45(+) and CD45(-) subpopulations; yet, rareness of mSP cells in general has complicated extensive quantitative analysis of gene expression profiles in primarily isolated mSP cells. Here, we...... describe the isolation of adult mouse normal skeletal muscle residing SPCD45(+) and SPCD45(-) cells from a parent mononuclear muscle-derived cell (MDC) population. Relative quantitative real time PCR (RT-PCR) of 64 genes revealed that mSPCD45(-) compared with mSPCD45(+) was enriched for cells expressing...

  20. Selection of suitable reference genes for normalization of genes of interest in canine soft tissue sarcomas using quantitative real-time polymerase chain reaction

    DEFF Research Database (Denmark)

    Zornhagen, K. W.; Kristensen, A. T.; Hansen, Anders Elias

    2015-01-01

    Quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR) is a sensitive technique for quantifying gene expression. Stably expressed reference genes are necessary for normalization of RT-qPCR data. Only a few articles have been published on reference genes in canine tumours....... The objective of this study was to demonstrate how to identify suitable reference genes for normalization of genes of interest in canine soft tissue sarcomas using RT-qPCR. Primer pairs for 17 potential reference genes were designed and tested in archival tumour biopsies from six dogs. The geNorm algorithm...

  1. Detection of horizontal transfer of individual genes by anomalous oligomer frequencies

    Directory of Open Access Journals (Sweden)

    Elhai Jeff

    2012-06-01

    Full Text Available Abstract Background Understanding the history of life requires that we understand the transfer of genetic material across phylogenetic boundaries. Detecting genes that were acquired by means other than vertical descent is a basic step in that process. Detection by discordant phylogenies is computationally expensive and not always definitive. Many have used easily computed compositional features as an alternative procedure. However, different compositional methods produce different predictions, and the effectiveness of any method is not well established. Results The ability of octamer frequency comparisons to detect genes artificially seeded in cyanobacterial genomes was markedly increased by using as a training set those genes that are highly conserved over all bacteria. Using a subset of octamer frequencies in such tests also increased effectiveness, but this depended on the specific target genome and the source of the contaminating genes. The presence of high frequency octamers and the GC content of the contaminating genes were important considerations. A method comprising best practices from these tests was devised, the Core Gene Similarity (CGS method, and it performed better than simple octamer frequency analysis, codon bias, or GC contrasts in detecting seeded genes or naturally occurring transposons. From a comparison of predictions with phylogenetic trees, it appears that the effectiveness of the method is confined to horizontal transfer events that have occurred recently in evolutionary time. Conclusions The CGS method may be an improvement over existing surrogate methods to detect genes of foreign origin.

  2. Rapid detection of Pseudomonas aeruginosa from positive blood cultures by quantitative PCR

    Directory of Open Access Journals (Sweden)

    Cattoir Vincent

    2010-08-01

    Full Text Available Abstract Background Pseudomonas aeruginosa is responsible for numerous bloodstream infections associated with severe adverse outcomes in case of inappropriate initial antimicrobial therapy. The present study was aimed to develop a novel quantitative PCR (qPCR assay, using ecfX as the specific target gene, for the rapid and accurate identification of P. aeruginosa from positive blood cultures (BCs. Methods Over the period August 2008 to June 2009, 100 BC bottles positive for gram-negative bacilli were tested in order to evaluate performances of the qPCR technique with conventional methods as gold standard (i.e. culture and phenotypic identification. Results Thirty-three strains of P. aeruginosa, 53 strains of Enterobactericaeae, nine strains of Stenotrophomonas maltophilia and two other gram-negative species were isolated while 3 BCs were polymicrobial including one mixture containing P. aeruginosa. All P. aeruginosa clinical isolates were detected by qPCR except a single strain in mixed culture. Performances of the qPCR technique were: specificity, 100%; positive predictive value, 100%; negative predictive value, 98.5%; and sensitivity, 97%. Conclusions This reliable technique may offer a rapid (

  3. Culture-free, highly sensitive, quantitative detection of bacteria from minimally processed samples using fluorescence imaging by smartphone.

    Science.gov (United States)

    Shrivastava, Sajal; Lee, Won-Il; Lee, Nae-Eung

    2018-06-30

    A critical unmet need in the diagnosis of bacterial infections, which remain a major cause of human morbidity and mortality, is the detection of scarce bacterial pathogens in a variety of samples in a rapid and quantitative manner. Herein, we demonstrate smartphone-based detection of Staphylococcus aureus in a culture-free, rapid, quantitative manner from minimally processed liquid samples using aptamer-functionalized fluorescent magnetic nanoparticles. The tagged S. aureus cells were magnetically captured in a detection cassette, and then fluorescence was imaged using a smartphone camera with a light-emitting diode as the excitation source. Our results showed quantitative detection capability with a minimum detectable concentration as low as 10 cfu/ml by counting individual bacteria cells, efficiently capturing S. aureus cells directly from a peanut milk sample within 10 min. When the selectivity of detection was investigated using samples spiked with other pathogenic bacteria, no significant non-specific detection occurred. Furthermore, strains of S. aureus from various origins showed comparable results, ensuring that the approach can be widely adopted. Therefore, the quantitative fluorescence imaging platform on a smartphone could allow on-site detection of bacteria, providing great potential assistance during major infectious disease outbreaks in remote and resource-limited settings. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Development and validation of quantitative PCR for detection of Terrapene herpesvirus 1 utilizing free-ranging eastern box turtles (Terrapene carolina carolina).

    Science.gov (United States)

    Kane, Lauren P; Bunick, David; Abd-Eldaim, Mohamed; Dzhaman, Elena; Allender, Matthew C

    2016-06-01

    Diseases that affect the upper respiratory tract (URT) in chelonians have been well described as a significant contributor of morbidity and mortality. Specifically, herpesviruses are common pathogens in captive chelonians worldwide, but their importance on free-ranging populations is less well known. Historical methods for the diagnosis of herpesvirus infections include virus isolation and conventional PCR. Real-time PCR has become an essential tool for detection and quantitation of many pathogens, but has not yet been developed for herpesviruses in box turtles. Two quantitative real-time TaqMan PCR assays, TerHV58 and TerHV64, were developed targeting the DNA polymerase gene of Terrapene herpesvirus 1 (TerHV1). The assay detected a viral DNA segment cloned within a plasmid with 10-fold serial dilutions from 1.04 × 10(7) to 1.04 × 10(1) viral copies per reaction. Even though both primers had acceptable levels of efficiency and variation, TerHV58 was utilized to test clinical samples based on less variation and increased efficiency. This assay detected as few as 10 viral copies per reaction and should be utilized in free-ranging and captive box turtles to aid in the characterization of the epidemiology of this disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Development and Use of a Real-Time Quantitative PCR Method for Detecting and Quantifying Equol-Producing Bacteria in Human Faecal Samples and Slurry Cultures

    Directory of Open Access Journals (Sweden)

    Lucía Vázquez

    2017-06-01

    Full Text Available This work introduces a novel real-time quantitative PCR (qPCR protocol for detecting and quantifying equol-producing bacteria. To this end, two sets of primers targeting the dihydrodaidzein reductase (ddr and tetrahydrodaidzein reductase (tdr genes, which are involved in the synthesis of equol, were designed. The primers showed high specificity and sensitivity when used to examine DNA from control bacteria, such as Slackia isoflavoniconvertens, Slackia equolifaciens, Asaccharobacter celatus, Adlercreutzia equolifaciens, and Enterorhabdus mucosicola. To demonstrate the validity and reliability of the protocol, it was used to detect and quantify equol-producing bacteria in human faecal samples and their derived slurry cultures. These samples were provided by 18 menopausal women under treatment of menopause symptoms with a soy isoflavone concentrate, among whom three were known to be equol-producers given the prior detection of the molecule in their urine. The tdr gene was detected in the faeces of all these equol-producing women at about 4–5 log10 copies per gram of faeces. In contrast, the ddr gene was only amplified in the faecal samples of two of these three women, suggesting the presence in the non-amplified sample of reductase genes unrelated to those known to be involved in equol formation and used for primer design in this study. When tdr and ddr were present in the same sample, similar copy numbers of the two genes were recorded. However, no significant increase in the copy number of equol-related genes along isoflavone treatment was observed. Surprisingly, positive amplification for both tdr and ddr genes was obtained in faecal samples and derived slurry cultures from two non-equol producing women, suggesting the genes could be non-functional or the daidzein metabolized to other compounds in samples from these two women. This novel qPCR tool provides a technique for monitoring gut microbes that produce equol in humans. Monitoring equol

  6. Evaluation of four endogenous reference genes and their real-time PCR assays for common wheat quantification in GMOs detection.

    Science.gov (United States)

    Huang, Huali; Cheng, Fang; Wang, Ruoan; Zhang, Dabing; Yang, Litao

    2013-01-01

    Proper selection of endogenous reference genes and their real-time PCR assays is quite important in genetically modified organisms (GMOs) detection. To find a suitable endogenous reference gene and its real-time PCR assay for common wheat (Triticum aestivum L.) DNA content or copy number quantification, four previously reported wheat endogenous reference genes and their real-time PCR assays were comprehensively evaluated for the target gene sequence variation and their real-time PCR performance among 37 common wheat lines. Three SNPs were observed in the PKABA1 and ALMT1 genes, and these SNPs significantly decreased the efficiency of real-time PCR amplification. GeNorm analysis of the real-time PCR performance of each gene among common wheat lines showed that the Waxy-D1 assay had the lowest M values with the best stability among all tested lines. All results indicated that the Waxy-D1 gene and its real-time PCR assay were most suitable to be used as an endogenous reference gene for common wheat DNA content quantification. The validated Waxy-D1 gene assay will be useful in establishing accurate and creditable qualitative and quantitative PCR analysis of GM wheat.

  7. Evaluation of four endogenous reference genes and their real-time PCR assays for common wheat quantification in GMOs detection.

    Directory of Open Access Journals (Sweden)

    Huali Huang

    Full Text Available Proper selection of endogenous reference genes and their real-time PCR assays is quite important in genetically modified organisms (GMOs detection. To find a suitable endogenous reference gene and its real-time PCR assay for common wheat (Triticum aestivum L. DNA content or copy number quantification, four previously reported wheat endogenous reference genes and their real-time PCR assays were comprehensively evaluated for the target gene sequence variation and their real-time PCR performance among 37 common wheat lines. Three SNPs were observed in the PKABA1 and ALMT1 genes, and these SNPs significantly decreased the efficiency of real-time PCR amplification. GeNorm analysis of the real-time PCR performance of each gene among common wheat lines showed that the Waxy-D1 assay had the lowest M values with the best stability among all tested lines. All results indicated that the Waxy-D1 gene and its real-time PCR assay were most suitable to be used as an endogenous reference gene for common wheat DNA content quantification. The validated Waxy-D1 gene assay will be useful in establishing accurate and creditable qualitative and quantitative PCR analysis of GM wheat.

  8. Evaluation of Four Endogenous Reference Genes and Their Real-Time PCR Assays for Common Wheat Quantification in GMOs Detection

    Science.gov (United States)

    Huang, Huali; Cheng, Fang; Wang, Ruoan; Zhang, Dabing; Yang, Litao

    2013-01-01

    Proper selection of endogenous reference genes and their real-time PCR assays is quite important in genetically modified organisms (GMOs) detection. To find a suitable endogenous reference gene and its real-time PCR assay for common wheat (Triticum aestivum L.) DNA content or copy number quantification, four previously reported wheat endogenous reference genes and their real-time PCR assays were comprehensively evaluated for the target gene sequence variation and their real-time PCR performance among 37 common wheat lines. Three SNPs were observed in the PKABA1 and ALMT1 genes, and these SNPs significantly decreased the efficiency of real-time PCR amplification. GeNorm analysis of the real-time PCR performance of each gene among common wheat lines showed that the Waxy-D1 assay had the lowest M values with the best stability among all tested lines. All results indicated that the Waxy-D1 gene and its real-time PCR assay were most suitable to be used as an endogenous reference gene for common wheat DNA content quantification. The validated Waxy-D1 gene assay will be useful in establishing accurate and creditable qualitative and quantitative PCR analysis of GM wheat. PMID:24098735

  9. Immunoliposome-PCR: a generic ultrasensitive quantitative antigen detection system

    Directory of Open Access Journals (Sweden)

    He Junkun

    2012-06-01

    Full Text Available Abstract Background The accurate quantification of antigens at low concentrations over a wide dynamic range is needed for identifying biomarkers associated with disease and detecting protein interactions in high-throughput microarrays used in proteomics. Here we report the development of an ultrasensitive quantitative assay format called immunoliposome polymerase chain reaction (ILPCR that fulfills these requirements. This method uses a liposome, with reporter DNA encapsulated inside and biotin-labeled polyethylene glycol (PEG phospholipid conjugates incorporated into the outer surface of the liposome, as a detection reagent. The antigenic target is immobilized in the well of a microplate by a capture antibody and the liposome detection reagent is then coupled to a biotin-labeled second antibody through a NeutrAvidin bridge. The liposome is ruptured to release the reporter DNA, which serves as a surrogate to quantify the protein target using real-time PCR. Results A liposome detection reagent was prepared, which consisted of a population of liposomes ~120 nm in diameter with each liposome possessing ~800 accessible biotin receptors and ~220 encapsulated reporters. This liposome detection reagent was used in an assay to quantify the concentration of carcinoembryonic antigen (CEA in human serum. This ILPCR assay exhibited a linear dose–response curve from 10-10 M to 10-16 M CEA. Within this range the assay coefficient of variance was Conclusions The ILPCR assay has several advantages over other immuno-PCR methods. The reporter DNA and biotin-labeled PEG phospholipids spontaneously incorporate into the liposomes as they form, simplifying preparation of the detection reagent. Encapsulation of the reporter inside the liposomes allows nonspecific DNA in the assay medium to be degraded with DNase I prior to quantification of the encapsulated reporter by PCR, which reduces false-positive results and improves quantitative accuracy. The ability to

  10. A polymerase chain reaction-based methodology to detect gene doping.

    Science.gov (United States)

    Carter, Adam; Flueck, Martin

    2012-04-01

    The non-therapeutic use of genes to enhance athletic performance (gene doping) is a novel threat to the world of sports. Skeletal muscle is a prime target of gene therapy and we asked whether we can develop a test system to produce and detect gene doping. Towards this end, we introduced a plasmid (pCMV-FAK, 3.8 kb, 50 μg) for constitutive expression of the chicken homologue for the regulator of muscle growth, focal adhesion kinase (FAK), via gene electro transfer in the anti-gravitational muscle, m. soleus, or gastrocnemius medialis of rats. Activation of hypertrophy signalling was monitored by assessing the ribosomal kinase p70S6K and muscle fibre cross section. Detectability of the introduced plasmid was monitored with polymerase chain reaction in deoxyribonucleic acids (DNA) from transfected muscle and serum. Muscle transfection with pCMV-FAK elevated FAK expression 7- and 73-fold, respectively, and increased mean cross section by 52 and 16% in targeted muscle fibres of soleus and gastrocnemius muscle 7 days after gene electro transfer. Concomitantly p70S6K content was increased in transfected soleus muscle (+110%). Detection of the exogenous plasmid sequence was possible in DNA and cDNA of muscle until 7 days after transfection, but not in serum except close to the site of plasmid deposition, 1 h after injection and surgery. The findings suggest that the reliable detection of gene doping in the immoral athlete is not possible unless a change in the current practice of tissue sampling is applied involving the collection of muscle biopsy close to the site of gene injection.

  11. Multiplex enrichment quantitative PCR (ME-qPCR): a high-throughput, highly sensitive detection method for GMO identification.

    Science.gov (United States)

    Fu, Wei; Zhu, Pengyu; Wei, Shuang; Zhixin, Du; Wang, Chenguang; Wu, Xiyang; Li, Feiwu; Zhu, Shuifang

    2017-04-01

    Among all of the high-throughput detection methods, PCR-based methodologies are regarded as the most cost-efficient and feasible methodologies compared with the next-generation sequencing or ChIP-based methods. However, the PCR-based methods can only achieve multiplex detection up to 15-plex due to limitations imposed by the multiplex primer interactions. The detection throughput cannot meet the demands of high-throughput detection, such as SNP or gene expression analysis. Therefore, in our study, we have developed a new high-throughput PCR-based detection method, multiplex enrichment quantitative PCR (ME-qPCR), which is a combination of qPCR and nested PCR. The GMO content detection results in our study showed that ME-qPCR could achieve high-throughput detection up to 26-plex. Compared to the original qPCR, the Ct values of ME-qPCR were lower for the same group, which showed that ME-qPCR sensitivity is higher than the original qPCR. The absolute limit of detection for ME-qPCR could achieve levels as low as a single copy of the plant genome. Moreover, the specificity results showed that no cross-amplification occurred for irrelevant GMO events. After evaluation of all of the parameters, a practical evaluation was performed with different foods. The more stable amplification results, compared to qPCR, showed that ME-qPCR was suitable for GMO detection in foods. In conclusion, ME-qPCR achieved sensitive, high-throughput GMO detection in complex substrates, such as crops or food samples. In the future, ME-qPCR-based GMO content identification may positively impact SNP analysis or multiplex gene expression of food or agricultural samples. Graphical abstract For the first-step amplification, four primers (A, B, C, and D) have been added into the reaction volume. In this manner, four kinds of amplicons have been generated. All of these four amplicons could be regarded as the target of second-step PCR. For the second-step amplification, three parallels have been taken for

  12. Characterization of Novel Gene Yr79 and Four Additional Quantitative Trait Loci for All-Stage and High-Temperature Adult-Plant Resistance to Stripe Rust in Spring Wheat PI 182103.

    Science.gov (United States)

    Feng, Junyan; Wang, Meinan; See, Deven R; Chao, Shiaoman; Zheng, Youliang; Chen, Xianming

    2018-06-01

    Stripe rust, caused by Puccinia striiformis f. sp. tritici, is an important disease of wheat worldwide. Exploring new resistance genes is essential for breeding resistant wheat cultivars. PI 182103, a spring wheat landrace originally from Pakistan, has shown a high level of resistance to stripe rust in fields for many years, but genes for resistance to stripe rust in the variety have not been studied. To map the resistance gene(s) in PI 182103, 185 recombinant inbred lines (RILs) were developed from a cross with Avocet Susceptible (AvS). The RIL population was genotyped with simple sequence repeat (SSR) and single nucleotide polymorphism markers and tested with races PST-100 and PST-114 at the seedling stage under controlled greenhouse conditions and at the adult-plant stage in fields at Pullman and Mt. Vernon, Washington under natural infection by the stripe rust pathogen in 2011, 2012, and 2013. A total of five quantitative trait loci (QTL) were detected. QyrPI182103.wgp-2AS and QyrPI182103.wgp-3AL were detected at the seedling stage, QyrPI182103.wgp-4DL was detected only in Mt. Vernon field tests, and QyrPI182103.wgp-5BS was detected in both seedling and field tests. QyrPI182103.wgp-7BL was identified as a high-temperature adult-plant resistance gene and detected in all field tests. Interactions among the QTL were mostly additive, but some negative interactions were detected. The 7BL QTL was mapped in chromosomal bin 7BL 0.40 to 0.45 and identified as a new gene, permanently designated as Yr79. SSR markers Xbarc72 and Xwmc335 flanking the Yr79 locus were highly polymorphic in various wheat genotypes, indicating that the molecular markers are useful for incorporating the new gene for potentially durable stripe rust resistance into new wheat cultivars.

  13. Detection and quantification of Renibacterium salmoninarum DNA in salmonid tissues by real-time quantitative polymerase chain reaction analysis

    Science.gov (United States)

    Chase, D.M.; Elliott, D.G.; Pascho, R.J.

    2006-01-01

    Renibacterium salmoninarum is an important salmonid pathogen that is difficult to culture. We developed and assessed a real-time, quantitative, polymerase chain reaction (qPCR) assay for the detection and enumeration of R. salmoninarum. The qPCR is based on TaqMan technology and amplifies a 69-base pair (bp) region of the gene encoding the major soluble antigen (MSA) of R. salmoninarum. The qPCR assay consistently detected as few as 5 R. salmoninarum cells per reaction in kidney tissue. The specificity of the qPCR was confirmed by testing the DNA extracts from a panel of microorganisms that were either common fish pathogens or reported to cause false-positive reactions in the enzyme-linked immunosorbent assay (ELISA). Kidney samples from 38 juvenile Chinook salmon (Oncorhynchus tshawytscha) in a naturally infected population were examined by real-time qPCR, a nested PCR, and ELISA, and prevalences of R. salmoninarum detected were 71, 66, and 71%, respectively. The qPCR should be a valuable tool for evaluating the R. salmoninarum infection status of salmonids.

  14. A Simple and Computationally Efficient Approach to Multifactor Dimensionality Reduction Analysis of Gene-Gene Interactions for Quantitative Traits

    OpenAIRE

    Gui, Jiang; Moore, Jason H.; Williams, Scott M.; Andrews, Peter; Hillege, Hans L.; van der Harst, Pim; Navis, Gerjan; Van Gilst, Wiek H.; Asselbergs, Folkert W.; Gilbert-Diamond, Diane

    2013-01-01

    We present an extension of the two-class multifactor dimensionality reduction (MDR) algorithm that enables detection and characterization of epistatic SNP-SNP interactions in the context of a quantitative trait. The proposed Quantitative MDR (QMDR) method handles continuous data by modifying MDR's constructive induction algorithm to use a T-test. QMDR replaces the balanced accuracy metric with a T-test statistic as the score to determine the best interaction model. We used a simulation to ide...

  15. Identification of Reference Genes for Normalizing Quantitative Real-Time PCR in Urechis unicinctus

    Science.gov (United States)

    Bai, Yajiao; Zhou, Di; Wei, Maokai; Xie, Yueyang; Gao, Beibei; Qin, Zhenkui; Zhang, Zhifeng

    2018-06-01

    The reverse transcription quantitative real-time PCR (RT-qPCR) has become one of the most important techniques of studying gene expression. A set of valid reference genes are essential for the accurate normalization of data. In this study, five candidate genes were analyzed with geNorm, NormFinder, BestKeeper and ΔCt methods to identify the genes stably expressed in echiuran Urechis unicinctus, an important commercial marine benthic worm, under abiotic (sulfide stress) and normal (adult tissues, embryos and larvae at different development stages) conditions. The comprehensive results indicated that the expression of TBP was the most stable at sulfide stress and in developmental process, while the expression of EF- 1- α was the most stable at sulfide stress and in various tissues. TBP and EF- 1- α were recommended as a suitable reference gene combination to accurately normalize the expression of target genes at sulfide stress; and EF- 1- α, TBP and TUB were considered as a potential reference gene combination for normalizing the expression of target genes in different tissues. No suitable gene combination was obtained among these five candidate genes for normalizing the expression of target genes for developmental process of U. unicinctus. Our results provided a valuable support for quantifying gene expression using RT-qPCR in U. unicinctus.

  16. Gene-wide analysis detects two new susceptibility genes for Alzheimer's disease.

    Science.gov (United States)

    Escott-Price, Valentina; Bellenguez, Céline; Wang, Li-San; Choi, Seung-Hoan; Harold, Denise; Jones, Lesley; Holmans, Peter; Gerrish, Amy; Vedernikov, Alexey; Richards, Alexander; DeStefano, Anita L; Lambert, Jean-Charles; Ibrahim-Verbaas, Carla A; Naj, Adam C; Sims, Rebecca; Jun, Gyungah; Bis, Joshua C; Beecham, Gary W; Grenier-Boley, Benjamin; Russo, Giancarlo; Thornton-Wells, Tricia A; Denning, Nicola; Smith, Albert V; Chouraki, Vincent; Thomas, Charlene; Ikram, M Arfan; Zelenika, Diana; Vardarajan, Badri N; Kamatani, Yoichiro; Lin, Chiao-Feng; Schmidt, Helena; Kunkle, Brian; Dunstan, Melanie L; Vronskaya, Maria; Johnson, Andrew D; Ruiz, Agustin; Bihoreau, Marie-Thérèse; Reitz, Christiane; Pasquier, Florence; Hollingworth, Paul; Hanon, Olivier; Fitzpatrick, Annette L; Buxbaum, Joseph D; Campion, Dominique; Crane, Paul K; Baldwin, Clinton; Becker, Tim; Gudnason, Vilmundur; Cruchaga, Carlos; Craig, David; Amin, Najaf; Berr, Claudine; Lopez, Oscar L; De Jager, Philip L; Deramecourt, Vincent; Johnston, Janet A; Evans, Denis; Lovestone, Simon; Letenneur, Luc; Hernández, Isabel; Rubinsztein, David C; Eiriksdottir, Gudny; Sleegers, Kristel; Goate, Alison M; Fiévet, Nathalie; Huentelman, Matthew J; Gill, Michael; Brown, Kristelle; Kamboh, M Ilyas; Keller, Lina; Barberger-Gateau, Pascale; McGuinness, Bernadette; Larson, Eric B; Myers, Amanda J; Dufouil, Carole; Todd, Stephen; Wallon, David; Love, Seth; Rogaeva, Ekaterina; Gallacher, John; George-Hyslop, Peter St; Clarimon, Jordi; Lleo, Alberto; Bayer, Anthony; Tsuang, Debby W; Yu, Lei; Tsolaki, Magda; Bossù, Paola; Spalletta, Gianfranco; Proitsi, Petra; Collinge, John; Sorbi, Sandro; Garcia, Florentino Sanchez; Fox, Nick C; Hardy, John; Naranjo, Maria Candida Deniz; Bosco, Paolo; Clarke, Robert; Brayne, Carol; Galimberti, Daniela; Scarpini, Elio; Bonuccelli, Ubaldo; Mancuso, Michelangelo; Siciliano, Gabriele; Moebus, Susanne; Mecocci, Patrizia; Zompo, Maria Del; Maier, Wolfgang; Hampel, Harald; Pilotto, Alberto; Frank-García, Ana; Panza, Francesco; Solfrizzi, Vincenzo; Caffarra, Paolo; Nacmias, Benedetta; Perry, William; Mayhaus, Manuel; Lannfelt, Lars; Hakonarson, Hakon; Pichler, Sabrina; Carrasquillo, Minerva M; Ingelsson, Martin; Beekly, Duane; Alvarez, Victoria; Zou, Fanggeng; Valladares, Otto; Younkin, Steven G; Coto, Eliecer; Hamilton-Nelson, Kara L; Gu, Wei; Razquin, Cristina; Pastor, Pau; Mateo, Ignacio; Owen, Michael J; Faber, Kelley M; Jonsson, Palmi V; Combarros, Onofre; O'Donovan, Michael C; Cantwell, Laura B; Soininen, Hilkka; Blacker, Deborah; Mead, Simon; Mosley, Thomas H; Bennett, David A; Harris, Tamara B; Fratiglioni, Laura; Holmes, Clive; de Bruijn, Renee F A G; Passmore, Peter; Montine, Thomas J; Bettens, Karolien; Rotter, Jerome I; Brice, Alexis; Morgan, Kevin; Foroud, Tatiana M; Kukull, Walter A; Hannequin, Didier; Powell, John F; Nalls, Michael A; Ritchie, Karen; Lunetta, Kathryn L; Kauwe, John S K; Boerwinkle, Eric; Riemenschneider, Matthias; Boada, Mercè; Hiltunen, Mikko; Martin, Eden R; Schmidt, Reinhold; Rujescu, Dan; Dartigues, Jean-François; Mayeux, Richard; Tzourio, Christophe; Hofman, Albert; Nöthen, Markus M; Graff, Caroline; Psaty, Bruce M; Haines, Jonathan L; Lathrop, Mark; Pericak-Vance, Margaret A; Launer, Lenore J; Van Broeckhoven, Christine; Farrer, Lindsay A; van Duijn, Cornelia M; Ramirez, Alfredo; Seshadri, Sudha; Schellenberg, Gerard D; Amouyel, Philippe; Williams, Julie

    2014-01-01

    Alzheimer's disease is a common debilitating dementia with known heritability, for which 20 late onset susceptibility loci have been identified, but more remain to be discovered. This study sought to identify new susceptibility genes, using an alternative gene-wide analytical approach which tests for patterns of association within genes, in the powerful genome-wide association dataset of the International Genomics of Alzheimer's Project Consortium, comprising over 7 m genotypes from 25,580 Alzheimer's cases and 48,466 controls. In addition to earlier reported genes, we detected genome-wide significant loci on chromosomes 8 (TP53INP1, p = 1.4×10-6) and 14 (IGHV1-67 p = 7.9×10-8) which indexed novel susceptibility loci. The additional genes identified in this study, have an array of functions previously implicated in Alzheimer's disease, including aspects of energy metabolism, protein degradation and the immune system and add further weight to these pathways as potential therapeutic targets in Alzheimer's disease.

  17. Gene-wide analysis detects two new susceptibility genes for Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Valentina Escott-Price

    Full Text Available Alzheimer's disease is a common debilitating dementia with known heritability, for which 20 late onset susceptibility loci have been identified, but more remain to be discovered. This study sought to identify new susceptibility genes, using an alternative gene-wide analytical approach which tests for patterns of association within genes, in the powerful genome-wide association dataset of the International Genomics of Alzheimer's Project Consortium, comprising over 7 m genotypes from 25,580 Alzheimer's cases and 48,466 controls.In addition to earlier reported genes, we detected genome-wide significant loci on chromosomes 8 (TP53INP1, p = 1.4×10-6 and 14 (IGHV1-67 p = 7.9×10-8 which indexed novel susceptibility loci.The additional genes identified in this study, have an array of functions previously implicated in Alzheimer's disease, including aspects of energy metabolism, protein degradation and the immune system and add further weight to these pathways as potential therapeutic targets in Alzheimer's disease.

  18. Small Submersible Robust Microflow Cytometer for Quantitative Detection of Phytoplankton, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Translume will develop an extremely robust, inexpensive micro flow cytometer (mFCM) for quantitative detection of phytoplankton. This device will be designed to be...

  19. Detection and sequence analysis of accessory gene regulator genes of Staphylococcus pseudintermedius isolates

    Directory of Open Access Journals (Sweden)

    M. Ananda Chitra

    2015-07-01

    Full Text Available Background: Staphylococcus pseudintermedius (SP is the major pathogenic species of dogs involved in a wide variety of skin and soft tissue infections. The accessory gene regulator (agr locus of Staphylococcus aureus has been extensively studied, and it influences the expression of many virulence genes. It encodes a two-component signal transduction system that leads to down-regulation of surface proteins and up-regulation of secreted proteins during in vitro growth of S. aureus. The objective of this study was to detect and sequence analyzing the AgrA, B, and D of SP isolated from canine skin infections. Materials and Methods: In this study, we have isolated and identified SP from canine pyoderma and otitis cases by polymerase chain reaction (PCR and confirmed by PCR-restriction fragment length polymorphism. Primers for SP agrA and agrBD genes were designed using online primer designing software and BLAST searched for its specificity. Amplification of the agr genes was carried out for 53 isolates of SP by PCR and sequencing of agrA, B, and D were carried out for five isolates and analyzed using DNAstar and Mega5.2 software. Results: A total of 53 (59% SP isolates were obtained from 90 samples. 15 isolates (28% were confirmed to be methicillinresistant SP (MRSP with the detection of the mecA gene. Accessory gene regulator A, B, and D genes were detected in all the SP isolates. Complete nucleotide sequences of the above three genes for five isolates were submitted to GenBank, and their accession numbers are from KJ133557 to KJ133571. AgrA amino acid sequence analysis showed that it is mainly made of alpha-helices and is hydrophilic in nature. AgrB is a transmembrane protein, and AgrD encodes the precursor of the autoinducing peptide (AIP. Sequencing of the agrD gene revealed that the 5 canine SP strains tested could be divided into three Agr specificity groups (RIPTSTGFF, KIPTSTGFF, and RIPISTGFF based on the putative AIP produced by each strain

  20. Behavior Drift Detection Based on Anomalies Identification in Home Living Quantitative Indicators

    OpenAIRE

    Fabio Veronese; Andrea Masciadri; Sara Comai; Matteo Matteucci; Fabio Salice

    2018-01-01

    Home Automation and Smart Homes diffusion are providing an interesting opportunity to implement elderly monitoring. This is a new valid technological support to allow in-place aging of seniors by means of a detection system to notify potential anomalies. Monitoring has been implemented by means of Complex Event Processing on live streams of home automation data: this allows the analysis of the behavior of the house inhabitant through quantitative indicators. Different kinds of quantitative in...

  1. Detection of nonauthorized genetically modified organisms using differential quantitative polymerase chain reaction: application to 35S in maize.

    Science.gov (United States)

    Cankar, Katarina; Chauvensy-Ancel, Valérie; Fortabat, Marie-Noelle; Gruden, Kristina; Kobilinsky, André; Zel, Jana; Bertheau, Yves

    2008-05-15

    Detection of nonauthorized genetically modified organisms (GMOs) has always presented an analytical challenge because the complete sequence data needed to detect them are generally unavailable although sequence similarity to known GMOs can be expected. A new approach, differential quantitative polymerase chain reaction (PCR), for detection of nonauthorized GMOs is presented here. This method is based on the presence of several common elements (e.g., promoter, genes of interest) in different GMOs. A statistical model was developed to study the difference between the number of molecules of such a common sequence and the number of molecules identifying the approved GMO (as determined by border-fragment-based PCR) and the donor organism of the common sequence. When this difference differs statistically from zero, the presence of a nonauthorized GMO can be inferred. The interest and scope of such an approach were tested on a case study of different proportions of genetically modified maize events, with the P35S promoter as the Cauliflower Mosaic Virus common sequence. The presence of a nonauthorized GMO was successfully detected in the mixtures analyzed and in the presence of (donor organism of P35S promoter). This method could be easily transposed to other common GMO sequences and other species and is applicable to other detection areas such as microbiology.

  2. Detection of chromosome abnormalities by quantitative fluorescent PCR in ectopic pregnancies

    NARCIS (Netherlands)

    Goddijn, Mariette; van Stralen, Marja; Schuring-Blom, Heleen; Redeker, Bert; van Leeuwen, Liesbeth; Repping, Sjoerd; Leschot, Nico; van der Veen, Fulco

    2005-01-01

    Objective: To evaluate the potential value of quantitative fluorescent polymerase chain reaction (QF-PCR) in the detection of chromosome abnormalities in ectopic pregnancies. Methods: Seventy chorionic villi samples of ectopic pregnancies were studied by QF-PCR. Primers for chromosomes 16, 21, X and

  3. Detection of Haemophilus influenzae in respiratory secretions from pneumonia patients by quantitative real-time polymerase chain reaction.

    Science.gov (United States)

    Abdeldaim, Guma M K; Strålin, Kristoffer; Kirsebom, Leif A; Olcén, Per; Blomberg, Jonas; Herrmann, Björn

    2009-08-01

    A quantitative real-time polymerase chain reaction (PCR) based on the omp P6 gene was developed to detect Haemophilus influenzae. Its specificity was determined by analysis of 29 strains of 11 different Haemophilus spp. and was compared with PCR assays having other target genes: rnpB, 16S rRNA, and bexA. The method was evaluated on nasopharyngeal aspirates from 166 adult patients with community-acquired pneumonia. When 10(4) DNA copies/mL was used as cutoff limit for the method, P6 PCR had a sensitivity of 97.5% and a specificity of 96.0% compared with the culture. Of 20 culture-negative but P6 PCR-positive cases, 18 were confirmed by fucK PCR as H. influenzae. Five (5.9%) of 84 nasopharyngeal aspirates from adult controls tested PCR positive. We conclude that the P6 real-time PCR is both sensitive and specific for identification of H. influenzae in respiratory secretions. Quantification facilitates discrimination between disease-causing H. influenzae strains and commensal colonization.

  4. PCR-free quantitative detection of genetically modified organism from raw materials. An electrochemiluminescence-based bio bar code method.

    Science.gov (United States)

    Zhu, Debin; Tang, Yabing; Xing, Da; Chen, Wei R

    2008-05-15

    A bio bar code assay based on oligonucleotide-modified gold nanoparticles (Au-NPs) provides a PCR-free method for quantitative detection of nucleic acid targets. However, the current bio bar code assay requires lengthy experimental procedures including the preparation and release of bar code DNA probes from the target-nanoparticle complex and immobilization and hybridization of the probes for quantification. Herein, we report a novel PCR-free electrochemiluminescence (ECL)-based bio bar code assay for the quantitative detection of genetically modified organism (GMO) from raw materials. It consists of tris-(2,2'-bipyridyl) ruthenium (TBR)-labeled bar code DNA, nucleic acid hybridization using Au-NPs and biotin-labeled probes, and selective capture of the hybridization complex by streptavidin-coated paramagnetic beads. The detection of target DNA is realized by direct measurement of ECL emission of TBR. It can quantitatively detect target nucleic acids with high speed and sensitivity. This method can be used to quantitatively detect GMO fragments from real GMO products.

  5. Gene-based testing of interactions in association studies of quantitative traits.

    Directory of Open Access Journals (Sweden)

    Li Ma

    Full Text Available Various methods have been developed for identifying gene-gene interactions in genome-wide association studies (GWAS. However, most methods focus on individual markers as the testing unit, and the large number of such tests drastically erodes statistical power. In this study, we propose novel interaction tests of quantitative traits that are gene-based and that confer advantage in both statistical power and biological interpretation. The framework of gene-based gene-gene interaction (GGG tests combine marker-based interaction tests between all pairs of markers in two genes to produce a gene-level test for interaction between the two. The tests are based on an analytical formula we derive for the correlation between marker-based interaction tests due to linkage disequilibrium. We propose four GGG tests that extend the following P value combining methods: minimum P value, extended Simes procedure, truncated tail strength, and truncated P value product. Extensive simulations point to correct type I error rates of all tests and show that the two truncated tests are more powerful than the other tests in cases of markers involved in the underlying interaction not being directly genotyped and in cases of multiple underlying interactions. We applied our tests to pairs of genes that exhibit a protein-protein interaction to test for gene-level interactions underlying lipid levels using genotype data from the Atherosclerosis Risk in Communities study. We identified five novel interactions that are not evident from marker-based interaction testing and successfully replicated one of these interactions, between SMAD3 and NEDD9, in an independent sample from the Multi-Ethnic Study of Atherosclerosis. We conclude that our GGG tests show improved power to identify gene-level interactions in existing, as well as emerging, association studies.

  6. Exploring Valid Reference Genes for Quantitative Real-Time PCR Analysis in Sesamia inferens (Lepidoptera: Noctuidae)

    OpenAIRE

    Sun, Meng; Lu, Ming-Xing; Tang, Xiao-Tian; Du, Yu-Zhou

    2015-01-01

    The pink stem borer, Sesamia inferens, which is endemic in China and other parts of Asia, is a major pest of rice and causes significant yield loss in this host plant. Very few studies have addressed gene expression in S. inferens. Quantitative real-time PCR (qRT-PCR) is currently the most accurate and sensitive method for gene expression analysis. In qRT-PCR, data are normalized using reference genes, which help control for internal differences and reduce error between samples. In this study...

  7. The combination of quantitative PCR and western blot detecting CP4-EPSPS component in Roundup Ready soy plant tissues and commercial soy-related foodstuffs.

    Science.gov (United States)

    Xiao, Xiao; Wu, Honghong; Zhou, Xinghu; Xu, Sheng; He, Jian; Shen, Wenbiao; Zhou, Guanghong; Huang, Ming

    2012-06-01

    With the widespread use of Roundup Ready soy (event 40-3-2) (RRS), the comprehensive detection of genetically modified component in foodstuffs is of significant interest, but few protein-based approaches have been found useful in processed foods. In this report, the combination of quantitative PCR (qPCR) and western blot was used to detect cp4-epsps gene and its protein product in different RRS plant tissues and commercial soy-containing foodstuffs. The foods included those of plant origin produced by different processing procedures and also some products containing both meat and plant protein concentrates. The validity of the 2 methods was confirmed first. We also showed that the CP4-EPSPS protein existed in different RRS plant tissues. In certain cases, the results from the western blot and the qPCR were not consistent. To be specific, at least 2 degraded fragments of CP4-EPSPS protein (35.5 and 24.6 kDa) were observed. For dried bean curd crust and deep-fried bean curd, a degraded protein fragment with the size of 24.6 kDa appeared, while cp4-epsps gene could not be traced by qPCR. In contrast, we found a signal of cp4-epsps DNA in 3 foodstuffs, including soy-containing ham cutlet product, meat ball, and sausage by qPCR, while CP4-EPSPS protein could not be detected by western blot in such samples. Our study therefore concluded that the combination of DNA- and protein-based methods would compensate each other, thus resulting in a more comprehensive detection from nucleic acid and protein levels. The combination of quantitative PCR (qPCR) and western blot was used to detect cp4-epsps gene and its protein product in different Roundup Ready soy (event 40-3-2) plant tissues and commercial soy-containing foodstuffs. The foods included those of plant origin produced by different processing procedures and also some products containing a combination of both meat and plant protein concentrates. This study indicated that the combination of DNA- and protein-based methods

  8. Using quantitative real-time PCR to detect chimeras in transgenic tobacco and apricot and to monitor their dissociation

    Directory of Open Access Journals (Sweden)

    Burgos Lorenzo

    2010-07-01

    Full Text Available Abstract Background The routine generation of transgenic plants involves analysis of transgene integration into the host genome by means of Southern blotting. However, this technique cannot distinguish between uniformly transformed tissues and the presence of a mixture of transgenic and non-transgenic cells in the same tissue. On the other hand, the use of reporter genes often fails to accurately detect chimerical tissues because their expression can be affected by several factors, including gene silencing and plant development. So, new approaches based on the quantification of the amount of the transgene are needed urgently. Results We show here that chimeras are a very frequent phenomenon observed after regenerating transgenic plants. Spatial and temporal analyses of transformed tobacco and apricot plants with a quantitative, real-time PCR amplification of the neomycin phosphotransferase (nptII transgene as well as of an internal control (β-actin, used to normalise the amount of target DNA at each reaction, allowed detection of chimeras at unexpected rates. The amount of the nptII transgene differed greatly along with the sub-cultivation period of these plants and was dependent on the localisation of the analysed leaves; being higher in roots and basal leaves, while in the apical leaves it remained at lower levels. These data demonstrate that, unlike the use of the gus marker gene, real-time PCR is a powerful tool for detection of chimeras. Although some authors have proposed a consistent, positive Southern analysis as an alternative methodology for monitoring the dissociation of chimeras, our data show that it does not provide enough proof of uniform transformation. In this work, however, real-time PCR was applied successfully to monitor the dissociation of chimeras in tobacco plants and apricot callus. Conclusions We have developed a rapid and reliable method to detect and estimate the level of chimeras in transgenic tobacco and apricot

  9. Evaluation of candidate reference genes for normalization of quantitative RT-PCR in soybean tissues under various abiotic stress conditions.

    Directory of Open Access Journals (Sweden)

    Dung Tien Le

    Full Text Available Quantitative RT-PCR can be a very sensitive and powerful technique for measuring differential gene expression. Changes in gene expression induced by abiotic stresses are complex and multifaceted, which make determining stably expressed genes for data normalization difficult. To identify the most suitable reference genes for abiotic stress studies in soybean, 13 candidate genes collected from literature were evaluated for stability of expression under dehydration, high salinity, cold and ABA (abscisic acid treatments using delta CT and geNorm approaches. Validation of reference genes indicated that the best reference genes are tissue- and stress-dependent. With respect to dehydration treatment, the Fbox/ABC, Fbox/60s gene pairs were found to have the highest expression stability in the root and shoot tissues of soybean seedlings, respectively. Fbox and 60s genes are the most suitable reference genes across dehydrated root and shoot tissues. Under salt stress the ELF1b/IDE and Fbox/ELF1b are the most stably expressed gene pairs in roots and shoots, respectively, while 60s/Fbox is the best gene pair in both tissues. For studying cold stress in roots or shoots, IDE/60s and Fbox/Act27 are good reference gene pairs, respectively. With regard to gene expression analysis under ABA treatment in either roots, shoots or across these tissues, 60s/ELF1b, ELF1b/Fbox and 60s/ELF1b are the most suitable reference genes, respectively. The expression of ELF1b/60s, 60s/Fbox and 60s/Fbox genes was most stable in roots, shoots and both tissues, respectively, under various stresses studied. Among the genes tested, 60s was found to be the best reference gene in different tissues and under various stress conditions. The highly ranked reference genes identified from this study were proved to be capable of detecting subtle differences in expression rates that otherwise would be missed if a less stable reference gene was used.

  10. Hypersensitive detection and quantitation of BoNT/A by IgY antibody against substrate linear-peptide.

    Directory of Open Access Journals (Sweden)

    Tao Li

    Full Text Available Botulinum neurotoxin A (BoNT/A, the most acutely poisonous substance to humans known, cleave its SNAP-25 substrate with high specificity. Based on the endopeptidase activity, different methods have been developed to detect BoNT/A, but most lack ideal reproducibility or sensitivity, or suffer from long-term or unwanted interferences. In this study, we developed a simple method to detect and quantitate trace amounts of botulinum neurotoxin A using the IgY antibody against a linear-peptide substrate. The effects of reaction buffer, time, and temperature were analyzed and optimized. When the optimized assay was used to detect BoNT/A, the limit of detection of the assay was 0.01 mouse LD50 (0.04 pg, and the limit of quantitation was 0.12 mouse LD50/ml (0.48 pg. The findings also showed favorable specificity of detecting BoNT/A. When used to detect BoNT/A in milk or human serum, the proposed assay exhibited good quantitative accuracy (88% < recovery < 111%; inter- and intra-assay CVs < 18%. This method of detection took less than 3 h to complete, indicating that it can be a valuable method of detecting BoNT/A in food or clinical diagnosis.

  11. Evaluation of reference gene suitability for quantitative expression analysis by quantitative polymerase chain reaction in the mandibular condyle of sheep.

    Science.gov (United States)

    Jiang, Xin; Xue, Yang; Zhou, Hongzhi; Li, Shouhong; Zhang, Zongmin; Hou, Rui; Ding, Yuxiang; Hu, Kaijin

    2015-10-01

    Reference genes are commonly used as a reliable approach to normalize the results of quantitative polymerase chain reaction (qPCR), and to reduce errors in the relative quantification of gene expression. Suitable reference genes belonging to numerous functional classes have been identified for various types of species and tissue. However, little is currently known regarding the most suitable reference genes for bone, specifically for the sheep mandibular condyle. Sheep are important for the study of human bone diseases, particularly for temporomandibular diseases. The present study aimed to identify a set of reference genes suitable for the normalization of qPCR data from the mandibular condyle of sheep. A total of 12 reference genes belonging to various functional classes were selected, and the expression stability of the reference genes was determined in both the normal and fractured area of the sheep mandibular condyle. RefFinder, which integrates the following currently available computational algorithms: geNorm, NormFinder, BestKeeper, and the comparative ΔCt method, was used to compare and rank the candidate reference genes. The results obtained from the four methods demonstrated a similar trend: RPL19, ACTB, and PGK1 were the most stably expressed reference genes in the sheep mandibular condyle. As determined by RefFinder comprehensive analysis, the results of the present study suggested that RPL19 is the most suitable reference gene for studies associated with the sheep mandibular condyle. In addition, ACTB and PGK1 may be considered suitable alternatives.

  12. Quantitative real-time PCR identifies a critical region of deletion on 22q13 related to prognosis in oral cancer

    DEFF Research Database (Denmark)

    Reis, Patricia P; Rogatto, Silvia R; Kowalski, Luiz P

    2002-01-01

    Quantitative real time PCR was performed on genomic DNA from 40 primary oral carcinomas and the normal adjacent tissues. The target genes ECGFB, DIA1, BIK, and PDGFB and the microsatellite markers D22S274 and D22S277, mapped on 22q13, were selected according to our previous loss of heterozygosity...... findings in head and neck tumors. Quantitative PCR relies on the comparison of the amount of product generated from a target gene and that generated from a disomic reference gene (GAPDH-housekeeping gene). Reactions have been performed with normal control in triplicates, using the 7700 Sequence Detection.......0018) for patients with DIA1 gene loss. Relative copy number losses detected in these sequences may be related to disease progression and a worse prognosis in patients with oral cancer....

  13. Quantitative Resistance to Plant Pathogens in Pyramiding Strategies for Durable Crop Protection

    Directory of Open Access Journals (Sweden)

    Marie-Laure Pilet-Nayel

    2017-10-01

    Full Text Available Quantitative resistance has gained interest in plant breeding for pathogen control in low-input cropping systems. Although quantitative resistance frequently has only a partial effect and is difficult to select, it is considered more durable than major resistance (R genes. With the exponential development of molecular markers over the past 20 years, resistance QTL have been more accurately detected and better integrated into breeding strategies for resistant varieties with increased potential for durability. This review summarizes current knowledge on the genetic inheritance, molecular basis, and durability of quantitative resistance. Based on this knowledge, we discuss how strategies that combine major R genes and QTL in crops can maintain the effectiveness of plant resistance to pathogens. Combining resistance QTL with complementary modes of action appears to be an interesting strategy for breeding effective and potentially durable resistance. Combining quantitative resistance with major R genes has proven to be a valuable approach for extending the effectiveness of major genes. In the plant genomics era, improved tools and methods are becoming available to better integrate quantitative resistance into breeding strategies. Nevertheless, optimal combinations of resistance loci will still have to be identified to preserve resistance effectiveness over time for durable crop protection.

  14. Finding the joker among the maize endogenous reference genes for genetically modified organism (GMO) detection.

    Science.gov (United States)

    Paternò, Annalisa; Marchesi, Ugo; Gatto, Francesco; Verginelli, Daniela; Quarchioni, Cinzia; Fusco, Cristiana; Zepparoni, Alessia; Amaddeo, Demetrio; Ciabatti, Ilaria

    2009-12-09

    The comparison of five real-time polymerase chain reaction (PCR) methods targeted at maize ( Zea mays ) endogenous sequences is reported. PCR targets were the alcohol dehydrogenase (adh) gene for three methods and high-mobility group (hmg) gene for the other two. The five real-time PCR methods have been checked under repeatability conditions at several dilution levels on both pooled DNA template from several genetically modified (GM) maize certified reference materials (CRMs) and single CRM DNA extracts. Slopes and R(2) coefficients of all of the curves obtained from the adopted regression model were compared within the same method and among all of the five methods, and the limit of detection and limit of quantitation were analyzed for each PCR system. Furthermore, method equivalency was evaluated on the basis of the ability to estimate the target haploid genome copy number at each concentration level. Results indicated that, among the five methods tested, one of the hmg-targeted PCR systems can be considered equivalent to the others but shows the best regression parameters and a higher repeteability along the dilution range. Thereby, it is proposed as a valid module to be coupled to different event-specific real-time PCR for maize genetically modified organism (GMO) quantitation. The resulting practicability improvement on the analytical control of GMOs is discussed.

  15. Direct and long-term detection of gene doping in conventional blood samples.

    Science.gov (United States)

    Beiter, T; Zimmermann, M; Fragasso, A; Hudemann, J; Niess, A M; Bitzer, M; Lauer, U M; Simon, P

    2011-03-01

    The misuse of somatic gene therapy for the purpose of enhancing athletic performance is perceived as a coming threat to the world of sports and categorized as 'gene doping'. This article describes a direct detection approach for gene doping that gives a clear yes-or-no answer based on the presence or absence of transgenic DNA in peripheral blood samples. By exploiting a priming strategy to specifically amplify intronless DNA sequences, we developed PCR protocols allowing the detection of very small amounts of transgenic DNA in genomic DNA samples to screen for six prime candidate genes. Our detection strategy was verified in a mouse model, giving positive signals from minute amounts (20 μl) of blood samples for up to 56 days following intramuscular adeno-associated virus-mediated gene transfer, one of the most likely candidate vector systems to be misused for gene doping. To make our detection strategy amenable for routine testing, we implemented a robust sample preparation and processing protocol that allows cost-efficient analysis of small human blood volumes (200 μl) with high specificity and reproducibility. The practicability and reliability of our detection strategy was validated by a screening approach including 327 blood samples taken from professional and recreational athletes under field conditions.

  16. Quantitative RT-PCR analysis of estrogen receptor gene expression in laser microdissected prostate cancer tissue.

    Science.gov (United States)

    Walton, Thomas J; Li, Geng; McCulloch, Thomas A; Seth, Rashmi; Powe, Desmond G; Bishop, Michael C; Rees, Robert C

    2009-06-01

    Real-time quantitative RT-PCR analysis of laser microdissected tissue is considered the most accurate technique for determining tissue gene expression. The discovery of estrogen receptor beta (ERbeta) has focussed renewed interest on the role of estrogen receptors in prostate cancer, yet few studies have utilized the technique to analyze estrogen receptor gene expression in prostate cancer. Fresh tissue was obtained from 11 radical prostatectomy specimens and from 6 patients with benign prostate hyperplasia. Pure populations of benign and malignant prostate epithelium were laser microdissected, followed by RNA isolation and electrophoresis. Quantitative RT-PCR was performed using primers for androgen receptor (AR), estrogen receptor beta (ERbeta), estrogen receptor alpha (ERalpha), progesterone receptor (PGR) and prostate specific antigen (PSA), with normalization to two housekeeping genes. Differences in gene expression were analyzed using the Mann-Whitney U-test. Correlation coefficients were analyzed using Spearman's test. Significant positive correlations were seen when AR and AR-dependent PSA, and ERalpha and ERalpha-dependent PGR were compared, indicating a representative population of RNA transcripts. ERbeta gene expression was significantly over-expressed in the cancer group compared with benign controls (P cancer group (P prostate cancer specimens. In concert with recent studies the findings suggest differential production of ERbeta splice variants, which may play important roles in the genesis of prostate cancer. (c) 2009 Wiley-Liss, Inc.

  17. Identifying the genes underlying quantitative traits: a rationale for the QTN programme.

    Science.gov (United States)

    Lee, Young Wha; Gould, Billie A; Stinchcombe, John R

    2014-01-01

    The goal of identifying the genes or even nucleotides underlying quantitative and adaptive traits has been characterized as the 'QTN programme' and has recently come under severe criticism. Part of the reason for this criticism is that much of the QTN programme has asserted that finding the genes and nucleotides for adaptive and quantitative traits is a fundamental goal, without explaining why it is such a hallowed goal. Here we outline motivations for the QTN programme that offer general insight, regardless of whether QTNs are of large or small effect, and that aid our understanding of the mechanistic dynamics of adaptive evolution. We focus on five areas: (i) vertical integration of insight across different levels of biological organization, (ii) genetic parallelism and the role of pleiotropy in shaping evolutionary dynamics, (iii) understanding the forces maintaining genetic variation in populations, (iv) distinguishing between adaptation from standing variation and new mutation, and (v) the role of genomic architecture in facilitating adaptation. We argue that rather than abandoning the QTN programme, we should refocus our efforts on topics where molecular data will be the most effective for testing hypotheses about phenotypic evolution.

  18. Identifying the genes underlying quantitative traits: a rationale for the QTN programme

    Science.gov (United States)

    Lee, Young Wha; Gould, Billie A.; Stinchcombe, John R.

    2014-01-01

    The goal of identifying the genes or even nucleotides underlying quantitative and adaptive traits has been characterized as the ‘QTN programme’ and has recently come under severe criticism. Part of the reason for this criticism is that much of the QTN programme has asserted that finding the genes and nucleotides for adaptive and quantitative traits is a fundamental goal, without explaining why it is such a hallowed goal. Here we outline motivations for the QTN programme that offer general insight, regardless of whether QTNs are of large or small effect, and that aid our understanding of the mechanistic dynamics of adaptive evolution. We focus on five areas: (i) vertical integration of insight across different levels of biological organization, (ii) genetic parallelism and the role of pleiotropy in shaping evolutionary dynamics, (iii) understanding the forces maintaining genetic variation in populations, (iv) distinguishing between adaptation from standing variation and new mutation, and (v) the role of genomic architecture in facilitating adaptation. We argue that rather than abandoning the QTN programme, we should refocus our efforts on topics where molecular data will be the most effective for testing hypotheses about phenotypic evolution. PMID:24790125

  19. Augmenting Amyloid PET Interpretations With Quantitative Information Improves Consistency of Early Amyloid Detection.

    Science.gov (United States)

    Harn, Nicholas R; Hunt, Suzanne L; Hill, Jacqueline; Vidoni, Eric; Perry, Mark; Burns, Jeffrey M

    2017-08-01

    Establishing reliable methods for interpreting elevated cerebral amyloid-β plaque on PET scans is increasingly important for radiologists, as availability of PET imaging in clinical practice increases. We examined a 3-step method to detect plaque in cognitively normal older adults, focusing on the additive value of quantitative information during the PET scan interpretation process. Fifty-five F-florbetapir PET scans were evaluated by 3 experienced raters. Scans were first visually interpreted as having "elevated" or "nonelevated" plaque burden ("Visual Read"). Images were then processed using a standardized quantitative analysis software (MIMneuro) to generate whole brain and region of interest SUV ratios. This "Quantitative Read" was considered elevated if at least 2 of 6 regions of interest had an SUV ratio of more than 1.1. The final interpretation combined both visual and quantitative data together ("VisQ Read"). Cohen kappa values were assessed as a measure of interpretation agreement. Plaque was elevated in 25.5% to 29.1% of the 165 total Visual Reads. Interrater agreement was strong (kappa = 0.73-0.82) and consistent with reported values. Quantitative Reads were elevated in 45.5% of participants. Final VisQ Reads changed from initial Visual Reads in 16 interpretations (9.7%), with most changing from "nonelevated" Visual Reads to "elevated." These changed interpretations demonstrated lower plaque quantification than those initially read as "elevated" that remained unchanged. Interrater variability improved for VisQ Reads with the addition of quantitative information (kappa = 0.88-0.96). Inclusion of quantitative information increases consistency of PET scan interpretations for early detection of cerebral amyloid-β plaque accumulation.

  20. Identification of a chicken (Gallus gallus) endogenous reference gene (Actb) and its application in meat adulteration.

    Science.gov (United States)

    Xiang, Wenjin; Shang, Ying; Wang, Qin; Xu, Yuancong; Zhu, Pengyu; Huang, Kunlun; Xu, Wentao

    2017-11-01

    The genes commonly used to determine meat species are mainly mitochondrial, but the copy numbers of such genes are high, meaning they cannot be accurately quantified. In this paper, for the first time, the chromosomal gene Actb was selected as an endogenous reference gene for chicken species. It was assayed in four different chicken varieties and 16 other species using both qualitative and quantitative PCR. No amplification of the Actb gene was found in species other than chicken and no allelic variations were detected in chicken. Southern blot and digital-PCR confirmed the Actb gene was present as a single copy in the chicken genome. The quantitative detection limit was 10pg of DNA, which is equivalent to eight copies. All experiments indicated that the Actb gene is a useful endogenous reference gene for chicken, and provides a convenient and accurate approach for detection of chicken in feed and food. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Application of nanomaterials in the bioanalytical detection of disease-related genes.

    Science.gov (United States)

    Zhu, Xiaoqian; Li, Jiao; He, Hanping; Huang, Min; Zhang, Xiuhua; Wang, Shengfu

    2015-12-15

    In the diagnosis of genetic diseases and disorders, nanomaterials-based gene detection systems have significant advantages over conventional diagnostic systems in terms of simplicity, sensitivity, specificity, and portability. In this review, we describe the application of nanomaterials for disease-related genes detection in different methods excluding PCR-related method, such as colorimetry, fluorescence-based methods, electrochemistry, microarray methods, surface-enhanced Raman spectroscopy (SERS), quartz crystal microbalance (QCM) methods, and dynamic light scattering (DLS). The most commonly used nanomaterials are gold, silver, carbon and semiconducting nanoparticles. Various nanomaterials-based gene detection methods are introduced, their respective advantages are discussed, and selected examples are provided to illustrate the properties of these nanomaterials and their emerging applications for the detection of specific nucleic acid sequences. Copyright © 2015. Published by Elsevier B.V.

  2. Reference gene identification for reliable normalisation of quantitative RT-PCR data in Setaria viridis.

    Science.gov (United States)

    Nguyen, Duc Quan; Eamens, Andrew L; Grof, Christopher P L

    2018-01-01

    Quantitative real-time polymerase chain reaction (RT-qPCR) is the key platform for the quantitative analysis of gene expression in a wide range of experimental systems and conditions. However, the accuracy and reproducibility of gene expression quantification via RT-qPCR is entirely dependent on the identification of reliable reference genes for data normalisation. Green foxtail ( Setaria viridis ) has recently been proposed as a potential experimental model for the study of C 4 photosynthesis and is closely related to many economically important crop species of the Panicoideae subfamily of grasses, including Zea mays (maize), Sorghum bicolor (sorghum) and Sacchurum officinarum (sugarcane). Setaria viridis (Accession 10) possesses a number of key traits as an experimental model, namely; (i) a small sized, sequenced and well annotated genome; (ii) short stature and generation time; (iii) prolific seed production, and; (iv) is amendable to Agrobacterium tumefaciens -mediated transformation. There is currently however, a lack of reference gene expression information for Setaria viridis ( S. viridis ). We therefore aimed to identify a cohort of suitable S. viridis reference genes for accurate and reliable normalisation of S. viridis RT-qPCR expression data. Eleven putative candidate reference genes were identified and examined across thirteen different S. viridis tissues. Of these, the geNorm and NormFinder analysis software identified SERINE / THERONINE - PROTEIN PHOSPHATASE 2A ( PP2A ), 5 '- ADENYLYLSULFATE REDUCTASE 6 ( ASPR6 ) and DUAL SPECIFICITY PHOSPHATASE ( DUSP ) as the most suitable combination of reference genes for the accurate and reliable normalisation of S. viridis RT-qPCR expression data. To demonstrate the suitability of the three selected reference genes, PP2A , ASPR6 and DUSP , were used to normalise the expression of CINNAMYL ALCOHOL DEHYDROGENASE ( CAD ) genes across the same tissues. This approach readily demonstrated the suitably of the three

  3. Iridium-191m radionuclide angiocardiography detection and quantitation of left-to-rigth shunts

    International Nuclear Information System (INIS)

    Treves, S.; Fujii, A.; Cheng, C.; Kuruc, A.

    1983-01-01

    The purpose of this study was to determine whether Iridium-191m (Ir-191m) could replace Technetium-99m (Tc-99m) in the detection and quantitation of left-to-right shunts. It was demonstrated that Ir-191m radionuclide angiography is a safe, rapid, and accurate method for the detection and quantitation of left-to-right shunts with very low radiation dose to the patient. It is also possible with this radiotracer to evaluate other aspects of the anatomy and physiology of the circulation such as ventricular function, patency of major vessels, renal and cerebral perfusion. Further improvements on 0s-191 production, generator design and gamma cameras would expand the use of this ultrashort-lived radionuclide

  4. A web-based quantitative signal detection system on adverse drug reaction in China.

    Science.gov (United States)

    Li, Chanjuan; Xia, Jielai; Deng, Jianxiong; Chen, Wenge; Wang, Suzhen; Jiang, Jing; Chen, Guanquan

    2009-07-01

    To establish a web-based quantitative signal detection system for adverse drug reactions (ADRs) based on spontaneous reporting to the Guangdong province drug-monitoring database in China. Using Microsoft Visual Basic and Active Server Pages programming languages and SQL Server 2000, a web-based system with three software modules was programmed to perform data preparation and association detection, and to generate reports. Information component (IC), the internationally recognized measure of disproportionality for quantitative signal detection, was integrated into the system, and its capacity for signal detection was tested with ADR reports collected from 1 January 2002 to 30 June 2007 in Guangdong. A total of 2,496 associations including known signals were mined from the test database. Signals (e.g., cefradine-induced hematuria) were found early by using the IC analysis. In addition, 291 drug-ADR associations were alerted for the first time in the second quarter of 2007. The system can be used for the detection of significant associations from the Guangdong drug-monitoring database and could be an extremely useful adjunct to the expert assessment of very large numbers of spontaneously reported ADRs for the first time in China.

