WorldWideScience

Sample records for quantitative analysis method

  1. Uncertainty of quantitative microbiological methods of pharmaceutical analysis.

    Science.gov (United States)

    Gunar, O V; Sakhno, N G

    2015-12-30

    The total uncertainty of quantitative microbiological methods, used in pharmaceutical analysis, consists of several components. The analysis of the most important sources of the quantitative microbiological methods variability demonstrated no effect of culture media and plate-count techniques in the estimation of microbial count while the highly significant effect of other factors (type of microorganism, pharmaceutical product and individual reading and interpreting errors) was established. The most appropriate method of statistical analysis of such data was ANOVA which enabled not only the effect of individual factors to be estimated but also their interactions. Considering all the elements of uncertainty and combining them mathematically the combined relative uncertainty of the test results was estimated both for method of quantitative examination of non-sterile pharmaceuticals and microbial count technique without any product. These data did not exceed 35%, appropriated for a traditional plate count methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Quantitative analysis method for ship construction quality

    Directory of Open Access Journals (Sweden)

    FU Senzong

    2017-03-01

    Full Text Available The excellent performance of a ship is assured by the accurate evaluation of its construction quality. For a long time, research into the construction quality of ships has mainly focused on qualitative analysis due to a shortage of process data, which results from limited samples, varied process types and non-standardized processes. Aiming at predicting and controlling the influence of the construction process on the construction quality of ships, this article proposes a reliability quantitative analysis flow path for the ship construction process and fuzzy calculation method. Based on the process-quality factor model proposed by the Function-Oriented Quality Control (FOQC method, we combine fuzzy mathematics with the expert grading method to deduce formulations calculating the fuzzy process reliability of the ordinal connection model, series connection model and mixed connection model. The quantitative analysis method is applied in analyzing the process reliability of a ship's shaft gear box installation, which proves the applicability and effectiveness of the method. The analysis results can be a useful reference for setting key quality inspection points and optimizing key processes.

  3. Original methods of quantitative analysis developed for diverse samples in various research fields. Quantitative analysis at NMCC

    International Nuclear Information System (INIS)

    Sera, Koichiro

    2003-01-01

    Nishina Memorial Cyclotron Center (NMCC) has been opened for nationwide-common utilization of positron nuclear medicine (PET) and PIXE since April 1993. At the present time, nearly 40 subjects of PIXE in various research fields are pursued here, and more than 50,000 samples have been analyzed up to the present. In order to perform quantitative analyses of diverse samples, technical developments in sample preparation, measurement and data analysis have been continuously carried out. Especially, a standard-free method for quantitative analysis'' made it possible to perform analysis of infinitesimal samples, powdered samples and untreated bio samples, which could not be well analyzed quantitatively in the past. The standard-free method'' and a ''powdered internal standard method'' made the process for target preparation quite easier. It has been confirmed that results obtained by these methods show satisfactory accuracy and reproducibility preventing any ambiguity coming from complicated target preparation processes. (author)

  4. Novel approach in quantitative analysis of shearography method

    International Nuclear Information System (INIS)

    Wan Saffiey Wan Abdullah

    2002-01-01

    The application of laser interferometry in industrial non-destructive testing and material characterization is becoming more prevalent since this method provides non-contact full-field inspection of the test object. However their application only limited to the qualitative analysis, current trend has changed to the development of this method by the introduction of quantitative analysis, which attempts to detail the defect examined. This being the design feature for a ranges of object size to be examined. The growing commercial demand for quantitative analysis for NDT and material characterization is determining the quality of optical and analysis instrument. However very little attention is currently being paid to understanding, quantifying and compensating for the numerous error sources which are a function of interferometers. This paper presents a comparison of measurement analysis using the established theoretical approach and the new approach, taken into account the factor of divergence illumination and other geometrical factors. The difference in the measurement system could be associated in the error factor. (Author)

  5. Quantitative analysis of γ-oryzanol content in cold pressed rice bran oil by TLC-image analysis method.

    Science.gov (United States)

    Sakunpak, Apirak; Suksaeree, Jirapornchai; Monton, Chaowalit; Pathompak, Pathamaporn; Kraisintu, Krisana

    2014-02-01

    To develop and validate an image analysis method for quantitative analysis of γ-oryzanol in cold pressed rice bran oil. TLC-densitometric and TLC-image analysis methods were developed, validated, and used for quantitative analysis of γ-oryzanol in cold pressed rice bran oil. The results obtained by these two different quantification methods were compared by paired t-test. Both assays provided good linearity, accuracy, reproducibility and selectivity for determination of γ-oryzanol. The TLC-densitometric and TLC-image analysis methods provided a similar reproducibility, accuracy and selectivity for the quantitative determination of γ-oryzanol in cold pressed rice bran oil. A statistical comparison of the quantitative determinations of γ-oryzanol in samples did not show any statistically significant difference between TLC-densitometric and TLC-image analysis methods. As both methods were found to be equal, they therefore can be used for the determination of γ-oryzanol in cold pressed rice bran oil.

  6. Quantitative methods for the analysis of electron microscope images

    DEFF Research Database (Denmark)

    Skands, Peter Ulrik Vallø

    1996-01-01

    The topic of this thesis is an general introduction to quantitative methods for the analysis of digital microscope images. The images presented are primarily been acquired from Scanning Electron Microscopes (SEM) and interfermeter microscopes (IFM). The topic is approached though several examples...... foundation of the thesis fall in the areas of: 1) Mathematical Morphology; 2) Distance transforms and applications; and 3) Fractal geometry. Image analysis opens in general the possibility of a quantitative and statistical well founded measurement of digital microscope images. Herein lies also the conditions...

  7. Quantitative EDXS analysis of organic materials using the ζ-factor method

    International Nuclear Information System (INIS)

    Fladischer, Stefanie; Grogger, Werner

    2014-01-01

    In this study we successfully applied the ζ-factor method to perform quantitative X-ray analysis of organic thin films consisting of light elements. With its ability to intrinsically correct for X-ray absorption, this method significantly improved the quality of the quantification as well as the accuracy of the results compared to conventional techniques in particular regarding the quantification of light elements. We describe in detail the process of determining sensitivity factors (ζ-factors) using a single standard specimen and the involved parameter optimization for the estimation of ζ-factors for elements not contained in the standard. The ζ-factor method was then applied to perform quantitative analysis of organic semiconducting materials frequently used in organic electronics. Finally, the results were verified and discussed concerning validity and accuracy. - Highlights: • The ζ-factor method is used for quantitative EDXS analysis of light elements. • We describe the process of determining ζ-factors from a single standard in detail. • Organic semiconducting materials are successfully quantified

  8. Phase analysis in duplex stainless steel: comparison of EBSD and quantitative metallography methods

    International Nuclear Information System (INIS)

    Michalska, J; Chmiela, B

    2014-01-01

    The purpose of the research was to work out the qualitative and quantitative analysis of phases in DSS in as-received state and after thermal aging. For quantitative purposes, SEM observations, EDS analyses and electron backscattered diffraction (EBSD) methods were employed. Qualitative analysis of phases was performed by two methods: EBSD and classical quantitative metallography. A juxtaposition of different etchants for the revealing of microstructure and brief review of sample preparation methods for EBSD studies were presented. Different ways of sample preparation were tested and based on these results a detailed methodology of DSS phase analysis was developed including: surface finishing, selective etching methods and image acquisition. The advantages and disadvantages of applied methods were pointed out and compared the accuracy of the analysis phase performed by both methods

  9. Quantitative analysis of γ-oryzanol content in cold pressed rice bran oil by TLC-image analysis method

    OpenAIRE

    Sakunpak, Apirak; Suksaeree, Jirapornchai; Monton, Chaowalit; Pathompak, Pathamaporn; Kraisintu, Krisana

    2014-01-01

    Objective: To develop and validate an image analysis method for quantitative analysis of γ-oryzanol in cold pressed rice bran oil. Methods: TLC-densitometric and TLC-image analysis methods were developed, validated, and used for quantitative analysis of γ-oryzanol in cold pressed rice bran oil. The results obtained by these two different quantification methods were compared by paired t-test. Results: Both assays provided good linearity, accuracy, reproducibility and selectivity for dete...

  10. [Methods of quantitative proteomics].

    Science.gov (United States)

    Kopylov, A T; Zgoda, V G

    2007-01-01

    In modern science proteomic analysis is inseparable from other fields of systemic biology. Possessing huge resources quantitative proteomics operates colossal information on molecular mechanisms of life. Advances in proteomics help researchers to solve complex problems of cell signaling, posttranslational modification, structure and functional homology of proteins, molecular diagnostics etc. More than 40 various methods have been developed in proteomics for quantitative analysis of proteins. Although each method is unique and has certain advantages and disadvantages all these use various isotope labels (tags). In this review we will consider the most popular and effective methods employing both chemical modifications of proteins and also metabolic and enzymatic methods of isotope labeling.

  11. Ratio of slopes method for quantitative analysis in ceramic bodies

    International Nuclear Information System (INIS)

    Zainal Arifin Ahmad; Ahmad Fauzi Mohd Noor; Radzali Othman; Messer, P.F.

    1996-01-01

    A quantitative x-ray diffraction analysis technique developed at University of Sheffield was adopted, rather than the previously widely used internal standard method, to determine the amount of the phases present in a reformulated whiteware porcelain and a BaTiO sub 3 electrochemical material. This method, although still employs an internal standard, was found to be very easy and accurate. The required weight fraction of a phase in the mixture to be analysed is determined from the ratio of slopes of two linear plots, designated as the analysis and reference lines, passing through their origins using the least squares method

  12. Study on methods of quantitative analysis of the biological thin samples in EM X-ray microanalysis

    International Nuclear Information System (INIS)

    Zhang Detian; Zhang Xuemin; He Kun; Yang Yi; Zhang Sa; Wang Baozhen

    2000-01-01

    Objective: To study the methods of quantitative analysis of the biological thin samples. Methods: Hall theory was used to study the qualitative analysis, background subtraction, peel off overlap peaks; external radiation and aberrance of spectra. Results: The results of reliable qualitative analysis and precise quantitative analysis were achieved. Conclusion: The methods for analysis of the biological thin samples in EM X-ray microanalysis can be used in biomedical research

  13. Some selected quantitative methods of thermal image analysis in Matlab.

    Science.gov (United States)

    Koprowski, Robert

    2016-05-01

    The paper presents a new algorithm based on some selected automatic quantitative methods for analysing thermal images. It shows the practical implementation of these image analysis methods in Matlab. It enables to perform fully automated and reproducible measurements of selected parameters in thermal images. The paper also shows two examples of the use of the proposed image analysis methods for the area of ​​the skin of a human foot and face. The full source code of the developed application is also provided as an attachment. The main window of the program during dynamic analysis of the foot thermal image. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. An unconventional method of quantitative microstructural analysis

    International Nuclear Information System (INIS)

    Rastani, M.

    1995-01-01

    The experiment described here introduces a simple methodology which could be used to replace the time-consuming and expensive conventional methods of metallographic and quantitative analysis of thermal treatment effect on microstructure. The method is ideal for the microstructural evaluation of tungsten filaments and other wire samples such as copper wire which can be conveniently coiled. Ten such samples were heat treated by ohmic resistance at temperatures which were expected to span the recrystallization range. After treatment, the samples were evaluated in the elastic recovery test. The normalized elastic recovery factor was defined in terms of these deflections. Experimentally it has shown that elastic recovery factor depends on the degree of recrystallization. In other words this factor is used to determine the fraction of unrecrystallized material. Because the elastic recovery method examines the whole filament rather than just one section through the filament as in metallographical method, it more accurately measures the degree of recrystallization. The method also takes a considerably shorter time and cost compared to the conventional method

  15. Risk prediction, safety analysis and quantitative probability methods - a caveat

    International Nuclear Information System (INIS)

    Critchley, O.H.

    1976-01-01

    Views are expressed on the use of quantitative techniques for the determination of value judgements in nuclear safety assessments, hazard evaluation, and risk prediction. Caution is urged when attempts are made to quantify value judgements in the field of nuclear safety. Criteria are given the meaningful application of reliability methods but doubts are expressed about their application to safety analysis, risk prediction and design guidances for experimental or prototype plant. Doubts are also expressed about some concomitant methods of population dose evaluation. The complexities of new designs of nuclear power plants make the problem of safety assessment more difficult but some possible approaches are suggested as alternatives to the quantitative techniques criticized. (U.K.)

  16. Method of quantitative analysis of superconducting metal-conducting composite materials

    International Nuclear Information System (INIS)

    Bogomolov, V.N.; Zhuravlev, V.V.; Petranovskij, V.P.; Pimenov, V.A.

    1990-01-01

    Technique for quantitative analysis of superconducting metal-containing composite materials, SnO 2 -InSn, WO 3 -InW, Zn)-InZn in particular, has been developed. The method of determining metal content in a composite is based on the dependence of superconducting transition temperature on alloy composition. Sensitivity of temperature determination - 0.02K, error of analysis for InSn system - 0.5%

  17. Quantitative method of X-ray diffraction phase analysis of building materials

    International Nuclear Information System (INIS)

    Czuba, J.; Dziedzic, A.

    1978-01-01

    Quantitative method of X-ray diffraction phase analysis of building materials, with use of internal standard, has been presented. The errors committed by determining the content of particular phases have been also given. (author)

  18. Microchromatography of hemoglobins. VIII. A general qualitative and quantitative method in plastic drinking straws and the quantitative analysis of Hb-F.

    Science.gov (United States)

    Schroeder, W A; Pace, L A

    1978-03-01

    The microchromatographic procedure for the quantitative analysis of the hemoglobin components in a hemolysate uses columns of DEAE-cellulose in a plastic drinking straw with a glycine-KCN-NaCl developer. Not only may the method be used for the quantitative analysis of Hb-F but also for the analysis of the varied components in mixtures of hemoglobins.

  19. Quantitative investment analysis

    CERN Document Server

    DeFusco, Richard

    2007-01-01

    In the "Second Edition" of "Quantitative Investment Analysis," financial experts Richard DeFusco, Dennis McLeavey, Jerald Pinto, and David Runkle outline the tools and techniques needed to understand and apply quantitative methods to today's investment process.

  20. Quantitative analysis of γ–oryzanol content in cold pressed rice bran oil by TLC–image analysis method

    Directory of Open Access Journals (Sweden)

    Apirak Sakunpak

    2014-02-01

    Conclusions: The TLC-densitometric and TLC-image analysis methods provided a similar reproducibility, accuracy and selectivity for the quantitative determination of γ-oryzanol in cold pressed rice bran oil. A statistical comparison of the quantitative determinations of γ-oryzanol in samples did not show any statistically significant difference between TLC-densitometric and TLC-image analysis methods. As both methods were found to be equal, they therefore can be used for the determination of γ-oryzanol in cold pressed rice bran oil.

  1. Quantitative analysis method for niobium in lead zirconate titanate

    International Nuclear Information System (INIS)

    Hara, Hideo; Hashimoto, Toshio

    1986-01-01

    Lead zirconate titanate (PZT) is a strong dielectric ceramic having piezoelectric and pyroelectric properties, and is used most as a piezoelectric material. Also it is a main component of lead lanthanum zirconate titanate (PLZT), which is a typical electrical-optical conversion element. Since these have been developed, the various electronic parts utilizing the piezoelectric characteristics have been put in practical use. The characteristics can be set up by changing the composition of PZT and the kinds and amount of additives. Among the additives, niobium has the action to make metallic ion vacancy in crystals, and by the formation of this vacancy, to ease the movement of domain walls in crystal grains, and to increase resistivity. Accordingly, it is necessary to accurately determine the niobium content for the research and development, quality control and process control. The quantitative analysis methods for niobium used so far have respective demerits, therefore, the authors examined the quantitative analysis of niobium in PZT by using an inductively coupled plasma emission spectro-analysis apparatus which has remarkably developed recently. As the result, the method of dissolving a specimen with hydrochloric acid and hydrofluoric acid, and masking unstable lead with ethylene diamine tetraacetic acid 2 sodium and fluoride ions with boric acid was established. The apparatus, reagents, the experiment and the results are reported. (Kako, I.)

  2. Quantitative analysis of iodine in thyroidin. I. Methods of ''dry'' and ''wet'' mineralization

    International Nuclear Information System (INIS)

    Listov, S.A.; Arzamastsev, A.P.

    1986-01-01

    The relative investigations on the quantitative determination of iodine in thyroidin using different modifications of the ''dry'' and ''wet'' mineralization show that in using these methods the difficulties due to the characteristic features of the object of investigation itself and the mineralization method as a whole must be taken into account. The studies show that the most applicable method for the analysis of thyroidin is the method of ''dry'' mineralization with potassium carbonate. A procedure is proposed for a quantitative determination of iodine in thyroidin

  3. Comparison of different surface quantitative analysis methods. Application to corium

    International Nuclear Information System (INIS)

    Guilbaud, N.; Blin, D.; Perodeaud, Ph.; Dugne, O.; Gueneau, Ch.

    2000-01-01

    In case of a severe hypothetical accident in a pressurized water reactor, the reactor assembly melts partially or completely. The material formed, called corium, flows out and spreads at the bottom of the reactor. To limit and control the consequences of such an accident, the specifications of the O-U-Zr basic system must be known accurately. To achieve this goal, the corium mix was melted by electron bombardment at very high temperature (3000 K) followed by quenching of the ingot in the Isabel 1 evaporator. Metallographic analyses were then required to validate the thermodynamic databases set by the Thermo-Calc software. The study consists in defining an overall surface quantitative analysis method that is fast and reliable, in order to determine the overall corium composition. The analyzed ingot originated in a [U+Fe+Y+UO 2 +ZrO 2 ) mix, with a total mass of 2253.7 grams. Several successive heating with average power were performed before a very brief plateau at very high temperature, so that the ingot was formed progressively and without any evaporation liable to modify its initial composition. The central zone of the ingot was then analyzed by qualitative and quantitative global surface methods, to yield the volume composition of the analyzed zone. Corium sample analysis happens to be very complex because of the variety and number of elements present, and also because of the presence of oxygen in a heavy element like the uranium based matrix. Three different global quantitative surface analysis methods were used: global EDS analysis (Energy Dispersive Spectrometry), with SEM, global WDS analysis (Wavelength Dispersive Spectrometry) with EPMA, and coupling of image analysis with EDS or WDS point spectroscopic analyses. The difficulties encountered during the study arose from sample preparation (corium is very sensitive to oxidation), and the choice of acquisition parameters of the images and analyses. The corium sample studied consisted of two zones displaying

  4. Quantitative mass spectrometric analysis of glycoproteins combined with enrichment methods.

    Science.gov (United States)

    Ahn, Yeong Hee; Kim, Jin Young; Yoo, Jong Shin

    2015-01-01

    Mass spectrometry (MS) has been a core technology for high sensitive and high-throughput analysis of the enriched glycoproteome in aspects of quantitative assays as well as qualitative profiling of glycoproteins. Because it has been widely recognized that aberrant glycosylation in a glycoprotein may involve in progression of a certain disease, the development of efficient analysis tool for the aberrant glycoproteins is very important for deep understanding about pathological function of the glycoprotein and new biomarker development. This review first describes the protein glycosylation-targeting enrichment technologies mainly employing solid-phase extraction methods such as hydrizide-capturing, lectin-specific capturing, and affinity separation techniques based on porous graphitized carbon, hydrophilic interaction chromatography, or immobilized boronic acid. Second, MS-based quantitative analysis strategies coupled with the protein glycosylation-targeting enrichment technologies, by using a label-free MS, stable isotope-labeling, or targeted multiple reaction monitoring (MRM) MS, are summarized with recent published studies. © 2014 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc.

  5. Advantages of a Dynamic RGGG Method in Qualitative and Quantitative Analysis

    International Nuclear Information System (INIS)

    Shin, Seung Ki; Seong, Poong Hyun

    2009-01-01

    Various researches have been conducted in order to analyze dynamic interactions among components and process variables in nuclear power plants which cannot be handled by static reliability analysis methods such as conventional fault tree and event tree techniques. A dynamic reliability graph with general gates (RGGG) method was proposed for an intuitive modeling of dynamic systems and it enables one to easily analyze huge and complex systems. In this paper, advantages of the dynamic RGGG method are assessed through two stages: system modeling and quantitative analysis. And then a software tool for dynamic RGGG method is introduced and an application to a real dynamic system is accompanied

  6. Visual and Quantitative Analysis Methods of Respiratory Patterns for Respiratory Gated PET/CT.

    Science.gov (United States)

    Son, Hye Joo; Jeong, Young Jin; Yoon, Hyun Jin; Park, Jong-Hwan; Kang, Do-Young

    2016-01-01

    We integrated visual and quantitative methods for analyzing the stability of respiration using four methods: phase space diagrams, Fourier spectra, Poincaré maps, and Lyapunov exponents. Respiratory patterns of 139 patients were grouped based on the combination of the regularity of amplitude, period, and baseline positions. Visual grading was done by inspecting the shape of diagram and classified into two states: regular and irregular. Quantitation was done by measuring standard deviation of x and v coordinates of Poincaré map (SD x , SD v ) or the height of the fundamental peak ( A 1 ) in Fourier spectrum or calculating the difference between maximal upward and downward drift. Each group showed characteristic pattern on visual analysis. There was difference of quantitative parameters (SD x , SD v , A 1 , and MUD-MDD) among four groups (one way ANOVA, p = 0.0001 for MUD-MDD, SD x , and SD v , p = 0.0002 for A 1 ). In ROC analysis, the cutoff values were 0.11 for SD x (AUC: 0.982, p quantitative indices of respiratory stability and determining quantitative cutoff value for differentiating regular and irregular respiration.

  7. Quantitative Analysis of Ductile Iron Microstructure – A Comparison of Selected Methods for Assessment

    Directory of Open Access Journals (Sweden)

    Mrzygłód B.

    2013-09-01

    Full Text Available Stereological description of dispersed microstructure is not an easy task and remains the subject of continuous research. In its practical aspect, a correct stereological description of this type of structure is essential for the analysis of processes of coagulation and spheroidisation, or for studies of relationships between structure and properties. One of the most frequently used methods for an estimation of the density Nv and size distribution of particles is the Scheil - Schwartz - Saltykov method. In this article, the authors present selected methods for quantitative assessment of ductile iron microstructure, i.e. the Scheil - Schwartz - Saltykov method, which allows a quantitative description of three-dimensional sets of solids using measurements and counts performed on two-dimensional cross-sections of these sets (microsections and quantitative description of three-dimensional sets of solids by X-ray computed microtomography, which is an interesting alternative for structural studies compared to traditional methods of microstructure imaging since, as a result, the analysis provides a three-dimensional imaging of microstructures examined.

  8. Quantitative data analysis methods for 3D microstructure characterization of Solid Oxide Cells

    DEFF Research Database (Denmark)

    Jørgensen, Peter Stanley

    through percolating networks and reaction rates at the triple phase boundaries. Quantitative analysis of microstructure is thus important both in research and development of optimal microstructure design and fabrication. Three dimensional microstructure characterization in particular holds great promise...... for gaining further fundamental understanding of how microstructure affects performance. In this work, methods for automatic 3D characterization of microstructure are studied: from the acquisition of 3D image data by focused ion beam tomography to the extraction of quantitative measures that characterize...... the microstructure. The methods are exemplied by the analysis of Ni-YSZ and LSC-CGO electrode samples. Automatic methods for preprocessing the raw 3D image data are developed. The preprocessing steps correct for errors introduced by the image acquisition by the focused ion beam serial sectioning. Alignment...

  9. Wavelength Selection Method Based on Differential Evolution for Precise Quantitative Analysis Using Terahertz Time-Domain Spectroscopy.

    Science.gov (United States)

    Li, Zhi; Chen, Weidong; Lian, Feiyu; Ge, Hongyi; Guan, Aihong

    2017-12-01

    Quantitative analysis of component mixtures is an important application of terahertz time-domain spectroscopy (THz-TDS) and has attracted broad interest in recent research. Although the accuracy of quantitative analysis using THz-TDS is affected by a host of factors, wavelength selection from the sample's THz absorption spectrum is the most crucial component. The raw spectrum consists of signals from the sample and scattering and other random disturbances that can critically influence the quantitative accuracy. For precise quantitative analysis using THz-TDS, the signal from the sample needs to be retained while the scattering and other noise sources are eliminated. In this paper, a novel wavelength selection method based on differential evolution (DE) is investigated. By performing quantitative experiments on a series of binary amino acid mixtures using THz-TDS, we demonstrate the efficacy of the DE-based wavelength selection method, which yields an error rate below 5%.

  10. Quantitative Risk Analysis: Method And Process

    Directory of Open Access Journals (Sweden)

    Anass BAYAGA

    2010-03-01

    Full Text Available Recent and past studies (King III report, 2009: 73-75; Stoney 2007;Committee of Sponsoring Organisation-COSO, 2004, Bartell, 2003; Liebenberg and Hoyt, 2003; Reason, 2000; Markowitz 1957 lament that although, the introduction of quantifying risk to enhance degree of objectivity in finance for instance was quite parallel to its development in the manufacturing industry, it is not the same in Higher Education Institution (HEI. In this regard, the objective of the paper was to demonstrate the methods and process of Quantitative Risk Analysis (QRA through likelihood of occurrence of risk (phase I. This paper serves as first of a two-phased study, which sampled hundred (100 risk analysts in a University in the greater Eastern Cape Province of South Africa.The analysis of likelihood of occurrence of risk by logistic regression and percentages were conducted to investigate whether there were a significant difference or not between groups (analyst in respect of QRA.The Hosmer and Lemeshow test was non-significant with a chi-square(X2 =8.181; p = 0.300, which indicated that there was a good model fit, since the data did not significantly deviate from the model. The study concluded that to derive an overall likelihood rating that indicated the probability that a potential risk may be exercised within the construct of an associated threat environment, the following governing factors must be considered: (1 threat source motivation and capability (2 nature of the vulnerability (3 existence and effectiveness of current controls (methods and process.

  11. Quantitative analysis of receptor imaging

    International Nuclear Information System (INIS)

    Fu Zhanli; Wang Rongfu

    2004-01-01

    Model-based methods for quantitative analysis of receptor imaging, including kinetic, graphical and equilibrium methods, are introduced in detail. Some technical problem facing quantitative analysis of receptor imaging, such as the correction for in vivo metabolism of the tracer and the radioactivity contribution from blood volume within ROI, and the estimation of the nondisplaceable ligand concentration, is also reviewed briefly

  12. Integration of Qualitative and Quantitative Methods: Building and Interpreting Clusters from Grounded Theory and Discourse Analysis

    Directory of Open Access Journals (Sweden)

    Aldo Merlino

    2007-01-01

    Full Text Available Qualitative methods present a wide spectrum of application possibilities as well as opportunities for combining qualitative and quantitative methods. In the social sciences fruitful theoretical discussions and a great deal of empirical research have taken place. This article introduces an empirical investigation which demonstrates the logic of combining methodologies as well as the collection and interpretation, both sequential as simultaneous, of qualitative and quantitative data. Specifically, the investigation process will be described, beginning with a grounded theory methodology and its combination with the techniques of structural semiotics discourse analysis to generate—in a first phase—an instrument for quantitative measuring and to understand—in a second phase—clusters obtained by quantitative analysis. This work illustrates how qualitative methods allow for the comprehension of the discursive and behavioral elements under study, and how they function as support making sense of and giving meaning to quantitative data. URN: urn:nbn:de:0114-fqs0701219

  13. A scanning electron microscope method for automated, quantitative analysis of mineral matter in coal

    Energy Technology Data Exchange (ETDEWEB)

    Creelman, R.A.; Ward, C.R. [R.A. Creelman and Associates, Epping, NSW (Australia)

    1996-07-01

    Quantitative mineralogical analysis has been carried out in a series of nine coal samples from Australia, South Africa and China using a newly-developed automated image analysis system coupled to a scanning electron microscopy. The image analysis system (QEM{asterisk}SEM) gathers X-ray spectra and backscattered electron data from a number of points on a conventional grain-mount polished section under the SEM, and interprets the data from each point in mineralogical terms. The cumulative data in each case was integrated to provide a volumetric modal analysis of the species present in the coal samples, expressed as percentages of the respective coals` mineral matter. Comparison was made of the QEM{asterisk}SEM results to data obtained from the same samples using other methods of quantitative mineralogical analysis, namely X-ray diffraction of the low-temperature oxygen-plasma ash and normative calculation from the (high-temperature) ash analysis and carbonate CO{sub 2} data. Good agreement was obtained from all three methods for quartz in the coals, and also for most of the iron-bearing minerals. The correlation between results from the different methods was less strong, however, for individual clay minerals, or for minerals such as calcite, dolomite and phosphate species that made up only relatively small proportions of the mineral matter. The image analysis approach, using the electron microscope for mineralogical studies, has significant potential as a supplement to optical microscopy in quantitative coal characterisation. 36 refs., 3 figs., 4 tabs.

  14. Method of quantitative x-ray diffractometric analysis of Ta-Ta2C system

    International Nuclear Information System (INIS)

    Gavrish, A.A.; Glazunov, M.P.; Korolev, Yu.M.; Spitsyn, V.I.; Fedoseev, G.K.

    1976-01-01

    The syste86 Ta-Ta 2 C has beemonsidered because of specific features of diffraction patterns of the components, namely, overlapping of the most intensive reflexes of both phases. The method of standard binary system has been used for quantitative analysis. Because of overlapping of the intensive reflexes dsub(1/01)=2.36(Ta 2 C) and dsub(110)=2.33(Ta), the other, most intensive, reflexes have been used for quantitative determination of Ta 2 C and Ta: dsub(103)=1.404 A for tantalum subcarbide and dsub(211)=1.35A for tantalum. Besides, the TaTa 2 C phases have been determined quantitatively with the use of another pair of reflexes: dsub(102)=1.82 A for Ta 2 C and dsub(200)=1.65 A for tantalum. The agreement between the results obtained while performing the quantitative phase analysis is good. To increase reliability and accuracy of the quantitative determination of Ta and Ta 2 C, it is expedient to carry out the analysis with the use of two above-mentioned pairs of reflexes located in different regions of the diffraction spectrum. Thus, the procedure of quantitative analysis of Ta and Ta 2 C in different ratios has been developed taking into account the specific features of the diffraction patterns of these components as well as the ability of Ta 2 C to texture in the process of preparation

  15. Quantitative analysis of the anti-noise performance of an m-sequence in an electromagnetic method

    Science.gov (United States)

    Yuan, Zhe; Zhang, Yiming; Zheng, Qijia

    2018-02-01

    An electromagnetic method with a transmitted waveform coded by an m-sequence achieved better anti-noise performance compared to the conventional manner with a square-wave. The anti-noise performance of the m-sequence varied with multiple coding parameters; hence, a quantitative analysis of the anti-noise performance for m-sequences with different coding parameters was required to optimize them. This paper proposes the concept of an identification system, with the identified Earth impulse response obtained by measuring the system output with the input of the voltage response. A quantitative analysis of the anti-noise performance of the m-sequence was achieved by analyzing the amplitude-frequency response of the corresponding identification system. The effects of the coding parameters on the anti-noise performance are summarized by numerical simulation, and their optimization is further discussed in our conclusions; the validity of the conclusions is further verified by field experiment. The quantitative analysis method proposed in this paper provides a new insight into the anti-noise mechanism of the m-sequence, and could be used to evaluate the anti-noise performance of artificial sources in other time-domain exploration methods, such as the seismic method.

  16. Quantitative methods of data analysis for the physical sciences and engineering

    CERN Document Server

    Martinson, Douglas G

    2018-01-01

    This book provides thorough and comprehensive coverage of most of the new and important quantitative methods of data analysis for graduate students and practitioners. In recent years, data analysis methods have exploded alongside advanced computing power, and it is critical to understand such methods to get the most out of data, and to extract signal from noise. The book excels in explaining difficult concepts through simple explanations and detailed explanatory illustrations. Most unique is the focus on confidence limits for power spectra and their proper interpretation, something rare or completely missing in other books. Likewise, there is a thorough discussion of how to assess uncertainty via use of Expectancy, and the easy to apply and understand Bootstrap method. The book is written so that descriptions of each method are as self-contained as possible. Many examples are presented to clarify interpretations, as are user tips in highlighted boxes.

  17. Qualitative and quantitative methods for human factor analysis and assessment in NPP. Investigations and results

    International Nuclear Information System (INIS)

    Hristova, R.; Kalchev, B.; Atanasov, D.

    2005-01-01

    We consider here two basic groups of methods for analysis and assessment of the human factor in the NPP area and give some results from performed analyses as well. The human factor is the human interaction with the design equipment, with the working environment and takes into account the human capabilities and limits. In the frame of the qualitative methods for analysis of the human factor are considered concepts and structural methods for classifying of the information, connected with the human factor. Emphasize is given to the HPES method for human factor analysis in NPP. Methods for quantitative assessment of the human reliability are considered. These methods allow assigning of probabilities to the elements of the already structured information about human performance. This part includes overview of classical methods for human reliability assessment (HRA, THERP), and methods taking into account specific information about human capabilities and limits and about the man-machine interface (CHR, HEART, ATHEANA). Quantitative and qualitative results concerning human factor influence in the initiating events occurrences in the Kozloduy NPP are presented. (authors)

  18. Assessment of acute myocarditis by cardiac magnetic resonance imaging: Comparison of qualitative and quantitative analysis methods.

    Science.gov (United States)

    Imbriaco, Massimo; Nappi, Carmela; Puglia, Marta; De Giorgi, Marco; Dell'Aversana, Serena; Cuocolo, Renato; Ponsiglione, Andrea; De Giorgi, Igino; Polito, Maria Vincenza; Klain, Michele; Piscione, Federico; Pace, Leonardo; Cuocolo, Alberto

    2017-10-26

    To compare cardiac magnetic resonance (CMR) qualitative and quantitative analysis methods for the noninvasive assessment of myocardial inflammation in patients with suspected acute myocarditis (AM). A total of 61 patients with suspected AM underwent coronary angiography and CMR. Qualitative analysis was performed applying Lake-Louise Criteria (LLC), followed by quantitative analysis based on the evaluation of edema ratio (ER) and global relative enhancement (RE). Diagnostic performance was assessed for each method by measuring the area under the curves (AUC) of the receiver operating characteristic analyses. The final diagnosis of AM was based on symptoms and signs suggestive of cardiac disease, evidence of myocardial injury as defined by electrocardiogram changes, elevated troponin I, exclusion of coronary artery disease by coronary angiography, and clinical and echocardiographic follow-up at 3 months after admission to the chest pain unit. In all patients, coronary angiography did not show significant coronary artery stenosis. Troponin I levels and creatine kinase were higher in patients with AM compared to those without (both P quantitative (ER 0.89 and global RE 0.80) analyses were also similar. Qualitative and quantitative CMR analysis methods show similar diagnostic accuracy for the diagnosis of AM. These findings suggest that a simplified approach using a shortened CMR protocol including only T2-weighted STIR sequences might be useful to rule out AM in patients with acute coronary syndrome and normal coronary angiography.

  19. Quantitative comparison of analysis methods for spectroscopic optical coherence tomography: reply to comment

    NARCIS (Netherlands)

    Bosschaart, Nienke; van Leeuwen, Ton; Aalders, Maurice C.G.; Faber, Dirk

    2014-01-01

    We reply to the comment by Kraszewski et al on “Quantitative comparison of analysis methods for spectroscopic optical coherence tomography.” We present additional simulations evaluating the proposed window function. We conclude that our simulations show good qualitative agreement with the results of

  20. A New Green Method for the Quantitative Analysis of Enrofloxacin by Fourier-Transform Infrared Spectroscopy.

    Science.gov (United States)

    Rebouças, Camila Tavares; Kogawa, Ana Carolina; Salgado, Hérida Regina Nunes

    2018-05-18

    Background: A green analytical chemistry method was developed for quantification of enrofloxacin in tablets. The drug, a second-generation fluoroquinolone, was first introduced in veterinary medicine for the treatment of various bacterial species. Objective: This study proposed to develop, validate, and apply a reliable, low-cost, fast, and simple IR spectroscopy method for quantitative routine determination of enrofloxacin in tablets. Methods: The method was completely validated according to the International Conference on Harmonisation guidelines, showing accuracy, precision, selectivity, robustness, and linearity. Results: It was linear over the concentration range of 1.0-3.0 mg with correlation coefficients >0.9999 and LOD and LOQ of 0.12 and 0.36 mg, respectively. Conclusions: Now that this IR method has met performance qualifications, it can be adopted and applied for the analysis of enrofloxacin tablets for production process control. The validated method can also be utilized to quantify enrofloxacin in tablets and thus is an environmentally friendly alternative for the routine analysis of enrofloxacin in quality control. Highlights: A new green method for the quantitative analysis of enrofloxacin by Fourier-Transform Infrared spectroscopy was validated. It is a fast, clean and low-cost alternative for the evaluation of enrofloxacin tablets.

  1. A Proposal on the Quantitative Homogeneity Analysis Method of SEM Images for Material Inspections

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Song Hyun; Kim, Jong Woo; Shin, Chang Ho [Hanyang University, Seoul (Korea, Republic of); Choi, Jung-Hoon; Cho, In-Hak; Park, Hwan Seo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    A scanning electron microscope (SEM) is a method to inspect the surface microstructure of materials. The SEM uses electron beams for imaging high magnifications of material surfaces; therefore, various chemical analyses can be performed from the SEM images. Therefore, it is widely used for the material inspection, chemical characteristic analysis, and biological analysis. For the nuclear criticality analysis field, it is an important parameter to check the homogeneity of the compound material for using it in the nuclear system. In our previous study, the SEM was tried to use for the homogeneity analysis of the materials. In this study, a quantitative homogeneity analysis method of SEM images is proposed for the material inspections. The method is based on the stochastic analysis method with the information of the grayscales of the SEM images.

  2. A Proposal on the Quantitative Homogeneity Analysis Method of SEM Images for Material Inspections

    International Nuclear Information System (INIS)

    Kim, Song Hyun; Kim, Jong Woo; Shin, Chang Ho; Choi, Jung-Hoon; Cho, In-Hak; Park, Hwan Seo

    2015-01-01

    A scanning electron microscope (SEM) is a method to inspect the surface microstructure of materials. The SEM uses electron beams for imaging high magnifications of material surfaces; therefore, various chemical analyses can be performed from the SEM images. Therefore, it is widely used for the material inspection, chemical characteristic analysis, and biological analysis. For the nuclear criticality analysis field, it is an important parameter to check the homogeneity of the compound material for using it in the nuclear system. In our previous study, the SEM was tried to use for the homogeneity analysis of the materials. In this study, a quantitative homogeneity analysis method of SEM images is proposed for the material inspections. The method is based on the stochastic analysis method with the information of the grayscales of the SEM images

  3. A Simple Linear Regression Method for Quantitative Trait Loci Linkage Analysis With Censored Observations

    OpenAIRE

    Anderson, Carl A.; McRae, Allan F.; Visscher, Peter M.

    2006-01-01

    Standard quantitative trait loci (QTL) mapping techniques commonly assume that the trait is both fully observed and normally distributed. When considering survival or age-at-onset traits these assumptions are often incorrect. Methods have been developed to map QTL for survival traits; however, they are both computationally intensive and not available in standard genome analysis software packages. We propose a grouped linear regression method for the analysis of continuous survival data. Using...

  4. [A new method of calibration and positioning in quantitative analysis of multicomponents by single marker].

    Science.gov (United States)

    He, Bing; Yang, Shi-Yan; Zhang, Yan

    2012-12-01

    This paper aims to establish a new method of calibration and positioning in quantitative analysis of multicomponents by single marker (QAMS), using Shuanghuanglian oral liquid as the research object. Establishing relative correction factors with reference chlorogenic acid to other 11 active components (neochlorogenic acid, cryptochlorogenic acid, cafferic acid, forsythoside A, scutellarin, isochlorogenic acid B, isochlorogenic acid A, isochlorogenic acid C, baicalin and phillyrin wogonoside) in Shuanghuanglian oral liquid by 3 correction methods (multipoint correction, slope correction and quantitative factor correction). At the same time chromatographic peak was positioned by linear regression method. Only one standard uas used to determine the content of 12 components in Shuanghuanglian oral liquid, in stead of needing too many reference substance in quality control. The results showed that within the linear ranges, no significant differences were found in the quantitative results of 12 active constituents in 3 batches of Shuanghuanglian oral liquid determined by 3 correction methods and external standard method (ESM) or standard curve method (SCM). And this method is simpler and quicker than literature methods. The results were accurate and reliable, and had good reproducibility. While the positioning chromatographic peaks by linear regression method was more accurate than relative retention time in literature. The slope and the quantitative factor correction controlling the quality of Chinese traditional medicine is feasible and accurate.

  5. Quantitative analysis of untreated bio-samples

    International Nuclear Information System (INIS)

    Sera, K.; Futatsugawa, S.; Matsuda, K.

    1999-01-01

    A standard-free method of quantitative analysis for untreated samples has been developed. For hair samples, measurements were performed by irradiating with a proton beam a few hairs as they are, and quantitative analysis was carried out by means of a standard-free method developed by ourselves. First, quantitative values of concentration of zinc were derived, then concentration of other elements was obtained by regarding zinc as an internal standard. As the result, values of concentration of sulphur for 40 samples agree well with the average value for a typical Japanese and also with each other within 20%, and validity of the present method could be confirmed. Accuracy was confirmed by comparing the results with those obtained by the usual internal standard method, too. For the purpose of a surface analysis of a bone sample, a very small incidence angle of the proton beam was used, so that both energy loss of the projectile and self-absorption of X-rays become negligible. As the result, consistent values of concentration for many elements were obtained by the standard-free method

  6. Quantitative Methods for Molecular Diagnostic and Therapeutic Imaging

    OpenAIRE

    Li, Quanzheng

    2013-01-01

    This theme issue provides an overview on the basic quantitative methods, an in-depth discussion on the cutting-edge quantitative analysis approaches as well as their applications for both static and dynamic molecular diagnostic and therapeutic imaging.

  7. Quantitative phase analysis of uranium carbide from x-ray diffraction data using the Rietveld method

    International Nuclear Information System (INIS)

    Singh Mudher, K.D.; Krishnan, K.

    2003-01-01

    Quantitative phase analysis of a uranium carbide sample was carried out from the x-ray diffraction data by Rietveld profile fitting method. The method does not require the addition of any reference material. The percentage of UC, UC 2 and UO 2 phases in the sample were determined. (author)

  8. Implantation of the method of quantitative analysis by proton induced X-ray analysis and application to the analysis of aerosols

    International Nuclear Information System (INIS)

    Margulis, W.

    1977-09-01

    Fundamental aspects for the implementation of the method of quantitative analysis by proton induced X-ray spectroscopy are discussed. The calibration of the system was made by determining a response coefficient for selected elements, both by irradiating known amounts of these elements as well as by the use of theoretical and experimental parameters. The results obtained by these two methods agree within 5% for the analysed elements. A computer based technique of spectrum decomposition was developed to facilitate routine analysis. Finally, aerosol samples were measured as an example of a possible application of the method, and the results are discussed. (Author) [pt

  9. A General Method for Targeted Quantitative Cross-Linking Mass Spectrometry.

    Directory of Open Access Journals (Sweden)

    Juan D Chavez

    Full Text Available Chemical cross-linking mass spectrometry (XL-MS provides protein structural information by identifying covalently linked proximal amino acid residues on protein surfaces. The information gained by this technique is complementary to other structural biology methods such as x-ray crystallography, NMR and cryo-electron microscopy[1]. The extension of traditional quantitative proteomics methods with chemical cross-linking can provide information on the structural dynamics of protein structures and protein complexes. The identification and quantitation of cross-linked peptides remains challenging for the general community, requiring specialized expertise ultimately limiting more widespread adoption of the technique. We describe a general method for targeted quantitative mass spectrometric analysis of cross-linked peptide pairs. We report the adaptation of the widely used, open source software package Skyline, for the analysis of quantitative XL-MS data as a means for data analysis and sharing of methods. We demonstrate the utility and robustness of the method with a cross-laboratory study and present data that is supported by and validates previously published data on quantified cross-linked peptide pairs. This advance provides an easy to use resource so that any lab with access to a LC-MS system capable of performing targeted quantitative analysis can quickly and accurately measure dynamic changes in protein structure and protein interactions.

  10. Applying quantitative benefit-risk analysis to aid regulatory decision making in diagnostic imaging: methods, challenges, and opportunities.

    Science.gov (United States)

    Agapova, Maria; Devine, Emily Beth; Bresnahan, Brian W; Higashi, Mitchell K; Garrison, Louis P

    2014-09-01

    Health agencies making regulatory marketing-authorization decisions use qualitative and quantitative approaches to assess expected benefits and expected risks associated with medical interventions. There is, however, no universal standard approach that regulatory agencies consistently use to conduct benefit-risk assessment (BRA) for pharmaceuticals or medical devices, including for imaging technologies. Economics, health services research, and health outcomes research use quantitative approaches to elicit preferences of stakeholders, identify priorities, and model health conditions and health intervention effects. Challenges to BRA in medical devices are outlined, highlighting additional barriers in radiology. Three quantitative methods--multi-criteria decision analysis, health outcomes modeling and stated-choice survey--are assessed using criteria that are important in balancing benefits and risks of medical devices and imaging technologies. To be useful in regulatory BRA, quantitative methods need to: aggregate multiple benefits and risks, incorporate qualitative considerations, account for uncertainty, and make clear whose preferences/priorities are being used. Each quantitative method performs differently across these criteria and little is known about how BRA estimates and conclusions vary by approach. While no specific quantitative method is likely to be the strongest in all of the important areas, quantitative methods may have a place in BRA of medical devices and radiology. Quantitative BRA approaches have been more widely applied in medicines, with fewer BRAs in devices. Despite substantial differences in characteristics of pharmaceuticals and devices, BRA methods may be as applicable to medical devices and imaging technologies as they are to pharmaceuticals. Further research to guide the development and selection of quantitative BRA methods for medical devices and imaging technologies is needed. Copyright © 2014 AUR. Published by Elsevier Inc. All rights

  11. Solution identification and quantitative analysis of fiber-capacitive drop analyzer based on multivariate statistical methods

    Science.gov (United States)

    Chen, Zhe; Qiu, Zurong; Huo, Xinming; Fan, Yuming; Li, Xinghua

    2017-03-01

    A fiber-capacitive drop analyzer is an instrument which monitors a growing droplet to produce a capacitive opto-tensiotrace (COT). Each COT is an integration of fiber light intensity signals and capacitance signals and can reflect the unique physicochemical property of a liquid. In this study, we propose a solution analytical and concentration quantitative method based on multivariate statistical methods. Eight characteristic values are extracted from each COT. A series of COT characteristic values of training solutions at different concentrations compose a data library of this kind of solution. A two-stage linear discriminant analysis is applied to analyze different solution libraries and establish discriminant functions. Test solutions can be discriminated by these functions. After determining the variety of test solutions, Spearman correlation test and principal components analysis are used to filter and reduce dimensions of eight characteristic values, producing a new representative parameter. A cubic spline interpolation function is built between the parameters and concentrations, based on which we can calculate the concentration of the test solution. Methanol, ethanol, n-propanol, and saline solutions are taken as experimental subjects in this paper. For each solution, nine or ten different concentrations are chosen to be the standard library, and the other two concentrations compose the test group. By using the methods mentioned above, all eight test solutions are correctly identified and the average relative error of quantitative analysis is 1.11%. The method proposed is feasible which enlarges the applicable scope of recognizing liquids based on the COT and improves the concentration quantitative precision, as well.

  12. Development of Three Methods for Simultaneous Quantitative ...

    African Journals Online (AJOL)

    Development of Three Methods for Simultaneous Quantitative Determination of Chlorpheniramine Maleate and Dexamethasone in the Presence of Parabens in ... Tropical Journal of Pharmaceutical Research ... Results: All the proposed methods were successfully applied to the analysis of raw materials and dosage form.

