WorldWideScience

Sample records for quantitative biological imaging

  1. Quantitative mass imaging of single biological macromolecules.

    Science.gov (United States)

    Young, Gavin; Hundt, Nikolas; Cole, Daniel; Fineberg, Adam; Andrecka, Joanna; Tyler, Andrew; Olerinyova, Anna; Ansari, Ayla; Marklund, Erik G; Collier, Miranda P; Chandler, Shane A; Tkachenko, Olga; Allen, Joel; Crispin, Max; Billington, Neil; Takagi, Yasuharu; Sellers, James R; Eichmann, Cédric; Selenko, Philipp; Frey, Lukas; Riek, Roland; Galpin, Martin R; Struwe, Weston B; Benesch, Justin L P; Kukura, Philipp

    2018-04-27

    The cellular processes underpinning life are orchestrated by proteins and their interactions. The associated structural and dynamic heterogeneity, despite being key to function, poses a fundamental challenge to existing analytical and structural methodologies. We used interferometric scattering microscopy to quantify the mass of single biomolecules in solution with 2% sequence mass accuracy, up to 19-kilodalton resolution, and 1-kilodalton precision. We resolved oligomeric distributions at high dynamic range, detected small-molecule binding, and mass-imaged proteins with associated lipids and sugars. These capabilities enabled us to characterize the molecular dynamics of processes as diverse as glycoprotein cross-linking, amyloidogenic protein aggregation, and actin polymerization. Interferometric scattering mass spectrometry allows spatiotemporally resolved measurement of a broad range of biomolecular interactions, one molecule at a time. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  2. Quantitative imaging of single upconversion nanoparticles in biological tissue.

    Directory of Open Access Journals (Sweden)

    Annemarie Nadort

    Full Text Available The unique luminescent properties of new-generation synthetic nanomaterials, upconversion nanoparticles (UCNPs, enabled high-contrast optical biomedical imaging by suppressing the crowded background of biological tissue autofluorescence and evading high tissue absorption. This raised high expectations on the UCNP utilities for intracellular and deep tissue imaging, such as whole animal imaging. At the same time, the critical nonlinear dependence of the UCNP luminescence on the excitation intensity results in dramatic signal reduction at (∼1 cm depth in biological tissue. Here, we report on the experimental and theoretical investigation of this trade-off aiming at the identification of optimal application niches of UCNPs e.g. biological liquids and subsurface tissue layers. As an example of such applications, we report on single UCNP imaging through a layer of hemolyzed blood. To extend this result towards in vivo applications, we quantified the optical properties of single UCNPs and theoretically analyzed the prospects of single-particle detectability in live scattering and absorbing bio-tissue using a human skin model. The model predicts that a single 70-nm UCNP would be detectable at skin depths up to 400 µm, unlike a hardly detectable single fluorescent (fluorescein dye molecule. UCNP-assisted imaging in the ballistic regime thus allows for excellent applications niches, where high sensitivity is the key requirement.

  3. Quantitative phase imaging and differential interference contrast imaging for biological TEM

    International Nuclear Information System (INIS)

    Allman, B.E.; McMahon, P.J.; Barone-Nugent, E.D.; Nugent, E.D.

    2002-01-01

    Full text: Phase microscopy is a central technique in science. An experienced microscopist uses this effect to visualise (edge) structure within transparent samples by slightly defocusing the microscope. Although widespread in optical microscopy, phase contrast transmission electron microscopy (TEM) has not been widely adopted. TEM for biological specimens has largely relied on staining techniques to yield sufficient contrast. We show here a simple method for quantitative TEM phase microscopy that quantifies this phase contrast effect. Starting with conventional, digital, bright field images of the sample, our algorithm provides quantitative phase information independent of the sample's bright field intensity image. We present TEM phase images of a range of stained and unstained, biological and material science specimens. This independent phase and intensity information is then used to emulate a range of phase visualisation images familiar to optical microscopy, e.g. differential interference contrast. The phase images contain features not visible with the other imaging modalities. Further, if the TEM samples have been prepared on a microtome to a uniform thickness, the phase information can be converted into refractive index structure of the specimen. Copyright (2002) Australian Society for Electron Microscopy Inc

  4. Prospects and challenges of quantitative phase imaging in tumor cell biology

    Science.gov (United States)

    Kemper, Björn; Götte, Martin; Greve, Burkhard; Ketelhut, Steffi

    2016-03-01

    Quantitative phase imaging (QPI) techniques provide high resolution label-free quantitative live cell imaging. Here, prospects and challenges of QPI in tumor cell biology are presented, using the example of digital holographic microscopy (DHM). It is shown that the evaluation of quantitative DHM phase images allows the retrieval of different parameter sets for quantification of cellular motion changes in migration and motility assays that are caused by genetic modifications. Furthermore, we demonstrate simultaneously label-free imaging of cell growth and morphology properties.

  5. Mammographic quantitative image analysis and biologic image composition for breast lesion characterization and classification

    Energy Technology Data Exchange (ETDEWEB)

    Drukker, Karen, E-mail: kdrukker@uchicago.edu; Giger, Maryellen L.; Li, Hui [Department of Radiology, University of Chicago, Chicago, Illinois 60637 (United States); Duewer, Fred; Malkov, Serghei; Joe, Bonnie; Kerlikowske, Karla; Shepherd, John A. [Radiology Department, University of California, San Francisco, California 94143 (United States); Flowers, Chris I. [Department of Radiology, University of South Florida, Tampa, Florida 33612 (United States); Drukteinis, Jennifer S. [Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612 (United States)

    2014-03-15

    Purpose: To investigate whether biologic image composition of mammographic lesions can improve upon existing mammographic quantitative image analysis (QIA) in estimating the probability of malignancy. Methods: The study population consisted of 45 breast lesions imaged with dual-energy mammography prior to breast biopsy with final diagnosis resulting in 10 invasive ductal carcinomas, 5 ductal carcinomain situ, 11 fibroadenomas, and 19 other benign diagnoses. Analysis was threefold: (1) The raw low-energy mammographic images were analyzed with an established in-house QIA method, “QIA alone,” (2) the three-compartment breast (3CB) composition measure—derived from the dual-energy mammography—of water, lipid, and protein thickness were assessed, “3CB alone”, and (3) information from QIA and 3CB was combined, “QIA + 3CB.” Analysis was initiated from radiologist-indicated lesion centers and was otherwise fully automated. Steps of the QIA and 3CB methods were lesion segmentation, characterization, and subsequent classification for malignancy in leave-one-case-out cross-validation. Performance assessment included box plots, Bland–Altman plots, and Receiver Operating Characteristic (ROC) analysis. Results: The area under the ROC curve (AUC) for distinguishing between benign and malignant lesions (invasive and DCIS) was 0.81 (standard error 0.07) for the “QIA alone” method, 0.72 (0.07) for “3CB alone” method, and 0.86 (0.04) for “QIA+3CB” combined. The difference in AUC was 0.043 between “QIA + 3CB” and “QIA alone” but failed to reach statistical significance (95% confidence interval [–0.17 to + 0.26]). Conclusions: In this pilot study analyzing the new 3CB imaging modality, knowledge of the composition of breast lesions and their periphery appeared additive in combination with existing mammographic QIA methods for the distinction between different benign and malignant lesion types.

  6. A Checklist for Successful Quantitative Live Cell Imaging in Systems Biology

    Science.gov (United States)

    Sung, Myong-Hee

    2013-01-01

    Mathematical modeling of signaling and gene regulatory networks has provided unique insights about systems behaviors for many cell biological problems of medical importance. Quantitative single cell monitoring has a crucial role in advancing systems modeling of molecular networks. However, due to the multidisciplinary techniques that are necessary for adaptation of such systems biology approaches, dissemination to a wide research community has been relatively slow. In this essay, I focus on some technical aspects that are often under-appreciated, yet critical in harnessing live cell imaging methods to achieve single-cell-level understanding and quantitative modeling of molecular networks. The importance of these technical considerations will be elaborated with examples of successes and shortcomings. Future efforts will benefit by avoiding some pitfalls and by utilizing the lessons collectively learned from recent applications of imaging in systems biology. PMID:24709701

  7. Cellular phone-based image acquisition and quantitative ratiometric method for detecting cocaine and benzoylecgonine for biological and forensic applications.

    Science.gov (United States)

    Cadle, Brian A; Rasmus, Kristin C; Varela, Juan A; Leverich, Leah S; O'Neill, Casey E; Bachtell, Ryan K; Cooper, Donald C

    2010-01-01

    Here we describe the first report of using low-cost cellular or web-based digital cameras to image and quantify standardized rapid immunoassay strips as a new point-of-care diagnostic and forensics tool with health applications. Quantitative ratiometric pixel density analysis (QRPDA) is an automated method requiring end-users to utilize inexpensive (∼ $1 USD/each) immunotest strips, a commonly available web or mobile phone camera or scanner, and internet or cellular service. A model is described whereby a central computer server and freely available IMAGEJ image analysis software records and analyzes the incoming image data with time-stamp and geo-tag information and performs the QRPDA using custom JAVA based macros (http://www.neurocloud.org). To demonstrate QRPDA we developed a standardized method using rapid immunotest strips directed against cocaine and its major metabolite, benzoylecgonine. Images from standardized samples were acquired using several devices, including a mobile phone camera, web cam, and scanner. We performed image analysis of three brands of commercially available dye-conjugated anti-cocaine/benzoylecgonine (COC/BE) antibody test strips in response to three different series of cocaine concentrations ranging from 0.1 to 300 ng/ml and BE concentrations ranging from 0.003 to 0.1 ng/ml. This data was then used to create standard curves to allow quantification of COC/BE in biological samples. Across all devices, QRPDA quantification of COC and BE proved to be a sensitive, economical, and faster alternative to more costly methods, such as gas chromatography-mass spectrometry, tandem mass spectrometry, or high pressure liquid chromatography. The limit of detection was determined to be between 0.1 and 5 ng/ml. To simulate conditions in the field, QRPDA was found to be robust under a variety of image acquisition and testing conditions that varied temperature, lighting, resolution, magnification and concentrations of biological fluid in a sample. To

  8. Cellular Phone-Based Image Acquisition and Quantitative Ratiometric Method for Detecting Cocaine and Benzoylecgonine for Biological and Forensic Applications

    Directory of Open Access Journals (Sweden)

    Brian A. Cadle

    2010-01-01

    Full Text Available Here we describe the first report of using low-cost cellular or web-based digital cameras to image and quantify standardized rapid immunoassay strips as a new point-of-care diagnostic and forensics tool with health applications. Quantitative ratiometric pixel density analysis (QRPDA is an automated method requiring end-users to utilize inexpensive (~ $1 USD/each immunotest strips, a commonly available web or mobile phone camera or scanner, and internet or cellular service. A model is described whereby a central computer server and freely available IMAGEJ image analysis software records and analyzes the incoming image data with time-stamp and geo-tag information and performs the QRPDA using custom JAVA based macros ( http://www.neurocloud.org . To demonstrate QRPDA we developed a standardized method using rapid immunotest strips directed against cocaine and its major metabolite, benzoylecgonine. Images from standardized samples were acquired using several devices, including a mobile phone camera, web cam, and scanner. We performed image analysis of three brands of commercially available dye-conjugated anti-cocaine/benzoylecgonine (COC/BE antibody test strips in response to three different series of cocaine concentrations ranging from 0.1 to 300 ng/ml and BE concentrations ranging from 0.003 to 0.1 ng/ml. This data was then used to create standard curves to allow quantification of COC/BE in biological samples. Across all devices, QRPDA quantification of COC and BE proved to be a sensitive, economical, and faster alternative to more costly methods, such as gas chromatography-mass spectrometry, tandem mass spectrometry, or high pressure liquid chromatography. The limit of detection was determined to be between 0.1 and 5 ng/ml. To simulate conditions in the field, QRPDA was found to be robust under a variety of image acquisition and testing conditions that varied temperature, lighting, resolution, magnification and concentrations of biological fluid

  9. Imaging and quantitative data acquisition of biological cell walls with Atomic Force Microscopy and Scanning Acoustic Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tittmann, B. R. [Penn State; Xi, X. [Penn State

    2014-09-01

    This chapter demonstrates the feasibility of Atomic Force Microscopy (AFM) and High Frequency Scanning Acoustic Microscopy (HF-SAM) as tools to characterize biological tissues. Both the AFM and the SAM have shown to provide imaging (with different resolution) and quantitative elasticity measuring abilities. Plant cell walls with minimal disturbance and under conditions of their native state have been examined with these two kinds of microscopy. After descriptions of both the SAM and AFM, their special features and the typical sample preparation is discussed. The sample preparation is focused here on epidermal peels of onion scales and celery epidermis cells which were sectioned for the AFM to visualize the inner surface (closest to the plasma membrane) of the outer epidermal wall. The nm-wide cellulose microfibrils orientation and multilayer structure were clearly observed. The microfibril orientation and alignment tend to be more organized in older scales compared with younger scales. The onion epidermis cell wall was also used as a test analog to study cell wall elasticity by the AFM nanoindentation and the SAM V(z) feature. The novelty in this work was to demonstrate the capability of these two techniques to analyze isolated, single layered plant cell walls in their natural state. AFM nanoindentation was also used to probe the effects of Ethylenediaminetetraacetic acid (EDTA), and calcium ion treatment to modify pectin networks in cell walls. The results suggest a significant modulus increase in the calcium ion treatment and a slight decrease in EDTA treatment. To complement the AFM measurements, the HF-SAM was used to obtain the V(z) signatures of the onion epidermis. These measurements were focused on documenting the effect of pectinase enzyme treatment. The results indicate a significant change in the V(z) signature curves with time into the enzyme treatment. Thus AFM and HF-SAM open the door to a systematic nondestructive structure and mechanical property

  10. Quantitative imaging as cancer biomarker

    Science.gov (United States)

    Mankoff, David A.

    2015-03-01

    The ability to assay tumor biologic features and the impact of drugs on tumor biology is fundamental to drug development. Advances in our ability to measure genomics, gene expression, protein expression, and cellular biology have led to a host of new targets for anticancer drug therapy. In translating new drugs into clinical trials and clinical practice, these same assays serve to identify patients most likely to benefit from specific anticancer treatments. As cancer therapy becomes more individualized and targeted, there is an increasing need to characterize tumors and identify therapeutic targets to select therapy most likely to be successful in treating the individual patient's cancer. Thus far assays to identify cancer therapeutic targets or anticancer drug pharmacodynamics have been based upon in vitro assay of tissue or blood samples. Advances in molecular imaging, particularly PET, have led to the ability to perform quantitative non-invasive molecular assays. Imaging has traditionally relied on structural and anatomic features to detect cancer and determine its extent. More recently, imaging has expanded to include the ability to image regional biochemistry and molecular biology, often termed molecular imaging. Molecular imaging can be considered an in vivo assay technique, capable of measuring regional tumor biology without perturbing it. This makes molecular imaging a unique tool for cancer drug development, complementary to traditional assay methods, and a potentially powerful method for guiding targeted therapy in clinical trials and clinical practice. The ability to quantify, in absolute measures, regional in vivo biologic parameters strongly supports the use of molecular imaging as a tool to guide therapy. This review summarizes current and future applications of quantitative molecular imaging as a biomarker for cancer therapy, including the use of imaging to (1) identify patients whose tumors express a specific therapeutic target; (2) determine

  11. Cellular Phone-Based Image Acquisition and Quantitative Ratiometric Method for Detecting Cocaine and Benzoylecgonine for Biological and Forensic Applications

    OpenAIRE

    Cadle, Brian A.; Rasmus, Kristin C.; Varela, Juan A.; Leverich, Leah S.; O’Neill, Casey E.; Bachtell, Ryan K.; Cooper, Donald C.

    2010-01-01

    Here we describe the first report of using low-cost cellular or web-based digital cameras to image and quantify standardized rapid immunoassay strips as a new point-of-care diagnostic and forensics tool with health applications. Quantitative ratiometric pixel density analysis (QRPDA) is an automated method requiring end-users to utilize inexpensive (~ $1 USD/each) immunotest strips, a commonly available web or mobile phone camera or scanner, and internet or cellular service. A model is descri...

  12. Quantitative analysis of receptor imaging

    International Nuclear Information System (INIS)

    Fu Zhanli; Wang Rongfu

    2004-01-01

    Model-based methods for quantitative analysis of receptor imaging, including kinetic, graphical and equilibrium methods, are introduced in detail. Some technical problem facing quantitative analysis of receptor imaging, such as the correction for in vivo metabolism of the tracer and the radioactivity contribution from blood volume within ROI, and the estimation of the nondisplaceable ligand concentration, is also reviewed briefly

  13. Quantitative luminescence imaging system

    Science.gov (United States)

    Erwin, David N.; Kiel, Johnathan L.; Batishko, Charles R.; Stahl, Kurt A.

    1990-01-01

    The QLIS images and quantifies low-level chemiluminescent reactions in an electromagnetic field. It is capable of real time nonperturbing measurement and simultaneous recording of many biochemical and chemical reactions such as luminescent immunoassays or enzyme assays. The system comprises image transfer optics, a low-light level digitizing camera with image intensifying microchannel plates, an image process or, and a control computer. The image transfer optics may be a fiber image guide with a bend, or a microscope, to take the light outside of the RF field. Output of the camera is transformed into a localized rate of cumulative digitalized data or enhanced video display or hard-copy images. The system may be used as a luminescent microdosimetry device for radiofrequency or microwave radiation, as a thermal dosimeter, or in the dosimetry of ultra-sound (sonoluminescence) or ionizing radiation. It provides a near-real-time system capable of measuring the extremely low light levels from luminescent reactions in electromagnetic fields in the areas of chemiluminescence assays and thermal microdosimetry, and is capable of near-real-time imaging of the sample to allow spatial distribution analysis of the reaction. It can be used to instrument three distinctly different irradiation configurations, comprising (1) RF waveguide irradiation of a small Petri-dish-shaped sample cell, (2) RF irradiation of samples in a microscope for the microscopie imaging and measurement, and (3) RF irradiation of small to human body-sized samples in an anechoic chamber.

  14. Applications of Microfluidics in Quantitative Biology.

    Science.gov (United States)

    Bai, Yang; Gao, Meng; Wen, Lingling; He, Caiyun; Chen, Yuan; Liu, Chenli; Fu, Xiongfei; Huang, Shuqiang

    2018-05-01

    Quantitative biology is dedicated to taking advantage of quantitative reasoning and advanced engineering technologies to make biology more predictable. Microfluidics, as an emerging technique, provides new approaches to precisely control fluidic conditions on small scales and collect data in high-throughput and quantitative manners. In this review, the authors present the relevant applications of microfluidics to quantitative biology based on two major categories (channel-based microfluidics and droplet-based microfluidics), and their typical features. We also envision some other microfluidic techniques that may not be employed in quantitative biology right now, but have great potential in the near future. © 2017 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences. Biotechnology Journal Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  15. Quantitative imaging methods in osteoporosis.

    Science.gov (United States)

    Oei, Ling; Koromani, Fjorda; Rivadeneira, Fernando; Zillikens, M Carola; Oei, Edwin H G

    2016-12-01

    Osteoporosis is characterized by a decreased bone mass and quality resulting in an increased fracture risk. Quantitative imaging methods are critical in the diagnosis and follow-up of treatment effects in osteoporosis. Prior radiographic vertebral fractures and bone mineral density (BMD) as a quantitative parameter derived from dual-energy X-ray absorptiometry (DXA) are among the strongest known predictors of future osteoporotic fractures. Therefore, current clinical decision making relies heavily on accurate assessment of these imaging features. Further, novel quantitative techniques are being developed to appraise additional characteristics of osteoporosis including three-dimensional bone architecture with quantitative computed tomography (QCT). Dedicated high-resolution (HR) CT equipment is available to enhance image quality. At the other end of the spectrum, by utilizing post-processing techniques such as the trabecular bone score (TBS) information on three-dimensional architecture can be derived from DXA images. Further developments in magnetic resonance imaging (MRI) seem promising to not only capture bone micro-architecture but also characterize processes at the molecular level. This review provides an overview of various quantitative imaging techniques based on different radiological modalities utilized in clinical osteoporosis care and research.

  16. Quantitative multiphoton imaging

    Science.gov (United States)

    König, Karsten; Weinigel, Martin; Breunig, Hans Georg; Uchugonova, Aisada

    2014-02-01

    Certified clinical multiphoton tomographs for label-free multidimensional high-resolution in vivo imaging have been introduced to the market several years ago. Novel tomographs include a flexible 360° scan head attached to a mechanooptical arm for autofluorescence and SHG imaging as well as a CARS module. Non-fluorescent lipids and water, mitochondrial fluorescent NAD(P)H, fluorescent elastin, keratin, and melanin as well as SHG-active collagen can be imaged in vivo with submicron resolution in human skin. Sensitive and rapid detectors allow single photon counting and the construction of 3D maps where the number of detected photons per voxel is depicted. Intratissue concentration profiles from endogenous as well exogenous substances can be generated when the number of detected photons can be correlated with the number of molecules with respect to binding and scattering behavior. Furthermore, the skin ageing index SAAID based on the ratio elastin/collagen as well as the epidermis depth based on the onset of SHG generation can be determined.

  17. Quantitative phase imaging of arthropods

    Science.gov (United States)

    Sridharan, Shamira; Katz, Aron; Soto-Adames, Felipe; Popescu, Gabriel

    2015-11-01

    Classification of arthropods is performed by characterization of fine features such as setae and cuticles. An unstained whole arthropod specimen mounted on a slide can be preserved for many decades, but is difficult to study since current methods require sample manipulation or tedious image processing. Spatial light interference microscopy (SLIM) is a quantitative phase imaging (QPI) technique that is an add-on module to a commercial phase contrast microscope. We use SLIM to image a whole organism springtail Ceratophysella denticulata mounted on a slide. This is the first time, to our knowledge, that an entire organism has been imaged using QPI. We also demonstrate the ability of SLIM to image fine structures in addition to providing quantitative data that cannot be obtained by traditional bright field microscopy.

  18. Quantitative information in medical imaging

    International Nuclear Information System (INIS)

    Deconinck, F.

    1985-01-01

    When developing new imaging or image processing techniques, one constantly has in mind that the new technique should provide a better, or more optimal answer to medical tasks than existing techniques do 'Better' or 'more optimal' imply some kind of standard by which one can measure imaging or image processing performance. The choice of a particular imaging modality to answer a diagnostic task, such as the detection of coronary artery stenosis is also based on an implicit optimalisation of performance criteria. Performance is measured by the ability to provide information about an object (patient) to the person (referring doctor) who ordered a particular task. In medical imaging the task is generally to find quantitative information on bodily function (biochemistry, physiology) and structure (histology, anatomy). In medical imaging, a wide range of techniques is available. Each technique has it's own characteristics. The techniques discussed in this paper are: nuclear magnetic resonance, X-ray fluorescence, scintigraphy, positron emission tomography, applied potential tomography, computerized tomography, and compton tomography. This paper provides a framework for the comparison of imaging performance, based on the way the quantitative information flow is altered by the characteristics of the modality

  19. GPC and quantitative phase imaging

    DEFF Research Database (Denmark)

    Palima, Darwin; Banas, Andrew Rafael; Villangca, Mark Jayson

    2016-01-01

    shaper followed by the potential of GPC for biomedical and multispectral applications where we experimentally demonstrate the active light shaping of a supercontinuum laser over most of the visible wavelength range. Finally, we discuss how GPC can be advantageously applied for Quantitative Phase Imaging...

  20. Quantitative assessment of dynamic PET imaging data in cancer imaging.

    Science.gov (United States)

    Muzi, Mark; O'Sullivan, Finbarr; Mankoff, David A; Doot, Robert K; Pierce, Larry A; Kurland, Brenda F; Linden, Hannah M; Kinahan, Paul E

    2012-11-01

    Clinical imaging in positron emission tomography (PET) is often performed using single-time-point estimates of tracer uptake or static imaging that provides a spatial map of regional tracer concentration. However, dynamic tracer imaging can provide considerably more information about in vivo biology by delineating both the temporal and spatial pattern of tracer uptake. In addition, several potential sources of error that occur in static imaging can be mitigated. This review focuses on the application of dynamic PET imaging to measuring regional cancer biologic features and especially in using dynamic PET imaging for quantitative therapeutic response monitoring for cancer clinical trials. Dynamic PET imaging output parameters, particularly transport (flow) and overall metabolic rate, have provided imaging end points for clinical trials at single-center institutions for years. However, dynamic imaging poses many challenges for multicenter clinical trial implementations from cross-center calibration to the inadequacy of a common informatics infrastructure. Underlying principles and methodology of PET dynamic imaging are first reviewed, followed by an examination of current approaches to dynamic PET image analysis with a specific case example of dynamic fluorothymidine imaging to illustrate the approach. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Some exercises in quantitative NMR imaging

    International Nuclear Information System (INIS)

    Bakker, C.J.G.

    1985-01-01

    The articles represented in this thesis result from a series of investigations that evaluate the potential of NMR imaging as a quantitative research tool. In the first article the possible use of proton spin-lattice relaxation time T 1 in tissue characterization, tumor recognition and monitoring tissue response to radiotherapy is explored. The next article addresses the question whether water proton spin-lattice relaxation curves of biological tissues are adequately described by a single time constant T 1 , and analyzes the implications of multi-exponentiality for quantitative NMR imaging. In the third article the use of NMR imaging as a quantitative research tool is discussed on the basis of phantom experiments. The fourth article describes a method which enables unambiguous retrieval of sign information in a set of magnetic resonance images of the inversion recovery type. The next article shows how this method can be adapted to allow accurate calculation of T 1 pictures on a pixel-by-pixel basis. The sixth article, finally, describes a simulation procedure which enables a straightforward determination of NMR imaging pulse sequence parameters for optimal tissue contrast. (orig.)

  2. Infrared thermography quantitative image processing

    Science.gov (United States)

    Skouroliakou, A.; Kalatzis, I.; Kalyvas, N.; Grivas, TB

    2017-11-01

    Infrared thermography is an imaging technique that has the ability to provide a map of temperature distribution of an object’s surface. It is considered for a wide range of applications in medicine as well as in non-destructive testing procedures. One of its promising medical applications is in orthopaedics and diseases of the musculoskeletal system where temperature distribution of the body’s surface can contribute to the diagnosis and follow up of certain disorders. Although the thermographic image can give a fairly good visual estimation of distribution homogeneity and temperature pattern differences between two symmetric body parts, it is important to extract a quantitative measurement characterising temperature. Certain approaches use temperature of enantiomorphic anatomical points, or parameters extracted from a Region of Interest (ROI). A number of indices have been developed by researchers to that end. In this study a quantitative approach in thermographic image processing is attempted based on extracting different indices for symmetric ROIs on thermograms of the lower back area of scoliotic patients. The indices are based on first order statistical parameters describing temperature distribution. Analysis and comparison of these indices result in evaluating the temperature distribution pattern of the back trunk expected in healthy, regarding spinal problems, subjects.

  3. Quantitative image analysis of synovial tissue

    NARCIS (Netherlands)

    van der Hall, Pascal O.; Kraan, Maarten C.; Tak, Paul Peter

    2007-01-01

    Quantitative image analysis is a form of imaging that includes microscopic histological quantification, video microscopy, image analysis, and image processing. Hallmarks are the generation of reliable, reproducible, and efficient measurements via strict calibration and step-by-step control of the

  4. Quantitative Phase Imaging Using Hard X Rays

    International Nuclear Information System (INIS)

    Nugent, K.A.; Gureyev, T.E.; Cookson, D.J.; Paganin, D.; Barnea, Z.

    1996-01-01

    The quantitative imaging of a phase object using 16keV xrays is reported. The theoretical basis of the techniques is presented along with its implementation using a synchrotron x-ray source. We find that our phase image is in quantitative agreement with independent measurements of the object. copyright 1996 The American Physical Society

  5. Quantitative Image Restoration in Bright Field Optical Microscopy.

    Science.gov (United States)

    Gutiérrez-Medina, Braulio; Sánchez Miranda, Manuel de Jesús

    2017-11-07

    Bright field (BF) optical microscopy is regarded as a poor method to observe unstained biological samples due to intrinsic low image contrast. We introduce quantitative image restoration in bright field (QRBF), a digital image processing method that restores out-of-focus BF images of unstained cells. Our procedure is based on deconvolution, using a point spread function modeled from theory. By comparing with reference images of bacteria observed in fluorescence, we show that QRBF faithfully recovers shape and enables quantify size of individual cells, even from a single input image. We applied QRBF in a high-throughput image cytometer to assess shape changes in Escherichia coli during hyperosmotic shock, finding size heterogeneity. We demonstrate that QRBF is also applicable to eukaryotic cells (yeast). Altogether, digital restoration emerges as a straightforward alternative to methods designed to generate contrast in BF imaging for quantitative analysis. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Image processing and recognition for biological images.

    Science.gov (United States)

    Uchida, Seiichi

    2013-05-01

    This paper reviews image processing and pattern recognition techniques, which will be useful to analyze bioimages. Although this paper does not provide their technical details, it will be possible to grasp their main tasks and typical tools to handle the tasks. Image processing is a large research area to improve the visibility of an input image and acquire some valuable information from it. As the main tasks of image processing, this paper introduces gray-level transformation, binarization, image filtering, image segmentation, visual object tracking, optical flow and image registration. Image pattern recognition is the technique to classify an input image into one of the predefined classes and also has a large research area. This paper overviews its two main modules, that is, feature extraction module and classification module. Throughout the paper, it will be emphasized that bioimage is a very difficult target for even state-of-the-art image processing and pattern recognition techniques due to noises, deformations, etc. This paper is expected to be one tutorial guide to bridge biology and image processing researchers for their further collaboration to tackle such a difficult target. © 2013 The Author Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  7. Methods in quantitative image analysis.

    Science.gov (United States)

    Oberholzer, M; Ostreicher, M; Christen, H; Brühlmann, M

    1996-05-01

    The main steps of image analysis are image capturing, image storage (compression), correcting imaging defects (e.g. non-uniform illumination, electronic-noise, glare effect), image enhancement, segmentation of objects in the image and image measurements. Digitisation is made by a camera. The most modern types include a frame-grabber, converting the analog-to-digital signal into digital (numerical) information. The numerical information consists of the grey values describing the brightness of every point within the image, named a pixel. The information is stored in bits. Eight bits are summarised in one byte. Therefore, grey values can have a value between 0 and 256 (2(8)). The human eye seems to be quite content with a display of 5-bit images (corresponding to 64 different grey values). In a digitised image, the pixel grey values can vary within regions that are uniform in the original scene: the image is noisy. The noise is mainly manifested in the background of the image. For an optimal discrimination between different objects or features in an image, uniformity of illumination in the whole image is required. These defects can be minimised by shading correction [subtraction of a background (white) image from the original image, pixel per pixel, or division of the original image by the background image]. The brightness of an image represented by its grey values can be analysed for every single pixel or for a group of pixels. The most frequently used pixel-based image descriptors are optical density, integrated optical density, the histogram of the grey values, mean grey value and entropy. The distribution of the grey values existing within an image is one of the most important characteristics of the image. However, the histogram gives no information about the texture of the image. The simplest way to improve the contrast of an image is to expand the brightness scale by spreading the histogram out to the full available range. Rules for transforming the grey value

  8. Quantitative biological measurement in Transmission Electron Tomography

    International Nuclear Information System (INIS)

    Mantell, Judith M; Verkade, Paul; Arkill, Kenton P

    2012-01-01

    It has been known for some time that biological sections shrink in the transmission electron microscope from exposure to the electron beam. This phenomenon is especially important in Electron Tomography (ET). The effect on shrinkage of parameters such as embedding medium or sample type is less well understood. In addition anisotropic area shrinkage has largely been ignored. The intention of this study is to explore the shrinkage on a number of samples ranging in thickness from 200 nm to 500 nm. A protocol was developed to determine the shrinkage in area and thickness using the gold fiducials used in electron tomography. In brief: Using low dose philosophy on the section, a focus area was used prior to a separate virgin study area for a series of known exposures on a tilted sample. The shrinkage was determined by measurements on the gold beads from both sides of the section as determined by a confirmatory tomogram. It was found that the shrinkage in area (approximately to 90-95% of the original) and the thickness (approximately 65% of the original at most) agreed with pervious authors, but that a lmost all the shrinkage was in the first minute and that although the direction of the in-plane shrinkage (in x and y) was sometimes uneven the end result was consistent. It was observed, in general, that thinner samples showed more percentage shrinkage than thicker ones. In conclusion, if direct quantitative measurements are required then the protocol described should be used for all areas studied.

  9. Quantitative biological measurement in Transmission Electron Tomography

    Science.gov (United States)

    Mantell, Judith M.; Verkade, Paul; Arkill, Kenton P.

    2012-07-01

    It has been known for some time that biological sections shrink in the transmission electron microscope from exposure to the electron beam. This phenomenon is especially important in Electron Tomography (ET). The effect on shrinkage of parameters such as embedding medium or sample type is less well understood. In addition anisotropic area shrinkage has largely been ignored. The intention of this study is to explore the shrinkage on a number of samples ranging in thickness from 200 nm to 500 nm. A protocol was developed to determine the shrinkage in area and thickness using the gold fiducials used in electron tomography. In brief: Using low dose philosophy on the section, a focus area was used prior to a separate virgin study area for a series of known exposures on a tilted sample. The shrinkage was determined by measurements on the gold beads from both sides of the section as determined by a confirmatory tomogram. It was found that the shrinkage in area (approximately to 90-95% of the original) and the thickness (approximately 65% of the original at most) agreed with pervious authors, but that a lmost all the shrinkage was in the first minute and that although the direction of the in-plane shrinkage (in x and y) was sometimes uneven the end result was consistent. It was observed, in general, that thinner samples showed more percentage shrinkage than thicker ones. In conclusion, if direct quantitative measurements are required then the protocol described should be used for all areas studied.

  10. Radiological interpretation 2020: Toward quantitative image assessment

    International Nuclear Information System (INIS)

    Boone, John M.

    2007-01-01

    The interpretation of medical images by radiologists is primarily and fundamentally a subjective activity, but there are a number of clinical applications such as tumor imaging where quantitative imaging (QI) metrics (such as tumor growth rate) would be valuable to the patient’s care. It is predicted that the subjective interpretive environment of the past will, over the next decade, evolve toward the increased use of quantitative metrics for evaluating patient health from images. The increasing sophistication and resolution of modern tomographic scanners promote the development of meaningful quantitative end points, determined from images which are in turn produced using well-controlled imaging protocols. For the QI environment to expand, medical physicists, physicians, other researchers and equipment vendors need to work collaboratively to develop the quantitative protocols for imaging, scanner calibrations, and robust analytical software that will lead to the routine inclusion of quantitative parameters in the diagnosis and therapeutic assessment of human health. Most importantly, quantitative metrics need to be developed which have genuine impact on patient diagnosis and welfare, and only then will QI techniques become integrated into the clinical environment.

  11. Scintillating Optical Fiber Imagers for biology

    International Nuclear Information System (INIS)

    Mastrippolito, R.

    1990-01-01

    S.O.F.I (Scintillating Optical Fiber Imager) is a detector developed to replace the autoradiographic films used in molecular biology for the location of radiolabelled ( 32 P) DNA molecules in blotting experiments. It analyses samples on a 25 x 25 cm 2 square area still 25 times faster than autoradiographic films, with a 1.75 and 3 mm resolution for two orthogonal directions. This device performs numerised images with a dynamic upper than 100 which allows the direct quantitation of the analysed samples. First, this thesis describes the S.O.F.I. development (Scintillating Optical Fibers, coding of these fibers and specific electronic for the treatment of the Multi-Anode Photo-Multiplier signals) and experiments made in collaboration with molecular biology laboratories. In a second place, we prove the feasibility of an automatic DNA sequencer issued from S.O.F.I [fr

  12. [Quantitative data analysis for live imaging of bone.

    Science.gov (United States)

    Seno, Shigeto

    Bone tissue is a hard tissue, it was difficult to observe the interior of the bone tissue alive. With the progress of microscopic technology and fluorescent probe technology in recent years, it becomes possible to observe various activities of various cells forming bone society. On the other hand, the quantitative increase in data and the diversification and complexity of the images makes it difficult to perform quantitative analysis by visual inspection. It has been expected to develop a methodology for processing microscopic images and data analysis. In this article, we introduce the research field of bioimage informatics which is the boundary area of biology and information science, and then outline the basic image processing technology for quantitative analysis of live imaging data of bone.

  13. Quantitative perfusion imaging in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Zoellner, F.G.; Gaa, T.; Zimmer, F.; Ong, M.M.; Riffel, P.; Hausmann, D.; Schoenberg, S.O.; Weis, M.

    2016-01-01

    Magnetic resonance imaging (MRI) is recognized for its superior tissue contrast while being non-invasive and free of ionizing radiation. Due to the development of new scanner hardware and fast imaging techniques during the last decades, access to tissue and organ functions became possible. One of these functional imaging techniques is perfusion imaging with which tissue perfusion and capillary permeability can be determined from dynamic imaging data. Perfusion imaging by MRI can be performed by two approaches, arterial spin labeling (ASL) and dynamic contrast-enhanced (DCE) MRI. While the first method uses magnetically labelled water protons in arterial blood as an endogenous tracer, the latter involves the injection of a contrast agent, usually gadolinium (Gd), as a tracer for calculating hemodynamic parameters. Studies have demonstrated the potential of perfusion MRI for diagnostics and also for therapy monitoring. The utilization and application of perfusion MRI are still restricted to specialized centers, such as university hospitals. A broad application of the technique has not yet been implemented. The MRI perfusion technique is a valuable tool that might come broadly available after implementation of standards on European and international levels. Such efforts are being promoted by the respective professional bodies. (orig.) [de

  14. Quantitative multimodality imaging in cancer research and therapy.

    Science.gov (United States)

    Yankeelov, Thomas E; Abramson, Richard G; Quarles, C Chad

    2014-11-01

    Advances in hardware and software have enabled the realization of clinically feasible, quantitative multimodality imaging of tissue pathophysiology. Earlier efforts relating to multimodality imaging of cancer have focused on the integration of anatomical and functional characteristics, such as PET-CT and single-photon emission CT (SPECT-CT), whereas more-recent advances and applications have involved the integration of multiple quantitative, functional measurements (for example, multiple PET tracers, varied MRI contrast mechanisms, and PET-MRI), thereby providing a more-comprehensive characterization of the tumour phenotype. The enormous amount of complementary quantitative data generated by such studies is beginning to offer unique insights into opportunities to optimize care for individual patients. Although important technical optimization and improved biological interpretation of multimodality imaging findings are needed, this approach can already be applied informatively in clinical trials of cancer therapeutics using existing tools. These concepts are discussed herein.

  15. On the Edge of Mathematics and Biology Integration: Improving Quantitative Skills in Undergraduate Biology Education

    Science.gov (United States)

    Feser, Jason; Vasaly, Helen; Herrera, Jose

    2013-01-01

    In this paper, the authors describe how two institutions are helping their undergraduate biology students build quantitative competencies. Incorporation of quantitative skills and reasoning in biology are framed through a discussion of two cases that both concern introductory biology courses, but differ in the complexity of the mathematics and the…

  16. Infusion of Quantitative and Statistical Concepts into Biology Courses Does Not Improve Quantitative Literacy

    Science.gov (United States)

    Beck, Christopher W.

    2018-01-01

    Multiple national reports have pushed for the integration of quantitative concepts into the context of disciplinary science courses. The aim of this study was to evaluate the quantitative and statistical literacy of biology students and explore learning gains when those skills were taught implicitly in the context of biology. I examined gains in…

  17. Quantitative imaging of turbulent and reacting flows

    Energy Technology Data Exchange (ETDEWEB)

    Paul, P.H. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    Quantitative digital imaging, using planar laser light scattering techniques is being developed for the analysis of turbulent and reacting flows. Quantitative image data, implying both a direct relation to flowfield variables as well as sufficient signal and spatial dynamic range, can be readily processed to yield two-dimensional distributions of flowfield scalars and in turn two-dimensional images of gradients and turbulence scales. Much of the development of imaging techniques to date has concentrated on understanding the requisite molecular spectroscopy and collision dynamics to be able to determine how flowfield variable information is encoded into the measured signal. From this standpoint the image is seen as a collection of single point measurements. The present effort aims at realizing necessary improvements in signal and spatial dynamic range, signal-to-noise ratio and spatial resolution in the imaging system as well as developing excitation/detection strategies which provide for a quantitative measure of particular flowfield scalars. The standard camera used for the study is an intensified CCD array operated in a conventional video format. The design of the system was based on detailed modeling of signal and image transfer properties of fast UV imaging lenses, image intensifiers and CCD detector arrays. While this system is suitable for direct scalar imaging, derived quantities (e.g. temperature or velocity images) require an exceptionally wide dynamic range imaging detector. To apply these diagnostics to reacting flows also requires a very fast shuttered camera. The authors have developed and successfully tested a new type of gated low-light level detector. This system relies on fast switching of proximity focused image-diode which is direct fiber-optic coupled to a cooled CCD array. Tests on this new detector show significant improvements in detection limit, dynamic range and spatial resolution as compared to microchannel plate intensified arrays.

  18. Quantitative fluorescence microscopy and image deconvolution.

    Science.gov (United States)

    Swedlow, Jason R

    2013-01-01

    Quantitative imaging and image deconvolution have become standard techniques for the modern cell biologist because they can form the basis of an increasing number of assays for molecular function in a cellular context. There are two major types of deconvolution approaches--deblurring and restoration algorithms. Deblurring algorithms remove blur but treat a series of optical sections as individual two-dimensional entities and therefore sometimes mishandle blurred light. Restoration algorithms determine an object that, when convolved with the point-spread function of the microscope, could produce the image data. The advantages and disadvantages of these methods are discussed in this chapter. Image deconvolution in fluorescence microscopy has usually been applied to high-resolution imaging to improve contrast and thus detect small, dim objects that might otherwise be obscured. Their proper use demands some consideration of the imaging hardware, the acquisition process, fundamental aspects of photon detection, and image processing. This can prove daunting for some cell biologists, but the power of these techniques has been proven many times in the works cited in the chapter and elsewhere. Their usage is now well defined, so they can be incorporated into the capabilities of most laboratories. A major application of fluorescence microscopy is the quantitative measurement of the localization, dynamics, and interactions of cellular factors. The introduction of green fluorescent protein and its spectral variants has led to a significant increase in the use of fluorescence microscopy as a quantitative assay system. For quantitative imaging assays, it is critical to consider the nature of the image-acquisition system and to validate its response to known standards. Any image-processing algorithms used before quantitative analysis should preserve the relative signal levels in different parts of the image. A very common image-processing algorithm, image deconvolution, is used

  19. An Ibm PC/AT-Based Image Acquisition And Processing System For Quantitative Image Analysis

    Science.gov (United States)

    Kim, Yongmin; Alexander, Thomas

    1986-06-01

    In recent years, a large number of applications have been developed for image processing systems in the area of biological imaging. We have already finished the development of a dedicated microcomputer-based image processing and analysis system for quantitative microscopy. The system's primary function has been to facilitate and ultimately automate quantitative image analysis tasks such as the measurement of cellular DNA contents. We have recognized from this development experience, and interaction with system users, biologists and technicians, that the increasingly widespread use of image processing systems, and the development and application of new techniques for utilizing the capabilities of such systems, would generate a need for some kind of inexpensive general purpose image acquisition and processing system specially tailored for the needs of the medical community. We are currently engaged in the development and testing of hardware and software for a fairly high-performance image processing computer system based on a popular personal computer. In this paper, we describe the design and development of this system. Biological image processing computer systems have now reached a level of hardware and software refinement where they could become convenient image analysis tools for biologists. The development of a general purpose image processing system for quantitative image analysis that is inexpensive, flexible, and easy-to-use represents a significant step towards making the microscopic digital image processing techniques more widely applicable not only in a research environment as a biologist's workstation, but also in clinical environments as a diagnostic tool.

  20. Quantitative imaging of brain chemistry

    International Nuclear Information System (INIS)

    Wagner, H.N. Jr.

    1986-01-01

    We can now measure how chemicals affect different regions of the human brain. One area involves the study of drugs - in-vivo neuro-pharmacology; another involves the study of toxic chemical effects - in vivo neurotoxicology. The authors approach is to label drugs with positron-emitting radioactive tracers - chiefly carbon-11 with a half-life of 20 minutes and fluorine-18 with a half-life of 110 minutes. The labeled drugs are injected intravenously and a positron emission tomography (PET) scanner is used to map out the distribution of the radioactivity within the brain from the moment of injection until about 90 minutes later. Mathematical models are used to calculate receptor concentrations and the affinity of the receptors for the injected radioactive tracer. By means of PET scanning, they look at cross sections or visual slices throughout the human brain, obtaining computer-generated images in any plane. The authors are investigating the functions of specific drugs or specific receptors, as well as looking at the metabolic activity in different parts of the brain as revealed in glucose metabolism. For example, the authors are studying opiate receptors in patients with a variety of conditions: those who suffer from chronic pain, those who are congenitally insensitive to pain and drug addicts. They are studying patients with schizophrenia, tardive dyskinesia, Parkinson's disease, Huntington's disease, depressed patients and sex-offenders. They are relating the state of the neurotransmitter/neuroreceptor systems to behavior. In essence, they believe that they can now examine in living human beings what relates the structure of the brain to the function of the mind that is chemistry

  1. Quantitative Imaging with a Mobile Phone Microscope

    Science.gov (United States)

    Skandarajah, Arunan; Reber, Clay D.; Switz, Neil A.; Fletcher, Daniel A.

    2014-01-01

    Use of optical imaging for medical and scientific applications requires accurate quantification of features such as object size, color, and brightness. High pixel density cameras available on modern mobile phones have made photography simple and convenient for consumer applications; however, the camera hardware and software that enables this simplicity can present a barrier to accurate quantification of image data. This issue is exacerbated by automated settings, proprietary image processing algorithms, rapid phone evolution, and the diversity of manufacturers. If mobile phone cameras are to live up to their potential to increase access to healthcare in low-resource settings, limitations of mobile phone–based imaging must be fully understood and addressed with procedures that minimize their effects on image quantification. Here we focus on microscopic optical imaging using a custom mobile phone microscope that is compatible with phones from multiple manufacturers. We demonstrate that quantitative microscopy with micron-scale spatial resolution can be carried out with multiple phones and that image linearity, distortion, and color can be corrected as needed. Using all versions of the iPhone and a selection of Android phones released between 2007 and 2012, we show that phones with greater than 5 MP are capable of nearly diffraction-limited resolution over a broad range of magnifications, including those relevant for single cell imaging. We find that automatic focus, exposure, and color gain standard on mobile phones can degrade image resolution and reduce accuracy of color capture if uncorrected, and we devise procedures to avoid these barriers to quantitative imaging. By accommodating the differences between mobile phone cameras and the scientific cameras, mobile phone microscopes can be reliably used to increase access to quantitative imaging for a variety of medical and scientific applications. PMID:24824072

  2. Quantitative imaging with a mobile phone microscope.

    Directory of Open Access Journals (Sweden)

    Arunan Skandarajah

    Full Text Available Use of optical imaging for medical and scientific applications requires accurate quantification of features such as object size, color, and brightness. High pixel density cameras available on modern mobile phones have made photography simple and convenient for consumer applications; however, the camera hardware and software that enables this simplicity can present a barrier to accurate quantification of image data. This issue is exacerbated by automated settings, proprietary image processing algorithms, rapid phone evolution, and the diversity of manufacturers. If mobile phone cameras are to live up to their potential to increase access to healthcare in low-resource settings, limitations of mobile phone-based imaging must be fully understood and addressed with procedures that minimize their effects on image quantification. Here we focus on microscopic optical imaging using a custom mobile phone microscope that is compatible with phones from multiple manufacturers. We demonstrate that quantitative microscopy with micron-scale spatial resolution can be carried out with multiple phones and that image linearity, distortion, and color can be corrected as needed. Using all versions of the iPhone and a selection of Android phones released between 2007 and 2012, we show that phones with greater than 5 MP are capable of nearly diffraction-limited resolution over a broad range of magnifications, including those relevant for single cell imaging. We find that automatic focus, exposure, and color gain standard on mobile phones can degrade image resolution and reduce accuracy of color capture if uncorrected, and we devise procedures to avoid these barriers to quantitative imaging. By accommodating the differences between mobile phone cameras and the scientific cameras, mobile phone microscopes can be reliably used to increase access to quantitative imaging for a variety of medical and scientific applications.

  3. Quantitative stem cell biology: the threat and the glory.

    Science.gov (United States)

    Pollard, Steven M

    2016-11-15

    Major technological innovations over the past decade have transformed our ability to extract quantitative data from biological systems at an unprecedented scale and resolution. These quantitative methods and associated large datasets should lead to an exciting new phase of discovery across many areas of biology. However, there is a clear threat: will we drown in these rivers of data? On 18th July 2016, stem cell biologists gathered in Cambridge for the 5th annual Cambridge Stem Cell Symposium to discuss 'Quantitative stem cell biology: from molecules to models'. This Meeting Review provides a summary of the data presented by each speaker, with a focus on quantitative techniques and the new biological insights that are emerging. © 2016. Published by The Company of Biologists Ltd.

  4. Semiconductor Nanocrystals for Biological Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Aihua; Gu, Weiwei; Larabell, Carolyn; Alivisatos, A. Paul

    2005-06-28

    Conventional organic fluorophores suffer from poor photo stability, narrow absorption spectra and broad emission feature. Semiconductor nanocrystals, on the other hand, are highly photo-stable with broad absorption spectra and narrow size-tunable emission spectra. Recent advances in the synthesis of these materials have resulted in bright, sensitive, extremely photo-stable and biocompatible semiconductor fluorophores. Commercial availability facilitates their application in a variety of unprecedented biological experiments, including multiplexed cellular imaging, long-term in vitro and in vivo labeling, deep tissue structure mapping and single particle investigation of dynamic cellular processes. Semiconductor nanocrystals are one of the first examples of nanotechnology enabling a new class of biomedical applications.

  5. Quantitative SIMS Imaging of Agar-Based Microbial Communities.

    Science.gov (United States)

    Dunham, Sage J B; Ellis, Joseph F; Baig, Nameera F; Morales-Soto, Nydia; Cao, Tianyuan; Shrout, Joshua D; Bohn, Paul W; Sweedler, Jonathan V

    2018-05-01

    After several decades of widespread use for mapping elemental ions and small molecular fragments in surface science, secondary ion mass spectrometry (SIMS) has emerged as a powerful analytical tool for molecular imaging in biology. Biomolecular SIMS imaging has primarily been used as a qualitative technique; although the distribution of a single analyte can be accurately determined, it is difficult to map the absolute quantity of a compound or even to compare the relative abundance of one molecular species to that of another. We describe a method for quantitative SIMS imaging of small molecules in agar-based microbial communities. The microbes are cultivated on a thin film of agar, dried under nitrogen, and imaged directly with SIMS. By use of optical microscopy, we show that the area of the agar is reduced by 26 ± 2% (standard deviation) during dehydration, but the overall biofilm morphology and analyte distribution are largely retained. We detail a quantitative imaging methodology, in which the ion intensity of each analyte is (1) normalized to an external quadratic regression curve, (2) corrected for isomeric interference, and (3) filtered for sample-specific noise and lower and upper limits of quantitation. The end result is a two-dimensional surface density image for each analyte. The sample preparation and quantitation methods are validated by quantitatively imaging four alkyl-quinolone and alkyl-quinoline N-oxide signaling molecules (including Pseudomonas quinolone signal) in Pseudomonas aeruginosa colony biofilms. We show that the relative surface densities of the target biomolecules are substantially different from values inferred through direct intensity comparison and that the developed methodologies can be used to quantitatively compare as many ions as there are available standards.

  6. Quantitative image processing in fluid mechanics

    Science.gov (United States)

    Hesselink, Lambertus; Helman, James; Ning, Paul

    1992-01-01

    The current status of digital image processing in fluid flow research is reviewed. In particular, attention is given to a comprehensive approach to the extraction of quantitative data from multivariate databases and examples of recent developments. The discussion covers numerical simulations and experiments, data processing, generation and dissemination of knowledge, traditional image processing, hybrid processing, fluid flow vector field topology, and isosurface analysis using Marching Cubes.

  7. Quantitative imaging of bilirubin by photoacoustic microscopy

    Science.gov (United States)

    Zhou, Yong; Zhang, Chi; Yao, Da-Kang; Wang, Lihong V.

    2013-03-01

    Noninvasive detection of both bilirubin concentration and its distribution is important for disease diagnosis. Here we implemented photoacoustic microscopy (PAM) to detect bilirubin distribution. We first demonstrate that our PAM system can measure the absorption spectra of bilirubin and blood. We also image bilirubin distributions in tissuemimicking samples, both without and with blood mixed. Our results show that PAM has the potential to quantitatively image bilirubin in vivo for clinical applications.

  8. Biological Dynamics Markup Language (BDML): an open format for representing quantitative biological dynamics data.

    Science.gov (United States)

    Kyoda, Koji; Tohsato, Yukako; Ho, Kenneth H L; Onami, Shuichi

    2015-04-01

    Recent progress in live-cell imaging and modeling techniques has resulted in generation of a large amount of quantitative data (from experimental measurements and computer simulations) on spatiotemporal dynamics of biological objects such as molecules, cells and organisms. Although many research groups have independently dedicated their efforts to developing software tools for visualizing and analyzing these data, these tools are often not compatible with each other because of different data formats. We developed an open unified format, Biological Dynamics Markup Language (BDML; current version: 0.2), which provides a basic framework for representing quantitative biological dynamics data for objects ranging from molecules to cells to organisms. BDML is based on Extensible Markup Language (XML). Its advantages are machine and human readability and extensibility. BDML will improve the efficiency of development and evaluation of software tools for data visualization and analysis. A specification and a schema file for BDML are freely available online at http://ssbd.qbic.riken.jp/bdml/. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.

  9. Progress towards in vitro quantitative imaging of human femur using compound quantitative ultrasonic tomography

    International Nuclear Information System (INIS)

    Lasaygues, Philippe; Ouedraogo, Edgard; Lefebvre, Jean-Pierre; Gindre, Marcel; Talmant, Marilyne; Laugier, Pascal

    2005-01-01

    The objective of this study is to make cross-sectional ultrasonic quantitative tomography of the diaphysis of long bones. Ultrasonic propagation in bones is affected by the severe mismatch between the acoustic properties of this biological solid and those of the surrounding soft medium, namely, the soft tissues in vivo or water in vitro. Bone imaging is then a nonlinear inverse-scattering problem. In this paper, we showed that in vitro quantitative images of sound velocities in a human femur cross section could be reconstructed by combining ultrasonic reflection tomography (URT), which provides images of the macroscopic structure of the bone, and ultrasonic transmission tomography (UTT), which provides quantitative images of the sound velocity. For the shape, we developed an image-processing tool to extract the external and internal boundaries and cortical thickness measurements. For velocity mapping, we used a wavelet analysis tool adapted to ultrasound, which allowed us to detect precisely the time of flight from the transmitted signals. A brief review of the ultrasonic tomography that we developed using correction algorithms of the wavepaths and compensation procedures are presented. Also shown are the first results of our analyses on models and specimens of long bone using our new iterative quantitative protocol

  10. Quantitative image fusion in infrared radiometry

    Science.gov (United States)

    Romm, Iliya; Cukurel, Beni

    2018-05-01

    Towards high-accuracy infrared radiance estimates, measurement practices and processing techniques aimed to achieve quantitative image fusion using a set of multi-exposure images of a static scene are reviewed. The conventional non-uniformity correction technique is extended, as the original is incompatible with quantitative fusion. Recognizing the inherent limitations of even the extended non-uniformity correction, an alternative measurement methodology, which relies on estimates of the detector bias using self-calibration, is developed. Combining data from multi-exposure images, two novel image fusion techniques that ultimately provide high tonal fidelity of a photoquantity are considered: ‘subtract-then-fuse’, which conducts image subtraction in the camera output domain and partially negates the bias frame contribution common to both the dark and scene frames; and ‘fuse-then-subtract’, which reconstructs the bias frame explicitly and conducts image fusion independently for the dark and the scene frames, followed by subtraction in the photoquantity domain. The performances of the different techniques are evaluated for various synthetic and experimental data, identifying the factors contributing to potential degradation of the image quality. The findings reflect the superiority of the ‘fuse-then-subtract’ approach, conducting image fusion via per-pixel nonlinear weighted least squares optimization.

  11. Quantitative imaging features: extension of the oncology medical image database

    Science.gov (United States)

    Patel, M. N.; Looney, P. T.; Young, K. C.; Halling-Brown, M. D.

    2015-03-01

    Radiological imaging is fundamental within the healthcare industry and has become routinely adopted for diagnosis, disease monitoring and treatment planning. With the advent of digital imaging modalities and the rapid growth in both diagnostic and therapeutic imaging, the ability to be able to harness this large influx of data is of paramount importance. The Oncology Medical Image Database (OMI-DB) was created to provide a centralized, fully annotated dataset for research. The database contains both processed and unprocessed images, associated data, and annotations and where applicable expert determined ground truths describing features of interest. Medical imaging provides the ability to detect and localize many changes that are important to determine whether a disease is present or a therapy is effective by depicting alterations in anatomic, physiologic, biochemical or molecular processes. Quantitative imaging features are sensitive, specific, accurate and reproducible imaging measures of these changes. Here, we describe an extension to the OMI-DB whereby a range of imaging features and descriptors are pre-calculated using a high throughput approach. The ability to calculate multiple imaging features and data from the acquired images would be valuable and facilitate further research applications investigating detection, prognosis, and classification. The resultant data store contains more than 10 million quantitative features as well as features derived from CAD predictions. Theses data can be used to build predictive models to aid image classification, treatment response assessment as well as to identify prognostic imaging biomarkers.

  12. Quantitative Imaging in Cancer Evolution and Ecology

    Science.gov (United States)

    Grove, Olya; Gillies, Robert J.

    2013-01-01

    Cancer therapy, even when highly targeted, typically fails because of the remarkable capacity of malignant cells to evolve effective adaptations. These evolutionary dynamics are both a cause and a consequence of cancer system heterogeneity at many scales, ranging from genetic properties of individual cells to large-scale imaging features. Tumors of the same organ and cell type can have remarkably diverse appearances in different patients. Furthermore, even within a single tumor, marked variations in imaging features, such as necrosis or contrast enhancement, are common. Similar spatial variations recently have been reported in genetic profiles. Radiologic heterogeneity within tumors is usually governed by variations in blood flow, whereas genetic heterogeneity is typically ascribed to random mutations. However, evolution within tumors, as in all living systems, is subject to Darwinian principles; thus, it is governed by predictable and reproducible interactions between environmental selection forces and cell phenotype (not genotype). This link between regional variations in environmental properties and cellular adaptive strategies may permit clinical imaging to be used to assess and monitor intratumoral evolution in individual patients. This approach is enabled by new methods that extract, report, and analyze quantitative, reproducible, and mineable clinical imaging data. However, most current quantitative metrics lack spatialness, expressing quantitative radiologic features as a single value for a region of interest encompassing the whole tumor. In contrast, spatially explicit image analysis recognizes that tumors are heterogeneous but not well mixed and defines regionally distinct habitats, some of which appear to harbor tumor populations that are more aggressive and less treatable than others. By identifying regional variations in key environmental selection forces and evidence of cellular adaptation, clinical imaging can enable us to define intratumoral

  13. The quantitative imaging network: the role of quantitative imaging in radiation therapy

    International Nuclear Information System (INIS)

    Tandon, Pushpa; Nordstrom, Robert J.; Clark, Laurence

    2014-01-01

    The potential value of modern medical imaging methods has created a need for mechanisms to develop, translate and disseminate emerging imaging technologies and, ideally, to quantitatively correlate those with other related laboratory methods, such as the genomics and proteomics analyses required to support clinical decisions. One strategy to meet these needs efficiently and cost effectively is to develop an international network to share and reach consensus on best practices, imaging protocols, common databases, and open science strategies, and to collaboratively seek opportunities to leverage resources wherever possible. One such network is the Quantitative Imaging Network (QIN) started by the National Cancer Institute, USA. The mission of the QIN is to improve the role of quantitative imaging for clinical decision making in oncology by the development and validation of data acquisition, analysis methods, and other quantitative imaging tools to predict or monitor the response to drug or radiation therapy. The network currently has 24 teams (two from Canada and 22 from the USA) and several associate members, including one from Tata Memorial Centre, Mumbai, India. Each QIN team collects data from ongoing clinical trials and develops software tools for quantitation and validation to create standards for imaging research, and for use in developing models for therapy response prediction and measurement and tools for clinical decision making. The members of QIN are addressing a wide variety of cancer problems (Head and Neck cancer, Prostrate, Breast, Brain, Lung, Liver, Colon) using multiple imaging modalities (PET, CT, MRI, FMISO PET, DW-MRI, PET-CT). (author)

  14. Quantitative X-ray microanalysis of biological specimens

    International Nuclear Information System (INIS)

    Roomans, G.M.

    1988-01-01

    Qualitative X-ray microanalysis of biological specimens requires an approach that is somewhat different from that used in the materials sciences. The first step is deconvolution and background subtraction on the obtained spectrum. The further treatment depends on the type of specimen: thin, thick, or semithick. For thin sections, the continuum method of quantitation is most often used, but it should be combined with an accurate correction for extraneous background. However, alternative methods to determine local mass should also be considered. In the analysis of biological bulk specimens, the ZAF-correction method appears to be less useful, primarily because of the uneven surface of biological specimens. The peak-to-local background model may be a more adequate method for thick specimens that are not mounted on a thick substrate. Quantitative X-ray microanalysis of biological specimens generally requires the use of standards that preferably should resemble the specimen in chemical and physical properties. Special problems in biological microanalysis include low count rates, specimen instability and mass loss, extraneous contributions to the spectrum, and preparative artifacts affecting quantitation. A relatively recent development in X-ray microanalysis of biological specimens is the quantitative determination of local water content

  15. Quantitative phase imaging with scanning holographic microscopy: an experimental assesment

    Directory of Open Access Journals (Sweden)

    Tada Yoshitaka

    2006-11-01

    Full Text Available Abstract This paper demonstrates experimentally how quantitative phase information can be obtained in scanning holographic microscopy. Scanning holography can operate in both coherent and incoherent modes, simultaneously if desired, with different detector geometries. A spatially integrating detector provides an incoherent hologram of the object's intensity distribution (absorption and/or fluorescence, for example, while a point detector in a conjugate plane of the pupil provides a coherent hologram of the object's complex amplitude, from which a quantitative measure of its phase distribution can be extracted. The possibility of capturing simultaneously holograms of three-dimensional specimens, leading to three-dimensional reconstructions with absorption contrast, reflectance contrast, fluorescence contrast, as was previously demonstrated, and quantitative phase contrast, as shown here for the first time, opens up new avenues for multimodal imaging in biological studies.

  16. Integrating quantitative thinking into an introductory biology course improves students' mathematical reasoning in biological contexts.

    Science.gov (United States)

    Hester, Susan; Buxner, Sanlyn; Elfring, Lisa; Nagy, Lisa

    2014-01-01

    Recent calls for improving undergraduate biology education have emphasized the importance of students learning to apply quantitative skills to biological problems. Motivated by students' apparent inability to transfer their existing quantitative skills to biological contexts, we designed and taught an introductory molecular and cell biology course in which we integrated application of prerequisite mathematical skills with biology content and reasoning throughout all aspects of the course. In this paper, we describe the principles of our course design and present illustrative examples of course materials integrating mathematics and biology. We also designed an outcome assessment made up of items testing students' understanding of biology concepts and their ability to apply mathematical skills in biological contexts and administered it as a pre/postcourse test to students in the experimental section and other sections of the same course. Precourse results confirmed students' inability to spontaneously transfer their prerequisite mathematics skills to biological problems. Pre/postcourse outcome assessment comparisons showed that, compared with students in other sections, students in the experimental section made greater gains on integrated math/biology items. They also made comparable gains on biology items, indicating that integrating quantitative skills into an introductory biology course does not have a deleterious effect on students' biology learning.

  17. Integrating Quantitative Thinking into an Introductory Biology Course Improves Students’ Mathematical Reasoning in Biological Contexts

    Science.gov (United States)

    Hester, Susan; Buxner, Sanlyn; Elfring, Lisa; Nagy, Lisa

    2014-01-01

    Recent calls for improving undergraduate biology education have emphasized the importance of students learning to apply quantitative skills to biological problems. Motivated by students’ apparent inability to transfer their existing quantitative skills to biological contexts, we designed and taught an introductory molecular and cell biology course in which we integrated application of prerequisite mathematical skills with biology content and reasoning throughout all aspects of the course. In this paper, we describe the principles of our course design and present illustrative examples of course materials integrating mathematics and biology. We also designed an outcome assessment made up of items testing students’ understanding of biology concepts and their ability to apply mathematical skills in biological contexts and administered it as a pre/postcourse test to students in the experimental section and other sections of the same course. Precourse results confirmed students’ inability to spontaneously transfer their prerequisite mathematics skills to biological problems. Pre/postcourse outcome assessment comparisons showed that, compared with students in other sections, students in the experimental section made greater gains on integrated math/biology items. They also made comparable gains on biology items, indicating that integrating quantitative skills into an introductory biology course does not have a deleterious effect on students’ biology learning. PMID:24591504

  18. A method for three-dimensional quantitative observation of the microstructure of biological samples

    Science.gov (United States)

    Wang, Pengfei; Chen, Dieyan; Ma, Wanyun; Wu, Hongxin; Ji, Liang; Sun, Jialin; Lv, Danyu; Zhang, Lu; Li, Ying; Tian, Ning; Zheng, Jinggao; Zhao, Fengying

    2009-07-01

    Contemporary biology has developed into the era of cell biology and molecular biology, and people try to study the mechanism of all kinds of biological phenomena at the microcosmic level now. Accurate description of the microstructure of biological samples is exigent need from many biomedical experiments. This paper introduces a method for 3-dimensional quantitative observation on the microstructure of vital biological samples based on two photon laser scanning microscopy (TPLSM). TPLSM is a novel kind of fluorescence microscopy, which has excellence in its low optical damage, high resolution, deep penetration depth and suitability for 3-dimensional (3D) imaging. Fluorescent stained samples were observed by TPLSM, and afterward the original shapes of them were obtained through 3D image reconstruction. The spatial distribution of all objects in samples as well as their volumes could be derived by image segmentation and mathematic calculation. Thus the 3-dimensionally and quantitatively depicted microstructure of the samples was finally derived. We applied this method to quantitative analysis of the spatial distribution of chromosomes in meiotic mouse oocytes at metaphase, and wonderful results came out last.

  19. Quantitative Analysis in Nuclear Medicine Imaging

    CERN Document Server

    2006-01-01

    This book provides a review of image analysis techniques as they are applied in the field of diagnostic and therapeutic nuclear medicine. Driven in part by the remarkable increase in computing power and its ready and inexpensive availability, this is a relatively new yet rapidly expanding field. Likewise, although the use of radionuclides for diagnosis and therapy has origins dating back almost to the discovery of natural radioactivity itself, radionuclide therapy and, in particular, targeted radionuclide therapy has only recently emerged as a promising approach for therapy of cancer and, to a lesser extent, other diseases. As effort has, therefore, been made to place the reviews provided in this book in a broader context. The effort to do this is reflected by the inclusion of introductory chapters that address basic principles of nuclear medicine imaging, followed by overview of issues that are closely related to quantitative nuclear imaging and its potential role in diagnostic and therapeutic applications. ...

  20. Biostatistical analysis of quantitative immunofluorescence microscopy images.

    Science.gov (United States)

    Giles, C; Albrecht, M A; Lam, V; Takechi, R; Mamo, J C

    2016-12-01

    Semiquantitative immunofluorescence microscopy has become a key methodology in biomedical research. Typical statistical workflows are considered in the context of avoiding pseudo-replication and marginalising experimental error. However, immunofluorescence microscopy naturally generates hierarchically structured data that can be leveraged to improve statistical power and enrich biological interpretation. Herein, we describe a robust distribution fitting procedure and compare several statistical tests, outlining their potential advantages/disadvantages in the context of biological interpretation. Further, we describe tractable procedures for power analysis that incorporates the underlying distribution, sample size and number of images captured per sample. The procedures outlined have significant potential for increasing understanding of biological processes and decreasing both ethical and financial burden through experimental optimization. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  1. Quantitative volumetric Raman imaging of three dimensional cell cultures

    KAUST Repository

    Kallepitis, Charalambos

    2017-03-22

    The ability to simultaneously image multiple biomolecules in biologically relevant three-dimensional (3D) cell culture environments would contribute greatly to the understanding of complex cellular mechanisms and cell–material interactions. Here, we present a computational framework for label-free quantitative volumetric Raman imaging (qVRI). We apply qVRI to a selection of biological systems: human pluripotent stem cells with their cardiac derivatives, monocytes and monocyte-derived macrophages in conventional cell culture systems and mesenchymal stem cells inside biomimetic hydrogels that supplied a 3D cell culture environment. We demonstrate visualization and quantification of fine details in cell shape, cytoplasm, nucleus, lipid bodies and cytoskeletal structures in 3D with unprecedented biomolecular specificity for vibrational microspectroscopy.

  2. Quantitative volumetric Raman imaging of three dimensional cell cultures

    Science.gov (United States)

    Kallepitis, Charalambos; Bergholt, Mads S.; Mazo, Manuel M.; Leonardo, Vincent; Skaalure, Stacey C.; Maynard, Stephanie A.; Stevens, Molly M.

    2017-03-01

    The ability to simultaneously image multiple biomolecules in biologically relevant three-dimensional (3D) cell culture environments would contribute greatly to the understanding of complex cellular mechanisms and cell-material interactions. Here, we present a computational framework for label-free quantitative volumetric Raman imaging (qVRI). We apply qVRI to a selection of biological systems: human pluripotent stem cells with their cardiac derivatives, monocytes and monocyte-derived macrophages in conventional cell culture systems and mesenchymal stem cells inside biomimetic hydrogels that supplied a 3D cell culture environment. We demonstrate visualization and quantification of fine details in cell shape, cytoplasm, nucleus, lipid bodies and cytoskeletal structures in 3D with unprecedented biomolecular specificity for vibrational microspectroscopy.