  5. Application of DNA Machineries for the Barcode Patterned Detection of Genes or Proteins.

    Science.gov (United States)

    Zhou, Zhixin; Luo, Guofeng; Wulf, Verena; Willner, Itamar

    2018-06-05

    The study introduces an analytical platform for the detection of genes or aptamer-ligand complexes by nucleic acid barcode patterns generated by DNA machineries. The DNA machineries consist of nucleic acid scaffolds that include specific recognition sites for the different genes or aptamer-ligand analytes. The binding of the analytes to the scaffolds initiate, in the presence of the nucleotide mixture, a cyclic polymerization/nicking machinery that yields displaced strands of variable lengths. The electrophoretic separation of the resulting strands provides barcode patterns for the specific detection of the different analytes. Mixtures of DNA machineries that yield, upon sensing of different genes (or aptamer ligands), one-, two-, or three-band barcode patterns are described. The combination of nucleic acid scaffolds acting, in the presence of polymerase/nicking enzyme and nucleotide mixture, as DNA machineries, that generate multiband barcode patterns provide an analytical platform for the detection of an individual gene out of many possible genes. The diversity of genes (or other analytes) that can be analyzed by the DNA machineries and the barcode patterned imaging is given by the Pascal's triangle. As a proof-of-concept, the detection of one of six genes, that is, TP53, Werner syndrome, Tay-Sachs normal gene, BRCA1, Tay-Sachs mutant gene, and cystic fibrosis disorder gene by six two-band barcode patterns is demonstrated. The advantages and limitations of the detection of analytes by polymerase/nicking DNA machineries that yield barcode patterns as imaging readout signals are discussed.

  6. Flow cytometric immunobead assay for quantitative detection of platelet autoantibodies in immune thrombocytopenia patients.

    Science.gov (United States)

    Zhai, Juping; Ding, Mengyuan; Yang, Tianjie; Zuo, Bin; Weng, Zhen; Zhao, Yunxiao; He, Jun; Wu, Qingyu; Ruan, Changgeng; He, Yang

    2017-10-23

    Platelet autoantibody detection is critical for immune thrombocytopenia (ITP) diagnosis and prognosis. Therefore, we aimed to establish a quantitative flow cytometric immunobead assay (FCIA) for ITP platelet autoantibodies evaluation. Capture microbeads coupled with anti-GPIX, -GPIb, -GPIIb, -GPIIIa and P-selectin antibodies were used to bind the platelet-bound autoantibodies complex generated from plasma samples of 250 ITP patients, 163 non-ITP patients and 243 healthy controls, a fluorescein isothiocyanate (FITC)-conjugated secondary antibody was the detector reagent and mean fluorescence intensity (MFI) signals were recorded by flow cytometry. Intra- and inter-assay variations of the quantitative FCIA assay were assessed. Comparisons of the specificity, sensitivity and accuracy between quantitative and qualitative FCIA or monoclonal antibody immobilization of platelet antigen (MAIPA) assay were performed. Finally, treatment process was monitored by our quantitative FCIA in 8 newly diagnosed ITPs. The coefficient of variations (CV) of the quantitative FCIA assay were respectively 9.4, 3.8, 5.4, 5.1 and 5.8% for anti-GPIX, -GPIb, -GPIIIa, -GPIIb and -P-selectin autoantibodies. Elevated levels of autoantibodies against platelet glycoproteins GPIX, GPIb, GPIIIa, GPIIb and P-selectin were detected by our quantitative FCIA in ITP patients compared to non-ITP patients or healthy controls. The sensitivity, specificity and accuracy of our quantitative assay were respectively 73.13, 81.98 and 78.65% when combining all 5 autoantibodies, while the sensitivity, specificity and accuracy of MAIPA assay were respectively 41.46, 90.41 and 72.81%. A quantitative FCIA assay was established. Reduced levels of platelet autoantibodies could be confirmed by our quantitative FCIA in ITP patients after corticosteroid treatment. Our quantitative assay is not only good for ITP diagnosis but also for ITP treatment monitoring.

  7. Quantitative analysis of MDR1 (multidrug resistance) gene expression in human tumors by polymerase chain reaction

    International Nuclear Information System (INIS)

    Noonan, K.E.; Beck, C.; Holzmayer, T.A.; Chin, J.E.; Roninson, I.B.; Wunder, J.S.; Andrulis, I.L.; Gazdar, A.F.; Willman, C.L.; Griffith, B.; Von Hoff, D.D.

    1990-01-01

    The resistance of tumor cells ot chemotheraprutic drugs is a major obstacle to successful cancer chemotherapy. In human cells, expression of the MDR1 gene, encoding a transmembrane efflux pump (P-glycoprotein), leads to decreased intracellular accumulation and resistance to a variety of lipophilic drugs (multidrug resistance; MDR). The levels of MDR in cell lines selected in bitro have been shown to correlate with the steady-state levels of MDR1 mRNA and P-glycoprotein. In cells with a severalfold increase in cellular drug resistance, MDR1 expression levels are close to the limits of detection by conventional assays. MDR1 expression has been frequently observed in human tumors after chemotherapy and in some but not all types of clinically refactory tumors untreated with chemotherapeutic drugs. The authors have devised a highly sensitive, specific, and quantitative protocol for measuring the levels of MDR1 mRNA in clincal samples, based on the polymerase chain reaction. They have used this assay to measure MDR1 gene expression in MDR cell lines and >300 normal tissues, tumor-derived cell lines, and clinical specimens of untreated tumors of the types in which MDR1 expression was rarely observed by standard assays. Low levels of MDR1 expression were found by polymerase chain reaction in most solid tumors and leukemias tested. The frequency of samples without detectable MDR1 expression varied among different types of tumors; MDR1-negative samples were ost common among tumor types known to be relatively responsive to chemotherapy

  8. Selecting and validating reference genes for quantitative real-time PCR in Plutella xylostella (L.).

    Science.gov (United States)

    You, Yanchun; Xie, Miao; Vasseur, Liette; You, Minsheng

    2018-05-01

    Gene expression analysis provides important clues regarding gene functions, and quantitative real-time PCR (qRT-PCR) is a widely used method in gene expression studies. Reference genes are essential for normalizing and accurately assessing gene expression. In the present study, 16 candidate reference genes (ACTB, CyPA, EF1-α, GAPDH, HSP90, NDPk, RPL13a, RPL18, RPL19, RPL32, RPL4, RPL8, RPS13, RPS4, α-TUB, and β-TUB) from Plutella xylostella were selected to evaluate gene expression stability across different experimental conditions using five statistical algorithms (geNorm, NormFinder, Delta Ct, BestKeeper, and RefFinder). The results suggest that different reference genes or combinations of reference genes are suitable for normalization in gene expression studies of P. xylostella according to the different developmental stages, strains, tissues, and insecticide treatments. Based on the given experimental sets, the most stable reference genes were RPS4 across different developmental stages, RPL8 across different strains and tissues, and EF1-α across different insecticide treatments. A comprehensive and systematic assessment of potential reference genes for gene expression normalization is essential for post-genomic functional research in P. xylostella, a notorious pest with worldwide distribution and a high capacity to adapt and develop resistance to insecticides.

  9. Validation of Reference Genes for Quantitative Expression Analysis by Real-Time RT-PCR in Four Lepidopteran Insects

    OpenAIRE

    Teng, Xiaolu; Zhang, Zan; He, Guiling; Yang, Liwen; Li, Fei

    2012-01-01

    Quantitative real-time polymerase chain reaction (qPCR) is an efficient and widely used technique to monitor gene expression. Housekeeping genes (HKGs) are often empirically selected as the reference genes for data normalization. However, the suitability of HKGs used as the reference genes has been seldom validated. Here, six HKGs were chosen (actin A3, actin A1, GAPDH, G3PDH, E2F, rp49) in four lepidopteran insects Bombyx mori L. (Lepidoptera: Bombycidae), Plutella xylostella L. (Plutellidae...

  10. Real-time colorimetric detection of DNA methylation of the PAX1 gene in cervical scrapings for cervical cancer screening with thiol-labeled PCR primers and gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Huang J

    2016-10-01

    Full Text Available Jin Huang,1,2 Yu-Ligh Liou,1,2 Ya-Nan Kang,3 Zhi-Rong Tan,1,2 Ming-Jing Peng,1,2 Hong-Hao Zhou1,2 1Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 2Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 3Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China Background: DNA methylation can induce carcinogenesis by silencing key tumor suppressor genes. Analysis of aberrant methylation of tumor suppressor genes can be used as a prognostic and predictive biomarker for cancer. In this study, we propose a colorimetric method for the detection of DNA methylation of the paired box gene 1 (PAX1 gene in cervical scrapings obtained from 42 patients who underwent cervical colposcopic biopsy. Methods: A thiolated methylation-specific polymerase chain reaction (MSP primer was used to generate MSP products labeled with the thiol group at one end. After bisulfite conversion and MSP amplification, the unmodified gold nanoparticles (AuNPs were placed in a reaction tube and NaCl was added to induce aggregation of bare AuNPs without generating polymerase chain reaction products. After salt addition, the color of AuNPs remained red in the methylated PAX1 gene samples because of binding to the MSP-amplified products. By contrast, the color of the AuNP colloid solution changed from red to blue in the non-methylated PAX1 gene samples because of aggregation of AuNPs in the absence of the MSP-amplified products. Furthermore, PAX1 methylation was quantitatively detected in cervical scrapings of patients with varied pathological degrees of cervical cancer. Conventional quantitative MSP (qMSP was also performed for comparison. Results: The two methods showed a significant correlation of the methylation frequency of the PAX1 gene in cervical scrapings with severity of cervical cancer (n=42, P<0.05. The results of the

  11. Impairments of mecA gene detection in bovine Staphylococcus spp.

    Directory of Open Access Journals (Sweden)

    Dayanne Araújo de Melo

    2014-09-01

    Full Text Available Staphylococcus aureus antimicrobial resistance, especially to beta-lactams, favors treatment failures and its persistence in herd environment. This work aimed to develop a more specific primer for mecA gene detection based on the comparison of the conserved regions from distinct host origins and also investigated the presence of homologue mecA LGA251 in bovine strains. A total of 43 Staphylococcus spp. were included in this study, comprising 38 bovine S. aureus, two human and three equine coagulase-negative staphylococci (CNS. Phenotypical methicillin-resistance detection was performed through oxacillin agar-screening and cefoxitin disk-diffusion test. None isolate tested positive for mecA LGA251 gene. For mecA gene PCR, new primers were designed based on the sequences of human S. aureus (HE681097 and bovine S. sciuri (AY820253 mecA. The new primers based on the S. aureus mecA sequence amplified fragments of human and equine CNS and the ones based on S. sciuri mecA sequence only yielded fragments for S. aureus bovine strains. Multiples alignments of mecA gene sequences from bovine, human and equine revealed punctual but significant differences in bovine strains that can lead to the mecA gene detection impairment. The observed divergences of mecA gene sequences are not a matter of animal or human origin, it is a specificity of bovine samples.

  12. Evaluation of candidate reference genes for gene expression normalization in Brassica juncea using real time quantitative RT-PCR.

    Directory of Open Access Journals (Sweden)

    Ruby Chandna

    Full Text Available The real time quantitative reverse transcription PCR (qRT-PCR is becoming increasingly important to gain insight into function of genes. Given the increased sensitivity, ease and reproducibility of qRT-PCR, the requirement of suitable reference genes for normalization has become important and stringent. It is now known that the expression of internal control genes in living organism vary considerably during developmental stages and under different experimental conditions. For economically important Brassica crops, only a couple of reference genes are reported till date. In this study, expression stability of 12 candidate reference genes including ACT2, ELFA, GAPDH, TUA, UBQ9 (traditional housekeeping genes, ACP, CAC, SNF, TIPS-41, TMD, TSB and ZNF (new candidate reference genes, in a diverse set of 49 tissue samples representing different developmental stages, stress and hormone treated conditions and cultivars of Brassica juncea has been validated. For the normalization of vegetative stages the ELFA, ACT2, CAC and TIPS-41 combination would be appropriate whereas TIPS-41 along with CAC would be suitable for normalization of reproductive stages. A combination of GAPDH, TUA, TIPS-41 and CAC were identified as the most suitable reference genes for total developmental stages. In various stress and hormone treated samples, UBQ9 and TIPS-41 had the most stable expression. Across five cultivars of B. juncea, the expression of CAC and TIPS-41 did not vary significantly and were identified as the most stably expressed reference genes. This study provides comprehensive information that the new reference genes selected herein performed better than the traditional housekeeping genes. The selection of most suitable reference genes depends on the experimental conditions, and is tissue and cultivar-specific. Further, to attain accuracy in the results more than one reference genes are necessary for normalization.

  13. A probe-based quantitative PCR assay for detecting Tetracapsuloides bryosalmonae in fish tissue and environmental DNA water samples

    Science.gov (United States)

    Hutchins, Patrick; Sepulveda, Adam; Martin, Renee; Hopper, Lacey

    2017-01-01

    A probe-based quantitative real-time PCR assay was developed to detect Tetracapsuloides bryosalmonae, which causes proliferative kidney disease in salmonid fish, in kidney tissue and environmental DNA (eDNA) water samples. The limits of detection and quantification were 7 and 100 DNA copies for calibration standards and T. bryosalmonae was reliably detected down to 100 copies in tissue and eDNA samples. The assay presented here is a highly sensitive and quantitative tool for detecting T. bryosalmonae with potential applications for tissue diagnostics and environmental detection.

  14. Molecular detection of TasA gene in endophytic Bacillus species ...

    African Journals Online (AJOL)

    Molecular detection of TasA gene in endophytic Bacillus species and characterization of the gene in Bacillus amyloliquefaciens. ... African Journal of Biotechnology ... in Bacillus amyloliquefaciens PEBA20 and 7 strains of Bacillus subtilis, ...

  15. Detection and quantitation of HER-2/neu gene amplification in human breast cancer archival material using fluorescence in situ hybridization.

    Science.gov (United States)

    Pauletti, G; Godolphin, W; Press, M F; Slamon, D J

    1996-07-04

    Amplification and overexpression of the HER-2/neu gene occurs in 25-30% of human breast cancers. This genetic alteration is associated with a poor clinical prognosis in women with either node negative or node positive breast cancers. The initial studies testing this association were somewhat controversial and this controversy was due in large part to significant heterogeneity in both the methods and/or reagents used in testing archival material for the presence of the alteration. These methods included a number of solid matrix blotting techniques for DNA, RNA and protein as well as immunohistochemistry. Fluorescence in situ hybridization (FISH) represents the newest methodologic approach for testing for this genetic alteration. In this study, FISH is compared to Southern, Northern and Western blot analyses as well as immunohistochemistry in a large cohort of archival human breast cancer specimens. FISH was found to be superior to all other methodologies tested in assessing formalin fixed, paraffin embedded material for HER-2/neu amplification. The results from this study also confirm that overexpression of HER-2/neu rarely occurs in the absence of gene amplification in breast cancer (approximately 3% of cases). This method of analysis is rapid, reproducible and extremely reliable in detecting presence of HER-2/neu gene amplification and should have clinical utility.

  16. PCR-free quantitative detection of genetically modified organism from raw materials – A novel electrochemiluminescence-based bio-barcode method

    Science.gov (United States)

    Zhu, Debin; Tang, Yabing; Xing, Da; Chen, Wei R.

    2018-01-01

    Bio-barcode assay based on oligonucleotide-modified gold nanoparticles (Au-NPs) provides a PCR-free method for quantitative detection of nucleic acid targets. However, the current bio-barcode assay requires lengthy experimental procedures including the preparation and release of barcode DNA probes from the target-nanoparticle complex, and immobilization and hybridization of the probes for quantification. Herein, we report a novel PCR-free electrochemiluminescence (ECL)-based bio-barcode assay for the quantitative detection of genetically modified organism (GMO) from raw materials. It consists of tris-(2’2’-bipyridyl) ruthenium (TBR)-labele barcode DNA, nucleic acid hybridization using Au-NPs and biotin-labeled probes, and selective capture of the hybridization complex by streptavidin-coated paramagnetic beads. The detection of target DNA is realized by direct measurement of ECL emission of TBR. It can quantitatively detect target nucleic acids with high speed and sensitivity. This method can be used to quantitatively detect GMO fragments from real GMO products. PMID:18386909

  17. Quantitative radioautographic determination of brain tyrosine hydroxylase after direct transfer into nitro-cellulose and immunochemical detection

    International Nuclear Information System (INIS)

    Weissmann, D.; Labatut, R.; Gillon, J.Y.

    1988-01-01

    An improved quantitative immuno chemical determination of tyrosine hydroxylase brain concentrations was designed by using direct transfer into nitro-cellulose from 20 μm thick brain sections followed by immuno-detection and quantitative radioautography [fr

  18. A functional gene array for detection of bacterial virulence elements

    Energy Technology Data Exchange (ETDEWEB)

    Jaing, C

    2007-11-01

    We report our development of the first of a series of microarrays designed to detect pathogens with known mechanisms of virulence and antibiotic resistance. By targeting virulence gene families as well as genes unique to specific biothreat agents, these arrays will provide important data about the pathogenic potential and drug resistance profiles of unknown organisms in environmental samples. To validate our approach, we developed a first generation array targeting genes from Escherichia coli strains K12 and CFT073, Enterococcus faecalis and Staphylococcus aureus. We determined optimal probe design parameters for microorganism detection and discrimination, measured the required target concentration, and assessed tolerance for mismatches between probe and target sequences. Mismatch tolerance is a priority for this application, due to DNA sequence variability among members of gene families. Arrays were created using the NimbleGen Maskless Array Synthesizer at Lawrence Livermore National Laboratory. Purified genomic DNA from combinations of one or more of the four target organisms, pure cultures of four related organisms, and environmental aerosol samples with spiked-in genomic DNA were hybridized to the arrays. Based on the success of this prototype, we plan to design further arrays in this series, with the goal of detecting all known virulence and antibiotic resistance gene families in a greatly expanded set of organisms.

  19. Comparative Evaluation of Four Real-Time PCR Methods for the Quantitative Detection of Epstein-Barr Virus from Whole Blood Specimens.

    Science.gov (United States)

    Buelow, Daelynn; Sun, Yilun; Tang, Li; Gu, Zhengming; Pounds, Stanley; Hayden, Randall

    2016-07-01

    Monitoring of Epstein-Barr virus (EBV) load in immunocompromised patients has become integral to their care. An increasing number of reagents are available for quantitative detection of EBV; however, there are little published comparative data. Four real-time PCR systems (one using laboratory-developed reagents and three using analyte-specific reagents) were compared with one another for detection of EBV from whole blood. Whole blood specimens seeded with EBV were used to determine quantitative linearity, analytical measurement range, lower limit of detection, and CV for each assay. Retrospective testing of 198 clinical samples was performed in parallel with all methods; results were compared to determine relative quantitative and qualitative performance. All assays showed similar performance. No significant difference was found in limit of detection (3.12-3.49 log10 copies/mL; P = 0.37). A strong qualitative correlation was seen with all assays that used clinical samples (positive detection rates of 89.5%-95.8%). Quantitative correlation of clinical samples across assays was also seen in pairwise regression analysis, with R(2) ranging from 0.83 to 0.95. Normalizing clinical sample results to IU/mL did not alter the quantitative correlation between assays. Quantitative EBV detection by real-time PCR can be performed over a wide linear dynamic range, using three different commercially available reagents and laboratory-developed methods. EBV was detected with comparable sensitivity and quantitative correlation for all assays. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  20. Multiplex PCR assay for detection of recombinant genes encoding fatty acid desaturases fused with lichenase reporter protein in GM plants.

    Science.gov (United States)

    Berdichevets, Iryna N; Shimshilashvili, Hristina R; Gerasymenko, Iryna M; Sindarovska, Yana R; Sheludko, Yuriy V; Goldenkova-Pavlova, Irina V

    2010-07-01

    Thermostable lichenase encoded by licB gene of Clostridium thermocellum can be used as a reporter protein in plant, bacterial, yeast, and mammalian cells. It has important advantages of high sensitivity and specificity in qualitative and quantitative assays. Deletion variants of LicB (e.g., LicBM3) retain its enzymatic activity and thermostability and can be expressed in translational fusion with target proteins without compromising with their properties. Fusion with the lichenase reporter is especially convenient for the heterologous expression of proteins whose analysis is difficult or compromised by host enzyme activities, as it is in case of fatty acid desaturases occurring in all groups of organisms. Recombinant desaturase-lichenase genes can be used for creating genetically modified (GM) plants with improved chill tolerance. Development of an analytical method for detection of fused desaturase-lichenase transgenes is necessary both for production of GM plants and for their certification. Here, we report a multiplex polymerase chain reaction method for detection of desA and desC desaturase genes of cyanobacteria Synechocystis sp. PCC6803 and Synechococcus vulcanus, respectively, fused to licBM3 reporter in GM plants.

  1. Molecular detection of disease resistance genes to powdery mildew ...

    African Journals Online (AJOL)

    A study was conducted to detect the presence of disease resistance genes to infection of wheat powdery mildew (Blumeria graminis f. sp. tritici) in selected wheat cultivars from China using molecular markers. Genomic DNA of sixty cultivars was extracted and tested for the presence of selected prominent resistance genes to ...

  2. Selection of Suitable Reference Genes for Quantitative Real-time PCR in Sapium sebiferum

    Directory of Open Access Journals (Sweden)

    Xue Chen

    2017-05-01

    Full Text Available Chinese tallow (Sapium sebiferum L. is a promising landscape and bioenergy plant. Measuring gene expression by quantitative real-time polymerase chain reaction (qRT-PCR can provide valuable information on gene function. Stably expressed reference genes for normalization are a prerequisite for ensuring the accuracy of the target gene expression level among different samples. However, the reference genes in Chinese tallow have not been systematically validated. In this study, 12 candidate reference genes (18S, GAPDH, UBQ, RPS15, SAND, TIP41, 60S, ACT7, PDF2, APT, TBP, and TUB were investigated with qRT-PCR in 18 samples, including those from different tissues, from plants treated with sucrose and cold stresses. The data were calculated with four common algorithms, geNorm, BestKeeper, NormFinder, and the delta cycle threshold (ΔCt. TIP41 and GAPDH were the most stable for the tissue-specific experiment, GAPDH and 60S for cold treatment, and GAPDH and UBQ for sucrose stresses, while the least stable genes were 60S, TIP41, and 18S respectively. The comprehensive results showed APT, GAPDH, and UBQ to be the top-ranked stable genes across all the samples. The stability of 60S was the lowest during all experiments. These selected reference genes were further validated by comparing the expression profiles of the chalcone synthase gene in Chinese tallow in different samples. The results will help to improve the accuracy of gene expression studies in Chinese tallow.

  3. Using the candidate gene approach for detecting genes underlying seed oil concentration and yield in soybean.

    Science.gov (United States)

    Eskandari, Mehrzad; Cober, Elroy R; Rajcan, Istvan

    2013-07-01

    Increasing the oil concentration in soybean seeds has been given more attention in recent years because of demand for both edible oil and biodiesel production. Oil concentration in soybean is a complex quantitative trait regulated by many genes as well as environmental conditions. To identify genes governing seed oil concentration in soybean, 16 putative candidate genes of three important gene families (GPAT: acyl-CoA:sn-glycerol-3-phosphate acyltransferase, DGAT: acyl-CoA:diacylglycerol acyltransferase, and PDAT: phospholipid:diacylglycerol acyltransferase) involved in triacylglycerol (TAG) biosynthesis pathways were selected and their sequences retrieved from the soybean database ( http://www.phytozome.net/soybean ). Three sequence mutations were discovered in either coding or noncoding regions of three DGAT soybean isoforms when comparing the parents of a 203 recombinant inbreed line (RIL) population; OAC Wallace and OAC Glencoe. The RIL population was used to study the effects of these mutations on seed oil concentration and other important agronomic and seed composition traits, including seed yield and protein concentration across three field locations in Ontario, Canada, in 2009 and 2010. An insertion/deletion (indel) mutation in the GmDGAT2B gene in OAC Wallace was significantly associated with reduced seed oil concentration across three environments and reduced seed yield at Woodstock in 2010. A mutation in the 3' untranslated (3'UTR) region of GmDGAT2C was associated with seed yield at Woodstock in 2009. A mutation in the intronic region of GmDGAR1B was associated with seed yield and protein concentration at Ottawa in 2010. The genes identified in this study had minor effects on either seed yield or oil concentration, which was in agreement with the quantitative nature of the traits. However, the novel gene-specific markers designed in the present study can be used in soybean breeding for marker-assisted selection aimed at increasing seed yield and oil

  4. A method for accurate detection of genomic microdeletions using real-time quantitative PCR

    Directory of Open Access Journals (Sweden)

    Bassett Anne S

    2005-12-01

    Full Text Available Abstract Background Quantitative Polymerase Chain Reaction (qPCR is a well-established method for quantifying levels of gene expression, but has not been routinely applied to the detection of constitutional copy number alterations of human genomic DNA. Microdeletions or microduplications of the human genome are associated with a variety of genetic disorders. Although, clinical laboratories routinely use fluorescence in situ hybridization (FISH to identify such cryptic genomic alterations, there remains a significant number of individuals in which constitutional genomic imbalance is suspected, based on clinical parameters, but cannot be readily detected using current cytogenetic techniques. Results In this study, a novel application for real-time qPCR is presented that can be used to reproducibly detect chromosomal microdeletions and microduplications. This approach was applied to DNA from a series of patient samples and controls to validate genomic copy number alteration at cytoband 22q11. The study group comprised 12 patients with clinical symptoms of chromosome 22q11 deletion syndrome (22q11DS, 1 patient trisomic for 22q11 and 4 normal controls. 6 of the patients (group 1 had known hemizygous deletions, as detected by standard diagnostic FISH, whilst the remaining 6 patients (group 2 were classified as 22q11DS negative using the clinical FISH assay. Screening of the patients and controls with a set of 10 real time qPCR primers, spanning the 22q11.2-deleted region and flanking sequence, confirmed the FISH assay results for all patients with 100% concordance. Moreover, this qPCR enabled a refinement of the region of deletion at 22q11. Analysis of DNA from chromosome 22 trisomic sample demonstrated genomic duplication within 22q11. Conclusion In this paper we present a qPCR approach for the detection of chromosomal microdeletions and microduplications. The strategic use of in silico modelling for qPCR primer design to avoid regions of repetitive

  5. Transcriptomic biomarkers of altered erythropoiesis to detect autologous blood transfusion.

    Science.gov (United States)

    Salamin, Olivier; Mignot, Jonathan; Kuuranne, Tiia; Saugy, Martial; Leuenberger, Nicolas

    2018-03-01

    Autologous blood transfusion is a powerful means of improving performance and remains one of the most challenging methods to detect. Recent investigations have identified 3 candidate reticulocytes genes whose expression was significantly influenced by blood transfusion. Using quantitative reverse transcription polymerase chain reaction as an alternative quantitative method, the present study supports that delta-aminolevulinate synthase 2 (ALAS2), carbonic anhydrase (CA1), and solute carrier family 4 member 1 (SLC4A1) genes are down-regulated post-transfusion. The expression of these genes exhibited stronger correlation with immature reticulocyte fraction than with reticulocytes percentage. Moreover, the repression of reticulocytes' gene expression was more pronounced than the diminution of immature reticulocyte fraction and reticulocyte percentage following blood transfusion. It suggests that the 3 candidate genes are reliable predictors of bone marrow's response to blood transfusion and that they represent potential biomarkers for the detection of this method prohibited in sports. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Fast and sensitive detection of indels induced by precise gene targeting

    DEFF Research Database (Denmark)

    Yang, Zhang; Steentoft, Catharina; Hauge, Camilla

    2015-01-01

    The nuclease-based gene editing tools are rapidly transforming capabilities for altering the genome of cells and organisms with great precision and in high throughput studies. A major limitation in application of precise gene editing lies in lack of sensitive and fast methods to detect...... and characterize the induced DNA changes. Precise gene editing induces double-stranded DNA breaks that are repaired by error-prone non-homologous end joining leading to introduction of insertions and deletions (indels) at the target site. These indels are often small and difficult and laborious to detect...

  7. Systematic and quantitative mRNA expression analysis of TRP channel genes at the single trigeminal and dorsal root ganglion level in mouse

    Directory of Open Access Journals (Sweden)

    Vandewauw Ine

    2013-02-01

    Full Text Available Abstract Background Somatosensory nerve fibres arising from cell bodies within the trigeminal ganglia (TG in the head and from a string of dorsal root ganglia (DRG located lateral to the spinal cord convey endogenous and environmental stimuli to the central nervous system. Although several members of the transient receptor potential (TRP superfamily of cation channels have been implicated in somatosensation, the expression levels of TRP channel genes in the individual sensory ganglia have never been systematically studied. Results Here, we used quantitative real-time PCR to analyse and compare mRNA expression of all TRP channels in TG and individual DRGs from 27 anatomically defined segments of the spinal cord of the mouse. At the mRNA level, 17 of the 28 TRP channel genes, TRPA1, TRPC1, TRPC3, TRPC4, TRPC5, TRPM2, TRPM3, TRPM4, TRPM5, TRPM6, TRPM7, TRPM8, TRPV1, TRPV2, TRPV4, TRPML1 and TRPP2, were detectable in every tested ganglion. Notably, four TRP channels, TRPC4, TRPM4, TRPM8 and TRPV1, showed statistically significant variation in mRNA levels between DRGs from different segments, suggesting ganglion-specific regulation of TRP channel gene expression. These ganglion-to-ganglion differences in TRP channel transcript levels may contribute to the variability in sensory responses in functional studies. Conclusions We developed, compared and refined techniques to quantitatively analyse the relative mRNA expression of all TRP channel genes at the single ganglion level. This study also provides for the first time a comparative mRNA distribution profile in TG and DRG along the entire vertebral column for the mammalian TRP channel family.

  8. Usual normalization strategies for gene expression studies impair the detection and analysis of circadian patterns.

    Science.gov (United States)

    Figueredo, Diego de Siqueira; Barbosa, Mayara Rodrigues; Coimbra, Daniel Gomes; Dos Santos, José Luiz Araújo; Costa, Ellyda Fernanda Lopes; Koike, Bruna Del Vechio; Alexandre Moreira, Magna Suzana; de Andrade, Tiago Gomes

    2018-03-01

    Recent studies have shown that transcriptomes from different tissues present circadian oscillations. Therefore, the endogenous variation of total RNA should be considered as a potential bias in circadian studies of gene expression. However, normalization strategies generally include the equalization of total RNA concentration between samples prior to cDNA synthesis. Moreover, endogenous housekeeping genes (HKGs) frequently used for data normalization may exhibit circadian variation and distort experimental results if not detected or considered. In this study, we controlled experimental conditions from the amount of initial brain tissue samples through extraction steps, cDNA synthesis, and quantitative real time PCR (qPCR) to demonstrate a circadian oscillation of total RNA concentration. We also identified that the normalization of the RNA's yield affected the rhythmic profiles of different genes, including Per1-2 and Bmal1. Five widely used HKGs (Actb, Eif2a, Gapdh, Hprt1, and B2m) also presented rhythmic variations not detected by geNorm algorithm. In addition, the analysis of exogenous microRNAs (Cel-miR-54 and Cel-miR-39) spiked during RNA extraction suggests that the yield was affected by total RNA concentration, which may impact circadian studies of small RNAs. The results indicate that the approach of tissue normalization without total RNA equalization prior to cDNA synthesis can avoid bias from endogenous broad variations in transcript levels. Also, the circadian analysis of 2 -Cycle threshold (Ct) data, without HKGs, may be an alternative for chronobiological studies under controlled experimental conditions.

  9. QUANTITATIVE DETECTION OF ENVIRONMENTALLY IMPORTANT DYES USING DIODE LASER/FIBER-OPTIC RAMAN

    Science.gov (United States)

    A compact diode laser/fiber-optic Raman spectrometer is used for quantitative detection of environmentally important dyes. This system is based on diode laser excitation at 782 mm, fiber optic probe technology, an imaging spectrometer, and state-of-the-art scientific CCD camera. ...

  10. Depletion of polycistronic transcripts using short interfering RNAs: cDNA synthesis method affects levels of non-targeted genes determined by quantitative PCR.

    Science.gov (United States)

    Hanning, Jennifer E; Groves, Ian J; Pett, Mark R; Coleman, Nicholas

    2013-05-21

    Short interfering RNAs (siRNAs) are often used to deplete viral polycistronic transcripts, such as those encoded by human papillomavirus (HPV). There are conflicting data in the literature concerning how siRNAs targeting one HPV gene can affect levels of other genes in the polycistronic transcripts. We hypothesised that the conflict might be partly explained by the method of cDNA synthesis used prior to transcript quantification. We treated HPV16-positive cervical keratinocytes with siRNAs targeting the HPV16 E7 gene and used quantitative PCR to compare transcript levels of E7 with those of E6 and E2, viral genes located upstream and downstream of the target site respectively. We compared our findings from cDNA generated using oligo-dT primers alone with those from cDNA generated using a combination of random hexamer and oligo-dT primers. Our data show that when polycistronic transcripts are targeted by siRNAs, there is a period when untranslatable cleaved mRNA upstream of the siRNA binding site remains detectable by PCR, if cDNA is generated using random hexamer primers. Such false indications of mRNA abundance are avoided using oligo-dT primers. The period corresponds to the time taken for siRNA activity and degradation of the cleaved transcripts. Genes downstream of the siRNA binding site are detectable during this interval, regardless of how the cDNA is generated. These data emphasise the importance of the cDNA synthesis method used when measuring transcript abundance following siRNA depletion of polycistronic transcripts. They provide a partial explanation for erroneous reports suggesting that siRNAs targeting HPV E7 can have gene-specific effects.

  11. Quantitative promoter methylation analysis of multiple cancer-related genes in renal cell tumors

    International Nuclear Information System (INIS)

    Costa, Vera L; Henrique, Rui; Ribeiro, Franclim R; Pinto, Mafalda; Oliveira, Jorge; Lobo, Francisco; Teixeira, Manuel R; Jerónimo, Carmen

    2007-01-01

    Aberrant promoter hypermethylation of cancer-associated genes occurs frequently during carcinogenesis and may serve as a cancer biomarker. In this study we aimed at defining a quantitative gene promoter methylation panel that might identify the most prevalent types of renal cell tumors. A panel of 18 gene promoters was assessed by quantitative methylation-specific PCR (QMSP) in 85 primarily resected renal tumors representing the four major histologic subtypes (52 clear cell (ccRCC), 13 papillary (pRCC), 10 chromophobe (chRCC), and 10 oncocytomas) and 62 paired normal tissue samples. After genomic DNA isolation and sodium bisulfite modification, methylation levels were determined and correlated with standard clinicopathological parameters. Significant differences in methylation levels among the four subtypes of renal tumors were found for CDH1 (p = 0.0007), PTGS2 (p = 0.002), and RASSF1A (p = 0.0001). CDH1 hypermethylation levels were significantly higher in ccRCC compared to chRCC and oncocytoma (p = 0.00016 and p = 0.0034, respectively), whereas PTGS2 methylation levels were significantly higher in ccRCC compared to pRCC (p = 0.004). RASSF1A methylation levels were significantly higher in pRCC than in normal tissue (p = 0.035). In pRCC, CDH1 and RASSF1A methylation levels were inversely correlated with tumor stage (p = 0.031) and nuclear grade (p = 0.022), respectively. The major subtypes of renal epithelial neoplasms display differential aberrant CDH1, PTGS2, and RASSF1A promoter methylation levels. This gene panel might contribute to a more accurate discrimination among common renal tumors, improving preoperative assessment and therapeutic decision-making in patients harboring suspicious renal masses

  12. Quantitative utilization of prior biological knowledge in the Bayesian network modeling of gene expression data

    Directory of Open Access Journals (Sweden)

    Gao Shouguo

    2011-08-01

    Full Text Available Abstract Background Bayesian Network (BN is a powerful approach to reconstructing genetic regulatory networks from gene expression data. However, expression data by itself suffers from high noise and lack of power. Incorporating prior biological knowledge can improve the performance. As each type of prior knowledge on its own may be incomplete or limited by quality issues, integrating multiple sources of prior knowledge to utilize their consensus is desirable. Results We introduce a new method to incorporate the quantitative information from multiple sources of prior knowledge. It first uses the Naïve Bayesian classifier to assess the likelihood of functional linkage between gene pairs based on prior knowledge. In this study we included cocitation in PubMed and schematic similarity in Gene Ontology annotation. A candidate network edge reservoir is then created in which the copy number of each edge is proportional to the estimated likelihood of linkage between the two corresponding genes. In network simulation the Markov Chain Monte Carlo sampling algorithm is adopted, and samples from this reservoir at each iteration to generate new candidate networks. We evaluated the new algorithm using both simulated and real gene expression data including that from a yeast cell cycle and a mouse pancreas development/growth study. Incorporating prior knowledge led to a ~2 fold increase in the number of known transcription regulations recovered, without significant change in false positive rate. In contrast, without the prior knowledge BN modeling is not always better than a random selection, demonstrating the necessity in network modeling to supplement the gene expression data with additional information. Conclusion our new development provides a statistical means to utilize the quantitative information in prior biological knowledge in the BN modeling of gene expression data, which significantly improves the performance.

  13. Exploring Valid Reference Genes for Quantitative Real-time PCR Analysis in Plutella xylostella (Lepidoptera: Plutellidae)

    Science.gov (United States)

    Fu, Wei; Xie, Wen; Zhang, Zhuo; Wang, Shaoli; Wu, Qingjun; Liu, Yong; Zhou, Xiaomao; Zhou, Xuguo; Zhang, Youjun

    2013-01-01

    Abstract: Quantitative real-time PCR (qRT-PCR), a primary tool in gene expression analysis, requires an appropriate normalization strategy to control for variation among samples. The best option is to compare the mRNA level of a target gene with that of reference gene(s) whose expression level is stable across various experimental conditions. In this study, expression profiles of eight candidate reference genes from the diamondback moth, Plutella xylostella, were evaluated under diverse experimental conditions. RefFinder, a web-based analysis tool, integrates four major computational programs including geNorm, Normfinder, BestKeeper, and the comparative ΔCt method to comprehensively rank the tested candidate genes. Elongation factor 1 (EF1) was the most suited reference gene for the biotic factors (development stage, tissue, and strain). In contrast, although appropriate reference gene(s) do exist for several abiotic factors (temperature, photoperiod, insecticide, and mechanical injury), we were not able to identify a single universal reference gene. Nevertheless, a suite of candidate reference genes were specifically recommended for selected experimental conditions. Our finding is the first step toward establishing a standardized qRT-PCR analysis of this agriculturally important insect pest. PMID:23983612

  14. Quantitative detection of melamine based on terahertz time-domain spectroscopy

    Science.gov (United States)

    Zhao, Xiaojing; Wang, Cuicui; Liu, Shangjian; Zuo, Jian; Zhou, Zihan; Zhang, Cunlin

    2018-01-01

    Melamine is an organic base and a trimer of cyanamide, with a 1, 3, 5-triazine skeleton. It is usually used for the production of plastics, glue and flame retardants. Melamine combines with acid and related compounds to form melamine cyanurate and related crystal structures, which have been implicated as contaminants or biomarkers in protein adulterations by lawbreakers, especially in milk powder. This paper is focused on developing an available method for quantitative detection of melamine in the fields of security inspection and nondestructive testing based on THz-TDS. Terahertz (THz) technology has promising applications for the detection and identification of materials because it exhibits the properties of spectroscopy, good penetration and safety. Terahertz time-domain spectroscopy (THz-TDS) is a key technique that is applied to spectroscopic measurement of materials based on ultrafast femtosecond laser. In this study, the melamine and its mixture with polyethylene powder in different consistence are measured using the transmission THz-TDS. And we obtained the refractive index spectra and the absorption spectrum of different concentrations of melamine on 0.2-2.8THz. In the refractive index spectra, it is obvious to see that decline trend with the decrease of concentration; and in the absorption spectrum, two peaks of melamine at 1.98THz and 2.28THz can be obtained. Based on the experimental result, the absorption coefficient and the consistence of the melamine in the mixture are determined. Finally, methods for quantitative detection of materials in the fields of nondestructive testing and quality control based on THz-TDS have been studied.

  15. A hybrid network-based method for the detection of disease-related genes

    Science.gov (United States)

    Cui, Ying; Cai, Meng; Dai, Yang; Stanley, H. Eugene

    2018-02-01

    Detecting disease-related genes is crucial in disease diagnosis and drug design. The accepted view is that neighbors of a disease-causing gene in a molecular network tend to cause the same or similar diseases, and network-based methods have been recently developed to identify novel hereditary disease-genes in available biomedical networks. Despite the steady increase in the discovery of disease-associated genes, there is still a large fraction of disease genes that remains under the tip of the iceberg. In this paper we exploit the topological properties of the protein-protein interaction (PPI) network to detect disease-related genes. We compute, analyze, and compare the topological properties of disease genes with non-disease genes in PPI networks. We also design an improved random forest classifier based on these network topological features, and a cross-validation test confirms that our method performs better than previous similar studies.

  16. Detection of drought tolerant genes within seedling apple rootstocks in Syria

    Science.gov (United States)

    This investigation was conducted to detect the drought tolerant genes (four genes) within seedling apple rootstocks derived from five apple genotypes, including Syrian apple cultivars. The results showed that the gene MdPepPro (a cyclophilin) was found in all studied genotypes and their progenies e...

  17. Real-time PCR detection of Fe-type nitrile hydratase genes from environmental isolates suggests horizontal gene transfer between multiple genera.

    Science.gov (United States)

    Coffey, Lee; Owens, Erica; Tambling, Karen; O'Neill, David; O'Connor, Laura; O'Reilly, Catherine

    2010-11-01

    Nitriles are widespread in the environment as a result of biological and industrial activity. Nitrile hydratases catalyse the hydration of nitriles to the corresponding amide and are often associated with amidases, which catalyze the conversion of amides to the corresponding acids. Nitrile hydratases have potential as biocatalysts in bioremediation and biotransformation applications, and several successful examples demonstrate the advantages. In this work a real-time PCR assay was designed for the detection of Fe-type nitrile hydratase genes from environmental isolates purified from nitrile-enriched soils and seaweeds. Specific PCR primers were also designed for amplification and sequencing of the genes. Identical or highly homologous nitrile hydratase genes were detected from isolates of numerous genera from geographically diverse sites, as were numerous novel genes. The genes were also detected from isolates of genera not previously reported to harbour nitrile hydratases. The results provide further evidence that many bacteria have acquired the genes via horizontal gene transfer. The real-time PCR assay should prove useful in searching for nitrile hydratases that could have novel substrate specificities and therefore potential in industrial applications.

  18. Real-time polymerase chain reaction assay for endogenous reference gene for specific detection and quantification of common wheat-derived DNA (Triticum aestivum L.).

    Science.gov (United States)

    Vautrin, Sonia; Zhang, David

    2007-01-01

    A species-specific endogenous reference gene system was developed for polymerase chain reaction (PCR)-based analysis in common wheat (Triticum aestivum L.) by targeting the ALMT1 gene, an aluminium-activated malate transporter. The primers and probe were elaborated for real-time PCR-based qualitative and quantitative assay. The size of amplified product is 95 base pairs. The specificity was assessed on 17 monocot and dicot plant species. The established real-time PCR assay amplified only T. aestivum-derived DNA; no amplification occurred on other phylogenetically related species, including durum wheat (T. durum). The robustness of the system was tested on the DNA of 15 common wheat cultivars using 20 000 genomic copies per PCR the mean cycle threshold (Ct) values of 24.02 +/- 0.251 were obtained. The absolute limits of detection and quantification of the real-time PCR assay were estimated to 2 and 20 haploid genome copies of common wheat, respectively. The linearity was experimentally validated on 2-fold serial dilutions of DNA from 650 to 20 000 haploid genome copies. All these results show that the real-time PCR assay developed on the ALMT1 gene is suitable to be used as an endogenous reference gene for PCR-based specific detection and quantification of T. aestivum-derived DNA in various applications, in particular for the detection and quantification of genetically modified materials in common wheat.

  19. Quantitative high-resolution genomic analysis of single cancer cells.

    Science.gov (United States)

    Hannemann, Juliane; Meyer-Staeckling, Sönke; Kemming, Dirk; Alpers, Iris; Joosse, Simon A; Pospisil, Heike; Kurtz, Stefan; Görndt, Jennifer; Püschel, Klaus; Riethdorf, Sabine; Pantel, Klaus; Brandt, Burkhard

    2011-01-01

    During cancer progression, specific genomic aberrations arise that can determine the scope of the disease and can be used as predictive or prognostic markers. The detection of specific gene amplifications or deletions in single blood-borne or disseminated tumour cells that may give rise to the development of metastases is of great clinical interest but technically challenging. In this study, we present a method for quantitative high-resolution genomic analysis of single cells. Cells were isolated under permanent microscopic control followed by high-fidelity whole genome amplification and subsequent analyses by fine tiling array-CGH and qPCR. The assay was applied to single breast cancer cells to analyze the chromosomal region centred by the therapeutical relevant EGFR gene. This method allows precise quantitative analysis of copy number variations in single cell diagnostics.

  20. Basal host resistance of barley to powdery mildew: connecting quantitative trait loci and candidate genes

    NARCIS (Netherlands)

    Aghnoum, R.; Marcel, T.C.; Johrde, A.; Pecchioni, N.; Schweizer, P.; Niks, R.E.

    2010-01-01

    The basal resistance of barley to powdery mildew (Blumeria graminis f. sp. hordei) is a quantitatively inherited trait that is based on nonhypersensitive mechanisms of defense. A functional genomic approach indicates that many plant candidate genes are involved in the defense against formation of

  1. Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process

    Directory of Open Access Journals (Sweden)

    Borges-Pérez Andrés

    2008-12-01

    Full Text Available Abstract Background The elucidation of gene expression patterns leads to a better understanding of biological processes. Real-time quantitative RT-PCR has become the standard method for in-depth studies of gene expression. A biologically meaningful reporting of target mRNA quantities requires accurate and reliable normalization in order to identify real gene-specific variation. The purpose of normalization is to control several variables such as different amounts and quality of starting material, variable enzymatic efficiencies of retrotranscription from RNA to cDNA, or differences between tissues or cells in overall transcriptional activity. The validity of a housekeeping gene as endogenous control relies on the stability of its expression level across the sample panel being analysed. In the present report we describe the first systematic evaluation of potential internal controls during tomato development process to identify which are the most reliable for transcript quantification by real-time RT-PCR. Results In this study, we assess the expression stability of 7 traditional and 4 novel housekeeping genes in a set of 27 samples representing different tissues and organs of tomato plants at different developmental stages. First, we designed, tested and optimized amplification primers for real-time RT-PCR. Then, expression data from each candidate gene were evaluated with three complementary approaches based on different statistical procedures. Our analysis suggests that SGN-U314153 (CAC, SGN-U321250 (TIP41, SGN-U346908 ("Expressed" and SGN-U316474 (SAND genes provide superior transcript normalization in tomato development studies. We recommend different combinations of these exceptionally stable housekeeping genes for suited normalization of different developmental series, including the complete tomato development process. Conclusion This work constitutes the first effort for the selection of optimal endogenous controls for quantitative real

  2. Behavior Drift Detection Based on Anomalies Identification in Home Living Quantitative Indicators

    Directory of Open Access Journals (Sweden)

    Fabio Veronese

    2018-01-01

    Full Text Available Home Automation and Smart Homes diffusion are providing an interesting opportunity to implement elderly monitoring. This is a new valid technological support to allow in-place aging of seniors by means of a detection system to notify potential anomalies. Monitoring has been implemented by means of Complex Event Processing on live streams of home automation data: this allows the analysis of the behavior of the house inhabitant through quantitative indicators. Different kinds of quantitative indicators for monitoring and behavior drift detection have been identified and implemented using the Esper complex event processing engine. The chosen solution permits us not only to exploit the queries when run “online”, but enables also “offline” (re-execution for testing and a posteriori analysis. Indicators were developed on both real world data and on realistic simulations. Tests were made on a dataset of 180 days: the obtained results prove that it is possible to evidence behavior changes for an evaluation of a person’s condition.

  3. Systematic identification and validation of candidate genes for detection of circulating tumor cells in peripheral blood specimens of colorectal cancer patients.

    Science.gov (United States)

    Findeisen, Peter; Röckel, Matthias; Nees, Matthias; Röder, Christian; Kienle, Peter; Von Knebel Doeberitz, Magnus; Kalthoff, Holger; Neumaier, Michael

    2008-11-01

    The presence of tumor cells in peripheral blood is being regarded increasingly as a clinically relevant prognostic factor for colorectal cancer patients. Current molecular methods are very sensitive but due to low specificity their diagnostic value is limited. This study was undertaken in order to systematically identify and validate new colorectal cancer (CRC) marker genes for improved detection of minimal residual disease in peripheral blood mononuclear cells of colorectal cancer patients. Marker genes with upregulated gene expression in colorectal cancer tissue and cell lines were identified using microarray experiments and publicly available gene expression data. A systematic iterative approach was used to reduce a set of 346 candidate genes, reportedly associated with CRC to a selection of candidate genes that were then further validated by relative quantitative real-time RT-PCR. Analytical sensitivity of RT-PCR assays was determined by spiking experiments with CRC cells. Diagnostic sensitivity as well as specificity was tested on a control group consisting of 18 CRC patients compared to 12 individuals without malignant disease. From a total of 346-screened genes only serine (or cysteine) proteinase inhibitor, clade B (ovalbumin), member 5 (SERPINB5) showed significantly elevated transcript levels in peripheral venous blood specimens of tumor patients when compared to the nonmalignant control group. These results were confirmed by analysis of an enlarged collective consisting of 63 CRC patients and 36 control individuals without malignant disease. In conclusion SERPINB5 seems to be a promising marker for detection of circulating tumor cells in peripheral blood of colorectal cancer patients.

  4. On-Orbit Quantitative Real-Time Gene Expression Analysis Using the Wetlab-2 System

    Science.gov (United States)

    Parra, Macarena; Jung, Jimmy; Almeida, Eduardo; Boone, Travis; Tran, Luan; Schonfeld, Julie

    2015-01-01

    NASA Ames Research Center's WetLab-2 Project enables on-orbit quantitative Reverse Transcriptase PCR (qRT-PCR) analysis without the need for sample return. The WetLab-2 system is capable of processing sample types ranging from microbial cultures to animal tissues dissected on-orbit. The project developed a RNA preparation module that can lyse cells and extract RNA of sufficient quality and quantity for use as templates in qRT-PCR reactions. Our protocol has the advantage of using non-toxic chemicals and does not require alcohols or other organics. The resulting RNA is dispensed into reaction tubes that contain all lyophilized reagents needed to perform qRT-PCR reactions. System operations require simple and limited crew actions including syringe pushes, valve turns and pipette dispenses. The project selected the Cepheid SmartCycler (TradeMark), a Commercial-Off-The-Shelf (COTS) qRT-PCR unit, because of its advantages including rugged modular design, low power consumption, rapid thermal ramp times and four-color multiplex detection. Single tube multiplex assays can be used to normalize for RNA concentration and integrity, and to study multiple genes of interest in each module. The WetLab-2 system can downlink data from the ISS to the ground after a completed run and uplink new thermal cycling programs. The ability to conduct qRT-PCR and generate results on-orbit is an important step towards utilizing the ISS as a National Laboratory facility. Specifically, the ability to get on-orbit data will provide investigators with the opportunity to adjust experimental parameters in real time without the need for sample return and re-flight. On orbit gene expression analysis can also eliminate the confounding effects on gene expression of reentry stresses and shock acting on live cells and organisms or the concern of RNA degradation of fixed samples and provide on-orbit gene expression benchmarking prior to sample return. Finally, the system can also be used for analysis of

  5. Selection of suitable reference genes for normalization of genes of interest in canine soft tissue sarcomas using quantitative real-time polymerase chain reaction.

    Science.gov (United States)

    Zornhagen, K W; Kristensen, A T; Hansen, A E; Oxboel, J; Kjaer, A

    2015-12-01

    Quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR) is a sensitive technique for quantifying gene expression. Stably expressed reference genes are necessary for normalization of RT-qPCR data. Only a few articles have been published on reference genes in canine tumours. The objective of this study was to demonstrate how to identify suitable reference genes for normalization of genes of interest in canine soft tissue sarcomas using RT-qPCR. Primer pairs for 17 potential reference genes were designed and tested in archival tumour biopsies from six dogs. The geNorm algorithm was used to analyse the most suitable reference genes. Eight potential reference genes were excluded from this final analysis because of their dissociation curves. β-Glucuronidase (GUSB) and proteasome subunit, beta type, 6 (PSMB6) were most stably expressed with an M value of 0.154 and a CV of 0.053 describing their average stability. We suggest that choice of reference genes should be based on specific testing in every new experimental set-up. © 2014 John Wiley & Sons Ltd.

  6. Quantitative transcription dynamic analysis reveals candidate genes and key regulators for ethanol tolerance in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Ma Menggen

    2010-06-01

    Full Text Available Abstract Background Derived from our lignocellulosic conversion inhibitor-tolerant yeast, we generated an ethanol-tolerant strain Saccharomyces cerevisiae NRRL Y-50316 by enforced evolutionary adaptation. Using a newly developed robust mRNA reference and a master equation unifying gene expression data analyses, we investigated comparative quantitative transcription dynamics of 175 genes selected from previous studies for an ethanol-tolerant yeast and its closely related parental strain. Results A highly fitted master equation was established and applied for quantitative gene expression analyses using pathway-based qRT-PCR array assays. The ethanol-tolerant Y-50316 displayed significantly enriched background of mRNA abundance for at least 35 genes without ethanol challenge compared with its parental strain Y-50049. Under the ethanol challenge, the tolerant Y-50316 responded in consistent expressions over time for numerous genes belonging to groups of heat shock proteins, trehalose metabolism, glycolysis, pentose phosphate pathway, fatty acid metabolism, amino acid biosynthesis, pleiotropic drug resistance gene family and transcription factors. The parental strain showed repressed expressions for many genes and was unable to withstand the ethanol stress and establish a viable culture and fermentation. The distinct expression dynamics between the two strains and their close association with cell growth, viability and ethanol fermentation profiles distinguished the tolerance-response from the stress-response in yeast under the ethanol challenge. At least 82 genes were identified as candidate and key genes for ethanol-tolerance and subsequent fermentation under the stress. Among which, 36 genes were newly recognized by the present study. Most of the ethanol-tolerance candidate genes were found to share protein binding motifs of transcription factors Msn4p/Msn2p, Yap1p, Hsf1p and Pdr1p/Pdr3p. Conclusion Enriched background of transcription abundance

  7. Quantitative and multiplexed detection for blood typing based on quantum dot-magnetic bead assay.

    Science.gov (United States)

    Xu, Ting; Zhang, Qiang; Fan, Ya-Han; Li, Ru-Qing; Lu, Hua; Zhao, Shu-Ming; Jiang, Tian-Lun

    2017-01-01

    Accurate and reliable blood grouping is essential for safe blood transfusion. However, conventional methods are qualitative and use only single-antigen detection. We overcame these limitations by developing a simple, quantitative, and multiplexed detection method for blood grouping using quantum dots (QDs) and magnetic beads. In the QD fluorescence assay (QFA), blood group A and B antigens were quantified using QD labeling and magnetic beads, and the blood groups were identified according to the R value (the value was calculated with the fluorescence intensity from dual QD labeling) of A and B antigens. The optimized performance of QFA was established by blood typing 791 clinical samples. Quantitative and multiplexed detection for blood group antigens can be completed within 35 min with more than 10 5 red blood cells. When conditions are optimized, the assay performance is satisfactory for weak samples. The coefficients of variation between and within days were less than 10% and the reproducibility was good. The ABO blood groups of 791 clinical samples were identified by QFA, and the accuracy obtained was 100% compared with the tube test. Receiver-operating characteristic curves revealed that the QFA has high sensitivity and specificity toward clinical samples, and the cutoff points of the R value of A and B antigens were 1.483 and 1.576, respectively. In this study, we reported a novel quantitative and multiplexed method for the identification of ABO blood groups and presented an effective alternative for quantitative blood typing. This method can be used as an effective tool to improve blood typing and further guarantee clinical transfusion safety.

  8. Association testing to detect gene-gene interactions on sex chromosomes in trio data

    Directory of Open Access Journals (Sweden)

    Yeonok eLee

    2013-11-01

    Full Text Available Autism Spectrum Disorder (ASD occurs more often among males than females in a 4:1 ratio. Among theories used to explain the causes of ASD, the X chromosome and the Y chromosome theories attribute ASD to X-linked mutation and the male-limited gene expressions on the Y chromosome, respectively. Despite the rationale of the theory, studies have failed to attribute the sex-biased ratio to the significant linkage or association on the regions of interest on X chromosome. We further study the gender biased ratio by examining the possible interaction effects between two genes in the sex chromosomes. We propose a logistic regression model with mixed effects to detect gene-gene interactions on sex chromosomes. We investigated the power and type I error rates of the approach for a range of minor allele frequencies and varying linkage disequilibrium between markers and QTLs. We also evaluated the robustness of the model to population stratification. We applied the model to a trio-family data set with an ASD affected male child to study gene-gene interactions on sex chromosomes.

  9. Constitutional von Hippel-Lindau (VHL) gene deletions detected in VHL families by fluorescence in situ hybridization.

    Science.gov (United States)

    Pack, S D; Zbar, B; Pak, E; Ault, D O; Humphrey, J S; Pham, T; Hurley, K; Weil, R J; Park, W S; Kuzmin, I; Stolle, C; Glenn, G; Liotta, L A; Lerman, M I; Klausner, R D; Linehan, W M; Zhuang, Z

    1999-11-01

    von Hippel-Lindau (VHL) disease is an autosomal dominantly inherited cancer syndrome predisposing to a variety of tumor types that include retinal hemangioblastomas, hemangioblastomas of the central nervous system, renal cell carcinomas, pancreatic cysts and tumors, pheochromocytomas, endolymphatic sac tumors, and epididymal cystadenomas [W. M. Linehan et al., J. Am. Med. Assoc., 273: 564-570, 1995; E. A. Maher and W. G. Kaelin, Jr., Medicine (Baltimore), 76: 381-391, 1997; W. M. Linehan and R. D. Klausner, In: B. Vogelstein and K. Kinzler (eds.), The Genetic Basis of Human Cancer, pp. 455-473, McGraw-Hill, 1998]. The VHL gene was localized to chromosome 3p25-26 and cloned [F. Latif et al., Science (Washington DC), 260: 1317-1320, 1993]. Germline mutations in the VHL gene have been detected in the majority of VHL kindreds. The reported frequency of detection of VHL germline mutations has varied from 39 to 80% (J. M. Whaley et al., Am. J. Hum. Genet., 55: 1092-1102, 1994; Clinical Research Group for Japan, Hum. Mol. Genet., 4: 2233-2237, 1995; F. Chen et al., Hum. Mutat., 5: 66-75, 1995; E. R. Maher et al., J. Med. Genet., 33: 328-332, 1996; B. Zbar, Cancer Surv., 25: 219-232, 1995). Recently a quantitative Southern blotting procedure was found to improve this frequency (C. Stolle et al., Hum. Mutat., 12: 417-423, 1998). In the present study, we report the use of fluorescence in situ hybridization (FISH) as a method to detect and characterize VHL germline deletions. We reexamined a group of VHL patients shown previously by single-strand conformation and sequencing analysis not to harbor point mutations in the VHL locus. We found constitutional deletions in 29 of 30 VHL patients in this group using cosmid and P1 probes that cover the VHL locus. We then tested six phenotypically normal offspring from four of these VHL families: two were found to carry the deletion and the other four were deletion-free. In addition, germline mosaicism of the VHL gene was identified in

  10. Quantitative promoter methylation analysis of multiple cancer-related genes in renal cell tumors

    Directory of Open Access Journals (Sweden)

    Oliveira Jorge

    2007-07-01

    Full Text Available Abstract Background Aberrant promoter hypermethylation of cancer-associated genes occurs frequently during carcinogenesis and may serve as a cancer biomarker. In this study we aimed at defining a quantitative gene promoter methylation panel that might identify the most prevalent types of renal cell tumors. Methods A panel of 18 gene promoters was assessed by quantitative methylation-specific PCR (QMSP in 85 primarily resected renal tumors representing the four major histologic subtypes (52 clear cell (ccRCC, 13 papillary (pRCC, 10 chromophobe (chRCC, and 10 oncocytomas and 62 paired normal tissue samples. After genomic DNA isolation and sodium bisulfite modification, methylation levels were determined and correlated with standard clinicopathological parameters. Results Significant differences in methylation levels among the four subtypes of renal tumors were found for CDH1 (p = 0.0007, PTGS2 (p = 0.002, and RASSF1A (p = 0.0001. CDH1 hypermethylation levels were significantly higher in ccRCC compared to chRCC and oncocytoma (p = 0.00016 and p = 0.0034, respectively, whereas PTGS2 methylation levels were significantly higher in ccRCC compared to pRCC (p = 0.004. RASSF1A methylation levels were significantly higher in pRCC than in normal tissue (p = 0.035. In pRCC, CDH1 and RASSF1A methylation levels were inversely correlated with tumor stage (p = 0.031 and nuclear grade (p = 0.022, respectively. Conclusion The major subtypes of renal epithelial neoplasms display differential aberrant CDH1, PTGS2, and RASSF1A promoter methylation levels. This gene panel might contribute to a more accurate discrimination among common renal tumors, improving preoperative assessment and therapeutic decision-making in patients harboring suspicious renal masses.

  11. Identification of appropriate reference genes for human mesenchymal stem cell analysis by quantitative real-time PCR.

    Science.gov (United States)

    Li, Xiuying; Yang, Qiwei; Bai, Jinping; Xuan, Yali; Wang, Yimin

    2015-01-01

    Normalization to a reference gene is the method of choice for quantitative reverse transcription-PCR (RT-qPCR) analysis. The stability of reference genes is critical for accurate experimental results and conclusions. We have evaluated the expression stability of eight commonly used reference genes found in four different human mesenchymal stem cells (MSC). Using geNorm, NormFinder and BestKeeper algorithms, we show that beta-2-microglobulin and peptidyl-prolylisomerase A were the optimal reference genes for normalizing RT-qPCR data obtained from MSC, whereas the TATA box binding protein was not suitable due to its extensive variability in expression. Our findings emphasize the significance of validating reference genes for qPCR analyses. We offer a short list of reference genes to use for normalization and recommend some commercially-available software programs as a rapid approach to validate reference genes. We also demonstrate that the two reference genes, β-actin and glyceraldehyde-3-phosphate dehydrogenase, are frequently used are not always successful in many cases.