  13. Quantitative analysis chemistry

    International Nuclear Information System (INIS)

    Ko, Wansuk; Lee, Choongyoung; Jun, Kwangsik; Hwang, Taeksung

    1995-02-01

    This book is about quantitative analysis chemistry. It is divided into ten chapters, which deal with the basic conception of material with the meaning of analysis chemistry and SI units, chemical equilibrium, basic preparation for quantitative analysis, introduction of volumetric analysis, acid-base titration of outline and experiment examples, chelate titration, oxidation-reduction titration with introduction, titration curve, and diazotization titration, precipitation titration, electrometric titration and quantitative analysis.

  14. Acceptability criteria for linear dependence in validating UV-spectrophotometric methods of quantitative determination in forensic and toxicological analysis

    Directory of Open Access Journals (Sweden)

    L. Yu. Klimenko

    2014-08-01

    Full Text Available Introduction. This article is the result of authors’ research in the field of development of the approaches to validation of quantitative determination methods for purposes of forensic and toxicological analysis and devoted to the problem of acceptability criteria formation for validation parameter «linearity/calibration model». The aim of research. The purpose of this paper is to analyse the present approaches to acceptability estimation of the calibration model chosen for method description according to the requirements of the international guidances, to form the own approaches to acceptability estimation of the linear dependence when carrying out the validation of UV-spectrophotometric methods of quantitative determination for forensic and toxicological analysis. Materials and methods. UV-spectrophotometric method of doxylamine quantitative determination in blood. Results. The approaches to acceptability estimation of calibration models when carrying out the validation of bioanalytical methods is stated in international papers, namely «Guidance for Industry: Bioanalytical method validation» (U.S. FDA, 2001, «Standard Practices for Method Validation in Forensic Toxicology» (SWGTOX, 2012, «Guidance for the Validation of Analytical Methodology and Calibration of Equipment used for Testing of Illicit Drugs in Seized Materials and Biological Specimens» (UNODC, 2009 and «Guideline on validation of bioanalytical methods» (ЕМА, 2011 have been analysed. It has been suggested to be guided by domestic developments in the field of validation of analysis methods for medicines and, particularly, by the approaches to validation methods in the variant of the calibration curve method for forming the acceptability criteria of the obtained linear dependences when carrying out the validation of UV-spectrophotometric methods of quantitative determination for forensic and toxicological analysis. The choice of the method of calibration curve is

  15. [A new method of processing quantitative PCR data].

    Science.gov (United States)

    Ke, Bing-Shen; Li, Guang-Yun; Chen, Shi-Min; Huang, Xiang-Yan; Chen, Ying-Jian; Xu, Jun

    2003-05-01

    Today standard PCR can't satisfy the need of biotechnique development and clinical research any more. After numerous dynamic research, PE company found there is a linear relation between initial template number and cycling time when the accumulating fluorescent product is detectable.Therefore,they developed a quantitative PCR technique to be used in PE7700 and PE5700. But the error of this technique is too great to satisfy the need of biotechnique development and clinical research. A better quantitative PCR technique is needed. The mathematical model submitted here is combined with the achievement of relative science,and based on the PCR principle and careful analysis of molecular relationship of main members in PCR reaction system. This model describes the function relation between product quantity or fluorescence intensity and initial template number and other reaction conditions, and can reflect the accumulating rule of PCR product molecule accurately. Accurate quantitative PCR analysis can be made use this function relation. Accumulated PCR product quantity can be obtained from initial template number. Using this model to do quantitative PCR analysis,result error is only related to the accuracy of fluorescence intensity or the instrument used. For an example, when the fluorescence intensity is accurate to 6 digits and the template size is between 100 to 1,000,000, the quantitative result accuracy will be more than 99%. The difference of result error is distinct using same condition,same instrument but different analysis method. Moreover,if the PCR quantitative analysis system is used to process data, it will get result 80 times of accuracy than using CT method.

  16. A novel baseline correction method using convex optimization framework in laser-induced breakdown spectroscopy quantitative analysis

    Science.gov (United States)

    Yi, Cancan; Lv, Yong; Xiao, Han; Ke, Ke; Yu, Xun

    2017-12-01

    For laser-induced breakdown spectroscopy (LIBS) quantitative analysis technique, baseline correction is an essential part for the LIBS data preprocessing. As the widely existing cases, the phenomenon of baseline drift is generated by the fluctuation of laser energy, inhomogeneity of sample surfaces and the background noise, which has aroused the interest of many researchers. Most of the prevalent algorithms usually need to preset some key parameters, such as the suitable spline function and the fitting order, thus do not have adaptability. Based on the characteristics of LIBS, such as the sparsity of spectral peaks and the low-pass filtered feature of baseline, a novel baseline correction and spectral data denoising method is studied in this paper. The improved technology utilizes convex optimization scheme to form a non-parametric baseline correction model. Meanwhile, asymmetric punish function is conducted to enhance signal-noise ratio (SNR) of the LIBS signal and improve reconstruction precision. Furthermore, an efficient iterative algorithm is applied to the optimization process, so as to ensure the convergence of this algorithm. To validate the proposed method, the concentration analysis of Chromium (Cr),Manganese (Mn) and Nickel (Ni) contained in 23 certified high alloy steel samples is assessed by using quantitative models with Partial Least Squares (PLS) and Support Vector Machine (SVM). Because there is no prior knowledge of sample composition and mathematical hypothesis, compared with other methods, the method proposed in this paper has better accuracy in quantitative analysis, and fully reflects its adaptive ability.

  17. Quantitative analysis of drug distribution by ambient mass spectrometry imaging method with signal extinction normalization strategy and inkjet-printing technology.

    Science.gov (United States)

    Luo, Zhigang; He, Jingjing; He, Jiuming; Huang, Lan; Song, Xiaowei; Li, Xin; Abliz, Zeper

    2018-03-01

    Quantitative mass spectrometry imaging (MSI) is a robust approach that provides both quantitative and spatial information for drug candidates' research. However, because of complicated signal suppression and interference, acquiring accurate quantitative information from MSI data remains a challenge, especially for whole-body tissue sample. Ambient MSI techniques using spray-based ionization appear to be ideal for pharmaceutical quantitative MSI analysis. However, it is more challenging, as it involves almost no sample preparation and is more susceptible to ion suppression/enhancement. Herein, based on our developed air flow-assisted desorption electrospray ionization (AFADESI)-MSI technology, an ambient quantitative MSI method was introduced by integrating inkjet-printing technology with normalization of the signal extinction coefficient (SEC) using the target compound itself. The method utilized a single calibration curve to quantify multiple tissue types. Basic blue 7 and an antitumor drug candidate (S-(+)-deoxytylophorinidine, CAT) were chosen to initially validate the feasibility and reliability of the quantitative MSI method. Rat tissue sections (heart, kidney, and brain) administered with CAT was then analyzed. The quantitative MSI analysis results were cross-validated by LC-MS/MS analysis data of the same tissues. The consistency suggests that the approach is able to fast obtain the quantitative MSI data without introducing interference into the in-situ environment of the tissue sample, and is potential to provide a high-throughput, economical and reliable approach for drug discovery and development. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Quantitative Moessbauer analysis

    International Nuclear Information System (INIS)

    Collins, R.L.

    1978-01-01

    The quantitative analysis of Moessbauer data, as in the measurement of Fe 3+ /Fe 2+ concentration, has not been possible because of the different mean square velocities (x 2 ) of Moessbauer nuclei at chemically different sites. A method is now described which, based on Moessbauer data at several temperatures, permits the comparison of absorption areas at (x 2 )=0. (Auth.)

  19. Full quantitative phase analysis of hydrated lime using the Rietveld method

    Energy Technology Data Exchange (ETDEWEB)

    Lassinantti Gualtieri, Magdalena, E-mail: magdalena.gualtieri@unimore.it [Dipartimento Ingegneria dei Materiali e dell' Ambiente, Universita Degli Studi di Modena e Reggio Emilia, Via Vignolese 905/a, I-41100 Modena (Italy); Romagnoli, Marcello; Miselli, Paola; Cannio, Maria [Dipartimento Ingegneria dei Materiali e dell' Ambiente, Universita Degli Studi di Modena e Reggio Emilia, Via Vignolese 905/a, I-41100 Modena (Italy); Gualtieri, Alessandro F. [Dipartimento di Scienze della Terra, Universita Degli Studi di Modena e Reggio Emilia, I-41100 Modena (Italy)

    2012-09-15

    Full quantitative phase analysis (FQPA) using X-ray powder diffraction and Rietveld refinements is a well-established method for the characterization of various hydraulic binders such as Portland cement and hydraulic limes. In this paper, the Rietveld method is applied to hydrated lime, a non-hydraulic traditional binder. The potential presence of an amorphous phase in this material is generally ignored. Both synchrotron radiation and a conventional X-ray source were used for data collection. The applicability of the developed control file for the Rietveld refinements was investigated using samples spiked with glass. The results were cross-checked by other independent methods such as thermal and chemical analyses. The sample microstructure was observed by transmission electron microscopy. It was found that the consistency between the different methods was satisfactory, supporting the validity of FQPA for this material. For the samples studied in this work, the amount of amorphous material was in the range 2-15 wt.%.

  20. Full quantitative phase analysis of hydrated lime using the Rietveld method

    International Nuclear Information System (INIS)

    Lassinantti Gualtieri, Magdalena; Romagnoli, Marcello; Miselli, Paola; Cannio, Maria; Gualtieri, Alessandro F.

    2012-01-01

    Full quantitative phase analysis (FQPA) using X-ray powder diffraction and Rietveld refinements is a well-established method for the characterization of various hydraulic binders such as Portland cement and hydraulic limes. In this paper, the Rietveld method is applied to hydrated lime, a non-hydraulic traditional binder. The potential presence of an amorphous phase in this material is generally ignored. Both synchrotron radiation and a conventional X-ray source were used for data collection. The applicability of the developed control file for the Rietveld refinements was investigated using samples spiked with glass. The results were cross-checked by other independent methods such as thermal and chemical analyses. The sample microstructure was observed by transmission electron microscopy. It was found that the consistency between the different methods was satisfactory, supporting the validity of FQPA for this material. For the samples studied in this work, the amount of amorphous material was in the range 2–15 wt.%.

  1. An improved method for quantitative magneto-optical analysis of superconductors

    International Nuclear Information System (INIS)

    Laviano, F; Botta, D; Chiodoni, A; Gerbaldo, R; Ghigo, G; Gozzelino, L; Zannella, S; Mezzetti, E

    2003-01-01

    We report on the analysis method to extract quantitative local electrodynamics in superconductors by means of the magneto-optical technique. First of all, we discuss the calibration procedure to convert the local light intensity values into magnetic induction field distribution and start focusing on the role played by the generally disregarded magnetic induction components parallel to the indicator film plane (in-plane field effect). To account for the reliability of the whole technique, the method used to reconstruct the electrical current density distribution is reported, together with a numerical test example. The methodology is applied to measure local magnetic field and current distributions on a typical YBa 2 Cu 3 O 7-x good quality film. We show how the in-plane field influences the MO measurements, after which we present an algorithm to account for the in-plane field components. The meaningful impact of the correction on the experimental results is shown. Afterwards, we discuss some aspects about the electrodynamics of the superconducting sample

  2. ADVANCING THE STUDY OF VIOLENCE AGAINST WOMEN USING MIXED METHODS: INTEGRATING QUALITATIVE METHODS INTO A QUANTITATIVE RESEARCH PROGRAM

    Science.gov (United States)

    Testa, Maria; Livingston, Jennifer A.; VanZile-Tamsen, Carol

    2011-01-01

    A mixed methods approach, combining quantitative with qualitative data methods and analysis, offers a promising means of advancing the study of violence. Integrating semi-structured interviews and qualitative analysis into a quantitative program of research on women’s sexual victimization has resulted in valuable scientific insight and generation of novel hypotheses for testing. This mixed methods approach is described and recommendations for integrating qualitative data into quantitative research are provided. PMID:21307032

  3. Sample normalization methods in quantitative metabolomics.

    Science.gov (United States)

    Wu, Yiman; Li, Liang

    2016-01-22

    To reveal metabolomic changes caused by a biological event in quantitative metabolomics, it is critical to use an analytical tool that can perform accurate and precise quantification to examine the true concentration differences of individual metabolites found in different samples. A number of steps are involved in metabolomic analysis including pre-analytical work (e.g., sample collection and storage), analytical work (e.g., sample analysis) and data analysis (e.g., feature extraction and quantification). Each one of them can influence the quantitative results significantly and thus should be performed with great care. Among them, the total sample amount or concentration of metabolites can be significantly different from one sample to another. Thus, it is critical to reduce or eliminate the effect of total sample amount variation on quantification of individual metabolites. In this review, we describe the importance of sample normalization in the analytical workflow with a focus on mass spectrometry (MS)-based platforms, discuss a number of methods recently reported in the literature and comment on their applicability in real world metabolomics applications. Sample normalization has been sometimes ignored in metabolomics, partially due to the lack of a convenient means of performing sample normalization. We show that several methods are now available and sample normalization should be performed in quantitative metabolomics where the analyzed samples have significant variations in total sample amounts. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Quantitative analysis of Tl-201 myocardial perfusion image with special reference to circumferential profile method

    Energy Technology Data Exchange (ETDEWEB)

    Miyanaga, Hajime [Kyoto Prefectural Univ. of Medicine (Japan)

    1982-08-01

    A quantitative analysis of thallium-201 myocardial perfusion image (MPI) was attempted by using circumferential profile method (CPM) and the first purpose of this study is to assess the clinical utility of this method for the detection of myocardial ischemia. In patients with coronary artery disease, CPM analysis to exercise T1-MPI showed high sensitivity (9/12, 75%) and specificity (9/9, 100%), whereas exercise ECG showed high sensitivity (9/12, 75%), but relatively low specificity (7/9, 78%). In patients with myocardial infarction, CPM also showed high sensitivity (34/38, 89%) for the detection of myocardial necrosis, compared with visual interpretation (31/38, 81%) and with ECG (31/38, 81%). Defect score was correlated well with the number of abnormal Q waves. In exercise study, CPM was also sensitive to the change of perfusion defect in T1-MPI produced by exercise. So the results indicate that CPM is a good method not only quantitatively but also objectively to analyze T1-MPI. Although ECG is the most commonly used diagnostic tool for ischemic heart disease, several exercise induced ischemic changes in ECG have been still on discussion as criteria. So the second purpose of this study is to evaluate these ischemic ECG changes by exercise T1-MPI analized quantitatively. ST depression (ischemic 1 mm and junctional 2 mm or more), ST elevation (1 mm or more), and coronary T wave reversion in exercise ECG were though to be ischemic changes.

  5. A method for the quantitative analysis of heavy elements by X-ray fluorescence

    International Nuclear Information System (INIS)

    Souza Caillaux, Z. de

    1981-01-01

    A study of quantitative analysis methodology by X-ray fluorescence analysis is presented. With no damage to precision it makes possible an analysis of heavy elements in samples with the form and texture as they present themselves. Some binary alloys were examined such as: FeCo; CuNi; CuZn; AgCd; AgPd; AuPt e PtIr. The possibility of application of this method is based on the compromise solutIon of wave lengths and the intensity of the homologous emission and absorption edges of constituents with the quantic efficiency of the detector, the dispersion and the wave lenght resolution of crystal analyser, and the uniformity of the excitation intensity. (Author) [pt

  6. Optimization method for quantitative calculation of clay minerals in soil

    Indian Academy of Sciences (India)

    However, no reliable method for quantitative analysis of clay minerals has been established so far. In this study, an attempt was made to propose an optimization method for the quantitative ... 2. Basic principles. The mineralogical constitution of soil is rather complex. ... K2O, MgO, and TFe as variables for the calculation.

  7. Quantitative phase analysis in industrial research

    International Nuclear Information System (INIS)

    Ahmad Monshi

    1996-01-01

    X-Ray Diffraction (XRD) is the only technique able to identify phase and all the other analytical techniques give information about the elements. Quantitative phase analysis of minerals and industrial products is logically the next step after a qualitative examination and is of great importance in industrial research. Since the application of XRD in industry, early in this century, workers were trying to develop quantitative XRD methods. In this paper some of the important methods are briefly discussed and partly compared. These methods are Internal Standard, Known Additions, Double Dilution, External Standard, Direct Comparison, Diffraction Absorption and Ratio of Slopes

  8. Quantitative analysis of myocardial tissue with digital autofluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Thomas Jensen

    2016-01-01

    Full Text Available Background: The opportunity offered by whole slide scanners of automated histological analysis implies an ever increasing importance of digital pathology. To go beyond the importance of conventional pathology, however, digital pathology may need a basic histological starting point similar to that of hematoxylin and eosin staining in conventional pathology. This study presents an automated fluorescence-based microscopy approach providing highly detailed morphological data from unstained microsections. This data may provide a basic histological starting point from which further digital analysis including staining may benefit. Methods: This study explores the inherent tissue fluorescence, also known as autofluorescence, as a mean to quantitate cardiac tissue components in histological microsections. Data acquisition using a commercially available whole slide scanner and an image-based quantitation algorithm are presented. Results: It is shown that the autofluorescence intensity of unstained microsections at two different wavelengths is a suitable starting point for automated digital analysis of myocytes, fibrous tissue, lipofuscin, and the extracellular compartment. The output of the method is absolute quantitation along with accurate outlines of above-mentioned components. The digital quantitations are verified by comparison to point grid quantitations performed on the microsections after Van Gieson staining. Conclusion: The presented method is amply described as a prestain multicomponent quantitation and outlining tool for histological sections of cardiac tissue. The main perspective is the opportunity for combination with digital analysis of stained microsections, for which the method may provide an accurate digital framework.

  9. Interlaboratory validation of quantitative duplex real-time PCR method for screening analysis of genetically modified maize.

    Science.gov (United States)

    Takabatake, Reona; Koiwa, Tomohiro; Kasahara, Masaki; Takashima, Kaori; Futo, Satoshi; Minegishi, Yasutaka; Akiyama, Hiroshi; Teshima, Reiko; Oguchi, Taichi; Mano, Junichi; Furui, Satoshi; Kitta, Kazumi

    2011-01-01

    To reduce the cost and time required to routinely perform the genetically modified organism (GMO) test, we developed a duplex quantitative real-time PCR method for a screening analysis simultaneously targeting an event-specific segment for GA21 and Cauliflower Mosaic Virus 35S promoter (P35S) segment [Oguchi et al., J. Food Hyg. Soc. Japan, 50, 117-125 (2009)]. To confirm the validity of the method, an interlaboratory collaborative study was conducted. In the collaborative study, conversion factors (Cfs), which are required to calculate the GMO amount (%), were first determined for two real-time PCR instruments, the ABI PRISM 7900HT and the ABI PRISM 7500. A blind test was then conducted. The limit of quantitation for both GA21 and P35S was estimated to be 0.5% or less. The trueness and precision were evaluated as the bias and reproducibility of the relative standard deviation (RSD(R)). The determined bias and RSD(R) were each less than 25%. We believe the developed method would be useful for the practical screening analysis of GM maize.

  10. Multivariat least-squares methods applied to the quantitative spectral analysis of multicomponent samples

    International Nuclear Information System (INIS)

    Haaland, D.M.; Easterling, R.G.; Vopicka, D.A.

    1985-01-01

    In an extension of earlier work, weighted multivariate least-squares methods of quantitative FT-IR analysis have been developed. A linear least-squares approximation to nonlinearities in the Beer-Lambert law is made by allowing the reference spectra to be a set of known mixtures, The incorporation of nonzero intercepts in the relation between absorbance and concentration further improves the approximation of nonlinearities while simultaneously accounting for nonzero spectra baselines. Pathlength variations are also accommodated in the analysis, and under certain conditions, unknown sample pathlengths can be determined. All spectral data are used to improve the precision and accuracy of the estimated concentrations. During the calibration phase of the analysis, pure component spectra are estimated from the standard mixture spectra. These can be compared with the measured pure component spectra to determine which vibrations experience nonlinear behavior. In the predictive phase of the analysis, the calculated spectra are used in our previous least-squares analysis to estimate sample component concentrations. These methods were applied to the analysis of the IR spectra of binary mixtures of esters. Even with severely overlapping spectral bands and nonlinearities in the Beer-Lambert law, the average relative error in the estimated concentration was <1%

  11. Quantitative Auger analysis of Nb-Ge superconducting alloys

    International Nuclear Information System (INIS)

    Buitrago, R.H.

    1980-01-01

    The feasibility of using Auger electron analysis for quantitative analysis was investigated by studying Nb 3 Ge thin-film Auger data with different approaches. A method base on elemental standards gave consistent quantitative values with reported Nb-Ge data. Alloy sputter yields were also calculated and results were consistent with those for pure elements

  12. A simple linear regression method for quantitative trait loci linkage analysis with censored observations.

    Science.gov (United States)

    Anderson, Carl A; McRae, Allan F; Visscher, Peter M

    2006-07-01

    Standard quantitative trait loci (QTL) mapping techniques commonly assume that the trait is both fully observed and normally distributed. When considering survival or age-at-onset traits these assumptions are often incorrect. Methods have been developed to map QTL for survival traits; however, they are both computationally intensive and not available in standard genome analysis software packages. We propose a grouped linear regression method for the analysis of continuous survival data. Using simulation we compare this method to both the Cox and Weibull proportional hazards models and a standard linear regression method that ignores censoring. The grouped linear regression method is of equivalent power to both the Cox and Weibull proportional hazards methods and is significantly better than the standard linear regression method when censored observations are present. The method is also robust to the proportion of censored individuals and the underlying distribution of the trait. On the basis of linear regression methodology, the grouped linear regression model is computationally simple and fast and can be implemented readily in freely available statistical software.

  13. Laser-induced Breakdown spectroscopy quantitative analysis method via adaptive analytical line selection and relevance vector machine regression model

    International Nuclear Information System (INIS)

    Yang, Jianhong; Yi, Cancan; Xu, Jinwu; Ma, Xianghong

    2015-01-01

    A new LIBS quantitative analysis method based on analytical line adaptive selection and Relevance Vector Machine (RVM) regression model is proposed. First, a scheme of adaptively selecting analytical line is put forward in order to overcome the drawback of high dependency on a priori knowledge. The candidate analytical lines are automatically selected based on the built-in characteristics of spectral lines, such as spectral intensity, wavelength and width at half height. The analytical lines which will be used as input variables of regression model are determined adaptively according to the samples for both training and testing. Second, an LIBS quantitative analysis method based on RVM is presented. The intensities of analytical lines and the elemental concentrations of certified standard samples are used to train the RVM regression model. The predicted elemental concentration analysis results will be given with a form of confidence interval of probabilistic distribution, which is helpful for evaluating the uncertainness contained in the measured spectra. Chromium concentration analysis experiments of 23 certified standard high-alloy steel samples have been carried out. The multiple correlation coefficient of the prediction was up to 98.85%, and the average relative error of the prediction was 4.01%. The experiment results showed that the proposed LIBS quantitative analysis method achieved better prediction accuracy and better modeling robustness compared with the methods based on partial least squares regression, artificial neural network and standard support vector machine. - Highlights: • Both training and testing samples are considered for analytical lines selection. • The analytical lines are auto-selected based on the built-in characteristics of spectral lines. • The new method can achieve better prediction accuracy and modeling robustness. • Model predictions are given with confidence interval of probabilistic distribution

  14. Quantitative phase analysis by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Hee; Song, Su Ho; Lee, Jin Ho; Shim, Hae Seop [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-06-01

    This study is to apply quantitative phase analysis (QPA) by neutron diffraction to the round robin samples provided by the International Union of Crystallography(IUCr). We measured neutron diffraction patterns for mixed samples which have several different weight percentages and their unique characteristic features. Neutron diffraction method has been known to be superior to its complementary methods such as X-ray or Synchrotron, but it is still accepted as highly reliable under limited conditions or samples. Neutron diffraction has strong capability especially on oxides due to its scattering cross-section of the oxygen and it can become a more strong tool for analysis on the industrial materials with this quantitative phase analysis techniques. By doing this study, we hope not only to do one of instrument performance tests on our HRPD but also to improve our ability on the analysis of neutron diffraction data by comparing our QPA results with others from any advanced reactor facilities. 14 refs., 4 figs., 6 tabs. (Author)

  15. Fundamental and clinical studies on simultaneous, quantitative analysis of hepatobiliary and gastrointestinal scintigrams using double isotope method

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Y; Kakihara, M; Sasaki, M; Tabuse, Y; Takei, N [Wakayama Medical Coll. (Japan)

    1981-04-01

    Double isotope method was applied to carry out simultaneous and quantitative analysis of hepatobiliary and gastrointestinal scintigrams. A scinticamera with parallel collimator for medium energy was connected to a computer to distinguish the two isotopes at a time. 4mCi of sup(99m)Tc-(Sn)-pyridoxylideneisoleucine (Tc-PI) and 200 ..mu..Ci of /sup 111/In-diethylenetriaminepentaacetic acid (In-DTPA) were administrated by i.v. injection and per oral, respectively. Three normal (two women and a man) and 16 patients after the operation of gastric cancer (10 recovered by Roux-en Y method after the total gastrectomy, and 6 recovered after the operation replacing the jejunum between the esophagus and duodenum) were investigated. The process of bile secretion and its mixing with food were followed by the scanning quantitatively. The analysis of time-activity variation at each organ indicated that the replacing operation gave more physiological recovery than that by Roux-en Y method. This method is noninvasive to patients and is promising to follow the process or activity of digestion in any digestive organ after surgery.

  16. Good practices for quantitative bias analysis.

    Science.gov (United States)

    Lash, Timothy L; Fox, Matthew P; MacLehose, Richard F; Maldonado, George; McCandless, Lawrence C; Greenland, Sander

    2014-12-01

    Quantitative bias analysis serves several objectives in epidemiological research. First, it provides a quantitative estimate of the direction, magnitude and uncertainty arising from systematic errors. Second, the acts of identifying sources of systematic error, writing down models to quantify them, assigning values to the bias parameters and interpreting the results combat the human tendency towards overconfidence in research results, syntheses and critiques and the inferences that rest upon them. Finally, by suggesting aspects that dominate uncertainty in a particular research result or topic area, bias analysis can guide efficient allocation of sparse research resources. The fundamental methods of bias analyses have been known for decades, and there have been calls for more widespread use for nearly as long. There was a time when some believed that bias analyses were rarely undertaken because the methods were not widely known and because automated computing tools were not readily available to implement the methods. These shortcomings have been largely resolved. We must, therefore, contemplate other barriers to implementation. One possibility is that practitioners avoid the analyses because they lack confidence in the practice of bias analysis. The purpose of this paper is therefore to describe what we view as good practices for applying quantitative bias analysis to epidemiological data, directed towards those familiar with the methods. We focus on answering questions often posed to those of us who advocate incorporation of bias analysis methods into teaching and research. These include the following. When is bias analysis practical and productive? How does one select the biases that ought to be addressed? How does one select a method to model biases? How does one assign values to the parameters of a bias model? How does one present and interpret a bias analysis?. We hope that our guide to good practices for conducting and presenting bias analyses will encourage

  17. Diagnostic performance of semi-quantitative and quantitative stress CMR perfusion analysis: a meta-analysis.

    Science.gov (United States)

    van Dijk, R; van Assen, M; Vliegenthart, R; de Bock, G H; van der Harst, P; Oudkerk, M

    2017-11-27

    analysis our results show similar diagnostic accuracy comparing anatomical (AUC 0.86(0.83-0.89)) and functional reference standards (AUC 0.88(0.84-0.90)). Only the per territory analysis sensitivity did not show significant heterogeneity. None of the groups showed signs of publication bias. The clinical value of semi-quantitative and quantitative CMR perfusion analysis remains uncertain due to extensive inter-study heterogeneity and large differences in CMR perfusion acquisition protocols, reference standards, and methods of assessment of myocardial perfusion parameters. For wide spread implementation, standardization of CMR perfusion techniques is essential. CRD42016040176 .

  18. Quantitative X-ray analysis of pigments

    International Nuclear Information System (INIS)

    Araujo, M. Marrocos de

    1987-01-01

    The 'matrix-flushing' and the 'adiabatic principle' methods have been applied for the quantitative analysis through X-ray diffraction patterns of pigments and extenders mixtures, frequently used in paint industry. The results obtained have shown the usefulness of these methods, but still ask for improving their accuracy. (Author) [pt

  19. Improved Dynamic Analysis method for quantitative PIXE and SXRF element imaging of complex materials

    International Nuclear Information System (INIS)

    Ryan, C.G.; Laird, J.S.; Fisher, L.A.; Kirkham, R.; Moorhead, G.F.

    2015-01-01

    The Dynamic Analysis (DA) method in the GeoPIXE software provides a rapid tool to project quantitative element images from PIXE and SXRF imaging event data both for off-line analysis and in real-time embedded in a data acquisition system. Initially, it assumes uniform sample composition, background shape and constant model X-ray relative intensities. A number of image correction methods can be applied in GeoPIXE to correct images to account for chemical concentration gradients, differential absorption effects, and to correct images for pileup effects. A new method, applied in a second pass, uses an end-member phase decomposition obtained from the first pass, and DA matrices determined for each end-member, to re-process the event data with each pixel treated as an admixture of end-member terms. This paper describes the new method and demonstrates through examples and Monte-Carlo simulations how it better tracks spatially complex composition and background shape while still benefitting from the speed of DA.

  20. Improved Dynamic Analysis method for quantitative PIXE and SXRF element imaging of complex materials

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, C.G., E-mail: chris.ryan@csiro.au; Laird, J.S.; Fisher, L.A.; Kirkham, R.; Moorhead, G.F.

    2015-11-15

    The Dynamic Analysis (DA) method in the GeoPIXE software provides a rapid tool to project quantitative element images from PIXE and SXRF imaging event data both for off-line analysis and in real-time embedded in a data acquisition system. Initially, it assumes uniform sample composition, background shape and constant model X-ray relative intensities. A number of image correction methods can be applied in GeoPIXE to correct images to account for chemical concentration gradients, differential absorption effects, and to correct images for pileup effects. A new method, applied in a second pass, uses an end-member phase decomposition obtained from the first pass, and DA matrices determined for each end-member, to re-process the event data with each pixel treated as an admixture of end-member terms. This paper describes the new method and demonstrates through examples and Monte-Carlo simulations how it better tracks spatially complex composition and background shape while still benefitting from the speed of DA.

  1. A quantitative analysis of Tl-201 myocardial perfusion image with special reference to circumferential profile method

    International Nuclear Information System (INIS)

    Miyanaga, Hajime

    1982-01-01

    A quantitative analysis of thallium-201 myocardial perfusion image (MPI) was attempted by using circumferential profile method (CPM) and the first purpose of this study is to assess the clinical utility of this method for the detection of myocardial ischemia. In patients with coronary artery disease, CPM analysis to exercise T1-MPI showed high sensitivity (9/12, 75%) and specificity (9/9, 100%), whereas exercise ECG showed high sensitivity (9/12, 75%), but relatively low specificity (7/9, 78%). In patients with myocardial infarction, CPM also showed high sensitivity (34/38, 89%) for the detection of myocardial necrosis, compared with visual interpretation (31/38, 81%) and with ECG (31/38, 81%). Defect score was correlated well with the number of abnormal Q waves. In exercise study, CPM was also sensitive to the change of perfusion defect in T1-MPI produced by exercise. So the results indicate that CPM is a good method not only quantitatively but also objectively to analyze T1-MPI. Although ECG is the most commonly used diagnostic tool for ischemic heart disease, several exercise induced ischemic changes in ECG have been still on discussion as criteria. So the second purpose of this study is to evaluate these ischemic ECG changes by exercise T1-MPI analized quantitatively. ST depression (ischemic 1 mm and junctional 2 mm or more), ST elevation (1 mm or more), and coronary T wave reversion in exercise ECG were though to be ischemic changes. (J.P.N.)

  2. [Reconstituting evaluation methods based on both qualitative and quantitative paradigms].

    Science.gov (United States)

    Miyata, Hiroaki; Okubo, Suguru; Yoshie, Satoru; Kai, Ichiro

    2011-01-01

    Debate about the relationship between quantitative and qualitative paradigms is often muddled and confusing and the clutter of terms and arguments has resulted in the concepts becoming obscure and unrecognizable. In this study we conducted content analysis regarding evaluation methods of qualitative healthcare research. We extracted descriptions on four types of evaluation paradigm (validity/credibility, reliability/credibility, objectivity/confirmability, and generalizability/transferability), and classified them into subcategories. In quantitative research, there has been many evaluation methods based on qualitative paradigms, and vice versa. Thus, it might not be useful to consider evaluation methods of qualitative paradigm are isolated from those of quantitative methods. Choosing practical evaluation methods based on the situation and prior conditions of each study is an important approach for researchers.

  3. Assessment of a synchrotron X-ray method for quantitative analysis of calcium hydroxide

    International Nuclear Information System (INIS)

    Williams, P. Jason; Biernacki, Joseph J.; Bai Jianming; Rawn, Claudia J.

    2003-01-01

    Thermogravimetric analysis (TGA) and quantitative X-ray diffraction (QXRD) are widely used to determine the calcium hydroxide (CH) content in cementitious systems containing blends of Portland cement, fly ash, blast furnace slag, silica fume and other pozzolanic and hydraulic materials. These techniques, however, are destructive to cement samples and subject to various forms of error. While precise weight losses can be measured by TGA, extracting information from samples with multiple overlapping thermal events is difficult. And, however, while QXRD can offer easier deconvolution, the accuracy for components below about 5 wt.% is typically poor when a laboratory X-ray source is used. Furthermore, the destructive nature of both techniques prevents using them to study the in situ hydration of a single contiguous sample for kinetic analysis. In an attempt to overcome these problems, the present research evaluated the use of synchrotron X-rays for quantitative analysis of CH. A synchrotron X-ray source was used to develop calibration data for quantification of the amount of CH in mixtures with fly ash. These data were compared to conventional laboratory XRD data for like samples. While both methods were found to offer good quantification, synchrotron XRD (SXRD) provided a broader range of detectability and higher accuracy than laboratory diffraction and removed the subjectivity as compared to TGA analysis. Further, the sealed glass capillaries used with the synchrotron source provided a nondestructive closed, in situ environment for tracking hydrating specimens from zero to any desired age

  4. The method of quantitative X-ray microanalysis of fine inclusions in copper

    International Nuclear Information System (INIS)

    Morawiec, H.; Kubica, L.; Piszczek, J.

    1978-01-01

    The method of correction for the matrix effect in quantitative x-ray microanalysis was presented. The application of the method was discussed on the example of quantitative analysis of fine inclusions of Cu 2 S and Cu 2 O in copper. (author)

  5. Study of the quantitative analysis approach of maintenance by the Monte Carlo simulation method

    International Nuclear Information System (INIS)

    Shimizu, Takashi

    2007-01-01

    This study is examination of the quantitative valuation by Monte Carlo simulation method of maintenance activities of a nuclear power plant. Therefore, the concept of the quantitative valuation of maintenance that examination was advanced in the Japan Society of Maintenology and International Institute of Universality (IUU) was arranged. Basis examination for quantitative valuation of maintenance was carried out at simple feed water system, by Monte Carlo simulation method. (author)

  6. A Quantitative Method for Localizing User Interface Problems: The D-TEO Method

    Directory of Open Access Journals (Sweden)

    Juha Lamminen

    2009-01-01

    Full Text Available A large array of evaluation methods have been proposed to identify Website usability problems. In log-based evaluation, information about the performance of users is collected and stored into log files, and used to find problems and deficiencies in Web page designs. Most methods require the programming and modeling of large task models, which are cumbersome processes for evaluators. Also, because much statistical data is collected onto log files, recognizing which Web pages require deeper usability analysis is difficult. This paper suggests a novel quantitative method, called the D-TEO, for locating problematic Web pages. This semiautomated method explores the decomposition of interaction tasks of directed information search into elementary operations, deploying two quantitative usability criteria, search success and search time, to reveal how a user navigates within a web of hypertext.

  7. Reactor applications of quantitative diffraction analysis

    International Nuclear Information System (INIS)

    Feguson, I.F.

    1976-09-01

    Current work in quantitative diffraction analysis was presented under the main headings of: thermal systems, fast reactor systems, SGHWR applications and irradiation damage. Preliminary results are included on a comparison of various new instrumental methods of boron analysis as well as preliminary new results on Zircaloy corrosion, and materials transfer in liquid sodium. (author)

  8. A standardless method of quantitative ceramic analysis using X-ray powder diffraction

    International Nuclear Information System (INIS)

    Mazumdar, S.

    1999-01-01

    A new procedure using X-ray powder diffraction data for quantitative estimation of the crystalline as well as the amorphous phase in ceramics is described. Classification of the crystalline and amorphous X-ray scattering was achieved by comparison of the slopes at two successive points of the powder pattern at scattering angles at which the crystalline and amorphous phases superimpose. If the second slope exceeds the first by a stipulated value, the intensity is taken as crystalline; otherwise the scattering is considered as amorphous. Crystalline phase analysis is obtained by linear programming techniques using the concept that each observed X-ray diffraction peak has contributions from n component phases, the proportionate analysis of which is required. The method does not require the measurement of calibration data for use as an internal standard, but knowledge of the approximate crystal structure of each phase of interest in the mixture is necessary. The technique is also helpful in qualitative analysis because each suspected phase is characterized by the probability that it will be present when a reflection zone is considered in which the suspected crystalline phase could contribute. The amorphous phases are determined prior to the crystalline ones. The method is applied to ceramic materials and some results are presented. (orig.)

  9. A novel quantitative analysis method of three-dimensional fluorescence spectra for vegetable oils contents in edible blend oil

    Science.gov (United States)

    Xu, Jing; Wang, Yu-Tian; Liu, Xiao-Fei

    2015-04-01

    Edible blend oil is a mixture of vegetable oils. Eligible blend oil can meet the daily need of two essential fatty acids for human to achieve the balanced nutrition. Each vegetable oil has its different composition, so vegetable oils contents in edible blend oil determine nutritional components in blend oil. A high-precision quantitative analysis method to detect the vegetable oils contents in blend oil is necessary to ensure balanced nutrition for human being. Three-dimensional fluorescence technique is high selectivity, high sensitivity, and high-efficiency. Efficiency extraction and full use of information in tree-dimensional fluorescence spectra will improve the accuracy of the measurement. A novel quantitative analysis is proposed based on Quasi-Monte-Carlo integral to improve the measurement sensitivity and reduce the random error. Partial least squares method is used to solve nonlinear equations to avoid the effect of multicollinearity. The recovery rates of blend oil mixed by peanut oil, soybean oil and sunflower are calculated to verify the accuracy of the method, which are increased, compared the linear method used commonly for component concentration measurement.

  10. Handling large numbers of observation units in three-way methods for the analysis of qualitative and quantitative two-way data

    NARCIS (Netherlands)

    Kiers, Henk A.L.; Marchetti, G.M.

    1994-01-01

    Recently, a number of methods have been proposed for the exploratory analysis of mixtures of qualitative and quantitative variables. In these methods for each variable an object by object similarity matrix is constructed, and these are consequently analyzed by means of three-way methods like

  11. Quantitative Method of Measuring Metastatic Activity

    Science.gov (United States)

    Morrison, Dennis R. (Inventor)

    1999-01-01

    The metastatic potential of tumors can be evaluated by the quantitative detection of urokinase and DNA. The cell sample selected for examination is analyzed for the presence of high levels of urokinase and abnormal DNA using analytical flow cytometry and digital image analysis. Other factors such as membrane associated uroldnase, increased DNA synthesis rates and certain receptors can be used in the method for detection of potentially invasive tumors.

  12. A method for the quantitative metallographic analysis of nuclear fuels (Programme QMA)

    International Nuclear Information System (INIS)

    Moreno, A.; Sari, C.

    1978-01-01

    A method is described for the quantitative analysis of features such as voids, cracks, phases, inclusions and grains distributed on random plane sections of fuel materials. An electronic image analyzer, Quantimet, attached to a MM6 Leitz microscope was used to measure size, area, perimeter and shape of features dispersed in a matrix. The apparatus is driven by a computer which calculates the size, area and perimeter distribution, form factors and orientation of the features as well as the inclusion content of the matrix expressed in weight per cent. A computer programme, QMA, executes the spatial correction of the measured two-dimensional sections and delivers the true distribution of feature sizes in a three-dimensional system

  13. Radioisotopic neutron transmission spectrometry: Quantitative analysis by using partial least-squares method

    International Nuclear Information System (INIS)

    Kim, Jong-Yun; Choi, Yong Suk; Park, Yong Joon; Jung, Sung-Hee

    2009-01-01

    Neutron spectrometry, based on the scattering of high energy fast neutrons from a radioisotope and slowing-down by the light hydrogen atoms, is a useful technique for non-destructive, quantitative measurement of hydrogen content because it has a large measuring volume, and is not affected by temperature, pressure, pH value and color. The most common choice for radioisotope neutron source is 252 Cf or 241 Am-Be. In this study, 252 Cf with a neutron flux of 6.3x10 6 n/s has been used as an attractive neutron source because of its high flux neutron and weak radioactivity. Pulse-height neutron spectra have been obtained by using in-house built radioisotopic neutron spectrometric system equipped with 3 He detector and multi-channel analyzer, including a neutron shield. As a preliminary study, polyethylene block (density of ∼0.947 g/cc and area of 40 cmx25 cm) was used for the determination of hydrogen content by using multivariate calibration models, depending on the thickness of the block. Compared with the results obtained from a simple linear calibration model, partial least-squares regression (PLSR) method offered a better performance in a quantitative data analysis. It also revealed that the PLSR method in a neutron spectrometric system can be promising in the real-time, online monitoring of the powder process to determine the content of any type of molecules containing hydrogen nuclei.

  14. Mixing quantitative with qualitative methods

    DEFF Research Database (Denmark)

    Morrison, Ann; Viller, Stephen; Heck, Tamara

    2017-01-01

    with or are considering, researching, or working with both quantitative and qualitative evaluation methods (in academia or industry), join us in this workshop. In particular, we look at adding quantitative to qualitative methods to build a whole picture of user experience. We see a need to discuss both quantitative...... and qualitative research because there is often a perceived lack of understanding of the rigor involved in each. The workshop will result in a White Paper on the latest developments in this field, within Australia and comparative with international work. We anticipate sharing submissions and workshop outcomes...

  15. A quantitative validated method using liquid chromatography and chemometric analysis for evaluation of raw material oF Maytenus ilicifolia (Schrad. Planch., Celastraceae

    Directory of Open Access Journals (Sweden)

    Flávio Luís Beltrame

    2012-01-01

    Full Text Available The hydroalcoholic extracts prepared from standard leaves of Maytenus ilicifolia and commercial samples of espinheira-santa were evaluated qualitatively (fingerprinting and quantitatively. In this paper, fingerprinting chromatogram coupled with Principal Component Analysis (PCA is described for the metabolomic analysis of standard and commercial espinheira-santa samples. The epicatechin standard was used as an external standard for the development and validation of a quantitative method for the analysis in herbal medicines using a photo diode array detector. This method has been applied for quantification of epicatechin in commercialized herbal medicines sold as espinheira-santa in Brazil and in the standard sample of M. ilicifolia.

  16. [Teaching quantitative methods in public health: the EHESP experience].

    Science.gov (United States)

    Grimaud, Olivier; Astagneau, Pascal; Desvarieux, Moïse; Chambaud, Laurent

    2014-01-01

    Many scientific disciplines, including epidemiology and biostatistics, are used in the field of public health. These quantitative sciences are fundamental tools necessary for the practice of future professionals. What then should be the minimum quantitative sciences training, common to all future public health professionals? By comparing the teaching models developed in Columbia University and those in the National School of Public Health in France, the authors recognize the need to adapt teaching to the specific competencies required for each profession. They insist that all public health professionals, whatever their future career, should be familiar with quantitative methods in order to ensure that decision-making is based on a reflective and critical use of quantitative analysis.

  17. A quantitative validated method using liquid chromatography and chemometric analysis for evaluation of raw material oF Maytenus ilicifolia (Schrad.) Planch., Celastraceae

    OpenAIRE

    Beltrame, Flávio Luís; Mainardes, Rubiana Mara; Khalil, Najeh Maissar; Prestes, Rosilene Aparecida; Nogueira, Alessandro; Demiate, Ivo Mottin; Cass, Quezia Bezerra

    2012-01-01

    The hydroalcoholic extracts prepared from standard leaves of Maytenus ilicifolia and commercial samples of espinheira-santa were evaluated qualitatively (fingerprinting) and quantitatively. In this paper, fingerprinting chromatogram coupled with Principal Component Analysis (PCA) is described for the metabolomic analysis of standard and commercial espinheira-santa samples. The epicatechin standard was used as an external standard for the development and validation of a quantitative method for...

  18. Distance-based microfluidic quantitative detection methods for point-of-care testing.

    Science.gov (United States)

    Tian, Tian; Li, Jiuxing; Song, Yanling; Zhou, Leiji; Zhu, Zhi; Yang, Chaoyong James

    2016-04-07

    Equipment-free devices with quantitative readout are of great significance to point-of-care testing (POCT), which provides real-time readout to users and is especially important in low-resource settings. Among various equipment-free approaches, distance-based visual quantitative detection methods rely on reading the visual signal length for corresponding target concentrations, thus eliminating the need for sophisticated instruments. The distance-based methods are low-cost, user-friendly and can be integrated into portable analytical devices. Moreover, such methods enable quantitative detection of various targets by the naked eye. In this review, we first introduce the concept and history of distance-based visual quantitative detection methods. Then, we summarize the main methods for translation of molecular signals to distance-based readout and discuss different microfluidic platforms (glass, PDMS, paper and thread) in terms of applications in biomedical diagnostics, food safety monitoring, and environmental analysis. Finally, the potential and future perspectives are discussed.

  19. Multicomponent quantitative spectroscopic analysis without reference substances based on ICA modelling.

    Science.gov (United States)

    Monakhova, Yulia B; Mushtakova, Svetlana P

    2017-05-01

    A fast and reliable spectroscopic method for multicomponent quantitative analysis of targeted compounds with overlapping signals in complex mixtures has been established. The innovative analytical approach is based on the preliminary chemometric extraction of qualitative and quantitative information from UV-vis and IR spectral profiles of a calibration system using independent component analysis (ICA). Using this quantitative model and ICA resolution results of spectral profiling of "unknown" model mixtures, the absolute analyte concentrations in multicomponent mixtures and authentic samples were then calculated without reference solutions. Good recoveries generally between 95% and 105% were obtained. The method can be applied to any spectroscopic data that obey the Beer-Lambert-Bouguer law. The proposed method was tested on analysis of vitamins and caffeine in energy drinks and aromatic hydrocarbons in motor fuel with 10% error. The results demonstrated that the proposed method is a promising tool for rapid simultaneous multicomponent analysis in the case of spectral overlap and the absence/inaccessibility of reference materials.

  20. [Progress in stable isotope labeled quantitative proteomics methods].

    Science.gov (United States)

    Zhou, Yuan; Shan, Yichu; Zhang, Lihua; Zhang, Yukui

    2013-06-01

    Quantitative proteomics is an important research field in post-genomics era. There are two strategies for proteome quantification: label-free methods and stable isotope labeling methods which have become the most important strategy for quantitative proteomics at present. In the past few years, a number of quantitative methods have been developed, which support the fast development in biology research. In this work, we discuss the progress in the stable isotope labeling methods for quantitative proteomics including relative and absolute quantitative proteomics, and then give our opinions on the outlook of proteome quantification methods.