  3. Cold Spring Harbor symposia on quantitative biology: Volume 51, Molecular biology of /ital Homo sapiens/

    International Nuclear Information System (INIS)

    1986-01-01

    This volume is the second part of a collection of papers submitted by the participants to the 1986 Cold Spring Harbor Symposium on Quantitative Biology entitled Molecular Biology of /ital Homo sapiens/. The 49 papers included in this volume are grouped by subject into receptors, human cancer genes, and gene therapy. (DT)

  4. MR Fingerprinting for Rapid Quantitative Abdominal Imaging.

    Science.gov (United States)

    Chen, Yong; Jiang, Yun; Pahwa, Shivani; Ma, Dan; Lu, Lan; Twieg, Michael D; Wright, Katherine L; Seiberlich, Nicole; Griswold, Mark A; Gulani, Vikas

    2016-04-01

    To develop a magnetic resonance (MR) "fingerprinting" technique for quantitative abdominal imaging. This HIPAA-compliant study had institutional review board approval, and informed consent was obtained from all subjects. To achieve accurate quantification in the presence of marked B0 and B1 field inhomogeneities, the MR fingerprinting framework was extended by using a two-dimensional fast imaging with steady-state free precession, or FISP, acquisition and a Bloch-Siegert B1 mapping method. The accuracy of the proposed technique was validated by using agarose phantoms. Quantitative measurements were performed in eight asymptomatic subjects and in six patients with 20 focal liver lesions. A two-tailed Student t test was used to compare the T1 and T2 results in metastatic adenocarcinoma with those in surrounding liver parenchyma and healthy subjects. Phantom experiments showed good agreement with standard methods in T1 and T2 after B1 correction. In vivo studies demonstrated that quantitative T1, T2, and B1 maps can be acquired within a breath hold of approximately 19 seconds. T1 and T2 measurements were compatible with those in the literature. Representative values included the following: liver, 745 msec ± 65 (standard deviation) and 31 msec ± 6; renal medulla, 1702 msec ± 205 and 60 msec ± 21; renal cortex, 1314 msec ± 77 and 47 msec ± 10; spleen, 1232 msec ± 92 and 60 msec ± 19; skeletal muscle, 1100 msec ± 59 and 44 msec ± 9; and fat, 253 msec ± 42 and 77 msec ± 16, respectively. T1 and T2 in metastatic adenocarcinoma were 1673 msec ± 331 and 43 msec ± 13, respectively, significantly different from surrounding liver parenchyma relaxation times of 840 msec ± 113 and 28 msec ± 3 (P < .0001 and P < .01) and those in hepatic parenchyma in healthy volunteers (745 msec ± 65 and 31 msec ± 6, P < .0001 and P = .021, respectively). A rapid technique for quantitative abdominal imaging was developed that allows simultaneous quantification of multiple tissue

  5. Individual patient dosimetry using quantitative SPECT imaging

    International Nuclear Information System (INIS)

    Gonzalez, J.; Oliva, J.; Baum, R.; Fisher, S.

    2002-01-01

    An approach is described to provide individual patient dosimetry for routine clinical use. Accurate quantitative SPECT imaging was achieved using appropriate methods. The volume of interest (VOI) was defined semi-automatically using a fixed threshold value obtained from phantom studies. The calibration factor to convert the voxel counts from SPECT images into activity values was determine from calibrated point source using the same threshold value as in phantom studies. From selected radionuclide the dose within and outside a sphere of voxel dimension at different distances was computed through dose point-kernels to obtain a discrete absorbed dose kernel representation around the volume source with uniform activity distribution. The spatial activity distribution from SPECT imaging was convolved with this kernel representation using the discrete Fourier transform method to yield three-dimensional absorbed dose rate distribution. The accuracy of dose rates calculation was validated by software phantoms. The absorbed dose was determined by integration of the dose rate distribution for each volume of interest (VOI). Parameters for treatment optimization such as dose rate volume histograms and dose rate statistic are provided. A patient example was used to illustrate our dosimetric calculations

  6. Biomarkers and Biological Spectral Imaging

    Science.gov (United States)

    2001-01-23

    G. Sowa, H. H. Mantsch, National Research Council Canada; S. L. Zhang, Unilever Research (USA) 85 Brain tissue charcterization using spectral imaging...image registration and of the expert staff of Hill Top Research in Winnipeg for hosting the hydration study. Financial assistance from Unilever Research

  7. Quantitative imaging of coronary blood flow

    Directory of Open Access Journals (Sweden)

    Adam M. Alessio

    2010-04-01

    Full Text Available Adam M. Alessio received his PhD in Electrical Engineering from the University of Notre Dame in 2003. During his graduate studies he developed tomographic reconstruction methods for correlated data and helped construct a high-resolution PET system. He is currently a Research Assistant Professor in Radiology at the University of Washington. His research interests focus on improved data processing and reconstruction algorithms for PET/CT systems with an emphasis on quantitative imaging. Erik Butterworth recieved the BA degree in Mathematics from the University of Chicago in 1977. Between 1977 and 1987 he worked as a computer programmer/analyst for several small commercial software firms. Since 1988, he has worked as a software engineer on various research projects at the University of Washington. Between 1988 and 1993 he developed a real-time data aquisition for the analysis of estuarine sediment transport in the department of Geophysics. Between 1988 and 2002 he developed I4, a system for the display and analysis of cardic PET images in the department of Cardiology. Since 1993 he has worked on physiological simulation systems (XSIM from 1993 to 1999, JSim since 1999 at the National Simulation Resource Facility in Cirulatory Mass Transport and Exchange, in the Department of Bioengineering. His research interests include simulation systems and medical imaging. James H. Caldwell, MD, University of Missouri-Columbia 1970, is Professor of Medicine (Cardiology and Radiology and Adjunct Professor of Bioengineering at the University of Washington School of Medicine and Acting Head, Division of Cardiology and Director of Nuclear Cardiology for the University of Washington Hospitals, Seattle WA, USA. James B. Bassingthwaighte, MD, Toronto 1955, PhD Mayo Grad Sch Med 1964, was Professor of Physiology and of Medicine at Mayo Clinic until 1975 when he moved to the University of Washington to chair Bioengineering. He is Professor of Bioengineering and

  8. Quantitative aspects of myocardial perfusion imaging

    International Nuclear Information System (INIS)

    Vogel, R.A.

    1980-01-01

    Myocardial perfusion measurements have traditionally been performed in a quantitative fashion using application of the Sapirstein, Fick, Kety-Schmidt, or compartmental analysis principles. Although global myocardial blood flow measurements have not proven clinically useful, regional determinations have substantially advanced our understanding of and ability to detect myocardial ischemia. With the introduction of thallium-201, such studies have become widely available, although these have generally undergone qualitative evaluation. Using computer-digitized data, several methods for the quantification of myocardial perfusion images have been introduced. These include orthogonal and polar coordinate systems and anatomically oriented region of interest segmentation. Statistical ranges of normal and time-activity analyses have been applied to these data, resulting in objective and reproducible means of data evaluation

  9. Microholographic imaging of biological samples

    International Nuclear Information System (INIS)

    Haddad, W.S.; Cullen, D.; Solem, J.C.; Longworth, J.W.; McPherson, A.; Boyer, K.; Rhodes, C.K.

    1990-01-01

    A camera system suitable for x-ray microholography has been constructed. Visible light Fourier transform microholograms of biological samples and other test targets have been recorded and reconstructed digitally using a glycerol microdrop as a reference wave source. Current results give a resolution of ∼4 - 10 λ with λ = 514.5 nm. 11 refs., 1 fig

  10. Quantitative Nuclear Medicine Imaging: Concepts, Requirements and Methods

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-01-15

    more consistent compensation for physical effects and imaging system limitations. On these grounds, quantitative imaging is now a broad field of work for the scientific community, and its current translation to the clinical environment can be undertaken with confidence, for better and more accurate diagnostic and therapeutic applications using consistent and well validated protocols. This publication complements previous efforts of the IAEA related to activity measurement and quantification. The quantitative measurement of tissues and other biological samples is addressed in Technical Reports Series No. 454. The quality control requirements of current PET and SPECT imaging equipment are addressed in IAEA Human Health Series No. 1 and No. 6, respectively. This report does not cover the fields addressed by these publications.

  11. Hepatic iron overload: Quantitative MR imaging

    International Nuclear Information System (INIS)

    Gomori, J.M.; Horev, G.; Tamary, H.; Zandback, J.; Kornreich, L.; Zaizov, R.; Freud, E.; Krief, O.; Ben-Meir, J.; Rotem, H.

    1991-01-01

    Iron deposits demonstrate characteristically shortened T2 relaxation times. Several previously published studies reported poor correlation between the in vivo hepatic 1/T2 measurements made by means of midfield magnetic resonance (MR) units and the hepatic iron content of iron-overloaded patients. In this study, the authors assessed the use of in vivo 1/T2 measurements obtained by means of MR imaging at 0.5 T using short echo times (13.4 and 30 msec) and single-echo-sequences as well as computed tomographic (CT) attenuation as a measure of liver iron concentration in 10 severely iron-overloaded patients with beta-thalassemia major. The iron concentrations in surgical wedge biopsy samples of the liver, which varied between 3 and 9 mg/g of wet weight (normal, less than or equal to 0.5 mg/g), correlated well (r = .93, P less than or equal to .0001) with the preoperative in vivo hepatic 1/T2 measurements. The CT attenuation did not correlate with liver iron concentration. Quantitative MR imaging is a readily available noninvasive method for the assessment of hepatic iron concentration in iron-overloaded patients, reducing the need for needle biopsies of the liver

  12. Quantitative Methods for Molecular Diagnostic and Therapeutic Imaging

    OpenAIRE

    Li, Quanzheng

    2013-01-01

    This theme issue provides an overview on the basic quantitative methods, an in-depth discussion on the cutting-edge quantitative analysis approaches as well as their applications for both static and dynamic molecular diagnostic and therapeutic imaging.

  13. Quantitative image of bone mineral content

    International Nuclear Information System (INIS)

    Katoh, Tsuguhisa

    1990-01-01

    A dual energy subtraction system was constructed on an experimental basis for the quantitative image of bone mineral content. The system consists of a radiographing system and an image processor. Two radiograms were taken with dual x-ray energy in a single exposure using an x-ray beam dichromized by a tin filter. In this system, a film cassette was used where a low speed film-screen system, a copper filter and a high speed film-screen system were layered on top of each other. The images were read by a microdensitometer and processed by a personal computer. The image processing included the corrections of the film characteristics and heterogeneity in the x-ray field, and the dual energy subtraction in which the effect of the high energy component of the dichromized beam on the tube side image was corrected. In order to determine the accuracy of the system, experiments using wedge phantoms made of mixtures of epoxy resin and bone mineral-equivalent materials in various fractions were performed for various tube potentials and film processing conditions. The results indicated that the relative precision of the system was within ±4% and that the propagation of the film noise was within ±11 mg/cm 2 for the 0.2 mm pixels. The results also indicated that the system response was independent of the tube potential and the film processing condition. The bone mineral weight in each phalanx of the freshly dissected hand of a rhesus monkey was measured by this system and compared with the ash weight. The results showed an error of ±10%, slightly larger than that of phantom experiments, which is probably due to the effect of fat and the variation of focus-object distance. The air kerma in free air at the object was approximately 0.5 mGy for one exposure. The results indicate that this system is applicable to clinical use and provides useful information for evaluating a time-course of localized bone disease. (author)

  14. Radiation biology of medical imaging

    CERN Document Server

    Kelsey, Charles A; Sandoval, Daniel J; Chambers, Gregory D; Adolphi, Natalie L; Paffett, Kimberly S

    2014-01-01

    This book provides a thorough yet concise introduction to quantitative radiobiology and radiation physics, particularly the practical and medical application. Beginning with a discussion of the basic science of radiobiology, the book explains the fast processes that initiate damage in irradiated tissue and the kinetic patterns in which such damage is expressed at the cellular level. The final section is presented in a highly practical handbook style and offers application-based discussions in radiation oncology, fractionated radiotherapy, and protracted radiation among others. The text is also supplemented by a Web site.

  15. Combinational pixel-by-pixel and object-level classifying, segmenting, and agglomerating in performing quantitative image analysis that distinguishes between healthy non-cancerous and cancerous cell nuclei and delineates nuclear, cytoplasm, and stromal material objects from stained biological tissue materials

    Science.gov (United States)

    Boucheron, Laura E

    2013-07-16

    Quantitative object and spatial arrangement-level analysis of tissue are detailed using expert (pathologist) input to guide the classification process. A two-step method is disclosed for imaging tissue, by classifying one or more biological materials, e.g. nuclei, cytoplasm, and stroma, in the tissue into one or more identified classes on a pixel-by-pixel basis, and segmenting the identified classes to agglomerate one or more sets of identified pixels into segmented regions. Typically, the one or more biological materials comprises nuclear material, cytoplasm material, and stromal material. The method further allows a user to markup the image subsequent to the classification to re-classify said materials. The markup is performed via a graphic user interface to edit designated regions in the image.

  16. Biological characteristics of crucian by quantitative inspection method

    Science.gov (United States)

    Chu, Mengqi

    2015-04-01

    Biological characteristics of crucian by quantitative inspection method Through quantitative inspection method , the biological characteristics of crucian was preliminary researched. Crucian , Belongs to Cypriniformes, Cyprinidae, Carassius auratus, is a kind of main plant-eating omnivorous fish,like Gregarious, selection and ranking. Crucian are widely distributed, perennial water all over the country all have production. Determine the indicators of crucian in the experiment, to understand the growth, reproduction situation of crucian in this area . Using the measured data (such as the scale length ,scale size and wheel diameter and so on) and related functional to calculate growth of crucian in any one year.According to the egg shape, color, weight ,etc to determine its maturity, with the mean egg diameter per 20 eggs and the number of eggs per 0.5 grams, to calculate the relative and absolute fecundity of the fish .Measured crucian were female puberty. Based on the relation between the scale diameter and length and the information, linear relationship between crucian scale diameter and length: y=1.530+3.0649. From the data, the fertility and is closely relative to the increase of age. The older, the more mature gonad development. The more amount of eggs. In addition, absolute fecundity increases with the pituitary gland.Through quantitative check crucian bait food intake by the object, reveals the main food, secondary foods, and chance food of crucian ,and understand that crucian degree of be fond of of all kinds of bait organisms.Fish fertility with weight gain, it has the characteristics of species and populations, and at the same tmes influenced by the age of the individual, body length, body weight, environmental conditions (especially the nutrition conditions), and breeding habits, spawning times factors and the size of the egg. After a series of studies of crucian biological character, provide the ecological basis for local crucian's feeding, breeding

  17. Modeling Cancer Metastasis using Global, Quantitative and Integrative Network Biology

    DEFF Research Database (Denmark)

    Schoof, Erwin; Erler, Janine

    understanding of molecular processes which are fundamental to tumorigenesis. In Article 1, we propose a novel framework for how cancer mutations can be studied by taking into account their effect at the protein network level. In Article 2, we demonstrate how global, quantitative data on phosphorylation dynamics...... can be generated using MS, and how this can be modeled using a computational framework for deciphering kinase-substrate dynamics. This framework is described in depth in Article 3, and covers the design of KinomeXplorer, which allows the prediction of kinases responsible for modulating observed...... phosphorylation dynamics in a given biological sample. In Chapter III, we move into Integrative Network Biology, where, by combining two fundamental technologies (MS & NGS), we can obtain more in-depth insights into the links between cellular phenotype and genotype. Article 4 describes the proof...

  18. Quantitative measures of healthy aging and biological age

    Science.gov (United States)

    Kim, Sangkyu; Jazwinski, S. Michal

    2015-01-01

    Numerous genetic and non-genetic factors contribute to aging. To facilitate the study of these factors, various descriptors of biological aging, including ‘successful aging’ and ‘frailty’, have been put forth as integrative functional measures of aging. A separate but related quantitative approach is the ‘frailty index’, which has been operationalized and frequently used. Various frailty indices have been constructed. Although based on different numbers and types of health variables, frailty indices possess several common properties that make them useful across different studies. We have been using a frailty index termed FI34 based on 34 health variables. Like other frailty indices, FI34 increases non-linearly with advancing age and is a better indicator of biological aging than chronological age. FI34 has a substantial genetic basis. Using FI34, we found elevated levels of resting metabolic rate linked to declining health in nonagenarians. Using FI34 as a quantitative phenotype, we have also found a genomic region on chromosome 12 that is associated with healthy aging and longevity. PMID:26005669

  19. Quantitative mass spectrometry of unconventional human biological matrices

    Science.gov (United States)

    Dutkiewicz, Ewelina P.; Urban, Pawel L.

    2016-10-01

    The development of sensitive and versatile mass spectrometric methodology has fuelled interest in the analysis of metabolites and drugs in unconventional biological specimens. Here, we discuss the analysis of eight human matrices-hair, nail, breath, saliva, tears, meibum, nasal mucus and skin excretions (including sweat)-by mass spectrometry (MS). The use of such specimens brings a number of advantages, the most important being non-invasive sampling, the limited risk of adulteration and the ability to obtain information that complements blood and urine tests. The most often studied matrices are hair, breath and saliva. This review primarily focuses on endogenous (e.g. potential biomarkers, hormones) and exogenous (e.g. drugs, environmental contaminants) small molecules. The majority of analytical methods used chromatographic separation prior to MS; however, such a hyphenated methodology greatly limits analytical throughput. On the other hand, the mass spectrometric methods that exclude chromatographic separation are fast but suffer from matrix interferences. To enable development of quantitative assays for unconventional matrices, it is desirable to standardize the protocols for the analysis of each specimen and create appropriate certified reference materials. Overcoming these challenges will make analysis of unconventional human biological matrices more common in a clinical setting. This article is part of the themed issue 'Quantitative mass spectrometry'.

  20. PCA-based groupwise image registration for quantitative MRI

    NARCIS (Netherlands)

    Huizinga, W.; Poot, D. H. J.; Guyader, J.-M.; Klaassen, R.; Coolen, B. F.; van Kranenburg, M.; van Geuns, R. J. M.; Uitterdijk, A.; Polfliet, M.; Vandemeulebroucke, J.; Leemans, A.; Niessen, W. J.; Klein, S.

    2016-01-01

    Quantitative magnetic resonance imaging (qMRI) is a technique for estimating quantitative tissue properties, such as the T5 and T2 relaxation times, apparent diffusion coefficient (ADC), and various perfusion measures. This estimation is achieved by acquiring multiple images with different

  1. Quantitative analysis of dynamic association in live biological fluorescent samples.

    Directory of Open Access Journals (Sweden)

    Pekka Ruusuvuori

    Full Text Available Determining vesicle localization and association in live microscopy may be challenging due to non-simultaneous imaging of rapidly moving objects with two excitation channels. Besides errors due to movement of objects, imaging may also introduce shifting between the image channels, and traditional colocalization methods cannot handle such situations. Our approach to quantifying the association between tagged proteins is to use an object-based method where the exact match of object locations is not assumed. Point-pattern matching provides a measure of correspondence between two point-sets under various changes between the sets. Thus, it can be used for robust quantitative analysis of vesicle association between image channels. Results for a large set of synthetic images shows that the novel association method based on point-pattern matching demonstrates robust capability to detect association of closely located vesicles in live cell-microscopy where traditional colocalization methods fail to produce results. In addition, the method outperforms compared Iterated Closest Points registration method. Results for fixed and live experimental data shows the association method to perform comparably to traditional methods in colocalization studies for fixed cells and to perform favorably in association studies for live cells.

  2. Systems Biology-Driven Hypotheses Tested In Vivo: The Need to Advancing Molecular Imaging Tools.

    Science.gov (United States)

    Verma, Garima; Palombo, Alessandro; Grigioni, Mauro; La Monaca, Morena; D'Avenio, Giuseppe

    2018-01-01

    Processing and interpretation of biological images may provide invaluable insights on complex, living systems because images capture the overall dynamics as a "whole." Therefore, "extraction" of key, quantitative morphological parameters could be, at least in principle, helpful in building a reliable systems biology approach in understanding living objects. Molecular imaging tools for system biology models have attained widespread usage in modern experimental laboratories. Here, we provide an overview on advances in the computational technology and different instrumentations focused on molecular image processing and analysis. Quantitative data analysis through various open source software and algorithmic protocols will provide a novel approach for modeling the experimental research program. Besides this, we also highlight the predictable future trends regarding methods for automatically analyzing biological data. Such tools will be very useful to understand the detailed biological and mathematical expressions under in-silico system biology processes with modeling properties.

  3. Management of COPD: Is there a role for quantitative imaging?

    International Nuclear Information System (INIS)

    Kirby, Miranda; Beek, Edwin J.R. van; Seo, Joon Beom; Biederer, Juergen; Nakano, Yasutaka; Coxson, Harvey O.; Parraga, Grace

    2017-01-01

    Highlights: • Multicentre studies with CT are enabling a better understanding of COPD phenotypes. • New pulmonary MRI techniques have emerged that provide sensitive COPD biomarkers. • OCT is the only imaging modality that can directly quantify the small airways. • Imaging may identify phenotypes for effective COPD management to improve outcomes. - Abstract: While the recent development of quantitative imaging methods have led to their increased use in the diagnosis and management of many chronic diseases, medical imaging still plays a limited role in the management of chronic obstructive pulmonary disease (COPD). In this review we highlight three pulmonary imaging modalities: computed tomography (CT), magnetic resonance imaging (MRI) and optical coherence tomography (OCT) imaging and the COPD biomarkers that may be helpful for managing COPD patients. We discussed the current role imaging plays in COPD management as well as the potential role quantitative imaging will play by identifying imaging phenotypes to enable more effective COPD management and improved outcomes.

  4. Management of COPD: Is there a role for quantitative imaging?

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, Miranda [Department of Radiology, University of British Columbia, Vancouver (Canada); UBC James Hogg Research Center & The Institute of Heart and Lung Health, St. Paul' s Hospital, Vancouver (Canada); Beek, Edwin J.R. van [Clinical Research Imaging Centre, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh (United Kingdom); Seo, Joon Beom [Department of Radiology, University of Ulsan College of Medicine, Asan Medical Center (Korea, Republic of); Biederer, Juergen [Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg (Germany); Translational Lung Research Center Heidelberg (TLRC), Member of the German Lung Research Center (DZL) (Germany); Radiologie Darmstadt, Gross-Gerau County Hospital (Germany); Nakano, Yasutaka [Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Shiga (Japan); Coxson, Harvey O. [Department of Radiology, University of British Columbia, Vancouver (Canada); UBC James Hogg Research Center & The Institute of Heart and Lung Health, St. Paul' s Hospital, Vancouver (Canada); Parraga, Grace, E-mail: gparraga@robarts.ca [Robarts Research Institute, The University of Western Ontario, London (Canada); Department of Medical Biophysics, The University of Western Ontario, London (Canada)

    2017-01-15

    Highlights: • Multicentre studies with CT are enabling a better understanding of COPD phenotypes. • New pulmonary MRI techniques have emerged that provide sensitive COPD biomarkers. • OCT is the only imaging modality that can directly quantify the small airways. • Imaging may identify phenotypes for effective COPD management to improve outcomes. - Abstract: While the recent development of quantitative imaging methods have led to their increased use in the diagnosis and management of many chronic diseases, medical imaging still plays a limited role in the management of chronic obstructive pulmonary disease (COPD). In this review we highlight three pulmonary imaging modalities: computed tomography (CT), magnetic resonance imaging (MRI) and optical coherence tomography (OCT) imaging and the COPD biomarkers that may be helpful for managing COPD patients. We discussed the current role imaging plays in COPD management as well as the potential role quantitative imaging will play by identifying imaging phenotypes to enable more effective COPD management and improved outcomes.

  5. Application of dried-droplets deposited on pre-cut filter paper disks for quantitative LA-ICP-MS imaging of biologically relevant minor and trace elements in tissue samples.

    Science.gov (United States)

    Bonta, Maximilian; Hegedus, Balazs; Limbeck, Andreas

    2016-02-18

    In this work, a novel calibration approach for minor and trace element quantification in LA-ICP-MS imaging of biological tissues is presented. Droplets of aqueous standard solutions are deposited onto pre-cut pieces of filter paper, allowed to dry, and sputtered with a thin gold layer for use as pseudo-internal standard. Analysis of the standards using LA-ICP-MS is performed using radial line-scans across the filters. In contrast to conventionally used preparation of matrix-matched tissue standards, the dried-droplet approach offers a variety of advantages: The standards are easy to prepare, no characterization of the standards using acid digestion is required, no handling of biological materials is necessary, and the concentration range, as well the number of investigated analytes is almost unlimited. The proposed quantification method has been verified using homogenized tissue standards with known analyte concentrations before being applied to a human malignant mesothelioma biopsy from a patient who had not received any chemotherapeutic treatment. Elemental distribution images were acquired at a lateral resolution of 40 μm per pixel, limits of detection ranging from 0.1 μg g(-1) (Mn, Ni, Cu, Zn) to 13.2 μg g(-1) (K) were reached. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Quantitative reconstruction from a single diffraction-enhanced image

    International Nuclear Information System (INIS)

    Paganin, D.M.; Lewis, R.A.; Kitchen, M.

    2003-01-01

    Full text: We develop an algorithm for using a single diffraction-enhanced image (DEI) to obtain a quantitative reconstruction of the projected thickness of a single-material sample which is embedded within a substrate of approximately constant thickness. This algorithm is used to quantitatively map inclusions in a breast phantom, from a single synchrotron DEI image. In particular, the reconstructed images quantitatively represent the projected thickness in the bulk of the sample, in contrast to DEI images which greatly emphasise sharp edges (high spatial frequencies). In the context of an ultimate aim of improved methods for breast cancer detection, the reconstructions are potentially of greater diagnostic value compared to the DEI data. Lastly, we point out that the methods of analysis presented here are also applicable to the quantitative analysis of differential interference contrast (DIC) images

  7. Quantitative characterization of nanoparticle agglomeration within biological media

    International Nuclear Information System (INIS)

    Hondow, Nicole; Brydson, Rik; Wang, Peiyi; Holton, Mark D.; Brown, M. Rowan; Rees, Paul; Summers, Huw D.; Brown, Andy

    2012-01-01

    Quantitative analysis of nanoparticle dispersion state within biological media is essential to understanding cellular uptake and the roles of diffusion, sedimentation, and endocytosis in determining nanoparticle dose. The dispersion of polymer-coated CdTe/ZnS quantum dots in water and cell growth medium with and without fetal bovine serum was analyzed by transmission electron microscopy (TEM) and dynamic light scattering (DLS) techniques. Characterization by TEM of samples prepared by plunge freezing the blotted solutions into liquid ethane was sensitive to the dispersion state of the quantum dots and enabled measurement of agglomerate size distributions even in the presence of serum proteins where DLS failed. In addition, TEM showed a reduced packing fraction of quantum dots per agglomerate when dispersed in biological media and serum compared to just water, highlighting the effect of interactions between the media, serum proteins, and the quantum dots. The identification of a heterogeneous distribution of quantum dots and quantum dot agglomerates in cell growth medium and serum by TEM will enable correlation with the previously reported optical metrology of in vitro cellular uptake of this quantum dot dispersion. In this paper, we present a comparative study of TEM and DLS and show that plunge-freeze TEM provides a robust assessment of nanoparticle agglomeration state.

  8. Quantitative imaging of glutathione in live cells using a reversible reaction-based ratiometric fluorescent probe

    Science.gov (United States)

    Glutathione (GSH) plays an important role in maintaining redox homeostasis inside cells. Currently, there are no methods available to quantitatively assess the GSH concentration in live cells. Live cell fluorescence imaging revolutionized the understanding of cell biology and has become an indispens...

  9. Quantitative imaging with radiolabeled monoclonal antibodies

    International Nuclear Information System (INIS)

    Moldofsky, P.J.; Hammond, N.D.

    1988-01-01

    The ability to image tumor by using radiolabeled monoclonal antibody products has been widely demonstrated. The questions of safety and efficacy remain open and require further experience, but at least in some clinical situations radioimmunoimaging has provided clinically useful information. Imaging tumor with radiolabeled monoclonal and polyclonal antibodies has been widely reported, and several summaries have recently appeared. For extensive review of recent clinical imaging the reader is referred to these excellent sources. Having demonstrated the possibility of imaging tumor with radiolabeled antibody, the question now apparent is: will the imaging modality provide information new and different from the already available with established techniques in computed tomography, magnetic resonance imaging, and standard nuclear medicine?

  10. Multimodal quantitative phase and fluorescence imaging of cell apoptosis

    Science.gov (United States)

    Fu, Xinye; Zuo, Chao; Yan, Hao

    2017-06-01

    Fluorescence microscopy, utilizing fluorescence labeling, has the capability to observe intercellular changes which transmitted and reflected light microscopy techniques cannot resolve. However, the parts without fluorescence labeling are not imaged. Hence, the processes simultaneously happen in these parts cannot be revealed. Meanwhile, fluorescence imaging is 2D imaging where information in the depth is missing. Therefore the information in labeling parts is also not complete. On the other hand, quantitative phase imaging is capable to image cells in 3D in real time through phase calculation. However, its resolution is limited by the optical diffraction and cannot observe intercellular changes below 200 nanometers. In this work, fluorescence imaging and quantitative phase imaging are combined to build a multimodal imaging system. Such system has the capability to simultaneously observe the detailed intercellular phenomenon and 3D cell morphology. In this study the proposed multimodal imaging system is used to observe the cell behavior in the cell apoptosis. The aim is to highlight the limitations of fluorescence microscopy and to point out the advantages of multimodal quantitative phase and fluorescence imaging. The proposed multimodal quantitative phase imaging could be further applied in cell related biomedical research, such as tumor.

  11. Development of a Biological Science Quantitative Reasoning Exam (BioSQuaRE)

    Science.gov (United States)

    Stanhope, Liz; Ziegler, Laura; Haque, Tabassum; Le, Laura; Vinces, Marcelo; Davis, Gregory K.; Zieffler, Andrew; Brodfuehrer, Peter; Preest, Marion; Belitsky, Jason M.; Umbanhowar, Charles, Jr.; Overvoorde, Paul J.

    2017-01-01

    Multiple reports highlight the increasingly quantitative nature of biological research and the need to innovate means to ensure that students acquire quantitative skills. We present a tool to support such innovation. The Biological Science Quantitative Reasoning Exam (BioSQuaRE) is an assessment instrument designed to measure the quantitative…

  12. Quantitative imaging biomarkers: a review of statistical methods for technical performance assessment.

    Science.gov (United States)

    Raunig, David L; McShane, Lisa M; Pennello, Gene; Gatsonis, Constantine; Carson, Paul L; Voyvodic, James T; Wahl, Richard L; Kurland, Brenda F; Schwarz, Adam J; Gönen, Mithat; Zahlmann, Gudrun; Kondratovich, Marina V; O'Donnell, Kevin; Petrick, Nicholas; Cole, Patricia E; Garra, Brian; Sullivan, Daniel C

    2015-02-01

    Technological developments and greater rigor in the quantitative measurement of biological features in medical images have given rise to an increased interest in using quantitative imaging biomarkers to measure changes in these features. Critical to the performance of a quantitative imaging biomarker in preclinical or clinical settings are three primary metrology areas of interest: measurement linearity and bias, repeatability, and the ability to consistently reproduce equivalent results when conditions change, as would be expected in any clinical trial. Unfortunately, performance studies to date differ greatly in designs, analysis method, and metrics used to assess a quantitative imaging biomarker for clinical use. It is therefore difficult or not possible to integrate results from different studies or to use reported results to design studies. The Radiological Society of North America and the Quantitative Imaging Biomarker Alliance with technical, radiological, and statistical experts developed a set of technical performance analysis methods, metrics, and study designs that provide terminology, metrics, and methods consistent with widely accepted metrological standards. This document provides a consistent framework for the conduct and evaluation of quantitative imaging biomarker performance studies so that results from multiple studies can be compared, contrasted, or combined. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  13. Quantitative methods for the analysis of electron microscope images

    DEFF Research Database (Denmark)

    Skands, Peter Ulrik Vallø

    1996-01-01

    The topic of this thesis is an general introduction to quantitative methods for the analysis of digital microscope images. The images presented are primarily been acquired from Scanning Electron Microscopes (SEM) and interfermeter microscopes (IFM). The topic is approached though several examples...... foundation of the thesis fall in the areas of: 1) Mathematical Morphology; 2) Distance transforms and applications; and 3) Fractal geometry. Image analysis opens in general the possibility of a quantitative and statistical well founded measurement of digital microscope images. Herein lies also the conditions...

  14. Photoacoustic image reconstruction: a quantitative analysis

    Science.gov (United States)

    Sperl, Jonathan I.; Zell, Karin; Menzenbach, Peter; Haisch, Christoph; Ketzer, Stephan; Marquart, Markus; Koenig, Hartmut; Vogel, Mika W.

    2007-07-01

    Photoacoustic imaging is a promising new way to generate unprecedented contrast in ultrasound diagnostic imaging. It differs from other medical imaging approaches, in that it provides spatially resolved information about optical absorption of targeted tissue structures. Because the data acquisition process deviates from standard clinical ultrasound, choice of the proper image reconstruction method is crucial for successful application of the technique. In the literature, multiple approaches have been advocated, and the purpose of this paper is to compare four reconstruction techniques. Thereby, we focused on resolution limits, stability, reconstruction speed, and SNR. We generated experimental and simulated data and reconstructed images of the pressure distribution using four different methods: delay-and-sum (DnS), circular backprojection (CBP), generalized 2D Hough transform (HTA), and Fourier transform (FTA). All methods were able to depict the point sources properly. DnS and CBP produce blurred images containing typical superposition artifacts. The HTA provides excellent SNR and allows a good point source separation. The FTA is the fastest and shows the best FWHM. In our study, we found the FTA to show the best overall performance. It allows a very fast and theoretically exact reconstruction. Only a hardware-implemented DnS might be faster and enable real-time imaging. A commercial system may also perform several methods to fully utilize the new contrast mechanism and guarantee optimal resolution and fidelity.

  15. Optimizing Ti:Sapphire laser for quantitative biomedical imaging

    Science.gov (United States)

    James, Jeemol; Thomsen, Hanna; Hanstorp, Dag; Alemán Hérnandez, Felipe Ademir; Rothe, Sebastian; Enger, Jonas; Ericson, Marica B.

    2018-02-01

    Ti:Sapphire lasers are powerful tools in the field of scientific research and industry for a wide range of applications such as spectroscopic studies and microscopic imaging where tunable near-infrared light is required. To push the limits of the applicability of Ti:Sapphire lasers, fundamental understanding of the construction and operation is required. This paper presents two projects, (i) dealing with the building and characterization of custom built tunable narrow linewidth Ti:Sapphire laser for fundamental spectroscopy studies; and the second project (ii) the implementation of a fs-pulsed commercial Ti:Sapphire laser in an experimental multiphoton microscopy platform. For the narrow linewidth laser, a gold-plated diffraction grating with a Littrow geometry was implemented for highresolution wavelength selection. We demonstrate that the laser is tunable between 700 to 950 nm, operating in a pulsed mode with a repetition rate of 1 kHz and maximum average output power around 350 mW. The output linewidth was reduced from 6 GHz to 1.5 GHz by inserting an additional 6 mm thick etalon. The bandwidth was measured by means of a scanning Fabry Perot interferometer. Future work will focus on using a fs-pulsed commercial Ti:Sapphire laser (Tsunami, Spectra physics), operating at 80 MHz and maximum average output power around 1 W, for implementation in an experimental multiphoton microscopy set up dedicated for biomedical applications. Special focus will be on controlling pulse duration and dispersion in the optical components and biological tissue using pulse compression. Furthermore, time correlated analysis of the biological samples will be performed with the help of time correlated single photon counting module (SPCM, Becker&Hickl) which will give a novel dimension in quantitative biomedical imaging.

  16. Ultra-fast quantitative imaging using ptychographic iterative engine based digital micro-mirror device

    Science.gov (United States)

    Sun, Aihui; Tian, Xiaolin; Kong, Yan; Jiang, Zhilong; Liu, Fei; Xue, Liang; Wang, Shouyu; Liu, Cheng

    2018-01-01

    As a lensfree imaging technique, ptychographic iterative engine (PIE) method can provide both quantitative sample amplitude and phase distributions avoiding aberration. However, it requires field of view (FoV) scanning often relying on mechanical translation, which not only slows down measuring speed, but also introduces mechanical errors decreasing both resolution and accuracy in retrieved information. In order to achieve high-accurate quantitative imaging with fast speed, digital micromirror device (DMD) is adopted in PIE for large FoV scanning controlled by on/off state coding by DMD. Measurements were implemented using biological samples as well as USAF resolution target, proving high resolution in quantitative imaging using the proposed system. Considering its fast and accurate imaging capability, it is believed the DMD based PIE technique provides a potential solution for medical observation and measurements.

  17. Water volume quantitation using nuclear magnetic resonance imaging: application to cerebrospinal fluid

    International Nuclear Information System (INIS)

    Lecouffe, P.; Huglo, D.; Dubois, P.; Rousseau, J.; Marchandise, X.

    1990-01-01

    Quantitation in proton NMR imaging is applied to cerebrospinal fluid (CSF). Total intracranial CSF volume was measured from Condon's method: CSF signal was compared with distilled water standard signal in a single sagittal thick slice. Brain signal was reduced to minimum using a 5000/360/400 sequence. Software constraints did not permit easy implementing on imager and uniformity correction was performed on a microcomputer. Accuracy was better than 4%. Total intracranial CSF was found between 91 and 164 ml in 5 healthy volunteers. Extraventricular CSF quantitation appears very improved by this method, but planimetric methods seem better in order to quantify ventricular CSF. This technique is compared to total lung water measurement from proton density according to Mac Lennan's method. Water volume quantitation confirms ability of NMR imaging to quantify biologic parameters but image defects have to be known by strict quality control [fr

  18. Chromatic Image Analysis For Quantitative Thermal Mapping

    Science.gov (United States)

    Buck, Gregory M.

    1995-01-01

    Chromatic image analysis system (CIAS) developed for use in noncontact measurements of temperatures on aerothermodynamic models in hypersonic wind tunnels. Based on concept of temperature coupled to shift in color spectrum for optical measurement. Video camera images fluorescence emitted by phosphor-coated model at two wavelengths. Temperature map of model then computed from relative brightnesses in video images of model at those wavelengths. Eliminates need for intrusive, time-consuming, contact temperature measurements by gauges, making it possible to map temperatures on complex surfaces in timely manner and at reduced cost.

  19. Quantitative Image Simulation and Analysis of Nanoparticles

    DEFF Research Database (Denmark)

    Madsen, Jacob; Hansen, Thomas Willum

    Microscopy (HRTEM) has become a routine analysis tool for structural characterization at atomic resolution, and with the recent development of in-situ TEMs, it is now possible to study catalytic nanoparticles under reaction conditions. However, the connection between an experimental image, and the underlying...... physical phenomena or structure is not always straightforward. The aim of this thesis is to use image simulation to better understand observations from HRTEM images. Surface strain is known to be important for the performance of nanoparticles. Using simulation, we estimate of the precision and accuracy...... of strain measurements from TEM images, and investigate the stability of these measurements to microscope parameters. This is followed by our efforts toward simulating metal nanoparticles on a metal-oxide support using the Charge Optimized Many Body (COMB) interatomic potential. The simulated interface...

  20. Imaging morphogenesis: technological advances and biological insights.

    Science.gov (United States)

    Keller, Philipp J

    2013-06-07

    Morphogenesis, the development of the shape of an organism, is a dynamic process on a multitude of scales, from fast subcellular rearrangements and cell movements to slow structural changes at the whole-organism level. Live-imaging approaches based on light microscopy reveal the intricate dynamics of this process and are thus indispensable for investigating the underlying mechanisms. This Review discusses emerging imaging techniques that can record morphogenesis at temporal scales from seconds to days and at spatial scales from hundreds of nanometers to several millimeters. To unlock their full potential, these methods need to be matched with new computational approaches and physical models that help convert highly complex image data sets into biological insights.

  1. Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography.

    Science.gov (United States)

    Paturzo, Melania; Finizio, Andrea; Memmolo, Pasquale; Puglisi, Roberto; Balduzzi, Donatella; Galli, Andrea; Ferraro, Pietro

    2012-09-07

    We show that sharp imaging and quantitative phase-contrast microcopy is possible in microfluidics in flowing turbid media by digital holography. In fact, in flowing liquids with suspended colloidal particles, clear vision is hindered and cannot be recovered by any other microscopic imaging technique. On the contrary, using digital holography, clear imaging is possible thanks to the Doppler frequency shift experienced by the photons scattered by the flowing colloidal particles, which do not contribute to the interference process, i.e. the recorded hologram. The method is illustrated and imaging results are demonstrated for pure phase objects, i.e. biological cells in microfluidic channels.

  2. Molecular Imaging in Synthetic Biology, and Synthetic Biology in Molecular Imaging.

    Science.gov (United States)

    Gilad, Assaf A; Shapiro, Mikhail G

    2017-06-01

    Biomedical synthetic biology is an emerging field in which cells are engineered at the genetic level to carry out novel functions with relevance to biomedical and industrial applications. This approach promises new treatments, imaging tools, and diagnostics for diseases ranging from gastrointestinal inflammatory syndromes to cancer, diabetes, and neurodegeneration. As these cellular technologies undergo pre-clinical and clinical development, it is becoming essential to monitor their location and function in vivo, necessitating appropriate molecular imaging strategies, and therefore, we have created an interest group within the World Molecular Imaging Society focusing on synthetic biology and reporter gene technologies. Here, we highlight recent advances in biomedical synthetic biology, including bacterial therapy, immunotherapy, and regenerative medicine. We then discuss emerging molecular imaging approaches to facilitate in vivo applications, focusing on reporter genes for noninvasive modalities such as magnetic resonance, ultrasound, photoacoustic imaging, bioluminescence, and radionuclear imaging. Because reporter genes can be incorporated directly into engineered genetic circuits, they are particularly well suited to imaging synthetic biological constructs, and developing them provides opportunities for creative molecular and genetic engineering.

  3. Biological evolution of replicator systems: towards a quantitative approach.

    Science.gov (United States)

    Martin, Osmel; Horvath, J E

    2013-04-01

    The aim of this work is to study the features of a simple replicator chemical model of the relation between kinetic stability and entropy production under the action of external perturbations. We quantitatively explore the different paths leading to evolution in a toy model where two independent replicators compete for the same substrate. To do that, the same scenario described originally by Pross (J Phys Org Chem 17:312-316, 2004) is revised and new criteria to define the kinetic stability are proposed. Our results suggest that fast replicator populations are continually favored by the effects of strong stochastic environmental fluctuations capable to determine the global population, the former assumed to be the only acting evolution force. We demonstrate that the process is continually driven by strong perturbations only, and that population crashes may be useful proxies for these catastrophic environmental fluctuations. As expected, such behavior is particularly enhanced under very large scale perturbations, suggesting a likely dynamical footprint in the recovery patterns of new species after mass extinction events in the Earth's geological past. Furthermore, the hypothesis that natural selection always favors the faster processes may give theoretical support to different studies that claim the applicability of maximum principles like the Maximum Metabolic Flux (MMF) or Maximum Entropy Productions Principle (MEPP), seen as the main goal of biological evolution.

  4. Economic and biological costs of cardiac imaging

    Directory of Open Access Journals (Sweden)

    Picano Eugenio

    2005-05-01

    Full Text Available Abstract Medical imaging market consists of several billion tests per year worldwide. Out of these, at least one third are cardiovascular procedures. Keeping in mind that each test represents a cost, often a risk, and a diagnostic hypothesis, we can agree that every unnecessary and unjustifiable test is one test too many. Small individual costs, risks, and wastes multiplied by billions of examinations per year represent an important population, society and environmental burden. Unfortunately, the appropriateness of cardiac imaging is extra-ordinarily low and there is little awareness in patients and physicians of differential costs, radiological doses, and long term risks of different imaging modalities. For a resting cardiac imaging test, being the average cost (not charges of an echocardiogram equal to 1 (as a cost comparator, the cost of a CT is 3.1x, of a SPECT 3.27x, of a Cardiovascular Magnetic Resonance imaging 5.51x, of a PET 14.03x, and of a right and left heart catheterization 19.96x. For stress cardiac imaging, compared with the treadmill exercise test equal to 1 (as a cost comparator, the cost of stress echocardiography is 2.1x and of a stress SPECT scintigraphy is 5.7x. Biohazards and downstream long-term costs linked to radiation-induced oncogenesis should also be considered. The radiation exposure is absent in echo and magnetic resonance, and corresponds to 500 chest x rays for a sestamibi cardiac stress scan and to 1150 chest x rays for a thallium scan. The corresponding extra-risk in a lifetime of fatal cancer is 1 in 2000 exposed patients for a sestamibi stress and 1 in 1000 for a thallium scan. Increased awareness of economic, biologic, and environmental costs of cardiac imaging will hopefully lead to greater appropriateness, wisdom and prudence from both the prescriber and the practitioner. In this way, the sustainability of cardiac imaging will eventually improve.

  5. Application of Quantum Dots in Biological Imaging

    Directory of Open Access Journals (Sweden)

    Shan Jin

    2011-01-01

    Full Text Available Quantum dots (QDs are a group of semiconducting nanomaterials with unique optical and electronic properties. They have distinct advantages over traditional fluorescent organic dyes in chemical and biological studies in terms of tunable emission spectra, signal brightness, photostability, and so forth. Currently, the major type of QDs is the heavy metal-containing II-IV, IV-VI, or III-V QDs. Silicon QDs and conjugated polymer dots have also been developed in order to lower the potential toxicity of the fluorescent probes for biological applications. Aqueous solubility is the common problem for all types of QDs when they are employed in the biological researches, such as in vitro and in vivo imaging. To circumvent this problem, ligand exchange and polymer coating are proven to be effective, besides synthesizing QDs in aqueous solutions directly. However, toxicity is another big concern especially for in vivo studies. Ligand protection and core/shell structure can partly solve this problem. With the rapid development of QDs research, new elements and new morphologies have been introduced to this area to fabricate more safe and efficient QDs for biological applications.

  6. Issues in Quantitative Analysis of Ultraviolet Imager (UV) Data: Airglow

    Science.gov (United States)

    Germany, G. A.; Richards, P. G.; Spann, J. F.; Brittnacher, M. J.; Parks, G. K.

    1999-01-01

    The GGS Ultraviolet Imager (UVI) has proven to be especially valuable in correlative substorm, auroral morphology, and extended statistical studies of the auroral regions. Such studies are based on knowledge of the location, spatial, and temporal behavior of auroral emissions. More quantitative studies, based on absolute radiometric intensities from UVI images, require a more intimate knowledge of the instrument behavior and data processing requirements and are inherently more difficult than studies based on relative knowledge of the oval location. In this study, UVI airglow observations are analyzed and compared with model predictions to illustrate issues that arise in quantitative analysis of UVI images. These issues include instrument calibration, long term changes in sensitivity, and imager flat field response as well as proper background correction. Airglow emissions are chosen for this study because of their relatively straightforward modeling requirements and because of their implications for thermospheric compositional studies. The analysis issues discussed here, however, are identical to those faced in quantitative auroral studies.

  7. Quantitative simultaneous PET-MR imaging

    Science.gov (United States)

    Ouyang, Jinsong; Petibon, Yoann; Huang, Chuan; Reese, Timothy G.; Kolnick, Aleksandra L.; El Fakhri, Georges

    2014-06-01

    Whole-body PET is currently limited by the degradation due to patient motion. Respiratory motion degrades imaging studies of the abdomen. Similarly, both respiratory and cardiac motions significantly hamper the assessment of myocardial ischemia and/or metabolism in perfusion and viability cardiac PET studies. Based on simultaneous PET-MR, we have developed robust and accurate MRI methods allowing the tracking and measurement of both respiratory and cardiac motions during abdominal or cardiac studies. Our list-mode iterative PET reconstruction framework incorporates the measured motion fields into PET emission system matrix as well as the time-dependent PET attenuation map and the position dependent point spread function. Our method significantly enhances the PET image quality as compared to conventional methods.

  8. Fluorescence confocal endomicroscopy in biological imaging

    Science.gov (United States)

    Delaney, Peter; Thomas, Steven; Allen, John; McLaren, Wendy; Murr, Elise; Harris, Martin

    2007-02-01

    In vivo fluorescence microscopic imaging of biological systems in human disease states and animal models is possible with high optical resolution and mega pixel point-scanning performance using optimised off-the-shelf turn-key devices. There are however various trade-offs between tissue access and instrument performance when miniaturising in vivo microscopy systems. A miniature confocal scanning technology that was developed for clinical human endoscopy has been configured into a portable device for direct hand-held interrogation of living tissue in whole animal models (Optiscan FIVE-1 system). Scanning probes of 6.3mm diameter with a distal tip diameter of 5.0mm were constructed either in a 150mm length for accessible tissue, or a 300mm probe for laparoscopic interrogation of internal tissues in larger animal models. Both devices collect fluorescence confocal images (excitation 488 nm; emission >505 or >550 nm) comprised of 1024 x 1204 sampling points/image frame, with lateral resolution 0.7um; axial resolution 7um; FOV 475 x 475um. The operator can dynamically control imaging depth from the tissue surface to approx 250um in 4um steps via an internally integrated zaxis actuator. Further miniaturisation is achieved using an imaging contact probe based on scanning the proximal end of a high-density optical fibre bundle (~30,000 fibres) of small animal organs, albeit at lower resolution (30,000 sampling points/image). In rodent models, imaging was performed using various fluorescent staining protocols including fluorescently labelled receptor ligands, labelled antibodies, FITC-dextrans, vital dyes and labelled cells administered topically or intravenously. Abdominal organs of large animals were accessed laparoscopically and contrasted using i.v. fluorescein-sodium. Articular cartilage of sheep and pigs was fluorescently stained with calcein-AM or fluorescein. Surface and sub-surface cellular and sub-cellular details could be readily visualised in vivo at high

  9. Quantitating subcellular metabolism with multi-isotope imaging mass spectrometry

    Science.gov (United States)

    Steinhauser, Matthew L.; Bailey, Andrew; Senyo, Samuel E.; Guillermier, Christelle; Perlstein, Todd S.; Gould, Alex P.; Lee, Richard T.; Lechene, Claude P.

    2011-01-01

    Mass spectrometry with stable isotope labels has been seminal in discovering the dynamic state of living matter1,2 but is limited to bulk tissues or cells. We developed multi-isotope imaging mass spectrometry (MIMS) that allowed us to view and measure stable isotope incorporation with sub-micron resolution3,4. Here we apply MIMS to diverse organisms, including Drosophila, mice, and humans. We test the “immortal strand hypothesis,” which predicts that during asymmetric stem cell division chromosomes containing older template DNA are segregated to the daughter destined to remain a stem cell, thus insuring lifetime genetic stability. After labeling mice with 15N-thymidine from gestation through post-natal week 8, we find no 15N label retention by dividing small intestinal crypt cells after 4wk chase. In adult mice administered 15N-thymidine pulse-chase, we find that proliferating crypt cells dilute label consistent with random strand segregation. We demonstrate the broad utility of MIMS with proof-of-principle studies of lipid turnover in Drosophila and translation to the human hematopoietic system. These studies show that MIMS provides high-resolution quantitation of stable isotope labels that cannot be obtained using other techniques and that is broadly applicable to biological and medical research. PMID:22246326

  10. Informatics methods to enable sharing of quantitative imaging research data.

    Science.gov (United States)

    Levy, Mia A; Freymann, John B; Kirby, Justin S; Fedorov, Andriy; Fennessy, Fiona M; Eschrich, Steven A; Berglund, Anders E; Fenstermacher, David A; Tan, Yongqiang; Guo, Xiaotao; Casavant, Thomas L; Brown, Bartley J; Braun, Terry A; Dekker, Andre; Roelofs, Erik; Mountz, James M; Boada, Fernando; Laymon, Charles; Oborski, Matt; Rubin, Daniel L

    2012-11-01

    The National Cancer Institute Quantitative Research Network (QIN) is a collaborative research network whose goal is to share data, algorithms and research tools to accelerate quantitative imaging research. A challenge is the variability in tools and analysis platforms used in quantitative imaging. Our goal was to understand the extent of this variation and to develop an approach to enable sharing data and to promote reuse of quantitative imaging data in the community. We performed a survey of the current tools in use by the QIN member sites for representation and storage of their QIN research data including images, image meta-data and clinical data. We identified existing systems and standards for data sharing and their gaps for the QIN use case. We then proposed a system architecture to enable data sharing and collaborative experimentation within the QIN. There are a variety of tools currently used by each QIN institution. We developed a general information system architecture to support the QIN goals. We also describe the remaining architecture gaps we are developing to enable members to share research images and image meta-data across the network. As a research network, the QIN will stimulate quantitative imaging research by pooling data, algorithms and research tools. However, there are gaps in current functional requirements that will need to be met by future informatics development. Special attention must be given to the technical requirements needed to translate these methods into the clinical research workflow to enable validation and qualification of these novel imaging biomarkers. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Quantitative Measurements using Ultrasound Vector Flow Imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2016-01-01

    scanner for pulsating flow mimicking the femoral artery from a CompuFlow 1000 pump (Shelley Medical). Data were used in four estimators based on directional transverse oscillation for velocity, flow angle, volume flow, and turbulence estimation and their respective precisions. An adaptive lag scheme gave...... the ability to estimate a large velocity range, or alternatively measure at two sites to find e.g. stenosis degree in a vessel. The mean angle at the vessel center was estimated to 90.9◦±8.2◦ indicating a laminar flow from a turbulence index being close to zero (0.1 ±0.1). Volume flow was 1.29 ±0.26 mL/stroke...... (true: 1.15 mL/stroke, bias: 12.2%). Measurements down to 160 mm were obtained with a relative standard deviation and bias of less than 10% for the lateral component for stationary, parabolic flow. The method can, thus, find quantitative velocities, angles, and volume flows at sites currently...

  12. High contrast imaging and flexible photomanipulation for quantitative in vivo multiphoton imaging with polygon scanning microscope.

    Science.gov (United States)

    Li, Yongxiao; Montague, Samantha J; Brüstle, Anne; He, Xuefei; Gillespie, Cathy; Gaus, Katharina; Gardiner, Elizabeth E; Lee, Woei Ming

    2018-02-28

    In this study, we introduce two key improvements that overcome limitations of existing polygon scanning microscopes while maintaining high spatial and temporal imaging resolution over large field of view (FOV). First, we proposed a simple and straightforward means to control the scanning angle of the polygon mirror to carry out photomanipulation without resorting to high speed optical modulators. Second, we devised a flexible data sampling method directly leading to higher image contrast by over 2-fold and digital images with 100 megapixels (10 240 × 10 240) per frame at 0.25 Hz. This generates sub-diffraction limited pixels (60 nm per pixels over the FOV of 512 μm) which increases the degrees of freedom to extract signals computationally. The unique combined optical and digital control recorded fine fluorescence recovery after localized photobleaching (r ~10 μm) within fluorescent giant unilamellar vesicles and micro-vascular dynamics after laser-induced injury during thrombus formation in vivo. These new improvements expand the quantitative biological-imaging capacity of any polygon scanning microscope system. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Parametric biomedical imaging - what defines the quality of quantitative radiological approaches?

    International Nuclear Information System (INIS)

    Glueer, C.C.; Barkmann, R.; Bolte, H.; Heller, M.; Hahn, H.K.; Dicken, V.; Majumdar, S.; Eckstein, F.; Nickelsen, T.N.

    2006-01-01

    Quantitative parametric imaging approaches provide new perspectives for radiological imaging. These include quantitative 2D, 3D, and 4D visualization options along with the parametric depiction of biological tissue properties and tissue function. This allows the interpretation of radiological data from a biochemical, biomechanical, or physiological perspective. Quantification permits the detection of small changes that are not yet visually apparent, thus allowing application in early disease diagnosis and monitoring therapy with enhanced sensitivity. This review outlines the potential of quantitative parametric imaging methods and demonstrates this on the basis of a few exemplary applications. One field of particular interest, the use of these methods for investigational new drug application studies, is presented. Assessment criteria for judging the quality of quantitative imaging approaches are discussed in the context of the potential and the limitations of these methods. While quantitative parametric imaging methods do not replace but rather supplement established visual interpretation methods in radiology, they do open up new perspectives for diagnosis and prognosis and in particular for monitoring disease progression and therapy. (orig.)

  14. Fundamentals of quantitative dynamic contrast-enhanced MR imaging.

    Science.gov (United States)

    Paldino, Michael J; Barboriak, Daniel P

    2009-05-01

    Quantitative analysis of dynamic contrast-enhanced MR imaging (DCE-MR imaging) has the power to provide information regarding physiologic characteristics of the microvasculature and is, therefore, of great potential value to the practice of oncology. In particular, these techniques could have a significant impact on the development of novel anticancer therapies as a promising biomarker of drug activity. Standardization of DCE-MR imaging acquisition and analysis to provide more reproducible measures of tumor vessel physiology is of crucial importance to realize this potential. The purpose of this article is to review the pathophysiologic basis and technical aspects of DCE-MR imaging techniques.

  15. Automated force volume image processing for biological samples.

    Directory of Open Access Journals (Sweden)

    Pavel Polyakov

    2011-04-01

    Full Text Available Atomic force microscopy (AFM has now become a powerful technique for investigating on a molecular level, surface forces, nanomechanical properties of deformable particles, biomolecular interactions, kinetics, and dynamic processes. This paper specifically focuses on the analysis of AFM force curves collected on biological systems, in particular, bacteria. The goal is to provide fully automated tools to achieve theoretical interpretation of force curves on the basis of adequate, available physical models. In this respect, we propose two algorithms, one for the processing of approach force curves and another for the quantitative analysis of retraction force curves. In the former, electrostatic interactions prior to contact between AFM probe and bacterium are accounted for and mechanical interactions operating after contact are described in terms of Hertz-Hooke formalism. Retraction force curves are analyzed on the basis of the Freely Jointed Chain model. For both algorithms, the quantitative reconstruction of force curves is based on the robust detection of critical points (jumps, changes of slope or changes of curvature which mark the transitions between the various relevant interactions taking place between the AFM tip and the studied sample during approach and retraction. Once the key regions of separation distance and indentation are detected, the physical parameters describing the relevant interactions operating in these regions are extracted making use of regression procedure for fitting experiments to theory. The flexibility, accuracy and strength of the algorithms are illustrated with the processing of two force-volume images, which collect a large set of approach and retraction curves measured on a single biological surface. For each force-volume image, several maps are generated, representing the spatial distribution of the searched physical parameters as estimated for each pixel of the force-volume image.

  16. Developments in Dynamic Analysis for quantitative PIXE true elemental imaging

    International Nuclear Information System (INIS)

    Ryan, C.G.

    2001-01-01

    Dynamic Analysis (DA) is a method for projecting quantitative major and trace element images from PIXE event data-streams (off-line or on-line) obtained using the Nuclear Microprobe. The method separates full elemental spectral signatures to produce images that strongly reject artifacts due to overlapping elements, detector effects (such as escape peaks and tailing) and background. The images are also quantitative, stored in ppm-charge units, enabling images to be directly interrogated for the concentrations of all elements in areas of the images. Recent advances in the method include the correction for changing X-ray yields due to varying sample compositions across the image area and the construction of statistical variance images. The resulting accuracy of major element concentrations extracted directly from these images is better than 3% relative as determined from comparisons with electron microprobe point analysis. These results are complemented by error estimates derived from the variance images together with detection limits. This paper provides an update of research on these issues, introduces new software designed to make DA more accessible, and illustrates the application of the method to selected geological problems.

  17. Molecular biology of Homo sapiens: Abstracts of papers presented at the 51st Cold Spring Harbor symposium on quantitative biology

    International Nuclear Information System (INIS)

    Watson, J.D.; Siniscalco, M.

    1986-01-01

    This volume contains abstracts of papers presented at the 51st Cold Springs Harbor Symposium on Quantitative Biology. The topic for this meeting was the ''Molecular Biology of Homo sapiens.'' Sessions were entitled Human Gene Map, Human Cancer Genes, Genetic Diagnosis, Human Evolution, Drugs Made Off Human Genes, Receptors, and Gene Therapy. (DT)

  18. Molecular biology of Homo sapiens: Abstracts of papers presented at the 51st Cold Spring Harbor symposium on quantitative biology

    Energy Technology Data Exchange (ETDEWEB)

    Watson, J.D.; Siniscalco, M.

    1986-01-01

    This volume contains abstracts of papers presented at the 51st Cold Springs Harbor Symposium on Quantitative Biology. The topic for this meeting was the ''Molecular Biology of Homo sapiens.'' Sessions were entitled Human Gene Map, Human Cancer Genes, Genetic Diagnosis, Human Evolution, Drugs Made Off Human Genes, Receptors, and Gene Therapy. (DT)

  19. Generalized PSF modeling for optimized quantitation in PET imaging.

    Science.gov (United States)

    Ashrafinia, Saeed; Mohy-Ud-Din, Hassan; Karakatsanis, Nicolas A; Jha, Abhinav K; Casey, Michael E; Kadrmas, Dan J; Rahmim, Arman

    2017-06-21

    Point-spread function (PSF) modeling offers the ability to account for resolution degrading phenomena within the PET image generation framework. PSF modeling improves resolution and enhances contrast, but at the same time significantly alters image noise properties and induces edge overshoot effect. Thus, studying the effect of PSF modeling on quantitation task performance can be very important. Frameworks explored in the past involved a dichotomy of PSF versus no-PSF modeling. By contrast, the present work focuses on quantitative performance evaluation of standard uptake value (SUV) PET images, while incorporating a wide spectrum of PSF models, including those that under- and over-estimate the true PSF, for the potential of enhanced quantitation of SUVs. The developed framework first analytically models the true PSF, considering a range of resolution degradation phenomena (including photon non-collinearity, inter-crystal penetration and scattering) as present in data acquisitions with modern commercial PET systems. In the context of oncologic liver FDG PET imaging, we generated 200 noisy datasets per image-set (with clinically realistic noise levels) using an XCAT anthropomorphic phantom with liver tumours of varying sizes. These were subsequently reconstructed using the OS-EM algorithm with varying PSF modelled kernels. We focused on quantitation of both SUV mean and SUV max , including assessment of contrast recovery coefficients, as well as noise-bias characteristics (including both image roughness and coefficient of-variability), for different tumours/iterations/PSF kernels. It was observed that overestimated PSF yielded more accurate contrast recovery for a range of tumours, and typically improved quantitative performance. For a clinically reasonable number of iterations, edge enhancement due to PSF modeling (especially due to over-estimated PSF) was in fact seen to lower SUV mean bias in small tumours. Overall, the results indicate that exactly matched PSF

  20. Application of an image processing software for quantitative autoradiography

    International Nuclear Information System (INIS)

    Sobeslavsky, E.; Bergmann, R.; Kretzschmar, M.; Wenzel, U.

    1993-01-01

    The present communication deals with the utilization of an image processing device for quantitative whole-body autoradiography, cell counting and also for interpretation of chromatograms. It is shown that the system parameters allow an adequate and precise determination of optical density values. Also shown are the main error sources limiting the applicability of the system. (orig.)

  1. Multi-component quantitative magnetic resonance imaging by phasor representation

    NARCIS (Netherlands)

    Vergeldt, Frank J.; Prusova, Alena; Fereidouni, Farzad; Amerongen, Van Herbert; As, Van Henk; Scheenen, Tom W.J.; Bader, Arjen N.

    2017-01-01

    Quantitative magnetic resonance imaging (qMRI) is a versatile, non-destructive and non-invasive tool in life, material, and medical sciences. When multiple components contribute to the signal in a single pixel, however, it is difficult to quantify their individual contributions and characteristic

  2. Multi-component quantitative magnetic resonance imaging by phasor representation

    NARCIS (Netherlands)

    Vergeldt, F.J.; Prusova, A.; Fereidouni, F.; Amerongen, H.V.; As, H. Van; Scheenen, T.W.J.; Bader, A.N.

    2017-01-01

    Quantitative magnetic resonance imaging (qMRI) is a versatile, non-destructive and non-invasive tool in life, material, and medical sciences. When multiple components contribute to the signal in a single pixel, however, it is difficult to quantify their individual contributions and characteristic

  3. Ultrasound introscopic image quantitative characteristics for medical diagnosis

    Science.gov (United States)

    Novoselets, Mikhail K.; Sarkisov, Sergey S.; Gridko, Alexander N.; Tcheban, Anatoliy K.

    1993-09-01

    The results on computer aided extraction of quantitative characteristics (QC) of ultrasound introscopic images for medical diagnosis are presented. Thyroid gland (TG) images of Chernobil Accident sufferers are considered. It is shown that TG diseases can be associated with some values of selected QCs of random echo distribution in the image. The possibility of these QCs usage for TG diseases recognition in accordance with calculated values is analyzed. The role of speckle noise elimination in the solution of the problem on TG diagnosis is considered too.

  4. Radionuclide Imaging Technologies for Biological Systems

    Energy Technology Data Exchange (ETDEWEB)

    Howell, Calvin R. [Duke Univ., Durham, NC (United States); Reid, Chantal D. [Duke Univ., Durham, NC (United States); Weisenberger, Andrew G. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2014-05-14

    The main objective of this project is to develop technologies and experimental techniques for studying the dynamics of physiological responses of plants to changes in their interface with the local environment and to educate a new generation of scientists in an interdisciplinary environment of biology, physics and engineering. Also an important goal is to perform measurements to demonstrate the new data that can be produced and made available to the plant-biology community using the imaging technologies and experimental techniques developed in this project. The study of the plant-environment interface includes a wide range of topics in plant physiology, e.g., the root-soil interface, resource availability, impact of herbivores, influence of microbes on root surface, and responses to toxins in the air and soil. The initial scientific motivation for our work is to improve understanding of the mechanisms for physiological responses to abrupt changes in the local environment, in particular, the responses that result in short-term adjustments in resource (e.g., sugars, nutrients and water) allocations. Data of time-dependent responses of plants to environmental changes are essential in developing mechanistic models for substance intake and resource allocation. Our approach is to use radioisotope tracing techniques to study whole-plant and plant organ (e.g., leaves, stems, roots) dynamical responses to abrupt changes in environmental conditions such as concentration of CO2 in the atmosphere, nutrient availability and lighting. To this aim we are collaborating with the Radiation Detector and Imaging Group at the Thomas Jefferson National Laboratory Facility (JLab) to develop gamma-ray and beta particle imaging systems optimized for plant studies. The radioisotope tracing measurements are conducted at the Phytotron facility at Duke University. The Phytotron is a controlled environment plant research facility with a variety of plant growth chambers. One chamber

  5. Assessment of biological leaf tissue using biospeckle laser imaging technique

    Science.gov (United States)

    Ansari, M. Z.; Mujeeb, A.; Nirala, A. K.

    2018-06-01

    We report on the application of an optical imaging technique, the biospeckle laser, as a potential tool to assess biological and medicinal plant leaves. The biospeckle laser technique is a non-invasive and non-destructive optical technique used to investigate biological objects. Just after their removal from plants, the torn leaves were used for biospeckle laser imaging. Quantitative evaluation of the biospeckle data using the inertia moment (IM) of the time history speckle pattern, showed that the IM can be utilized to provide a biospeckle signature to the plant leaves. It showed that leaves from different plants can have their own characteristic IM values. We further investigated the infected regions of the leaves that display a relatively lower biospeckle activity than the healthy tissue. It was easy to discriminate between the infected and healthy regions of the leaf tissue. The biospeckle technique can successfully be implemented as a potential tool for the taxonomy of quality leaves. Furthermore, the technique can help boost the quality of ayurvedic medicines.

  6. Quantitative magnetic resonance micro-imaging methods for pharmaceutical research.

    Science.gov (United States)

    Mantle, M D

    2011-09-30

    The use of magnetic resonance imaging (MRI) as a tool in pharmaceutical research is now well established and the current literature covers a multitude of different pharmaceutically relevant research areas. This review focuses on the use of quantitative magnetic resonance micro-imaging techniques and how they have been exploited to extract information that is of direct relevance to the pharmaceutical industry. The article is divided into two main areas. The first half outlines the theoretical aspects of magnetic resonance and deals with basic magnetic resonance theory, the effects of nuclear spin-lattice (T(1)), spin-spin (T(2)) relaxation and molecular diffusion upon image quantitation, and discusses the applications of rapid magnetic resonance imaging techniques. In addition to the theory, the review aims to provide some practical guidelines for the pharmaceutical researcher with an interest in MRI as to which MRI pulse sequences/protocols should be used and when. The second half of the article reviews the recent advances and developments that have appeared in the literature concerning the use of quantitative micro-imaging methods to pharmaceutically relevant research. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. A review of imaging techniques for systems biology

    Directory of Open Access Journals (Sweden)

    Po Ming J

    2008-08-01

    Full Text Available Abstract This paper presents a review of imaging techniques and of their utility in system biology. During the last decade systems biology has matured into a distinct field and imaging has been increasingly used to enable the interplay of experimental and theoretical biology. In this review, we describe and compare the roles of microscopy, ultrasound, CT (Computed Tomography, MRI (Magnetic Resonance Imaging, PET (Positron Emission Tomography, and molecular probes such as quantum dots and nanoshells in systems biology. As a unified application area among these different imaging techniques, examples in cancer targeting are highlighted.

  8. Some selected quantitative methods of thermal image analysis in Matlab.

    Science.gov (United States)

    Koprowski, Robert

    2016-05-01

    The paper presents a new algorithm based on some selected automatic quantitative methods for analysing thermal images. It shows the practical implementation of these image analysis methods in Matlab. It enables to perform fully automated and reproducible measurements of selected parameters in thermal images. The paper also shows two examples of the use of the proposed image analysis methods for the area of ​​the skin of a human foot and face. The full source code of the developed application is also provided as an attachment. The main window of the program during dynamic analysis of the foot thermal image. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Quantitative 3D imaging of yeast by hard X-ray tomography.