  12. A gene encoding maize caffeoyl-CoA O-methyltransferase confers quantitative resistance to multiple pathogens.

    Science.gov (United States)

    Yang, Qin; He, Yijian; Kabahuma, Mercy; Chaya, Timothy; Kelly, Amy; Borrego, Eli; Bian, Yang; El Kasmi, Farid; Yang, Li; Teixeira, Paulo; Kolkman, Judith; Nelson, Rebecca; Kolomiets, Michael; L Dangl, Jeffery; Wisser, Randall; Caplan, Jeffrey; Li, Xu; Lauter, Nick; Balint-Kurti, Peter

    2017-09-01

    Alleles that confer multiple disease resistance (MDR) are valuable in crop improvement, although the molecular mechanisms underlying their functions remain largely unknown. A quantitative trait locus, qMdr 9.02 , associated with resistance to three important foliar maize diseases-southern leaf blight, gray leaf spot and northern leaf blight-has been identified on maize chromosome 9. Through fine-mapping, association analysis, expression analysis, insertional mutagenesis and transgenic validation, we demonstrate that ZmCCoAOMT2, which encodes a caffeoyl-CoA O-methyltransferase associated with the phenylpropanoid pathway and lignin production, is the gene within qMdr 9.02 conferring quantitative resistance to both southern leaf blight and gray leaf spot. We suggest that resistance might be caused by allelic variation at the level of both gene expression and amino acid sequence, thus resulting in differences in levels of lignin and other metabolites of the phenylpropanoid pathway and regulation of programmed cell death.

  13. Isolation and Manipulation of Quantitative Tra it Loci for DIsease Resistance in Rice Using a Candid ate Gene Approach

    Institute of Scientific and Technical Information of China (English)

    Ke-Ming Hu; De-Yun Qiu; Xiang-Ling Shen; Xiang-Hua Li; Shi-Ping Wang

    2008-01-01

    Bacterial blight caused by Xanthomonas oryzae pv.oryzae and fungal blast caused by Magnaporthe grisea result in heavy production losses in rice,a main staple food for approximately 50%of the world's population.Application of host resistance to these pathogens iS the most economical and environment-friendly approach to solve this problem.Quantitative trait loci(QTLs)controlling quantitative resistance are valuable sources for broad.spectrum and durable disease resistance.Although large numbers of QTLs for bacteriaI blight and blast resistance have been identified.these sources have not been used effectively in rice improvement because of the complex genetic controI of quantitative resistance and because the genes underlying resistance QTLs are unknown.To isolate disease resistance QTLs,we established a candidate gene strategy that integrates linkage map,expression profile,and functionaI complementation analyses.This strategy has proven to be applicable for identifying the genes underlying minor resistance QTLs in rice-Xoo and rice-M grisea systems and it may also help to shed light on disease resistance QTLs of other cereals.Our results also suggest that a single minor QTL can be used in rice improvement by modulating the expression of the gene underlying the QTL.Pyramiding two or three minor QTL genes,whose expression can be managed and that function in different defense signaI transduction pathways,may allow the breeding of rice cultivars that are highly resistant to bacteriaI blight and blast.

  14. Integrating genome-wide association study and expression quantitative trait loci data identifies multiple genes and gene set associated with neuroticism.

    Science.gov (United States)

    Fan, Qianrui; Wang, Wenyu; Hao, Jingcan; He, Awen; Wen, Yan; Guo, Xiong; Wu, Cuiyan; Ning, Yujie; Wang, Xi; Wang, Sen; Zhang, Feng

    2017-08-01

    Neuroticism is a fundamental personality trait with significant genetic determinant. To identify novel susceptibility genes for neuroticism, we conducted an integrative analysis of genomic and transcriptomic data of genome wide association study (GWAS) and expression quantitative trait locus (eQTL) study. GWAS summary data was driven from published studies of neuroticism, totally involving 170,906 subjects. eQTL dataset containing 927,753 eQTLs were obtained from an eQTL meta-analysis of 5311 samples. Integrative analysis of GWAS and eQTL data was conducted by summary data-based Mendelian randomization (SMR) analysis software. To identify neuroticism associated gene sets, the SMR analysis results were further subjected to gene set enrichment analysis (GSEA). The gene set annotation dataset (containing 13,311 annotated gene sets) of GSEA Molecular Signatures Database was used. SMR single gene analysis identified 6 significant genes for neuroticism, including MSRA (p value=2.27×10 -10 ), MGC57346 (p value=6.92×10 -7 ), BLK (p value=1.01×10 -6 ), XKR6 (p value=1.11×10 -6 ), C17ORF69 (p value=1.12×10 -6 ) and KIAA1267 (p value=4.00×10 -6 ). Gene set enrichment analysis observed significant association for Chr8p23 gene set (false discovery rate=0.033). Our results provide novel clues for the genetic mechanism studies of neuroticism. Copyright © 2017. Published by Elsevier Inc.

  15. A simplified and accurate detection of the genetically modified wheat MON71800 with one calibrator plasmid.

    Science.gov (United States)

    Kim, Jae-Hwan; Park, Saet-Byul; Roh, Hyo-Jeong; Park, Sunghoon; Shin, Min-Ki; Moon, Gui Im; Hong, Jin-Hwan; Kim, Hae-Yeong

    2015-06-01

    With the increasing number of genetically modified (GM) events, unauthorized GMO releases into the food market have increased dramatically, and many countries have developed detection tools for them. This study described the qualitative and quantitative detection methods of unauthorized the GM wheat MON71800 with a reference plasmid (pGEM-M71800). The wheat acetyl-CoA carboxylase (acc) gene was used as the endogenous gene. The plasmid pGEM-M71800, which contains both the acc gene and the event-specific target MON71800, was constructed as a positive control for the qualitative and quantitative analyses. The limit of detection in the qualitative PCR assay was approximately 10 copies. In the quantitative PCR assay, the standard deviation and relative standard deviation repeatability values ranged from 0.06 to 0.25 and from 0.23% to 1.12%, respectively. This study supplies a powerful and very simple but accurate detection strategy for unauthorized GM wheat MON71800 that utilizes a single calibrator plasmid. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Gene expression profile and immunological evaluation of unique hypothetical unknown proteins of Mycobacterium leprae by using quantitative real-time PCR.

    Science.gov (United States)

    Kim, Hee Jin; Prithiviraj, Kalyani; Groathouse, Nathan; Brennan, Patrick J; Spencer, John S

    2013-02-01

    The cell-mediated immunity (CMI)-based in vitro gamma interferon release assay (IGRA) of Mycobacterium leprae-specific antigens has potential as a promising diagnostic means to detect those individuals in the early stages of M. leprae infection. Diagnosis of leprosy is a major obstacle toward ultimate disease control and has been compromised in the past by the lack of specific markers. Comparative bioinformatic analysis among mycobacterial genomes identified potential M. leprae-specific proteins called "hypothetical unknowns." Due to massive gene decay and the prevalence of pseudogenes, it is unclear whether any of these proteins are expressed or are immunologically relevant. In this study, we performed cDNA-based quantitative real-time PCR to investigate the expression status of 131 putative open reading frames (ORFs) encoding hypothetical unknowns. Twenty-six of the M. leprae-specific antigen candidates showed significant levels of gene expression compared to that of ESAT-6 (ML0049), which is an important T cell antigen of low abundance in M. leprae. Fifteen of 26 selected antigen candidates were expressed and purified in Escherichia coli. The seroreactivity to these proteins of pooled sera from lepromatous leprosy patients and cavitary tuberculosis patients revealed that 9 of 15 recombinant hypothetical unknowns elicited M. leprae-specific immune responses. These nine proteins may be good diagnostic reagents to improve both the sensitivity and specificity of detection of individuals with asymptomatic leprosy.

  17. Enhanced reliability and accuracy for field deployable bioforensic detection and discrimination of Xylella fastidiosa subsp. pauca, causal agent of citrus variegated chlorosis using razor ex technology and TaqMan quantitative PCR.

    Science.gov (United States)

    Ouyang, Ping; Arif, Mohammad; Fletcher, Jacqueline; Melcher, Ulrich; Ochoa Corona, Francisco Manuel

    2013-01-01

    A reliable, accurate and rapid multigene-based assay combining real time quantitative PCR (qPCR) and a Razor Ex BioDetection System (Razor Ex) was validated for detection of Xylella fastidiosa subsp. pauca (Xfp, a xylem-limited bacterium that causes citrus variegated chlorosis [CVC]). CVC, which is exotic to the United States, has spread through South and Central America and could significantly impact U.S. citrus if it arrives. A method for early, accurate and sensitive detection of Xfp in plant tissues is needed by plant health officials for inspection of products from quarantined locations, and by extension specialists for detection, identification and management of disease outbreaks and reservoir hosts. Two sets of specific PCR primers and probes, targeting Xfp genes for fimbrillin and the periplasmic iron-binding protein were designed. A third pair of primers targeting the conserved cobalamin synthesis protein gene was designed to detect all possible X. fastidiosa (Xf) strains. All three primer sets detected as little as 1 fg of plasmid DNA carrying X. fastidiosa target sequences and genomic DNA of Xfp at as little as 1 - 10 fg. The use of Razor Ex facilitates a rapid (about 30 min) in-field assay capability for detection of all Xf strains, and for specific detection of Xfp. Combined use of three primer sets targeting different genes increased the assay accuracy and broadened the range of detection. To our knowledge, this is the first report of a field-deployable rapid and reliable bioforensic detection and discrimination method for a bacterial phytopathogen based on multigene targets.

  18. Quantitative Alpha Fetoprotein Detection with a Piezoelectric Microcantilever Mass Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Kyu; Cho, Jong Yun; Jeon, Sang Min; Cha, Hyung Joon; Moon, Won Kyu [Pohang University of Science and Technology, Pohang (Korea, Republic of); Lee, Yeol Ho [Samsung Advanced Institute of Technology, Yongin (Korea, Republic of)

    2011-10-15

    Alpha fetoprotein(AFP), which is serological marker for hepatocellular carcinoma, was quantitatively measured by its normal concentration, 10 ng/ml, with a label-free piezoelectric microcantilever mass sensor. The principle of detection is based on changes in the resonant frequency of the piezoelectric microcantilever before and after target molecules are attached to it, and its resonant frequency is measured electrically using a conductance spectrum. The resonant frequency of the developed sensor is approximately 1.34 MHz and the mass sensitivity is approximately 175 Hz/pg. The sensor has high reliability as mass sensor by reducing the effect of surface stress on resonant frequency due to attached proteins. 'Dip and dry' technique was used to react the sensor with reagents for immobilizing AFP antibody on the sensor and detecting AFP antigen. The measured mass of the detected AFP antigen was 6.02 pg at the concentration of 10 ng/ml, and 10.67 pg at 50 ng/ml when the immunoreaction time was 10 min.

  19. Quantitative Alpha Fetoprotein Detection with a Piezoelectric Microcantilever Mass Sensor

    International Nuclear Information System (INIS)

    Lee, Sang Kyu; Cho, Jong Yun; Jeon, Sang Min; Cha, Hyung Joon; Moon, Won Kyu; Lee, Yeol Ho

    2011-01-01

    Alpha fetoprotein(AFP), which is serological marker for hepatocellular carcinoma, was quantitatively measured by its normal concentration, 10 ng/ml, with a label-free piezoelectric microcantilever mass sensor. The principle of detection is based on changes in the resonant frequency of the piezoelectric microcantilever before and after target molecules are attached to it, and its resonant frequency is measured electrically using a conductance spectrum. The resonant frequency of the developed sensor is approximately 1.34 MHz and the mass sensitivity is approximately 175 Hz/pg. The sensor has high reliability as mass sensor by reducing the effect of surface stress on resonant frequency due to attached proteins. 'Dip and dry' technique was used to react the sensor with reagents for immobilizing AFP antibody on the sensor and detecting AFP antigen. The measured mass of the detected AFP antigen was 6.02 pg at the concentration of 10 ng/ml, and 10.67 pg at 50 ng/ml when the immunoreaction time was 10 min

  20. Selection and evaluation of potential reference genes for gene expression analysis in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae using reverse-transcription quantitative PCR.

    Directory of Open Access Journals (Sweden)

    Miao Yuan

    Full Text Available The brown planthopper (BPH, Nilaparvata lugens (Hemiptera, Delphacidae, is one of the most important rice pests. Abundant genetic studies on BPH have been conducted using reverse-transcription quantitative real-time PCR (qRT-PCR. Using qRT-PCR, the expression levels of target genes are calculated on the basis of endogenous controls. These genes need to be appropriately selected by experimentally assessing whether they are stably expressed under different conditions. However, such studies on potential reference genes in N. lugens are lacking. In this paper, we presented a systematic exploration of eight candidate reference genes in N. lugens, namely, actin 1 (ACT, muscle actin (MACT, ribosomal protein S11 (RPS11, ribosomal protein S15e (RPS15, alpha 2-tubulin (TUB, elongation factor 1 delta (EF, 18S ribosomal RNA (18S, and arginine kinase (AK and used four alternative methods (BestKeeper, geNorm, NormFinder, and the delta Ct method to evaluate the suitability of these genes as endogenous controls. We examined their expression levels among different experimental factors (developmental stage, body part, geographic population, temperature variation, pesticide exposure, diet change, and starvation following the MIQE (Minimum Information for publication of Quantitative real time PCR Experiments guidelines. Based on the results of RefFinder, which integrates four currently available major software programs to compare and rank the tested candidate reference genes, RPS15, RPS11, and TUB were found to be the most suitable reference genes in different developmental stages, body parts, and geographic populations, respectively. RPS15 was the most suitable gene under different temperature and diet conditions, while RPS11 was the most suitable gene under different pesticide exposure and starvation conditions. This work sheds light on establishing a standardized qRT-PCR procedure in N. lugens, and serves as a starting point for screening for reference genes for

  1. Validation of reference genes for quantitative RT-PCR studies of gene expression in perennial ryegrass (Lolium perenne L.

    Directory of Open Access Journals (Sweden)

    Thrush Anthony

    2010-01-01

    Full Text Available Abstract Background Perennial ryegrass (Lolium perenne L. is an important pasture and turf crop. Biotechniques such as gene expression studies are being employed to improve traits in this temperate grass. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR is among the best methods available for determining changes in gene expression. Before analysis of target gene expression, it is essential to select an appropriate normalisation strategy to control for non-specific variation between samples. Reference genes that have stable expression at different biological and physiological states can be effectively used for normalisation; however, their expression stability must be validated before use. Results Existing Serial Analysis of Gene Expression data were queried to identify six moderately expressed genes that had relatively stable gene expression throughout the year. These six candidate reference genes (eukaryotic elongation factor 1 alpha, eEF1A; TAT-binding protein homolog 1, TBP-1; eukaryotic translation initiation factor 4 alpha, eIF4A; YT521-B-like protein family protein, YT521-B; histone 3, H3; ubiquitin-conjugating enzyme, E2 were validated for qRT-PCR normalisation in 442 diverse perennial ryegrass (Lolium perenne L. samples sourced from field- and laboratory-grown plants under a wide range of experimental conditions. Eukaryotic EF1A is encoded by members of a multigene family exhibiting differential expression and necessitated the expression analysis of different eEF1A encoding genes; a highly expressed eEF1A (h, a moderately, but stably expressed eEF1A (s, and combined expression of multigene eEF1A (m. NormFinder identified eEF1A (s and YT521-B as the best combination of two genes for normalisation of gene expression data in perennial ryegrass following different defoliation management in the field. Conclusions This study is unique in the magnitude of samples tested with the inclusion of numerous field-grown samples

  2. Expression analysis of fusarium wilt resistance gene in melon by real-time quantitative pcr

    International Nuclear Information System (INIS)

    Wang, X.; Xu, B.; Zhao, L.; Gao, P.; Luan, F.

    2014-01-01

    Melon Actin gene was used as a reference gene, to explore the gene expression profiles of the Fom-2 gene in roots, stems, and leaves of melon MR-1 under induction by Fusarium oxysporum f. sp. melonis. Monitoring using real-time quantitative PCR showed similar accumulation patterns of Fom-2 in roots, stems, and leaves over the observation period of 1 to 11 days; the expression level in stems was the highest. The expression of the Fom-2 gene was strengthened by the prolongation of induction time. In stems, the expression of Fom-2 was 5.737 times higher than in the control at three days; in roots, expression of Fom-2 was 5.617 times higher than in the control at five days. Similarly, the expression of Fom-2 in leaves obviously increased. It was 4.441 times higher than in the control at 5 days. The expression of Fom-2 was non-tissue specific, up-regulated under induction by Fusarium, and related to early resistance to Fusarium wilt. (author)

  3. The use of genetic programming in the analysis of quantitative gene expression profiles for identification of nodal status in bladder cancer

    International Nuclear Information System (INIS)

    Mitra, Anirban P; Almal, Arpit A; George, Ben; Fry, David W; Lenehan, Peter F; Pagliarulo, Vincenzo; Cote, Richard J; Datar, Ram H; Worzel, William P

    2006-01-01

    Previous studies on bladder cancer have shown nodal involvement to be an independent indicator of prognosis and survival. This study aimed at developing an objective method for detection of nodal metastasis from molecular profiles of primary urothelial carcinoma tissues. The study included primary bladder tumor tissues from 60 patients across different stages and 5 control tissues of normal urothelium. The entire cohort was divided into training and validation sets comprised of node positive and node negative subjects. Quantitative expression profiling was performed for a panel of 70 genes using standardized competitive RT-PCR and the expression values of the training set samples were run through an iterative machine learning process called genetic programming that employed an N-fold cross validation technique to generate classifier rules of limited complexity. These were then used in a voting algorithm to classify the validation set samples into those associated with or without nodal metastasis. The generated classifier rules using 70 genes demonstrated 81% accuracy on the validation set when compared to the pathological nodal status. The rules showed a strong predilection for ICAM1, MAP2K6 and KDR resulting in gene expression motifs that cumulatively suggested a pattern ICAM1>MAP2K6>KDR for node positive cases. Additionally, the motifs showed CDK8 to be lower relative to ICAM1, and ANXA5 to be relatively high by itself in node positive tumors. Rules generated using only ICAM1, MAP2K6 and KDR were comparably robust, with a single representative rule producing an accuracy of 90% when used by itself on the validation set, suggesting a crucial role for these genes in nodal metastasis. Our study demonstrates the use of standardized quantitative gene expression values from primary bladder tumor tissues as inputs in a genetic programming system to generate classifier rules for determining the nodal status. Our method also suggests the involvement of ICAM1, MAP2K6, KDR

  4. RUBIC identifies driver genes by detecting recurrent DNA copy number breaks

    NARCIS (Netherlands)

    van Dyk, H.O.; Hoogstraat, M; ten Hoeve, J; Reinders, M.J.T.; Wessels, L.F.A.

    2016-01-01

    The frequent recurrence of copy number aberrations across tumour samples is a reliable hallmark of certain cancer driver genes. However, state-of-the-art algorithms for detecting recurrent aberrations fail to detect several known drivers. In this study, we propose RUBIC, an approach that detects

  5. A Highly Sensitive Immunochromatographic Strip Test for Rapid and Quantitative Detection of Saikosaponin d

    Directory of Open Access Journals (Sweden)

    Yue Zhang

    2018-02-01

    Full Text Available A quantitative lateral-flow immunoassay using gold nanoparticles (AuNPs conjugated with a monoclonal antibody (MAb against saikosaponin d (SSd was developed for the analysis of SSd. The AuNPs were prepared in our laboratory. The AuNPs were polyhedral, with an average diameter of approximately 18 nm. We used the conjugation between AuNPs and MAbs against SSd to prepare immunochromatographic strips (ICSs. For the quantitative experiment, the strips with the test results were scanned using a membrane strip reader, and a detection curve (regression equation, y = −0.113ln(x + 1.5451, R2 = 0.983, representing the averages of the scanned data, was obtained. This curve was linear from 96 ng/mL to 150 μg/mL, and the IC50 value was 10.39 μg/mL. In this study, we bring the concept of POCT (point-of-care testing to the measurement of TCM compounds, and this is the first report of quantitative detection of SSd by an ICS.

  6. Quantitative trait loci linked to PRNP gene controlling health and production traits in INRA 401 sheep

    Directory of Open Access Journals (Sweden)

    Brunel Jean-Claude

    2007-07-01

    Full Text Available Abstract In this study, the potential association of PrP genotypes with health and productive traits was investigated. Data were recorded on animals of the INRA 401 breed from the Bourges-La Sapinière INRA experimental farm. The population consisted of 30 rams and 852 ewes, which produced 1310 lambs. The animals were categorized into three PrP genotype classes: ARR homozygous, ARR heterozygous, and animals without any ARR allele. Two analyses differing in the approach considered were carried out. Firstly, the potential association of the PrP genotype with disease (Salmonella resistance and production (wool and carcass traits was studied. The data used included 1042, 1043 and 1013 genotyped animals for the Salmonella resistance, wool and carcass traits, respectively. The different traits were analyzed using an animal model, where the PrP genotype effect was included as a fixed effect. Association analyses do not indicate any evidence of an effect of PrP genotypes on traits studied in this breed. Secondly, a quantitative trait loci (QTL detection approach using the PRNP gene as a marker was applied on ovine chromosome 13. Interval mapping was used. Evidence for one QTL affecting mean fiber diameter was found at 25 cM from the PRNP gene. However, a linkage between PRNP and this QTL does not imply unfavorable linkage disequilibrium for PRNP selection purposes.

  7. Rapid and sensitive detection of Plesiomonas shigelloides by loop-mediated isothermal amplification of the hugA gene.

    Directory of Open Access Journals (Sweden)

    Shuang Meng

    Full Text Available Plesiomonas shigelloides is one of the causative agents of human gastroenteritis, with increasing number of reports describing such infections in recent years. In this study, the hugA gene was chosen as the target to design loop-mediated isothermal amplification (LAMP assays for the rapid, specific, and sensitive detection of P. shigelloides. The performance of the assay with reference plasmids and spiked human stools as samples was evaluated and compared with those of quantitative PCR (qPCR. No false-positive results were observed for the 32 non-P. shigelloides strains used to evaluate assay specificity. The limit of detection for P. shigelloides was approximately 20 copies per reaction in reference plasmids and 5×10(3 CFU per gram in spiked human stool, which were more sensitive than the results of qPCR. When applied in human stool samples spiked with 2 low levels of P. shigelloides, the LAMP assays achieved accurate detection after 6-h enrichment. In conclusion, the LAMP assay developed in this study is a valuable method for rapid, cost-effective, and simple detection of P. shigelloides in basic clinical and field laboratories in the rural areas of China.

  8. PCR-based detection of resistance genes in anaerobic bacteria isolated from intra-abdominal infections.

    Science.gov (United States)

    Tran, Chau Minh; Tanaka, Kaori; Watanabe, Kunitomo

    2013-04-01

    Little information is available on the distribution of antimicrobial resistance genes in anaerobes in Japan. To understand the background of antimicrobial resistance in anaerobes involved in intra-abdominal infections, we investigated the distribution of eight antimicrobial resistance genes (cepA, cfiA, cfxA, ermF, ermB, mefA, tetQ, and nim) and a mutation in the gyrA gene in a total of 152 organisms (Bacteroides spp., Prevotella spp., Fusobacterium spp., Porphyromonas spp., Bilophila wadsworthia, Desulfovibrio desulfuricans, Veillonella spp., gram-positive cocci, and non-spore-forming gram-positive bacilli) isolated between 2003 and 2004 in Japan. The cepA gene was distributed primarily in Bacteroides fragilis. Gene cfxA was detected in about 9 % of the Bacteroides isolates and 75 % of the Prevotella spp. isolates and did not appear to contribute to cephamycin resistance. Two strains of B. fragilis contained the metallo-β-lactamase gene cfiA, but they did not produce the protein product. Gene tetQ was detected in about 81, 44, and 63 % of B. fragilis isolates, other Bacteroides spp., and Prevotella spp. isolates, respectively. The ermF gene was detected in 25, 13, 56, 64, and 16 % of Bacteroides spp., Prevotella spp., Fusobacterium spp., B. wadsworthia, and anaerobic cocci, respectively. Gene mefA was found in only 10 % of the B. fragilis strains and 3 % of the non-B. fragilis strains. Genes nim and ermB were not detected in any isolate. Substitution at position 82 (Ser to Phe) in gyrA was detected in B. fragilis isolates that were less susceptible or resistant to moxifloxacin. This study is the first report on the distribution of resistance genes in anaerobes isolated from intra-abdominal infections in Japan. We expect that the results might help in understanding the resistance mechanisms of specific anaerobes.

  9. Detection of Shiga toxins genes by Multiplex PCR in clinical samples

    Directory of Open Access Journals (Sweden)

    2013-09-01

    Full Text Available Background: Different methods have been used for detection of shiga toxins; such as,  cell culture, ELISA, and RFPLA. However, all of these methods suffer from high cost, time-consumption and relatively low sensitivity. In this study we used Multiplex PCR method for detection of genes encoding shiga toxins. Material and Methods: In this study, 63 clinical samples were obtained from positive cultures of Shigella and E. coli O157, from Bahman 1391 until Ordibehesht 1392 in Mazandaran province. Initial confirmation of shiga toxins producing bacteria was performed by biochemical and serological methods. After DNA extraction, detection of stx1 and stx2 genes was accomplished by multiplex PCR.  For confirmation of the PCR amplicon, DNA sequencing was used. Antibiotic sensitivity tests were performed by disk diffusion method. Results:  Among the positive strains, 13 strains contained stx2 genes, 4 strains contained Stx/Stx1 genes and 4 strains harbored both Stx/Stx1 and Stx2. The DNA extracted from other Gram-negative bacteria was not protected by the relevant parts of these toxins. Sequencing of the amplified fragments indicated the correct toxin sequences.  The sensitivity for identification of Stx/Stx1 gene was 1.56 pg/ µl and for Stx2 was 1.08 pg/µl. The toxin positive strains were all sensitive to Cefixime, Gentamicin, Amikacin, Ceftriaxone, and Nitrofurantoin. Conclusion: This method is fast and accurate for detection of bacteria producing shiga toxin and can be used to identify different types of shiga toxin.

  10. A locked nucleic acid (LNA-based real-time PCR assay for the rapid detection of multiple bacterial antibiotic resistance genes directly from positive blood culture.

    Directory of Open Access Journals (Sweden)

    Lingxiang Zhu

    Full Text Available Bacterial strains resistant to various antibiotic drugs are frequently encountered in clinical infections, and the rapid identification of drug-resistant strains is highly essential for clinical treatment. We developed a locked nucleic acid (LNA-based quantitative real-time PCR (LNA-qPCR method for the rapid detection of 13 antibiotic resistance genes and successfully used it to distinguish drug-resistant bacterial strains from positive blood culture samples. A sequence-specific primer-probe set was designed, and the specificity of the assays was assessed using 27 ATCC bacterial strains and 77 negative blood culture samples. No cross-reaction was identified among bacterial strains and in negative samples, indicating 100% specificity. The sensitivity of the assays was determined by spiking each bacterial strain into negative blood samples, and the detection limit was 1-10 colony forming units (CFU per reaction. The LNA-qPCR assays were first applied to 72 clinical bacterial isolates for the identification of known drug resistance genes, and the results were verified by the direct sequencing of PCR products. Finally, the LNA-qPCR assays were used for the detection in 47 positive blood culture samples, 19 of which (40.4% were positive for antibiotic resistance genes, showing 91.5% consistency with phenotypic susceptibility results. In conclusion, LNA-qPCR is a reliable method for the rapid detection of bacterial antibiotic resistance genes and can be used as a supplement to phenotypic susceptibility testing for the early detection of antimicrobial resistance to allow the selection of appropriate antimicrobial treatment and to prevent the spread of resistant isolates.

  11. Quantitative high-resolution genomic analysis of single cancer cells.

    Directory of Open Access Journals (Sweden)

    Juliane Hannemann

    Full Text Available During cancer progression, specific genomic aberrations arise that can determine the scope of the disease and can be used as predictive or prognostic markers. The detection of specific gene amplifications or deletions in single blood-borne or disseminated tumour cells that may give rise to the development of metastases is of great clinical interest but technically challenging. In this study, we present a method for quantitative high-resolution genomic analysis of single cells. Cells were isolated under permanent microscopic control followed by high-fidelity whole genome amplification and subsequent analyses by fine tiling array-CGH and qPCR. The assay was applied to single breast cancer cells to analyze the chromosomal region centred by the therapeutical relevant EGFR gene. This method allows precise quantitative analysis of copy number variations in single cell diagnostics.

  12. Real-time PCR detection of aldoxime dehydratase genes in nitrile-degrading microorganisms.

    Science.gov (United States)

    Dooley-Cullinane, Tríona Marie; O'Reilly, Catherine; Coffey, Lee

    2017-02-01

    Aldoxime dehydratase catalyses the conversion of aldoximes to their corresponding nitriles. Utilization of the aldoxime-nitrile metabolising enzyme pathway can facilitate the move towards a greener chemistry. In this work, a real-time PCR assay was developed for the detection of aldoxime dehydratase genes in aldoxime/nitrile metabolising microorganisms which have been purified from environmental sources. A conventional PCR assay was also designed allowing gene confirmation via sequencing. Aldoxime dehydratase genes were identified in 30 microorganisms across 11 genera including some not previously shown to harbour the gene. The assay displayed a limit of detection of 1 pg/μL DNA or 7 CFU/reaction. This real-time PCR assay should prove valuable in the high-throughput screening of micro-organisms for novel aldoxime dehydratase genes towards pharmaceutical and industrial applications.

  13. Housekeeping genes for quantitative expression studies in the three-spined stickleback Gasterosteus aculeatus

    Directory of Open Access Journals (Sweden)

    Becker Sven

    2008-01-01

    Full Text Available Abstract Background During the last years the quantification of immune response under immunological challenges, e.g. parasitation, has been a major focus of research. In this context, the expression of immune response genes in teleost fish has been surveyed for scientific and commercial purposes. Despite the fact that it was shown in teleostei and other taxa that the gene for beta-actin is not the most stably expressed housekeeping gene (HKG, depending on the tissue and experimental treatment, the gene has been used as a reference gene in such studies. In the three-spined stickleback, Gasterosteus aculeatus, other HKG than the one for beta-actin have not been established so far. Results To establish a reliable method for the measurement of immune gene expression in Gasterosteus aculeatus, sequences from the now available genome database and an EST library of the same species were used to select oligonucleotide primers for HKG, in order to perform quantitative reverse-transcription (RT PCR. The expression stability of ten candidate reference genes was evaluated in three different tissues, and in five parasite treatment groups, using the three algorithms BestKeeper, geNorm and NormFinder. Our results showed that in most of the tissues and treatments HKG that could not be used so far due to unknown sequences, proved to be more stably expressed than the one for beta-actin. Conclusion As they were the most stably expressed genes in all tissues examined, we suggest using the genes for the L13a ribosomal binding protein and ubiquitin as alternative or additional reference genes in expression analysis in Gasterosteus aculeatus.

  14. Species-specific detection and quantification of common barnacle larvae from the Japanese coast using quantitative real-time PCR.

    Science.gov (United States)

    Endo, Noriyuki; Sato, Kana; Matsumura, Kiyotaka; Yoshimura, Erina; Odaka, Yukiko; Nogata, Yasuyuki

    2010-11-01

    Species-specific detection and quantification methods for barnacle larvae using quantitative real-time polymerase chain reaction (qPCR) were developed. Species-specific primers for qPCR were designed for 13 barnacle species in the mitochondrial 12S ribosomal RNA gene region. Primer specificity was examined by PCR using template DNA extracted from each of the 13 barnacle species, other unidentified barnacle species, and field collected zooplankton samples. The resulting PCR products comprised single bands following agarose gel electrophoresis when the templates corresponded to primers. The amplifications were highly species-specific even for the field plankton samples. The field plankton samples were subjected to qPCR assay. The calculated DNA contents for each barnacle species were closely correlated with the number of larvae measured by microscopic examination. The method could be applied to quantify barnacle larvae in natural plankton samples.

  15. US detection and classification of hepatic disease: Comparison of quantitative algorithms with clinical readings

    International Nuclear Information System (INIS)

    Insana, M.F.; Garra, B.S.; Shawker, T.H.; Wagner, R.F.; Bradford, M.; Russell, M.A.

    1986-01-01

    A method of quantitative digital analysis of US B-scans is used to differentiate between normal and diseased liver in vivo. The tissue signature is based on five measured parameters: four describe the tissue structure and scattering properties, the fifth is the US attenuation. The patient groups studied included 31 healthy subjects, 97 patients with chronic active hepatitis, 62 with Gaucher disease, and 10 with lymphomas. Receiver operating characteristic curve analysis was used to compare the diagnostic performance of the quantitative method with the clinical reading of trained observers. The quantitative method showed greater diagnostic capability for detecting and classifying diffuse and some focal disease

  16. Quantitative gene expression underlying 18f-fluorodeoxyglucose uptake in colon cancer

    DEFF Research Database (Denmark)

    Engelmann, Bodil E.; Binderup, Tina; Kjær, Andreas

    2015-01-01

    Background: Positron emission tomography (PET) with the glucose analogue 18F-fluorodeoxyglucose (FDG) is widely used in oncologic imaging. This study examines the molecular mechanism underlying the detection of colon cancer (CC) by FDG-PET. Methods: Pre-operative PET/CT scans and tissue samples....... Mean gene expression levels of GLUT1, HK2, ki67, HIF1α, VEGF and CaIX, but not HK1, were significantly higher in primary tumours than in surrounding normal colonic mucosa. Linear regressions pairing tumour SUVmax with gene expression levels showed significant correlations between SUVmax and HK2, ki67...

  17. SIGNIFICANCE OF ETV6-RUNX1 FUSION GENE TRANSCRIPT DETECTION IN PEDIATRIC B-CELL PRECURSOR ACUTE LYMPHOBLASTIC LEUKEMIA WITH TRANSLOCATION t(12;21(p13;q22

    Directory of Open Access Journals (Sweden)

    G. A. Tsaur

    2017-01-01

    Full Text Available Introduction. Translocation t(12;21(p13;q22 is one of the most common structural genetic abnormalities in childhood acute lymphoblastic leukemia (ALL. It cannot be detected by conventional G-banding, so a reverse-transcriptase polymerase chain reaction (RT-PCR or fluorescent in situ hybridization are used for this purpose.The aim of the study was to evaluate the prognostic significance of qualitative and quantitative detection of ETV6-RUNX1 fusion gene transcript at various time points in childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL patients.Materials and methods. ETV6-RUNX1 fusion gene transcript was revealed by both reverse-transcriptase PCR and quantitative real-time PCR (RQ-PCR in 34 out of 166 (20.5 % children with BCP-ALL. Qualitative ETV6-RUNX1-positivity at days 36 and 85 led to unfavorable outcome (lower event-free survival –EFS and higher cumulative incidence of relapse – CIR. While ETV6-RUNX1 status at day 15 did not allow to divide patients with different outcomes. By ROC curve analysis we determined threshold levels (TL for ETV6-RUNX1/ABL1 ratio at days 0, 15, 36 and 85. Afterwards we adjusted obtained results to 10-fold scale.Results. So practically applicable TL were as follows 500.0 %, 1 %, 0.1 % и 0.01 % for days 0, 15, 36 and 85, respectively. EFS and CIR were both worse in patients with ETV6-RUNX1/ABL1 ratio equal or above defined TL. Moreover, initial ratio ≥500,0 % corresponded to delayed blast clearance at days 15 and 36. We showed good qualitative (84.8 % and quantitative (R2 = 0.953 concordance between ETV6-RUNX1/ABL1 ratio and MRD data obtained by flow cytometry at days 15, 36, 85. Of note, defined TL for ETV6-RUNX1/ABL1 at days 15, 36, 85 were equal to prognostically important levels for flow cytometry MRD.Conclusion. Thus, qualitative detection and quantitative value of ETV6-RUNX1 fusion gene transcript showed prognostic significance in the course of treatment in children with BCP-ALL. Based

  18. Pleiotropy analysis of quantitative traits at gene level by multivariate functional linear models.

    Science.gov (United States)

    Wang, Yifan; Liu, Aiyi; Mills, James L; Boehnke, Michael; Wilson, Alexander F; Bailey-Wilson, Joan E; Xiong, Momiao; Wu, Colin O; Fan, Ruzong

    2015-05-01

    In genetics, pleiotropy describes the genetic effect of a single gene on multiple phenotypic traits. A common approach is to analyze the phenotypic traits separately using univariate analyses and combine the test results through multiple comparisons. This approach may lead to low power. Multivariate functional linear models are developed to connect genetic variant data to multiple quantitative traits adjusting for covariates for a unified analysis. Three types of approximate F-distribution tests based on Pillai-Bartlett trace, Hotelling-Lawley trace, and Wilks's Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants in one genetic region. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and optimal sequence kernel association test (SKAT-O). Extensive simulations were performed to evaluate the false positive rates and power performance of the proposed models and tests. We show that the approximate F-distribution tests control the type I error rates very well. Overall, simultaneous analysis of multiple traits can increase power performance compared to an individual test of each trait. The proposed methods were applied to analyze (1) four lipid traits in eight European cohorts, and (2) three biochemical traits in the Trinity Students Study. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and SKAT-O for the three biochemical traits. The approximate F-distribution tests of the proposed functional linear models are more sensitive than those of the traditional multivariate linear models that in turn are more sensitive than SKAT-O in the univariate case. The analysis of the four lipid traits and the three biochemical traits detects more association than SKAT-O in the univariate case. © 2015 WILEY PERIODICALS, INC.

  19. Quantitative gene expression profiling of CD45(+) and CD45(-) skeletal muscle-derived side population cells

    DEFF Research Database (Denmark)

    Andersen, Ditte Caroline; Kristiansen, Gitte Qvistgaard; Jensen, Line

    2011-01-01

    transcripts associated with endothelial cells, Notch signaling and myogenic precursors. By comparing the mRNA signatures of mSPs with those of adipose tissue-derived SP populations, a common endothelial component seemed to reside in both muscle and fat-derived SPCD45(-) entities. However, each SP subset......The skeletal muscle-derived side population (mSP) which highly excludes Hoechst 33342 is composed of CD45(+) and CD45(-) subpopulations; yet, rareness of mSP cells in general has complicated extensive quantitative analysis of gene expression profiles in primarily isolated mSP cells. Here, we...... describe the isolation of adult mouse normal skeletal muscle residing SPCD45(+) and SPCD45(-) cells from a parent mononuclear muscle-derived cell (MDC) population. Relative quantitative real time PCR (RT-PCR) of 64 genes revealed that mSPCD45(-) compared with mSPCD45(+) was enriched for cells expressing...

  20. Selection of internal control genes for real-time quantitative PCR in ovary and uterus of sows across pregnancy.

    Directory of Open Access Journals (Sweden)

    María Martínez-Giner

    Full Text Available BACKGROUND: Reproductive traits play a key role in pig production in order to reduce costs and increase economic returns. Among others, gene expression analyses represent a useful approach to study genetic mechanisms underlying reproductive traits in pigs. The application of reverse-transcription quantitative PCR requires the selection of appropriate reference genes, whose expression levels should not be affected by the experimental conditions, especially when comparing gene expression across different physiological stages. RESULTS: The gene expression stability of ten potential reference genes was studied by three different methods (geNorm, NormFinder and BestKeeper in ovary and uterus collected at five different physiological time points (heat, and 15, 30, 45 and 60 days of pregnancy. Although final ranking differed, the three algorithms gave very similar results. Thus, the most stable genes across time were TBP and UBC in uterus and TBP and HPRT1 in ovary, while HMBS and ACTB showed the less stable expression in uterus and ovary, respectively. When studied as a systematic effect, the reproductive stage did not significantly affect the expression of the candidate reference genes except at 30d and 60d of pregnancy, when a general drop in expression was observed in ovary. CONCLUSIONS: Based in our results, we propose the use of TBP, UBC and SDHA in uterus and TBP, GNB2L1 and HPRT1 in ovary for normalization of longitudinal expression studies using quantitative PCR in sows.

  1. A family-based joint test for mean and variance heterogeneity for quantitative traits.

    Science.gov (United States)

    Cao, Ying; Maxwell, Taylor J; Wei, Peng

    2015-01-01

    Traditional quantitative trait locus (QTL) analysis focuses on identifying loci associated with mean heterogeneity. Recent research has discovered loci associated with phenotype variance heterogeneity (vQTL), which is important in studying genetic association with complex traits, especially for identifying gene-gene and gene-environment interactions. While several tests have been proposed to detect vQTL for unrelated individuals, there are no tests for related individuals, commonly seen in family-based genetic studies. Here we introduce a likelihood ratio test (LRT) for identifying mean and variance heterogeneity simultaneously or for either effect alone, adjusting for covariates and family relatedness using a linear mixed effect model approach. The LRT test statistic for normally distributed quantitative traits approximately follows χ(2)-distributions. To correct for inflated Type I error for non-normally distributed quantitative traits, we propose a parametric bootstrap-based LRT that removes the best linear unbiased prediction (BLUP) of family random effect. Simulation studies show that our family-based test controls Type I error and has good power, while Type I error inflation is observed when family relatedness is ignored. We demonstrate the utility and efficiency gains of the proposed method using data from the Framingham Heart Study to detect loci associated with body mass index (BMI) variability. © 2014 John Wiley & Sons Ltd/University College London.

  2. Real-time label-free quantitative fluorescence microscopy-based detection of ATP using a tunable fluorescent nano-aptasensor platform

    Science.gov (United States)

    Shrivastava, Sajal; Sohn, Il-Yung; Son, Young-Min; Lee, Won-Il; Lee, Nae-Eung

    2015-11-01

    Although real-time label-free fluorescent aptasensors based on nanomaterials are increasingly recognized as a useful strategy for the detection of target biomolecules with high fidelity, the lack of an imaging-based quantitative measurement platform limits their implementation with biological samples. Here we introduce an ensemble strategy for a real-time label-free fluorescent graphene (Gr) aptasensor platform. This platform employs aptamer length-dependent tunability, thus enabling the reagentless quantitative detection of biomolecules through computational processing coupled with real-time fluorescence imaging data. We demonstrate that this strategy effectively delivers dose-dependent quantitative readouts of adenosine triphosphate (ATP) concentration on chemical vapor deposited (CVD) Gr and reduced graphene oxide (rGO) surfaces, thereby providing cytotoxicity assessment. Compared with conventional fluorescence spectrometry methods, our highly efficient, universally applicable, and rational approach will facilitate broader implementation of imaging-based biosensing platforms for the quantitative evaluation of a range of target molecules.Although real-time label-free fluorescent aptasensors based on nanomaterials are increasingly recognized as a useful strategy for the detection of target biomolecules with high fidelity, the lack of an imaging-based quantitative measurement platform limits their implementation with biological samples. Here we introduce an ensemble strategy for a real-time label-free fluorescent graphene (Gr) aptasensor platform. This platform employs aptamer length-dependent tunability, thus enabling the reagentless quantitative detection of biomolecules through computational processing coupled with real-time fluorescence imaging data. We demonstrate that this strategy effectively delivers dose-dependent quantitative readouts of adenosine triphosphate (ATP) concentration on chemical vapor deposited (CVD) Gr and reduced graphene oxide (r

  3. Rapid, highly sensitive and highly specific gene detection by combining enzymatic amplification and DNA chip detection simultaneously

    Directory of Open Access Journals (Sweden)

    Koji Hashimoto

    2016-05-01

    Full Text Available We have developed a novel gene detection method based on the loop-mediated isothermal amplification (LAMP reaction and the DNA dissociation reaction on the same DNA chip surface to achieve a lower detection limit, broader dynamic range and faster detection time than are attainable with a conventional DNA chip. Both FAM- and thiol-labeled DNA probe bound to the complementary sequence accompanying Dabcyl was immobilized on the gold surface via Au/thiol bond. The LAMP reaction was carried out on the DNA probe fixed gold surface. At first, Dabcyl molecules quenched the FAM fluorescence. According to the LAMP reaction, the complementary sequence with Dabcyl was competitively reacted with the amplified targeted sequence. As a result, the FAM fluorescence increased owing to dissociation of the complementary sequence from the DNA probe. The simultaneous reaction of LAMP and DNA chip detection was achieved, and 103 copies of the targeted gene were detected within an hour by measuring fluorescence intensity of the DNA probe. Keywords: Biosensor, DNA chip, Loop-mediated isothermal amplification (LAMP, Fluorescence detection, Gold substrate, Au/thiol bond

  4. Detection of cell surface hydrophobicity, biofilm and fimbirae genes in salmonella isolated from tunisian clinical and poultry meat.

    Science.gov (United States)

    Ben Abdallah, Fethi; Lagha, Rihab; Said, Khaled; Kallel, Héla; Gharbi, Jawhar

    2014-04-01

    The aim of this study was to evaluate the ability of 15 serotypes of Salmonella to form biofilm on polystyrene, polyvinyl chloride (PVC) and glass surfaces. . Initially slime production was assessed on CRA agar and hydrophobicity of 20 Salmonella strains isolated from poultry and human and two Salmonella enterica serovar Typhimurium references strains was achieved by microbial adhesion to n-hexadecane. In addition, biofilm formation on polystyrene, PVC and glass surfaces was also investigated by using MTT and XTT colorimetric assay. Further, distribution of Salmonella enterotoxin (stn), Salmonella Enteritidis fimbrial (sef) and plasmid encoded fimbrial (pef) genes among tested strains was achieved by PCR. Salmonella strains developed red and white colonies on CRA and they are considered as hydrophilic with affinity values to n-hexadecane ranged between 0.29% and 29.55%. Quantitative biofilm assays showed that bacteria are able to form biofilm on polystyrene with different degrees and 54.54% of strains produce a strong biofilm on glass. In addition, all the strains form only a moderate (54.54%) and weak (40.91%) biofilm on PVC. PCR detection showed that only S. Enteritidis harbour Sef gene, whereas Pef and stn genes were detected in S. Kentucky, S. Amsterdam, S. Hadar, S. Enteritidis and S. Typhimurium. Salmonella serotypes are able to form biofilm on hydrophobic and hydrophilic industrial surfaces. Biofilm formation of Salmonella on these surfaces has an increased potential to compromise food safety and potentiate public health risk.

  5. Novel Quantitative Real-Time LCR for the Sensitive Detection of SNP Frequencies in Pooled DNA: Method Development, Evaluation and Application

    Science.gov (United States)

    Psifidi, Androniki; Dovas, Chrysostomos; Banos, Georgios

    2011-01-01

    Background Single nucleotide polymorphisms (SNP) have proven to be powerful genetic markers for genetic applications in medicine, life science and agriculture. A variety of methods exist for SNP detection but few can quantify SNP frequencies when the mutated DNA molecules correspond to a small fraction of the wild-type DNA. Furthermore, there is no generally accepted gold standard for SNP quantification, and, in general, currently applied methods give inconsistent results in selected cohorts. In the present study we sought to develop a novel method for accurate detection and quantification of SNP in DNA pooled samples. Methods The development and evaluation of a novel Ligase Chain Reaction (LCR) protocol that uses a DNA-specific fluorescent dye to allow quantitative real-time analysis is described. Different reaction components and thermocycling parameters affecting the efficiency and specificity of LCR were examined. Several protocols, including gap-LCR modifications, were evaluated using plasmid standard and genomic DNA pools. A protocol of choice was identified and applied for the quantification of a polymorphism at codon 136 of the ovine PRNP gene that is associated with susceptibility to a transmissible spongiform encephalopathy in sheep. Conclusions The real-time LCR protocol developed in the present study showed high sensitivity, accuracy, reproducibility and a wide dynamic range of SNP quantification in different DNA pools. The limits of detection and quantification of SNP frequencies were 0.085% and 0.35%, respectively. Significance The proposed real-time LCR protocol is applicable when sensitive detection and accurate quantification of low copy number mutations in DNA pools is needed. Examples include oncogenes and tumour suppressor genes, infectious diseases, pathogenic bacteria, fungal species, viral mutants, drug resistance resulting from point mutations, and genetically modified organisms in food. PMID:21283808

  6. Sensitivity of Quantitative Signal Detection in Regards to Pharmacological Neuroenhancement

    Directory of Open Access Journals (Sweden)

    Maximilian Gahr

    2017-01-01

    Full Text Available Pharmacological neuroenhancement (PNE is a form of abuse and has not yet been addressed by methods of pharmacovigilance. In the present study, we tested if quantitative signal detection may be sensitive in regards to PNE. We evaluated the risk of drug abuse and dependence (DAAD related to substances that are known to be used for PNE and divided this group into agents with (methylphenidate and without a known abuse potential outside the field of PNE (atomoxetine, modafinil, acetylcholine esterase inhibitors, and memantine. Reporting odds ratios (RORs were calculated using a case/non-case approach based on global and country-specific drug safety data from the Uppsala Monitoring Centre (UMC. Both control substances (diazepam and lorazepam and methylphenidate were statistically associated with DAAD in all datasets (except methylphenidate in Italy. Modafinil was associated with DAAD in the total dataset (ROR, 2.7 (95% confidence interval (CI, 2.2–3.3, Germany (ROR, 4.6 (95% CI, 1.8–11.5, and the USA (ROR, 2.0 (95% CI, 1.6–2.5. Atomoxetine was associated with DAAD in the total dataset (ROR, 1.3 (95% CI, 1.2–1.5 and in the UK (ROR, 3.3 (95% CI, 1.8–6.1. Apart from memantine, which was associated with DAAD in Germany (ROR, 1.8 (95% CI, 1.0–3.2, no other antidementia drug was associated with DAAD. Quantitative signal detection is suitable to detect agents with a risk for DAAD. Its sensitivity regarding PNE is limited, although atomoxetine and modafinil, which do not have a known abuse potential outside PNE, and no antidementia drugs, whose use in PNE is presumably low, were associated with DAAD in our analysis.

  7. Comparison of salivary collection and processing methods for quantitative HHV-8 detection.

    Science.gov (United States)

    Speicher, D J; Johnson, N W

    2014-10-01

    Saliva is a proved diagnostic fluid for the qualitative detection of infectious agents, but the accuracy of viral load determinations is unknown. Stabilising fluids impede nucleic acid degradation, compared with collection onto ice and then freezing, and we have shown that the DNA Genotek P-021 prototype kit (P-021) can produce high-quality DNA after 14 months of storage at room temperature. Here we evaluate the quantitative capability of 10 collection/processing methods. Unstimulated whole mouth fluid was spiked with a mixture of HHV-8 cloned constructs, 10-fold serial dilutions were produced, and samples were extracted and then examined with quantitative PCR (qPCR). Calibration curves were compared by linear regression and qPCR dynamics. All methods extracted with commercial spin columns produced linear calibration curves with large dynamic range and gave accurate viral loads. Ethanol precipitation of the P-021 does not produce a linear standard curve, and virus is lost in the cell pellet. DNA extractions from the P-021 using commercial spin columns produced linear standard curves with wide dynamic range and excellent limit of detection. When extracted with spin columns, the P-021 enables accurate viral loads down to 23 copies μl(-1) DNA. The quantitative and long-term storage capability of this system makes it ideal for study of salivary DNA viruses in resource-poor settings. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Identification of four squid species by quantitative real-time polymerase chain reaction.

    Science.gov (United States)

    Ye, Jian; Feng, Junli; Liu, Shasha; Zhang, Yanping; Jiang, Xiaona; Dai, Zhiyuan

    2016-02-01

    Squids are distributed worldwide, including many species of commercial importance, and they are often made into varieties of flavor foods. The rapid identification methods for squid species especially their processed products, however, have not been well developed. In this study, quantitative real-time PCR (qPCR) systems based on specific primers and TaqMan probes have been established for rapid and accurate identification of four common squid species (Ommastrephes bartramii, Dosidicus gigas, Illex argentinus, Todarodes pacificus) in Chinese domestic market. After analyzing mitochondrial genes reported in GenBank, the mitochondrial cytochrome b (Cytb) gene was selected for O. bartramii detection, cytochrome c oxidase subunit I (COI) gene for D. gigas and T. Pacificus detection, ATPase subunit 6 (ATPase 6) gene for I. Argentinus detection, and 12S ribosomal RNA (12S rDNA) gene for designing Ommastrephidae-specific primers and probe. As a result, all the TaqMan systems are of good performance, and efficiency of each reaction was calculated by making standard curves. This method could detect target species either in single or mixed squid specimen, and it was applied to identify 12 squid processed products successfully. Thus, it would play an important role in fulfilling labeling regulations and squid fishery control. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Molecular detection of carbapenemase-producing genes in referral ...

    African Journals Online (AJOL)

    Molecular confirmation of carbapenemase-producing Enterobacteriaceae (CPE) was introduced in South Africa (SA) at the end of 2011. We report on the detection of these resistance genes based on referral isolates. Enterobacteriaceae with non-susceptibility to any of the carbapenems according to defined criteria for ...

  10. Development of real-time PCR method for the detection and the quantification of a new endogenous reference gene in sugar beet "Beta vulgaris L.": GMO application.

    Science.gov (United States)

    Chaouachi, Maher; Alaya, Akram; Ali, Imen Ben Haj; Hafsa, Ahmed Ben; Nabi, Nesrine; Bérard, Aurélie; Romaniuk, Marcel; Skhiri, Fethia; Saïd, Khaled

    2013-01-01

    KEY MESSAGE : Here, we describe a new developed quantitative real-time PCR method for the detection and quantification of a new specific endogenous reference gene used in GMO analysis. The key requirement of this study was the identification of a new reference gene used for the differentiation of the four genomic sections of the sugar beet (Beta vulgaris L.) (Beta, Corrollinae, Nanae and Procumbentes) suitable for quantification of genetically modified sugar beet. A specific qualitative polymerase chain reaction (PCR) assay was designed to detect the sugar beet amplifying a region of the adenylate transporter (ant) gene only from the species of the genomic section I of the genus Beta (cultivated and wild relatives) and showing negative PCR results for 7 species of the 3 other sections, 8 related species and 20 non-sugar beet plants. The sensitivity of the assay was 15 haploid genome copies (HGC). A quantitative real-time polymerase chain reaction (QRT-PCR) assay was also performed, having high linearity (R (2) > 0.994) over sugar beet standard concentrations ranging from 20,000 to 10 HGC of the sugar beet DNA per PCR. The QRT-PCR assay described in this study was specific and more sensitive for sugar beet quantification compared to the validated test previously reported in the European Reference Laboratory. This assay is suitable for GMO quantification in routine analysis from a wide variety of matrices.

  11. Putative resistance gene markers associated with quantitative trait loci for fire blight resistance in Malus ‘Robusta 5’ accessions

    Science.gov (United States)

    2012-01-01

    Background Breeding of fire blight resistant scions and rootstocks is a goal of several international apple breeding programs, as options are limited for management of this destructive disease caused by the bacterial pathogen Erwinia amylovora. A broad, large-effect quantitative trait locus (QTL) for fire blight resistance has been reported on linkage group 3 of Malus ‘Robusta 5’. In this study we identified markers derived from putative fire blight resistance genes associated with the QTL by integrating further genetic mapping studies with bioinformatics analysis of transcript profiling data and genome sequence databases. Results When several defined E.amylovora strains were used to inoculate three progenies from international breeding programs, all with ‘Robusta 5’ as a common parent, two distinct QTLs were detected on linkage group 3, where only one had previously been mapped. In the New Zealand ‘Malling 9’ X ‘Robusta 5’ population inoculated with E. amylovora ICMP11176, the proximal QTL co-located with SNP markers derived from a leucine-rich repeat, receptor-like protein ( MxdRLP1) and a closely linked class 3 peroxidase gene. While the QTL detected in the German ‘Idared’ X ‘Robusta 5’ population inoculated with E. amylovora strains Ea222_JKI or ICMP11176 was approximately 6 cM distal to this, directly below a SNP marker derived from a heat shock 90 family protein gene ( HSP90). In the US ‘Otawa3’ X ‘Robusta5’ population inoculated with E. amylovora strains Ea273 or E2002a, the position of the LOD score peak on linkage group 3 was dependent upon the pathogen strains used for inoculation. One of the five MxdRLP1 alleles identified in fire blight resistant and susceptible cultivars was genetically associated with resistance and used to develop a high resolution melting PCR marker. A resistance QTL detected on linkage group 7 of the US population co-located with another HSP90 gene-family member and a WRKY transcription factor

  12. Quantitative sexing (Q-Sexing) and relative quantitative sexing (RQ ...

    African Journals Online (AJOL)

    samer

    Key words: Polymerase chain reaction (PCR), quantitative real time polymerase chain reaction (qPCR), quantitative sexing, Siberian tiger. INTRODUCTION. Animal molecular sexing .... 43:3-12. Ellegren H (1996). First gene on the avian W chromosome (CHD) provides a tag for universal sexing of non-ratite birds. Proc.

  13. High-throughput Microarray Detection of Vomeronasal Receptor Gene Expression in Rodents

    Directory of Open Access Journals (Sweden)

    Xiaohong Zhang

    2010-11-01

    Full Text Available We performed comprehensive data mining to explore the vomeronasal receptor (V1R & V2R repertoires in mouse and rat using the mm5 and rn3 genome, respectively. This bioinformatic analysis was followed by investigation of gene expression using a custom designed high-density oligonucleotide array containing all of these receptors and other selected genes of interest. This array enabled us to detect the specific expression of V1R and V2Rs which were previously identified solely based on computational prediction from gene sequence data, thereby establishing that these genes are indeed part of the vomeronasal system, especially the V2Rs. 168 V1Rs and 98 V2Rs were detected to be highly enriched in mouse vomeronasal organ (VNO, and 108 V1Rs and 87 V2Rs in rat VNO. We monitored the expression profile of mouse VR genes in other non-VNO tissues with the result that some VR genes were re-designated as VR-like genes based on their non-olfactory expression pattern. Temporal expression profiles for mouse VR genes were characterized and their patterns were classified, revealing the developmental dynamics of these so-called pheromone receptors. We found numerous patterns of temporal expression which indicate possible behavior-related functions. The uneven composition of VR genes in certain patterns suggests a functional differentiation between the two types of VR genes. We found the coherence between VR genes and transcription factors in terms of their temporal expression patterns. In situ hybridization experiments were performed to evaluate the cell number change over time for selected receptor genes.

  14. Selection of Reliable Reference Genes for Gene Expression Studies in the Biofuel Plant Jatropha curcas Using Real-Time Quantitative PCR

    Directory of Open Access Journals (Sweden)

    Lu Zhang

    2013-12-01

    Full Text Available Jatropha curcas is a promising renewable feedstock for biodiesel and bio-jet fuel production. To study gene expression in Jatropha in different tissues throughout development and under stress conditions, we examined a total of 11 typical candidate reference genes using real-time quantitative polymerase chain reaction (RT-qPCR analysis, which is widely used for validating transcript levels in gene expression studies. The expression stability of these candidate reference genes was assessed across a total of 20 samples, including various tissues at vegetative and reproductive stages and under desiccation and cold stress treatments. The results obtained using software qBasePLUS showed that the top-ranked reference genes differed across the sample subsets. The combination of actin, GAPDH, and EF1α would be appropriate as a reference panel for normalizing gene expression data across samples at different developmental stages; the combination of actin, GAPDH, and TUB5 should be used as a reference panel for normalizing gene expression data across samples under various abiotic stress treatments. With regard to different developmental stages, we recommend the use of actin and TUB8 for normalization at the vegetative stage and GAPDH and EF1α for normalization at the reproductive stage. For abiotic stress treatments, we recommend the use of TUB5 and TUB8 for normalization under desiccation stress and GAPDH and actin for normalization under cold stress. These results are valuable for future research on gene expression during development or under abiotic stress in Jatropha. To our knowledge, this is the first report on the stability of reference genes in Jatropha.

  15. Quantitative analysis of stress thallium-201 studies: comparison of SPET and planar imaging in the detection of CAD

    International Nuclear Information System (INIS)

    Ziada, G.; Hayat, N.; Abdel-Dayem, H.M.; Hassan, I.

    1986-01-01

    The value of thallium-201 tomographic sections in the detection of coronary artery disease is illustrated by comparing visual interpretation (VTS) and quantitative analysis (QTS) with visual planar study (VPS) and quantitative analysis of planar study (QPS), referring to coronary angiography (CA) as the standard technique. It is concluded that visual assessment of single photon emission tomography (VTS) is more valuable than all other techniques (VPS, QPS and QTS) for detecting and localizing coronary artery disease. (UK)

  16. Identification of Suitable Reference Genes for Investigating Gene Expression in Anterior Cruciate Ligament Injury by Using Reverse Transcription-Quantitative PCR.

    Directory of Open Access Journals (Sweden)

    Mariana Ferreira Leal

    Full Text Available The anterior cruciate ligament (ACL is one of the most frequently injured structures during high-impact sporting activities. Gene expression analysis may be a useful tool for understanding ACL tears and healing failure. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR has emerged as an effective method for such studies. However, this technique requires the use of suitable reference genes for data normalization. Here, we evaluated the suitability of six reference genes (18S, ACTB, B2M, GAPDH, HPRT1, and TBP by using ACL samples of 39 individuals with ACL tears (20 with isolated ACL tears and 19 with ACL tear and combined meniscal injury and of 13 controls. The stability of the candidate reference genes was determined by using the NormFinder, geNorm, BestKeeper DataAssist, and RefFinder software packages and the comparative ΔCt method. ACTB was the best single reference gene and ACTB+TBP was the best gene pair. The GenEx software showed that the accumulated standard deviation is reduced when a larger number of reference genes is used for gene expression normalization. However, the use of a single reference gene may not be suitable. To identify the optimal combination of reference genes, we evaluated the expression of FN1 and PLOD1. We observed that at least 3 reference genes should be used. ACTB+HPRT1+18S is the best trio for the analyses involving isolated ACL tears and controls. Conversely, ACTB+TBP+18S is the best trio for the analyses involving (1 injured ACL tears and controls, and (2 ACL tears of patients with meniscal tears and controls. Therefore, if the gene expression study aims to compare non-injured ACL, isolated ACL tears and ACL tears from patients with meniscal tear as three independent groups ACTB+TBP+18S+HPRT1 should be used. In conclusion, 3 or more genes should be used as reference genes for analysis of ACL samples of individuals with and without ACL tears.

  17. Detection of Promyelocytic Leukemia/Retinoic Acid Receptor α (PML/RARα Fusion Gene with Functionalized Graphene Oxide

    Directory of Open Access Journals (Sweden)

    Hongwei Wang

    2013-06-01

    Full Text Available An attempt was made to use functionalized graphene oxide (GO to detect the Promyelocytic leukemia/Retinoic acid receptor α fusion gene (PML/RARα fusion gene, a marker gene of acute promyelocytic leukemia. The functionalized GO was prepared by chemical exfoliation method, followed by a polyethylene glycol grafting. It is found that the functionalized GO can selectively adsorb the fluorescein isothiocyanate (FITC-labeled single-stranded DNA probe and quench its fluorescence. The probe can be displaced by the PML/RARα fusion gene to restore the fluorescence, which can be detected by laser confocal microscopy and flow cytometry. These can be used to detect the presence of the PML/RARα fusion gene. This detection method is verified to be fast, simple and reliable.