  1. Quantitative imaging biomarkers: a review of statistical methods for technical performance assessment.

    Science.gov (United States)

    Raunig, David L; McShane, Lisa M; Pennello, Gene; Gatsonis, Constantine; Carson, Paul L; Voyvodic, James T; Wahl, Richard L; Kurland, Brenda F; Schwarz, Adam J; Gönen, Mithat; Zahlmann, Gudrun; Kondratovich, Marina V; O'Donnell, Kevin; Petrick, Nicholas; Cole, Patricia E; Garra, Brian; Sullivan, Daniel C

    2015-02-01

    Technological developments and greater rigor in the quantitative measurement of biological features in medical images have given rise to an increased interest in using quantitative imaging biomarkers to measure changes in these features. Critical to the performance of a quantitative imaging biomarker in preclinical or clinical settings are three primary metrology areas of interest: measurement linearity and bias, repeatability, and the ability to consistently reproduce equivalent results when conditions change, as would be expected in any clinical trial. Unfortunately, performance studies to date differ greatly in designs, analysis method, and metrics used to assess a quantitative imaging biomarker for clinical use. It is therefore difficult or not possible to integrate results from different studies or to use reported results to design studies. The Radiological Society of North America and the Quantitative Imaging Biomarker Alliance with technical, radiological, and statistical experts developed a set of technical performance analysis methods, metrics, and study designs that provide terminology, metrics, and methods consistent with widely accepted metrological standards. This document provides a consistent framework for the conduct and evaluation of quantitative imaging biomarker performance studies so that results from multiple studies can be compared, contrasted, or combined. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  2. Making Social Work Count: A Curriculum Innovation to Teach Quantitative Research Methods and Statistical Analysis to Undergraduate Social Work Students in the United Kingdom

    Science.gov (United States)

    Teater, Barbra; Roy, Jessica; Carpenter, John; Forrester, Donald; Devaney, John; Scourfield, Jonathan

    2017-01-01

    Students in the United Kingdom (UK) are found to lack knowledge and skills in quantitative research methods. To address this gap, a quantitative research method and statistical analysis curriculum comprising 10 individual lessons was developed, piloted, and evaluated at two universities The evaluation found that BSW students' (N = 81)…

  3. Data from quantitative label free proteomics analysis of rat spleen

    Directory of Open Access Journals (Sweden)

    Khadar Dudekula

    2016-09-01

    Full Text Available The dataset presented in this work has been obtained using a label-free quantitative proteomic analysis of rat spleen. A robust method for extraction of proteins from rat spleen tissue and LC-MS-MS analysis was developed using a urea and SDS-based buffer. Different fractionation methods were compared. A total of 3484 different proteins were identified from the pool of all experiments run in this study (a total of 2460 proteins with at least two peptides. A total of 1822 proteins were identified from nine non-fractionated pulse gels, 2288 proteins and 2864 proteins were identified by SDS-PAGE fractionation into three and five fractions respectively. The proteomics data are deposited in ProteomeXchange Consortium via PRIDE PXD003520, Progenesis and Maxquant output are presented in the supported information. The generated list of proteins under different regimes of fractionation allow assessing the nature of the identified proteins; variability in the quantitative analysis associated with the different sampling strategy and allow defining a proper number of replicates for future quantitative analysis. Keywords: Spleen, Rat, Protein extraction, Label-free quantitative proteomics

  4. Qualitative versus quantitative methods in psychiatric research.

    Science.gov (United States)

    Razafsha, Mahdi; Behforuzi, Hura; Azari, Hassan; Zhang, Zhiqun; Wang, Kevin K; Kobeissy, Firas H; Gold, Mark S

    2012-01-01

    Qualitative studies are gaining their credibility after a period of being misinterpreted as "not being quantitative." Qualitative method is a broad umbrella term for research methodologies that describe and explain individuals' experiences, behaviors, interactions, and social contexts. In-depth interview, focus groups, and participant observation are among the qualitative methods of inquiry commonly used in psychiatry. Researchers measure the frequency of occurring events using quantitative methods; however, qualitative methods provide a broader understanding and a more thorough reasoning behind the event. Hence, it is considered to be of special importance in psychiatry. Besides hypothesis generation in earlier phases of the research, qualitative methods can be employed in questionnaire design, diagnostic criteria establishment, feasibility studies, as well as studies of attitude and beliefs. Animal models are another area that qualitative methods can be employed, especially when naturalistic observation of animal behavior is important. However, since qualitative results can be researcher's own view, they need to be statistically confirmed, quantitative methods. The tendency to combine both qualitative and quantitative methods as complementary methods has emerged over recent years. By applying both methods of research, scientists can take advantage of interpretative characteristics of qualitative methods as well as experimental dimensions of quantitative methods.

  5. Quantitative analysis of patients with celiac disease by video capsule endoscopy: A deep learning method.

    Science.gov (United States)

    Zhou, Teng; Han, Guoqiang; Li, Bing Nan; Lin, Zhizhe; Ciaccio, Edward J; Green, Peter H; Qin, Jing

    2017-06-01

    Celiac disease is one of the most common diseases in the world. Capsule endoscopy is an alternative way to visualize the entire small intestine without invasiveness to the patient. It is useful to characterize celiac disease, but hours are need to manually analyze the retrospective data of a single patient. Computer-aided quantitative analysis by a deep learning method helps in alleviating the workload during analysis of the retrospective videos. Capsule endoscopy clips from 6 celiac disease patients and 5 controls were preprocessed for training. The frames with a large field of opaque extraluminal fluid or air bubbles were removed automatically by using a pre-selection algorithm. Then the frames were cropped and the intensity was corrected prior to frame rotation in the proposed new method. The GoogLeNet is trained with these frames. Then, the clips of capsule endoscopy from 5 additional celiac disease patients and 5 additional control patients are used for testing. The trained GoogLeNet was able to distinguish the frames from capsule endoscopy clips of celiac disease patients vs controls. Quantitative measurement with evaluation of the confidence was developed to assess the severity level of pathology in the subjects. Relying on the evaluation confidence, the GoogLeNet achieved 100% sensitivity and specificity for the testing set. The t-test confirmed the evaluation confidence is significant to distinguish celiac disease patients from controls. Furthermore, it is found that the evaluation confidence may also relate to the severity level of small bowel mucosal lesions. A deep convolutional neural network was established for quantitative measurement of the existence and degree of pathology throughout the small intestine, which may improve computer-aided clinical techniques to assess mucosal atrophy and other etiologies in real-time with videocapsule endoscopy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. A method for the quantitative determination of crystalline phases by X-ray

    Science.gov (United States)

    Petzenhauser, I.; Jaeger, P.

    1988-01-01

    A mineral analysis method is described for rapid quantitative determination of crystalline substances in those cases in which the sample is present in pure form or in a mixture of known composition. With this method there is no need for prior chemical analysis.

  7. Can qualitative and quantitative methods serve complementary purposes for policy research?

    OpenAIRE

    Maxwell, Daniel G.

    1998-01-01

    Qualitative and quantitative methods in social science research have long been separate spheres with little overlap. However, recent innovations have highlighted the complementarity of qualitative and quantitative approaches. The Accra Food and Nutrition Security Study was designed to incorporate the participation of a variety of constituencies in the research, and to rely on a variety of approaches — both qualitative and quantitative — to data collection and analysis. This paper reviews the ...

  8. A quantitative assessment method for the NPP operators' diagnosis of accidents

    International Nuclear Information System (INIS)

    Kim, M. C.; Seong, P. H.

    2003-01-01

    In this research, we developed a quantitative model for the operators' diagnosis of the accident situation when an accident occurs in a nuclear power plant. After identifying the occurrence probabilities of accidents, the unavailabilities of various information sources, and the causal relationship between accidents and information sources, Bayesian network is used for the analysis of the change in the occurrence probabilities of accidents as the operators receive the information related to the status of the plant. The developed method is applied to a simple example case and it turned out that the developed method is a systematic quantitative analysis method which can cope with complex relationship between the accidents and information sources and various variables such accident occurrence probabilities and unavailabilities of various information sources

  9. Quantitative bioanalytical and analytical method development of dibenzazepine derivative, carbamazepine: A review

    Directory of Open Access Journals (Sweden)

    Prasanna A. Datar

    2015-08-01

    Full Text Available Bioanalytical methods are widely used for quantitative estimation of drugs and their metabolites in physiological matrices. These methods could be applied to studies in areas of human clinical pharmacology and toxicology. The major bioanalytical services are method development, method validation and sample analysis (method application. Various methods such as GC, LC–MS/MS, HPLC, HPTLC, micellar electrokinetic chromatography, and UFLC have been used in laboratories for the qualitative and quantitative analysis of carbamazepine in biological samples throughout all phases of clinical research and quality control. The article incorporates various reported methods developed to help analysts in choosing crucial parameters for new method development of carbamazepine and its derivatives and also enumerates metabolites, and impurities reported so far. Keywords: Carbamazepine, HPLC, LC–MS/MS, HPTLC, RP-UFLC, Micellar electrokinetic chromatography

  10. Quantitative Analysis of cardiac SPECT

    International Nuclear Information System (INIS)

    Nekolla, S.G.; Bengel, F.M.

    2004-01-01

    The quantitative analysis of myocardial SPECT images is a powerful tool to extract the highly specific radio tracer uptake in these studies. If compared to normal data bases, the uptake values can be calibrated on an individual basis. Doing so increases the reproducibility of the analysis substantially. Based on the development over the last three decades starting from planar scinitigraphy, this paper discusses the methods used today incorporating the changes due to tomographic image acquisitions. Finally, the limitations of these approaches as well as consequences from most recent hardware developments, commercial analysis packages and a wider view of the description of the left ventricle are discussed. (orig.)

  11. Development of a Univariate Membrane-Based Mid-Infrared Method for Protein Quantitation and Total Lipid Content Analysis of Biological Samples

    Directory of Open Access Journals (Sweden)

    Ivona Strug

    2014-01-01

    Full Text Available Biological samples present a range of complexities from homogeneous purified protein to multicomponent mixtures. Accurate qualification of such samples is paramount to downstream applications. We describe the development of an MIR spectroscopy-based analytical method offering simultaneous protein quantitation (0.25–5 mg/mL and analysis of total lipid or detergent species, as well as the identification of other biomolecules present in biological samples. The method utilizes a hydrophilic PTFE membrane engineered for presentation of aqueous samples in a dried format compatible with fast infrared analysis. Unlike classical quantification techniques, the reported method is amino acid sequence independent and thus applicable to complex samples of unknown composition. By comparison to existing platforms, this MIR-based method enables direct quantification using minimal sample volume (2 µL; it is well-suited where repeat access and limited sample size are critical parameters. Further, accurate results can be derived without specialized training or knowledge of IR spectroscopy. Overall, the simplified application and analysis system provides a more cost-effective alternative to high-throughput IR systems for research laboratories with minimal throughput demands. In summary, the MIR-based system provides a viable alternative to current protein quantitation methods; it also uniquely offers simultaneous qualification of other components, notably lipids and detergents.

  12. Calibration of quantitative neutron radiography method for moisture measurement

    International Nuclear Information System (INIS)

    Nemec, T.; Jeraj, R.

    1999-01-01

    Quantitative measurements of moisture and hydrogenous matter in building materials by neutron radiography (NR) are regularly performed at TRIGA Mark II research of 'Jozef Stefan' Institute in Ljubljana. Calibration of quantitative method is performed using standard brick samples with known moisture content and also with a secondary standard, plexiglas step wedge. In general, the contribution of scattered neutrons to the neutron image is not determined explicitly what introduces an error to the measured signal. Influence of scattered neutrons is significant in regions with high gradients of moisture concentrations, where the build up of scattered neutrons causes distortion of the moisture concentration profile. In this paper detailed analysis of validity of our calibration method for different geometrical parameters is presented. The error in the measured hydrogen concentration is evaluated by an experiment and compared with results obtained by Monte Carlo calculation with computer code MCNP 4B. Optimal conditions are determined for quantitative moisture measurements in order to minimize the error due to scattered neutrons. The method is tested on concrete samples with high moisture content.(author)

  13. Quantitative analysis by computer controlled X-ray fluorescence spectrometer

    International Nuclear Information System (INIS)

    Balasubramanian, T.V.; Angelo, P.C.

    1981-01-01

    X-ray fluorescence spectroscopy has become a widely accepted method in the metallurgical field for analysis of both minor and major elements. As encountered in many other analytical techniques, the problem of matrix effect generally known as the interelemental effects is to be dealt with effectively in order to make the analysis accurate. There are several methods by which the effects of matrix on the analyte are minimised or corrected for and the mathematical correction is one among them. In this method the characteristic secondary X-ray intensities are measured from standard samples and correction coefficients. If any, for interelemental effects are evaluated by mathematical calculations. This paper describes attempts to evaluate the correction coefficients for interelemental effects by multiple linear regression programmes using a computer for the quantitative analysis of stainless steel and a nickel base cast alloy. The quantitative results obtained using this method for a standard stainless steel sample are compared with the given certified values. (author)

  14. Quantitative impact characterization of aeronautical CFRP materials with non-destructive testing methods

    Energy Technology Data Exchange (ETDEWEB)

    Kiefel, Denis, E-mail: Denis.Kiefel@airbus.com, E-mail: Rainer.Stoessel@airbus.com; Stoessel, Rainer, E-mail: Denis.Kiefel@airbus.com, E-mail: Rainer.Stoessel@airbus.com [Airbus Group Innovations, Munich (Germany); Grosse, Christian, E-mail: Grosse@tum.de [Technical University Munich (Germany)

    2015-03-31

    In recent years, an increasing number of safety-relevant structures are designed and manufactured from carbon fiber reinforced polymers (CFRP) in order to reduce weight of airplanes by taking the advantage of their specific strength into account. Non-destructive testing (NDT) methods for quantitative defect analysis of damages are liquid- or air-coupled ultrasonic testing (UT), phased array ultrasonic techniques, and active thermography (IR). The advantage of these testing methods is the applicability on large areas. However, their quantitative information is often limited on impact localization and size. In addition to these techniques, Airbus Group Innovations operates a micro x-ray computed tomography (μ-XCT) system, which was developed for CFRP characterization. It is an open system which allows different kinds of acquisition, reconstruction, and data evaluation. One main advantage of this μ-XCT system is its high resolution with 3-dimensional analysis and visualization opportunities, which enables to gain important quantitative information for composite part design and stress analysis. Within this study, different NDT methods will be compared at CFRP samples with specified artificial impact damages. The results can be used to select the most suitable NDT-method for specific application cases. Furthermore, novel evaluation and visualization methods for impact analyzes are developed and will be presented.

  15. Quantitative impact characterization of aeronautical CFRP materials with non-destructive testing methods

    International Nuclear Information System (INIS)

    Kiefel, Denis; Stoessel, Rainer; Grosse, Christian

    2015-01-01

    In recent years, an increasing number of safety-relevant structures are designed and manufactured from carbon fiber reinforced polymers (CFRP) in order to reduce weight of airplanes by taking the advantage of their specific strength into account. Non-destructive testing (NDT) methods for quantitative defect analysis of damages are liquid- or air-coupled ultrasonic testing (UT), phased array ultrasonic techniques, and active thermography (IR). The advantage of these testing methods is the applicability on large areas. However, their quantitative information is often limited on impact localization and size. In addition to these techniques, Airbus Group Innovations operates a micro x-ray computed tomography (μ-XCT) system, which was developed for CFRP characterization. It is an open system which allows different kinds of acquisition, reconstruction, and data evaluation. One main advantage of this μ-XCT system is its high resolution with 3-dimensional analysis and visualization opportunities, which enables to gain important quantitative information for composite part design and stress analysis. Within this study, different NDT methods will be compared at CFRP samples with specified artificial impact damages. The results can be used to select the most suitable NDT-method for specific application cases. Furthermore, novel evaluation and visualization methods for impact analyzes are developed and will be presented

  16. Industrial ecology: Quantitative methods for exploring a lower carbon future

    Science.gov (United States)

    Thomas, Valerie M.

    2015-03-01

    Quantitative methods for environmental and cost analyses of energy, industrial, and infrastructure systems are briefly introduced and surveyed, with the aim of encouraging broader utilization and development of quantitative methods in sustainable energy research. Material and energy flow analyses can provide an overall system overview. The methods of engineering economics and cost benefit analysis, such as net present values, are the most straightforward approach for evaluating investment options, with the levelized cost of energy being a widely used metric in electricity analyses. Environmental lifecycle assessment has been extensively developed, with both detailed process-based and comprehensive input-output approaches available. Optimization methods provide an opportunity to go beyond engineering economics to develop detailed least-cost or least-impact combinations of many different choices.

  17. An Image Analysis Method for the Precise Selection and Quantitation of Fluorescently Labeled Cellular Constituents

    Science.gov (United States)

    Agley, Chibeza C.; Velloso, Cristiana P.; Lazarus, Norman R.

    2012-01-01

    The accurate measurement of the morphological characteristics of cells with nonuniform conformations presents difficulties. We report here a straightforward method using immunofluorescent staining and the commercially available imaging program Adobe Photoshop, which allows objective and precise information to be gathered on irregularly shaped cells. We have applied this measurement technique to the analysis of human muscle cells and their immunologically marked intracellular constituents, as these cells are prone to adopting a highly branched phenotype in culture. Use of this method can be used to overcome many of the long-standing limitations of conventional approaches for quantifying muscle cell size in vitro. In addition, wider applications of Photoshop as a quantitative and semiquantitative tool in immunocytochemistry are explored. PMID:22511600

  18. Three-way methods for the analysis of qualitative and quantitative two-way data.

    NARCIS (Netherlands)

    Kiers, Hendrik Albert Lambertus

    1989-01-01

    A problem often occurring in exploratory data analysis is how to summarize large numbers of variables in terms of a smaller number of dimensions. When the variables are quantitative, one may resort to Principal Components Analysis (PCA). When qualitative (categorical) variables are involved, one may

  19. Quantitative data analysis in education a critical introduction using SPSS

    CERN Document Server

    Connolly, Paul

    2007-01-01

    This book provides a refreshing and user-friendly guide to quantitative data analysis in education for students and researchers. It assumes absolutely no prior knowledge of quantitative methods or statistics. Beginning with the very basics, it provides the reader with the knowledge and skills necessary to be able to undertake routine quantitative data analysis to a level expected of published research. Rather than focusing on teaching statistics through mathematical formulae, the book places an emphasis on using SPSS to gain a real feel for the data and an intuitive grasp of t

  20. Quantitative genetic analysis of total glucosinolate, oil and protein ...

    African Journals Online (AJOL)

    Quantitative genetic analysis of total glucosinolate, oil and protein contents in Ethiopian mustard ( Brassica carinata A. Braun) ... Seeds were analyzed using HPLC (glucosinolates), NMR (oil) and NIRS (protein). Analyses of variance, Hayman's method of diallel analysis and a mixed linear model of genetic analysis were ...

  1. Validation of the method of quantitative phase analysis by X-ray diffraction in API: case of Tibolone

    International Nuclear Information System (INIS)

    Silva, R P; Ambrósio, M F S; Epprecht, E K; Avillez, R R; Achete, C A; Kuznetsov, A; Visentin, L C

    2016-01-01

    In this study, different structural and microstructural models applied to X-ray analysis of powder diffraction data of polymorphic mixtures of known concentrations of Tibolone were investigated. The X-ray data obtained in different diffraction instruments were analysed via Rietveld method using the same analytical models. The results of quantitative phase analysis show that regardless of the instrument used, the values of the calculated concentrations follow the same systematics with respect to the final errors. The strategy to select a specific analytical model that leads to lower measurement errors is here presented. (paper)

  2. Study of resolution enhancement methods for impurities quantitative analysis in uranium compounds by XRF

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Clayton P.; Salvador, Vera L.R.; Cotrim, Marycel E.B.; Pires, Maria Ap. F.; Scapin, Marcos A., E-mail: clayton.pereira.silva@usp.b [Instituto de Pesquisas Energeticas e Nucleares (CQMA/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Quimica e Meio Ambiente

    2011-07-01

    X-ray fluorescence analysis is a technique widely used for the determination of both major and trace elements related to interaction between the sample and radiation, allowing direct and nondestructive analysis. However, in uranium matrices these devices are inefficient because the characteristic emission lines of elements like S, Cl, Zn, Zr, Mo and other overlap characteristic emission lines of uranium. Thus, chemical procedures to separation of uranium are needed to perform this sort of analysis. In this paper the deconvolution method was used to increase spectra resolution and correct the overlaps. The methodology was tested according to NBR ISO 17025 using a set of seven certified reference materials for impurities present in U3O8 (New Brunswick Laboratory - NBL). The results showed that this methodology allows quantitative determination of impurities such as Zn, Zr, Mo and others, in uranium compounds. The detection limits were shorter than 50{mu}g. g{sup -1} and uncertainty was shorter than 10% for the determined elements. (author)

  3. Study of resolution enhancement methods for impurities quantitative analysis in uranium compounds by XRF

    International Nuclear Information System (INIS)

    Silva, Clayton P.; Salvador, Vera L.R.; Cotrim, Marycel E.B.; Pires, Maria Ap. F.; Scapin, Marcos A.

    2011-01-01

    X-ray fluorescence analysis is a technique widely used for the determination of both major and trace elements related to interaction between the sample and radiation, allowing direct and nondestructive analysis. However, in uranium matrices these devices are inefficient because the characteristic emission lines of elements like S, Cl, Zn, Zr, Mo and other overlap characteristic emission lines of uranium. Thus, chemical procedures to separation of uranium are needed to perform this sort of analysis. In this paper the deconvolution method was used to increase spectra resolution and correct the overlaps. The methodology was tested according to NBR ISO 17025 using a set of seven certified reference materials for impurities present in U3O8 (New Brunswick Laboratory - NBL). The results showed that this methodology allows quantitative determination of impurities such as Zn, Zr, Mo and others, in uranium compounds. The detection limits were shorter than 50μg. g -1 and uncertainty was shorter than 10% for the determined elements. (author)

  4. Mixed methods in gerontological research: Do the qualitative and quantitative data “touch”?

    Science.gov (United States)

    Happ, Mary Beth

    2010-01-01

    This paper distinguishes between parallel and integrated mixed methods research approaches. Barriers to integrated mixed methods approaches in gerontological research are discussed and critiqued. The author presents examples of mixed methods gerontological research to illustrate approaches to data integration at the levels of data analysis, interpretation, and research reporting. As a summary of the methodological literature, four basic levels of mixed methods data combination are proposed. Opportunities for mixing qualitative and quantitative data are explored using contemporary examples from published studies. Data transformation and visual display, judiciously applied, are proposed as pathways to fuller mixed methods data integration and analysis. Finally, practical strategies for mixing qualitative and quantitative data types are explicated as gerontological research moves beyond parallel mixed methods approaches to achieve data integration. PMID:20077973

  5. Simple PVT quantitative method of Kr under high pure N2 condition

    International Nuclear Information System (INIS)

    Li Xuesong; Zhang Zibin; Wei Guanyi; Chen Liyun; Zhai Lihua

    2005-01-01

    A simple PVT quantitative method of Kr in the high pure N 2 was studied. Pressure, volume and temperature of the sample gas were measured by three individual methods to obtain the sum sample with food uncertainty. The ratio of Kr/N 2 could measured by GAM 400 quadrupole mass spectrometer. So the quantity of Kr could be calculated with the two measured data above. This method can be suited for quantitative analysis of other simple composed noble gas sample with high pure carrying gas. (authors)

  6. Automatic variable selection method and a comparison for quantitative analysis in laser-induced breakdown spectroscopy

    Science.gov (United States)

    Duan, Fajie; Fu, Xiao; Jiang, Jiajia; Huang, Tingting; Ma, Ling; Zhang, Cong

    2018-05-01

    In this work, an automatic variable selection method for quantitative analysis of soil samples using laser-induced breakdown spectroscopy (LIBS) is proposed, which is based on full spectrum correction (FSC) and modified iterative predictor weighting-partial least squares (mIPW-PLS). The method features automatic selection without artificial processes. To illustrate the feasibility and effectiveness of the method, a comparison with genetic algorithm (GA) and successive projections algorithm (SPA) for different elements (copper, barium and chromium) detection in soil was implemented. The experimental results showed that all the three methods could accomplish variable selection effectively, among which FSC-mIPW-PLS required significantly shorter computation time (12 s approximately for 40,000 initial variables) than the others. Moreover, improved quantification models were got with variable selection approaches. The root mean square errors of prediction (RMSEP) of models utilizing the new method were 27.47 (copper), 37.15 (barium) and 39.70 (chromium) mg/kg, which showed comparable prediction effect with GA and SPA.

  7. Quantitative risk analysis of a space shuttle subsystem

    International Nuclear Information System (INIS)

    Frank, M.V.

    1989-01-01

    This paper reports that in an attempt to investigate methods for risk management other than qualitative analysis techniques, NASA has funded pilot study quantitative risk analyses for space shuttle subsystems. The authors performed one such study of two shuttle subsystems with McDonnell Douglas Astronautics Company. The subsystems were the auxiliary power units (APU) on the orbiter, and the hydraulic power units on the solid rocket booster. The technology and results of the APU study are presented in this paper. Drawing from a rich in-flight database as well as from a wealth of tests and analyses, the study quantitatively assessed the risk of APU-initiated scenarios on the shuttle during all phases of a flight mission. Damage states of interest were loss of crew/vehicle, aborted mission, and launch scrub. A quantitative risk analysis approach to deciding on important items for risk management was contrasted with the current NASA failure mode and effects analysis/critical item list approach

  8. [Adequate application of quantitative and qualitative statistic analytic methods in acupuncture clinical trials].

    Science.gov (United States)

    Tan, Ming T; Liu, Jian-ping; Lao, Lixing

    2012-08-01

    Recently, proper use of the statistical methods in traditional Chinese medicine (TCM) randomized controlled trials (RCTs) has received increased attention. Statistical inference based on hypothesis testing is the foundation of clinical trials and evidence-based medicine. In this article, the authors described the methodological differences between literature published in Chinese and Western journals in the design and analysis of acupuncture RCTs and the application of basic statistical principles. In China, qualitative analysis method has been widely used in acupuncture and TCM clinical trials, while the between-group quantitative analysis methods on clinical symptom scores are commonly used in the West. The evidence for and against these analytical differences were discussed based on the data of RCTs assessing acupuncture for pain relief. The authors concluded that although both methods have their unique advantages, quantitative analysis should be used as the primary analysis while qualitative analysis can be a secondary criterion for analysis. The purpose of this paper is to inspire further discussion of such special issues in clinical research design and thus contribute to the increased scientific rigor of TCM research.

  9. Operation Iraqi Freedom 04 - 06: Opportunities to Apply Quantitative Methods to Intelligence Analysis

    National Research Council Canada - National Science Library

    Hansen, Eric C

    2005-01-01

    The purpose of this presentation is to illustrate the need for a quantitative analytical capability within organizations and staffs that provide intelligence analysis to Army, Joint, and Coalition Force headquarters...

  10. Chemical Fingerprint Analysis and Quantitative Analysis of Rosa rugosa by UPLC-DAD

    Directory of Open Access Journals (Sweden)

    Sanawar Mansur

    2016-12-01

    Full Text Available A method based on ultra performance liquid chromatography with a diode array detector (UPLC-DAD was developed for quantitative analysis of five active compounds and chemical fingerprint analysis of Rosa rugosa. Ten batches of R. rugosa collected from different plantations in the Xinjiang region of China were used to establish the fingerprint. The feasibility and advantages of the used UPLC fingerprint were verified for its similarity evaluation by systematically comparing chromatograms with professional analytical software recommended by State Food and Drug Administration (SFDA of China. In quantitative analysis, the five compounds showed good regression (R2 = 0.9995 within the test ranges, and the recovery of the method was in the range of 94.2%–103.8%. The similarities of liquid chromatography fingerprints of 10 batches of R. rugosa were more than 0.981. The developed UPLC fingerprint method is simple, reliable, and validated for the quality control and identification of R. rugosa. Additionally, simultaneous quantification of five major bioactive ingredients in the R. rugosa samples was conducted to interpret the consistency of the quality test. The results indicated that the UPLC fingerprint, as a characteristic distinguishing method combining similarity evaluation and quantification analysis, can be successfully used to assess the quality and to identify the authenticity of R. rugosa.

  11. Data from quantitative label free proteomics analysis of rat spleen.

    Science.gov (United States)

    Dudekula, Khadar; Le Bihan, Thierry

    2016-09-01

    The dataset presented in this work has been obtained using a label-free quantitative proteomic analysis of rat spleen. A robust method for extraction of proteins from rat spleen tissue and LC-MS-MS analysis was developed using a urea and SDS-based buffer. Different fractionation methods were compared. A total of 3484 different proteins were identified from the pool of all experiments run in this study (a total of 2460 proteins with at least two peptides). A total of 1822 proteins were identified from nine non-fractionated pulse gels, 2288 proteins and 2864 proteins were identified by SDS-PAGE fractionation into three and five fractions respectively. The proteomics data are deposited in ProteomeXchange Consortium via PRIDE PXD003520, Progenesis and Maxquant output are presented in the supported information. The generated list of proteins under different regimes of fractionation allow assessing the nature of the identified proteins; variability in the quantitative analysis associated with the different sampling strategy and allow defining a proper number of replicates for future quantitative analysis.

  12. Uncertainties in elemental quantitative analysis by PIXE

    International Nuclear Information System (INIS)

    Montenegro, E.C.; Baptista, G.B.; Paschoa, A.S.; Barros Leite, C.V.

    1979-01-01

    The effects of the degree of non-uniformity of the particle beam, matrix composition and matrix thickness in a quantitative elemental analysis by particle induced X-ray emission (PIXE) are discussed and a criterion to evaluate the resulting degree of uncertainty in the mass determination by this method is established. (Auth.)

  13. A systematic study on the influencing parameters and improvement of quantitative analysis of multi-component with single marker method using notoginseng as research subject.

    Science.gov (United States)

    Wang, Chao-Qun; Jia, Xiu-Hong; Zhu, Shu; Komatsu, Katsuko; Wang, Xuan; Cai, Shao-Qing

    2015-03-01

    A new quantitative analysis of multi-component with single marker (QAMS) method for 11 saponins (ginsenosides Rg1, Rb1, Rg2, Rh1, Rf, Re and Rd; notoginsenosides R1, R4, Fa and K) in notoginseng was established, when 6 of these saponins were individually used as internal referring substances to investigate the influences of chemical structure, concentrations of quantitative components, and purities of the standard substances on the accuracy of the QAMS method. The results showed that the concentration of the analyte in sample solution was the major influencing parameter, whereas the other parameters had minimal influence on the accuracy of the QAMS method. A new method for calculating the relative correction factors by linear regression was established (linear regression method), which demonstrated to decrease standard method differences of the QAMS method from 1.20%±0.02% - 23.29%±3.23% to 0.10%±0.09% - 8.84%±2.85% in comparison with the previous method. And the differences between external standard method and the QAMS method using relative correction factors calculated by linear regression method were below 5% in the quantitative determination of Rg1, Re, R1, Rd and Fa in 24 notoginseng samples and Rb1 in 21 notoginseng samples. And the differences were mostly below 10% in the quantitative determination of Rf, Rg2, R4 and N-K (the differences of these 4 constituents bigger because their contents lower) in all the 24 notoginseng samples. The results indicated that the contents assayed by the new QAMS method could be considered as accurate as those assayed by external standard method. In addition, a method for determining applicable concentration ranges of the quantitative components assayed by QAMS method was established for the first time, which could ensure its high accuracy and could be applied to QAMS methods of other TCMs. The present study demonstrated the practicability of the application of the QAMS method for the quantitative analysis of multi

  14. Quantiprot - a Python package for quantitative analysis of protein sequences.

    Science.gov (United States)

    Konopka, Bogumił M; Marciniak, Marta; Dyrka, Witold

    2017-07-17

    The field of protein sequence analysis is dominated by tools rooted in substitution matrices and alignments. A complementary approach is provided by methods of quantitative characterization. A major advantage of the approach is that quantitative properties defines a multidimensional solution space, where sequences can be related to each other and differences can be meaningfully interpreted. Quantiprot is a software package in Python, which provides a simple and consistent interface to multiple methods for quantitative characterization of protein sequences. The package can be used to calculate dozens of characteristics directly from sequences or using physico-chemical properties of amino acids. Besides basic measures, Quantiprot performs quantitative analysis of recurrence and determinism in the sequence, calculates distribution of n-grams and computes the Zipf's law coefficient. We propose three main fields of application of the Quantiprot package. First, quantitative characteristics can be used in alignment-free similarity searches, and in clustering of large and/or divergent sequence sets. Second, a feature space defined by quantitative properties can be used in comparative studies of protein families and organisms. Third, the feature space can be used for evaluating generative models, where large number of sequences generated by the model can be compared to actually observed sequences.

  15. Intra-laboratory validation of chronic bee paralysis virus quantitation using an accredited standardised real-time quantitative RT-PCR method.

    Science.gov (United States)

    Blanchard, Philippe; Regnault, Julie; Schurr, Frank; Dubois, Eric; Ribière, Magali

    2012-03-01

    Chronic bee paralysis virus (CBPV) is responsible for chronic bee paralysis, an infectious and contagious disease in adult honey bees (Apis mellifera L.). A real-time RT-PCR assay to quantitate the CBPV load is now available. To propose this assay as a reference method, it was characterised further in an intra-laboratory study during which the reliability and the repeatability of results and the performance of the assay were confirmed. The qPCR assay alone and the whole quantitation method (from sample RNA extraction to analysis) were both assessed following the ISO/IEC 17025 standard and the recent XP U47-600 standard issued by the French Standards Institute. The performance of the qPCR assay and of the overall CBPV quantitation method were validated over a 6 log range from 10(2) to 10(8) with a detection limit of 50 and 100 CBPV RNA copies, respectively, and the protocol of the real-time RT-qPCR assay for CBPV quantitation was approved by the French Accreditation Committee. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Method of quantitative analysis of fluorine in environmental samples using a pure-Ge detector

    International Nuclear Information System (INIS)

    Sera, K.; Terasaki, K.; Saitoh, Y.; Itoh, J.; Futatsugawa, S.; Murao, S.; Sakurai, S.

    2004-01-01

    We recently developed and reported a three-detector measuring system making use of a pure-Ge detector combined with two Si(Li) detectors. The efficiency curve of the pure-Ge detector was determined as relative efficiencies to those of the existing Si(Li) detectors and accuracy of it was confirmed by analyzing a few samples whose elemental concentrations were known. It was found that detection of fluorine becomes possible by analyzing prompt γ-rays and the detection limit was found to be less than 0.1 ppm for water samples. In this work, a method of quantitative analysis of fluorine has been established in order to investigate environmental contamination by fluorine. This method is based on the fact that both characteristic x-rays from many elements and 110 keV prompt γ-rays from fluorine can be detected in the same spectrum. The present method is applied to analyses of a few environmental samples such as tealeaves, feed for domestic animals and human bone. The results are consistent with those obtained by other methods and it is found that the present method is quite useful and convenient for investigation studies on regional pollution by fluorine. (author)

  17. Accurate quantitative XRD phase analysis of cement clinkers

    International Nuclear Information System (INIS)

    Kern, A.

    2002-01-01

    Full text: Knowledge about the absolute phase abundance in cement clinkers is a requirement for both, research and quality control. Traditionally, quantitative analysis of cement clinkers has been carried out by theoretical normative calculation from chemical analysis using the so-called Bogue method or by optical microscopy. Therefore chemical analysis, mostly performed by X-ray fluorescence (XRF), forms the basis of cement plan control by providing information for proportioning raw materials, adjusting kiln and burning conditions, as well as cement mill feed proportioning. In addition, XRF is of highest importance with respect to the environmentally relevant control of waste recovery raw materials and alternative fuels, as well as filters, plants and sewage. However, the performance of clinkers and cements is governed by the mineralogy and not the elemental composition, and the deficiencies and inherent errors of Bogue as well as microscopic point counting are well known. With XRD and Rietveld analysis a full quantitative analysis of cement clinkers can be performed providing detailed mineralogical information about the product. Until recently several disadvantages prevented the frequent application of the Rietveld method in the cement industry. As the measurement of a full pattern is required, extended measurement times made an integration of this method into existing automation environments difficult. In addition, several drawbacks of existing Rietveld software such as complexity, low performance and severe numerical instability were prohibitive for automated use. The latest developments of on-line instrumentation, as well as dedicated Rietveld software for quantitative phase analysis (TOPAS), now make a decisive breakthrough possible. TOPAS not only allows the analysis of extremely complex phase mixtures in the shortest time possible, but also a fully automated online phase analysis for production control and quality management, free of any human interaction

  18. Quantitative determination and validation of octreotide acetate using 1 H-NMR spectroscopy with internal standard method.

    Science.gov (United States)

    Yu, Chen; Zhang, Qian; Xu, Peng-Yao; Bai, Yin; Shen, Wen-Bin; Di, Bin; Su, Meng-Xiang

    2018-01-01

    Quantitative nuclear magnetic resonance (qNMR) is a well-established technique in quantitative analysis. We presented a validated 1 H-qNMR method for assay of octreotide acetate, a kind of cyclic octopeptide. Deuterium oxide was used to remove the undesired exchangeable peaks, which was referred to as proton exchange, in order to make the quantitative signals isolated in the crowded spectrum of the peptide and ensure precise quantitative analysis. Gemcitabine hydrochloride was chosen as the suitable internal standard. Experimental conditions, including relaxation delay time, the numbers of scans, and pulse angle, were optimized first. Then method validation was carried out in terms of selectivity, stability, linearity, precision, and robustness. The assay result was compared with that by means of high performance liquid chromatography, which is provided by Chinese Pharmacopoeia. The statistical F test, Student's t test, and nonparametric test at 95% confidence level indicate that there was no significant difference between these two methods. qNMR is a simple and accurate quantitative tool with no need for specific corresponding reference standards. It has the potential of the quantitative analysis of other peptide drugs and standardization of the corresponding reference standards. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Methods for Quantitative Creatinine Determination.

    Science.gov (United States)

    Moore, John F; Sharer, J Daniel

    2017-04-06

    Reliable measurement of creatinine is necessary to assess kidney function, and also to quantitate drug levels and diagnostic compounds in urine samples. The most commonly used methods are based on the Jaffe principal of alkaline creatinine-picric acid complex color formation. However, other compounds commonly found in serum and urine may interfere with Jaffe creatinine measurements. Therefore, many laboratories have made modifications to the basic method to remove or account for these interfering substances. This appendix will summarize the basic Jaffe method, as well as a modified, automated version. Also described is a high performance liquid chromatography (HPLC) method that separates creatinine from contaminants prior to direct quantification by UV absorption. Lastly, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method is described that uses stable isotope dilution to reliably quantify creatinine in any sample. This last approach has been recommended by experts in the field as a means to standardize all quantitative creatinine methods against an accepted reference. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  20. A Quantitative Analytical Method to Test for Salt Effects on Giant Unilamellar Vesicles

    DEFF Research Database (Denmark)

    Hadorn, Maik; Bönzli, Eva; Eggenberger Hotz, Peter

    2011-01-01

    preparation method with automatic haemocytometry. We found that this new quantitative screening method is highly reliable and consistent with previously reported results. Thus, this method may provide a significant methodological advance in analysis of effects on free-standing model membranes....

  1. Quantitative methods in psychology: inevitable and useless

    Directory of Open Access Journals (Sweden)

    Aaro Toomela

    2010-07-01

    Full Text Available Science begins with the question, what do I want to know? Science becomes science, however, only when this question is justified and the appropriate methodology is chosen for answering the research question. Research question should precede the other questions; methods should be chosen according to the research question and not vice versa. Modern quantitative psychology has accepted method as primary; research questions are adjusted to the methods. For understanding thinking in modern quantitative psychology, two epistemologies should be distinguished: structural-systemic that is based on Aristotelian thinking, and associative-quantitative that is based on Cartesian-Humean thinking. The first aims at understanding the structure that underlies the studied processes; the second looks for identification of cause-effect relationships between the events with no possible access to the understanding of the structures that underlie the processes. Quantitative methodology in particular as well as mathematical psychology in general, is useless for answering questions about structures and processes that underlie observed behaviors. Nevertheless, quantitative science is almost inevitable in a situation where the systemic-structural basis of behavior is not well understood; all sorts of applied decisions can be made on the basis of quantitative studies. In order to proceed, psychology should study structures; methodologically, constructive experiments should be added to observations and analytic experiments.

  2. Quantitative possibility analysis. Present status in ESCA

    International Nuclear Information System (INIS)

    Brion, D.

    1981-01-01

    A short review of the recent developments in quantification of X-ray photoelectron spectroscopy or ESCA is presented. The basic equations are reminded. Each involved parameter (photoionisation, inelastic mean free paths, 'response function' of the instruments, intensity measurement) is separately discussed in relation with the accuracy and the precision of the method. Other topics are considered such as roughness, surface contamination, matrix effect and inhomogeneous composition. Some aspects of the quantitative ESCA analysis and AES analysis are compared [fr

  3. A convenient method for the quantitative determination of elemental sulfur in coal by HPLC analysis of perchloroethylene extracts

    Science.gov (United States)

    Buchanan, D.H.; Coombs, K.J.; Murphy, P.M.; Chaven, C.

    1993-01-01

    A convenient method for the quantitative determination of elemental sulfur in coal is described. Elemental sulfur is extracted from the coal with hot perchloroethylene (PCE) (tetrachloroethene, C2Cl4) and quantitatively determined by HPLC analysis on a C18 reverse-phase column using UV detection. Calibration solutions were prepared from sublimed sulfur. Results of quantitative HPLC analyses agreed with those of a chemical/spectroscopic analysis. The HPLC method was found to be linear over the concentration range of 6 ?? 10-4 to 2 ?? 10-2 g/L. The lower detection limit was 4 ?? 10-4 g/L, which for a coal sample of 20 g is equivalent to 0.0006% by weight of coal. Since elemental sulfur is known to react slowly with hydrocarbons at the temperature of boiling PCE, standard solutions of sulfur in PCE were heated with coals from the Argonne Premium Coal Sample program. Pseudo-first-order uptake of sulfur by the coals was observed over several weeks of heating. For the Illinois No. 6 premium coal, the rate constant for sulfur uptake was 9.7 ?? 10-7 s-1, too small for retrograde reactions between solubilized sulfur and coal to cause a significant loss in elemental sulfur isolated during the analytical extraction. No elemental sulfur was produced when the following pure compounds were heated to reflux in PCE for up to 1 week: benzyl sulfide, octyl sulfide, thiane, thiophene, benzothiophene, dibenzothiophene, sulfuric acid, or ferrous sulfate. A sluury of mineral pyrite in PCE contained elemental sulfur which increased in concentration with heating time. ?? 1993 American Chemical Society.

  4. Evaluation of breast lesions by contrast enhanced ultrasound: Qualitative and quantitative analysis

    International Nuclear Information System (INIS)

    Wan Caifeng; Du Jing; Fang Hua; Li Fenghua; Wang Lin

    2012-01-01

    Objective: To evaluate and compare the diagnostic performance of qualitative, quantitative and combined analysis for characterization of breast lesions in contrast enhanced ultrasound (CEUS), with histological results used as the reference standard. Methods: Ninety-one patients with 91 breast lesions BI-RADS 3–5 at US or mammography underwent CEUS. All lesions underwent qualitative and quantitative enhancement evaluation. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic performance of different analytical method for discrimination between benign and malignant breast lesions. Results: Histopathologic analysis of the 91 lesions revealed 44 benign and 47 malignant. For qualitative analysis, benign and malignant lesions differ significantly in enhancement patterns (p z1 ), 0.768 (A z2 ) and 0.926(A z3 ) respectively. The values of A z1 and A z3 were significantly higher than that for A z2 (p = 0.024 and p = 0.008, respectively). But there was no significant difference between the values of A z1 and A z3 (p = 0.625). Conclusions: The diagnostic performance of qualitative and combined analysis was significantly higher than that for quantitative analysis. Although quantitative analysis has the potential to differentiate benign from malignant lesions, it has not yet improved the final diagnostic accuracy.

  5. [Rapid analysis of suppositories by quantitative 1H NMR spectroscopy].

    Science.gov (United States)

    Abramovich, R A; Kovaleva, S A; Goriainov, S V; Vorob'ev, A N; Kalabin, G A

    2012-01-01

    Rapid analysis of suppositories with ibuprofen and arbidol by quantitative 1H NMR spectroscopy was performed. Optimal conditions for the analysis were developed. The results are useful for design of rapid methods for quality control of suppositories with different components

  6. Quantitative high-resolution genomic analysis of single cancer cells.

    Science.gov (United States)

    Hannemann, Juliane; Meyer-Staeckling, Sönke; Kemming, Dirk; Alpers, Iris; Joosse, Simon A; Pospisil, Heike; Kurtz, Stefan; Görndt, Jennifer; Püschel, Klaus; Riethdorf, Sabine; Pantel, Klaus; Brandt, Burkhard

    2011-01-01

    During cancer progression, specific genomic aberrations arise that can determine the scope of the disease and can be used as predictive or prognostic markers. The detection of specific gene amplifications or deletions in single blood-borne or disseminated tumour cells that may give rise to the development of metastases is of great clinical interest but technically challenging. In this study, we present a method for quantitative high-resolution genomic analysis of single cells. Cells were isolated under permanent microscopic control followed by high-fidelity whole genome amplification and subsequent analyses by fine tiling array-CGH and qPCR. The assay was applied to single breast cancer cells to analyze the chromosomal region centred by the therapeutical relevant EGFR gene. This method allows precise quantitative analysis of copy number variations in single cell diagnostics.

  7. Quantitative assessment of in-solution digestion efficiency identifies optimal protocols for unbiased protein analysis

    DEFF Research Database (Denmark)

    Leon, Ileana R; Schwämmle, Veit; Jensen, Ole N

    2013-01-01

    a combination of qualitative and quantitative LC-MS/MS methods and statistical data analysis. In contrast to previous studies we employed both standard qualitative as well as data-independent quantitative workflows to systematically assess trypsin digestion efficiency and bias using mitochondrial protein...... conditions (buffer, RapiGest, deoxycholate, urea), and two methods for removal of detergents prior to analysis of peptides (acid precipitation or phase separation with ethyl acetate). Our data-independent quantitative LC-MS/MS workflow quantified over 3700 distinct peptides with 96% completeness between all...... protocols and replicates, with an average 40% protein sequence coverage and an average of 11 peptides identified per protein. Systematic quantitative and statistical analysis of physicochemical parameters demonstrated that deoxycholate-assisted in-solution digestion combined with phase transfer allows...

  8. High-resolution gas chromatography/mas spectrometry method for characterization and quantitative analysis of ginkgolic acids in ginkgo biloba plants, extracts, and dietary supplements

    Science.gov (United States)

    A high resolution GC/MS with Selected Ion Monitor (SIM) method focusing on the characterization and quantitative analysis of ginkgolic acids (GAs) in Ginkgo biloba L. plant materials, extracts and commercial products was developed and validated. The method involved sample extraction with (1:1) meth...