    Science.gov (United States)

    Zheng, Ting; Li, Wenjie; Guan, Yong; Song, Xiangxia; Xiong, Ying; Liu, Gang; Tian, Yangchao

    2012-05-01

    Full-field hard X-ray tomography could be used to obtain three-dimensional (3D) nanoscale structures of biological samples. The image of the fission yeast, Schizosaccharomyces pombe, was clearly visualized based on Zernike phase contrast imaging technique and heavy metal staining method at a spatial resolution better than 50 nm at the energy of 8 keV. The distributions and shapes of the organelles during the cell cycle were clearly visualized and two types of organelle were distinguished. The results for cells during various phases were compared and the ratios of organelle volume to cell volume can be analyzed quantitatively. It showed that the ratios remained constant between growth and division phase and increased strongly in stationary phase, following the shape and size of two types of organelles changes. Our results demonstrated that hard X-ray microscopy was a complementary method for imaging and revealing structural information for biological samples. Copyright © 2011 Wiley Periodicals, Inc.

  10. Amines as extracting agents for the quantitative determinations of actinides in biological samples

    International Nuclear Information System (INIS)

    Singh, N.P.

    1987-01-01

    The use of amines (primary, secondary and tertiary chains and quaternary ammonium salts) as extracting agents for the quantitative determination of actinides in biological samples is reviewed. Among the primary amines, only Primene JM-T is used to determine Pu in urine and bone. No one has investigated the possibility of using secondary amines to quantitatively extract actinides from biological samples. Among the tertiary amines, tri-n-octylamine, tri-iso-octylamine, tyricaprylamine (Alamine) and trilaurylamine (tridodecylamine) are used extensively to extract and separate the actinides from biological samples. Only one quaternary ammonium salt, methyltricapryl ammonium chloride (Aliquat-336), is used to extract Pu from biological samples. (author) 28 refs

  11. Multiparametric Quantitative Ultrasound Imaging in Assessment of Chronic Kidney Disease.

    Science.gov (United States)

    Gao, Jing; Perlman, Alan; Kalache, Safa; Berman, Nathaniel; Seshan, Surya; Salvatore, Steven; Smith, Lindsey; Wehrli, Natasha; Waldron, Levi; Kodali, Hanish; Chevalier, James

    2017-11-01

    To evaluate the value of multiparametric quantitative ultrasound imaging in assessing chronic kidney disease (CKD) using kidney biopsy pathologic findings as reference standards. We prospectively measured multiparametric quantitative ultrasound markers with grayscale, spectral Doppler, and acoustic radiation force impulse imaging in 25 patients with CKD before kidney biopsy and 10 healthy volunteers. Based on all pathologic (glomerulosclerosis, interstitial fibrosis/tubular atrophy, arteriosclerosis, and edema) scores, the patients with CKD were classified into mild (no grade 3 and quantitative ultrasound parameters included kidney length, cortical thickness, pixel intensity, parenchymal shear wave velocity, intrarenal artery peak systolic velocity (PSV), end-diastolic velocity (EDV), and resistive index. We tested the difference in quantitative ultrasound parameters among mild CKD, moderate to severe CKD, and healthy controls using analysis of variance, analyzed correlations of quantitative ultrasound parameters with pathologic scores and the estimated glomerular filtration rate (GFR) using Pearson correlation coefficients, and examined the diagnostic performance of quantitative ultrasound parameters in determining moderate CKD and an estimated GFR of less than 60 mL/min/1.73 m 2 using receiver operating characteristic curve analysis. There were significant differences in cortical thickness, pixel intensity, PSV, and EDV among the 3 groups (all P quantitative ultrasound parameters, the top areas under the receiver operating characteristic curves for PSV and EDV were 0.88 and 0.97, respectively, for determining pathologic moderate to severe CKD, and 0.76 and 0.86 for estimated GFR of less than 60 mL/min/1.73 m 2 . Moderate to good correlations were found for PSV, EDV, and pixel intensity with pathologic scores and estimated GFR. The PSV, EDV, and pixel intensity are valuable in determining moderate to severe CKD. The value of shear wave velocity in

  12. Clinical application of quantitative 99Tcm-pertechnetate thyroid imaging

    International Nuclear Information System (INIS)

    Gao Yongju; Xie Jian; Yan Xinhui; Wand Jiebin; Zhu Xuanmin; Liu Lin; Sun Haizhou

    2002-01-01

    Objective: To investigate the clinical value of quantitative 99 Tc m -pertechnetate thyroid imaging for the diagnosis and therapeutic evaluation in patients with thyroid disease. Methods: With the Siemens Orbit SPECT, 99 Tc m sodium pertechnetate thyroid imaging was performed on a control group and 108 patients with Graves' disease, 58 patients with Hashimoto's disease, 41 patients with subacute thyroiditis. Three functional parameters were calculated as follows: AR=5 min thyroid count/1 min thyroid count; UI=20 min thyroid count/thigh count; T d =imaging interval between carotid and thyroid. Results: 1) Three functional parameters were basically concordant with serological parameters in patients with Graves' disease. While uptake was high in patients who had contracted Graves' disease for ≤0.5 year, for those whose disease relapsed within 2 years the 99 Tc m thyroid uptake increased when the antithyroid medication was stopped. 2) Thyroid images of hyperthyroid patients with Hashimoto's disease showed increased perfusion and 99 Tc m uptake, a pattern similar to that found in Graves' disease. Differences in T d , AR , UI were not significant among euthyroid, subclinical hypothyroid patients with Hashimoto's disease, so uptake ratios could indicate the thyroid activity. 3) Delayed thyroid image and diffuse uptake decrease were found in hyperthyroid patients with SAT, however, focal damages were observed in euthyroid patients. Conclusion: Quantitative 99 Tc m -pertechnetate thyroid imaging is a significantly helpful technique in the diagnosis and treatment for common thyroid disorders

  13. A quantitative experimental phantom study on MRI image uniformity.

    Science.gov (United States)

    Felemban, Doaa; Verdonschot, Rinus G; Iwamoto, Yuri; Uchiyama, Yuka; Kakimoto, Naoya; Kreiborg, Sven; Murakami, Shumei

    2018-05-02

    Our goal was to assess MR image uniformity by investigating aspects influencing said uniformity via a method laid out by the National Electrical Manufacturers Association (NEMA). Six metallic materials embedded in a glass phantom were scanned (i.e., Au, Ag, Al, Au-Ag-Pd alloy, Ti and Co-Cr alloy) as well as a reference image. Sequences included Spin Echo (SE) and gradient echo (GRE) scanned in three planes (i.e., Axial, Coronal, and Sagittal). Moreover, three surface coil types (i.e., Head and Neck or HN, Brain, and TMJ coils) and two image correction methods (i.e., Surface Coil Intensity Correction or SCIC, Phased array Uniformity Enhancement or PURE) were employed to evaluate their effectiveness on image uniformity. Image uniformity was assessed using the NEMA peak-deviation non-uniformity method. Results showed that TMJ coils elicited the least uniform image and Brain coils outperformed HN coils when metallic materials were present. Additionally, when metallic materials were present, SE outperformed GRE especially for Co-Cr (particularly in the axial plane). Furthermore, both SCIC and PURE improved image uniformity compared to uncorrected images, and SCIC slightly surpassed PURE when metallic metals were present. Lastly, Co-Cr elicited the least uniform image while other metallic materials generally showed similar patterns (i.e., no significant deviation from images without metallic metals). Overall, a quantitative understanding of the factors influencing MR image uniformity (e.g., coil type, imaging method, metal susceptibility, and post-hoc correction method) is advantageous to optimize image quality, assists clinical interpretation, and may result in improved medical and dental care.

  14. Planar gamma camera imaging and quantitation of Yttrium-90 bremsstrahlung

    International Nuclear Information System (INIS)

    Shen, S.; DeNardo, G.L.; Yuan, A.

    1994-01-01

    Yttrium-90 is a promising radionuclide for radioimmunotherapy of cancer because of its energetic beta emissions. Therapeutic management requires quantitative imaging to assess the pharmacokinetics and radiation dosimetry of the 90 Y-labeled antibody. Conventional gamma photon imaging methods cannot be easily applied to imaging of 90 Y-bremsstrahlung because of its continuous energy spectrum. The sensitivity, resolution and source-to-background signal ratio (S/B) of the detector system for 90 Y-bremsstrahlung were investigated for various collimators and energy windows in order to determine optimum conditions for quantitative imaging. After these conditions were determined, the accuracy of quantitation of 90 Y activity in an Alderson abdominal phantom was examined. When the energy-window width was increased, the benefit of increased sensitivity outweighed degradation in resolution and S/B ratio until the manufacturer's energy specifications for the collimator were exceeded. Using the same energy window, the authors improved resolution and S/B for the medium-energy (ME) collimator when compared to the low-energy, all-purpose (LEAP) collimator, and there was little additional improvement using the high-energy (HE) collimator. Camera sensitivity under tissue equivalent conditions was 4.2 times greater for the LEAP and 1.7 times greater for the ME collimators when compared to the HE collimator. Thus, the best, most practical selections were found to be the ME collimator and an energy window of 55-285 keV. When they used these optimal conditions for image acquisition, the estimation of 90 Y activity in organs and tumors was within 15% of the true activities. The results for this study suggest that reasonable accuracy can be achieved in clinical radioimmunotherapy using 90 Y-bremsstrahlung quantitation. 28 refs., 5 figs., 7 tabs

  15. Porphyrin-magnetite nanoconjugates for biological imaging

    LENUS (Irish Health Repository)

    Nowostawska, Malgorzata

    2011-04-08

    Abstract Background The use of silica coated magnetic nanoparticles as contrast agents has resulted in the production of highly stable, non-toxic solutions that can be manipulated via an external magnetic field. As a result, the interaction of these nanocomposites with cells is of vital importance in understanding their behaviour and biocompatibility. Here we report the preparation, characterisation and potential application of new "two-in-one" magnetic fluorescent nanocomposites composed of silica-coated magnetite nanoparticles covalently linked to a porphyrin moiety. Method The experiments were performed by administering porphyrin functionalised silica-coated magnetite nanoparticles to THP-1 cells, a human acute monocytic leukaemia cell line. Cells were cultured in RPMI 1640 medium with 25 mM HEPES supplemented with heat-inactivated foetal bovine serum (FBS). Results We have synthesised, characterised and analysed in vitro, a new multimodal (magnetic and fluorescent) porphyrin magnetic nanoparticle composite (PMNC). Initial co-incubation experiments performed with THP-1 macrophage cells were promising; however the PMNC photobleached under confocal microscopy study. β-mercaptoethanol (β-ME) was employed to counteract this problem and resulted not only in enhanced fluorescence emission, but also allowed for elongated imaging and increased exposure times of the PMNC in a cellular environment. Conclusion Our experiments have demonstrated that β-ME visibly enhances the emission intensity. No deleterious effects to the cells were witnessed upon co-incubation with β-ME alone and no increases in background fluorescence were recorded. These results should present an interest for further development of in vitro biological imaging techniques.

  16. Fast automatic quantitative cell replication with fluorescent live cell imaging

    Directory of Open Access Journals (Sweden)

    Wang Ching-Wei

    2012-01-01

    Full Text Available Abstract Background live cell imaging is a useful tool to monitor cellular activities in living systems. It is often necessary in cancer research or experimental research to quantify the dividing capabilities of cells or the cell proliferation level when investigating manipulations of the cells or their environment. Manual quantification of fluorescence microscopic image is difficult because human is neither sensitive to fine differences in color intensity nor effective to count and average fluorescence level among cells. However, auto-quantification is not a straightforward problem to solve. As the sampling location of the microscopy changes, the amount of cells in individual microscopic images varies, which makes simple measurement methods such as the sum of stain intensity values or the total number of positive stain within each image inapplicable. Thus, automated quantification with robust cell segmentation techniques is required. Results An automated quantification system with robust cell segmentation technique are presented. The experimental results in application to monitor cellular replication activities show that the quantitative score is promising to represent the cell replication level, and scores for images from different cell replication groups are demonstrated to be statistically significantly different using ANOVA, LSD and Tukey HSD tests (p-value Conclusion A robust automated quantification method of live cell imaging is built to measure the cell replication level, providing a robust quantitative analysis system in fluorescent live cell imaging. In addition, the presented unsupervised entropy based cell segmentation for live cell images is demonstrated to be also applicable for nuclear segmentation of IHC tissue images.

  17. A Biologically Inspired CMOS Image Sensor

    CERN Document Server

    Sarkar, Mukul

    2013-01-01

    Biological systems are a source of inspiration in the development of small autonomous sensor nodes. The two major types of optical vision systems found in nature are the single aperture human eye and the compound eye of insects. The latter are among the most compact and smallest vision sensors. The eye is a compound of individual lenses with their own photoreceptor arrays.  The visual system of insects allows them to fly with a limited intelligence and brain processing power. A CMOS image sensor replicating the perception of vision in insects is discussed and designed in this book for industrial (machine vision) and medical applications. The CMOS metal layer is used to create an embedded micro-polarizer able to sense polarization information. This polarization information is shown to be useful in applications like real time material classification and autonomous agent navigation. Further the sensor is equipped with in pixel analog and digital memories which allow variation of the dynamic range and in-pixel b...

  18. 3D quantitative phase imaging of neural networks using WDT

    Science.gov (United States)

    Kim, Taewoo; Liu, S. C.; Iyer, Raj; Gillette, Martha U.; Popescu, Gabriel

    2015-03-01

    White-light diffraction tomography (WDT) is a recently developed 3D imaging technique based on a quantitative phase imaging system called spatial light interference microscopy (SLIM). The technique has achieved a sub-micron resolution in all three directions with high sensitivity granted by the low-coherence of a white-light source. Demonstrations of the technique on single cell imaging have been presented previously; however, imaging on any larger sample, including a cluster of cells, has not been demonstrated using the technique. Neurons in an animal body form a highly complex and spatially organized 3D structure, which can be characterized by neuronal networks or circuits. Currently, the most common method of studying the 3D structure of neuron networks is by using a confocal fluorescence microscope, which requires fluorescence tagging with either transient membrane dyes or after fixation of the cells. Therefore, studies on neurons are often limited to samples that are chemically treated and/or dead. WDT presents a solution for imaging live neuron networks with a high spatial and temporal resolution, because it is a 3D imaging method that is label-free and non-invasive. Using this method, a mouse or rat hippocampal neuron culture and a mouse dorsal root ganglion (DRG) neuron culture have been imaged in order to see the extension of processes between the cells in 3D. Furthermore, the tomogram is compared with a confocal fluorescence image in order to investigate the 3D structure at synapses.

  19. Quantitative SPECT brain imaging: Effects of attenuation and detector response

    International Nuclear Information System (INIS)

    Gilland, D.R.; Jaszczak, R.J.; Bowsher, J.E.; Turkington, T.G.; Liang, Z.; Greer, K.L.; Coleman, R.E.

    1993-01-01

    Two physical factors that substantially degrade quantitative accuracy in SPECT imaging of the brain are attenuation and detector response. In addition to the physical factors, random noise in the reconstructed image can greatly affect the quantitative measurement. The purpose of this work was to implement two reconstruction methods that compensate for attenuation and detector response, a 3D maximum likelihood-EM method (ML) and a filtered backprojection method (FB) with Metz filter and Chang attenuation compensation, and compare the methods in terms of quantitative accuracy and image noise. The methods were tested on simulated data of the 3D Hoffman brain phantom. The simulation incorporated attenuation and distance-dependent detector response. Bias and standard deviation of reconstructed voxel intensities were measured in the gray and white matter regions. The results with ML showed that in both the gray and white matter regions as the number of iterations increased, bias decreased and standard deviation increased. Similar results were observed with FB as the Metz filter power increased. In both regions, ML had smaller standard deviation than FB for a given bias. Reconstruction times for the ML method have been greatly reduced through efficient coding, limited source support, and by computing attenuation factors only along rays perpendicular to the detector

  20. Quantitative subsurface analysis using frequency modulated thermal wave imaging

    Science.gov (United States)

    Subhani, S. K.; Suresh, B.; Ghali, V. S.

    2018-01-01

    Quantitative depth analysis of the anomaly with an enhanced depth resolution is a challenging task towards the estimation of depth of the subsurface anomaly using thermography. Frequency modulated thermal wave imaging introduced earlier provides a complete depth scanning of the object by stimulating it with a suitable band of frequencies and further analyzing the subsequent thermal response using a suitable post processing approach to resolve subsurface details. But conventional Fourier transform based methods used for post processing unscramble the frequencies with a limited frequency resolution and contribute for a finite depth resolution. Spectral zooming provided by chirp z transform facilitates enhanced frequency resolution which can further improves the depth resolution to axially explore finest subsurface features. Quantitative depth analysis with this augmented depth resolution is proposed to provide a closest estimate to the actual depth of subsurface anomaly. This manuscript experimentally validates this enhanced depth resolution using non stationary thermal wave imaging and offers an ever first and unique solution for quantitative depth estimation in frequency modulated thermal wave imaging.

  1. Realizing the quantitative potential of the radioisotope image

    International Nuclear Information System (INIS)

    Brown, N.J.G.; Britton, K.E.; Cruz, F.R.

    1977-01-01

    The sophistication and accuracy of a clinical strategy depends on the accuracy of the results of the tests used. When numerical values are given in the test report powerful clinical strategies can be developed. The eye is well able to perceive structures in a high-quality grey-scale image. However, the degree of difference in density between two points cannot be estimated quantitatively by eye. This creates a problem particularly when there is only a small difference between the count-rate at a suspicious point or region and the count-rate to be expected there if the image were normal. To resolve this problem methods of quantitation of the amplitude of a feature, defined as the difference between the observed and expected values at the region of the feature, have been developed. The eye can estimate the frequency of light entering it very accurately (perceived as colour). Thus, if count-rate data are transformed into colour in a systematic way then information about realtive count-rate can be perceived. A computer-driven, interactive colour display system is used in which the count-rate range of each colour is computed as a percentage of a reference count-rate value. This can be used to obtain quantitative estimates of the amplitude of an image feature. The application of two methods to normal and pathological data are described and the results discussed. (author)

  2. Cancer imaging phenomics toolkit: quantitative imaging analytics for precision diagnostics and predictive modeling of clinical outcome.

    Science.gov (United States)

    Davatzikos, Christos; Rathore, Saima; Bakas, Spyridon; Pati, Sarthak; Bergman, Mark; Kalarot, Ratheesh; Sridharan, Patmaa; Gastounioti, Aimilia; Jahani, Nariman; Cohen, Eric; Akbari, Hamed; Tunc, Birkan; Doshi, Jimit; Parker, Drew; Hsieh, Michael; Sotiras, Aristeidis; Li, Hongming; Ou, Yangming; Doot, Robert K; Bilello, Michel; Fan, Yong; Shinohara, Russell T; Yushkevich, Paul; Verma, Ragini; Kontos, Despina

    2018-01-01

    The growth of multiparametric imaging protocols has paved the way for quantitative imaging phenotypes that predict treatment response and clinical outcome, reflect underlying cancer molecular characteristics and spatiotemporal heterogeneity, and can guide personalized treatment planning. This growth has underlined the need for efficient quantitative analytics to derive high-dimensional imaging signatures of diagnostic and predictive value in this emerging era of integrated precision diagnostics. This paper presents cancer imaging phenomics toolkit (CaPTk), a new and dynamically growing software platform for analysis of radiographic images of cancer, currently focusing on brain, breast, and lung cancer. CaPTk leverages the value of quantitative imaging analytics along with machine learning to derive phenotypic imaging signatures, based on two-level functionality. First, image analysis algorithms are used to extract comprehensive panels of diverse and complementary features, such as multiparametric intensity histogram distributions, texture, shape, kinetics, connectomics, and spatial patterns. At the second level, these quantitative imaging signatures are fed into multivariate machine learning models to produce diagnostic, prognostic, and predictive biomarkers. Results from clinical studies in three areas are shown: (i) computational neuro-oncology of brain gliomas for precision diagnostics, prediction of outcome, and treatment planning; (ii) prediction of treatment response for breast and lung cancer, and (iii) risk assessment for breast cancer.

  3. A comparison of quantitative reconstruction techniques for PIXE-tomography analysis applied to biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Beasley, D.G., E-mail: dgbeasley@ctn.ist.utl.pt [IST/C2TN, Universidade de Lisboa, Campus Tecnológico e Nuclear, E.N.10, 2686-953 Sacavém (Portugal); Alves, L.C. [IST/C2TN, Universidade de Lisboa, Campus Tecnológico e Nuclear, E.N.10, 2686-953 Sacavém (Portugal); Barberet, Ph.; Bourret, S.; Devès, G.; Gordillo, N.; Michelet, C. [Univ. Bordeaux, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Le Trequesser, Q. [Univ. Bordeaux, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB, UPR9048) CNRS, Université de Bordeaux, 87 avenue du Dr. A. Schweitzer, Pessac F-33608 (France); Marques, A.C. [IST/IPFN, Universidade de Lisboa, Campus Tecnológico e Nuclear, E.N.10, 2686-953 Sacavém (Portugal); Seznec, H. [Univ. Bordeaux, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Silva, R.C. da [IST/IPFN, Universidade de Lisboa, Campus Tecnológico e Nuclear, E.N.10, 2686-953 Sacavém (Portugal)

    2014-07-15

    The tomographic reconstruction of biological specimens requires robust algorithms, able to deal with low density contrast and low element concentrations. At the IST/ITN microprobe facility new GPU-accelerated reconstruction software, JPIXET, has been developed, which can significantly increase the speed of quantitative reconstruction of Proton Induced X-ray Emission Tomography (PIXE-T) data. It has a user-friendly graphical user interface for pre-processing, data analysis and reconstruction of PIXE-T and Scanning Transmission Ion Microscopy Tomography (STIM-T). The reconstruction of PIXE-T data is performed using either an algorithm based on a GPU-accelerated version of the Maximum Likelihood Expectation Maximisation (MLEM) method or a GPU-accelerated version of the Discrete Image Space Reconstruction Algorithm (DISRA) (Sakellariou (2001) [2]). The original DISRA, its accelerated version, and the MLEM algorithm, were compared for the reconstruction of a biological sample of Caenorhabditis elegans – a small worm. This sample was analysed at the microbeam line of the AIFIRA facility of CENBG, Bordeaux. A qualitative PIXE-T reconstruction was obtained using the CENBG software package TomoRebuild (Habchi et al. (2013) [6]). The effects of pre-processing and experimental conditions on the elemental concentrations are discussed.

  4. A Proposal on the Quantitative Homogeneity Analysis Method of SEM Images for Material Inspections

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Song Hyun; Kim, Jong Woo; Shin, Chang Ho [Hanyang University, Seoul (Korea, Republic of); Choi, Jung-Hoon; Cho, In-Hak; Park, Hwan Seo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    A scanning electron microscope (SEM) is a method to inspect the surface microstructure of materials. The SEM uses electron beams for imaging high magnifications of material surfaces; therefore, various chemical analyses can be performed from the SEM images. Therefore, it is widely used for the material inspection, chemical characteristic analysis, and biological analysis. For the nuclear criticality analysis field, it is an important parameter to check the homogeneity of the compound material for using it in the nuclear system. In our previous study, the SEM was tried to use for the homogeneity analysis of the materials. In this study, a quantitative homogeneity analysis method of SEM images is proposed for the material inspections. The method is based on the stochastic analysis method with the information of the grayscales of the SEM images.

  5. A Proposal on the Quantitative Homogeneity Analysis Method of SEM Images for Material Inspections

    International Nuclear Information System (INIS)

    Kim, Song Hyun; Kim, Jong Woo; Shin, Chang Ho; Choi, Jung-Hoon; Cho, In-Hak; Park, Hwan Seo

    2015-01-01

    A scanning electron microscope (SEM) is a method to inspect the surface microstructure of materials. The SEM uses electron beams for imaging high magnifications of material surfaces; therefore, various chemical analyses can be performed from the SEM images. Therefore, it is widely used for the material inspection, chemical characteristic analysis, and biological analysis. For the nuclear criticality analysis field, it is an important parameter to check the homogeneity of the compound material for using it in the nuclear system. In our previous study, the SEM was tried to use for the homogeneity analysis of the materials. In this study, a quantitative homogeneity analysis method of SEM images is proposed for the material inspections. The method is based on the stochastic analysis method with the information of the grayscales of the SEM images

  6. Quantitative live-cell imaging of human immunodeficiency virus (HIV-1) assembly.

    Science.gov (United States)

    Baumgärtel, Viola; Müller, Barbara; Lamb, Don C

    2012-05-01

    Advances in fluorescence methodologies make it possible to investigate biological systems in unprecedented detail. Over the last few years, quantitative live-cell imaging has increasingly been used to study the dynamic interactions of viruses with cells and is expected to become even more indispensable in the future. Here, we describe different fluorescence labeling strategies that have been used to label HIV-1 for live cell imaging and the fluorescence based methods used to visualize individual aspects of virus-cell interactions. This review presents an overview of experimental methods and recent experiments that have employed quantitative microscopy in order to elucidate the dynamics of late stages in the HIV-1 replication cycle. This includes cytosolic interactions of the main structural protein, Gag, with itself and the viral RNA genome, the recruitment of Gag and RNA to the plasma membrane, virion assembly at the membrane and the recruitment of cellular proteins involved in HIV-1 release to the nascent budding site.

  7. Bremsstrahlung background and quantitation of thin biological samples

    International Nuclear Information System (INIS)

    Khan, K.M.

    1991-02-01

    An inherent feature of all electron-excited X-ray spectra is the presence of a background upon which the characteristic peaks of interest are superimposed. To extract the x-ray intensity of the characteristics lines of interest, it is necessary to subtract this background, which may be due to both specimen generated Bremsstrahlung and extraneous sources, from a measured x-ray spectrum. Some conventional methods of background subtraction will be briefly reviewed. It has been seen that these conventional methods do not give sufficiently accurate results in biological analysis where the peaks of interest are not well-separated and most of the peaks lie in the region where the background is appreciably curved. An alternative approach of background subtraction for such samples is investigated which involves modelling the background using the currently available knowledge of x-ray physics and energy dispersive detectors. This method is particularly suitable for biological samples as well as other samples having an organic matrix. 6 figs. (author)

  8. Quantitative imaging analysis of posterior fossa ependymoma location in children.

    Science.gov (United States)

    Sabin, Noah D; Merchant, Thomas E; Li, Xingyu; Li, Yimei; Klimo, Paul; Boop, Frederick A; Ellison, David W; Ogg, Robert J

    2016-08-01

    Imaging descriptions of posterior fossa ependymoma in children have focused on magnetic resonance imaging (MRI) signal and local anatomic relationships with imaging location only recently used to classify these neoplasms. We developed a quantitative method for analyzing the location of ependymoma in the posterior fossa, tested its effectiveness in distinguishing groups of tumors, and examined potential associations of distinct tumor groups with treatment and prognostic factors. Pre-operative MRI examinations of the brain for 38 children with histopathologically proven posterior fossa ependymoma were analyzed. Tumor margin contours and anatomic landmarks were manually marked and used to calculate the centroid of each tumor. Landmarks were used to calculate a transformation to align, scale, and rotate each patient's image coordinates to a common coordinate space. Hierarchical cluster analysis of the location and morphological variables was performed to detect multivariate patterns in tumor characteristics. The ependymomas were also characterized as "central" or "lateral" based on published radiological criteria. Therapeutic details and demographic, recurrence, and survival information were obtained from medical records and analyzed with the tumor location and morphology to identify prognostic tumor characteristics. Cluster analysis yielded two distinct tumor groups based on centroid location The cluster groups were associated with differences in PFS (p = .044), "central" vs. "lateral" radiological designation (p = .035), and marginally associated with multiple operative interventions (p = .064). Posterior fossa ependymoma can be objectively classified based on quantitative analysis of tumor location, and these classifications are associated with prognostic and treatment factors.

  9. On the analysis of complex biological supply chains: From Process Systems Engineering to Quantitative Systems Pharmacology.

    Science.gov (United States)

    Rao, Rohit T; Scherholz, Megerle L; Hartmanshenn, Clara; Bae, Seul-A; Androulakis, Ioannis P

    2017-12-05

    The use of models in biology has become particularly relevant as it enables investigators to develop a mechanistic framework for understanding the operating principles of living systems as well as in quantitatively predicting their response to both pathological perturbations and pharmacological interventions. This application has resulted in a synergistic convergence of systems biology and pharmacokinetic-pharmacodynamic modeling techniques that has led to the emergence of quantitative systems pharmacology (QSP). In this review, we discuss how the foundational principles of chemical process systems engineering inform the progressive development of more physiologically-based systems biology models.

  10. Quantitative perfusion imaging in magnetic resonance imaging; Quantitative Perfusionsbildgebung in der Magnetresonanztomographie

    Energy Technology Data Exchange (ETDEWEB)

    Zoellner, F.G.; Gaa, T.; Zimmer, F. [Universitaet Heidelberg, Computerunterstuetzte Klinische Medizin, Medizinische Fakultaet Mannheim, Mannheim (Germany); Ong, M.M.; Riffel, P.; Hausmann, D.; Schoenberg, S.O.; Weis, M. [Universitaet Heidelberg, Institut fuer Klinische Radiologie und Nuklearmedizin, Universitaetsmedizin Mannheim, Medizinische Fakultaet Mannheim, Mannheim (Germany)

    2016-02-15

    Magnetic resonance imaging (MRI) is recognized for its superior tissue contrast while being non-invasive and free of ionizing radiation. Due to the development of new scanner hardware and fast imaging techniques during the last decades, access to tissue and organ functions became possible. One of these functional imaging techniques is perfusion imaging with which tissue perfusion and capillary permeability can be determined from dynamic imaging data. Perfusion imaging by MRI can be performed by two approaches, arterial spin labeling (ASL) and dynamic contrast-enhanced (DCE) MRI. While the first method uses magnetically labelled water protons in arterial blood as an endogenous tracer, the latter involves the injection of a contrast agent, usually gadolinium (Gd), as a tracer for calculating hemodynamic parameters. Studies have demonstrated the potential of perfusion MRI for diagnostics and also for therapy monitoring. The utilization and application of perfusion MRI are still restricted to specialized centers, such as university hospitals. A broad application of the technique has not yet been implemented. The MRI perfusion technique is a valuable tool that might come broadly available after implementation of standards on European and international levels. Such efforts are being promoted by the respective professional bodies. (orig.) [German] Die Magnetresonanztomographie (MRT) zeichnet sich durch einen ueberlegenen Gewebekontrast aus, waehrend sie nichtinvasiv und frei von ionisierender Strahlung ist. Sie bietet Zugang zu Gewebe- und Organfunktion. Eine dieser funktionellen bildgebenden Verfahren ist die Perfusionsbildgebung. Mit dieser Technik koennen u. a. Gewebeperfusion und Kapillarpermeabilitaet aus dynamischen Bilddaten bestimmt werden. Perfusionsbildgebung mithilfe der MRT kann durch 2 Ansaetze, naemlich ''arterial spin labeling'' (ASL) und dynamische kontrastverstaerkte (DCE-)MRT durchgefuehrt werden. Waehrend die erste Methode magnetisch

  11. Imaging and the new biology: What's wrong with this picture?

    Science.gov (United States)

    Vannier, Michael W.

    2004-05-01

    The Human Genome has been defined, giving us one part of the equation that stems from the central dogma of molecular biology. Despite this awesome scientific achievement, the correspondence between genomics and imaging is weak, since we cannot predict an organism's phenotype from even perfect knowledge of its genetic complement. Biological knowledge comes in several forms, and the genome is perhaps the best known and most completely understood type. Imaging creates another form of biological information, providing the ability to study morphology, growth and development, metabolic processes, and diseases in vitro and in vivo at many levels of scale. The principal challenge in biomedical imaging for the future lies in the need to reconcile the data provided by one or multiple modalities with other forms of biological knowledge, most importantly the genome, proteome, physiome, and other "-ome's." To date, the imaging science community has not set a high priority on the unification of their results with genomics, proteomics, and physiological functions in most published work. Images are relatively isolated from other forms of biological data, impairing our ability to conceive and address many fundamental questions in research and clinical practice. This presentation will explain the challenge of biological knowledge integration in basic research and clinical applications from the standpoint of imaging and image processing. The impediments to progress, isolation of the imaging community, and mainstream of new and future biological science will be identified, so the critical and immediate need for change can be highlighted.

  12. Improved image alignment method in application to X-ray images and biological images.

    Science.gov (United States)

    Wang, Ching-Wei; Chen, Hsiang-Chou

    2013-08-01

    Alignment of medical images is a vital component of a large number of applications throughout the clinical track of events; not only within clinical diagnostic settings, but prominently so in the area of planning, consummation and evaluation of surgical and radiotherapeutical procedures. However, image registration of medical images is challenging because of variations on data appearance, imaging artifacts and complex data deformation problems. Hence, the aim of this study is to develop a robust image alignment method for medical images. An improved image registration method is proposed, and the method is evaluated with two types of medical data, including biological microscopic tissue images and dental X-ray images and compared with five state-of-the-art image registration techniques. The experimental results show that the presented method consistently performs well on both types of medical images, achieving 88.44 and 88.93% averaged registration accuracies for biological tissue images and X-ray images, respectively, and outperforms the benchmark methods. Based on the Tukey's honestly significant difference test and Fisher's least square difference test tests, the presented method performs significantly better than all existing methods (P ≤ 0.001) for tissue image alignment, and for the X-ray image registration, the proposed method performs significantly better than the two benchmark b-spline approaches (P < 0.001). The software implementation of the presented method and the data used in this study are made publicly available for scientific communities to use (http://www-o.ntust.edu.tw/∼cweiwang/ImprovedImageRegistration/). cweiwang@mail.ntust.edu.tw.

  13. An approach for quantitative image quality analysis for CT

    Science.gov (United States)

    Rahimi, Amir; Cochran, Joe; Mooney, Doug; Regensburger, Joe

    2016-03-01

    An objective and standardized approach to assess image quality of Compute Tomography (CT) systems is required in a wide variety of imaging processes to identify CT systems appropriate for a given application. We present an overview of the framework we have developed to help standardize and to objectively assess CT image quality for different models of CT scanners used for security applications. Within this framework, we have developed methods to quantitatively measure metrics that should correlate with feature identification, detection accuracy and precision, and image registration capabilities of CT machines and to identify strengths and weaknesses in different CT imaging technologies in transportation security. To that end we have designed, developed and constructed phantoms that allow for systematic and repeatable measurements of roughly 88 image quality metrics, representing modulation transfer function, noise equivalent quanta, noise power spectra, slice sensitivity profiles, streak artifacts, CT number uniformity, CT number consistency, object length accuracy, CT number path length consistency, and object registration. Furthermore, we have developed a sophisticated MATLAB based image analysis tool kit to analyze CT generated images of phantoms and report these metrics in a format that is standardized across the considered models of CT scanners, allowing for comparative image quality analysis within a CT model or between different CT models. In addition, we have developed a modified sparse principal component analysis (SPCA) method to generate a modified set of PCA components as compared to the standard principal component analysis (PCA) with sparse loadings in conjunction with Hotelling T2 statistical analysis method to compare, qualify, and detect faults in the tested systems.

  14. Quantitative analysis and classification of AFM images of human hair.

    Science.gov (United States)

    Gurden, S P; Monteiro, V F; Longo, E; Ferreira, M M C

    2004-07-01

    The surface topography of human hair, as defined by the outer layer of cellular sheets, termed cuticles, largely determines the cosmetic properties of the hair. The condition of the cuticles is of great cosmetic importance, but also has the potential to aid diagnosis in the medical and forensic sciences. Atomic force microscopy (AFM) has been demonstrated to offer unique advantages for analysis of the hair surface, mainly due to the high image resolution and the ease of sample preparation. This article presents an algorithm for the automatic analysis of AFM images of human hair. The cuticular structure is characterized using a series of descriptors, such as step height, tilt angle and cuticle density, allowing quantitative analysis and comparison of different images. The usefulness of this approach is demonstrated by a classification study. Thirty-eight AFM images were measured, consisting of hair samples from (a) untreated and bleached hair samples, and (b) the root and distal ends of the hair fibre. The multivariate classification technique partial least squares discriminant analysis is used to test the ability of the algorithm to characterize the images according to the properties of the hair samples. Most of the images (86%) were found to be classified correctly.

  15. The Digital Image Processing And Quantitative Analysis In Microscopic Image Characterization

    International Nuclear Information System (INIS)

    Ardisasmita, M. Syamsa

    2000-01-01

    Many electron microscopes although have produced digital images, but not all of them are equipped with a supporting unit to process and analyse image data quantitatively. Generally the analysis of image has to be made visually and the measurement is realized manually. The development of mathematical method for geometric analysis and pattern recognition, allows automatic microscopic image analysis with computer. Image processing program can be used for image texture and structure periodic analysis by the application of Fourier transform. Because the development of composite materials. Fourier analysis in frequency domain become important for measure the crystallography orientation. The periodic structure analysis and crystal orientation are the key to understand many material properties like mechanical strength. stress, heat conductivity, resistance, capacitance and other material electric and magnetic properties. In this paper will be shown the application of digital image processing in microscopic image characterization and analysis in microscopic image

  16. Activated sludge characterization through microscopy: A review on quantitative image analysis and chemometric techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Daniela P. [IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Amaral, A. Luís [IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Instituto Politécnico de Coimbra, ISEC, DEQB, Rua Pedro Nunes, Quinta da Nora, 3030-199 Coimbra (Portugal); Ferreira, Eugénio C., E-mail: ecferreira@deb.uminho.pt [IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2013-11-13

    Graphical abstract: -- Highlights: •Quantitative image analysis shows potential to monitor activated sludge systems. •Staining techniques increase the potential for detection of operational problems. •Chemometrics combined with quantitative image analysis is valuable for process monitoring. -- Abstract: In wastewater treatment processes, and particularly in activated sludge systems, efficiency is quite dependent on the operating conditions, and a number of problems may arise due to sludge structure and proliferation of specific microorganisms. In fact, bacterial communities and protozoa identification by microscopy inspection is already routinely employed in a considerable number of cases. Furthermore, quantitative image analysis techniques have been increasingly used throughout the years for the assessment of aggregates and filamentous bacteria properties. These procedures are able to provide an ever growing amount of data for wastewater treatment processes in which chemometric techniques can be a valuable tool. However, the determination of microbial communities’ properties remains a current challenge in spite of the great diversity of microscopy techniques applied. In this review, activated sludge characterization is discussed highlighting the aggregates structure and filamentous bacteria determination by image analysis on bright-field, phase-contrast, and fluorescence microscopy. An in-depth analysis is performed to summarize the many new findings that have been obtained, and future developments for these biological processes are further discussed.

  17. Biological imaging in radiation therapy: role of positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Nestle, Ursula; Hentschel, Michael; Grosu, Anca-Ligia [Departments of Radiation Oncology, University of Freiburg, Robert Koch Str. 3, 79106 Freiburg (Germany); Weber, Wolfgang [Nuclear Medicine, University of Freiburg, Robert Koch Str. 3, 79106 Freiburg (Germany)], E-mail: ursula.nestle@uniklinik-freiburg.de

    2009-01-07

    In radiation therapy (RT), staging, treatment planning, monitoring and evaluation of response are traditionally based on computed tomography (CT) and magnetic resonance imaging (MRI). These radiological investigations have the significant advantage to show the anatomy with a high resolution, being also called anatomical imaging. In recent years, so called biological imaging methods which visualize metabolic pathways have been developed. These methods offer complementary imaging of various aspects of tumour biology. To date, the most prominent biological imaging system in use is positron emission tomography (PET), whose diagnostic properties have clinically been evaluated for years. The aim of this review is to discuss the valences and implications of PET in RT. We will focus our evaluation on the following topics: the role of biological imaging for tumour tissue detection/delineation of the gross tumour volume (GTV) and for the visualization of heterogeneous tumour biology. We will discuss the role of fluorodeoxyglucose-PET in lung and head and neck cancer and the impact of amino acids (AA)-PET in target volume delineation of brain gliomas. Furthermore, we summarize the data of the literature about tumour hypoxia and proliferation visualized by PET. We conclude that, regarding treatment planning in radiotherapy, PET offers advantages in terms of tumour delineation and the description of biological processes. However, to define the real impact of biological imaging on clinical outcome after radiotherapy, further experimental, clinical and cost/benefit analyses are required. (topical review)

  18. Biological imaging in radiation therapy: role of positron emission tomography.

    Science.gov (United States)

    Nestle, Ursula; Weber, Wolfgang; Hentschel, Michael; Grosu, Anca-Ligia

    2009-01-07

    In radiation therapy (RT), staging, treatment planning, monitoring and evaluation of response are traditionally based on computed tomography (CT) and magnetic resonance imaging (MRI). These radiological investigations have the significant advantage to show the anatomy with a high resolution, being also called anatomical imaging. In recent years, so called biological imaging methods which visualize metabolic pathways have been developed. These methods offer complementary imaging of various aspects of tumour biology. To date, the most prominent biological imaging system in use is positron emission tomography (PET), whose diagnostic properties have clinically been evaluated for years. The aim of this review is to discuss the valences and implications of PET in RT. We will focus our evaluation on the following topics: the role of biological imaging for tumour tissue detection/delineation of the gross tumour volume (GTV) and for the visualization of heterogeneous tumour biology. We will discuss the role of fluorodeoxyglucose-PET in lung and head and neck cancer and the impact of amino acids (AA)-PET in target volume delineation of brain gliomas. Furthermore, we summarize the data of the literature about tumour hypoxia and proliferation visualized by PET. We conclude that, regarding treatment planning in radiotherapy, PET offers advantages in terms of tumour delineation and the description of biological processes. However, to define the real impact of biological imaging on clinical outcome after radiotherapy, further experimental, clinical and cost/benefit analyses are required.

  19. 4D PET iterative deconvolution with spatiotemporal regularization for quantitative dynamic PET imaging.

    Science.gov (United States)

    Reilhac, Anthonin; Charil, Arnaud; Wimberley, Catriona; Angelis, Georgios; Hamze, Hasar; Callaghan, Paul; Garcia, Marie-Paule; Boisson, Frederic; Ryder, Will; Meikle, Steven R; Gregoire, Marie-Claude

    2015-09-01

    Quantitative measurements in dynamic PET imaging are usually limited by the poor counting statistics particularly in short dynamic frames and by the low spatial resolution of the detection system, resulting in partial volume effects (PVEs). In this work, we present a fast and easy to implement method for the restoration of dynamic PET images that have suffered from both PVE and noise degradation. It is based on a weighted least squares iterative deconvolution approach of the dynamic PET image with spatial and temporal regularization. Using simulated dynamic [(11)C] Raclopride PET data with controlled biological variations in the striata between scans, we showed that the restoration method provides images which exhibit less noise and better contrast between emitting structures than the original images. In addition, the method is able to recover the true time activity curve in the striata region with an error below 3% while it was underestimated by more than 20% without correction. As a result, the method improves the accuracy and reduces the variability of the kinetic parameter estimates calculated from the corrected images. More importantly it increases the accuracy (from less than 66% to more than 95%) of measured biological variations as well as their statistical detectivity. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  20. Quantitative assessment of videolaryngostroboscopic images in patients with glottic pathologies.

    Science.gov (United States)

    Niebudek-Bogusz, Ewa; Kopczynski, Bartosz; Strumillo, Pawel; Morawska, Joanna; Wiktorowicz, Justyna; Sliwinska-Kowalska, Mariola

    2017-07-01

    Digital imaging techniques enable exploration of novel visualization modalities of the vocal folds during phonation and definition of parameters, facilitating more precise diagnosis of voice disorders. Application of computer vision algorithms for analysis of videolaryngostroboscopic (VLS) images aimed at qualitative and quantitative description of phonatory vibrations. VLS examinations were conducted for 45 females, including 15 subjects with vocal nodules, 15 subjects with glottal incompetence, and 15 normophonic females. The recorded VLS images were preprocessed, the glottis area was segmented out, and the glottal cycles were identified. The glottovibrograms were built, and then the glottal area waveforms (GAW) were quantitatively described by computing the following parameters: open quotient (OQ), closing quotient (CQ), speed quotient (SQ), minimal relative glottal area (MRGA), and a new parameter termed closure difference index (CDI). Profiles of the glottal widths assessed along the glottal length differentiated the study groups (P diagnostics. Results of the performed ROC curve analysis suggest that the evaluated parameters can distinguish patients with voice disorders from normophonic subjects.

  1. MR imaging of Minamata disease. Qualitative and quantitative analysis

    International Nuclear Information System (INIS)

    Korogi, Yukunori; Takahashi, Mutsumasa; Sumi, Minako; Hirai, Toshinori; Okuda, Tomoko; Shinzato, Jintetsu; Okajima, Toru.

    1994-01-01

    Minamata disease (MD), a result of methylmercury poisoning, is a neurological illness caused by ingestion of contaminated seafood. We evaluated MR findings of patients with MD qualitatively and quantitatively. Magnetic resonance imaging at 1.5 Tesla was performed in seven patients with MD and in eight control subjects. All of our patients showed typical neurological findings like sensory disturbance, constriction of the visual fields, and ataxia. In the quantitative image analysis, inferior and middle parts of the cerebellar vermis and cerebellar hemispheres were significantly atrophic in comparison with the normal controls. There were no significant differences in measurements of the basis pontis, middle cerebellar peduncles, corpus callosum, or cerebral hemispheres between MD and the normal controls. The calcarine sulci and central sulci were significantly dilated, reflecting atrophy of the visual cortex and postcentral cortex, respectively. The lesions located in the calcarine area, cerebellum, and postcentral gyri were related to three characteristic manifestations of this disease, constriction of the visual fields, ataxia, and sensory disturbance, respectively. MR imaging has proved to be useful in evaluating the CNS abnormalities of methylmercury poisoning. (author)

  2. Dynamic and gated PET. Quantitative imaging of the heart revisited

    International Nuclear Information System (INIS)

    Nekolla, S.G.

    2005-01-01

    This short overview focuses on the basic implementation as well as applications of cardiac PET studies acquired in dynamic and ECG triggered modes. Both acquisition modes are well suited for quantitative analysis and the advantages of such an approach are discussed. An outlook on the measurement of respiratory triggered studies and the new challenges this data presents is provided. In the context of modern PET/CT tomographs with the combination of high sensitivity and morphologic resolution, the promise of list mode acquisition is investigated. The before mentioned acquisition modes are ideal candidates for this technology the utility of which in a clinical setting is briefly discussed. The retrospective generation of dynamic and gated image data (and any combinations) is greatly facilitated with this approach. Finally, a novel presentation mode for the wealth of quantitative information generated by these systems is presented. (orig.)

  3. Quantitative damage imaging using Lamb wave diffraction tomography

    International Nuclear Information System (INIS)

    Zhang Hai-Yan; Ruan Min; Zhu Wen-Fa; Chai Xiao-Dong

    2016-01-01

    In this paper, we investigate the diffraction tomography for quantitative imaging damages of partly through-thickness holes with various shapes in isotropic plates by using converted and non-converted scattered Lamb waves generated numerically. Finite element simulations are carried out to provide the scattered wave data. The validity of the finite element model is confirmed by the comparison of scattering directivity pattern (SDP) of circle blind hole damage between the finite element simulations and the analytical results. The imaging method is based on a theoretical relation between the one-dimensional (1D) Fourier transform of the scattered projection and two-dimensional (2D) spatial Fourier transform of the scattering object. A quantitative image of the damage is obtained by carrying out the 2D inverse Fourier transform of the scattering object. The proposed approach employs a circle transducer network containing forward and backward projections, which lead to so-called transmission mode (TMDT) and reflection mode diffraction tomography (RMDT), respectively. The reconstructed results of the two projections for a non-converted S0 scattered mode are investigated to illuminate the influence of the scattering field data. The results show that Lamb wave diffraction tomography using the combination of TMDT and RMDT improves the imaging effect compared with by using only the TMDT or RMDT. The scattered data of the converted A0 mode are also used to assess the performance of the diffraction tomography method. It is found that the circle and elliptical shaped damages can still be reasonably identified from the reconstructed images while the reconstructed results of other complex shaped damages like crisscross rectangles and racecourse are relatively poor. (special topics)

  4. Quantitative phase imaging characterization of tumor-associated blood vessel formation on a chip

    Science.gov (United States)

    Guo, Peng; Huang, Jing; Moses, Marsha A.

    2018-02-01

    Angiogenesis, the formation of new blood vessels from existing ones, is a biological process that has an essential role in solid tumor growth, development, and progression. Recent advances in Lab-on-a-Chip technology has created an opportunity for scientists to observe endothelial cell (EC) behaviors during the dynamic process of angiogenesis using a simple and economical in vitro platform that recapitulates in vivo blood vessel formation. Here, we use quantitative phase imaging (QPI) microscopy to continuously and non-invasively characterize the dynamic process of tumor cell-induced angiogenic sprout formation on a microfluidic chip. The live tumor cell-induced angiogenic sprouts are generated by multicellular endothelial sprouting into 3 dimensional (3D) Matrigel using human umbilical vein endothelial cells (HUVECs). By using QPI, we quantitatively measure a panel of cellular morphological and behavioral parameters of each individual EC participating in this sprouting. In this proof-of-principle study, we demonstrate that QPI is a powerful tool that can provide real-time quantitative analysis of biological processes in in vitro 3D biomimetic devices, which, in turn, can improve our understanding of the biology underlying functional tissue engineering.

  5. Using Active Learning to Teach Concepts and Methods in Quantitative Biology.

    Science.gov (United States)

    Waldrop, Lindsay D; Adolph, Stephen C; Diniz Behn, Cecilia G; Braley, Emily; Drew, Joshua A; Full, Robert J; Gross, Louis J; Jungck, John A; Kohler, Brynja; Prairie, Jennifer C; Shtylla, Blerta; Miller, Laura A

    2015-11-01

    This article provides a summary of the ideas discussed at the 2015 Annual Meeting of the Society for Integrative and Comparative Biology society-wide symposium on Leading Students and Faculty to Quantitative Biology through Active Learning. It also includes a brief review of the recent advancements in incorporating active learning approaches into quantitative biology classrooms. We begin with an overview of recent literature that shows that active learning can improve students' outcomes in Science, Technology, Engineering and Math Education disciplines. We then discuss how this approach can be particularly useful when teaching topics in quantitative biology. Next, we describe some of the recent initiatives to develop hands-on activities in quantitative biology at both the graduate and the undergraduate levels. Throughout the article we provide resources for educators who wish to integrate active learning and technology into their classrooms. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  6. Quantitative vs. subjective portal verification using digital portal images.

    Science.gov (United States)

    Bissett, R; Leszczynski, K; Loose, S; Boyko, S; Dunscombe, P

    1996-01-15

    Off-line, computer-aided prescription (simulator) and treatment (portal) image registration using chamfer matching has been implemented on PC based viewing station. The purposes of this study were (a) to evaluate the performance of interactive anatomy and field edge extraction and subsequent registration, and (b) to compare observer's perceptions of field accuracy with measured discrepancies following anatomical registration. Prescription-treatment image pairs for 48 different patients were examined in this study. Digital prescription images were produced with the aid of a television camera and a digital frame grabber, while the treatment images were obtained directly from an on-line portal imaging system. To facilitate perception of low contrast anatomical detail, on-line portal images were enhanced with selective adaptive histogram equalization prior to extraction of anatomical edges. Following interactive extraction of anatomical and field border information by an experienced observer, the identified anatomy was registered using chamfer matching. The degree of conformity between the prescription and treatment fields was quantified using several parameters, which included relative prescription field coverage and overcoverage, as well as the translational and rotational displacements as measured by chamfer matching applied to the boundaries of the two fields. These quantitative measures were compared with subjective evaluations made by four radiation oncologists. All the images in this series that included a range of the most commonly seen treatment sites were registered and the conformity parameters were found. The mean treatment/prescription field coverage and overcoverage were approximately 95 and 7%, respectively before registration. The mean translational displacement in the transverse and cranio-caudal directions were 2.9 and 3.4 mm, respectively. The mean rotational displacement was approximately 2 degrees. For all four oncologists, the portals classified

  7. Quantitative MR imaging in fracture dating--Initial results.

    Science.gov (United States)

    Baron, Katharina; Neumayer, Bernhard; Widek, Thomas; Schick, Fritz; Scheicher, Sylvia; Hassler, Eva; Scheurer, Eva

    2016-04-01

    For exact age determinations of bone fractures in a forensic context (e.g. in cases of child abuse) improved knowledge of the time course of the healing process and use of non-invasive modern imaging technology is of high importance. To date, fracture dating is based on radiographic methods by determining the callus status and thereby relying on an expert's experience. As a novel approach, this study aims to investigate the applicability of magnetic resonance imaging (MRI) for bone fracture dating by systematically investigating time-resolved changes in quantitative MR characteristics after a fracture event. Prior to investigating fracture healing in children, adults were examined for this study in order to test the methodology for this application. Altogether, 31 MR examinations in 17 subjects (♀: 11 ♂: 6; median age 34 ± 15 y, scanned 1-5 times over a period of up to 200 days after the fracture event) were performed on a clinical 3T MR scanner (TimTrio, Siemens AG, Germany). All subjects were treated conservatively for a fracture in either a long bone or in the collar bone. Both, qualitative and quantitative MR measurements were performed in all subjects. MR sequences for a quantitative measurement of relaxation times T1 and T2 in the fracture gap and musculature were applied. Maps of quantitative MR parameters T1, T2, and magnetisation transfer ratio (MTR) were calculated and evaluated by investigating changes over time in the fractured area by defined ROIs. Additionally, muscle areas were examined as reference regions to validate this approach. Quantitative evaluation of 23 MR data sets (12 test subjects, ♀: 7 ♂: 5) showed an initial peak in T1 values in the fractured area (T1=1895 ± 607 ms), which decreased over time to a value of 1094 ± 182 ms (200 days after the fracture event). T2 values also peaked for early-stage fractures (T2=115 ± 80 ms) and decreased to 73 ± 33 ms within 21 days after the fracture event. After that time point, no

  8. Optimizing Nanoscale Quantitative Optical Imaging of Subfield Scattering Targets

    Science.gov (United States)

    Henn, Mark-Alexander; Barnes, Bryan M.; Zhou, Hui; Sohn, Martin; Silver, Richard M.

    2016-01-01

    The full 3-D scattered field above finite sets of features has been shown to contain a continuum of spatial frequency information, and with novel optical microscopy techniques and electromagnetic modeling, deep-subwavelength geometrical parameters can be determined. Similarly, by using simulations, scattering geometries and experimental conditions can be established to tailor scattered fields that yield lower parametric uncertainties while decreasing the number of measurements and the area of such finite sets of features. Such optimized conditions are reported through quantitative optical imaging in 193 nm scatterfield microscopy using feature sets up to four times smaller in area than state-of-the-art critical dimension targets. PMID:27805660

  9. The effect of Compton scattering on quantitative SPECT imaging

    International Nuclear Information System (INIS)

    Beck, J.W.; Jaszczak, R.J.; Starmer, C.F.

    1982-01-01

    A Monte Carlo code has been developed to simulate the response of a SPECT system. The accuracy of the code has been verified and has been used in this research to study and illustrate the effects of Compton scatter on quantitative SPECT measurements. The effects of Compton scattered radiation on gamma camera response have been discussed by several authors, and will be extended to rotating gamma camera SPECT systems. The unique feature of this research includes the pictorial illustration of the Compton scattered and the unscattered components of the photopeak data on SPECT imaging by simulating phantom studies with and without Compton scatter

  10. Elastography as a hybrid imaging technique : coupling with photoacoustics and quantitative imaging

    International Nuclear Information System (INIS)

    Widlak, T.G.

    2015-01-01

    While classical imaging methods, such as ultrasound, computed tomography or magnetic resonance imaging, are well-known and mathematically understood, a host of physiological parameters relevant for diagnostic purposes cannot be obtained by them. This gap is recently being closed by the introduction of hybrid, or coupled-physics imaging methods. They connect more then one physical modality, and aim to provide quantitative information on optical, electrical or mechanical parameters with high resolution. Central to this thesis is the mechanical contrast of elastic tissue, especially Young’s modulus or the shear modulus. Different methods of qualitative elastography provide interior information of the mechanical displacement field. From this interior data the nonlinear inverse problem of quantitative elastography aims to reconstruct the shear modulus. In this thesis, the elastography problem is seen from a hybrid imaging perspective; methods from coupled-physics inspired literature and regularization theory have been employed to recover displacement and shear modulus information. The overdetermined systems approach by G. Bal is applied to the quantitative problem, and ellipticity criteria are deduced, for one and several measurements, as well as injectivity results. Together with the geometric theory of G. Chavent, the results are used for analyzing convergence of Tikhonov regularization. Also, a convergence analysis for the Levenberg Marquardt method is provided. As a second mainstream project in this thesis, elastography imaging is developed for extracting displacements from photoacoustic images. A novel method is provided for texturizing the images, and the optical flow problem for motion estimation is shown to be regularized with this texture generation. The results are tested in cooperation with the Medical University Vienna, and the methods for quantitative determination of the shear modulus evaluated in first experiments. In summary, the overdetermined systems

  11. Real-time and quantitative isotropic spatial resolution susceptibility imaging for magnetic nanoparticles

    Science.gov (United States)

    Pi, Shiqiang; Liu, Wenzhong; Jiang, Tao

    2018-03-01

    The magnetic transparency of biological tissue allows the magnetic nanoparticle (MNP) to be a promising functional sensor and contrast agent. The complex susceptibility of MNPs, strongly influenced by particle concentration, excitation magnetic field and their surrounding microenvironment, provides significant implications for biomedical applications. Therefore, magnetic susceptibility imaging of high spatial resolution will give more detailed information during the process of MNP-aided diagnosis and therapy. In this study, we present a novel spatial magnetic susceptibility extraction method for MNPs under a gradient magnetic field, a low-frequency drive magnetic field, and a weak strength high-frequency magnetic field. Based on this novel method, a magnetic particle susceptibility imaging (MPSI) of millimeter-level spatial resolution (<3 mm) was achieved using our homemade imaging system. Corroborated by the experimental results, the MPSI shows real-time (1 s per frame acquisition) and quantitative abilities, and isotropic high resolution.

  12. The evolution of medical imaging from qualitative to quantitative: opportunities, challenges, and approaches (Conference Presentation)

    Science.gov (United States)

    Jackson, Edward F.

    2016-04-01

    Over the past decade, there has been an increasing focus on quantitative imaging biomarkers (QIBs), which are defined as "objectively measured characteristics derived from in vivo images as indicators of normal biological processes, pathogenic processes, or response to a therapeutic intervention"1. To evolve qualitative imaging assessments to the use of QIBs requires the development and standardization of data acquisition, data analysis, and data display techniques, as well as appropriate reporting structures. As such, successful implementation of QIB applications relies heavily on expertise from the fields of medical physics, radiology, statistics, and informatics as well as collaboration from vendors of imaging acquisition, analysis, and reporting systems. When successfully implemented, QIBs will provide image-derived metrics with known bias and variance that can be validated with anatomically and physiologically relevant measures, including treatment response (and the heterogeneity of that response) and outcome. Such non-invasive quantitative measures can then be used effectively in clinical and translational research and will contribute significantly to the goals of precision medicine. This presentation will focus on 1) outlining the opportunities for QIB applications, with examples to demonstrate applications in both research and patient care, 2) discussing key challenges in the implementation of QIB applications, and 3) providing overviews of efforts to address such challenges from federal, scientific, and professional organizations, including, but not limited to, the RSNA, NCI, FDA, and NIST. 1Sullivan, Obuchowski, Kessler, et al. Radiology, epub August 2015.

  13. Quantitative iodine-123 IMP imaging of brain perfusion in schizophrenia

    International Nuclear Information System (INIS)

    Cohen, M.B.; Lake, R.R.; Graham, L.S.

    1989-01-01

    Decreased perfusion in the frontal lobes of patients with chronic schizophrenia has been reported by multiple observes using a variety of techniques. Other observers have been unable to confirm this finding using similar techniques. In this study quantitative single photon emission computed tomography brain imaging was performed using p,5n [ 123 I]IMP in five normal subjects and ten chronically medicated patients with schizophrenia. The acquisition data were preprocessed with an image dependent Metz filter and reconstructed using a ramp filtered back projection technique. The uptake in each of 50 regions of interest in each subject was normalized to the uptake in the cerebellum. There were no significant confirmed differences in the comparable ratios of normal subjects and patients with schizophrenia even at the p = 0.15 level. Hypofrontality was not observed

  14. Quantitative image analysis of WE43-T6 cracking behavior

    International Nuclear Information System (INIS)

    Ahmad, A; Yahya, Z

    2013-01-01

    Environment-assisted cracking of WE43 cast magnesium (4.2 wt.% Yt, 2.3 wt.% Nd, 0.7% Zr, 0.8% HRE) in the T6 peak-aged condition was induced in ambient air in notched specimens. The mechanism of fracture was studied using electron backscatter diffraction, serial sectioning and in situ observations of crack propagation. The intermetallic (rare earthed-enriched divorced intermetallic retained at grain boundaries and predominantly at triple points) material was found to play a significant role in initiating cracks which leads to failure of this material. Quantitative measurements were required for this project. The populations of the intermetallic and clusters of intermetallic particles were analyzed using image analysis of metallographic images. This is part of the work to generate a theoretical model of the effect of notch geometry on the static fatigue strength of this material.

  15. Quantitative image analysis for investigating cell-matrix interactions

    Science.gov (United States)

    Burkel, Brian; Notbohm, Jacob

    2017-07-01

    The extracellular matrix provides both chemical and physical cues that control cellular processes such as migration, division, differentiation, and cancer progression. Cells can mechanically alter the matrix by applying forces that result in matrix displacements, which in turn may localize to form dense bands along which cells may migrate. To quantify the displacements, we use confocal microscopy and fluorescent labeling to acquire high-contrast images of the fibrous material. Using a technique for quantitative image analysis called digital volume correlation, we then compute the matrix displacements. Our experimental technology offers a means to quantify matrix mechanics and cell-matrix interactions. We are now using these experimental tools to modulate mechanical properties of the matrix to study cell contraction and migration.

  16. Multi-spectral quantitative phase imaging based on filtration of light via ultrasonic wave

    Science.gov (United States)

    Machikhin, A. S.; Polschikova, O. V.; Ramazanova, A. G.; Pozhar, V. E.

    2017-07-01

    A new digital holographic microscopy scheme for multi-spectral quantitative phase imaging is proposed and implemented. It is based on acousto-optic filtration of wide-band low-coherence light at the entrance of a Mach-Zehnder interferometer, recording and digital processing of interferograms. The key requirements for the acousto-optic filter are discussed. The effectiveness of the technique is demonstrated by calculating the phase maps of human red blood cells at multiple wavelengths in the range 770-810 nm. The scheme can be used for the measurement of dispersion of thin films and biological samples.

  17. Development and Assessment of Modules to Integrate Quantitative Skills in Introductory Biology Courses.

    Science.gov (United States)

    Hoffman, Kathleen; Leupen, Sarah; Dowell, Kathy; Kephart, Kerrie; Leips, Jeff

    2016-01-01

    Redesigning undergraduate biology courses to integrate quantitative reasoning and skill development is critical to prepare students for careers in modern medicine and scientific research. In this paper, we report on the development, implementation, and assessment of stand-alone modules that integrate quantitative reasoning into introductory biology courses. Modules are designed to improve skills in quantitative numeracy, interpreting data sets using visual tools, and making inferences about biological phenomena using mathematical/statistical models. We also examine demographic/background data that predict student improvement in these skills through exposure to these modules. We carried out pre/postassessment tests across four semesters and used student interviews in one semester to examine how students at different levels approached quantitative problems. We found that students improved in all skills in most semesters, although there was variation in the degree of improvement among skills from semester to semester. One demographic variable, transfer status, stood out as a major predictor of the degree to which students improved (transfer students achieved much lower gains every semester, despite the fact that pretest scores in each focus area were similar between transfer and nontransfer students). We propose that increased exposure to quantitative skill development in biology courses is effective at building competency in quantitative reasoning. © 2016 K. Hoffman, S. Leupen, et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  18. Dual channel rank-based intensity weighting for quantitative co-localization of microscopy images

    LENUS (Irish Health Repository)

    Singan, Vasanth R

    2011-10-21

    Abstract Background Accurate quantitative co-localization is a key parameter in the context of understanding the spatial co-ordination of molecules and therefore their function in cells. Existing co-localization algorithms consider either the presence of co-occurring pixels or correlations of intensity in regions of interest. Depending on the image source, and the algorithm selected, the co-localization coefficients determined can be highly variable, and often inaccurate. Furthermore, this choice of whether co-occurrence or correlation is the best approach for quantifying co-localization remains controversial. Results We have developed a novel algorithm to quantify co-localization that improves on and addresses the major shortcomings of existing co-localization measures. This algorithm uses a non-parametric ranking of pixel intensities in each channel, and the difference in ranks of co-localizing pixel positions in the two channels is used to weight the coefficient. This weighting is applied to co-occurring pixels thereby efficiently combining both co-occurrence and correlation. Tests with synthetic data sets show that the algorithm is sensitive to both co-occurrence and correlation at varying levels of intensity. Analysis of biological data sets demonstrate that this new algorithm offers high sensitivity, and that it is capable of detecting subtle changes in co-localization, exemplified by studies on a well characterized cargo protein that moves through the secretory pathway of cells. Conclusions This algorithm provides a novel way to efficiently combine co-occurrence and correlation components in biological images, thereby generating an accurate measure of co-localization. This approach of rank weighting of intensities also eliminates the need for manual thresholding of the image, which is often a cause of error in co-localization quantification. We envisage that this tool will facilitate the quantitative analysis of a wide range of biological data sets

  19. Biphasic dose responses in biology, toxicology and medicine: Accounting for their generalizability and quantitative features

    International Nuclear Information System (INIS)

    Calabrese, Edward J.

    2013-01-01

    The most common quantitative feature of the hormetic-biphasic dose response is its modest stimulatory response which at maximum is only 30–60% greater than control values, an observation that is consistently independent of biological model, level of organization (i.e., cell, organ or individual), endpoint measured, chemical/physical agent studied, or mechanism. This quantitative feature suggests an underlying “upstream” mechanism common across biological systems, therefore basic and general. Hormetic dose response relationships represent an estimate of the peak performance of integrative biological processes that are allometrically based. Hormetic responses reflect both direct stimulatory or overcompensation responses to damage induced by relatively low doses of chemical or physical agents. The integration of the hormetic dose response within an allometric framework provides, for the first time, an explanation for both the generality and the quantitative features of the hormetic dose response. -- Highlights: •The hormetic stimulation is at maximum 30–60% greater than control responses. •Hormesis is a measure of biological performance and plasticity. •The hormetic response is evolutionary based and highly generalizable. -- This paper provides a biologically based explanation for the generalizability/quantitative features of the hormetic dose response, representing a fundamental contribution to the field

  20. Strategies for Biologic Image-Guided Dose Escalation: A Review

    International Nuclear Information System (INIS)

    Sovik, Aste; Malinen, Eirik; Olsen, Dag Rune

    2009-01-01

    There is increasing interest in how to incorporate functional and molecular information obtained by noninvasive, three-dimensional tumor imaging into radiotherapy. The key issues are to identify radioresistant regions that can be targeted for dose escalation, and to develop radiation dose prescription and delivery strategies providing optimal treatment for the individual patient. In the present work, we review the proposed strategies for biologic image-guided dose escalation with intensity-modulated radiation therapy. Biologic imaging modalities and the derived images are discussed, as are methods for target volume delineation. Different dose escalation strategies and techniques for treatment delivery and treatment plan evaluation are also addressed. Furthermore, we consider the need for response monitoring during treatment. We conclude with a summary of the current status of biologic image-based dose escalation and of areas where further work is needed for this strategy to become incorporated into clinical practice

  1. Magnetic Resonance-based Motion Correction for Quantitative PET in Simultaneous PET-MR Imaging.

    Science.gov (United States)

    Rakvongthai, Yothin; El Fakhri, Georges

    2017-07-01

    Motion degrades image quality and quantitation of PET images, and is an obstacle to quantitative PET imaging. Simultaneous PET-MR offers a tool that can be used for correcting the motion in PET images by using anatomic information from MR imaging acquired concurrently. Motion correction can be performed by transforming a set of reconstructed PET images into the same frame or by incorporating the transformation into the system model and reconstructing the motion-corrected image. Several phantom and patient studies have validated that MR-based motion correction strategies have great promise for quantitative PET imaging in simultaneous PET-MR. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Introduction to basic molecular biologic techniques for molecular imaging researches

    International Nuclear Information System (INIS)

    Kang, Joo Hyun

    2004-01-01

    Molecular imaging is a rapidly growing field due to the advances in molecular biology and imaging technologies. With the introduction of imaging reporter genes into the cell, diverse cellular processes can be monitored, quantified and imaged non-invasively in vivo. These processes include the gene expression, protein-protein interactions, signal transduction pathways, and monitoring of cells such as cancer cells, immune cells, and stem cells. In the near future, molecular imaging analysis will allow us to observe the incipience and progression of the disease. These will make us easier to give a diagnosis in the early stage of intractable diseases such as cancer, neuro-degenerative disease, and immunological disorders. Additionally, molecular imaging method will be a valuable tool for the real-time evaluation of cells in molecular biology and the basic biological studies. As newer and more powerful molecular imaging tools become available, it will be necessary to corporate clinicians, molecular biologists and biochemists for the planning, interpretation, and application of these techniques to their fullest potential. In order for such a multidisciplinary team to be effective, it is essential that a common understanding of basic biochemical and molecular biologic techniques is achieved. Basic molecular techniques for molecular imaging methods are presented in this paper

  3. On the detection of early osteoarthritis by quantitative microscopic imaging

    Science.gov (United States)

    Mittelstaedt, Daniel John

    Articular cartilage is a thin layer of connective tissue that protects the ends of bones in diarthroidal joints. Cartilage distributes mechanical forces during daily movement throughout its unique depth-dependent structure. The extracellular matrix (ECM) of cartilage primarily contains water, collagen, and glycosaminoglycan (GAG). The collagen fibers are intertwined with negatively charged GAG and surround the cells (i.e. chondrocytes) in cartilage. Degradation to the ECM reduces the load bearing properties of cartilage which can be initiated by injury (e.g. anterior cruciate ligament (ACL) rupture) or disease (e.g. osteoarthritis (OA)). Magnetic resonance imaging (MRI) and x-ray computed tomography (CT) are noninvasive imaging techniques that are increasingly being used in the clinical detection of cartilage degradation. The aim of the first project in this dissertation was to quantify and compare the depth-dependent GAG concentration from healthy and biochemically degraded humeral ex vivo articular cartilage using quantitative contrast enhanced micro-computed tomography (qCECT) at high resolution. The second project in this dissertation was aimed to measure the topographical and depth-dependent GAG concentration using qCECT and delayed gadolinium enhanced magnetic resonance imaging of cartilage (dGEMRIC) from the medial tibia cartilage three weeks after unilateral ACL transection which is an animal model of OA (i.e. modified Pond-Nuki model). These GAG measurements were correlated with a biochemical method, inductively couple plasma optical emission spectrometry, to compare the degradation on the medial tibia between the OA and contralateral cartilage. The third project in this dissertation used the same cartilage specimens as in project two to investigate the change in T2 due to OA and the effect on T2 from a contrast agent. Furthermore, the change in T2 relaxation was investigated from static unconfined compression with correlations by biomechanical

  4. Quantitative image analysis in sonograms of the thyroid gland

    Energy Technology Data Exchange (ETDEWEB)

    Catherine, Skouroliakou [A' Department of Radiology, University of Athens, Vas.Sophias Ave, Athens 11528 (Greece); Maria, Lyra [A' Department of Radiology, University of Athens, Vas.Sophias Ave, Athens 11528 (Greece)]. E-mail: mlyra@pindos.uoa.gr; Aristides, Antoniou [A' Department of Radiology, University of Athens, Vas.Sophias Ave, Athens 11528 (Greece); Lambros, Vlahos [A' Department of Radiology, University of Athens, Vas.Sophias Ave, Athens 11528 (Greece)

    2006-12-20

    High-resolution, real-time ultrasound is a routine examination for assessing the disorders of the thyroid gland. However, the current diagnosis practice is based mainly on qualitative evaluation of the resulting sonograms, therefore depending on the physician's experience. Computerized texture analysis is widely employed in sonographic images of various organs (liver, breast), and it has been proven to increase the sensitivity of diagnosis by providing a better tissue characterization. The present study attempts to characterize thyroid tissue by automatic texture analysis. The texture features that are calculated are based on co-occurrence matrices as they have been proposed by Haralick. The sample consists of 40 patients. For each patient two sonographic images (one for each lobe) are recorded in DICOM format. The lobe is manually delineated in each sonogram, and the co-occurrence matrices for 52 separation vectors are calculated. The texture features extracted from each one of these matrices are: contrast, correlation, energy and homogeneity. Primary component analysis is used to select the optimal set of features. The statistical analysis resulted in the extraction of 21 optimal descriptors. The optimal descriptors are all co-occurrence parameters as the first-order statistics did not prove to be representative of the images characteristics. The bigger number of components depends mainly on correlation for very close or very far distances. The results indicate that quantitative analysis of thyroid sonograms can provide an objective characterization of thyroid tissue.