  18. Evaluation of a real-time PCR assay based on the single-copy SAG1 gene for the detection of Toxoplasma gondii.

    Science.gov (United States)

    Yu, Haijie; Huang, Bin; Zhuo, Xunhui; Chen, Xueqiu; Du, Aifang

    2013-11-08

    Real-time PCR-based detection of Toxoplasma gondii is very sensitive and convenient for diagnosing toxoplasmosis. However, the performance of the PCR assays could be influenced by the target gene chosen. Here we evaluate a real-time PCR assay using double-stranded DNA dyes (SYBR(®) Green I assay) with a new set of primers targeting the SAG1 gene for the fast and specific detection of T. gondii. The assay showed higher sensitivity than conventional PCR protocols using T. gondii DNA as template. The detection limit of the developed real-time PCR assay was in the order of 1 tachyzoite. The assay was also assessed by experimentally infected mice and showed positive results for blood (25%), spleen (50%) and lung (50%) as early as 1 dpi. The specificity of the assay was confirmed by using DNA from Neospora caninum, Escherichia coli, Babesia bovis, Trypanosoma brucei, Cryptosporidium parvum, and Toxocara canis. Assay applicability was successfully tested in blood samples collected from slaughtered pigs. These results indicate that, based on SYBR(®) green I, the quantitative SAG1 assay may also be useful in the study of the pathogenicity, immunoprophylaxis, and treatment of T. gondii. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis (L.) O. Kuntze)

    Science.gov (United States)

    Quantitative real-time polymerase chain reaction (qRT-PCR) is a commonly used technique for measuring gene expression levels due to its simplicity, specificity, and sensitivity. Reliable reference selection for the accurate quantification of gene expression under various experimental conditions is a...

  20. GETPrime: a gene- or transcript-specific primer database for quantitative real-time PCR.

    Science.gov (United States)

    Gubelmann, Carine; Gattiker, Alexandre; Massouras, Andreas; Hens, Korneel; David, Fabrice; Decouttere, Frederik; Rougemont, Jacques; Deplancke, Bart

    2011-01-01

    The vast majority of genes in humans and other organisms undergo alternative splicing, yet the biological function of splice variants is still very poorly understood in large part because of the lack of simple tools that can map the expression profiles and patterns of these variants with high sensitivity. High-throughput quantitative real-time polymerase chain reaction (qPCR) is an ideal technique to accurately quantify nucleic acid sequences including splice variants. However, currently available primer design programs do not distinguish between splice variants and also differ substantially in overall quality, functionality or throughput mode. Here, we present GETPrime, a primer database supported by a novel platform that uniquely combines and automates several features critical for optimal qPCR primer design. These include the consideration of all gene splice variants to enable either gene-specific (covering the majority of splice variants) or transcript-specific (covering one splice variant) expression profiling, primer specificity validation, automated best primer pair selection according to strict criteria and graphical visualization of the latter primer pairs within their genomic context. GETPrime primers have been extensively validated experimentally, demonstrating high transcript specificity in complex samples. Thus, the free-access, user-friendly GETPrime database allows fast primer retrieval and visualization for genes or groups of genes of most common model organisms, and is available at http://updepla1srv1.epfl.ch/getprime/. Database URL: http://deplanckelab.epfl.ch.

  1. Evaluation of Housekeeping Genes for Quantitative Real-Time PCR Analysis of Bradysia odoriphaga (Diptera: Sciaridae

    Directory of Open Access Journals (Sweden)

    Caihua Shi

    2016-07-01

    Full Text Available The soil insect Bradysia odoriphaga (Diptera: Sciaridae causes substantial damage to Chinese chive. Suitable reference genes in B. odoriphaga (Bradysia odoriphaga have yet to be identified for normalizing target gene expression among samples by quantitative real-time PCR (qRT-PCR. This study was focused on identifying the expression stability of 12 candidate housekeeping genes in B. odoriphaga under various experiment conditions. The final stability ranking of 12 housekeeping genes was obtained with RefFinder, and the most suitable number of reference genes was analyzed by GeNorm. The results revealed that the most appropriate sets of internal controls were RPS15, RPL18, and RPS18 across developmental phases; RPS15, RPL28, and GAPDH across temperatures; RPS15 and RPL18 across pesticide treatments; RSP5, RPS18, and SDHA across photoperiods; ACTb, RPS18, and RPS15 across diets; RPS13 and RPL28 across populations; and RPS15, ACTb, and RPS18 across all samples. The use of the most suitable reference genes versus an arbitrarily selected reference gene resulted in significant differences in the analysis of a target gene expression. HSP23 in B. odoriphaga was found to be up-regulated under low temperatures. These results will contribute to the standardization of qRT-PCR and will also be valuable for further research on gene function in B. odoriphaga.

  2. Genes and gene expression: Localization, damage and control -- A multilevel and inter-disciplinary study

    International Nuclear Information System (INIS)

    Ts'o, P.O.P.

    1990-09-01

    All projects are working toward a goal for describing the three dimensional nuclear topography in terms of relative spatial relationships among genes (specific DNA sequence). Methods are now being perfected to detect these genes, quantitatively and spatially, to perturb these genes specifically, and to measure the perturbation in order to assure specificity. We are developing methods to assay, after perturbation of the target DNA within living cells, whether or not only the target sequence are attacked while other sequences remain unharmed. We are now at the stage to do chemical gene modification or masking within living cells in a strictly sequence-specific manner. Soon, we will be able to study the function and the physical location of each gene in living cells with exquisite specificity. 25 refs., 15 figs

  3. A new molecular diagnostic tool for quantitatively detecting and genotyping “Candidatus Liberibacter species”

    Science.gov (United States)

    A new molecular diagnostic method was developed for quantitative detection of “Candidatus Liberibacter” species associated with citrus Huanglongbing (“Ca. Liberibacter asiaticus”, “Ca. Liberibacter africanus” and “Ca. Liberibacter americanus”) and potato zebra chip disorder (“Ca. Liberibacter solana...

  4. Using Next-Generation Sequencing to Detect Differential Expression Genes in Bradysia odoriphaga after Exposure to Insecticides

    Directory of Open Access Journals (Sweden)

    Haoliang Chen

    2017-11-01

    Full Text Available Bradysia odoriphaga (Diptera: Sciaridae is the most important pest of Chinese chive. Insecticides are used widely and frequently to control B. odoriphaga in China. However, the performance of the insecticides chlorpyrifos and clothianidin in controlling the Chinese chive maggot is quite different. Using next generation sequencing technology, different expression unigenes (DEUs in B. odoriphaga were detected after treatment with chlorpyrifos and clothianidin for 6 and 48 h in comparison with control. The number of DEUs ranged between 703 and 1161 after insecticide treatment. In these DEUs, 370–863 unigenes can be classified into 41–46 categories of gene ontology (GO, and 354–658 DEUs can be mapped into 987–1623 Kyoto Encyclopedia of Genes and Genomes (KEGG pathways. The expressions of DEUs related to insecticide-metabolism-related genes were analyzed. The cytochrome P450-like unigene group was the largest group in DEUs. Most glutathione S-transferase-like unigenes were down-regulated and most sodium channel-like unigenes were up-regulated after insecticide treatment. Finally, 14 insecticide-metabolism-related unigenes were chosen to confirm the relative expression in each treatment by quantitative Real Time Polymerase Chain Reaction (qRT-PCR. The results of qRT-PCR and RNA Sequencing (RNA-Seq are fairly well-established. Our results demonstrate that a next-generation sequencing tool facilitates the identification of insecticide-metabolism-related genes and the illustration of the insecticide mechanisms of chlorpyrifos and clothianidin.

  5. Systematic identification of human housekeeping genes possibly useful as references in gene expression studies.

    Science.gov (United States)

    Caracausi, Maria; Piovesan, Allison; Antonaros, Francesca; Strippoli, Pierluigi; Vitale, Lorenza; Pelleri, Maria Chiara

    2017-09-01

    The ideal reference, or control, gene for the study of gene expression in a given organism should be expressed at a medium‑high level for easy detection, should be expressed at a constant/stable level throughout different cell types and within the same cell type undergoing different treatments, and should maintain these features through as many different tissues of the organism. From a biological point of view, these theoretical requirements of an ideal reference gene appear to be best suited to housekeeping (HK) genes. Recent advancements in the quality and completeness of human expression microarray data and in their statistical analysis may provide new clues toward the quantitative standardization of human gene expression studies in biology and medicine, both cross‑ and within‑tissue. The systematic approach used by the present study is based on the Transcriptome Mapper tool and exploits the automated reassignment of probes to corresponding genes, intra‑ and inter‑sample normalization, elaboration and representation of gene expression values in linear form within an indexed and searchable database with a graphical interface recording quantitative levels of expression, expression variability and cross‑tissue width of expression for more than 31,000 transcripts. The present study conducted a meta‑analysis of a pool of 646 expression profile data sets from 54 different human tissues and identified actin γ 1 as the HK gene that best fits the combination of all the traditional criteria to be used as a reference gene for general use; two ribosomal protein genes, RPS18 and RPS27, and one aquaporin gene, POM121 transmembrane nucleporin C, were also identified. The present study provided a list of tissue‑ and organ‑specific genes that may be most suited for the following individual tissues/organs: Adipose tissue, bone marrow, brain, heart, kidney, liver, lung, ovary, skeletal muscle and testis; and also provides in these cases a representative

  6. Detection of Horizontal Gene Transfers from Phylogenetic Comparisons

    Science.gov (United States)

    Pylro, Victor Satler; Vespoli, Luciano de Souza; Duarte, Gabriela Frois; Yotoko, Karla Suemy Clemente

    2012-01-01

    Bacterial phylogenies have become one of the most important challenges for microbial ecology. This field started in the mid-1970s with the aim of using the sequence of the small subunit ribosomal RNA (16S) tool to infer bacterial phylogenies. Phylogenetic hypotheses based on other sequences usually give conflicting topologies that reveal different evolutionary histories, which in some cases may be the result of horizontal gene transfer events. Currently, one of the major goals of molecular biology is to understand the role that horizontal gene transfer plays in species adaptation and evolution. In this work, we compared the phylogenetic tree based on 16S with the tree based on dszC, a gene involved in the cleavage of carbon-sulfur bonds. Bacteria of several genera perform this survival task when living in environments lacking free mineral sulfur. The biochemical pathway of the desulphurization process was extensively studied due to its economic importance, since this step is expensive and indispensable in fuel production. Our results clearly show that horizontal gene transfer events could be detected using common phylogenetic methods with gene sequences obtained from public sequence databases. PMID:22675653

  7. Real-time label-free quantitative fluorescence microscopy-based detection of ATP using a tunable fluorescent nano-aptasensor platform.

    Science.gov (United States)

    Shrivastava, Sajal; Sohn, Il-Yung; Son, Young-Min; Lee, Won-Il; Lee, Nae-Eung

    2015-12-14

    Although real-time label-free fluorescent aptasensors based on nanomaterials are increasingly recognized as a useful strategy for the detection of target biomolecules with high fidelity, the lack of an imaging-based quantitative measurement platform limits their implementation with biological samples. Here we introduce an ensemble strategy for a real-time label-free fluorescent graphene (Gr) aptasensor platform. This platform employs aptamer length-dependent tunability, thus enabling the reagentless quantitative detection of biomolecules through computational processing coupled with real-time fluorescence imaging data. We demonstrate that this strategy effectively delivers dose-dependent quantitative readouts of adenosine triphosphate (ATP) concentration on chemical vapor deposited (CVD) Gr and reduced graphene oxide (rGO) surfaces, thereby providing cytotoxicity assessment. Compared with conventional fluorescence spectrometry methods, our highly efficient, universally applicable, and rational approach will facilitate broader implementation of imaging-based biosensing platforms for the quantitative evaluation of a range of target molecules.

  8. On the detection of early osteoarthritis by quantitative microscopic imaging

    Science.gov (United States)

    Mittelstaedt, Daniel John

    Articular cartilage is a thin layer of connective tissue that protects the ends of bones in diarthroidal joints. Cartilage distributes mechanical forces during daily movement throughout its unique depth-dependent structure. The extracellular matrix (ECM) of cartilage primarily contains water, collagen, and glycosaminoglycan (GAG). The collagen fibers are intertwined with negatively charged GAG and surround the cells (i.e. chondrocytes) in cartilage. Degradation to the ECM reduces the load bearing properties of cartilage which can be initiated by injury (e.g. anterior cruciate ligament (ACL) rupture) or disease (e.g. osteoarthritis (OA)). Magnetic resonance imaging (MRI) and x-ray computed tomography (CT) are noninvasive imaging techniques that are increasingly being used in the clinical detection of cartilage degradation. The aim of the first project in this dissertation was to quantify and compare the depth-dependent GAG concentration from healthy and biochemically degraded humeral ex vivo articular cartilage using quantitative contrast enhanced micro-computed tomography (qCECT) at high resolution. The second project in this dissertation was aimed to measure the topographical and depth-dependent GAG concentration using qCECT and delayed gadolinium enhanced magnetic resonance imaging of cartilage (dGEMRIC) from the medial tibia cartilage three weeks after unilateral ACL transection which is an animal model of OA (i.e. modified Pond-Nuki model). These GAG measurements were correlated with a biochemical method, inductively couple plasma optical emission spectrometry, to compare the degradation on the medial tibia between the OA and contralateral cartilage. The third project in this dissertation used the same cartilage specimens as in project two to investigate the change in T2 due to OA and the effect on T2 from a contrast agent. Furthermore, the change in T2 relaxation was investigated from static unconfined compression with correlations by biomechanical

  9. Touch-down reverse transcriptase-PCR detection of IgV(H) rearrangement and Sybr-Green-based real-time RT-PCR quantitation of minimal residual disease in patients with chronic lymphocytic leukemia.

    Science.gov (United States)

    Peková, Sona; Marková, Jana; Pajer, Petr; Dvorák, Michal; Cetkovský, Petr; Schwarz, Jirí

    2005-01-01

    Patients with chronic lymphocytic leukemia (CLL) can relapse even after aggressive therapy and autografts. It is commonly assumed that to prevent relapse the level of minimal residual disease (MRD) should be as low as possible. To evaluate MRD, highly sensitive quantitative assays are needed. The aim of the study was to develop a robust and sensitive method for detection of the clonal immunoglobulin heavy-chain variable (IgV(H)) rearrangement in CLL and to introduce a highly sensitive and specific methodology for MRD monitoring in patients with CLL who undergo intensive treatment. As a prerequisite for MRD detection, touch-down reverse transcriptase (RT)-PCR using degenerate primers were used for the diagnostic identification of (H) gene rearrangement(s). For quantitative MRD detection in 18 patients, we employed a real-time RT-PCR assay (RQ-PCR) making use of patient-specific primers and the cost-saving Sybr-Green reporter dye (SG). For precise calibration of RQ-PCR, patient-specific IgV(H) sequences were cloned. Touch-down RT-PCR with degenerate primers allowed the successful detection of IgV(H) clonal rearrangement(s) in 252 of 257 (98.1%) diagnostic samples. Biallelic rearrangements were found in 27 of 252 (10.7%) cases. Degenerate primers used for the identification of clonal expansion at diagnosis were not sensitive enough for MRD detection. In contrast, our RQ-PCR assay using patient-specific primers and SG reached the sensitivity of 10(-)(6). We demonstrated MRD in each patient tested, including four of four patients in complete remission following autologous hematopoietic stem cell transplantation (HSCT) and three of three following allogeneic 'mini'-HSCT. Increments in MRD might herald relapse; aggressive chemotherapy could induce molecular remission. Our touch-down RT-PCR has higher efficiency to detect clonal IgV(H) rearrangements including the biallelic ones. MRD quantitation of IgV(H) expression using SG-based RQ-PCR represents a highly specific

  10. Validation of reference genes for quantitative real-time PCR in Périgord black truffle (Tuber melanosporum) developmental stages.

    Science.gov (United States)

    Zarivi, Osvaldo; Cesare, Patrizia; Ragnelli, Anna Maria; Aimola, Pierpaolo; Leonardi, Marco; Bonfigli, Antonella; Colafarina, Sabrina; Poma, Anna Maria; Miranda, Michele; Pacioni, Giovanni

    2015-08-01

    The symbiotic fungus Tuber melanosporum Vittad. (Périgord black truffle) belongs to the Ascomycota and forms mutualistic symbiosis with tree and shrub roots. This truffle has a high value in a global market and is cultivated in many countries of both hemispheres. The publication of the T. melanosporum genome has given researchers unique opportunities to learn more about the biology of the fungus. Real-time quantitative PCR (qRT-PCR) is a definitive technique for quantitating differences in transcriptional gene expression levels between samples. To facilitate gene expression studies and obtain more accurate qRT-PCR data, normalization relative to stable housekeeping genes is required. These housekeeping genes must show stable expression under given experimental conditions for the qRT-PCR results to be accurate. Unfortunately, there are no studies on the stability of housekeeping genes used in T. melanosporum development. In this study, we present a morphological and microscopical classification of the developmental stages of T. melanosporum fruit body, and investigate the expression levels of 12 candidate reference genes (18S rRNA; 5.8S rRNA; Elongation factor 1-alpha; Elongation factor 1-beta; α-tubulin; 60S ribosomal protein L29; β-tubulin; 40S ribosomal protein S1; 40S ribosomal protein S3; Glucose-6-phosphate dehydrogenase; β-actin; Ubiquitin-conjugating enzyme). To evaluate the suitability of these genes as endogenous controls, five software-based approaches and one web-based comprehensive tool (RefFinder) were used to analyze and rank the tested genes. We demonstrate here that the 18S rRNA gene shows the most stable expression during T. melanosporum development and that a set of three genes, 18S rRNA, Elongation factor 1-alpha and 40S ribosomal protein S3, is the most suitable to normalize qRT-PCR data from all the analyzed developmental stages; conversely, 18S rRNA, Glucose-6-phosphate dehydrogenase and Elongation factor 1-alpha are the most suitable

  11. A Room Temperature Ultrasensitive Magnetoelectric Susceptometer for Quantitative Tissue Iron Detection

    Science.gov (United States)

    Xi, Hao; Qian, Xiaoshi; Lu, Meng-Chien; Mei, Lei; Rupprecht, Sebastian; Yang, Qing X.; Zhang, Q. M.

    2016-07-01

    Iron is a trace mineral that plays a vital role in the human body. However, absorbing and accumulating excessive iron in body organs (iron overload) can damage or even destroy an organ. Even after many decades of research, progress on the development of noninvasive and low-cost tissue iron detection methods is very limited. Here we report a recent advance in a room-temperature ultrasensitive biomagnetic susceptometer for quantitative tissue iron detection. The biomagnetic susceptometer exploits recent advances in the magnetoelectric (ME) composite sensors that exhibit an ultrahigh AC magnetic sensitivity under the presence of a strong DC magnetic field. The first order gradiometer based on piezoelectric and magnetostrictive laminate (ME composite) structure shows an equivalent magnetic noise of 0.99 nT/rt Hz at 1 Hz in the presence of a DC magnetic field of 0.1 Tesla and a great common mode noise rejection ability. A prototype magnetoelectric liver susceptometry has been demonstrated with liver phantoms. The results indicate its output signals to be linearly responsive to iron concentrations from normal iron dose (0.05 mg Fe/g liver phantom) to 5 mg Fe/g liver phantom iron overload (100X overdose). The results here open up many innovative possibilities for compact-size, portable, cost-affordable, and room-temperature operated medical systems for quantitative determinations of tissue iron.

  12. Evaluation of Reference Genes for Real-Time Quantitative PCR Analysis in Larvae of Spodoptera litura Exposed to Azadirachtin Stress Conditions

    OpenAIRE

    Benshui Shu; Jingjing Zhang; Gaofeng Cui; Ranran Sun; Veeran Sethuraman; Xin Yi; Guohua Zhong

    2018-01-01

    Azadirachtin is an efficient and broad-spectrum botanical insecticide against more than 150 kinds of agricultural pests with the effects of mortality, antifeedant and growth regulation. Real-time quantitative polymerase chain reaction (RT-qPCR) could be one of the powerful tools to analyze the gene expression level and investigate the mechanism of azadirachtin at transcriptional level, however, the ideal reference genes are needed to normalize the expression profiling of target genes. In this...

  13. WetLab-2: Tools for Conducting On-Orbit Quantitative Real-Time Gene Expression Analysis on ISS

    Science.gov (United States)

    Parra, Macarena; Almeida, Eduardo; Boone, Travis; Jung, Jimmy; Schonfeld, Julie

    2014-01-01

    The objective of NASA Ames Research Centers WetLab-2 Project is to place on the ISS a research platform capable of conducting gene expression analysis via quantitative real-time PCR (qRT-PCR) of biological specimens sampled or cultured on orbit. The project has selected a Commercial-Off-The-Shelf (COTS) qRT-PCR system, the Cepheid SmartCycler and will fly it in its COTS configuration. The SmartCycler has a number of advantages including modular design (16 independent PCR modules), low power consumption, rapid ramp times and the ability to detect up to four separate fluorescent channels at one time enabling multiplex assays that can be used for normalization and to study multiple genes of interest in each module. The team is currently working with Cepheid to enable the downlink of data from the ISS to the ground and provide uplink capabilities for programming, commanding, monitoring, and instrument maintenance. The project has adapted commercial technology to design a module that can lyse cells and extract RNA of sufficient quality and quantity for use in qRT-PCR reactions while using a housekeeping gene to normalize RNA concentration and integrity. The WetLab-2 system is capable of processing multiple sample types ranging from microbial cultures to animal tissues dissected on-orbit. The ability to conduct qRT-PCR on-orbit eliminates the confounding effects on gene expression of reentry stresses and shock acting on live cells and organisms or the concern of RNA degradation of fixed samples. The system can be used to validate terrestrial analyses of samples returned from ISS by providing on-orbit gene expression benchmarking prior to sample return. The ability to get on orbit data will provide investigators with the opportunity to adjust experiment parameters for subsequent trials based on the real-time data analysis without need for sample return and re-flight. Researchers will also be able to sample multigenerational changes in organisms. Finally, the system can be

  14. Quantitative high-throughput gene expression profiling of human striatal development to screen stem cell–derived medium spiny neurons

    Directory of Open Access Journals (Sweden)

    Marco Straccia

    Full Text Available A systematic characterization of the spatio-temporal gene expression during human neurodevelopment is essential to understand brain function in both physiological and pathological conditions. In recent years, stem cell technology has provided an in vitro tool to recapitulate human development, permitting also the generation of human models for many diseases. The correct differentiation of human pluripotent stem cell (hPSC into specific cell types should be evaluated by comparison with specific cells/tissue profiles from the equivalent adult in vivo organ. Here, we define by a quantitative high-throughput gene expression analysis the subset of specific genes of the whole ganglionic eminence (WGE and adult human striatum. Our results demonstrate that not only the number of specific genes is crucial but also their relative expression levels between brain areas. We next used these gene profiles to characterize the differentiation of hPSCs. Our findings demonstrate a temporal progression of gene expression during striatal differentiation of hPSCs from a WGE toward an adult striatum identity. Present results establish a gene expression profile to qualitatively and quantitatively evaluate the telencephalic hPSC-derived progenitors eventually used for transplantation and mature striatal neurons for disease modeling and drug-screening.

  15. Development of a rapid method for direct detection of tet(M) genes in soil from Danish farmland

    DEFF Research Database (Denmark)

    Agersø, Yvonne; Sengeløv, Gitte; Jensen, Lars Bogø

    2004-01-01

    . The tet(M) gene was directly detected in 10-80% of the samples from the various farmland soils and could be detected in all samples tested after selective enrichment. To validate the obtained results, the method was applied to garden soil samples where lower prevalence of resistance was found. Result......A method for direct detection of antibiotic resistance genes in soil samples has been developed. The tetracycline resistance gene, tet(M), was used as a model. The method was validated on Danish farmland soil that had repeatedly been treated with pig manure slurry containing resistant bacteria......: A detection limit of 10(2)-10(3) copies of the tet(M) gene per gram of soil (in a Bacillus cereus group bacterium) was achieved. tet(M) gene was detected in soil samples with the highest prevalence on farmland treated with pig manure slurry....

  16. Selection of reliable reference genes for quantitative real-time PCR in human T cells and neutrophils

    Directory of Open Access Journals (Sweden)

    Ledderose Carola

    2011-10-01

    Full Text Available Abstract Background The choice of reliable reference genes is a prerequisite for valid results when analyzing gene expression with real-time quantitative PCR (qPCR. This method is frequently applied to study gene expression patterns in immune cells, yet a thorough validation of potential reference genes is still lacking for most leukocyte subtypes and most models of their in vitro stimulation. In the current study, we evaluated the expression stability of common reference genes in two widely used cell culture models-anti-CD3/CD28 activated T cells and lipopolysaccharide stimulated neutrophils-as well as in unselected untreated leukocytes. Results The mRNA expression of 17 (T cells, 7 (neutrophils or 8 (unselected leukocytes potential reference genes was quantified by reverse transcription qPCR, and a ranking of the preselected candidate genes according to their expression stability was calculated using the programs NormFinder, geNorm and BestKeeper. IPO8, RPL13A, TBP and SDHA were identified as suitable reference genes in T cells. TBP, ACTB and SDHA were stably expressed in neutrophils. TBP and SDHA were also the most stable genes in untreated total blood leukocytes. The critical impact of reference gene selection on the estimated target gene expression is demonstrated for IL-2 and FIH expression in T cells. Conclusions The study provides a shortlist of suitable reference genes for normalization of gene expression data in unstimulated and stimulated T cells, unstimulated and stimulated neutrophils and in unselected leukocytes.

  17. MALDI-TOF mass spectrometry for quantitative gene expression analysis of acid responses in Staphylococcus aureus.

    Science.gov (United States)

    Rode, Tone Mari; Berget, Ingunn; Langsrud, Solveig; Møretrø, Trond; Holck, Askild

    2009-07-01

    Microorganisms are constantly exposed to new and altered growth conditions, and respond by changing gene expression patterns. Several methods for studying gene expression exist. During the last decade, the analysis of microarrays has been one of the most common approaches applied for large scale gene expression studies. A relatively new method for gene expression analysis is MassARRAY, which combines real competitive-PCR and MALDI-TOF (matrix-assisted laser desorption/ionization time-of-flight) mass spectrometry. In contrast to microarray methods, MassARRAY technology is suitable for analysing a larger number of samples, though for a smaller set of genes. In this study we compare the results from MassARRAY with microarrays on gene expression responses of Staphylococcus aureus exposed to acid stress at pH 4.5. RNA isolated from the same stress experiments was analysed using both the MassARRAY and the microarray methods. The MassARRAY and microarray methods showed good correlation. Both MassARRAY and microarray estimated somewhat lower fold changes compared with quantitative real-time PCR (qRT-PCR). The results confirmed the up-regulation of the urease genes in acidic environments, and also indicated the importance of metal ion regulation. This study shows that the MassARRAY technology is suitable for gene expression analysis in prokaryotes, and has advantages when a set of genes is being analysed for an organism exposed to many different environmental conditions.

  18. Diagnostic performance of fecal quantitative real-time polymerase chain reaction for detection of Lawsonia intracellularis–associated proliferative enteropathy in nursery pigs

    DEFF Research Database (Denmark)

    Pedersen, Ken Steen; Stege, Helle; Jensen, Tim Kåre

    2013-01-01

    Quantitative polymerase chain reaction (qPCR) tests for detection and quantification of Lawsonia intracellularis in feces from pigs have been developed. The objective of the current study was to evaluate the diagnostic performance of a fecal qPCR test for detection of nursery pigs with L. intrace......Quantitative polymerase chain reaction (qPCR) tests for detection and quantification of Lawsonia intracellularis in feces from pigs have been developed. The objective of the current study was to evaluate the diagnostic performance of a fecal qPCR test for detection of nursery pigs with L...

  19. Quantification of Human Fecal Bifidobacterium Species by Use of Quantitative Real-Time PCR Analysis Targeting the groEL Gene

    Science.gov (United States)

    Junick, Jana

    2012-01-01

    Quantitative real-time PCR assays targeting the groEL gene for the specific enumeration of 12 human fecal Bifidobacterium species were developed. The housekeeping gene groEL (HSP60 in eukaryotes) was used as a discriminative marker for the differentiation of Bifidobacterium adolescentis, B. angulatum, B. animalis, B. bifidum, B. breve, B. catenulatum, B. dentium, B. gallicum, B. longum, B. pseudocatenulatum, B. pseudolongum, and B. thermophilum. The bifidobacterial chromosome contains a single copy of the groEL gene, allowing the determination of the cell number by quantification of the groEL copy number. Real-time PCR assays were validated by comparing fecal samples spiked with known numbers of a given Bifidobacterium species. Independent of the Bifidobacterium species tested, the proportion of groEL copies recovered from fecal samples spiked with 5 to 9 log10 cells/g feces was approximately 50%. The quantification limit was 5 to 6 log10 groEL copies/g feces. The interassay variability was less than 10%, and variability between different DNA extractions was less than 23%. The method developed was applied to fecal samples from healthy adults and full-term breast-fed infants. Bifidobacterial diversity in both adults and infants was low, with mostly ≤3 Bifidobacterium species and B. longum frequently detected. The predominant species in infant and adult fecal samples were B. breve and B. adolescentis, respectively. It was possible to distinguish B. catenulatum and B. pseudocatenulatum. We conclude that the groEL gene is a suitable molecular marker for the specific and accurate quantification of human fecal Bifidobacterium species by real-time PCR. PMID:22307308

  20. Detection of single-copy functional genes in prokaryotic cells by two-pass TSA-FISH with polynucleotide probes.

    Science.gov (United States)

    Kawakami, Shuji; Hasegawa, Takuya; Imachi, Hiroyuki; Yamaguchi, Takashi; Harada, Hideki; Ohashi, Akiyoshi; Kubota, Kengo

    2012-02-01

    In situ detection of functional genes with single-cell resolution is currently of interest to microbiologists. Here, we developed a two-pass tyramide signal amplification (TSA)-fluorescence in situ hybridization (FISH) protocol with PCR-derived polynucleotide probes for the detection of single-copy genes in prokaryotic cells. The mcrA gene and the apsA gene in methanogens and sulfate-reducing bacteria, respectively, were targeted. The protocol showed bright fluorescence with a good signal-to-noise ratio and achieved a high efficiency of detection (>98%). The discrimination threshold was approximately 82-89% sequence identity. Microorganisms possessing the mcrA or apsA gene in anaerobic sludge samples were successfully detected by two-pass TSA-FISH with polynucleotide probes. The developed protocol is useful for identifying single microbial cells based on functional gene sequences. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Bacterial pathogen gene abundance and relation to recreational water quality at seven Great Lakes beaches.

    Science.gov (United States)

    Oster, Ryan J; Wijesinghe, Rasanthi U; Haack, Sheridan K; Fogarty, Lisa R; Tucker, Taaja R; Riley, Stephen C

    2014-12-16

    Quantitative assessment of bacterial pathogens, their geographic variability, and distribution in various matrices at Great Lakes beaches are limited. Quantitative PCR (qPCR) was used to test for genes from E. coli O157:H7 (eaeO157), shiga-toxin producing E. coli (stx2), Campylobacter jejuni (mapA), Shigella spp. (ipaH), and a Salmonella enterica-specific (SE) DNA sequence at seven Great Lakes beaches, in algae, water, and sediment. Overall, detection frequencies were mapA>stx2>ipaH>SE>eaeO157. Results were highly variable among beaches and matrices; some correlations with environmental conditions were observed for mapA, stx2, and ipaH detections. Beach seasonal mean mapA abundance in water was correlated with beach seasonal mean log10 E. coli concentration. At one beach, stx2 gene abundance was positively correlated with concurrent daily E. coli concentrations. Concentration distributions for stx2, ipaH, and mapA within algae, sediment, and water were statistically different (Non-Detect and Data Analysis in R). Assuming 10, 50, or 100% of gene copies represented viable and presumably infective cells, a quantitative microbial risk assessment tool developed by Michigan State University indicated a moderate probability of illness for Campylobacter jejuni at the study beaches, especially where recreational water quality criteria were exceeded. Pathogen gene quantification may be useful for beach water quality management.

  2. Selecting a set of housekeeping genes for quantitative real-time PCR in normal and tetraploid haemocytes of soft-shell clams, Mya arenaria.

    Science.gov (United States)

    Siah, A; Dohoo, C; McKenna, P; Delaporte, M; Berthe, F C J

    2008-09-01

    The transcripts involved in the molecular mechanisms of haemic neoplasia in relation to the haemocyte ploidy status of the soft-shell clam, Mya arenaria, have yet to be identified. For this purpose, real-time quantitative RT-PCR constitutes a sensitive and efficient technique, which can help determine the gene expression involved in haemocyte tetraploid status in clams affected by haemic neoplasia. One of the critical steps in comparing transcription profiles is the stability of selected housekeeping genes, as well as an accurate normalization. In this study, we selected five reference genes, S18, L37, EF1, EF2 and actin, generally used as single control genes. Their expression was analyzed by real-time quantitative RT-PCR at different levels of haemocyte ploidy status in order to select the most stable genes. Using the geNorm software, our results showed that L37, EF1 and S18 represent the most stable gene expressions related to various ploidy status ranging from 0 to 78% of tetraploid haemocytes in clams sampled in North River (Prince Edward Island, Canada). However, actin gene expression appeared to be highly regulated. Hence, using it as a housekeeping gene in tetraploid haemocytes can result in inaccurate data. To compare gene expression levels related to haemocyte ploidy status in Mya arenaria, using L37, EF1 and S18 as housekeeping genes for accurate normalization is therefore recommended.

  3. Collaborative ring trial of the papaya endogenous reference gene and its polymerase chain reaction assays for genetically modified organism analysis.

    Science.gov (United States)

    Wei, Jiaojun; Li, Feiwu; Guo, Jinchao; Li, Xiang; Xu, Junfeng; Wu, Gang; Zhang, Dabing; Yang, Litao

    2013-11-27

    The papaya (Carica papaya L.) Chymopapain (CHY) gene has been reported as a suitable endogenous reference gene for genetically modified (GM) papaya detection in previous studies. Herein, we further validated the use of the CHY gene and its qualitative and quantitative polymerase chain reaction (PCR) assays through an interlaboratory collaborative ring trial. A total of 12 laboratories working on detection of genetically modified organisms participated in the ring trial and returned test results. Statistical analysis of the returned results confirmed the species specificity, low heterogeneity, and single-copy number of the CHY gene among different papaya varieties. The limit of detection of the CHY qualitative PCR assay was 0.1%, while the limit of quantification of the quantitative PCR assay was ∼25 copies of haploid papaya genome with acceptable PCR efficiency and linearity. The differences between the tested and true values of papaya content in 10 blind samples ranged from 0.84 to 6.58%. These results indicated that the CHY gene was suitable as an endogenous reference gene for the identification and quantification of GM papaya.

  4. Quantitative modeling of gene networks of biological systems using fuzzy Petri nets and fuzzy sets

    Directory of Open Access Journals (Sweden)

    Raed I. Hamed

    2018-01-01

    Full Text Available Quantitative demonstrating of organic frameworks has turned into an essential computational methodology in the configuration of novel and investigation of existing natural frameworks. Be that as it may, active information that portrays the framework's elements should be known keeping in mind the end goal to get pertinent results with the routine displaying strategies. This information is frequently robust or even difficult to get. Here, we exhibit a model of quantitative fuzzy rational demonstrating approach that can adapt to obscure motor information and hence deliver applicable results despite the fact that dynamic information is fragmented or just dubiously characterized. Besides, the methodology can be utilized as a part of the blend with the current cutting edge quantitative demonstrating strategies just in specific parts of the framework, i.e., where the data are absent. The contextual analysis of the methodology suggested in this paper is performed on the model of nine-quality genes. We propose a kind of FPN model in light of fuzzy sets to manage the quantitative modeling of biological systems. The tests of our model appear that the model is practical and entirely powerful for information impersonation and thinking of fuzzy expert frameworks.

  5. Identification of reference genes for expression analysis by real-time quantitative PCR in drought-stressed soybean

    Directory of Open Access Journals (Sweden)

    Renata Stolf-Moreira

    2011-01-01

    Full Text Available The objective of this work was to validate, by quantitative PCR in real time (RT-qPCR, genes to be used as reference in studies of gene expression in soybean in drought-stressed trials. Four genes commonly used in soybean were evaluated: Gmβ-actin, GmGAPDH, GmLectin and GmRNAr18S. Total RNA was extracted from six samples: three from roots in a hydroponic system with different drought intensities (0, 25, 50, 75 and 100 minutes of water stress, and three from leaves of plants grown in sand with different soil moistures (15, 5 and 2.5% gravimetric humidity. The raw cycle threshold (Ct data were analyzed, and the efficiency of each primer was calculated for an overall analysis of the Ct range among the different samples. The GeNorm application was used to evaluate the best reference gene, according to its stability. The GmGAPDH was the least stable gene, with the highest mean values of expression stability (M, and the most stable genes, with the lowest M values, were the Gmβ-actin and GmRNAr18S, when both root and leaves samples were tested. These genes can be used in RT-qPCR as reference gene for expression analysis.

  6. Selection of Reliable Reference Genes for Gene Expression Studies of a Promising Oilseed Crop, Plukenetia volubilis, by Real-Time Quantitative PCR

    Directory of Open Access Journals (Sweden)

    Longjian Niu

    2015-06-01

    Full Text Available Real-time quantitative PCR (RT-qPCR is a reliable and widely used method for gene expression analysis. The accuracy of the determination of a target gene expression level by RT-qPCR demands the use of appropriate reference genes to normalize the mRNA levels among different samples. However, suitable reference genes for RT-qPCR have not been identified in Sacha inchi (Plukenetia volubilis, a promising oilseed crop known for its polyunsaturated fatty acid (PUFA-rich seeds. In this study, using RT-qPCR, twelve candidate reference genes were examined in seedlings and adult plants, during flower and seed development and for the entire growth cycle of Sacha inchi. Four statistical algorithms (delta cycle threshold (ΔCt, BestKeeper, geNorm, and NormFinder were used to assess the expression stabilities of the candidate genes. The results showed that ubiquitin-conjugating enzyme (UCE, actin (ACT and phospholipase A22 (PLA were the most stable genes in Sacha inchi seedlings. For roots, stems, leaves, flowers, and seeds from adult plants, 30S ribosomal protein S13 (RPS13, cyclophilin (CYC and elongation factor-1alpha (EF1α were recommended as reference genes for RT-qPCR. During the development of reproductive organs, PLA, ACT and UCE were the optimal reference genes for flower development, whereas UCE, RPS13 and RNA polymerase II subunit (RPII were optimal for seed development. Considering the entire growth cycle of Sacha inchi, UCE, ACT and EF1α were sufficient for the purpose of normalization. Our results provide useful guidelines for the selection of reliable reference genes for the normalization of RT-qPCR data for seedlings and adult plants, for reproductive organs, and for the entire growth cycle of Sacha inchi.

  7. Selection of Reliable Reference Genes for Gene Expression Studies of a Promising Oilseed Crop, Plukenetia volubilis, by Real-Time Quantitative PCR

    Science.gov (United States)

    Niu, Longjian; Tao, Yan-Bin; Chen, Mao-Sheng; Fu, Qiantang; Li, Chaoqiong; Dong, Yuling; Wang, Xiulan; He, Huiying; Xu, Zeng-Fu

    2015-01-01

    Real-time quantitative PCR (RT-qPCR) is a reliable and widely used method for gene expression analysis. The accuracy of the determination of a target gene expression level by RT-qPCR demands the use of appropriate reference genes to normalize the mRNA levels among different samples. However, suitable reference genes for RT-qPCR have not been identified in Sacha inchi (Plukenetia volubilis), a promising oilseed crop known for its polyunsaturated fatty acid (PUFA)-rich seeds. In this study, using RT-qPCR, twelve candidate reference genes were examined in seedlings and adult plants, during flower and seed development and for the entire growth cycle of Sacha inchi. Four statistical algorithms (delta cycle threshold (ΔCt), BestKeeper, geNorm, and NormFinder) were used to assess the expression stabilities of the candidate genes. The results showed that ubiquitin-conjugating enzyme (UCE), actin (ACT) and phospholipase A22 (PLA) were the most stable genes in Sacha inchi seedlings. For roots, stems, leaves, flowers, and seeds from adult plants, 30S ribosomal protein S13 (RPS13), cyclophilin (CYC) and elongation factor-1alpha (EF1α) were recommended as reference genes for RT-qPCR. During the development of reproductive organs, PLA, ACT and UCE were the optimal reference genes for flower development, whereas UCE, RPS13 and RNA polymerase II subunit (RPII) were optimal for seed development. Considering the entire growth cycle of Sacha inchi, UCE, ACT and EF1α were sufficient for the purpose of normalization. Our results provide useful guidelines for the selection of reliable reference genes for the normalization of RT-qPCR data for seedlings and adult plants, for reproductive organs, and for the entire growth cycle of Sacha inchi. PMID:26047338

  8. Identification and validation of reference genes for quantitative real-time PCR in Drosophila suzukii (Diptera: Drosophilidae.

    Directory of Open Access Journals (Sweden)

    Yifan Zhai

    Full Text Available To accurately evaluate gene expression levels and obtain more accurate quantitative real-time RT-PCR (qRT-PCR data, normalization relative to reliable reference gene(s is required. Drosophila suzukii, is an invasive fruit pest native to East Asia, and recently invaded Europe and North America, the stability of its reference genes have not been previously investigated. In this study, ten candidate reference genes (RPL18, RPS3, AK, EF-1β, TBP, NADH, HSP22, GAPDH, Actin, α-Tubulin, were evaluated for their suitability as normalization genes under different biotic (developmental stage, tissue and population, and abiotic (photoperiod, temperature conditions. The three statistical approaches (geNorm, NormFinder and BestKeeper and one web-based comprehensive tool (RefFinder were used to normalize analysis of the ten candidate reference genes identified α-Tubulin, TBP and AK as the most stable candidates, while HSP22 and Actin showed the lowest expression stability. We used three most stable genes (α-Tubulin, TBP and AK and one unstably expressed gene to analyze the expression of P-glycoprotein in abamectin-resistant and sensitive strains, and the results were similar to reference genes α-Tubulin, TBP and AK, which show good stability, while the result of HSP22 has a certain bias. The three validated reference genes can be widely used for quantification of target gene expression with qRT-PCR technology in D.suzukii.

  9. Occult HBV among Anti-HBc Alone: Mutation Analysis of an HBV Surface Gene and Pre-S Gene.

    Science.gov (United States)

    Kim, Myeong Hee; Kang, So Young; Lee, Woo In

    2017-05-01

    The aim of this study is to investigate the molecular characteristics of occult hepatitis B virus (HBV) infection in 'anti-HBc alone' subjects. Twenty-four patients with 'anti-HBc alone' and 20 control patients diagnosed with HBV were analyzed regarding S and pre-S gene mutations. All specimens were analyzed for HBs Ag, anti-HBc, and anti-HBs. For specimens with an anti-HBc alone, quantitative analysis of HBV DNA, as well as sequencing and mutation analysis of S and pre-S genes, were performed. A total 24 were analyzed for the S gene, and 14 were analyzed for the pre-S gene through sequencing. A total of 20 control patients were analyzed for S and pre-S gene simultaneously. Nineteen point mutations of the major hydrophilic region were found in six of 24 patients. Among them, three mutations, S114T, P127S/T, M133T, were detected in common. Only one mutation was found in five subjects of the control group; this mutation was not found in the occult HBV infection group, however. Pre-S mutations were detected in 10 patients, and mutations of site aa58-aa100 were detected in 9 patients. A mutation on D114E was simultaneously detected. Although five mutations from the control group were found at the same location (aa58-aa100), no mutations of occult HBV infection were detected. The prevalence of occult HBV infection is not low among 'anti-HBc alone' subjects. Variable mutations in the S gene and pre-S gene were associated with the occurrence of occult HBV infection. Further larger scale studies are required to determine the significance of newly detected mutations. © Copyright: Yonsei University College of Medicine 2017

  10. Validation of reference genes for gene expression analysis in olive (Olea europaea) mesocarp tissue by quantitative real-time RT-PCR

    Science.gov (United States)

    2014-01-01

    Background Gene expression analysis using quantitative reverse transcription PCR (qRT-PCR) is a robust method wherein the expression levels of target genes are normalised using internal control genes, known as reference genes, to derive changes in gene expression levels. Although reference genes have recently been suggested for olive tissues, combined/independent analysis on different cultivars has not yet been tested. Therefore, an assessment of reference genes was required to validate the recent findings and select stably expressed genes across different olive cultivars. Results A total of eight candidate reference genes [glyceraldehyde 3-phosphate dehydrogenase (GAPDH), serine/threonine-protein phosphatase catalytic subunit (PP2A), elongation factor 1 alpha (EF1-alpha), polyubiquitin (OUB2), aquaporin tonoplast intrinsic protein (TIP2), tubulin alpha (TUBA), 60S ribosomal protein L18-3 (60S RBP L18-3) and polypyrimidine tract-binding protein homolog 3 (PTB)] were chosen based on their stability in olive tissues as well as in other plants. Expression stability was examined by qRT-PCR across 12 biological samples, representing mesocarp tissues at various developmental stages in three different olive cultivars, Barnea, Frantoio and Picual, independently and together during the 2009 season with two software programs, GeNorm and BestKeeper. Both software packages identified GAPDH, EF1-alpha and PP2A as the three most stable reference genes across the three cultivars and in the cultivar, Barnea. GAPDH, EF1-alpha and 60S RBP L18-3 were found to be most stable reference genes in the cultivar Frantoio while 60S RBP L18-3, OUB2 and PP2A were found to be most stable reference genes in the cultivar Picual. Conclusions The analyses of expression stability of reference genes using qRT-PCR revealed that GAPDH, EF1-alpha, PP2A, 60S RBP L18-3 and OUB2 are suitable reference genes for expression analysis in developing Olea europaea mesocarp tissues, displaying the highest level

  11. A Toolbox for Quantitative Gene Expression in Varroa destructor: RNA Degradation in Field Samples and Systematic Analysis of Reference Gene Stability.

    Directory of Open Access Journals (Sweden)

    Ewan M Campbell

    Full Text Available Varroa destructor is the major pest of Apis mellifera and contributes to the global honey bee health crisis threatening food security. Developing new control strategies to combat Varroa will require the application of molecular biology, including gene expression studies by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR. Both high quality RNA samples and suitable stable internal reference genes are required for accurate gene expression studies. In this study, ten candidate genes (succinate dehydrogenase (SDHA, NADH dehydrogenase (NADH, large ribsosmal subunit, TATA-binding protein, glyceraldehyde-3-phosphate dehydrogenase, 18S rRNA (18S, heat-shock protein 90 (HSP90, cyclophilin, α-tubulin, actin, were evaluated for their suitability as normalization genes using the geNorm, Normfinder, BestKeeper, and comparative ΔCq algorithims. Our study proposes the use of no more than two of the four most stable reference genes (NADH, 18S, SDHA and HSP90 in Varroa gene expression studies. These four genes remain stable in phoretic and reproductive stage Varroa and are unaffected by Deformed wing virus load. When used for determining changes in vitellogenin gene expression, the signal-to-noise ratio (SNR for the relatively unstable genes actin and α-tubulin was much lower than for the stable gene combinations (NADH + HSP90 +18S; NADH + HSP90; or NADH. Using both electropherograms and RT-qPCR for short and long amplicons as quality controls, we demonstrate that high quality RNA can be recovered from Varroa up to 10 days later stored at ambient temperature if collected into RNAlater and provided the body is pierced. This protocol allows the exchange of Varroa samples between international collaborators and field sample collectors without requiring frozen collection or shipping. Our results make important contributions to gene expression studies in Varroa by proposing a validated sampling protocol to obtain high quality Varroa

  12. Identification of stable reference genes for quantitative PCR in cells derived from chicken lymphoid organs.

    Science.gov (United States)

    Borowska, D; Rothwell, L; Bailey, R A; Watson, K; Kaiser, P

    2016-02-01

    Quantitative polymerase chain reaction (qPCR) is a powerful technique for quantification of gene expression, especially genes involved in immune responses. Although qPCR is a very efficient and sensitive tool, variations in the enzymatic efficiency, quality of RNA and the presence of inhibitors can lead to errors. Therefore, qPCR needs to be normalised to obtain reliable results and allow comparison. The most common approach is to use reference genes as internal controls in qPCR analyses. In this study, expression of seven genes, including β-actin (ACTB), β-2-microglobulin (B2M), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), β-glucuronidase (GUSB), TATA box binding protein (TBP), α-tubulin (TUBAT) and 28S ribosomal RNA (r28S), was determined in cells isolated from chicken lymphoid tissues and stimulated with three different mitogens. The stability of the genes was measured using geNorm, NormFinder and BestKeeper software. The results from both geNorm and NormFinder were that the three most stably expressed genes in this panel were TBP, GAPDH and r28S. BestKeeper did not generate clear answers because of the highly heterogeneous sample set. Based on these data we will include TBP in future qPCR normalisation. The study shows the importance of appropriate reference gene normalisation in other tissues before qPCR analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of Japanese encephalitis virus

    International Nuclear Information System (INIS)

    Huang, S-H; Tsai, M-H; Lin, C-W; Yang, T-C; Chuang, P-H; Tsai, I-S; Lu, H-C; Wan Lei; Lin, Y-J; Lai, C-H

    2008-01-01

    Virus isolation and antibody detection are routinely used for diagnosis of Japanese encephalitis virus (JEV) infection, but the low level of transient viremia in some JE patients makes JEV isolation from clinical and surveillance samples very difficult. We describe the use of gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of JEV from its RNA genome. We tested the effect of gold nanoparticles on four different PCR systems, including conventional PCR, reverse-transcription PCR (RT-PCR), and SYBR green real-time PCR and RT-PCR assays for diagnosis in the acute phase of JEV infection. Gold nanoparticles increased the amplification yield of the PCR product and shortened the PCR time compared to the conventional reaction. In addition, nanogold-based real-time RT-PCR showed a linear relationship between Ct and template amount using ten-fold dilutions of JEV. The nanogold-based RT-PCR and real-time quantitative RT-PCR assays were able to detect low levels (1-10 000 copies) of the JEV RNA genomes extracted from culture medium or whole blood, providing early diagnostic tools for the detection of low-level viremia in the acute-phase infection. The assays described here were simple, sensitive, and rapid approaches for detection and quantitation of JEV in tissue cultured samples as well as clinical samples

  14. Reliable gene expression analysis by reverse transcription-quantitative PCR: reporting and minimizing the uncertainty in data accuracy.

    Science.gov (United States)

    Remans, Tony; Keunen, Els; Bex, Geert Jan; Smeets, Karen; Vangronsveld, Jaco; Cuypers, Ann

    2014-10-01

    Reverse transcription-quantitative PCR (RT-qPCR) has been widely adopted to measure differences in mRNA levels; however, biological and technical variation strongly affects the accuracy of the reported differences. RT-qPCR specialists have warned that, unless researchers minimize this variability, they may report inaccurate differences and draw incorrect biological conclusions. The Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines describe procedures for conducting and reporting RT-qPCR experiments. The MIQE guidelines enable others to judge the reliability of reported results; however, a recent literature survey found low adherence to these guidelines. Additionally, even experiments that use appropriate procedures remain subject to individual variation that statistical methods cannot correct. For example, since ideal reference genes do not exist, the widely used method of normalizing RT-qPCR data to reference genes generates background noise that affects the accuracy of measured changes in mRNA levels. However, current RT-qPCR data reporting styles ignore this source of variation. In this commentary, we direct researchers to appropriate procedures, outline a method to present the remaining uncertainty in data accuracy, and propose an intuitive way to select reference genes to minimize uncertainty. Reporting the uncertainty in data accuracy also serves for quality assessment, enabling researchers and peer reviewers to confidently evaluate the reliability of gene expression data. © 2014 American Society of Plant Biologists. All rights reserved.

  15. Four linked genes participate in controlling sporulation efficiency in budding yeast.

    Directory of Open Access Journals (Sweden)

    Giora Ben-Ari

    2006-11-01

    Full Text Available Quantitative traits are conditioned by several genetic determinants. Since such genes influence many important complex traits in various organisms, the identification of quantitative trait loci (QTLs is of major interest, but still encounters serious difficulties. We detected four linked genes within one QTL, which participate in controlling sporulation efficiency in Saccharomyces cerevisiae. Following the identification of single nucleotide polymorphisms by comparing the sequences of 145 genes between the parental strains SK1 and S288c, we analyzed the segregating progeny of the cross between them. Through reciprocal hemizygosity analysis, four genes, RAS2, PMS1, SWS2, and FKH2, located in a region of 60 kilobases on Chromosome 14, were found to be associated with sporulation efficiency. Three of the four "high" sporulation alleles are derived from the "low" sporulating strain. Two of these sporulation-related genes were verified through allele replacements. For RAS2, the causative variation was suggested to be a single nucleotide difference in the upstream region of the gene. This quantitative trait nucleotide accounts for sporulation variability among a set of ten closely related winery yeast strains. Our results provide a detailed view of genetic complexity in one "QTL region" that controls a quantitative trait and reports a single nucleotide polymorphism-trait association in wild strains. Moreover, these findings have implications on QTL identification in higher eukaryotes.

  16. Exploring valid reference genes for quantitative real - time rt - pce studies of hydrogenperoxide signaling in arabidopsis

    International Nuclear Information System (INIS)

    Zhou, H.; Han, B.; Xie, Y.; Zhang, J.; Shen, W.

    2015-01-01

    Hydrogen peroxide (H/sub 2/O/sub 2/ ) acts as a signaling molecule modulating the expression of various genes in plants. However, the reference gene(s) used for gene expression analysis of H/sub 2/O/sub 2/ signaling is still arbitrary. A reliable result obtained by quantitative real-time RT-PCR (RT-qPCR) highly depends on accurate transcript normalization using stably expressed reference genes, whereas the inaccurate normalization could easily lead to the false conclusions. In this report, by using geNorm and NormFinder algorithms, 12 candidate reference genes were evaluated and compared in root and shoot tissues of Arabidopsis upon different doses of H/sub 2/O/sub 2/. The results revealed that, in our experimental conditions, three novel reference genes (TIP41-like, UKN, and UBC21) were identified and validated as suitable reference genes for RT-qPCR normalization in both root and shoot tissues under oxidative stress. This conclusion was further confirmed by publicly available microarray data of methyl viologen and drought stress. In comparison with a single reference gene (EF-1a), the expression pattern of ZAT12 modulated by H/sub 2/O/sub 2/, when using TIP41-like, UKN, and UBC21 as multiple reference gene(s), was similar with the previous reports by using northern blotting. Thus, we proposed that these three reference genes might be good candidates for other researchers to include in their reference gene validation in gene expression studies under H/sub 2/O/sub 2/ related oxidative stress. (author)

  17. Immunoradiometric assay of lipid A: a test for detecting and quantitating endotoxins of various origins

    Energy Technology Data Exchange (ETDEWEB)

    Nolan, J P; Vladutiu, A O; Moreno, D M; Cohen, S A; Camara, D S [State University of New York, Buffalo (USA). School of Medicine

    1982-11-26

    The ability to measure circulating endotoxin in various disease states has been hampered by the lack of a specific and quantitative assay. The test most commonly used has been the Limulus gelation assay, which measures an enzymatic effect of endotoxin rather than the substance itself. Based on a solid-phase immunoradiometric assay previously developed to detect the specific lipopolysaccharide from Escherichia coli 026, a similar assay has been developed for the lipid A moiety of endotoxins. The assay uses rabbit antibodies to lipid A which do not react with ketodeoxyoctonate, myristic or beta-hydroxymyristic acids, and detects lipid A obtained from endotoxins of various origins after acid hydrolysis of lipopolysaccharide. Experiments in rats given exogenous endotoxin suggest that this assay can be useful for quantitation of bacterial endotoxins in serum and for studying the pathophysiology of experimental endotoxemia.

  18. Quantitative analysis of elastography images in the detection of breast cancer

    International Nuclear Information System (INIS)

    Landoni, V.; Francione, V.; Marzi, S.; Pasciuti, K.; Ferrante, F.; Saracca, E.; Pedrini, M.; Strigari, L.; Crecco, M.; Di Nallo, A.

    2012-01-01

    Purpose: The aim of this study was to develop a quantitative method for breast cancer diagnosis based on elastosonography images in order to reduce whenever possible unnecessary biopsies. The proposed method was validated by correlating the results of quantitative analysis with the diagnosis assessed by histopathologic exam. Material and methods: 109 images of breast lesions (50 benign and 59 malignant) were acquired with the traditional B-mode technique and with elastographic modality. Images in Digital Imaging and COmmunications in Medicine format (DICOM) were exported into a software, written in Visual Basic, especially developed to perform this study. The lesion was contoured and the mean grey value and softness inside the region of interest (ROI) were calculated. The correlations between variables were investigated and receiver operating characteristic (ROC) curve analysis was performed to assess the diagnostic accuracy of the proposed method. Pathologic results were used as standard reference. Results: Both the mean grey value and the softness inside the ROI resulted statistically different at the t test for the two populations of lesions (i.e., benign versus malignant): p < 0.0001. The area under the curve (AUC) was 0.924 (0.834–0.973) and 0.917 (0.826–0.970) for the mean grey value and for the softness respectively. Conclusions: Quantitative elastosonography is a promising ultrasound technique in the detection of breast cancer but large prospective trials are necessary to determine whether quantitative analysis of images can help to overcome some pitfalls of the methodic.

  19. Molecular diagnosis of urinary tract infections by semi-quantitative detection of uropathogens in a routine clinical hospital setting

    NARCIS (Netherlands)

    A. van der Zee (Anneke); L.D. Roorda (Lieuwe); G. Bosman (Gerda); J.M. Ossewaarde (Jacobus)

    2016-01-01

    textabstractBackground The objective of our study was the development of a semi-quantitative real-time PCR to detect uropathogens. Two multiplex PCR reactions were designed to detect Escherichia coli, Klebsiella spp., Enterobacter spp., Citrobacter spp., Proteus mirabilis, Enterococcus faecalis, and

  20. Comparison of antigen detection and quantitative PCR in the detection of chlamydial infection in koalas (Phascolarctos cinereus).

    Science.gov (United States)

    Hanger, Jon; Loader, Joanne; Wan, Charles; Beagley, Kenneth W; Timms, Peter; Polkinghorne, Adam

    2013-03-01

    The gold standard method for detecting chlamydial infection in domestic and wild animals is PCR, but the technique is not suited to testing animals in the field when a rapid diagnosis is frequently required. The objective of this study was to compare the results of a commercially available enzyme immunoassay test for Chlamydia against a quantitative Chlamydia pecorum-specific PCR performed on swabs collected from the conjunctival sac, nasal cavity and urogenital sinuses of naturally infected koalas (Phascolarctos cinereus). The level of agreement for positive results between the two assays was low (43.2%). The immunoassay detection cut-off was determined as approximately 400 C. pecorum copies, indicating that the test was sufficiently sensitive to be used for the rapid diagnosis of active chlamydial infections. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Canine olfactory receptor gene polymorphism and its relation to odor detection performance by sniffer dogs.

    Science.gov (United States)

    Lesniak, Anna; Walczak, Marta; Jezierski, Tadeusz; Sacharczuk, Mariusz; Gawkowski, Maciej; Jaszczak, Kazimierz

    2008-01-01

    The outstanding sensitivity of the canine olfactory system has been acknowledged by using sniffer dogs in military and civilian service for detection of a variety of odors. It is hypothesized that the canine olfactory ability is determined by polymorphisms in olfactory receptor (OR) genes. We investigated 5 OR genes for polymorphic sites which might affect the olfactory ability of service dogs in different fields of specific substance detection. All investigated OR DNA sequences proved to have allelic variants, the majority of which lead to protein sequence alteration. Homozygous individuals at 2 gene loci significantly differed in their detection skills from other genotypes. This suggests a role of specific alleles in odor detection and a linkage between single-nucleotide polymorphism and odor recognition efficiency.

  2. Correlation of SHOX2 Gene Amplification and DNA Methylation in Lung Cancer Tumors

    International Nuclear Information System (INIS)

    Schneider, Katja U; Liebenberg, Volker; Kneip, Christoph; Seegebarth, Anke; Erdogan, Fikret; Rappold, Gudrun; Schmidt, Bernd; Dietrich, Dimo; Fleischhacker, Michael; Leschber, Gunda; Merk, Johannes; Schäper, Frank; Stapert, Henk R; Vossenaar, Erik R; Weickmann, Sabine

    2011-01-01

    DNA methylation in the SHOX2 locus was previously used to reliably detect lung cancer in a group of critical controls, including 'cytologically negative' samples with no visible tumor cell content, at a high specificity based on the analysis of bronchial lavage samples. This study aimed to investigate, if the methylation correlates with SHOX2 gene expression and/or copy number alterations. An amplification of the SHOX2 gene locus together with the observed tumor-specific hypermethylation might explain the good performance of this marker in bronchial lavage samples. SHOX2 expression, gene copy number and DNA methylation were determined in lung tumor tissues and matched morphologically normal adjacent tissues (NAT) from 55 lung cancer patients. Quantitative HeavyMethyl (HM) real-time PCR was used to detect SHOX2 DNA methylation levels. SHOX2 expression was assayed with quantitative real-time PCR, and copy numbers alterations were measured with conventional real-time PCR and array CGH. A hypermethylation of the SHOX2 locus in tumor tissue as compared to the matched NAT from the same patient was detected in 96% of tumors from a group of 55 lung cancer patients. This correlated highly significantly with the frequent occurrence of copy number amplification (p < 0.0001), while the expression of the SHOX2 gene showed no difference. Frequent gene amplification correlated with hypermethylation of the SHOX2 gene locus. This concerted effect qualifies SHOX2 DNA methylation as a biomarker for lung cancer diagnosis, especially when sensitive detection is needed, i.e. in bronchial lavage or blood samples

  3. Comparison of culture-based, vital stain and PMA-qPCR methods for the quantitative detection of viable hookworm ova.

    Science.gov (United States)

    Gyawali, P; Sidhu, J P S; Ahmed, W; Jagals, P; Toze, S

    2017-06-01

    Accurate quantitative measurement of viable hookworm ova from environmental samples is the key to controlling hookworm re-infections in the endemic regions. In this study, the accuracy of three quantitative detection methods [culture-based, vital stain and propidium monoazide-quantitative polymerase chain reaction (PMA-qPCR)] was evaluated by enumerating 1,000 ± 50 Ancylostoma caninum ova in the laboratory. The culture-based method was able to quantify an average of 397 ± 59 viable hookworm ova. Similarly, vital stain and PMA-qPCR methods quantified 644 ± 87 and 587 ± 91 viable ova, respectively. The numbers of viable ova estimated by the culture-based method were significantly (P methods. Therefore, both PMA-qPCR and vital stain methods appear to be suitable for the quantitative detection of viable hookworm ova. However, PMA-qPCR would be preferable over the vital stain method in scenarios where ova speciation is needed.