  9. The Use of Quantitative and Qualitative Methods in the Analysis of Academic Achievement among Undergraduates in Jamaica

    Science.gov (United States)

    McLaren, Ingrid Ann Marie

    2012-01-01

    This paper describes a study which uses quantitative and qualitative methods in determining the relationship between academic, institutional and psychological variables and degree performance for a sample of Jamaican undergraduate students. Quantitative methods, traditionally associated with the positivist paradigm, and involving the counting and…

  10. Analytical methods in sphingolipidomics: Quantitative and profiling approaches in food analysis.

    Science.gov (United States)

    Canela, Núria; Herrero, Pol; Mariné, Sílvia; Nadal, Pedro; Ras, Maria Rosa; Rodríguez, Miguel Ángel; Arola, Lluís

    2016-01-08

    In recent years, sphingolipidomics has emerged as an interesting omic science that encompasses the study of the full sphingolipidome characterization, content, structure and activity in cells, tissues or organisms. Like other omics, it has the potential to impact biomarker discovery, drug development and systems biology knowledge. Concretely, dietary food sphingolipids have gained considerable importance due to their extensively reported bioactivity. Because of the complexity of this lipid family and their diversity among foods, powerful analytical methodologies are needed for their study. The analytical tools developed in the past have been improved with the enormous advances made in recent years in mass spectrometry (MS) and chromatography, which allow the convenient and sensitive identification and quantitation of sphingolipid classes and form the basis of current sphingolipidomics methodologies. In addition, novel hyphenated nuclear magnetic resonance (NMR) strategies, new ionization strategies, and MS imaging are outlined as promising technologies to shape the future of sphingolipid analyses. This review traces the analytical methods of sphingolipidomics in food analysis concerning sample extraction, chromatographic separation, the identification and quantification of sphingolipids by MS and their structural elucidation by NMR. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Stability indicating HPLC-DAD method for analysis of Ketorolac binary and ternary mixtures in eye drops: Quantitative analysis in rabbit aqueous humor.

    Science.gov (United States)

    El Yazbi, Fawzy A; Hassan, Ekram M; Khamis, Essam F; Ragab, Marwa A A; Hamdy, Mohamed M A

    2017-11-15

    Ketorolac tromethamine (KTC) with phenylephrine hydrochloride (PHE) binary mixture (mixture 1) and their ternary mixture with chlorpheniramine maleate (CPM) (mixture 2) were analyzed using a validated HPLC-DAD method. The developed method was suitable for the in vitro as well as quantitative analysis of the targeted mixtures in rabbit aqueous humor. The analysis in dosage form (eye drops) was a stability indicating one at which drugs were separated from possible degradation products arising from different stress conditions (in vitro analysis). For analysis in aqueous humor, Guaifenesin (GUF) was used as internal standard and the method was validated according to FDA regulation for analysis in biological fluids. Agilent 5 HC-C18(2) 150×4.6mm was used as stationary phase with a gradient eluting solvent of 20mM phosphate buffer pH 4.6 containing 0.2% triethylamine and acetonitrile. The drugs were resolved with retention times of 2.41, 5.26, 7.92 and 9.64min for PHE, GUF, KTC and CPM, respectively. The method was sensitive and selective to analyze simultaneously the three drugs in presence of possible forced degradation products and dosage form excipients (in vitro analysis) and also with the internal standard, in presence of aqueous humor interferences (analysis in biological fluid), at a single wavelength (261nm). No extraction procedure was required for analysis in aqueous humor. The simplicity of the method emphasizes its capability to analyze the drugs in vivo (in rabbit aqueous humor) and in vitro (in pharmaceutical formulations). Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Quantitative analysis of elastography images in the detection of breast cancer

    International Nuclear Information System (INIS)

    Landoni, V.; Francione, V.; Marzi, S.; Pasciuti, K.; Ferrante, F.; Saracca, E.; Pedrini, M.; Strigari, L.; Crecco, M.; Di Nallo, A.

    2012-01-01

    Purpose: The aim of this study was to develop a quantitative method for breast cancer diagnosis based on elastosonography images in order to reduce whenever possible unnecessary biopsies. The proposed method was validated by correlating the results of quantitative analysis with the diagnosis assessed by histopathologic exam. Material and methods: 109 images of breast lesions (50 benign and 59 malignant) were acquired with the traditional B-mode technique and with elastographic modality. Images in Digital Imaging and COmmunications in Medicine format (DICOM) were exported into a software, written in Visual Basic, especially developed to perform this study. The lesion was contoured and the mean grey value and softness inside the region of interest (ROI) were calculated. The correlations between variables were investigated and receiver operating characteristic (ROC) curve analysis was performed to assess the diagnostic accuracy of the proposed method. Pathologic results were used as standard reference. Results: Both the mean grey value and the softness inside the ROI resulted statistically different at the t test for the two populations of lesions (i.e., benign versus malignant): p < 0.0001. The area under the curve (AUC) was 0.924 (0.834–0.973) and 0.917 (0.826–0.970) for the mean grey value and for the softness respectively. Conclusions: Quantitative elastosonography is a promising ultrasound technique in the detection of breast cancer but large prospective trials are necessary to determine whether quantitative analysis of images can help to overcome some pitfalls of the methodic.

  13. The rise of quantitative methods in Psychology

    Directory of Open Access Journals (Sweden)

    Denis Cousineau

    2005-09-01

    Full Text Available Quantitative methods have a long history in some scientific fields. Indeed, no one today would consider a qualitative data set in physics or a qualitative theory in chemistry. Quantitative methods are so central in these fields that they are often labelled “hard sciences”. Here, we examine the question whether psychology is ready to enter the “hard science club” like biology did in the forties. The facts that a over half of the statistical techniques used in psychology are less than 40 years old and that b the number of simulations in empirical papers has followed an exponential growth since the eighties, both suggests that the answer is yes. The purpose of Tutorials in Quantitative Methods for Psychology is to provide a concise and easy access to the currents methods.

  14. From themes to hypotheses: following up with quantitative methods.

    Science.gov (United States)

    Morgan, David L

    2015-06-01

    One important category of mixed-methods research designs consists of quantitative studies that follow up on qualitative research. In this case, the themes that serve as the results from the qualitative methods generate hypotheses for testing through the quantitative methods. That process requires operationalization to translate the concepts from the qualitative themes into quantitative variables. This article illustrates these procedures with examples that range from simple operationalization to the evaluation of complex models. It concludes with an argument for not only following up qualitative work with quantitative studies but also the reverse, and doing so by going beyond integrating methods within single projects to include broader mutual attention from qualitative and quantitative researchers who work in the same field. © The Author(s) 2015.

  15. Statistical shape analysis using 3D Poisson equation--A quantitatively validated approach.

    Science.gov (United States)

    Gao, Yi; Bouix, Sylvain

    2016-05-01

    Statistical shape analysis has been an important area of research with applications in biology, anatomy, neuroscience, agriculture, paleontology, etc. Unfortunately, the proposed methods are rarely quantitatively evaluated, and as shown in recent studies, when they are evaluated, significant discrepancies exist in their outputs. In this work, we concentrate on the problem of finding the consistent location of deformation between two population of shapes. We propose a new shape analysis algorithm along with a framework to perform a quantitative evaluation of its performance. Specifically, the algorithm constructs a Signed Poisson Map (SPoM) by solving two Poisson equations on the volumetric shapes of arbitrary topology, and statistical analysis is then carried out on the SPoMs. The method is quantitatively evaluated on synthetic shapes and applied on real shape data sets in brain structures. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Validation of quantitative 1H NMR method for the analysis of pharmaceutical formulations

    International Nuclear Information System (INIS)

    Santos, Maiara da S.

    2013-01-01

    The need for effective and reliable quality control in products from pharmaceutical industries renders the analyses of their active ingredients and constituents of great importance. This study presents the theoretical basis of ¹H NMR for quantitative analyses and an example of the method validation according to Resolution RE N. 899 by the Brazilian National Health Surveillance Agency (ANVISA), in which the compound paracetamol was the active ingredient. All evaluated parameters (selectivity, linearity, accuracy, repeatability and robustness) showed satisfactory results. It was concluded that a single NMR measurement provides structural and quantitative information of active components and excipients in the sample. (author)

  17. Development of quantitative analysis method for stereotactic brain image. Assessment of reduced accumulation in extent and severity using anatomical segmentation

    International Nuclear Information System (INIS)

    Mizumura, Sunao; Kumita, Shin-ichiro; Cho, Keiichi; Ishihara, Makiko; Nakajo, Hidenobu; Toba, Masahiro; Kumazaki, Tatsuo

    2003-01-01

    Through visual assessment by three-dimensional (3D) brain image analysis methods using stereotactic brain coordinates system, such as three-dimensional stereotactic surface projections and statistical parametric mapping, it is difficult to quantitatively assess anatomical information and the range of extent of an abnormal region. In this study, we devised a method to quantitatively assess local abnormal findings by segmenting a brain map according to anatomical structure. Through quantitative local abnormality assessment using this method, we studied the characteristics of distribution of reduced blood flow in cases with dementia of the Alzheimer type (DAT). Using twenty-five cases with DAT (mean age, 68.9 years old), all of whom were diagnosed as probable Alzheimer's disease based on National Institute of Neurological and Communicative Disorders and Stroke-Alzheimer's Disease and Related Disorders Association (NINCDS-ADRDA), we collected I-123 iodoamphetamine SPECT data. A 3D brain map using the 3D-stereotactic surface projections (SSP) program was compared with the data of 20 cases in the control group, who age-matched the subject cases. To study local abnormalities on the 3D images, we divided the whole brain into 24 segments based on anatomical classification. We assessed the extent of an abnormal region in each segment (rate of the coordinates with a Z-value that exceeds the threshold value, in all coordinates within a segment), and severity (average Z-value of the coordinates with a Z-value that exceeds the threshold value). This method clarified orientation and expansion of reduced accumulation, through classifying stereotactic brain coordinates according to the anatomical structure. This method was considered useful for quantitatively grasping distribution abnormalities in the brain and changes in abnormality distribution. (author)

  18. Quantitative high-resolution genomic analysis of single cancer cells.

    Directory of Open Access Journals (Sweden)

    Juliane Hannemann

    Full Text Available During cancer progression, specific genomic aberrations arise that can determine the scope of the disease and can be used as predictive or prognostic markers. The detection of specific gene amplifications or deletions in single blood-borne or disseminated tumour cells that may give rise to the development of metastases is of great clinical interest but technically challenging. In this study, we present a method for quantitative high-resolution genomic analysis of single cells. Cells were isolated under permanent microscopic control followed by high-fidelity whole genome amplification and subsequent analyses by fine tiling array-CGH and qPCR. The assay was applied to single breast cancer cells to analyze the chromosomal region centred by the therapeutical relevant EGFR gene. This method allows precise quantitative analysis of copy number variations in single cell diagnostics.

  19. Quantitative imaging methods in osteoporosis.

    Science.gov (United States)

    Oei, Ling; Koromani, Fjorda; Rivadeneira, Fernando; Zillikens, M Carola; Oei, Edwin H G

    2016-12-01

    Osteoporosis is characterized by a decreased bone mass and quality resulting in an increased fracture risk. Quantitative imaging methods are critical in the diagnosis and follow-up of treatment effects in osteoporosis. Prior radiographic vertebral fractures and bone mineral density (BMD) as a quantitative parameter derived from dual-energy X-ray absorptiometry (DXA) are among the strongest known predictors of future osteoporotic fractures. Therefore, current clinical decision making relies heavily on accurate assessment of these imaging features. Further, novel quantitative techniques are being developed to appraise additional characteristics of osteoporosis including three-dimensional bone architecture with quantitative computed tomography (QCT). Dedicated high-resolution (HR) CT equipment is available to enhance image quality. At the other end of the spectrum, by utilizing post-processing techniques such as the trabecular bone score (TBS) information on three-dimensional architecture can be derived from DXA images. Further developments in magnetic resonance imaging (MRI) seem promising to not only capture bone micro-architecture but also characterize processes at the molecular level. This review provides an overview of various quantitative imaging techniques based on different radiological modalities utilized in clinical osteoporosis care and research.

  20. Composition and Quantitation of Microalgal Lipids by ERETIC 1H NMR Method

    Directory of Open Access Journals (Sweden)

    Angelo Fontana

    2013-09-01

    Full Text Available Accurate characterization of biomass constituents is a crucial aspect of research in the biotechnological application of natural products. Here we report an efficient, fast and reproducible method for the identification and quantitation of fatty acids and complex lipids (triacylglycerols, glycolipids, phospholipids in microalgae under investigation for the development of functional health products (probiotics, food ingredients, drugs, etc. or third generation biofuels. The procedure consists of extraction of the biological matrix by modified Folch method and direct analysis of the resulting material by proton nuclear magnetic resonance (1H NMR. The protocol uses a reference electronic signal as external standard (ERETIC method and allows assessment of total lipid content, saturation degree and class distribution in both high throughput screening of algal collection and metabolic analysis during genetic or culturing studies. As proof of concept, the methodology was applied to the analysis of three microalgal species (Thalassiosira weissflogii, Cyclotella cryptica and Nannochloropsis salina which drastically differ for the qualitative and quantitative composition of their fatty acid-based lipids.

  1. Method for the routine quantitative gas chromatographic analysis of major free fatty acids in butter and cream.

    Science.gov (United States)

    Woo, A H; Lindsay, R C

    1980-07-01

    A rapid quantiative method was developed for routine analysis of the major, even carbon-numbered free fatty acids in butter and cream. Free fatty acids were isolated directly from intact samples by a modified silicic acid-potassium hydroxide arrestant column and were separated by gas chromatography with a 1.8 m x 2 mm inner diameter glass column packed with 10% neopentyl glycol adipate on 80/100 Chromosorb W. Purified, formic acid-saturated carrier gas was required for minimal peak tailing and extended column life. The accuracy and reproducibility of the mmethod was established through quantitative recovery studies of free fatty acid mixtures, free fatty acids added to butter, and replicate analysis of butter and cream samples.

  2. Transportation and quantitative analysis of socio-economic development of relations

    Science.gov (United States)

    Chen, Yun

    2017-12-01

    Transportation has a close relationship with socio-economic. This article selects the indicators which can measure the development of transportation and socio-economic, using the method of correlation analysis, regression analysis, intensity of transportation analysis and transport elastic analysis, to analyze the relationship between them quantitatively, so that it has the fact guiding sense in the national development planning for the future.

  3. Quantitative analysis of tellurium in simple substance sulfur

    International Nuclear Information System (INIS)

    Arikawa, Yoshiko

    1976-01-01

    The MIBK extraction-bismuthiol-2 absorptiometric method for the quantitative analysis of tellurium was studied. The method and its limitation were compared with the atomic absorption method. The period of time required to boil the solution in order to decompose excess hydrogen peroxide and to reduce tellurium from 6 valance to 4 valance was examined. As a result of experiment, the decomposition was fast in the alkaline solution. It takes 30 minutes with alkaline solution and 40 minutes with acid solution to indicate constant absorption. A method of analyzing the sample containing tellurium less than 5 ppm was studied. The experiment revealed that the sample containing a very small amount of tellurium can be analyzed when concentration by extraction is carried out for the sample solutions which are divided into one gram each because it is difficult to treat several grams of the sample at one time. This method also is suitable for the quantitative analysis of selenium. This method showed good addition effect and reproducibility within the relative error of 5%. The comparison between the calibration curve of the standard solution of tellurium 4 subjected to the reaction with bismuthiol-2 and the calibration curve obtained from the extraction of tellurium 4 with MIBK indicated that the extraction is perfect. The result by bismuthiol-2 method and that by atom absorption method coincided quite well on the same sample. (Iwakiri, K.)

  4. Quantitative autoradiography - a method of radioactivity measurement

    International Nuclear Information System (INIS)

    Treutler, H.C.; Freyer, K.

    1988-01-01

    In the last years the autoradiography has been developed to a quantitative method of radioactivity measurement. Operating techniques of quantitative autoradiography are demonstrated using special standard objects. Influences of irradiation quality, of backscattering in sample and detector materials, and of sensitivity and fading of the detectors are considered. Furthermore, questions of quantitative evaluation of autoradiograms are dealt with, and measuring errors are discussed. Finally, some practical uses of quantitative autoradiography are demonstrated by means of the estimation of activity distribution in radioactive foil samples. (author)

  5. A relative quantitative Methylation-Sensitive Amplified Polymorphism (MSAP) method for the analysis of abiotic stress.

    Science.gov (United States)

    Bednarek, Piotr T; Orłowska, Renata; Niedziela, Agnieszka

    2017-04-21

    We present a new methylation-sensitive amplified polymorphism (MSAP) approach for the evaluation of relative quantitative characteristics such as demethylation, de novo methylation, and preservation of methylation status of CCGG sequences, which are recognized by the isoschizomers HpaII and MspI. We applied the technique to analyze aluminum (Al)-tolerant and non-tolerant control and Al-stressed inbred triticale lines. The approach is based on detailed analysis of events affecting HpaII and MspI restriction sites in control and stressed samples, and takes advantage of molecular marker profiles generated by EcoRI/HpaII and EcoRI/MspI MSAP platforms. Five Al-tolerant and five non-tolerant triticale lines were exposed to aluminum stress using the physiologicaltest. Total genomic DNA was isolated from root tips of all tolerant and non-tolerant lines before and after Al stress following metAFLP and MSAP approaches. Based on codes reflecting events affecting cytosines within a given restriction site recognized by HpaII and MspI in control and stressed samples demethylation (DM), de novo methylation (DNM), preservation of methylated sites (MSP), and preservation of nonmethylatedsites (NMSP) were evaluated. MSAP profiles were used for Agglomerative hierarchicalclustering (AHC) based on Squared Euclidean distance and Ward's Agglomeration method whereas MSAP characteristics for ANOVA. Relative quantitative MSAP analysis revealed that both Al-tolerant and non-tolerant triticale lines subjected to Al stress underwent demethylation, with demethylation of CG predominating over CHG. The rate of de novo methylation in the CG context was ~3-fold lower than demethylation, whereas de novo methylation of CHG was observed only in Al-tolerant lines. Our relative quantitative MSAP approach, based on methylation events affecting cytosines within HpaII-MspI recognition sequences, was capable of quantifying de novo methylation, demethylation, methylation, and non-methylated status in control

  6. A fast and reliable readout method for quantitative analysis of surface-enhanced Raman scattering nanoprobes on chip surface

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hyejin; Jeong, Sinyoung; Ko, Eunbyeol; Jeong, Dae Hong, E-mail: yslee@snu.ac.kr, E-mail: debobkr@gmail.com, E-mail: jeongdh@snu.ac.kr [Department of Chemistry Education, Seoul National University, Seoul 151-742 (Korea, Republic of); Kang, Homan [Interdisciplinary Program in Nano-Science and Technology, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, Yoon-Sik, E-mail: yslee@snu.ac.kr, E-mail: debobkr@gmail.com, E-mail: jeongdh@snu.ac.kr [Interdisciplinary Program in Nano-Science and Technology, Seoul National University, Seoul 151-742 (Korea, Republic of); School of Chemical and Biological Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, Ho-Young, E-mail: yslee@snu.ac.kr, E-mail: debobkr@gmail.com, E-mail: jeongdh@snu.ac.kr [Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam 463-707 (Korea, Republic of)

    2015-05-15

    Surface-enhanced Raman scattering techniques have been widely used for bioanalysis due to its high sensitivity and multiplex capacity. However, the point-scanning method using a micro-Raman system, which is the most common method in the literature, has a disadvantage of extremely long measurement time for on-chip immunoassay adopting a large chip area of approximately 1-mm scale and confocal beam point of ca. 1-μm size. Alternative methods such as sampled spot scan with high confocality and large-area scan method with enlarged field of view and low confocality have been utilized in order to minimize the measurement time practically. In this study, we analyzed the two methods in respect of signal-to-noise ratio and sampling-led signal fluctuations to obtain insights into a fast and reliable readout strategy. On this basis, we proposed a methodology for fast and reliable quantitative measurement of the whole chip area. The proposed method adopted a raster scan covering a full area of 100 μm × 100 μm region as a proof-of-concept experiment while accumulating signals in the CCD detector for single spectrum per frame. One single scan with 10 s over 100 μm × 100 μm area yielded much higher sensitivity compared to sampled spot scanning measurements and no signal fluctuations attributed to sampled spot scan. This readout method is able to serve as one of key technologies that will bring quantitative multiplexed detection and analysis into practice.

  7. Development of a quantitative safety assessment method for nuclear I and C systems including human operators

    International Nuclear Information System (INIS)

    Kim, Man Cheol

    2004-02-01

    Conventional PSA (probabilistic safety analysis) is performed in the framework of event tree analysis and fault tree analysis. In conventional PSA, I and C systems and human operators are assumed to be independent for simplicity. But, the dependency of human operators on I and C systems and the dependency of I and C systems on human operators are gradually recognized to be significant. I believe that it is time to consider the interdependency between I and C systems and human operators in the framework of PSA. But, unfortunately it seems that we do not have appropriate methods for incorporating the interdependency between I and C systems and human operators in the framework of Pasa. Conventional human reliability analysis (HRA) methods are not developed to consider the interdependecy, and the modeling of the interdependency using conventional event tree analysis and fault tree analysis seem to be, event though is does not seem to be impossible, quite complex. To incorporate the interdependency between I and C systems and human operators, we need a new method for HRA and a new method for modeling the I and C systems, man-machine interface (MMI), and human operators for quantitative safety assessment. As a new method for modeling the I and C systems, MMI and human operators, I develop a new system reliability analysis method, reliability graph with general gates (RGGG), which can substitute conventional fault tree analysis. RGGG is an intuitive and easy-to-use method for system reliability analysis, while as powerful as conventional fault tree analysis. To demonstrate the usefulness of the RGGG method, it is applied to the reliability analysis of Digital Plant Protection System (DPPS), which is the actual plant protection system of Ulchin 5 and 6 nuclear power plants located in Republic of Korea. The latest version of the fault tree for DPPS, which is developed by the Integrated Safety Assessment team in Korea Atomic Energy Research Institute (KAERI), consists of 64

  8. Link-based quantitative methods to identify differentially coexpressed genes and gene Pairs

    Directory of Open Access Journals (Sweden)

    Ye Zhi-Qiang

    2011-08-01

    Full Text Available Abstract Background Differential coexpression analysis (DCEA is increasingly used for investigating the global transcriptional mechanisms underlying phenotypic changes. Current DCEA methods mostly adopt a gene connectivity-based strategy to estimate differential coexpression, which is characterized by comparing the numbers of gene neighbors in different coexpression networks. Although it simplifies the calculation, this strategy mixes up the identities of different coexpression neighbors of a gene, and fails to differentiate significant differential coexpression changes from those trivial ones. Especially, the correlation-reversal is easily missed although it probably indicates remarkable biological significance. Results We developed two link-based quantitative methods, DCp and DCe, to identify differentially coexpressed genes and gene pairs (links. Bearing the uniqueness of exploiting the quantitative coexpression change of each gene pair in the coexpression networks, both methods proved to be superior to currently popular methods in simulation studies. Re-mining of a publicly available type 2 diabetes (T2D expression dataset from the perspective of differential coexpression analysis led to additional discoveries than those from differential expression analysis. Conclusions This work pointed out the critical weakness of current popular DCEA methods, and proposed two link-based DCEA algorithms that will make contribution to the development of DCEA and help extend it to a broader spectrum.

  9. Quantitative proteomic analysis of intact plastids.

    Science.gov (United States)

    Shiraya, Takeshi; Kaneko, Kentaro; Mitsui, Toshiaki

    2014-01-01

    Plastids are specialized cell organelles in plant cells that are differentiated into various forms including chloroplasts, chromoplasts, and amyloplasts, and fulfill important functions in maintaining the overall cell metabolism and sensing environmental factors such as sunlight. It is therefore important to grasp the mechanisms of differentiation and functional changes of plastids in order to enhance the understanding of vegetality. In this chapter, details of a method for the extraction of intact plastids that makes analysis possible while maintaining the plastid functions are provided; in addition, a quantitative shotgun method for analyzing the composition and changes in the content of proteins in plastids as a result of environmental impacts is described.

  10. Qualitative and quantitative methods in health research

    OpenAIRE

    V?zquez Navarrete, M. Luisa

    2009-01-01

    Introduction Research in the area of health has been traditionally dominated by quantitative research. However, the complexity of ill-health, which is socially constructed by individuals, health personnel and health authorities have motivated the search for other forms to approach knowledge. Aim To discuss the complementarities of qualitative and quantitative research methods in the generation of knowledge. Contents The purpose of quantitative research is to measure the magnitude of an event,...

  11. Effect of data quality on quantitative phase analysis (QPA) using the Rietveld method

    International Nuclear Information System (INIS)

    Scarlett, N.; Madsen, I.; Lwin, T.

    1999-01-01

    Full text: Quantitative phase analysis using the Rietveld method has become a valuable tool in modern X-ray diffraction. XRD is a recognised research tool and has been successfully employed in the developmental stages of many industrial processes. It is now becoming increasingly important as a means of process control either (i) in site quality control laboratories or (ii) even on-line. In on-line applications, the optimisation of data collection regimes is of critical importance if rapid turn-around, and hence timely process control, is to be achieved. This paper examines the effect of data quality on the quantification of phases in well characterised suites of minerals. A range of data collection regimes has been systematically investigated with a view to determining the minimum data required for acceptable quantitative phase analyses. Data has been collected with variations in the following process factors: 1st step, width ranging from 0.01 to 0.3 deg 2θ ;2nd step, counting time ranging from 0.0125 to 4 sec/step 3rd step, upper limit in the scan range varying from 40 to 148 deg 2θ. The data has been analysed using whole-pattern (Rietveld) based methods using two distinctly different analytical approaches: (i) refinement of only pattern background and individual scale factors for each phase; (ii) refinement of unit cell dimensions, overall thermal parameters, peak width and shape in addition to the background and scale factors. The experimental design for this work included a ternary design of the three component phases (fluorite, CaF 2 ; zincite, ZnO; corundum, Al 2 O 3 ) to form seven mixtures of major and minor phases of different scattering powers and the combination of the three process factors (variables) to form a factorial plan. The final data generation plan is a combination/crossing of the three process variable factorial plan with the three component mixture plan. It allows a detailed data analysis to provide information on the effect of the process

  12. Quantitative Methods in the Study of Local History

    Science.gov (United States)

    Davey, Pene

    1974-01-01

    The author suggests how the quantitative analysis of data from census records, assessment roles, and newspapers may be integrated into the classroom. Suggestions for obtaining quantitative data are provided. (DE)

  13. New Approach to Quantitative Analysis by Laser-induced Breakdown Spectroscopy

    International Nuclear Information System (INIS)

    Lee, D. H.; Kim, T. H.; Yun, J. I.; Jung, E. C.

    2009-01-01

    Laser-induced breakdown spectroscopy (LIBS) has been studied as the technique of choice in some particular situations like screening, in situ measurement, process monitoring, hostile environments, etc. Especially, LIBS can fulfill the qualitative and quantitative analysis for radioactive high level waste (HLW) glass in restricted experimental conditions. Several ways have been suggested to get quantitative information from LIBS. The one approach is to use the absolute intensities of each element. The other approach is to use the elemental emission intensities relative to the intensity of the internal standard element whose concentration is known already in the specimen. But these methods are not applicable to unknown samples. In the present work, we introduce new approach to LIBS quantitative analysis by using H α (656.28 nm) emission line as external standard

  14. Quantitative Methods for Teaching Review

    OpenAIRE

    Irina Milnikova; Tamara Shioshvili

    2011-01-01

    A new method of quantitative evaluation of teaching processes is elaborated. On the base of scores data, the method permits to evaluate efficiency of teaching within one group of students and comparative teaching efficiency in two or more groups. As basic characteristics of teaching efficiency heterogeneity, stability and total variability indices both for only one group and for comparing different groups are used. The method is easy to use and permits to rank results of teaching review which...

  15. A quantitative method to measure and evaluate the peelability of shrimps (Pandalus borealis)

    DEFF Research Database (Denmark)

    Gringer, Nina; Dang, Tem Thi; Orlien, Vibeke

    2018-01-01

    A novel, standardized method has been developed in order to provide a quantitative description of shrimp peelability. The peeling process was based on the measure of the strength of the shell-muscle attachment of the shrimp using a texture analyzer, and calculated into the peeling work. The self......-consistent method, insensitive of the shrimp size, was proven valid for assessment of ice maturation of shrimps. The quantitative peeling efficiency (peeling work) and performance (degree of shell removal) showed that the decrease in peeling work correlated with the amount of satisfactory peeled shrimps, indicating...... an effective weakening of the shell-muscle attachment. The developed method provides the industry with a quantitative analysis for measurement of peeling efficiency and peeling performance of shrimps. It may be used for comparing different maturation conditions in relation to optimization of shrimps peeling....

  16. A new quantitative analysis on nitriding kinetics in the oxidized Zry-4 at 900-1200 .deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sanggi [ACT Co. Ltd., Daejeon (Korea, Republic of)

    2016-10-15

    Two major roles of nitrogen on the zirconium based cladding degradation were identified: mechanical degradation of the cladding, and the additional chemical heat release. It has long been known that accelerated oxidation can occur in air due to the nitrogen. In addition, significant uptake of nitrogen can also occur. The nitriding of pre-oxidized zirconium based alloys leads to micro porous and less coherent oxide scales. This paper aims to quantitatively investigate the nitriding mechanism and kinetics by proposing a new methodology that is coupled with the mass balance analysis and the optical microscope image processing analysis. A new quantitative analysis methodology is described in chapter 2 and the investigation of the nitriding kinetics is performed in chapter 3. The experimental details are previously reported in. Previously only qualitative analysis was performed in, and hence the quantitative analysis will be performed in this paper. In this paper, the nitriding kinetics and mechanism were quantitatively analyzed by the new proposed analysis methods: the mass balance analysis and the optical microscope image processing analysis. Using these combined methods, the mass gain curves and the optical microscopes are analyzed in very detail, and the mechanisms of nitriding accelerated, stabilized and saturated behaviors were well understood. This paper has two very distinctive achievements as follows: 1) Development of very effective quantitative analysis methods only using two main results of oxidation tests: No detailed analytical sample measurements (e.g. TEM, EPMA and so on.) were required. These methods can effectively reduce the cost and effort of the post-test investigation. 2) The first identification of the nitriding behaviors and its very accurate analysis in a quantitative way. Based on this quantitative analysis results on the nitriding kinetics, these new findings will contribute significantly the understanding the air oxidation behaviors and model

  17. Project-Based Learning in Undergraduate Environmental Chemistry Laboratory: Using EPA Methods to Guide Student Method Development for Pesticide Quantitation

    Science.gov (United States)

    Davis, Eric J.; Pauls, Steve; Dick, Jonathan

    2017-01-01

    Presented is a project-based learning (PBL) laboratory approach for an upper-division environmental chemistry or quantitative analysis course. In this work, a combined laboratory class of 11 environmental chemistry students developed a method based on published EPA methods for the extraction of dichlorodiphenyltrichloroethane (DDT) and its…

  18. Variable selection based near infrared spectroscopy quantitative and qualitative analysis on wheat wet gluten

    Science.gov (United States)

    Lü, Chengxu; Jiang, Xunpeng; Zhou, Xingfan; Zhang, Yinqiao; Zhang, Naiqian; Wei, Chongfeng; Mao, Wenhua

    2017-10-01

    Wet gluten is a useful quality indicator for wheat, and short wave near infrared spectroscopy (NIRS) is a high performance technique with the advantage of economic rapid and nondestructive test. To study the feasibility of short wave NIRS analyzing wet gluten directly from wheat seed, 54 representative wheat seed samples were collected and scanned by spectrometer. 8 spectral pretreatment method and genetic algorithm (GA) variable selection method were used to optimize analysis. Both quantitative and qualitative model of wet gluten were built by partial least squares regression and discriminate analysis. For quantitative analysis, normalization is the optimized pretreatment method, 17 wet gluten sensitive variables are selected by GA, and GA model performs a better result than that of all variable model, with R2V=0.88, and RMSEV=1.47. For qualitative analysis, automatic weighted least squares baseline is the optimized pretreatment method, all variable models perform better results than those of GA models. The correct classification rates of 3 class of 30% wet gluten content are 95.45, 84.52, and 90.00%, respectively. The short wave NIRS technique shows potential for both quantitative and qualitative analysis of wet gluten for wheat seed.

  19. A scoring system for appraising mixed methods research, and concomitantly appraising qualitative, quantitative and mixed methods primary studies in Mixed Studies Reviews.

    Science.gov (United States)

    Pluye, Pierre; Gagnon, Marie-Pierre; Griffiths, Frances; Johnson-Lafleur, Janique

    2009-04-01

    A new form of literature review has emerged, Mixed Studies Review (MSR). These reviews include qualitative, quantitative and mixed methods studies. In the present paper, we examine MSRs in health sciences, and provide guidance on processes that should be included and reported. However, there are no valid and usable criteria for concomitantly appraising the methodological quality of the qualitative, quantitative and mixed methods studies. To propose criteria for concomitantly appraising the methodological quality of qualitative, quantitative and mixed methods studies or study components. A three-step critical review was conducted. 2322 references were identified in MEDLINE, and their titles and abstracts were screened; 149 potentially relevant references were selected and the full-text papers were examined; 59 MSRs were retained and scrutinized using a deductive-inductive qualitative thematic data analysis. This revealed three types of MSR: convenience, reproducible, and systematic. Guided by a proposal, we conducted a qualitative thematic data analysis of the quality appraisal procedures used in the 17 systematic MSRs (SMSRs). Of 17 SMSRs, 12 showed clear quality appraisal procedures with explicit criteria but no SMSR used valid checklists to concomitantly appraise qualitative, quantitative and mixed methods studies. In two SMSRs, criteria were developed following a specific procedure. Checklists usually contained more criteria than needed. In four SMSRs, a reliability assessment was described or mentioned. While criteria for quality appraisal were usually based on descriptors that require specific methodological expertise (e.g., appropriateness), no SMSR described the fit between reviewers' expertise and appraised studies. Quality appraisal usually resulted in studies being ranked by methodological quality. A scoring system is proposed for concomitantly appraising the methodological quality of qualitative, quantitative and mixed methods studies for SMSRs. This

  20. Quantitative X ray analysis system. User's manual and guide to X ray fluorescence technique

    International Nuclear Information System (INIS)

    2009-01-01

    This guide covers trimmed and re-arranged version 3.6 of the Quantitative X ray Analysis System (QXAS) software package that includes the most frequently used methods of quantitative analysis. QXAS is a comprehensive quantitative analysis package that has been developed by the IAEA through research and technical contracts. Additional development has also been carried out in the IAEA Laboratories in Seibersdorf where QXAS was extensively tested. New in this version of the manual are the descriptions of the Voigt-profile peak fitting, the backscatter fundamental parameters' and emission-transmission methods of chemical composition analysis, an expanded chapter on the X ray fluorescence physics, and completely revised and increased number of practical examples of utilization of the QXAS software package. The analytical data accompanying this manual were collected in the IAEA Seibersdorf Laboratories in the years 2006/2007

  1. Winston-Lutz Test: A quantitative analysis

    International Nuclear Information System (INIS)

    Pereira, Aline Garcia; Nandi, Dorival Menegaz; Saraiva, Crystian Wilian Chagas

    2017-01-01

    Objective: Describe a method of quantitative analysis for the Winston-Lutz test. Materials and methods The research is a qualitative exploratory study. The materials used were: portal film; Winston- Lutz test tools and Omni Pro software. Sixteen portal films were used as samples and were analyzed by five different technicians to measure the deviation between the radiation isocenters and mechanic. Results: Among the results were identified two combinations with offset values greater than 1 mm. In addition, when compared the method developed with the previously studied, it was observed that the data obtained are very close, with the maximum percentage deviation of 32.5%, which demonstrates its efficacy in reducing dependence on the performer. Conclusion: The results show that the method is reproducible and practical, which constitutes one of the fundamental factors for its implementation. (author)

  2. Quantitative bioanalytical and analytical method development of dibenzazepine derivative, carbamazepine: A review ☆

    OpenAIRE

    Datar, Prasanna A.

    2015-01-01

    Bioanalytical methods are widely used for quantitative estimation of drugs and their metabolites in physiological matrices. These methods could be applied to studies in areas of human clinical pharmacology and toxicology. The major bioanalytical services are method development, method validation and sample analysis (method application). Various methods such as GC, LC–MS/MS, HPLC, HPTLC, micellar electrokinetic chromatography, and UFLC have been used in laboratories for the qualitative and qua...

  3. Quantitative analysis of regional myocardial performance in coronary artery disease

    Science.gov (United States)

    Stewart, D. K.; Dodge, H. T.; Frimer, M.

    1975-01-01

    Findings from a group of subjects with significant coronary artery stenosis are given. A group of controls determined by use of a quantitative method for the study of regional myocardial performance based on the frame-by-frame analysis of biplane left ventricular angiograms are presented. Particular emphasis was placed upon the analysis of wall motion in terms of normalized segment dimensions, timing and velocity of contraction. The results were compared with the method of subjective assessment used clinically.

  4. Quantitative fluorescence kinetic analysis of NADH and FAD in human plasma using three- and four-way calibration methods capable of providing the second-order advantage

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Chao [School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025 (China); Wu, Hai-Long, E-mail: hlwu@hnu.edu.cn [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Zhou, Chang; Xiang, Shou-Xia; Zhang, Xiao-Hua; Yu, Yong-Jie; Yu, Ru-Qin [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China)

    2016-03-03

    The metabolic coenzymes reduced nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) are the primary electron donor and acceptor respectively, participate in almost all biological metabolic pathways. This study develops a novel method for the quantitative kinetic analysis of the degradation reaction of NADH and the formation reaction of FAD in human plasma containing an uncalibrated interferent, by using three-way calibration based on multi-way fluorescence technique. In the three-way analysis, by using the calibration set in a static manner, we directly predicted the concentrations of both analytes in the mixture at any time after the start of their reactions, even in the presence of an uncalibrated spectral interferent and a varying background interferent. The satisfactory quantitative results indicate that the proposed method allows one to directly monitor the concentration of each analyte in the mixture as the function of time in real-time and nondestructively, instead of determining the concentration after the analytical separation. Thereafter, we fitted the first-order rate law to their concentration data throughout their reactions. Additionally, a four-way calibration procedure is developed as an alternative for highly collinear systems. The results of the four-way analysis confirmed the results of the three-way analysis and revealed that both the degradation reaction of NADH and the formation reaction of FAD in human plasma fit the first-order rate law. The proposed methods could be expected to provide promising tools for simultaneous kinetic analysis of multiple reactions in complex systems in real-time and nondestructively. - Highlights: • A novel three-way calibration method for the quantitative kinetic analysis of NADH and FAD in human plasma is proposed. • The method can directly monitor the concentration of each analyte in the reaction in real-time and nondestructively. • The method has the second-order advantage. • A

  5. Quantitative fluorescence kinetic analysis of NADH and FAD in human plasma using three- and four-way calibration methods capable of providing the second-order advantage

    International Nuclear Information System (INIS)

    Kang, Chao; Wu, Hai-Long; Zhou, Chang; Xiang, Shou-Xia; Zhang, Xiao-Hua; Yu, Yong-Jie; Yu, Ru-Qin

    2016-01-01

    The metabolic coenzymes reduced nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) are the primary electron donor and acceptor respectively, participate in almost all biological metabolic pathways. This study develops a novel method for the quantitative kinetic analysis of the degradation reaction of NADH and the formation reaction of FAD in human plasma containing an uncalibrated interferent, by using three-way calibration based on multi-way fluorescence technique. In the three-way analysis, by using the calibration set in a static manner, we directly predicted the concentrations of both analytes in the mixture at any time after the start of their reactions, even in the presence of an uncalibrated spectral interferent and a varying background interferent. The satisfactory quantitative results indicate that the proposed method allows one to directly monitor the concentration of each analyte in the mixture as the function of time in real-time and nondestructively, instead of determining the concentration after the analytical separation. Thereafter, we fitted the first-order rate law to their concentration data throughout their reactions. Additionally, a four-way calibration procedure is developed as an alternative for highly collinear systems. The results of the four-way analysis confirmed the results of the three-way analysis and revealed that both the degradation reaction of NADH and the formation reaction of FAD in human plasma fit the first-order rate law. The proposed methods could be expected to provide promising tools for simultaneous kinetic analysis of multiple reactions in complex systems in real-time and nondestructively. - Highlights: • A novel three-way calibration method for the quantitative kinetic analysis of NADH and FAD in human plasma is proposed. • The method can directly monitor the concentration of each analyte in the reaction in real-time and nondestructively. • The method has the second-order advantage. • A

  6. Spin echo SPI methods for quantitative analysis of fluids in porous media.

    Science.gov (United States)

    Li, Linqing; Han, Hui; Balcom, Bruce J

    2009-06-01

    Fluid density imaging is highly desirable in a wide variety of porous media measurements. The SPRITE class of MRI methods has proven to be robust and general in their ability to generate density images in porous media, however the short encoding times required, with correspondingly high magnetic field gradient strengths and filter widths, and low flip angle RF pulses, yield sub-optimal S/N images, especially at low static field strength. This paper explores two implementations of pure phase encode spin echo 1D imaging, with application to a proposed new petroleum reservoir core analysis measurement. In the first implementation of the pulse sequence, we modify the spin echo single point imaging (SE-SPI) technique to acquire the k-space origin data point, with a near zero evolution time, from the free induction decay (FID) following a 90 degrees excitation pulse. Subsequent k-space data points are acquired by separately phase encoding individual echoes in a multi-echo acquisition. T(2) attenuation of the echo train yields an image convolution which causes blurring. The T(2) blur effect is moderate for porous media with T(2) lifetime distributions longer than 5 ms. As a robust, high S/N, and fast 1D imaging method, this method will be highly complementary to SPRITE techniques for the quantitative analysis of fluid content in porous media. In the second implementation of the SE-SPI pulse sequence, modification of the basic measurement permits fast determination of spatially resolved T(2) distributions in porous media through separately phase encoding each echo in a multi-echo CPMG pulse train. An individual T(2) weighted image may be acquired from each echo. The echo time (TE) of each T(2) weighted image may be reduced to 500 micros or less. These profiles can be fit to extract a T(2) distribution from each pixel employing a variety of standard inverse Laplace transform methods. Fluid content 1D images are produced as an essential by product of determining the

  7. Comparison study on qualitative and quantitative risk assessment methods for urban natural gas pipeline network.

    Science.gov (United States)

    Han, Z Y; Weng, W G

    2011-05-15

    In this paper, a qualitative and a quantitative risk assessment methods for urban natural gas pipeline network are proposed. The qualitative method is comprised of an index system, which includes a causation index, an inherent risk index, a consequence index and their corresponding weights. The quantitative method consists of a probability assessment, a consequences analysis and a risk evaluation. The outcome of the qualitative method is a qualitative risk value, and for quantitative method the outcomes are individual risk and social risk. In comparison with previous research, the qualitative method proposed in this paper is particularly suitable for urban natural gas pipeline network, and the quantitative method takes different consequences of accidents into consideration, such as toxic gas diffusion, jet flame, fire ball combustion and UVCE. Two sample urban natural gas pipeline networks are used to demonstrate these two methods. It is indicated that both of the two methods can be applied to practical application, and the choice of the methods depends on the actual basic data of the gas pipelines and the precision requirements of risk assessment. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  8. Quantitative analysis of myocardial tissue with digital autofluorescence microscopy

    DEFF Research Database (Denmark)

    Jensen, Thomas; Holten-Rossing, Henrik; Svendsen, Ida M H

    2016-01-01

    to that of hematoxylin and eosin staining in conventional pathology. This study presents an automated fluorescence-based microscopy approach providing highly detailed morphological data from unstained microsections. This data may provide a basic histological starting point from which further digital analysis including...... staining may benefit. METHODS: This study explores the inherent tissue fluorescence, also known as autofluorescence, as a mean to quantitate cardiac tissue components in histological microsections. Data acquisition using a commercially available whole slide scanner and an image-based quantitation algorithm......BACKGROUND: The opportunity offered by whole slide scanners of automated histological analysis implies an ever increasing importance of digital pathology. To go beyond the importance of conventional pathology, however, digital pathology may need a basic histological starting point similar...

  9. A method for quantitative analysis of clump thickness in cervical cytology slides.

    Science.gov (United States)

    Fan, Yilun; Bradley, Andrew P

    2016-01-01

    Knowledge of the spatial distribution and thickness of cytology specimens is critical to the development of digital slide acquisition techniques that minimise both scan times and image file size. In this paper, we evaluate a novel method to achieve this goal utilising an exhaustive high-resolution scan, an over-complete wavelet transform across multi-focal planes and a clump segmentation of all cellular materials on the slide. The method is demonstrated with a quantitative analysis of ten normal, but difficult to scan Pap stained, Thin-prep, cervical cytology slides. We show that with this method the top and bottom of the specimen can be estimated to an accuracy of 1 μm in 88% and 97% of the fields of view respectively. Overall, cellular material can be over 30 μm thick and the distribution of cells is skewed towards the cover-slip (top of the slide). However, the median clump thickness is 10 μm and only 31% of clumps contain more than three nuclei. Therefore, by finding a focal map of the specimen the number of 1 μm spaced focal planes that are required to be scanned to acquire 95% of the in-focus material can be reduced from 25.4 to 21.4 on average. In addition, we show that by considering the thickness of the specimen, an improved focal map can be produced which further reduces the required number of 1 μm spaced focal planes to 18.6. This has the potential to reduce scan times and raw image data by over 25%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Mapcurves: a quantitative method for comparing categorical maps.

    Science.gov (United States)

    William W. Hargrove; M. Hoffman Forrest; Paul F. Hessburg

    2006-01-01

    We present Mapcurves, a quantitative goodness-of-fit (GOF) method that unambiguously shows the degree of spatial concordance between two or more categorical maps. Mapcurves graphically and quantitatively evaluate the degree of fit among any number of maps and quantify a GOF for each polygon, as well as the entire map. The Mapcurve method indicates a perfect fit even if...

  11. Renal geology (quantitative renal stone analysis) by 'Fourier transform infrared spectroscopy'.

    Science.gov (United States)

    Singh, Iqbal

    2008-01-01

    To prospectively determine the precise stone composition (quantitative analysis) by using infrared spectroscopy in patients with urinary stone disease presenting to our clinic. To determine an ideal method for stone analysis suitable for use in a clinical setting. After routine and a detailed metabolic workup of all patients of urolithiasis, stone samples of 50 patients of urolithiasis satisfying the entry criteria were subjected to the Fourier transform infrared spectroscopic analysis after adequate sample homogenization at a single testing center. Calcium oxalate monohydrate and dihydrate stone mixture was most commonly encountered in 35 (71%) followed by calcium phosphate, carbonate apatite, magnesium ammonium hexahydrate and xanthine stones. Fourier transform infrared spectroscopy allows an accurate, reliable quantitative method of stone analysis. It also helps in maintaining a computerized large reference library. Knowledge of precise stone composition may allow the institution of appropriate prophylactic therapy despite the absence of any detectable metabolic abnormalities. This may prevent and or delay stone recurrence.

  12. Stable Isotope Quantitative N-Glycan Analysis by Liquid Separation Techniques and Mass Spectrometry.

    Science.gov (United States)

    Mittermayr, Stefan; Albrecht, Simone; Váradi, Csaba; Millán-Martín, Silvia; Bones, Jonathan

    2017-01-01

    Liquid phase separation analysis and subsequent quantitation remains a challenging task for protein-derived oligosaccharides due to their inherent structural complexity and diversity. Incomplete resolution or co-detection of multiple glycan species complicates peak area-based quantitation and associated statistical analysis when optical detection methods are used. The approach outlined herein describes the utilization of stable isotope variants of commonly used fluorescent tags that allow for mass-based glycan identification and relative quantitation following separation by liquid chromatography (LC) or capillary electrophoresis (CE). Comparability assessment of glycoprotein-derived oligosaccharides is performed by derivatization with commercially available isotope variants of 2-aminobenzoic acid or aniline and analysis by LC- and CE-mass spectrometry. Quantitative information is attained from the extracted ion chromatogram/electropherogram ratios generated from the light and heavy isotope clusters.

  13. Computer aided approach to qualitative and quantitative common cause failure analysis for complex systems

    International Nuclear Information System (INIS)

    Cate, C.L.; Wagner, D.P.; Fussell, J.B.

    1977-01-01

    Common cause failure analysis, also called common mode failure analysis, is an integral part of a complete system reliability analysis. Existing methods of computer aided common cause failure analysis are extended by allowing analysis of the complex systems often encountered in practice. The methods aid in identifying potential common cause failures and also address quantitative common cause failure analysis

  14. Are Teacher Course Evaluations Biased against Faculty That Teach Quantitative Methods Courses?

    Science.gov (United States)

    Royal, Kenneth D.; Stockdale, Myrah R.