  5. Modeling optical behavior of birefringent biological tissues for evaluation of quantitative polarized light microscopy

    NARCIS (Netherlands)

    Turnhout, van M.C.; Kranenbarg, S.; Leeuwen, van J.L.

    2009-01-01

    Quantitative polarized light microscopy (qPLM) is a popular tool for the investigation of birefringent architectures in biological tissues. Collagen, the most abundant protein in mammals, is such a birefringent material. Interpretation of results of qPLM in terms of collagen network architecture and

  6. Nuclear medicine and imaging research (instrumentation and quantitative methods of evaluation)

    International Nuclear Information System (INIS)

    Beck, R.N.; Cooper, M.; Chen, C.T.

    1992-07-01

    This document is the annual progress report for project entitled ''Instrumentation and Quantitative Methods of Evaluation.'' Progress is reported in separate sections individually abstracted and indexed for the database. Subject areas reported include theoretical studies of imaging systems and methods, hardware developments, quantitative methods of evaluation, and knowledge transfer: education in quantitative nuclear medicine imaging

  7. Quantitative vs. subjective portal verification using digital portal images

    International Nuclear Information System (INIS)

    Bissett, Randy; Leszczynski, Konrad; Loose, Stephen; Boyko, Susan; Dunscombe, Peter

    1996-01-01

    Purpose: Off-line, computer-aided prescription (simulator) and treatment (portal) image registration using chamfer matching has been implemented on PC based viewing station. The purposes of this study were (a) to evaluate the performance of interactive anatomy and field edge extraction and subsequent registration, and (b) to compare observer's perceptions of field accuracy with measured discrepancies following anatomical registration. Methods and Materials: Prescription-treatment image pairs for 48 different patients were examined in this study. Digital prescription images were produced with the aid of a television camera and a digital frame grabber, while the treatment images were obtained directly from an on-line portal imaging system. To facilitate perception of low contrast anatomical detail, on-line portal images were enhanced with selective adaptive histogram equalization prior to extraction of anatomical edges. Following interactive extraction of anatomical and field border information by an experienced observer, the identified anatomy was registered using chamber matching. The degree of conformity between the prescription and treatment fields was quantified using several parameters, which included relative prescription field coverage and overcoverage, as well as the translational and rotational displacements as measured by chamfer matching applied to the boundaries of the two fields. These quantitative measures were compared with subjective evaluations made by four radiation oncologists. Results: All the images in this series that included a range of the most commonly seen treatment sites were registered and the conformity parameters were found. The mean treatment/prescription field coverage and overcoverage were approximately 95 and 7%, respectively before registration. The mean translational displacement in the transverse and cranio-caudal directions were 2.9 and 3.4 mm, respectively. The mean rotational displacement was approximately 2 deg. . For all

  8. Quantitative imaging of subcellular metabolism with stable isotopes and multi-isotope imaging mass spectrometry

    Science.gov (United States)

    Steinhauser, Matthew L.; Lechene, Claude P.

    2014-01-01

    Multi-isotope imaging mass spectrometry (MIMS) is the quantitative imaging of stable isotope labels in cells with a new type of secondary ion mass spectrometer (NanoSIMS). The power of the methodology is attributable to (i) the immense advantage of using non-toxic stable isotope labels, (ii) high resolution imaging that approaches the resolution of usual transmission electron microscopy and (iii) the precise quantification of label down to 1 part-per-million and spanning several orders of magnitude. Here we review the basic elements of MIMS and describe new applications of MIMS to the quantitative study of metabolic processes including protein and nucleic acid synthesis in model organisms ranging from microbes to humans. PMID:23660233

  9. Malignant gliomas: current perspectives in diagnosis, treatment, and early response assessment using advanced quantitative imaging methods

    Directory of Open Access Journals (Sweden)

    Ahmed R

    2014-03-01

    Full Text Available Rafay Ahmed,1 Matthew J Oborski,2 Misun Hwang,1 Frank S Lieberman,3 James M Mountz11Department of Radiology, 2Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; 3Department of Neurology and Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USAAbstract: Malignant gliomas consist of glioblastomas, anaplastic astrocytomas, anaplastic oligodendrogliomas and anaplastic oligoastrocytomas, and some less common tumors such as anaplastic ependymomas and anaplastic gangliogliomas. Malignant gliomas have high morbidity and mortality. Even with optimal treatment, median survival is only 12–15 months for glioblastomas and 2–5 years for anaplastic gliomas. However, recent advances in imaging and quantitative analysis of image data have led to earlier diagnosis of tumors and tumor response to therapy, providing oncologists with a greater time window for therapy management. In addition, improved understanding of tumor biology, genetics, and resistance mechanisms has enhanced surgical techniques, chemotherapy methods, and radiotherapy administration. After proper diagnosis and institution of appropriate therapy, there is now a vital need for quantitative methods that can sensitively detect malignant glioma response to therapy at early follow-up times, when changes in management of nonresponders can have its greatest effect. Currently, response is largely evaluated by measuring magnetic resonance contrast and size change, but this approach does not take into account the key biologic steps that precede tumor size reduction. Molecular imaging is ideally suited to measuring early response by quantifying cellular metabolism, proliferation, and apoptosis, activities altered early in treatment. We expect that successful integration of quantitative imaging biomarker assessment into the early phase of clinical trials could provide a novel approach for testing new therapies

  10. A compact gamma camera for biological imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, E L; Cella, J; Majewski, S; Popov, V; Qian, Jianguo; Saha, M S; Smith, M F; Weisenberger, A G; Welsh, R E

    2006-02-01

    A compact detector, sized particularly for imaging a mouse, is described. The active area of the detector is approximately 46 mm; spl times/ 96 mm. Two flat-panel Hamamatsu H8500 position-sensitive photomultiplier tubes (PSPMTs) are coupled to a pixellated NaI(Tl) scintillator which views the animal through a copper-beryllium (CuBe) parallel-hole collimator specially designed for {sup 125}I. Although the PSPMTs have insensitive areas at their edges and there is a physical gap, corrections for scintillation light collection at the junction between the two tubes results in a uniform response across the entire rectangular area of the detector. The system described has been developed to optimize both sensitivity and resolution for in-vivo imaging of small animals injected with iodinated compounds. We demonstrate an in-vivo application of this detector, particularly to SPECT, by imaging mice injected with approximately 10-15; spl mu/Ci of {sup 125}I.

  11. Brain Injury Lesion Imaging Using Preconditioned Quantitative Susceptibility Mapping without Skull Stripping.

    Science.gov (United States)

    Soman, S; Liu, Z; Kim, G; Nemec, U; Holdsworth, S J; Main, K; Lee, B; Kolakowsky-Hayner, S; Selim, M; Furst, A J; Massaband, P; Yesavage, J; Adamson, M M; Spincemallie, P; Moseley, M; Wang, Y

    2018-04-01

    Identifying cerebral microhemorrhage burden can aid in the diagnosis and management of traumatic brain injury, stroke, hypertension, and cerebral amyloid angiopathy. MR imaging susceptibility-based methods are more sensitive than CT for detecting cerebral microhemorrhage, but methods other than quantitative susceptibility mapping provide results that vary with field strength and TE, require additional phase maps to distinguish blood from calcification, and depict cerebral microhemorrhages as bloom artifacts. Quantitative susceptibility mapping provides universal quantification of tissue magnetic property without these constraints but traditionally requires a mask generated by skull-stripping, which can pose challenges at tissue interphases. We evaluated the preconditioned quantitative susceptibility mapping MR imaging method, which does not require skull-stripping, for improved depiction of brain parenchyma and pathology. Fifty-six subjects underwent brain MR imaging with a 3D multiecho gradient recalled echo acquisition. Mask-based quantitative susceptibility mapping images were created using a commonly used mask-based quantitative susceptibility mapping method, and preconditioned quantitative susceptibility images were made using precondition-based total field inversion. All images were reviewed by a neuroradiologist and a radiology resident. Ten subjects (18%), all with traumatic brain injury, demonstrated blood products on 3D gradient recalled echo imaging. All lesions were visible on preconditioned quantitative susceptibility mapping, while 6 were not visible on mask-based quantitative susceptibility mapping. Thirty-one subjects (55%) demonstrated brain parenchyma and/or lesions that were visible on preconditioned quantitative susceptibility mapping but not on mask-based quantitative susceptibility mapping. Six subjects (11%) demonstrated pons artifacts on preconditioned quantitative susceptibility mapping and mask-based quantitative susceptibility mapping

  12. Analysis of PET hypoxia imaging in the quantitative imaging for personalized cancer medicine program

    International Nuclear Information System (INIS)

    Yeung, Ivan; Driscoll, Brandon; Keller, Harald; Shek, Tina; Jaffray, David; Hedley, David

    2014-01-01

    Quantitative imaging is an important tool in clinical trials of testing novel agents and strategies for cancer treatment. The Quantitative Imaging Personalized Cancer Medicine Program (QIPCM) provides clinicians and researchers participating in multi-center clinical trials with a central repository for their imaging data. In addition, a set of tools provide standards of practice (SOP) in end-to-end quality assurance of scanners and image analysis. The four components for data archiving and analysis are the Clinical Trials Patient Database, the Clinical Trials PACS, the data analysis engine(s) and the high-speed networks that connect them. The program provides a suite of software which is able to perform RECIST, dynamic MRI, CT and PET analysis. The imaging data can be assessed securely from remote and analyzed by researchers with these software tools, or with tools provided by the users and installed at the server. Alternatively, QIPCM provides a service for data analysis on the imaging data according developed SOP. An example of a clinical study in which patients with unresectable pancreatic adenocarcinoma were studied with dynamic PET-FAZA for hypoxia measurement will be discussed. We successfully quantified the degree of hypoxia as well as tumor perfusion in a group of 20 patients in terms of SUV and hypoxic fraction. It was found that there is no correlation between bulk tumor perfusion and hypoxia status in this cohort. QIPCM also provides end-to-end QA testing of scanners used in multi-center clinical trials. Based on quality assurance data from multiple CT-PET scanners, we concluded that quality control of imaging was vital in the success in multi-center trials as different imaging and reconstruction parameters in PET imaging could lead to very different results in hypoxia imaging. (author)

  13. Quantitative imaging biomarkers: the application of advanced image processing and analysis to clinical and preclinical decision making.

    Science.gov (United States)

    Prescott, Jeffrey William

    2013-02-01

    The importance of medical imaging for clinical decision making has been steadily increasing over the last four decades. Recently, there has also been an emphasis on medical imaging for preclinical decision making, i.e., for use in pharamaceutical and medical device development. There is also a drive towards quantification of imaging findings by using quantitative imaging biomarkers, which can improve sensitivity, specificity, accuracy and reproducibility of imaged characteristics used for diagnostic and therapeutic decisions. An important component of the discovery, characterization, validation and application of quantitative imaging biomarkers is the extraction of information and meaning from images through image processing and subsequent analysis. However, many advanced image processing and analysis methods are not applied directly to questions of clinical interest, i.e., for diagnostic and therapeutic decision making, which is a consideration that should be closely linked to the development of such algorithms. This article is meant to address these concerns. First, quantitative imaging biomarkers are introduced by providing definitions and concepts. Then, potential applications of advanced image processing and analysis to areas of quantitative imaging biomarker research are described; specifically, research into osteoarthritis (OA), Alzheimer's disease (AD) and cancer is presented. Then, challenges in quantitative imaging biomarker research are discussed. Finally, a conceptual framework for integrating clinical and preclinical considerations into the development of quantitative imaging biomarkers and their computer-assisted methods of extraction is presented.

  14. Quantitative ultrasound and photoacoustic imaging for the assessment of vascular parameters

    CERN Document Server

    Meiburger, Kristen M

    2017-01-01

    This book describes the development of quantitative techniques for ultrasound and photoacoustic imaging in the assessment of architectural and vascular parameters. It presents morphological vascular research based on the development of quantitative imaging techniques for the use of clinical B-mode ultrasound images, and preclinical architectural vascular investigations on quantitative imaging techniques for ultrasounds and photoacoustics. The book is divided into two main parts, the first of which focuses on the development and validation of quantitative techniques for the assessment of vascular morphological parameters that can be extracted from B-mode ultrasound longitudinal images of the common carotid artery. In turn, the second part highlights quantitative imaging techniques for assessing the architectural parameters of vasculature that can be extracted from 3D volumes, using both contrast-enhanced ultrasound (CEUS) imaging and photoacoustic imaging without the addition of any contrast agent. Sharing and...

  15. Quantitative and Dynamic Imaging of ATM Kinase Activity.

    Science.gov (United States)

    Nyati, Shyam; Young, Grant; Ross, Brian Dale; Rehemtulla, Alnawaz

    2017-01-01

    Ataxia telangiectasia mutated (ATM) is a serine/threonine kinase critical to the cellular DNA-damage response, including DNA double-strand breaks (DSBs). ATM activation results in the initiation of a complex cascade of events facilitating DNA damage repair, cell cycle checkpoint control, and survival. Traditionally, protein kinases have been analyzed in vitro using biochemical methods (kinase assays using purified proteins or immunological assays) requiring a large number of cells and cell lysis. Genetically encoded biosensors based on optical molecular imaging such as fluorescence or bioluminescence have been developed to enable interrogation of kinase activities in live cells with a high signal to background. We have genetically engineered a hybrid protein whose bioluminescent activity is dependent on the ATM-mediated phosphorylation of a substrate. The engineered protein consists of the split luciferase-based protein complementation pair with a CHK2 (a substrate for ATM kinase activity) target sequence and a phospho-serine/threonine-binding domain, FHA2, derived from yeast Rad53. Phosphorylation of the serine residue within the target sequence by ATM would lead to its interaction with the phospho-serine-binding domain, thereby preventing complementation of the split luciferase pair and loss of reporter activity. Bioluminescence imaging of reporter expressing cells in cultured plates or as mouse xenografts provides a quantitative surrogate for ATM kinase activity and therefore the cellular DNA damage response in a noninvasive, dynamic fashion.

  16. Quantitative assessment of biological impact using transcriptomic data and mechanistic network models

    International Nuclear Information System (INIS)

    Thomson, Ty M.; Sewer, Alain; Martin, Florian; Belcastro, Vincenzo; Frushour, Brian P.; Gebel, Stephan; Park, Jennifer; Schlage, Walter K.; Talikka, Marja; Vasilyev, Dmitry M.; Westra, Jurjen W.; Hoeng, Julia; Peitsch, Manuel C.

    2013-01-01

    Exposure to biologically active substances such as therapeutic drugs or environmental toxicants can impact biological systems at various levels, affecting individual molecules, signaling pathways, and overall cellular processes. The ability to derive mechanistic insights from the resulting system responses requires the integration of experimental measures with a priori knowledge about the system and the interacting molecules therein. We developed a novel systems biology-based methodology that leverages mechanistic network models and transcriptomic data to quantitatively assess the biological impact of exposures to active substances. Hierarchically organized network models were first constructed to provide a coherent framework for investigating the impact of exposures at the molecular, pathway and process levels. We then validated our methodology using novel and previously published experiments. For both in vitro systems with simple exposure and in vivo systems with complex exposures, our methodology was able to recapitulate known biological responses matching expected or measured phenotypes. In addition, the quantitative results were in agreement with experimental endpoint data for many of the mechanistic effects that were assessed, providing further objective confirmation of the approach. We conclude that our methodology evaluates the biological impact of exposures in an objective, systematic, and quantifiable manner, enabling the computation of a systems-wide and pan-mechanistic biological impact measure for a given active substance or mixture. Our results suggest that various fields of human disease research, from drug development to consumer product testing and environmental impact analysis, could benefit from using this methodology. - Highlights: • The impact of biologically active substances is quantified at multiple levels. • The systems-level impact integrates the perturbations of individual networks. • The networks capture the relationships between

  17. Noninvasive Quantitative Imaging of Collagen Microstructure in Three-Dimensional Hydrogels Using High-Frequency Ultrasound.

    Science.gov (United States)

    Mercado, Karla P; Helguera, María; Hocking, Denise C; Dalecki, Diane

    2015-07-01

    Collagen I is widely used as a natural component of biomaterials for both tissue engineering and regenerative medicine applications. The physical and biological properties of fibrillar collagens are strongly tied to variations in collagen fiber microstructure. The goal of this study was to develop the use of high-frequency quantitative ultrasound to assess collagen microstructure within three-dimensional (3D) hydrogels noninvasively and nondestructively. The integrated backscatter coefficient (IBC) was employed as a quantitative ultrasound parameter to detect, image, and quantify spatial variations in collagen fiber density and diameter. Collagen fiber microstructure was varied by fabricating hydrogels with different collagen concentrations or polymerization temperatures. IBC values were computed from measurements of the backscattered radio-frequency ultrasound signals collected using a single-element transducer (38-MHz center frequency, 13-47 MHz bandwidth). The IBC increased linearly with increasing collagen concentration and decreasing polymerization temperature. Parametric 3D images of the IBC were generated to visualize and quantify regional variations in collagen microstructure throughout the volume of hydrogels fabricated in standard tissue culture plates. IBC parametric images of corresponding cell-embedded collagen gels showed cell accumulation within regions having elevated collagen IBC values. The capability of this ultrasound technique to noninvasively detect and quantify spatial differences in collagen microstructure offers a valuable tool to monitor the structural properties of collagen scaffolds during fabrication, to detect functional differences in collagen microstructure, and to guide fundamental research on the interactions of cells and collagen matrices.

  18. Isotropic differential phase contrast microscopy for quantitative phase bio-imaging.

    Science.gov (United States)

    Chen, Hsi-Hsun; Lin, Yu-Zi; Luo, Yuan

    2018-05-16

    Quantitative phase imaging (QPI) has been investigated to retrieve optical phase information of an object and applied to biological microscopy and related medical studies. In recent examples, differential phase contrast (DPC) microscopy can recover phase image of thin sample under multi-axis intensity measurements in wide-field scheme. Unlike conventional DPC, based on theoretical approach under partially coherent condition, we propose a new method to achieve isotropic differential phase contrast (iDPC) with high accuracy and stability for phase recovery in simple and high-speed fashion. The iDPC is simply implemented with a partially coherent microscopy and a programmable thin-film transistor (TFT) shield to digitally modulate structured illumination patterns for QPI. In this article, simulation results show consistency of our theoretical approach for iDPC under partial coherence. In addition, we further demonstrate experiments of quantitative phase images of a standard micro-lens array, as well as label-free live human cell samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Gender, Math Confidence, and Grit: Relationships with Quantitative Skills and Performance in an Undergraduate Biology Course.

    Science.gov (United States)

    Flanagan, K M; Einarson, J

    2017-01-01

    In a world filled with big data, mathematical models, and statistics, the development of strong quantitative skills is becoming increasingly critical for modern biologists. Teachers in this field must understand how students acquire quantitative skills and explore barriers experienced by students when developing these skills. In this study, we examine the interrelationships among gender, grit, and math confidence for student performance on a pre-post quantitative skills assessment and overall performance in an undergraduate biology course. Here, we show that females significantly underperformed relative to males on a quantitative skills assessment at the start of term. However, females showed significantly higher gains over the semester, such that the gender gap in performance was nearly eliminated by the end of the semester. Math confidence plays an important role in the performance on both the pre and post quantitative skills assessments and overall performance in the course. The effect of grit on student performance, however, is mediated by a student's math confidence; as math confidence increases, the positive effect of grit decreases. Consequently, the positive impact of a student's grittiness is observed most strongly for those students with low math confidence. We also found grit to be positively associated with the midterm score and the final grade in the course. Given the relationships established in this study among gender, grit, and math confidence, we provide "instructor actions" from the literature that can be applied in the classroom to promote the development of quantitative skills in light of our findings. © 2017 K. M. Flanagan and J. Einarson. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http

  20. Quantitative phase imaging using quadri-wave lateral shearing interferometry. Application to X-ray domain

    International Nuclear Information System (INIS)

    Rizzi, Julien

    2013-01-01

    Since Roentgen discovered X-rays, X-ray imaging systems are based on absorption contrast. This technique is inefficient for weakly absorbing objects. As a result, X-ray standard radiography can detect bones lesions, but cannot detect ligament lesions. However, phase contrast imaging can overcome this limitation. Since the years 2000, relying on former works of opticians, X-ray scientists are developing phase sensitive devices compatible with industrial applications such as medical imaging or non destructive control. Standard architectures for interferometry are challenging to implement in the X-ray domain. This is the reason why grating based interferometers became the most promising devices to envision industrial applications. They provided the first x-ray phase contrast images of living human samples. Nevertheless, actual grating based architectures require the use of at least two gratings, and are challenging to adapt on an industrial product. So, the aim of my thesis was to develop a single phase grating interferometer. I demonstrated that such a device can provide achromatic and propagation invariant interference patterns. I used this interferometer to perform quantitative phase contrast imaging of a biological fossil sample and x-ray at mirror metrology. (author)

  1. Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality

    International Nuclear Information System (INIS)

    Ling, C. Clifton; Humm, John; Larson, Steven; Amols, Howard; Fuks, Zvi; Leibel, Steven; Koutcher, Jason A.

    2000-01-01

    Purpose: The goals of this study were to survey and summarize the advances in imaging that have potential applications in radiation oncology, and to explore the concept of integrating physical and biological conformality in multidimensional conformal radiotherapy (MD-CRT). Methods and Materials: The advances in three-dimensional conformal radiotherapy (3D-CRT) have greatly improved the physical conformality of treatment planning and delivery. The development of intensity-modulated radiotherapy (IMRT) has provided the 'dose painting' or 'dose sculpting' ability to further customize the delivered dose distribution. The improved capabilities of nuclear magnetic resonance imaging and spectroscopy, and of positron emission tomography, are beginning to provide physiological and functional information about the tumor and its surroundings. In addition, molecular imaging promises to reveal tumor biology at the genotype and phenotype level. These developments converge to provide significant opportunities for enhancing the success of radiotherapy. Results: The ability of IMRT to deliver nonuniform dose patterns by design brings to fore the question of how to 'dose paint' and 'dose sculpt', leading to the suggestion that 'biological' images may be of assistance. In contrast to the conventional radiological images that primarily provide anatomical information, biological images reveal metabolic, functional, physiological, genotypic, and phenotypic data. Important for radiotherapy, the new and noninvasive imaging methods may yield three-dimensional radiobiological information. Studies are urgently needed to identify genotypes and phenotypes that affect radiosensitivity, and to devise methods to image them noninvasively. Incremental to the concept of gross, clinical, and planning target volumes (GTV, CTV, and PTV), we propose the concept of 'biological target volume' (BTV) and hypothesize that BTV can be derived from biological images and that their use may incrementally improve

  2. Large field of view quantitative phase imaging of induced pluripotent stem cells and optical pathlength reference materials

    Science.gov (United States)

    Kwee, Edward; Peterson, Alexander; Stinson, Jeffrey; Halter, Michael; Yu, Liya; Majurski, Michael; Chalfoun, Joe; Bajcsy, Peter; Elliott, John

    2018-02-01

    Induced pluripotent stem cells (iPSCs) are reprogrammed cells that can have heterogeneous biological potential. Quality assurance metrics of reprogrammed iPSCs will be critical to ensure reliable use in cell therapies and personalized diagnostic tests. We present a quantitative phase imaging (QPI) workflow which includes acquisition, processing, and stitching multiple adjacent image tiles across a large field of view (LFOV) of a culture vessel. Low magnification image tiles (10x) were acquired with a Phasics SID4BIO camera on a Zeiss microscope. iPSC cultures were maintained using a custom stage incubator on an automated stage. We implement an image acquisition strategy that compensates for non-flat illumination wavefronts to enable imaging of an entire well plate, including the meniscus region normally obscured in Zernike phase contrast imaging. Polynomial fitting and background mode correction was implemented to enable comparability and stitching between multiple tiles. LFOV imaging of reference materials indicated that image acquisition and processing strategies did not affect quantitative phase measurements across the LFOV. Analysis of iPSC colony images demonstrated mass doubling time was significantly different than area doubling time. These measurements were benchmarked with prototype microsphere beads and etched-glass gratings with specified spatial dimensions designed to be QPI reference materials with optical pathlength shifts suitable for cell microscopy. This QPI workflow and the use of reference materials can provide non-destructive traceable imaging method for novel iPSC heterogeneity characterization.

  3. A CZT-based blood counter for quantitative molecular imaging.

    Science.gov (United States)

    Espagnet, Romain; Frezza, Andrea; Martin, Jean-Pierre; Hamel, Louis-André; Lechippey, Laëtitia; Beauregard, Jean-Mathieu; Després, Philippe

    2017-12-01

    Robust quantitative analysis in positron emission tomography (PET) and in single-photon emission computed tomography (SPECT) typically requires the time-activity curve as an input function for the pharmacokinetic modeling of tracer uptake. For this purpose, a new automated tool for the determination of blood activity as a function of time is presented. The device, compact enough to be used on the patient bed, relies on a peristaltic pump for continuous blood withdrawal at user-defined rates. Gamma detection is based on a 20 × 20 × 15 mm 3 cadmium zinc telluride (CZT) detector, read by custom-made electronics and a field-programmable gate array-based signal processing unit. A graphical user interface (GUI) allows users to select parameters and easily perform acquisitions. This paper presents the overall design of the device as well as the results related to the detector performance in terms of stability, sensitivity and energy resolution. Results from a patient study are also reported. The device achieved a sensitivity of 7.1 cps/(kBq/mL) and a minimum detectable activity of 2.5 kBq/ml for 18 F. The gamma counter also demonstrated an excellent stability with a deviation in count rates inferior to 0.05% over 6 h. An energy resolution of 8% was achieved at 662 keV. The patient study was conclusive and demonstrated that the compact gamma blood counter developed has the sensitivity and the stability required to conduct quantitative molecular imaging studies in PET and SPECT.

  4. Quantitative image reconstruction for total-body PET imaging using the 2-meter long EXPLORER scanner

    Science.gov (United States)

    Zhang, Xuezhu; Zhou, Jian; Cherry, Simon R.; Badawi, Ramsey D.; Qi, Jinyi

    2017-03-01

    The EXPLORER project aims to build a 2 meter long total-body PET scanner, which will provide extremely high sensitivity for imaging the entire human body. It will possess a range of capabilities currently unavailable to state-of-the-art clinical PET scanners with a limited axial field-of-view. The huge number of lines-of-response (LORs) of the EXPLORER poses a challenge to the data handling and image reconstruction. The objective of this study is to develop a quantitative image reconstruction method for the EXPLORER and compare its performance with current whole-body scanners. Fully 3D image reconstruction was performed using time-of-flight list-mode data with parallel computation. To recover the resolution loss caused by the parallax error between crystal pairs at a large axial ring difference or transaxial radial offset, we applied an image domain resolution model estimated from point source data. To evaluate the image quality, we conducted computer simulations using the SimSET Monte-Carlo toolkit and XCAT 2.0 anthropomorphic phantom to mimic a 20 min whole-body PET scan with an injection of 25 MBq 18F-FDG. We compare the performance of the EXPLORER with a current clinical scanner that has an axial FOV of 22 cm. The comparison results demonstrated superior image quality from the EXPLORER with a 6.9-fold reduction in noise standard deviation comparing with multi-bed imaging using the clinical scanner.

  5. Histological image classification using biologically interpretable shape-based features

    International Nuclear Information System (INIS)

    Kothari, Sonal; Phan, John H; Young, Andrew N; Wang, May D

    2013-01-01

    Automatic cancer diagnostic systems based on histological image classification are important for improving therapeutic decisions. Previous studies propose textural and morphological features for such systems. These features capture patterns in histological images that are useful for both cancer grading and subtyping. However, because many of these features lack a clear biological interpretation, pathologists may be reluctant to adopt these features for clinical diagnosis. We examine the utility of biologically interpretable shape-based features for classification of histological renal tumor images. Using Fourier shape descriptors, we extract shape-based features that capture the distribution of stain-enhanced cellular and tissue structures in each image and evaluate these features using a multi-class prediction model. We compare the predictive performance of the shape-based diagnostic model to that of traditional models, i.e., using textural, morphological and topological features. The shape-based model, with an average accuracy of 77%, outperforms or complements traditional models. We identify the most informative shapes for each renal tumor subtype from the top-selected features. Results suggest that these shapes are not only accurate diagnostic features, but also correlate with known biological characteristics of renal tumors. Shape-based analysis of histological renal tumor images accurately classifies disease subtypes and reveals biologically insightful discriminatory features. This method for shape-based analysis can be extended to other histological datasets to aid pathologists in diagnostic and therapeutic decisions

  6. Reporting of quantitative oxygen mapping in EPR imaging

    Science.gov (United States)

    Subramanian, Sankaran; Devasahayam, Nallathamby; McMillan, Alan; Matsumoto, Shingo; Munasinghe, Jeeva P.; Saito, Keita; Mitchell, James B.; Chandramouli, Gadisetti V. R.; Krishna, Murali C.

    2012-01-01

    Oxygen maps derived from electron paramagnetic resonance spectral-spatial imaging (EPRI) are based upon the relaxivity of molecular oxygen with paramagnetic spin probes. This technique can be combined with MRI to facilitate mapping of pO 2 values in specific anatomic locations with high precision. The co-registration procedure, which matches the physical and digital dimensions of EPR and MR images, may present the pO 2 map at the higher MRI resolution, exaggerating the spatial resolution of oxygen, making it difficult to precisely distinguish hypoxic regions from normoxic regions. The latter distinction is critical in monitoring the treatment of cancer by radiation and chemotherapy, since it is well-established that hypoxic regions are three or four times more resistant to treatment compared to normoxic regions. The aim of this article is to describe pO 2 maps based on the intrinsic resolution of EPRI. A spectral parameter that affects the intrinsic spatial resolution of EPRI is the full width at half maximum (FWHM) height of the gradient-free EPR absorption line in frequency-encoded imaging. In single point imaging too, the transverse relaxation times (T2∗) limit the resolution since the signal decays by exp(-tp/T2∗) where the delay time after excitation pulse, t p, is related to the resolution. Although the spin densities of two point objects may be resolved at this separation, it is inadequate to evaluate quantitative changes of pO 2 levels since the linewidths are proportionately affected by pO 2. A spatial separation of at least twice this resolution is necessary to correctly identify a change in pO 2 level. In addition, the pO 2 values are blurred by uncertainties arising from spectral dimensions. Blurring due to noise and low resolution modulates the pO 2 levels at the boundaries of hypoxic and normoxic regions resulting in higher apparent pO 2 levels in hypoxic regions. Therefore, specification of intrinsic resolution and pO 2 uncertainties are

  7. Quantitative HPLC determination of [99mTc]-pertechnetate in radiopharmaceuticals and biological samples: Pt. 1

    International Nuclear Information System (INIS)

    Tianze Zhou; Hirth, W.W.; Heineman, W.R.; Deutsch, Edward

    1988-01-01

    Techniques have been developed which allow HPLC (high performance liquid chromatography) to be used for the quantitative determination of [ 99m Tc]pertechnetate in radiopharmaceuticals and biological samples. An instrumental technique accounts for 99m Tc species which do not elute from the HPLC column, while a chemical technique obviates interferences caused by Sn(II). These two techniques are incorporated into an anion exchange HPLC procedure which is applied to the determination of [ 99m Tc]pertechnetate in 99m Tc-diphosphonate radiopharmaceuticals and biological samples. (author)

  8. Quantitative Clinical Imaging Methods for Monitoring Intratumoral Evolution.

    Science.gov (United States)

    Kim, Joo Yeun; Gatenby, Robert A

    2017-01-01

    images in landscape ecology and, with appropriate application of Darwinian first principles and sophisticated image analytic methods, can be used to estimate regional variations in the molecular properties of cancer cells.We have initially examined this technique in glioblastoma, a malignant brain neoplasm which is morphologically complex and notorious for a fast progression from diagnosis to recurrence and death, making a suitable subject of noninvasive, rapidly repeated assessment of intratumoral evolution. Quantitative imaging analysis of routine clinical MRIs from glioblastoma has identified macroscopic morphologic characteristics which correlate with proteogenomics and prognosis. The key to the accurate detection and forecasting of intratumoral evolution using quantitative imaging analysis is likely to be in the understanding of the synergistic interactions between observable intratumoral subregions and the resulting tumor behavior.

  9. Assessing agreement between preclinical magnetic resonance imaging and histology: An evaluation of their image qualities and quantitative results

    Science.gov (United States)

    Elschner, Cindy; Korn, Paula; Hauptstock, Maria; Schulz, Matthias C.; Range, Ursula; Jünger, Diana; Scheler, Ulrich

    2017-01-01

    One consequence of demographic change is the increasing demand for biocompatible materials for use in implants and prostheses. This is accompanied by a growing number of experimental animals because the interactions between new biomaterials and its host tissue have to be investigated. To evaluate novel materials and engineered tissues the use of non-destructive imaging modalities have been identified as a strategic priority. This provides the opportunity for studying interactions repeatedly with individual animals, along with the advantages of reduced biological variability and decreased number of laboratory animals. However, histological techniques are still the golden standard in preclinical biomaterial research. The present article demonstrates a detailed method comparison between histology and magnetic resonance imaging. This includes the presentation of their image qualities as well as the detailed statistical analysis for assessing agreement between quantitative measures. Exemplarily, the bony ingrowth of tissue engineered bone substitutes for treatment of a cleft-like maxillary bone defect has been evaluated. By using a graphical concordance analysis the mean difference between MRI results and histomorphometrical measures has been examined. The analysis revealed a slightly but significant bias in the case of the bone volume (biasHisto−MRI:Bone volume=2.40 %, p<0.005) and a clearly significant deviation for the remaining defect width (biasHisto−MRI:Defect width=−6.73 %, p≪0.005). But the study although showed a considerable effect of the analyzed section position to the quantitative result. It could be proven, that the bias of the data sets was less originated due to the imaging modalities, but mainly on the evaluation of different slice positions. The article demonstrated that method comparisons not always need the use of an independent animal study, additionally. PMID:28666026

  10. Cold Spring Harbor symposia on quantitative biology. Volume XLVII, Part 1. Structures of DNA

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The proceedings for the 47th Annual Cold Spring Harbor Symposia on Quantitative Biology are presented. This symposium focused on the Structure of DNA. Topics presented covered research in the handedness of DNA, conformational analysis, chemically modified DNA, chemical synthesis of DNA, DNA-protein interactions, DNA within nucleosomes, DNA methylation, DNA replication, gyrases and topoisomerases, recombining and mutating DNA, transcription of DNA and its regulation, the organization of genes along DNA, repetitive DNA and pseudogenes, and origins of replication, centromeres, and teleomeres

  11. Application of LC–MS/MS for quantitative analysis of glucocorticoids and stimulants in biological fluids

    OpenAIRE

    Haneef, Jamshed; Shaharyar, Mohammad; Husain, Asif; Rashid, Mohd; Mishra, Ravinesh; Parveen, Shama; Ahmed, Niyaz; Pal, Manoj; Kumar, Deepak

    2013-01-01

    Liquid chromatography tandem mass chromatography (LCâMS/MS) is an important hyphenated technique for quantitative analysis of drugs in biological fluids. Because of high sensitivity and selectivity, LCâMS/MS has been used for pharmacokinetic studies, metabolites identification in the plasma and urine. This manuscript gives comprehensive analytical review, focusing on chromatographic separation approaches (column packing materials, column length and mobile phase) as well as different acquisiti...

  12. Application of LC–MS/MS for quantitative analysis of glucocorticoids and stimulants in biological fluids

    OpenAIRE

    Haneef, Jamshed; Shaharyar, Mohammad; Husain, Asif; Rashid, Mohd; Mishra, Ravinesh; Parveen, Shama; Ahmed, Niyaz; Pal, Manoj; Kumar, Deepak

    2013-01-01

    Liquid chromatography tandem mass chromatography (LC–MS/MS) is an important hyphenated technique for quantitative analysis of drugs in biological fluids. Because of high sensitivity and selectivity, LC–MS/MS has been used for pharmacokinetic studies, metabolites identification in the plasma and urine. This manuscript gives comprehensive analytical review, focusing on chromatographic separation approaches (column packing materials, column length and mobile phase) as well as different acquisiti...

  13. Cold Spring Harbor symposia on quantitative biology: Volume 49, Recombination at the DNA level

    International Nuclear Information System (INIS)

    1984-01-01

    This volume contains full papers prepared by the participants to the 1984 Cold Springs Harbor Symposia on Quantitative Biology. This year's theme is entitled Recombination at the DNA level. The volume consists of 93 articles grouped into subject areas entitled chromosome mechanics, yeast systems, mammalian homologous recombination, transposons, mu, plant transposons/T4 recombination, topoisomerase, resolvase and gyrase, Escherichia coli general recombination, RecA, repair, leukaryotic enzymes, integration and excision of bacteriophage, site-specific recombination, and recombination in vitro

  14. Toward objective and quantitative evaluation of imaging systems using images of phantoms

    International Nuclear Information System (INIS)

    Gagne, Robert M.; Gallas, Brandon D.; Myers, Kyle J.

    2006-01-01

    The use of imaging phantoms is a common method of evaluating image quality in the clinical setting. These evaluations rely on a subjective decision by a human observer with respect to the faintest detectable signal(s) in the image. Because of the variable and subjective nature of the human-observer scores, the evaluations manifest a lack of precision and a potential for bias. The advent of digital imaging systems with their inherent digital data provides the opportunity to use techniques that do not rely on human-observer decisions and thresholds. Using the digital data, signal-detection theory (SDT) provides the basis for more objective and quantitative evaluations which are independent of a human-observer decision threshold. In a SDT framework, the evaluation of imaging phantoms represents a 'signal-known-exactly/background-known-exactly' ('SKE/BKE') detection task. In this study, we compute the performance of prewhitening and nonprewhitening model observers in terms of the observer signal-to-noise ratio (SNR) for these 'SKE/BKE' tasks. We apply the evaluation methods to a number of imaging systems. For example, we use data from a laboratory implementation of digital radiography and from a full-field digital mammography system in a clinical setting. In addition, we make a comparison of our methods to human-observer scoring of a set of digital images of the CDMAM phantom available from the internet (EUREF--European Reference Organization). In the latter case, we show a significant increase in the precision of the quantitative methods versus the variability in the scores from human observers on the same set of images. As regards bias, the performance of a model observer estimated from a finite data set is known to be biased. In this study, we minimize the bias and estimate the variance of the observer SNR using statistical resampling techniques, namely, 'bootstrapping' and 'shuffling' of the data sets. Our methods provide objective and quantitative evaluation of

  15. The effect of image sharpness on quantitative eye movement data and on image quality evaluation while viewing natural images

    Science.gov (United States)

    Vuori, Tero; Olkkonen, Maria

    2006-01-01

    The aim of the study is to test both customer image quality rating (subjective image quality) and physical measurement of user behavior (eye movements tracking) to find customer satisfaction differences in imaging technologies. Methodological aim is to find out whether eye movements could be quantitatively used in image quality preference studies. In general, we want to map objective or physically measurable image quality to subjective evaluations and eye movement data. We conducted a series of image quality tests, in which the test subjects evaluated image quality while we recorded their eye movements. Results show that eye movement parameters consistently change according to the instructions given to the user, and according to physical image quality, e.g. saccade duration increased with increasing blur. Results indicate that eye movement tracking could be used to differentiate image quality evaluation strategies that the users have. Results also show that eye movements would help mapping between technological and subjective image quality. Furthermore, these results give some empirical emphasis to top-down perception processes in image quality perception and evaluation by showing differences between perceptual processes in situations when cognitive task varies.

  16. Optical Time-of-Flight and Absorbance Imaging of Biologic Media

    Science.gov (United States)

    Benaron, David A.; Stevenson, David K.

    1993-03-01

    Imaging the interior of living bodies with light may assist in the diagnosis and treatment of a number of clinical problems, which include the early detection of tumors and hypoxic cerebral injury. An existing picosecond time-of-flight and absorbance (TOFA) optical system has been used to image a model biologic system and a rat. Model measurements confirmed TOFA principles in systems with a high degree of photon scattering; rat images, which were constructed from the variable time delays experienced by a fixed fraction of early-arriving transmitted photons, revealed identifiable internal structure. A combination of light-based quantitative measurement and TOFA localization may have applications in continuous, noninvasive monitoring for structural imaging and spatial chemometric analysis in humans.

  17. Quantitative study of undersampled recoverability for sparse images in computed tomography

    DEFF Research Database (Denmark)

    Jørgensen, Jakob Heide; Sidky, Emil Y.; Hansen, Per Christian

    2012-01-01

    on artificial random sampling patterns. We establish quantitatively an average-case relation between image sparsity and sufficient number of measurements for recovery, and we show that the transition from non-recovery to recovery is sharp within well-defined classes of simple and semi-realistic test images....... The specific behavior depends on the type of image, but the same quantitative relation holds independently of image size....

  18. Method and apparatus to image biological interactions in plants

    Science.gov (United States)

    Weisenberger, Andrew; Bonito, Gregory M.; Reid, Chantal D.; Smith, Mark Frederick

    2015-12-22

    A method to dynamically image the actual translocation of molecular compounds of interest in a plant root, root system, and rhizosphere without disturbing the root or the soil. The technique makes use of radioactive isotopes as tracers to label molecules of interest and to image their distribution in the plant and/or soil. The method allows for the study and imaging of various biological and biochemical interactions in the rhizosphere of a plant, including, but not limited to, mycorrhizal associations in such regions.

  19. Micro-PIXE for the quantitative imaging of chemical elements in single cells

    International Nuclear Information System (INIS)

    Ortega, R.

    2013-01-01

    Full text: The knowledge of the intracellular distribution of biological relevant metals is important to understand their mechanisms of action in cells, either for physiological, toxicological or pathological processes. However, the direct detection of trace metals in single cells is a challenging task that requires sophisticated analytical developments. The aim of this seminar will be to present the recent achievements in this field using micro-PIXE analysis. The combination of micro-PIXE with RBS (Rutherford Backscattering Spectrometry) and STIM (Scanning Transmission lon Microscopy) allows the quantitative determination of trace metal content within sub-cellular compartments. The application of STlM analysis will be more specifically highlighted as it provides high spatial resolution imaging (<200 nm) and excellent mass sensitivity (<0.1 ng). Application of the STIM-PIXE-RBS methodology is absolutely needed when organic mass loss appears during PIXE-RBS irradiation. This combination of STIM-PIXE-RBS provides fully quantitative determination of trace element content, expressed in μg/g, which is a quite unique capability for micro-PIXE compared to other micro-analytical methods such as the electron and synchrotron X-ray fluorescence or the techniques based on mass spectrometry. Examples of micro-PIXE studies for subcellular imaging of trace elements in the various fields of interest will be presented such as metal-based toxicology, pharmacology, and neuro degeneration [1] R. Ortega, G. Devés, A. Carmona. J. R. Soc. Interface, 6, (2009) S649-S658. (author)

  20. Digital Holographic Microscopy: Quantitative Phase Imaging and Applications in Live Cell Analysis

    Science.gov (United States)

    Kemper, Björn; Langehanenberg, Patrik; Kosmeier, Sebastian; Schlichthaber, Frank; Remmersmann, Christian; von Bally, Gert; Rommel, Christina; Dierker, Christian; Schnekenburger, Jürgen

    The analysis of complex processes in living cells creates a high demand for fast and label-free methods for online monitoring. Widely used fluorescence methods require specific labeling and are often restricted to chemically fixated samples. Thus, methods that offer label-free and minimally invasive detection of live cell processes and cell state alterations are of particular interest. In combination with light microscopy, digital holography provides label-free, multi-focus quantitative phase imaging of living cells. In overview, several methods for digital holographic microscopy (DHM) are presented. First, different experimental setups for the recording of digital holograms and the modular integration of DHM into common microscopes are described. Then the numerical processing of digitally captured holograms is explained. This includes the description of spatial and temporal phase shifting techniques, spatial filtering based reconstruction, holographic autofocusing, and the evaluation of self-interference holograms. Furthermore, the usage of partial coherent light and multi-wavelength approaches is discussed. Finally, potentials of digital holographic microscopy for quantitative cell imaging are illustrated by results from selected applications. It is shown that DHM can be used for automated tracking of migrating cells and cell thickness monitoring as well as for refractive index determination of cells and particles. Moreover, the use of DHM for label-free analysis in fluidics and micro-injection monitoring is demonstrated. The results show that DHM is a highly relevant method that allows novel insights in dynamic cell biology, with applications in cancer research and for drugs and toxicity testing.

  1. Preparation of Biological Samples Containing Metoprolol and Bisoprolol for Applying Methods for Quantitative Analysis

    Directory of Open Access Journals (Sweden)

    Corina Mahu Ştefania

    2015-12-01

    Full Text Available Arterial hypertension is a complex disease with many serious complications, representing a leading cause of mortality. Selective beta-blockers such as metoprolol and bisoprolol are frequently used in the management of hypertension. Numerous analytical methods have been developed for the determination of these substances in biological fluids, such as liquid chromatography coupled with mass spectrometry, gas chromatography coupled with mass spectrometry, high performance liquid chromatography. Due to the complex composition of biological fluids a biological sample pre-treatment before the use of the method for quantitative determination is required in order to remove proteins and potential interferences. The most commonly used methods for processing biological samples containing metoprolol and bisoprolol were identified through a thorough literature search using PubMed, ScienceDirect, and Willey Journals databases. Articles published between years 2005-2015 were reviewed. Protein precipitation, liquid-liquid extraction and solid phase extraction are the main techniques for the extraction of these drugs from plasma, serum, whole blood and urine samples. In addition, numerous other techniques have been developed for the preparation of biological samples, such as dispersive liquid-liquid microextraction, carrier-mediated liquid phase microextraction, hollow fiber-protected liquid phase microextraction, on-line molecularly imprinted solid phase extraction. The analysis of metoprolol and bisoprolol in human plasma, urine and other biological fluids provides important information in clinical and toxicological trials, thus requiring the application of appropriate extraction techniques for the detection of these antihypertensive substances at nanogram and picogram levels.

  2. Introduction to the Symposium "Leading Students and Faculty to Quantitative Biology through Active Learning".

    Science.gov (United States)

    Waldrop, Lindsay D; Miller, Laura A

    2015-11-01

    The broad aim of this symposium and set of associated papers is to motivate the use of inquiry-based, active-learning teaching techniques in undergraduate quantitative biology courses. Practical information, resources, and ready-to-use classroom exercises relevant to physicists, mathematicians, biologists, and engineers are presented. These resources can be used to address the lack of preparation of college students in STEM fields entering the workforce by providing experience working on interdisciplinary and multidisciplinary problems in mathematical biology in a group setting. Such approaches can also indirectly help attract and retain under-represented students who benefit the most from "non-traditional" learning styles and strategies, including inquiry-based, collaborative, and active learning. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  3. Physiological frailty index (PFI): quantitative in-life estimate of individual biological age in mice.

    Science.gov (United States)

    Antoch, Marina P; Wrobel, Michelle; Kuropatwinski, Karen K; Gitlin, Ilya; Leonova, Katerina I; Toshkov, Ilia; Gleiberman, Anatoli S; Hutson, Alan D; Chernova, Olga B; Gudkov, Andrei V

    2017-03-19

    The development of healthspan-extending pharmaceuticals requires quantitative estimation of age-related progressive physiological decline. In humans, individual health status can be quantitatively assessed by means of a frailty index (FI), a parameter which reflects the scale of accumulation of age-related deficits. However, adaptation of this methodology to animal models is a challenging task since it includes multiple subjective parameters. Here we report a development of a quantitative non-invasive procedure to estimate biological age of an individual animal by creating physiological frailty index (PFI). We demonstrated the dynamics of PFI increase during chronological aging of male and female NIH Swiss mice. We also demonstrated acceleration of growth of PFI in animals placed on a high fat diet, reflecting aging acceleration by obesity and provide a tool for its quantitative assessment. Additionally, we showed that PFI could reveal anti-aging effect of mTOR inhibitor rapatar (bioavailable formulation of rapamycin) prior to registration of its effects on longevity. PFI revealed substantial sex-related differences in normal chronological aging and in the efficacy of detrimental (high fat diet) or beneficial (rapatar) aging modulatory factors. Together, these data introduce PFI as a reliable, non-invasive, quantitative tool suitable for testing potential anti-aging pharmaceuticals in pre-clinical studies.

  4. B1 -sensitivity analysis of quantitative magnetization transfer imaging.

    Science.gov (United States)

    Boudreau, Mathieu; Stikov, Nikola; Pike, G Bruce

    2018-01-01

    To evaluate the sensitivity of quantitative magnetization transfer (qMT) fitted parameters to B 1 inaccuracies, focusing on the difference between two categories of T 1 mapping techniques: B 1 -independent and B 1 -dependent. The B 1 -sensitivity of qMT was investigated and compared using two T 1 measurement methods: inversion recovery (IR) (B 1 -independent) and variable flip angle (VFA), B 1 -dependent). The study was separated into four stages: 1) numerical simulations, 2) sensitivity analysis of the Z-spectra, 3) healthy subjects at 3T, and 4) comparison using three different B 1 imaging techniques. For typical B 1 variations in the brain at 3T (±30%), the simulations resulted in errors of the pool-size ratio (F) ranging from -3% to 7% for VFA, and -40% to > 100% for IR, agreeing with the Z-spectra sensitivity analysis. In healthy subjects, pooled whole-brain Pearson correlation coefficients for F (comparing measured double angle and nominal flip angle B 1 maps) were ρ = 0.97/0.81 for VFA/IR. This work describes the B 1 -sensitivity characteristics of qMT, demonstrating that it varies substantially on the B 1 -dependency of the T 1 mapping method. Particularly, the pool-size ratio is more robust against B 1 inaccuracies if VFA T 1 mapping is used, so much so that B 1 mapping could be omitted without substantially biasing F. Magn Reson Med 79:276-285, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  5. Thallium-201 infusion imaging and quantitation of experimental reactive hyperemia

    International Nuclear Information System (INIS)

    Alazraki, N.; Kralios, A.C.; Wooten, W.W.

    1985-01-01

    Accurate quantitation of coronary artery blood flow may be important complimentary information to percent vessel stenosis determined by coronary angiography. Whether T1-201 can be used to identify and quantify rapid changes in blood flow through a major coronary artery was examined experimentally in open chest dogs with a cannulated, servoperfursed circumflex or left anterior descending coronary artery at a constant coronary perfusion pressure of 80mmHg. Blood flow with T1-201 (5 μCi/cc of blood) through the coronary artery was continuously recorded using a tubular electromagnetic flow probe. A mobile scintillation camera interfaced to a nuclear medicine computer was used to image and record myocardial count accumulation plotted as a function of time during the T1-201 infusion. Blood flow was calculated as the slope of myocardial count accumulation against time. Simulating total occlusion, perfusion was stopped for several 20 sec. periods to elicit reactive hyperemic responses. The changes in flow as measured by the flow probe, and by T1-201 were compared. Results demonstrated that scintillation camera recordings depicted coronary flow changes with a high degree of correlation to electromagnetic flow probe recordings (r = 0.85). Reactive hyperemia reaching a three-fold increase in flow was accurately demonstrated by a three-fold increase in slope of the T1-201 counts plotted against time. Any flow change by T1-201 corresponded in time to detection of similar flow changes by flow probe recordings. These findings support further development of this technique for eventual clinical use

  6. Quantitative magnetic resonance imaging in limb-girdle muscular dystrophy 2I

    DEFF Research Database (Denmark)

    Willis, Tracey A; Hollingsworth, Kieren G; Coombs, Anna

    2014-01-01

    -related protein (FKRP) gene were recruited. In each patient, T1-weighted (T1w) imaging was assessed by qualitative grading for 15 individual lower limb muscles and quantitative Dixon imaging was analysed on 14 individual lower limb muscles by region of interest analysis. We described the pattern and appearance......) that the quantitative Dixon technique is an objective quantitative marker of disease and (ii) new observations of gender specific patterns of muscle involvement in LGMD2I....

  7. Molecular Imaging of Tumors Using a Quantitative T1 Mapping Technique via Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Kelsey Herrmann

    2015-07-01

    Full Text Available Magnetic resonance imaging (MRI of glioblastoma multiforme (GBM with molecular imaging agents would allow for the specific localization of brain tumors. Prior studies using T1-weighted MR imaging demonstrated that the SBK2-Tris-(Gd-DOTA3 molecular imaging agent labeled heterotopic xenograft models of brain tumors more intensely than non-specific contrast agents using conventional T1-weighted imaging techniques. In this study, we used a dynamic quantitative T1 mapping strategy to more objectively compare intra-tumoral retention of the SBK2-Tris-(Gd-DOTA3 agent over time in comparison to non-targeted control agents. Our results demonstrate that the targeted SBK2-Tris-(Gd-DOTA3 agent, a scrambled-Tris-(Gd-DOTA3 control agent, and the non-specific clinical contrast agent Optimark™ all enhanced flank tumors of human glioma cells with similar maximal changes on T1 mapping. However, the retention of the agents differs. The non-specific agents show significant recovery within 20 min by an increase in T1 while the specific agent SBK2-Tris-(Gd-DOTA3 is retained in the tumors and shows little recovery over 60 min. The retention effect is demonstrated by percent change in T1 values and slope calculations as well as by calculations of gadolinium concentration in tumor compared to muscle. Quantitative T1 mapping demonstrates the superior binding and retention in tumors of the SBK2-Tris-(Gd-DOTA3 agent over time compared to the non-specific contrast agent currently in clinical use.

  8. Implied Movement in Static Images Reveals Biological Timing Processing

    Directory of Open Access Journals (Sweden)

    Francisco Carlos Nather

    2015-08-01

    Full Text Available Visual perception is adapted toward a better understanding of our own movements than those of non-conspecifics. The present study determined whether time perception is affected by pictures of different species by considering the evolutionary scale. Static (“S” and implied movement (“M” images of a dog, cheetah, chimpanzee, and man were presented to undergraduate students. S and M images of the same species were presented in random order or one after the other (S-M or M-S for two groups of participants. Movement, Velocity, and Arousal semantic scales were used to characterize some properties of the images. Implied movement affected time perception, in which M images were overestimated. The results are discussed in terms of visual motion perception related to biological timing processing that could be established early in terms of the adaptation of humankind to the environment.

  9. Quantitative model analysis with diverse biological data: applications in developmental pattern formation.

    Science.gov (United States)

    Pargett, Michael; Umulis, David M

    2013-07-15

    Mathematical modeling of transcription factor and signaling networks is widely used to understand if and how a mechanism works, and to infer regulatory interactions that produce a model consistent with the observed data. Both of these approaches to modeling are informed by experimental data, however, much of the data available or even acquirable are not quantitative. Data that is not strictly quantitative cannot be used by classical, quantitative, model-based analyses that measure a difference between the measured observation and the model prediction for that observation. To bridge the model-to-data gap, a variety of techniques have been developed to measure model "fitness" and provide numerical values that can subsequently be used in model optimization or model inference studies. Here, we discuss a selection of traditional and novel techniques to transform data of varied quality and enable quantitative comparison with mathematical models. This review is intended to both inform the use of these model analysis methods, focused on parameter estimation, and to help guide the choice of method to use for a given study based on the type of data available. Applying techniques such as normalization or optimal scaling may significantly improve the utility of current biological data in model-based study and allow greater integration between disparate types of data. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Quantitative modeling of gene networks of biological systems using fuzzy Petri nets and fuzzy sets

    Directory of Open Access Journals (Sweden)

    Raed I. Hamed

    2018-01-01

    Full Text Available Quantitative demonstrating of organic frameworks has turned into an essential computational methodology in the configuration of novel and investigation of existing natural frameworks. Be that as it may, active information that portrays the framework's elements should be known keeping in mind the end goal to get pertinent results with the routine displaying strategies. This information is frequently robust or even difficult to get. Here, we exhibit a model of quantitative fuzzy rational demonstrating approach that can adapt to obscure motor information and hence deliver applicable results despite the fact that dynamic information is fragmented or just dubiously characterized. Besides, the methodology can be utilized as a part of the blend with the current cutting edge quantitative demonstrating strategies just in specific parts of the framework, i.e., where the data are absent. The contextual analysis of the methodology suggested in this paper is performed on the model of nine-quality genes. We propose a kind of FPN model in light of fuzzy sets to manage the quantitative modeling of biological systems. The tests of our model appear that the model is practical and entirely powerful for information impersonation and thinking of fuzzy expert frameworks.

  11. Synchronous ultrasonic Doppler imaging of magnetic microparticles in biological tissues

    Energy Technology Data Exchange (ETDEWEB)

    Pyshnyi, Michael Ph. [Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, Moscow 119991 (Russian Federation); Kuznetsov, Oleg A. [Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, Moscow 119991 (Russian Federation)], E-mail: kuznetsov_oa@yahoo.com; Pyshnaya, Svetlana V.; Nechitailo, Galina S.; Kuznetsov, Anatoly A. [Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, Moscow 119991 (Russian Federation)

    2009-05-15

    We considered applicability of acoustic imaging technology for the detection of magnetic microparticles and nanoparticles inside soft biological tissues. Such particles are widely used for magnetically targeted drug delivery and magnetic hyperthermia. We developed a new method of ultrasonic synchronous tissue Doppler imaging with magnetic modulation for in vitro and in vivo detection and visualization of magnetic ultradisperse objects in soft tissues. Prototype hardware with appropriate software was produced and the method was successfully tested on magnetic microparticles injected into an excised pig liver.

  12. Synchronous ultrasonic Doppler imaging of magnetic microparticles in biological tissues

    International Nuclear Information System (INIS)

    Pyshnyi, Michael Ph.; Kuznetsov, Oleg A.; Pyshnaya, Svetlana V.; Nechitailo, Galina S.; Kuznetsov, Anatoly A.

    2009-01-01

    We considered applicability of acoustic imaging technology for the detection of magnetic microparticles and nanoparticles inside soft biological tissues. Such particles are widely used for magnetically targeted drug delivery and magnetic hyperthermia. We developed a new method of ultrasonic synchronous tissue Doppler imaging with magnetic modulation for in vitro and in vivo detection and visualization of magnetic ultradisperse objects in soft tissues. Prototype hardware with appropriate software was produced and the method was successfully tested on magnetic microparticles injected into an excised pig liver.

  13. Quantitative imaging of magnetic nanoparticles by magneto-relaxometric tomography for biomedical applications

    International Nuclear Information System (INIS)

    Liebl, Maik

    2016-01-01

    generate a time-multiplexed sequence of precise magnetic fields for spatially constrained magnetizing of the MNP distribution. The unit has been integrated into a sensor system containing 304 superconducting quantum interference devices (SQUIDs) used for the spatially resolved detection of the MNP responses after each magnetizing. Furthermore, for evaluation of MRX tomography MNP phantoms reflecting the MNP distribution after magnetic drug targeting therapy in animals were designed and implemented. Using these phantoms, MNP distributions with clinical MNP doses in the milligram range could be quantitatively reconstructed by MRX tomography within a field of view up to 600 cm³ and a spatial resolution of a few cubic centimeters. The deviation between the quantified and nominal MNP amount was found to be below 10%. With the present experimental setup MRX tomography measurements of a complete MNP distribution were performed within the typical anesthesia time interval of a few minutes prevailing in preclinical animal studies. By implementing advanced magnetizing sequences this measurement time of the MRX tomography setup could be reduced to below 30 s. Finally, using the same MRX tomography setup a binding state specific quantitative imaging of MNP distributions was achieved by incorporating the temporal MNP relaxation behavior into the reconstruction. Hence, MRX tomography has the potential to image the influence of the local biological environment on the physical properties of the MNPs. The presented MRX tomography setup allows for sensitive and specific spatially resolved 3D quantification of MNPs in small animals. This represents an important step towards the development of a clinical imaging tool for the control and assessment of MNP based cancer treatments. Moreover, by adjusting the excitation coils the field of view could be easily enlarged making MRX tomography quite conceivable for human application.

  14. Quantitative approach on SEM images of microstructure of clay soils

    Institute of Scientific and Technical Information of China (English)

    施斌; 李生林; M.Tolkachev

    1995-01-01

    The working principles of Videolab Image Processing System (VIPS), the examining methods of orientation of microstructural units of clay soils and analysing results on SEM images of some typical microstructures of clay soils using the VIPS are introduced.

  15. Quantitative measurement of holographic image quality using Adobe Photoshop

    International Nuclear Information System (INIS)

    Wesly, E

    2013-01-01

    Measurement of the characteristics of image holograms in regards to diffraction efficiency and signal to noise ratio are demonstrated, using readily available digital cameras and image editing software. Illustrations and case studies, using currently available holographic recording materials, are presented.

  16. Quantitative measurement of holographic image quality using Adobe Photoshop

    Science.gov (United States)

    Wesly, E.

    2013-02-01

    Measurement of the characteristics of image holograms in regards to diffraction efficiency and signal to noise ratio are demonstrated, using readily available digital cameras and image editing software. Illustrations and case studies, using currently available holographic recording materials, are presented.

  17. Wavelet analysis of biological tissue's Mueller-matrix images

    Science.gov (United States)

    Tomka, Yu. Ya.

    2008-05-01

    The interrelations between statistics of the 1st-4th orders of the ensemble of Mueller-matrix images and geometric structure of birefringent architectonic nets of different morphological structure have been analyzed. The sensitivity of asymmetry and excess of statistic distributions of matrix elements Cik to changing of orientation structure of optically anisotropic protein fibrils of physiologically normal and pathologically changed biological tissues architectonics has been shown.

  18. Macro-/micro-environment-sensitive chemosensing and biological imaging.

    Science.gov (United States)

    Yang, Zhigang; Cao, Jianfang; He, Yanxia; Yang, Jung Ho; Kim, Taeyoung; Peng, Xiaojun; Kim, Jong Seung

    2014-07-07

    Environment-related parameters, including viscosity, polarity, temperature, hypoxia, and pH, play pivotal roles in controlling the physical or chemical behaviors of local molecules. In particular, in a biological environment, such factors predominantly determine the biological properties of the local environment or reflect corresponding status alterations. Abnormal changes in these factors would cause cellular malfunction or become a hallmark of the occurrence of severe diseases. Therefore, in recent years, they have increasingly attracted research interest from the fields of chemistry and biological chemistry. With the emergence of fluorescence sensing and imaging technology, several fluorescent chemosensors have been designed to respond to such parameters and to further map their distributions and variations in vitro/in vivo. In this work, we have reviewed a number of various environment-responsive chemosensors related to fluorescent recognition of viscosity, polarity, temperature, hypoxia, and pH that have been reported thus far.

  19. Qualitative and quantitative analysis of reconstructed images using projections with noises

    International Nuclear Information System (INIS)

    Lopes, R.T.; Assis, J.T. de

    1988-01-01

    The reconstruction of a two-dimencional image from one-dimensional projections in an analytic algorithm ''convolution method'' is simulated on a microcomputer. In this work it was analysed the effects caused in the reconstructed image in function of the number of projections and noise level added to the projection data. Qualitative and quantitative (distortion and image noise) comparison were done with the original image and the reconstructed images. (author) [pt

  20. Towards automatic quantitative analysis of cardiac MR perfusion images

    NARCIS (Netherlands)

    Breeuwer, M.; Quist, M.; Spreeuwers, Lieuwe Jan; Paetsch, I.; Al-Saadi, N.; Nagel, E.

    2001-01-01

    Magnetic Resonance Imaging (MRI) is a powerful technique for imaging cardiovascular diseases. The introduction of cardiovascular MRI into clinical practice is however hampered by the lack of efficient and reliable automatic image analysis methods. This paper focuses on the automatic evaluation of

  1. Quantitative imaging through a spectrograph. 1. Principles and theory.

    NARCIS (Netherlands)

    Tolboom, R.A.L.; Dam, N.J.; Meulen, J.J. ter; Mooij, J.M.; Maassen, J.D.M.

    2004-01-01

    Laser-based optical diagnostics, such as planar laser-induced fluorescence and, especially, Raman imaging, often require selective spectral filtering. We advocate the use of an imaging spectrograph with a broad entrance slit as a spectral filter for two-dimensional imaging. A spectrograph in this

  2. Flexible automated approach for quantitative liquid handling of complex biological samples.

    Science.gov (United States)

    Palandra, Joe; Weller, David; Hudson, Gary; Li, Jeff; Osgood, Sarah; Hudson, Emily; Zhong, Min; Buchholz, Lisa; Cohen, Lucinda H

    2007-11-01

    A fully automated protein precipitation technique for biological sample preparation has been developed for the quantitation of drugs in various biological matrixes. All liquid handling during sample preparation was automated using a Hamilton MicroLab Star Robotic workstation, which included the preparation of standards and controls from a Watson laboratory information management system generated work list, shaking of 96-well plates, and vacuum application. Processing time is less than 30 s per sample or approximately 45 min per 96-well plate, which is then immediately ready for injection onto an LC-MS/MS system. An overview of the process workflow is discussed, including the software development. Validation data are also provided, including specific liquid class data as well as comparative data of automated vs manual preparation using both quality controls and actual sample data. The efficiencies gained from this automated approach are described.

  3. Automated quantitative assessment of proteins' biological function in protein knowledge bases.

    Science.gov (United States)

    Mayr, Gabriele; Lepperdinger, Günter; Lackner, Peter

    2008-01-01

    Primary protein sequence data are archived in databases together with information regarding corresponding biological functions. In this respect, UniProt/Swiss-Prot is currently the most comprehensive collection and it is routinely cross-examined when trying to unravel the biological role of hypothetical proteins. Bioscientists frequently extract single entries and further evaluate those on a subjective basis. In lieu of a standardized procedure for scoring the existing knowledge regarding individual proteins, we here report about a computer-assisted method, which we applied to score the present knowledge about any given Swiss-Prot entry. Applying this quantitative score allows the comparison of proteins with respect to their sequence yet highlights the comprehension of functional data. pfs analysis may be also applied for quality control of individual entries or for database management in order to rank entry listings.

  4. Automated Quantitative Assessment of Proteins' Biological Function in Protein Knowledge Bases

    Directory of Open Access Journals (Sweden)

    Gabriele Mayr

    2008-01-01

    Full Text Available Primary protein sequence data are archived in databases together with information regarding corresponding biological functions. In this respect, UniProt/Swiss-Prot is currently the most comprehensive collection and it is routinely cross-examined when trying to unravel the biological role of hypothetical proteins. Bioscientists frequently extract single entries and further evaluate those on a subjective basis. In lieu of a standardized procedure for scoring the existing knowledge regarding individual proteins, we here report about a computer-assisted method, which we applied to score the present knowledge about any given Swiss-Prot entry. Applying this quantitative score allows the comparison of proteins with respect to their sequence yet highlights the comprehension of functional data. pfs analysis may be also applied for quality control of individual entries or for database management in order to rank entry listings.