  4. Erythropoietin abuse and erythropoietin gene doping: detection strategies in the genomic era.

    Science.gov (United States)

    Diamanti-Kandarakis, Evanthia; Konstantinopoulos, Panagiotis A; Papailiou, Joanna; Kandarakis, Stylianos A; Andreopoulos, Anastasios; Sykiotis, Gerasimos P

    2005-01-01

    The administration of recombinant human erythropoietin (rhEPO) increases the maximum oxygen consumption capacity, and is therefore abused as a doping method in endurance sports. The detection of erythropoietin (EPO) abuse is based on direct pharmacological and indirect haematological approaches, both of which have several limitations. In addition, current detection methods cannot cope with the emerging doping strategies of EPO mimicry, analogues and gene doping, and thus novel detection strategies are urgently needed. Direct detection methods for EPO misuse can be either pharmacological approaches that identify exogenous substances based on their physicochemical properties, or molecular methods that recognise EPO transgenes or gene transfer vectors. Since direct detection with molecular methods requires invasive procedures, it is not appropriate for routine screening of large numbers of athletes. In contrast, novel indirect methods based on haematological and/or molecular profiling could be better suited as screening tools, and athletes who are suspect of doping would then be submitted to direct pharmacological and molecular tests. This article reviews the current state of the EPO doping field, discusses available detection methods and their shortcomings, outlines emerging pharmaceutical and genetic technologies in EPO misuse, and proposes potential directions for the development of novel detection strategies.

  5. Shared Gene Expression Alterations in Nasal and Bronchial Epithelium for Lung Cancer Detection.

    Science.gov (United States)

    2017-07-01

    We previously derived and validated a bronchial epithelial gene expression biomarker to detect lung cancer in current and former smokers. Given that bronchial and nasal epithelial gene expression are similarly altered by cigarette smoke exposure, we sought to determine if cancer-associated gene expression might also be detectable in the more readily accessible nasal epithelium. Nasal epithelial brushings were prospectively collected from current and former smokers undergoing diagnostic evaluation for pulmonary lesions suspicious for lung cancer in the AEGIS-1 (n = 375) and AEGIS-2 (n = 130) clinical trials and gene expression profiled using microarrays. All statistical tests were two-sided. We identified 535 genes that were differentially expressed in the nasal epithelium of AEGIS-1 patients diagnosed with lung cancer vs those with benign disease after one year of follow-up ( P  cancer-associated gene expression alterations between the two airway sites ( P  lung cancer classifier derived in the AEGIS-1 cohort that combined clinical factors (age, smoking status, time since quit, mass size) and nasal gene expression (30 genes) had statistically significantly higher area under the curve (0.81; 95% confidence interval [CI] = 0.74 to 0.89, P  = .01) and sensitivity (0.91; 95% CI = 0.81 to 0.97, P  = .03) than a clinical-factor only model in independent samples from the AEGIS-2 cohort. These results support that the airway epithelial field of lung cancer-associated injury in ever smokers extends to the nose and demonstrates the potential of using nasal gene expression as a noninvasive biomarker for lung cancer detection. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Development of a universal RNA beacon for exogenous gene detection.

    Science.gov (United States)

    Guo, Yuanjian; Lu, Zhongju; Cohen, Ira Stephen; Scarlata, Suzanne

    2015-05-01

    Stem cell therapy requires a nontoxic and high-throughput method to achieve a pure cell population to prevent teratomas that can occur if even one cell in the implant has not been transformed. A promising method to detect and separate cells expressing a particular gene is RNA beacon technology. However, developing a successful, specific beacon to a particular transfected gene can take months to develop and in some cases is impossible. Here, we report on an off-the-shelf universal beacon that decreases the time and cost of applying beacon technology to select any living cell population transfected with an exogenous gene. ©AlphaMed Press.

  7. Quantitative Chemical-Genetic Interaction Map Connects Gene Alterations to Drug Responses | Office of Cancer Genomics

    Science.gov (United States)

    In a recent Cancer Discovery report, CTD2 researchers at the University of California in San Francisco developed a new quantitative chemical-genetic interaction mapping approach to evaluate drug sensitivity or resistance in isogenic cell lines. Performing a high-throughput screen with isogenic cell lines allowed the researchers to explore the impact of a panel of emerging and established drugs on cells overexpressing a single cancer-associated gene in isolation.

  8. Selection of reference genes for quantitative RT-PCR (RT-qPCR) analysis of rat tissues under physiological and toxicological conditions

    DEFF Research Database (Denmark)

    Svingen, Terje; Letting, Heidi; Hadrup, Niels

    2015-01-01

    In biological research the analysis of gene expression levels in cells and tissues can be a powerful tool to gain insights into biological processes. For this, quantitative RT-PCR (RT-qPCR) is a popular method that often involve the use of constitutively expressed endogenous reference (or...... ‘housekeeping’) gene for normalization of data. Thus, it is essential to use reference genes that have been verified to be stably expressed within the specific experimental setting. Here, we have analysed the expression stability of 12 commonly used reference genes (Actb, B2m, Gapdh, Hprt, Pgk1, Rn18s, Rpl13a...

  9. Rapid and quantitative detection of C-reactive protein based on quantum dots and immunofiltration assay

    Directory of Open Access Journals (Sweden)

    Zhang PF

    2015-09-01

    Full Text Available Pengfei Zhang,1,* Yan Bao,1,* Mohamed Shehata Draz,2,3,* Huiqi Lu,1 Chang Liu,1 Huanxing Han11Center for Translational Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China; 2Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China; 3Faculty of Science, Tanta University, Tanta, Egypt*These authors contributed equally to this workAbstract: Convenient and rapid immunofiltration assays (IFAs enable on-site “yes” or “no” determination of disease markers. However, traditional IFAs are commonly qualitative or semi-quantitative and are very limited for the efficient testing of samples in field diagnostics. Here, we overcome these limitations by developing a quantum dots (QDs-based fluorescent IFA for the quantitative detection of C-reactive proteins (CRP. CRP, the well-known diagnostic marker for acute viral and bacterial infections, was used as a model analyte to demonstrate performance and sensitivity of our developed QDs-based IFA. QDs capped with both polyethylene glycol (PEG and glutathione were used as fluorescent labels for our IFAs. The presence of the surface PEG layer, which reduced the non-specific protein interactions, in conjunction with the inherent optical properties of QDs, resulted in lower background signal, increased sensitivity, and ability to detect CRP down to 0.79 mg/L with only 5 µL serum sample. In addition, the developed assay is simple, fast and can quantitatively detect CRP with a detection limit up to 200 mg/L. Clinical test results of our QD-based IFA are well correlated with the traditional latex enhance immune-agglutination aggregation. The proposed QD-based fluorescent IFA is very promising, and potentially will be adopted for multiplexed immunoassay and in field point-of-care test.Keywords: C-reactive proteins, point-of-care test, Glutathione capped QDs, PEGylation

  10. GeneBreak: detection of recurrent DNA copy number aberration-associated chromosomal breakpoints within genes [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Evert van den Broek

    2017-07-01

    Full Text Available Development of cancer is driven by somatic alterations, including numerical and structural chromosomal aberrations. Currently, several computational methods are available and are widely applied to detect numerical copy number aberrations (CNAs of chromosomal segments in tumor genomes. However, there is lack of computational methods that systematically detect structural chromosomal aberrations by virtue of the genomic location of CNA-associated chromosomal breaks and identify genes that appear non-randomly affected by chromosomal breakpoints across (large series of tumor samples. ‘GeneBreak’ is developed to systematically identify genes recurrently affected by the genomic location of chromosomal CNA-associated breaks by a genome-wide approach, which can be applied to DNA copy number data obtained by array-Comparative Genomic Hybridization (CGH or by (low-pass whole genome sequencing (WGS. First, ‘GeneBreak’ collects the genomic locations of chromosomal CNA-associated breaks that were previously pinpointed by the segmentation algorithm that was applied to obtain CNA profiles. Next, a tailored annotation approach for breakpoint-to-gene mapping is implemented. Finally, dedicated cohort-based statistics is incorporated with correction for covariates that influence the probability to be a breakpoint gene. In addition, multiple testing correction is integrated to reveal recurrent breakpoint events. This easy-to-use algorithm, ‘GeneBreak’, is implemented in R (www.cran.r-project.org and is available from Bioconductor (www.bioconductor.org/packages/release/bioc/html/GeneBreak.html.

  11. Quantitative Expression Analysis of APP Pathway and Tau Phosphorylation-Related Genes in the ICV STZ-Induced Non-Human Primate Model of Sporadic Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Sang-Je Park

    2015-01-01

    Full Text Available The accumulation and aggregation of misfolded proteins in the brain, such as amyloid-β (Aβ and hyperphosphorylated tau, is a neuropathological hallmark of Alzheimer’s disease (AD. Previously, we developed and validated a novel non-human primate model for sporadic AD (sAD research using intracerebroventricular administration of streptozotocin (icv STZ. To date, no characterization of AD-related genes in different brain regions has been performed. Therefore, in the current study, the expression of seven amyloid precursor protein (APP pathway-related and five tau phosphorylation-related genes was investigated by quantitative real-time PCR experiments, using two matched-pair brain samples from control and icv STZ-treated cynomolgus monkeys. The genes showed similar expression patterns within the control and icv STZ-treated groups; however, marked differences in gene expression patterns were observed between the control and icv STZ-treated groups. Remarkably, other than β-secretase (BACE1 and cyclin-dependent kinase 5 (CDK5, all the genes tested showed similar expression patterns in AD models compared to controls, with increased levels in the precuneus and occipital cortex. However, significant changes in gene expression patterns were not detected in the frontal cortex, hippocampus, or posterior cingulate. Based on these results, we conclude that APP may be cleaved via the general metabolic mechanisms of increased α- and γ-secretase levels, and that hyperphosphorylation of tau could be mediated by elevated levels of tau protein kinase, specifically in the precuneus and occipital cortex.

  12. Detection of gene copy number aberrations in mantle cell lymphoma by a single quantitative multiplex PCR assay: clinicopathological relevance and prognosis value.

    Science.gov (United States)

    Jardin, Fabrice; Picquenot, Jean-Michel; Parmentier, Françoise; Ruminy, Philippe; Cornic, Marie; Penther, Dominique; Bertrand, Philippe; Lanic, Hélène; Cassuto, Ophélie; Humbrecht, Catherine; Lemasle, Emilie; Wautier, Agathe; Bastard, Christian; Tilly, Hervé

    2009-09-01

    The t(11;14)(q13;q32) is the hallmark of mantle cell lymphoma (MCL). Additional genetic alterations occur in the majority of cases. This study aimed to design a polymerase chain reaction (PCR) assay to determine the incidence and relevance of recurrent gene copy number aberrations in this disease. Forty-two MCL cases with frozen- or paraffin-embedded (FFPE) tissues were selected. Three different quantitative Multiplex PCR of Short Fluorescent Fragments (QMPSF) assays were designed to simultaneously analyse eight genes (CDKN2A, RB1, ATM, CDK2, TP53, MYC, CDKN1B, MDM2), to analyse the 9p21 locus (CDKN2A/CDKN2B) and FFPE tissues. Gains of MYC, CDK2, CDKN1B, and MDM2 were observed in 10% of cases. Losses of RB1, CDKN2A, ATM or TP53 were observed in 38%, 31%, 24% and 10% of cases, respectively. Analysis of the 9p21 locus indicated that, in most cases, tumours displayed a complete inactivation of p14(ARF)/p15I(NK4B)/p16I(NK4A). CDKN2A and MYC aberrations were associated with a high MCL international prognostic index (MIPI). CDK2/MDM2 gains and CDKN2A/TP53 losses correlated with an unfavourable outcome. PCR experiments with frozen and FFPE-tissues indicated that our approach is valid in a routine diagnostic setting, providing a powerful tool that could be used for patient stratification in combination with MIPI in future clinical trials.

  13. Identification and validation of reference genes for quantitative RT-PCR normalization in wheat

    Directory of Open Access Journals (Sweden)

    Porceddu Enrico

    2009-02-01

    Full Text Available Abstract Background Usually the reference genes used in gene expression analysis have been chosen for their known or suspected housekeeping roles, however the variation observed in most of them hinders their effective use. The assessed lack of validated reference genes emphasizes the importance of a systematic study for their identification. For selecting candidate reference genes we have developed a simple in silico method based on the data publicly available in the wheat databases Unigene and TIGR. Results The expression stability of 32 genes was assessed by qRT-PCR using a set of cDNAs from 24 different plant samples, which included different tissues, developmental stages and temperature stresses. The selected sequences included 12 well-known HKGs representing different functional classes and 20 genes novel with reference to the normalization issue. The expression stability of the 32 candidate genes was tested by the computer programs geNorm and NormFinder using five different data-sets. Some discrepancies were detected in the ranking of the candidate reference genes, but there was substantial agreement between the groups of genes with the most and least stable expression. Three new identified reference genes appear more effective than the well-known and frequently used HKGs to normalize gene expression in wheat. Finally, the expression study of a gene encoding a PDI-like protein showed that its correct evaluation relies on the adoption of suitable normalization genes and can be negatively affected by the use of traditional HKGs with unstable expression, such as actin and α-tubulin. Conclusion The present research represents the first wide screening aimed to the identification of reference genes and of the corresponding primer pairs specifically designed for gene expression studies in wheat, in particular for qRT-PCR analyses. Several of the new identified reference genes outperformed the traditional HKGs in terms of expression stability

  14. Simultaneous quantitative detection of multiple tumor markers with a rapid and sensitive multicolor quantum dots based immunochromatographic test strip.

    Science.gov (United States)

    Wang, Chunying; Hou, Fei; Ma, Yicai

    2015-06-15

    A novel multicolor quantum dots (QDs) based immunochromatographic test strip (ICTS) was developed for simultaneous quantitative detection of multiple tumor markers, by utilizing alpha fetoprotein (AFP) and carcinoembryonic antigen (CEA) as models. The immunosensor could realize simultaneous quantitative detection of tumor markers with only one test line and one control line on the nitrocellulose membrane (NC membrane) due to the introduction of multicolor QDs. In this method, a mixture of mouse anti-AFP McAb and mouse anti-CEA McAb was coated on NC membrane as test line and goat anti-mouse IgG antibody was coated as control line. Anti-AFP McAb-QDs546 conjugates and anti-CEA McAb-QDs620 conjugates were mixed and applied to the conjugate pad. Simultaneous quantitative detection of multiple tumor markers was achieved by detecting the fluorescence intensity of captured QDs labels on test line and control line using a test strip reader. Under the optimum conditions, AFP and CEA could be detected as low as 3 ng/mL and 2 ng/mL in 15 min with a sample volume of 80 μL, and no obvious cross-reactivity was observed. The immunosensor was validated with 130 clinical samples and in which it exhibited high sensitivity (93% for AFP and 87% for CEA) and specificity (94% for AFP and 97% for CEA). The immunosensor also demonstrated high recoveries (87.5-113% for AFP and 90-97.3% for CEA) and low relative standard deviations (RSDs) (2.8-6.2% for AFP and 4.9-9.6% for CEA) when testing spiked human serum. This novel multicolor QDs based ICTS provides an easy and rapid, simultaneous quantitative detecting strategy for point-of-care testing of tumor markers. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Selection of reference genes for quantitative real time RT-PCR during dimorphism in the zygomycete Mucor circinelloides.

    Science.gov (United States)

    Valle-Maldonado, Marco I; Jácome-Galarza, Irvin E; Gutiérrez-Corona, Félix; Ramírez-Díaz, Martha I; Campos-García, Jesús; Meza-Carmen, Víctor

    2015-03-01

    Mucor circinelloides is a dimorphic fungal model for studying several biological processes including cell differentiation (yeast-mold transitions) as well as biodiesel and carotene production. The recent release of the first draft sequence of the M. circinelloides genome, combined with the availability of analytical methods to determine patterns of gene expression, such as quantitative Reverse transcription-Polymerase chain reaction (qRT-PCR), and the development of molecular genetic tools for the manipulation of the fungus, may help identify M. circinelloides gene products and analyze their relevance in different biological processes. However, no information is available on M. circinelloides genes of stable expression that could serve as internal references in qRT-PCR analyses. One approach to solve this problem consists in the use of housekeeping genes as internal references. However, validation of the usability of these reference genes is a fundamental step prior to initiating qRT-PCR assays. This work evaluates expression of several constitutive genes by qRT-PCR throughout the morphological differentiation stages of M. circinelloides; our results indicate that tfc-1 and ef-1 are the most stable genes for qRT-PCR assays during differentiation studies and they are proposed as reference genes to carry out gene expression studies in this fungus.

  16. Detection of Genes for Superantigen Toxins in Methicillin-Resistant Staphylococcus aureus Clinical Isolates in Karachi

    International Nuclear Information System (INIS)

    Taj, Y.; Fatima, I.; Ali, S. W.; Kazmi, S. U.

    2014-01-01

    Objective: To detect genes for enterotoxins, exfoliative and toxic shock syndrome toxins in Staphylococcus aureus (S. aureus) strains isolated from clinical specimens. Study Design: Cross-sectional observational study. Place and Duration of Study: Department of Molecular Genetics, Dr. Ziauddin Hospital, Karachi, from January to December 2010. Methodology: Two hundred and ninety eight S. aureus clinical isolates were obtained from various clinical samples received at Dr. Ziauddin Hospital, Karachi. Out of these, 115 were detected as methicillin resistant (MRSA) by cefoxitin disk diffusion test showing a prevalence rate of 38.6%. Detection of individual toxin genes was performed by Polymerase Chain Reaction (PCR) by using only one primer pair for each tube. Uniplex primers were preferred as multiplex primers are longer in base pairs and have the potential for cross reaction due to non-specific binding and increase in optimization time. Results: The possession of a single gene or more than a single gene in MRSA isolates was found in 61.73% of clinical samples; the highest number was found in pus swab, followed by sputum, blood, urethral swab, and urine. The prevalence of toxin genes was higher in MRSA as compared to methicillin sensitive (MSSA) isolates (19.12%). Conclusion: PCR detects strains possessing toxin genes independent of their expression. The possession of genes for super-antigens seems to be a frequent and habitual trait of S. aureus more so in MRSA. (author)

  17. Novel reference genes for quantifying transcriptional responses of Escherichia coli to protein overexpression by quantitative PCR

    Directory of Open Access Journals (Sweden)

    Zou Ruiyang

    2011-04-01

    Full Text Available Abstract Background Accurate interpretation of quantitative PCR (qPCR data requires normalization using constitutively expressed reference genes. Ribosomal RNA is often used as a reference gene for transcriptional studies in E. coli. However, the choice of reliable reference genes has not been systematically validated. The objective of this study is to identify a set of reliable reference genes for transcription analysis in recombinant protein over-expression studies in E. coli. Results In this study, the meta-analysis of 240 sets of single-channel Affymetrix microarray data representing over-expressions of 63 distinct recombinant proteins in various E. coli strains identified twenty candidate reference genes that were stably expressed across all conditions. The expression of these twenty genes and two commonly used reference genes, rrsA encoding ribosomal RNA 16S and ihfB, was quantified by qPCR in E. coli cells over-expressing four genes of the 1-Deoxy-D-Xylulose 5-Phosphate pathway. From these results, two independent statistical algorithms identified three novel reference genes cysG, hcaT, and idnT but not rrsA and ihfB as highly invariant in two E. coli strains, across different growth temperatures and induction conditions. Transcriptomic data normalized by the geometric average of these three genes demonstrated that genes of the lycopene synthetic pathway maintained steady expression upon enzyme overexpression. In contrast, the use of rrsA or ihfB as reference genes led to the mis-interpretation that lycopene pathway genes were regulated during enzyme over-expression. Conclusion This study identified cysG/hcaT/idnT to be reliable novel reference genes for transcription analysis in recombinant protein producing E. coli.

  18. Comparison of nested PCR and qPCR for the detection and quantitation of BoHV6 DNA.

    Science.gov (United States)

    Kubiś, Piotr; Materniak, Magdalena; Kuźmak, Jacek

    2013-12-01

    Nested PCR and qPCR (quantitative PCR) tests based on glycoprotein B (gB) gene were designed for detecting Bovine herpesvirus 6 (BoHV6) in bovine whole blood samples and wild ruminant blood clots (deer and roe-deer). This virus, commonly known as BLHV (bovine lymphotropic herpesvirus) belongs to the Herpesviridae family, subfamily Gammaherpesvirinae and Macavirus genus. DNA isolated from 92 dairy cow blood samples and 69 wild ruminant clots were examined for the presence of BoHV6 using nested PCR and qPCR tests. Viral DNA was detected by using nested PCR in 59 out of 92 bovine blood samples (64.1%), and by qPCR in 68 out of 92 bovine blood samples (73.9%), but none out of 69 DNA samples isolated from wild ruminant blood clots, was positive in both assays. The specificity of nested PCR and qPCR was confirmed by using BoHV1, BoHV4, BoHV6, BFV, BIV, and BLV DNA. The sensitivity of nested PCR and qPCR was determined using a serially 10-fold diluted vector pCR2.1HgB (2 × 10(0)-2 × 10(6)copies/reaction). In this testing, qPCR was more sensitive than the nested PCR, detecting two copies of BoHV6 whilst the limit of detection for nested PCR was 20 copies. In all qPCR assays, the coefficients of determination (R(2)) ranged between 0.990 and 0.999, and the calculated amplification efficiencies (Eff%) within the range of 89.7-106.9. The intra- and inter-assay CV (coefficient of variation) values did not exceed 4%. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Competitive PCR-High Resolution Melting Analysis (C-PCR-HRMA) for large genomic rearrangements (LGRs) detection: A new approach to assess quantitative status of BRCA1 gene in a reference laboratory.

    Science.gov (United States)

    Minucci, Angelo; De Paolis, Elisa; Concolino, Paola; De Bonis, Maria; Rizza, Roberta; Canu, Giulia; Scaglione, Giovanni Luca; Mignone, Flavio; Scambia, Giovanni; Zuppi, Cecilia; Capoluongo, Ettore

    2017-07-01

    Evaluation of copy number variation (CNV) in BRCA1/2 genes, due to large genomic rearrangements (LGRs), is a mandatory analysis in hereditary breast and ovarian cancers families, if no pathogenic variants are found by sequencing. LGRs cannot be detected by conventional methods and several alternative methods have been developed. Since these approaches are expensive and time consuming, identification of alternative screening methods for LGRs detection is needed in order to reduce and optimize the diagnostic procedure. The aim of this study was to investigate a Competitive PCR-High Resolution Melting Analysis (C-PCR-HRMA) as molecular tool to detect recurrent BRCA1 LGRs. C-PCR-HRMA was performed on exons 3, 14, 18, 19, 20 and 21 of the BRCA1 gene; exons 4, 6 and 7 of the ALB gene were used as reference fragments. This study showed that it is possible to identify recurrent BRCA1 LGRs, by melting peak height ratio between target (BRCA1) and reference (ALB) fragments. Furthermore, we underline that a peculiar amplicon-melting profile is associated to a specific BRCA1 LGR. All C-PCR-HRMA results were confirmed by Multiplex ligation-dependent probe amplification. C-PCR-HRMA has proved to be an innovative, efficient and fast method for BRCA1 LGRs detection. Given the sensitivity, specificity and ease of use, c-PCR-HRMA can be considered an attractive and powerful alternative to other methods for BRCA1 CNVs screening, improving molecular strategies for BRCA testing in the context of Massive Parallel Sequencing. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Functional mapping imprinted quantitative trait loci underlying developmental characteristics

    Directory of Open Access Journals (Sweden)

    Li Gengxin

    2008-03-01

    Full Text Available Abstract Background Genomic imprinting, a phenomenon referring to nonequivalent expression of alleles depending on their parental origins, has been widely observed in nature. It has been shown recently that the epigenetic modification of an imprinted gene can be detected through a genetic mapping approach. Such an approach is developed based on traditional quantitative trait loci (QTL mapping focusing on single trait analysis. Recent studies have shown that most imprinted genes in mammals play an important role in controlling embryonic growth and post-natal development. For a developmental character such as growth, current approach is less efficient in dissecting the dynamic genetic effect of imprinted genes during individual ontology. Results Functional mapping has been emerging as a powerful framework for mapping quantitative trait loci underlying complex traits showing developmental characteristics. To understand the genetic architecture of dynamic imprinted traits, we propose a mapping strategy by integrating the functional mapping approach with genomic imprinting. We demonstrate the approach through mapping imprinted QTL controlling growth trajectories in an inbred F2 population. The statistical behavior of the approach is shown through simulation studies, in which the parameters can be estimated with reasonable precision under different simulation scenarios. The utility of the approach is illustrated through real data analysis in an F2 family derived from LG/J and SM/J mouse stains. Three maternally imprinted QTLs are identified as regulating the growth trajectory of mouse body weight. Conclusion The functional iQTL mapping approach developed here provides a quantitative and testable framework for assessing the interplay between imprinted genes and a developmental process, and will have important implications for elucidating the genetic architecture of imprinted traits.

  1. Quantitative ultrasound imaging detects degenerative changes in articular cartilage surface and subchondral bone

    International Nuclear Information System (INIS)

    Saarakkala, Simo; Laasanen, Mikko S; Jurvelin, Jukka S; Toeyraes, Juha

    2006-01-01

    Previous studies have suggested that quantitative ultrasound imaging could sensitively diagnose degeneration of the articular surface and changes in the subchondral bone during the development of osteoarthrosis (OA). We have recently introduced a new parameter, ultrasound roughness index (URI), for the quantification of cartilage surface roughness, and successfully tested it with normal and experimentally degraded articular surfaces. In this in vitro study, the applicability of URI was tested in bovine cartilage samples with spontaneously developed tissue degeneration. Simultaneously, we studied the sensitivity of quantitative ultrasound imaging to detect degenerative changes in the cartilage-bone interface. For reference, histological degenerative grade of the cartilage samples was determined. Mechanical reference measurements were also conducted. Cartilage surface roughness (URI) was significantly (p < 0.05) higher in histologically degenerated samples with inferior mechanical properties. Ultrasound reflection at the cartilage-bone interface was also significantly (p < 0.05) increased in degenerated samples. Furthermore, it was quantitatively confirmed that ultrasound attenuation in the overlying cartilage significantly affects the measured ultrasound reflection values from the cartilage-bone interface. To conclude, the combined ultrasound measurement of the cartilage surface roughness and ultrasound reflection at the cartilage-bone interface complement each other, and may together enable more sensitive and quantitative diagnosis of early OA or follow up after surgical cartilage repair

  2. Exploring valid reference genes for quantitative real-time PCR analysis in Sesamia inferens (Lepidoptera: Noctuidae.

    Directory of Open Access Journals (Sweden)

    Meng Sun

    Full Text Available The pink stem borer, Sesamia inferens, which is endemic in China and other parts of Asia, is a major pest of rice and causes significant yield loss in this host plant. Very few studies have addressed gene expression in S. inferens. Quantitative real-time PCR (qRT-PCR is currently the most accurate and sensitive method for gene expression analysis. In qRT-PCR, data are normalized using reference genes, which help control for internal differences and reduce error between samples. In this study, seven candidate reference genes, 18S ribosomal RNA (18S rRNA, elongation factor 1 (EF1, glyceraldehyde-3-phosphate dehydrogenase (GAPDH, ribosomal protein S13 (RPS13, ribosomal protein S20 (RPS20, tubulin (TUB, and β-actin (ACTB were evaluated for their suitability in normalizing gene expression under different experimental conditions. The results indicated that three genes (RPS13, RPS20, and EF1 were optimal for normalizing gene expression in different insect tissues (head, epidermis, fat body, foregut, midgut, hindgut, Malpighian tubules, haemocytes, and salivary glands. 18S rRNA, EF1, and GAPDH were best for normalizing expression with respect to developmental stages and sex (egg masses; first, second, third, fourth, fifth, and sixth instar larvae; male and female pupae; and one-day-old male and female adults. 18S rRNA, RPS20, and TUB were optimal for fifth instars exposed to different temperatures (-8, -6, -4, -2, 0, and 27°C. To validate this recommendation, the expression profile of a target gene heat shock protein 83 gene (hsp83 was investigated, and results showed the selection was necessary and effective. In conclusion, this study describes reference gene sets that can be used to accurately measure gene expression in S. inferens.

  3. Exploring valid reference genes for quantitative real-time PCR analysis in Sesamia inferens (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Sun, Meng; Lu, Ming-Xing; Tang, Xiao-Tian; Du, Yu-Zhou

    2015-01-01

    The pink stem borer, Sesamia inferens, which is endemic in China and other parts of Asia, is a major pest of rice and causes significant yield loss in this host plant. Very few studies have addressed gene expression in S. inferens. Quantitative real-time PCR (qRT-PCR) is currently the most accurate and sensitive method for gene expression analysis. In qRT-PCR, data are normalized using reference genes, which help control for internal differences and reduce error between samples. In this study, seven candidate reference genes, 18S ribosomal RNA (18S rRNA), elongation factor 1 (EF1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal protein S13 (RPS13), ribosomal protein S20 (RPS20), tubulin (TUB), and β-actin (ACTB) were evaluated for their suitability in normalizing gene expression under different experimental conditions. The results indicated that three genes (RPS13, RPS20, and EF1) were optimal for normalizing gene expression in different insect tissues (head, epidermis, fat body, foregut, midgut, hindgut, Malpighian tubules, haemocytes, and salivary glands). 18S rRNA, EF1, and GAPDH were best for normalizing expression with respect to developmental stages and sex (egg masses; first, second, third, fourth, fifth, and sixth instar larvae; male and female pupae; and one-day-old male and female adults). 18S rRNA, RPS20, and TUB were optimal for fifth instars exposed to different temperatures (-8, -6, -4, -2, 0, and 27°C). To validate this recommendation, the expression profile of a target gene heat shock protein 83 gene (hsp83) was investigated, and results showed the selection was necessary and effective. In conclusion, this study describes reference gene sets that can be used to accurately measure gene expression in S. inferens.

  4. A Targeted LC-MS/MS Method for the Simultaneous Detection and Quantitation of Egg, Milk, and Peanut Allergens in Sugar Cookies.

    Science.gov (United States)

    Boo, Chelsea C; Parker, Christine H; Jackson, Lauren S

    2018-01-01

    Food allergy is a growing public health concern, with many individuals reporting allergies to multiple food sources. Compliance with food labeling regulations and prevention of inadvertent cross-contact in manufacturing requires the use of reliable methods for the detection and quantitation of allergens in processed foods. In this work, a novel liquid chromatography-tandem mass spectrometry multiple-reaction monitoring method for multiallergen detection and quantitation of egg, milk, and peanut was developed and evaluated in an allergen-incurred baked sugar cookie matrix. A systematic evaluation of method parameters, including sample extraction, concentration, and digestion, were optimized for candidate allergen peptide markers. The optimized method enabled the reliable detection and quantitation of egg, milk, and peanut allergens in sugar cookies, with allergen concentrations as low as 5 ppm allergen-incurred ingredient.

  5. Determination of internal controls for quantitative gene expression of Isochrysis zhangjiangensis at nitrogen stress condition

    Science.gov (United States)

    Wu, Shuang; Zhou, Jiannan; Cao, Xupeng; Xue, Song

    2016-02-01

    Isochrysis zhangjiangensis is a potential marine microalga for biodiesel production, which accumulates lipid under nitrogen limitation conditions, but the mechanism on molecular level is veiled. Quantitative real-time polymerase chain reaction (qPCR) provides the possibility to investigate the gene expression levels, and a valid reference for data normalization is an essential prerequisite for firing up the analysis. In this study, five housekeeping genes, actin (ACT), α-tubulin (TUA), ß-tubulin (TUB), ubiquitin (UBI), 18S rRNA (18S) and one target gene, diacylglycerol acyltransferase (DGAT), were used for determining the reference. By analyzing the stabilities based on calculation of the stability index and on operating the two types of software, geNorm and bestkeeper, it showed that the reference genes widely used in higher plant and microalgae, such as UBI, TUA and 18S, were not the most stable ones in nitrogen-stressed I. zhangjiangensis, and thus are not suitable for exploring the mRNA expression levels under these experimental conditions. Our results show that ACT together with TUB is the most feasible internal control for investigating gene expression under nitrogen-stressed conditions. Our findings will contribute not only to future qPCR studies of I. zhangjiangensis, but also to verification of comparative transcriptomics studies of the microalgae under similar conditions.

  6. Development and Evaluation of a PCR and Mass Spectroscopy-based (PCR-MS) Method for Quantitative, Type-specific Detection of Human Papillomavirus

    Science.gov (United States)

    Patel, Divya A.; Shih, Yang-Jen; Newton, Duane W.; Michael, Claire W.; Oeth, Paul A.; Kane, Michael D.; Opipari, Anthony W.; Ruffin, Mack T.; Kalikin, Linda M.; Kurnit, David M.

    2010-01-01

    Knowledge of the central role of high-risk human papillomavirus (HPV) in cervical carcinogenesis, coupled with an emerging need to monitor the efficacy of newly introduced HPV vaccines, warrant development and evaluation of type-specific, quantitative HPV detection methods. In the present study, a prototype PCR and mass spectroscopy (PCR-MS)-based method to detect and quantitate 13 high-risk HPV types is compared to the Hybrid Capture 2 High Risk HPV DNA test (HC2; Digene Corp., Gaithersburg, MD) in 199 cervical scraping samples and to DNA sequencing in 77 cervical tumor samples. High-risk HPV types were detected in 76/77 (98.7%) cervical tumor samples by PCR-MS. Degenerate and type-specific sequencing confirmed the types detected by PCR-MS. In 199 cervical scraping samples, all 13 HPV types were detected by PCR-MS. Eighteen (14.5%) of 124 cervical scraping samples that were positive for high-risk HPV by HC2 were negative by PCR-MS. In all these cases, degenerate DNA sequencing failed to detect any of the 13 high-risk HPV types. Nearly half (46.7%) of the 75 cervical scraping samples that were negative for high-risk HPV by the HC2 assay were positive by PCR-MS. Type-specific sequencing in a subset of these samples confirmed the HPV type detected by PCR-MS. Quantitative PCR-MS results demonstrated that 11/75 (14.7%) samples contained as much HPV copies/cell as HC2-positive samples. These findings suggest that this prototype PCR-MS assay performs at least as well as HC2 for HPV detection, while offering the additional, unique advantages of type-specific identification and quantitation. Further validation work is underway to define clinically meaningful HPV detection thresholds and to evaluate the potential clinical application of future generations of the PCR-MS assay. PMID:19410602

  7. Development and evaluation of a PCR and mass spectroscopy (PCR-MS)-based method for quantitative, type-specific detection of human papillomavirus.

    Science.gov (United States)

    Patel, Divya A; Shih, Yang-Jen; Newton, Duane W; Michael, Claire W; Oeth, Paul A; Kane, Michael D; Opipari, Anthony W; Ruffin, Mack T; Kalikin, Linda M; Kurnit, David M

    2009-09-01

    Knowledge of the central role of high-risk human papillomavirus (HPV) in cervical carcinogenesis, coupled with an emerging need to monitor the efficacy of newly introduced HPV vaccines, warrant development and evaluation of type-specific, quantitative HPV detection methods. In the present study, a prototype PCR and mass spectroscopy (PCR-MS)-based method to detect and quantitate 13 high-risk HPV types is compared to the Hybrid Capture 2 High-Risk HPV DNA test (HC2; Digene Corp., Gaithersburg, MD) in 199 cervical scraping samples and to DNA sequencing in 77 cervical tumor samples. High-risk HPV types were detected in 76/77 (98.7%) cervical tumor samples by PCR-MS. Degenerate and type-specific sequencing confirmed the types detected by PCR-MS. In 199 cervical scraping samples, all 13 HPV types were detected by PCR-MS. Eighteen (14.5%) of 124 cervical scraping samples that were positive for high-risk HPV by HC2 were negative by PCR-MS. In all these cases, degenerate DNA sequencing failed to detect any of the 13 high-risk HPV types. Nearly half (46.7%) of the 75 cervical scraping samples that were negative for high-risk HPV by the HC2 assay were positive by PCR-MS. Type-specific sequencing in a subset of these samples confirmed the HPV type detected by PCR-MS. Quantitative PCR-MS results demonstrated that 11/75 (14.7%) samples contained as much HPV copies/cell as HC2-positive samples. These findings suggest that this prototype PCR-MS assay performs at least as well as HC2 for HPV detection, while offering the additional, unique advantages of type-specific identification and quantitation. Further validation work is underway to define clinically meaningful HPV detection thresholds and to evaluate the potential clinical application of future generations of the PCR-MS assay.

  8. Human CLOCK gene-associated attention deficit hyperactivity disorder-related features in healthy adults: quantitative association study using Wender Utah Rating Scale.

    Science.gov (United States)

    Jeong, Seong Hoon; Yu, Je-Chun; Lee, Chang Hwa; Choi, Kyeong-Sook; Choi, Jung-Eun; Kim, Se Hyun; Joo, Eun-Jeong

    2014-02-01

    Circadian rhythm disturbance is highly prevalent in attention deficit hyperactivity disorder (ADHD). Recently, the association between the CLOCK gene and ADHD has been demonstrated in clinical samples, and the CLOCK gene's role was thought to be mediated by rhythm dysregulation. Meanwhile, ADHD has been suggested as the extreme end of a continuously distributed trait that can be found in the general population. Therefore, we examined two possibilities: (1) an ADHD-related continuous trait may be associated with the CLOCK gene, and (2) this association may be mediated by the degree of individuals' evening preference. To explore these possibilities, we performed a quantitative trait locus association study with a sample of 1,289 healthy adults. The Wender Utah Rating Scale (WURS) and the Composite Scale of Morningness (CSM) were utilized to measure the quantitative traits. Quantitative association analysis was performed using PLINK software. We found that rs1801260 (=T3111C) was associated with WURS scores in both allele-wise (p = 0.018) and haplotype-wise analyses (range of p values: 0.0155-0.0171) in male participants only. After controlling for the CSM total score as a covariate, the strength of the association did not change at all, suggesting that the association was not mediated by evening preference. Despite the very weak association signal, our results provide evidence that the CLOCK gene's association with ADHD in clinical samples may be generalizable to traits measured in the normal population. However, as our results failed to show a mediating role of evening preference, ongoing efforts are needed to identify the mechanisms by which the CLOCK gene determines ADHD-related traits.

  9. The utility of optical detection system (qPCR) and bioinformatics methods in reference gene expression analysis

    Science.gov (United States)

    Skarzyńska, Agnieszka; Pawełkowicz, Magdalena; PlÄ der, Wojciech; Przybecki, Zbigniew

    2016-09-01

    Real-time quantitative polymerase chain reaction is consider as the most reliable method for gene expression studies. However, the expression of target gene could be misinterpreted due to improper normalization. Therefore, the crucial step for analysing of qPCR data is selection of suitable reference genes, which should be validated experimentally. In order to choice the gene with stable expression in the designed experiment, we performed reference gene expression analysis. In this study genes described in the literature and novel genes predicted as control genes, based on the in silico analysis of transcriptome data were used. Analysis with geNorm and NormFinder algorithms allow to create the ranking of candidate genes and indicate the best reference for flower morphogenesis study. According to the results, genes CACS and CYCL were characterised the most stable expression, but the least suitable genes were TUA and EF.

  10. [Research on rapid and quantitative detection method for organophosphorus pesticide residue].

    Science.gov (United States)

    Sun, Yuan-Xin; Chen, Bing-Tai; Yi, Sen; Sun, Ming

    2014-05-01

    The methods of physical-chemical inspection is adopted in the traditional pesticide residue detection, which require a lot of pretreatment processes, are time-consuming and complicated. In the present study, the authors take chlorpyrifos applied widely in the present agricultural field as the research object and propose a rapid and quantitative detection method for organophosphorus pesticide residues. At first, according to the chemical characteristics of chlorpyrifos and comprehensive chromogenic effect of several colorimetric reagents and secondary pollution, the pretreatment of the scheme of chromogenic reaction of chlorpyrifos with resorcin in a weak alkaline environment was determined. Secondly, by analyzing Uv-Vis spectrum data of chlorpyrifos samples whose content were between 0. 5 and 400 mg kg-1, it was confirmed that the characteristic information after the color reaction mainly was concentrated among 360 approximately 400 nm. Thirdly, the full spectrum forecasting model was established based on the partial least squares, whose correlation coefficient of calibration was 0. 999 6, correlation coefficient of prediction reached 0. 995 6, standard deviation of calibration (RMSEC) was 2. 814 7 mg kg-1, and standard deviation of verification (RMSEP) was 8. 012 4 mg kg-1. Fourthly, the wavelengths whose center wavelength is 400 nm was extracted as characteristic region to build a forecasting model, whose correlation coefficient of calibration was 0. 999 6, correlation coefficient of prediction reached 0. 999 3, standard deviation of calibration (RMSEC) was 2. 566 7 mg kg-1 , standard deviation of verification (RMSEP) was 4. 886 6 mg kg-1, respectively. At last, by analyzing the near infrared spectrum data of chlorpyrifos samples with contents between 0. 5 and 16 mg kg-1, the authors found that although the characteristics of the chromogenic functional group are not obvious, the change of absorption peaks of resorcin itself in the neighborhood of 5 200 cm

  11. Characterization and detection of a widely distributed gene cluster that predicts anaerobic choline utilization by human gut bacteria.

    Science.gov (United States)

    Martínez-del Campo, Ana; Bodea, Smaranda; Hamer, Hilary A; Marks, Jonathan A; Haiser, Henry J; Turnbaugh, Peter J; Balskus, Emily P

    2015-04-14

    Elucidation of the molecular mechanisms underlying the human gut microbiota's effects on health and disease has been complicated by difficulties in linking metabolic functions associated with the gut community as a whole to individual microorganisms and activities. Anaerobic microbial choline metabolism, a disease-associated metabolic pathway, exemplifies this challenge, as the specific human gut microorganisms responsible for this transformation have not yet been clearly identified. In this study, we established the link between a bacterial gene cluster, the choline utilization (cut) cluster, and anaerobic choline metabolism in human gut isolates by combining transcriptional, biochemical, bioinformatic, and cultivation-based approaches. Quantitative reverse transcription-PCR analysis and in vitro biochemical characterization of two cut gene products linked the entire cluster to growth on choline and supported a model for this pathway. Analyses of sequenced bacterial genomes revealed that the cut cluster is present in many human gut bacteria, is predictive of choline utilization in sequenced isolates, and is widely but discontinuously distributed across multiple bacterial phyla. Given that bacterial phylogeny is a poor marker for choline utilization, we were prompted to develop a degenerate PCR-based method for detecting the key functional gene choline TMA-lyase (cutC) in genomic and metagenomic DNA. Using this tool, we found that new choline-metabolizing gut isolates universally possessed cutC. We also demonstrated that this gene is widespread in stool metagenomic data sets. Overall, this work represents a crucial step toward understanding anaerobic choline metabolism in the human gut microbiota and underscores the importance of examining this microbial community from a function-oriented perspective. Anaerobic choline utilization is a bacterial metabolic activity that occurs in the human gut and is linked to multiple diseases. While bacterial genes responsible for

  12. Selection and validation of reference genes for quantitative gene expression analyses in various tissues and seeds at different developmental stages in Bixa orellana L.

    Science.gov (United States)

    Moreira, Viviane S; Soares, Virgínia L F; Silva, Raner J S; Sousa, Aurizangela O; Otoni, Wagner C; Costa, Marcio G C

    2018-05-01

    Bixa orellana L., popularly known as annatto, produces several secondary metabolites of pharmaceutical and industrial interest, including bixin, whose molecular basis of biosynthesis remain to be determined. Gene expression analysis by quantitative real-time PCR (qPCR) is an important tool to advance such knowledge. However, correct interpretation of qPCR data requires the use of suitable reference genes in order to reduce experimental variations. In the present study, we have selected four different candidates for reference genes in B. orellana , coding for 40S ribosomal protein S9 (RPS9), histone H4 (H4), 60S ribosomal protein L38 (RPL38) and 18S ribosomal RNA (18SrRNA). Their expression stabilities in different tissues (e.g. flower buds, flowers, leaves and seeds at different developmental stages) were analyzed using five statistical tools (NormFinder, geNorm, BestKeeper, ΔCt method and RefFinder). The results indicated that RPL38 is the most stable gene in different tissues and stages of seed development and 18SrRNA is the most unstable among the analyzed genes. In order to validate the candidate reference genes, we have analyzed the relative expression of a target gene coding for carotenoid cleavage dioxygenase 1 (CCD1) using the stable RPL38 and the least stable gene, 18SrRNA , for normalization of the qPCR data. The results demonstrated significant differences in the interpretation of the CCD1 gene expression data, depending on the reference gene used, reinforcing the importance of the correct selection of reference genes for normalization.

  13. Quantitative detection of settled coal dust over green canopy

    Science.gov (United States)

    Brook, Anna; Sahar, Nir

    2017-04-01

    The main task of environmental and geoscience applications are efficient and accurate quantitative classification of earth surfaces and spatial phenomena. In the past decade, there has been a significant interest in employing spectral unmixing in order to retrieve accurate quantitative information latent in in situ data. Recently, the ground-truth and laboratory measured spectral signatures promoted by advanced algorithms are proposed as a new path toward solving the unmixing problem in semi-supervised fashion. This study presents a practical implementation of field spectroscopy as a quantitative tool to detect settled coal dust over green canopy in free/open environment. Coal dust is a fine powdered form of coal, which is created by the crushing, grinding, and pulverizing of coal. Since the inelastic nature of coal, coal dust can be created during transportation, or by mechanically handling coal. Coal dust, categorized at silt-clay particle size, of particular concern due to heavy metals (lead, mercury, nickel, tin, cadmium, mercury, antimony, arsenic, isotopes of thorium and strontium) which are toxic also at low concentrations. This hazard exposes risk on both environment and public health. It has been identified by medical scientist around the world as causing a range of diseases and health problems, mainly heart and respiratory diseases like asthma and lung cancer. It is due to the fact that the fine invisible coal dust particles (less than 2.5 microns) long lodge in the lungs and are not naturally expelled, so long-term exposure increases the risk of health problems. Numerus studies reported that data to conduct study of geographic distribution of the very fine coal dust (smaller than PM 2.5) and related health impacts from coal exports, is not being collected. Sediment dust load in an indoor environment can be spectrally assessed using reflectance spectroscopy (Chudnovsky and Ben-Dor, 2009). Small amounts of particulate pollution that may carry a signature

  14. Housekeeping gene expression during fetal brain development in the rat-validation by semi-quantitative RT-PCR.

    Science.gov (United States)

    Al-Bader, Maie Dawoud; Al-Sarraf, Hameed Ali

    2005-04-21

    Mammalian gene expression is usually carried out at the level of mRNA where the amount of mRNA of interest is measured under different conditions such as growth and development. It is therefore important to use a "housekeeping gene", that does not change in relative abundance during the experimental conditions, as a standard or internal control. However, recent data suggest that expression of some housekeeping genes may vary with the extent of cell proliferation, differentiation and under various experimental conditions. In this study, the expression of various housekeeping genes (18S rRNA [18S], glyceraldehydes-3-phosphate dehydrogenase [G3PDH], beta-glucuronidase [BGLU], histone H4 [HH4], ribosomal protein L19 [RPL19] and cyclophilin [CY]) was investigated during fetal rat brain development using semi-quantitative RT-PCR at 16, 19 and 21 days gestation. It was found that all genes studied, with exception to G3PDH, did not show any change in their expression levels during development. G3PDH, on the other hand, showed increased expression with development. These results suggest that the choice of a housekeeping gene is critical to the interpretation of experimental results and should be modified according to the nature of the study.

  15. Detection of Viral Hemorrhagic Septicemia Virus by Quantitative Reverse Transcription Polymerase Chain Reaction from Two Fish Species at Two Sites in Lake Superior

    Science.gov (United States)

    Cornwell, Emily R.; Eckerlin, Geofrey E.; Getchell, Rodman G.; Groocock, Geoffrey H.; Thompson, Tarin M.; Batts, William N.; Casey, Rufina N.; Kurath, Gael; Winton, James R.; Bowser, Paul R.; Bain, Mark B.; Casey, James W.

    2011-01-01

    Viral hemorrhagic septicemia virus (VHSV) was first detected in the Laurentian Great Lakes in 2005 during a mortality event in the Bay of Quinte, Lake Ontario. Subsequent analysis of archived samples determined that the first known isolation of VHSV in the Laurentian Great Lakes was from a muskellunge Esox masquinongy collected in Lake St. Clair in 2003. By the end of 2008, mortality events and viral isolations had occurred in all of the Laurentian Great Lakes except Lake Superior. In 2009, a focused disease surveillance program was designed to determine whether VHSV was also present in Lake Superior. In this survey, 874 fish from 7 sites along the U.S. shoreline of Lake Superior were collected during June 2009. Collections were focused on nearshore species known to be susceptible to VHSV. All fish were dissected individually by using aseptic techniques and were tested for the presence of VHSV genetic material by use of a quantitative reverse transcription (qRT) polymerase chain reaction (PCR) targeting the viral nucleoprotein gene. Seventeen fish from two host species at two different sites tested positive at low levels for VHSV. All attempts to isolate virus in cell culture were unsuccessful. However, the presence of viral RNA was confirmed independently in five fish by using a nested PCR that targeted the glycoprotein (G) gene. Partial G gene sequences obtained from three fish were identical to the corresponding sequence from the original 2003 VHSV isolate (MI03) from muskellunge. These detections represent the earliest evidence for the presence of VHSV in Lake Superior and illustrate the utility of the highly sensitive qRT-PCR assay for disease surveillance in aquatic animals.

  16. Quantitative Analyses of Core Promoters Enable Precise Engineering of Regulated Gene Expression in Mammalian Cells

    Science.gov (United States)

    Ede, Christopher; Chen, Ximin; Lin, Meng-Yin; Chen, Yvonne Y.

    2016-01-01

    Inducible transcription systems play a crucial role in a wide array of synthetic biology circuits. However, the majority of inducible promoters are constructed from a limited set of tried-and-true promoter parts, which are susceptible to common shortcomings such as high basal expression levels (i.e., leakiness). To expand the toolbox for regulated mammalian gene expression and facilitate the construction of mammalian genetic circuits with precise functionality, we quantitatively characterized a panel of eight core promoters, including sequences with mammalian, viral, and synthetic origins. We demonstrate that this selection of core promoters can provide a wide range of basal gene expression levels and achieve a gradient of fold-inductions spanning two orders of magnitude. Furthermore, commonly used parts such as minimal CMV and minimal SV40 promoters were shown to achieve robust gene expression upon induction, but also suffer from high levels of leakiness. In contrast, a synthetic promoter, YB_TATA, was shown to combine low basal expression with high transcription rate in the induced state to achieve significantly higher fold-induction ratios compared to all other promoters tested. These behaviors remain consistent when the promoters are coupled to different genetic outputs and different response elements, as well as across different host-cell types and DNA copy numbers. We apply this quantitative understanding of core promoter properties to the successful engineering of human T cells that respond to antigen stimulation via chimeric antigen receptor signaling specifically under hypoxic environments. Results presented in this study can facilitate the design and calibration of future mammalian synthetic biology systems capable of precisely programmed functionality. PMID:26883397

  17. Rapid detection of pathological mutations and deletions of the haemoglobin beta gene (HBB) by High Resolution Melting (HRM) analysis and Gene Ratio Analysis Copy Enumeration PCR (GRACE-PCR).

    Science.gov (United States)

    Turner, Andrew; Sasse, Jurgen; Varadi, Aniko

    2016-10-19

    Inherited disorders of haemoglobin are the world's most common genetic diseases, resulting in significant morbidity and mortality. The large number of mutations associated with the haemoglobin beta gene (HBB) makes gene scanning by High Resolution Melting (HRM) PCR an attractive diagnostic approach. However, existing HRM-PCR assays are not able to detect all common point mutations and have only a very limited ability to detect larger gene rearrangements. The aim of the current study was to develop a HBB assay, which can be used as a screening test in highly heterogeneous populations, for detection of both point mutations and larger gene rearrangements. The assay is based on a combination of conventional HRM-PCR and a novel Gene Ratio Analysis Copy Enumeration (GRACE) PCR method. HRM-PCR was extensively optimised, which included the use of an unlabelled probe and incorporation of universal bases into primers to prevent interference from common non-pathological polymorphisms. GRACE-PCR was employed to determine HBB gene copy numbers relative to a reference gene using melt curve analysis to detect rearrangements in the HBB gene. The performance of the assay was evaluated by analysing 410 samples. A total of 44 distinct pathological genotypes were detected. In comparison with reference methods, the assay has a sensitivity of 100 % and a specificity of 98 %. We have developed an assay that detects both point mutations and larger rearrangements of the HBB gene. This assay is quick, sensitive, specific and cost effective making it suitable as an initial screening test that can be used for highly heterogeneous cohorts.

  18. A high-throughput qPCR system for simultaneous quantitative detection of dairy Lactococcus lactis and Leuconostoc bacteriophages

    DEFF Research Database (Denmark)

    Muhammed, Musemma Kedir; Krych, Lukasz; Nielsen, Dennis Sandris

    2017-01-01

    simultaneous quantitative detection of Lc. lactis 936 (now SK1virus), P335, c2 (now C2virus) and Leuconostoc phage groups. Component assays are designed to have high efficiencies and nearly the same dynamic detection ranges, i.e., from 1.1 x 105 to 1.1 x 101 phage genomes per reaction, which corresponds to 9 x......Simultaneous quantitative detection of Lactococcus (Lc.) lactis and Leuconostoc species bacteriophages (phages) has not been reported in dairies using undefined mixed-strain DL-starters, probably due to the lack of applicable methods. We optimized a high-throughput qPCR system that allows...... 107 to 9 x 103 phage particles mL-1 without any additional up-concentrating steps. The amplification efficiencies of the corresponding assays were 100.1±2.6, 98.7±2.3, 101.0±2.3 and 96.2±6.2. The qPCR system was tested on samples obtained from a dairy plant that employed traditional mother...

  19. Age-Specific Gene Expression Profiles of Rhesus Monkey Ovaries Detected by Microarray Analysis

    Directory of Open Access Journals (Sweden)

    Hengxi Wei

    2015-01-01

    Full Text Available The biological function of human ovaries declines with age. To identify the potential molecular changes in ovarian aging, we performed genome-wide gene expression analysis by microarray of ovaries from young, middle-aged, and old rhesus monkeys. Microarray data was validated by quantitative real-time PCR. Results showed that a total of 503 (60 upregulated, 443 downregulated and 84 (downregulated genes were differentially expressed in old ovaries compared to young and middle-aged groups, respectively. No difference in gene expression was found between middle-aged and young groups. Differentially expressed genes were mainly enriched in cell and organelle, cellular and physiological process, binding, and catalytic activity. These genes were primarily associated with KEGG pathways of cell cycle, DNA replication and repair, oocyte meiosis and maturation, MAPK, TGF-beta, and p53 signaling pathway. Genes upregulated were involved in aging, defense response, oxidation reduction, and negative regulation of cellular process; genes downregulated have functions in reproduction, cell cycle, DNA and RNA process, macromolecular complex assembly, and positive regulation of macromolecule metabolic process. These findings show that monkey ovary undergoes substantial change in global transcription with age. Gene expression profiles are useful in understanding the mechanisms underlying ovarian aging and age-associated infertility in primates.

  20. Detection of pork adulteration in processed meat by species-specific PCR-QIAxcel procedure based on D-loop and cytb genes.

    Science.gov (United States)

    Barakat, Hassan; El-Garhy, Hoda A S; Moustafa, Mahmoud M A

    2014-12-01

    Detection of pork meat adulteration in "halal" meat products is a crucial issue in the fields of modern food inspection according to implementation of very strict procedures for halal food labelling. Present study aims at detecting and quantifying pork adulteration in both raw and cooked manufactured sausages. This is by applying an optimized species-specific PCR procedure followed by QIAxcel capillary electrophoresis system. Manufacturing experiment was designed by incorporating pork with beef meat at 0.01 to 10 % substitution levels beside beef and pork sausages as negative and positive controls, respectively. Subsequently, sausages were divided into raw and cooked sausages then subjected to DNA extraction. Results indicated that PCR amplifications of mitochondrial D-loop and cytochrome b (cytb) genes by porcine-specific primers produced 185 and 117 bp pork-specific DNA fragments in sausages, respectively. No DNA fragments were detected when PCR was applied on beef sausage DNA confirming primers specificity. For internal control, a 141-bp DNA fragment of eukaryotic 18S ribosomal RNA (rRNA) gene was amplified from pork and beef DNA templates. Although PCR followed by either QIAxcel or agarose techniques were efficient for targeted DNA fragments differentiation even as low as 0.01 % (pork/meat: w/w). For proficiency, adequacy, and performance, PCR-QIA procedure is highly sensitive, a time-saver, electronically documented, mutagenic-reagent free, of little manual errors, accurate in measuring PCR fragments length, and quantitative data supplier. In conclusion, it can be suggested that optimized PCR-QAI is considered as a rapid and sensitive method for routine pork detection and quantification in raw or processed meat.

  1. Comparison of different phenotypic methods of detection of methicillin resistance in staphylococcus aureus with the molecular detection of mec-a gene

    International Nuclear Information System (INIS)

    Zeeshan, M.; Jabeen, K.; Irfan, S.; Parween, Z.; Zafar, A.

    2007-01-01

    To evaluate accuracy, cost-effectiveness and ease to perform different phenotypic methods i.e. Cefoxitin 30 micro g disc, Oxacillin 1micro g disc and Oxacillin agar screening plate (6 micro g/ml) for early and accurate identification of MRSA by comparing with the detection of mec-A gene in our clinical isolates. Out of 200 clinical samples, conventional Polymerase Chain Reaction (PCR) was done on 62 pure biochemically identified S. aureus isolates for mec-A gene detection. Phenotypic methods for detecting methicillin sensitivity (Cefoxitin 30 microg disc, Oxacillin 1 micro g disc and Oxacillin agar screening plate) were also used according to the recommended incubation time, duration and temperature on the same isolates. Out of 62 isolates of S. aureus, mec-A gene were detected (MRSA) in 32, whereas 30 were mec-A gene negative (MSSA). Cefoxitin disc and agar screening plate correctly identify all MRSA isolates with the sensitivity and specificity of 100%. Single isolate was false, positively detected as sensitive with Oxacillin 1g disc, due to which, the sensitivity and negative predictive value of this method were reduced to 96.9% and 96.8% respectively, while positive predictive value and specificity remained 100%. Comparing different phenotypic methods for MRSA screening in routine microbiology laboratory, Cefoxitin disc and Oxacillin agar screening has better sensitivity and specificity comparative to Oxacillin disc. However, Cefoxitin disc can be preferred especially for small laboratories because it is easy to perform, do not require special technique and media preparation is consequently more cost-effective. (author)

  2. From gene engineering to gene modulation and manipulation: can we prevent or detect gene doping in sports?

    Science.gov (United States)

    Fischetto, Giuseppe; Bermon, Stéphane

    2013-10-01

    -carboxamide 1-β-D-ribofuranoside (AICAR), GW1516], might concomitantly improve endurance exercise capacity in ischaemic conditions but also in normal conditions. Undoubtedly, some athletes will attempt to take advantage of these new molecules to increase strength or endurance. Antidoping laboratories are improving detection methods. These are based both on direct identification of new substances or their metabolites and on indirect evaluation of changes in gene, protein or metabolite patterns (genomics, proteomics or metabolomics).

  3. Quantitative detection of Campylobacter jejuni on fresh chicken carcasses by real-time PCR.

    Science.gov (United States)

    Rönner, Anna-Clara; Lindmark, Hans

    2007-06-01

    Campylobacter jejuni infection is a significant cause of foodborne gastroenteritis worldwide. Consumption and handling of poultry products is believed to be the primary risk factor for campylobacteriosis. Risk assessments require quantitative data, and C. jejuni is enumerated usually by direct plating, which sometimes allows growth of non-Campylobacter bacteria. The objective of the present study was to develop a quantitative real-time PCR method (q-PCR) for enumerating C. jejuni in chicken rinse without a culturing step. The procedure to obtain the template for the PCR assay involved (i) filtration of 10 ml of chicken rinse, (ii) centrifugation of the sample, and (iii) total DNA extraction from the pellet obtained using a commercial DNA extraction kit. The detection limit of the method was comparable to that for plating 100 microl of chicken rinse on modified charcoal cefoperazone deoxycholate agar, and the detection limit could be further improved 10-fold by concentrating the DNA eluate by ethanol precipitation. A close correlation for spiked chicken rinse was obtained for the results of the quantitative real-time PCR method and direct plating (r = 0.99). The coefficient of correlation for the methods was 0.87 when samples from chicken carcasses on the slaughter line were analyzed, whereas a lower correlation (r = 0.76) was obtained when samples from retail carcasses were analyzed. Greater variation in the proportion of dead and/or viable but not culturable Campylobacter types in the retail samples may explain the decreased correlation between the methods. Overall, the new method is simple and fast and the results obtained are closely correlated with those for direct plating for samples containing a low proportion of dead Campylobacter cells.

  4. Advance in plasma SEPT9 gene methylation assay for colorectal cancer early detection.

    Science.gov (United States)

    Wang, Yu; Chen, Pei-Min; Liu, Rong-Bin

    2018-01-15

    This review article summarizes the research advances of the plasma-based SEPT9 gene methylation assay for the clinical detection of colorectal cancer and its limitations. Colorectal cancer is a common malignancy with a poor prognosis and a high mortality, for which early detection and diagnosis are particularly crucial for the high-risk groups. Increasing evidence supported that SEPT9 gene methylation is associated with the pathogenesis of colorectal cancer and that detecting the level of methylation of SEPT9 in the peripheral blood can be used for screening of colorectal cancer in susceptible populations. In recent years, the data obtained in clinical studies demonstrated that the SEPT9 gene methylation assay has a good diagnostic performance with regard to both sensitivity and specificity with the advantage of better acceptability, convenience and compliance with serological testing compared with fecal occult blood tests and carcinoembryonic antigen for colorectal cancer (CRC). Furthermore, the combination of multiple methods or markers has become a growing trend for CRC detection and screening. Nevertheless, the clinical availability of the methylated SEPT9 assay is still limited because of the large degree of sample heterogeneity caused by demographic characteristics, pathological features, comorbidities and/or technique selection. Another factor is the cost-effectiveness of colorectal cancer screening strategies that hinders its large-scale application. In addition, improvements in its accuracy in detecting adenomas and premalignant polyps are required.