    2015-01-01

    The present study investigated graduate students' responses to teacher/course evaluations (TCE) to determine if students' responses were inherently biased against faculty who teach quantitative methods courses. Item response theory (IRT) and Differential Item Functioning (DIF) techniques were utilized for data analysis. Results indicate students…

  15. Combination and Integration of Qualitative and Quantitative Analysis

    Directory of Open Access Journals (Sweden)

    Philipp Mayring

    2001-02-01

    Full Text Available In this paper, I am going to outline ways of combining qualitative and quantitative steps of analysis on five levels. On the technical level, programs for the computer-aided analysis of qualitative data offer various combinations. Where the data are concerned, the employment of categories (for instance by using qualitative content analysis allows for combining qualitative and quantitative forms of data analysis. On the individual level, the creation of types and the inductive generalisation of cases allow for proceeding from individual case material to quantitative generalisations. As for research design, different models can be distinguished (preliminary study, generalisation, elaboration, triangulation which combine qualitative and quantitative steps of analysis. Where the logic of research is concerned, it can be shown that an extended process model which combined qualitative and quantitative research can be appropriate and thus lead to an integration of the two approaches. URN: urn:nbn:de:0114-fqs010162

  16. Quantitative method for determination of body inorganic iodine

    International Nuclear Information System (INIS)

    Filatov, A.A.; Tatsievskij, V.A.

    1991-01-01

    An original method of quantitation of body inorganic iodine, based upon a simultaneous administration of a known dose of stable and radioactive iodine with subsequent radiometry of the thyroid was proposed. The calculation is based upon the principle of the dilution of radiactive iodine in human inorganic iodine space. The method permits quantitation of the amount of inorganic iodine with regard to individual features of inorganic space. The method is characterized by simplicity and is not invasive for a patient

  17. Patient-specific coronary blood supply territories for quantitative perfusion analysis

    Science.gov (United States)

    Zakkaroff, Constantine; Biglands, John D.; Greenwood, John P.; Plein, Sven; Boyle, Roger D.; Radjenovic, Aleksandra; Magee, Derek R.

    2018-01-01

    Abstract Myocardial perfusion imaging, coupled with quantitative perfusion analysis, provides an important diagnostic tool for the identification of ischaemic heart disease caused by coronary stenoses. The accurate mapping between coronary anatomy and under-perfused areas of the myocardium is important for diagnosis and treatment. However, in the absence of the actual coronary anatomy during the reporting of perfusion images, areas of ischaemia are allocated to a coronary territory based on a population-derived 17-segment (American Heart Association) AHA model of coronary blood supply. This work presents a solution for the fusion of 2D Magnetic Resonance (MR) myocardial perfusion images and 3D MR angiography data with the aim to improve the detection of ischaemic heart disease. The key contribution of this work is a novel method for the mediated spatiotemporal registration of perfusion and angiography data and a novel method for the calculation of patient-specific coronary supply territories. The registration method uses 4D cardiac MR cine series spanning the complete cardiac cycle in order to overcome the under-constrained nature of non-rigid slice-to-volume perfusion-to-angiography registration. This is achieved by separating out the deformable registration problem and solving it through phase-to-phase registration of the cine series. The use of patient-specific blood supply territories in quantitative perfusion analysis (instead of the population-based model of coronary blood supply) has the potential of increasing the accuracy of perfusion analysis. Quantitative perfusion analysis diagnostic accuracy evaluation with patient-specific territories against the AHA model demonstrates the value of the mediated spatiotemporal registration in the context of ischaemic heart disease diagnosis. PMID:29392098

  18. Quantitative Analysis of Differential Proteome Expression in Bladder Cancer vs. Normal Bladder Cells Using SILAC Method.

    Directory of Open Access Journals (Sweden)

    Ganglong Yang

    Full Text Available The best way to increase patient survival rate is to identify patients who are likely to progress to muscle-invasive or metastatic disease upfront and treat them more aggressively. The human cell lines HCV29 (normal bladder epithelia, KK47 (low grade nonmuscle invasive bladder cancer, NMIBC, and YTS1 (metastatic bladder cancer have been widely used in studies of molecular mechanisms and cell signaling during bladder cancer (BC progression. However, little attention has been paid to global quantitative proteome analysis of these three cell lines. We labeled HCV29, KK47, and YTS1 cells by the SILAC method using three stable isotopes each of arginine and lysine. Labeled proteins were analyzed by 2D ultrahigh-resolution liquid chromatography LTQ Orbitrap mass spectrometry. Among 3721 unique identified and annotated proteins in KK47 and YTS1 cells, 36 were significantly upregulated and 74 were significantly downregulated with >95% confidence. Differential expression of these proteins was confirmed by western blotting, quantitative RT-PCR, and cell staining with specific antibodies. Gene ontology (GO term and pathway analysis indicated that the differentially regulated proteins were involved in DNA replication and molecular transport, cell growth and proliferation, cellular movement, immune cell trafficking, and cell death and survival. These proteins and the advanced proteome techniques described here will be useful for further elucidation of molecular mechanisms in BC and other types of cancer.

  19. Impact of PET/CT image reconstruction methods and liver uptake normalization strategies on quantitative image analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kuhnert, Georg; Sterzer, Sergej; Kahraman, Deniz; Dietlein, Markus; Drzezga, Alexander; Kobe, Carsten [University Hospital of Cologne, Department of Nuclear Medicine, Cologne (Germany); Boellaard, Ronald [VU University Medical Centre, Department of Radiology and Nuclear Medicine, Amsterdam (Netherlands); Scheffler, Matthias; Wolf, Juergen [University Hospital of Cologne, Lung Cancer Group Cologne, Department I of Internal Medicine, Center for Integrated Oncology Cologne Bonn, Cologne (Germany)

    2016-02-15

    In oncological imaging using PET/CT, the standardized uptake value has become the most common parameter used to measure tracer accumulation. The aim of this analysis was to evaluate ultra high definition (UHD) and ordered subset expectation maximization (OSEM) PET/CT reconstructions for their potential impact on quantification. We analyzed 40 PET/CT scans of lung cancer patients who had undergone PET/CT. Standardized uptake values corrected for body weight (SUV) and lean body mass (SUL) were determined in the single hottest lesion in the lung and normalized to the liver for UHD and OSEM reconstruction. Quantitative uptake values and their normalized ratios for the two reconstruction settings were compared using the Wilcoxon test. The distribution of quantitative uptake values and their ratios in relation to the reconstruction method used were demonstrated in the form of frequency distribution curves, box-plots and scatter plots. The agreement between OSEM and UHD reconstructions was assessed through Bland-Altman analysis. A significant difference was observed after OSEM and UHD reconstruction for SUV and SUL data tested (p < 0.0005 in all cases). The mean values of the ratios after OSEM and UHD reconstruction showed equally significant differences (p < 0.0005 in all cases). Bland-Altman analysis showed that the SUV and SUL and their normalized values were, on average, up to 60 % higher after UHD reconstruction as compared to OSEM reconstruction. OSEM and HD reconstruction brought a significant difference for SUV and SUL, which remained constantly high after normalization to the liver, indicating that standardization of reconstruction and the use of comparable SUV measurements are crucial when using PET/CT. (orig.)

  20. Semi-quantitative methods yield greater inter- and intraobserver agreement than subjective methods for interpreting 99m technetium-hydroxymethylene-diphosphonate uptake in equine thoracic processi spinosi.

    Science.gov (United States)

    van Zadelhoff, Claudia; Ehrle, Anna; Merle, Roswitha; Jahn, Werner; Lischer, Christoph

    2018-05-09

    Scintigraphy is a standard diagnostic method for evaluating horses with back pain due to suspected thoracic processus spinosus pathology. Lesion detection is based on subjective or semi-quantitative assessments of increased uptake. This retrospective, analytical study is aimed to compare semi-quantitative and subjective methods in the evaluation of scintigraphic images of the processi spinosi in the equine thoracic spine. Scintigraphic images of 20 Warmblood horses, presented for assessment of orthopedic conditions between 2014 and 2016, were included in the study. Randomized, blinded image evaluation was performed by 11 veterinarians using subjective and semi-quantitative methods. Subjective grading was performed for the analysis of red-green-blue and grayscale scintigraphic images, which were presented in full-size or as masked images. For the semi-quantitative assessment, observers placed regions of interest over each processus spinosus. The uptake ratio of each processus spinosus in comparison to a reference region of interest was determined. Subsequently, a modified semi-quantitative calculation was developed whereby only the highest counts-per-pixel for a specified number of pixels was processed. Inter- and intraobserver agreement was calculated using intraclass correlation coefficients. Inter- and intraobserver intraclass correlation coefficients were 41.65% and 71.39%, respectively, for the subjective image assessment. Additionally, a correlation between intraobserver agreement, experience, and grayscale images was identified. The inter- and intraobserver agreement was significantly increased when using semi-quantitative analysis (97.35% and 98.36%, respectively) or the modified semi-quantitative calculation (98.61% and 98.82%, respectively). The proposed modified semi-quantitative technique showed a higher inter- and intraobserver agreement when compared to other methods, which makes it a useful tool for the analysis of scintigraphic images. The

  1. Instrumentation and quantitative methods of evaluation

    International Nuclear Information System (INIS)

    Beck, R.N.; Cooper, M.D.

    1991-01-01

    This report summarizes goals and accomplishments of the research program entitled Instrumentation and Quantitative Methods of Evaluation, during the period January 15, 1989 through July 15, 1991. This program is very closely integrated with the radiopharmaceutical program entitled Quantitative Studies in Radiopharmaceutical Science. Together, they constitute the PROGRAM OF NUCLEAR MEDICINE AND QUANTITATIVE IMAGING RESEARCH within The Franklin McLean Memorial Research Institute (FMI). The program addresses problems involving the basic science and technology that underlie the physical and conceptual tools of radiotracer methodology as they relate to the measurement of structural and functional parameters of physiologic importance in health and disease. The principal tool is quantitative radionuclide imaging. The objective of this program is to further the development and transfer of radiotracer methodology from basic theory to routine clinical practice. The focus of the research is on the development of new instruments and radiopharmaceuticals, and the evaluation of these through the phase of clinical feasibility. 234 refs., 11 figs., 2 tabs

  2. Introduction to quantitative research methods an investigative approach

    CERN Document Server

    Balnaves, Mark

    2001-01-01

    Introduction to Quantitative Research Methods is a student-friendly introduction to quantitative research methods and basic statistics. It uses a detective theme throughout the text and in multimedia courseware to show how quantitative methods have been used to solve real-life problems. The book focuses on principles and techniques that are appropriate to introductory level courses in media, psychology and sociology. Examples and illustrations are drawn from historical and contemporary research in the social sciences. The multimedia courseware provides tutorial work on sampling, basic statistics, and techniques for seeking information from databases and other sources. The statistics modules can be used as either part of a detective games or directly in teaching and learning. Brief video lessons in SPSS, using real datasets, are also a feature of the CD-ROM.

  3. The usefulness of 3D quantitative analysis with using MRI for measuring osteonecrosis of the femoral head

    International Nuclear Information System (INIS)

    Hwang, Ji Young; Lee, Sun Wha; Park, Youn Soo

    2006-01-01

    We wanted to evaluate the usefulness of MRI 3D quantitative analysis for measuring osteonecrosis of the femoral head in comparison with MRI 2D quantitative analysis and quantitative analysis of the specimen. For 3 months at our hospital, 14 femoral head specimens with osteonecrosis were obtained after total hip arthroplasty. The patients preoperative MRIs were retrospectively reviewed for quantitative analysis of the size of the necrosis. Each necrotic fraction of the femoral head was measured by 2D quantitative analysis with using mid-coronal and mid-sagittal MRIs, and by 3D quantitative analysis with using serial continuous coronal MRIs and 3D reconstruction software. The necrotic fraction of the specimen was physically measured by the fluid displacement method. The necrotic fraction according to MRI 2D or 3D quantitative analysis was compared with that of the specimen by using Spearman's correlation test. On the correlative analysis, the necrotic fraction by MRI 2D quantitative analysis and quantitative analysis of the specimen showed moderate correlation (r = 0.657); on the other hand, the necrotic fraction by MRI 3D quantitative analysis and quantitative analysis of the specimen demonstrated a strong correlation (r = 0.952) (ρ < 0.05). MRI 3D quantitative analysis was more accurate than 2D quantitative analysis using MRI for measuring osteonecrosis of the femoral head. Therefore, it may be useful for predicting the clinical outcome and deciding the proper treatment option

  4. Quantitative evaluation of fluctuation error in X-ray diffraction profiles with fractal analysis

    International Nuclear Information System (INIS)

    Kurose, Masashi; Hirose, Yukio; Sasaki, Toshihiko; Yoshioka, Yasuo.

    1995-01-01

    A method of the fractal analysis was applied to the diffraction profiles for its quantitative evaluation. The fractal dimension was analyzed according to both Box counting method and FFT method. The relationship between the fractal dimension and the measurement criteria in X-ray diffraction analysis was discussed with diffraction data obtained under various conditions of the measurement. It was concluded that the fractal analysis is effective for the quantitative evaluation of diffraction data. Box counting method is suitable for evaluation of a whole profile, and FFT method is for that of a fundamental profile. The range of desirable condition of measurement is 1.0≤D≤1.2, where D is a fractal dimension. The appropriate range of measurement becomes 0.01≤Sw/HVB≤0.03, where Sw is the step width and the HVB is the half-value breadth. Stresses with higher precision were obtained from measurements under this new criteria. (author)

  5. Energy Dispersive Spectrometry and Quantitative Analysis Short Course. Introduction to X-ray Energy Dispersive Spectrometry and Quantitative Analysis

    Science.gov (United States)

    Carpenter, Paul; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    This course will cover practical applications of the energy-dispersive spectrometer (EDS) to x-ray microanalysis. Topics covered will include detector technology, advances in pulse processing, resolution and performance monitoring, detector modeling, peak deconvolution and fitting, qualitative and quantitative analysis, compositional mapping, and standards. An emphasis will be placed on use of the EDS for quantitative analysis, with discussion of typical problems encountered in the analysis of a wide range of materials and sample geometries.

  6. Application of new least-squares methods for the quantitative infrared analysis of multicomponent samples

    International Nuclear Information System (INIS)

    Haaland, D.M.; Easterling, R.G.

    1982-01-01

    Improvements have been made in previous least-squares regression analyses of infrared spectra for the quantitative estimation of concentrations of multicomponent mixtures. Spectral baselines are fitted by least-squares methods, and overlapping spectral features are accounted for in the fitting procedure. Selection of peaks above a threshold value reduces computation time and data storage requirements. Four weighted least-squares methods incorporating different baseline assumptions were investigated using FT-IR spectra of the three pure xylene isomers and their mixtures. By fitting only regions of the spectra that follow Beer's Law, accurate results can be obtained using three of the fitting methods even when baselines are not corrected to zero. Accurate results can also be obtained using one of the fits even in the presence of Beer's Law deviations. This is a consequence of pooling the weighted results for each spectral peak such that the greatest weighting is automatically given to those peaks that adhere to Beer's Law. It has been shown with the xylene spectra that semiquantitative results can be obtained even when all the major components are not known or when expected components are not present. This improvement over previous methods greatly expands the utility of quantitative least-squares analyses

  7. Development of a quantitative method for the analysis of cocaine analogue impregnated into textiles by Raman spectroscopy.

    Science.gov (United States)

    Xiao, Linda; Alder, Rhiannon; Mehta, Megha; Krayem, Nadine; Cavasinni, Bianca; Laracy, Sean; Cameron, Shane; Fu, Shanlin

    2018-04-01

    Cocaine trafficking in the form of textile impregnation is routinely encountered as a concealment method. Raman spectroscopy has been a popular and successful testing method used for in situ screening of cocaine in textiles and other matrices. Quantitative analysis of cocaine in these matrices using Raman spectroscopy has not been reported to date. This study aimed to develop a simple Raman method for quantifying cocaine using atropine as the model analogue in various types of textiles. Textiles were impregnated with solutions of atropine in methanol. The impregnated atropine was extracted using less hazardous acidified water with the addition of potassium thiocyanate (KSCN) as an internal standard for Raman analysis. Despite the presence of background matrix signals arising from the textiles, the cocaine analogue could easily be identified by its characteristic Raman bands. The successful use of KSCN normalised the analyte signal response due to different textile matrix background interferences and thus removed the need for a matrix-matched calibration. The method was linear over a concentration range of 6.25-37.5 mg/cm 2 with a coefficient of determination (R 2 ) at 0.975 and acceptable precision and accuracy. A simple and accurate Raman spectroscopy method for the analysis and quantification of a cocaine analogue impregnated in textiles has been developed and validated for the first time. This proof-of-concept study has demonstrated that atropine can act as an ideal model compound to study the problem of cocaine impregnation in textile. The method has the potential to be further developed and implemented in real world forensic cases. Copyright © 2017 John Wiley & Sons, Ltd.

  8. A gas chromatography-mass spectrometry method for the quantitation of clobenzorex.

    Science.gov (United States)

    Cody, J T; Valtier, S

    1999-01-01

    Drugs metabolized to amphetamine or methamphetamine are potentially significant concerns in the interpretation of amphetamine-positive urine drug-testing results. One of these compounds, clobenzorex, is an anorectic drug that is available in many countries. Clobenzorex (2-chlorobenzylamphetamine) is metabolized to amphetamine by the body and excreted in the urine. Following administration, the parent compound was detectable for a shorter time than the metabolite amphetamine, which could be detected for days. Because of the potential complication posed to the interpretation of amphetamin-positive drug tests following administration of this drug, the viability of a current amphetamine procedure using liquid-liquid extraction and conversion to the heptafluorobutyryl derivative followed by gas chromatography-mass spectrometry (GC-MS) analysis was evaluated for identification and quantitation of clobenzorex. Qualitative identification of the drug was relatively straightforward. Quantitative analysis proved to be a far more challenging process. Several compounds were evaluated for use as the internal standard in this method, including methamphetamine-d11, fenfluramine, benzphetamine, and diphenylamine. Results using these compounds proved to be less than satisfactory because of poor reproducibility of the quantitative values. Because of its similar chromatographic properties to the parent drug, the compound 3-chlorobenzylamphetamine (3-Cl-clobenzorex) was evaluated in this study as the internal standard for the quantitation of clobenzorex. Precision studies showed 3-Cl-clobenzorex to produce accurate and reliable quantitative results (within-run relative standard deviations [RSDs] clobenzorex.

  9. Scientific aspects of urolithiasis: quantitative stone analysis and crystallization experiments

    International Nuclear Information System (INIS)

    Wandt, M.A.E.

    1986-03-01

    The theory, development and results of three quantitative analytical procedures are described and the crystallization experiments in a rotary evaporator are presented. Of the different methods of quantitative X-ray powder diffraction analyses, the 'internal standard method' and a microanalytical technique were identified as the two most useful procedures for the quantitative analysis of urinary calculi. 'Reference intensity ratios' for 6 major stone phases were determined and were used in the analysis of 20 calculi by the 'internal standard method'. Inductively coupled plasma atomic emission spectroscopic (ICP-AES) methods were also investigated, developed and used in this study. Various procedures for the digestion of calculi were tested and a mixture of HNO 3 and HC1O 4 was eventually found to be the most successful. The major elements Ca, Mg, and P in 41 calculi were determined. For the determination of trace elements, a new microwave-assisted digestion procedure was developed and used for the digestion of 100 calculi. Fluoride concentrations in two stone collections were determined using a fluoride-ion sensitive electrode and the HNO 3 /HC1O 4 digestion prodecure used for the ICP study. A series of crystallization experiments involving a standard reference artificial urine was carried out in a rotary evaporator. The effect of pH and urine composition was studied by varying the former and by including uric acid, urea, creatinine, MgO, methylene blue, chondroitin sulphate A, and fluoride in the reference solution. Crystals formed in these experiments were subjected to qualitative and semi-quantitative X-ray powder diffraction analyses. Scanning electron microscopy of several deposits was also carried out. Similar deposits to those observed in calculi were obtained with the fast evaporator. The results presented suggest that this system provides a simple, yet very useful means for studying the crystallization characteristics of urine solutions

  10. PETROGRAPHY AND APPLICATION OF THE RIETVELD METHOD TO THE QUANTITATIVE ANALYSIS OF PHASES OF NATURAL CLINKER GENERATED BY COAL SPONTANEOUS COMBUSTION

    Directory of Open Access Journals (Sweden)

    Pinilla A. Jesús Andelfo

    2010-06-01

    Full Text Available

    Fine-grained and mainly reddish color, compact and slightly breccious and vesicular pyrometamorphic rocks (natural clinker are associated to the spontaneous combustion of coal seams of the Cerrejón Formation exploited by Carbones del Cerrejón Limited in La Guajira Peninsula (Caribbean Region of Colombia. These rocks constitute remaining inorganic materials derived from claystones, mudstones and sandstones originally associated with the coal and are essentially a complex mixture of various amorphous and crystalline inorganic constituents. In this paper, a petrographic characterization of natural clinker, aswell as the application of the X-ray diffraction (Rietveld method by mean of quantitative analysis of its mineral phases were carried out. The RIQAS program was used for the refinement of X ray powder diffraction profiles, analyzing the importance of using the correct isostructural models for each of the existing phases, which were obtained from the Inorganic Crystal Structure Database (ICSD. The results obtained in this investigation show that the Rietveld method can be used as a powerful tool in the quantitative analysis of phases in polycrystalline samples, which has been a traditional problem in geology.

  11. Quantitative method of measuring cancer cell urokinase and metastatic potential

    Science.gov (United States)

    Morrison, Dennis R. (Inventor)

    1993-01-01

    The metastatic potential of tumors can be evaluated by the quantitative detection of urokinase and DNA. The cell sample selected for examination is analyzed for the presence of high levels of urokinase and abnormal DNA using analytical flow cytometry and digital image analysis. Other factors such as membrane associated urokinase, increased DNA synthesis rates and certain receptors can be used in the method for detection of potentially invasive tumors.

  12. Inspection, visualisation and analysis of quantitative proteomics data

    OpenAIRE

    Gatto, Laurent

    2016-01-01

    Material Quantitative Proteomics and Data Analysis Course. 4 - 5 April 2016, Queen Hotel, Chester, UK Table D - Inspection, visualisation and analysis of quantitative proteomics data, Laurent Gatto (University of Cambridge)

  13. Quantitative subsurface analysis using frequency modulated thermal wave imaging

    Science.gov (United States)

    Subhani, S. K.; Suresh, B.; Ghali, V. S.

    2018-01-01

    Quantitative depth analysis of the anomaly with an enhanced depth resolution is a challenging task towards the estimation of depth of the subsurface anomaly using thermography. Frequency modulated thermal wave imaging introduced earlier provides a complete depth scanning of the object by stimulating it with a suitable band of frequencies and further analyzing the subsequent thermal response using a suitable post processing approach to resolve subsurface details. But conventional Fourier transform based methods used for post processing unscramble the frequencies with a limited frequency resolution and contribute for a finite depth resolution. Spectral zooming provided by chirp z transform facilitates enhanced frequency resolution which can further improves the depth resolution to axially explore finest subsurface features. Quantitative depth analysis with this augmented depth resolution is proposed to provide a closest estimate to the actual depth of subsurface anomaly. This manuscript experimentally validates this enhanced depth resolution using non stationary thermal wave imaging and offers an ever first and unique solution for quantitative depth estimation in frequency modulated thermal wave imaging.

  14. An easy and inexpensive method for quantitative analysis of endothelial damage by using vital dye staining and Adobe Photoshop software.

    Science.gov (United States)

    Saad, Hisham A; Terry, Mark A; Shamie, Neda; Chen, Edwin S; Friend, Daniel F; Holiman, Jeffrey D; Stoeger, Christopher

    2008-08-01

    We developed a simple, practical, and inexpensive technique to analyze areas of endothelial cell loss and/or damage over the entire corneal area after vital dye staining by using a readily available, off-the-shelf, consumer software program, Adobe Photoshop. The purpose of this article is to convey a method of quantifying areas of cell loss and/or damage. Descemet-stripping automated endothelial keratoplasty corneal transplant surgery was performed by using 5 precut corneas on a human cadaver eye. Corneas were removed and stained with trypan blue and alizarin red S and subsequently photographed. Quantitative assessment of endothelial damage was performed by using Adobe Photoshop 7.0 software. The average difference for cell area damage for analyses performed by 1 observer twice was 1.41%. For analyses performed by 2 observers, the average difference was 1.71%. Three masked observers were 100% successful in matching the randomized stained corneas to their randomized processed Adobe images. Vital dye staining of corneal endothelial cells can be combined with Adobe Photoshop software to yield a quantitative assessment of areas of acute endothelial cell loss and/or damage. This described technique holds promise for a more consistent and accurate method to evaluate the surgical trauma to the endothelial cell layer in laboratory models. This method of quantitative analysis can probably be generalized to any area of research that involves areas that are differentiated by color or contrast.

  15. Developments in Dynamic Analysis for quantitative PIXE true elemental imaging

    International Nuclear Information System (INIS)

    Ryan, C.G.

    2001-01-01

    Dynamic Analysis (DA) is a method for projecting quantitative major and trace element images from PIXE event data-streams (off-line or on-line) obtained using the Nuclear Microprobe. The method separates full elemental spectral signatures to produce images that strongly reject artifacts due to overlapping elements, detector effects (such as escape peaks and tailing) and background. The images are also quantitative, stored in ppm-charge units, enabling images to be directly interrogated for the concentrations of all elements in areas of the images. Recent advances in the method include the correction for changing X-ray yields due to varying sample compositions across the image area and the construction of statistical variance images. The resulting accuracy of major element concentrations extracted directly from these images is better than 3% relative as determined from comparisons with electron microprobe point analysis. These results are complemented by error estimates derived from the variance images together with detection limits. This paper provides an update of research on these issues, introduces new software designed to make DA more accessible, and illustrates the application of the method to selected geological problems.

  16. HPTLC Hyphenated with FTIR: Principles, Instrumentation and Qualitative Analysis and Quantitation

    Science.gov (United States)

    Cimpoiu, Claudia

    In recent years, much effort has been devoted to the coupling of high-performance thin-layer chromatography (HPTLC) with spectrometric methods because of the robustness and simplicity of HPTLC and the need for detection techniques that provide identification and determination of sample constituents. IR is one of the spectroscopic methods that have been coupled with HPTLC. IR spectroscopy has a high potential for the elucidation of molecular structures, and the characteristic absorption bands can be used for compound-specific detection. HPTLC-FTIR coupled method has been widely used in the modern laboratories for the qualitative and quantitative analysis. The potential of this method is demonstrated by its application in different fields of analysis such as drug analysis, forensic analysis, food analysis, environmental analysis, biological analysis, etc. The hyphenated HPTLC-FTIR technique will be developed in the future with the aim of taking full advantage of this method.

  17. Quantitative Data Analysis--In the Graduate Curriculum

    Science.gov (United States)

    Albers, Michael J.

    2017-01-01

    A quantitative research study collects numerical data that must be analyzed to help draw the study's conclusions. Teaching quantitative data analysis is not teaching number crunching, but teaching a way of critical thinking for how to analyze the data. The goal of data analysis is to reveal the underlying patterns, trends, and relationships of a…

  18. SAFER, an Analysis Method of Quantitative Proteomic Data, Reveals New Interactors of the C. elegans Autophagic Protein LGG-1.

    Science.gov (United States)

    Yi, Zhou; Manil-Ségalen, Marion; Sago, Laila; Glatigny, Annie; Redeker, Virginie; Legouis, Renaud; Mucchielli-Giorgi, Marie-Hélène

    2016-05-06

    Affinity purifications followed by mass spectrometric analysis are used to identify protein-protein interactions. Because quantitative proteomic data are noisy, it is necessary to develop statistical methods to eliminate false-positives and identify true partners. We present here a novel approach for filtering false interactors, named "SAFER" for mass Spectrometry data Analysis by Filtering of Experimental Replicates, which is based on the reproducibility of the replicates and the fold-change of the protein intensities between bait and control. To identify regulators or targets of autophagy, we characterized the interactors of LGG1, a ubiquitin-like protein involved in autophagosome formation in C. elegans. LGG-1 partners were purified by affinity, analyzed by nanoLC-MS/MS mass spectrometry, and quantified by a label-free proteomic approach based on the mass spectrometric signal intensity of peptide precursor ions. Because the selection of confident interactions depends on the method used for statistical analysis, we compared SAFER with several statistical tests and different scoring algorithms on this set of data. We show that SAFER recovers high-confidence interactors that have been ignored by the other methods and identified new candidates involved in the autophagy process. We further validated our method on a public data set and conclude that SAFER notably improves the identification of protein interactors.

  19. Nuclear medicine and imaging research (instrumentation and quantitative methods of evaluation)

    International Nuclear Information System (INIS)

    Beck, R.N.; Cooper, M.; Chen, C.T.

    1992-07-01

    This document is the annual progress report for project entitled ''Instrumentation and Quantitative Methods of Evaluation.'' Progress is reported in separate sections individually abstracted and indexed for the database. Subject areas reported include theoretical studies of imaging systems and methods, hardware developments, quantitative methods of evaluation, and knowledge transfer: education in quantitative nuclear medicine imaging

  20. Quantitative ferromagnetic resonance analysis of CD 133 stem cells labeled with iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Gamarra, L F; Pavon, L F; Marti, L C; Moreira-Filho, C A; Amaro, E Jr; Pontuschka, W M; Mamani, J B; Costa-Filho, A J; Vieira, E D

    2008-01-01

    The aim of this work is to provide a quantitative method for analysis of the concentration of superparamagnetic iron oxide nanoparticles (SPION), determined by means of ferromagnetic resonance (FMR), with the nanoparticles coupled to a specific antibody (AC 133), and thus to express the antigenic labeling evidence for the stem cells CD 133 + . The FMR efficiency and sensitivity were proven adequate for detecting and quantifying the low amounts of iron content in the CD 133 + cells (∼6.16 x 10 5 pg in the volume of 2 μl containing 4.5 x 10 11 SPION). The quantitative method led to the result of 1.70 x 10 -13 mol of Fe (9.5 pg), or 7.0 x 10 6 nanoparticles per cell. For the quantification analysis via the FMR technique it was necessary to carry out a preliminary quantitative visualization of iron oxide-labeled cells in order to ensure that the nanoparticles coupled to the antibodies are indeed tied to the antigen at the stem cell surface and that the cellular morphology was conserved, as proof of the validity of this method. The quantitative analysis by means of FMR is necessary for determining the signal intensity for the study of molecular imaging by means of magnetic resonance imaging (MRI)

  1. ImatraNMR: Novel software for batch integration and analysis of quantitative NMR spectra

    Science.gov (United States)

    Mäkelä, A. V.; Heikkilä, O.; Kilpeläinen, I.; Heikkinen, S.

    2011-08-01

    Quantitative NMR spectroscopy is a useful and important tool for analysis of various mixtures. Recently, in addition of traditional quantitative 1D 1H and 13C NMR methods, a variety of pulse sequences aimed for quantitative or semiquantitative analysis have been developed. To obtain actual usable results from quantitative spectra, they must be processed and analyzed with suitable software. Currently, there are many processing packages available from spectrometer manufacturers and third party developers, and most of them are capable of analyzing and integration of quantitative spectra. However, they are mainly aimed for processing single or few spectra, and are slow and difficult to use when large numbers of spectra and signals are being analyzed, even when using pre-saved integration areas or custom scripting features. In this article, we present a novel software, ImatraNMR, designed for batch analysis of quantitative spectra. In addition to capability of analyzing large number of spectra, it provides results in text and CSV formats, allowing further data-analysis using spreadsheet programs or general analysis programs, such as Matlab. The software is written with Java, and thus it should run in any platform capable of providing Java Runtime Environment version 1.6 or newer, however, currently it has only been tested with Windows and Linux (Ubuntu 10.04). The software is free for non-commercial use, and is provided with source code upon request.

  2. [Quantitative Analysis of Heavy Metals in Water with LIBS Based on Signal-to-Background Ratio].

    Science.gov (United States)

    Hu, Li; Zhao, Nan-jing; Liu, Wen-qing; Fang, Li; Zhang, Da-hai; Wang, Yin; Meng, De Shuo; Yu, Yang; Ma, Ming-jun

    2015-07-01

    There are many influence factors in the precision and accuracy of the quantitative analysis with LIBS technology. According to approximately the same characteristics trend of background spectrum and characteristic spectrum along with the change of temperature through in-depth analysis, signal-to-background ratio (S/B) measurement and regression analysis could compensate the spectral line intensity changes caused by system parameters such as laser power, spectral efficiency of receiving. Because the measurement dates were limited and nonlinear, we used support vector machine (SVM) for regression algorithm. The experimental results showed that the method could improve the stability and the accuracy of quantitative analysis of LIBS, and the relative standard deviation and average relative error of test set respectively were 4.7% and 9.5%. Data fitting method based on signal-to-background ratio(S/B) is Less susceptible to matrix elements and background spectrum etc, and provides data processing reference for real-time online LIBS quantitative analysis technology.

  3. Quantitative Methods in Supply Chain Management Models and Algorithms

    CERN Document Server

    Christou, Ioannis T

    2012-01-01

    Quantitative Methods in Supply Chain Management presents some of the most important methods and tools available for modeling and solving problems arising in the context of supply chain management. In the context of this book, “solving problems” usually means designing efficient algorithms for obtaining high-quality solutions. The first chapter is an extensive optimization review covering continuous unconstrained and constrained linear and nonlinear optimization algorithms, as well as dynamic programming and discrete optimization exact methods and heuristics. The second chapter presents time-series forecasting methods together with prediction market techniques for demand forecasting of new products and services. The third chapter details models and algorithms for planning and scheduling with an emphasis on production planning and personnel scheduling. The fourth chapter presents deterministic and stochastic models for inventory control with a detailed analysis on periodic review systems and algorithmic dev...

  4. Reference peak method for analysis of doublets in gamma-ray spectrometry used in neutron activation analysis

    International Nuclear Information System (INIS)

    Wasek, M.; Cichowlas, A.; Sterlinski, S.; Dybczynski, R.

    2000-01-01

    A simple algebraic method for the quantitative analysis of doublets in gamma-ray spectra from HPGe detectors is presented. The calculation algorithm is accomplished using the Microsoft Excel program. The method does not require any assumptions regarding the shape of the peaks in the spectrum. The possibilities of quantitative analysis of doublets of various intensity ration and separation of ots components are discussed in detail. The practical examples proved the usefulness the method also for the analysis of the closed doublets. (author)

  5. Quantitative analysis of Si1-xGex alloy films by SIMS and XPS depth profiling using a reference material

    Science.gov (United States)

    Oh, Won Jin; Jang, Jong Shik; Lee, Youn Seoung; Kim, Ansoon; Kim, Kyung Joong

    2018-02-01

    Quantitative analysis methods of multi-element alloy films were compared. The atomic fractions of Si1-xGex alloy films were measured by depth profiling analysis with secondary ion mass spectrometry (SIMS) and X-ray Photoelectron Spectroscopy (XPS). Intensity-to-composition conversion factor (ICF) was used as a mean to convert the intensities to compositions instead of the relative sensitivity factors. The ICFs were determined from a reference Si1-xGex alloy film by the conventional method, average intensity (AI) method and total number counting (TNC) method. In the case of SIMS, although the atomic fractions measured by oxygen ion beams were not quantitative due to severe matrix effect, the results by cesium ion beam were very quantitative. The quantitative analysis results by SIMS using MCs2+ ions are comparable to the results by XPS. In the case of XPS, the measurement uncertainty was highly improved by the AI method and TNC method.

  6. A CT-based method for fully quantitative TI SPECT

    International Nuclear Information System (INIS)

    Willowson, Kathy; Bailey, Dale; Baldock, Clive

    2009-01-01

    Full text: Objectives: To develop and validate a method for quantitative 2 0 l TI SPECT data based on corrections derived from X-ray CT data, and to apply the method in the clinic for quantitative determination of recurrence of brain tumours. Method: A previously developed method for achieving quantitative SPECT with 9 9 m Tc based on corrections derived from xray CT data was extended to apply to 2 0 l Tl. Experimental validation was performed on a cylindrical phantom by comparing known injected activity and measured concentration to quantitative calculations. Further evaluation was performed on a RSI Striatal Brain Phantom containing three 'lesions' with activity to background ratios of 1: 1, 1.5: I and 2: I. The method was subsequently applied to a series of scans from patients with suspected recurrence of brain tumours (principally glioma) to determine an SUV-like measure (Standardised Uptake Value). Results: The total activity and concentration in the phantom were calculated to within 3% and I % of the true values, respectively. The calculated values for the concentration of activity in the background and corresponding lesions of the brain phantom (in increasing ratios) were found to be within 2%,10%,1% and 2%, respectively, of the true concentrations. Patient studies showed that an initial SUV greater than 1.5 corresponded to a 56% mortality rate in the first 12 months, as opposed to a 14% mortality rate for those with a SUV less than 1.5. Conclusion: The quantitative technique produces accurate results for the radionuclide 2 0 l Tl. Initial investigation in clinical brain SPECT suggests correlation between quantitative uptake and survival.

  7. Quantitative analysis of the secretion of the MCP family of chemokines by muscle cells

    DEFF Research Database (Denmark)

    Henningsen, Jeanette; Pedersen, Bente Klarlund; Kratchmarova, Irina

    2011-01-01

    by Amino acids in Cell culture (SILAC) method for quantitative analysis resulted in the identification and generation of quantitative profiles of 59 growth factors and cytokines, including 9 classical chemokines. The members of the CC chemokine family of proteins such as monocyte chemotactic proteins 1, 2...

  8. Quantitative pulsed eddy current analysis

    International Nuclear Information System (INIS)

    Morris, R.A.

    1975-01-01

    The potential of pulsed eddy current testing for furnishing more information than conventional single-frequency eddy current methods has been known for some time. However, a fundamental problem has been analyzing the pulse shape with sufficient precision to produce accurate quantitative results. Accordingly, the primary goal of this investigation was to: demonstrate ways of digitizing the short pulses encountered in PEC testing, and to develop empirical analysis techniques that would predict some of the parameters (e.g., depth) of simple types of defect. This report describes a digitizing technique using a computer and either a conventional nuclear ADC or a fast transient analyzer; the computer software used to collect and analyze pulses; and some of the results obtained. (U.S.)

  9. Comparison of longitudinal excursion of a nerve-phantom model using quantitative ultrasound imaging and motion analysis system methods: A convergent validity study.

    Science.gov (United States)

    Paquette, Philippe; El Khamlichi, Youssef; Lamontagne, Martin; Higgins, Johanne; Gagnon, Dany H

    2017-08-01

    Quantitative ultrasound imaging is gaining popularity in research and clinical settings to measure the neuromechanical properties of the peripheral nerves such as their capability to glide in response to body segment movement. Increasing evidence suggests that impaired median nerve longitudinal excursion is associated with carpal tunnel syndrome. To date, psychometric properties of longitudinal nerve excursion measurements using quantitative ultrasound imaging have not been extensively investigated. This study investigates the convergent validity of the longitudinal nerve excursion by comparing measures obtained using quantitative ultrasound imaging with those determined with a motion analysis system. A 38-cm long rigid nerve-phantom model was used to assess the longitudinal excursion in a laboratory environment. The nerve-phantom model, immersed in a 20-cm deep container filled with a gelatin-based solution, was moved 20 times using a linear forward and backward motion. Three light-emitting diodes were used to record nerve-phantom excursion with a motion analysis system, while a 5-cm linear transducer allowed simultaneous recording via ultrasound imaging. Both measurement techniques yielded excellent association ( r  = 0.99) and agreement (mean absolute difference between methods = 0.85 mm; mean relative difference between methods = 7.48 %). Small discrepancies were largely found when larger excursions (i.e. > 10 mm) were performed, revealing slight underestimation of the excursion by the ultrasound imaging analysis software. Quantitative ultrasound imaging is an accurate method to assess the longitudinal excursion of an in vitro nerve-phantom model and appears relevant for future research protocols investigating the neuromechanical properties of the peripheral nerves.

  10. Quantitative X-ray analysis of biological fluids: the microdroplet technique

    International Nuclear Information System (INIS)

    Roinel, N.

    1988-01-01

    X-ray microanalysis can be used to quantitatively determine the elemental composition of microvolumes of biological fluids. This article describes the various steps in preparation of microdroplets for analysis: The manufacturing of micropipettes, the preparation of the specimen support, the deposition of droplets on the support, shock-freezing, and lyophilization. Examples of common artifacts (incomplete rehydration prior to freezing or partial rehydration after lyophilization) are demonstrated. Analysis can be carried out either by wavelength-dispersive analysis, which is the most sensitive method, or by energy-dispersive analysis, which is more commonly available. The minimum detectable concentration is 0.05 mmol.liter-1 for 0.1-nl samples analyzed by wavelength-dispersive spectrometry and 0.5-1 mmol.liter-1 for samples analyzed by energy-dispersive spectrometry. A major problem, especially in wavelength-dispersive analysis, where high beam currents are used, is radiation damage to the specimen; in particular chloride (but also other elements) can be lost. Quantitative analysis requires the use of standard solutions with elemental concentration in the same range as those present in the specimen

  11. Quantitative analysis of thallium-201 myocardial scintigraphy

    International Nuclear Information System (INIS)

    Kanemoto, Nariaki; Hoer, G.; Johost, S.; Maul, F.-D.; Standke, R.

    1981-01-01

    The method of quantitative analysis of thallium-201 myocardial scintigraphy using computer assisted technique was described. Calculated indices are washout factor, vitality index and redistribution factor. Washout factor is the ratio of counts at certain period of time after exercise and immediately after exercise. This value is neccessary for the evaluation of redistribution to the ischemic areas in serial imagings to correct the Tl-201 washout from the myocardium under the assumption that the washout is constant in the whole myocardium. Vitality index is the ratio between the Tl-201 uptake in the region of interest and that of the maximum. Redistribution factor is the ratio of the redistribution in the region of interest in serial imagings after exercise to that of immediately after exercise. Four examples of exercise Tl-201 myocardial scintigrams and the quantitative analyses before and after the percutaneous transluminal coronary angioplasty were presented. (author)

  12. Preparation of Biological Samples Containing Metoprolol and Bisoprolol for Applying Methods for Quantitative Analysis

    Directory of Open Access Journals (Sweden)

    Corina Mahu Ştefania

    2015-12-01

    Full Text Available Arterial hypertension is a complex disease with many serious complications, representing a leading cause of mortality. Selective beta-blockers such as metoprolol and bisoprolol are frequently used in the management of hypertension. Numerous analytical methods have been developed for the determination of these substances in biological fluids, such as liquid chromatography coupled with mass spectrometry, gas chromatography coupled with mass spectrometry, high performance liquid chromatography. Due to the complex composition of biological fluids a biological sample pre-treatment before the use of the method for quantitative determination is required in order to remove proteins and potential interferences. The most commonly used methods for processing biological samples containing metoprolol and bisoprolol were identified through a thorough literature search using PubMed, ScienceDirect, and Willey Journals databases. Articles published between years 2005-2015 were reviewed. Protein precipitation, liquid-liquid extraction and solid phase extraction are the main techniques for the extraction of these drugs from plasma, serum, whole blood and urine samples. In addition, numerous other techniques have been developed for the preparation of biological samples, such as dispersive liquid-liquid microextraction, carrier-mediated liquid phase microextraction, hollow fiber-protected liquid phase microextraction, on-line molecularly imprinted solid phase extraction. The analysis of metoprolol and bisoprolol in human plasma, urine and other biological fluids provides important information in clinical and toxicological trials, thus requiring the application of appropriate extraction techniques for the detection of these antihypertensive substances at nanogram and picogram levels.

  13. Quantitative analysis of active compounds in pharmaceutical preparations by use of attenuated total-reflection Fourier transform mid-infrared spectrophotometry and the internal standard method.

    Science.gov (United States)

    Sastre Toraño, J; van Hattum, S H

    2001-10-01

    A new method is presented for the quantitative analysis of compounds in pharmaceutical preparations Fourier transform (FT) mid-infrared (MIR) spectroscopy with an attenuated total reflection (ATR) module. Reduction of the quantity of overlapping absorption bands, by interaction of the compound of interest with an appropriate solvent, and the employment of an internal standard (IS), makes MIR suitable for quantitative analysis. Vigabatrin, as active compound in vigabatrin 100-mg capsules, was used as a model compound for the development of the method. Vigabatrin was extracted from the capsule content with water after addition of a sodium thiosulfate IS solution. The extract was concentrated by volume reduction and applied to the FTMIR-ATR module. Concentrations of unknown samples were calculated from the ratio of the vigabatrin band area (1321-1610 cm(-1)) and the IS band area (883-1215 cm(-1)) using a calibration standard. The ratio of the area of the vigabatrin peak to that of the IS was linear with the concentration in the range of interest (90-110 mg, in twofold; n=2). The accuracy of the method in this range was 99.7-100.5% (n=5) with a variability of 0.4-1.3% (n=5). The comparison of the presented method with an HPLC assay showed similar results; the analysis of five vigabatrin 100-mg capsules resulted in a mean concentration of 102 mg with a variation of 2% with both methods.

  14. QuASAR: quantitative allele-specific analysis of reads.

    Science.gov (United States)

    Harvey, Chris T; Moyerbrailean, Gregory A; Davis, Gordon O; Wen, Xiaoquan; Luca, Francesca; Pique-Regi, Roger

    2015-04-15

    Expression quantitative trait loci (eQTL) studies have discovered thousands of genetic variants that regulate gene expression, enabling a better understanding of the functional role of non-coding sequences. However, eQTL studies are costly, requiring large sample sizes and genome-wide genotyping of each sample. In contrast, analysis of allele-specific expression (ASE) is becoming a popular approach to detect the effect of genetic variation on gene expression, even within a single individual. This is typically achieved by counting the number of RNA-seq reads matching each allele at heterozygous sites and testing the null hypothesis of a 1:1 allelic ratio. In principle, when genotype information is not readily available, it could be inferred from the RNA-seq reads directly. However, there are currently no existing methods that jointly infer genotypes and conduct ASE inference, while considering uncertainty in the genotype calls. We present QuASAR, quantitative allele-specific analysis of reads, a novel statistical learning method for jointly detecting heterozygous genotypes and inferring ASE. The proposed ASE inference step takes into consideration the uncertainty in the genotype calls, while including parameters that model base-call errors in sequencing and allelic over-dispersion. We validated our method with experimental data for which high-quality genotypes are available. Results for an additional dataset with multiple replicates at different sequencing depths demonstrate that QuASAR is a powerful tool for ASE analysis when genotypes are not available. http://github.com/piquelab/QuASAR. fluca@wayne.edu or rpique@wayne.edu Supplementary Material is available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Spectral Quantitative Analysis Model with Combining Wavelength Selection and Topology Structure Optimization

    Directory of Open Access Journals (Sweden)

    Qian Wang

    2016-01-01

    Full Text Available Spectroscopy is an efficient and widely used quantitative analysis method. In this paper, a spectral quantitative analysis model with combining wavelength selection and topology structure optimization is proposed. For the proposed method, backpropagation neural network is adopted for building the component prediction model, and the simultaneousness optimization of the wavelength selection and the topology structure of neural network is realized by nonlinear adaptive evolutionary programming (NAEP. The hybrid chromosome in binary scheme of NAEP has three parts. The first part represents the topology structure of neural network, the second part represents the selection of wavelengths in the spectral data, and the third part represents the parameters of mutation of NAEP. Two real flue gas datasets are used in the experiments. In order to present the effectiveness of the methods, the partial least squares with full spectrum, the partial least squares combined with genetic algorithm, the uninformative variable elimination method, the backpropagation neural network with full spectrum, the backpropagation neural network combined with genetic algorithm, and the proposed method are performed for building the component prediction model. Experimental results verify that the proposed method has the ability to predict more accurately and robustly as a practical spectral analysis tool.