  5. Abstracts of papers presented at the LVIII Cold Spring Harbor Symposium on quantitative Biology: DNA and chromosomes

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    This volume contains the abstracts of oral and poster presentations made at the LVIII Cold Spring Harbor Symposium on Quantitative Biology entitles DNA & Chromosomes. The meeting was held June 2--June 9, 1993 at Cold Spring Harbor, New York.

  6. The use of contrast agent for imaging biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Dammer, J; Sopko, V; Jakubek, J [Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, CZ 12800 Prague 2 (Czech Republic); Weyda, F, E-mail: jiri.dammer@utef.cvut.cz [Biological center of the Academy of Sciences of the Czech Republic, Institute of Entomology, Branisovska 31, CZ-37005 Ceske Budejovice (Czech Republic)

    2011-01-15

    The technique of X-ray transmission imaging has been available for over a century and is still among the fastest and easiest approaches to the studies of internal structure of biological samples. Recent advances in semiconductor technology have led to the development of new types of X-ray detectors with direct conversion of interacting X-ray photon to an electric signal. Semiconductor pixel detectors seem to be specially promising; compared to the film technique, they provide single-quantum and real-time digital information about the objects being studied. We describe the recently developed radiographic apparatus, equipped with Medipix2 semiconductor pixel detector. The detector is used as an imager that counts individual photons of ionizing radiation, emitted by an X-ray tube (micro- or nano-focus FeinFocus). Thanks to the wide dynamic range of the Medipix2 detector and its high spatial resolution better than 1{mu}m, the setup is particularly suitable for radiographic imaging of small biological samples, including in-vivo observations with contrast agent (Optiray). Along with the description of the apparatus we provide examples of the use iodine contrast agent as a tracer in various insects as model organisms. The motivation of our work is to develop our imaging techniques as non-destructive and non-invasive. Microradiographic imaging helps detect organisms living in a not visible environment, visualize the internal biological processes and also to resolve the details of their body (morphology). Tiny live insects are an ideal object for our studies.

  7. Quantitative Analysis of Range Image Patches by NEB Method

    Directory of Open Access Journals (Sweden)

    Wang Wen

    2017-01-01

    Full Text Available In this paper we analyze sampled high dimensional data with the NEB method from a range image database. Select a large random sample of log-valued, high contrast, normalized, 8×8 range image patches from the Brown database. We make a density estimator and we establish 1-dimensional cell complexes from the range image patch data. We find topological properties of 8×8 range image patches, prove that there exist two types of subsets of 8×8 range image patches modelled as a circle.

  8. Life at the Common Denominator: Mechanistic and Quantitative Biology for the Earth and Space Sciences

    Science.gov (United States)

    Hoehler, Tori M.

    2010-01-01

    The remarkable challenges and possibilities of the coming few decades will compel the biogeochemical and astrobiological sciences to characterize the interactions between biology and its environment in a fundamental, mechanistic, and quantitative fashion. The clear need for integrative and scalable biology-environment models is exemplified in the Earth sciences by the challenge of effectively addressing anthropogenic global change, and in the space sciences by the challenge of mounting a well-constrained yet sufficiently adaptive and inclusive search for life beyond Earth. Our understanding of the life-planet interaction is still, however, largely empirical. A variety of approaches seek to move from empirical to mechanistic descriptions. One approach focuses on the relationship between biology and energy, which is at once universal (all life requires energy), unique (life manages energy flow in a fashion not seen in abiotic systems), and amenable to characterization and quantification in thermodynamic terms. Simultaneously, a focus on energy flow addresses a critical point of interface between life and its geological, chemical, and physical environment. Characterizing and quantifying this relationship for life on Earth will support the development of integrative and predictive models for biology-environment dynamics. Understanding this relationship at its most fundamental level holds potential for developing concepts of habitability and biosignatures that can optimize astrobiological exploration strategies and are extensible to all life.

  9. Quantitative computational models of molecular self-assembly in systems biology.

    Science.gov (United States)

    Thomas, Marcus; Schwartz, Russell

    2017-05-23

    Molecular self-assembly is the dominant form of chemical reaction in living systems, yet efforts at systems biology modeling are only beginning to appreciate the need for and challenges to accurate quantitative modeling of self-assembly. Self-assembly reactions are essential to nearly every important process in cell and molecular biology and handling them is thus a necessary step in building comprehensive models of complex cellular systems. They present exceptional challenges, however, to standard methods for simulating complex systems. While the general systems biology world is just beginning to deal with these challenges, there is an extensive literature dealing with them for more specialized self-assembly modeling. This review will examine the challenges of self-assembly modeling, nascent efforts to deal with these challenges in the systems modeling community, and some of the solutions offered in prior work on self-assembly specifically. The review concludes with some consideration of the likely role of self-assembly in the future of complex biological system models more generally.

  10. Quantitative imaging of a non-combusting diesel spray using structured laser illumination planar imaging

    Science.gov (United States)

    Berrocal, E.; Kristensson, E.; Hottenbach, P.; Aldén, M.; Grünefeld, G.

    2012-12-01

    Due to its transient nature, high atomization process, and rapid generation of fine evaporating droplets, diesel sprays have been, and still remain, one of the most challenging sprays to be fully analyzed and understood by means of non-intrusive diagnostics. The main limitation of laser techniques for quantitative measurements of diesel sprays concerns the detection of the multiple light scattering resulting from the high optical density of such a scattering medium. A second limitation is the extinction of the incident laser radiation as it crosses the spray, as well as the attenuation of the signal which is to be detected. All these issues have strongly motivated, during the past decade, the use of X-ray instead of visible light for dense spray diagnostics. However, we demonstrate in this paper that based on an affordable Nd:YAG laser system, structured laser illumination planar imaging (SLIPI) can provide accurate quantitative description of a non-reacting diesel spray injected at 1,100 bar within a room temperature vessel pressurized at 18.6 bar. The technique is used at λ = 355 nm excitation wavelength with 1.0 mol% TMPD dye concentration, for simultaneous LIF/Mie imaging. Furthermore, a novel dual-SLIPI configuration is tested with Mie scattering detection only. The results confirm that a mapping of both the droplet Sauter mean diameter and extinction coefficient can be obtained by such complementary approaches. These new insights are provided in this article at late times after injection start. It is demonstrated that the application of SLIPI to diesel sprays provides valuable quantitative information which was not previously accessible.

  11. Study on methods of quantitative analysis of the biological thin samples in EM X-ray microanalysis

    International Nuclear Information System (INIS)

    Zhang Detian; Zhang Xuemin; He Kun; Yang Yi; Zhang Sa; Wang Baozhen

    2000-01-01

    Objective: To study the methods of quantitative analysis of the biological thin samples. Methods: Hall theory was used to study the qualitative analysis, background subtraction, peel off overlap peaks; external radiation and aberrance of spectra. Results: The results of reliable qualitative analysis and precise quantitative analysis were achieved. Conclusion: The methods for analysis of the biological thin samples in EM X-ray microanalysis can be used in biomedical research

  12. Quantitatively differentiating microstructural variations of skeletal muscle tissues by multispectral Mueller matrix imaging

    Science.gov (United States)

    Dong, Yang; He, Honghui; He, Chao; Ma, Hui

    2016-10-01

    Polarized light is sensitive to the microstructures of biological tissues and can be used to detect physiological changes. Meanwhile, spectral features of the scattered light can also provide abundant microstructural information of tissues. In this paper, we take the backscattering polarization Mueller matrix images of bovine skeletal muscle tissues during the 24-hour experimental time, and analyze their multispectral behavior using quantitative Mueller matrix parameters. In the processes of rigor mortis and proteolysis of muscle samples, multispectral frequency distribution histograms (FDHs) of the Mueller matrix elements can reveal rich qualitative structural information. In addition, we analyze the temporal variations of the sample using the multispectral Mueller matrix transformation (MMT) parameters. The experimental results indicate that the different stages of rigor mortis and proteolysis for bovine skeletal muscle samples can be judged by these MMT parameters. The results presented in this work show that combining with the multispectral technique, the FDHs and MMT parameters can characterize the microstructural variation features of skeletal muscle tissues. The techniques have the potential to be used as tools for quantitative assessment of meat qualities in food industry.

  13. Classification of quantitative light-induced fluorescence images using convolutional neural network

    NARCIS (Netherlands)

    Imangaliyev, S.; van der Veen, M.H.; Volgenant, C.M.C.; Loos, B.G.; Keijser, B.J.F.; Crielaard, W.; Levin, E.; Lintas, A.; Rovetta, S.; Verschure, P.F.M.J.; Villa, A.E.P.

    2017-01-01

    Images are an important data source for diagnosis of oral diseases. The manual classification of images may lead to suboptimal treatment procedures due to subjective errors. In this paper an image classification algorithm based on Deep Learning framework is applied to Quantitative Light-induced

  14. Quantitative PET imaging with the 3T MR-BrainPET

    International Nuclear Information System (INIS)

    Weirich, C.; Scheins, J.; Lohmann, P.; Tellmann, L.; Byars, L.; Michel, C.; Rota Kops, E.; Brenner, D.; Herzog, H.; Shah, N.J.

    2013-01-01

    The new hybrid imaging technology of MR-PET allows for simultaneous acquisition of versatile MRI contrasts and the quantitative metabolic imaging with PET. In order to achieve the quantification of PET images with minimal residual error the application of several corrections is crucial. In this work we present our results on quantification with the 3T MR BrainPET scanner

  15. Ion beam induced fluorescence imaging in biological systems

    International Nuclear Information System (INIS)

    Bettiol, Andrew A.; Mi, Zhaohong; Vanga, Sudheer Kumar; Chen, Ce-belle; Tao, Ye; Watt, Frank

    2015-01-01

    Imaging fluorescence generated by MeV ions in biological systems such as cells and tissue sections requires a high resolution beam (<100 nm), a sensitive detection system and a fluorescent probe that has a high quantum efficiency and low bleaching rate. For cutting edge applications in bioimaging, the fluorescence imaging technique needs to break the optical diffraction limit allowing for sub-cellular structure to be visualized, leading to a better understanding of cellular function. In a nuclear microprobe this resolution requirement can be readily achieved utilizing low beam current techniques such as Scanning Transmission Ion Microscopy (STIM). In recent times, we have been able to extend this capability to fluorescence imaging through the development of a new high efficiency fluorescence detection system, and through the use of new novel fluorescent probes that are resistant to ion beam damage (bleaching). In this paper we demonstrate ion beam induced fluorescence imaging in several biological samples, highlighting the advantages and challenges associated with using this technique

  16. Biological elements carry out optical tasks in coherent imaging systems

    Science.gov (United States)

    Ferraro, P.; Bianco, V.; Paturzo, M.; Miccio, L.; Memmolo, P.; Merola, F.; Marchesano, V.

    2016-03-01

    We show how biological elements, like live bacteria species and Red Blood Cells (RBCs) can accomplish optical functionalities in DH systems. Turbid media allow coherent microscopy despite the strong light scattering these provoke, acting on light just as moving diffusers. Furthermore, a turbid medium can have positive effects on a coherent imaging system, providing resolution enhancement and mimicking the action of noise decorrelation devices, thus yielding an image quality significantly higher than the quality achievable through a transparent medium in similar recording conditions. Besides, suspended RBCs are demonstrated to behave as controllable liquid micro-lenses, opening new possibilities in biophotonics for endoscopy imaging purposes, as well as telemedicine for point-of-care diagnostics in developing countries and low-resource settings.

  17. THz near-field imaging of biological tissues employing synchrotronradiation

    Energy Technology Data Exchange (ETDEWEB)

    Schade, Ulrich; Holldack, Karsten; Martin, Michael C.; Fried,Daniel

    2004-12-23

    Terahertz scanning near-field infrared microscopy (SNIM) below 1 THz is demonstrated. The near-field technique benefits from the broadband and highly brilliant coherent synchrotron radiation (CSR) from an electron storage ring and from a detection method based on locking onto the intrinsic time structure of the synchrotron radiation. The scanning microscope utilizes conical wave guides as near-field probes with apertures smaller than the wavelength. Different cone approaches have been investigated to obtain maximum transmittance. Together with a Martin-Puplett spectrometer the set-up enables spectroscopic mapping of the transmittance of samples well below the diffraction limit. Spatial resolution down to about lambda/40 at 2 wavenumbers (0.06 THz) is derived from the transmittance spectra of the near-field probes. The potential of the technique is exemplified by imaging biological samples. Strongly absorbing living leaves have been imaged in transmittance with a spatial resolution of 130 mu-m at about 12 wave numbers (0.36 THz). The THz near-field images reveal distinct structural differences of leaves from different plants investigated. The technique presented also allows spectral imaging of bulky organic tissues. Human teeth samples of various thicknesses have been imaged between 2 and 20 wavenumbers (between 0.06and 0.6 THz). Regions of enamel and dentin within tooth samples are spatially and spectrally resolved, and buried caries lesions are imaged through both the outer enamel and into the underlying dentin.

  18. Quantitative imaging studies with PET VI. Project II

    International Nuclear Information System (INIS)

    Copper, M.; Chen, C.T.; Yasillo, N.; Gatley, J.; Ortega, C.; DeJesus, O.; Friedman, A.

    1985-01-01

    This project is focused upon the development of hardware and software to improve PET image analysis and upon clinical applications of PET. In this report the laboratory's progress in various attenuation correction methods for brain imaging are described. The use of time-of-flight information for image reconstruction is evaluated. The location of dopamine D1 and D2 receptors in brain was found to be largely in the basal ganghia. 1 tab. (DT)

  19. Quantitating morphological changes in biological samples during scanning electron microscopy sample preparation with correlative super-resolution microscopy.

    Science.gov (United States)

    Zhang, Ying; Huang, Tao; Jorgens, Danielle M; Nickerson, Andrew; Lin, Li-Jung; Pelz, Joshua; Gray, Joe W; López, Claudia S; Nan, Xiaolin

    2017-01-01

    Sample preparation is critical to biological electron microscopy (EM), and there have been continuous efforts on optimizing the procedures to best preserve structures of interest in the sample. However, a quantitative characterization of the morphological changes associated with each step in EM sample preparation is currently lacking. Using correlative EM and superresolution microscopy (SRM), we have examined the effects of different drying methods as well as osmium tetroxide (OsO4) post-fixation on cell morphology during scanning electron microscopy (SEM) sample preparation. Here, SRM images of the sample acquired under hydrated conditions were used as a baseline for evaluating morphological changes as the sample went through SEM sample processing. We found that both chemical drying and critical point drying lead to a mild cellular boundary retraction of ~60 nm. Post-fixation by OsO4 causes at least 40 nm additional boundary retraction. We also found that coating coverslips with adhesion molecules such as fibronectin prior to cell plating helps reduce cell distortion from OsO4 post-fixation. These quantitative measurements offer useful information for identifying causes of cell distortions in SEM sample preparation and improving current procedures.

  20. A quantitative image quality comparison of four different image guided radiotherapy devices

    International Nuclear Information System (INIS)

    Stuetzel, Julia; Oelfke, Uwe; Nill, Simeon

    2008-01-01

    Purpose: A study to quantitatively compare the image quality of four different image guided radiotherapy (IGRT) devices based on phantom measurements with respect to the additional dose delivered to the patient. Methods: Images of three different head-sized phantoms (diameter 16-18 cm) were acquired with the following four IGRT-CT solutions: (i) the Siemens Primatom single slice fan beam computed tomography (CT) scanner with an acceleration voltage of 130 kV, (ii) a Tomotherapy HI-ART II unit using a fan beam scanner with an energy of 3.5 MeV and (iii) the Siemens Artiste prototype, providing the possibility to perform kV (121 kV) and MV (6 MV) cone beam (CB) CTs. For each device three scan protocols (named low, normal, high) were selected to yield the same weighted computed tomography dose index (CTDI w ). Based on the individual inserts of the different phantoms the image quality achieved with each device at a certain dose level was characterized in terms of homogeneity, spatial resolution, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and electron density-to-CT-number conversion. Results: Based on the current findings for head-sized phantoms all devices show an electron density-to-CT-number conversion almost independent of the imaging parameters and hence can be suited for treatment planning purposes. The evaluation of the image quality, however, points out clear differences due to the different energies and geometries. The Primatom standard CT scanner shows throughout the best performance, especially for soft tissue contrast and spatial resolution with low imaging doses. Reasonable soft tissue contrast can be obtained with slightly higher doses compared to the CT scanner with the kVCB and the Tomotherapy unit. In order to get similar results with the MVCB system a much higher dose needs to be applied to the patient. Conclusion: Considering the entire investigations, especially in terms of contrast and spatial resolution, a rough tendency for

  1. Quantitation of biological retinoids by high-pressure liquid chromatography: primary internal standardization using tritiated retinoids

    International Nuclear Information System (INIS)

    Cullum, M.E.; Zile, M.H.

    1986-01-01

    A single method is described for quantitation of 14 retinoids found in biological material. The method consists of reversed-phase HPLC, internal standardization, and carrier extraction procedures with three synthetic retinoids. Primary standardization of HPLC uv detector is achieved using tritiated all-trans-retinoic acid, all-trans-retinol, all-trans-retinyl palmitate, and all-trans-retinyl acetate. Extraction methods are standardized by correlating the uv absorbance of retinoids at 340 nm with radioactivity of tritiated retinoids of known specific activity. Quantitation of 10 pg of tritiated or 5 ng of nonradioactive retinoid per 0.1 g sample in a polarity range from 4-oxo-retinoic acid to retinyl stearate can be achieved in a single, 50-min chromatographic run. A single HPLC pump, a C 18 reversed-phased analytical column, a multistep three-solvent gradient, and inexpensive solvents based on methanol, water, and chloroform comprise this cost-effective chromatographic system. Our primary standardization method allows investigators employing different procedures to compare results between laboratories by standardizing the HPLC uv detector with commercially available tritiated retinoids. With this method we were able to quantitate nanomolar amounts of endogenous retinoic acids and retinyl esters, that HPLC uv only conditions usually would not detect in the circulation and liver of rats under physiological conditions

  2. Electronic imaging systems for quantitative electrophoresis of DNA

    International Nuclear Information System (INIS)

    Sutherland, J.C.

    1989-01-01

    Gel electrophoresis is one of the most powerful and widely used methods for the separation of DNA. During the last decade, instruments have been developed that accurately quantitate in digital form the distribution of materials in a gel or on a blot prepared from a gel. In this paper, I review the various physical properties that can be used to quantitate the distribution of DNA on gels or blots and the instrumentation that has been developed to perform these tasks. The emphasis here is on DNA, but much of what is said also applies to RNA, proteins and other molecules. 36 refs

  3. [Evaluation of dental plaque by quantitative digital image analysis system].

    Science.gov (United States)

    Huang, Z; Luan, Q X

    2016-04-18

    To analyze the plaque staining image by using image analysis software, to verify the maneuverability, practicability and repeatability of this technique, and to evaluate the influence of different plaque stains. In the study, 30 volunteers were enrolled from the new dental students of Peking University Health Science Center in accordance with the inclusion criteria. The digital images of the anterior teeth were acquired after plaque stained according to filming standardization.The image analysis was performed using Image Pro Plus 7.0, and the Quigley-Hein plaque indexes of the anterior teeth were evaluated. The plaque stain area percentage and the corresponding dental plaque index were highly correlated,and the Spearman correlation coefficient was 0.776 (Pchart showed only a few spots outside the 95% consistency boundaries. The different plaque stains image analysis results showed that the difference of the tooth area measurements was not significant, while the difference of the plaque area measurements significant (P<0.01). This method is easy in operation and control,highly related to the calculated percentage of plaque area and traditional plaque index, and has good reproducibility.The different plaque staining method has little effect on image segmentation results.The sensitive plaque stain for image analysis is suggested.

  4. Quantitative functional optical imaging of the human skin using multi-spectral imaging

    International Nuclear Information System (INIS)

    Kainerstorfer, J. M.

    2010-01-01

    Light tissue interactions can be described by the physical principles of absorption and scattering. Based on those parameters, different tissue types and analytes can be distinguished. Extracting blood volume and oxygenation is of particular interest in clinical routines for tumor diagnostics and treatment follow up, since they are parameters of angiogenic processes. The quantification of those analytes in tissue can be done by physical modeling of light tissue interaction. The physical model used here is the random walk theory. However, for quantification and clinical usefulness, one has to account for multiple challenges. First, one must consider the effect of topology of the sample on measured physical parameters. Second, diffusion of light inside the tissue is dependent on the structure of the sample imaged. Thus, the structural conformation has to be taken into account. Third, clinical translation of imaging modalities is often hindered due to the complicated post-processing of data, not providing results in real-time. In this thesis, two imaging modalities are being utilized, where the first one, diffuse multi-spectral imaging, is based on absorption contrast and spectral characteristics and the second one, Optical Coherence Tomography (OCT), is based on scattering changes within the tissue. Multi-spectral imaging can provide spatial distributions of blood volume and blood oxygenation and OCT yields 3D structural images with micrometer resolution. In order to address the challenges mentioned above, a curvature correction algorithm for taking the topology into account was developed. Without taking curvature of the object into account, reconstruction of optical properties is not accurate. The method developed removes this artifact and recovers the underlying data, without the necessity of measuring the object's shape. The next step was to recover blood volume and oxygenation values in real time. Principal Component Analysis (PCA) on multi spectral images is

  5. Quantitative magnetic resonance imaging of cortical multiple sclerosis pathology

    DEFF Research Database (Denmark)

    Tardif, Christine L; Bedell, Barry J; Eskildsen, Simon Fristed

    2012-01-01

    pathology. The objective of this study was to characterize the MRI signature of CLs to help interpret the changes seen in vivo and elucidate the factors limiting their visualization. A quantitative 3D high-resolution (350 μm isotropic) MRI study at 3 Tesla of a fixed post mortem cerebral hemisphere from...

  6. Biologically inspired EM image alignment and neural reconstruction.

    Science.gov (United States)

    Knowles-Barley, Seymour; Butcher, Nancy J; Meinertzhagen, Ian A; Armstrong, J Douglas

    2011-08-15

    Three-dimensional reconstruction of consecutive serial-section transmission electron microscopy (ssTEM) images of neural tissue currently requires many hours of manual tracing and annotation. Several computational techniques have already been applied to ssTEM images to facilitate 3D reconstruction and ease this burden. Here, we present an alternative computational approach for ssTEM image analysis. We have used biologically inspired receptive fields as a basis for a ridge detection algorithm to identify cell membranes, synaptic contacts and mitochondria. Detected line segments are used to improve alignment between consecutive images and we have joined small segments of membrane into cell surfaces using a dynamic programming algorithm similar to the Needleman-Wunsch and Smith-Waterman DNA sequence alignment procedures. A shortest path-based approach has been used to close edges and achieve image segmentation. Partial reconstructions were automatically generated and used as a basis for semi-automatic reconstruction of neural tissue. The accuracy of partial reconstructions was evaluated and 96% of membrane could be identified at the cost of 13% false positive detections. An open-source reference implementation is available in the Supplementary information. seymour.kb@ed.ac.uk; douglas.armstrong@ed.ac.uk Supplementary data are available at Bioinformatics online.

  7. Quantitative magnetic resonance imaging of articular cartilage in osteoarthritis

    Directory of Open Access Journals (Sweden)

    G Blumenkrantz

    2007-05-01

    Full Text Available Magnetic resonance imaging of articular cartilage has recently been recognized as a tool for the characterization of cartilage morphology, biochemistry and function. In this paper advancements in cartilage imaging, computation of cartilage volume and thickness, and measurement of relaxation times (T2 and T1Ρ are presented. In addition, the delayed uptake of Gadolinium DTPA as a marker of proteoglycan depletion is also reviewed. The cross-sectional and longitudinal studies using these imaging techniques show promise for cartilage assessment and for the study of osteoarthritis.

  8. An update on novel quantitative techniques in the context of evolving whole-body PET imaging

    DEFF Research Database (Denmark)

    Houshmand, Sina; Salavati, Ali; Hess, Søren

    2015-01-01

    Since its foundation PET has established itself as one of the standard imaging modalities enabling the quantitative assessment of molecular targets in vivo. In the past two decades, quantitative PET has become a necessity in clinical oncology. Despite introduction of various measures for quantifi...

  9. Quantitative magnetic resonance imaging phantoms: A review and the need for a system phantom.

    Science.gov (United States)

    Keenan, Kathryn E; Ainslie, Maureen; Barker, Alex J; Boss, Michael A; Cecil, Kim M; Charles, Cecil; Chenevert, Thomas L; Clarke, Larry; Evelhoch, Jeffrey L; Finn, Paul; Gembris, Daniel; Gunter, Jeffrey L; Hill, Derek L G; Jack, Clifford R; Jackson, Edward F; Liu, Guoying; Russek, Stephen E; Sharma, Samir D; Steckner, Michael; Stupic, Karl F; Trzasko, Joshua D; Yuan, Chun; Zheng, Jie

    2018-01-01

    The MRI community is using quantitative mapping techniques to complement qualitative imaging. For quantitative imaging to reach its full potential, it is necessary to analyze measurements across systems and longitudinally. Clinical use of quantitative imaging can be facilitated through adoption and use of a standard system phantom, a calibration/standard reference object, to assess the performance of an MRI machine. The International Society of Magnetic Resonance in Medicine AdHoc Committee on Standards for Quantitative Magnetic Resonance was established in February 2007 to facilitate the expansion of MRI as a mainstream modality for multi-institutional measurements, including, among other things, multicenter trials. The goal of the Standards for Quantitative Magnetic Resonance committee was to provide a framework to ensure that quantitative measures derived from MR data are comparable over time, between subjects, between sites, and between vendors. This paper, written by members of the Standards for Quantitative Magnetic Resonance committee, reviews standardization attempts and then details the need, requirements, and implementation plan for a standard system phantom for quantitative MRI. In addition, application-specific phantoms and implementation of quantitative MRI are reviewed. Magn Reson Med 79:48-61, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  10. Quantitative comparison between two geometrical layouts for diffraction enhanced imaging

    International Nuclear Information System (INIS)

    Huang Wanxia; Yuan Qingxi; Zhu Peiping; Wang Junyue; Shu Hang; Chen Bo; Hu Tiandou; Wu Ziyu

    2007-01-01

    Diffraction enhanced imaging (DEI) with two crystals has been performed at the 4W1A beamline at Beijing Synchrotron Radiation Facility (BSRF). Two different crystal geometrical layouts were used to collect images, in the first layout the rotation axis of the crystal has been set perpendicular to the orbital plane while in the second the axis is parallel to the orbital plane. Performance comparison between the two layouts is discussed in terms of thermal expansion of the crystal induced by the heat load, imaging homogeneity, spatial resolution and angular resolution. From both experimental and theoretical data we show that the best images may be obtained with the optical layout in which the rotation axis of the crystals is perpendicular to the orbital plane

  11. Quantitation of structural distortion with gradient-echo imaging techniques

    International Nuclear Information System (INIS)

    Tien, R.D.; Schwaighofer, B.W.; Hesselink, J.R.; Chu, P.K.

    1990-01-01

    This paper determines the structural distortion and measurement error associated with fast MR imaging of the spinal neural foramina. Dry skeletal specimens and a thin cadaveric sagittal section through the neural foramina were placed in a water bath. MR images were obtained with a 1.5-T unit in different planes and with various pulse sequences. The size and shape of each neural foramen were carefully measured on the images and on the skeletal specimens. Gradient-echo (GRE) techniques (gradient recalled acquisition in a steady state, MPGR, three-dimensional volume acquisition) resulted in structural distortion in up to 10% on the fresh skeleton and 30% of the dry skeleton specimens when a small TE was used (the foramina appear narrower on the images)

  12. Quantitative comparison between two geometrical layouts for diffraction enhanced imaging

    Energy Technology Data Exchange (ETDEWEB)

    Huang Wanxia; Yuan Qingxi [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China); Zhu Peiping [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China)], E-mail: zhupp@ihep.ac.cn; Wang Junyue; Shu Hang [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China); Chen Bo [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China); Department of Physics, University of Science and Technology of China, Hefei (China); Hu Tiandou [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China); Wu Ziyu [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China)], E-mail: wuzy@ihep.ac.cn

    2007-07-15

    Diffraction enhanced imaging (DEI) with two crystals has been performed at the 4W1A beamline at Beijing Synchrotron Radiation Facility (BSRF). Two different crystal geometrical layouts were used to collect images, in the first layout the rotation axis of the crystal has been set perpendicular to the orbital plane while in the second the axis is parallel to the orbital plane. Performance comparison between the two layouts is discussed in terms of thermal expansion of the crystal induced by the heat load, imaging homogeneity, spatial resolution and angular resolution. From both experimental and theoretical data we show that the best images may be obtained with the optical layout in which the rotation axis of the crystals is perpendicular to the orbital plane.

  13. Methodology for quantitative evaluation of diagnostic medical imaging

    International Nuclear Information System (INIS)

    Metz, C.

    1980-01-01

    This report deals with the evaluation of the performance of diagnostic medical imaging procedures using the Receiver Operating Characteristic or ROC analysis. The development of new tests for the statistical significance of apparent differences between ROC curves is discussed

  14. Green light for quantitative live-cell imaging in plants

    NARCIS (Netherlands)

    Grossmann, Guido; Krebs, Melanie; Maizel, Alexis; Stahl, Yvonne; Vermeer, Joop E.M.; Ott, Thomas

    2018-01-01

    Plants exhibit an intriguing morphological and physiological plasticity that enables them to thrive in a wide range of environments. To understand the cell biological basis of this unparalleled competence, a number ofmethodologies have been adapted or developed over the last decades that allow

  15. TU-G-303-01: Radiomics: Quantitative Imaging in the Service of Improved Treatment Decision Making

    Energy Technology Data Exchange (ETDEWEB)

    Deasy, J. [Memorial Sloan Kettering Cancer Center, New York, NY (United States)

    2015-06-15

    ‘Radiomics’ refers to studies that extract a large amount of quantitative information from medical imaging studies as a basis for characterizing a specific aspect of patient health. Radiomics models can be built to address a wide range of outcome predictions, clinical decisions, basic cancer biology, etc. For example, radiomics models can be built to predict the aggressiveness of an imaged cancer, cancer gene expression characteristics (radiogenomics), radiation therapy treatment response, etc. Technically, radiomics brings together quantitative imaging, computer vision/image processing, and machine learning. In this symposium, speakers will discuss approaches to radiomics investigations, including: longitudinal radiomics, radiomics combined with other biomarkers (‘pan-omics’), radiomics for various imaging modalities (CT, MRI, and PET), and the use of registered multi-modality imaging datasets as a basis for radiomics. There are many challenges to the eventual use of radiomics-derived methods in clinical practice, including: standardization and robustness of selected metrics, accruing the data required, building and validating the resulting models, registering longitudinal data that often involve significant patient changes, reliable automated cancer segmentation tools, etc. Despite the hurdles, results achieved so far indicate the tremendous potential of this general approach to quantifying and using data from medical images. Specific applications of radiomics to be presented in this symposium will include: the longitudinal analysis of patients with low-grade gliomas; automatic detection and assessment of patients with metastatic bone lesions; image-based monitoring of patients with growing lymph nodes; predicting radiotherapy outcomes using multi-modality radiomics; and studies relating radiomics with genomics in lung cancer and glioblastoma. Learning Objectives: Understanding the basic image features that are often used in radiomic models. Understanding

  16. TU-G-303-00: Radiomics: Advances in the Use of Quantitative Imaging Used for Predictive Modeling

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    ‘Radiomics’ refers to studies that extract a large amount of quantitative information from medical imaging studies as a basis for characterizing a specific aspect of patient health. Radiomics models can be built to address a wide range of outcome predictions, clinical decisions, basic cancer biology, etc. For example, radiomics models can be built to predict the aggressiveness of an imaged cancer, cancer gene expression characteristics (radiogenomics), radiation therapy treatment response, etc. Technically, radiomics brings together quantitative imaging, computer vision/image processing, and machine learning. In this symposium, speakers will discuss approaches to radiomics investigations, including: longitudinal radiomics, radiomics combined with other biomarkers (‘pan-omics’), radiomics for various imaging modalities (CT, MRI, and PET), and the use of registered multi-modality imaging datasets as a basis for radiomics. There are many challenges to the eventual use of radiomics-derived methods in clinical practice, including: standardization and robustness of selected metrics, accruing the data required, building and validating the resulting models, registering longitudinal data that often involve significant patient changes, reliable automated cancer segmentation tools, etc. Despite the hurdles, results achieved so far indicate the tremendous potential of this general approach to quantifying and using data from medical images. Specific applications of radiomics to be presented in this symposium will include: the longitudinal analysis of patients with low-grade gliomas; automatic detection and assessment of patients with metastatic bone lesions; image-based monitoring of patients with growing lymph nodes; predicting radiotherapy outcomes using multi-modality radiomics; and studies relating radiomics with genomics in lung cancer and glioblastoma. Learning Objectives: Understanding the basic image features that are often used in radiomic models. Understanding

  17. TU-G-303-00: Radiomics: Advances in the Use of Quantitative Imaging Used for Predictive Modeling

    International Nuclear Information System (INIS)

    2015-01-01

    ‘Radiomics’ refers to studies that extract a large amount of quantitative information from medical imaging studies as a basis for characterizing a specific aspect of patient health. Radiomics models can be built to address a wide range of outcome predictions, clinical decisions, basic cancer biology, etc. For example, radiomics models can be built to predict the aggressiveness of an imaged cancer, cancer gene expression characteristics (radiogenomics), radiation therapy treatment response, etc. Technically, radiomics brings together quantitative imaging, computer vision/image processing, and machine learning. In this symposium, speakers will discuss approaches to radiomics investigations, including: longitudinal radiomics, radiomics combined with other biomarkers (‘pan-omics’), radiomics for various imaging modalities (CT, MRI, and PET), and the use of registered multi-modality imaging datasets as a basis for radiomics. There are many challenges to the eventual use of radiomics-derived methods in clinical practice, including: standardization and robustness of selected metrics, accruing the data required, building and validating the resulting models, registering longitudinal data that often involve significant patient changes, reliable automated cancer segmentation tools, etc. Despite the hurdles, results achieved so far indicate the tremendous potential of this general approach to quantifying and using data from medical images. Specific applications of radiomics to be presented in this symposium will include: the longitudinal analysis of patients with low-grade gliomas; automatic detection and assessment of patients with metastatic bone lesions; image-based monitoring of patients with growing lymph nodes; predicting radiotherapy outcomes using multi-modality radiomics; and studies relating radiomics with genomics in lung cancer and glioblastoma. Learning Objectives: Understanding the basic image features that are often used in radiomic models. Understanding

  18. TU-G-303-01: Radiomics: Quantitative Imaging in the Service of Improved Treatment Decision Making

    International Nuclear Information System (INIS)

    Deasy, J.

    2015-01-01

    ‘Radiomics’ refers to studies that extract a large amount of quantitative information from medical imaging studies as a basis for characterizing a specific aspect of patient health. Radiomics models can be built to address a wide range of outcome predictions, clinical decisions, basic cancer biology, etc. For example, radiomics models can be built to predict the aggressiveness of an imaged cancer, cancer gene expression characteristics (radiogenomics), radiation therapy treatment response, etc. Technically, radiomics brings together quantitative imaging, computer vision/image processing, and machine learning. In this symposium, speakers will discuss approaches to radiomics investigations, including: longitudinal radiomics, radiomics combined with other biomarkers (‘pan-omics’), radiomics for various imaging modalities (CT, MRI, and PET), and the use of registered multi-modality imaging datasets as a basis for radiomics. There are many challenges to the eventual use of radiomics-derived methods in clinical practice, including: standardization and robustness of selected metrics, accruing the data required, building and validating the resulting models, registering longitudinal data that often involve significant patient changes, reliable automated cancer segmentation tools, etc. Despite the hurdles, results achieved so far indicate the tremendous potential of this general approach to quantifying and using data from medical images. Specific applications of radiomics to be presented in this symposium will include: the longitudinal analysis of patients with low-grade gliomas; automatic detection and assessment of patients with metastatic bone lesions; image-based monitoring of patients with growing lymph nodes; predicting radiotherapy outcomes using multi-modality radiomics; and studies relating radiomics with genomics in lung cancer and glioblastoma. Learning Objectives: Understanding the basic image features that are often used in radiomic models. Understanding

  19. Imaging of Biological Tissues by Visible Light CDI

    Science.gov (United States)

    Karpov, Dmitry; Dos Santos Rolo, Tomy; Rich, Hannah; Fohtung, Edwin

    Recent advances in the use of synchrotron and X-ray free electron laser (XFEL) based coherent diffraction imaging (CDI) with application to material sciences and medicine proved the technique to be efficient in recovering information about the samples encoded in the phase domain. The current state-of-the-art algorithms of reconstruction are transferable to optical frequencies, which makes laser sources a reasonable milestone both in technique development and applications. Here we present first results from table-top laser CDI system for imaging of biological tissues and reconstruction algorithms development and discuss approaches that are complimenting the data quality improvement that is applicable to visible light frequencies due to it's properties. We demonstrate applicability of the developed methodology to a wide class of soft bio-matter and condensed matter systems. This project is funded by DOD-AFOSR under Award No FA9550-14-1-0363 and the LANSCE Professorship at LANL.

  20. Passive thermal infrared hyperspectral imaging for quantitative imaging of shale gas leaks

    Science.gov (United States)

    Gagnon, Marc-André; Tremblay, Pierre; Savary, Simon; Farley, Vincent; Guyot, Éric; Lagueux, Philippe; Morton, Vince; Giroux, Jean; Chamberland, Martin

    2017-10-01

    There are many types of natural gas fields including shale formations that are common especially in the St-Lawrence Valley (Canada). Since methane (CH4), the major component of shale gas, is odorless, colorless and highly flammable, in addition to being a greenhouse gas, methane emanations and/or leaks are important to consider for both safety and environmental reasons. Telops recently launched on the market the Hyper-Cam Methane, a field-deployable thermal infrared hyperspectral camera specially tuned for detecting methane infrared spectral features under ambient conditions and over large distances. In order to illustrate the benefits of this novel research instrument for natural gas imaging, the instrument was brought on a site where shale gas leaks unexpectedly happened during a geological survey near the Enfant-Jesus hospital in Quebec City, Canada, during December 2014. Quantitative methane imaging was carried out based on methane's unique infrared spectral signature. Optical flow analysis was also carried out on the data to estimate the methane mass flow rate. The results show how this novel technique could be used for advanced research on shale gases.

  1. Quantitative analysis of biological fluids by electron probe and X ray spectrometry

    International Nuclear Information System (INIS)

    Girod, Chantal

    1986-01-01

    In order to know the kidney normal operation and to have an insight on cellular transport mechanisms and hormonal regulations at the nephron level, a technique based on the use of an electron probe has been developed for the elemental analysis of micro-volumes of biological fluids. This academic document reports applications of this technique on animals on which such fluids have been sampled at different levels of the nephron. As these samples are available in too small volumes to be dosed by conventional methods, they have been quantitatively analysed by using an electronic probe based analyser in order to determine concentrations of all elements with an atomic number greater than that of carbon. After a presentation of the implemented method and hardware, the author thus describes how an analysis is performed, and reports and discusses an example (analysis conditions, data acquisition, data processing, minimum detectable concentration, reasons for measurement scattering)

  2. Progress in quantitative X-ray microanalysis of frozen-hydrated bulk biological samples

    International Nuclear Information System (INIS)

    Marshall, A.T.

    1988-01-01

    The analysis of bulk frozen-hydrated biological samples has developed now to a level where practical application of the technique is possible. Provided the sample is carefully coated with a conductive metal, the development of a space charge capable of causing a significant distortion of the electron diffusion volume does not seem to occur, and analytical resolution can be conveniently held to approximately 2 micron (both depth and lateral resolution). Two valid quantitative methods are available, and two methods of determining dry weight fractions are also available. An area where further research could lead to improvement in analysis of frozen-hydrated bulk samples is in the investigation of fracturing methods. If fracture planes that were flat and reproducible could be easily obtained, some of the difficulties of analysing frozen-hydrated bulk samples would be considerably reduced

  3. Combining Different Modalities for 3D Imaging of Biological Objects

    CERN Document Server

    Tsyganov, E; Kulkarni, P; Mason, R; Parkey, R; Seliuonine, S; Shay, J; Soesbe, T; Zhezher, V; Zinchenko, A I

    2005-01-01

    A resolution enhanced NaI(Tl)-scintillator micro-SPECT device using pinhole collimator geometry has been built and tested with small animals. This device was constructed based on a depth-of-interaction measurement using a thick scintillator crystal and a position sensitive PMT to measure depth-dependent scintillator light profiles. Such a measurement eliminates the parallax error that degrades the high spatial resolution required for small animal imaging. This novel technique for 3D gamma-ray detection was incorporated into the micro-SPECT device and tested with a $^{57}$Co source and $^{98m}$Tc-MDP injected in mice body. To further enhance the investigating power of the tomographic imaging different imaging modalities can be combined. In particular, as proposed and shown in this paper, the optical imaging permits a 3D reconstruction of the animal's skin surface thus improving visualization and making possible depth-dependent corrections, necessary for bioluminescence 3D reconstruction in biological objects. ...

  4. Combining different modalities for 3D imaging of biological objects

    International Nuclear Information System (INIS)

    Tsyganov, Eh.; Antich, P.; Kulkarni, P.; Mason, R.; Parkey, R.; Seliuonine, S.; Shay, J.; Soesbe, T.; Zhezher, V.; Zinchenko, A.

    2005-01-01

    A resolution enhanced NaI(Tl)-scintillator micro-SPECT device using pinhole collimator geometry has been built and tested with small animals. This device was constructed based on a depth-of-interaction measurement using a thick scintillator crystal and a position sensitive PMT to measure depth-dependent scintillator light profiles. Such a measurement eliminates the parallax error that degrades the high spatial resolution required for small animal imaging. This novel technique for 3D gamma-ray detection was incorporated into the micro-SPECT device and tested with a 57 Co source and 98m Tc-MDP injected in mice body. To further enhance the investigating power of the tomographic imaging different imaging modalities can be combined. In particular, as proposed and shown, the optical imaging permits a 3D reconstruction of the animal's skin surface thus improving visualization and making possible depth-dependent corrections, necessary for bioluminescence 3D reconstruction in biological objects. This structural information can provide even more detail if the x-ray tomography is used as presented in the paper

  5. Imaging Primary Lung Cancers in Mice to Study Radiation Biology

    International Nuclear Information System (INIS)

    Kirsch, David G.; Grimm, Jan; Guimaraes, Alexander R.; Wojtkiewicz, Gregory R.; Perez, Bradford A.; Santiago, Philip M.; Anthony, Nikolas K.; Forbes, Thomas; Doppke, Karen

    2010-01-01

    Purpose: To image a genetically engineered mouse model of non-small-cell lung cancer with micro-computed tomography (micro-CT) to measure tumor response to radiation therapy. Methods and Materials: The Cre-loxP system was used to generate primary lung cancers in mice with mutation in K-ras alone or in combination with p53 mutation. Mice were serially imaged by micro-CT, and tumor volumes were determined. A comparison of tumor volume by micro-CT and tumor histology was performed. Tumor response to radiation therapy (15.5 Gy) was assessed with micro-CT. Results: The tumor volume measured with free-breathing micro-CT scans was greater than the volume calculated by histology. Nevertheless, this imaging approach demonstrated that lung cancers with mutant p53 grew more rapidly than lung tumors with wild-type p53 and also showed that radiation therapy increased the doubling time of p53 mutant lung cancers fivefold. Conclusions: Micro-CT is an effective tool to noninvasively measure the growth of primary lung cancers in genetically engineered mice and assess tumor response to radiation therapy. This imaging approach will be useful to study the radiation biology of lung cancer.

  6. Micro-computer system for quantitative image analysis of damage microstructure

    International Nuclear Information System (INIS)

    Kohyama, A.; Kohno, Y.; Satoh, K.; Igata, N.

    1984-01-01

    Quantitative image analysis of radiation induced damage microstructure is very important in evaluating material behaviors in radiation environment. But, quite a few improvement have been seen in quantitative analysis of damage microstructure in these decades. The objective of this work is to develop new system for quantitative image analysis of damage microstructure which could improve accuracy and efficiency of data sampling and processing and could enable to get new information about mutual relations among dislocations, precipitates, cavities, grain boundaries, etc. In this system, data sampling is done with X-Y digitizer. The cavity microstructure in dual-ion irradiated 316 SS is analyzed and the effectiveness of this system is discussed. (orig.)

  7. Quantitative utilization of prior biological knowledge in the Bayesian network modeling of gene expression data

    Directory of Open Access Journals (Sweden)

    Gao Shouguo

    2011-08-01

    Full Text Available Abstract Background Bayesian Network (BN is a powerful approach to reconstructing genetic regulatory networks from gene expression data. However, expression data by itself suffers from high noise and lack of power. Incorporating prior biological knowledge can improve the performance. As each type of prior knowledge on its own may be incomplete or limited by quality issues, integrating multiple sources of prior knowledge to utilize their consensus is desirable. Results We introduce a new method to incorporate the quantitative information from multiple sources of prior knowledge. It first uses the Naïve Bayesian classifier to assess the likelihood of functional linkage between gene pairs based on prior knowledge. In this study we included cocitation in PubMed and schematic similarity in Gene Ontology annotation. A candidate network edge reservoir is then created in which the copy number of each edge is proportional to the estimated likelihood of linkage between the two corresponding genes. In network simulation the Markov Chain Monte Carlo sampling algorithm is adopted, and samples from this reservoir at each iteration to generate new candidate networks. We evaluated the new algorithm using both simulated and real gene expression data including that from a yeast cell cycle and a mouse pancreas development/growth study. Incorporating prior knowledge led to a ~2 fold increase in the number of known transcription regulations recovered, without significant change in false positive rate. In contrast, without the prior knowledge BN modeling is not always better than a random selection, demonstrating the necessity in network modeling to supplement the gene expression data with additional information. Conclusion our new development provides a statistical means to utilize the quantitative information in prior biological knowledge in the BN modeling of gene expression data, which significantly improves the performance.

  8. Introducing Anisotropic Minkowski Functionals and Quantitative Anisotropy Measures for Local Structure Analysis in Biomedical Imaging

    Science.gov (United States)

    Wismüller, Axel; De, Titas; Lochmüller, Eva; Eckstein, Felix; Nagarajan, Mahesh B.

    2017-01-01

    The ability of Minkowski Functionals to characterize local structure in different biological tissue types has been demonstrated in a variety of medical image processing tasks. We introduce anisotropic Minkowski Functionals (AMFs) as a novel variant that captures the inherent anisotropy of the underlying gray-level structures. To quantify the anisotropy characterized by our approach, we further introduce a method to compute a quantitative measure motivated by a technique utilized in MR diffusion tensor imaging, namely fractional anisotropy. We showcase the applicability of our method in the research context of characterizing the local structure properties of trabecular bone micro-architecture in the proximal femur as visualized on multi-detector CT. To this end, AMFs were computed locally for each pixel of ROIs extracted from the head, neck and trochanter regions. Fractional anisotropy was then used to quantify the local anisotropy of the trabecular structures found in these ROIs and to compare its distribution in different anatomical regions. Our results suggest a significantly greater concentration of anisotropic trabecular structures in the head and neck regions when compared to the trochanter region (p < 10−4). We also evaluated the ability of such AMFs to predict bone strength in the femoral head of proximal femur specimens obtained from 50 donors. Our results suggest that such AMFs, when used in conjunction with multi-regression models, can outperform more conventional features such as BMD in predicting failure load. We conclude that such anisotropic Minkowski Functionals can capture valuable information regarding directional attributes of local structure, which may be useful in a wide scope of biomedical imaging applications. PMID:29170580

  9. Quantitative imaging of cation adsorption site densities in undisturbed soil

    Science.gov (United States)

    Keck, Hannes; Strobel, Bjarne W.; Gustafsson, Jon-Petter; Koestel, John

    2017-04-01

    The vast majority of present soil system models assume a homogeneous distribution and accessibility of cation adsorption sites (CAS) within soil structural units like e.g. soil horizons. This is however in conflict with several recent studies finding that CAS in soils are not uniformly but patchily distributed at and below the cm-scale. It is likely that the small-scale distribution of CAS has significant impact on the performance of these models. However, systematic approaches to map CAS densities in undisturbed soil with 3-D resolution that could lead to respective model improvements are still lacking. We therefore investigated the 3-D distribution of the CAS in undisturbed soils using X-ray scanning and barium ions as a contrast agent. We appraised the validity of the approach by comparing X-ray image-derived cation exchange coefficients (CEC) with ones obtained using the ammonium acetate method. In the process, we evaluated whether there were larger CAS concentrations at aggregate and biopore boundaries as it is often hypothesized. We sampled eight small soil cores (approx. 10 ccm) from different locations with contrasting soil texture and organic matter contents. The samples were first saturated with a potassium chloride solution (0.1 mol per liter), whereupon a 3-D X-ray image was taken. Then, the potassium chloride solution was flushed out with a barium chloride solution (0.3 mol per liter) with barium replacing the potassium from the CAS due to its larger exchange affinity. After X-ray images as well as electrical conductivity in the effluent indicated that the entire sample had been saturated with the barium chloride, the sample was again rinsed using the potassium chloride solution. When the rinsing was complete a final 3-D X-ray image was acquired. The difference images between final and initial 3-D X-ray images were interpreted as depicting the adsorbed barium as the density of barium exceeds the one of potassium by more than 2 times. The X-ray image

  10. Quantitative X-ray analysis of biological fluids: the microdroplet technique

    International Nuclear Information System (INIS)

    Roinel, N.

    1988-01-01

    X-ray microanalysis can be used to quantitatively determine the elemental composition of microvolumes of biological fluids. This article describes the various steps in preparation of microdroplets for analysis: The manufacturing of micropipettes, the preparation of the specimen support, the deposition of droplets on the support, shock-freezing, and lyophilization. Examples of common artifacts (incomplete rehydration prior to freezing or partial rehydration after lyophilization) are demonstrated. Analysis can be carried out either by wavelength-dispersive analysis, which is the most sensitive method, or by energy-dispersive analysis, which is more commonly available. The minimum detectable concentration is 0.05 mmol.liter-1 for 0.1-nl samples analyzed by wavelength-dispersive spectrometry and 0.5-1 mmol.liter-1 for samples analyzed by energy-dispersive spectrometry. A major problem, especially in wavelength-dispersive analysis, where high beam currents are used, is radiation damage to the specimen; in particular chloride (but also other elements) can be lost. Quantitative analysis requires the use of standard solutions with elemental concentration in the same range as those present in the specimen

  11. Quantitative 3-D imaging topogrammetry for telemedicine applications

    Science.gov (United States)

    Altschuler, Bruce R.

    1994-01-01

    The technology to reliably transmit high-resolution visual imagery over short to medium distances in real time has led to the serious considerations of the use of telemedicine, telepresence, and telerobotics in the delivery of health care. These concepts may involve, and evolve toward: consultation from remote expert teaching centers; diagnosis; triage; real-time remote advice to the surgeon; and real-time remote surgical instrument manipulation (telerobotics with virtual reality). Further extrapolation leads to teledesign and telereplication of spare surgical parts through quantitative teleimaging of 3-D surfaces tied to CAD/CAM devices and an artificially intelligent archival data base of 'normal' shapes. The ability to generate 'topogrames' or 3-D surface numerical tables of coordinate values capable of creating computer-generated virtual holographic-like displays, machine part replication, and statistical diagnostic shape assessment is critical to the progression of telemedicine. Any virtual reality simulation will remain in 'video-game' realm until realistic dimensional and spatial relational inputs from real measurements in vivo during surgeries are added to an ever-growing statistical data archive. The challenges of managing and interpreting this 3-D data base, which would include radiographic and surface quantitative data, are considerable. As technology drives toward dynamic and continuous 3-D surface measurements, presenting millions of X, Y, Z data points per second of flexing, stretching, moving human organs, the knowledge base and interpretive capabilities of 'brilliant robots' to work as a surgeon's tireless assistants becomes imaginable. The brilliant robot would 'see' what the surgeon sees--and more, for the robot could quantify its 3-D sensing and would 'see' in a wider spectral range than humans, and could zoom its 'eyes' from the macro world to long-distance microscopy. Unerring robot hands could rapidly perform machine-aided suturing with

  12. Quantitative generalized ratiometric fluorescence spectroscopy for turbid media based on probe encapsulated by biologically localized embedding

    International Nuclear Information System (INIS)

    Yan, Xiu-Fang; Chen, Zeng-Ping; Cui, Yin-Yin; Hu, Yuan-Liang; Yu, Ru-Qin

    2016-01-01

    PEBBLE (probe encapsulated by biologically localized embedding) nanosensor encapsulating an intensity-based fluorescence indicator and an inert reference fluorescence dye inside the pores of stable matrix can be used as a generalized wavelength-ratiometric probe. However, the lack of an efficient quantitative model render the choices of inert reference dyes and intensity-based fluorescence indicators used in PEBBLEs based generalized wavelength-ratiometric probes rather limited. In this contribution, an extended quantitative fluorescence model was derived specifically for generalized wavelength-ratiometric probes based on PEBBLE technique (QFM GRP ) with a view to simplify the design of PEBBLEs and hence further extend their application potentials. The effectiveness of QFM GRP has been tested on the quantitative determination of free Ca 2+ in both simulated and real turbid media using a Ca 2+ sensitive PEBBLE nanosensor encapsulating Rhod-2 and eosin B inside the micropores of stable polyacrylamide matrix. Experimental results demonstrated that QFM GRP could realize precise and accurate quantification of free Ca 2+ in turbid samples, even though there is serious overlapping between the fluorescence excitation peaks of eosin B and Ca 2+ bound Rhod-2. The average relative predictive error value of QFM GRP for the test simulated turbid samples was 5.9%, about 2–4 times lower than the corresponding values of partial least squares calibration model and the empirical ratiometric model based on the ratio of fluorescence intensities at the excitation peaks of Ca 2+ bound Rhod-2 and eosin B. The recovery rates of QFM GRP for the real and spiked turbid samples varied from 93.1% to 101%, comparable to the corresponding results of atomic absorption spectrometry. - Highlights: • An advanced model was derived for generalized wavelength-ratiometric PEBBLEs. • The model can simplify the design of generalized wavelength-ratiometric PEBBLEs. • The model realized accurate

  13. AFM imaging of functionalized carbon nanotubes on biological membranes

    International Nuclear Information System (INIS)

    Lamprecht, C; Danzberger, J; Rangl, M; Gruber, H J; Hinterdorfer, P; Kienberger, F; Ebner, A; Liashkovich, I; Neves, V; Heister, E; Coley, H M; McFadden, J; Flahaut, E

    2009-01-01

    Multifunctional carbon nanotubes are promising for biomedical applications as their nano-size, together with their physical stability, gives access into the cell and various cellular compartments including the nucleus. However, the direct and label-free detection of carbon nanotube uptake into cells is a challenging task. The atomic force microscope (AFM) is capable of resolving details of cellular surfaces at the nanometer scale and thus allows following of the docking of carbon nanotubes to biological membranes. Here we present topographical AFM images of non-covalently functionalized single walled (SWNT) and double walled carbon nanotubes (DWNT) immobilized on different biological membranes, such as plasma membranes and nuclear envelopes, as well as on a monolayer of avidin molecules. We were able to visualize DWNT on the nuclear membrane while at the same time resolving individual nuclear pore complexes. Furthermore, we succeeded in localizing individual SWNT at the border of incubated cells and in identifying bundles of DWNT on cell surfaces by AFM imaging.

  14. Nucleocytoplasmic shuttling: the ins and outs of quantitative imaging.

    Science.gov (United States)

    Molenaar, Chris; Weeks, Kate L

    2018-05-17

    Nucleocytoplasmic protein shuttling is integral to the transmission of signals between the nucleus and the cytoplasm. The nuclear/cytoplasmic distribution of proteins of interest can be determined via fluorescence microscopy, following labelling of the target protein with fluorophore-conjugated antibodies (immunofluorescence) or by tagging the target protein with an autofluorescent protein, such as green fluorescent protein (GFP). The latter enables live cell imaging, a powerful approach that precludes many of the artefacts associated with indirect immunofluorescence in fixed cells. In this review, we discuss important considerations for the design and implementation of fluorescence microscopy experiments to quantify the nuclear/cytoplasmic distribution of a protein of interest. We summarise the pros and cons of detecting endogenous proteins in fixed cells by immunofluorescence and ectopically-expressed fluorescent fusion proteins in living cells. We discuss the suitability of widefield fluorescence microscopy and of 2D, 3D and 4D imaging by confocal microscopy for different applications, and describe two different methods for quantifying the nuclear/cytoplasmic distribution of a protein of interest from the fluorescent signal. Finally, we discuss the importance of eliminating sources of bias and subjectivity during image acquisition and post-imaging analyses. This is critical for the accurate and reliable quantification of nucleocytoplasmic shuttling. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. Quantitative comparison of OSEM and penalized likelihood image reconstruction using relative difference penalties for clinical PET

    International Nuclear Information System (INIS)

    Ahn, Sangtae; Asma, Evren; Cheng, Lishui; Manjeshwar, Ravindra M; Ross, Steven G; Miao, Jun; Jin, Xiao; Wollenweber, Scott D

    2015-01-01

    Ordered subset expectation maximization (OSEM) is the most widely used algorithm for clinical PET image reconstruction. OSEM is usually stopped early and post-filtered to control image noise and does not necessarily achieve optimal quantitation accuracy. As an alternative to OSEM, we have recently implemented a penalized likelihood (PL) image reconstruction algorithm for clinical PET using the relative difference penalty with the aim of improving quantitation accuracy without compromising visual image quality. Preliminary clinical studies have demonstrated visual image quality including lesion conspicuity in images reconstructed by the PL algorithm is better than or at least as good as that in OSEM images. In this paper we evaluate lesion quantitation accuracy of the PL algorithm with the relative difference penalty compared to OSEM by using various data sets including phantom data acquired with an anthropomorphic torso phantom, an extended oval phantom and the NEMA image quality phantom; clinical data; and hybrid clinical data generated by adding simulated lesion data to clinical data. We focus on mean standardized uptake values and compare them for PL and OSEM using both time-of-flight (TOF) and non-TOF data. The results demonstrate improvements of PL in lesion quantitation accuracy compared to OSEM with a particular improvement in cold background regions such as lungs. (paper)

  16. In vivo quantitative NMR imaging of fruit tissues during growth using Spoiled Gradient Echo sequence

    DEFF Research Database (Denmark)

    Kenouche, S.; Perrier, M.; Bertin, N.

    2014-01-01

    of this study was to design a robust and accurate quantitative measurement method based on NMR imaging combined with contrast agent (CA) for mapping and quantifying water transport in growing cherry tomato fruits. A multiple flip-angle Spoiled Gradient Echo (SGE) imaging sequence was used to evaluate...

  17. Site-specific confocal fluorescence imaging of biological microstructures in a turbid medium

    International Nuclear Information System (INIS)

    Saloma, Caesar; Palmes-Saloma, Cynthia; Kondoh, Hisato

    1998-01-01

    Normally transparent biological structures in a turbid medium are imaged using a laser confocal microscope and multiwavelength site-specific fluorescence labelling. The spatial filtering capability of the detector pinhole in the confocal microscope limits the number of scattered fluorescent photons that reach the photodetector. Simultaneous application of different fluorescent markers on the same sample site minimizes photobleaching by reducing the excitation time for each marker. A high-contrast grey-level image is also produced by summing confocal images of the same site taken at different fluorescence wavelengths. Monte Carlo simulations are performed to obtain the quantitative behaviour of confocal fluorescence imaging in turbid media. Confocal images of the following samples were also obtained: (i) 15 μm diameter fluorescent spheres placed 1.16 mm deep beneath an aqueous suspension of 0.0823 μm diameter polystyrene latex spheres, and (ii) hindbrain of a whole-mount mouse embryo (age 10 days) that was stained to fluoresce at 515 nm and 580 nm peak wavelengths. Expression of RNA transcripts of a gene within the embryo hindbrain was detected by a fluorescence-based whole-mount in situ hybridization procedure that we recently tested. (author)

  18. Quantitative label-free sperm imaging by means of transport of intensity

    Science.gov (United States)

    Poola, Praveen Kumar; Pandiyan, Vimal Prabhu; Jayaraman, Varshini; John, Renu

    2016-03-01

    Most living cells are optically transparent which makes it difficult to visualize them under bright field microscopy. Use of contrast agents or markers and staining procedures are often followed to observe these cells. However, most of these staining agents are toxic and not applicable for live cell imaging. In the last decade, quantitative phase imaging has become an indispensable tool for morphological characterization of the phase objects without any markers. In this paper, we report noninterferometric quantitative phase imaging of live sperm cells by solving transport of intensity equations with recorded intensity measurements along optical axis on a commercial bright field microscope.

  19. Repurposing High-Throughput Image Assays Enables Biological Activity Prediction for Drug Discovery.

    Science.gov (United States)

    Simm, Jaak; Klambauer, Günter; Arany, Adam; Steijaert, Marvin; Wegner, Jörg Kurt; Gustin, Emmanuel; Chupakhin, Vladimir; Chong, Yolanda T; Vialard, Jorge; Buijnsters, Peter; Velter, Ingrid; Vapirev, Alexander; Singh, Shantanu; Carpenter, Anne E; Wuyts, Roel; Hochreiter, Sepp; Moreau, Yves; Ceulemans, Hugo

    2018-05-17

    In both academia and the pharmaceutical industry, large-scale assays for drug discovery are expensive and often impractical, particularly for the increasingly important physiologically relevant model systems that require primary cells, organoids, whole organisms, or expensive or rare reagents. We hypothesized that data from a single high-throughput imaging assay can be repurposed to predict the biological activity of compounds in other assays, even those targeting alternate pathways or biological processes. Indeed, quantitative information extracted from a three-channel microscopy-based screen for glucocorticoid receptor translocation was able to predict assay-specific biological activity in two ongoing drug discovery projects. In these projects, repurposing increased hit rates by 50- to 250-fold over that of the initial project assays while increasing the chemical structure diversity of the hits. Our results suggest that data from high-content screens are a rich source of information that can be used to predict and replace customized biological assays. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. A Quantitative Three-Dimensional Image Analysis Tool for Maximal Acquisition of Spatial Heterogeneity Data.

    Science.gov (United States)

    Allenby, Mark C; Misener, Ruth; Panoskaltsis, Nicki; Mantalaris, Athanasios

    2017-02-01

    Three-dimensional (3D) imaging techniques provide spatial insight into environmental and cellular interactions and are implemented in various fields, including tissue engineering, but have been restricted by limited quantification tools that misrepresent or underutilize the cellular phenomena captured. This study develops image postprocessing algorithms pairing complex Euclidean metrics with Monte Carlo simulations to quantitatively assess cell and microenvironment spatial distributions while utilizing, for the first time, the entire 3D image captured. Although current methods only analyze a central fraction of presented confocal microscopy images, the proposed algorithms can utilize 210% more cells to calculate 3D spatial distributions that can span a 23-fold longer distance. These algorithms seek to leverage the high sample cost of 3D tissue imaging techniques by extracting maximal quantitative data throughout the captured image.

  1. TH-AB-209-09: Quantitative Imaging of Electrical Conductivity by VHF-Induced Thermoacoustics

    Energy Technology Data Exchange (ETDEWEB)

    Patch, S; Hull, D [Avero Diagnostics, Irving, TX (United States); See, W [Medical College of Wisconsin, Milwaukee, WI (United States); Hanson, G [UW-Milwaukee, Milwaukee, WI (United States)

    2016-06-15

    Purpose: To demonstrate that very high frequency (VHF) induced thermoacoustics has the potential to provide quantitative images of electrical conductivity in Siemens/meter, much as shear wave elastography provides tissue stiffness in kPa. Quantitatively imaging a large organ requires exciting thermoacoustic pulses throughout the volume and broadband detection of those pulses because tomographic image reconstruction preserves frequency content. Applying the half-wavelength limit to a 200-micron inclusion inside a 7.5 cm diameter organ requires measurement sensitivity to frequencies ranging from 4 MHz down to 10 kHz, respectively. VHF irradiation provides superior depth penetration over near infrared used in photoacoustics. Additionally, VHF signal production is proportional to electrical conductivity, and prostate cancer is known to suppress electrical conductivity of prostatic fluid. Methods: A dual-transducer system utilizing a P4-1 array connected to a Verasonics V1 system augmented by a lower frequency focused single element transducer was developed. Simultaneous acquisition of VHF-induced thermoacoustic pulses by both transducers enabled comparison of transducer performance. Data from the clinical array generated a stack of 96-images with separation of 0.3 mm, whereas the single element transducer imaged only in a single plane. In-plane resolution and quantitative accuracy were measured at isocenter. Results: The array provided volumetric imaging capability with superior resolution whereas the single element transducer provided superior quantitative accuracy. Combining axial images from both transducers preserved resolution of the P4-1 array and improved image contrast. Neither transducer was sensitive to frequencies below 50 kHz, resulting in a DC offset and low-frequency shading over fields of view exceeding 15 mm. Fresh human prostates were imaged ex vivo and volumetric reconstructions reveal structures rarely seen in diagnostic images. Conclusion

  2. A novel iris transillumination grading scale allowing flexible assessment with quantitative image analysis and visual matching.

    Science.gov (United States)

    Wang, Chen; Brancusi, Flavia; Valivullah, Zaheer M; Anderson, Michael G; Cunningham, Denise; Hedberg-Buenz, Adam; Power, Bradley; Simeonov, Dimitre; Gahl, William A; Zein, Wadih M; Adams, David R; Brooks, Brian

    2018-01-01

    To develop a sensitive scale of iris transillumination suitable for clinical and research use, with the capability of either quantitative analysis or visual matching of images. Iris transillumination photographic images were used from 70 study subjects with ocular or oculocutaneous albinism. Subjects represented a broad range of ocular pigmentation. A subset of images was subjected to image analysis and ranking by both expert and nonexpert reviewers. Quantitative ordering of images was compared with ordering by visual inspection. Images were binned to establish an 8-point scale. Ranking consistency was evaluated using the Kendall rank correlation coefficient (Kendall's tau). Visual ranking results were assessed using Kendall's coefficient of concordance (Kendall's W) analysis. There was a high degree of correlation among the image analysis, expert-based and non-expert-based image rankings. Pairwise comparisons of the quantitative ranking with each reviewer generated an average Kendall's tau of 0.83 ± 0.04 (SD). Inter-rater correlation was also high with Kendall's W of 0.96, 0.95, and 0.95 for nonexpert, expert, and all reviewers, respectively. The current standard for assessing iris transillumination is expert assessment of clinical exam findings. We adapted an image-analysis technique to generate quantitative transillumination values. Quantitative ranking was shown to be highly similar to a ranking produced by both expert and nonexpert reviewers. This finding suggests that the image characteristics used to quantify iris transillumination do not require expert interpretation. Inter-rater rankings were also highly similar, suggesting that varied methods of transillumination ranking are robust in terms of producing reproducible results.

  3. Quantitative imaging of excised osteoarthritic cartilage using spectral CT

    Energy Technology Data Exchange (ETDEWEB)

    Rajendran, Kishore; Bateman, Christopher J.; Younis, Raja Aamir; De Ruiter, Niels J.A.; Ramyar, Mohsen; Anderson, Nigel G. [University of Otago - Christchurch, Department of Radiology, Christchurch (New Zealand); Loebker, Caroline [University of Otago, Christchurch Regenerative Medicine and Tissue Engineering Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Christchurch (New Zealand); University of Twente, Department of Developmental BioEngineering, Enschede (Netherlands); Schon, Benjamin S.; Hooper, Gary J.; Woodfield, Tim B.F. [University of Otago, Christchurch Regenerative Medicine and Tissue Engineering Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Christchurch (New Zealand); Chernoglazov, Alex I. [University of Canterbury, Human Interface Technology Laboratory New Zealand, Christchurch (New Zealand); Butler, Anthony P.H. [University of Otago - Christchurch, Department of Radiology, Christchurch (New Zealand); European Organisation for Nuclear Research (CERN), Geneva (Switzerland); MARS Bioimaging, Christchurch (New Zealand)

    2017-01-15

    To quantify iodine uptake in articular cartilage as a marker of glycosaminoglycan (GAG) content using multi-energy spectral CT. We incubated a 25-mm strip of excised osteoarthritic human tibial plateau in 50 % ionic iodine contrast and imaged it using a small-animal spectral scanner with a cadmium telluride photon-processing detector to quantify the iodine through the thickness of the articular cartilage. We imaged both spectroscopic phantoms and osteoarthritic tibial plateau samples. The iodine distribution as an inverse marker of GAG content was presented in the form of 2D and 3D images after applying a basis material decomposition technique to separate iodine in cartilage from bone. We compared this result with a histological section stained for GAG. The iodine in cartilage could be distinguished from subchondral bone and quantified using multi-energy CT. The articular cartilage showed variation in iodine concentration throughout its thickness which appeared to be inversely related to GAG distribution observed in histological sections. Multi-energy CT can quantify ionic iodine contrast (as a marker of GAG content) within articular cartilage and distinguish it from bone by exploiting the energy-specific attenuation profiles of the associated materials. (orig.)

  4. Quantitative Image Informatics for Cancer Research (QIICR) | Informatics Technology for Cancer Research (ITCR)

    Science.gov (United States)

    Imaging has enormous untapped potential to improve cancer research through software to extract and process morphometric and functional biomarkers. In the era of non-cytotoxic treatment agents, multi- modality image-guided ablative therapies and rapidly evolving computational resources, quantitative imaging software can be transformative in enabling minimally invasive, objective and reproducible evaluation of cancer treatment response. Post-processing algorithms are integral to high-throughput analysis and fine- grained differentiation of multiple molecular targets.

  5. Residual DNA analysis in biologics development: review of measurement and quantitation technologies and future directions.