  5. Affinity-based biosensors as promising tools for gene doping detection.

    Science.gov (United States)

    Minunni, Maria; Scarano, Simona; Mascini, Marco

    2008-05-01

    Innovative bioanalytical approaches can be foreseen as interesting means for solving relevant emerging problems in anti-doping control. Sport authorities fear that the newer form of doping, so-called gene doping, based on a misuse of gene therapy, will be undetectable and thus much less preventable. The World Anti-Doping Agency has already asked scientists to assist in finding ways to prevent and detect this newest kind of doping. In this Opinion article we discuss the main aspects of gene doping, from the putative target analytes to suitable sampling strategies. Moreover, we discuss the potential application of affinity sensing in this field, which so far has been successfully applied to a variety of analytical problems, from clinical diagnostics to food and environmental analysis.

  6. A PLSPM-Based Test Statistic for Detecting Gene-Gene Co-Association in Genome-Wide Association Study with Case-Control Design

    Science.gov (United States)

    Zhang, Xiaoshuai; Yang, Xiaowei; Yuan, Zhongshang; Liu, Yanxun; Li, Fangyu; Peng, Bin; Zhu, Dianwen; Zhao, Jinghua; Xue, Fuzhong

    2013-01-01

    For genome-wide association data analysis, two genes in any pathway, two SNPs in the two linked gene regions respectively or in the two linked exons respectively within one gene are often correlated with each other. We therefore proposed the concept of gene-gene co-association, which refers to the effects not only due to the traditional interaction under nearly independent condition but the correlation between two genes. Furthermore, we constructed a novel statistic for detecting gene-gene co-association based on Partial Least Squares Path Modeling (PLSPM). Through simulation, the relationship between traditional interaction and co-association was highlighted under three different types of co-association. Both simulation and real data analysis demonstrated that the proposed PLSPM-based statistic has better performance than single SNP-based logistic model, PCA-based logistic model, and other gene-based methods. PMID:23620809

  7. Optimal Hotspots of Dynamic Surfaced-Enhanced Raman Spectroscopy for Drugs Quantitative Detection.

    Science.gov (United States)

    Yan, Xiunan; Li, Pan; Zhou, Binbin; Tang, Xianghu; Li, Xiaoyun; Weng, Shizhuang; Yang, Liangbao; Liu, Jinhuai

    2017-05-02

    Surface-enhanced Raman spectroscopy (SERS) as a powerful qualitative analysis method has been widely applied in many fields. However, SERS for quantitative analysis still suffers from several challenges partially because of the absence of stable and credible analytical strategy. Here, we demonstrate that the optimal hotspots created from dynamic surfaced-enhanced Raman spectroscopy (D-SERS) can be used for quantitative SERS measurements. In situ small-angle X-ray scattering was carried out to in situ real-time monitor the formation of the optimal hotspots, where the optimal hotspots with the most efficient hotspots were generated during the monodisperse Au-sol evaporating process. Importantly, the natural evaporation of Au-sol avoids the nanoparticles instability of salt-induced, and formation of ordered three-dimensional hotspots allows SERS detection with excellent reproducibility. Considering SERS signal variability in the D-SERS process, 4-mercaptopyridine (4-mpy) acted as internal standard to validly correct and improve stability as well as reduce fluctuation of signals. The strongest SERS spectra at the optimal hotspots of D-SERS have been extracted to statistics analysis. By using the SERS signal of 4-mpy as a stable internal calibration standard, the relative SERS intensity of target molecules demonstrated a linear response versus the negative logarithm of concentrations at the point of strongest SERS signals, which illustrates the great potential for quantitative analysis. The public drugs 3,4-methylenedioxymethamphetamine and α-methyltryptamine hydrochloride obtained precise analysis with internal standard D-SERS strategy. As a consequence, one has reason to believe our approach is promising to challenge quantitative problems in conventional SERS analysis.

  8. Detection of virulence genes in Uropathogenic E. coli (UPEC strains by Multiplex-PCR method

    Directory of Open Access Journals (Sweden)

    Javad Mohammadi

    2017-06-01

    Full Text Available Background & Objectives: Urinary tract infection caused by E. coli is one of the most common illnesses in all age groups worldwide. Presence of virulence genes is a key factor in bacterial pathogens in uroepithelial cells. The present study was performed to detect iha, iroN, ompT genes in the Uropathogenic E.coli isolates from clinical samples using multiplex-PCR method in Kerman. Materials & Methods: In this descriptive cross-sectional study, 200 samples of patients with urinary tract infections in Kerman hospitals were collected. After biochemical and microbiological tests, all strains were tested with regard to the presence of iha, iroN, and ompT genes using multiplex-PCR method. Results: The results of Multiplex-PCR showed that all specimens had one, two, or three virulence genes simultaneously. The highest and lowest frequency distribution of genes was related to iha (56.7% and iroN (20% respectively. Conclusion: According to the prevalence of urinary tract infection in the community and distribution of resistance and virulence factors, the fast and accurate detection of the strains and virulence genes is necessary

  9. Development of a Real-Time Resistance Measurement for Vibrio parahaemolyticus Detection by the Lecithin-Dependent Hemolysin Gene

    Science.gov (United States)

    Xiang, Guiming; Pu, Xiaoyun; Jiang, Dongneng; Liu, Linlin; Liu, Chang; Liu, Xiaobo

    2013-01-01

    The marine bacterium Vibrio parahaemolyticus (V. parahaemolyticus) causes gastroenteritis in humans via the ingestion of raw or undercooked contaminated seafood, and early diagnosis and prompt treatment are important for the prevention of V. parahaemolyticus-related diseases. In this study, a real-time resistance measurement based on loop-mediated isothermal amplification (LAMP), electrochemical ion bonding (Crystal violet and Mg2+), real-time monitoring, and derivative analysis was developed. V. parahaemolyticus DNA was first amplified by LAMP, and the products (DNA and pyrophosphate) represented two types of negative ions that could combine with a positive dye (Crystal violet) and positive ions (Mg2+) to increase the resistance of the reaction liquid. This resistance was measured in real-time using a specially designed resistance electrode, thus permitting the quantitative detection of V. parahaemolyticus. The results were obtained in 1–2 hours, with a minimum bacterial density of 10 CFU.mL−1 and high levels of accuracy (97%), sensitivity (96.08%), and specificity (97.96%) when compared to cultivation methods. Therefore, this simple and rapid method has a potential application in the detection of V. parahaemolyticus on a gene chip or in point-of-care testing. PMID:23991096

  10. A new efficient statistical test for detecting variability in the gene expression data.

    Science.gov (United States)

    Mathur, Sunil; Dolo, Samuel

    2008-08-01

    DNA microarray technology allows researchers to monitor the expressions of thousands of genes under different conditions. The detection of differential gene expression under two different conditions is very important in microarray studies. Microarray experiments are multi-step procedures and each step is a potential source of variance. This makes the measurement of variability difficult because approach based on gene-by-gene estimation of variance will have few degrees of freedom. It is highly possible that the assumption of equal variance for all the expression levels may not hold. Also, the assumption of normality of gene expressions may not hold. Thus it is essential to have a statistical procedure which is not based on the normality assumption and also it can detect genes with differential variance efficiently. The detection of differential gene expression variance will allow us to identify experimental variables that affect different biological processes and accuracy of DNA microarray measurements.In this article, a new nonparametric test for scale is developed based on the arctangent of the ratio of two expression levels. Most of the tests available in literature require the assumption of normal distribution, which makes them inapplicable in many situations, and it is also hard to verify the suitability of the normal distribution assumption for the given data set. The proposed test does not require the assumption of the distribution for the underlying population and hence makes it more practical and widely applicable. The asymptotic relative efficiency is calculated under different distributions, which show that the proposed test is very powerful when the assumption of normality breaks down. Monte Carlo simulation studies are performed to compare the power of the proposed test with some of the existing procedures. It is found that the proposed test is more powerful than commonly used tests under almost all the distributions considered in the study. A

  11. Dominant Epistasis Between Two Quantitative Trait Loci Governing Sporulation Efficiency in Yeast Saccharomyces cerevisiae

    Science.gov (United States)

    Bergman, Juraj; Mitrikeski, Petar T.

    2015-01-01

    Summary Sporulation efficiency in the yeast Saccharomyces cerevisiae is a well-established model for studying quantitative traits. A variety of genes and nucleotides causing different sporulation efficiencies in laboratory, as well as in wild strains, has already been extensively characterised (mainly by reciprocal hemizygosity analysis and nucleotide exchange methods). We applied a different strategy in order to analyze the variation in sporulation efficiency of laboratory yeast strains. Coupling classical quantitative genetic analysis with simulations of phenotypic distributions (a method we call phenotype modelling) enabled us to obtain a detailed picture of the quantitative trait loci (QTLs) relationships underlying the phenotypic variation of this trait. Using this approach, we were able to uncover a dominant epistatic inheritance of loci governing the phenotype. Moreover, a molecular analysis of known causative quantitative trait genes and nucleotides allowed for the detection of novel alleles, potentially responsible for the observed phenotypic variation. Based on the molecular data, we hypothesise that the observed dominant epistatic relationship could be caused by the interaction of multiple quantitative trait nucleotides distributed across a 60--kb QTL region located on chromosome XIV and the RME1 locus on chromosome VII. Furthermore, we propose a model of molecular pathways which possibly underlie the phenotypic variation of this trait. PMID:27904371

  12. Development of Quantitative Real-Time PCR Assays for Detection and Quantification of Surrogate Biological Warfare Agents in Building Debris and Leachate▿

    Science.gov (United States)

    Saikaly, Pascal E.; Barlaz, Morton A.; de los Reyes, Francis L.

    2007-01-01

    Evaluation of the fate and transport of biological warfare (BW) agents in landfills requires the development of specific and sensitive detection assays. The objective of the current study was to develop and validate SYBR green quantitative real-time PCR (Q-PCR) assays for the specific detection and quantification of surrogate BW agents in synthetic building debris (SBD) and leachate. Bacillus atrophaeus (vegetative cells and spores) and Serratia marcescens were used as surrogates for Bacillus anthracis (anthrax) and Yersinia pestis (plague), respectively. The targets for SYBR green Q-PCR assays were the 16S-23S rRNA intergenic transcribed spacer (ITS) region and recA gene for B. atrophaeus and the gyrB, wzm, and recA genes for S. marcescens. All assays showed high specificity when tested against 5 ng of closely related Bacillus and Serratia nontarget DNA from 21 organisms. Several spore lysis methods that include a combination of one or more of freeze-thaw cycles, chemical lysis, hot detergent treatment, bead beat homogenization, and sonication were evaluated. All methods tested showed similar threshold cycle values. The limit of detection of the developed Q-PCR assays was determined using DNA extracted from a pure bacterial culture and DNA extracted from sterile water, leachate, and SBD samples spiked with increasing quantities of surrogates. The limit of detection for B. atrophaeus genomic DNA using the ITS and B. atrophaeus recA Q-PCR assays was 7.5 fg per PCR. The limits of detection of S. marcescens genomic DNA using the gyrB, wzm, and S. marcescens recA Q-PCR assays were 7.5 fg, 75 fg, and 7.5 fg per PCR, respectively. Quantification of B. atrophaeus vegetative cells and spores was linear (R2 > 0.98) over a 7-log-unit dynamic range down to 101 B. atrophaeus cells or spores. Quantification of S. marcescens (R2 > 0.98) was linear over a 6-log-unit dynamic range down to 102 S. marcescens cells. The developed Q-PCR assays are highly specific and sensitive and can

  13. A novel CMOS image sensor system for quantitative loop-mediated isothermal amplification assays to detect food-borne pathogens.

    Science.gov (United States)

    Wang, Tiantian; Kim, Sanghyo; An, Jeong Ho

    2017-02-01

    Loop-mediated isothermal amplification (LAMP) is considered as one of the alternatives to the conventional PCR and it is an inexpensive portable diagnostic system with minimal power consumption. The present work describes the application of LAMP in real-time photon detection and quantitative analysis of nucleic acids integrated with a disposable complementary-metal-oxide semiconductor (CMOS) image sensor. This novel system works as an amplification-coupled detection platform, relying on a CMOS image sensor, with the aid of a computerized circuitry controller for the temperature and light sources. The CMOS image sensor captures the light which is passing through the sensor surface and converts into digital units using an analog-to-digital converter (ADC). This new system monitors the real-time photon variation, caused by the color changes during amplification. Escherichia coli O157 was used as a proof-of-concept target for quantitative analysis, and compared with the results for Staphylococcus aureus and Salmonella enterica to confirm the efficiency of the system. The system detected various DNA concentrations of E. coli O157 in a short time (45min), with a detection limit of 10fg/μL. The low-cost, simple, and compact design, with low power consumption, represents a significant advance in the development of a portable, sensitive, user-friendly, real-time, and quantitative analytic tools for point-of-care diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Detection of anabolic androgenic steroid abuse in doping control using mammalian reporter gene bioassays.

    Science.gov (United States)

    Houtman, Corine J; Sterk, Saskia S; van de Heijning, Monique P M; Brouwer, Abraham; Stephany, Rainer W; van der Burg, Bart; Sonneveld, Edwin

    2009-04-01

    Anabolic androgenic steroids (AAS) are a class of steroid hormones related to the male hormone testosterone. They are frequently detected as drugs in sport doping control. Being similar to or derived from natural male hormones, AAS share the activation of the androgen receptor (AR) as common mechanism of action. The mammalian androgen responsive reporter gene assay (AR CALUX bioassay), measuring compounds interacting with the AR can be used for the analysis of AAS without the necessity of knowing their chemical structure beforehand, whereas current chemical-analytical approaches may have difficulty in detecting compounds with unknown structures, such as designer steroids. This study demonstrated that AAS prohibited in sports and potential designer AAS can be detected with this AR reporter gene assay, but that also additional steroid activities of AAS could be found using additional mammalian bioassays for other types of steroid hormones. Mixtures of AAS were found to behave additively in the AR reporter gene assay showing that it is possible to use this method for complex mixtures as are found in doping control samples, including mixtures that are a result of multi drug use. To test if mammalian reporter gene assays could be used for the detection of AAS in urine samples, background steroidal activities were measured. AAS-spiked urine samples, mimicking doping positive samples, showed significantly higher androgenic activities than unspiked samples. GC-MS analysis of endogenous androgens and AR reporter gene assay analysis of urine samples showed how a combined chemical-analytical and bioassay approach can be used to identify samples containing AAS. The results indicate that the AR reporter gene assay, in addition to chemical-analytical methods, can be a valuable tool for the analysis of AAS for doping control purposes.

  15. A triplex quantitative real-time PCR assay for differential detection of human adenovirus serotypes 2, 3 and 7.

    Science.gov (United States)

    Qiu, Fang-Zhou; Shen, Xin-Xin; Zhao, Meng-Chuan; Zhao, Li; Duan, Su-Xia; Chen, Chen; Qi, Ju-Ju; Li, Gui-Xia; Wang, Le; Feng, Zhi-Shan; Ma, Xue-Jun

    2018-05-02

    Human adenovirus (HAdV) serotypes 2, 3 and 7 are more prevalent than other serotypes and have been associated with severe pneumonia in pediatric children. Molecular typing of HAdV is not routinely performed in clinical diagnostic laboratories as it is time-consuming and labor-intensive. In the present study, we developed a triplex quantitative real-time PCR assay (tq-PCR) in a single closed tube for differential detection and quantitative analysis of HAdV serotypes 2, 3 and 7. The sensitivity, specificity, reproducibility and clinical performance of tq-PCR were evaluated. The analytical sensitivity of the tq-PCR was 100 copies/reaction for each of HAdV serotypes 2, 3 and 7, and no cross-reaction with other common respiratory viruses or HAdV serotypes 1,4,5,6,31,55 and 57 was observed. The coefficients of variation (CV) of intra-assay and inter-assay were between 0.6% to 3.6%. Of 138 previously-defined HAdV-positive nasopharyngeal aspirates samples tested, the detection agreement between tq-PCR and nested PCR was 96.38% (133/138). The proposed tq-PCR assay is a sensitive, specific and reproducible method and has the potential for clinical use in the rapid and differential detection and quantitation of HAdV serotypes 2, 3 and 7.

  16. [Using exon combined target region capture sequencing chip to detect the disease-causing genes of retinitis pigmentosa].

    Science.gov (United States)

    Rong, Weining; Chen, Xuejuan; Li, Huiping; Liu, Yani; Sheng, Xunlun

    2014-06-01

    To detect the disease-causing genes of 10 retinitis pigmentosa pedigrees by using exon combined target region capture sequencing chip. Pedigree investigation study. From October 2010 to December 2013, 10 RP pedigrees were recruited for this study in Ningxia Eye Hospital. All the patients and family members received complete ophthalmic examinations. DNA was abstracted from patients, family members and controls. Using exon combined target region capture sequencing chip to screen the candidate disease-causing mutations. Polymerase chain reaction (PCR) and direct sequencing were used to confirm the disease-causing mutations. Seventy patients and 23 normal family members were recruited from 10 pedigrees. Among 10 RP pedigrees, 1 was autosomal dominant pedigrees and 9 were autosomal recessive pedigrees. 7 mutations related to 5 genes of 5 pedigrees were detected. A frameshift mutation on BBS7 gene was detected in No.2 pedigree, the patients of this pedigree combined with central obesity, polydactyly and mental handicap. No.2 pedigree was diagnosed as Bardet-Biedl syndrome finally. A missense mutation was detected in No.7 and No.10 pedigrees respectively. Because the patients suffered deafness meanwhile, the final diagnosis was Usher syndrome. A missense mutation on C3 gene related to age-related macular degeneration was also detected in No. 7 pedigrees. A nonsense mutation and a missense mutation on CRB1 gene were detected in No. 1 pedigree and a splicesite mutation on PROM1 gene was detected in No. 5 pedigree. Retinitis pigmentosa is a kind of genetic eye disease with diversity clinical phenotypes. Rapid and effective genetic diagnosis technology combined with clinical characteristics analysis is helpful to improve the level of clinical diagnosis of RP.

  17. Fundamental study of detection of muscle hypertrophy-oriented gene doping by myostatin knock down using RNA interference.

    Science.gov (United States)

    Takemasa, Tohru; Yakushiji, Naohisa; Kikuchi, Dale Manjiro; Deocaris, Custer; Widodo; Machida, Masanao; Kiyosawa, Hidenori

    2012-01-01

    To investigate the feasibility of developing a method for detection of gene doping in power-athletes, we devised an experimental model system. Myostatin is a potent negative regulator of skeletal muscle development and growth, and myostatin-knockout mice exhibit a double-muscle phenotype. To achieve knockdown, we constructed plasmids expressing short hairpin interfering RNAs (shRNAs) against myostatin. These shRNAs were transfected into C2C12 cultured cells or injected into the tibialis anterior (TA) muscle of adult mice. By performing in vitro and in vivo experiments, we found that some shRNAs effectively reduced the expression of myostatin, and that the TA muscle showed hypertrophy of up to 27.9%. Then, using real-time PCR, we tried to detect the shRNA plasmid in the serum or muscles of mice into which it had been injected. Although we were unable to detect the plasmid in serum samples, it was detectable in the treated muscle at least four weeks after induction. We were also able to detect the plasmid in muscle in the vicinity of the TA. This gene doping model system will be useful for further studies aimed at doping control. Key pointsUsing a myostatin knockdown plasmid, we have succeeded in creating a model system for gene doping using mice that resulted in muscle hypertrophy greater than that reported previously.We confirmed that there was a limit of gene doping detection using real-time PCR, either from serum or muscle smple.This model experimental system can be utilized for examining indirect methods of gene doping detection such as immune responses to gene transfer or a profiling approach using DNA microarray.

  18. PCR detection of retinoblastoma gene deletions in radiation-induced mouse lung adenocarcinomas

    International Nuclear Information System (INIS)

    Churchill, M.E.; Gemmell, M.A.; Woloschak, G.E.

    1994-01-01

    From 1971--1986, Argonne National Laboratory conducted a series of large-scale studies of tumor incidence in 40,000 BCF 1 mice irradiated with 60 Co γ-rays or JANUS fission-spectrum neutrons. Polymerase chain reaction (PCR) technique was used to detect deletions in the mouse retinoblastoma (mRb) gene. Six mRb gene exon fragments were amplified in a 40-cycle, 3-temperature PCR protocol. Absence of any of these fragments on a Southern blot indicated a deletion of that portion of the mRb gene. Tumors chosen for analysis were lung adenocarcinomas that were judged to be the cause of death in post-mortem analyses. Spontaneous tumors as well as those from irradiated mice were analyzed for mRb deletions. In all normal mouse tissues studies all six mRb exon fragments were present on Southern blots. Tumors in six neutron-irradiated mice also had no mRb deletions. However, 1 of 6 tumors from γ-irradiated mice and 6 of 18 spontaneous tumors from unirradiated mice showed a deletion in one or both mRb alleles. All deletions detected were in the 5' region of the mRb gene

  19. Wetlab-2 - Quantitative PCR Tools for Spaceflight Studies of Gene Expression Aboard the International Space Station

    Science.gov (United States)

    Schonfeld, Julie E.

    2015-01-01

    Wetlab-2 is a research platform for conducting real-time quantitative gene expression analysis aboard the International Space Station. The system enables spaceflight genomic studies involving a wide variety of biospecimen types in the unique microgravity environment of space. Currently, gene expression analyses of space flown biospecimens must be conducted post flight after living cultures or frozen or chemically fixed samples are returned to Earth from the space station. Post-flight analysis is limited for several reasons. First, changes in gene expression can be transient, changing over a timescale of minutes. The delay between sampling on Earth can range from days to months, and RNA may degrade during this period of time, even in fixed or frozen samples. Second, living organisms that return to Earth may quickly re-adapt to terrestrial conditions. Third, forces exerted on samples during reentry and return to Earth may affect results. Lastly, follow up experiments designed in response to post-flight results must wait for a new flight opportunity to be tested.

  20. Identification and validation of quantitative real-time reverse transcription PCR reference genes for gene expression analysis in teak (Tectona grandis L.f.).

    Science.gov (United States)

    Galeano, Esteban; Vasconcelos, Tarcísio Sales; Ramiro, Daniel Alves; De Martin, Valentina de Fátima; Carrer, Helaine

    2014-07-22

    Teak (Tectona grandis L.f.) is currently the preferred choice of the timber trade for fabrication of woody products due to its extraordinary qualities and is widely grown around the world. Gene expression studies are essential to explore wood formation of vascular plants, and quantitative real-time reverse transcription PCR (qRT-PCR) is a sensitive technique employed for quantifying gene expression levels. One or more appropriate reference genes are crucial to accurately compare mRNA transcripts through different tissues/organs and experimental conditions. Despite being the focus of some genetic studies, a lack of molecular information has hindered genetic exploration of teak. To date, qRT-PCR reference genes have not been identified and validated for teak. Identification and cloning of nine commonly used qRT-PCR reference genes from teak, including ribosomal protein 60s (rp60s), clathrin adaptor complexes medium subunit family (Cac), actin (Act), histone 3 (His3), sand family (Sand), β-Tubulin (Β-Tub), ubiquitin (Ubq), elongation factor 1-α (Ef-1α), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Expression profiles of these genes were evaluated by qRT-PCR in six tissue and organ samples (leaf, flower, seedling, root, stem and branch secondary xylem) of teak. Appropriate gene cloning and sequencing, primer specificity and amplification efficiency was verified for each gene. Their stability as reference genes was validated by NormFinder, BestKeeper, geNorm and Delta Ct programs. Results obtained from all programs showed that TgUbq and TgEf-1α are the most stable genes to use as qRT-PCR reference genes and TgAct is the most unstable gene in teak. The relative expression of the teak cinnamyl alcohol dehydrogenase (TgCAD) gene in lignified tissues at different ages was assessed by qRT-PCR, using TgUbq and TgEf-1α as internal controls. These analyses exposed a consistent expression pattern with both reference genes. This study proposes a first broad

  1. Bacterial pathogen gene abundance and relation to recreational water quality at seven Great Lakes beaches

    Science.gov (United States)

    Oster, Ryan J.; Wijesinghe, Rasanthi U.; Fogarty, Lisa Reynolds; Haack, Sheridan K.; Fogarty, Lisa R.; Tucker, Taaja R.; Riley, Stephen

    2014-01-01

    Quantitative assessment of bacterial pathogens, their geographic variability, and distribution in various matrices at Great Lakes beaches are limited. Quantitative PCR (qPCR) was used to test for genes from E. coli O157:H7 (eaeO157), shiga-toxin producing E. coli (stx2), Campylobacter jejuni (mapA), Shigella spp. (ipaH), and a Salmonella enterica-specific (SE) DNA sequence at seven Great Lakes beaches, in algae, water, and sediment. Overall, detection frequencies were mapA>stx2>ipaH>SE>eaeO157. Results were highly variable among beaches and matrices; some correlations with environmental conditions were observed for mapA, stx2, and ipaH detections. Beach seasonal mean mapA abundance in water was correlated with beach seasonal mean log10E. coli concentration. At one beach, stx2 gene abundance was positively correlated with concurrent daily E. coli concentrations. Concentration distributions for stx2, ipaH, and mapA within algae, sediment, and water were statistically different (Non-Detect and Data Analysis in R). Assuming 10, 50, or 100% of gene copies represented viable and presumably infective cells, a quantitative microbial risk assessment tool developed by Michigan State University indicated a moderate probability of illness for Campylobacter jejuni at the study beaches, especially where recreational water quality criteria were exceeded. Pathogen gene quantification may be useful for beach water quality management.

  2. PCR detection of oxytetracycline resistance genes from diverse habitats in total community DNA and in streptomycete isolates.

    NARCIS (Netherlands)

    Nikolakopoulou, T.L.; Egan, S.; Overbeek, van L.S.; Guillaume, G.; Heuer, H.; Wellington, E.M.H.; Elsas, van J.D.; Collard, J.M.; Smalla, K.; Karagouni, A.D.

    2005-01-01

    A range of European habitats was screened by PCR for detection of the oxytetracycline resistance genes otr(A) and otr(B), found in the oxytetracycline-producing strain Streptomyces rimosus. Primers were developed to detect these otr genes in tetracycline-resistant (TcR) streptomycete isolates from

  3. A Quantitative Comparison of the Similarity between Genes and Geography in Worldwide Human Populations

    Science.gov (United States)

    Wang, Chaolong; Zöllner, Sebastian; Rosenberg, Noah A.

    2012-01-01

    Multivariate statistical techniques such as principal components analysis (PCA) and multidimensional scaling (MDS) have been widely used to summarize the structure of human genetic variation, often in easily visualized two-dimensional maps. Many recent studies have reported similarity between geographic maps of population locations and MDS or PCA maps of genetic variation inferred from single-nucleotide polymorphisms (SNPs). However, this similarity has been evident primarily in a qualitative sense; and, because different multivariate techniques and marker sets have been used in different studies, it has not been possible to formally compare genetic variation datasets in terms of their levels of similarity with geography. In this study, using genome-wide SNP data from 128 populations worldwide, we perform a systematic analysis to quantitatively evaluate the similarity of genes and geography in different geographic regions. For each of a series of regions, we apply a Procrustes analysis approach to find an optimal transformation that maximizes the similarity between PCA maps of genetic variation and geographic maps of population locations. We consider examples in Europe, Sub-Saharan Africa, Asia, East Asia, and Central/South Asia, as well as in a worldwide sample, finding that significant similarity between genes and geography exists in general at different geographic levels. The similarity is highest in our examples for Asia and, once highly distinctive populations have been removed, Sub-Saharan Africa. Our results provide a quantitative assessment of the geographic structure of human genetic variation worldwide, supporting the view that geography plays a strong role in giving rise to human population structure. PMID:22927824

  4. A quantitative comparison of the similarity between genes and geography in worldwide human populations.

    Science.gov (United States)

    Wang, Chaolong; Zöllner, Sebastian; Rosenberg, Noah A

    2012-08-01

    Multivariate statistical techniques such as principal components analysis (PCA) and multidimensional scaling (MDS) have been widely used to summarize the structure of human genetic variation, often in easily visualized two-dimensional maps. Many recent studies have reported similarity between geographic maps of population locations and MDS or PCA maps of genetic variation inferred from single-nucleotide polymorphisms (SNPs). However, this similarity has been evident primarily in a qualitative sense; and, because different multivariate techniques and marker sets have been used in different studies, it has not been possible to formally compare genetic variation datasets in terms of their levels of similarity with geography. In this study, using genome-wide SNP data from 128 populations worldwide, we perform a systematic analysis to quantitatively evaluate the similarity of genes and geography in different geographic regions. For each of a series of regions, we apply a Procrustes analysis approach to find an optimal transformation that maximizes the similarity between PCA maps of genetic variation and geographic maps of population locations. We consider examples in Europe, Sub-Saharan Africa, Asia, East Asia, and Central/South Asia, as well as in a worldwide sample, finding that significant similarity between genes and geography exists in general at different geographic levels. The similarity is highest in our examples for Asia and, once highly distinctive populations have been removed, Sub-Saharan Africa. Our results provide a quantitative assessment of the geographic structure of human genetic variation worldwide, supporting the view that geography plays a strong role in giving rise to human population structure.

  5. A Complementary Isothermal Amplification Method to the U.S. EPA Quantitative Polymerase Chain Reaction Approach for the Detection of Enterococci in Environmental Waters.

    Science.gov (United States)

    Kolm, Claudia; Martzy, Roland; Brunner, Kurt; Mach, Robert L; Krska, Rudolf; Heinze, Georg; Sommer, Regina; Reischer, Georg H; Farnleitner, Andreas H

    2017-06-20

    We report a novel molecular assay, based on helicase-dependent amplification (HDA), for the detection of enterococci as markers for fecal pollution in water. This isothermal assay targets the same Enterococcus 23S rRNA gene region as the existing quantitative polymerase chain reaction (qPCR) assays of U.S. Environmental Protection Agency Methods 1611 and 1609 but can be entirely performed on a simple heating block. The developed Enterococcus HDA assay successfully discriminated 15 enterococcal from 15 non-enterococcal reference strains and reliably detected 48 environmental isolates of enterococci. The limit of detection was 25 target copies per reaction, only 3 times higher than that of qPCR. The applicability of the assay was tested on 30 environmental water sample DNA extracts, simulating a gradient of fecal pollution. Despite the isothermal nature of the reaction, the HDA results were consistent with those of the qPCR reference. Given this performance, we conclude that the developed Enterococcus HDA assay has great potential as a qualitative molecular screening method for resource-limited settings when combined with compatible up- and downstream processes. This amplification strategy can pave the way for developing a new generation of rapid, low-cost, and field-deployable molecular diagnostic tools for water quality monitoring.

  6. A volumetric meter chip for point-of-care quantitative detection of bovine catalase for food safety control.

    Science.gov (United States)

    Cui, Xingye; Hu, Jie; Choi, Jane Ru; Huang, Yalin; Wang, Xuemin; Lu, Tian Jian; Xu, Feng

    2016-09-07

    A volumetric meter chip was developed for quantitative point-of-care (POC) analysis of bovine catalase, a bioindicator of bovine mastitis, in milk samples. The meter chip displays multiplexed quantitative results by presenting the distance of ink bar advancement that is detectable by the naked eye. The meter chip comprises a poly(methyl methacrylate) (PMMA) layer, a double-sided adhesive (DSA) layer and a glass slide layer fabricated by the laser-etching method, which is typically simple, rapid (∼3 min per chip), and cost effective (∼$0.2 per chip). Specially designed "U shape" reaction cells are covered by an adhesive tape that serves as an on-off switch, enabling the simple operation of the assay. As a proof of concept, we employed the developed meter chip for the quantification of bovine catalase in raw milk samples to detect catalase concentrations as low as 20 μg/mL. The meter chip has great potential to detect various target analytes for a wide range of POC applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Screening suitable reference genes for normalization in reverse transcription quantitative real-time PCR analysis in melon.

    Directory of Open Access Journals (Sweden)

    Qiusheng Kong

    Full Text Available Melon (Cucumis melo. L is not only an economically important cucurbitaceous crop but also an attractive model for studying many biological characteristics. Screening appropriate reference genes is essential to reverse transcription quantitative real-time PCR (RT-qPCR, which is key to many studies involving gene expression analysis. In this study, 14 candidate reference genes were selected, and the variations in their expression in roots and leaves of plants subjected to biotic stress, abiotic stress, and plant growth regulator treatment were assessed by RT-qPCR. The stability of the expression of the selected genes was determined and ranked using geNorm and NormFinder. geNorm identified the two most stable genes for each set of conditions: CmADP and CmUBIep across all samples, CmUBIep and CmRPL in roots, CmRAN and CmACT in leaves, CmADP and CmRPL under abiotic stress conditions, CmTUA and CmACT under biotic stress conditions, and CmRAN and CmACT under plant growth regulator treatments. NormFinder determined CmRPL to be the best reference gene in roots and under biotic stress conditions and CmADP under the other experimental conditions. CmUBC2 and CmPP2A were not found to be suitable under many experimental conditions. The catalase family genes CmCAT1, CmCAT2, and CmCAT3 were identified in melon genome and used as target genes to validate the reliability of identified reference genes. The catalase family genes showed the most upregulation 3 days after inoculation with Fusarium wilt in roots, after which they were downregulated. Their levels of expression were significantly overestimated when the unsuitable reference gene was used for normalization. These results not only provide guidelines for the selection of reference genes for gene expression analyses in melons but may also provide valuable information for studying the functions of catalase family genes in stress responses.

  8. Selection and validation of reference genes for quantitative gene expression studies in Erythroxylum coca [v1; ref status: indexed, http://f1000r.es/y1

    Directory of Open Access Journals (Sweden)

    Teresa Docimo

    2013-02-01

    Full Text Available Real-time quantitative PCR is a powerful technique for the investigation of comparative gene expression, but its accuracy and reliability depend on the reference genes used as internal standards. Only genes that show a high level of expression stability are suitable for use as reference genes, and these must be identified on a case-by-case basis. Erythroxylum coca produces and accumulates high amounts of the pharmacologically active tropane alkaloid cocaine (especially in the leaves, and is an emerging model for the investigation of tropane alkaloid biosynthesis. The identification of stable internal reference genes for this species is important for its development as a model species, and would enable comparative analysis of candidate biosynthetic genes in the different tissues of the coca plant. In this study, we evaluated the expression stability of nine candidate reference genes in E. coca (Ec6409, Ec10131, Ec11142, Actin, APT2, EF1α, TPB1, Pex4, Pp2aa3. The expression of these genes was measured in seven tissues (flowers, stems, roots and four developmental leaf stages and the stability of expression was assessed using three algorithms (geNorm, NormFinder and BestKeeper. From our results we conclude that Ec10131 and TPB1 are the most appropriate internal reference genes in leaves (where the majority of cocaine is produced, while Ec10131 and Ec6409 are the most suitable internal reference genes across all of the tissues tested.

  9. Simultaneous detection of transgenic DNA by surface plasmon resonance imaging with potential application to gene doping detection.

    Science.gov (United States)

    Scarano, Simona; Ermini, Maria Laura; Spiriti, Maria Michela; Mascini, Marco; Bogani, Patrizia; Minunni, Maria

    2011-08-15

    Surface plasmon resonance imaging (SPRi) was used as the transduction principle for the development of optical-based sensing for transgenes detection in human cell lines. The objective was to develop a multianalyte, label-free, and real-time approach for DNA sequences that are identified as markers of transgenosis events. The strategy exploits SPRi sensing to detect the transgenic event by targeting selected marker sequences, which are present on shuttle vector backbone used to carry out the transfection of human embryonic kidney (HEK) cell lines. Here, we identified DNA sequences belonging to the Cytomegalovirus promoter and the Enhanced Green Fluorescent Protein gene. System development is discussed in terms of probe efficiency and influence of secondary structures on biorecognition reaction on sensor; moreover, optimization of PCR samples pretreatment was carried out to allow hybridization on biosensor, together with an approach to increase SPRi signals by in situ mass enhancement. Real-time PCR was also employed as reference technique for marker sequences detection on human HEK cells. We can foresee that the developed system may have potential applications in the field of antidoping research focused on the so-called gene doping.

  10. Presymptomatic breast cancer in Egypt: role of BRCA1 and BRCA2 tumor suppressor genes mutations detection

    Directory of Open Access Journals (Sweden)

    Hashishe Mervat M

    2010-06-01

    Full Text Available Abstract Background Breast cancer is one of the most common diseases affecting women. Inherited susceptibility genes, BRCA1 and BRCA2, are considered in breast, ovarian and other common cancers etiology. BRCA1 and BRCA2 genes have been identified that confer a high degree of breast cancer risk. Objective Our study was performed to identify germline mutations in some exons of BRCA1 and BRCA2 genes for the early detection of presymptomatic breast cancer in females. Methods This study was applied on Egyptian healthy females who first degree relatives to those, with or without a family history, infected with breast cancer. Sixty breast cancer patients, derived from 60 families, were selected for molecular genetic testing of BRCA1 and BRCA2 genes. The study also included 120 healthy first degree female relatives of the patients, either sisters and/or daughters, for early detection of presymptomatic breast cancer mutation carriers. Genomic DNA was extracted from peripheral blood lymphocytes of all the studied subjects. Universal primers were used to amplify four regions of the BRCA1 gene (exons 2,8,13 and 22 and one region (exon 9 of BRCA2 gene using specific PCR. The polymerase chain reaction was carried out. Single strand conformation polymorphism assay and heteroduplex analysis were used to screen for mutations in the studied exons. In addition, DNA sequencing of the normal and mutated exons were performed. Results Mutations in both BRCA1 and BRCA2 genes were detected in 86.7% of the families. Current study indicates that 60% of these families were attributable to BRCA1 mutations, while 26.7% of them were attributable to BRCA2 mutations. Results showed that four mutations were detected in the BRCA1 gene, while one mutation was detected in the BRCA2 gene. Asymptomatic relatives, 80(67% out of total 120, were mutation carriers. Conclusions BRCA1 and BRCA2 genes mutations are responsible for a significant proportion of breast cancer. BRCA mutations

  11. The gsdf gene locus harbors evolutionary conserved and clustered genes preferentially expressed in fish previtellogenic oocytes.

    Science.gov (United States)

    Gautier, Aude; Le Gac, Florence; Lareyre, Jean-Jacques

    2011-02-01

    The gonadal soma-derived factor (GSDF) belongs to the transforming growth factor-β superfamily and is conserved in teleostean fish species. Gsdf is specifically expressed in the gonads, and gene expression is restricted to the granulosa and Sertoli cells in trout and medaka. The gsdf gene expression is correlated to early testis differentiation in medaka and was shown to stimulate primordial germ cell and spermatogonia proliferation in trout. In the present study, we show that the gsdf gene localizes to a syntenic chromosomal fragment conserved among vertebrates although no gsdf-related gene is detected on the corresponding genomic region in tetrapods. We demonstrate using quantitative RT-PCR that most of the genes localized in the synteny are specifically expressed in medaka gonads. Gsdf is the only gene of the synteny with a much higher expression in the testis compared to the ovary. In contrast, gene expression pattern analysis of the gsdf surrounding genes (nup54, aff1, klhl8, sdad1, and ptpn13) indicates that these genes are preferentially expressed in the female gonads. The tissue distribution of these genes is highly similar in medaka and zebrafish, two teleostean species that have diverged more than 110 million years ago. The cellular localization of these genes was determined in medaka gonads using the whole-mount in situ hybridization technique. We confirm that gsdf gene expression is restricted to Sertoli and granulosa cells in contact with the premeiotic and meiotic cells. The nup54 gene is expressed in spermatocytes and previtellogenic oocytes. Transcripts corresponding to the ovary-specific genes (aff1, klhl8, and sdad1) are detected only in previtellogenic oocytes. No expression was detected in the gonocytes in 10 dpf embryos. In conclusion, we show that the gsdf gene localizes to a syntenic chromosomal fragment harboring evolutionary conserved genes in vertebrates. These genes are preferentially expressed in previtelloogenic oocytes, and thus, they

  12. Detection of Fusarium verticillioides by PCR-ELISA based on FUM21 gene.

    Science.gov (United States)

    Omori, Aline Myuki; Ono, Elisabete Yurie Sataque; Bordini, Jaqueline Gozzi; Hirozawa, Melissa Tiemi; Fungaro, Maria Helena Pelegrinelli; Ono, Mario Augusto

    2018-08-01

    Fusarium verticillioides is a primary corn pathogen and fumonisin producer which is associated with toxic effects in humans and animals. The traditional methods for detection of fungal contamination based on morphological characteristics are time-consuming and show low sensitivity and specificity. Therefore, the objective of this study was to develop a PCR-ELISA based on the FUM21 gene for F. verticillioides detection. The DNA of the F. verticillioides, Fusarium sp., Aspergillus sp. and Penicillium sp. isolates was analyzed by conventional PCR and PCR-ELISA to determine the specificity. The PCR-ELISA was specific to F. verticillioides isolates, showed a 2.5 pg detection limit and was 100-fold more sensitive than conventional PCR. In corn samples inoculated with F. verticillioides conidia, the detection limit of the PCR-ELISA was 1 × 10 4 conidia/g and was also 100-fold more sensitive than conventional PCR. Naturally contaminated corn samples were analyzed by PCR-ELISA based on the FUM21 gene and PCR-ELISA absorbance values correlated positively (p PCR-ELISA developed in this study can be useful for F. verticillioides detection in corn samples. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Identification and validation of reference genes for quantification of target gene expression with quantitative real-time PCR for tall fescue under four abiotic stresses.

    Directory of Open Access Journals (Sweden)

    Zhimin Yang

    Full Text Available Tall fescue (Festuca arundinacea Schreb. is widely utilized as a major forage and turfgrass species in the temperate regions of the world and is a valuable plant material for studying molecular mechanisms of grass stress tolerance due to its superior drought and heat tolerance among cool-season species. Selection of suitable reference genes for quantification of target gene expression is important for the discovery of molecular mechanisms underlying improved growth traits and stress tolerance. The stability of nine potential reference genes (ACT, TUB, EF1a, GAPDH, SAND, CACS, F-box, PEPKR1 and TIP41 was evaluated using four programs, GeNorm, NormFinder, BestKeeper, and RefFinder. The combinations of SAND and TUB or TIP41 and TUB were most stably expressed in salt-treated roots or leaves. The combinations of GAPDH with TIP41 or TUB were stable in roots and leaves under drought stress. TIP41 and PEPKR1 exhibited stable expression in cold-treated roots, and the combination of F-box, TIP41 and TUB was also stable in cold-treated leaves. CACS and TUB were the two most stable reference genes in heat-stressed roots. TIP41 combined with TUB and ACT was stably expressed in heat-stressed leaves. Finally, quantitative real-time polymerase chain reaction (qRT-PCR assays of the target gene FaWRKY1 using the identified most stable reference genes confirmed the reliability of selected reference genes. The selection of suitable reference genes in tall fescue will allow for more accurate identification of stress-tolerance genes and molecular mechanisms conferring stress tolerance in this stress-tolerant species.

  14. Quantitative gene-expression of the tumor angiogenesis markers vascular endothelial growth factor, integrin alphaV and integrin beta3 in human neuroendocrine tumors

    DEFF Research Database (Denmark)

    Oxboel, Jytte; Binderup, Tina; Knigge, Ulrich

    2009-01-01

    , in neuroendocrine tumors. We used quantitative real-time PCR for measuring mRNA gene-expression of vascular endothelial growth factor (VEGF), integrin alphaV, and integrin beta3, and CD34 for a group of patients with neuroendocrine tumors (n=13). Tissue from patients with colorectal cancer liver metastases (n=14...... compared to both colorectal liver metastases (p=0.10) and normal liver tissue (p=0.06). In neuroendocrine tumors, gene-expression was highly variable of VEGF (530-fold), integrin alphaV (23-fold) and integrin beta3 (106-fold). Quantitative gene-expression levels of the key angiogenesis molecules VEGF......Anti-angiogenesis treatment is a promising new therapy for cancer that recently has also been suggested for patients with neuroendocrine tumors. The aim of the present study was therefore to investigate the level of tumor angiogenesis, and thereby the molecular basis for anti-angiogenesis treatment...

  15. Development and validation of a real-time quantitative PCR assay to detect Xanthomonas axonopodis pv. allii from onion seed.

    Science.gov (United States)

    Robène, Isabelle; Perret, Marion; Jouen, Emmanuel; Escalon, Aline; Maillot, Marie-Véronique; Chabirand, Aude; Moreau, Aurélie; Laurent, Annie; Chiroleu, Frédéric; Pruvost, Olivier

    2015-07-01

    Bacterial blight of onion is an emerging disease threatening world onion production. The causal agent Xanthomonas axonopodis pv. allii is seed transmitted and a reliable and sensitive tool is needed to monitor seed exchanges. A triplex quantitative real-time PCR assay was developed targeting two X. axonopodis pv. allii-specific markers and an internal control chosen in 5.8S rRNA gene from Alliaceae. Amplification of at least one marker indicates the presence of the bacterium in seed extracts. This real-time PCR assay detected all the 79 X. axonopodis pv. allii strains tested and excluded 85.2% of the 135 non-target strains and particularly all 39 saprophytic and pathogenic bacteria associated with onion. Cross-reactions were mainly obtained for strains assigned to nine phylogenetically related X. axonopodis pathovars. The cycle cut-off was estimated statistically at 36.3 considering a risk of false positive of 1%. The limit of detection obtained in at least 95% of the time (LOD 95%) was 5×10(3) CFU/g (colony forming unit/g). The sensitivity threshold was found to be 1 infected seed in 32,790 seeds. This real-time PCR assay should be useful for preventing the long-distance spread of X. axonopodis pv. allii via contaminated seed lots and determining the epidemiology of the bacterium. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Two fundamentally different classes of microbial genes.

    Science.gov (United States)

    Wolf, Yuri I; Makarova, Kira S; Lobkovsky, Alexander E; Koonin, Eugene V

    2016-11-07

    The evolution of bacterial and archaeal genomes is highly dynamic and involves extensive horizontal gene transfer and gene loss 1-4 . Furthermore, many microbial species appear to have open pangenomes, where each newly sequenced genome contains more than 10% ORFans, that is, genes without detectable homologues in other species 5,6 . Here, we report a quantitative analysis of microbial genome evolution by fitting the parameters of a simple, steady-state evolutionary model to the comparative genomic data on the gene content and gene order similarity between archaeal genomes. The results reveal two sharply distinct classes of microbial genes, one of which is characterized by effectively instantaneous gene replacement, and the other consists of genes with finite, distributed replacement rates. These findings imply a conservative estimate of the size of the prokaryotic genomic universe, which appears to consist of at least a billion distinct genes. Furthermore, the same distribution of constraints is shown to govern the evolution of gene complement and gene order, without the need to invoke long-range conservation or the selfish operon concept 7 .

  17. Estimation of genetic parameters and detection of quantitative trait loci for metabolites in Danish Holstein milk

    DEFF Research Database (Denmark)

    Buitenhuis, Albert Johannes; Sundekilde, Ulrik; Poulsen, Nina Aagaard

    2013-01-01

    Small components and metabolites in milk are significant for the utilization of milk, not only in dairy food production but also as disease predictors in dairy cattle. This study focused on estimation of genetic parameters and detection of quantitative trait loci for metabolites in bovine milk. F...... for lactic acid to >0.8 for orotic acid and β-hydroxybutyrate. A single SNP association analysis revealed 7 genome-wide significant quantitative trait loci [malonate: Bos taurus autosome (BTA)2 and BTA7; galactose-1-phosphate: BTA2; cis-aconitate: BTA11; urea: BTA12; carnitine: BTA25...

  18. Molecular detection of TasA gene in endophytic Bacillus species ...

    African Journals Online (AJOL)

    hope&shola

    2012-03-20

    Mar 20, 2012 ... formation in Bacillus species was detected in the endophytic bacteria by polymerase chain reaction. (PCR) amplification. In ten endophytic ... confer a competitive advantage to the spore from the onset of sporulation and later, ... possessing TasA gene (Chen et al., 2007; Gioia et al.,. 2007; Kunst et al., 1997; ...

  19. Human synthetic lethal inference as potential anti-cancer target gene detection

    Directory of Open Access Journals (Sweden)

    Solé Ricard V

    2009-12-01

    Full Text Available Abstract Background Two genes are called synthetic lethal (SL if mutation of either alone is not lethal, but mutation of both leads to death or a significant decrease in organism's fitness. The detection of SL gene pairs constitutes a promising alternative for anti-cancer therapy. As cancer cells exhibit a large number of mutations, the identification of these mutated genes' SL partners may provide specific anti-cancer drug candidates, with minor perturbations to the healthy cells. Since existent SL data is mainly restricted to yeast screenings, the road towards human SL candidates is limited to inference methods. Results In the present work, we use phylogenetic analysis and database manipulation (BioGRID for interactions, Ensembl and NCBI for homology, Gene Ontology for GO attributes in order to reconstruct the phylogenetically-inferred SL gene network for human. In addition, available data on cancer mutated genes (COSMIC and Cancer Gene Census databases as well as on existent approved drugs (DrugBank database supports our selection of cancer-therapy candidates. Conclusions Our work provides a complementary alternative to the current methods for drug discovering and gene target identification in anti-cancer research. Novel SL screening analysis and the use of highly curated databases would contribute to improve the results of this methodology.

  20. [Influence of Spectral Pre-Processing on PLS Quantitative Model of Detecting Cu in Navel Orange by LIBS].

    Science.gov (United States)

    Li, Wen-bing; Yao, Lin-tao; Liu, Mu-hua; Huang, Lin; Yao, Ming-yin; Chen, Tian-bing; He, Xiu-wen; Yang, Ping; Hu, Hui-qin; Nie, Jiang-hui

    2015-05-01

    Cu in navel orange was detected rapidly by laser-induced breakdown spectroscopy (LIBS) combined with partial least squares (PLS) for quantitative analysis, then the effect on the detection accuracy of the model with different spectral data ptetreatment methods was explored. Spectral data for the 52 Gannan navel orange samples were pretreated by different data smoothing, mean centralized and standard normal variable transform. Then 319~338 nm wavelength section containing characteristic spectral lines of Cu was selected to build PLS models, the main evaluation indexes of models such as regression coefficient (r), root mean square error of cross validation (RMSECV) and the root mean square error of prediction (RMSEP) were compared and analyzed. Three indicators of PLS model after 13 points smoothing and processing of the mean center were found reaching 0. 992 8, 3. 43 and 3. 4 respectively, the average relative error of prediction model is only 5. 55%, and in one word, the quality of calibration and prediction of this model are the best results. The results show that selecting the appropriate data pre-processing method, the prediction accuracy of PLS quantitative model of fruits and vegetables detected by LIBS can be improved effectively, providing a new method for fast and accurate detection of fruits and vegetables by LIBS.

  1. Detecting negative selection on recurrent mutations using gene genealogy

    Science.gov (United States)

    2013-01-01

    Background Whether or not a mutant allele in a population is under selection is an important issue in population genetics, and various neutrality tests have been invented so far to detect selection. However, detection of negative selection has been notoriously difficult, partly because negatively selected alleles are usually rare in the population and have little impact on either population dynamics or the shape of the gene genealogy. Recently, through studies of genetic disorders and genome-wide analyses, many structural variations were shown to occur recurrently in the population. Such “recurrent mutations” might be revealed as deleterious by exploiting the signal of negative selection in the gene genealogy enhanced by their recurrence. Results Motivated by the above idea, we devised two new test statistics. One is the total number of mutants at a recurrently mutating locus among sampled sequences, which is tested conditionally on the number of forward mutations mapped on the sequence genealogy. The other is the size of the most common class of identical-by-descent mutants in the sample, again tested conditionally on the number of forward mutations mapped on the sequence genealogy. To examine the performance of these two tests, we simulated recurrently mutated loci each flanked by sites with neutral single nucleotide polymorphisms (SNPs), with no recombination. Using neutral recurrent mutations as null models, we attempted to detect deleterious recurrent mutations. Our analyses demonstrated high powers of our new tests under constant population size, as well as their moderate power to detect selection in expanding populations. We also devised a new maximum parsimony algorithm that, given the states of the sampled sequences at a recurrently mutating locus and an incompletely resolved genealogy, enumerates mutation histories with a minimum number of mutations while partially resolving genealogical relationships when necessary. Conclusions With their

  2. Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology.

    Science.gov (United States)

    Smith, Cindy J; Osborn, A Mark

    2009-01-01

    Quantitative PCR (Q-PCR or real-time PCR) approaches are now widely applied in microbial ecology to quantify the abundance and expression of taxonomic and functional gene markers within the environment. Q-PCR-based analyses combine 'traditional' end-point detection PCR with fluorescent detection technologies to record the accumulation of amplicons in 'real time' during each cycle of the PCR amplification. By detection of amplicons during the early exponential phase of the PCR, this enables the quantification of gene (or transcript) numbers when these are proportional to the starting template concentration. When Q-PCR is coupled with a preceding reverse transcription reaction, it can be used to quantify gene expression (RT-Q-PCR). This review firstly addresses the theoretical and practical implementation of Q-PCR and RT-Q-PCR protocols in microbial ecology, highlighting key experimental considerations. Secondly, we review the applications of (RT)-Q-PCR analyses in environmental microbiology and evaluate the contribution and advances gained from such approaches. Finally, we conclude by offering future perspectives on the application of (RT)-Q-PCR in furthering understanding in microbial ecology, in particular, when coupled with other molecular approaches and more traditional investigations of environmental systems.

  3. A new specific reference gene based on growth hormone gene (GH1) used for detection and relative quantification of Aquadvantage® GM salmon (Salmo salar L.) in food products.

    Science.gov (United States)

    Hafsa, Ahmed Ben; Nabi, Nesrine; Zellama, Mohamed Salem; Said, Khaled; Chaouachi, Maher

    2016-01-01

    Genetic transformation of fish is mainly oriented towards the improvement of growth for the benefit of the aquaculture. Actually, Atlantic salmon (Salmo salar) is the species most transformed to achieve growth rates quite large compared to the wild. To anticipate the presence of contaminations with GM salmon in fish markets and the lack of labeling regulations with a mandatory threshold, the proper methods are needed to test the authenticity of the ingredients. A quantitative real-time polymerase chain reaction (QRT-PCR) method was used in this study. Ct values were obtained and validated using 15 processed food containing salmon. The relative and absolute limits of detection were 0.01% and 0.01 ng/μl of genomic DNA, respectively. Results demonstrate that the developed QRT-PCR method is suitable specifically for identification of S. salar in food ingredients based on the salmon growth hormone gene 1 (GH1). The processes used to develop the specific salmon reference gene case study are intended to serve as a model for performing quantification of Aquadvantage® GM salmon on future genetically modified (GM) fish to be commercialized. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Comparison between culture and a multiplex quantitative real-time polymerase chain reaction assay detecting Ureaplasma urealyticum and U. parvum.

    Science.gov (United States)

    Frølund, Maria; Björnelius, Eva; Lidbrink, Peter; Ahrens, Peter; Jensen, Jørgen Skov

    2014-01-01

    A novel multiplex quantitative real-time polymerase chain reaction (qPCR) for simultaneous detection of U. urealyticum and U. parvum was developed and compared with quantitative culture in Shepard's 10 C medium for ureaplasmas in urethral swabs from 129 men and 66 women, and cervical swabs from 61 women. Using culture as the gold standard, the sensitivity of the qPCR was 96% and 95% for female urethral and cervical swabs, respectively. In male urethral swabs the sensitivity was 89%. The corresponding specificities were 100%, 87% and 99%. The qPCR showed a linear increasing DNA copy number with increasing colour-changing units. Although slightly less sensitive than culture, this multiplex qPCR assay detecting U. urealyticum and U. parvum constitutes a simple and fast alternative to the traditional methods for identification of ureaplasmas and allows simultaneous species differentiation and quantitation in clinical samples. Furthermore, specimens overgrown by other bacteria using the culture method can be evaluated in the qPCR.

  5. Comparison between culture and a multiplex quantitative real-time polymerase chain reaction assay detecting Ureaplasma urealyticum and U. parvum.

    Directory of Open Access Journals (Sweden)

    Maria Frølund

    Full Text Available A novel multiplex quantitative real-time polymerase chain reaction (qPCR for simultaneous detection of U. urealyticum and U. parvum was developed and compared with quantitative culture in Shepard's 10 C medium for ureaplasmas in urethral swabs from 129 men and 66 women, and cervical swabs from 61 women. Using culture as the gold standard, the sensitivity of the qPCR was 96% and 95% for female urethral and cervical swabs, respectively. In male urethral swabs the sensitivity was 89%. The corresponding specificities were 100%, 87% and 99%. The qPCR showed a linear increasing DNA copy number with increasing colour-changing units. Although slightly less sensitive than culture, this multiplex qPCR assay detecting U. urealyticum and U. parvum constitutes a simple and fast alternative to the traditional methods for identification of ureaplasmas and allows simultaneous species differentiation and quantitation in clinical samples. Furthermore, specimens overgrown by other bacteria using the culture method can be evaluated in the qPCR.

  6. A Microchip for Integrated Single-Cell Gene Expression Profiling and Genotoxicity Detection

    Directory of Open Access Journals (Sweden)

    Hui Dong

    2016-09-01

    Full Text Available Microfluidics-based single-cell study is an emerging approach in personalized treatment or precision medicine studies. Single-cell gene expression holds a potential to provide treatment selections with maximized efficacy to help cancer patients based on a genetic understanding of their disease. This work presents a multi-layer microchip for single-cell multiplexed gene expression profiling and genotoxicity detection. Treated by three drug reagents (i.e., methyl methanesulfonate, docetaxel and colchicine with varied concentrations and time lengths, individual human cancer cells (MDA-MB-231 are lysed on-chip, and the released mRNA templates are captured and reversely transcribed into single strand DNA. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH, cyclin-dependent kinase inhibitor 1A (CDKN1A, and aurora kinase A (AURKA genes from single cells are amplified and real-time quantified through multiplex polymerase chain reaction. The microchip is capable of integrating all steps of single-cell multiplexed gene expression profiling, and providing precision detection of drug induced genotoxic stress. Throughput has been set to be 18, and can be further increased following the same approach. Numerical simulation of on-chip single cell trapping and heat transfer has been employed to evaluate the chip design and operation.

  7. Quantitative electrical detection of immobilized protein using gold nanoparticles and gold enhancement on a biochip

    International Nuclear Information System (INIS)

    Lei, Kin Fong

    2011-01-01

    Electrical detection of the concentration of protein immobilized on a biochip is demonstrated. The concentration of the direct immobilized protein can be determined by the resistance values measured by an ohm-meter directly. Indium tin oxide interdigitated electrodes were utilized as the detection sites on the biochip. Protein, i.e. antibody, of certain concentration was first immobilized on the detection site. Gold nanoparticles were then applied to indicate the immobilized protein. Since the gold nanoparticles were tiny, a detectable electrical signal could not be generated. Hence, a gold enhancement process was performed for signal amplification. Gold nanoparticles were enlarged physically, such that a conductive metal layer was formed on the detection site. The presence and concentration of protein can be determined by the resistance value across the electrode measured by an ohm-meter. An immobilized protein concentration ranging from 50 to 1000 ng ml −1 can be detected quantitatively by the resistance values from 4300 to 1700 Ω. The proposed technique is potentially extended for the detection of immunoassay on the biochip. Since the protocol of the electrical detection does not involve sophisticated equipment, it can therefore be used for the development of a portable immunoassay device

  8. Comparison of qualitative and quantitative approach to prostate MR spectroscopy in peripheral zone cancer detection

    International Nuclear Information System (INIS)

    Klijn, Stijn; De Visschere, Pieter J.; De Meerleer, Gert O.; Villeirs, Geert M.

    2012-01-01

    Objective: To compare the diagnostic performance of a qualitative (pattern recognition) and a quantitative (numerical assessment) approach to magnetic resonance spectroscopy (MRS) in the diagnosis of peripheral zone prostate cancer. Methods: 185 patients (131 with histopathologically proven cancer, 54 normal/benign after at least 12 months follow-up) were prospectively evaluated with qualitative MRS using a 4-point scale between 3/2004 and 1/2008, and retrospectively reassessed using a prototype quantitative postprocessing software in April 2008. Based on pathology and follow-up data, diagnostic performance parameters were calculated. Results: The qualitative and quantitative approaches were concordant in 78.9% (146/185) of cases. The difference between the areas under the ROC curve (0.791 versus 0.772, respectively) was not statistically significant. The sensitivity, specificity and accuracy were 55.7%, 94.4% and 67.0% for the qualitative approach, and 55.0%, 83.3% and 63.2% for the quantitative approach. The sensitivity for high grade tumours (Gleason 4 + 3 or higher) was 85.2% (23/27) for both approaches. All cancers missed on either one approach separately (31/31) and 91% of cancers missed on both approaches together (23/27) were of lower grade (Gleason 3 + 4 or lower). Conclusions: Qualitative and quantitative approaches to MRS yield similar diagnostic results. Discordances in tumour detection only occurred in lower grade cancers.

  9. Automatic detection and quantitative analysis of cells in the mouse primary motor cortex

    Science.gov (United States)

    Meng, Yunlong; He, Yong; Wu, Jingpeng; Chen, Shangbin; Li, Anan; Gong, Hui

    2014-09-01

    Neuronal cells play very important role on metabolism regulation and mechanism control, so cell number is a fundamental determinant of brain function. Combined suitable cell-labeling approaches with recently proposed three-dimensional optical imaging techniques, whole mouse brain coronal sections can be acquired with 1-μm voxel resolution. We have developed a completely automatic pipeline to perform cell centroids detection, and provided three-dimensional quantitative information of cells in the primary motor cortex of C57BL/6 mouse. It involves four principal steps: i) preprocessing; ii) image binarization; iii) cell centroids extraction and contour segmentation; iv) laminar density estimation. Investigations on the presented method reveal promising detection accuracy in terms of recall and precision, with average recall rate 92.1% and average precision rate 86.2%. We also analyze laminar density distribution of cells from pial surface to corpus callosum from the output vectorizations of detected cell centroids in mouse primary motor cortex, and find significant cellular density distribution variations in different layers. This automatic cell centroids detection approach will be beneficial for fast cell-counting and accurate density estimation, as time-consuming and error-prone manual identification is avoided.

  10. PanCoreGen - Profiling, detecting, annotating protein-coding genes in microbial genomes.

    Science.gov (United States)

    Paul, Sandip; Bhardwaj, Archana; Bag, Sumit K; Sokurenko, Evgeni V; Chattopadhyay, Sujay

    2015-12-01

    A large amount of genomic data, especially from multiple isolates of a single species, has opened new vistas for microbial genomics analysis. Analyzing the pan-genome (i.e. the sum of genetic repertoire) of microbial species is crucial in understanding the dynamics of molecular evolution, where virulence evolution is of major interest. Here we present PanCoreGen - a standalone application for pan- and core-genomic profiling of microbial protein-coding genes. PanCoreGen overcomes key limitations of the existing pan-genomic analysis tools, and develops an integrated annotation-structure for a species-specific pan-genomic profile. It provides important new features for annotating draft genomes/contigs and detecting unidentified genes in annotated genomes. It also generates user-defined group-specific datasets within the pan-genome. Interestingly, analyzing an example-set of Salmonella genomes, we detect potential footprints of adaptive convergence of horizontally transferred genes in two human-restricted pathogenic serovars - Typhi and Paratyphi A. Overall, PanCoreGen represents a state-of-the-art tool for microbial phylogenomics and pathogenomics study. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Selection and validation of appropriate reference genes for quantitative real-time PCR analysis in Salvia hispanica.