  16. Integrating Quantitative and Qualitative Results in Health Science Mixed Methods Research Through Joint Displays

    Science.gov (United States)

    Guetterman, Timothy C.; Fetters, Michael D.; Creswell, John W.

    2015-01-01

    PURPOSE Mixed methods research is becoming an important methodology to investigate complex health-related topics, yet the meaningful integration of qualitative and quantitative data remains elusive and needs further development. A promising innovation to facilitate integration is the use of visual joint displays that bring data together visually to draw out new insights. The purpose of this study was to identify exemplar joint displays by analyzing the various types of joint displays being used in published articles. METHODS We searched for empirical articles that included joint displays in 3 journals that publish state-of-the-art mixed methods research. We analyzed each of 19 identified joint displays to extract the type of display, mixed methods design, purpose, rationale, qualitative and quantitative data sources, integration approaches, and analytic strategies. Our analysis focused on what each display communicated and its representation of mixed methods analysis. RESULTS The most prevalent types of joint displays were statistics-by-themes and side-by-side comparisons. Innovative joint displays connected findings to theoretical frameworks or recommendations. Researchers used joint displays for convergent, explanatory sequential, exploratory sequential, and intervention designs. We identified exemplars for each of these designs by analyzing the inferences gained through using the joint display. Exemplars represented mixed methods integration, presented integrated results, and yielded new insights. CONCLUSIONS Joint displays appear to provide a structure to discuss the integrated analysis and assist both researchers and readers in understanding how mixed methods provides new insights. We encourage researchers to use joint displays to integrate and represent mixed methods analysis and discuss their value. PMID:26553895

  17. Verification of practicability of quantitative reliability evaluation method (De-BDA) in nuclear power plants

    International Nuclear Information System (INIS)

    Takahashi, Kinshiro; Yukimachi, Takeo.

    1988-01-01

    A variety of methods have been applied to study of reliability analysis in which human factors are included in order to enhance the safety and availability of nuclear power plants. De-BDA (Detailed Block Diagram Analysis) is one of such mehtods developed with the objective of creating a more comprehensive and understandable tool for quantitative analysis of reliability associated with plant operations. The practicability of this method has been verified by applying it to reliability analysis of various phases of plant operation as well as evaluation of enhanced man-machine interface in the central control room. (author)

  18. Quantitative analysis by nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wainai, T; Mashimo, K [Nihon Univ., Tokyo. Coll. of Science and Engineering

    1976-04-01

    Recent papers on the practical quantitative analysis by nuclear magnetic resonance spectroscopy (NMR) are reviewed. Specifically, the determination of moisture in liquid N/sub 2/O/sub 4/ as an oxidizing agent for rocket propulsion, the analysis of hydroperoxides, the quantitative analysis using a shift reagent, the analysis of aromatic sulfonates, and the determination of acids and bases are reviewed. Attention is paid to the accuracy. The sweeping velocity and RF level in addition to the other factors must be on the optimal condition to eliminate the errors, particularly when computation is made with a machine. Higher sweeping velocity is preferable in view of S/N ratio, but it may be limited to 30 Hz/s. The relative error in the measurement of area is generally 1%, but when those of dilute concentration and integrated, the error will become smaller by one digit. If impurities are treated carefully, the water content on N/sub 2/O/sub 4/ can be determined with accuracy of about 0.002%. The comparison method between peak heights is as accurate as that between areas, when the uniformity of magnetic field and T/sub 2/ are not questionable. In the case of chemical shift movable due to content, the substance can be determined by the position of the chemical shift. Oil and water contents in rape-seed, peanuts, and sunflower-seed are determined by measuring T/sub 1/ with 90 deg pulses.

  19. Quantitative analysis of background parenchymal enhancement in whole breast on MRI: Influence of menstrual cycle and comparison with a qualitative analysis.

    Science.gov (United States)

    Jung, Yongsik; Jeong, Seong Kyun; Kang, Doo Kyoung; Moon, Yeorae; Kim, Tae Hee

    2018-06-01

    We quantitatively analyzed background parenchymal enhancement (BPE) in whole breast according to menstrual cycle and compared it with a qualitative analysis method. A data set of breast magnetic resonance imaging (MRI) from 273 breast cancer patients was used. For quantitative analysis, we used semiautomated in-house software with MATLAB. From each voxel of whole breast, the software calculated BPE using following equation: [(signal intensity [SI] at 1 min 30 s after contrast injection - baseline SI)/baseline SI] × 100%. In total, 53 patients had minimal, 108 mild, 87 moderate, and 25 marked BPE. On quantitative analysis, mean BPE values were 33.1% in the minimal, 42.1% in the mild, 59.1% in the moderate, and 81.9% in the marked BPE group showing significant difference (p = .009 for minimal vs. mild, p quantitative BPE (r = 0.63, p Quantitative analysis of BPE correlated well with the qualitative BPE grade. Quantitative BPE values were lowest in the second week and highest in the fourth week. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Quantitative analysis of protein-ligand interactions by NMR.

    Science.gov (United States)

    Furukawa, Ayako; Konuma, Tsuyoshi; Yanaka, Saeko; Sugase, Kenji

    2016-08-01

    Protein-ligand interactions have been commonly studied through static structures of the protein-ligand complex. Recently, however, there has been increasing interest in investigating the dynamics of protein-ligand interactions both for fundamental understanding of the underlying mechanisms and for drug development. NMR is a versatile and powerful tool, especially because it provides site-specific quantitative information. NMR has widely been used to determine the dissociation constant (KD), in particular, for relatively weak interactions. The simplest NMR method is a chemical-shift titration experiment, in which the chemical-shift changes of a protein in response to ligand titration are measured. There are other quantitative NMR methods, but they mostly apply only to interactions in the fast-exchange regime. These methods derive the dissociation constant from population-averaged NMR quantities of the free and bound states of a protein or ligand. In contrast, the recent advent of new relaxation-based experiments, including R2 relaxation dispersion and ZZ-exchange, has enabled us to obtain kinetic information on protein-ligand interactions in the intermediate- and slow-exchange regimes. Based on R2 dispersion or ZZ-exchange, methods that can determine the association rate, kon, dissociation rate, koff, and KD have been developed. In these approaches, R2 dispersion or ZZ-exchange curves are measured for multiple samples with different protein and/or ligand concentration ratios, and the relaxation data are fitted to theoretical kinetic models. It is critical to choose an appropriate kinetic model, such as the two- or three-state exchange model, to derive the correct kinetic information. The R2 dispersion and ZZ-exchange methods are suitable for the analysis of protein-ligand interactions with a micromolar or sub-micromolar dissociation constant but not for very weak interactions, which are typical in very fast exchange. This contrasts with the NMR methods that are used

  1. A borax fusion technique for quantitative X-ray fluorescence analysis

    NARCIS (Netherlands)

    van Willigen, J.H.H.G.; Kruidhof, H.; Dahmen, E.A.M.F.

    1971-01-01

    A borax fusion technique to cast glass discs for quantitative X-ray analysis is described in detail. The method is based on the “nonwetting” properties of a Pt/Au alloy towards molten borax, on the favourable composition of the flux and finally on the favourable form of the casting mould. The

  2. Quantitative ferromagnetic resonance analysis of CD 133 stem cells labeled with iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gamarra, L F; Pavon, L F; Marti, L C; Moreira-Filho, C A; Amaro, E Jr [Instituto Israelita de Ensino e Pesquisa Albert Einstein, IIEPAE, Sao Paulo 05651-901 (Brazil); Pontuschka, W M; Mamani, J B [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo 05315-970 (Brazil); Costa-Filho, A J; Vieira, E D [Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Sao Carlos 13560-970 (Brazil)], E-mail: lgamarra@einstein.br

    2008-05-21

    The aim of this work is to provide a quantitative method for analysis of the concentration of superparamagnetic iron oxide nanoparticles (SPION), determined by means of ferromagnetic resonance (FMR), with the nanoparticles coupled to a specific antibody (AC 133), and thus to express the antigenic labeling evidence for the stem cells CD 133{sup +}. The FMR efficiency and sensitivity were proven adequate for detecting and quantifying the low amounts of iron content in the CD 133{sup +} cells ({approx}6.16 x 10{sup 5} pg in the volume of 2 {mu}l containing 4.5 x 10{sup 11} SPION). The quantitative method led to the result of 1.70 x 10{sup -13} mol of Fe (9.5 pg), or 7.0 x 10{sup 6} nanoparticles per cell. For the quantification analysis via the FMR technique it was necessary to carry out a preliminary quantitative visualization of iron oxide-labeled cells in order to ensure that the nanoparticles coupled to the antibodies are indeed tied to the antigen at the stem cell surface and that the cellular morphology was conserved, as proof of the validity of this method. The quantitative analysis by means of FMR is necessary for determining the signal intensity for the study of molecular imaging by means of magnetic resonance imaging (MRI)

  3. Quantitative analysis of macro-ARG using IP system

    International Nuclear Information System (INIS)

    Nakajima, Eiichi; Kawai, Kenji; Furuta, Yoshitake

    1997-01-01

    Recent progress in imaging plate (IP) system allow us to analyze autoradiographic images quantitatively. In the 'whole-body autoradiography', a method clarify the distribution of radioisotope or labeled compounds in the tissues and organs in a freeze-dried whole-body section of small animals such as rats and mice, the sections are pressed against a IP for exposure and the IP is scanned by Bio-Imaging Analyzer (Fuji Photo Film Co., Ltd) and a digital autoradiographic image is given. Quantitative data concerning the activity in different tissues can be obtained using an isotope scale as a reference source. Fading effect, application of IP system for distribution of receptor binding ARG, analysis of radio-spots on TLC and radioactive concentration in liquid such as blood are also discussed. (author)

  4. A simple approach to quantitative analysis using three-dimensional spectra based on selected Zernike moments.

    Science.gov (United States)

    Zhai, Hong Lin; Zhai, Yue Yuan; Li, Pei Zhen; Tian, Yue Li

    2013-01-21

    A very simple approach to quantitative analysis is proposed based on the technology of digital image processing using three-dimensional (3D) spectra obtained by high-performance liquid chromatography coupled with a diode array detector (HPLC-DAD). As the region-based shape features of a grayscale image, Zernike moments with inherently invariance property were employed to establish the linear quantitative models. This approach was applied to the quantitative analysis of three compounds in mixed samples using 3D HPLC-DAD spectra, and three linear models were obtained, respectively. The correlation coefficients (R(2)) for training and test sets were more than 0.999, and the statistical parameters and strict validation supported the reliability of established models. The analytical results suggest that the Zernike moment selected by stepwise regression can be used in the quantitative analysis of target compounds. Our study provides a new idea for quantitative analysis using 3D spectra, which can be extended to the analysis of other 3D spectra obtained by different methods or instruments.

  5. Quantitative Analysis Method of Output Loss due to Restriction for Grid-connected PV Systems

    Science.gov (United States)

    Ueda, Yuzuru; Oozeki, Takashi; Kurokawa, Kosuke; Itou, Takamitsu; Kitamura, Kiyoyuki; Miyamoto, Yusuke; Yokota, Masaharu; Sugihara, Hiroyuki

    Voltage of power distribution line will be increased due to reverse power flow from grid-connected PV systems. In the case of high density grid connection, amount of voltage increasing will be higher than the stand-alone grid connection system. To prevent the over voltage of power distribution line, PV system's output will be restricted if the voltage of power distribution line is close to the upper limit of the control range. Because of this interaction, amount of output loss will be larger in high density case. This research developed a quantitative analysis method for PV systems output and losses to clarify the behavior of grid connected PV systems. All the measured data are classified into the loss factors using 1 minute average of 1 second data instead of typical 1 hour average. Operation point on the I-V curve is estimated to quantify the loss due to the output restriction using module temperature, array output voltage, array output current and solar irradiance. As a result, loss due to output restriction is successfully quantified and behavior of output restriction is clarified.

  6. Stochastic resonance is applied to quantitative analysis for weak chromatographic signal of glyburide in plasma

    International Nuclear Information System (INIS)

    Zhang Wei; Xiang Bingren; Wu Yanwei; Shang Erxin

    2005-01-01

    Based on the theory of stochastic resonance, a new method carried on the quantitive analysis to weak chromatographic signal of glyburide in plasma, which was embedded in the noise background and the signal-to-noise ratio (SNR) of HPLC-UV is enhanced remarkably. This method enhances the quantification limit to 1 ng ml -1 , which is the same as HPLC-MS, and makes it possible to detect the weak signal accurately by HPLC-UV, which was not suitable before. The results showed good recovery and linear range from 1 to 50 ng ml -1 of glyburide in plasma and the method can be used for quantitative analysis of glyburide

  7. Quantitative analysis of charge trapping and classification of sub-gap states in MoS2 TFT by pulse I-V method

    Science.gov (United States)

    Park, Junghak; Hur, Ji-Hyun; Jeon, Sanghun

    2018-04-01

    The threshold voltage instabilities and huge hysteresis of MoS2 thin film transistors (TFTs) have raised concerns about their practical applicability in next-generation switching devices. These behaviors are associated with charge trapping, which stems from tunneling to the adjacent trap site, interfacial redox reaction and interface and/or bulk trap states. In this report, we present quantitative analysis on the electron charge trapping mechanism of MoS2 TFT by fast pulse I-V method and the space charge limited current (SCLC) measurement. By adopting the fast pulse I-V method, we were able to obtain effective mobility. In addition, the origin of the trap states was identified by disassembling the sub-gap states into interface trap and bulk trap states by simple extraction analysis. These measurement methods and analyses enable not only quantitative extraction of various traps but also an understanding of the charge transport mechanism in MoS2 TFTs. The fast I-V data and SCLC data obtained under various measurement temperatures and ambient show that electron transport to neighboring trap sites by tunneling is the main charge trapping mechanism in thin-MoS2 TFTs. This implies that interfacial traps account for most of the total sub-gap states while the bulk trap contribution is negligible, at approximately 0.40% and 0.26% in air and vacuum ambient, respectively. Thus, control of the interface trap states is crucial to further improve the performance of devices with thin channels.

  8. Simultaneous quantitative analysis of main components in linderae reflexae radix with one single marker.

    Science.gov (United States)

    Wang, Li-Li; Zhang, Yun-Bin; Sun, Xiao-Ya; Chen, Sui-Qing

    2016-05-08

    Establish a quantitative analysis of multi-components by the single marker (QAMS) method for quality evaluation and validate its feasibilities by the simultaneous quantitative assay of four main components in Linderae Reflexae Radix. Four main components of pinostrobin, pinosylvin, pinocembrin, and 3,5-dihydroxy-2-(1- p -mentheneyl)- trans -stilbene were selected as analytes to evaluate the quality by RP-HPLC coupled with a UV-detector. The method was evaluated by a comparison of the quantitative results between the external standard method and QAMS with a different HPLC system. The results showed that no significant differences were found in the quantitative results of the four contents of Linderae Reflexae Radix determined by the external standard method and QAMS (RSD <3%). The contents of four analytes (pinosylvin, pinocembrin, pinostrobin, and Reflexanbene I) in Linderae Reflexae Radix were determined by the single marker of pinosylvin. This fingerprint was the spectra determined by Shimadzu LC-20AT and Waters e2695 HPLC that were equipped with three different columns.

  9. Integrating Quantitative and Qualitative Results in Health Science Mixed Methods Research Through Joint Displays.

    Science.gov (United States)

    Guetterman, Timothy C; Fetters, Michael D; Creswell, John W

    2015-11-01

    Mixed methods research is becoming an important methodology to investigate complex health-related topics, yet the meaningful integration of qualitative and quantitative data remains elusive and needs further development. A promising innovation to facilitate integration is the use of visual joint displays that bring data together visually to draw out new insights. The purpose of this study was to identify exemplar joint displays by analyzing the various types of joint displays being used in published articles. We searched for empirical articles that included joint displays in 3 journals that publish state-of-the-art mixed methods research. We analyzed each of 19 identified joint displays to extract the type of display, mixed methods design, purpose, rationale, qualitative and quantitative data sources, integration approaches, and analytic strategies. Our analysis focused on what each display communicated and its representation of mixed methods analysis. The most prevalent types of joint displays were statistics-by-themes and side-by-side comparisons. Innovative joint displays connected findings to theoretical frameworks or recommendations. Researchers used joint displays for convergent, explanatory sequential, exploratory sequential, and intervention designs. We identified exemplars for each of these designs by analyzing the inferences gained through using the joint display. Exemplars represented mixed methods integration, presented integrated results, and yielded new insights. Joint displays appear to provide a structure to discuss the integrated analysis and assist both researchers and readers in understanding how mixed methods provides new insights. We encourage researchers to use joint displays to integrate and represent mixed methods analysis and discuss their value. © 2015 Annals of Family Medicine, Inc.

  10. Quantitative analysis of boron by neutron radiography

    International Nuclear Information System (INIS)

    Bayuelken, A.; Boeck, H.; Schachner, H.; Buchberger, T.

    1990-01-01

    The quantitative determination of boron in ores is a long process with chemical analysis techniques. As nuclear techniques like X-ray fluorescence and activation analysis are not applicable for boron, only the neutron radiography technique, using the high neutron absorption cross section of this element, can be applied for quantitative determinations. This paper describes preliminary tests and calibration experiments carried out at a 250 kW TRIGA reactor. (orig.) [de

  11. Development of a low-cost method of analysis for the qualitative and quantitative analysis of butyltins in environmental samples.

    Science.gov (United States)

    Bangkedphol, Sornnarin; Keenan, Helen E; Davidson, Christine; Sakultantimetha, Arthit; Songsasen, Apisit

    2008-12-01

    Most analytical methods for butyltins are based on high resolution techniques with complicated sample preparation. For this study, a simple application of an analytical method was developed using High Performance Liquid Chromatography (HPLC) with UV detection. The developed method was studied to determine tributyltin (TBT), dibutyltin (DBT) and monobutyltin (MBT) in sediment and water samples. The separation was performed in isocratic mode on an ultra cyanopropyl column with a mobile phase of hexane containing 5% THF and 0.03% acetic acid. This method was confirmed using standard GC/MS techniques and verified by statistical paired t-test method. Under the experimental conditions used, the limit of detection (LOD) of TBT and DBT were 0.70 and 0.50 microg/mL, respectively. The optimised extraction method for butyltins in water and sediment samples involved using hexane containing 0.05-0.5% tropolone and 0.2% sodium chloride in water at pH 1.7. The quantitative extraction of butyltin compounds in a certified reference material (BCR-646) and naturally contaminated samples was achieved with recoveries ranging from 95 to 108% and at %RSD 0.02-1.00%. This HPLC method and optimum extraction conditions were used to determine the contamination level of butyltins in environmental samples collected from the Forth and Clyde canal, Scotland, UK. The values obtained severely exceeded the Environmental Quality Standard (EQS) values. Although high resolution methods are utilised extensively for this type of research, the developed method is cheaper in both terms of equipment and running costs, faster in analysis time and has comparable detection limits to the alternative methods. This is advantageous not just as a confirmatory technique but also to enable further research in this field.

  12. A direct method for estimating the alpha/beta ratio from quantitative dose-response data

    International Nuclear Information System (INIS)

    Stuschke, M.

    1989-01-01

    A one-step optimization method based on a least squares fit of the linear quadratic model to quantitative tissue response data after fractionated irradiation is proposed. Suitable end-points that can be analysed by this method are growth delay, host survival and quantitative biochemical or clinical laboratory data. The functional dependence between the transformed dose and the measured response is approximated by a polynomial. The method allows for the estimation of the alpha/beta ratio and its confidence limits from all observed responses of the different fractionation schedules. Censored data can be included in the analysis. A method to test the appropriateness of the fit is presented. A computer simulation illustrates the method and its accuracy as examplified by the growth delay end point. A comparison with a fit of the linear quadratic model to interpolated isoeffect doses shows the advantages of the direct method. (orig./HP) [de

  13. Development and applications of quantitative NMR spectroscopy

    International Nuclear Information System (INIS)

    Yamazaki, Taichi

    2016-01-01

    Recently, quantitative NMR spectroscopy has attracted attention as an analytical method which can easily secure traceability to SI unit system, and discussions about its accuracy and inaccuracy are also started. This paper focuses on the literatures on the advancement of quantitative NMR spectroscopy reported between 2009 and 2016, and introduces both NMR measurement conditions and actual analysis cases in quantitative NMR. The quantitative NMR spectroscopy using an internal reference method enables accurate quantitative analysis with a quick and versatile way in general, and it is possible to obtain the precision sufficiently applicable to the evaluation of pure substances and standard solutions. Since the external reference method can easily prevent contamination to samples and the collection of samples, there are many reported cases related to the quantitative analysis of biologically related samples and highly scarce natural products in which NMR spectra are complicated. In the precision of quantitative NMR spectroscopy, the internal reference method is superior. As the quantitative NMR spectroscopy widely spreads, discussions are also progressing on how to utilize this analytical method as the official methods in various countries around the world. In Japan, this method is listed in the Pharmacopoeia and Japanese Standard of Food Additives, and it is also used as the official method for purity evaluation. In the future, this method will be expected to spread as the general-purpose analysis method that can ensure traceability to SI unit system. (A.O.)

  14. Immune adherence: a quantitative and kinetic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sekine, T [National Cancer Center, Tokyo (Japan). Research Inst.

    1978-09-01

    Quantitative and kinetic analysis of the immune-adherence reaction (IA) between C3b fragments and IA receptors as an agglutination reaction is difficult. Analysis is possible, however, by use of radio-iodinated bovine serum albumin as antigen at low concentrations (less than 200 ng/ml) and optimal concentration of antibody to avoid precipitation of antigen-antibody complexes with human erythrocytes without participation of complement. Antigen and antibody are reacted at 37/sup 0/C, complement is added, the mixture incubated and human erythrocytes added; after further incubation, ice-cold EDTA containing buffer is added and the erythrocytes centrifuged and assayed for radioactivity. Control cells reacted with heated guinea pig serum retained less than 5% of the added radioactivity. The method facilitates measurement of IA reactivity and permits more detailed analysis of the mechanism underlying the reaction.

  15. Quantitative Surface Analysis by Xps (X-Ray Photoelectron Spectroscopy: Application to Hydrotreating Catalysts

    Directory of Open Access Journals (Sweden)

    Beccat P.

    1999-07-01

    Full Text Available XPS is an ideal technique to provide the chemical composition of the extreme surface of solid materials, vastly applied to the study of catalysts. In this article, we will show that a quantitative approach, based upon fundamental expression of the XPS signal, has enabled us to obtain a consistent set of response factors for the elements of the periodic table. In-depth spadework has been necessary to know precisely the transmission function of the spectrometer used at IFP. The set of response factors obtained enables to perform, on a routine basis, a quantitative analysis with approximately 20% relative accuracy, which is quite acceptable for an analysis of such a nature. While using this quantitative approach, we have developed an analytical method specific to hydrotreating catalysts that allows obtaining the sulphiding degree of molybdenum quite reliably and reproducibly. The usage of this method is illustrated by two examples for which XPS spectroscopy has provided with information sufficiently accurate and quantitative to help understand the reactivity differences between certain MoS2/Al2O3 or NiMoS/Al2O3-type hydrotreating catalysts.

  16. Methods for RNA Analysis

    DEFF Research Database (Denmark)

    Olivarius, Signe

    of the transcriptome, 5’ end capture of RNA is combined with next-generation sequencing for high-throughput quantitative assessment of transcription start sites by two different methods. The methods presented here allow for functional investigation of coding as well as noncoding RNA and contribute to future...... RNAs rely on interactions with proteins, the establishment of protein-binding profiles is essential for the characterization of RNAs. Aiming to facilitate RNA analysis, this thesis introduces proteomics- as well as transcriptomics-based methods for the functional characterization of RNA. First, RNA...

  17. The Functional Resonance Analysis Method for a systemic risk based environmental auditing in a sinter plant: A semi-quantitative approach

    International Nuclear Information System (INIS)

    Patriarca, Riccardo; Di Gravio, Giulio; Costantino, Francesco; Tronci, Massimo

    2017-01-01

    Environmental auditing is a main issue for any production plant and assessing environmental performance is crucial to identify risks factors. The complexity of current plants arises from interactions among technological, human and organizational system components, which are often transient and not easily detectable. The auditing thus requires a systemic perspective, rather than focusing on individual behaviors, as emerged in recent research in the safety domain for socio-technical systems. We explore the significance of modeling the interactions of system components in everyday work, by the application of a recent systemic method, i.e. the Functional Resonance Analysis Method (FRAM), in order to define dynamically the system structure. We present also an innovative evolution of traditional FRAM following a semi-quantitative approach based on Monte Carlo simulation. This paper represents the first contribution related to the application of FRAM in the environmental context, moreover considering a consistent evolution based on Monte Carlo simulation. The case study of an environmental risk auditing in a sinter plant validates the research, showing the benefits in terms of identifying potential critical activities, related mitigating actions and comprehensive environmental monitoring indicators. - Highlights: • We discuss the relevance of a systemic risk based environmental audit. • We present FRAM to represent functional interactions of the system. • We develop a semi-quantitative FRAM framework to assess environmental risks. • We apply the semi-quantitative FRAM framework to build a model for a sinter plant.

  18. The Functional Resonance Analysis Method for a systemic risk based environmental auditing in a sinter plant: A semi-quantitative approach

    Energy Technology Data Exchange (ETDEWEB)

    Patriarca, Riccardo, E-mail: riccardo.patriarca@uniroma1.it; Di Gravio, Giulio; Costantino, Francesco; Tronci, Massimo

    2017-03-15

    Environmental auditing is a main issue for any production plant and assessing environmental performance is crucial to identify risks factors. The complexity of current plants arises from interactions among technological, human and organizational system components, which are often transient and not easily detectable. The auditing thus requires a systemic perspective, rather than focusing on individual behaviors, as emerged in recent research in the safety domain for socio-technical systems. We explore the significance of modeling the interactions of system components in everyday work, by the application of a recent systemic method, i.e. the Functional Resonance Analysis Method (FRAM), in order to define dynamically the system structure. We present also an innovative evolution of traditional FRAM following a semi-quantitative approach based on Monte Carlo simulation. This paper represents the first contribution related to the application of FRAM in the environmental context, moreover considering a consistent evolution based on Monte Carlo simulation. The case study of an environmental risk auditing in a sinter plant validates the research, showing the benefits in terms of identifying potential critical activities, related mitigating actions and comprehensive environmental monitoring indicators. - Highlights: • We discuss the relevance of a systemic risk based environmental audit. • We present FRAM to represent functional interactions of the system. • We develop a semi-quantitative FRAM framework to assess environmental risks. • We apply the semi-quantitative FRAM framework to build a model for a sinter plant.

  19. Quantitative method to assess caries via fluorescence imaging from the perspective of autofluorescence spectral analysis

    Science.gov (United States)

    Chen, Q. G.; Zhu, H. H.; Xu, Y.; Lin, B.; Chen, H.

    2015-08-01

    A quantitative method to discriminate caries lesions for a fluorescence imaging system is proposed in this paper. The autofluorescence spectral investigation of 39 teeth samples classified by the International Caries Detection and Assessment System levels was performed at 405 nm excitation. The major differences in the different caries lesions focused on the relative spectral intensity range of 565-750 nm. The spectral parameter, defined as the ratio of wavebands at 565-750 nm to the whole spectral range, was calculated. The image component ratio R/(G + B) of color components was statistically computed by considering the spectral parameters (e.g. autofluorescence, optical filter, and spectral sensitivity) in our fluorescence color imaging system. Results showed that the spectral parameter and image component ratio presented a linear relation. Therefore, the image component ratio was graded as 1.62 to quantitatively classify sound, early decay, established decay, and severe decay tissues, respectively. Finally, the fluorescence images of caries were experimentally obtained, and the corresponding image component ratio distribution was compared with the classification result. A method to determine the numerical grades of caries using a fluorescence imaging system was proposed. This method can be applied to similar imaging systems.

  20. Quantitative methods for developing C2 system requirement

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, K.K.

    1992-06-01

    The US Army established the Army Tactical Command and Control System (ATCCS) Experimentation Site (AES) to provide a place where material and combat developers could experiment with command and control systems. The AES conducts fundamental and applied research involving command and control issues using a number of research methods, ranging from large force-level experiments, to controlled laboratory experiments, to studies and analyses. The work summarized in this paper was done by Pacific Northwest Laboratory under task order from the Army Tactical Command and Control System Experimentation Site. The purpose of the task was to develop the functional requirements for army engineer automation and support software, including MCS-ENG. A client, such as an army engineer, has certain needs and requirements of his or her software; these needs must be presented in ways that are readily understandable to the software developer. A requirements analysis then, such as the one described in this paper, is simply the means of communication between those who would use a piece of software and those who would develop it. The analysis from which this paper was derived attempted to bridge the ``communications gap`` between army combat engineers and software engineers. It sought to derive and state the software needs of army engineers in ways that are meaningful to software engineers. In doing this, it followed a natural sequence of investigation: (1) what does an army engineer do, (2) with which tasks can software help, (3) how much will it cost, and (4) where is the highest payoff? This paper demonstrates how each of these questions was addressed during an analysis of the functional requirements of engineer support software. Systems engineering methods are used in a task analysis and a quantitative scoring method was developed to score responses regarding the feasibility of task automation. The paper discusses the methods used to perform utility and cost-benefits estimates.

  1. Quantitative firing transformations of a triaxial ceramic by X-ray diffraction methods

    International Nuclear Information System (INIS)

    Conconi, M.S.; Gauna, M.R.; Serra, M.F.; Suarez, G.; Aglietti, E.F.; Rendtorff, N.M.

    2014-01-01

    The firing transformations of traditional (clay based) ceramics are of technological and archaeological interest, and are usually reported qualitatively or semi quantitatively. These kinds of systems present an important complexity, especially for X-ray diffraction techniques, due to the presence of fully crystalline, low crystalline and amorphous phases. In this article we present the results of a qualitative and quantitative X-ray diffraction Rietveld analysis of the fully crystalline (kaolinite, quartz, cristobalite, feldspars and/or mullite), the low crystalline (metakaolinite and/or spinel type pre-mullite) and glassy phases evolution of a triaxial (clay-quartz-feldspar) ceramic fired in a wide temperature range between 900 and 1300 deg C. The employed methodology to determine low crystalline and glassy phase abundances is based in a combination of the internal standard method and the use of a nanocrystalline model where the long-range order is lost, respectively. A preliminary sintering characterization was carried out by contraction, density and porosity evolution with the firing temperature. Simultaneous thermo-gravimetric and differential thermal analysis was carried out to elucidate the actual temperature at which the chemical changes occur. Finally, the quantitative analysis based on the Rietveld refinement of the X-ray diffraction patterns was performed. The kaolinite decomposition into metakaolinite was determined quantitatively; the intermediate (980 deg C) spinel type alumino-silicate formation was also quantified; the incongruent fusion of the potash feldspar was observed and quantified together with the final mullitization and the amorphous (glassy) phase formation.The methodology used to analyze the X-ray diffraction patterns proved to be suitable to evaluate quantitatively the thermal transformations that occur in a complex system like the triaxial ceramics. The evaluated phases can be easily correlated with the processing variables and materials

  2. Quantitative firing transformations of a triaxial ceramic by X-ray diffraction methods

    Energy Technology Data Exchange (ETDEWEB)

    Conconi, M.S.; Gauna, M.R.; Serra, M.F. [Centro de Tecnologia de Recursos Minerales y Ceramica (CETMIC), Buenos Aires (Argentina); Suarez, G.; Aglietti, E.F.; Rendtorff, N.M., E-mail: rendtorff@cetmic.unlp.edu.ar [Universidad Nacional de La Plata (UNLP), Buenos Aires (Argentina). Fac. de Ciencias Exactas. Dept. de Quimica

    2014-10-15

    The firing transformations of traditional (clay based) ceramics are of technological and archaeological interest, and are usually reported qualitatively or semi quantitatively. These kinds of systems present an important complexity, especially for X-ray diffraction techniques, due to the presence of fully crystalline, low crystalline and amorphous phases. In this article we present the results of a qualitative and quantitative X-ray diffraction Rietveld analysis of the fully crystalline (kaolinite, quartz, cristobalite, feldspars and/or mullite), the low crystalline (metakaolinite and/or spinel type pre-mullite) and glassy phases evolution of a triaxial (clay-quartz-feldspar) ceramic fired in a wide temperature range between 900 and 1300 deg C. The employed methodology to determine low crystalline and glassy phase abundances is based in a combination of the internal standard method and the use of a nanocrystalline model where the long-range order is lost, respectively. A preliminary sintering characterization was carried out by contraction, density and porosity evolution with the firing temperature. Simultaneous thermo-gravimetric and differential thermal analysis was carried out to elucidate the actual temperature at which the chemical changes occur. Finally, the quantitative analysis based on the Rietveld refinement of the X-ray diffraction patterns was performed. The kaolinite decomposition into metakaolinite was determined quantitatively; the intermediate (980 deg C) spinel type alumino-silicate formation was also quantified; the incongruent fusion of the potash feldspar was observed and quantified together with the final mullitization and the amorphous (glassy) phase formation.The methodology used to analyze the X-ray diffraction patterns proved to be suitable to evaluate quantitatively the thermal transformations that occur in a complex system like the triaxial ceramics. The evaluated phases can be easily correlated with the processing variables and materials

  3. Studying learning in the healthcare setting: the potential of quantitative diary methods.

    Science.gov (United States)

    Ciere, Yvette; Jaarsma, Debbie; Visser, Annemieke; Sanderman, Robbert; Snippe, Evelien; Fleer, Joke

    2015-08-01

    Quantitative diary methods are longitudinal approaches that involve the repeated measurement of aspects of peoples' experience of daily life. In this article, we outline the main characteristics and applications of quantitative diary methods and discuss how their use may further research in the field of medical education. Quantitative diary methods offer several methodological advantages, such as measuring aspects of learning with great detail, accuracy and authenticity. Moreover, they enable researchers to study how and under which conditions learning in the health care setting occurs and in which way learning can be promoted. Hence, quantitative diary methods may contribute to theory development and the optimization of teaching methods in medical education.

  4. Fluorescent foci quantitation for high-throughput analysis

    Directory of Open Access Journals (Sweden)

    Elena Ledesma-Fernández

    2015-06-01

    Full Text Available A number of cellular proteins localize to discrete foci within cells, for example DNA repair proteins, microtubule organizing centers, P bodies or kinetochores. It is often possible to measure the fluorescence emission from tagged proteins within these foci as a surrogate for the concentration of that specific protein. We wished to develop tools that would allow quantitation of fluorescence foci intensities in high-throughput studies. As proof of principle we have examined the kinetochore, a large multi-subunit complex that is critical for the accurate segregation of chromosomes during cell division. Kinetochore perturbations lead to aneuploidy, which is a hallmark of cancer cells. Hence, understanding kinetochore homeostasis and regulation are important for a global understanding of cell division and genome integrity. The 16 budding yeast kinetochores colocalize within the nucleus to form a single focus. Here we have created a set of freely-available tools to allow high-throughput quantitation of kinetochore foci fluorescence. We use this ‘FociQuant’ tool to compare methods of kinetochore quantitation and we show proof of principle that FociQuant can be used to identify changes in kinetochore protein levels in a mutant that affects kinetochore function. This analysis can be applied to any protein that forms discrete foci in cells.

  5. Investment appraisal using quantitative risk analysis.

    Science.gov (United States)

    Johansson, Henrik

    2002-07-01

    Investment appraisal concerned with investments in fire safety systems is discussed. Particular attention is directed at evaluating, in terms of the Bayesian decision theory, the risk reduction that investment in a fire safety system involves. It is shown how the monetary value of the change from a building design without any specific fire protection system to one including such a system can be estimated by use of quantitative risk analysis, the results of which are expressed in terms of a Risk-adjusted net present value. This represents the intrinsic monetary value of investing in the fire safety system. The method suggested is exemplified by a case study performed in an Avesta Sheffield factory.

  6. Quantitative image analysis of synovial tissue

    NARCIS (Netherlands)

    van der Hall, Pascal O.; Kraan, Maarten C.; Tak, Paul Peter

    2007-01-01

    Quantitative image analysis is a form of imaging that includes microscopic histological quantification, video microscopy, image analysis, and image processing. Hallmarks are the generation of reliable, reproducible, and efficient measurements via strict calibration and step-by-step control of the

  7. A method for improved clustering and classification of microscopy images using quantitative co-localization coefficients

    LENUS (Irish Health Repository)

    Singan, Vasanth R

    2012-06-08

    AbstractBackgroundThe localization of proteins to specific subcellular structures in eukaryotic cells provides important information with respect to their function. Fluorescence microscopy approaches to determine localization distribution have proved to be an essential tool in the characterization of unknown proteins, and are now particularly pertinent as a result of the wide availability of fluorescently-tagged constructs and antibodies. However, there are currently very few image analysis options able to effectively discriminate proteins with apparently similar distributions in cells, despite this information being important for protein characterization.FindingsWe have developed a novel method for combining two existing image analysis approaches, which results in highly efficient and accurate discrimination of proteins with seemingly similar distributions. We have combined image texture-based analysis with quantitative co-localization coefficients, a method that has traditionally only been used to study the spatial overlap between two populations of molecules. Here we describe and present a novel application for quantitative co-localization, as applied to the study of Rab family small GTP binding proteins localizing to the endomembrane system of cultured cells.ConclusionsWe show how quantitative co-localization can be used alongside texture feature analysis, resulting in improved clustering of microscopy images. The use of co-localization as an additional clustering parameter is non-biased and highly applicable to high-throughput image data sets.

  8. A method for quantitative analysis of standard and high-throughput qPCR expression data based on input sample quantity.

    Directory of Open Access Journals (Sweden)

    Mateusz G Adamski

    Full Text Available Over the past decade rapid advances have occurred in the understanding of RNA expression and its regulation. Quantitative polymerase chain reactions (qPCR have become the gold standard for quantifying gene expression. Microfluidic next generation, high throughput qPCR now permits the detection of transcript copy number in thousands of reactions simultaneously, dramatically increasing the sensitivity over standard qPCR. Here we present a gene expression analysis method applicable to both standard polymerase chain reactions (qPCR and high throughput qPCR. This technique is adjusted to the input sample quantity (e.g., the number of cells and is independent of control gene expression. It is efficiency-corrected and with the use of a universal reference sample (commercial complementary DNA (cDNA permits the normalization of results between different batches and between different instruments--regardless of potential differences in transcript amplification efficiency. Modifications of the input quantity method include (1 the achievement of absolute quantification and (2 a non-efficiency corrected analysis. When compared to other commonly used algorithms the input quantity method proved to be valid. This method is of particular value for clinical studies of whole blood and circulating leukocytes where cell counts are readily available.

  9. Quantitative X-ray methods of amorphous content and crystallinity determination of SiO2, in Quartz and Opal mixture

    International Nuclear Information System (INIS)

    Ketabdari, M.R.; Ahmadi, K.; Esmaeilnia Shirvani, A.; Tofigh, A.

    2001-01-01

    X-ray diffraction technique is commonly used for qualitative analysis of minerals, and has also been successfully used for quantitative measurements. In this research, the matrix flushing and a new X-ray diffraction method have been used for the determination of crystallinity and amorphous content of Opal and Quartz mixture. The PCAPD is used to determine the quantitative analysis of these two minerals

  10. Quantitative Nuclear Medicine Imaging: Concepts, Requirements and Methods

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-01-15

    The absolute quantification of radionuclide distribution has been a goal since the early days of nuclear medicine. Nevertheless, the apparent complexity and sometimes limited accuracy of these methods have prevented them from being widely used in important applications such as targeted radionuclide therapy or kinetic analysis. The intricacy of the effects degrading nuclear medicine images and the lack of availability of adequate methods to compensate for these effects have frequently been seen as insurmountable obstacles in the use of quantitative nuclear medicine in clinical institutions. In the last few decades, several research groups have consistently devoted their efforts to the filling of these gaps. As a result, many efficient methods are now available that make quantification a clinical reality, provided appropriate compensation tools are used. Despite these efforts, many clinical institutions still lack the knowledge and tools to adequately measure and estimate the accumulated activities in the human body, thereby using potentially outdated protocols and procedures. The purpose of the present publication is to review the current state of the art of image quantification and to provide medical physicists and other related professionals facing quantification tasks with a solid background of tools and methods. It describes and analyses the physical effects that degrade image quality and affect the accuracy of quantification, and describes methods to compensate for them in planar, single photon emission computed tomography (SPECT) and positron emission tomography (PET) images. The fast paced development of the computational infrastructure, both hardware and software, has made drastic changes in the ways image quantification is now performed. The measuring equipment has evolved from the simple blind probes to planar and three dimensional imaging, supported by SPECT, PET and hybrid equipment. Methods of iterative reconstruction have been developed to allow for

  11. A simultaneous screening and quantitative method for the multiresidue analysis of pesticides in spices using ultra-high performance liquid chromatography-high resolution (Orbitrap) mass spectrometry.

    Science.gov (United States)

    Goon, Arnab; Khan, Zareen; Oulkar, Dasharath; Shinde, Raviraj; Gaikwad, Suresh; Banerjee, Kaushik

    2018-01-12

    A novel screening and quantitation method is reported for non-target multiresidue analysis of pesticides using ultra-HPLC-quadrupole-Orbitrap mass spectrometry in spice matrices, including black pepper, cardamom, chili, coriander, cumin, and turmeric. The method involved sequential full-scan (resolution = 70,000), and variable data independent acquisition (vDIA) with nine consecutive fragmentation events (resolution = 17,500). Samples were extracted by the QuEChERS method. The introduction of an SPE-based clean-up step through hydrophilic-lipophilic-balance (HLB) cartridges proved advantageous in minimizing the false negatives. For coriander, cumin, chili, and cardamom, the screening detection limit was largely at 2 ng/g, while it was 5 ng/g for black pepper, and turmeric. When the method was quantitatively validated for 199 pesticides, the limit of quantification (LOQ) was mostly at 10 ng/g (excluding black pepper, and turmeric with LOQ = 20 ng/g) with recoveries within 70-120%, and precision-RSDs <20%. Furthermore, the method allowed the identification of suspected non-target analytes through retrospective search of the accurate mass of the compound-specific precursor and product ions. Compared to LC-MS/MS, the quantitative performance of this Orbitrap-MS method had agreements in residue values between 78-100%. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Physical aspects of quantitative particles analysis by X-ray fluorescence and electron microprobe techniques

    International Nuclear Information System (INIS)

    Markowicz, A.

    1986-01-01

    The aim of this work is to present both physical fundamentals and recent advances in quantitative particles analysis by X-ray fluorescence (XRF) and electron microprobe (EPXMA) techniques. A method of correction for the particle-size effect in XRF analysis is described and theoretically evaluated. New atomic number- and absorption correction procedures in EPXMA of individual particles are proposed. The applicability of these two correction methods is evaluated for a wide range of elemental composition, X-ray energy and sample thickness. Also, a theoretical model for composition and thickness dependence of Bremsstrahlung background generated in multielement bulk specimens as well as thin films and particles are presented and experimantally evaluated. Finally, the limitations and further possible improvements in quantitative particles analysis by XFR and EPXMA are discussed. 109 refs. (author)

  13. Multivariate calibration applied to the quantitative analysis of infrared spectra

    Energy Technology Data Exchange (ETDEWEB)

    Haaland, D.M.

    1991-01-01

    Multivariate calibration methods are very useful for improving the precision, accuracy, and reliability of quantitative spectral analyses. Spectroscopists can more effectively use these sophisticated statistical tools if they have a qualitative understanding of the techniques involved. A qualitative picture of the factor analysis multivariate calibration methods of partial least squares (PLS) and principal component regression (PCR) is presented using infrared calibrations based upon spectra of phosphosilicate glass thin films on silicon wafers. Comparisons of the relative prediction abilities of four different multivariate calibration methods are given based on Monte Carlo simulations of spectral calibration and prediction data. The success of multivariate spectral calibrations is demonstrated for several quantitative infrared studies. The infrared absorption and emission spectra of thin-film dielectrics used in the manufacture of microelectronic devices demonstrate rapid, nondestructive at-line and in-situ analyses using PLS calibrations. Finally, the application of multivariate spectral calibrations to reagentless analysis of blood is presented. We have found that the determination of glucose in whole blood taken from diabetics can be precisely monitored from the PLS calibration of either mind- or near-infrared spectra of the blood. Progress toward the non-invasive determination of glucose levels in diabetics is an ultimate goal of this research. 13 refs., 4 figs.

  14. Improving Student Understanding of Qualitative and Quantitative Analysis via GC/MS Using a Rapid SPME-Based Method for Determination of Trihalomethanes in Drinking Water

    Science.gov (United States)

    Huang, Shu Rong; Palmer, Peter T.

    2017-01-01

    This paper describes a method for determination of trihalomethanes (THMs) in drinking water via solid-phase microextraction (SPME) GC/MS as a means to develop and improve student understanding of the use of GC/MS for qualitative and quantitative analysis. In the classroom, students are introduced to SPME, GC/MS instrumentation, and the use of MS…

  15. Electric Field Quantitative Measurement System and Method

    Science.gov (United States)

    Generazio, Edward R. (Inventor)

    2016-01-01

    A method and system are provided for making a quantitative measurement of an electric field. A plurality of antennas separated from one another by known distances are arrayed in a region that extends in at least one dimension. A voltage difference between at least one selected pair of antennas is measured. Each voltage difference is divided by the known distance associated with the selected pair of antennas corresponding thereto to generate a resulting quantity. The plurality of resulting quantities defined over the region quantitatively describe an electric field therein.

  16. Multivariate reference technique for quantitative analysis of fiber-optic tissue Raman spectroscopy.

    Science.gov (United States)

    Bergholt, Mads Sylvest; Duraipandian, Shiyamala; Zheng, Wei; Huang, Zhiwei

    2013-12-03

    We report a novel method making use of multivariate reference signals of fused silica and sapphire Raman signals generated from a ball-lens fiber-optic Raman probe for quantitative analysis of in vivo tissue Raman measurements in real time. Partial least-squares (PLS) regression modeling is applied to extract the characteristic internal reference Raman signals (e.g., shoulder of the prominent fused silica boson peak (~130 cm(-1)); distinct sapphire ball-lens peaks (380, 417, 646, and 751 cm(-1))) from the ball-lens fiber-optic Raman probe for quantitative analysis of fiber-optic Raman spectroscopy. To evaluate the analytical value of this novel multivariate reference technique, a rapid Raman spectroscopy system coupled with a ball-lens fiber-optic Raman probe is used for in vivo oral tissue Raman measurements (n = 25 subjects) under 785 nm laser excitation powers ranging from 5 to 65 mW. An accurate linear relationship (R(2) = 0.981) with a root-mean-square error of cross validation (RMSECV) of 2.5 mW can be obtained for predicting the laser excitation power changes based on a leave-one-subject-out cross-validation, which is superior to the normal univariate reference method (RMSE = 6.2 mW). A root-mean-square error of prediction (RMSEP) of 2.4 mW (R(2) = 0.985) can also be achieved for laser power prediction in real time when we applied the multivariate method independently on the five new subjects (n = 166 spectra). We further apply the multivariate reference technique for quantitative analysis of gelatin tissue phantoms that gives rise to an RMSEP of ~2.0% (R(2) = 0.998) independent of laser excitation power variations. This work demonstrates that multivariate reference technique can be advantageously used to monitor and correct the variations of laser excitation power and fiber coupling efficiency in situ for standardizing the tissue Raman intensity to realize quantitative analysis of tissue Raman measurements in vivo, which is particularly appealing in

  17. Quantitative autoradiography of neurochemicals

    International Nuclear Information System (INIS)

    Rainbow, T.C.; Biegon, A.; Bleisch, W.V.