    Science.gov (United States)

    Wang, Xing; Morgan, Donna M; Wang, Gan; Mozier, Ned M

    2012-02-01

    Residual DNA (rDNA) is comprised of deoxyribonucleic acid (DNA) fragments and longer length molecules originating from the host organism that may be present in samples from recombinant biological processes. Although similar in basic structural base pair units, rDNA may exist in different sizes and physical forms. Interest in measuring rDNA in recombinant products is based primarily on demonstration of effective purification during manufacturing, but also on some hypothetical concerns that, in rare cases, depending on the host expression system, some DNA sequences may be potentially infectious or oncogenic (e.g., HIV virus and the Ras oncogene, respectively). Recent studies suggest that a sequence known as long interspersed nucleotide element-1 (LINE-1), widely distributed in the mammalian genome, is active as a retrotransposon that can be transcribed to RNA, reverse-transcribed into DNA and inserts into a new site in genome. This integration process could potentially disrupt critical gene functions or induce tumorigenesis in mammals. Genomic DNA from microbial sources, on the other hand, could add to risk of immunogenicity to the target recombinant protein being expressed, due to the high CpG content and unmethylated DNA sequence. For these and other reasons, it is necessary for manufacturers to show clearance of DNA throughout production processes and to confirm low levels in the final drug substance using an appropriately specific and quantitative analytical method. The heterogeneity of potential rDNA sequences that might be makes the testing of all potential analytes challenging. The most common methodology for rDNA quantitation used currently is real-time polymerase chain reaction (RT-PCR), a robust and proven technology. Like most rDNA quantitation methods, the specificity of RT-PCR is limited by the sequences to which the primers are directed. To address this, primase-based whole genome amplification is introduced herein. This paper will review the recent

  6. On the benefit of the negative-spherical-aberration imaging technique for quantitative HRTEM

    International Nuclear Information System (INIS)

    Jia, C.L.; Houben, L.; Thust, A.; Barthel, J.

    2010-01-01

    Employing an aberration corrector in a high-resolution transmission electron microscope, the spherical aberration C S can be tuned to negative values, resulting in a novel imaging technique, which is called the negative C S imaging (NCSI) technique. The image contrast obtained with the NCSI technique is compared quantitatively with the image contrast formed with the traditional positive C S imaging (PCSI) technique. For the case of thin objects negative C S images are superior to positive C S images concerning the magnitude of the obtained contrast, which is due to constructive rather than destructive superposition of fundamental contrast contributions. As a consequence, the image signal obtained with a negative spherical aberration is significantly more robust against noise caused by amorphous surface layers, resulting in a measurement precision of atomic positions which is by a factor of 2-3 better at an identical noise level. The quantitative comparison of the two alternative C S -corrected imaging modes shows that the NCSI mode yields significantly more precise results in quantitative high-resolution transmission electron microscopy of thin objects than the traditional PCSI mode.

  7. Automated Processing of Imaging Data through Multi-tiered Classification of Biological Structures Illustrated Using Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Mei Zhan

    2015-04-01

    Full Text Available Quantitative imaging has become a vital technique in biological discovery and clinical diagnostics; a plethora of tools have recently been developed to enable new and accelerated forms of biological investigation. Increasingly, the capacity for high-throughput experimentation provided by new imaging modalities, contrast techniques, microscopy tools, microfluidics and computer controlled systems shifts the experimental bottleneck from the level of physical manipulation and raw data collection to automated recognition and data processing. Yet, despite their broad importance, image analysis solutions to address these needs have been narrowly tailored. Here, we present a generalizable formulation for autonomous identification of specific biological structures that is applicable for many problems. The process flow architecture we present here utilizes standard image processing techniques and the multi-tiered application of classification models such as support vector machines (SVM. These low-level functions are readily available in a large array of image processing software packages and programming languages. Our framework is thus both easy to implement at the modular level and provides specific high-level architecture to guide the solution of more complicated image-processing problems. We demonstrate the utility of the classification routine by developing two specific classifiers as a toolset for automation and cell identification in the model organism Caenorhabditis elegans. To serve a common need for automated high-resolution imaging and behavior applications in the C. elegans research community, we contribute a ready-to-use classifier for the identification of the head of the animal under bright field imaging. Furthermore, we extend our framework to address the pervasive problem of cell-specific identification under fluorescent imaging, which is critical for biological investigation in multicellular organisms or tissues. Using these examples as a

  8. Automated Processing of Imaging Data through Multi-tiered Classification of Biological Structures Illustrated Using Caenorhabditis elegans.

    Science.gov (United States)

    Zhan, Mei; Crane, Matthew M; Entchev, Eugeni V; Caballero, Antonio; Fernandes de Abreu, Diana Andrea; Ch'ng, QueeLim; Lu, Hang

    2015-04-01

    Quantitative imaging has become a vital technique in biological discovery and clinical diagnostics; a plethora of tools have recently been developed to enable new and accelerated forms of biological investigation. Increasingly, the capacity for high-throughput experimentation provided by new imaging modalities, contrast techniques, microscopy tools, microfluidics and computer controlled systems shifts the experimental bottleneck from the level of physical manipulation and raw data collection to automated recognition and data processing. Yet, despite their broad importance, image analysis solutions to address these needs have been narrowly tailored. Here, we present a generalizable formulation for autonomous identification of specific biological structures that is applicable for many problems. The process flow architecture we present here utilizes standard image processing techniques and the multi-tiered application of classification models such as support vector machines (SVM). These low-level functions are readily available in a large array of image processing software packages and programming languages. Our framework is thus both easy to implement at the modular level and provides specific high-level architecture to guide the solution of more complicated image-processing problems. We demonstrate the utility of the classification routine by developing two specific classifiers as a toolset for automation and cell identification in the model organism Caenorhabditis elegans. To serve a common need for automated high-resolution imaging and behavior applications in the C. elegans research community, we contribute a ready-to-use classifier for the identification of the head of the animal under bright field imaging. Furthermore, we extend our framework to address the pervasive problem of cell-specific identification under fluorescent imaging, which is critical for biological investigation in multicellular organisms or tissues. Using these examples as a guide, we envision

  9. Osteosarcoma subtypes: Magnetic resonance and quantitative diffusion weighted imaging criteria.

    Science.gov (United States)

    Zeitoun, Rania; Shokry, Ahmed M; Ahmed Khaleel, Sahar; Mogahed, Shaimaa M

    2018-03-01

    Osteosarcoma (OS) is a primary bone malignancy, characterized by spindle cells producing osteoid. The objective of this study is to describe the magnetic resonance imaging (MRI) features of different OS subtypes, record their attenuation diffusion coefficient (ADC) values and to point to the relation of their pathologic base and their corresponding ADC value. We performed a retrospective observational lesion-based analysis for 31 pathologically proven osteosarcoma subtypes: osteoblastic (n = 9), fibroblastic (n = 8), chondroblastic (n = 6), para-osteal (n = 3), periosteal (n = 1), telangiectatic (n = 2), small cell (n = 1) and extra-skeletal (n = 1). On conventional images we recorded: bone of origin, epicenter, intra-articular extension, and invasion of articulating bones, skip lesions, distant metastases, pathological fractures, ossified matrix, hemorrhage and necrosis. We measured the mean ADC value for each lesion. Among the included OS lesions, 51.6% originated at the femur, 29% showed intra-articular extension, 16% invaded neighboring bone, 9% were associated with pathological fracture and 25.8% were associated with distant metastases. On MRI, all lesions showed ossified matrix, 35.5% showed hemorrhage and 58% showed necrosis. The mean ADC values for OS lesions ranged from 0.74 × 10 -3  mm 2 /s (recorded for conventional osteoblastic OS) to 1.50 × 10 -3  mm 2 /s (recorded for telangiectatic OS) with an average value of 1.16 ± 0.18 × 10 -3  mm 2 /s. Conventional chondroblastic OS recorded higher values compared to the other two conventional subtypes. Osteosarcoma has different pathologic subtypes which correspondingly vary in their imaging criteria and their ADC values. Copyright © 2018. Production and hosting by Elsevier B.V.

  10. Quantitative imaging of tumor vasculature using multispectral optoacoustic tomography (MSOT)

    Science.gov (United States)

    Tomaszewski, Michal R.; Quiros-Gonzalez, Isabel; Joseph, James; Bohndiek, Sarah E.

    2017-03-01

    The ability to evaluate tumor oxygenation in the clinic could indicate prognosis and enable treatment monitoring, since oxygen deficient cancer cells are often more resistant to chemotherapy and radiotherapy. MultiSpectral Optoacoustic Tomography (MSOT) is a hybrid technique combining the high contrast of optical imaging with spatial resolution and penetration depth similar to ultrasound. We hypothesized that MSOT could reveal both tumor vascular density and function based on modulation of blood oxygenation. We performed MSOT on nude mice (n=8) bearing subcutaneous xenograft PC3 tumors using an inVision 256 (iThera Medical). The mice were maintained under inhalation anesthesia during imaging and respired oxygen content was modified from 21% to 100% and back. After imaging, Hoechst 33348 was injected to indicate vascular perfusion and permeability. Tumors were then extracted for histopathological analysis and fluorescence microscopy. The acquired data was analyzed to extract a bulk measurement of blood oxygenation (SO2MSOT) from the whole tumor using different approaches. The tumors were also automatically segmented into 5 regions to investigate the effect of depth on SO2MSOT. Baseline SO2MSOT values at 21% and 100% oxygen breathing showed no relationship with ex vivo measures of vascular density or function, while the change in SO2MSOT showed a strong negative correlation to Hoechst intensity (r=- 0.92, p=0.0016). Tumor voxels responding to oxygen challenge were spatially heterogeneous. We observed a significant drop in SO2 MSOT value with tumor depth following a switch of respiratory gas from air to oxygen (0.323+/-0.017 vs. 0.11+/-0.05, p=0.009 between 0 and 1.5mm depth), but no such effect for air breathing (0.265+/-0.013 vs. 0.19+/-0.04, p=0.14 between 0 and 1.5mm depth). Our results indicate that in subcutaneous prostate tumors, baseline SO2MSOT levels do not correlate to tumor vascular density or function while the magnitude of the response to oxygen

  11. Nuclear medicine and imaging research (quantitative studies in radiopharmaceutical science)

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, M.; Beck, R.N.

    1992-06-01

    This report describes three studies aimed at using radiolabeled pharmaceuticals to explore brain function and anatomy. The first section describes the chemical preparation of (F18)fluorinated benzamides (dopamine D-2 receptor tracers), (F18)fluorinated benzazepines (dopamine D-1 receptor tracers), and tissue distribution of (F18)-fluoxetine (serotonin reuptake site tracer). The second section relates pharmacological and behavioral studies of amphetamines. The third section reports on progress made with processing of brain images from CT, MRI and PET/SPECT with regards to brain metabolism of glucose during mental tasks.

  12. Quantitating subcellular metabolism with multi-isotope imaging mass spectrometry

    OpenAIRE

    Steinhauser, Matthew L.; Bailey, Andrew; Senyo, Samuel E.; Guillermier, Christelle; Perlstein, Todd S.; Gould, Alex P.; Lee, Richard T.; Lechene, Claude P.

    2012-01-01

    Mass spectrometry with stable isotope labels has been seminal in discovering the dynamic state of living matter 1,2 but is limited to bulk tissues or cells. We developed multi-isotope imaging mass spectrometry (MIMS) that allowed us to view and measure stable isotope incorporation with sub-micron resolution 3,4 . Here we apply MIMS to diverse organisms, including Drosophila, mice, and humans. We test the “immortal strand hypothesis,” which predicts that during asymmetric stem cell division ch...

  13. Nuclear medicine and imaging research (quantitative studies in radiopharmaceutical science)

    International Nuclear Information System (INIS)

    Cooper, M.; Beck, R.N.

    1992-06-01

    This report describes three studies aimed at using radiolabeled pharmaceuticals to explore brain function and anatomy. The first section describes the chemical preparation of [F18]fluorinated benzamides (dopamine D-2 receptor tracers), [F18]fluorinated benzazepines (dopamine D-1 receptor tracers), and tissue distribution of [F18]-fluoxetine (serotonin reuptake site tracer). The second section relates pharmacological and behavioral studies of amphetamines. The third section reports on progress made with processing of brain images from CT, MRI and PET/SPECT with regards to brain metabolism of glucose during mental tasks

  14. Quantitative imaging of protein targets in the human brain with PET

    International Nuclear Information System (INIS)

    Gunn, Roger N; Slifstein, Mark; Searle, Graham E; Price, Julie C

    2015-01-01

    PET imaging of proteins in the human brain with high affinity radiolabelled molecules has a history stretching back over 30 years. During this period the portfolio of protein targets that can be imaged has increased significantly through successes in radioligand discovery and development. This portfolio now spans six major categories of proteins; G-protein coupled receptors, membrane transporters, ligand gated ion channels, enzymes, misfolded proteins and tryptophan-rich sensory proteins. In parallel to these achievements in radiochemical sciences there have also been significant advances in the quantitative analysis and interpretation of the imaging data including the development of methods for image registration, image segmentation, tracer compartmental modeling, reference tissue kinetic analysis and partial volume correction. In this review, we analyze the activity of the field around each of the protein targets in order to give a perspective on the historical focus and the possible future trajectory of the field. The important neurobiology and pharmacology is introduced for each of the six protein classes and we present established radioligands for each that have successfully transitioned to quantitative imaging in humans. We present a standard quantitative analysis workflow for these radioligands which takes the dynamic PET data, associated blood and anatomical MRI data as the inputs to a series of image processing and bio-mathematical modeling steps before outputting the outcome measure of interest on either a regional or parametric image basis. The quantitative outcome measures are then used in a range of different imaging studies including tracer discovery and development studies, cross sectional studies, classification studies, intervention studies and longitudinal studies. Finally we consider some of the confounds, challenges and subtleties that arise in practice when trying to quantify and interpret PET neuroimaging data including motion artifacts

  15. Quantitative imaging of protein targets in the human brain with PET

    Science.gov (United States)

    Gunn, Roger N.; Slifstein, Mark; Searle, Graham E.; Price, Julie C.

    2015-11-01

    PET imaging of proteins in the human brain with high affinity radiolabelled molecules has a history stretching back over 30 years. During this period the portfolio of protein targets that can be imaged has increased significantly through successes in radioligand discovery and development. This portfolio now spans six major categories of proteins; G-protein coupled receptors, membrane transporters, ligand gated ion channels, enzymes, misfolded proteins and tryptophan-rich sensory proteins. In parallel to these achievements in radiochemical sciences there have also been significant advances in the quantitative analysis and interpretation of the imaging data including the development of methods for image registration, image segmentation, tracer compartmental modeling, reference tissue kinetic analysis and partial volume correction. In this review, we analyze the activity of the field around each of the protein targets in order to give a perspective on the historical focus and the possible future trajectory of the field. The important neurobiology and pharmacology is introduced for each of the six protein classes and we present established radioligands for each that have successfully transitioned to quantitative imaging in humans. We present a standard quantitative analysis workflow for these radioligands which takes the dynamic PET data, associated blood and anatomical MRI data as the inputs to a series of image processing and bio-mathematical modeling steps before outputting the outcome measure of interest on either a regional or parametric image basis. The quantitative outcome measures are then used in a range of different imaging studies including tracer discovery and development studies, cross sectional studies, classification studies, intervention studies and longitudinal studies. Finally we consider some of the confounds, challenges and subtleties that arise in practice when trying to quantify and interpret PET neuroimaging data including motion artifacts

  16. Quantitative PET Imaging in Drug Development: Estimation of Target Occupancy.

    Science.gov (United States)

    Naganawa, Mika; Gallezot, Jean-Dominique; Rossano, Samantha; Carson, Richard E

    2017-12-11

    Positron emission tomography, an imaging tool using radiolabeled tracers in humans and preclinical species, has been widely used in recent years in drug development, particularly in the central nervous system. One important goal of PET in drug development is assessing the occupancy of various molecular targets (e.g., receptors, transporters, enzymes) by exogenous drugs. The current linear mathematical approaches used to determine occupancy using PET imaging experiments are presented. These algorithms use results from multiple regions with different target content in two scans, a baseline (pre-drug) scan and a post-drug scan. New mathematical estimation approaches to determine target occupancy, using maximum likelihood, are presented. A major challenge in these methods is the proper definition of the covariance matrix of the regional binding measures, accounting for different variance of the individual regional measures and their nonzero covariance, factors that have been ignored by conventional methods. The novel methods are compared to standard methods using simulation and real human occupancy data. The simulation data showed the expected reduction in variance and bias using the proper maximum likelihood methods, when the assumptions of the estimation method matched those in simulation. Between-method differences for data from human occupancy studies were less obvious, in part due to small dataset sizes. These maximum likelihood methods form the basis for development of improved PET covariance models, in order to minimize bias and variance in PET occupancy studies.

  17. Quantitative imaging of magnetic nanoparticles by magneto-relaxometric tomography for biomedical applications; Quantitative Bildgebung magnetischer Nanopartikel mittels magnetrelaxometrischer Tomographie fuer biomedizinische Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Liebl, Maik

    2016-11-18

    generate a time-multiplexed sequence of precise magnetic fields for spatially constrained magnetizing of the MNP distribution. The unit has been integrated into a sensor system containing 304 superconducting quantum interference devices (SQUIDs) used for the spatially resolved detection of the MNP responses after each magnetizing. Furthermore, for evaluation of MRX tomography MNP phantoms reflecting the MNP distribution after magnetic drug targeting therapy in animals were designed and implemented. Using these phantoms, MNP distributions with clinical MNP doses in the milligram range could be quantitatively reconstructed by MRX tomography within a field of view up to 600 cm³ and a spatial resolution of a few cubic centimeters. The deviation between the quantified and nominal MNP amount was found to be below 10%. With the present experimental setup MRX tomography measurements of a complete MNP distribution were performed within the typical anesthesia time interval of a few minutes prevailing in preclinical animal studies. By implementing advanced magnetizing sequences this measurement time of the MRX tomography setup could be reduced to below 30 s. Finally, using the same MRX tomography setup a binding state specific quantitative imaging of MNP distributions was achieved by incorporating the temporal MNP relaxation behavior into the reconstruction. Hence, MRX tomography has the potential to image the influence of the local biological environment on the physical properties of the MNPs. The presented MRX tomography setup allows for sensitive and specific spatially resolved 3D quantification of MNPs in small animals. This represents an important step towards the development of a clinical imaging tool for the control and assessment of MNP based cancer treatments. Moreover, by adjusting the excitation coils the field of view could be easily enlarged making MRX tomography quite conceivable for human application.

  18. Nuclear medicine and quantitative imaging research (quantitative studies in radiopharmaceutical science): Comprehensive progress report, April 1, 1986-December 31, 1988

    International Nuclear Information System (INIS)

    Cooper, M.D.; Beck, R.N.

    1988-06-01

    This document describes several years research to improve PET imaging and diagnostic techniques in man. This program addresses the problems involving the basic science and technology underlying the physical and conceptual tools of radioactive tracer methodology as they relate to the measurement of structural and functional parameters of physiologic importance in health and disease. The principal tool is quantitative radionuclide imaging. The overall objective of this program is to further the development and transfer of radiotracer methodology from basic theory to routine clinical practice in order that individual patients and society as a whole will receive the maximum net benefit from the new knowledge gained. The focus of the research is on the development of new instruments and radiopharmaceuticals, and the evaluation of these through the phase of clinical feasibility. The reports in the study were processed separately for the data bases

  19. Quantitative assessment of periimplant bone density (HU) on CBCT image

    International Nuclear Information System (INIS)

    Goo, Jong Gook; Kim, Jin Soo; Kim, Jae Duk

    2008-01-01

    The primary aims of this retrospective study were to compare subjective bone quality and bone quality based on the Hounsfield scale in different segments of the edentulous jaw, and to establish quantitative and objective assessment of the bone quality. Twenty eight randomly selected cone-beam computed tomographic (CBCT) scans were analyzed. For evaluation one hundred and twelve edentulous areas were selected. Implant recipient sites were evaluated visually for Lekholm and Zarb classification. The same sites were subsequently evaluated digitally using the Hounsfield scale with Vimplant 2.0 TM , and the results were correlated with visual classification. Data was subject for statistical analysis in order to determine correlation between recorded HU and the regions of the mouth with the Kruskal-Wallis test. The highest unit/mean density value (311 HU) was found in the anterior mandible, followed by 259 HU for the posterior mandible, 216 HU for the anterior maxilla, and 127 HU for the posterior maxilla. These results demonstrate a strong correlation for HU depending on the region of the mouth (p TM with Vimplant TM software.

  20. Quantitative live imaging of endogenous DNA replication in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Andrew Burgess

    Full Text Available Historically, the analysis of DNA replication in mammalian tissue culture cells has been limited to static time points, and the use of nucleoside analogues to pulse-label replicating DNA. Here we characterize for the first time a novel Chromobody cell line that specifically labels endogenous PCNA. By combining this with high-resolution confocal time-lapse microscopy, and with a simplified analysis workflow, we were able to produce highly detailed, reproducible, quantitative 4D data on endogenous DNA replication. The increased resolution allowed accurate classification and segregation of S phase into early-, mid-, and late-stages based on the unique subcellular localization of endogenous PCNA. Surprisingly, this localization was slightly but significantly different from previous studies, which utilized over-expressed GFP tagged forms of PCNA. Finally, low dose exposure to Hydroxyurea caused the loss of mid- and late-S phase localization patterns of endogenous PCNA, despite cells eventually completing S phase. Taken together, these results indicate that this simplified method can be used to accurately identify and quantify DNA replication under multiple and various experimental conditions.

  1. Quantitative magnetization transfer imaging of rodent glioma using selective inversion recovery.

    Science.gov (United States)

    Xu, Junzhong; Li, Ke; Zu, Zhongliang; Li, Xia; Gochberg, Daniel F; Gore, John C

    2014-03-01

    Magnetization transfer (MT) provides an indirect means to detect noninvasively variations in macromolecular contents in biological tissues, but, so far, there have been only a few quantitative MT (qMT) studies reported in cancer, all of which used off-resonance pulsed saturation methods. This article describes the first implementation of a different qMT approach, selective inversion recovery (SIR), for the characterization of tumor in vivo using a rodent glioma model. The SIR method is an on-resonance method capable of fitting qMT parameters and T1 relaxation time simultaneously without mapping B0 and B1 , which is very suitable for high-field qMT measurements because of the lower saturation absorption rate. The results show that the average pool size ratio (PSR, the macromolecular pool versus the free water pool) in rat 9 L glioma (5.7%) is significantly lower than that in normal rat gray matter (9.2%) and white matter (17.4%), which suggests that PSR is potentially a sensitive imaging biomarker for the assessment of brain tumor. Despite being less robust, the estimated MT exchange rates also show clear differences from normal tissues (19.7 Hz for tumors versus 14.8 and 10.2 Hz for gray and white mater, respectively). In addition, the influence of confounding effects, e.g. B1 inhomogeneity, on qMT parameter estimates is investigated with numerical simulations. These findings not only help to better understand the changes in the macromolecular contents of tumors, but are also important for the interpretation of other imaging contrasts, such as chemical exchange saturation transfer of tumors. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Using image analysis to monitor biological changes in consume fish

    DEFF Research Database (Denmark)

    Dissing, Bjørn Skovlund; Frosch, Stina; Nielsen, Michael Engelbrecht

    2011-01-01

    The quality of fish products is largely defined by the visual appearance of the products. Visual appearance includes measurable parameters such as color and texture. Fat content and distribution as well as deposition of carotenoid pigments such as astaxanthin in muscular and fat tissue...... fishes is based on highly laborious chemical analysis. Trichromatic digital imaging and point-wise colorimetric or spectral measurement are also ways of estimating either the redness or the actual astaxanthin concentration of the fillet. These methods all have drawbacks of either cumbersome testing...... are biological parameters with a huge impact on the color and texture of the fish muscle. Consumerdriven quality demands call for rapid methods for quantification of quality parameters such as fat and astaxanthin in the industry. The spectral electromagnetic reflection properties of astaxanthin are well known...

  3. The use contrast agent for imaging biological samples

    Czech Academy of Sciences Publication Activity Database

    Dammer, J.; Weyda, František; Sopko, V.; Jakůbek, J.

    2011-01-01

    Roč. 6, C01096 (2011), s. 1-7 ISSN 1748-0221. [International Workshop on Radiation Imaging Detectors /12./. Cambridge, 11.07.2010-15.7.2010] R&D Projects: GA MŠk 2B06005 Grant - others:Research Program(CZ) 6840770029; Research Program(CZ) 6840770040; GA AV ČR(CZ) IAA600550614; GA MŠk(CZ) 2B06007; GA MŠk(CZ) 1PO4LA211; GA MŠk(CZ) LC06041 Program:IA; 2B; LC Institutional research plan: CEZ:AV0Z50070508 Keywords : x-ray radiography and digital radiography (DR) * x-ray detectors * inspections with x-rays Subject RIV: EA - Cell Biology Impact factor: 1.869, year: 2011

  4. Activation autoradiography: imaging and quantitative determination of endogenous and exogenous oxygen in the rat brain

    International Nuclear Information System (INIS)

    Kawashima, K.; Iwata, R.; Kogure, K.; Ohtomo, H.; Orihara, H.; Ido, T.

    1987-01-01

    Endogenous and exogenous oxygen in the rat brain were quantitatively determined using an autoradiographic technique. The oxygen images of frozen and dried rat brain sections were obtained as 18 F images by using the 16 O ( 3 He,p) 18 F reaction for endogenous 16 O images and the 18 O(p,n) 18 F reaction for endogenous and exogenous 18 O images. These autoradiograms demonstrated the different distribution of oxygen between gray and white matter. These images also allowed differentiation of the individual structures of hippocampal formation, owing to the differing water content of the various structures. Local oxygen contents were quantitatively determined from autoradiograms of brain sections and standard sections with known oxygen contents. The estimated values were 75.6 +/- 4.6 wt% in gray matter and 72.2 +/- 4.0 wt% in white matter. The systematic error in the present method was estimated to be 4.9%

  5. Quantitative MR imaging of normal and leukemic bone marrow

    International Nuclear Information System (INIS)

    Hinks, R.S.; Dunlap, H.J.; Poon, P.Y.; Curtis, J.; Henkelman, R.M.

    1986-01-01

    The authors have developed and tested a protocol that allows extraction of reliable T1 and T2 relaxation times from imaging data. They have used these methods to study in vivo the bone marrow of healthy volunteers and patients with acute leukemia. Examinations were performed at 6.25 MHz using an interleaved ISE/SE sequence to calculate T1 and an eight echo (TE = 25) sequence to calculate T2. The results are summarized as follows: In leukemic patients, T1 = 476 +- 115 msec; in leukemic patients in remission, T1 = 290 +- 31 msec; in healthy volunteers, T1 = 329 +- 32 msec. The T2 values were not significantly different for the three groups (105 +- 10 msec). Work is underway to evaluate whether T1 values of bone marrow may be used to monitor patients in remission and to detect the onset of relapse

  6. THz imaging of majolica tiles and biological attached marble fragments

    Science.gov (United States)

    Catapano, Ilaria; Soldovieri, Francesco

    2016-04-01

    Devices exploiting waves in the frequency range from 0.1 THz to 10 THz (corresponding to a free-space wavelength ranging from 30 μm to 3 mm) deserve attention as diagnostic technologies for cultural heritage. THz waves are, indeed, non-ionizing radiations capable of penetrating into non-metallic materials, which are opaque to both visible and infrared waves, without implying long term risks to the molecular stability of the exposed objects and humans. Moreover, THz surveys involve low poewr probing waves, are performed without contact with the object and, thanks to the recent developments, which have allowed the commercialization of compact, flexible and portable systems, maybe performed in loco (i.e. in the place where the artworks are usually located). On the other hand, THz devices can be considered as the youngest among the sensing and imaging electromagnetic techniques and their actual potentialities in terms of characterization of artworks is an ongoing research activity. As a contribution within this context, we have performed time of flight THz imaging [1,2] on ceramic and marble objects. In particular, we surveyed majolica tiles produced by Neapolitan ceramists in the 18th and 19th centuries with the aim to gather information on their structure, constructive technique and conservation state. Moreover, we investigated a Marmo di Candoglia fragment in order to characterize the biological attach affecting it. All the surveys were carried out by using the Fiber-Coupled Terahertz Time Domain System (FICO) developed by Z-Omega and available at the Institute of Electromagnetic Sensing of the Environment (IREA). This system is equipped with fiber optic coupled transmitting and receiving probes and with an automatic positioning system enabling to scan a 150 mm x 150 mm area under a reflection measurement configuration. Based on the obtained results we can state that the use of THz waves allows: - the reconstruction of the object topography; - the geometrical

  7. X-ray diffraction imaging of biological cells

    CERN Document Server

    Nakasako, Masayoshi

    2018-01-01

    In this book, the author describes the development of the experimental diffraction setup and structural analysis of non-crystalline particles from material science and biology. Recent advances in X-ray free electron laser (XFEL)-coherent X-ray diffraction imaging (CXDI) experiments allow for the structural analysis of non-crystalline particles to a resolution of 7 nm, and to a resolution of 20 nm for biological materials. Now XFEL-CXDI marks the dawn of a new era in structural analys of non-crystalline particles with dimensions larger than 100 nm, which was quite impossible in the 20th century. To conduct CXDI experiments in both synchrotron and XFEL facilities, the author has developed apparatuses, named KOTOBUKI-1 and TAKASAGO-6 for cryogenic diffraction experiments on frozen-hydrated non-crystalline particles at around 66 K. At the synchrotron facility, cryogenic diffraction experiments dramatically reduce radiation damage of specimen particles and allow tomography CXDI experiments. In addition, in XFEL ex...

  8. [Radar as imaging tool in ecology and conservation biology].

    Science.gov (United States)

    Matyjasiak, Piotr

    2017-01-01

    Migrations and dispersal are among the most important ecological processes that shape ecosystems and influence our economy, health and safety. Movements of birds, bats and insects occur in a large spatial scale - regional, continental, or intercontinental. However, studies of these phenomena using classic methods are usually local. Breakthrough came with the development of radar technology, which enabled researchers to study animal movements in the atmosphere in a large spatial and temporal scale. The aim of this article was to present the radar imaging methods used in the research of aerial movements of birds, bats and insects. The types of radars used in research are described, and examples of the use of radar in basic research and in conservation biology are discussed. Radar visualizations are used in studies on the effect of meteorological conditions on bird migration, on spatial and temporal dynamics of movements of birds, bats and insects, and on the mechanism of orientation of migrating birds and insects. In conservation biology research radars are used in the monitoring of endangered species of birds and bats, to monitor bird activity at airports, as well as in assessing the impact of high constructions on flying birds and bats.

  9. Nuclear medicine and imaging research. Instrumentation and quantitative methods of evaluation. Progress report, January 15, 1984-January 14, 1985

    International Nuclear Information System (INIS)

    Beck, R.N.; Cooper, M.D.

    1984-09-01

    This program addresses problems involving the basic science and technology of radioactive tracer methods as they relate to nuclear medicine and imaging. The broad goal is to develop new instruments and methods for image formation, processing, quantitation and display, so as to maximize the diagnostic information per unit of absorbed radiation dose to the patient. Project I addresses problems associated with the quantitative imaging of single-photon emitters; Project II addresses similar problems associated with the quantitative imaging of positron emitters; Project III addresses methodological problems associated with the quantitative evaluation of the efficacy of diagnostic imaging procedures

  10. Quantitative Magnetization Transfer Imaging in Human Brain at 3 T via Selective Inversion Recovery

    OpenAIRE

    Dortch, Richard D.; Li, Ke; Gochberg, Daniel F.; Welch, E. Brian; Dula, Adrienne N.; Tamhane, Ashish A.; Gore, John C.; Smith, Seth A.

    2011-01-01

    Quantitative magnetization transfer imaging yields indices describing the interactions between free water protons and immobile, macromolecular protons—including the macromolecular to free pool size ratio (PSR) and the rate of magnetization transfer between pools kmf. This study describes the first implementation of the selective inversion recovery quantitative magnetization transfer method on a clinical 3.0-T scanner in human brain in vivo. Selective inversion recovery data were acquired at 1...

  11. Quantitative emission tomography by coded aperture imaging in nuclear medicine

    International Nuclear Information System (INIS)

    Guilhem, J.B.

    1982-06-01

    The coded aperture imaging is applied to nuclear medicine, since ten years. However no satisfactory clinical results have been obtained thus for. The reason is that digital reconstruction methods which have been implemented, in particular the method which use deconvolution filtering are not appropriate for quantification. Indeed these methods which all based on the assumption of shift invariance of the coding procedure, which is contradictory to the geometrical recording conditions giving the best depth resolution, do not take into account gamma rays attenuation by tissues and in most cases give tomograms with artefacts from blurred structures. A method is proposed which has not these limitations and considers the reconstruction problem as the ill-conditioned problem of solving a Fredholm integral equation. The main advantage of this method lies in fact that the transmission kernel of the integral equation is obtained experimentally, and the approximate solution of this equation, close enough to the original 3-D radioactive object, can be obtained in spite of the ill-conditioned nature of the problem, by use of singular values decomposition (S. V. D.) of the kernel [fr

  12. An operative quantitative analysis of multispectral images of the eyeground

    Science.gov (United States)

    Lisenko, S. A.; Kugeiko, M. M.; Firago, V. A.; Kubarko, A. I.

    2014-09-01

    In the approximation of a four-layer model of the eyeground, we have studied the information content of photographs of the eyeground obtained in different spectral intervals from the visible range of the spectrum. We have shown that, under conditions of a priori uncertainty of all parameters of the eyeground that affect spectral fluxes of light multiply scattered by the eyeground, the two-dimensional distributions of the following parameters can be determined: (i) the contents of hemoglobin and macular pigment in the retina; (ii) the contents of melanin in the pigment epithelium and choroid; (iii) the degree of blood oxygenation; and (iv) the structural parameter of the retina, which characterizes the volume concentration of its effective scatterers. Based on results of a numerical simulation of the light-transfer process in the medium under study, we have determined regression relationships between parameters of the eyeground and spectral characteristics of its image and have proposed a method for the operative retrieval of parameter maps of the eyeground, which uses the determined regressions.

  13. A quantitative measure of myelination development in infants, using MR images

    Energy Technology Data Exchange (ETDEWEB)

    Carmody, Dennis P. [Robert Wood Johnson Medical School, New Brunswick, NJ (United States); Dunn, Stanley M.; Boddie-Willis, Akiza S. [The State University of New Jersey, Rutgers, New Brunswick, NJ (United States); DeMarco, J. Kevin [Laurie Imaging Center, New Brunswick, NJ (United States); Lewis, Michael [Robert Wood Johnson Medical School, New Brunswick, NJ (United States); Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Institute for the Study of Child Development, New Brunswick (United States)

    2004-09-01

    The objective of this study was to measure myelination of frontal lobe changes in infants and young children. Twenty-four cases of infants and children (age range 12-121 months) were evaluated by a quantitative assessment of T2-weighted MR image features. Reliable quantitative changes between white and gray matter correlated with developmental age in a group of children with no neurological findings. Myelination appears to be an increasing exponential function with the greatest rate of change occurring over the first 3 years of life. The quantitative changes observed were in accordance with previous qualitative judgments of myelination development. Children with periventricular leukomalacia (PVL) showed delays in achieving levels of myelination when compared to normal children and adjusted for chronological age. The quantitative measure of myelination development may prove to be useful in assessing the stages of development and helpful in the quantitative descriptions of white matter disorders such as PVL. (orig.)

  14. A quantitative measure of myelination development in infants, using MR images

    International Nuclear Information System (INIS)

    Carmody, Dennis P.; Dunn, Stanley M.; Boddie-Willis, Akiza S.; DeMarco, J. Kevin; Lewis, Michael

    2004-01-01

    The objective of this study was to measure myelination of frontal lobe changes in infants and young children. Twenty-four cases of infants and children (age range 12-121 months) were evaluated by a quantitative assessment of T2-weighted MR image features. Reliable quantitative changes between white and gray matter correlated with developmental age in a group of children with no neurological findings. Myelination appears to be an increasing exponential function with the greatest rate of change occurring over the first 3 years of life. The quantitative changes observed were in accordance with previous qualitative judgments of myelination development. Children with periventricular leukomalacia (PVL) showed delays in achieving levels of myelination when compared to normal children and adjusted for chronological age. The quantitative measure of myelination development may prove to be useful in assessing the stages of development and helpful in the quantitative descriptions of white matter disorders such as PVL. (orig.)

  15. AUTOMATED ANALYSIS OF QUANTITATIVE IMAGE DATA USING ISOMORPHIC FUNCTIONAL MIXED MODELS, WITH APPLICATION TO PROTEOMICS DATA.

    Science.gov (United States)

    Morris, Jeffrey S; Baladandayuthapani, Veerabhadran; Herrick, Richard C; Sanna, Pietro; Gutstein, Howard

    2011-01-01

    Image data are increasingly encountered and are of growing importance in many areas of science. Much of these data are quantitative image data, which are characterized by intensities that represent some measurement of interest in the scanned images. The data typically consist of multiple images on the same domain and the goal of the research is to combine the quantitative information across images to make inference about populations or interventions. In this paper, we present a unified analysis framework for the analysis of quantitative image data using a Bayesian functional mixed model approach. This framework is flexible enough to handle complex, irregular images with many local features, and can model the simultaneous effects of multiple factors on the image intensities and account for the correlation between images induced by the design. We introduce a general isomorphic modeling approach to fitting the functional mixed model, of which the wavelet-based functional mixed model is one special case. With suitable modeling choices, this approach leads to efficient calculations and can result in flexible modeling and adaptive smoothing of the salient features in the data. The proposed method has the following advantages: it can be run automatically, it produces inferential plots indicating which regions of the image are associated with each factor, it simultaneously considers the practical and statistical significance of findings, and it controls the false discovery rate. Although the method we present is general and can be applied to quantitative image data from any application, in this paper we focus on image-based proteomic data. We apply our method to an animal study investigating the effects of opiate addiction on the brain proteome. Our image-based functional mixed model approach finds results that are missed with conventional spot-based analysis approaches. In particular, we find that the significant regions of the image identified by the proposed method

  16. Quantitative redox imaging biomarkers for studying tissue metabolic state and its heterogeneity

    Directory of Open Access Journals (Sweden)

    He N. Xu

    2014-03-01

    Full Text Available NAD+/NADH redox state has been implicated in many diseases such as cancer and diabetes as well as in the regulation of embryonic development and aging. To fluorimetrically assess the mitochondrial redox state, Dr. Chance and co-workers measured the fluorescence of NADH and oxidized flavoproteins (Fp including flavin–adenine–dinucleotide (FAD and demonstrated their ratio (i.e. the redox ratio is a sensitive indicator of the mitochondrial redox states. The Chance redox scanner was built to simultaneously measure NADH and Fp in tissue at submillimeter scale in 3D using the freeze-trap protocol. This paper summarizes our recent research experience, development and new applications of the redox scanning technique in collaboration with Dr. Chance beginning in 2005. Dr. Chance initiated or actively involved in many of the projects during the last several years of his life. We advanced the redox scanning technique by measuring the nominal concentrations (in reference to the frozen solution standards of the endogenous fluorescent analytes, i.e., [NADH] and [Fp] to quantify the redox ratios in various biological tissues. The advancement has enabled us to identify an array of the redox indices as quantitative imaging biomarkers (including [NADH], [Fp], [Fp]/([NADH]+[Fp], [NADH]/[Fp], and their standard deviations for studying some important biological questions on cancer and normal tissue metabolism. We found that the redox indices were associated or changed with (1 tumorigenesis (cancer versus non-cancer of human breast tissue biopsies; (2 tumor metastatic potential; (3 tumor glucose uptake; (4 tumor p53 status; (5 PI3K pathway activation in pre-malignant tissue; (6 therapeutic effects on tumors; (7 embryonic stem cell differentiation; (8 the heart under fasting. Together, our work demonstrated that the tissue redox indices obtained from the redox scanning technique may provide useful information about tissue metabolism and physiology status in normal

  17. A quantitative performance evaluation of the EM algorithm applied to radiographic images

    International Nuclear Information System (INIS)

    Brailean, J.C.; Sullivan, B.J.; Giger, M.L.; Chen, C.T.

    1991-01-01

    In this paper, the authors quantitatively evaluate the performance of the Expectation Maximization (EM) algorithm as a restoration technique for radiographic images. The perceived signal-to-noise ratio (SNR), of simple radiographic patterns processed by the EM algorithm are calculated on the basis of a statistical decision theory model that includes both the observer's visual response function and a noise component internal to the eye-brain system. The relative SNR (ratio of the processed SNR to the original SNR) is calculated and used as a metric to quantitatively compare the effects of the EM algorithm to two popular image enhancement techniques: contrast enhancement (windowing) and unsharp mask filtering

  18. Liquid chromatography coupled with tandem mass spectrometry for the quantitative analysis of anticancer drugs in biological matrices

    NARCIS (Netherlands)

    Stokvis, Ellen

    2004-01-01

    In this thesis, the development and validation of liquid chromatography tandem mass spectrometric (LC-MS/MS) methods for the quantitative bioanalysis of anticancer drugs are described. The monitoring of these drugs in biological fluids and tissues is important during both pre-clinical and clinical

  19. Quantitative sub-surface and non-contact imaging using scanning microwave microscopy

    International Nuclear Information System (INIS)

    Gramse, Georg; Kasper, Manuel; Hinterdorfer, Peter; Brinciotti, Enrico; Rankl, Christian; Kienberger, Ferry; Lucibello, Andrea; Marcelli, Romolo; Patil, Samadhan B.; Giridharagopal, Rajiv

    2015-01-01

    The capability of scanning microwave microscopy for calibrated sub-surface and non-contact capacitance imaging of silicon (Si) samples is quantitatively studied at broadband frequencies ranging from 1 to 20 GHz. Calibrated capacitance images of flat Si test samples with varying dopant density (10 15 –10 19 atoms cm −3 ) and covered with dielectric thin films of SiO 2 (100–400 nm thickness) are measured to demonstrate the sensitivity of scanning microwave microscopy (SMM) for sub-surface imaging. Using standard SMM imaging conditions the dopant areas could still be sensed under a 400 nm thick oxide layer. Non-contact SMM imaging in lift-mode and constant height mode is quantitatively demonstrated on a 50 nm thick SiO 2 test pad. The differences between non-contact and contact mode capacitances are studied with respect to the main parameters influencing the imaging contrast, namely the probe tip diameter and the tip–sample distance. Finite element modelling was used to further analyse the influence of the tip radius and the tip–sample distance on the SMM sensitivity. The understanding of how the two key parameters determine the SMM sensitivity and quantitative capacitances represents an important step towards its routine application for non-contact and sub-surface imaging. (paper)

  20. Role of image analysis in quantitative characterisation of nuclear fuel materials

    International Nuclear Information System (INIS)

    Dubey, J.N.; Rao, T.S.; Pandey, V.D.; Majumdar, S.

    2005-01-01

    Image analysis is one of the important techniques, widely used for materials characterization. It provides the quantitative estimation of the microstructural features present in the material. This information is very much valuable for finding out the criteria for taking up the fuel for high burn up. Radiometallurgy Division has been carrying out development and fabrication of plutonium related fuels for different type of reactors viz. Purnima, Fast Breeder Test Reactor (FBTR), Prototype Fast Breeder Reactor (PFBR), Boiling Water Reactor (BWR), Advanced Heavy Water Reactor (AHWR), Pressurised Heavy Water Reactor (PHWR) and KAMINI Reactor. Image analysis has been carried out on microstructures of PHWR, AHWR, FBTR and KAMINI fuels. Samples were prepared as per standard ASTM metallographic procedure. Digital images of the microstructure of these specimens were obtained using CCD camera, attached to the optical microscope. These images are stores on computer and used for detection and analysis of features of interest with image analysis software. Quantitative image analysis technique has been standardised and used for finding put type of the porosity, its size, shape and distribution in the above sintered oxide and carbide fuels. This technique has also been used for quantitative estimation of different phases present in KAMINI fuel. Image analysis results have been summarised and presented in this paper. (author)

  1. Use of local noise power spectrum and wavelet analysis in quantitative image quality assurance for EPIDs

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soyoung [Department of Radiation Oncology, University Hospitals Case and Medical Center, Cleveland, Ohio 44106 (United States); Yan, Guanghua; Bassett, Philip; Samant, Sanjiv, E-mail: samant@ufl.edu [Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, Florida 32608 (United States); Gopal, Arun [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201 (United States)

    2016-09-15

    Purpose: To investigate the use of local noise power spectrum (NPS) to characterize image noise and wavelet analysis to isolate defective pixels and inter-subpanel flat-fielding artifacts for quantitative quality assurance (QA) of electronic portal imaging devices (EPIDs). Methods: A total of 93 image sets including custom-made bar-pattern images and open exposure images were collected from four iViewGT a-Si EPID systems over three years. Global quantitative metrics such as modulation transform function (MTF), NPS, and detective quantum efficiency (DQE) were computed for each image set. Local NPS was also calculated for individual subpanels by sampling region of interests within each subpanel of the EPID. The 1D NPS, obtained by radially averaging the 2D NPS, was fitted to a power-law function. The r-square value of the linear regression analysis was used as a singular metric to characterize the noise properties of individual subpanels of the EPID. The sensitivity of the local NPS was first compared with the global quantitative metrics using historical image sets. It was then compared with two commonly used commercial QA systems with images collected after applying two different EPID calibration methods (single-level gain and multilevel gain). To detect isolated defective pixels and inter-subpanel flat-fielding artifacts, Haar wavelet transform was applied on the images. Results: Global quantitative metrics including MTF, NPS, and DQE showed little change over the period of data collection. On the contrary, a strong correlation between the local NPS (r-square values) and the variation of the EPID noise condition was observed. The local NPS analysis indicated image quality improvement with the r-square values increased from 0.80 ± 0.03 (before calibration) to 0.85 ± 0.03 (after single-level gain calibration) and to 0.96 ± 0.03 (after multilevel gain calibration), while the commercial QA systems failed to distinguish the image quality improvement between the two

  2. Rapid and Quantitative Assessment of Cancer Treatment Response Using In Vivo Bioluminescence Imaging

    Directory of Open Access Journals (Sweden)

    Alnawaz Rehemtulla

    2000-01-01

    Full Text Available Current assessment of orthotopic tumor models in animals utilizes survival as the primary therapeutic end point. In vivo bioluminescence imaging (BLI is a sensitive imaging modality that is rapid and accessible, and may comprise an ideal tool for evaluating antineoplastic therapies [1 ]. Using human tumor cell lines constitutively expressing luciferase, the kinetics of tumor growth and response to therapy have been assessed in intraperitoneal [2], subcutaneous, and intravascular [3] cancer models. However, use of this approach for evaluating orthotopic tumor models has not been demonstrated. In this report, the ability of BLI to noninvasively quantitate the growth and therapeuticinduced cell kill of orthotopic rat brain tumors derived from 9L gliosarcoma cells genetically engineered to stably express firefly luciferase (9LLuc was investigated. Intracerebral tumor burden was monitored over time by quantitation of photon emission and tumor volume using a cryogenically cooled CCD camera and magnetic resonance imaging (MRI, respectively. There was excellent correlation (r=0.91 between detected photons and tumor volume. A quantitative comparison of tumor cell kill determined from serial MRI volume measurements and BLI photon counts following 1,3-bis(2-chloroethyl-1-nitrosourea (BCNU treatment revealed that both imaging modalities yielded statistically similar cell kill values (P=.951. These results provide direct validation of BLI imaging as a powerful and quantitative tool for the assessment of antineoplastic therapies in living animals.

  3. Analytical robustness of quantitative NIR chemical imaging for Islamic paper characterization

    Science.gov (United States)

    Mahgoub, Hend; Gilchrist, John R.; Fearn, Thomas; Strlič, Matija

    2017-07-01

    Recently, spectral imaging techniques such as Multispectral (MSI) and Hyperspectral Imaging (HSI) have gained importance in the field of heritage conservation. This paper explores the analytical robustness of quantitative chemical imaging for Islamic paper characterization by focusing on the effect of different measurement and processing parameters, i.e. acquisition conditions and calibration on the accuracy of the collected spectral data. This will provide a better understanding of the technique that can provide a measure of change in collections through imaging. For the quantitative model, special calibration target was devised using 105 samples from a well-characterized reference Islamic paper collection. Two material properties were of interest: starch sizing and cellulose degree of polymerization (DP). Multivariate data analysis methods were used to develop discrimination and regression models which were used as an evaluation methodology for the metrology of quantitative NIR chemical imaging. Spectral data were collected using a pushbroom HSI scanner (Gilden Photonics Ltd) in the 1000-2500 nm range with a spectral resolution of 6.3 nm using a mirror scanning setup and halogen illumination. Data were acquired at different measurement conditions and acquisition parameters. Preliminary results showed the potential of the evaluation methodology to show that measurement parameters such as the use of different lenses and different scanning backgrounds may not have a great influence on the quantitative results. Moreover, the evaluation methodology allowed for the selection of the best pre-treatment method to be applied to the data.

  4. Objective evaluation of reconstruction methods for quantitative SPECT imaging in the absence of ground truth.

    Science.gov (United States)

    Jha, Abhinav K; Song, Na; Caffo, Brian; Frey, Eric C

    2015-04-13

    Quantitative single-photon emission computed tomography (SPECT) imaging is emerging as an important tool in clinical studies and biomedical research. There is thus a need for optimization and evaluation of systems and algorithms that are being developed for quantitative SPECT imaging. An appropriate objective method to evaluate these systems is by comparing their performance in the end task that is required in quantitative SPECT imaging, such as estimating the mean activity concentration in a volume of interest (VOI) in a patient image. This objective evaluation can be performed if the true value of the estimated parameter is known, i.e. we have a gold standard. However, very rarely is this gold standard known in human studies. Thus, no-gold-standard techniques to optimize and evaluate systems and algorithms in the absence of gold standard are required. In this work, we developed a no-gold-standard technique to objectively evaluate reconstruction methods used in quantitative SPECT when the parameter to be estimated is the mean activity concentration in a VOI. We studied the performance of the technique with realistic simulated image data generated from an object database consisting of five phantom anatomies with all possible combinations of five sets of organ uptakes, where each anatomy consisted of eight different organ VOIs. Results indicate that the method provided accurate ranking of the reconstruction methods. We also demonstrated the application of consistency checks to test the no-gold-standard output.

  5. Quantitative method to assess caries via fluorescence imaging from the perspective of autofluorescence spectral analysis

    International Nuclear Information System (INIS)

    Chen, Q G; Xu, Y; Zhu, H H; Chen, H; Lin, B

    2015-01-01

    A quantitative method to discriminate caries lesions for a fluorescence imaging system is proposed in this paper. The autofluorescence spectral investigation of 39 teeth samples classified by the International Caries Detection and Assessment System levels was performed at 405 nm excitation. The major differences in the different caries lesions focused on the relative spectral intensity range of 565–750 nm. The spectral parameter, defined as the ratio of wavebands at 565–750 nm to the whole spectral range, was calculated. The image component ratio R/(G + B) of color components was statistically computed by considering the spectral parameters (e.g. autofluorescence, optical filter, and spectral sensitivity) in our fluorescence color imaging system. Results showed that the spectral parameter and image component ratio presented a linear relation. Therefore, the image component ratio was graded as <0.66, 0.66–1.06, 1.06–1.62, and >1.62 to quantitatively classify sound, early decay, established decay, and severe decay tissues, respectively. Finally, the fluorescence images of caries were experimentally obtained, and the corresponding image component ratio distribution was compared with the classification result. A method to determine the numerical grades of caries using a fluorescence imaging system was proposed. This method can be applied to similar imaging systems. (paper)

  6. Quantitative method to assess caries via fluorescence imaging from the perspective of autofluorescence spectral analysis

    Science.gov (United States)

    Chen, Q. G.; Zhu, H. H.; Xu, Y.; Lin, B.; Chen, H.

    2015-08-01

    A quantitative method to discriminate caries lesions for a fluorescence imaging system is proposed in this paper. The autofluorescence spectral investigation of 39 teeth samples classified by the International Caries Detection and Assessment System levels was performed at 405 nm excitation. The major differences in the different caries lesions focused on the relative spectral intensity range of 565-750 nm. The spectral parameter, defined as the ratio of wavebands at 565-750 nm to the whole spectral range, was calculated. The image component ratio R/(G + B) of color components was statistically computed by considering the spectral parameters (e.g. autofluorescence, optical filter, and spectral sensitivity) in our fluorescence color imaging system. Results showed that the spectral parameter and image component ratio presented a linear relation. Therefore, the image component ratio was graded as 1.62 to quantitatively classify sound, early decay, established decay, and severe decay tissues, respectively. Finally, the fluorescence images of caries were experimentally obtained, and the corresponding image component ratio distribution was compared with the classification result. A method to determine the numerical grades of caries using a fluorescence imaging system was proposed. This method can be applied to similar imaging systems.

  7. Quantitative, depth-resolved determination of particle motion using multi-exposure, spatial frequency domain laser speckle imaging.

    Science.gov (United States)

    Rice, Tyler B; Kwan, Elliott; Hayakawa, Carole K; Durkin, Anthony J; Choi, Bernard; Tromberg, Bruce J

    2013-01-01

    Laser Speckle Imaging (LSI) is a simple, noninvasive technique for rapid imaging of particle motion in scattering media such as biological tissue. LSI is generally used to derive a qualitative index of relative blood flow due to unknown impact from several variables that affect speckle contrast. These variables may include optical absorption and scattering coefficients, multi-layer dynamics including static, non-ergodic regions, and systematic effects such as laser coherence length. In order to account for these effects and move toward quantitative, depth-resolved LSI, we have developed a method that combines Monte Carlo modeling, multi-exposure speckle imaging (MESI), spatial frequency domain imaging (SFDI), and careful instrument calibration. Monte Carlo models were used to generate total and layer-specific fractional momentum transfer distributions. This information was used to predict speckle contrast as a function of exposure time, spatial frequency, layer thickness, and layer dynamics. To verify with experimental data, controlled phantom experiments with characteristic tissue optical properties were performed using a structured light speckle imaging system. Three main geometries were explored: 1) diffusive dynamic layer beneath a static layer, 2) static layer beneath a diffuse dynamic layer, and 3) directed flow (tube) submerged in a dynamic scattering layer. Data fits were performed using the Monte Carlo model, which accurately reconstructed the type of particle flow (diffusive or directed) in each layer, the layer thickness, and absolute flow speeds to within 15% or better.

  8. Analysis of vaginal microbicide film hydration kinetics by quantitative imaging refractometry.

    Directory of Open Access Journals (Sweden)

    Matthew Rinehart

    Full Text Available We have developed a quantitative imaging refractometry technique, based on holographic phase microscopy, as a tool for investigating microscopic structural changes in water-soluble polymeric materials. Here we apply the approach to analyze the structural degradation of vaginal topical microbicide films due to water uptake. We implemented transmission imaging of 1-mm diameter film samples loaded into a flow chamber with a 1.5×2 mm field of view. After water was flooded into the chamber, interference images were captured and analyzed to obtain high resolution maps of the local refractive index and subsequently the volume fraction and mass density of film material at each spatial location. Here, we compare the hydration dynamics of a panel of films with varying thicknesses and polymer compositions, demonstrating that quantitative imaging refractometry can be an effective tool for evaluating and characterizing the performance of candidate microbicide film designs for anti-HIV drug delivery.

  9. Analysis of vaginal microbicide film hydration kinetics by quantitative imaging refractometry.

    Science.gov (United States)

    Rinehart, Matthew; Grab, Sheila; Rohan, Lisa; Katz, David; Wax, Adam

    2014-01-01

    We have developed a quantitative imaging refractometry technique, based on holographic phase microscopy, as a tool for investigating microscopic structural changes in water-soluble polymeric materials. Here we apply the approach to analyze the structural degradation of vaginal topical microbicide films due to water uptake. We implemented transmission imaging of 1-mm diameter film samples loaded into a flow chamber with a 1.5×2 mm field of view. After water was flooded into the chamber, interference images were captured and analyzed to obtain high resolution maps of the local refractive index and subsequently the volume fraction and mass density of film material at each spatial location. Here, we compare the hydration dynamics of a panel of films with varying thicknesses and polymer compositions, demonstrating that quantitative imaging refractometry can be an effective tool for evaluating and characterizing the performance of candidate microbicide film designs for anti-HIV drug delivery.

  10. Quantitative Modeling of Membrane Transport and Anisogamy by Small Groups Within a Large-Enrollment Organismal Biology Course

    Directory of Open Access Journals (Sweden)

    Eric S. Haag

    2016-12-01

    Full Text Available Quantitative modeling is not a standard part of undergraduate biology education, yet is routine in the physical sciences. Because of the obvious biophysical aspects, classes in anatomy and physiology offer an opportunity to introduce modeling approaches to the introductory curriculum. Here, we describe two in-class exercises for small groups working within a large-enrollment introductory course in organismal biology. Both build and derive biological insights from quantitative models, implemented using spreadsheets. One exercise models the evolution of anisogamy (i.e., small sperm and large eggs from an initial state of isogamy. Groups of four students work on Excel spreadsheets (from one to four laptops per group. The other exercise uses an online simulator to generate data related to membrane transport of a solute, and a cloud-based spreadsheet to analyze them. We provide tips for implementing these exercises gleaned from two years of experience.

  11. Biological imaging by soft X-ray diffraction microscopy

    Science.gov (United States)

    Shapiro, David

    We have developed a microscope for soft x-ray diffraction imaging of dry or frozen hydrated biological specimens. This lensless imaging system does not suffer from the resolution or specimen thickness limitations that other short wavelength microscopes experience. The microscope, currently situated at beamline 9.0.1 of the Advanced Light Source, can collect diffraction data to 12 nm resolution with 750 eV photons and 17 nm resolution with 520 eV photons. The specimen can be rotated with a precision goniometer through an angle of 160 degrees allowing for the collection of nearly complete three-dimensional diffraction data. The microscope is fully computer controlled through a graphical user interface and a scripting language automates the collection of both two-dimensional and three-dimensional data. Diffraction data from a freeze-dried dwarf yeast cell, Saccharomyces cerevisiae carrying the CLN3-1 mutation, was collected to 12 run resolution from 8 specimen orientations spanning a total rotation of 8 degrees. The diffraction data was phased using the difference map algorithm and the reconstructions provide real space images of the cell to 30 nm resolution from each of the orientations. The agreement of the different reconstructions provides confidence in the recovered, and previously unknown, structure and indicates the three dimensionality of the cell. This work represents the first imaging of the natural complex refractive contrast from a whole unstained cell by the diffraction microscopy method and has achieved a resolution superior to lens based x-ray tomographic reconstructions of similar specimens. Studies of the effects of exposure to large radiation doses were also carried out. It was determined that the freeze-dried cell suffers from an initial collapse, which is followed by a uniform, but slow, shrinkage. This structural damage to the cell is not accompanied by a diminished ability to see small features in the specimen. Preliminary measurements on frozen

  12. Morphological image processing for quantitative shape analysis of biomedical structures: effective contrast enhancement

    International Nuclear Information System (INIS)

    Kimori, Yoshitaka

    2013-01-01

    A contrast enhancement approach utilizing a new type of mathematical morphology called rotational morphological processing is introduced. The method is quantitatively evaluated and then applied to some medical images. Image processing methods significantly contribute to visualization of images captured by biomedical modalities (such as mammography, X-ray computed tomography, magnetic resonance imaging, and light and electron microscopy). Quantitative interpretation of the deluge of complicated biomedical images, however, poses many research challenges, one of which is to enhance structural features that are scarcely perceptible to the human eye. This study introduces a contrast enhancement approach based on a new type of mathematical morphology called rotational morphological processing. The proposed method is applied to medical images for the enhancement of structural features. The effectiveness of the method is evaluated quantitatively by the contrast improvement ratio (CIR). The CIR of the proposed method is 12.1, versus 4.7 and 0.1 for two conventional contrast enhancement methods, clearly indicating the high contrasting capability of the method

  13. Multi-institutional Quantitative Evaluation and Clinical Validation of Smart Probabilistic Image Contouring Engine (SPICE) Autosegmentation of Target Structures and Normal Tissues on Computer Tomography Images in the Head and Neck, Thorax, Liver, and Male Pelvis Areas

    DEFF Research Database (Denmark)

    Zhu, Mingyao; Bzdusek, Karl; Brink, Carsten

    2013-01-01

    Clinical validation and quantitative evaluation of computed tomography (CT) image autosegmentation using Smart Probabilistic Image Contouring Engine (SPICE).......Clinical validation and quantitative evaluation of computed tomography (CT) image autosegmentation using Smart Probabilistic Image Contouring Engine (SPICE)....

  14. Development of a calibration protocol for quantitative imaging for molecular radiotherapy dosimetry

    International Nuclear Information System (INIS)

    Wevrett, J.; Fenwick, A.; Scuffham, J.; Nisbet, A.

    2017-01-01

    Within the field of molecular radiotherapy, there is a significant need for standardisation in dosimetry, in both quantitative imaging and dosimetry calculations. Currently, there are a wide range of techniques used by different clinical centres and as a result there is no means to compare patient doses between centres. To help address this need, a 3 year project was funded by the European Metrology Research Programme, and a number of clinical centres were involved in the project. One of the required outcomes of the project was to develop a calibration protocol for three dimensional quantitative imaging of volumes of interest. Two radionuclides were selected as being of particular interest: iodine-131 ( 131 I, used to treat thyroid disorders) and lutetium-177 ( 177 Lu, used to treat neuroendocrine tumours). A small volume of activity within a scatter medium (water), representing a lesion within a patient body, was chosen as the calibration method. To ensure ease of use in clinical centres, an “off-the-shelf” solution was proposed – to avoid the need for in-house manufacturing. The BIODEX elliptical Jaszczak phantom and 16 ml fillable sphere were selected. The protocol was developed for use on SPECT/CT gamma cameras only, where the CT dataset would be used to correct the imaging data for attenuation of the emitted photons within the phantom. The protocol corrects for scatter of emitted photons using the triple energy window correction technique utilised by most clinical systems. A number of clinical systems were tested in the development of this protocol, covering the major manufacturers of gamma camera generally used in Europe. Initial imaging was performed with 131 I and 177 Lu at a number of clinical centres, but due to time constraints in the project, some acquisitions were performed with 177 Lu only. The protocol is relatively simplistic, and does not account for the effects of dead-time in high activity patients, the presence of background activity

  15. The use of quantimet 720 for quantitative analysis of acute leukemia images in animals and humans

    International Nuclear Information System (INIS)

    Feinermann, E.; Langlet, G.A.

    1979-01-01

    Considerable progress has been achieved in the past ten years in the analysis of particle size and form. Automatic and quantitative image analyzers and stereology enabled a comparative study of acute human and animal leukemias. It is obvious that the agreement of results between these two natural and induced categories provides encouragement to continue this investigation by these methods

  16. Mechanistic and quantitative insight into cell surface targeted molecular imaging agent design.

    Science.gov (United States)

    Zhang, Liang; Bhatnagar, Sumit; Deschenes, Emily; Thurber, Greg M

    2016-05-05

    Molecular imaging agent design involves simultaneously optimizing multiple probe properties. While several desired characteristics are straightforward, including high affinity and low non-specific background signal, in practice there are quantitative trade-offs between these properties. These include plasma clearance, where fast clearance lowers background signal but can reduce target uptake, and binding, where high affinity compounds sometimes suffer from lower stability or increased non-specific interactions. Further complicating probe development, many of the optimal parameters vary depending on both target tissue and imaging agent properties, making empirical approaches or previous experience difficult to translate. Here, we focus on low molecular weight compounds targeting extracellular receptors, which have some of the highest contrast values for imaging agents. We use a mechanistic approach to provide a quantitative framework for weighing trade-offs between molecules. Our results show that specific target uptake is well-described by quantitative simulations for a variety of targeting agents, whereas non-specific background signal is more difficult to predict. Two in vitro experimental methods for estimating background signal in vivo are compared - non-specific cellular uptake and plasma protein binding. Together, these data provide a quantitative method to guide probe design and focus animal work for more cost-effective and time-efficient development of molecular imaging agents.

  17. Quantitative magnetic resonance imaging for stroke research in the pharmaceutical industry

    International Nuclear Information System (INIS)

    Eis, M.; Neumaier, M.; Pschorn, U.

    1998-01-01

    In conclusion, quantitative NMR imaging is a valuable method for monitoring the volume and degree of severity of cerebral lesions and therapeutic effects over time. Thus, it is an important tool for evaluating the efficacy of cerebroprotective drugs in vivo. (orig.)

  18. Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging.

    Science.gov (United States)

    Jung, Jae-Hwang; Jang, Jaeduck; Park, Yongkeun

    2013-11-05

    We present a novel spectroscopic quantitative phase imaging technique with a wavelength swept-source, referred to as swept-source diffraction phase microscopy (ssDPM), for quantifying the optical dispersion of microscopic individual samples. Employing the swept-source and the principle of common-path interferometry, ssDPM measures the multispectral full-field quantitative phase imaging and spectroscopic microrefractometry of transparent microscopic samples in the visible spectrum with a wavelength range of 450-750 nm and a spectral resolution of less than 8 nm. With unprecedented precision and sensitivity, we demonstrate the quantitative spectroscopic microrefractometry of individual polystyrene beads, 30% bovine serum albumin solution, and healthy human red blood cells.

  19. Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method

    Directory of Open Access Journals (Sweden)

    Sette Alessandro

    2005-05-01

    Full Text Available Abstract Background Many processes in molecular biology involve the recognition of short sequences of nucleic-or amino acids, such as the binding of immunogenic peptides to major histocompatibility complex (MHC molecules. From experimental data, a model of the sequence specificity of these processes can be constructed, such as a sequence motif, a scoring matrix or an artificial neural network. The purpose of these models is two-fold. First, they can provide a summary of experimental results, allowing for a deeper understanding of the mechanisms involved in sequence recognition. Second, such models can be used to predict the experimental outcome for yet untested sequences. In the past we reported the development of a method to generate such models called the Stabilized Matrix Method (SMM. This method has been successfully applied to predicting peptide binding to MHC molecules, peptide transport by the transporter associated with antigen presentation (TAP and proteasomal cleavage of protein sequences. Results Herein we report the implementation of the SMM algorithm as a publicly available software package. Specific features determining the type of problems the method is most appropriate for are discussed. Advantageous features of the package are: (1 the output generated is easy to interpret, (2 input and output are both quantitative, (3 specific computational strategies to handle experimental noise are built in, (4 the algorithm is designed to effectively handle bounded experimental data, (5 experimental data from randomized peptide libraries and conventional peptides can easily be combined, and (6 it is possible to incorporate pair interactions between positions of a sequence. Conclusion Making the SMM method publicly available enables bioinformaticians and experimental biologists to easily access it, to compare its performance to other prediction methods, and to extend it to other applications.

  20. A collimator optimization method for quantitative imaging: application to Y-90 bremsstrahlung SPECT.

    Science.gov (United States)

    Rong, Xing; Frey, Eric C

    2013-08-01

    Post-therapy quantitative 90Y bremsstrahlung single photon emission computed tomography (SPECT) has shown great potential to provide reliable activity estimates, which are essential for dose verification. Typically 90Y imaging is performed with high- or medium-energy collimators. However, the energy spectrum of 90Y bremsstrahlung photons is substantially different than typical for these collimators. In addition, dosimetry requires quantitative images, and collimators are not typically optimized for such tasks. Optimizing a collimator for 90Y imaging is both novel and potentially important. Conventional optimization methods are not appropriate for 90Y bremsstrahlung photons, which have a continuous and broad energy distribution. In this work, the authors developed a parallel-hole collimator optimization method for quantitative tasks that is particularly applicable to radionuclides with complex emission energy spectra. The authors applied the proposed method to develop an optimal collimator for quantitative 90Y bremsstrahlung SPECT in the context of microsphere radioembolization. To account for the effects of the collimator on both the bias and the variance of the activity estimates, the authors used the root mean squared error (RMSE) of the volume of interest activity estimates as the figure of merit (FOM). In the FOM, the bias due to the null space of the image formation process was taken in account. The RMSE was weighted by the inverse mass to reflect the application to dosimetry; for a different application, more relevant weighting could easily be adopted. The authors proposed a parameterization for the collimator that facilitates the incorporation of the important factors (geometric sensitivity, geometric resolution, and septal penetration fraction) determining collimator performance, while keeping the number of free parameters describing the collimator small (i.e., two parameters). To make the optimization results for quantitative 90Y bremsstrahlung SPECT more

  1. Designer genes. Recombinant antibody fragments for biological imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wu, A.M.; Yazaki, P.J. [Beckman Research Institute of the City of Hope, Duarte, CA (United States). Dept. of Molecular Biology

    2000-09-01

    and expression, combined with novel specificities that will arise form advances in genomic and combinatorial approaches to target discovery, will usher in a new era of recombinant antibodies for biological imaging.

  2. Designer genes. Recombinant antibody fragments for biological imaging

    International Nuclear Information System (INIS)

    Wu, A.M.; Yazaki, P.J.

    2000-01-01

    expression, combined with novel specificities that will arise form advances in genomic and combinatorial approaches to target discovery, will usher in a new era of recombinant antibodies for biological imaging

  3. Nuclear medicine and imaging research: instrumentation and quantitative methods of evaluation. Comprehensive progress report, January 1, 1980-January 14, 1983

    International Nuclear Information System (INIS)

    Beck, R.N.; Cooper, M.C.

    1982-07-01

    Progress is reported for the period January 1980 through January 1983 in the following project areas: (1) imaging systems in nuclear medicine and image evaluation; and (2) methodology for quantitative evaluation of diagnostic performance

  4. Quantitative phase imaging of living cells with a swept laser source

    Science.gov (United States)

    Chen, Shichao; Zhu, Yizheng

    2016-03-01

    Digital holographic phase microscopy is a well-established quantitative phase imaging technique. However, interference artifacts from inside the system, typically induced by elements whose optical thickness are within the source coherence length, limit the imaging quality as well as sensitivity. In this paper, a swept laser source based technique is presented. Spectra acquired at a number of wavelengths, after Fourier Transform, can be used to identify the sources of the interference artifacts. With proper tuning of the optical pathlength difference between sample and reference arms, it is possible to avoid these artifacts and achieve sensitivity below 0.3nm. Performance of the proposed technique is examined in live cell imaging.