    Directory of Open Access Journals (Sweden)

    Rahul Gopalam

    Full Text Available Quantitative real-time polymerase chain reaction (qRT-PCR has become the most popular choice for gene expression studies. For accurate expression analysis, it is pertinent to select a stable reference gene to normalize the data. It is now known that the expression of internal reference genes varies considerably during developmental stages and under different experimental conditions. For Salvia hispanica, an economically important oilseed crop, there are no reports of stable reference genes till date. In this study, we chose 13 candidate reference genes viz. Actin11 (ACT, Elongation factor 1-alpha (EF1-α, Eukaryotic translation initiation factor 3E (ETIF3E, alpha tubulin (α-TUB, beta tubulin (β-TUB, Glyceraldehyde 3-phosphate dehydrogenase (GAPDH, Cyclophilin (CYP, Clathrin adaptor complex (CAC, Serine/threonine-protein phosphatase 2A (PP2A, FtsH protease (FtsH, 18S ribosomal RNA (18S rRNA, S-adenosyl methionine decarboxylase (SAMDC and Rubisco activase (RCA and the expression levels of these genes were assessed in a diverse set of tissue samples representing vegetative stages, reproductive stages and various abiotic stress treatments. Two of the widely used softwares, geNorm and Normfinder were used to evaluate the expression stabilities of these 13 candidate reference genes under different conditions. Results showed that GAPDH and CYP expression remain stable throughout in the different abiotic stress treatments, CAC and PP2A expression were relatively stable under reproductive stages and α-TUB, PP2A and ETIF3E were found to be stably expressed in vegetative stages. Further, the expression levels of Diacylglycerol acyltransferase (DGAT1, a key enzyme in triacylglycerol synthesis was analyzed to confirm the validity of reference genes identified in the study. This is the first systematic study of selection of reference genes in S. hispanica, and will benefit future expression studies in this crop.

  12. Detection of hydrogen peroxide-producing Lactobacillus species in the vagina: a comparison of culture and quantitative PCR among HIV-1 seropositive women

    Directory of Open Access Journals (Sweden)

    Balkus Jennifer E

    2012-08-01

    Full Text Available Abstract Background The presence of hydrogen peroxide (H2O2 producing Lactobacillus in the vagina may play a role in controlling genital HIV-1 shedding. Sensitive molecular methods improve our ability to characterize the vaginal microbiota; however, they cannot characterize phenotype. We assessed the concordance of H2O2-producing Lactobacillus detected by culture with quantitative PCR (qPCR detection of Lactobacillus species commonly assumed to be H2O2-producers. Methods Samples were collected as part of a prospective cohort study of HIV-1 seropositive US women. Cervicovaginal lavage specimens were tested for L. crispatus and L. jensenii using 16S rRNA gene qPCR assays. Vaginal swabs were cultured for Lactobacillus and tested for H2O2-production. We calculated a kappa statistic to assess concordance between culture and qPCR. Results Culture and qPCR results were available for 376 visits from 57 women. Lactobacilli were detected by culture at 308 (82% visits, of which 233 of 308 (76% produced H2O2. L. crispatus and/or L. jensenii were detected at 215 (57% visits. Concordance between detection of L. crispatus and/or L. jensenii by qPCR and H2O2-producing Lactobacillus by culture was 75% (kappa = 0.45. Conclusions Among HIV-1 seropositive women, there was a moderate level of concordance between H2O2-producing Lactobacillus detected by culture and the presence of L. crispatus and/or L. jensenii by qPCR. However, one-quarter of samples with growth of H2O2-producing lactobacilli did not have L. crispatus or L. jensenii detected by qPCR. This discordance may be due to the presence of other H2O2-producing Lactobacillus species.

  13. Detection of Toxoplasma gondii in Diabetic Patients Using the Nested PCR Assay via RE and B1 Genes.

    Science.gov (United States)

    Mousavi, Mohammad; Saravani, Ramin; Jafari Modrek, Mohammad; Shahrakipour, Mahnaz; Sekandarpour, Sina

    2016-02-01

    Toxoplasma gondii is an obligate intracellular protozoan parasite that exists worldwide. Various techniques have been developed for T. gondii detection. The aim of this study was the detection of T. gondii in diabetic patients with RE and B1 genes and the comparison of these two genes for diagnosis using the nested-PCR assay method. DNA samples from 205 diabetic patients who had been referred to the diabetes center of Ali Asghar hospital in Zahedan, Iran, were collected and analyzed using the nested-PCR assay method. Toxoplasma antibody data gathered using the enzyme-linked immunosorbent assay (ELISA) method from a previous study was used to group patients. The data were analyzed using SPSS 18. The chi-square test was used for comparison. Of the diabetic patients selected, the following results were obtained: 53 (IgG+, IgM+); 20 (IgG-, IgM+); 72 (IgG+, IgM-); and 60 (IgG-, IgM-). The nested-PCR detected the following: in the acute group, 21/53 (39.63%), 30/53 (56.60%) (IgM+, IgG+); in the chronic group, 40/72 (55.56%), 51/72 (70.83%), (IgG+, IgM-); in the false positive group, 18/20 (90%), 17/20 (85%) (IgM+, IgG-); and sero-negative samples of 38/60 (63.33%) and 60/ 41 (77.35%) for RE and B1 genes, respectively. The prevalence of toxoplasmosis showed positive in patients with diabetes in the B1 gene 139 (67.8%) and RE gene 117 (57.1%). Our study demonstrated that the B1 gene, more so than the RE gene, showed positive samples and can be used to detect toxoplasmosis, although the B1 gene, in comparison to the RE gene, did not show any superiority of molecular diagnosing capability. Results also showed that toxoplasma molecular detection methods can be used instead of routine serological detection methods in a clinical laboratory testing.

  14. Quantitative Surface Chirality Detection with Sum Frequency Generation Vibrational Spectroscopy: Twin Polarization Angle Approach

    International Nuclear Information System (INIS)

    Wei, Feng; Xu, Yanyan; Guo, Yuan; Liu, Shi-lin; Wang, Hongfei

    2009-01-01

    Here we report a novel twin polarization angle (TPA) approach in the quantitative chirality detection with the surface sum-frequency generation vibrational spectroscopy (SFG-VS). Generally, the achiral contribution dominates the surface SFG-VS signal, and the pure chiral signal is usually two or three orders of magnitude smaller. Therefore, it has been difficult to make quantitative detection and analysis of the chiral contributions to the surface SFG-VS signal. In the TPA method, by varying together the polarization angles of the incoming visible light and the sum frequency signal at fixed s or p polarization of the incoming infrared beam, the polarization dependent SFG signal can give not only direct signature of the chiral contribution in the total SFG-VS signal, but also the accurate measurement of the chiral and achiral components in the surface SFG signal. The general description of the TPA method is presented and the experiment test of the TPA approach is also presented for the SFG-VS from the S- and R-limonene chiral liquid surfaces. The most accurate degree of chiral excess values thus obtained for the 2878 cm -1 spectral peak of the S- and R-limonene liquid surfaces are (23.7±0.4)% and (25.4±1.3)%, respectively.

  15. Telomerase Activity Detected by Quantitative Assay in Bladder Carcinoma and Exfoliated Cells in Urine

    Directory of Open Access Journals (Sweden)

    Roberta Fedriga

    2001-01-01

    Full Text Available Early diagnosis is one of the most determining factors for patient survival. The detection of telomerase activity is a potentially promising tool in the diagnosis of bladder and other types of cancer due to the high expression of this enzyme in tumor cells. We carried out a quantitative evaluation of telomerase activity in urine samples in an attempt to determine a cut-off capable of identifying cancer patients. Telomerase activity was quantified by fluorescence TRAP assay in urine from 50 healthy volunteers and in urine and bioptic tumor samples from 56 previously untreated bladder cancer patients and expressed in arbitrary enzymatic units (AEU. Telomerase activity in urine ranged from 0 to 106 AEU (median 0 in healthy donors and from 0 to 282 AEU (median 87 in patients with cancer. A telomerase expression higher than the cut off value determined by receiver operating characteristic (ROC analysis was observed in 78% of cases, regardless of tumor grade and in 71% (15/21 of cases of nonassessable or negative cytology. The quantitative analysis of telomerase activity in urine enabled us to define cut-off values characterized by different sensitivity and specificity. Cytologic and telomerase determination, used sequentially, enabled us to detect about 90% of tumors.

  16. Integration of gene-based markers in a pearl millet genetic map for identification of candidate genes underlying drought tolerance quantitative trait loci

    Directory of Open Access Journals (Sweden)

    Sehgal Deepmala

    2012-01-01

    Full Text Available Abstract Background Identification of genes underlying drought tolerance (DT quantitative trait loci (QTLs will facilitate understanding of molecular mechanisms of drought tolerance, and also will accelerate genetic improvement of pearl millet through marker-assisted selection. We report a map based on genes with assigned functional roles in plant adaptation to drought and other abiotic stresses and demonstrate its use in identifying candidate genes underlying a major DT-QTL. Results Seventy five single nucleotide polymorphism (SNP and conserved intron spanning primer (CISP markers were developed from available expressed sequence tags (ESTs using four genotypes, H 77/833-2, PRLT 2/89-33, ICMR 01029 and ICMR 01004, representing parents of two mapping populations. A total of 228 SNPs were obtained from 30.5 kb sequenced region resulting in a SNP frequency of 1/134 bp. The positions of major pearl millet linkage group (LG 2 DT-QTLs (reported from crosses H 77/833-2 × PRLT 2/89-33 and 841B × 863B were added to the present consensus function map which identified 18 genes, coding for PSI reaction center subunit III, PHYC, actin, alanine glyoxylate aminotransferase, uridylate kinase, acyl-CoA oxidase, dipeptidyl peptidase IV, MADS-box, serine/threonine protein kinase, ubiquitin conjugating enzyme, zinc finger C- × 8-C × 5-C × 3-H type, Hd3, acetyl CoA carboxylase, chlorophyll a/b binding protein, photolyase, protein phosphatase1 regulatory subunit SDS22 and two hypothetical proteins, co-mapping in this DT-QTL interval. Many of these candidate genes were found to have significant association with QTLs of grain yield, flowering time and leaf rolling under drought stress conditions. Conclusions We have exploited available pearl millet EST sequences to generate a mapped resource of seventy five new gene-based markers for pearl millet and demonstrated its use in identifying candidate genes underlying a major DT-QTL in this species. The reported gene

  17. Quantitative prediction of perceptual decisions during near-threshold fear detection

    Science.gov (United States)

    Pessoa, Luiz; Padmala, Srikanth

    2005-04-01

    A fundamental goal of cognitive neuroscience is to explain how mental decisions originate from basic neural mechanisms. The goal of the present study was to investigate the neural correlates of perceptual decisions in the context of emotional perception. To probe this question, we investigated how fluctuations in functional MRI (fMRI) signals were correlated with behavioral choice during a near-threshold fear detection task. fMRI signals predicted behavioral choice independently of stimulus properties and task accuracy in a network of brain regions linked to emotional processing: posterior cingulate cortex, medial prefrontal cortex, right inferior frontal gyrus, and left insula. We quantified the link between fMRI signals and behavioral choice in a whole-brain analysis by determining choice probabilities by means of signal-detection theory methods. Our results demonstrate that voxel-wise fMRI signals can reliably predict behavioral choice in a quantitative fashion (choice probabilities ranged from 0.63 to 0.78) at levels comparable to neuronal data. We suggest that the conscious decision that a fearful face has been seen is represented across a network of interconnected brain regions that prepare the organism to appropriately handle emotionally challenging stimuli and that regulate the associated emotional response. decision making | emotion | functional MRI

  18. Identification of transcription-factor genes expressed in the Arabidopsis female gametophyte

    Directory of Open Access Journals (Sweden)

    Kang Il-Ho

    2010-06-01

    Full Text Available Abstract Background In flowering plants, the female gametophyte is typically a seven-celled structure with four cell types: the egg cell, the central cell, the synergid cells, and the antipodal cells. These cells perform essential functions required for double fertilization and early seed development. Differentiation of these distinct cell types likely involves coordinated changes in gene expression regulated by transcription factors. Therefore, understanding female gametophyte cell differentiation and function will require dissection of the gene regulatory networks operating in each of the cell types. These efforts have been hampered because few transcription factor genes expressed in the female gametophyte have been identified. To identify such genes, we undertook a large-scale differential expression screen followed by promoter-fusion analysis to detect transcription-factor genes transcribed in the Arabidopsis female gametophyte. Results Using quantitative reverse-transcriptase PCR, we analyzed 1,482 Arabidopsis transcription-factor genes and identified 26 genes exhibiting reduced mRNA levels in determinate infertile 1 mutant ovaries, which lack female gametophytes, relative to ovaries containing female gametophytes. Spatial patterns of gene transcription within the mature female gametophyte were identified for 17 transcription-factor genes using promoter-fusion analysis. Of these, ten genes were predominantly expressed in a single cell type of the female gametophyte including the egg cell, central cell and the antipodal cells whereas the remaining seven genes were expressed in two or more cell types. After fertilization, 12 genes were transcriptionally active in the developing embryo and/or endosperm. Conclusions We have shown that our quantitative reverse-transcriptase PCR differential-expression screen is sufficiently sensitive to detect transcription-factor genes transcribed in the female gametophyte. Most of the genes identified in this

  19. A competitive enzyme immunoassay for the quantitative detection of cocaine from banknotes and latent fingermarks.

    Science.gov (United States)

    van der Heide, Susan; Garcia Calavia, Paula; Hardwick, Sheila; Hudson, Simon; Wolff, Kim; Russell, David A

    2015-05-01

    A sensitive and versatile competitive enzyme immunoassay (cEIA) has been developed for the quantitative detection of cocaine in complex forensic samples. Polyclonal anti-cocaine antibody was purified from serum and deposited onto microtiter plates. The concentration of the cocaine antibody adsorbed onto the plates, and the dilution of the cocaine-HRP hapten were both studied to achieve an optimised immunoassay. The method was successfully used to quantify cocaine in extracts taken from both paper currency and latent fingermarks. The limit of detection (LOD) of 0.162ngmL(-1) achieved with the assay compares favourably to that of conventional chromatography-mass spectroscopy techniques, with an appropriate sensitivity for the quantification of cocaine at the low concentrations present in some forensic samples. The cEIA was directly compared to LC-MS for the analysis of ten UK banknote samples. The results obtained from both techniques were statistically similar, suggesting that the immunoassay was unaffected by cross-reactivity with potentially interfering compounds. The cEIA was used also for the detection of cocaine in extracts from latent fingermarks. The results obtained were compared to the cocaine concentrations detected in oral fluid sampled from the same individual. Using the cEIA, we have shown, for the first time, that endogeneously excreted cocaine can be detected and quantified from a single latent fingermark. Additionally, it has been shown that the presence of cocaine, at similar concentrations, in more than one latent fingermark from the same individual can be linked with those concentrations found in oral fluid. These results show that detection of drugs in latent fingermarks could directly indicate whether an individual has consumed the drug. The specificity and feasibility of measuring low concentrations of cocaine in complex forensic samples demonstrate the effectiveness and robustness of the assay. The immunoassay presents a simple and cost

  20. A versatile method to design stem-loop primer-based quantitative PCR assays for detecting small regulatory RNA molecules.

    Directory of Open Access Journals (Sweden)

    Zsolt Czimmerer

    Full Text Available Short regulatory RNA-s have been identified as key regulators of gene expression in eukaryotes. They have been involved in the regulation of both physiological and pathological processes such as embryonal development, immunoregulation and cancer. One of their relevant characteristics is their high stability, which makes them excellent candidates for use as biomarkers. Their number is constantly increasing as next generation sequencing methods reveal more and more details of their synthesis. These novel findings aim for new detection methods for the individual short regulatory RNA-s in order to be able to confirm the primary data and characterize newly identified subtypes in different biological conditions. We have developed a flexible method to design RT-qPCR assays that are very sensitive and robust. The newly designed assays were tested extensively in samples from plant, mouse and even human formalin fixed paraffin embedded tissues. Moreover, we have shown that these assays are able to quantify endogenously generated shRNA molecules. The assay design method is freely available for anyone who wishes to use a robust and flexible system for the quantitative analysis of matured regulatory RNA-s.

  1. Comparison of miRNA quantitation by Nanostring in serum and plasma samples.

    Directory of Open Access Journals (Sweden)

    Catherine Foye

    Full Text Available Circulating microRNAs that are associated with specific diseases have garnered much attention for use in diagnostic assays. However, detection of disease-associated miRNA can be affected by several factors such as release of contaminating cellular miRNA during sample collection, variations due to amplification of transcript for detection, or controls used for normalization for accurate quantitation. We analyzed circulating miRNA in serum and plasma samples obtained concurrently from 28 patients, using a Nanostring quantitative assay platform. Total RNA concentration ranged from 32-125 μg/ml from serum and 30-220 μg/ml from plasma. Of 798 miRNAs, 371 miRNAs were not detected in either serum or plasma samples. 427 were detected in either serum or plasma but not both, whereas 151 miRNA were detected in both serum and plasma samples. The diversity of miRNA detected was greater in plasma than in serum samples. In serum samples, the number of detected miRNA ranged from 3 to 82 with a median of 17, whereas in plasma samples, the number of miRNA detected ranged from 25 to 221 with a median of 91. Several miRNA such as miR451a, miR 16-5p, miR-223-3p, and mir25-3p were highly abundant and differentially expressed between serum and plasma. The detection of endogenous and exogenous control miRNAs varied in serum and plasma, with higher levels observed in plasma. Gene expression stability identified candidate invariant microRNA that were highly stable across all samples, and could be used for normalization. In conclusion, there are significant differences in both the number of miRNA detected and the amount of miRNA detected between serum and plasma. Normalization using miRNA with constant expression is essential to minimize the impact of technical variations. Given the challenges involved, ideal candidates for blood based biomarkers would be those that are indifferent to type of body fluid, are detectable and can be reliably quantitated.

  2. A Quantitative PCR Protocol for Detection of Oxyspirura petrowi in Northern Bobwhites (Colinus virginianus).

    Science.gov (United States)

    Kistler, Whitney M; Parlos, Julie A; Peper, Steven T; Dunham, Nicholas R; Kendall, Ronald J

    2016-01-01

    Oxyspirura petrowi is a parasitic nematode that infects wild birds. This parasite has a broad host range, but has recently been reported in high prevalences from native Galliformes species in the United States. In order to better understand the impact O. petrowi has on wild bird populations, we developed a quantitative PCR protocol to detect infections in wild northern bobwhites (Colinus virginianus). We used paired fecal and cloacal swab samples from wild caught and experimentally infected northern bobwhites and matching fecal float data from experimentally infected birds to validate our assay. Overall we detected more positive birds from fecal samples than the paired cloacal swabs and there was strong agreement between the qPCR results from fecal samples and from fecal flotation (84%; κ = 0.69 [0.53-0.84 95% CI]). We also detected O. petrowi DNA in ten replicates of samples spiked with one O. petrowi egg. This qPCR assay is an effective assay to detect O. petrowi infections in wild birds. Our results suggest that fecal samples are the most appropriate sample for detecting infections; although, cloacal swabs can be useful for determining if O. petrowi is circulating in a population.

  3. Detection and differentiation of early acute and following age stages of myocardial infarction with quantitative post-mortem cardiac 1.5T MR.

    Science.gov (United States)

    Schwendener, Nicole; Jackowski, Christian; Persson, Anders; Warntjes, Marcel J; Schuster, Frederick; Riva, Fabiano; Zech, Wolf-Dieter

    2017-01-01

    Recently, quantitative MR sequences have started being used in post-mortem imaging. The goal of the present study was to evaluate if early acute and following age stages of myocardial infarction can be detected and discerned by quantitative 1.5T post-mortem cardiac magnetic resonance (PMCMR) based on quantitative T1, T2 and PD values. In 80 deceased individuals (25 female, 55 male), a cardiac MR quantification sequence was performed prior to cardiac dissection at autopsy in a prospective study. Focal myocardial signal alterations detected in synthetically generated MR images were MR quantified for their T1, T2 and PD values. The locations of signal alteration measurements in PMCMR were targeted at autopsy heart dissection and cardiac tissue specimens were taken for histologic examinations. Quantified signal alterations in PMCMR were correlated to their according histologic age stage of myocardial infarction. In PMCMR seventy-three focal myocardial signal alterations were detected in 49 of 80 investigated hearts. These signal alterations were diagnosed histologically as early acute (n=39), acute (n=14), subacute (n=10) and chronic (n=10) age stages of myocardial infarction. Statistical analysis revealed that based on their quantitative T1, T2 and PD values, a significant difference between all defined age groups of myocardial infarction can be determined. It can be concluded that quantitative 1.5T PMCMR quantification based on quantitative T1, T2 and PD values is feasible for characterization and differentiation of early acute and following age stages of myocardial infarction. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Normalizing gene expression by quantitative PCR during somatic embryogenesis in two representative conifer species: Pinus pinaster and Picea abies.

    Science.gov (United States)

    de Vega-Bartol, José J; Santos, Raquen Raissa; Simões, Marta; Miguel, Célia M

    2013-05-01

    Suitable internal control genes to normalize qPCR data from different stages of embryo development and germination were identified in two representative conifer species. Clonal propagation by somatic embryogenesis has a great application potentiality in conifers. Quantitative PCR (qPCR) is widely used for gene expression analysis during somatic embryogenesis and embryo germination. No single reference gene is universal, so a systematic characterization of endogenous genes for concrete conditions is fundamental for accuracy. We identified suitable internal control genes to normalize qPCR data obtained at different steps of somatic embryogenesis (embryonal mass proliferation, embryo maturation and germination) in two representative conifer species, Pinus pinaster and Picea abies. Candidate genes included endogenous genes commonly used in conifers, genes previously tested in model plants, and genes with a lower variation of the expression along embryo development according to genome-wide transcript profiling studies. Three different algorithms were used to evaluate expression stability. The geometric average of the expression values of elongation factor-1α, α-tubulin and histone 3 in P. pinaster, and elongation factor-1α, α-tubulin, adenosine kinase and CAC in P. abies were adequate for expression studies throughout somatic embryogenesis. However, improved accuracy was achieved when using other gene combinations in experiments with samples at a single developmental stage. The importance of studies selecting reference genes to use in different tissues or developmental stages within one or close species, and the instability of commonly used reference genes, is highlighted.

  5. Detection of canine cytokine gene expression by reverse transcription-polymerase chain reaction.

    Science.gov (United States)

    Pinelli, E; van der Kaaij, S Y; Slappendel, R; Fragio, C; Ruitenberg, E J; Bernadina, W; Rutten, V P

    1999-08-02

    Further characterization of the canine immune system will greatly benefit from the availability of tools to detect canine cytokines. Our interest concerns the study on the role of cytokines in canine visceral leishmaniasis. For this purpose, we have designed specific primers using previously published sequences for the detection of canine IL-2, IFN-gamma and IL10 mRNA by reverse transcription-polymerase chain reaction (RT-PCR). For IL-4, we have cloned and sequenced this cytokine gene, and developed canine-specific primers. To control for sample-to-sample variation in the quantity of mRNA and variation in the RT and PCR reactions, the mRNA levels of glyceraldehyde-3-phosphate dehydrogenase (G3PDH), a housekeeping gene, were determined in parallel. Primers to amplify G3PDH were designed from consensus sequences obtained from the Genbank database. The mRNA levels of the cytokines mentioned here were detected from ConA-stimulated peripheral mononuclear cells derived from Leishmania-infected dogs. A different pattern of cytokine production among infected animals was found.

  6. Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) Applied to Quantitative Proteomics of Bacillus subtilis

    DEFF Research Database (Denmark)

    Soufi, Boumediene; Kumar, C.; Gnad, F.

    2010-01-01

    We applied stable isotope labeling by amino acids in cell culture (SILAC) to large-scale quantitative proteomics analyses of the model bacterium Bacillus subtilis in two physiological conditions: growth on succinate and growth under phosphate starvation. Using a B. subtilis strain auxotrophic...... of the most comprehensive quantitative proteomics studies in bacteria, covering more than 75% of the B. subtilis genes expressed in the log phase of growth. Furthermore, we detect and quantify dynamics of 35 Ser/Thr/Tyr phosphorylation sites under growth on succinate, and 10 phosphorylation sites under...

  7. Validation of suitable reference genes for quantitative gene expression analysis in Panax ginseng

    Directory of Open Access Journals (Sweden)

    Meizhen eWang

    2016-01-01

    Full Text Available Reverse transcription-qPCR (RT-qPCR has become a popular method for gene expression studies. Its results require data normalization by housekeeping genes. No single gene is proved to be stably expressed under all experimental conditions. Therefore, systematic evaluation of reference genes is necessary. With the aim to identify optimum reference genes for RT-qPCR analysis of gene expression in different tissues of Panax ginseng and the seedlings grown under heat stress, we investigated the expression stability of eight candidate reference genes, including elongation factor 1-beta (EF1-β, elongation factor 1-gamma (EF1-γ, eukaryotic translation initiation factor 3G (IF3G, eukaryotic translation initiation factor 3B (IF3B, actin (ACT, actin11 (ACT11, glyceraldehyde-3-phosphate dehydrogenase (GAPDH and cyclophilin ABH-like protein (CYC, using four widely used computational programs: geNorm, Normfinder, BestKeeper, and the comparative ΔCt method. The results were then integrated using the web-based tool RefFinder. As a result, EF1-γ, IF3G and EF1-β were the three most stable genes in different tissues of P. ginseng, while IF3G, ACT11 and GAPDH were the top three-ranked genes in seedlings treated with heat. Using three better reference genes alone or in combination as internal control, we examined the expression profiles of MAR, a multiple function-associated mRNA-like non-coding RNA (mlncRNA in P. ginseng. Taken together, we recommended EF1-γ/IF3G and IF3G/ACT11 as the suitable pair of reference genes for RT-qPCR analysis of gene expression in different tissues of P. ginseng and the seedlings grown under heat stress, respectively. The results serve as a foundation for future studies on P. ginseng functional genomics.

  8. Detection of biosurfactants in Bacillus species: genes and products identification.

    Science.gov (United States)

    Płaza, G; Chojniak, J; Rudnicka, K; Paraszkiewicz, K; Bernat, P

    2015-10-01

    To screen environmental Bacillus strains for detection of genes encoding the enzymes involved in biosurfactant synthesis and to evaluate their products e.g. surfactin, iturin and fengycin. The taxonomic identification of isolated from the environment Bacillus strains was performed by Microgene ID Bacillus panel and GEN III Biolog system. The polymerase chain reaction (PCR) strategy for screening of genes in Bacillus strains was set up. Liquid chromatography-mass spectrometry (LC-MS/MS) method was used for the identification of lipopeptides (LPs). All studied strains exhibited the presence of srfAA gene and produced surfactin mostly as four homologues (C13 to C16). Moreover, in 2 strains (KP7, T'-1) simultaneous co-production of 3 biosurfactants: surfactin, iturin and fengycin was observed. Additionally, it was found out that isolate identified as Bacillus subtilis ssp. subtilis (KP7), beside LPs co-production, synthesizes surfactin with the efficiency much higher than other studied strains (40·2 mg l(-1) ) and with the yield ranging from 0·8 to 8·3 mg l(-1) . We showed that the combined methodology based on PCR and LC-MS/MS technique is an optimal tool for the detection of genes encoding enzymes involved in biosurfactant synthesis as well as their products, e.g. surfactin, iturin and fengycin. This approach improves the screening and the identification of environmental Bacillus co-producing biosurfactants-stimulating and facilitating the development of this area of science. The findings of this work will help to improve screening of biosurfactant producers. Discovery of novel biosurfactants and biosurfactants co-production ability has shed light on their new application fields and for the understanding of their interactions and properties. © 2015 The Society for Applied Microbiology.

  9. Droplet Microfluidics Platform for Highly Sensitive and Quantitative Detection of Malaria-Causing Plasmodium Parasites Based on Enzyme Activity Measurement

    DEFF Research Database (Denmark)

    Juul, Sissel; Nielsen, Christine Juul Fælled; Labouriau, Rodrigo

    2012-01-01

    detectable at the single-molecule level. Combined with a droplet microfluidics lab-on-a-chip platform, this design allowed for sensitive, specific, and quantitative detection of all human-malaria-causing Plasmodium species in single drops of unprocessed blood with a detection limit of less than one parasite....../μL. Moreover, the setup allowed for detection of Plasmodium parasites in noninvasive saliva samples from infected patients. During recent years malaria transmission has declined worldwide, and with this the number of patients with low-parasite density has increased. Consequently, the need for accurate...

  10. Detection of Chloramphenicol Resistance Genes (cat in Clinical Isolates of Pseudomonas aeruginosa with Polymerase Chain Reaction Method

    Directory of Open Access Journals (Sweden)

    Tiana Milanda

    2014-12-01

    Full Text Available Pseudomonas aeruginosa is an opportunistic Gram negative bacteria, which may cause infection in eyes, ears, skin, bones, central nervous system, gastrointestinal tract, circulatory system, heart, respiratory system, and urinary tract. Recently, chloramphenicol is no longer used as the main option of the therapy due of its resistance case. The aim of this research was to detect the presence of gene which is responsible to chloramphenicol resistance in clinical isolates of P.aeruginosa. These bacteria isolated from pus of external otitis patients in Hasan Sadikin Hospital in Bandung City. Polymerase Chain Reaction (PCR method (colony-PCR and DNA-PCR were performed to detect this resistance gene. Electropherogram from PCR products showed that the chloramphenicol resistance in clinical isolates of P. aeruginosa was caused by cat gene (317 bp. Based on this research, cat gene may be used to detect the chloramphenicol resistance in patients with external ostitis.

  11. Qualitative and Quantitative Detection of Botulinum Neurotoxins from Complex Matrices: Results of the First International Proficiency Test

    Directory of Open Access Journals (Sweden)

    Sylvia Worbs

    2015-11-01

    Full Text Available In the framework of the EU project EQuATox, a first international proficiency test (PT on the detection and quantification of botulinum neurotoxins (BoNT was conducted. Sample materials included BoNT serotypes A, B and E spiked into buffer, milk, meat extract and serum. Different methods were applied by the participants combining different principles of detection, identification and quantification. Based on qualitative assays, 95% of all results reported were correct. Successful strategies for BoNT detection were based on a combination of complementary immunological, MS-based and functional methods or on suitable functional in vivo/in vitro approaches (mouse bioassay, hemidiaphragm assay and Endopep-MS assay. Quantification of BoNT/A, BoNT/B and BoNT/E was performed by 48% of participating laboratories. It turned out that precise quantification of BoNT was difficult, resulting in a substantial scatter of quantitative data. This was especially true for results obtained by the mouse bioassay which is currently considered as “gold standard” for BoNT detection. The results clearly demonstrate the urgent need for certified BoNT reference materials and the development of methods replacing animal testing. In this context, the BoNT PT provided the valuable information that both the Endopep-MS assay and the hemidiaphragm assay delivered quantitative results superior to the mouse bioassay.

  12. [Gene doping: gene transfer and possible molecular detection].

    Science.gov (United States)

    Argüelles, Carlos Francisco; Hernández-Zamora, Edgar

    2007-01-01

    The use of illegal substances in sports to enhance athletic performance during competition has caused international sports organizations such as the COI and WADA to take anti doping measures. A new doping method know as gene doping is defined as "the non-therapeutic use of genes, genetic elements and/or cells that have the capacity to enhance athletic performance". However, gene doping in sports is not easily identified and can cause serious consequences. Molecular biology techniques are needed in order to distinguish the difference between a "normal" and an "altered" genome. Further, we need to develop new analytic methods and biological molecular techniques in anti-doping laboratories, and design programs that avoid the non therapeutic use of genes.

  13. Combination of methylated-DNA precipitation and methylation-sensitive restriction enzymes (COMPARE-MS) for the rapid, sensitive and quantitative detection of DNA methylation.

    Science.gov (United States)

    Yegnasubramanian, Srinivasan; Lin, Xiaohui; Haffner, Michael C; DeMarzo, Angelo M; Nelson, William G

    2006-02-09

    Hypermethylation of CpG island (CGI) sequences is a nearly universal somatic genome alteration in cancer. Rapid and sensitive detection of DNA hypermethylation would aid in cancer diagnosis and risk stratification. We present a novel technique, called COMPARE-MS, that can rapidly and quantitatively detect CGI hypermethylation with high sensitivity and specificity in hundreds of samples simultaneously. To quantitate CGI hypermethylation, COMPARE-MS uses real-time PCR of DNA that was first digested by methylation-sensitive restriction enzymes and then precipitated by methyl-binding domain polypeptides immobilized on a magnetic solid matrix. We show that COMPARE-MS could detect five genome equivalents of methylated CGIs in a 1000- to 10,000-fold excess of unmethylated DNA. COMPARE-MS was used to rapidly quantitate hypermethylation at multiple CGIs in >155 prostate tissues, including benign and malignant prostate specimens, and prostate cell lines. This analysis showed that GSTP1, MDR1 and PTGS2 CGI hypermethylation as determined by COMPARE-MS could differentiate between malignant and benign prostate with sensitivities >95% and specificities approaching 100%. This novel technology could significantly improve our ability to detect CGI hypermethylation.

  14. Reference gene selection for real-time quantitative PCR analysis of the mouse uterus in the peri-implantation period.

    Directory of Open Access Journals (Sweden)

    Pengfei Lin

    Full Text Available The study of uterine gene expression patterns is valuable for understanding the biological and molecular mechanisms that occur during embryo implantation. Real-time quantitative RT-PCR (qRT-PCR is an extremely sensitive technique that allows for the precise quantification of mRNA abundance; however, selecting stable reference genes suitable for the normalization of qRT-PCR data is required to avoid the misinterpretation of experimental results and erroneous analyses. This study employs several mouse models, including an early pregnancy, a pseudopregnancy, a delayed implantation and activation, an artificial decidualization and a hormonal treatment model; ten candidate reference genes (PPIA, RPLP0, HPRT1, GAPDH, ACTB, TBP, B2M, 18S, UBC and TUBA that are found in uterine tissues were assessed for their suitability as internal controls for relative qRT-PCR quantification. GeNorm(PLUS, NormFinder, and BestKeeper were used to evaluate these candidate reference genes, and all of these methods identified RPLP0 and GAPDH as the most stable candidates and B2M and 18S as the least stable candidates. However, when the different models were analyzed separately, the reference genes exhibited some variation in their expression levels.

  15. Quantitative PCR Assays for Detecting Loach Minnow (Rhinichthys cobitis and Spikedace (Meda fulgida in the Southwestern United States.

    Directory of Open Access Journals (Sweden)

    Joseph C Dysthe

    Full Text Available Loach minnow (Rhinichthys cobitis and spikedace (Meda fulgida are legally protected with the status of Endangered under the U.S. Endangered Species Act and are endemic to the Gila River basin of Arizona and New Mexico. Efficient and sensitive methods for monitoring these species' distributions are critical for prioritizing conservation efforts. We developed quantitative PCR assays for detecting loach minnow and spikedace DNA in environmental samples. Each assay reliably detected low concentrations of target DNA without detection of non-target species, including other cyprinid fishes with which they co-occur.

  16. Effect of ionizing radiation on the quantitative detection of Salmonella using real-time PCR

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sangyong; Jung, Jinwoo [Radiation Research Center for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Kim, Minjeong; Ryu, Sangryeol [Department of Food and Animal Biotechnology, School of Agricultural Biotechnology, Center for Agricultural Biomaterials, Seoul National University, Seoul 151-921 (Korea, Republic of); Kim, Dongho [Radiation Research Center for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of)], E-mail: fungikim@kaeri.re.kr

    2008-09-15

    Food irradiation is an economically viable technology for inactivating foodborne pathogens, but irradiation can mask pathogens in unhygienically prepared food. The aim of this study was to investigate the effect of irradiation treatment on the detection of Salmonella using real-time PCR. Three commercially available kits were tested, of which the InstaGene Matrix procedure was most effective in preparing template DNA from Salmonella exposed to radiation in broth culture. The minimum level of detection by real-time PCR combined with InstaGene Matrix was 3 log units of Salmonella per milliliter. However, when pure cultures of Salmonella were irradiated at 3 and 5 kGy, the cycle threshold (C{sub T}) increased 1-1.5-fold compared to irradiation at 0 and 1 kGy. This indicated that irradiation treatment may result in an underestimation of bacterial counts due to radiation-induced DNA lesions. We also compared C{sub T} values in inoculated chicken homogenates before and after irradiation, which in this model caused a 1.3-3.3-fold underestimation of bacterial counts with respect to irradiation dose.

  17. Detection of virulence genes and the phylogenetic groups of Escherichia coli isolated from dogs in Brazil

    Directory of Open Access Journals (Sweden)

    Fernanda Morcatti Coura

    2018-02-01

    Full Text Available ABSTRACT: This study identified the virulence genes, pathovars, and phylogenetic groups of Escherichia coli strains obtained from the feces of dogs with and without diarrhea. Virulence genes and phylogenetic group identification were studied using polymerase chain reaction. Thirty-seven E. coli isolates were positive for at least one virulence factor gene. Twenty-one (57.8% of the positive isolates were isolated from diarrheal feces and sixteen (43.2% were from the feces of non-diarrheic dogs. Enteropathogenic E. coli (EPEC were the most frequently (62.2% detected pathovar in dog feces and were mainly from phylogroup B1 and E. Necrotoxigenic E. coli were detected in 16.2% of the virulence-positive isolates and these contained the cytotoxic necrotizing factor 1 (cnf1 gene and were classified into phylogroups B2 and D. All E. coli strains were negative for the presence of enterotoxigenic E. coli (ETEC enterotoxin genes, but four strains were positive for ETEC-related fimbriae 987P and F18. Two isolates were Shiga toxin-producing E. coli strains and contained the toxin genesStx2 or Stx2e, both from phylogroup B1. Our data showed that EPEC was the most frequent pathovar and B1 and E were the most common phylogroups detected in E. coli isolated from the feces of diarrheic and non-diarrheic dogs.

  18. TESTING HIGH-DIMENSIONAL COVARIANCE MATRICES, WITH APPLICATION TO DETECTING SCHIZOPHRENIA RISK GENES.

    Science.gov (United States)

    Zhu, Lingxue; Lei, Jing; Devlin, Bernie; Roeder, Kathryn

    2017-09-01

    Scientists routinely compare gene expression levels in cases versus controls in part to determine genes associated with a disease. Similarly, detecting case-control differences in co-expression among genes can be critical to understanding complex human diseases; however statistical methods have been limited by the high dimensional nature of this problem. In this paper, we construct a sparse-Leading-Eigenvalue-Driven (sLED) test for comparing two high-dimensional covariance matrices. By focusing on the spectrum of the differential matrix, sLED provides a novel perspective that accommodates what we assume to be common, namely sparse and weak signals in gene expression data, and it is closely related with Sparse Principal Component Analysis. We prove that sLED achieves full power asymptotically under mild assumptions, and simulation studies verify that it outperforms other existing procedures under many biologically plausible scenarios. Applying sLED to the largest gene-expression dataset obtained from post-mortem brain tissue from Schizophrenia patients and controls, we provide a novel list of genes implicated in Schizophrenia and reveal intriguing patterns in gene co-expression change for Schizophrenia subjects. We also illustrate that sLED can be generalized to compare other gene-gene "relationship" matrices that are of practical interest, such as the weighted adjacency matrices.

  19. Development of a Rapid Real-Time PCR Assay for Quantitation of Pneumocystis carinii f. sp. Carinii

    DEFF Research Database (Denmark)

    Larsen, Hans Henrik; Kovacs, Joseph A; Stock, Frida

    2002-01-01

    A method for reliable quantification of Pneumocystis carinii in research models of P. carinii pneumonia (PCP) that is more convenient and reproducible than microscopic enumeration of organisms would greatly facilitate investigations of this organism. We developed a rapid quantitative touchdown (QTD......) PCR assay for detecting P. carinii f. sp. carinii, the subspecies of P. carinii commonly used in research models of PCP. The assay was based on the single-copy dihydrofolate reductase gene and was able to detect ... 6 log values for standards containing > or =5 copies/tube. Application of the assay to a series of 10-fold dilutions of P. carinii organisms isolated from rat lung demonstrated that it was reproducibly quantitative over 5 log values (r = 0.99). The assay was applied to a recently reported in vitro...

  20. Loop-mediated isothermal amplification (LAMP) as an alternative to PCR: A rapid on-site detection of gene doping.

    Science.gov (United States)

    Salamin, Olivier; Kuuranne, Tiia; Saugy, Martial; Leuenberger, Nicolas

    2017-11-01

    Innovation in medical research has been diverted at multiple occasions to enhance human performance. The predicted great progress in gene therapy has raised some concerns regarding its misuse in the world of sports (gene doping) for several years now. Even though there is no evidence that gene doping has ever been used in sports, the continuous improvement of gene therapy techniques increases the likelihood of abuse. Therefore, since 2004, efforts have been invested by the anti-doping community and WADA for the development of detection methods. Several nested PCR and qPCR-based strategies exploiting the absence of introns in the transgenic DNA have been proposed for the long-term detection of transgene in blood. Despite their great sensitivity, those protocols are hampered by limitations of the techniques that can be cumbersome and costly. The purpose of this perspective is to describe a new approach based on loop-mediated isothermal amplification (LAMP) for the detection of gene doping. This protocol enables a rapid and simple method to amplify nucleic acids with a high sensitivity and specificity and with a simple visual detection of the results. LAMP is already being used in clinical application for the detection of viruses or mutations. Therefore, this technique has the potential to be further developed for the detection of foreign genetic material in elite athletes. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Detection of methicillin resistant Staphylococcus aureus (MRSA) from recreational beach using the mecA gene

    Science.gov (United States)

    Zulkifli, Aisya; Ahmad, Asmat

    2015-09-01

    Water samples were collected in triplicates from three different locations choosen from the recreational beach of Teluk Kemang, Port Dickson as sampling station including main area of recreation activity for the public. Bacteria were isolated from the water and cultured. Out of 286 presumptive Staphylococcus aureus enumerated by using culture method, only 4 (1.4 %) confirmed as Meticillin Resistant S. aureus (MRSA) based on PCR detection of mecA gene. Interestingly, all of MRSA detections were found at the main area of recreational activity. Our results suggested that public beaches may be reservoir for transmission of MRSA to beach visitors and PCR using the mecA gene is the fastest way to detect this pathogenic bacteria.

  2. Detecting coordinated regulation of multi-protein complexes using logic analysis of gene expression

    Directory of Open Access Journals (Sweden)

    Yeates Todd O

    2009-12-01

    Full Text Available Abstract Background Many of the functional units in cells are multi-protein complexes such as RNA polymerase, the ribosome, and the proteasome. For such units to work together, one might expect a high level of regulation to enable co-appearance or repression of sets of complexes at the required time. However, this type of coordinated regulation between whole complexes is difficult to detect by existing methods for analyzing mRNA co-expression. We propose a new methodology that is able to detect such higher order relationships. Results We detect coordinated regulation of multiple protein complexes using logic analysis of gene expression data. Specifically, we identify gene triplets composed of genes whose expression profiles are found to be related by various types of logic functions. In order to focus on complexes, we associate the members of a gene triplet with the distinct protein complexes to which they belong. In this way, we identify complexes related by specific kinds of regulatory relationships. For example, we may find that the transcription of complex C is increased only if the transcription of both complex A AND complex B is repressed. We identify hundreds of examples of coordinated regulation among complexes under various stress conditions. Many of these examples involve the ribosome. Some of our examples have been previously identified in the literature, while others are novel. One notable example is the relationship between the transcription of the ribosome, RNA polymerase and mannosyltransferase II, which is involved in N-linked glycan processing in the Golgi. Conclusions The analysis proposed here focuses on relationships among triplets of genes that are not evident when genes are examined in a pairwise fashion as in typical clustering methods. By grouping gene triplets, we are able to decipher coordinated regulation among sets of three complexes. Moreover, using all triplets that involve coordinated regulation with the ribosome

  3. Molecular Imaging of Gene Expression and Efficacy following Adenoviral-Mediated Brain Tumor Gene Therapy

    Directory of Open Access Journals (Sweden)

    Alnawaz Rehemtulla

    2002-01-01

    Full Text Available Cancer gene therapy is an active area of research relying upon the transfer and subsequent expression of a therapeutic transgene into tumor cells in order to provide for therapeutic selectivity. Noninvasive assessment of therapeutic response and correlation of the location, magnitude, and duration of transgene expression in vivo would be particularly useful in the development of cancer gene therapy protocols by facilitating optimization of gene transfer protocols, vector development, and prodrug dosing schedules. In this study, we developed an adenoviral vector containing both the therapeutic transgene yeast cytosine deaminase (yCD along with an optical reporter gene (luciferase. Following intratumoral injection of the vector into orthotopic 9L gliomas, anatomical and diffusion-weighted MR images were obtained over time in order to provide for quantitative assessment of overall therapeutic efficacy and spatial heterogeneity of cell kill, respectively. In addition, bioluminescence images were acquired to assess the duration and magnitude of gene expression. MR images revealed significant reduction in tumor growth rates associated with yCD/5-fluorocytosine (5FC gene therapy. Significant increases in mean tumor diffusion values were also observed during treatment with 5FC. Moreover, spatial heterogeneity in tumor diffusion changes were also observed revealing that diffusion magnetic resonance imaging could detect regional therapeutic effects due to the nonuniform delivery and/or expression of the therapeutic yCD transgene within the tumor mass. In addition, in vivo bioluminescence imaging detected luciferase gene expression, which was found to decrease over time during administration of the prodrug providing a noninvasive surrogate marker for monitoring gene expression. These results demonstrate the efficacy of the yCD/5FC strategy for the treatment of brain tumors and reveal the feasibility of using multimodality molecular and functional imaging

  4. Quantitative detection of Staphylococcus aureus and Enterococcus faecalis DNA in blood to diagnose bacteremia in patients in the intensive care unit

    NARCIS (Netherlands)

    Peters, Remco P. H.; van Agtmael, Michiel A.; Gierveld, Sonja; Danner, Sven A.; Groeneveld, A. B. Johan; Vandenbroucke-Grauls, Christina M. J. E.; Savelkoul, Paul H. M.

    2007-01-01

    Direct detection of bacterial DNA in blood offers a fast alternative to blood culture and is presumably unaffected by the prior use of antibiotics. We evaluated the performance of two real-time PCR assays for the quantitative detection of Staphylococcus aureus bacteremia and for Enterococcus

  5. Polymerase chain reaction detection of retinoblastoma gene deletions in paraffin-embedded mouse lung adenocarcinomas

    International Nuclear Information System (INIS)

    Churchill, M.E.; Gemmell, M.A.; Woloschak, G.E.

    1991-01-01

    A Polymerase chain reaction (PCR) technique was used to detect deletions in the mouse retinoblastoma (mRb) gene using microtomed sections from paraffin-embedded radiation-induced and spontaneous tumors as the DNA source. Six mRb gene exon fragments were amplified in a 40-cycle, 3-temperature PCR protocol. Absence of any of these fragments relative to control PCR products on a Southern blot indicated a deletion of that portion of the mRb gene. Tumors chosen for analysis were lung adenocarcinomas that were judged to be the cause of death. Spontaneous tumors as well as those from irradiated mice (569 cGy of 60 Co γ rays or 60 cGy of JANUS neutrons) were analyzed. Tumors in six neutron-irradiated mice also had no mRb deletions. However, one of six tumors from γ-irradiated mice and 6 of 18 spontaneous tumors from unirradiated mice showed a deletion in one or both mRb alleles. All deletions detected were in the 5' region of the mRb gene

  6. Sensitive detection of novel Indian isolate of BTV 21 using ns1 gene based real-time PCR assay

    Directory of Open Access Journals (Sweden)

    Gaya Prasad

    2013-06-01

    Full Text Available Aim: The study was conducted to develop ns1 gene based sensitive real-time RT-PCR assay for diagnosis of India isolates of bluetongue virus (BTV. Materials and Methods: The BTV serotype 21 isolate (KMNO7 was isolated from Andhra Pradesh and propagated in BHK-21 cell line in our laboratory. The Nucleic acid (dsRNA of virus was extracted using Trizol method and cDNA was prepared using a standard protocol. The cDNA was allowed to ns1 gene based group specific PCR to confirm the isolate as BTV. The viral RNA was diluted 10 folds and the detection limit of ns1 gene based RT-PCR was determined. Finally the tenfold diluted viral RNA was subjected to real-time RT-PCR using ns1 gene primer and Taq man probe to standardized the reaction and determine the detection limit. Results: The ns1 gene based group specific PCR showed a single 366bp amplicon in agarose gel electrophoresis confirmed the sample as BTV. The ns1 gene RT-PCR using tenfold diluted viral RNA showed the detection limit of 70.0 fg in 1%agarose gel electrophoresis. The ns1 gene based real time RT-PCR was successfully standardized and the detection limit was found to be 7.0 fg. Conclusion: The ns1 gene based real-time RT-PCR was successfully standardized and it was found to be 10 times more sensitive than conventional RT-PCR. Key words: bluetongue, BTV21, RT-PCR, Real time RT-PCR, ns1 gene [Vet World 2013; 6(8.000: 554-557

  7. QuASAR: quantitative allele-specific analysis of reads.

    Science.gov (United States)

    Harvey, Chris T; Moyerbrailean, Gregory A; Davis, Gordon O; Wen, Xiaoquan; Luca, Francesca; Pique-Regi, Roger

    2015-04-15

    Expression quantitative trait loci (eQTL) studies have discovered thousands of genetic variants that regulate gene expression, enabling a better understanding of the functional role of non-coding sequences. However, eQTL studies are costly, requiring large sample sizes and genome-wide genotyping of each sample. In contrast, analysis of allele-specific expression (ASE) is becoming a popular approach to detect the effect of genetic variation on gene expression, even within a single individual. This is typically achieved by counting the number of RNA-seq reads matching each allele at heterozygous sites and testing the null hypothesis of a 1:1 allelic ratio. In principle, when genotype information is not readily available, it could be inferred from the RNA-seq reads directly. However, there are currently no existing methods that jointly infer genotypes and conduct ASE inference, while considering uncertainty in the genotype calls. We present QuASAR, quantitative allele-specific analysis of reads, a novel statistical learning method for jointly detecting heterozygous genotypes and inferring ASE. The proposed ASE inference step takes into consideration the uncertainty in the genotype calls, while including parameters that model base-call errors in sequencing and allelic over-dispersion. We validated our method with experimental data for which high-quality genotypes are available. Results for an additional dataset with multiple replicates at different sequencing depths demonstrate that QuASAR is a powerful tool for ASE analysis when genotypes are not available. http://github.com/piquelab/QuASAR. fluca@wayne.edu or rpique@wayne.edu Supplementary Material is available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Development of a quantitative competitive reverse transcriptase polymerase chain reaction for the quantification of growth hormone gene expression in pigs

    Directory of Open Access Journals (Sweden)

    Maurício Machaim Franco

    2003-01-01

    Full Text Available After the advent of the genome projects, followed by the discovery of DNA polymorphisms, basic understanding of gene expression is the next focus to explain the association between polymorphisms and the level of gene expression, as well as to demonstrate the interaction among genes. Among the various techniques for the investigation of transcriptional profiling involving patterns of gene expression, quantitative PCR is the simplest analytical laboratory technique. The objective of this work was to analyze two strategies of a competitive PCR technique for the quantification of the pig growth hormone (GH gene expression. A pair of primers was designed targeting exons 3 and 5, and two competitive PCR strategies were performed, one utilizing a specific amplicon as a competitor, and the other utilizing a low-stringency PCR amplicon as a competitor. The latter strategy proved to be easier and more efficient, offering an accessible tool that can be used in any kind of competitive reaction, facilitating the study of gene expression patterns for both genetics and diagnostics of infectious diseases.

  9. Detection of the HTLV-I gene on cytologic smear slides.

    Science.gov (United States)

    Kashima, Kenji; Nagahama, Junji; Sato, Keiji; Tanamachi, Hiroyuki; Gamachi, Ayako; Daa, Tsutomu; Nakayama, Iwao; Yokoyama, Shigeo

    2002-01-01

    To apply the polymerase chain reaction (PCR) for detection of the HTLV-I gene from cytologic smear slides. Samples were from seven cases of serum anti-ATL antibody (ATLA)-positive T-cell lymphoma and three from ATLA-negative T-cell lymphoma. Six of the seven ATLA-positive cases were confirmed to be ATLL by Southern blotting. From the seventh case a fresh sample for blotting could not obtained. DNA was extracted from the cytologic smear slides of all 10 cases; they had been stained with Papanicolaou or May-Giemsa stain, digested with proteinase K and precipitated with phenol and ethanol. The target sequence in the pX region of the HTLV-I gene was amplified by PCR. All seven ATLA-positive cases, including one that had not yet been confirmed by Southern blotting, showed a single band, as predicted, while the three ATLA-negative cases showed no band. If cytologic smear slides are available but a fresh sample is not, the PCR method should provide evidence that the virus is present since in our study sufficient DNA templates were successfully extracted from the stained cytologic smear slides for detection of the virus.

  10. Statistics on gene-based laser speckles with a small number of scatterers: implications for the detection of polymorphism in the Chlamydia trachomatis omp1 gene

    Science.gov (United States)

    Ulyanov, Sergey S.; Ulianova, Onega V.; Zaytsev, Sergey S.; Saltykov, Yury V.; Feodorova, Valentina A.

    2018-04-01

    The transformation mechanism for a nucleotide sequence of the Chlamydia trachomatis gene into a speckle pattern has been considered. The first and second-order statistics of gene-based speckles have been analyzed. It has been demonstrated that gene-based speckles do not obey Gaussian statistics and belong to the class of speckles with a small number of scatterers. It has been shown that gene polymorphism can be easily detected through analysis of the statistical characteristics of gene-based speckles.

  11. [THE COMPARATIVE ANALYSIS OF RESULTS OF DETECTION OF CARCINOGENIC TYPES OF HUMAN PAPILLOMA VIRUS BY QUALITATIVE AND QUANTITATIVE TESTS].

    Science.gov (United States)

    Kuzmenko, E T; Labigina, A V; Leshenko, O Ya; Rusanov, D N; Kuzmenko, V V; Fedko, L P; Pak, I P

    2015-05-01

    The analysis of results of screening (n = 3208; sexually active citizen aged from 18 to 59 years) was carried out to detect oncogene types of human papilloma virus in using qualitative (1150 females and 720 males) and quantitative (polymerase chain reaction in real-time (843 females and 115 males) techniques. The human papilloma virus of high oncogene type was detected in 65% and 68.4% of females and in 48.6% and 53% of males correspondingly. Among 12 types of human papilloma virus the most frequently diagnosed was human papilloma virus 16 independently of gender of examined and technique of analysis. In females, under application of qualitative tests rate of human papilloma virus 16 made up to 18.3% (n = 280) and under application of quantitative tests Rte of human papilloma virus made up to 14.9% (n = 126; p ≤ 0.05). Under examination of males using qualitative tests rate of human papilloma virus 16 made up to 8.3% (n = 60) and under application of qualitative tests made up to 12.2% (n = 14; p ≥ 0.05). Under application of qualitative tests rate of detection on the rest ofoncogene types of human papilloma virus varied in females from 3.4% to 8.4% and in males from 1.8% to 5.9%. Under application of qualitative tests to females rate of human papilloma virus with high viral load made up to 68.4%, with medium viral load - 2.85% (n = 24) and with low viral load -0.24% (n = 2). Under application of quantitative tests in males rate of detection of types of human papilloma virus made up to 53% and at that in all high viral load was established. In females, the most of oncogene types of human papilloma virus (except for 31, 39, 59) are detected significantly more often than in males.

  12. Detection and identification of Rift Valley fever virus in mosquito vectors by quantitative real-time PCR.

    Science.gov (United States)

    Mwaengo, D; Lorenzo, G; Iglesias, J; Warigia, M; Sang, R; Bishop, R P; Brun, A

    2012-10-01

    Diagnostic methods allowing for rapid identification of pathogens are crucial for controlling and preventing dissemination after disease outbreaks as well as for use in surveillance programs. For arboviruses, detection of the presence of virus in their arthropod hosts is important for monitoring of viral activity and quantitative information is useful for modeling of transmission dynamics. In this study, molecular detection of Rift Valley fever virus (RVFV) in mosquito samples from the 2006 to 2007 East African outbreaks was performed using quantitative real-time PCR assay (qRT-PCR). Specific RVFV sequence-based primer/fluorogenic (TaqMan) probe sets were derived from the L and S RNA segments of the virus. Both primer-probe L and S segment-based combinations detected genomic RVFV sequences, with generally comparable levels of sensitivity. Viral loads from three mosquito species, Aedes mcintoshi, Aedes ochraceus and Mansonia uniformis were estimated and significant differences of between 5- and 1000-fold were detected between Ae. mcintoshi and M. uniformis using both the L and S primer-probe-based assays. The genetic relationships of the viral sequences in mosquito samples were established by partial M segment sequencing and assigned to the two previously described viral lineages defined by analysis of livestock isolates obtained during the 2006-2007 outbreak, confirming that similar viruses were present in both the vector and mammalian host. The data confirms the utility of qRT-PCR for identification and initial quantification of virus in mosquito samples during RVFV outbreaks. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Rapid and quantitative detection of C-reactive protein using quantum dots and immunochromatographic test strips

    Directory of Open Access Journals (Sweden)

    Cheng X

    2014-12-01

    Full Text Available Xianglin Cheng,1,* Xu Pu,2,* Pen Jun,3 XiaoBo Zhu,3 Di Zhu,4 Ming Chen1 1Department of Laboratory Medicine, First Affiliated Hospital of Yangtze University, Jingzhou, 2Department of Laboratory Medicine, RenMin Hospital of Wuhan University, Wuhan, 3Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, People’s Republic of China; 4Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA *These authors contributed equally to this study and share first authorship Background: Rapid immunochromatographic tests can detect disease markers in 10–15 minutes, which facilitates clinical diagnosis and treatment programs. However, most immunochromatographic tests employ gold nanoparticles as reporters, and these have only moderate sensitivity and act as qualitative methods for analyzing high biomarker concentrations. Methods: In this study, we introduce quantum dots (QDs as fluorescent probes and immunochromatographic strips to develop quantitative fluorescence point-of-care tests (QF-POCT to analyze C-reactive protein (CRP levels. Goat anti-rabbit IgG and rabbit IgG were used as control antibodies, and mouse monoclonal CRP antibody pairs were used for disease marker detection. One monoclonal CRP antibody was conjugated with QDs and served as a signal antibody, and the other monoclonal CRP antibody was dispensed onto the nitrocellulose membrane and served as a capturing antibody. In the presence of CRP, the fluorescence intensity of the monoclonal antibody-CRP-monoclonal antibody sandwich complex captured on the nitrocellulose membrane was determined using the fluorescence strip reader. Results: QF-POCT assays could quantitatively analyze the concentration of CRP in 15 minutes had a detection limit of 0.25 mg/L, and had a wide detection linearity range (0.5–300 mg/L. The intra-assay and interassay

  14. Assessing reference genes for accurate transcript normalization using quantitative real-time PCR in pearl millet [Pennisetum glaucum (L. R. Br].

    Directory of Open Access Journals (Sweden)

    Prasenjit Saha

    Full Text Available Pearl millet [Pennisetum glaucum (L. R.Br.], a close relative of Panicoideae food crops and bioenergy grasses, offers an ideal system to perform functional genomics studies related to C4 photosynthesis and abiotic stress tolerance. Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR provides a sensitive platform to conduct such gene expression analyses. However, the lack of suitable internal control reference genes for accurate transcript normalization during qRT-PCR analysis in pearl millet is the major limitation. Here, we conducted a comprehensive assessment of 18 reference genes on 234 samples which included an array of different developmental tissues, hormone treatments and abiotic stress conditions from three genotypes to determine appropriate reference genes for accurate normalization of qRT-PCR data. Analyses of Ct values using Stability Index, BestKeeper, ΔCt, Normfinder, geNorm and RefFinder programs ranked PP2A, TIP41, UBC2, UBQ5 and ACT as the most reliable reference genes for accurate transcript normalization under different experimental conditions. Furthermore, we validated the specificity of these genes for precise quantification of relative gene expression and provided evidence that a combination of the best reference genes are required to obtain optimal expression patterns for both endogeneous genes as well as transgenes in pearl millet.

  15. [Discovery of the target genes inhibited by formic acid in Candida shehatae].

    Science.gov (United States)

    Cai, Peng; Xiong, Xujie; Xu, Yong; Yong, Qiang; Zhu, Junjun; Shiyuan, Yu

    2014-01-04

    At transcriptional level, the inhibitory effects of formic acid was investigated on Candida shehatae, a model yeast strain capable of fermenting xylose to ethanol. Thereby, the target genes were regulated by formic acid and the transcript profiles were discovered. On the basis of the transcriptome data of C. shehatae metabolizing glucose and xylose, the genes responsible for ethanol fermentation were chosen as candidates by the combined method of yeast metabolic pathway analysis and manual gene BLAST search. These candidates were then quantitatively detected by RQ-PCR technique to find the regulating genes under gradient doses of formic acid. By quantitative analysis of 42 candidate genes, we finally identified 10 and 5 genes as markedly down-regulated and up-regulated targets by formic acid, respectively. With regard to gene transcripts regulated by formic acid in C. shehatae, the markedly down-regulated genes ranking declines as follows: xylitol dehydrogenase (XYL2), acetyl-CoA synthetase (ACS), ribose-5-phosphate isomerase (RKI), transaldolase (TAL), phosphogluconate dehydrogenase (GND1), transketolase (TKL), glucose-6-phosphate dehydrogenase (ZWF1), xylose reductase (XYL1), pyruvate dehydrogenase (PDH) and pyruvate decarboxylase (PDC); and a declining rank for up-regulated gens as follows: fructose-bisphosphate aldolase (ALD), glucokinase (GLK), malate dehydrogenase (MDH), 6-phosphofructokinase (PFK) and alcohol dehydrogenase (ADH).