    1982-01-01

    Several new methods have been developed that apply quantitative autoradiography to neurochemistry. These methods are derived from the 2-deoxyglucose (2DG) technique of Sokoloff (1), which uses quantitative autoradiography to measure the rate of glucose utilization in brain structures. The new methods allow the measurement of the rate of cerbral protein synthesis and the levels of particular neurotransmitter receptors by quantitative autoradiography. As with the 2DG method, the new techniques can measure molecular levels in micron-sized brain structures; and can be used in conjunction with computerized systems of image processing. It is possible that many neurochemical measurements could be made by computerized analysis of quantitative autoradiograms

  18. Informatics methods to enable sharing of quantitative imaging research data.

    Science.gov (United States)

    Levy, Mia A; Freymann, John B; Kirby, Justin S; Fedorov, Andriy; Fennessy, Fiona M; Eschrich, Steven A; Berglund, Anders E; Fenstermacher, David A; Tan, Yongqiang; Guo, Xiaotao; Casavant, Thomas L; Brown, Bartley J; Braun, Terry A; Dekker, Andre; Roelofs, Erik; Mountz, James M; Boada, Fernando; Laymon, Charles; Oborski, Matt; Rubin, Daniel L

    2012-11-01

    The National Cancer Institute Quantitative Research Network (QIN) is a collaborative research network whose goal is to share data, algorithms and research tools to accelerate quantitative imaging research. A challenge is the variability in tools and analysis platforms used in quantitative imaging. Our goal was to understand the extent of this variation and to develop an approach to enable sharing data and to promote reuse of quantitative imaging data in the community. We performed a survey of the current tools in use by the QIN member sites for representation and storage of their QIN research data including images, image meta-data and clinical data. We identified existing systems and standards for data sharing and their gaps for the QIN use case. We then proposed a system architecture to enable data sharing and collaborative experimentation within the QIN. There are a variety of tools currently used by each QIN institution. We developed a general information system architecture to support the QIN goals. We also describe the remaining architecture gaps we are developing to enable members to share research images and image meta-data across the network. As a research network, the QIN will stimulate quantitative imaging research by pooling data, algorithms and research tools. However, there are gaps in current functional requirements that will need to be met by future informatics development. Special attention must be given to the technical requirements needed to translate these methods into the clinical research workflow to enable validation and qualification of these novel imaging biomarkers. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Balancing the Quantitative and Qualitative Aspects of Social Network Analysis to Study Complex Social Systems

    OpenAIRE

    Schipper, Danny; Spekkink, Wouter

    2015-01-01

    Social Network Analysis (SNA) can be used to investigate complex social systems. SNA is typically applied as a quantitative method, which has important limitations. First, quantitative methods are capable of capturing the form of relationships (e.g. strength and frequency), but they are less suitable for capturing the content of relationships (e.g. interests and motivations). Second, while complex social systems are highly dynamic, the representations that SNA creates of such systems are ofte...

  20. Quantitative analysis of patient-specific dosimetric IMRT verification

    International Nuclear Information System (INIS)

    Budgell, G J; Perrin, B A; Mott, J H L; Fairfoul, J; Mackay, R I

    2005-01-01

    Patient-specific dosimetric verification methods for IMRT treatments are variable, time-consuming and frequently qualitative, preventing evidence-based reduction in the amount of verification performed. This paper addresses some of these issues by applying a quantitative analysis parameter to the dosimetric verification procedure. Film measurements in different planes were acquired for a series of ten IMRT prostate patients, analysed using the quantitative parameter, and compared to determine the most suitable verification plane. Film and ion chamber verification results for 61 patients were analysed to determine long-term accuracy, reproducibility and stability of the planning and delivery system. The reproducibility of the measurement and analysis system was also studied. The results show that verification results are strongly dependent on the plane chosen, with the coronal plane particularly insensitive to delivery error. Unexpectedly, no correlation could be found between the levels of error in different verification planes. Longer term verification results showed consistent patterns which suggest that the amount of patient-specific verification can be safely reduced, provided proper caution is exercised: an evidence-based model for such reduction is proposed. It is concluded that dose/distance to agreement (e.g., 3%/3 mm) should be used as a criterion of acceptability. Quantitative parameters calculated for a given criterion of acceptability should be adopted in conjunction with displays that show where discrepancies occur. Planning and delivery systems which cannot meet the required standards of accuracy, reproducibility and stability to reduce verification will not be accepted by the radiotherapy community

  1. A method for three-dimensional quantitative observation of the microstructure of biological samples

    Science.gov (United States)

    Wang, Pengfei; Chen, Dieyan; Ma, Wanyun; Wu, Hongxin; Ji, Liang; Sun, Jialin; Lv, Danyu; Zhang, Lu; Li, Ying; Tian, Ning; Zheng, Jinggao; Zhao, Fengying

    2009-07-01

    Contemporary biology has developed into the era of cell biology and molecular biology, and people try to study the mechanism of all kinds of biological phenomena at the microcosmic level now. Accurate description of the microstructure of biological samples is exigent need from many biomedical experiments. This paper introduces a method for 3-dimensional quantitative observation on the microstructure of vital biological samples based on two photon laser scanning microscopy (TPLSM). TPLSM is a novel kind of fluorescence microscopy, which has excellence in its low optical damage, high resolution, deep penetration depth and suitability for 3-dimensional (3D) imaging. Fluorescent stained samples were observed by TPLSM, and afterward the original shapes of them were obtained through 3D image reconstruction. The spatial distribution of all objects in samples as well as their volumes could be derived by image segmentation and mathematic calculation. Thus the 3-dimensionally and quantitatively depicted microstructure of the samples was finally derived. We applied this method to quantitative analysis of the spatial distribution of chromosomes in meiotic mouse oocytes at metaphase, and wonderful results came out last.

  2. Quantitative methods in electroencephalography to access therapeutic response.

    Science.gov (United States)

    Diniz, Roseane Costa; Fontenele, Andrea Martins Melo; Carmo, Luiza Helena Araújo do; Ribeiro, Aurea Celeste da Costa; Sales, Fábio Henrique Silva; Monteiro, Sally Cristina Moutinho; Sousa, Ana Karoline Ferreira de Castro

    2016-07-01

    Pharmacometrics or Quantitative Pharmacology aims to quantitatively analyze the interaction between drugs and patients whose tripod: pharmacokinetics, pharmacodynamics and disease monitoring to identify variability in drug response. Being the subject of central interest in the training of pharmacists, this work was out with a view to promoting this idea on methods to access the therapeutic response of drugs with central action. This paper discusses quantitative methods (Fast Fourier Transform, Magnitude Square Coherence, Conditional Entropy, Generalised Linear semi-canonical Correlation Analysis, Statistical Parametric Network and Mutual Information Function) used to evaluate the EEG signals obtained after administration regimen of drugs, the main findings and their clinical relevance, pointing it as a contribution to construction of different pharmaceutical practice. Peter Anderer et. al in 2000 showed the effect of 20mg of buspirone in 20 healthy subjects after 1, 2, 4, 6 and 8h after oral ingestion of the drug. The areas of increased power of the theta frequency occurred mainly in the temporo-occipital - parietal region. It has been shown by Sampaio et al., 2007 that the use of bromazepam, which allows the release of GABA (gamma amino butyric acid), an inhibitory neurotransmitter of the central nervous system could theoretically promote dissociation of cortical functional areas, a decrease of functional connectivity, a decrease of cognitive functions by means of smaller coherence (electrophysiological magnitude measured from the EEG by software) values. Ahmad Khodayari-Rostamabad et al. in 2015 talk that such a measure could be a useful clinical tool potentially to assess adverse effects of opioids and hence give rise to treatment guidelines. There was the relation between changes in pain intensity and brain sources (at maximum activity locations) during remifentanil infusion despite its potent analgesic effect. The statement of mathematical and computational

  3. Quantitative methods for compensation of matrix effects and self-absorption in Laser Induced Breakdown Spectroscopy signals of solids

    Science.gov (United States)

    Takahashi, Tomoko; Thornton, Blair

    2017-12-01

    This paper reviews methods to compensate for matrix effects and self-absorption during quantitative analysis of compositions of solids measured using Laser Induced Breakdown Spectroscopy (LIBS) and their applications to in-situ analysis. Methods to reduce matrix and self-absorption effects on calibration curves are first introduced. The conditions where calibration curves are applicable to quantification of compositions of solid samples and their limitations are discussed. While calibration-free LIBS (CF-LIBS), which corrects matrix effects theoretically based on the Boltzmann distribution law and Saha equation, has been applied in a number of studies, requirements need to be satisfied for the calculation of chemical compositions to be valid. Also, peaks of all elements contained in the target need to be detected, which is a bottleneck for in-situ analysis of unknown materials. Multivariate analysis techniques are gaining momentum in LIBS analysis. Among the available techniques, principal component regression (PCR) analysis and partial least squares (PLS) regression analysis, which can extract related information to compositions from all spectral data, are widely established methods and have been applied to various fields including in-situ applications in air and for planetary explorations. Artificial neural networks (ANNs), where non-linear effects can be modelled, have also been investigated as a quantitative method and their applications are introduced. The ability to make quantitative estimates based on LIBS signals is seen as a key element for the technique to gain wider acceptance as an analytical method, especially in in-situ applications. In order to accelerate this process, it is recommended that the accuracy should be described using common figures of merit which express the overall normalised accuracy, such as the normalised root mean square errors (NRMSEs), when comparing the accuracy obtained from different setups and analytical methods.

  4. A Sensitive Gold Nanoplasmonic SERS Quantitative Analysis Method for Sulfate in Serum Using Fullerene as Catalyst

    Directory of Open Access Journals (Sweden)

    Chongning Li

    2018-04-01

    Full Text Available Fullerene exhibited strong catalysis of the redox reaction between HAuCl4 and trisodium citrate to form gold nanoplasmon with a strong surface-enhanced Raman scattering (SERS effect at 1615 cm−1 in the presence of Vitoria blue B molecule probes. When fullerene increased, the SERS peak enhanced linearly due to formation of more AuNPs as substrate. Upon addition of Ba2+, Ba2+ ions adsorb on the fullerene surface to inhibit the catalysis of fullerene that caused the SERS peak decreasing. Analyte SO42− combined with Ba2+ to form stable BaSO4 precipitate to release free fullerene that the catalysis recovered, and the SERS intensity increased linearly. Thus, a new SERS quantitative analysis method was established for the detection of sulfate in serum samples, with a linear range of 0.03–3.4 μM.

  5. Quantitative method to assess caries via fluorescence imaging from the perspective of autofluorescence spectral analysis

    International Nuclear Information System (INIS)

    Chen, Q G; Xu, Y; Zhu, H H; Chen, H; Lin, B

    2015-01-01

    A quantitative method to discriminate caries lesions for a fluorescence imaging system is proposed in this paper. The autofluorescence spectral investigation of 39 teeth samples classified by the International Caries Detection and Assessment System levels was performed at 405 nm excitation. The major differences in the different caries lesions focused on the relative spectral intensity range of 565–750 nm. The spectral parameter, defined as the ratio of wavebands at 565–750 nm to the whole spectral range, was calculated. The image component ratio R/(G + B) of color components was statistically computed by considering the spectral parameters (e.g. autofluorescence, optical filter, and spectral sensitivity) in our fluorescence color imaging system. Results showed that the spectral parameter and image component ratio presented a linear relation. Therefore, the image component ratio was graded as <0.66, 0.66–1.06, 1.06–1.62, and >1.62 to quantitatively classify sound, early decay, established decay, and severe decay tissues, respectively. Finally, the fluorescence images of caries were experimentally obtained, and the corresponding image component ratio distribution was compared with the classification result. A method to determine the numerical grades of caries using a fluorescence imaging system was proposed. This method can be applied to similar imaging systems. (paper)

  6. Deterministic quantitative risk assessment development

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, Jane; Colquhoun, Iain [PII Pipeline Solutions Business of GE Oil and Gas, Cramlington Northumberland (United Kingdom)

    2009-07-01

    Current risk assessment practice in pipeline integrity management is to use a semi-quantitative index-based or model based methodology. This approach has been found to be very flexible and provide useful results for identifying high risk areas and for prioritizing physical integrity assessments. However, as pipeline operators progressively adopt an operating strategy of continual risk reduction with a view to minimizing total expenditures within safety, environmental, and reliability constraints, the need for quantitative assessments of risk levels is becoming evident. Whereas reliability based quantitative risk assessments can be and are routinely carried out on a site-specific basis, they require significant amounts of quantitative data for the results to be meaningful. This need for detailed and reliable data tends to make these methods unwieldy for system-wide risk k assessment applications. This paper describes methods for estimating risk quantitatively through the calibration of semi-quantitative estimates to failure rates for peer pipeline systems. The methods involve the analysis of the failure rate distribution, and techniques for mapping the rate to the distribution of likelihoods available from currently available semi-quantitative programs. By applying point value probabilities to the failure rates, deterministic quantitative risk assessment (QRA) provides greater rigor and objectivity than can usually be achieved through the implementation of semi-quantitative risk assessment results. The method permits a fully quantitative approach or a mixture of QRA and semi-QRA to suit the operator's data availability and quality, and analysis needs. For example, consequence analysis can be quantitative or can address qualitative ranges for consequence categories. Likewise, failure likelihoods can be output as classical probabilities or as expected failure frequencies as required. (author)

  7. [Quantitative data analysis for live imaging of bone.

    Science.gov (United States)

    Seno, Shigeto

    Bone tissue is a hard tissue, it was difficult to observe the interior of the bone tissue alive. With the progress of microscopic technology and fluorescent probe technology in recent years, it becomes possible to observe various activities of various cells forming bone society. On the other hand, the quantitative increase in data and the diversification and complexity of the images makes it difficult to perform quantitative analysis by visual inspection. It has been expected to develop a methodology for processing microscopic images and data analysis. In this article, we introduce the research field of bioimage informatics which is the boundary area of biology and information science, and then outline the basic image processing technology for quantitative analysis of live imaging data of bone.

  8. Quantitative EEG Applying the Statistical Recognition Pattern Method

    DEFF Research Database (Denmark)

    Engedal, Knut; Snaedal, Jon; Hoegh, Peter

    2015-01-01

    BACKGROUND/AIM: The aim of this study was to examine the discriminatory power of quantitative EEG (qEEG) applying the statistical pattern recognition (SPR) method to separate Alzheimer's disease (AD) patients from elderly individuals without dementia and from other dementia patients. METHODS...

  9. Comparison of reverse transcription-quantitative polymerase chain reaction methods and platforms for single cell gene expression analysis.

    Science.gov (United States)

    Fox, Bridget C; Devonshire, Alison S; Baradez, Marc-Olivier; Marshall, Damian; Foy, Carole A

    2012-08-15

    Single cell gene expression analysis can provide insights into development and disease progression by profiling individual cellular responses as opposed to reporting the global average of a population. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is the "gold standard" for the quantification of gene expression levels; however, the technical performance of kits and platforms aimed at single cell analysis has not been fully defined in terms of sensitivity and assay comparability. We compared three kits using purification columns (PicoPure) or direct lysis (CellsDirect and Cells-to-CT) combined with a one- or two-step RT-qPCR approach using dilutions of cells and RNA standards to the single cell level. Single cell-level messenger RNA (mRNA) analysis was possible using all three methods, although the precision, linearity, and effect of lysis buffer and cell background differed depending on the approach used. The impact of using a microfluidic qPCR platform versus a standard instrument was investigated for potential variability introduced by preamplification of template or scaling down of the qPCR to nanoliter volumes using laser-dissected single cell samples. The two approaches were found to be comparable. These studies show that accurate gene expression analysis is achievable at the single cell level and highlight the importance of well-validated experimental procedures for low-level mRNA analysis. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Combined optimal-pathlengths method for near-infrared spectroscopy analysis

    International Nuclear Information System (INIS)

    Liu Rong; Xu Kexin; Lu Yanhui; Sun Huili

    2004-01-01

    Near-infrared (NIR) spectroscopy is a rapid, reagent-less and nondestructive analytical technique, which is being increasingly employed for quantitative application in chemistry, pharmaceutics and food industry, and for the optical analysis of biological tissue. The performance of NIR technology greatly depends on the abilities to control and acquire data from the instrument and to calibrate and analyse data. Optical pathlength is a key parameter of the NIR instrument, which has been thoroughly discussed in univariate quantitative analysis in the presence of photometric errors. Although multiple wavelengths can provide more chemical information, it is difficult to determine a single pathlength that is suitable for each wavelength region. A theoretical investigation of a selection procedure for multiple pathlengths, called the combined optimal-pathlengths (COP) method, is identified in this paper and an extensive comparison with the single pathlength method is also performed on simulated and experimental NIR spectral data sets. The results obtained show that the COP method can greatly improve the prediction accuracy in NIR spectroscopy quantitative analysis

  11. Quantitative analysis on electrooculography (EOG) for neurodegenerative disease

    Science.gov (United States)

    Liu, Chang-Chia; Chaovalitwongse, W. Art; Pardalos, Panos M.; Seref, Onur; Xanthopoulos, Petros; Sackellares, J. C.; Skidmore, Frank M.

    2007-11-01

    Many studies have documented abnormal horizontal and vertical eye movements in human neurodegenerative disease as well as during altered states of consciousness (including drowsiness and intoxication) in healthy adults. Eye movement measurement may play an important role measuring the progress of neurodegenerative diseases and state of alertness in healthy individuals. There are several techniques for measuring eye movement, Infrared detection technique (IR). Video-oculography (VOG), Scleral eye coil and EOG. Among those available recording techniques, EOG is a major source for monitoring the abnormal eye movement. In this real-time quantitative analysis study, the methods which can capture the characteristic of the eye movement were proposed to accurately categorize the state of neurodegenerative subjects. The EOG recordings were taken while 5 tested subjects were watching a short (>120 s) animation clip. In response to the animated clip the participants executed a number of eye movements, including vertical smooth pursued (SVP), horizontal smooth pursued (HVP) and random saccades (RS). Detection of abnormalities in ocular movement may improve our diagnosis and understanding a neurodegenerative disease and altered states of consciousness. A standard real-time quantitative analysis will improve detection and provide a better understanding of pathology in these disorders.

  12. Application of non-quantitative modelling in the analysis of a network warfare environment

    CSIR Research Space (South Africa)

    Veerasamy, N

    2008-07-01

    Full Text Available based on the use of secular associations, chronological origins, linked concepts, categorizations and context specifications. This paper proposes the use of non-quantitative methods through a morphological analysis to better explore and define...

  13. Quantitative SRXRF analysis on the BL15U1 beamline at SSRF

    International Nuclear Information System (INIS)

    Zhang Yanle; Yu Xiaohan

    2010-01-01

    In this paper, we give an introduction first to two quantification methods for synchrotron radiation X-ray fluorescence analysis (SRXRF), namely fundamental parameters method and Monte-Carlo simulation method, for their application on the BL15U1 beamline (hard X-ray microprobe) at SSRF (Shanghai Synchrotron Radiation Facility). Effectiveness of the two methods is demonstrated and the XRF detection limits of the BL15U1 beamline are calculated. The results show that, quantitative analysis at the ppm level can be done using the two methods, with an accuracy of better than 10%. Although both the methods are valid for the SRXRF data analysis,the Monte Carlo method gives better analysis result, as it compares the simulated spectrum with the experiment spectrum, and this helps the determination of experiment parameters and thus minimizes the error caused by incorrect parameters. Finally, the detection limits shows that the BL15U1 beamline is capable of carrying out standard-of-the-art XRF experiment. (authors)

  14. Calibration strategy for semi-quantitative direct gas analysis using inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Gerdes, Kirk; Carter, Kimberly E.

    2011-01-01

    A process is described by which an ICP-MS equipped with an Octopole Reaction System (ORS) is calibrated using liquid phase standards to facilitate direct analysis of gas phase samples. The instrument response to liquid phase standards is analyzed to produce empirical factors relating ion generation and transmission efficiencies to standard operating parameters. Empirical factors generated for liquid phase samples are then used to produce semi-quantitative analysis of both mixed liquid/gas samples and pure gas samples. The method developed is similar to the semi-quantitative analysis algorithms in the commercial software, which have here been expanded to include gas phase elements such as Xe and Kr. Equations for prediction of relative ionization efficiencies and isotopic transmission are developed for several combinations of plasma operating conditions, which allows adjustment of limited parameters between liquid and gas injection modes. In particular, the plasma temperature and electron density are calculated from comparison of experimental results to the predictions of the Saha equation. Comparisons between operating configurations are made to determine the robustness of the analysis to plasma conditions and instrument operating parameters. Using the methods described in this research, the elemental concentrations in a liquid standard containing 45 analytes and treated as an unknown sample were quantified accurately to ± 50% for most elements using 133 Cs as a single internal reference. The method is used to predict liquid phase mercury within 12% of the actual concentration and gas phase mercury within 28% of the actual concentration. The results verify that the calibration method facilitates accurate semi-quantitative, gas phase analysis of metal species with sufficient sensitivity to quantify metal concentrations lower than 1 ppb for many metallic analytes.

  15. A novel method for morphological pleomorphism and heterogeneity quantitative measurement: Named cell feature level co-occurrence matrix.

    Science.gov (United States)

    Saito, Akira; Numata, Yasushi; Hamada, Takuya; Horisawa, Tomoyoshi; Cosatto, Eric; Graf, Hans-Peter; Kuroda, Masahiko; Yamamoto, Yoichiro

    2016-01-01

    Recent developments in molecular pathology and genetic/epigenetic analysis of cancer tissue have resulted in a marked increase in objective and measurable data. In comparison, the traditional morphological analysis approach to pathology diagnosis, which can connect these molecular data and clinical diagnosis, is still mostly subjective. Even though the advent and popularization of digital pathology has provided a boost to computer-aided diagnosis, some important pathological concepts still remain largely non-quantitative and their associated data measurements depend on the pathologist's sense and experience. Such features include pleomorphism and heterogeneity. In this paper, we propose a method for the objective measurement of pleomorphism and heterogeneity, using the cell-level co-occurrence matrix. Our method is based on the widely used Gray-level co-occurrence matrix (GLCM), where relations between neighboring pixel intensity levels are captured into a co-occurrence matrix, followed by the application of analysis functions such as Haralick features. In the pathological tissue image, through image processing techniques, each nucleus can be measured and each nucleus has its own measureable features like nucleus size, roundness, contour length, intra-nucleus texture data (GLCM is one of the methods). In GLCM each nucleus in the tissue image corresponds to one pixel. In this approach the most important point is how to define the neighborhood of each nucleus. We define three types of neighborhoods of a nucleus, then create the co-occurrence matrix and apply Haralick feature functions. In each image pleomorphism and heterogeneity are then determined quantitatively. For our method, one pixel corresponds to one nucleus feature, and we therefore named our method Cell Feature Level Co-occurrence Matrix (CFLCM). We tested this method for several nucleus features. CFLCM is showed as a useful quantitative method for pleomorphism and heterogeneity on histopathological image

  16. The evaluation of usefulness of quantitative analysis method with {sup 99m}Tc-tetrofosmin on effective dicision of reperfusion therapy to acute myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Takagi, Hitoshi; Sone, Takahito [Ogaki Municipal Hospital, Gifu (Japan)

    1998-01-01

    SPECT on acute and chronic period of {sup 99m}Tc-tetrofosmin on 46 patients with acute myocardial infarction were analyzed to evaluate about usefulness of quantitative analysis method used by unfolding image that was gotten by Bull`s eye analysis on reperfusion therapy in acute myocardial infarction, and we could get undermentioned results. 60% black out area in resional of interested was best on the obstacle myocardium using analysis of unfolding image. Significantly betterment from acute to chronic phase on the obstacle area of myocardium and the mean uptake ratio of the obstacle area was confirmed by this method. The relation between myocardial salvage and factors of myocardial damage, for example reperfusion time TIMI grade, rentrop grade and reperfusion phenomenon could be analyzed by this method. This method was suspected to underestimate the areas of obstacle myocardium on the cases of defect of apex. Error of analysis was suspected on the case of accumulation of TF to other than myocardium. The problems were minimised by some techniques mention in this paper. (author)

  17. Quantitative phase analysis of a highly textured industrial sample using a Rietveld profile analysis

    International Nuclear Information System (INIS)

    Shin, Eunjoo; Huh, Moo-Young; Seong, Baek-Seok; Lee, Chang-Hee

    2001-01-01

    For the quantitative phase analysis on highly textured two-phase materials, samples with known weight fractions of zirconium and aluminum were prepared. Strong texture components prevailed in both zirconium and aluminum sheet. The diffraction patterns of samples were measured by the neutron and refined by the Rietveld method. The preferred orientation correction of diffraction patterns was carried out by means of recalculated pole figures from the ODF. The present Rietveld analysis of various samples with different weight fractions showed that the absolute error of the calculated weight fractions was less than 7.1%. (author)

  18. Modern methods of wine quality analysis

    Directory of Open Access Journals (Sweden)

    Галина Зуфарівна Гайда

    2015-06-01

    Full Text Available  In this paper physical-chemical and enzymatic methods of quantitative analysis of the basic wine components were reviewed. The results of own experiments were presented for the development of enzyme- and cell-based amperometric sensors on ethanol, lactate, glucose, arginine

  19. Methodology for Quantitative Analysis of Large Liquid Samples with Prompt Gamma Neutron Activation Analysis using Am-Be Source

    International Nuclear Information System (INIS)

    Idiri, Z.; Mazrou, H.; Beddek, S.; Amokrane, A.

    2009-01-01

    An optimized set-up for prompt gamma neutron activation analysis (PGNAA) with Am-Be source is described and used for large liquid samples analysis. A methodology for quantitative analysis is proposed: it consists on normalizing the prompt gamma count rates with thermal neutron flux measurements carried out with He-3 detector and gamma attenuation factors calculated using MCNP-5. The relative and absolute methods are considered. This methodology is then applied to the determination of cadmium in industrial phosphoric acid. The same sample is then analyzed by inductively coupled plasma (ICP) method. Our results are in good agreement with those obtained with ICP method.

  20. Quantitative methods for developing C2 system requirement

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, K.K.

    1992-06-01

    The US Army established the Army Tactical Command and Control System (ATCCS) Experimentation Site (AES) to provide a place where material and combat developers could experiment with command and control systems. The AES conducts fundamental and applied research involving command and control issues using a number of research methods, ranging from large force-level experiments, to controlled laboratory experiments, to studies and analyses. The work summarized in this paper was done by Pacific Northwest Laboratory under task order from the Army Tactical Command and Control System Experimentation Site. The purpose of the task was to develop the functional requirements for army engineer automation and support software, including MCS-ENG. A client, such as an army engineer, has certain needs and requirements of his or her software; these needs must be presented in ways that are readily understandable to the software developer. A requirements analysis then, such as the one described in this paper, is simply the means of communication between those who would use a piece of software and those who would develop it. The analysis from which this paper was derived attempted to bridge the communications gap'' between army combat engineers and software engineers. It sought to derive and state the software needs of army engineers in ways that are meaningful to software engineers. In doing this, it followed a natural sequence of investigation: (1) what does an army engineer do, (2) with which tasks can software help, (3) how much will it cost, and (4) where is the highest payoff This paper demonstrates how each of these questions was addressed during an analysis of the functional requirements of engineer support software. Systems engineering methods are used in a task analysis and a quantitative scoring method was developed to score responses regarding the feasibility of task automation. The paper discusses the methods used to perform utility and cost-benefits estimates.

  1. Quantitative Preparation in Doctoral Education Programs: A Mixed-Methods Study of Doctoral Student Perspectives on their Quantitative Training

    Directory of Open Access Journals (Sweden)

    Sarah L Ferguson

    2017-07-01

    Full Text Available Aim/Purpose: The purpose of the current study is to explore student perceptions of their own doctoral-level education and quantitative proficiency. Background: The challenges of preparing doctoral students in education have been discussed in the literature, but largely from the perspective of university faculty and program administrators. The current study directly explores the student voice on this issue. Methodology: Utilizing a sequential explanatory mixed-methods research design, the present study seeks to better understand doctoral-level education students’ perceptions of their quantitative methods training at a large public university in the southwestern United States. Findings: Results from both phases present the need for more application and consistency in doctoral-level quantitative courses. Additionally, there was a consistent theme of internal motivation in the responses, suggesting students perceive their quantitative training to be valuable beyond their personal interest in the topic. Recommendations for Practitioners: Quantitative methods instructors should emphasize practice in their quantitative courses and consider providing additional support for students through the inclusion of lab sections, tutoring, and/or differentiation. Pre-testing statistical ability at the start of a course is also suggested to better meet student needs. Impact on Society: The ultimate goal of quantitative methods in doctoral education is to produce high-quality educational researchers who are prepared to apply their knowledge to problems and research in education. Results of the present study can inform faculty and administrator decisions in doctoral education to best support this goal. Future Research: Using the student perspectives presented in the present study, future researchers should continue to explore effective instructional strategies and curriculum design within education doctoral programs. The inclusion of student voice can strengthen

  2. Digital Holography, a metrological tool for quantitative analysis: Trends and future applications

    Science.gov (United States)

    Paturzo, Melania; Pagliarulo, Vito; Bianco, Vittorio; Memmolo, Pasquale; Miccio, Lisa; Merola, Francesco; Ferraro, Pietro

    2018-05-01

    A review on the last achievements of Digital Holography is reported in this paper, showing that this powerful method can be a key metrological tool for the quantitative analysis and non-invasive inspection of a variety of materials, devices and processes. Nowadays, its range of applications has been greatly extended, including the study of live biological matter and biomedical applications. This paper overviews the main progresses and future perspectives of digital holography, showing new optical configurations and investigating the numerical issues to be tackled for the processing and display of quantitative data.

  3. On the Need for Quantitative Bias Analysis in the Peer-Review Process.

    Science.gov (United States)

    Fox, Matthew P; Lash, Timothy L

    2017-05-15

    Peer review is central to the process through which epidemiologists generate evidence to inform public health and medical interventions. Reviewers thereby act as critical gatekeepers to high-quality research. They are asked to carefully consider the validity of the proposed work or research findings by paying careful attention to the methodology and critiquing the importance of the insight gained. However, although many have noted problems with the peer-review system for both manuscripts and grant submissions, few solutions have been proposed to improve the process. Quantitative bias analysis encompasses all methods used to quantify the impact of systematic error on estimates of effect in epidemiologic research. Reviewers who insist that quantitative bias analysis be incorporated into the design, conduct, presentation, and interpretation of epidemiologic research could substantially strengthen the process. In the present commentary, we demonstrate how quantitative bias analysis can be used by investigators and authors, reviewers, funding agencies, and editors. By utilizing quantitative bias analysis in the peer-review process, editors can potentially avoid unnecessary rejections, identify key areas for improvement, and improve discussion sections by shifting from speculation on the impact of sources of error to quantification of the impact those sources of bias may have had. © The Author 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Quantitative standard-less XRF analysis

    International Nuclear Information System (INIS)

    Ulitzka, S.

    2002-01-01

    Full text: For most analytical tasks in the mining and associated industries matrix-matched calibrations are used for the monitoring of ore grades and process control. In general, such calibrations are product specific (iron ore, bauxite, alumina, mineral sands, cement etc.) and apply to a relatively narrow concentration range but give the best precision and accuracy for those materials. A wide range of CRMs is available and for less common materials synthetic standards can be made up from 'pure' chemicals. At times, analysis of materials with varying matrices (powders, scales, fly ash, alloys, polymers, liquors, etc.) and diverse physical shapes (non-flat, metal drillings, thin layers on substrates etc.) is required that could also contain elements which are not part of a specific calibration. A qualitative analysis can provide information about the presence of certain elements and the relative intensities of element peaks in a scan can give a rough idea about their concentrations. More often however, quantitative values are required. The paper will look into the basics of quantitative standardless analysis and show results for some well-defined CRMs. Copyright (2002) Australian X-ray Analytical Association Inc

  5. An artificial neural network approach to laser-induced breakdown spectroscopy quantitative analysis

    International Nuclear Information System (INIS)

    D’Andrea, Eleonora; Pagnotta, Stefano; Grifoni, Emanuela; Lorenzetti, Giulia; Legnaioli, Stefano; Palleschi, Vincenzo; Lazzerini, Beatrice

    2014-01-01

    The usual approach to laser-induced breakdown spectroscopy (LIBS) quantitative analysis is based on the use of calibration curves, suitably built using appropriate reference standards. More recently, statistical methods relying on the principles of artificial neural networks (ANN) are increasingly used. However, ANN analysis is often used as a ‘black box’ system and the peculiarities of the LIBS spectra are not exploited fully. An a priori exploration of the raw data contained in the LIBS spectra, carried out by a neural network to learn what are the significant areas of the spectrum to be used for a subsequent neural network delegated to the calibration, is able to throw light upon important information initially unknown, although already contained within the spectrum. This communication will demonstrate that an approach based on neural networks specially taylored for dealing with LIBS spectra would provide a viable, fast and robust method for LIBS quantitative analysis. This would allow the use of a relatively limited number of reference samples for the training of the network, with respect to the current approaches, and provide a fully automatizable approach for the analysis of a large number of samples. - Highlights: • A methodological approach to neural network analysis of LIBS spectra is proposed. • The architecture of the network and the number of inputs are optimized. • The method is tested on bronze samples already analyzed using a calibration-free LIBS approach. • The results are validated, compared and discussed

  6. Quantitative analysis of phytosterols in edible oils using APCI liquid chromatography-tandem mass spectrometry

    Science.gov (United States)

    Mo, Shunyan; Dong, Linlin; Hurst, W. Jeffrey; van Breemen, Richard B.

    2014-01-01

    Previous methods for the quantitative analysis of phytosterols have usually used GC-MS and require elaborate sample preparation including chemical derivatization. Other common methods such as HPLC with absorbance detection do not provide information regarding the identity of the analytes. To address the need for an assay that utilizes mass selectivity while avoiding derivatization, a quantitative method based on LC-tandem mass spectrometry (LC-MS-MS) was developed and validated for the measurement of six abundant dietary phytosterols and structurally related triterpene alcohols including brassicasterol, campesterol, cycloartenol, β-sitosterol, stigmasterol, and lupeol in edible oils. Samples were saponified, extracted with hexane and then analyzed using reversed phase HPLC with positive ion atmospheric pressure chemical ionization tandem mass spectrometry and selected reaction monitoring. The utility of the LC-MS-MS method was demonstrated by analyzing 14 edible oils. All six compounds were present in at least some of the edible oils. The most abundant phytosterol in all samples was β-sitosterol, which was highest in corn oil at 4.35 ± 0.03 mg/g, followed by campesterol in canola oil at 1.84 ± 0.01 mg/g. The new LC-MS-MS method for the quantitative analysis of phytosterols provides a combination of speed, selectivity and sensitivity that exceed those of previous assays. PMID:23884629

  7. Methodological Reporting in Qualitative, Quantitative, and Mixed Methods Health Services Research Articles

    Science.gov (United States)

    Wisdom, Jennifer P; Cavaleri, Mary A; Onwuegbuzie, Anthony J; Green, Carla A

    2012-01-01

    Objectives Methodologically sound mixed methods research can improve our understanding of health services by providing a more comprehensive picture of health services than either method can alone. This study describes the frequency of mixed methods in published health services research and compares the presence of methodological components indicative of rigorous approaches across mixed methods, qualitative, and quantitative articles. Data Sources All empirical articles (n = 1,651) published between 2003 and 2007 from four top-ranked health services journals. Study Design All mixed methods articles (n = 47) and random samples of qualitative and quantitative articles were evaluated to identify reporting of key components indicating rigor for each method, based on accepted standards for evaluating the quality of research reports (e.g., use of p-values in quantitative reports, description of context in qualitative reports, and integration in mixed method reports). We used chi-square tests to evaluate differences between article types for each component. Principal Findings Mixed methods articles comprised 2.85 percent (n = 47) of empirical articles, quantitative articles 90.98 percent (n = 1,502), and qualitative articles 6.18 percent (n = 102). There was a statistically significant difference (χ2(1) = 12.20, p = .0005, Cramer's V = 0.09, odds ratio = 1.49 [95% confidence interval = 1,27, 1.74]) in the proportion of quantitative methodological components present in mixed methods compared to quantitative papers (21.94 versus 47.07 percent, respectively) but no statistically significant difference (χ2(1) = 0.02, p = .89, Cramer's V = 0.01) in the proportion of qualitative methodological components in mixed methods compared to qualitative papers (21.34 versus 25.47 percent, respectively). Conclusion Few published health services research articles use mixed methods. The frequency of key methodological components is variable. Suggestions are provided to increase the

  8. Quantitative analysis of untreated oil samples in in-air PIXE

    International Nuclear Information System (INIS)

    Sera, K.; Goto, S.; Takahashi, C.; Saitoh, Y.

    2010-01-01

    The method of quantitative analysis of oil samples in in-air PIXE has been developed on the basis of a standard-free method. The components of the continuous X-rays originated from air and backing film can be exactly subtracted using a blank spectrum after normalization by the yields of Ar K-α X-rays. The method was developed using nine oil samples including standard oils and its accuracy was confirmed by comparing the results with those obtained by the internal-standard method. Validity of the method for practical oil samples was confirmed for various kinds of oils such as engine, machine and cooking oils. It was found that the method is effective for various kinds of oils whatever elements we designate as an index element. (author)

  9. Quantitative Evaluation of gamma-Spectrum Analysis Methods using IAEA Test Spectra

    DEFF Research Database (Denmark)

    Nielsen, Sven Poul

    1982-01-01

    A description is given of a γ-spectrum analysis method based on nonlinear least-squares fitting. The quality of the method is investigated by using statistical tests on the results from analyses of IAEA test spectra. By applying an empirical correction factor of 0.75 to the calculated peak-area u...

  10. Quantitative firing transformations of a triaxial ceramic by X-ray diffraction methods

    Directory of Open Access Journals (Sweden)

    M. S. Conconi

    2014-12-01

    Full Text Available The firing transformations of traditional (clay based ceramics are of technological and archeological interest, and are usually reported qualitatively or semiquantitatively. These kinds of systems present an important complexity, especially for X-ray diffraction techniques, due to the presence of fully crystalline, low crystalline and amorphous phases. In this article we present the results of a qualitative and quantitative X-ray diffraction Rietveld analysis of the fully crystalline (kaolinite, quartz, cristobalite, feldspars and/or mullite, the low crystalline (metakaolinite and/or spinel type pre-mullite and glassy phases evolution of a triaxial (clay-quartz-feldspar ceramic fired in a wide temperature range between 900 and 1300 ºC. The employed methodology to determine low crystalline and glassy phase abundances is based in a combination of the internal standard method and the use of a nanocrystalline model where the long-range order is lost, respectively. A preliminary sintering characterization was carried out by contraction, density and porosity evolution with the firing temperature. Simultaneous thermo-gravimetric and differential thermal analysis was carried out to elucidate the actual temperature at which the chemical changes occur. Finally, the quantitative analysis based on the Rietveld refinement of the X-ray diffraction patterns was performed. The kaolinite decomposition into metakaolinite was determined quantitatively; the intermediate (980 ºC spinel type alumino-silicate formation was also quantified; the incongruent fusion of the potash feldspar was observed and quantified together with the final mullitization and the amorphous (glassy phase formation.The methodology used to analyze the X-ray diffraction patterns proved to be suitable to evaluate quantitatively the thermal transformations that occur in a complex system like the triaxial ceramics. The evaluated phases can be easily correlated with the processing variables and

  11. The discussion on the qualitative and quantitative evaluation methods for safety culture

    International Nuclear Information System (INIS)

    Gao Kefu

    2005-01-01

    The fundamental methods for safely culture evaluation are described. Combining with the practice of the quantitative evaluation of safety culture in Daya Bay NPP, the quantitative evaluation method for safety culture are discussed. (author)

  12. Quantitative sociodynamics stochastic methods and models of social interaction processes

    CERN Document Server

    Helbing, Dirk

    1995-01-01

    Quantitative Sociodynamics presents a general strategy for interdisciplinary model building and its application to a quantitative description of behavioural changes based on social interaction processes. Originally, the crucial methods for the modeling of complex systems (stochastic methods and nonlinear dynamics) were developed in physics but they have very often proved their explanatory power in chemistry, biology, economics and the social sciences. Quantitative Sociodynamics provides a unified and comprehensive overview of the different stochastic methods, their interrelations and properties. In addition, it introduces the most important concepts from nonlinear dynamics (synergetics, chaos theory). The applicability of these fascinating concepts to social phenomena is carefully discussed. By incorporating decision-theoretical approaches a very fundamental dynamic model is obtained which seems to open new perspectives in the social sciences. It includes many established models as special cases, e.g. the log...

  13. Quantitative Sociodynamics Stochastic Methods and Models of Social Interaction Processes

    CERN Document Server

    Helbing, Dirk

    2010-01-01

    This new edition of Quantitative Sociodynamics presents a general strategy for interdisciplinary model building and its application to a quantitative description of behavioral changes based on social interaction processes. Originally, the crucial methods for the modeling of complex systems (stochastic methods and nonlinear dynamics) were developed in physics and mathematics, but they have very often proven their explanatory power in chemistry, biology, economics and the social sciences as well. Quantitative Sociodynamics provides a unified and comprehensive overview of the different stochastic methods, their interrelations and properties. In addition, it introduces important concepts from nonlinear dynamics (e.g. synergetics, chaos theory). The applicability of these fascinating concepts to social phenomena is carefully discussed. By incorporating decision-theoretical approaches, a fundamental dynamic model is obtained, which opens new perspectives in the social sciences. It includes many established models a...

  14. Quantitative analysis of light elements in aerosol samples by PIGE

    International Nuclear Information System (INIS)

    Mateus, R.; Reis, M.A.; Jesus, A.P.; Ribeiro, J.P.

    2006-01-01

    Quantitative PIGE analysis of aerosol samples collected on nuclepore polycarbonate filters was performed by a method that avoids the use of comparative standards. Nuclear cross sections and calibration parameters established before in an extensive work on thick and intermediate samples were employed. For these samples, the excitation functions of nuclear reactions, induced by the incident protons on target's light elements, were used as input for a code that evaluates the gamma-ray yield integrating along the depth of the sample. In the present work we apply the same code to validate the use of an effective energy for thin sample analysis. Results pertaining to boron, fluorine and sodium concentrations are presented. In order to establish a correlation with sodium values, PIXE results related to chlorine are also presented, giving support to the reliability of this PIGE method for thin film analysis

  15. Knee Kinematic Improvement After Total Knee Replacement Using a Simplified Quantitative Gait Analysis Method

    Directory of Open Access Journals (Sweden)

    Hassan Sarailoo

    2013-10-01

    Full Text Available Objectives: The aim of this study was to extract suitable spatiotemporal and kinematic parameters to determine how Total Knee Replacement (TKR alters patients’ knee kinematics during gait, using a rapid and simplified quantitative two-dimensional gait analysis procedure. Methods: Two-dimensional kinematic gait pattern of 10 participants were collected before and after the TKR surgery, using a 60 Hz camcorder in sagittal plane. Then, the kinematic parameters were extracted using the gait data. A student t-test was used to compare the group-average of spatiotemporal and peak kinematic characteristics in the sagittal plane. The knee condition was also evaluated using the Oxford Knee Score (OKS Questionnaire to ensure thateach subject was placed in the right group. Results: The results showed a significant improvement in knee flexion during stance and swing phases after TKR surgery. The walking speed was increased as a result of stride length and cadence improvement, but this increment was not statistically significant. Both post-TKR and control groups showed an increment in spatiotemporal and peak kinematic characteristics between comfortable and fast walking speeds. Discussion: The objective kinematic parameters extracted from 2D gait data were able to show significant improvements of the knee joint after TKR surgery. The patients with TKR surgery were also able to improve their knee kinematics during fast walking speed equal to the control group. These results provide a good insight into the capabilities of the presented method to evaluate knee functionality before and after TKR surgery and to define a more effective rehabilitation program.

  16. Magnetic-relaxation method of analysis of inorganic substances

    International Nuclear Information System (INIS)

    Popel', A.A.

    1978-01-01

    The magnetic-relaxation method is considered of the quantitative analysis of inorganic substances based on time dependence of magnetic nuclei relaxation on the quantity of paramagnetic centres in a solution. The characteristic is given of some methods of measuring nuclear magnetic relaxation times: method of weak oscillation generator and pulse methods. The effect of temperature, general solution viscosity, diamagnetic salt concentration, medium acidity on nuclear relaxation velocity is described. The determination sensitivity is estimated and the means of its increase definable concentration intervals and method selectivity are considered. The method application when studying complexing in the solution is described. A particular attention is given to the investigation of heteroligand homocentre, heterocentre and protonated complexes as well as to the problems of particle exchange of the first coordination sphere with particles from the mass of solution. The equations for equilibrium constant calculation in different systems are given. Possibilities of determining diamagnetic ions by the magnetic-relaxation method using paramagnetic indicators are confirmed by the quantitative analysis of indium, gallium, thorium and scandium in their salt solutions

  17. Quantitative imaging biomarkers: the application of advanced image processing and analysis to clinical and preclinical decision making.

    Science.gov (United States)

    Prescott, Jeffrey William

    2013-02-01

    The importance of medical imaging for clinical decision making has been steadily increasing over the last four decades. Recently, there has also been an emphasis on medical imaging for preclinical decision making, i.e., for use in pharamaceutical and medical device development. There is also a drive towards quantification of imaging findings by using quantitative imaging biomarkers, which can improve sensitivity, specificity, accuracy and reproducibility of imaged characteristics used for diagnostic and therapeutic decisions. An important component of the discovery, characterization, validation and application of quantitative imaging biomarkers is the extraction of information and meaning from images through image processing and subsequent analysis. However, many advanced image processing and analysis methods are not applied directly to questions of clinical interest, i.e., for diagnostic and therapeutic decision making, which is a consideration that should be closely linked to the development of such algorithms. This article is meant to address these concerns. First, quantitative imaging biomarkers are introduced by providing definitions and concepts. Then, potential applications of advanced image processing and analysis to areas of quantitative imaging biomarker research are described; specifically, research into osteoarthritis (OA), Alzheimer's disease (AD) and cancer is presented. Then, challenges in quantitative imaging biomarker research are discussed. Finally, a conceptual framework for integrating clinical and preclinical considerations into the development of quantitative imaging biomarkers and their computer-assisted methods of extraction is presented.

  18. Quantitative x-ray fractographic analysis of fatigue fractures

    International Nuclear Information System (INIS)

    Saprykin, Yu.V.

    1983-01-01

    The study deals with quantitative X-ray fractographic investigation of fatigue fractures of samples with sharp notches tested at various stresses and temperatures with the purpose of establishing a connection between material crack resistance parameters and local plastic instability zones restraining and controlling the crack growth. At fatigue fractures of notched Kh18N9T steel samples tested at +20 and -196 deg C a zone of sharp ring notch effect being analogous to the zone in which crack growth rate is controlled by the microshifting mechanisms is singled out. The size of the notched effect zone in the investigate steel is unambiguosly bound to to the stress amplitude. This provides the possibility to determine the stress value by the results of quantitative fractographic analysis of notched sample fractures. A possibility of determining one of the threshold values of cyclic material fracture toughness by the results of fatigue testing and fractography of notched sample fractures is shown. Correlation between the size of the hsub(s) crack effect zone in the notched sample, delta material yield limit and characteristic of cyclic Ksub(s) fracture toughness has been found. Such correlation widens the possibilities of quantitative diagnostics of fractures by the methods of X-ray fractography

  19. Quantitative trace element analysis of individual fly ash particles by means of X-ray microfluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Vincze, L.; Somogyi, A.; Osan, J.; Vekemans, B.; Torok, S.; Janssens, K.; Adams, F. [Universitaire of Instelling Antwerp, Wilrijk (Belgium). Dept. of Chemistry

    2002-07-01

    A new quantification procedure was developed for the evaluation of X-ray microfluorescence (XRF) data sets obtained from individual particles, based on iterative Monte Carlo (MC) simulation. Combined with the high sensitivity of synchrotron radiation-induced XRF spectroscopy, the method was used to obtain quantitative information down to trace-level concentrations from micrometer-sized particulate matter. The detailed XRF simulation model was validated by comparison of calculated and experimental XRF spectra obtained for glass microsphere standards, resulting in uncertainties in the range of 3-10% for the calculated elemental sensitivities. The simulation model was applied for the quantitative analysis of X-ray tube and synchrotron radiation-induced scanning micro-XRF spectra of individual coal and wood fly ash particles originating from different Hungarian power plants. By measuring the same particles by both methods the major, minor, and trace element compositions of the particles were determined. The uncertainty of the MC based quantitative analysis scheme is estimated to be in the range of 5-30%.