  5. A specialized plug-in software module for computer-aided quantitative measurement of medical images.

    Science.gov (United States)

    Wang, Q; Zeng, Y J; Huo, P; Hu, J L; Zhang, J H

    2003-12-01

    This paper presents a specialized system for quantitative measurement of medical images. Using Visual C++, we developed a computer-aided software based on Image-Pro Plus (IPP), a software development platform. When transferred to the hard disk of a computer by an MVPCI-V3A frame grabber, medical images can be automatically processed by our own IPP plug-in for immunohistochemical analysis, cytomorphological measurement and blood vessel segmentation. In 34 clinical studies, the system has shown its high stability, reliability and ease of utility.

  6. Toward uniform implementation of parametric map Digital Imaging and Communication in Medicine standard in multisite quantitative diffusion imaging studies.

    Science.gov (United States)

    Malyarenko, Dariya; Fedorov, Andriy; Bell, Laura; Prah, Melissa; Hectors, Stefanie; Arlinghaus, Lori; Muzi, Mark; Solaiyappan, Meiyappan; Jacobs, Michael; Fung, Maggie; Shukla-Dave, Amita; McManus, Kevin; Boss, Michael; Taouli, Bachir; Yankeelov, Thomas E; Quarles, Christopher Chad; Schmainda, Kathleen; Chenevert, Thomas L; Newitt, David C

    2018-01-01

    This paper reports on results of a multisite collaborative project launched by the MRI subgroup of Quantitative Imaging Network to assess current capability and provide future guidelines for generating a standard parametric diffusion map Digital Imaging and Communication in Medicine (DICOM) in clinical trials that utilize quantitative diffusion-weighted imaging (DWI). Participating sites used a multivendor DWI DICOM dataset of a single phantom to generate parametric maps (PMs) of the apparent diffusion coefficient (ADC) based on two models. The results were evaluated for numerical consistency among models and true phantom ADC values, as well as for consistency of metadata with attributes required by the DICOM standards. This analysis identified missing metadata descriptive of the sources for detected numerical discrepancies among ADC models. Instead of the DICOM PM object, all sites stored ADC maps as DICOM MR objects, generally lacking designated attributes and coded terms for quantitative DWI modeling. Source-image reference, model parameters, ADC units and scale, deemed important for numerical consistency, were either missing or stored using nonstandard conventions. Guided by the identified limitations, the DICOM PM standard has been amended to include coded terms for the relevant diffusion models. Open-source software has been developed to support conversion of site-specific formats into the standard representation.

  7. Visual and quantitative assessment of lateral lumbar spinal canal stenosis with magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sipola, Petri; Vanninen, Ritva; Manninen, Hannu (Univ. of Eastern Finland, Faculty of Health Sciences, School of Medicine, Inst. of Clinical Medicine, Dept. of Clinical Radiology, Kuopio (Finland); Kuopio Univ. Hospital, Clinical Imaging Centre, Dept. of Clinical Radiology, Kuopio (Finland)), email: petri.sipola@kuh.fi; Leinonen, Ville (Kuopio Univ. Hospital, Dept. of Neurosurgery, Kuopio (Finland)); Niemelaeinen, Riikka (Kuopio Univ. Hospital, Clinical Imaging Centre, Dept. of Clinical Radiology, Kuopio (Finland); Faculty of Rehabilitation Medicine, Univ. of Alberta, Edmonton, Alberta (Canada)); Aalto, Timo (Kyyhkylae Rehabilitation Center and Hospital, Mikkeli (Finland)); Airaksinen, Olavi (Kuopio Univ. Hospital, Dept. of Physical and Rehabilitation Medicine and Univ. of Eastern Finland, Faculty of Health Sciences, School of Medicine, Inst. of Clinical Medicine, Kuopio (Finland)); Battie, Michele C. (Faculty of Rehabilitation Medicine, Univ. of Alberta, Edmonton, Alberta (Canada))

    2011-11-15

    Background. Lateral lumbar spinal canal stenosis is a common etiology of lumbar radicular symptoms. Quantitative measurements have commonly demonstrated better repeatability than visual assessments. We are not aware of any studies examining the repeatability of quantitative assessment of the lateral canal. Purpose. To evaluate the repeatability of visual assessments and newly developed quantitative measurements of lateral lumbar spinal canal stenosis using magnetic resonance imaging (MRI). Material and Methods. Twenty-eight patients with lateral lumbar spinal canal stenosis or prior spinal surgery with recurrent symptoms were imaged with MRI. A radiologist, a neurosurgeon and a spine research trainee graded visually and quantitatively subarticular (n = 188) and foraminal zones (n = 260) of the lateral spinal canal. Quantitative measurements included the minimal subarticular width and the cross-sectional area of the foramen. Results. The repeatability of visual assessment at the subarticular zone and foraminal zones between raters varied from 0.45-0.59 and 0.42-0.53, respectively. Similarly, the intraclass correlation coefficients for the quantitative measurements varied from 0.67-0.71 and 0.66-0.76, respectively. The intra-rater repeatability for the visual assessments of the subarticular and foraminal zones was 0.70 and 0.62, respectively, while the corresponding intraclass correlation coefficients for quantitative measurements were 0.83 and 0.81, respectively. Conclusion. Inter-rater repeatability of visual assessments of lateral stenosis is moderate, whereas quantitative measurements of both subarticular width and the cross-sectional area of the foramen have substantial reproducibility and may be particularly useful for longitudinal studies and research purposes. The clinical value of these parameters requires further study

  8. Visual and quantitative assessment of lateral lumbar spinal canal stenosis with magnetic resonance imaging

    International Nuclear Information System (INIS)

    Sipola, Petri; Vanninen, Ritva; Manninen, Hannu; Leinonen, Ville; Niemelaeinen, Riikka; Aalto, Timo; Airaksinen, Olavi; Battie, Michele C.

    2011-01-01

    Background. Lateral lumbar spinal canal stenosis is a common etiology of lumbar radicular symptoms. Quantitative measurements have commonly demonstrated better repeatability than visual assessments. We are not aware of any studies examining the repeatability of quantitative assessment of the lateral canal. Purpose. To evaluate the repeatability of visual assessments and newly developed quantitative measurements of lateral lumbar spinal canal stenosis using magnetic resonance imaging (MRI). Material and Methods. Twenty-eight patients with lateral lumbar spinal canal stenosis or prior spinal surgery with recurrent symptoms were imaged with MRI. A radiologist, a neurosurgeon and a spine research trainee graded visually and quantitatively subarticular (n = 188) and foraminal zones (n = 260) of the lateral spinal canal. Quantitative measurements included the minimal subarticular width and the cross-sectional area of the foramen. Results. The repeatability of visual assessment at the subarticular zone and foraminal zones between raters varied from 0.45-0.59 and 0.42-0.53, respectively. Similarly, the intraclass correlation coefficients for the quantitative measurements varied from 0.67-0.71 and 0.66-0.76, respectively. The intra-rater repeatability for the visual assessments of the subarticular and foraminal zones was 0.70 and 0.62, respectively, while the corresponding intraclass correlation coefficients for quantitative measurements were 0.83 and 0.81, respectively. Conclusion. Inter-rater repeatability of visual assessments of lateral stenosis is moderate, whereas quantitative measurements of both subarticular width and the cross-sectional area of the foramen have substantial reproducibility and may be particularly useful for longitudinal studies and research purposes. The clinical value of these parameters requires further study

  9. Monitoring and quantitative assessment of tumor burden using in vivo bioluminescence imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.-C. [Cancer Research Division, National Health Research Institute, Miaoli 350, Taiwan (China); Hwang, Jeng-Jong [Institute of Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan (China)]. E-mail: jjhwang@ym.edu.tw; Ting, G. [Cancer Research Division, National Health Research Institute, Miaoli 350, Taiwan (China); Tseng, Y.-L. [Taiwan Liposome Company, Taipei 115, Taiwan (China); Wang, S.-J. [Department of Nuclear Medicine, Veterans General Hospital, Taipei 112, Taiwan (China); Whang-Peng, J. [Cancer Research Division, National Health Research Institute, Miaoli 350, Taiwan (China)

    2007-02-01

    In vivo bioluminescence imaging (BLI) is a sensitive imaging modality that is rapid and accessible, and may comprise an ideal tool for evaluating tumor growth. In this study, the kinetic of tumor growth has been assessed in C26 colon carcinoma bearing BALB/c mouse model. The ability of BLI to noninvasively quantitate the growth of subcutaneous tumors transplanted with C26 cells genetically engineered to stably express firefly luciferase and herpes simplex virus type-1 thymidine kinase (C26/tk-luc). A good correlation (R {sup 2}=0.998) of photon emission to the cell number was found in vitro. Tumor burden and tumor volume were monitored in vivo over time by quantitation of photon emission using Xenogen IVIS 50 and standard external caliper measurement, respectively. At various time intervals, tumor-bearing mice were imaged to determine the correlation of in vivo BLI to tumor volume. However, a correlation of BLI to tumor volume was observed when tumor volume was smaller than 1000 mm{sup 3} (R {sup 2}=0.907). {gamma} Scintigraphy combined with [{sup 131}I]FIAU was another imaging modality used for verifying the previous results. In conclusion, this study showed that bioluminescence imaging is a powerful and quantitative tool for the direct assay to monitor tumor growth in vivo. The dual reporter genes transfected tumor-bearing animal model can be applied in the evaluation of the efficacy of new developed anti-cancer drugs.

  10. A method for improved clustering and classification of microscopy images using quantitative co-localization coefficients

    LENUS (Irish Health Repository)

    Singan, Vasanth R

    2012-06-08

    AbstractBackgroundThe localization of proteins to specific subcellular structures in eukaryotic cells provides important information with respect to their function. Fluorescence microscopy approaches to determine localization distribution have proved to be an essential tool in the characterization of unknown proteins, and are now particularly pertinent as a result of the wide availability of fluorescently-tagged constructs and antibodies. However, there are currently very few image analysis options able to effectively discriminate proteins with apparently similar distributions in cells, despite this information being important for protein characterization.FindingsWe have developed a novel method for combining two existing image analysis approaches, which results in highly efficient and accurate discrimination of proteins with seemingly similar distributions. We have combined image texture-based analysis with quantitative co-localization coefficients, a method that has traditionally only been used to study the spatial overlap between two populations of molecules. Here we describe and present a novel application for quantitative co-localization, as applied to the study of Rab family small GTP binding proteins localizing to the endomembrane system of cultured cells.ConclusionsWe show how quantitative co-localization can be used alongside texture feature analysis, resulting in improved clustering of microscopy images. The use of co-localization as an additional clustering parameter is non-biased and highly applicable to high-throughput image data sets.

  11. dcmqi: An Open Source Library for Standardized Communication of Quantitative Image Analysis Results Using DICOM.

    Science.gov (United States)

    Herz, Christian; Fillion-Robin, Jean-Christophe; Onken, Michael; Riesmeier, Jörg; Lasso, Andras; Pinter, Csaba; Fichtinger, Gabor; Pieper, Steve; Clunie, David; Kikinis, Ron; Fedorov, Andriy

    2017-11-01

    Quantitative analysis of clinical image data is an active area of research that holds promise for precision medicine, early assessment of treatment response, and objective characterization of the disease. Interoperability, data sharing, and the ability to mine the resulting data are of increasing importance, given the explosive growth in the number of quantitative analysis methods being proposed. The Digital Imaging and Communications in Medicine (DICOM) standard is widely adopted for image and metadata in radiology. dcmqi (DICOM for Quantitative Imaging) is a free, open source library that implements conversion of the data stored in commonly used research formats into the standard DICOM representation. dcmqi source code is distributed under BSD-style license. It is freely available as a precompiled binary package for every major operating system, as a Docker image, and as an extension to 3D Slicer. Installation and usage instructions are provided in the GitHub repository at https://github.com/qiicr/dcmqi Cancer Res; 77(21); e87-90. ©2017 AACR . ©2017 American Association for Cancer Research.

  12. Quantitative planar imaging with technetium-99m methoxyisobutyl isonitrile: Comparison of uptake patterns with thallium-201

    International Nuclear Information System (INIS)

    Sinusas, A.J.; Beller, G.A.; Smith, W.H.; Vinson, E.L.; Brookeman, V.; Watson, D.D.

    1989-01-01

    To compare the myocardial uptake pattern of 99mTc-labeled methoxyisobutyl isonitrile [( 99mTc] MIBI) and 201TI, planar scintigraphy were performed in both patients with documented coronary artery disease and subjects with a low likelihood of disease. Quantitative analysis was employed using a standard interpolative background subtraction algorithm and a new algorithm modified to better accommodate for the differences in extracardiac activity seen with [99mTc]MIBI rest images. Among patients with coronary artery disease, the standard algorithm yielded no significant difference in relative defect magnitude between [99mTc]MIBI and 201TI on stress scintigrams (p = 0.48), although the magnitude of [99mTc]MIBI defects was greater on resting images (p = 0.02). When the modified algorithm was employed, defect magnitude was similar for both stress (p = 0.91) and rest (p = 0.20) images. Normal segmental uptake ratios derived from a comparison of contralateral segments (e.g., septal:posterolateral) in the low likelihood patients were similar for both [99mTc]MIBI and 201TI. Thus, modification of the standard interpolative background subtraction algorithm is necessary for quantitative planar [99mTc]MIBI perfusion imaging. When appropriate background subtraction is employed, myocardial uptake and quantitative defect magnitude of [99mTc]MIBI and 201TI planar images are similar

  13. Monitoring and quantitative assessment of tumor burden using in vivo bioluminescence imaging

    International Nuclear Information System (INIS)

    Chen, C.-C.; Hwang, Jeng-Jong; Ting, G.; Tseng, Y.-L.; Wang, S.-J.; Whang-Peng, J.

    2007-01-01

    In vivo bioluminescence imaging (BLI) is a sensitive imaging modality that is rapid and accessible, and may comprise an ideal tool for evaluating tumor growth. In this study, the kinetic of tumor growth has been assessed in C26 colon carcinoma bearing BALB/c mouse model. The ability of BLI to noninvasively quantitate the growth of subcutaneous tumors transplanted with C26 cells genetically engineered to stably express firefly luciferase and herpes simplex virus type-1 thymidine kinase (C26/tk-luc). A good correlation (R 2 =0.998) of photon emission to the cell number was found in vitro. Tumor burden and tumor volume were monitored in vivo over time by quantitation of photon emission using Xenogen IVIS 50 and standard external caliper measurement, respectively. At various time intervals, tumor-bearing mice were imaged to determine the correlation of in vivo BLI to tumor volume. However, a correlation of BLI to tumor volume was observed when tumor volume was smaller than 1000 mm 3 (R 2 =0.907). γ Scintigraphy combined with [ 131 I]FIAU was another imaging modality used for verifying the previous results. In conclusion, this study showed that bioluminescence imaging is a powerful and quantitative tool for the direct assay to monitor tumor growth in vivo. The dual reporter genes transfected tumor-bearing animal model can be applied in the evaluation of the efficacy of new developed anti-cancer drugs

  14. Quantitative assessment for pneumoconiosis severity diagnosis using 3D CT images

    Science.gov (United States)

    Hino, Koki; Matsuhiro, Mikio; Suzuki, Hidenobu; Kawata, Yoshiki; Niki, Noboru; Kato, Katsuya; Kishimoto, Takumi; Ashizawa, Kazuto

    2018-02-01

    Pneumoconiosis is an occupational respiratory illness that occur by inhaling dust to the lungs. 240,000 participants are screened for diagnosis of pneumoconiosis every year in Japan. Radiograph is used for staging of severity rate in pneumoconiosis worldwide. CT imaging is useful for the differentiation of requirements for industrial accident approval because it can detect small lesions in comparison with radiograph. In this paper, we extracted lung nodules from 3D pneumoconiosis CT images by two manual processes and automatic process, and created a database of pneumoconiosis CT images. We used the database to analyze, compare, and evaluate visual diagnostic results of radiographs and quantitative assessment (number, size and volume) of lung nodules. This method was applied to twenty pneumoconiosis patients. Initial results showed that the proposed method can assess severity rate in pneumoconiosis quantitatively. This study demonstrates effectiveness on diagnosis and prognosis of pneumoconiosis in CT screening.

  15. Aspects of Quantitation in Mass Spectrometry Imaging Investigated on Cryo-Sections of Spiked Tissue Homogenates

    DEFF Research Database (Denmark)

    Hansen, Heidi Toft; Janfelt, Christian

    2016-01-01

    for differences in tissue types in, for example, whole-body imaging, a set of tissue homogenates of different tissue types (lung, liver, kidney, heart, and brain) from rabbit was spiked to the same concentration with the drug amitriptyline and imaged in the same experiment using isotope labeled amitriptyline...... for these results range approximately within a factor of 3 (but for other compounds in other tissues could be higher), underscore the importance of preparing the standard curve in the same matrix as the unknown sample whenever possible. In, for example, whole-body imaging where a diversity of tissue types...... are present, this variation across tissue types will therefore add to the overall uncertainty in quantitation. The tissue homogenates were also used in a characterization of various phenomena in quantitative MSI, such as to study how the signal depends of the thickness of the cryo-section, and to assess...

  16. Susceptibility-weighted imaging and quantitative susceptibility mapping in the brain.

    Science.gov (United States)

    Liu, Chunlei; Li, Wei; Tong, Karen A; Yeom, Kristen W; Kuzminski, Samuel

    2015-07-01

    Susceptibility-weighted imaging (SWI) is a magnetic resonance imaging (MRI) technique that enhances image contrast by using the susceptibility differences between tissues. It is created by combining both magnitude and phase in the gradient echo data. SWI is sensitive to both paramagnetic and diamagnetic substances which generate different phase shift in MRI data. SWI images can be displayed as a minimum intensity projection that provides high resolution delineation of the cerebral venous architecture, a feature that is not available in other MRI techniques. As such, SWI has been widely applied to diagnose various venous abnormalities. SWI is especially sensitive to deoxygenated blood and intracranial mineral deposition and, for that reason, has been applied to image various pathologies including intracranial hemorrhage, traumatic brain injury, stroke, neoplasm, and multiple sclerosis. SWI, however, does not provide quantitative measures of magnetic susceptibility. This limitation is currently being addressed with the development of quantitative susceptibility mapping (QSM) and susceptibility tensor imaging (STI). While QSM treats susceptibility as isotropic, STI treats susceptibility as generally anisotropic characterized by a tensor quantity. This article reviews the basic principles of SWI, its clinical and research applications, the mechanisms governing brain susceptibility properties, and its practical implementation, with a focus on brain imaging. © 2014 Wiley Periodicals, Inc.

  17. Quantitative Analysis of Micro-CT Imaging and Histopathological Signatures of Experimental Arthritis in Rats

    Directory of Open Access Journals (Sweden)

    Matthew D. Silva

    2004-10-01

    Full Text Available Micro-computed tomographic (micro-CT imaging provides a unique opportunity to capture 3-D architectural information in bone samples. In this study of pathological joint changes in a rat model of adjuvant-induced arthritis (AA, quantitative analysis of bone volume and roughness were performed by micro-CT imaging and compared with histopathology methods and paw swelling measurement. Micro-CT imaging of excised rat hind paws (n = 10 stored in formalin consisted of approximately 600 30-μm slices acquired on a 512 × 512 image matrix with isotropic resolution. Following imaging, the joints were scored from H&E stained sections for cartilage/bone erosion, pannus development, inflammation, and synovial hyperplasia. From micro-CT images, quantitative analysis of absolute bone volumes and bone roughness was performed. Bone erosion in the rat AA model is substantial, leading to a significant decline in tarsal volume (27%. The result of the custom bone roughness measurement indicated a 55% increase in surface roughness. Histological and paw volume analyses also demonstrated severe arthritic disease as compared to controls. Statistical analyses indicate correlations among bone volume, roughness, histology, and paw volume. These data demonstrate that the destructive progression of disease in a rat AA model can be quantified using 3-D micro-CT image analysis, which allows assessment of arthritic disease status and efficacy of experimental therapeutic agents.

  18. Susceptibility-Weighted Imaging and Quantitative Susceptibility Mapping in the Brain

    Science.gov (United States)

    Liu, Chunlei; Li, Wei; Tong, Karen A.; Yeom, Kristen W.; Kuzminski, Samuel

    2015-01-01

    Susceptibility-weighted imaging (SWI) is a magnetic resonance imaging (MRI) technique that enhances image contrast by using the susceptibility differences between tissues. It is created by combining both magnitude and phase in the gradient echo data. SWI is sensitive to both paramagnetic and diamagnetic substances which generate different phase shift in MRI data. SWI images can be displayed as a minimum intensity projection that provides high resolution delineation of the cerebral venous architecture, a feature that is not available in other MRI techniques. As such, SWI has been widely applied to diagnose various venous abnormalities. SWI is especially sensitive to deoxygenated blood and intracranial mineral deposition and, for that reason, has been applied to image various pathologies including intracranial hemorrhage, traumatic brain injury, stroke, neoplasm, and multiple sclerosis. SWI, however, does not provide quantitative measures of magnetic susceptibility. This limitation is currently being addressed with the development of quantitative susceptibility mapping (QSM) and susceptibility tensor imaging (STI). While QSM treats susceptibility as isotropic, STI treats susceptibility as generally anisotropic characterized by a tensor quantity. This article reviews the basic principles of SWI, its clinical and research applications, the mechanisms governing brain susceptibility properties, and its practical implementation, with a focus on brain imaging. PMID:25270052

  19. Precision of quantitative computed tomography texture analysis using image filtering: A phantom study for scanner variability.

    Science.gov (United States)

    Yasaka, Koichiro; Akai, Hiroyuki; Mackin, Dennis; Court, Laurence; Moros, Eduardo; Ohtomo, Kuni; Kiryu, Shigeru

    2017-05-01

    Quantitative computed tomography (CT) texture analyses for images with and without filtration are gaining attention to capture the heterogeneity of tumors. The aim of this study was to investigate how quantitative texture parameters using image filtering vary among different computed tomography (CT) scanners using a phantom developed for radiomics studies.A phantom, consisting of 10 different cartridges with various textures, was scanned under 6 different scanning protocols using four CT scanners from four different vendors. CT texture analyses were performed for both unfiltered images and filtered images (using a Laplacian of Gaussian spatial band-pass filter) featuring fine, medium, and coarse textures. Forty-five regions of interest were placed for each cartridge (x) in a specific scan image set (y), and the average of the texture values (T(x,y)) was calculated. The interquartile range (IQR) of T(x,y) among the 6 scans was calculated for a specific cartridge (IQR(x)), while the IQR of T(x,y) among the 10 cartridges was calculated for a specific scan (IQR(y)), and the median IQR(y) was then calculated for the 6 scans (as the control IQR, IQRc). The median of their quotient (IQR(x)/IQRc) among the 10 cartridges was defined as the variability index (VI).The VI was relatively small for the mean in unfiltered images (0.011) and for standard deviation (0.020-0.044) and entropy (0.040-0.044) in filtered images. Skewness and kurtosis in filtered images featuring medium and coarse textures were relatively variable across different CT scanners, with VIs of 0.638-0.692 and 0.430-0.437, respectively.Various quantitative CT texture parameters are robust and variable among different scanners, and the behavior of these parameters should be taken into consideration.

  20. Quantitative Myocardial Perfusion Imaging Versus Visual Analysis in Diagnosing Myocardial Ischemia: A CE-MARC Substudy.

    Science.gov (United States)

    Biglands, John D; Ibraheem, Montasir; Magee, Derek R; Radjenovic, Aleksandra; Plein, Sven; Greenwood, John P

    2018-05-01

    This study sought to compare the diagnostic accuracy of visual and quantitative analyses of myocardial perfusion cardiovascular magnetic resonance against a reference standard of quantitative coronary angiography. Visual analysis of perfusion cardiovascular magnetic resonance studies for assessing myocardial perfusion has been shown to have high diagnostic accuracy for coronary artery disease. However, only a few small studies have assessed the diagnostic accuracy of quantitative myocardial perfusion. This retrospective study included 128 patients randomly selected from the CE-MARC (Clinical Evaluation of Magnetic Resonance Imaging in Coronary Heart Disease) study population such that the distribution of risk factors and disease status was proportionate to the full population. Visual analysis results of cardiovascular magnetic resonance perfusion images, by consensus of 2 expert readers, were taken from the original study reports. Quantitative myocardial blood flow estimates were obtained using Fermi-constrained deconvolution. The reference standard for myocardial ischemia was a quantitative coronary x-ray angiogram stenosis severity of ≥70% diameter in any coronary artery of >2 mm diameter, or ≥50% in the left main stem. Diagnostic performance was calculated using receiver-operating characteristic curve analysis. The area under the curve for visual analysis was 0.88 (95% confidence interval: 0.81 to 0.95) with a sensitivity of 81.0% (95% confidence interval: 69.1% to 92.8%) and specificity of 86.0% (95% confidence interval: 78.7% to 93.4%). For quantitative stress myocardial blood flow the area under the curve was 0.89 (95% confidence interval: 0.83 to 0.96) with a sensitivity of 87.5% (95% confidence interval: 77.3% to 97.7%) and specificity of 84.5% (95% confidence interval: 76.8% to 92.3%). There was no statistically significant difference between the diagnostic performance of quantitative and visual analyses (p = 0.72). Incorporating rest myocardial

  1. NOTE: An innovative phantom for quantitative and qualitative investigation of advanced x-ray imaging technologies

    Science.gov (United States)

    Chiarot, C. B.; Siewerdsen, J. H.; Haycocks, T.; Moseley, D. J.; Jaffray, D. A.

    2005-11-01

    Development, characterization, and quality assurance of advanced x-ray imaging technologies require phantoms that are quantitative and well suited to such modalities. This note reports on the design, construction, and use of an innovative phantom developed for advanced imaging technologies (e.g., multi-detector CT and the numerous applications of flat-panel detectors in dual-energy imaging, tomosynthesis, and cone-beam CT) in diagnostic and image-guided procedures. The design addresses shortcomings of existing phantoms by incorporating criteria satisfied by no other single phantom: (1) inserts are fully 3D—spherically symmetric rather than cylindrical; (2) modules are quantitative, presenting objects of known size and contrast for quality assurance and image quality investigation; (3) features are incorporated in ideal and semi-realistic (anthropomorphic) contexts; and (4) the phantom allows devices to be inserted and manipulated in an accessible module (right lung). The phantom consists of five primary modules: (1) head, featuring contrast-detail spheres approximate to brain lesions; (2) left lung, featuring contrast-detail spheres approximate to lung modules; (3) right lung, an accessible hull in which devices may be placed and manipulated; (4) liver, featuring conrast-detail spheres approximate to metastases; and (5) abdomen/pelvis, featuring simulated kidneys, colon, rectum, bladder, and prostate. The phantom represents a two-fold evolution in design philosophy—from 2D (cylindrically symmetric) to fully 3D, and from exclusively qualitative or quantitative to a design accommodating quantitative study within an anatomical context. It has proven a valuable tool in investigations throughout our institution, including low-dose CT, dual-energy radiography, and cone-beam CT for image-guided radiation therapy and surgery.

  2. An innovative phantom for quantitative and qualitative investigation of advanced x-ray imaging technologies

    International Nuclear Information System (INIS)

    Chiarot, C B; Siewerdsen, J H; Haycocks, T; Moseley, D J; Jaffray, D A

    2005-01-01

    Development, characterization, and quality assurance of advanced x-ray imaging technologies require phantoms that are quantitative and well suited to such modalities. This note reports on the design, construction, and use of an innovative phantom developed for advanced imaging technologies (e.g., multi-detector CT and the numerous applications of flat-panel detectors in dual-energy imaging, tomosynthesis, and cone-beam CT) in diagnostic and image-guided procedures. The design addresses shortcomings of existing phantoms by incorporating criteria satisfied by no other single phantom: (1) inserts are fully 3D-spherically symmetric rather than cylindrical; (2) modules are quantitative, presenting objects of known size and contrast for quality assurance and image quality investigation; (3) features are incorporated in ideal and semi-realistic (anthropomorphic) contexts; and (4) the phantom allows devices to be inserted and manipulated in an accessible module (right lung). The phantom consists of five primary modules: (1) head, featuring contrast-detail spheres approximate to brain lesions; (2) left lung, featuring contrast-detail spheres approximate to lung modules; (3) right lung, an accessible hull in which devices may be placed and manipulated; (4) liver, featuring conrast-detail spheres approximate to metastases; and (5) abdomen/pelvis, featuring simulated kidneys, colon, rectum, bladder, and prostate. The phantom represents a two-fold evolution in design philosophy-from 2D (cylindrically symmetric) to fully 3D, and from exclusively qualitative or quantitative to a design accommodating quantitative study within an anatomical context. It has proven a valuable tool in investigations throughout our institution, including low-dose CT, dual-energy radiography, and cone-beam CT for image-guided radiation therapy and surgery. (note)

  3. A custom-built PET phantom design for quantitative imaging of printed distributions

    International Nuclear Information System (INIS)

    Markiewicz, P J; Angelis, G I; Kotasidis, F; Green, M; Matthews, J C; Lionheart, W R; Reader, A J

    2011-01-01

    This note presents a practical approach to a custom-made design of PET phantoms enabling the use of digital radioactive distributions with high quantitative accuracy and spatial resolution. The phantom design allows planar sources of any radioactivity distribution to be imaged in transaxial and axial (sagittal or coronal) planes. Although the design presented here is specially adapted to the high-resolution research tomograph (HRRT), the presented methods can be adapted to almost any PET scanner. Although the presented phantom design has many advantages, a number of practical issues had to be overcome such as positioning of the printed source, calibration, uniformity and reproducibility of printing. A well counter (WC) was used in the calibration procedure to find the nonlinear relationship between digital voxel intensities and the actual measured radioactive concentrations. Repeated printing together with WC measurements and computed radiography (CR) using phosphor imaging plates (IP) were used to evaluate the reproducibility and uniformity of such printing. Results show satisfactory printing uniformity and reproducibility; however, calibration is dependent on the printing mode and the physical state of the cartridge. As a demonstration of the utility of using printed phantoms, the image resolution and quantitative accuracy of reconstructed HRRT images are assessed. There is very good quantitative agreement in the calibration procedure between HRRT, CR and WC measurements. However, the high resolution of CR and its quantitative accuracy supported by WC measurements made it possible to show the degraded resolution of HRRT brain images caused by the partial-volume effect and the limits of iterative image reconstruction. (note)

  4. Quantitative evaluation of dual-energy digital mammography for calcification imaging

    International Nuclear Information System (INIS)

    Kappadath, S Cheenu; Shaw, Chris C

    2004-01-01

    Dual-energy digital mammography (DEDM), where separate low- and high-energy images are acquired and synthesized to cancel the tissue structures, may improve the ability to detect and visualize microcalcifications. Under ideal imaging conditions, when the mammography image data are free of scatter and other biases, DEDM could be used to determine the thicknesses of the imaged calcifications. We present quantitative evaluation of a DEDM technique for calcification imaging. The phantoms used in the evaluation were constructed by placing aluminium strips of known thicknesses (to simulate calcifications) across breast-tissue-equivalent materials of different glandular-tissue compositions. The images were acquired under narrow-beam geometry and high exposures to suppress the detrimental effects of scatter and random noise. The measured aluminium thicknesses were found to be approximately linear with the true aluminium thicknesses and independent of the underlying glandular-tissue composition. However, the dual-energy images underestimated the true aluminium thickness due to the presence of scatter from adjacent regions. Regions in the DEDM image that contained no aluminium yielded very low aluminium thicknesses (<0.07 mm). The aluminium contrast-to-noise ratio in the dual-energy images increased with the aluminium thickness and decreased with the glandular-tissue composition. The changes to the aluminium contrast-to-noise ratio and the contrast of the tissue structures between the low-energy and DEDM images are also presented

  5. Quantitative segmentation of fluorescence microscopy images of heterogeneous tissue: Approach for tuning algorithm parameters

    Science.gov (United States)

    Mueller, Jenna L.; Harmany, Zachary T.; Mito, Jeffrey K.; Kennedy, Stephanie A.; Kim, Yongbaek; Dodd, Leslie; Geradts, Joseph; Kirsch, David G.; Willett, Rebecca M.; Brown, J. Quincy; Ramanujam, Nimmi

    2013-02-01

    The combination of fluorescent contrast agents with microscopy is a powerful technique to obtain real time images of tissue histology without the need for fixing, sectioning, and staining. The potential of this technology lies in the identification of robust methods for image segmentation and quantitation, particularly in heterogeneous tissues. Our solution is to apply sparse decomposition (SD) to monochrome images of fluorescently-stained microanatomy to segment and quantify distinct tissue types. The clinical utility of our approach is demonstrated by imaging excised margins in a cohort of mice after surgical resection of a sarcoma. Representative images of excised margins were used to optimize the formulation of SD and tune parameters associated with the algorithm. Our results demonstrate that SD is a robust solution that can advance vital fluorescence microscopy as a clinically significant technology.

  6. Review of quantitative phase-digital holographic microscopy: promising novel imaging technique to resolve neuronal network activity and identify cellular biomarkers of psychiatric disorders

    KAUST Repository

    Marquet, Pierre

    2014-09-22

    Quantitative phase microscopy (QPM) has recently emerged as a new powerful quantitative imaging technique well suited to noninvasively explore a transparent specimen with a nanometric axial sensitivity. In this review, we expose the recent developments of quantitative phase-digital holographic microscopy (QP-DHM). Quantitative phase-digital holographic microscopy (QP-DHM) represents an important and efficient quantitative phase method to explore cell structure and dynamics. In a second part, the most relevant QPM applications in the field of cell biology are summarized. A particular emphasis is placed on the original biological information, which can be derived from the quantitative phase signal. In a third part, recent applications obtained, with QP-DHM in the field of cellular neuroscience, namely the possibility to optically resolve neuronal network activity and spine dynamics, are presented. Furthermore, potential applications of QPM related to psychiatry through the identification of new and original cell biomarkers that, when combined with a range of other biomarkers, could significantly contribute to the determination of high risk developmental trajectories for psychiatric disorders, are discussed.

  7. Effects of acquisition time and reconstruction algorithm on image quality, quantitative parameters, and clinical interpretation of myocardial perfusion imaging

    DEFF Research Database (Denmark)

    Enevoldsen, Lotte H; Menashi, Changez A K; Andersen, Ulrik B

    2013-01-01

    time (HT) protocols and Evolution for Cardiac Software. METHODS: We studied 45 consecutive, non-selected patients referred for a clinically indicated routine 2-day stress/rest (99m)Tc-Sestamibi myocardial perfusion SPECT. All patients underwent an FT and an HT scan. Both FT and HT scans were processed......-RR) and for quantitative analysis (FT-FBP, HT-FBP, and HT-RR). The datasets were analyzed using commercially available QGS/QPS software and read by two observers evaluating image quality and clinical interpretation. Image quality was assessed on a 10-cm visual analog scale score. RESULTS: HT imaging was associated......: Use of RR reconstruction algorithms compensates for loss of image quality associated with reduced scan time. Both HT acquisition and RR reconstruction algorithm had significant effects on motion and perfusion parameters obtained with standard software, but these effects were relatively small...

  8. Brain tumors and synchrotron radiation: Methodological developments in quantitative brain perfusion imaging and radiation therapy

    International Nuclear Information System (INIS)

    Adam, Jean-Francois

    2005-01-01

    High-grade gliomas are the most frequent type of primary brain tumors in adults. Unfortunately, the management of glioblastomas is still mainly palliative and remains a difficult challenge, despite advances in brain tumor molecular biology and in some emerging therapies. Synchrotron radiation opens fields for medical imaging and radiation therapy by using monochromatic intense x-ray beams. It is now well known that angiogenesis plays a critical role in the tumor growth process and that brain perfusion is representative of the tumor mitotic activity. Synchrotron radiation quantitative computed tomography (SRCT) is one of the most accurate techniques for measuring in vivo contrast agent concentration and thus computing precise and accurate absolute values of the brain perfusion key parameters. The methodological developments of SRCT absolute brain perfusion measurements as well as their preclinical validation are detailed in this thesis. In particular, absolute cerebral volume and blood brain barrier permeability high-resolution (pixel size 2 ) parametric maps were reported. In conventional radiotherapy, the treatment of these tumors remains a delicate challenge, because the damages to the surrounding normal brain tissue limit the amount of radiation that can be delivered. One strategy to overcome this limitation is to infuse an iodinated contrast agent to the patient during the irradiation. The contrast agent accumulates in the tumor, through the broken blood brain barrier, and the irradiation is performed with kilovoltage x rays, in tomography mode, the tumor being located at the center of rotation and the beam size adjusted to the tumor dimensions. The dose enhancement results from the photoelectric effect on the heavy element and from the irradiation geometry. Synchrotron beams, providing high intensity, tunable monochromatic x rays, are ideal for this treatment. The beam properties allow the selection of monochromatic irradiation, at the optimal energy, for a

  9. Image evaluation of HIV encephalopathy: a multimodal approach using quantitative MR techniques

    Energy Technology Data Exchange (ETDEWEB)

    Prado, Paulo T.C.; Escorsi-Rosset, Sara [University of Sao Paulo, Radiology Section, Internal Medicine Department, Ribeirao Preto School of Medicine, Sao Paulo (Brazil); Cervi, Maria C. [University of Sao Paulo, Department of Pediatrics, Ribeirao Preto School of Medicine, Sao Paulo (Brazil); Santos, Antonio Carlos [University of Sao Paulo, Radiology Section, Internal Medicine Department, Ribeirao Preto School of Medicine, Sao Paulo (Brazil); Hospital das Clinicas da FMRP-USP, Ribeirao Preto, SP (Brazil)

    2011-11-15

    A multimodal approach of the human immunodeficiency virus (HIV) encephalopathy using quantitative magnetic resonance (MR) techniques can demonstrate brain changes not detectable only with conventional magnetic resonance imaging (MRI). The aim of this study was to compare conventional MRI and MR quantitative techniques, such as magnetic resonance spectroscopy (MRS) and relaxometry and to determine whether quantitative techniques are more sensitive than conventional imaging for brain changes caused by HIV infection. We studied prospectively nine HIV positive children (mean age 6 years, from 5 to 8 years old) and nine controls (mean age 7.3 years; from 3 to 10 years), using MRS and relaxometry. Examinations were carried on 1.5-T equipment. HIV-positive patients presented with only minor findings and all control patients had normal conventional MR findings. MRS findings showed an increase in choline to creatine (CHO/CRE) ratios bilaterally in both frontal gray and white matter, in the left parietal white matter, and in total CHO/CRE ratio. In contrast, N-acetylaspartate to creatine (NAA/CRE) ratios did not present with any significant difference between both groups. Relaxometry showed significant bilateral abnormalities, with lengthening of the relaxation time in HIV positive in many regions. Conventional MRI is not sensitive for early brain changes caused by HIV infection. Quantitative techniques such as MRS and relaxometry appear as valuable tools in the diagnosis of these early changes. Therefore, a multimodal quantitative study can be useful in demonstrating and understanding the physiopathology of the disease. (orig.)

  10. Visualization and quantitative analysis of the CSF pulsatile flow with cine MR phase imaging

    International Nuclear Information System (INIS)

    Katayama, Shinji; Itoh, Takahiko; Kinugasa, Kazushi; Asari, Shoji; Nishimoto, Akira; Tsuchida, Shohei; Ono, Atsushi; Ikezaki, Yoshikazu; Yoshitome, Eiji.

    1991-01-01

    The visualization and the quantitative analysis of the CSF pulsatile flow were performed on ten healthy volunteers with cine MR phase imaging, a combination of the phase-contrast technique and the cardiac-gating technique. The velocities appropriate for the visualization and the quantitative analysis of the CSF pulsatile flow were from 6.0 cm/sec to 15.0 cm/sec. The applicability of this method for the quantitative analysis was proven with a steady-flow phantom. Phase images clearly demonstrated a to-and-fro motion of the CSF flow in the anterior subarachnoid space and in the posterior subarachnoid space. The flow pattern of CSF on healthy volunteers depends on the cardiac cycle. In the anterior subarachnoid space, the cephalic CSF flow continued until a 70-msec delay after the R-wave of the ECG and then reversed to caudal. At 130-190 msec, the caudal CSF flow reached its maximum velocity; thereafter it reversed again to cephalic. The same turn appeared following the phase, but then the amplitude decreased. The cephalic peaked at 370-430 msec, while the caudal peaked at 490-550 msec. The flow pattern of the CSF flow in the posterior subarachnoid space was almost identical to that in the anterior subarachnoid space. Cine MR phase imaging is thus useful for the visualization and the quantitative analysis of the CSF pulsative flow. (author)

  11. Quantitative estimation of brain atrophy and function with PET and MRI two-dimensional projection images

    International Nuclear Information System (INIS)

    Saito, Reiko; Uemura, Koji; Uchiyama, Akihiko; Toyama, Hinako; Ishii, Kenji; Senda, Michio

    2001-01-01

    The purpose of this paper is to estimate the extent of atrophy and the decline in brain function objectively and quantitatively. Two-dimensional (2D) projection images of three-dimensional (3D) transaxial images of positron emission tomography (PET) and magnetic resonance imaging (MRI) were made by means of the Mollweide method which keeps the area of the brain surface. A correlation image was generated between 2D projection images of MRI and cerebral blood flow (CBF) or 18 F-fluorodeoxyglucose (FDG) PET images and the sulcus was extracted from the correlation image clustered by K-means method. Furthermore, the extent of atrophy was evaluated from the extracted sulcus on 2D-projection MRI and the cerebral cortical function such as blood flow or glucose metabolic rate was assessed in the cortex excluding sulcus on 2D-projection PET image, and then the relationship between the cerebral atrophy and function was evaluated. This method was applied to the two groups, the young and the aged normal subjects, and the relationship between the age and the rate of atrophy or the cerebral blood flow was investigated. This method was also applied to FDG-PET and MRI studies in the normal controls and in patients with corticobasal degeneration. The mean rate of atrophy in the aged group was found to be higher than that in the young. The mean value and the variance of the cerebral blood flow for the young are greater than those of the aged. The sulci were similarly extracted using either CBF or FDG PET images. The purposed method using 2-D projection images of MRI and PET is clinically useful for quantitative assessment of atrophic change and functional disorder of cerebral cortex. (author)

  12. Application of LC–MS/MS for quantitative analysis of glucocorticoids and stimulants in biological fluids

    Directory of Open Access Journals (Sweden)

    Jamshed Haneef

    2013-10-01

    Full Text Available Liquid chromatography tandem mass chromatography (LC–MS/MS is an important hyphenated technique for quantitative analysis of drugs in biological fluids. Because of high sensitivity and selectivity, LC–MS/MS has been used for pharmacokinetic studies, metabolites identification in the plasma and urine. This manuscript gives comprehensive analytical review, focusing on chromatographic separation approaches (column packing materials, column length and mobile phase as well as different acquisition modes (SIM, MRM for quantitative analysis of glucocorticoids and stimulants. This review is not meant to be exhaustive but rather to provide a general overview for detection and confirmation of target drugs using LC–MS/MS and thus useful in the doping analysis, toxicological studies as well as in pharmaceutical analysis. Keywords: LC–MS/MS, Ionization techniques, Glucocorticoids, Stimulants, Hyphenated techniques, Biological fluid

  13. Gender, Math Confidence, and Grit: Relationships with Quantitative Skills and Performance in an Undergraduate Biology Course

    Science.gov (United States)

    Flanagan, K. M.; Einarson, J.

    2017-01-01

    In a world filled with big data, mathematical models, and statistics, the development of strong quantitative skills is becoming increasingly critical for modern biologists. Teachers in this field must understand how students acquire quantitative skills and explore barriers experienced by students when developing these skills. In this study, we…

  14. A method for normalizing pathology images to improve feature extraction for quantitative pathology

    International Nuclear Information System (INIS)

    Tam, Allison; Barker, Jocelyn; Rubin, Daniel

    2016-01-01

    Purpose: With the advent of digital slide scanning technologies and the potential proliferation of large repositories of digital pathology images, many research studies can leverage these data for biomedical discovery and to develop clinical applications. However, quantitative analysis of digital pathology images is impeded by batch effects generated by varied staining protocols and staining conditions of pathological slides. Methods: To overcome this problem, this paper proposes a novel, fully automated stain normalization method to reduce batch effects and thus aid research in digital pathology applications. Their method, intensity centering and histogram equalization (ICHE), normalizes a diverse set of pathology images by first scaling the centroids of the intensity histograms to a common point and then applying a modified version of contrast-limited adaptive histogram equalization. Normalization was performed on two datasets of digitized hematoxylin and eosin (H&E) slides of different tissue slices from the same lung tumor, and one immunohistochemistry dataset of digitized slides created by restaining one of the H&E datasets. Results: The ICHE method was evaluated based on image intensity values, quantitative features, and the effect on downstream applications, such as a computer aided diagnosis. For comparison, three methods from the literature were reimplemented and evaluated using the same criteria. The authors found that ICHE not only improved performance compared with un-normalized images, but in most cases showed improvement compared with previous methods for correcting batch effects in the literature. Conclusions: ICHE may be a useful preprocessing step a digital pathology image processing pipeline

  15. A method for normalizing pathology images to improve feature extraction for quantitative pathology

    Energy Technology Data Exchange (ETDEWEB)

    Tam, Allison [Stanford Institutes of Medical Research Program, Stanford University School of Medicine, Stanford, California 94305 (United States); Barker, Jocelyn [Department of Radiology, Stanford University School of Medicine, Stanford, California 94305 (United States); Rubin, Daniel [Department of Radiology, Stanford University School of Medicine, Stanford, California 94305 and Department of Medicine (Biomedical Informatics Research), Stanford University School of Medicine, Stanford, California 94305 (United States)

    2016-01-15

    Purpose: With the advent of digital slide scanning technologies and the potential proliferation of large repositories of digital pathology images, many research studies can leverage these data for biomedical discovery and to develop clinical applications. However, quantitative analysis of digital pathology images is impeded by batch effects generated by varied staining protocols and staining conditions of pathological slides. Methods: To overcome this problem, this paper proposes a novel, fully automated stain normalization method to reduce batch effects and thus aid research in digital pathology applications. Their method, intensity centering and histogram equalization (ICHE), normalizes a diverse set of pathology images by first scaling the centroids of the intensity histograms to a common point and then applying a modified version of contrast-limited adaptive histogram equalization. Normalization was performed on two datasets of digitized hematoxylin and eosin (H&E) slides of different tissue slices from the same lung tumor, and one immunohistochemistry dataset of digitized slides created by restaining one of the H&E datasets. Results: The ICHE method was evaluated based on image intensity values, quantitative features, and the effect on downstream applications, such as a computer aided diagnosis. For comparison, three methods from the literature were reimplemented and evaluated using the same criteria. The authors found that ICHE not only improved performance compared with un-normalized images, but in most cases showed improvement compared with previous methods for correcting batch effects in the literature. Conclusions: ICHE may be a useful preprocessing step a digital pathology image processing pipeline.

  16. Quantitative assessment of hyperspectral imaging in detection of plasmonic nanoparticles: a modified contrast-detail analysis approach

    Science.gov (United States)

    Wang, Jianting; Chen, Yu; Pfefer, T. Joshua

    2016-03-01

    Hyperspectral reflectance imaging (HRI) is an emerging imaging modality being applied for clinical indications such as tissue oximetry, and cancer detection based on endogenous biological constituents including plasmonic nanoparticles. However, there is currently a lack of standardized test methods for objective, quantitative evaluation of HRI system performance. Contrast-detail analysis (CDA) is a phantom-based test method commonly used to evaluate medical imaging devices (e.g., mammography systems) in terms of their lower detection limit. We investigated a modified CDA (mCDA) method to quantify the detectability of gold nanoparticles by HRI systems. Silicone-based turbid phantoms containing micro-fluidic channels were developed for the mCDA tests. Polydimethylsiloxane (PDMS) phantom materials were doped with chromophores and scatterers to achieve biologically relevant optical properties (OPs). Molds were used to produce cylindrical channels of diameters 0.3 to 1.65 mm and depths of 0.2 mm inside the phantoms. Channels were filled with a mixture of hemoglobin and concentrations of gold nanorods (GNR) and measured with our HRI system. The contrast of GNRs was solved with a spectral unmixing algorithm from the reflectance spectra. The lowest detectable concentration was determined as a function of inclusion size and depth and plotted as modified contrast detail curve (mCDC). mCDCs were used to compare the detectabilities of the HRI system with different data processing algorithms. It is demonstrated that our mCDA test method involving turbid microchannel phantoms can help to elucidate the combined performance of imaging devices and plasmonic nanoparticle contrast agents. This approach may be useful for performing clinical trial standardization and device re-calibration, thus ensuring quality control and clinical performance.

  17. Quantitative morphologic evaluation of magnetic resonance imaging during and after treatment of childhood leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Reddick, Wilburn E.; Glass, John O. [St. Jude Children' s Research Hospital, Division of Translational Imaging Research (MS 210), Department of Radiological Sciences, Memphis, TN (United States); Laningham, Fred H. [St. Jude Children' s Research Hospital, Division of Diagnostic Imaging, Memphis, TN (United States); Pui, Ching-Hon [St. Jude Children' s Research Hospital, Department of Oncology, Memphis, TN (United States)

    2007-11-15

    Medical advances over the last several decades, including CNS prophylaxis, have greatly increased survival in children with leukemia. As survival rates have increased, clinicians and scientists have been afforded the opportunity to further develop treatments to improve the quality of life of survivors by minimizing the long-term adverse effects. When evaluating the effect of antileukemia therapy on the developing brain, magnetic resonance (MR) imaging has been the preferred modality because it quantifies morphologic changes objectively and noninvasively. Computer-aided detection of changes on neuroimages enables us to objectively differentiate leukoencephalopathy from normal maturation of the developing brain. Quantitative tissue segmentation algorithms and relaxometry measures have been used to determine the prevalence, extent, and intensity of white matter changes that occur during therapy. More recently, diffusion tensor imaging has been used to quantify microstructural changes in the integrity of the white matter fiber tracts. MR perfusion imaging can be used to noninvasively monitor vascular changes during therapy. Changes in quantitative MR measures have been associated, to some degree, with changes in neurocognitive function during and after treatment. In this review, we present recent advances in quantitative evaluation of MR imaging and discuss how these methods hold the promise to further elucidate the pathophysiologic effects of treatment for childhood leukemia. (orig.)

  18. Quantitative morphologic evaluation of magnetic resonance imaging during and after treatment of childhood leukemia

    International Nuclear Information System (INIS)

    Reddick, Wilburn E.; Glass, John O.; Laningham, Fred H.; Pui, Ching-Hon

    2007-01-01

    Medical advances over the last several decades, including CNS prophylaxis, have greatly increased survival in children with leukemia. As survival rates have increased, clinicians and scientists have been afforded the opportunity to further develop treatments to improve the quality of life of survivors by minimizing the long-term adverse effects. When evaluating the effect of antileukemia therapy on the developing brain, magnetic resonance (MR) imaging has been the preferred modality because it quantifies morphologic changes objectively and noninvasively. Computer-aided detection of changes on neuroimages enables us to objectively differentiate leukoencephalopathy from normal maturation of the developing brain. Quantitative tissue segmentation algorithms and relaxometry measures have been used to determine the prevalence, extent, and intensity of white matter changes that occur during therapy. More recently, diffusion tensor imaging has been used to quantify microstructural changes in the integrity of the white matter fiber tracts. MR perfusion imaging can be used to noninvasively monitor vascular changes during therapy. Changes in quantitative MR measures have been associated, to some degree, with changes in neurocognitive function during and after treatment. In this review, we present recent advances in quantitative evaluation of MR imaging and discuss how these methods hold the promise to further elucidate the pathophysiologic effects of treatment for childhood leukemia. (orig.)

  19. Quantifying structural alterations in Alzheimer's disease brains using quantitative phase imaging (Conference Presentation)

    Science.gov (United States)

    Lee, Moosung; Lee, Eeksung; Jung, JaeHwang; Yu, Hyeonseung; Kim, Kyoohyun; Yoon, Jonghee; Lee, Shinhwa; Jeong, Yong; Park, YongKeun

    2017-02-01

    Imaging brain tissues is an essential part of neuroscience because understanding brain structure provides relevant information about brain functions and alterations associated with diseases. Magnetic resonance imaging and positron emission tomography exemplify conventional brain imaging tools, but these techniques suffer from low spatial resolution around 100 μm. As a complementary method, histopathology has been utilized with the development of optical microscopy. The traditional method provides the structural information about biological tissues to cellular scales, but relies on labor-intensive staining procedures. With the advances of illumination sources, label-free imaging techniques based on nonlinear interactions, such as multiphoton excitations and Raman scattering, have been applied to molecule-specific histopathology. Nevertheless, these techniques provide limited qualitative information and require a pulsed laser, which is difficult to use for pathologists with no laser training. Here, we present a label-free optical imaging of mouse brain tissues for addressing structural alteration in Alzheimer's disease. To achieve the mesoscopic, unlabeled tissue images with high contrast and sub-micrometer lateral resolution, we employed holographic microscopy and an automated scanning platform. From the acquired hologram of the brain tissues, we could retrieve scattering coefficients and anisotropies according to the modified scattering-phase theorem. This label-free imaging technique enabled direct access to structural information throughout the tissues with a sub-micrometer lateral resolution and presented a unique means to investigate the structural changes in the optical properties of biological tissues.

  20. Survival Prediction in Pancreatic Ductal Adenocarcinoma by Quantitative Computed Tomography Image Analysis.

    Science.gov (United States)

    Attiyeh, Marc A; Chakraborty, Jayasree; Doussot, Alexandre; Langdon-Embry, Liana; Mainarich, Shiana; Gönen, Mithat; Balachandran, Vinod P; D'Angelica, Michael I; DeMatteo, Ronald P; Jarnagin, William R; Kingham, T Peter; Allen, Peter J; Simpson, Amber L; Do, Richard K

    2018-04-01

    Pancreatic cancer is a highly lethal cancer with no established a priori markers of survival. Existing nomograms rely mainly on post-resection data and are of limited utility in directing surgical management. This study investigated the use of quantitative computed tomography (CT) features to preoperatively assess survival for pancreatic ductal adenocarcinoma (PDAC) patients. A prospectively maintained database identified consecutive chemotherapy-naive patients with CT angiography and resected PDAC between 2009 and 2012. Variation in CT enhancement patterns was extracted from the tumor region using texture analysis, a quantitative image analysis tool previously described in the literature. Two continuous survival models were constructed, with 70% of the data (training set) using Cox regression, first based only on preoperative serum cancer antigen (CA) 19-9 levels and image features (model A), and then on CA19-9, image features, and the Brennan score (composite pathology score; model B). The remaining 30% of the data (test set) were reserved for independent validation. A total of 161 patients were included in the analysis. Training and test sets contained 113 and 48 patients, respectively. Quantitative image features combined with CA19-9 achieved a c-index of 0.69 [integrated Brier score (IBS) 0.224] on the test data, while combining CA19-9, imaging, and the Brennan score achieved a c-index of 0.74 (IBS 0.200) on the test data. We present two continuous survival prediction models for resected PDAC patients. Quantitative analysis of CT texture features is associated with overall survival. Further work includes applying the model to an external dataset to increase the sample size for training and to determine its applicability.

  1. Quantitative analysis of elastography images in the detection of breast cancer

    International Nuclear Information System (INIS)

    Landoni, V.; Francione, V.; Marzi, S.; Pasciuti, K.; Ferrante, F.; Saracca, E.; Pedrini, M.; Strigari, L.; Crecco, M.; Di Nallo, A.

    2012-01-01

    Purpose: The aim of this study was to develop a quantitative method for breast cancer diagnosis based on elastosonography images in order to reduce whenever possible unnecessary biopsies. The proposed method was validated by correlating the results of quantitative analysis with the diagnosis assessed by histopathologic exam. Material and methods: 109 images of breast lesions (50 benign and 59 malignant) were acquired with the traditional B-mode technique and with elastographic modality. Images in Digital Imaging and COmmunications in Medicine format (DICOM) were exported into a software, written in Visual Basic, especially developed to perform this study. The lesion was contoured and the mean grey value and softness inside the region of interest (ROI) were calculated. The correlations between variables were investigated and receiver operating characteristic (ROC) curve analysis was performed to assess the diagnostic accuracy of the proposed method. Pathologic results were used as standard reference. Results: Both the mean grey value and the softness inside the ROI resulted statistically different at the t test for the two populations of lesions (i.e., benign versus malignant): p < 0.0001. The area under the curve (AUC) was 0.924 (0.834–0.973) and 0.917 (0.826–0.970) for the mean grey value and for the softness respectively. Conclusions: Quantitative elastosonography is a promising ultrasound technique in the detection of breast cancer but large prospective trials are necessary to determine whether quantitative analysis of images can help to overcome some pitfalls of the methodic.

  2. Aspects of Quantitation in Mass Spectrometry Imaging Investigated on Cryo-Sections of Spiked Tissue Homogenates.

    Science.gov (United States)

    Hansen, Heidi Toft; Janfelt, Christian

    2016-12-06

    Internal standards have been introduced in quantitative mass spectrometry imaging in order to compensate for differences in intensities throughout an image caused by, for example, difference in ion suppression or analyte extraction efficiency. To test how well the internal standards compensate for differences in tissue types in, for example, whole-body imaging, a set of tissue homogenates of different tissue types (lung, liver, kidney, heart, and brain) from rabbit was spiked to the same concentration with the drug amitriptyline and imaged in the same experiment using isotope labeled amitriptyline as internal standard. The results showed, even after correction with internal standard, significantly lower intensities from brain and to some extent also lung tissue, differences which may be ascribed to binding of the drug to proteins or lipids as known from traditional bioanalysis. The differences, which for these results range approximately within a factor of 3 (but for other compounds in other tissues could be higher), underscore the importance of preparing the standard curve in the same matrix as the unknown sample whenever possible. In, for example, whole-body imaging where a diversity of tissue types are present, this variation across tissue types will therefore add to the overall uncertainty in quantitation. The tissue homogenates were also used in a characterization of various phenomena in quantitative MSI, such as to study how the signal depends of the thickness of the cryo-section, and to assess the accuracy of calibration by droplet deposition. For experiments on liver tissue, calibration by spiked tissue homogenates and droplet deposition was found to provide highly similar results and in both cases linearity with R 2 values of 0.99. In the process, a new method was developed for preparation of standard curves of spiked tissue homogenates, based on the drilling of holes in a block of frozen liver homogenate, providing easy cryo-slicing and good quantitative

  3. Magnetoacoustic Imaging of Electrical Conductivity of Biological Tissues at a Spatial Resolution Better than 2 mm

    OpenAIRE

    Hu, Gang; He, Bin

    2011-01-01

    Magnetoacoustic tomography with magnetic induction (MAT-MI) is an emerging approach for noninvasively imaging electrical impedance properties of biological tissues. The MAT-MI imaging system measures ultrasound waves generated by the Lorentz force, having been induced by magnetic stimulation, which is related to the electrical conductivity distribution in tissue samples. MAT-MI promises to provide fine spatial resolution for biological tissue imaging as compared to ultrasound resolution. In t...

  4. WE-G-207-05: Relationship Between CT Image Quality, Segmentation Performance, and Quantitative Image Feature Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J; Nishikawa, R [University of Pittsburgh, Pittsburgh, PA (United States); Reiser, I [The University of Chicago, Chicago, IL (United States); Boone, J [UC Davis Medical Center, Sacramento, CA (United States)

    2015-06-15

    Purpose: Segmentation quality can affect quantitative image feature analysis. The objective of this study is to examine the relationship between computed tomography (CT) image quality, segmentation performance, and quantitative image feature analysis. Methods: A total of 90 pathology proven breast lesions in 87 dedicated breast CT images were considered. An iterative image reconstruction (IIR) algorithm was used to obtain CT images with different quality. With different combinations of 4 variables in the algorithm, this study obtained a total of 28 different qualities of CT images. Two imaging tasks/objectives were considered: 1) segmentation and 2) classification of the lesion as benign or malignant. Twenty-three image features were extracted after segmentation using a semi-automated algorithm and 5 of them were selected via a feature selection technique. Logistic regression was trained and tested using leave-one-out-cross-validation and its area under the ROC curve (AUC) was recorded. The standard deviation of a homogeneous portion and the gradient of a parenchymal portion of an example breast were used as an estimate of image noise and sharpness. The DICE coefficient was computed using a radiologist’s drawing on the lesion. Mean DICE and AUC were used as performance metrics for each of the 28 reconstructions. The relationship between segmentation and classification performance under different reconstructions were compared. Distributions (median, 95% confidence interval) of DICE and AUC for each reconstruction were also compared. Results: Moderate correlation (Pearson’s rho = 0.43, p-value = 0.02) between DICE and AUC values was found. However, the variation between DICE and AUC values for each reconstruction increased as the image sharpness increased. There was a combination of IIR parameters that resulted in the best segmentation with the worst classification performance. Conclusion: There are certain images that yield better segmentation or classification

  5. PET imaging for the quantification of biologically heterogeneous tumours: measuring the effect of relative position on image-based quantification of dose-painting targets

    International Nuclear Information System (INIS)

    McCall, Keisha C; Barbee, David L; Kissick, Michael W; Jeraj, Robert

    2010-01-01

    Quantitative imaging of tumours represents the foundation of customized therapies and adaptive patient care. As such, we have investigated the effect of patient positioning errors on the reproducibility of images of biologically heterogeneous tumours generated by a clinical PET/CT system. A commercial multi-slice PET/CT system was used to acquire 2D and 3D PET images of a phantom containing multiple spheres of known volumes and known radioactivity concentrations and suspended in an aqueous medium. The spheres served as surrogates for sub-tumour regions of biological heterogeneities with dimensions of 5-15 mm. Between image acquisitions, a motorized-arm was used to reposition the spheres in 1 mm intervals along either the radial or the axial direction. Images of the phantom were reconstructed using typical diagnostic reconstruction techniques, and these images were analysed to characterize and model the position-dependent changes in contrast recovery. A simulation study was also conducted to investigate the effect of patient position on the reproducibility of PET imaging of biologically heterogeneous head and neck (HN) tumours. For this simulation study, we calculated the changes in image intensity values that would occur with changes in the relative position of the patients at the time of imaging. PET images of two HN patients were used to simulate an imaging study that incorporated set-up errors that are typical for HN patients. One thousand randomized positioning errors were investigated for each patient. As a result of the phantom study, a position-dependent trend was identified for measurements of contrast recovery of small objects. The peak contrast recovery occurred at radial and axial positions that coincide with the centre of the image voxel. Conversely, the minimum contrast recovery occurred when the object was positioned at the edges of the image voxel. Changing the position of high contrast spheres by one-half the voxel dimension lead to errors in the

  6. Versatile quantitative phase imaging system applied to high-speed, low noise and multimodal imaging (Conference Presentation)

    Science.gov (United States)

    Federici, Antoine; Aknoun, Sherazade; Savatier, Julien; Wattellier, Benoit F.

    2017-02-01

    Quadriwave lateral shearing interferometry (QWLSI) is a well-established quantitative phase imaging (QPI) technique based on the analysis of interference patterns of four diffraction orders by an optical grating set in front of an array detector [1]. As a QPI modality, this is a non-invasive imaging technique which allow to measure the optical path difference (OPD) of semi-transparent samples. We present a system enabling QWLSI with high-performance sCMOS cameras [2] and apply it to perform high-speed imaging, low noise as well as multimodal imaging. This modified QWLSI system contains a versatile optomechanical device which images the optical grating near the detector plane. Such a device is coupled with any kind of camera by varying its magnification. In this paper, we study the use of a sCMOS Zyla5.5 camera from Andor along with our modified QWLSI system. We will present high-speed live cell imaging, up to 200Hz frame rate, in order to follow intracellular fast motions while measuring the quantitative phase information. The structural and density information extracted from the OPD signal is complementary to the specific and localized fluorescence signal [2]. In addition, QPI detects cells even when the fluorophore is not expressed. This is very useful to follow a protein expression with time. The 10 µm spatial pixel resolution of our modified QWLSI associated to the high sensitivity of the Zyla5.5 enabling to perform high quality fluorescence imaging, we have carried out multimodal imaging revealing fine structures cells, like actin filaments, merged with the morphological information of the phase. References [1]. P. Bon, G. Maucort, B. Wattellier, and S. Monneret, "Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells," Opt. Express, vol. 17, pp. 13080-13094, 2009. [2] P. Bon, S. Lécart, E. Fort and S. Lévêque-Fort, "Fast label-free cytoskeletal network imaging in living mammalian cells," Biophysical journal, 106

  7. MO-C-BRB-06: Translating NIH / NIBIB funding to clinical reality in quantitative diagnostic imaging

    International Nuclear Information System (INIS)

    Jackson, E.

    2015-01-01

    Diagnostic radiology and radiation oncology are arguably two of the most technologically advanced specialties in medicine. The imaging and radiation medicine technologies in clinical use today have been continuously improved through new advances made in the commercial and academic research arenas. This symposium explores the translational path from research through clinical implementation. Dr. Pettigrew will start this discussion by sharing his perspectives as director of the National Institute of Biomedical Imaging and Bioengineering (NIBIB). The NIBIB has focused on promoting research that is technological in nature and has high clinical impact. We are in the age of precision medicine, and the technological innovations and quantitative tools developed by engineers and physicists working with physicians are providing innovative tools that increase precision and improve outcomes in health care. NIBIB funded grants lead to a very high patenting rate (per grant dollar), and these patents have higher citation rates by other patents, suggesting greater clinical impact, as well. Two examples of clinical translation resulting from NIH-funded research will be presented, in radiation therapy and diagnostic imaging. Dr. Yu will describe a stereotactic radiotherapy device developed in his laboratory that is designed for treating breast cancer with the patient in the prone position. It uses 36 rotating Cobalt-60 sources positioned in an annular geometry to focus the radiation beam at the system’s isocenter. The radiation dose is delivered throughout the target volume in the breast by constantly moving the patient in a planned trajectory relative to the fixed isocenter. With this technique, the focal spot dynamically paints the dose distribution throughout the target volume in three dimensions. Dr. Jackson will conclude this symposium by describing the RSNA Quantitative Imaging Biomarkers Alliance (QIBA), which is funded in part by NIBIB and is a synergistic collaboration

  8. MO-C-BRB-06: Translating NIH / NIBIB funding to clinical reality in quantitative diagnostic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, E. [University of Wisconsin (United States)

    2015-06-15

    Diagnostic radiology and radiation oncology are arguably two of the most technologically advanced specialties in medicine. The imaging and radiation medicine technologies in clinical use today have been continuously improved through new advances made in the commercial and academic research arenas. This symposium explores the translational path from research through clinical implementation. Dr. Pettigrew will start this discussion by sharing his perspectives as director of the National Institute of Biomedical Imaging and Bioengineering (NIBIB). The NIBIB has focused on promoting research that is technological in nature and has high clinical impact. We are in the age of precision medicine, and the technological innovations and quantitative tools developed by engineers and physicists working with physicians are providing innovative tools that increase precision and improve outcomes in health care. NIBIB funded grants lead to a very high patenting rate (per grant dollar), and these patents have higher citation rates by other patents, suggesting greater clinical impact, as well. Two examples of clinical translation resulting from NIH-funded research will be presented, in radiation therapy and diagnostic imaging. Dr. Yu will describe a stereotactic radiotherapy device developed in his laboratory that is designed for treating breast cancer with the patient in the prone position. It uses 36 rotating Cobalt-60 sources positioned in an annular geometry to focus the radiation beam at the system’s isocenter. The radiation dose is delivered throughout the target volume in the breast by constantly moving the patient in a planned trajectory relative to the fixed isocenter. With this technique, the focal spot dynamically paints the dose distribution throughout the target volume in three dimensions. Dr. Jackson will conclude this symposium by describing the RSNA Quantitative Imaging Biomarkers Alliance (QIBA), which is funded in part by NIBIB and is a synergistic collaboration

  9. High resolution radio-imager for biology and micro-dosimetry

    International Nuclear Information System (INIS)

    Aubineau-Laniece, I.; Charon, Y.; Laniece, P.; Mastrippolito, R.; Pinot, L.; Valentin, L.

    1999-01-01

    We have developed a self triggered intensified CCD (STIC) for real time high spatial resolution a and b imaging. This device is, in particular, of great interest for quantitative autoradiography of radiolabeled biochemical species with low level activity. (authors)

  10. Quantitative myocardial perfusion PET parametric imaging at the voxel-level

    International Nuclear Information System (INIS)

    Mohy-ud-Din, Hassan; Rahmim, Arman; Lodge, Martin A

    2015-01-01

    Quantitative myocardial perfusion (MP) PET has the potential to enhance detection of early stages of atherosclerosis or microvascular dysfunction, characterization of flow-limiting effects of coronary artery disease (CAD), and identification of balanced reduction of flow due to multivessel stenosis. We aim to enable quantitative MP-PET at the individual voxel level, which has the potential to allow enhanced visualization and quantification of myocardial blood flow (MBF) and flow reserve (MFR) as computed from uptake parametric images. This framework is especially challenging for the 82 Rb radiotracer. The short half-life enables fast serial imaging and high patient throughput; yet, the acquired dynamic PET images suffer from high noise-levels introducing large variability in uptake parametric images and, therefore, in the estimates of MBF and MFR. Robust estimation requires substantial post-smoothing of noisy data, degrading valuable functional information of physiological and pathological importance. We present a feasible and robust approach to generate parametric images at the voxel-level that substantially reduces noise without significant loss of spatial resolution. The proposed methodology, denoted physiological clustering, makes use of the functional similarity of voxels to penalize deviation of voxel kinetics from physiological partners. The results were validated using extensive simulations (with transmural and non-transmural perfusion defects) and clinical studies. Compared to post-smoothing, physiological clustering depicted enhanced quantitative noise versus bias performance as well as superior recovery of perfusion defects (as quantified by CNR) with minimal increase in bias. Overall, parametric images obtained from the proposed methodology were robust in the presence of high-noise levels as manifested in the voxel time-activity-curves. (paper)

  11. Assessment of the sources of error affecting the quantitative accuracy of SPECT imaging in small animals

    Energy Technology Data Exchange (ETDEWEB)

    Joint Graduate Group in Bioengineering, University of California, San Francisco and University of California, Berkeley; Department of Radiology, University of California; Gullberg, Grant T; Hwang, Andrew B.; Franc, Benjamin L.; Gullberg, Grant T.; Hasegawa, Bruce H.