  16. Horizontal acquisition of multiple mitochondrial genes from a parasitic plant followed by gene conversion with host mitochondrial genes

    Science.gov (United States)

    2010-01-01

    Background Horizontal gene transfer (HGT) is relatively common in plant mitochondrial genomes but the mechanisms, extent and consequences of transfer remain largely unknown. Previous results indicate that parasitic plants are often involved as either transfer donors or recipients, suggesting that direct contact between parasite and host facilitates genetic transfer among plants. Results In order to uncover the mechanistic details of plant-to-plant HGT, the extent and evolutionary fate of transfer was investigated between two groups: the parasitic genus Cuscuta and a small clade of Plantago species. A broad polymerase chain reaction (PCR) survey of mitochondrial genes revealed that at least three genes (atp1, atp6 and matR) were recently transferred from Cuscuta to Plantago. Quantitative PCR assays show that these three genes have a mitochondrial location in the one species line of Plantago examined. Patterns of sequence evolution suggest that these foreign genes degraded into pseudogenes shortly after transfer and reverse transcription (RT)-PCR analyses demonstrate that none are detectably transcribed. Three cases of gene conversion were detected between native and foreign copies of the atp1 gene. The identical phylogenetic distribution of the three foreign genes within Plantago and the retention of cytidines at ancestral positions of RNA editing indicate that these genes were probably acquired via a single, DNA-mediated transfer event. However, samplings of multiple individuals from two of the three species in the recipient Plantago clade revealed complex and perplexing phylogenetic discrepancies and patterns of sequence divergence for all three of the foreign genes. Conclusions This study reports the best evidence to date that multiple mitochondrial genes can be transferred via a single HGT event and that transfer occurred via a strictly DNA-level intermediate. The discovery of gene conversion between co-resident foreign and native mitochondrial copies suggests

  17. Horizontal acquisition of multiple mitochondrial genes from a parasitic plant followed by gene conversion with host mitochondrial genes

    Directory of Open Access Journals (Sweden)

    Hao Weilong

    2010-12-01

    Full Text Available Abstract Background Horizontal gene transfer (HGT is relatively common in plant mitochondrial genomes but the mechanisms, extent and consequences of transfer remain largely unknown. Previous results indicate that parasitic plants are often involved as either transfer donors or recipients, suggesting that direct contact between parasite and host facilitates genetic transfer among plants. Results In order to uncover the mechanistic details of plant-to-plant HGT, the extent and evolutionary fate of transfer was investigated between two groups: the parasitic genus Cuscuta and a small clade of Plantago species. A broad polymerase chain reaction (PCR survey of mitochondrial genes revealed that at least three genes (atp1, atp6 and matR were recently transferred from Cuscuta to Plantago. Quantitative PCR assays show that these three genes have a mitochondrial location in the one species line of Plantago examined. Patterns of sequence evolution suggest that these foreign genes degraded into pseudogenes shortly after transfer and reverse transcription (RT-PCR analyses demonstrate that none are detectably transcribed. Three cases of gene conversion were detected between native and foreign copies of the atp1 gene. The identical phylogenetic distribution of the three foreign genes within Plantago and the retention of cytidines at ancestral positions of RNA editing indicate that these genes were probably acquired via a single, DNA-mediated transfer event. However, samplings of multiple individuals from two of the three species in the recipient Plantago clade revealed complex and perplexing phylogenetic discrepancies and patterns of sequence divergence for all three of the foreign genes. Conclusions This study reports the best evidence to date that multiple mitochondrial genes can be transferred via a single HGT event and that transfer occurred via a strictly DNA-level intermediate. The discovery of gene conversion between co-resident foreign and native

  18. Fine mapping and candidate gene search of quantitative trait loci for growth and obesity using mouse intersubspecific subcongenic intercrosses and exome sequencing.

    Directory of Open Access Journals (Sweden)

    Akira Ishikawa

    Full Text Available Although growth and body composition traits are quantitative traits of medical and agricultural importance, the genetic and molecular basis of those traits remains elusive. Our previous genome-wide quantitative trait locus (QTL analyses in an intersubspecific backcross population between C57BL/6JJcl (B6 and wild Mus musculus castaneus mice revealed a major growth QTL (named Pbwg1 on a proximal region of mouse chromosome 2. Using the B6.Cg-Pbwg1 intersubspecific congenic strain created, we revealed 12 closely linked QTLs for body weight and body composition traits on an approximately 44.1-Mb wild-derived congenic region. In this study, we narrowed down genomic regions harboring three (Pbwg1.12, Pbwg1.3 and Pbwg1.5 of the 12 linked QTLs and searched for possible candidate genes for the QTLs. By phenotypic analyses of F2 intercross populations between B6 and each of four B6.Cg-Pbwg1 subcongenic strains with overlapping and non-overlapping introgressed regions, we physically defined Pbwg1.12 affecting body weight to a 3.8-Mb interval (61.5-65.3 Mb on chromosome 2. We fine-mapped Pbwg1.3 for body length to an 8.0-Mb interval (57.3-65.3 and Pbwg1.5 for abdominal white fat weight to a 2.1-Mb interval (59.4-61.5. The wild-derived allele at Pbwg1.12 and Pbwg1.3 uniquely increased body weight and length despite the fact that the wild mouse has a smaller body size than that of B6, whereas it decreased fat weight at Pbwg1.5. Exome sequencing and candidate gene prioritization suggested that Gcg and Grb14 are putative candidate genes for Pbwg1.12 and that Ly75 and Itgb6 are putative candidate genes for Pbwg1.5. These genes had nonsynonymous SNPs, but the SNPs were predicted to be not harmful to protein functions. These results provide information helpful to identify wild-derived quantitative trait genes causing enhanced growth and resistance to obesity.

  19. Validation of reference genes for quantitative expression analysis by real-time rt-PCR in four lepidopteran insects.

    Science.gov (United States)

    Teng, Xiaolu; Zhang, Zan; He, Guiling; Yang, Liwen; Li, Fei

    2012-01-01

    Quantitative real-time polymerase chain reaction (qPCR) is an efficient and widely used technique to monitor gene expression. Housekeeping genes (HKGs) are often empirically selected as the reference genes for data normalization. However, the suitability of HKGs used as the reference genes has been seldom validated. Here, six HKGs were chosen (actin A3, actin A1, GAPDH, G3PDH, E2F, rp49) in four lepidopteran insects Bombyx mori L. (Lepidoptera: Bombycidae), Plutella xylostella L. (Plutellidae), Chilo suppressalis Walker (Crambidae), and Spodoptera exigua Hübner (Noctuidae) to study their expression stability. The algorithms of geNorm, NormFinder, stability index, and ΔCt analysis were used to evaluate these HKGs. Across different developmental stages, actin A1 was the most stable in P. xylostella and C. suppressalis, but it was the least stable in B. mori and S. exigua. Rp49 and GAPDH were the most stable in B. mori and S. exigua, respectively. In different tissues, GAPDH, E2F, and Rp49 were the most stable in B. mori, S. exigua, and C. suppressalis, respectively. The relative abundances of Siwi genes estimated by 2(-ΔΔCt) method were tested with different HKGs as the reference gene, proving the importance of internal controls in qPCR data analysis. The results not only presented a list of suitable reference genes in four lepidopteran insects, but also proved that the expression stabilities of HKGs were different among evolutionarily close species. There was no single universal reference gene that could be used in all situations. It is indispensable to validate the expression of HKGs before using them as the internal control in qPCR.

  20. Causality analysis detects the regulatory role of maternal effect genes in the early Drosophila embryo

    Directory of Open Access Journals (Sweden)

    Zara Ghodsi

    2017-03-01

    Full Text Available In developmental studies, inferring regulatory interactions of segmentation genetic network play a vital role in unveiling the mechanism of pattern formation. As such, there exists an opportune demand for theoretical developments and new mathematical models which can result in a more accurate illustration of this genetic network. Accordingly, this paper seeks to extract the meaningful regulatory role of the maternal effect genes using a variety of causality detection techniques and to explore whether these methods can suggest a new analytical view to the gene regulatory networks. We evaluate the use of three different powerful and widely-used models representing time and frequency domain Granger causality and convergent cross mapping technique with the results being thoroughly evaluated for statistical significance. Our findings show that the regulatory role of maternal effect genes is detectable in different time classes and thereby the method is applicable to infer the possible regulatory interactions present among the other genes of this network.

  1. Detection of toxin genes and RAPD analysis of bacillus cereus isolates from different soil types

    Directory of Open Access Journals (Sweden)

    Savic Dejana

    2015-01-01

    Full Text Available The aim of this study was to detect genes for enterotoxins (hbla, entFM and bceT and for emetic toxin (cer, to determine antibiotic resistance, and to estimate intraspecies diversity in B. cereus isolates by RAPD analysis. B. cereus was identified in 12 out of 117 indigenous Bacillus spp. using the classical microbiological methods and PCR. All isolates were resistant to penicillin and ampicillin, two to tetracyclin and four to trimethoprim-sulphamethoxazole. Also, all isolates produced inducible penicillinases and β-lactamase. Toxin genes were detected with PCR. EntFM and cer genes were present in all isolates, hbla in all, but two, and bceT in none. RAPD analysis was performed with four different primers, two of them designed for this study. The intraspecies diversity revealed 10 different patterns at the 90% similarity level. Two separate clusters were formed regardless of a soil type or utilization. The detection of genes encoding toxins in all B. cereus isolates indicated these bacteria as potentially pathogenic and seriously for human health. Regardless of a soil type or utilization, the RAPD analysis showed high intraspecies heterogeneity in B. cereus isolates. To the best of our knowledge, this is the first study to analyse the presence of entero- and emetic toxin genes and genetic heterogeneity in B. cereus isolates from different soil types and different soil utilization in Serbia. [Projekat Ministarstva nauke Republike Srbije, br. TR37006

  2. Differential neutrophil gene expression in early bovine pregnancy

    Directory of Open Access Journals (Sweden)

    Kizaki Keiichiro

    2013-02-01

    Full Text Available Abstract Background In food production animals, especially cattle, the diagnosis of gestation is important because the timing of gestation directly affects the running of farms. Various methods have been used to detect gestation, but none of them are ideal because of problems with the timing of detection or the accuracy, simplicity, or cost of the method. A new method for detecting gestation, which involves assessing interferon-tau (IFNT-stimulated gene expression in peripheral blood leukocytes (PBL, was recently proposed. PBL fractionation methods were used to examine whether the expression profiles of various PBL populations could be used as reliable diagnostic markers of bovine gestation. Methods PBL were collected on days 0 (just before artificial insemination, 7, 14, 17, 21, and 28 of gestation. The gene expression levels of the PBL were assessed with microarray analysis and/or quantitative real-time reverse transcription (q PCR. PBL fractions were collected by flow cytometry or density gradient cell separation using Histopaque 1083 or Ficoll-Conray solutions. The expression levels of four IFNT-stimulated genes, interferon-stimulated protein 15 kDa (ISG15, myxovirus-resistance (MX 1 and 2, and 2′-5′-oligoadenylate synthetase (OAS1, were then analyzed in each fraction through day 28 of gestation using qPCR. Results Microarray analysis detected 72 and 28 genes in whole PBL that were significantly higher on days 14 and 21 of gestation, respectively, than on day 0. The upregulated genes included IFNT-stimulated genes. The expression levels of these genes increased with the progression of gestation until day 21. In flow cytometry experiments, on day 14 the expression levels of all of the genes were significantly higher in the granulocyte fraction than in the other fractions. Their expression gradually decreased through day 28 of gestation. Strong correlations were observed between the expression levels of the four genes in the granulocyte

  3. Bioaerosol emissions and detection of airborne antibiotic resistance genes from a wastewater treatment plant

    Science.gov (United States)

    Li, Jing; Zhou, Liantong; Zhang, Xiangyu; Xu, Caijia; Dong, Liming; Yao, Maosheng

    2016-01-01

    Air samples from twelve sampling sites (including seven intra-plant sites, one upwind site and four downwind sites) from a wastewater treatment plant (WWTP) in Beijing were collected using a Reuter Centrifugal Sampler High Flow (RCS); and their microbial fractions were studied using culturing and high throughput gene sequence. In addition, the viable (fluorescent) bioaerosol concentrations for 7 intra-plant sites were also monitored for 30 min each using an ultraviolet aerodynamic particle sizer (UV-APS). Both air and water samples collected from the plant were investigated for possible bacterial antibiotic resistance genes and integrons using polymerase chain reaction (PCR) coupled with gel electrophoresis. The results showed that the air near sludge thickening basin was detected to have the highest level of culturable bacterial aerosols (up to 1697 CFU/m3) and fungal aerosols (up to 930 CFU/m3). For most sampling sites, fluorescent peaks were observed at around 3-4 μm, except the office building with a peak at 1.5 μm, with a number concentration level up to 1233-6533 Particles/m3. About 300 unique bacterial species, including human opportunistic pathogens, such as Comamonas Testosteroni and Moraxella Osloensis, were detected from the air samples collected over the biological reaction basin. In addition, we have detected the sul2 gene resistant to cotrimoxazole (also known as septra, bactrim and TMP-SMX) and class 1 integrase gene from the air samples collected from the screen room and the biological reaction basin. Overall, the screen room, sludge thickening basin and biological reaction basin imposed significant microbial exposure risks, including those from airborne antibiotic resistance genes.

  4. The Spike-and-Slab Lasso Generalized Linear Models for Prediction and Associated Genes Detection.

    Science.gov (United States)

    Tang, Zaixiang; Shen, Yueping; Zhang, Xinyan; Yi, Nengjun

    2017-01-01

    Large-scale "omics" data have been increasingly used as an important resource for prognostic prediction of diseases and detection of associated genes. However, there are considerable challenges in analyzing high-dimensional molecular data, including the large number of potential molecular predictors, limited number of samples, and small effect of each predictor. We propose new Bayesian hierarchical generalized linear models, called spike-and-slab lasso GLMs, for prognostic prediction and detection of associated genes using large-scale molecular data. The proposed model employs a spike-and-slab mixture double-exponential prior for coefficients that can induce weak shrinkage on large coefficients, and strong shrinkage on irrelevant coefficients. We have developed a fast and stable algorithm to fit large-scale hierarchal GLMs by incorporating expectation-maximization (EM) steps into the fast cyclic coordinate descent algorithm. The proposed approach integrates nice features of two popular methods, i.e., penalized lasso and Bayesian spike-and-slab variable selection. The performance of the proposed method is assessed via extensive simulation studies. The results show that the proposed approach can provide not only more accurate estimates of the parameters, but also better prediction. We demonstrate the proposed procedure on two cancer data sets: a well-known breast cancer data set consisting of 295 tumors, and expression data of 4919 genes; and the ovarian cancer data set from TCGA with 362 tumors, and expression data of 5336 genes. Our analyses show that the proposed procedure can generate powerful models for predicting outcomes and detecting associated genes. The methods have been implemented in a freely available R package BhGLM (http://www.ssg.uab.edu/bhglm/). Copyright © 2017 by the Genetics Society of America.

  5. PCR detection of oxytetracycline resistance genes otr(A) and otr(B) in tetracycline-resistant streptomycete isolates from diverse habitats

    NARCIS (Netherlands)

    Nikolakopoulou, T; Egan, S; van Overbeek, L; Guillaume, G; Heuer, H; Wellington, EMH; van Elsas, JD; Collard, JM; Smalla, K; Karagouni, A

    2005-01-01

    A range of European habitats was screened by PCR for detection of the oxytetracycline resistance genes otr(A) and otr(B), found in the oxytetracycline-producing strain Streptomyces rimosus. Primers were developed to detect these otr genes in tetracycline-resistant (Tc-R) streptomycete isolates from

  6. Selection of reference genes for quantitative RT-PCR studies in striped dolphin (Stenella coeruleoalba skin biopsies

    Directory of Open Access Journals (Sweden)

    Casini Silvia

    2006-09-01

    Full Text Available Abstract Background Odontocete cetaceans occupy the top position of the marine food-web and are particularly sensitive to the bioaccumulation of lipophilic contaminants. The effects of environmental pollution on these species are highly debated and various ecotoxicological studies have addressed the impact of xenobiotic compounds on marine mammals, raising conservational concerns. Despite its sensitivity, quantitative real-time PCR (qRT-PCR has never been used to quantify gene induction caused by exposure of cetaceans to contaminants. A limitation for the application of qRT-PCR is the need for appropriate reference genes which allow the correct quantification of gene expression. A systematic evaluation of potential reference genes in cetacean skin biopsies is presented, in order to validate future qRT-PCR studies aiming at using the expression of selected genes as non-lethal biomarkers. Results Ten commonly used housekeeping genes (HKGs were partially sequenced in the striped dolphin (Stenella coeruleoalba and, for each gene, PCR primer pairs were specifically designed and tested in qRT-PCR assays. The expression of these potential control genes was examined in 30 striped dolphin skin biopsy samples, obtained from specimens sampled in the north-western Mediterranean Sea. The stability of selected control genes was determined using three different specific VBA applets (geNorm, NormFinder and BestKeeper which produce highly comparable results. Glyceraldehyde-3P-dehydrogenase (GAPDH and tyrosine 3-monooxygenase (YWHAZ always rank as the two most stably expressed HKGs according to the analysis with geNorm and Normfinder, and are defined as optimal control genes by BestKepeer. Ribosomal protein L4 (RPL4 and S18 (RPS18 also exhibit a remarkable stability of their expression levels. On the other hand, transferrin receptor (TFRC, phosphoglycerate kinase 1 (PGK1, hypoxanthine ribosyltransferase (HPRT1 and β-2-microglobin (B2M show variable expression

  7. Rapid detection of single nucleotide mutation in p53 gene based on ...

    Indian Academy of Sciences (India)

    mutation.27 Nevertheless, more than 50% of all human tumors contain p53 mutation; ... gene mutation detection in various fields of biology and medicine persuaded us to find ..... Yola M L, Eren T and Atar N 2014 Electrochim. Acta. 125 38. 26.

  8. Fine mapping and candidate gene prediction of a pleiotropic quantitative trait locus for yield-related trait in Zea mays.

    Directory of Open Access Journals (Sweden)

    Ruixiang Liu

    Full Text Available The yield of maize grain is a highly complex quantitative trait that is controlled by multiple quantitative trait loci (QTLs with small effects, and is frequently influenced by multiple genetic and environmental factors. Thus, it is challenging to clone a QTL for grain yield in the maize genome. Previously, we identified a major QTL, qKNPR6, for kernel number per row (KNPR across multiple environments, and developed two nearly isogenic lines, SL57-6 and Ye478, which differ only in the allelic constitution at the short segment harboring the QTL. Recently, qKNPR6 was re-evaluated in segregating populations derived from SL57-6×Ye478, and was narrowed down to a 2.8 cM interval, which explained 56.3% of the phenotypic variance of KNPR in 201 F(2∶3 families. The QTL simultaneously affected ear length, kernel weight and grain yield. Furthermore, a large F(2 population with more than 12,800 plants, 191 recombinant chromosomes and 10 overlapping recombinant lines placed qKNPR6 into a 0.91 cM interval corresponding to 198Kb of the B73 reference genome. In this region, six genes with expressed sequence tag (EST evidence were annotated. The expression pattern and DNA diversity of the six genes were assayed in Ye478 and SL57-6. The possible candidate gene and the pathway involved in inflorescence development were discussed.

  9. MimiLook: A Phylogenetic Workflow for Detection of Gene Acquisition in Major Orthologous Groups of Megavirales.

    Science.gov (United States)

    Jain, Sourabh; Panda, Arup; Colson, Philippe; Raoult, Didier; Pontarotti, Pierre

    2017-04-07

    With the inclusion of new members, understanding about evolutionary mechanisms and processes by which members of the proposed order, Megavirales, have evolved has become a key area of interest. The central role of gene acquisition has been shown in previous studies. However, the major drawback in gene acquisition studies is the focus on few MV families or putative families with large variation in their genetic structure. Thus, here we have tried to develop a methodology by which we can detect horizontal gene transfers (HGTs), taking into consideration orthologous groups of distantly related Megavirale families. Here, we report an automated workflow MimiLook, prepared as a Perl command line program, that deduces orthologous groups (OGs) from ORFomes of Megavirales and constructs phylogenetic trees by performing alignment generation, alignment editing and protein-protein BLAST (BLASTP) searching across the National Center for Biotechnology Information (NCBI) non-redundant (nr) protein sequence database. Finally, this tool detects statistically validated events of gene acquisitions with the help of the T-REX algorithm by comparing individual gene tree with NCBI species tree. In between the steps, the workflow decides about handling paralogs, filtering outputs, identifying Megavirale specific OGs, detection of HGTs, along with retrieval of information about those OGs that are monophyletic with organisms from cellular domains of life. By implementing MimiLook, we noticed that nine percent of Megavirale gene families (i.e., OGs) have been acquired by HGT, 80% OGs were Megaviralespecific and eight percent were found to be sharing common ancestry with members of cellular domains (Eukaryote, Bacteria, Archaea, Phages or other viruses) and three percent were ambivalent. The results are briefly discussed to emphasize methodology. Also, MimiLook is relevant for detecting evolutionary scenarios in other targeted phyla with user defined modifications. It can be accessed at

  10. PanCoreGen – profiling, detecting, annotating protein-coding genes in microbial genomes

    Science.gov (United States)

    Bhardwaj, Archana; Bag, Sumit K; Sokurenko, Evgeni V.

    2015-01-01

    A large amount of genomic data, especially from multiple isolates of a single species, has opened new vistas for microbial genomics analysis. Analyzing pan-genome (i.e. the sum of genetic repertoire) of microbial species is crucial in understanding the dynamics of molecular evolution, where virulence evolution is of major interest. Here we present PanCoreGen – a standalone application for pan- and core-genomic profiling of microbial protein-coding genes. PanCoreGen overcomes key limitations of the existing pan-genomic analysis tools, and develops an integrated annotation-structure for species-specific pan-genomic profile. It provides important new features for annotating draft genomes/contigs and detecting unidentified genes in annotated genomes. It also generates user-defined group-specific datasets within the pan-genome. Interestingly, analyzing an example-set of Salmonella genomes, we detect potential footprints of adaptive convergence of horizontally transferred genes in two human-restricted pathogenic serovars – Typhi and Paratyphi A. Overall, PanCoreGen represents a state-of-the-art tool for microbial phylogenomics and pathogenomics study. PMID:26456591

  11. Quantitative detection of nitroxyl upon trapping with glutathione and labeling with a specific fluorogenic reagent.

    Science.gov (United States)

    Johnson, Gail M; Chozinski, Tyler J; Salmon, Debra J; Moghaddam, Alan D; Chen, Hsin Chih; Miranda, Katrina M

    2013-10-01

    Donors of nitroxyl (HNO) have shown promise for treatment of stroke, heart failure, alcoholism and cancer. However, comparing the pharmacological capacities of various donors is difficult without first quantifying the amount of HNO released from each donor. Detection and quantitation of HNO has been complicated by the rapid self-consumption of HNO through irreversible dimerization, poor selectivity of trapping agents against other nitrogen oxides, and/or low sensitivity towards HNO. Here, an assay is described for the trapping of HNO by glutathione (GSH) followed by labeling of GSH with the fluorogenic agent, naphthalene-2,3-dicarboxaldehyde (NDA), and subsequent quantitation by fluorescence difference. The newly developed assay was used to validate the pH-dependence of HNO release from isopropylamine NONOate (IPA/NO), which is a dual donor of HNO and NO at physiological pH. Furthermore, varied assay conditions were utilized to suggest the ratios of the products of the reaction of GSH with HNO. At intracellular concentrations of GSH, the disulfide (GSSG) was the major product, but significant concentrations of glutathione sulfinamide (GS(O)NH₂) were also detected. This suggests that GS(O)NH₂, which is a selective biomarker of HNO, may be produced in concentrations that are amenable to in vivo analysis. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Partitioning of genetic variation between regulatory and coding gene segments: the predominance of software variation in genes encoding introvert proteins.

    Science.gov (United States)

    Mitchison, A

    1997-01-01

    In considering genetic variation in eukaryotes, a fundamental distinction can be made between variation in regulatory (software) and coding (hardware) gene segments. For quantitative traits the bulk of variation, particularly that near the population mean, appears to reside in regulatory segments. The main exceptions to this rule concern proteins which handle extrinsic substances, here termed extrovert proteins. The immune system includes an unusually large proportion of this exceptional category, but even so its chief source of variation may well be polymorphism in regulatory gene segments. The main evidence for this view emerges from genome scanning for quantitative trait loci (QTL), which in the case of the immune system points to a major contribution of pro-inflammatory cytokine genes. Further support comes from sequencing of major histocompatibility complex (Mhc) class II promoters, where a high level of polymorphism has been detected. These Mhc promoters appear to act, in part at least, by gating the back-signal from T cells into antigen-presenting cells. Both these forms of polymorphism are likely to be sustained by the need for flexibility in the immune response. Future work on promoter polymorphism is likely to benefit from the input from genome informatics.

  13. Measurement issues associated with quantitative molecular biology analysis of complex food matrices for the detection of food fraud.

    Science.gov (United States)

    Burns, Malcolm; Wiseman, Gordon; Knight, Angus; Bramley, Peter; Foster, Lucy; Rollinson, Sophie; Damant, Andrew; Primrose, Sandy

    2016-01-07

    Following a report on a significant amount of horse DNA being detected in a beef burger product on sale to the public at a UK supermarket in early 2013, the Elliott report was published in 2014 and contained a list of recommendations for helping ensure food integrity. One of the recommendations included improving laboratory testing capacity and capability to ensure a harmonised approach for testing for food authenticity. Molecular biologists have developed exquisitely sensitive methods based on the polymerase chain reaction (PCR) or mass spectrometry for detecting the presence of particular nucleic acid or peptide/protein sequences. These methods have been shown to be specific and sensitive in terms of lower limits of applicability, but they are largely qualitative in nature. Historically, the conversion of these qualitative techniques into reliable quantitative methods has been beset with problems even when used on relatively simple sample matrices. When the methods are applied to complex sample matrices, as found in many foods, the problems are magnified resulting in a high measurement uncertainty associated with the result which may mean that the assay is not fit for purpose. However, recent advances in the technology and the understanding of molecular biology approaches have further given rise to the re-assessment of these methods for their quantitative potential. This review focuses on important issues for consideration when validating a molecular biology assay and the various factors that can impact on the measurement uncertainty of a result associated with molecular biology approaches used in detection of food fraud, with a particular focus on quantitative PCR-based and proteomics assays.

  14. Addition of Adapted Optics towards obtaining a quantitative detection of diabetic retinopathy

    Science.gov (United States)

    Yust, Brian; Obregon, Isidro; Tsin, Andrew; Sardar, Dhiraj

    2009-04-01

    An adaptive optics system was assembled for correcting the aberrated wavefront of light reflected from the retina. The adaptive optics setup includes a superluminous diode light source, Hartmann-Shack wavefront sensor, deformable mirror, and imaging CCD camera. Aberrations found in the reflected wavefront are caused by changes in the index of refraction along the light path as the beam travels through the cornea, lens, and vitreous humour. The Hartmann-Shack sensor allows for detection of aberrations in the wavefront, which may then be corrected with the deformable mirror. It has been shown that there is a change in the polarization of light reflected from neovascularizations in the retina due to certain diseases, such as diabetic retinopathy. The adaptive optics system was assembled towards the goal of obtaining a quantitative measure of onset and progression of this ailment, as one does not currently exist. The study was done to show that the addition of adaptive optics results in a more accurate detection of neovascularization in the retina by measuring the expected changes in polarization of the corrected wavefront of reflected light.

  15. Alternative models for detection of quantitative trait loci (QTL) for growth and carcass traits in pigs chromosomes 4, 5 and 7

    NARCIS (Netherlands)

    Moraes Gonçalves, de T.; Nunes de Oliveira, H.; Bovenhuis, H.; Bink, M.C.A.M.; Arendonk, van J.A.M.

    2005-01-01

    Genome scans can be used to identify chromosomal regions and eventually genes that control quantitative traits (QTL) of economic importance. In an experimental cross between Meishan (male) and Dutch Large White and Landrace lines (female), 298 F1 and 831 F2 animals were evaluated for intramuscular

  16. A Fast Multiple-Kernel Method With Applications to Detect Gene-Environment Interaction.

    Science.gov (United States)

    Marceau, Rachel; Lu, Wenbin; Holloway, Shannon; Sale, Michèle M; Worrall, Bradford B; Williams, Stephen R; Hsu, Fang-Chi; Tzeng, Jung-Ying

    2015-09-01

    Kernel machine (KM) models are a powerful tool for exploring associations between sets of genetic variants and complex traits. Although most KM methods use a single kernel function to assess the marginal effect of a variable set, KM analyses involving multiple kernels have become increasingly popular. Multikernel analysis allows researchers to study more complex problems, such as assessing gene-gene or gene-environment interactions, incorporating variance-component based methods for population substructure into rare-variant association testing, and assessing the conditional effects of a variable set adjusting for other variable sets. The KM framework is robust, powerful, and provides efficient dimension reduction for multifactor analyses, but requires the estimation of high dimensional nuisance parameters. Traditional estimation techniques, including regularization and the "expectation-maximization (EM)" algorithm, have a large computational cost and are not scalable to large sample sizes needed for rare variant analysis. Therefore, under the context of gene-environment interaction, we propose a computationally efficient and statistically rigorous "fastKM" algorithm for multikernel analysis that is based on a low-rank approximation to the nuisance effect kernel matrices. Our algorithm is applicable to various trait types (e.g., continuous, binary, and survival traits) and can be implemented using any existing single-kernel analysis software. Through extensive simulation studies, we show that our algorithm has similar performance to an EM-based KM approach for quantitative traits while running much faster. We also apply our method to the Vitamin Intervention for Stroke Prevention (VISP) clinical trial, examining gene-by-vitamin effects on recurrent stroke risk and gene-by-age effects on change in homocysteine level. © 2015 WILEY PERIODICALS, INC.

  17. Comparative evaluation of the QIAsymphony RGQ system with the easyMAG/R-gene combination for the quantitation of cytomegalovirus DNA load in whole blood

    Directory of Open Access Journals (Sweden)

    Pillet Sylvie

    2012-10-01

    Full Text Available Abstract Background The detection of cytomegalovirus (CMV DNA in blood is a key feature of the virological surveillance of immunocompromised patients. Methods The QIAsymphony RGQ system (QIAGEN S.A.S., France combines the extraction/distribution steps on QIAsymphony SP/AS instruments with amplification on a Rotor-Gene Q RT-PCR machine. This system was compared to a strategy combining an extraction step on the NUCLISENS easyMAG platform (bioMérieux with the CMV R-gene kit (Argene on 100 whole blood specimens collected from immunocompromised patients of the University Hospital of Saint-Etienne, France. Results The overall agreement between the two strategies was 86% (kappa coefficient of 0.67; the 14 discrepant results corresponded to low DNA loads. The 62 samples found positive with both tests were correlated (Pearson r coefficient of 0.70, P 10 copies/ml with the easyMAG/Argene strategy (P 10 copies/ml. The inter-run and intra-run variability was consistently lower with the QIAGEN platform. Conclusions These results validate the performance of the QIAsymphony RGQ system for the routine quantitation of CMV DNA. This fully-automated platform reduces the hands-on time and improves standardization, traceability and quality control assessment.

  18. Rapid detection of SNP (c.309T>G in the MDM2 gene by the Duplex SmartAmp method.

    Directory of Open Access Journals (Sweden)

    Yasuaki Enokida

    Full Text Available BACKGROUND: Genetic polymorphisms in the human MDM2 gene are suggested to be a tumor susceptibility marker and a prognostic factor for cancer. It has been reported that a single nucleotide polymorphism (SNP c.309T>G in the MDM2 gene attenuates the tumor suppressor activity of p53 and accelerates tumor formation in humans. METHODOLOGY: In this study, to detect the SNP c.309T>G in the MDM2 gene, we have developed a new SNP detection method, named "Duplex SmartAmp," which enabled us to simultaneously detect both 309T and 309G alleles in one tube. To develop this new method, we introduced new primers i.e., nBP and oBPs, as well as two different fluorescent dyes that separately detect those genetic polymorphisms. RESULTS AND CONCLUSIONS: By the Duplex SmartAmp method, the genetic polymorphisms of the MDM2 gene were detected directly from a small amount of genomic DNA or blood samples. We used 96 genomic DNA and 24 blood samples to validate the Duplex SmartAmp by comparison with results of the conventional PCR-RFLP method; consequently, the Duplex SmartAmp results agreed totally with those of the PCR-RFLP method. Thus, the new SNP detection method is considered useful for detecting the SNP c.309T>G in the MDM2 gene so as to judge cancer susceptibility against some cellular stress in the clinical setting, and also to handle a large number of samples and enable rapid clinical diagnosis.

  19. Predicting Recurrence and Progression of Noninvasive Papillary Bladder Cancer at Initial Presentation Based on Quantitative Gene Expression Profiles

    DEFF Research Database (Denmark)

    Birkhahn, M.; Mitra, A.P.; Williams, Johan

    2010-01-01

    % specificity. Since this is a small retrospective study using medium-throughput profiling, larger confirmatory studies are needed. Conclusions: Gene expression profiling across relevant cancer pathways appears to be a promising approach for Ta bladder tumor outcome prediction at initial diagnosis......Background: Currently, tumor grade is the best predictor of outcome at first presentation of noninvasive papillary (Ta) bladder cancer. However, reliable predictors of Ta tumor recurrence and progression for individual patients, which could optimize treatment and follow-up schedules based...... on specific tumor biology, are yet to be identified. Objective: To identify genes predictive for recurrence and progression in Ta bladder cancer at first presentation using a quantitative, pathway-specific approach. Design, setting, and participants: Retrospective study of patients with Ta G2/3 bladder tumors...

  20. Comparison of in-house and commercial real time-PCR based carbapenemase gene detection methods in Enterobacteriaceae and non-fermenting gram-negative bacterial isolates.

    Science.gov (United States)

    Smiljanic, M; Kaase, M; Ahmad-Nejad, P; Ghebremedhin, B

    2017-07-10

    Carbapenemase-producing gram-negative bacteria are increasing globally and have been associated with outbreaks in hospital settings. Thus, the accurate detection of these bacteria in infections is mandatory for administering the adequate therapy and infection control measures. This study aimed to establish and evaluate a multiplex real-time PCR assay for the simultaneous detection of carbapenemase gene variants in gram-negative rods and to compare the performance with a commercial RT-PCR assay (Check-Direct CPE). 116 carbapenem-resistant Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter baumannii isolates were genotyped for carbapenemase genes by PCR and sequencing. The defined isolates were used for the validation of the in-house RT-PCR by use of designed primer pairs and probes. Among the carbapenem-resistant isolates the genes bla KPC , bla VIM , bla NDM or bla OXA were detected. Both RT-PCR assays detected all bla KPC , bla VIM and bla NDM in the isolates. The in-house RT-PCR detected 53 of 67 (79.0%) whereas the commercial assay detected only 29 (43.3%) of the OXA genes. The in-house sufficiently distinguished the most prevalent OXA types (23-like and 48-like) in the melting curve analysis and direct detection of the genes from positive blood culture vials. The Check-Direct CPE and the in-house RT-PCR assay detected the carbapenem resistance from solid culture isolates. Moreover, the in-house assay enabled the identification of carbapenemase genes directly from positive blood-culture vials. However, we observed insufficient detection of various OXA genes in both assays. Nevertheless, the in-house RT-PCR detected the majority of the OXA type genes in Enterobacteriaceae and A. baumannii.

  1. Evaluation of reference genes for real-time quantitative PCR studies in Candida glabrata following azole treatment

    Directory of Open Access Journals (Sweden)

    Li Qingdi

    2012-06-01

    Full Text Available Abstract Background The selection of stable and suitable reference genes for real-time quantitative PCR (RT-qPCR is a crucial prerequisite for reliable gene expression analysis under different experimental conditions. The present study aimed to identify reference genes as internal controls for gene expression studies by RT-qPCR in azole-stimulated Candida glabrata. Results The expression stability of 16 reference genes under fluconazole stress was evaluated using fold change and standard deviation computations with the hkgFinder tool. Our data revealed that the mRNA expression levels of three ribosomal RNAs (RDN5.8, RDN18, and RDN25 remained stable in response to fluconazole, while PGK1, UBC7, and UBC13 mRNAs showed only approximately 2.9-, 3.0-, and 2.5-fold induction by azole, respectively. By contrast, mRNA levels of the other 10 reference genes (ACT1, EF1α, GAPDH, PPIA, RPL2A, RPL10, RPL13A, SDHA, TUB1, and UBC4 were dramatically increased in C. glabrata following antifungal treatment, exhibiting changes ranging from 4.5- to 32.7-fold. We also assessed the expression stability of these reference genes using the 2-ΔΔCT method and three other software packages. The stability rankings of the reference genes by geNorm and the 2-ΔΔCT method were identical to those by hkgFinder, whereas the stability rankings by BestKeeper and NormFinder were notably different. We then validated the suitability of six candidate reference genes (ACT1, PGK1, RDN5.8, RDN18, UBC7, and UBC13 as internal controls for ten target genes in this system using the comparative CT method. Our validation experiments passed for all six reference genes analyzed except RDN18, where the amplification efficiency of RDN18 was different from that of the ten target genes. Finally, we demonstrated that the relative quantification of target gene expression varied according to the endogenous control used, highlighting the importance of the choice of internal controls in such

  2. [Rapid detection of hot spot mutations of FGFR3 gene with PCR-high resolution melting assay].

    Science.gov (United States)

    Li, Shan; Wang, Han; Su, Hua; Gao, Jinsong; Zhao, Xiuli

    2017-08-10

    To identify the causative mutations in five individuals affected with dyschondroplasia and develop an efficient procedure for detecting hot spot mutations of the FGFR3 gene. Genomic DNA was extracted from peripheral blood samples with a standard phenol/chloroform method. PCR-Sanger sequencing was used to analyze the causative mutations in the five probands. PCR-high resolution melting (HRM) was developed to detect the identified mutations. A c.1138G>A mutation in exon 8 was found in 4 probands, while a c.1620C>G mutation was found in exon 11 of proband 5 whom had a mild phenotype. All patients were successfully distinguished from healthy controls with the PCR-HRM method. The results of HRM analysis were highly consistent with that of Sanger sequencing. The Gly380Arg and Asn540Lys are hot spot mutations of the FGFR3 gene among patients with ACH/HCH. PCR-HRM analysis is more efficient for detecting hot spot mutations of the FGFR3 gene.

  3. Detection of p53 gene mutations in bronchial biopsy samples of patients with lung cancer

    International Nuclear Information System (INIS)

    Irshad, S.; Nawaz, T.

    2008-01-01

    Lung cancer is the malignant transformation and expansion of lung tissue. It is the most lethal of all cancers worldwide, responsible for 1.2 million deaths annually. The goal of this study was to detect the p53 gene mutations in lung cancer, in local population of Lahore, Pakistan. These mutations were screened in the bronchial biopsy lung cancer tissue samples. For this purpose microtomed tissue sections were collected. Following DNA extraction from tissue sections, the p53 mutations were detected by amplifying Exon 7 (145 bp) and Exon 8 (152 bp) of the p53 gene. PCR then followed by single-strand conformation polymorphism analysis for screening the p53 gene mutations. This results of SSCP were visualized of silver staining. The results showed different banding pattern indicating the presence of mutation. Majority of the mutations were found in Exon 7. Exon 7 of p53 gene may be the mutation hotspot in lung cancer. In lung cancer, the most prevalent mutations of p53 gene are G -> T transversions; other types of insertions and deletions are also expected, however, the exact nature of mutations in presented work could be confirmed by direct sequencing. (author)

  4. Multiplex quantitative PCR for detection of lower respiratory tract infection and meningitis caused by Streptococcus pneumoniae, Haemophilus influenzae and Neisseria meningitidis.

    Science.gov (United States)

    Abdeldaim, Guma M K; Strålin, Kristoffer; Korsgaard, Jens; Blomberg, Jonas; Welinder-Olsson, Christina; Herrmann, Björn

    2010-12-03

    Streptococcus pneumoniae and Haemophilus influenzae cause pneumonia and as Neisseria meningitidis they are important agents of meningitis. Although several PCR methods have been described for these bacteria the specificity is an underestimated problem. Here we present a quantitative multiplex real-time PCR (qmPCR) for detection of S. pneumoniae (9802 gene fragment), H. influenzae (omp P6 gene) and N. meningitidis (ctrA gene). The method was evaluated on bronchoalveolar lavage (BAL) samples from 156 adults with lower respiratory tract infection (LRTI) and 31 controls, and on 87 cerebrospinal fluid (CSF) samples from meningitis patients. The analytical sensitivity was not affected by using a combined mixture of reagents and a combined DNA standard (S. pneumoniae/H. influenzae/N. meningitidis) in single tubes. By blood- and BAL-culture and S. pneumoniae urinary antigen test, S. pneumoniae and H. influenzae were aetiological agents in 21 and 31 of the LTRI patients, respectively. These pathogens were identified by qmPCR in 52 and 72 of the cases, respectively, yielding sensitivities and specificities of 95% and 75% for S. pneumoniae, and 90% and 65% for H. influenzae, respectively. When using a cut-off of 10⁵ genome copies/mL for clinical positivity the sensitivities and specificities were 90% and 80% for S. pneumoniae, and 81% and 85% for H. influenzae, respectively. Of 44 culture negative but qmPCR positive for H. influenzae, 41 were confirmed by fucK PCR as H. influenzae. Of the 103 patients who had taken antibiotics prior to sampling, S. pneumoniae and H. influenzae were identified by culture in 6% and 20% of the cases, respectively, and by the qmPCR in 36% and 53% of the cases, respectively.In 87 CSF samples S. pneumoniae and N. meningitidis were identified by culture and/or 16 S rRNA in 14 and 10 samples and by qmPCR in 14 and 10 samples, respectively, giving a sensitivity of 100% and a specificity of 100% for both bacteria. The PCR provides increased

  5. Multiplex quantitative PCR for detection of lower respiratory tract infection and meningitis caused by Streptococcus pneumoniae, Haemophilus influenzae and Neisseria meningitidis

    Directory of Open Access Journals (Sweden)

    Welinder-Olsson Christina

    2010-12-01

    Full Text Available Abstract Background Streptococcus pneumoniae and Haemophilus influenzae cause pneumonia and as Neisseria meningitidis they are important agents of meningitis. Although several PCR methods have been described for these bacteria the specificity is an underestimated problem. Here we present a quantitative multiplex real-time PCR (qmPCR for detection of S. pneumoniae (9802 gene fragment, H. influenzae (omp P6 gene and N. meningitidis (ctrA gene. The method was evaluated on bronchoalveolar lavage (BAL samples from 156 adults with lower respiratory tract infection (LRTI and 31 controls, and on 87 cerebrospinal fluid (CSF samples from meningitis patients. Results The analytical sensitivity was not affected by using a combined mixture of reagents and a combined DNA standard (S. pneumoniae/H. influenzae/N. meningitidis in single tubes. By blood- and BAL-culture and S. pneumoniae urinary antigen test, S. pneumoniae and H. influenzae were aetiological agents in 21 and 31 of the LTRI patients, respectively. These pathogens were identified by qmPCR in 52 and 72 of the cases, respectively, yielding sensitivities and specificities of 95% and 75% for S. pneumoniae, and 90% and 65% for H. influenzae, respectively. When using a cut-off of 105 genome copies/mL for clinical positivity the sensitivities and specificities were 90% and 80% for S. pneumoniae, and 81% and 85% for H. influenzae, respectively. Of 44 culture negative but qmPCR positive for H. influenzae, 41 were confirmed by fucK PCR as H. influenzae. Of the 103 patients who had taken antibiotics prior to sampling, S. pneumoniae and H. influenzae were identified by culture in 6% and 20% of the cases, respectively, and by the qmPCR in 36% and 53% of the cases, respectively. In 87 CSF samples S. pneumoniae and N. meningitidis were identified by culture and/or 16 S rRNA in 14 and 10 samples and by qmPCR in 14 and 10 samples, respectively, giving a sensitivity of 100% and a specificity of 100% for both

  6. Development of a Rapid Real-Time PCR Assay for Quantitation of Pneumocystis carinii f. sp. Carinii

    DEFF Research Database (Denmark)

    Larsen, Hans Henrik; Kovacs, Joseph A; Stock, Frida

    2002-01-01

    ) PCR assay for detecting P. carinii f. sp. carinii, the subspecies of P. carinii commonly used in research models of PCP. The assay was based on the single-copy dihydrofolate reductase gene and was able to detect r = 0.99) over...... 6 log values for standards containing > or =5 copies/tube. Application of the assay to a series of 10-fold dilutions of P. carinii organisms isolated from rat lung demonstrated that it was reproducibly quantitative over 5 log values (r = 0.99). The assay was applied to a recently reported in vitro....... In conclusion, a rapid, sensitive, and reproducible quantitative PCR assay for P. carinii f. sp. carinii has been developed and is applicable to in vivo as well as in vitro systems. The assay should prove useful for conducting studies in which quantification of organism burden or growth assessment is critical...

  7. The quantitative basis of the Arabidopsis innate immune system to endemic pathogens depends on pathogen genetics

    DEFF Research Database (Denmark)

    Corwin, Jason A; Copeland, Daniel; Feusier, Julie

    2016-01-01

    The most established model of the eukaryotic innate immune system is derived from examples of large effect monogenic quantitative resistance to pathogens. However, many host-pathogen interactions involve many genes of small to medium effect and exhibit quantitative resistance. We used the Arabido......The most established model of the eukaryotic innate immune system is derived from examples of large effect monogenic quantitative resistance to pathogens. However, many host-pathogen interactions involve many genes of small to medium effect and exhibit quantitative resistance. We used....... cinerea, we identified a total of 2,982 genes associated with quantitative resistance using lesion area and 3,354 genes associated with camalexin production as measures of the interaction. Most genes were associated with resistance to a specific Botrytis isolate, which demonstrates the influence...... genes associated with quantitative resistance. Using publically available co-expression data, we condensed the quantitative resistance associated genes into co-expressed gene networks. GO analysis of these networks implicated several biological processes commonly connected to disease resistance...

  8. CdSe/ZnS Quantum Dot-Labeled Lateral Flow Strips for Rapid and Quantitative Detection of Gastric Cancer Carbohydrate Antigen 72-4

    Science.gov (United States)

    Yan, Xinyu; Wang, Kan; Lu, Wenting; Qin, Weijian; Cui, Daxiang; He, Jinghua

    2016-03-01

    Carbohydrate antigen 72-4 (CA72-4) is an important biomarker associated closely with diagnosis and prognosis of early gastric cancer. How to realize quick, sensitive, specific, and quantitative detection of CA72-4 in clinical specimens has become a great requirement. Herein, we reported a CdSe/ZnS quantum dot-labeled lateral flow test strip combined with a charge-coupled device (CCD)-based reader was developed for rapid, sensitive, and quantitative detection of CA72-4. Two mouse monoclonal antibodies (mAbs) against CA72-4 were employed. One of them was coated as a test line, while another mAb was labeled with quantum dots and coated onto conjugate pad. The goat anti-mouse IgG was immobilized as a control line. After sample was added, a sandwich structure was formed with CA72-4 and these two mAbs. The fluorescent signal from quantum dots (QD)-labeled mAb in sandwich structure was related to the amount of detected CA72-4. A CCD-based reader was used to realize quantitative detection of CA72-4. Results showed that developed QD-labeled lateral flow strips to detect CA72-4 biomarker with the sensitivity of 2 IU/mL and 10 min detection time. One hundred sera samples from clinical patients with gastric cancer and healthy people were used to confirm specificity of this strip method; results showed that established strip method own 100 % reproducibility and 100 % specificity compared with Roche electrochemiluminescence assay results. In conclusion, CdSe/ZnS quantum dot-labeled lateral flow strips for detection of CA72-4 could realize rapid, sensitive, and specific detection of clinical samples and could own great potential in clinical translation in near future.

  9. Similarity-based gene detection: using COGs to find evolutionarily-conserved ORFs.

    Science.gov (United States)

    Powell, Bradford C; Hutchison, Clyde A

    2006-01-19

    Experimental verification of gene products has not kept pace with the rapid growth of microbial sequence information. However, existing annotations of gene locations contain sufficient information to screen for probable errors. Furthermore, comparisons among genomes become more informative as more genomes are examined. We studied all open reading frames (ORFs) of at least 30 codons from the genomes of 27 sequenced bacterial strains. We grouped the potential peptide sequences encoded from the ORFs by forming Clusters of Orthologous Groups (COGs). We used this grouping in order to find homologous relationships that would not be distinguishable from noise when using simple BLAST searches. Although COG analysis was initially developed to group annotated genes, we applied it to the task of grouping anonymous DNA sequences that may encode proteins. "Mixed COGs" of ORFs (clusters in which some sequences correspond to annotated genes and some do not) are attractive targets when seeking errors of gene prediction. Examination of mixed COGs reveals some situations in which genes appear to have been missed in current annotations and a smaller number of regions that appear to have been annotated as gene loci erroneously. This technique can also be used to detect potential pseudogenes or sequencing errors. Our method uses an adjustable parameter for degree of conservation among the studied genomes (stringency). We detail results for one level of stringency at which we found 83 potential genes which had not previously been identified, 60 potential pseudogenes, and 7 sequences with existing gene annotations that are probably incorrect. Systematic study of sequence conservation offers a way to improve existing annotations by identifying potentially homologous regions where the annotation of the presence or absence of a gene is inconsistent among genomes.

  10. Similarity-based gene detection: using COGs to find evolutionarily-conserved ORFs

    Directory of Open Access Journals (Sweden)

    Hutchison Clyde A

    2006-01-01

    Full Text Available Abstract Background Experimental verification of gene products has not kept pace with the rapid growth of microbial sequence information. However, existing annotations of gene locations contain sufficient information to screen for probable errors. Furthermore, comparisons among genomes become more informative as more genomes are examined. We studied all open reading frames (ORFs of at least 30 codons from the genomes of 27 sequenced bacterial strains. We grouped the potential peptide sequences encoded from the ORFs by forming Clusters of Orthologous Groups (COGs. We used this grouping in order to find homologous relationships that would not be distinguishable from noise when using simple BLAST searches. Although COG analysis was initially developed to group annotated genes, we applied it to the task of grouping anonymous DNA sequences that may encode proteins. Results "Mixed COGs" of ORFs (clusters in which some sequences correspond to annotated genes and some do not are attractive targets when seeking errors of gene predicion. Examination of mixed COGs reveals some situations in which genes appear to have been missed in current annotations and a smaller number of regions that appear to have been annotated as gene loci erroneously. This technique can also be used to detect potential pseudogenes or sequencing errors. Our method uses an adjustable parameter for degree of conservation among the studied genomes (stringency. We detail results for one level of stringency at which we found 83 potential genes which had not previously been identified, 60 potential pseudogenes, and 7 sequences with existing gene annotations that are probably incorrect. Conclusion Systematic study of sequence conservation offers a way to improve existing annotations by identifying potentially homologous regions where the annotation of the presence or absence of a gene is inconsistent among genomes.

  11. GENE ACTION AND HERITABILITY ESTIMATES OF QUANTITATIVE CHARACTERS AMONG LINES DERIVED FROM VARIETAL CROSSES OF SOYBEAN

    Directory of Open Access Journals (Sweden)

    Lukman Hakim

    2017-09-01

    Full Text Available The knowledge of genetic action, heritability and genetic variability is useful and permits plant breeder to design efficient breeding strategies in soybean.  The objectives of this study were to determine gene action, genetic variability, heritability and genetic advance of quantitative characters that could be realized through selection of segregation progenies. The F1 population and F2 progenies of six crosses among five soybean varieties were evaluated at Muneng Experimental Station, East Java during the dry season of 2014.  The lines were planted in a randomized block design with four replications.  The seeds of each F1 and F2 progenies and parents were planted in four rows of 3 m long, 40 cm x 20 cm plant spacing, one plant per hill. The result showed that pod number per plant, seed yield, plant yield and harvest index were found to be predominantly controlled by additive gene effects.  Seed size was also controlled by additive gene effects, with small seed dominant to large seed size.  Plant height was found to be controlled by both additive and nonadditive gene effects.  Similarly, days to maturity was due mainly to additive and nonadditive gene effects, with earliness dominant to lateness.  Days to maturity had the highest heritability estimates of 49.3%, followed by seed size (47.0%, harvest index (45.8%, and pod number per plant (45.5%.  Therefore, they could be used in the selection of a high yielding soybean genotype in the F3 generation. 

  12. Use of a real time PCR assay for detection of the ctxA gene of Vibrio cholerae in an environmental survey of Mobile Bay.

    Science.gov (United States)

    Blackstone, George M; Nordstrom, Jessica L; Bowen, Michael D; Meyer, Richard F; Imbro, Paula; DePaola, Angelo

    2007-02-01

    Toxigenic Vibrio cholerae, the etiological agent of cholera, is a natural inhabitant of the marine environment and causes severe diarrheal disease affecting thousands of people each year in developing countries. It is the subject of extensive testing of shrimp produced and exported from these countries. We report the development of a real time PCR (qPCR) assay to detect the gene encoding cholera toxin, ctxA, found in toxigenic V. cholerae strains. This assay was tested against DNA isolated from soil samples collected from diverse locations in the US, a panel of eukaryotic DNA from various sources, and prokaryotic DNA from closely related and unrelated bacterial sources. Only Vibrio strains known to contain ctxA generated a fluorescent signal with the 5' nuclease probe targeting the ctxA gene, thus confirming the specificity of the assay. In addition, the assay was quantitative in pure culture across a six-log dynamic range down to <10 CFU per reaction. To test the robustness of this assay, oysters, aquatic sediments, and seawaters from Mobile Bay, AL, were analyzed by qPCR and traditional culture methods. The assay was applied to overnight alkaline peptone water enrichments of these matrices after boiling the enrichments for 10 min. Toxigenic V. cholerae strains were not detected by either qPCR or conventional methods in the 16 environmental samples examined. A novel exogenous internal amplification control developed by us to prevent false negatives identified the samples that were inhibitory to the PCR. This assay, with the incorporated internal control, provides a highly specific, sensitive, and rapid detection method for the detection of toxigenic strains of V. cholerae.

  13. A differential mobility spectrometry/mass spectrometry platform for the rapid detection and quantitation of DNA adduct dG-ABP.

    Science.gov (United States)

    Kafle, Amol; Klaene, Joshua; Hall, Adam B; Glick, James; Coy, Stephen L; Vouros, Paul

    2013-07-15

    There is continued interest in exploring new analytical technologies for the detection and quantitation of DNA adducts, biomarkers which provide direct evidence of exposure and genetic damage in cells. With the goal of reducing clean-up steps and improving sample throughput, a Differential Mobility Spectrometry/Mass Spectrometry (DMS/MS) platform has been introduced for adduct analysis. A DMS/MS platform has been utilized for the analysis of dG-ABP, the deoxyguanosine adduct of the bladder carcinogen 4-aminobiphenyl (4-ABP). After optimization of the DMS parameters, each sample was analyzed in just 30 s following a simple protein precipitation step of the digested DNA. A detection limit of one modification in 10^6 nucleosides has been achieved using only 2 µg of DNA. A brief comparison (quantitative and qualitative) with liquid chromatography/mass spectrometry is also presented highlighting the advantages of using the DMS/MS method as a high-throughput platform. The data presented demonstrate the successful application of a DMS/MS/MS platform for the rapid quantitation of DNA adducts using, as a model analyte, the deoxyguanosine adduct of the bladder carcinogen 4-aminobiphenyl. Copyright © 2013 John Wiley & Sons, Ltd.

  14. A powerful nonparametric method for detecting differentially co-expressed genes: distance correlation screening and edge-count test.

    Science.gov (United States)

    Zhang, Qingyang

    2018-05-16

    Differential co-expression analysis, as a complement of differential expression analysis, offers significant insights into the changes in molecular mechanism of different phenotypes. A prevailing approach to detecting differentially co-expressed genes is to compare Pearson's correlation coefficients in two phenotypes. However, due to the limitations of Pearson's correlation measure, this approach lacks the power to detect nonlinear changes in gene co-expression which is common in gene regulatory networks. In this work, a new nonparametric procedure is proposed to search differentially co-expressed gene pairs in different phenotypes from large-scale data. Our computational pipeline consisted of two main steps, a screening step and a testing step. The screening step is to reduce the search space by filtering out all the independent gene pairs using distance correlation measure. In the testing step, we compare the gene co-expression patterns in different phenotypes by a recently developed edge-count test. Both steps are distribution-free and targeting nonlinear relations. We illustrate the promise of the new approach by analyzing the Cancer Genome Atlas data and the METABRIC data for breast cancer subtypes. Compared with some existing methods, the new method is more powerful in detecting nonlinear type of differential co-expressions. The distance correlation screening can greatly improve computational efficiency, facilitating its application to large data sets.

  15. Detection of coding genes for enterotoxins in Bacillus cereus by PCR and their products by BCET-RPLA and ELISA Assay

    Directory of Open Access Journals (Sweden)

    Marcela Vyletělová

    2010-01-01

    Full Text Available Determination of enterotoxin production, diarrhoeal and emetic gene identification was studied in 41 Bacillus cereus strains isolated from raw cows’ and raw goats’ milk, pasteurized milk, dairy products during technological processing and from dairy plant equipment. Presence of enterotoxins was detected by BCET-RPLA (HBL and ELISA immunoassay (NHE. Gene identification (nheA, nheB, nheC, hblA, hblC, hblD, bceT, cytK-1, cytK-2, entFM and ces was achieved by means of PCR. Enterotoxin HBL was detected in 32 strains, enterotoxin NHE in all 41 strains. Presence of all three genes nheA, nheB and nheC was confirmed in 40 strains and genes hblA, hblC and hblD in 29 strains. Comparison of used methods was as follow: 1 BCET-RPLA (which detects L2 component and PCR (positive or negative all three hblA, hblC and hblD gene detection were identical in 30 (73%; 2 ELISA (NheA and PCR (all three nheC, nheB and nheA gene expression were identical in 40 (98% cases isolated strains.

  16. Detection and analysis of hemolysin genes in Aeromonas hydrophila isolated from Gouramy (Osphronemus gouramy) by polymerase chain reaction (PCR)

    Science.gov (United States)

    Rozi; Rahayu, K.; Daruti, D. N.

    2018-04-01

    The goal of this study was to detect of Aeromonas hydrophila carrying the hlyA gene in guramy by PCR assay. A total of 5 A. hydrophila strains were isolated from gouramy with different location and furthermore genotypic of all A. hydrophila strains havedetected by PCR assay for 16S rRNA gene. The primers used in the PCR targeted a 592-bp fragment of the hlyA gene coding for the hemolysin gene. Particularly hlyA genes are responsible for haemolysin toxins production in this genus. After gel electrophoresis, the amplicons from representative strains of the A. hydrophila were purified using extraction kit and were subjected to the DNA sequencing analysis. The results showed that: (i) the 592bp amplicon of the hlyA gene was detected in 5/6 of the A. hydrophila; (ii) the nucleotide blast results of hemolysin gene sequences of the strains of A. hydrophila revealed a high homology of 90-97 % with published sequences, and;(iii) the protein blast showed 95-98 % homology when compared to the published sequences. The PCR clearly identified the haemolysin-producing strains of A. hydrophila by detection in hlyA genes and may have application as a rapid species-specific virulence test.

  17. CNV-RF Is a Random Forest-Based Copy Number Variation Detection Method Using Next-Generation Sequencing.

    Science.gov (United States)

    Onsongo, Getiria; Baughn, Linda B; Bower, Matthew; Henzler, Christine; Schomaker, Matthew; Silverstein, Kevin A T; Thyagarajan, Bharat

    2016-11-01

    Simultaneous detection of small copy number variations (CNVs) (<0.5 kb) and single-nucleotide variants in clinically significant genes is of great interest for clinical laboratories. The analytical variability in next-generation sequencing (NGS) and artifacts in coverage data because of issues with mappability along with lack of robust bioinformatics tools for CNV detection have limited the utility of targeted NGS data to identify CNVs. We describe the development and implementation of a bioinformatics algorithm, copy number variation-random forest (CNV-RF), that incorporates a machine learning component to identify CNVs from targeted NGS data. Using CNV-RF, we identified 12 of 13 deletions in samples with known CNVs, two cases with duplications, and identified novel deletions in 22 additional cases. Furthermore, no CNVs were identified among 60 genes in 14 cases with normal copy number and no CNVs were identified in another 104 patients with clinical suspicion of CNVs. All positive deletions and duplications were confirmed using a quantitative PCR method. CNV-RF also detected heterozygous deletions and duplications with a specificity of 50% across 4813 genes. The ability of CNV-RF to detect clinically relevant CNVs with a high degree of sensitivity along with confirmation using a low-cost quantitative PCR method provides a framework for providing comprehensive NGS-based CNV/single-nucleotide variant detection in a clinical molecular diagnostics laboratory. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  18. In situ detection of the Clostridium botulinum type C1 toxin gene in wetland sediments with a nested PCR assay

    Science.gov (United States)

    Williamson, Judy L.; Rocke, Tonie E.; Aiken, Judd M.

    1999-01-01

    A nested PCR was developed for detection of the Clostridium botulinum type C1 toxin gene in sediments collected from wetlands where avian botulism outbreaks had or had not occurred. The C1 toxin gene was detected in 16 of 18 sites, demonstrating both the ubiquitous distribution of C. botulinum type C in wetland sediments and the sensitivity of the detection assay.

  19. Gene expression studies of reference genes for quantitative real-time PCR: an overview in insects.

    Science.gov (United States)

    Shakeel, Muhammad; Rodriguez, Alicia; Tahir, Urfa Bin; Jin, Fengliang

    2018-02-01

    Whenever gene expression is being examined, it is essential that a normalization process is carried out to eliminate non-biological variations. The use of reference genes, such as glyceraldehyde-3-phosphate dehydrogenase, actin, and ribosomal protein genes, is the usual method of choice for normalizing gene expression. Although reference genes are used to normalize target gene expression, a major problem is that the stability of these genes differs among tissues, developmental stages, species, and responses to abiotic factors. Therefore, the use and validation of multiple reference genes are required. This review discusses the reasons that why RT-qPCR has become the preferred method for validating results of gene expression profiles, the use of specific and non-specific dyes and the importance of use of primers and probes for qPCR as well as to discuss several statistical algorithms developed to help the validation of potential reference genes. The conflicts arising in the use of classical reference genes in gene normalization and their replacement with novel references are also discussed by citing the high stability and low stability of classical and novel reference genes under various biotic and abiotic experimental conditions by employing various methods applied for the reference genes amplification.

  20. Occurrence of the mcr-1 Colistin Resistance Gene and other Clinically Relevant Antibiotic Resistance Genes in Microbial Populations at Different Municipal Wastewater Treatment Plants in Germany

    Directory of Open Access Journals (Sweden)

    Norman Hembach

    2017-07-01

    Full Text Available Seven wastewater treatment plants (WWTPs with different population equivalents and catchment areas were screened for the prevalence of the colistin resistance gene mcr-1 mediating resistance against last resort antibiotic polymyxin E. The abundance of the plasmid-associated mcr-1 gene in total microbial populations during water treatment processes was quantitatively analyzed by qPCR analyses. The presence of the colistin resistance gene was documented for all of the influent wastewater samples of the seven WWTPs. In some cases the mcr-1 resistance gene was also detected in effluent samples of the WWTPs after conventional treatment reaching the aquatic environment. In addition to the occurrence of mcr-1 gene, CTX-M-32, blaTEM, CTX-M, tetM, CMY-2, and ermB genes coding for clinically relevant antibiotic resistances were quantified in higher abundances in all WWTPs effluents. In parallel, the abundances of Acinetobacter baumannii, Klebsiella pneumoniae, and Escherichia coli were quantified via qPCR using specific taxonomic gene markers which were detected in all influent and effluent wastewaters in significant densities. Hence, opportunistic pathogens and clinically relevant antibiotic resistance genes in wastewaters of the analyzed WWTPs bear a risk of dissemination to the aquatic environment. Since many of the antibiotic resistance gene are associated with mobile genetic elements horizontal gene transfer during wastewater treatment can't be excluded.