    2008-02-15

    Small animal SPECT imaging systems have multiple potential applications in biomedical research. Whereas SPECT data are commonly interpreted qualitatively in a clinical setting, the ability to accurately quantify measurements will increase the utility of the SPECT data for laboratory measurements involving small animals. In this work, we assess the effect of photon attenuation, scatter and partial volume errors on the quantitative accuracy of small animal SPECT measurements, first with Monte Carlo simulation and then confirmed with experimental measurements. The simulations modeled the imaging geometry of a commercially available small animal SPECT system. We simulated the imaging of a radioactive source within a cylinder of water, and reconstructed the projection data using iterative reconstruction algorithms. The size of the source and the size of the surrounding cylinder were varied to evaluate the effects of photon attenuation and scatter on quantitative accuracy. We found that photon attenuation can reduce the measured concentration of radioactivity in a volume of interest in the center of a rat-sized cylinder of water by up to 50percent when imaging with iodine-125, and up to 25percent when imaging with technetium-99m. When imaging with iodine-125, the scatter-to-primary ratio can reach up to approximately 30percent, and can cause overestimation of the radioactivity concentration when reconstructing data with attenuation correction. We varied the size of the source to evaluate partial volume errors, which we found to be a strong function of the size of the volume of interest and the spatial resolution. These errors can result in large (>50percent) changes in the measured amount of radioactivity. The simulation results were compared with and found to agree with experimental measurements. The inclusion of attenuation correction in the reconstruction algorithm improved quantitative accuracy. We also found that an improvement of the spatial resolution through the

  12. Quantitative differential phase contrast imaging at high resolution with radially asymmetric illumination.

    Science.gov (United States)

    Lin, Yu-Zi; Huang, Kuang-Yuh; Luo, Yuan

    2018-06-15

    Half-circle illumination-based differential phase contrast (DPC) microscopy has been utilized to recover phase images through a pair of images along multiple axes. Recently, the half-circle based DPC using 12-axis measurements significantly provides a circularly symmetric phase transfer function to improve accuracy for more stable phase recovery. Instead of using half-circle-based DPC, we propose a new scheme of DPC under radially asymmetric illumination to achieve circularly symmetric phase transfer function and enhance the accuracy of phase recovery in a more stable and efficient fashion. We present the design, implementation, and experimental image data demonstrating the ability of our method to obtain quantitative phase images of microspheres, as well as live fibroblast cell samples.

  13. A method to extract quantitative information in analyzer-based x-ray phase contrast imaging

    International Nuclear Information System (INIS)

    Pagot, E.; Cloetens, P.; Fiedler, S.; Bravin, A.; Coan, P.; Baruchel, J.; Haertwig, J.; Thomlinson, W.

    2003-01-01

    Analyzer-based imaging is a powerful phase-sensitive technique that generates improved contrast compared to standard absorption radiography. Combining numerically two images taken on either side at ±1/2 of the full width at half-maximum (FWHM) of the rocking curve provides images of 'pure refraction' and of 'apparent absorption'. In this study, a similar approach is made by combining symmetrical images with respect to the peak of the analyzer rocking curve but at general positions, ±α·FWHM. These two approaches do not consider the ultrasmall angle scattering produced by the object independently, which can lead to inconsistent results. An accurate way to separately retrieve the quantitative information intrinsic to the object is proposed. It is based on a statistical analysis of the local rocking curve, and allows one to overcome the problems encountered using the previous approaches

  14. Hyperspectral Imaging and SPA-LDA Quantitative Analysis for Detection of Colon Cancer Tissue

    Science.gov (United States)

    Yuan, X.; Zhang, D.; Wang, Ch.; Dai, B.; Zhao, M.; Li, B.

    2018-05-01

    Hyperspectral imaging (HSI) has been demonstrated to provide a rapid, precise, and noninvasive method for cancer detection. However, because HSI contains many data, quantitative analysis is often necessary to distill information useful for distinguishing cancerous from normal tissue. To demonstrate that HSI with our proposed algorithm can make this distinction, we built a Vis-NIR HSI setup and made many spectral images of colon tissues, and then used a successive projection algorithm (SPA) to analyze the hyperspectral image data of the tissues. This was used to build an identification model based on linear discrimination analysis (LDA) using the relative reflectance values of the effective wavelengths. Other tissues were used as a prediction set to verify the reliability of the identification model. The results suggest that Vis-NIR hyperspectral images, together with the spectroscopic classification method, provide a new approach for reliable and safe diagnosis of colon cancer and could lead to advances in cancer diagnosis generally.

  15. The preliminary study of quantitative evaluation of salivary gland function by dynamic imaging

    International Nuclear Information System (INIS)

    Han Chunqi; Li Yaming; Li Deshun; Wang Guoli; Bai Jingming; Luo Xigui

    1999-01-01

    Objective: To evaluate the function of salivary gland by quantitative dynamic imaging. Methods: In thirty normals and twenty patients with Sjogren's syndrome (SS), absorption rate (15 min) and excretion rate (30 min) were calculated using two quantitative software. Results: Parotid and submandibular absorption rates in normal subjects were (0.26 +- 0.09)% and (0.15 +- 0.08)%, respectively; those of SS patients were (0.07 +- 0.03)% and (0.05 +- 0.04)%, t = 5.3 and 4.1, both were P < 0.01. There were markedly relativity between the two groups (r = 0.85). Conclusions: Quantitative methods of analyzing salivary function is simple, sensitive, practical reliable for evaluating salivary function and also has important clinical significance

  16. Diagnosis at a glance of biological non-Newtonian fluids with Film Interference Flow Imaging (FIFI)

    Science.gov (United States)

    Hidema, R.; Yamada, N.; Furukawa, H.

    2012-04-01

    In the human body, full of biological non-Newtonian fluids exist. For example, synovial fluids exist in our joints, which contain full of biopolymers, such as hyaluronan and mucin. It is thought that these polymers play critical roles on the smooth motion of the joint. Indeed, luck of biopolymers in synovial fluid cause joint pain. Here we study the effects of polymer in thin liquid layer by using an original experimental method called Film Interference Flow Imaging (FIFI). A vertically flowing soap film containing polymers is made as two-dimensional flow to observe turbulence. The thickness of water layer is about 4 μm sandwiched between surfactant mono-layers. The interference pattern of the soap film is linearly related to the flow velocity in the water layer through the change in the thickness of the film. Thus the flow velocity is possibly analyzed by the single image analysis of the interference pattern, that is, FIFI. The grid turbulence was made in the flowing soap films containing the long flexible polymer polyethyleneoxide (PEO, Mw=3.5x106), and rigid polymer hydroxypropyl cellulose (HPC, Mw > 1.0 x106). The decaying process of the turbulence is affected by PEO and HPC at several concentrations. The effects of PEO are sharply seen even at low concentrations, while the effects of HPC are gradually occurred at much higher concentration compared to the PEO. It is assumed that such a difference between PEO and HPC is due to the polymer stretching or polymer orientation under turbulence, which is observed and analyzed by FIFI. We believe the FIFI will be applied in the future to examine biological fluids such as synovial fluids quickly and quantitatively.

  17. Raman imaging from microscopy to macroscopy: Quality and safety control of biological materials

    Science.gov (United States)

    Raman imaging can analyze biological materials by generating detailed chemical images. Over the last decade, tremendous advancements in Raman imaging and data analysis techniques have overcome problems such as long data acquisition and analysis times and poor sensitivity. This review article introdu...

  18. Videodensitometric quantitative angiography after coronary balloon angioplasty, compared to edge-detection quantitative angiography and intracoronary ultrasound imaging

    NARCIS (Netherlands)

    Peters, R. J.; Kok, W. E.; Pasterkamp, G.; von Birgelen, C.; Prins, M. [=Martin H.; Serruys, P. W.

    2000-01-01

    AIMS: To assess the value of videodensitometric quantification of the coronary lumen after angioplasty by comparison to two other techniques of coronary artery lumen quantification. METHODS AND RESULTS: Videodensitometric quantitative angiography, edge detection quantitative angiography and 30 MHz

  19. A no-gold-standard technique for objective assessment of quantitative nuclear-medicine imaging methods.

    Science.gov (United States)

    Jha, Abhinav K; Caffo, Brian; Frey, Eric C

    2016-04-07

    The objective optimization and evaluation of nuclear-medicine quantitative imaging methods using patient data is highly desirable but often hindered by the lack of a gold standard. Previously, a regression-without-truth (RWT) approach has been proposed for evaluating quantitative imaging methods in the absence of a gold standard, but this approach implicitly assumes that bounds on the distribution of true values are known. Several quantitative imaging methods in nuclear-medicine imaging measure parameters where these bounds are not known, such as the activity concentration in an organ or the volume of a tumor. We extended upon the RWT approach to develop a no-gold-standard (NGS) technique for objectively evaluating such quantitative nuclear-medicine imaging methods with patient data in the absence of any ground truth. Using the parameters estimated with the NGS technique, a figure of merit, the noise-to-slope ratio (NSR), can be computed, which can rank the methods on the basis of precision. An issue with NGS evaluation techniques is the requirement of a large number of patient studies. To reduce this requirement, the proposed method explored the use of multiple quantitative measurements from the same patient, such as the activity concentration values from different organs in the same patient. The proposed technique was evaluated using rigorous numerical experiments and using data from realistic simulation studies. The numerical experiments demonstrated that the NSR was estimated accurately using the proposed NGS technique when the bounds on the distribution of true values were not precisely known, thus serving as a very reliable metric for ranking the methods on the basis of precision. In the realistic simulation study, the NGS technique was used to rank reconstruction methods for quantitative single-photon emission computed tomography (SPECT) based on their performance on the task of estimating the mean activity concentration within a known volume of interest

  20. A no-gold-standard technique for objective assessment of quantitative nuclear-medicine imaging methods

    International Nuclear Information System (INIS)

    Jha, Abhinav K; Frey, Eric C; Caffo, Brian

    2016-01-01

    The objective optimization and evaluation of nuclear-medicine quantitative imaging methods using patient data is highly desirable but often hindered by the lack of a gold standard. Previously, a regression-without-truth (RWT) approach has been proposed for evaluating quantitative imaging methods in the absence of a gold standard, but this approach implicitly assumes that bounds on the distribution of true values are known. Several quantitative imaging methods in nuclear-medicine imaging measure parameters where these bounds are not known, such as the activity concentration in an organ or the volume of a tumor. We extended upon the RWT approach to develop a no-gold-standard (NGS) technique for objectively evaluating such quantitative nuclear-medicine imaging methods with patient data in the absence of any ground truth. Using the parameters estimated with the NGS technique, a figure of merit, the noise-to-slope ratio (NSR), can be computed, which can rank the methods on the basis of precision. An issue with NGS evaluation techniques is the requirement of a large number of patient studies. To reduce this requirement, the proposed method explored the use of multiple quantitative measurements from the same patient, such as the activity concentration values from different organs in the same patient. The proposed technique was evaluated using rigorous numerical experiments and using data from realistic simulation studies. The numerical experiments demonstrated that the NSR was estimated accurately using the proposed NGS technique when the bounds on the distribution of true values were not precisely known, thus serving as a very reliable metric for ranking the methods on the basis of precision. In the realistic simulation study, the NGS technique was used to rank reconstruction methods for quantitative single-photon emission computed tomography (SPECT) based on their performance on the task of estimating the mean activity concentration within a known volume of interest

  1. Quantitative cone beam X-ray luminescence tomography/X-ray computed tomography imaging

    International Nuclear Information System (INIS)

    Chen, Dongmei; Zhu, Shouping; Chen, Xueli; Chao, Tiantian; Cao, Xu; Zhao, Fengjun; Huang, Liyu; Liang, Jimin

    2014-01-01

    X-ray luminescence tomography (XLT) is an imaging technology based on X-ray-excitable materials. The main purpose of this paper is to obtain quantitative luminescence concentration using the structural information of the X-ray computed tomography (XCT) in the hybrid cone beam XLT/XCT system. A multi-wavelength luminescence cone beam XLT method with the structural a priori information is presented to relieve the severe ill-posedness problem in the cone beam XLT. The nanophosphors and phantom experiments were undertaken to access the linear relationship of the system response. Then, an in vivo mouse experiment was conducted. The in vivo experimental results show that the recovered concentration error as low as 6.67% with the location error of 0.85 mm can be achieved. The results demonstrate that the proposed method can accurately recover the nanophosphor inclusion and realize the quantitative imaging

  2. The next generation of training for Arabidopsis researchers: bioinformatics and quantitative biology

    Science.gov (United States)

    It has been more than 50 years since Arabidopsis (Arabidopsis thaliana) was first introduced as a model organism to understand basic processes in plant biology. A well-organized scientific community has used this small reference plant species to make numerous fundamental plant biology discoveries (P...

  3. Evaluation of refractory temporal lobe epilepsy of nontumorous origin with qualitative and quantitative MR imaging

    International Nuclear Information System (INIS)

    Tanna, N.K.; Zimmerman, R.A.; Sperling, M.R.; Kohn, M.I.

    1990-01-01

    This paper reports that although MR imaging is superior to CT in the detection of focal lesions in refractory temporal lobe epilepsy (TLE), its role in the detection of mesial temporal sclerosis remains controversial. This is significant, as the latter represents a frequent cause of TLE and manifests with only subtle atrophic changes and occasional high signal abnormalities. PReoperative MR images of 47 patients who had undergone temporal lobectomy for nontumoral TLE and of 20 control subjects were valuated for focal atrophy and hippocampal high signal abnormalities. Quantitative measurements were performed in 33 patients and 20 control subjects with use of a new brain volumetric analysis program to determine volumes of temporal lobes

  4. Porosity determination on pyrocarbon by means of automatic quantitative image analysis

    Energy Technology Data Exchange (ETDEWEB)

    Koizlik, K.; Uhlenbruck, U.; Delle, W.; Hoven, H.; Nickel, H.

    1976-05-01

    For a long time, the quantitative image analysis is well known as a method for quantifying the results of material investigation basing on ceramography. The development of the automatic image analyzers has made it a fast and elegant procedure for evaluation. Since 1975, it is used in IRW to determine easily and routinely the macroporosity and by this the density of the pyrocarbon coatings of nuclear fuel particles. This report describes the definition of measuring parameters, the measuring procedure, the mathematical calculations, and first experimental and mathematical results.

  5. Recent technologic developments on high-resolution beta imaging systems for quantitative autoradiography and double labeling applications

    CERN Document Server

    Barthe, N; Chatti, K; Coulon, P; Maitrejean, S; 10.1016/j.nima.2004.03.014

    2004-01-01

    Two novel beta imaging systems, particularly interesting in the field of radiopharmacology and molecular biology research, were developed these last years. (1) a beta imager was derived from research conducted by Pr Charpak at CERN. This parallel plate avalanche chamber is a direct detection system of beta radioactivity, which is particularly adapted for qualitative and quantitative autoradiography. With this detector, autoradiographic techniques can be performed with emitters such as /sup 99m/Tc because this radionuclide emits many low-energy electrons and the detector has a very low sensitivity to low-range gamma -rays. Its sensitivity (smallest activity detected: 0.007 cpm/mm/sup 2/ for /sup 3/H and 0.01 for /sup 14/C), linearity (over a dynamic range of 10/sup 4/) and spatial resolution (50 mu m for /sup 3/H or /sup 99m/Tc to 150 mu m for /sup 32/P or /sup 18/F ( beta /sup +/)) gives a real interest to this system as a new imaging device. Its principle of detection is based on the analysis of light emitte...

  6. Preclinical Magnetic Resonance Fingerprinting (MRF) at 7 T: Effective Quantitative Imaging for Rodent Disease Models

    Science.gov (United States)

    Gao, Ying; Chen, Yong; Ma, Dan; Jiang, Yun; Herrmann, Kelsey A.; Vincent, Jason A.; Dell, Katherine M.; Drumm, Mitchell L.; Brady-Kalnay, Susann M.; Griswold, Mark A.; Flask, Chris A.; Lu, Lan

    2015-01-01

    High field, preclinical magnetic resonance imaging (MRI) scanners are now commonly used to quantitatively assess disease status and efficacy of novel therapies in a wide variety of rodent models. Unfortunately, conventional MRI methods are highly susceptible to respiratory and cardiac motion artifacts resulting in potentially inaccurate and misleading data. We have developed an initial preclinical, 7.0 T MRI implementation of the highly novel Magnetic Resonance Fingerprinting (MRF) methodology that has been previously described for clinical imaging applications. The MRF technology combines a priori variation in the MRI acquisition parameters with dictionary-based matching of acquired signal evolution profiles to simultaneously generate quantitative maps of T1 and T2 relaxation times and proton density. This preclinical MRF acquisition was constructed from a Fast Imaging with Steady-state Free Precession (FISP) MRI pulse sequence to acquire 600 MRF images with both evolving T1 and T2 weighting in approximately 30 minutes. This initial high field preclinical MRF investigation demonstrated reproducible and differentiated estimates of in vitro phantoms with different relaxation times. In vivo preclinical MRF results in mouse kidneys and brain tumor models demonstrated an inherent resistance to respiratory motion artifacts as well as sensitivity to known pathology. These results suggest that MRF methodology may offer the opportunity for quantification of numerous MRI parameters for a wide variety of preclinical imaging applications. PMID:25639694

  7. Comparative study of quantitative phase imaging techniques for refractometry of optical fibers

    Science.gov (United States)

    de Dorlodot, Bertrand; Bélanger, Erik; Bérubé, Jean-Philippe; Vallée, Réal; Marquet, Pierre

    2018-02-01

    The refractive index difference profile of optical fibers is the key design parameter because it determines, among other properties, the insertion losses and propagating modes. Therefore, an accurate refractive index profiling method is of paramount importance to their development and optimization. Quantitative phase imaging (QPI) is one of the available tools to retrieve structural characteristics of optical fibers, including the refractive index difference profile. Having the advantage of being non-destructive, several different QPI methods have been developed over the last decades. Here, we present a comparative study of three different available QPI techniques, namely the transport-of-intensity equation, quadriwave lateral shearing interferometry and digital holographic microscopy. To assess the accuracy and precision of those QPI techniques, quantitative phase images of the core of a well-characterized optical fiber have been retrieved for each of them and a robust image processing procedure has been applied in order to retrieve their refractive index difference profiles. As a result, even if the raw images for all the three QPI methods were suffering from different shortcomings, our robust automated image-processing pipeline successfully corrected these. After this treatment, all three QPI techniques yielded accurate, reliable and mutually consistent refractive index difference profiles in agreement with the accuracy and precision of the refracted near-field benchmark measurement.

  8. Using Non-Invasive Multi-Spectral Imaging to Quantitatively Assess Tissue Vasculature

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, A; Chernomordik, V; Riley, J; Hassan, M; Amyot, F; Dasgeb, B; Demos, S G; Pursley, R; Little, R; Yarchoan, R; Tao, Y; Gandjbakhche, A H

    2007-10-04

    This research describes a non-invasive, non-contact method used to quantitatively analyze the functional characteristics of tissue. Multi-spectral images collected at several near-infrared wavelengths are input into a mathematical optical skin model that considers the contributions from different analytes in the epidermis and dermis skin layers. Through a reconstruction algorithm, we can quantify the percent of blood in a given area of tissue and the fraction of that blood that is oxygenated. Imaging normal tissue confirms previously reported values for the percent of blood in tissue and the percent of blood that is oxygenated in tissue and surrounding vasculature, for the normal state and when ischemia is induced. This methodology has been applied to assess vascular Kaposi's sarcoma lesions and the surrounding tissue before and during experimental therapies. The multi-spectral imaging technique has been combined with laser Doppler imaging to gain additional information. Results indicate that these techniques are able to provide quantitative and functional information about tissue changes during experimental drug therapy and investigate progression of disease before changes are visibly apparent, suggesting a potential for them to be used as complementary imaging techniques to clinical assessment.

  9. Hyperspectral and differential CARS microscopy for quantitative chemical imaging in human adipocytes

    Science.gov (United States)

    Di Napoli, Claudia; Pope, Iestyn; Masia, Francesco; Watson, Peter; Langbein, Wolfgang; Borri, Paola

    2014-01-01

    In this work, we demonstrate the applicability of coherent anti-Stokes Raman scattering (CARS) micro-spectroscopy for quantitative chemical imaging of saturated and unsaturated lipids in human stem-cell derived adipocytes. We compare dual-frequency/differential CARS (D-CARS), which enables rapid imaging and simple data analysis, with broadband hyperspectral CARS microscopy analyzed using an unsupervised phase-retrieval and factorization method recently developed by us for quantitative chemical image analysis. Measurements were taken in the vibrational fingerprint region (1200–2000/cm) and in the CH stretch region (2600–3300/cm) using a home-built CARS set-up which enables hyperspectral imaging with 10/cm resolution via spectral focussing from a single broadband 5 fs Ti:Sa laser source. Through a ratiometric analysis, both D-CARS and phase-retrieved hyperspectral CARS determine the concentration of unsaturated lipids with comparable accuracy in the fingerprint region, while in the CH stretch region D-CARS provides only a qualitative contrast owing to its non-linear behavior. When analyzing hyperspectral CARS images using the blind factorization into susceptibilities and concentrations of chemical components recently demonstrated by us, we are able to determine vol:vol concentrations of different lipid components and spatially resolve inhomogeneities in lipid composition with superior accuracy compared to state-of-the art ratiometric methods. PMID:24877002

  10. Quantitative imaging of the human upper airway: instrument design and clinical studies

    Science.gov (United States)

    Leigh, M. S.; Armstrong, J. J.; Paduch, A.; Sampson, D. D.; Walsh, J. H.; Hillman, D. R.; Eastwood, P. R.

    2006-08-01

    Imaging of the human upper airway is widely used in medicine, in both clinical practice and research. Common imaging modalities include video endoscopy, X-ray CT, and MRI. However, no current modality is both quantitative and safe to use for extended periods of time. Such a capability would be particularly valuable for sleep research, which is inherently reliant on long observation sessions. We have developed an instrument capable of quantitative imaging of the human upper airway, based on endoscopic optical coherence tomography. There are no dose limits for optical techniques, and the minimally invasive imaging probe is safe for use in overnight studies. We report on the design of the instrument and its use in preliminary clinical studies, and we present results from a range of initial experiments. The experiments show that the instrument is capable of imaging during sleep, and that it can record dynamic changes in airway size and shape. This information is useful for research into sleep disorders, and potentially for clinical diagnosis and therapies.

  11. Quantitative Evaluation of Scintillation Camera Imaging Characteristics of Isotopes Used in Liver Radioembolization

    Science.gov (United States)

    Elschot, Mattijs; Nijsen, Johannes Franciscus Wilhelmus; Dam, Alida Johanna; de Jong, Hugo Wilhelmus Antonius Maria

    2011-01-01

    Background Scintillation camera imaging is used for treatment planning and post-treatment dosimetry in liver radioembolization (RE). In yttrium-90 (90Y) RE, scintigraphic images of technetium-99m (99mTc) are used for treatment planning, while 90Y Bremsstrahlung images are used for post-treatment dosimetry. In holmium-166 (166Ho) RE, scintigraphic images of 166Ho can be used for both treatment planning and post-treatment dosimetry. The aim of this study is to quantitatively evaluate and compare the imaging characteristics of these three isotopes, in order that imaging protocols can be optimized and RE studies with varying isotopes can be compared. Methodology/Principal Findings Phantom experiments were performed in line with NEMA guidelines to assess the spatial resolution, sensitivity, count rate linearity, and contrast recovery of 99mTc, 90Y and 166Ho. In addition, Monte Carlo simulations were performed to obtain detailed information about the history of detected photons. The results showed that the use of a broad energy window and the high-energy collimator gave optimal combination of sensitivity, spatial resolution, and primary photon fraction for 90Y Bremsstrahlung imaging, although differences with the medium-energy collimator were small. For 166Ho, the high-energy collimator also slightly outperformed the medium-energy collimator. In comparison with 99mTc, the image quality of both 90Y and 166Ho is degraded by a lower spatial resolution, a lower sensitivity, and larger scatter and collimator penetration fractions. Conclusions/Significance The quantitative evaluation of the scintillation camera characteristics presented in this study helps to optimize acquisition parameters and supports future analysis of clinical comparisons between RE studies. PMID:22073149

  12. Exploring a new quantitative image marker to assess benefit of chemotherapy to ovarian cancer patients

    Science.gov (United States)

    Mirniaharikandehei, Seyedehnafiseh; Patil, Omkar; Aghaei, Faranak; Wang, Yunzhi; Zheng, Bin

    2017-03-01

    Accurately assessing the potential benefit of chemotherapy to cancer patients is an important prerequisite to developing precision medicine in cancer treatment. The previous study has shown that total psoas area (TPA) measured on preoperative cross-section CT image might be a good image marker to predict long-term outcome of pancreatic cancer patients after surgery. However, accurate and automated segmentation of TPA from the CT image is difficult due to the fuzzy boundary or connection of TPA to other muscle areas. In this study, we developed a new interactive computer-aided detection (ICAD) scheme aiming to segment TPA from the abdominal CT images more accurately and assess the feasibility of using this new quantitative image marker to predict the benefit of ovarian cancer patients receiving Bevacizumab-based chemotherapy. ICAD scheme was applied to identify a CT image slice of interest, which is located at the level of L3 (vertebral spines). The cross-sections of the right and left TPA are segmented using a set of adaptively adjusted boundary conditions. TPA is then quantitatively measured. In addition, recent studies have investigated that muscle radiation attenuation which reflects fat deposition in the tissue might be a good image feature for predicting the survival rate of cancer patients. The scheme and TPA measurement task were applied to a large national clinical trial database involving 1,247 ovarian cancer patients. By comparing with manual segmentation results, we found that ICAD scheme could yield higher accuracy and consistency for this task. Using a new ICAD scheme can provide clinical researchers a useful tool to more efficiently and accurately extract TPA as well as muscle radiation attenuation as new image makers, and allow them to investigate the discriminatory power of it to predict progression-free survival and/or overall survival of the cancer patients before and after taking chemotherapy.

  13. Nuclear physics and biology

    International Nuclear Information System (INIS)

    Valentin, L.

    1994-01-01

    This paper is about nuclear instrumentation and biological concepts, based on images from appropriate Β detectors. First, three detectors are described: the SOFI detector, for gene mapping, the SOFAS detector, for DNA sequencing and the RIHR detector, for in situ hybridization. Then, the paper presents quantitative imaging in molecular genetic and functional imaging. (TEC)

  14. A unified material decomposition framework for quantitative dual- and triple-energy CT imaging.

    Science.gov (United States)

    Zhao, Wei; Vernekohl, Don; Han, Fei; Han, Bin; Peng, Hao; Yang, Yong; Xing, Lei; Min, James K

    2018-04-21

    Many clinical applications depend critically on the accurate differentiation and classi-fication of different types of materials in patient anatomy. This work introduces a unified framework for accurate nonlinear material decomposition and applies it, for the first time, in the concept of triple-energy CT (TECT) for enhanced material differentiation and classification as well as dual-energy CT METHODS: We express polychromatic projection into a linear combination of line integrals of material-selective images. The material decomposition is then turned into a problem of minimizing the least-squares difference between measured and estimated CT projections. The optimization problem is solved iteratively by updating the line integrals. The proposed technique is evaluated by using several numerical phantom measurements under different scanning protocols The triple-energy data acquisition is implemented at the scales of micro-CT and clinical CT imaging with commercial "TwinBeam" dual-source DECT configuration and a fast kV switching DECT configu-ration. Material decomposition and quantitative comparison with a photon counting detector and with the presence of a bow-tie filter are also performed. The proposed method provides quantitative material- and energy-selective images exam-ining realistic configurations for both dual- and triple-energy CT measurements. Compared to the polychromatic kV CT images, virtual monochromatic images show superior image quality. For the mouse phantom, quantitative measurements show that the differences between gadodiamide and iodine concentrations obtained using TECT and idealized photon counting CT (PCCT) are smaller than 8 mg/mL and 1 mg/mL, respectively. TECT outperforms DECT for multi-contrast CT imag-ing and is robust with respect to spectrum estimation. For the thorax phantom, the differences between the concentrations of the contrast map and the corresponding true reference values are smaller than 7 mg/mL for all of the realistic

  15. Quantitative ultrasound imaging detects degenerative changes in articular cartilage surface and subchondral bone

    International Nuclear Information System (INIS)

    Saarakkala, Simo; Laasanen, Mikko S; Jurvelin, Jukka S; Toeyraes, Juha

    2006-01-01

    Previous studies have suggested that quantitative ultrasound imaging could sensitively diagnose degeneration of the articular surface and changes in the subchondral bone during the development of osteoarthrosis (OA). We have recently introduced a new parameter, ultrasound roughness index (URI), for the quantification of cartilage surface roughness, and successfully tested it with normal and experimentally degraded articular surfaces. In this in vitro study, the applicability of URI was tested in bovine cartilage samples with spontaneously developed tissue degeneration. Simultaneously, we studied the sensitivity of quantitative ultrasound imaging to detect degenerative changes in the cartilage-bone interface. For reference, histological degenerative grade of the cartilage samples was determined. Mechanical reference measurements were also conducted. Cartilage surface roughness (URI) was significantly (p < 0.05) higher in histologically degenerated samples with inferior mechanical properties. Ultrasound reflection at the cartilage-bone interface was also significantly (p < 0.05) increased in degenerated samples. Furthermore, it was quantitatively confirmed that ultrasound attenuation in the overlying cartilage significantly affects the measured ultrasound reflection values from the cartilage-bone interface. To conclude, the combined ultrasound measurement of the cartilage surface roughness and ultrasound reflection at the cartilage-bone interface complement each other, and may together enable more sensitive and quantitative diagnosis of early OA or follow up after surgical cartilage repair

  16. Quantitative thallium-201 myocardial imaging in assessing right ventricular pressure in patients with congenital heart defects

    International Nuclear Information System (INIS)

    Rabinovitch, M.; Fischer, K.C.; Treves, S.

    1981-01-01

    Thallium-201 myocardial scintigraphy was performed in patients with congenital heart defects to determine whether, by quantification of right ventricular isotope uptake, one could assess the degree of right ventricular hypertrophy and so predict the level of right ventricular pressure. It is shown that quantitative analysis of myocardial imaging with thallium-201 is of use clinically in patients with congenital heart defects, in assessing the severity of pulmonary stenosis or the presence of pulmonary artery hypertension. (author)

  17. The Use of Quantitative SPECT/CT Imaging to Assess Residual Limb Health

    Science.gov (United States)

    2017-10-01

    of secondary health ef- fects following traumatic extremity injuries places a significant physical and psychosocial burden on SMs with LL and LS...been reported as the most important health -related physical condition con- tributing to a reduced QoL among veterans who had sustained a traumatic...AWARD NUMBER: W81XWH-15-1-0669 TITLE: The Use of Quantitative SPECT/CT Imaging to Assess Residual Limb Health PRINCIPAL INVESTIGATOR

  18. Quantitative Phase Imaging Techniques for the Study of Cell Pathophysiology: From Principles to Applications

    Directory of Open Access Journals (Sweden)

    Hyunjoo Park

    2013-03-01

    Full Text Available A cellular-level study of the pathophysiology is crucial for understanding the mechanisms behind human diseases. Recent advances in quantitative phase imaging (QPI techniques show promises for the cellular-level understanding of the pathophysiology of diseases. To provide important insight on how the QPI techniques potentially improve the study of cell pathophysiology, here we present the principles of QPI and highlight some of the recent applications of QPI ranging from cell homeostasis to infectious diseases and cancer.

  19. Quantitative shear wave imaging optical coherence tomography for noncontact mechanical characterization of myocardium

    Science.gov (United States)

    Wang, Shang; Lopez, Andrew L.; Morikawa, Yuka; Tao, Ge; Li, Jiasong; Larina, Irina V.; Martin, James F.; Larin, Kirill V.

    2015-03-01

    Optical coherence elastography (OCE) is an emerging low-coherence imaging technique that provides noninvasive assessment of tissue biomechanics with high spatial resolution. Among various OCE methods, the capability of quantitative measurement of tissue elasticity is of great importance for tissue characterization and pathology detection across different samples. Here we report a quantitative OCE technique, termed quantitative shear wave imaging optical coherence tomography (Q-SWI-OCT), which enables noncontact measurement of tissue Young's modulus based on the ultra-fast imaging of the shear wave propagation inside the sample. A focused air-puff device is used to interrogate the tissue with a low-pressure short-duration air stream that stimulates a localized displacement with the scale at micron level. The propagation of this tissue deformation in the form of shear wave is captured by a phase-sensitive OCT system running with the scan of the M-mode imaging over the path of the wave propagation. The temporal characteristics of the shear wave is quantified based on the cross-correlation of the tissue deformation profiles at all the measurement locations, and linear regression is utilized to fit the data plotted in the domain of time delay versus wave propagation distance. The wave group velocity is thus calculated, which results in the quantitative measurement of the Young's modulus. As the feasibility demonstration, experiments are performed on tissuemimicking phantoms with different agar concentrations and the quantified elasticity values with Q-SWI-OCT agree well with the uniaxial compression tests. For functional characterization of myocardium with this OCE technique, we perform our pilot experiments on ex vivo mouse cardiac muscle tissues with two studies, including 1) elasticity difference of cardiac muscle under relaxation and contract conditions and 2) mechanical heterogeneity of the heart introduced by the muscle fiber orientation. Our results suggest the

  20. Serial quantitative MR assessment of optic neuritis in a case of neuromyelitis optica, using gadolinium-'enhanced' STIR imaging

    International Nuclear Information System (INIS)

    Barkhof, F.; Scheltens, P.; Valk, J.; Waalewijn, C.; Uitdehaag, B.M.J.; Polman, C.H.

    1991-01-01

    A patient is presented with neuromyelitis optica. MR imaging, using a short inversion time inversion recovery (STIR) technique, clearly depicted the lesion in the left optic nerve. Subsequent serial STIR imaging, with and without Gadolinium-DTPA, allowed quantitative assessment of changes parallel to improved optic nerve function. STIR imaging is a sensitive technique to demonstrate optic nerve lesions, and enables quantitative assessment to be made of the effect of (steroid) medication. (orig.)

  1. Label-free cell-cycle analysis by high-throughput quantitative phase time-stretch imaging flow cytometry

    Science.gov (United States)

    Mok, Aaron T. Y.; Lee, Kelvin C. M.; Wong, Kenneth K. Y.; Tsia, Kevin K.

    2018-02-01

    Biophysical properties of cells could complement and correlate biochemical markers to characterize a multitude of cellular states. Changes in cell size, dry mass and subcellular morphology, for instance, are relevant to cell-cycle progression which is prevalently evaluated by DNA-targeted fluorescence measurements. Quantitative-phase microscopy (QPM) is among the effective biophysical phenotyping tools that can quantify cell sizes and sub-cellular dry mass density distribution of single cells at high spatial resolution. However, limited camera frame rate and thus imaging throughput makes QPM incompatible with high-throughput flow cytometry - a gold standard in multiparametric cell-based assay. Here we present a high-throughput approach for label-free analysis of cell cycle based on quantitative-phase time-stretch imaging flow cytometry at a throughput of > 10,000 cells/s. Our time-stretch QPM system enables sub-cellular resolution even at high speed, allowing us to extract a multitude (at least 24) of single-cell biophysical phenotypes (from both amplitude and phase images). Those phenotypes can be combined to track cell-cycle progression based on a t-distributed stochastic neighbor embedding (t-SNE) algorithm. Using multivariate analysis of variance (MANOVA) discriminant analysis, cell-cycle phases can also be predicted label-free with high accuracy at >90% in G1 and G2 phase, and >80% in S phase. We anticipate that high throughput label-free cell cycle characterization could open new approaches for large-scale single-cell analysis, bringing new mechanistic insights into complex biological processes including diseases pathogenesis.

  2. Development of a quantitative assessment method of pigmentary skin disease using ultraviolet optical imaging.

    Science.gov (United States)

    Lee, Onseok; Park, Sunup; Kim, Jaeyoung; Oh, Chilhwan

    2017-11-01

    The visual scoring method has been used as a subjective evaluation of pigmentary skin disorders. Severity of pigmentary skin disease, especially melasma, is evaluated using a visual scoring method, the MASI (melasma area severity index). This study differentiates between epidermal and dermal pigmented disease. The study was undertaken to determine methods to quantitatively measure the severity of pigmentary skin disorders under ultraviolet illumination. The optical imaging system consists of illumination (white LED, UV-A lamp) and image acquisition (DSLR camera, air cooling CMOS CCD camera). Each camera is equipped with a polarizing filter to remove glare. To analyze images of visible and UV light, images are divided into frontal, cheek, and chin regions of melasma patients. Each image must undergo image processing. To reduce the curvature error in facial contours, a gradient mask is used. The new method of segmentation of front and lateral facial images is more objective for face-area-measurement than the MASI score. Image analysis of darkness and homogeneity is adequate to quantify the conventional MASI score. Under visible light, active lesion margins appear in both epidermal and dermal melanin, whereas melanin is found in the epidermis under UV light. This study objectively analyzes severity of melasma and attempts to develop new methods of image analysis with ultraviolet optical imaging equipment. Based on the results of this study, our optical imaging system could be used as a valuable tool to assess the severity of pigmentary skin disease. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Automatic Gleason grading of prostate cancer using quantitative phase imaging and machine learning

    Science.gov (United States)

    Nguyen, Tan H.; Sridharan, Shamira; Macias, Virgilia; Kajdacsy-Balla, Andre; Melamed, Jonathan; Do, Minh N.; Popescu, Gabriel

    2017-03-01

    We present an approach for automatic diagnosis of tissue biopsies. Our methodology consists of a quantitative phase imaging tissue scanner and machine learning algorithms to process these data. We illustrate the performance by automatic Gleason grading of prostate specimens. The imaging system operates on the principle of interferometry and, as a result, reports on the nanoscale architecture of the unlabeled specimen. We use these data to train a random forest classifier to learn textural behaviors of prostate samples and classify each pixel in the image into different classes. Automatic diagnosis results were computed from the segmented regions. By combining morphological features with quantitative information from the glands and stroma, logistic regression was used to discriminate regions with Gleason grade 3 versus grade 4 cancer in prostatectomy tissue. The overall accuracy of this classification derived from a receiver operating curve was 82%, which is in the range of human error when interobserver variability is considered. We anticipate that our approach will provide a clinically objective and quantitative metric for Gleason grading, allowing us to corroborate results across instruments and laboratories and feed the computer algorithms for improved accuracy.

  4. Probing the potential of neutron imaging for biomedical and biological applications

    International Nuclear Information System (INIS)

    Watkin, Kenneth L.; Bilheux, Hassina Z.; Ankner, John Francis

    2009-01-01

    Neutron imaging of biological specimens began soon after the discovery of the neutron by Chadwick in 1932. The first samples included tumors in tissues, internal organs in rats, and bones. These studies mainly employed thermal neutrons and were often compared with X-ray images of the same or equivalent samples. Although neutron scattering is widely used in biological studies, neutron imaging has yet to be exploited to its full capability in this area. This chapter summarizes past and current research efforts to apply neutron radiography to the study of biological specimens, in the expectation that clinical and medical research, as well as forensic science, may benefit from it.

  5. Automated, feature-based image alignment for high-resolution imaging mass spectrometry of large biological samples

    NARCIS (Netherlands)

    Broersen, A.; Liere, van R.; Altelaar, A.F.M.; Heeren, R.M.A.; McDonnell, L.A.

    2008-01-01

    High-resolution imaging mass spectrometry of large biological samples is the goal of several research groups. In mosaic imaging, the most common method, the large sample is divided into a mosaic of small areas that are then analyzed with high resolution. Here we present an automated alignment

  6. Comparison of quantitative myocardial perfusion imaging CT to fluorescent microsphere-based flow from high-resolution cryo-images

    Science.gov (United States)

    Eck, Brendan L.; Fahmi, Rachid; Levi, Jacob; Fares, Anas; Wu, Hao; Li, Yuemeng; Vembar, Mani; Dhanantwari, Amar; Bezerra, Hiram G.; Wilson, David L.

    2016-03-01

    Myocardial perfusion imaging using CT (MPI-CT) has the potential to provide quantitative measures of myocardial blood flow (MBF) which can aid the diagnosis of coronary artery disease. We evaluated the quantitative accuracy of MPI-CT in a porcine model of balloon-induced LAD coronary artery ischemia guided by fractional flow reserve (FFR). We quantified MBF at baseline (FFR=1.0) and under moderate ischemia (FFR=0.7) using MPI-CT and compared to fluorescent microsphere-based MBF from high-resolution cryo-images. Dynamic, contrast-enhanced CT images were obtained using a spectral detector CT (Philips Healthcare). Projection-based mono-energetic images were reconstructed and processed to obtain MBF. Three MBF quantification approaches were evaluated: singular value decomposition (SVD) with fixed Tikhonov regularization (ThSVD), SVD with regularization determined by the L-Curve criterion (LSVD), and Johnson-Wilson parameter estimation (JW). The three approaches over-estimated MBF compared to cryo-images. JW produced the most accurate MBF, with average error 33.3+/-19.2mL/min/100g, whereas LSVD and ThSVD had greater over-estimation, 59.5+/-28.3mL/min/100g and 78.3+/-25.6 mL/min/100g, respectively. Relative blood flow as assessed by a flow ratio of LAD-to-remote myocardium was strongly correlated between JW and cryo-imaging, with R2=0.97, compared to R2=0.88 and 0.78 for LSVD and ThSVD, respectively. We assessed tissue impulse response functions (IRFs) from each approach for sources of error. While JW was constrained to physiologic solutions, both LSVD and ThSVD produced IRFs with non-physiologic properties due to noise. The L-curve provided noise-adaptive regularization but did not eliminate non-physiologic IRF properties or optimize for MBF accuracy. These findings suggest that model-based MPI-CT approaches may be more appropriate for quantitative MBF estimation and that cryo-imaging can support the development of MPI-CT by providing spatial distributions of MBF.

  7. Quantitative, high-resolution proteomics for data-driven systems biology

    DEFF Research Database (Denmark)

    Cox, J.; Mann, M.

    2011-01-01

    Systems biology requires comprehensive data at all molecular levels. Mass spectrometry (MS)-based proteomics has emerged as a powerful and universal method for the global measurement of proteins. In the most widespread format, it uses liquid chromatography (LC) coupled to high-resolution tandem...... primary structure of proteins including posttranslational modifications, to localize proteins to organelles, and to determine protein interactions. Here, we describe the principles of analysis and the areas of biology where proteomics can make unique contributions. The large-scale nature of proteomics...... data and its high accuracy pose special opportunities as well as challenges in systems biology that have been largely untapped so far....

  8. Calculus, Biology and Medicine: A Case Study in Quantitative Literacy for Science Students

    Directory of Open Access Journals (Sweden)

    Kim Rheinlander

    2011-01-01

    Full Text Available This paper describes a course designed to enhance the numeracy of biology and pre-medical students. The course introduces students with the background of one semester of calculus to systems of nonlinear ordinary differential equations as they appear in the mathematical biology literature. Evaluation of the course showed increased enjoyment and confidence in doing mathematics, and an increased appreciation of the utility of mathematics to science. Students who complete this course are better able to read the research literature in mathematical biology and carry out research problems of their own.

  9. Diffusion tensor imaging with quantitative evaluation and fiber tractography of lumbar nerve roots in sciatica

    International Nuclear Information System (INIS)

    Shi, Yin; Zong, Min; Xu, Xiaoquan; Zou, Yuefen; Feng, Yang; Liu, Wei; Wang, Chuanbing; Wang, Dehang

    2015-01-01

    Highlights: •In the present study, we first elected ROIs corresponding to the proximal, medial, and distal levels of the lumbar foraminal zone. •The ROC analysis for FA values of distal nerves indicated a high level of reliability in the diagnosis of sciatica. •The declining trend of FA values from proximal to distal along the nerve tract may correlate with the disparity of axonal regeneration at different levels. •DTI is able to quantitatively evaluate compressed nerve roots and has a higher sensitivity and specificity for diagnosing sciatica than conventional MR imaging. •DTT enables visualization of abnormal nerve tracts, providing vivid anatomic information and probable localization of nerve compression. -- Abstract: Objective: To quantitatively evaluate nerve roots by measuring fractional anisotropy (FA) values in healthy volunteers and sciatica patients, visualize nerve roots by tractography, and compare the diagnostic efficacy between conventional magnetic resonance imaging (MRI) and DTI. Materials and methods: Seventy-five sciatica patients and thirty-six healthy volunteers underwent MR imaging using DTI. FA values for L5–S1 lumbar nerve roots were calculated at three levels from DTI images. Tractography was performed on L3–S1 nerve roots. ROC analysis was performed for FA values. Results: The lumbar nerve roots were visualized and FA values were calculated in all subjects. FA values decreased in compressed nerve roots and declined from proximal to distal along the compressed nerve tracts. Mean FA values were more sensitive and specific than MR imaging for differentiating compressed nerve roots, especially in the far lateral zone at distal nerves. Conclusions: DTI can quantitatively evaluate compressed nerve roots, and DTT enables visualization of abnormal nerve tracts, providing vivid anatomic information and localization of probable nerve compression. DTI has great potential utility for evaluating lumbar nerve compression in sciatica

  10. Diffusion tensor imaging with quantitative evaluation and fiber tractography of lumbar nerve roots in sciatica

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yin; Zong, Min; Xu, Xiaoquan; Zou, Yuefen; Feng, Yang; Liu, Wei; Wang, Chuanbing; Wang, Dehang, E-mail: njmu_wangdehang@126.com

    2015-04-15

    Highlights: •In the present study, we first elected ROIs corresponding to the proximal, medial, and distal levels of the lumbar foraminal zone. •The ROC analysis for FA values of distal nerves indicated a high level of reliability in the diagnosis of sciatica. •The declining trend of FA values from proximal to distal along the nerve tract may correlate with the disparity of axonal regeneration at different levels. •DTI is able to quantitatively evaluate compressed nerve roots and has a higher sensitivity and specificity for diagnosing sciatica than conventional MR imaging. •DTT enables visualization of abnormal nerve tracts, providing vivid anatomic information and probable localization of nerve compression. -- Abstract: Objective: To quantitatively evaluate nerve roots by measuring fractional anisotropy (FA) values in healthy volunteers and sciatica patients, visualize nerve roots by tractography, and compare the diagnostic efficacy between conventional magnetic resonance imaging (MRI) and DTI. Materials and methods: Seventy-five sciatica patients and thirty-six healthy volunteers underwent MR imaging using DTI. FA values for L5–S1 lumbar nerve roots were calculated at three levels from DTI images. Tractography was performed on L3–S1 nerve roots. ROC analysis was performed for FA values. Results: The lumbar nerve roots were visualized and FA values were calculated in all subjects. FA values decreased in compressed nerve roots and declined from proximal to distal along the compressed nerve tracts. Mean FA values were more sensitive and specific than MR imaging for differentiating compressed nerve roots, especially in the far lateral zone at distal nerves. Conclusions: DTI can quantitatively evaluate compressed nerve roots, and DTT enables visualization of abnormal nerve tracts, providing vivid anatomic information and localization of probable nerve compression. DTI has great potential utility for evaluating lumbar nerve compression in sciatica.

  11. MRI technique for the snapshot imaging of quantitative velocity maps using RARE

    Science.gov (United States)

    Shiko, G.; Sederman, A. J.; Gladden, L. F.

    2012-03-01

    A quantitative PGSE-RARE pulse sequence was developed and successfully applied to the in situ dissolution of two pharmaceutical formulations dissolving over a range of timescales. The new technique was chosen over other existing fast velocity imaging techniques because it is T2 weighted, not T2∗ weighted, and is, therefore, robust for imaging time-varying interfaces and flow in magnetically heterogeneous systems. The complex signal was preserved intact by separating odd and even echoes to obtain two phase maps which are then averaged in post-processing. Initially, the validity of the technique was shown when imaging laminar flow in a pipe. Subsequently, the dissolution of two drugs was followed in situ, where the technique enables the imaging and quantification of changes in the form of the tablet and the flow field surrounding it at high spatial and temporal resolution. First, the complete 3D velocity field around an eroding salicylic acid tablet was acquired at a resolution of 98 × 49 μm2, within 20 min, and monitored over ˜13 h. The tablet was observed to experience a heterogeneous flow field and, hence a heterogeneous shear field, which resulted in the non-symmetric erosion of the tablet. Second, the dissolution of a fast dissolving immediate release tablet was followed using one-shot 2D velocity images acquired every 5.2 s at a resolution of 390 × 390 μm2. The quantitative nature of the technique and fast acquisition times provided invaluable information on the dissolution behaviour of this tablet, which had not been attainable previously with conventional quantitative MRI techniques.

  12. MRI technique for the snapshot imaging of quantitative velocity maps using RARE.

    Science.gov (United States)

    Shiko, G; Sederman, A J; Gladden, L F

    2012-03-01

    A quantitative PGSE-RARE pulse sequence was developed and successfully applied to the in situ dissolution of two pharmaceutical formulations dissolving over a range of timescales. The new technique was chosen over other existing fast velocity imaging techniques because it is T(2) weighted, not T(2)(∗) weighted, and is, therefore, robust for imaging time-varying interfaces and flow in magnetically heterogeneous systems. The complex signal was preserved intact by separating odd and even echoes to obtain two phase maps which are then averaged in post-processing. Initially, the validity of the technique was shown when imaging laminar flow in a pipe. Subsequently, the dissolution of two drugs was followed in situ, where the technique enables the imaging and quantification of changes in the form of the tablet and the flow field surrounding it at high spatial and temporal resolution. First, the complete 3D velocity field around an eroding salicylic acid tablet was acquired at a resolution of 98×49 μm(2), within 20 min, and monitored over ∼13 h. The tablet was observed to experience a heterogeneous flow field and, hence a heterogeneous shear field, which resulted in the non-symmetric erosion of the tablet. Second, the dissolution of a fast dissolving immediate release tablet was followed using one-shot 2D velocity images acquired every 5.2 s at a resolution of 390×390 μm(2). The quantitative nature of the technique and fast acquisition times provided invaluable information on the dissolution behaviour of this tablet, which had not been attainable previously with conventional quantitative MRI techniques. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Segmentation-based retrospective shading correction in fluorescence microscopy E. coli images for quantitative analysis

    Science.gov (United States)

    Mai, Fei; Chang, Chunqi; Liu, Wenqing; Xu, Weichao; Hung, Yeung S.

    2009-10-01

    Due to the inherent imperfections in the imaging process, fluorescence microscopy images often suffer from spurious intensity variations, which is usually referred to as intensity inhomogeneity, intensity non uniformity, shading or bias field. In this paper, a retrospective shading correction method for fluorescence microscopy Escherichia coli (E. Coli) images is proposed based on segmentation result. Segmentation and shading correction are coupled together, so we iteratively correct the shading effects based on segmentation result and refine the segmentation by segmenting the image after shading correction. A fluorescence microscopy E. Coli image can be segmented (based on its intensity value) into two classes: the background and the cells, where the intensity variation within each class is close to zero if there is no shading. Therefore, we make use of this characteristics to correct the shading in each iteration. Shading is mathematically modeled as a multiplicative component and an additive noise component. The additive component is removed by a denoising process, and the multiplicative component is estimated using a fast algorithm to minimize the intra-class intensity variation. We tested our method on synthetic images and real fluorescence E.coli images. It works well not only for visual inspection, but also for numerical evaluation. Our proposed method should be useful for further quantitative analysis especially for protein expression value comparison.

  14. Deep Learning Automates the Quantitative Analysis of Individual Cells in Live-Cell Imaging Experiments.

    Science.gov (United States)

    Van Valen, David A; Kudo, Takamasa; Lane, Keara M; Macklin, Derek N; Quach, Nicolas T; DeFelice, Mialy M; Maayan, Inbal; Tanouchi, Yu; Ashley, Euan A; Covert, Markus W

    2016-11-01

    Live-cell imaging has opened an exciting window into the role cellular heterogeneity plays in dynamic, living systems. A major critical challenge for this class of experiments is the problem of image segmentation, or determining which parts of a microscope image correspond to which individual cells. Current approaches require many hours of manual curation and depend on approaches that are difficult to share between labs. They are also unable to robustly segment the cytoplasms of mammalian cells. Here, we show that deep convolutional neural networks, a supervised machine learning method, can solve this challenge for multiple cell types across the domains of life. We demonstrate that this approach can robustly segment fluorescent images of cell nuclei as well as phase images of the cytoplasms of individual bacterial and mammalian cells from phase contrast images without the need for a fluorescent cytoplasmic marker. These networks also enable the simultaneous segmentation and identification of different mammalian cell types grown in co-culture. A quantitative comparison with prior methods demonstrates that convolutional neural networks have improved accuracy and lead to a significant reduction in curation time. We relay our experience in designing and optimizing deep convolutional neural networks for this task and outline several design rules that we found led to robust performance. We conclude that deep convolutional neural networks are an accurate method that require less curation time, are generalizable to a multiplicity of cell types, from bacteria to mammalian cells, and expand live-cell imaging capabilities to include multi-cell type systems.

  15. Deriving Quantitative Crystallographic Information from the Wavelength-Resolved Neutron Transmission Analysis Performed in Imaging Mode

    Directory of Open Access Journals (Sweden)

    Hirotaka Sato

    2017-12-01

    Full Text Available Current status of Bragg-edge/dip neutron transmission analysis/imaging methods is presented. The method can visualize real-space distributions of bulk crystallographic information in a crystalline material over a large area (~10 cm with high spatial resolution (~100 μm. Furthermore, by using suitable spectrum analysis methods for wavelength-dependent neutron transmission data, quantitative visualization of the crystallographic information can be achieved. For example, crystallographic texture imaging, crystallite size imaging and crystalline phase imaging with texture/extinction corrections are carried out by the Rietveld-type (wide wavelength bandwidth profile fitting analysis code, RITS (Rietveld Imaging of Transmission Spectra. By using the single Bragg-edge analysis mode of RITS, evaluations of crystal lattice plane spacing (d-spacing relating to macro-strain and d-spacing distribution’s FWHM (full width at half maximum relating to micro-strain can be achieved. Macro-strain tomography is performed by a new conceptual CT (computed tomography image reconstruction algorithm, the tensor CT method. Crystalline grains and their orientations are visualized by a fast determination method of grain orientation for Bragg-dip neutron transmission spectrum. In this paper, these imaging examples with the spectrum analysis methods and the reliabilities evaluated by optical/electron microscope and X-ray/neutron diffraction, are presented. In addition, the status at compact accelerator driven pulsed neutron sources is also presented.

  16. Quantitative comparison of PZT and CMUT probes for photoacoustic imaging: Experimental validation.

    Science.gov (United States)

    Vallet, Maëva; Varray, François; Boutet, Jérôme; Dinten, Jean-Marc; Caliano, Giosuè; Savoia, Alessandro Stuart; Vray, Didier

    2017-12-01

    Photoacoustic (PA) signals are short ultrasound (US) pulses typically characterized by a single-cycle shape, often referred to as N-shape. The spectral content of such wideband signals ranges from a few hundred kilohertz to several tens of megahertz. Typical reception frequency responses of classical piezoelectric US imaging transducers, based on PZT technology, are not sufficiently broadband to fully preserve the entire information contained in PA signals, which are then filtered, thus limiting PA imaging performance. Capacitive micromachined ultrasonic transducers (CMUT) are rapidly emerging as a valid alternative to conventional PZT transducers in several medical ultrasound imaging applications. As compared to PZT transducers, CMUTs exhibit both higher sensitivity and significantly broader frequency response in reception, making their use attractive in PA imaging applications. This paper explores the advantages of the CMUT larger bandwidth in PA imaging by carrying out an experimental comparative study using various CMUT and PZT probes from different research laboratories and manufacturers. PA acquisitions are performed on a suture wire and on several home-made bimodal phantoms with both PZT and CMUT probes. Three criteria, based on the evaluation of pure receive impulse response, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) respectively, have been used for a quantitative comparison of imaging results. The measured fractional bandwidths of the CMUT arrays are larger compared to PZT probes. Moreover, both SNR and CNR are enhanced by at least 6 dB with CMUT technology. This work highlights the potential of CMUT technology for PA imaging through qualitative and quantitative parameters.

  17. Photoacoustic imaging in both soft and hard biological tissue

    International Nuclear Information System (INIS)

    Li, T; Dewhurst, R J

    2010-01-01

    To date, most Photoacoustic (PA) imaging results have been from soft biotissues. In this study, a PA imaging system with a near-infrared pulsed laser source has been applied to obtain 2-D and 3-D images from both soft tissue and post-mortem dental samples. Imaging results showed that the PA technique has the potential to image human oral disease, such as early-stage teeth decay. For non-invasive photoacoustic imaging, the induced temperature and pressure rises within biotissues should not cause physical damage to the tissue. Several simulations based on the thermoelastic effect have been applied to predict initial temperature and pressure fields within a tooth sample. Predicted initial temperature and pressure rises are below corresponding safety limits.

  18. Diffusion tensor imaging with quantitative evaluation and fiber tractography of lumbar nerve roots in sciatica.

    Science.gov (United States)

    Shi, Yin; Zong, Min; Xu, Xiaoquan; Zou, Yuefen; Feng, Yang; Liu, Wei; Wang, Chuanbing; Wang, Dehang

    2015-04-01

    To quantitatively evaluate nerve roots by measuring fractional anisotropy (FA) values in healthy volunteers and sciatica patients, visualize nerve roots by tractography, and compare the diagnostic efficacy between conventional magnetic resonance imaging (MRI) and DTI. Seventy-five sciatica patients and thirty-six healthy volunteers underwent MR imaging using DTI. FA values for L5-S1 lumbar nerve roots were calculated at three levels from DTI images. Tractography was performed on L3-S1 nerve roots. ROC analysis was performed for FA values. The lumbar nerve roots were visualized and FA values were calculated in all subjects. FA values decreased in compressed nerve roots and declined from proximal to distal along the compressed nerve tracts. Mean FA values were more sensitive and specific than MR imaging for differentiating compressed nerve roots, especially in the far lateral zone at distal nerves. DTI can quantitatively evaluate compressed nerve roots, and DTT enables visualization of abnormal nerve tracts, providing vivid anatomic information and localization of probable nerve compression. DTI has great potential utility for evaluating lumbar nerve compression in sciatica. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Wide-field spectrally resolved quantitative fluorescence imaging system: toward neurosurgical guidance in glioma resection

    Science.gov (United States)

    Xie, Yijing; Thom, Maria; Ebner, Michael; Wykes, Victoria; Desjardins, Adrien; Miserocchi, Anna; Ourselin, Sebastien; McEvoy, Andrew W.; Vercauteren, Tom

    2017-11-01

    In high-grade glioma surgery, tumor resection is often guided by intraoperative fluorescence imaging. 5-aminolevulinic acid-induced protoporphyrin IX (PpIX) provides fluorescent contrast between normal brain tissue and glioma tissue, thus achieving improved tumor delineation and prolonged patient survival compared with conventional white-light-guided resection. However, commercially available fluorescence imaging systems rely solely on visual assessment of fluorescence patterns by the surgeon, which makes the resection more subjective than necessary. We developed a wide-field spectrally resolved fluorescence imaging system utilizing a Generation II scientific CMOS camera and an improved computational model for the precise reconstruction of the PpIX concentration map. In our model, the tissue's optical properties and illumination geometry, which distort the fluorescent emission spectra, are considered. We demonstrate that the CMOS-based system can detect low PpIX concentration at short camera exposure times, while providing high-pixel resolution wide-field images. We show that total variation regularization improves the contrast-to-noise ratio of the reconstructed quantitative concentration map by approximately twofold. Quantitative comparison between the estimated PpIX concentration and tumor histopathology was also investigated to further evaluate the system.

  20. Combining PALM and SOFI for quantitative imaging of focal adhesions in living cells

    Science.gov (United States)

    Deschout, Hendrik; Lukes, Tomas; Sharipov, Azat; Feletti, Lely; Lasser, Theo; Radenovic, Aleksandra

    2017-02-01

    Focal adhesions are complicated assemblies of hundreds of proteins that allow cells to sense their extracellular matrix and adhere to it. Although most focal adhesion proteins have been identified, their spatial organization in living cells remains challenging to observe. Photo-activated localization microscopy (PALM) is an interesting technique for this purpose, especially since it allows estimation of molecular parameters such as the number of fluorophores. However, focal adhesions are dynamic entities, requiring a temporal resolution below one minute, which is difficult to achieve with PALM. In order to address this problem, we merged PALM with super-resolution optical fluctuation imaging (SOFI) by applying both techniques to the same data. Since SOFI tolerates an overlap of single molecule images, it can improve the temporal resolution compared to PALM. Moreover, an adaptation called balanced SOFI (bSOFI) allows estimation of molecular parameters, such as the fluorophore density. We therefore performed simulations in order to assess PALM and SOFI for quantitative imaging of dynamic structures. We demonstrated the potential of our PALM-SOFI concept as a quantitative imaging framework by investigating moving focal adhesions in living cells.

  1. A methodology for the extraction of quantitative information from electron microscopy images at the atomic level

    International Nuclear Information System (INIS)

    Galindo, P L; Pizarro, J; Guerrero, E; Guerrero-Lebrero, M P; Scavello, G; Yáñez, A; Sales, D L; Herrera, M; Molina, S I; Núñez-Moraleda, B M; Maestre, J M

    2014-01-01

    In this paper we describe a methodology developed at the University of Cadiz (Spain) in the past few years for the extraction of quantitative information from electron microscopy images at the atomic level. This work is based on a coordinated and synergic activity of several research groups that have been working together over the last decade in two different and complementary fields: Materials Science and Computer Science. The aim of our joint research has been to develop innovative high-performance computing techniques and simulation methods in order to address computationally challenging problems in the analysis, modelling and simulation of materials at the atomic scale, providing significant advances with respect to existing techniques. The methodology involves several fundamental areas of research including the analysis of high resolution electron microscopy images, materials modelling, image simulation and 3D reconstruction using quantitative information from experimental images. These techniques for the analysis, modelling and simulation allow optimizing the control and functionality of devices developed using materials under study, and have been tested using data obtained from experimental samples

  2. MRI and image quantitation for drug assessment - growth effects of anabolic steroids and precursors.

    Science.gov (United States)

    Tang, Haiying; Wu, Ed; Vasselli, Joseph

    2005-01-01

    MRI and image quantitation play an expanding role in modern drug research, because MRI offers high resolution and non-invasive ability, and provides excellent soft tissue contrast. Moreover, with development of effective image segmentation and analysis methods, in-vivo and serial tissue growth measurements could be assessed. In the study, MR image acquisition and analysis protocol were established and validated for investigating the effects of anabolic steroids and precursors on muscle growth and body composition in a guinea pig model. Semi-automatic and interactive segmentation methods were developed to accurately label the tissue of interest for tissue volume estimation. In addition, a longitudinal tissue area outlining procedure was proposed for study of tissue geometric features in relation to tissue growth. Finally, a fully automatic data retrieval and analysis scheme was implemented to facilitate the overall huge amount of image quantitation, statistical analysis, as well as study group comparisons. As a result, highly significant differences in muscle and organ growth were detected between intact and castrated guinea pigs using the selected anabolic steroids, indicating the viability of employing such protocol to assess other anabolic steroids. Furthermore, the anabolic potential of selected steroid precursors and their effects on muscle growth, in comparison with that in respective positive control groups of castrated guinea pigs, were evaluated with the proposed protocol.

  3. High spatial resolution quantitative MR images: an experimental study of dedicated surface coils

    International Nuclear Information System (INIS)

    Gensanne, D; Josse, G; Lagarde, J M; Vincensini, D

    2006-01-01

    Measuring spin-spin relaxation times (T 2 ) by quantitative MR imaging represents a potentially efficient tool to evaluate the physicochemical properties of various media. However, noise in MR images is responsible for uncertainties in the determination of T 2 relaxation times, which limits the accuracy of parametric tissue analysis. The required signal-to-noise ratio (SNR) depends on the T 2 relaxation behaviour specific to each tissue. Thus, we have previously shown that keeping the uncertainty in T 2 measurements within a limit of 10% implies that SNR values be greater than 100 and 300 for mono- and biexponential T 2 relaxation behaviours, respectively. Noise reduction can be obtained either by increasing the voxel size (i.e., at the expense of spatial resolution) or by using high sensitivity dedicated surface coils (which allows us to increase SNR without deteriorating spatial resolution in an excessive manner). However, surface coil sensitivity is heterogeneous, i.e., it- and hence SNR-decreases with increasing depth, and the more so as the coil radius is smaller. The use of surface coils is therefore limited to the analysis of superficial structure such as the hypodermic tissue analysed here. The aim of this work was to determine the maximum limits of spatial resolution and depth compatible with reliable in vivo T 2 quantitative MR images using dedicated surface coils available on various clinical MR scanners. The average thickness of adipose tissue is around 15 mm, and the results obtained have shown that obtaining reliable biexponential relaxation analysis requires a minimum achievable voxel size of 13 mm 3 for a conventional volume birdcage coil and only of 1.7 mm 3 for the smallest available surface coil (23 mm in diameter). Further improvement in spatial resolution allowing us to detect low details in MR images without deteriorating parametric T 2 images can be obtained by image filtering. By using the non-linear selective blurring filter described in a

  4. Dual respiratory and cardiac motion estimation in PET imaging: Methods design and quantitative evaluation.

    Science.gov (United States)

    Feng, Tao; Wang, Jizhe; Tsui, Benjamin M W

    2018-04-01

    The goal of this study was to develop and evaluate four post-reconstruction respiratory and cardiac (R&C) motion vector field (MVF) estimation methods for cardiac 4D PET data. In Method 1, the dual R&C motions were estimated directly from the dual R&C gated images. In Method 2, respiratory motion (RM) and cardiac motion (CM) were separately estimated from the respiratory gated only and cardiac gated only images. The effects of RM on CM estimation were modeled in Method 3 by applying an image-based RM correction on the cardiac gated images before CM estimation, the effects of CM on RM estimation were neglected. Method 4 iteratively models the mutual effects of RM and CM during dual R&C motion estimations. Realistic simulation data were generated for quantitative evaluation of four methods. Almost noise-free PET projection data were generated from the 4D XCAT phantom with realistic R&C MVF using Monte Carlo simulation. Poisson noise was added to the scaled projection data to generate additional datasets of two more different noise levels. All the projection data were reconstructed using a 4D image reconstruction method to obtain dual R&C gated images. The four dual R&C MVF estimation methods were applied to the dual R&C gated images and the accuracy of motion estimation was quantitatively evaluated using the root mean square error (RMSE) of the estimated MVFs. Results show that among the four estimation methods, Methods 2 performed the worst for noise-free case while Method 1 performed the worst for noisy cases in terms of quantitative accuracy of the estimated MVF. Methods 4 and 3 showed comparable results and achieved RMSE lower by up to 35% than that in Method 1 for noisy cases. In conclusion, we have developed and evaluated 4 different post-reconstruction R&C MVF estimation methods for use in 4D PET imaging. Comparison of the performance of four methods on simulated data indicates separate R&C estimation with modeling of RM before CM estimation (Method 3) to be

  5. Novel Uses of In Vitro Data to Develop Quantitative Biological Activity Relationship Models for in Vivo Carcinogenicity Prediction.

    Science.gov (United States)

    Pradeep, Prachi; Povinelli, Richard J; Merrill, Stephen J; Bozdag, Serdar; Sem, Daniel S

    2015-04-01

    The availability of large in vitro datasets enables better insight into the mode of action of chemicals and better identification of potential mechanism(s) of toxicity. Several studies have shown that not all in vitro assays can contribute as equal predictors of in vivo carcinogenicity for development of hybrid Quantitative Structure Activity Relationship (QSAR) models. We propose two novel approaches for the use of mechanistically relevant in vitro assay data in the identification of relevant biological descriptors and development of Quantitative Biological Activity Relationship (QBAR) models for carcinogenicity prediction. We demonstrate that in vitro assay data can be used to develop QBAR models for in vivo carcinogenicity prediction via two case studies corroborated with firm scientific rationale. The case studies demonstrate the similarities between QBAR and QSAR modeling in: (i) the selection of relevant descriptors to be used in the machine learning algorithm, and (ii) the development of a computational model that maps chemical or biological descriptors to a toxic endpoint. The results of both the case studies show: (i) improved accuracy and sensitivity which is especially desirable under regulatory requirements, and (ii) overall adherence with the OECD/REACH guidelines. Such mechanism based models can be used along with QSAR models for prediction of mechanistically complex toxic endpoints. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Fiji: an open-source platform for biological-image analysis.

    Science.gov (United States)

    Schindelin, Johannes; Arganda-Carreras, Ignacio; Frise, Erwin; Kaynig, Verena; Longair, Mark; Pietzsch, Tobias; Preibisch, Stephan; Rueden, Curtis; Saalfeld, Stephan; Schmid, Benjamin; Tinevez, Jean-Yves; White, Daniel James; Hartenstein, Volker; Eliceiri, Kevin; Tomancak, Pavel; Cardona, Albert

    2012-06-28

    Fiji is a distribution of the popular open-source software ImageJ focused on biological-image analysis. Fiji uses modern software engineering practices to combine powerful software libraries with a broad range of scripting languages to enable rapid prototyping of image-processing algorithms. Fiji facilitates the transformation of new algorithms into ImageJ plugins that can be shared with end users through an integrated update system. We propose Fiji as a platform for productive collaboration between computer science and biology research communities.