  20. The Quantitative Analysis of a team game performance made by men basketball teams at OG 2008

    OpenAIRE

    Kocián, Michal

    2009-01-01

    Title: The quantitative analysis of e team game performance made by men basketball teams at Olympis games 2008 Aims: Find reason successes and failures of teams in Olympis game play-off using quantitative (numerical) observation of selected game statistics. Method: The thesis was made on the basic a quantitative (numerical) observation of videorecordings using KVANTÝM. Results: Obtained selected statistic desribed the most essentials events for team winning or loss. Keywords: basketball, team...

  1. Simple and ultra-fast recognition and quantitation of compounded monoclonal antibodies: Application to flow injection analysis combined to UV spectroscopy and matching method.

    Science.gov (United States)

    Jaccoulet, E; Schweitzer-Chaput, A; Toussaint, B; Prognon, P; Caudron, E

    2018-09-01

    Compounding of monoclonal antibody (mAbs) constantly increases in hospital. Quality control (QC) of the compounded mAbs based on quantification and identification is required to prevent potential errors and fast method is needed to manage outpatient chemotherapy administration. A simple and ultra-fast (less than 30 s) method using flow injection analysis associated to least square matching method issued from the analyzer software was performed and evaluated for the routine hospital QC of three compounded mAbs: bevacizumab, infliximab and rituximab. The method was evaluated through qualitative and quantitative parameters. Preliminary analysis of the UV absorption and second derivative spectra of the mAbs allowed us to adapt analytical conditions according to the therapeutic range of the mAbs. In terms of quantitative QC, linearity, accuracy and precision were assessed as specified in ICH guidelines. Very satisfactory recovery was achieved and the RSD (%) of the intermediate precision were less than 1.1%. Qualitative analytical parameters were also evaluated in terms of specificity, sensitivity and global precision through a matrix of confusion. Results showed to be concentration and mAbs dependant and excellent (100%) specificity and sensitivity were reached within specific concentration range. Finally, routine application on "real life" samples (n = 209) from different batch of the three mAbs complied with the specifications of the quality control i.e. excellent identification (100%) and ± 15% of targeting concentration belonging to the calibration range. The successful use of the combination of second derivative spectroscopy and partial least square matching method demonstrated the interest of FIA for the ultra-fast QC of mAbs after compounding using matching method. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. SAMA: A Method for 3D Morphological Analysis.

    Directory of Open Access Journals (Sweden)

    Tessie Paulose

    Full Text Available Three-dimensional (3D culture models are critical tools for understanding tissue morphogenesis. A key requirement for their analysis is the ability to reconstruct the tissue into computational models that allow quantitative evaluation of the formed structures. Here, we present Software for Automated Morphological Analysis (SAMA, a method by which epithelial structures grown in 3D cultures can be imaged, reconstructed and analyzed with minimum human intervention. SAMA allows quantitative analysis of key features of epithelial morphogenesis such as ductal elongation, branching and lumen formation that distinguish different hormonal treatments. SAMA is a user-friendly set of customized macros operated via FIJI (http://fiji.sc/Fiji, an open-source image analysis platform in combination with a set of functions in R (http://www.r-project.org/, an open-source program for statistical analysis. SAMA enables a rapid, exhaustive and quantitative 3D analysis of the shape of a population of structures in a 3D image. SAMA is cross-platform, licensed under the GPLv3 and available at http://montevil.theobio.org/content/sama.

  3. Examination of quantitative accuracy of PIXE analysis for atmospheric aerosol particle samples. PIXE analysis of NIST air particulate on filter media

    International Nuclear Information System (INIS)

    Saitoh, Katsumi; Sera, Koichiro

    2005-01-01

    In order to confirm accuracy of the direct analysis of filter samples containing atmospheric aerosol particles collected on a polycarbonate membrane filter by PIXE, we carried out PIXE analysis on a National Institute of Standards and Technology (NIST, USA) air particulate on filter media (SRM 2783). For 16 elements with NIST certified values determined by PIXE analysis - Na, Mg, Al, Si, S, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn and Pb - quantitative values were 80-110% relative to NIST certified values except for Na, Al, Si and Ni. Quantitative values of Na, Al and Si were 140-170% relative to NIST certified values, which were all high, and Ni was 64%. One possible reason why the quantitative values of Na, Al and Si were higher than the NIST certified values could be the difference in the X-ray spectrum analysis method used. (author)

  4. Application of harmonic analysis in quantitative heart scintigraphy

    International Nuclear Information System (INIS)

    Fischer, P.; Knopp, R.; Breuel, H.P.

    1979-01-01

    Quantitative scintigraphy of the heart after equilibrium distribution of a radioactive tracer permits the measurement of time activity curves in the left ventricle during a representative heart cycle with great statistical accuracy. By application of Fourier's analysis, criteria are to be attained in addition for evaluation of the volume curve as a whole. Thus the entire information contained in the volume curve is completely described in a Fourier spectrum. Resynthesis after Fourier transformation seems to be an ideal method of smoothing because of its convergence in the minimum quadratic error for the type of function concerned. (orig./MG) [de

  5. Quantitative x-ray fluorescent analysis using fundamental parameters

    International Nuclear Information System (INIS)

    Sparks, C.J. Jr.

    1976-01-01

    A monochromatic source of x-rays for sample excitation permits the use of pure elemental standards and relatively simple calculations to convert the measured fluorescent intensities to an absolute basis of weight per unit weight of sample. Only the mass absorption coefficients of the sample for the exciting and the fluorescent radiation need be determined. Besides the direct measurement of these absorption coefficients in the sample, other techniques are considered which require fewer sample manipulations and measurements. These fundamental parameters methods permit quantitative analysis without recourse to the time-consuming process of preparing nearly identical standards

  6. Validation of quantitative method for azoxystrobin residues in green beans and peas.

    Science.gov (United States)

    Abdelraheem, Ehab M H; Hassan, Sayed M; Arief, Mohamed M H; Mohammad, Somaia G

    2015-09-01

    This study presents a method validation for extraction and quantitative analysis of azoxystrobin residues in green beans and peas using HPLC-UV and the results confirmed by GC-MS. The employed method involved initial extraction with acetonitrile after the addition of salts (magnesium sulfate and sodium chloride), followed by a cleanup step by activated neutral carbon. Validation parameters; linearity, matrix effect, LOQ, specificity, trueness and repeatability precision were attained. The spiking levels for the trueness and the precision experiments were (0.1, 0.5, 3 mg/kg). For HPLC-UV analysis, mean recoveries ranged between 83.69% to 91.58% and 81.99% to 107.85% for green beans and peas, respectively. For GC-MS analysis, mean recoveries ranged from 76.29% to 94.56% and 80.77% to 100.91% for green beans and peas, respectively. According to these results, the method has been proven to be efficient for extraction and determination of azoxystrobin residues in green beans and peas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. A relative quantitative Methylation-Sensitive Amplified Polymorphism (MSAP) method for the analysis of abiotic stress

    OpenAIRE

    Bednarek, Piotr T.; Or?owska, Renata; Niedziela, Agnieszka

    2017-01-01

    Background We present a new methylation-sensitive amplified polymorphism (MSAP) approach for the evaluation of relative quantitative characteristics such as demethylation, de novo methylation, and preservation of methylation status of CCGG sequences, which are recognized by the isoschizomers HpaII and MspI. We applied the technique to analyze aluminum (Al)-tolerant and non-tolerant control and Al-stressed inbred triticale lines. The approach is based on detailed analysis of events affecting H...

  8. Rapid Determination of Lymphogranuloma Venereum Serovars of Chlamydia trachomatis by Quantitative High-Resolution Melt Analysis (HRMA)

    Science.gov (United States)

    Stevens, Matthew P.; Garland, Suzanne M.; Zaia, Angelo M.; Tabrizi, Sepehr N.

    2012-01-01

    A quantitative high-resolution melt analysis assay was developed to differentiate lymphogranuloma venereum-causing serovars of Chlamydia trachomatis (L1 to L3) from other C. trachomatis serovars (D to K). The detection limit of this assay is approximately 10 copies per reaction, comparable to the limits of other quantitative-PCR-based methods. PMID:22933594

  9. Quantitative analysis of perfumes in talcum powder by using headspace sorptive extraction.

    Science.gov (United States)

    Ng, Khim Hui; Heng, Audrey; Osborne, Murray

    2012-03-01

    Quantitative analysis of perfume dosage in talcum powder has been a challenge due to interference of the matrix and has so far not been widely reported. In this study, headspace sorptive extraction (HSSE) was validated as a solventless sample preparation method for the extraction and enrichment of perfume raw materials from talcum powder. Sample enrichment is performed on a thick film of poly(dimethylsiloxane) (PDMS) coated onto a magnetic stir bar incorporated in a glass jacket. Sampling is done by placing the PDMS stir bar in the headspace vial by using a holder. The stir bar is then thermally desorbed online with capillary gas chromatography-mass spectrometry. The HSSE method is based on the same principles as headspace solid-phase microextraction (HS-SPME). Nevertheless, a relatively larger amount of extracting phase is coated on the stir bar as compared to SPME. Sample amount and extraction time were optimized in this study. The method has shown good repeatability (with relative standard deviation no higher than 12.5%) and excellent linearity with correlation coefficients above 0.99 for all analytes. The method was also successfully applied in the quantitative analysis of talcum powder spiked with perfume at different dosages. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Quantitative analysis of real-time radiographic systems

    International Nuclear Information System (INIS)

    Barker, M.D.; Condon, P.E.; Barry, R.C.; Betz, R.A.; Klynn, L.M.

    1988-01-01

    A method was developed which yields quantitative information on the spatial resolution, contrast sensitivity, image noise, and focal spot size from real time radiographic images. The method uses simple image quality indicators and computer programs which make it possible to readily obtain quantitative performance measurements of single or multiple radiographic systems. It was used for x-ray and optical images to determine which component of the system was not operating up to standard. Focal spot size was monitored by imaging a bar pattern. This paper constitutes the second progress report on the development of the camera and radiation image quality indicators

  11. Analysis of methods for quantitative renography

    International Nuclear Information System (INIS)

    Archambaud, F.; Maksud, P.; Prigent, A.; Perrin-Fayolle, O.

    1995-01-01

    This article reviews the main methods using renography to estimate renal perfusion indices and to quantify differential and global renal function. The review addresses the pathophysiological significance of estimated parameters according to the underlying models and the choice of the radiopharmaceutical. The dependence of these parameters on the region of interest characteristics and on the methods of background and attenuation corrections are surveyed. Some current recommendations are proposed. (authors). 66 refs., 8 figs

  12. PANDA-view: An easy-to-use tool for statistical analysis and visualization of quantitative proteomics data.

    Science.gov (United States)

    Chang, Cheng; Xu, Kaikun; Guo, Chaoping; Wang, Jinxia; Yan, Qi; Zhang, Jian; He, Fuchu; Zhu, Yunping

    2018-05-22

    Compared with the numerous software tools developed for identification and quantification of -omics data, there remains a lack of suitable tools for both downstream analysis and data visualization. To help researchers better understand the biological meanings in their -omics data, we present an easy-to-use tool, named PANDA-view, for both statistical analysis and visualization of quantitative proteomics data and other -omics data. PANDA-view contains various kinds of analysis methods such as normalization, missing value imputation, statistical tests, clustering and principal component analysis, as well as the most commonly-used data visualization methods including an interactive volcano plot. Additionally, it provides user-friendly interfaces for protein-peptide-spectrum representation of the quantitative proteomics data. PANDA-view is freely available at https://sourceforge.net/projects/panda-view/. 1987ccpacer@163.com and zhuyunping@gmail.com. Supplementary data are available at Bioinformatics online.

  13. A comparison of cosegregation analysis methods for the clinical setting.

    Science.gov (United States)

    Rañola, John Michael O; Liu, Quanhui; Rosenthal, Elisabeth A; Shirts, Brian H

    2018-04-01

    Quantitative cosegregation analysis can help evaluate the pathogenicity of genetic variants. However, genetics professionals without statistical training often use simple methods, reporting only qualitative findings. We evaluate the potential utility of quantitative cosegregation in the clinical setting by comparing three methods. One thousand pedigrees each were simulated for benign and pathogenic variants in BRCA1 and MLH1 using United States historical demographic data to produce pedigrees similar to those seen in the clinic. These pedigrees were analyzed using two robust methods, full likelihood Bayes factors (FLB) and cosegregation likelihood ratios (CSLR), and a simpler method, counting meioses. Both FLB and CSLR outperform counting meioses when dealing with pathogenic variants, though counting meioses is not far behind. For benign variants, FLB and CSLR greatly outperform as counting meioses is unable to generate evidence for benign variants. Comparing FLB and CSLR, we find that the two methods perform similarly, indicating that quantitative results from either of these methods could be combined in multifactorial calculations. Combining quantitative information will be important as isolated use of cosegregation in single families will yield classification for less than 1% of variants. To encourage wider use of robust cosegregation analysis, we present a website ( http://www.analyze.myvariant.org ) which implements the CSLR, FLB, and Counting Meioses methods for ATM, BRCA1, BRCA2, CHEK2, MEN1, MLH1, MSH2, MSH6, and PMS2. We also present an R package, CoSeg, which performs the CSLR analysis on any gene with user supplied parameters. Future variant classification guidelines should allow nuanced inclusion of cosegregation evidence against pathogenicity.

  14. Comparation of fundamental analytical methods for quantitative determination of copper(IIion

    Directory of Open Access Journals (Sweden)

    Ačanski Marijana M.

    2008-01-01

    Full Text Available Copper is a ductile metal with excellent electrical conductivity, and finds extensive use as an electrical conductor, heat conductor, as a building material, and as a component of various alloys. In this work accuracy of methods for quantitative determination (gravimetric and titrimetric methods of analysis of copper(II ion was studied. Gravimetric methods do not require a calibration or standardization step (as all other analytical procedures except coulometry do because the results are calculated directly from the experimental data and molar masses. Thus, when only one or two samples are to be analyzed, a gravimetric procedure may be the method of choice because it involves less time and effort than a procedure that requires preparation of standards and calibration. In this work in gravimetric analysis the concentration of copper(II ion is established through the measurement of a mass of CuSCN and CuO. Titrimetric methods is a process in which a standard reagent is added to a solution of an analyze until the reaction between the analyze and reagent is judged to be complete. In this work in titrimetric analysis the concentration of copper(II ion is established through the measurement of a volume of different standard reagents: Km, Na2S2O3 and AgNO3. Results were discussed individually and mutually with the aspect of exactility, reproductivity and rapidity. Relative error was calculated for all methods.

  15. Studying learning in the healthcare setting: the potential of quantitative diary methods

    NARCIS (Netherlands)

    Ciere, Yvette; Jaarsma, Debbie; Visser, Annemieke; Sanderman, Robbert; Snippe, Evelien; Fleer, Joke

    2015-01-01

    Quantitative diary methods are longitudinal approaches that involve the repeated measurement of aspects of peoples’ experience of daily life. In this article, we outline the main characteristics and applications of quantitative diary methods and discuss how their use may further research in the

  16. General method of quantitative spectrographic analysis

    International Nuclear Information System (INIS)

    Capdevila, C.; Roca, M.

    1966-01-01

    A spectrographic method was developed to determine 23 elements in a wide range of concentrations; the method can be applied to metallic or refractory samples. Previous melting with lithium tetraborate and germanium oxide is done in order to avoid the influence of matrix composition and crystalline structure. Germanium oxide is also employed as internal standard. The resulting beads ar mixed with graphite powder (1:1) and excited in a 10 amperes direct current arc. (Author) 12 refs

  17. Methodological reporting in qualitative, quantitative, and mixed methods health services research articles.

    Science.gov (United States)

    Wisdom, Jennifer P; Cavaleri, Mary A; Onwuegbuzie, Anthony J; Green, Carla A

    2012-04-01

    Methodologically sound mixed methods research can improve our understanding of health services by providing a more comprehensive picture of health services than either method can alone. This study describes the frequency of mixed methods in published health services research and compares the presence of methodological components indicative of rigorous approaches across mixed methods, qualitative, and quantitative articles. All empirical articles (n = 1,651) published between 2003 and 2007 from four top-ranked health services journals. All mixed methods articles (n = 47) and random samples of qualitative and quantitative articles were evaluated to identify reporting of key components indicating rigor for each method, based on accepted standards for evaluating the quality of research reports (e.g., use of p-values in quantitative reports, description of context in qualitative reports, and integration in mixed method reports). We used chi-square tests to evaluate differences between article types for each component. Mixed methods articles comprised 2.85 percent (n = 47) of empirical articles, quantitative articles 90.98 percent (n = 1,502), and qualitative articles 6.18 percent (n = 102). There was a statistically significant difference (χ(2) (1) = 12.20, p = .0005, Cramer's V = 0.09, odds ratio = 1.49 [95% confidence interval = 1,27, 1.74]) in the proportion of quantitative methodological components present in mixed methods compared to quantitative papers (21.94 versus 47.07 percent, respectively) but no statistically significant difference (χ(2) (1) = 0.02, p = .89, Cramer's V = 0.01) in the proportion of qualitative methodological components in mixed methods compared to qualitative papers (21.34 versus 25.47 percent, respectively). Few published health services research articles use mixed methods. The frequency of key methodological components is variable. Suggestions are provided to increase the transparency of mixed methods studies and

  18. QACD: A method for the quantitative assessment of compositional distribution in geologic materials

    Science.gov (United States)

    Loocke, M. P.; Lissenberg, J. C. J.; MacLeod, C. J.

    2017-12-01

    In order to fully understand the petrogenetic history of a rock, it is critical to obtain a thorough characterization of the chemical and textural relationships of its mineral constituents. Element mapping combines the microanalytical techniques that allow for the analysis of major- and minor elements at high spatial resolutions (e.g., electron microbeam analysis) with 2D mapping of samples in order to provide unprecedented detail regarding the growth histories and compositional distributions of minerals within a sample. We present a method for the acquisition and processing of large area X-ray element maps obtained by energy-dispersive X-ray spectrometer (EDS) to produce a quantitative assessment of compositional distribution (QACD) of mineral populations within geologic materials. By optimizing the conditions at which the EDS X-ray element maps are acquired, we are able to obtain full thin section quantitative element maps for most major elements in relatively short amounts of time. Such maps can be used to not only accurately identify all phases and calculate mineral modes for a sample (e.g., a petrographic thin section), but, critically, enable a complete quantitative assessment of their compositions. The QACD method has been incorporated into a python-based, easy-to-use graphical user interface (GUI) called Quack. The Quack software facilitates the generation of mineral modes, element and molar ratio maps and the quantification of full-sample compositional distributions. The open-source nature of the Quack software provides a versatile platform which can be easily adapted and modified to suit the needs of the user.

  19. Quantitative analysis technique for Xenon in PWR spent fuel by using WDS

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, H. M.; Kim, D. S.; Seo, H. S.; Ju, J. S.; Jang, J. N.; Yang, Y. S.; Park, S. D. [KAERI, Daejeon (Korea, Republic of)

    2012-01-15

    This study includes three processes. First, a peak centering of the X-ray line was performed after a diffraction for Xenon La1 line was installed. Xe La1 peak was identified by a PWR spent fuel sample. Second, standard intensities of Xe was obtained by interpolation of the La1 intensities from a series of elements on each side of xenon. And then Xe intensities across the radial direction of a PWR spent fuel sample were measured by WDS-SEM. Third, the electron and X-ray depth distributions for a quantitative electron probe micro analysis were simulated by the CASINO Monte Carlo program to do matrix correction of a PWR spent fuel sample. Finally, the method and the procedure for local quantitative analysis of Xenon was developed in this study.

  20. Quantitative analysis technique for Xenon in PWR spent fuel by using WDS

    International Nuclear Information System (INIS)

    Kwon, H. M.; Kim, D. S.; Seo, H. S.; Ju, J. S.; Jang, J. N.; Yang, Y. S.; Park, S. D.

    2012-01-01

    This study includes three processes. First, a peak centering of the X-ray line was performed after a diffraction for Xenon La1 line was installed. Xe La1 peak was identified by a PWR spent fuel sample. Second, standard intensities of Xe was obtained by interpolation of the La1 intensities from a series of elements on each side of xenon. And then Xe intensities across the radial direction of a PWR spent fuel sample were measured by WDS-SEM. Third, the electron and X-ray depth distributions for a quantitative electron probe micro analysis were simulated by the CASINO Monte Carlo program to do matrix correction of a PWR spent fuel sample. Finally, the method and the procedure for local quantitative analysis of Xenon was developed in this study

  1. Improved noninvasive assessment of coronary artery disease by quantitative analysis of regional stress myocardial distribution and washout of thallium-201

    International Nuclear Information System (INIS)

    Maddahi, J.; Garcia, E.V.; Berman, D.S.; Waxman, A.; Swan, H.J.C.; Forrester, J.

    1981-01-01

    Visual interpretation of stress-redistribution thallium-201 ( 201 Tl) scintigrams is subject to observer variability and is suboptimal for evaluation of extent of coronary artery disease (CAD). An objective, computerized technique has been developed that quantitatively expresses the relative space-time myocardial distribution of 201 Tl. Multiple-view, maximum-count circumferential profiles for stress myocardial distribution of 201 Tl and segmental percent washout were analyzed in a pilot group of 31 normal subjects and 20 patients with CAD to develop quantitative criteria for abnormality. Subsequently, quantitative analysis was applied prospectively to a group of 22 normal subjects and 45 CAD patients and compared with visual interpretation of scintigrams for detection and evaluation of CAD. The sensitivity and specificity of the quantitative technique (93% and 91%, respectively) were not significantly different from those of the visual method (91% and 86%). The quantitative analysis significantly (p 201 Tl imaging over the visual method in the left anterior descending artery (from 56% to 80%), left circumflex artery (from 34% to 63%) and right coronary artery (from 65% to 94%) without significant loss of specificity. Using quantitative analysis, sensitivity for detection of deseased vessels did not diminish as the number of vessels involved increased, as it did with visual interpretations. In patients with one-vessel disease, 86% of the lesions were detected by both techniques; however, in patients with three-vessel disease, quantitative analysis detected 83% of the lesions, while the sensitivity was only 53% for the visual method. Seventy percent of the coronary arteries with moderate

  2. New 'ex vivo' radioisotopic method of quantitation of platelet deposition

    International Nuclear Information System (INIS)

    Badimon, L.; Mayo Clinic, Rochester, MN; Thrombosis and Atherosclerosis Unit, Barcelona; Mayo Clinic, Rochester, MN; Fuster, V.; Chesebro, J.H.; Dewanjee, M.K.

    1983-01-01

    We have developed a sensitive and quantitative method of 'ex vivo' evaluation of platelet deposition on collagen strips, from rabbit Achilles tendon, superfused by flowing blood and applied it to four animal species, cat, rabbit, dog and pig. Autologous platelets were labeled with indium-111-tropolone, injected to the animal 24 hr before the superfusion and the number of deposited platelets was quantitated from the tendon gamma-radiation and the blood platelet count. We detected some platelet consumption with superfusion time when blood was reinfused entering the contralateral jugular vein after collagen contact but not if blood was discarded after the contact. Therefore, in order to have a more physiological animal model we decided to discard blood after superfusion of the tendon. In all species except for the cat there was a linear relationship between increase of platelet on the tendon and time of exposure to blood superfusion. The highest number of platelets deposited on the collagen was found in cats, the lowest in dogs. Ultrastructural analysis showed the platelets were deposited as aggregates after only 5 min of superfusion. (orig.)

  3. VERIFICATION HPLC METHOD OF QUANTITATIVE DETERMINATION OF AMLODIPINE IN TABLETS

    Directory of Open Access Journals (Sweden)

    Khanin V. A

    2014-10-01

    Full Text Available Introduction. Amlodipine ((±-2-[(2-aminoetoksimethyl]-4-(2-chlorophenyl-1,4-dihydro-6-methyl-3,5-pyridine dicarboxylic acid 3-ethyl 5-methyl ester as besylate and small tally belongs to the group of selective long-acting calcium channel blockers, dihydropyridine derivatives. In clinical practice, as antianginal and antihypertensive agent for the treatment of cardiovascular diseases. It is produced in powder form, substance and finished dosage forms (tablets of 2.5, 5 and 10 mg. The scientific literature describes methods of quantitative determination of the drug by spectrophotometry – by his own light absorption and by reaction product with aloksan, chromatography techniques, kinetic-spectrophotometric method in substances and preparations and methods chromatomass spectrometry and stripping voltammetry. For the quantitative determination of amlodipine besylate British Pharmacopoeia and European Pharmacopoeia recommend the use of liquid chromatography method. In connection with the establishment of the second edition of SPhU and when it is comprised of articles on the finished product, we set out to analyze the characteristics of the validation of chromatographic quantitative determination of amlodipine besylate tablets and to verify the analytical procedure. Material & methods. In conducting research using substance amlodipine besylate series number AB0401013. Analysis subject pill “Amlodipine” series number 20113 manufacturer of “Pharmaceutical company “Zdorovye”. Analytical equipment used is: 2695 chromatograph with diode array detector 2996 firms Waters Corp. USA using column Nova-Pak C18 300 x 3,9 mm with a particle size of 4 μm, weight ER-182 company AND Japan, measuring vessel class A. Preparation of the test solution. To accurately sample powder tablets equivalent to 50 mg amlodipine, add 30 ml of methanol, shake for 30 minutes, dilute the solution to 50.0 ml with methanol and filtered. 5 ml of methanol solution adjusted to

  4. A method of non-destructive quantitative analysis of the ancient ceramics with curved surface

    International Nuclear Information System (INIS)

    He Wenquan; Xiong Yingfei

    2002-01-01

    Generally the surface of the sample should be smooth and flat in XRF analysis, but the ancient ceramics and hardly match this condition. Two simple methods are put forward in fundamental method and empirical correction method of XRF analysis, so the analysis of little sample or the sample with curved surface can be easily completed

  5. Deterministic factor analysis: methods of integro-differentiation of non-integral order

    Directory of Open Access Journals (Sweden)

    Valentina V. Tarasova

    2016-12-01

    Full Text Available Objective to summarize the methods of deterministic factor economic analysis namely the differential calculus and the integral method. nbsp Methods mathematical methods for integrodifferentiation of nonintegral order the theory of derivatives and integrals of fractional nonintegral order. Results the basic concepts are formulated and the new methods are developed that take into account the memory and nonlocality effects in the quantitative description of the influence of individual factors on the change in the effective economic indicator. Two methods are proposed for integrodifferentiation of nonintegral order for the deterministic factor analysis of economic processes with memory and nonlocality. It is shown that the method of integrodifferentiation of nonintegral order can give more accurate results compared with standard methods method of differentiation using the first order derivatives and the integral method using the integration of the first order for a wide class of functions describing effective economic indicators. Scientific novelty the new methods of deterministic factor analysis are proposed the method of differential calculus of nonintegral order and the integral method of nonintegral order. Practical significance the basic concepts and formulas of the article can be used in scientific and analytical activity for factor analysis of economic processes. The proposed method for integrodifferentiation of nonintegral order extends the capabilities of the determined factorial economic analysis. The new quantitative method of deterministic factor analysis may become the beginning of quantitative studies of economic agents behavior with memory hereditarity and spatial nonlocality. The proposed methods of deterministic factor analysis can be used in the study of economic processes which follow the exponential law in which the indicators endogenous variables are power functions of the factors exogenous variables including the processes

  6. Absorption correction factor in X-ray fluorescent quantitative analysis

    International Nuclear Information System (INIS)

    Pimjun, S.

    1994-01-01

    An experiment on absorption correction factor in X-ray fluorescent quantitative analysis were carried out. Standard samples were prepared from the mixture of Fe 2 O 3 and tapioca flour at various concentration of Fe 2 O 3 ranging from 5% to 25%. Unknown samples were kaolin containing 3.5% to-50% of Fe 2 O 3 Kaolin samples were diluted with tapioca flour in order to reduce the absorption of FeK α and make them easy to prepare. Pressed samples with 0.150 /cm 2 and 2.76 cm in diameter, were used in the experiment. Absorption correction factor is related to total mass absorption coefficient (χ) which varied with sample composition. In known sample, χ can be calculated by conveniently the formula. However in unknown sample, χ can be determined by Emission-Transmission method. It was found that the relationship between corrected FeK α intensity and contents of Fe 2 O 3 in these samples was linear. This result indicate that this correction factor can be used to adjust the accuracy of X-ray intensity. Therefore, this correction factor is essential in quantitative analysis of elements comprising in any sample by X-ray fluorescent technique

  7. Quantitative Analysis of Renogram

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Keun Chul [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1969-03-15

    value are useful for the differentiation of various renal diseases, however, qualitative analysis of the renogram with one or two parameters is not accurate. 3) In bilateral non-functioning kidney groups, a positive correlation between anemia and nitrogen retention was observed, although the quantitative assessment of the degree of non-functioning was impossible.

  8. Quantitative Analysis of Renogram

    International Nuclear Information System (INIS)

    Choi, Keun Chul

    1969-01-01

    are useful for the differentiation of various renal diseases, however, qualitative analysis of the renogram with one or two parameters is not accurate. 3) In bilateral non-functioning kidney groups, a positive correlation between anemia and nitrogen retention was observed, although the quantitative assessment of the degree of non-functioning was impossible.

  9. Using multiple PCR and CE with chemiluminescence detection for simultaneous qualitative and quantitative analysis of genetically modified organism.

    Science.gov (United States)

    Guo, Longhua; Qiu, Bin; Chi, Yuwu; Chen, Guonan

    2008-09-01

    In this paper, an ultrasensitive CE-CL detection system coupled with a novel double-on-column coaxial flow detection interface was developed for the detection of PCR products. A reliable procedure based on this system had been demonstrated for qualitative and quantitative analysis of genetically modified organism-the detection of Roundup Ready Soy (RRS) samples was presented as an example. The promoter, terminator, function and two reference genes of RRS were amplified with multiplex PCR simultaneously. After that, the multiplex PCR products were labeled with acridinium ester at the 5'-terminal through an amino modification and then analyzed by the proposed CE-CL system. Reproducibility of analysis times and peak heights for the CE-CL analysis were determined to be better than 0.91 and 3.07% (RSD, n=15), respectively, for three consecutive days. It was shown that this method could accurately and qualitatively detect RRS standards and the simulative samples. The evaluation in terms of quantitative analysis of RRS provided by this new method was confirmed by comparing our assay results with those of the standard real-time quantitative PCR (RT-QPCR) using SYBR Green I dyes. The results showed a good coherence between the two methods. This approach demonstrated the possibility for accurate qualitative and quantitative detection of GM plants in a single run.

  10. Quantitative Analysis of the Waterline Method for Topographical Mapping of Tidal Flats: A Case Study in the Dongsha Sandbank, China

    Directory of Open Access Journals (Sweden)

    Yongxue Liu

    2013-11-01

    Full Text Available Although the topography of tidal flats is important for understanding their evolution, the spatial and temporal sampling frequency of such data remains limited. The waterline method has the potential to retrieve past tidal flat topography by utilizing large archives of satellite images. This study performs a quantitative analysis of the relationship between the accuracy of tidal flat digital elevation models (DEMs that are based on the waterline method and the factors that influence the DEMs. The three major conclusions of the study are as follows: (1 the coverage rate of the waterline points and the number of satellite images used to create the DEM are highly linearly correlated with the error of the resultant DEMs, and the former is more significant in indicating the accuracy of the resultant DEMs than the latter; (2 both the area and the slope of the tidal flats are linearly correlated with the error of the resultant DEMs; and (3 the availability analysis of the archived satellite images indicates that the waterline method can retrieve tidal flat terrains from the past forty years. The upper limit of the temporal resolution of the tidal flat DEM can be refined to within one year since 1993, to half a year since 2004 and to three months since 2009.

  11. Quantitative analysis of titanium concentration using calibration-free laser-induced breakdown spectroscopy (LIBS)

    Science.gov (United States)

    Zaitun; Prasetyo, S.; Suliyanti, M. M.; Isnaeni; Herbani, Y.

    2018-03-01

    Laser-induced breakdown spectroscopy (LIBS) can be used for quantitative and qualitative analysis. Calibration-free LIBS (CF-LIBS) is a method to quantitatively analyze concentration of elements in a sample in local thermodynamic equilibrium conditions without using available matrix-matched calibration. In this study, we apply CF-LIBS for quantitative analysis of Ti in TiO2 sample. TiO2 powder sample was mixed with polyvinyl alcohol and formed into pellets. An Nd:YAG pulsed laser at a wavelength of 1064 nm was focused onto the sample to generate plasma. The spectrum of plasma was recorded using spectrophotometer then compared to NIST spectral line to determine energy levels and other parameters. The value of plasma temperature obtained using Boltzmann plot is 8127.29 K and electron density from calculation is 2.49×1016 cm-3. Finally, the concentration of Ti in TiO2 sample from this study is 97% that is in proximity with the sample certificate.

  12. Method and platform standardization in MRM-based quantitative plasma proteomics.

    Science.gov (United States)

    Percy, Andrew J; Chambers, Andrew G; Yang, Juncong; Jackson, Angela M; Domanski, Dominik; Burkhart, Julia; Sickmann, Albert; Borchers, Christoph H

    2013-12-16

    There exists a growing demand in the proteomics community to standardize experimental methods and liquid chromatography-mass spectrometry (LC/MS) platforms in order to enable the acquisition of more precise and accurate quantitative data. This necessity is heightened by the evolving trend of verifying and validating candidate disease biomarkers in complex biofluids, such as blood plasma, through targeted multiple reaction monitoring (MRM)-based approaches with stable isotope-labeled standards (SIS). Considering the lack of performance standards for quantitative plasma proteomics, we previously developed two reference kits to evaluate the MRM with SIS peptide approach using undepleted and non-enriched human plasma. The first kit tests the effectiveness of the LC/MRM-MS platform (kit #1), while the second evaluates the performance of an entire analytical workflow (kit #2). Here, these kits have been refined for practical use and then evaluated through intra- and inter-laboratory testing on 6 common LC/MS platforms. For an identical panel of 22 plasma proteins, similar concentrations were determined, regardless of the kit, instrument platform, and laboratory of analysis. These results demonstrate the value of the kit and reinforce the utility of standardized methods and protocols. The proteomics community needs standardized experimental protocols and quality control methods in order to improve the reproducibility of MS-based quantitative data. This need is heightened by the evolving trend for MRM-based validation of proposed disease biomarkers in complex biofluids such as blood plasma. We have developed two kits to assist in the inter- and intra-laboratory quality control of MRM experiments: the first kit tests the effectiveness of the LC/MRM-MS platform (kit #1), while the second evaluates the performance of an entire analytical workflow (kit #2). In this paper, we report the use of these kits in intra- and inter-laboratory testing on 6 common LC/MS platforms. This

  13. Pseudo-absolute quantitative analysis using gas chromatography – Vacuum ultraviolet spectroscopy – A tutorial

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Ling [Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, TX (United States); Smuts, Jonathan; Walsh, Phillip [VUV Analytics, Inc., Cedar Park, TX (United States); Qiu, Changling [Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, TX (United States); McNair, Harold M. [Department of Chemistry, Virginia Tech, Blacksburg, VA (United States); Schug, Kevin A., E-mail: kschug@uta.edu [Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, TX (United States)

    2017-02-08

    The vacuum ultraviolet detector (VUV) is a new non-destructive mass sensitive detector for gas chromatography that continuously and rapidly collects full wavelength range absorption between 120 and 240 nm. In addition to conventional methods of quantification (internal and external standard), gas chromatography - vacuum ultraviolet spectroscopy has the potential for pseudo-absolute quantification of analytes based on pre-recorded cross sections (well-defined absorptivity across the 120–240 nm wavelength range recorded by the detector) without the need for traditional calibration. The pseudo-absolute method was used in this research to experimentally evaluate the sources of sample loss and gain associated with sample introduction into a typical gas chromatograph. Standard samples of benzene and natural gas were used to assess precision and accuracy for the analysis of liquid and gaseous samples, respectively, based on the amount of analyte loaded on-column. Results indicate that injection volume, split ratio, and sampling times for splitless analysis can all contribute to inaccurate, yet precise sample introduction. For instance, an autosampler can very reproducibly inject a designated volume, but there are significant systematic errors (here, a consistently larger volume than that designated) in the actual volume introduced. The pseudo-absolute quantification capability of the vacuum ultraviolet detector provides a new means for carrying out system performance checks and potentially for solving challenging quantitative analytical problems. For practical purposes, an internal standardized approach to normalize systematic errors can be used to perform quantitative analysis with the pseudo-absolute method. - Highlights: • Gas chromatography diagnostics and quantification using VUV detector. • Absorption cross-sections for molecules enable pseudo-absolute quantitation. • Injection diagnostics reveal systematic errors in hardware settings. • Internal

  14. Pseudo-absolute quantitative analysis using gas chromatography – Vacuum ultraviolet spectroscopy – A tutorial

    International Nuclear Information System (INIS)

    Bai, Ling; Smuts, Jonathan; Walsh, Phillip; Qiu, Changling; McNair, Harold M.; Schug, Kevin A.

    2017-01-01

    The vacuum ultraviolet detector (VUV) is a new non-destructive mass sensitive detector for gas chromatography that continuously and rapidly collects full wavelength range absorption between 120 and 240 nm. In addition to conventional methods of quantification (internal and external standard), gas chromatography - vacuum ultraviolet spectroscopy has the potential for pseudo-absolute quantification of analytes based on pre-recorded cross sections (well-defined absorptivity across the 120–240 nm wavelength range recorded by the detector) without the need for traditional calibration. The pseudo-absolute method was used in this research to experimentally evaluate the sources of sample loss and gain associated with sample introduction into a typical gas chromatograph. Standard samples of benzene and natural gas were used to assess precision and accuracy for the analysis of liquid and gaseous samples, respectively, based on the amount of analyte loaded on-column. Results indicate that injection volume, split ratio, and sampling times for splitless analysis can all contribute to inaccurate, yet precise sample introduction. For instance, an autosampler can very reproducibly inject a designated volume, but there are significant systematic errors (here, a consistently larger volume than that designated) in the actual volume introduced. The pseudo-absolute quantification capability of the vacuum ultraviolet detector provides a new means for carrying out system performance checks and potentially for solving challenging quantitative analytical problems. For practical purposes, an internal standardized approach to normalize systematic errors can be used to perform quantitative analysis with the pseudo-absolute method. - Highlights: • Gas chromatography diagnostics and quantification using VUV detector. • Absorption cross-sections for molecules enable pseudo-absolute quantitation. • Injection diagnostics reveal systematic errors in hardware settings. • Internal

  15. Quantitative Method to Measure Thermal Conductivity of One-Dimensional Nanostructures Based on Scanning Thermal Wave Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Bae; Chung, Jae Hun; Hwang, Gwang Seok; Jung, Eui Han; Kwon, Oh Myoung [Korea University, Seoul (Korea, Republic of)

    2014-12-15

    We present a method to quantitatively measure the thermal conductivity of one-dimensional nanostructures by utilizing scanning thermal wave microscopy (STWM) at a nanoscale spatial resolution. In this paper, we explain the principle for measuring the thermal diffusivity of one-dimensional nanostructures using STWM and the theoretical analysis procedure for quantifying the thermal diffusivity. The SWTM measurement method obtains the thermal conductivity by measuring the thermal diffusivity, which has only a phase lag relative to the distance corresponding to the transferred thermal wave. It is not affected by the thermal contact resistances between the heat source and nanostructure and between the nanostructure and probe. Thus, the heat flux applied to the nanostructure is accurately obtained. The proposed method provides a very simple and quantitative measurement relative to conventional measurement techniques.

  16. An integrated workflow for robust alignment and simplified quantitative analysis of NMR spectrometry data

    Directory of Open Access Journals (Sweden)

    Dommisse Roger

    2011-10-01

    Full Text Available Abstract Background Nuclear magnetic resonance spectroscopy (NMR is a powerful technique to reveal and compare quantitative metabolic profiles of biological tissues. However, chemical and physical sample variations make the analysis of the data challenging, and typically require the application of a number of preprocessing steps prior to data interpretation. For example, noise reduction, normalization, baseline correction, peak picking, spectrum alignment and statistical analysis are indispensable components in any NMR analysis pipeline. Results We introduce a novel suite of informatics tools for the quantitative analysis of NMR metabolomic profile data. The core of the processing cascade is a novel peak alignment algorithm, called hierarchical Cluster-based Peak Alignment (CluPA. The algorithm aligns a target spectrum to the reference spectrum in a top-down fashion by building a hierarchical cluster tree from peak lists of reference and target spectra and then dividing the spectra into smaller segments based on the most distant clusters of the tree. To reduce the computational time to estimate the spectral misalignment, the method makes use of Fast Fourier Transformation (FFT cross-correlation. Since the method returns a high-quality alignment, we can propose a simple methodology to study the variability of the NMR spectra. For each aligned NMR data point the ratio of the between-group and within-group sum of squares (BW-ratio is calculated to quantify the difference in variability between and within predefined groups of NMR spectra. This differential analysis is related to the calculation of the F-statistic or a one-way ANOVA, but without distributional assumptions. Statistical inference based on the BW-ratio is achieved by bootstrapping the null distribution from the experimental data. Conclusions The workflow performance was evaluated using a previously published dataset. Correlation maps, spectral and grey scale plots show clear

  17. An integrated workflow for robust alignment and simplified quantitative analysis of NMR spectrometry data.

    Science.gov (United States)

    Vu, Trung N; Valkenborg, Dirk; Smets, Koen; Verwaest, Kim A; Dommisse, Roger; Lemière, Filip; Verschoren, Alain; Goethals, Bart; Laukens, Kris

    2011-10-20

    Nuclear magnetic resonance spectroscopy (NMR) is a powerful technique to reveal and compare quantitative metabolic profiles of biological tissues. However, chemical and physical sample variations make the analysis of the data challenging, and typically require the application of a number of preprocessing steps prior to data interpretation. For example, noise reduction, normalization, baseline correction, peak picking, spectrum alignment and statistical analysis are indispensable components in any NMR analysis pipeline. We introduce a novel suite of informatics tools for the quantitative analysis of NMR metabolomic profile data. The core of the processing cascade is a novel peak alignment algorithm, called hierarchical Cluster-based Peak Alignment (CluPA). The algorithm aligns a target spectrum to the reference spectrum in a top-down fashion by building a hierarchical cluster tree from peak lists of reference and target spectra and then dividing the spectra into smaller segments based on the most distant clusters of the tree. To reduce the computational time to estimate the spectral misalignment, the method makes use of Fast Fourier Transformation (FFT) cross-correlation. Since the method returns a high-quality alignment, we can propose a simple methodology to study the variability of the NMR spectra. For each aligned NMR data point the ratio of the between-group and within-group sum of squares (BW-ratio) is calculated to quantify the difference in variability between and within predefined groups of NMR spectra. This differential analysis is related to the calculation of the F-statistic or a one-way ANOVA, but without distributional assumptions. Statistical inference based on the BW-ratio is achieved by bootstrapping the null distribution from the experimental data. The workflow performance was evaluated using a previously published dataset. Correlation maps, spectral and grey scale plots show clear improvements in comparison to other methods, and the down

  18. Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS)

    Science.gov (United States)

    Wang, Hong-Fei; Gan, Wei; Lu, Rong; Rao, Yi; Wu, Bao-Hua

    Sum frequency generation vibrational spectroscopy (SFG-VS) has been proven to be a uniquely effective spectroscopic technique in the investigation of molecular structure and conformations, as well as the dynamics of molecular interfaces. However, the ability to apply SFG-VS to complex molecular interfaces has been limited by the ability to abstract quantitative information from SFG-VS experiments. In this review, we try to make assessments of the limitations, issues and techniques as well as methodologies in quantitative orientational and spectral analysis with SFG-VS. Based on these assessments, we also try to summarize recent developments in methodologies on quantitative orientational and spectral analysis in SFG-VS, and their applications to detailed analysis of SFG-VS data of various vapour/neat liquid interfaces. A rigorous formulation of the polarization null angle (PNA) method is given for accurate determination of the orientational parameter D = /, and comparison between the PNA method with the commonly used polarization intensity ratio (PIR) method is discussed. The polarization and incident angle dependencies of the SFG-VS intensity are also reviewed, in the light of how experimental arrangements can be optimized to effectively abstract crucial information from the SFG-VS experiments. The values and models of the local field factors in the molecular layers are discussed. In order to examine the validity and limitations of the bond polarizability derivative model, the general expressions for molecular hyperpolarizability tensors and their expression with the bond polarizability derivative model for C3v, C2v and C∞v molecular groups are given in the two appendixes. We show that the bond polarizability derivative model can quantitatively describe many aspects of the intensities observed in the SFG-VS spectrum of the vapour/neat liquid interfaces in different polarizations. Using the polarization analysis in SFG-VS, polarization selection rules or

  19. Hand Fatigue Analysis Using Quantitative Evaluation of Variability in Drawing Patterns

    Directory of Open Access Journals (Sweden)

    mohamadali Sanjari

    2015-02-01

    Full Text Available Background & aim: Muscle fatigue is defined as the reduced power generation capacity of a muscle or muscle group after activity which can lead to a variety of lesions. The purpose of the present study was to define the fatigue analysis by quantitative analysis using drawing patterns. Methods: the present cross-sectional study was conducted on 37 healthy volunteers (6 men and 31 women aged 18-30 years. Before & immediately after a fatigue protocol, quantitative assessment of hand drawing skills was performed by drawing repeated, overlapping, and concentric circles. The test was conducted in three sessions with an interval of 48-72 hours. Drawing was recorded by a digital tablet. Data were statistically analyzed using paired t-test and repeated measure ANOVA. Result: In drawing time series data analysis, at fatigue level of 100%, the variables standard deviation along x axis (SDx, standard deviation of velocity on both x and y axis (SDVx and SDVy and resultant vector velocity standard deviation (SDVR, showed significant differences after fatigue (P<0.05. In comparison of variables after the three fatigue levels, SDx showed significant difference (P<0.05. Conclusions: structurally full fatigue showed significant differences with other levels of fatigue, so it contributed to significant variability in drawing parameters. The method used in the present study recognized the fatigue in high frequency motion as well.

  20. A method for volume determination of the orbit and its contents by high resolution axial tomography and quantitative digital image analysis.

    Science.gov (United States)

    Cooper, W C

    1985-01-01

    The various congenital and acquired conditions which alter orbital volume are reviewed. Previous investigative work to determine orbital capacity is summarized. Since these studies were confined to postmortem evaluations, the need for a technique to measure orbital volume in the living state is presented. A method for volume determination of the orbit and its contents by high-resolution axial tomography and quantitative digital image analysis is reported. This procedure has proven to be accurate (the discrepancy between direct and computed measurements ranged from 0.2% to 4%) and reproducible (greater than 98%). The application of this method to representative clinical problems is presented and discussed. The establishment of a diagnostic system versatile enough to expand the usefulness of computerized axial tomography and polytomography should add a new dimension to ophthalmic investigation and treatment.

  1. Simultaneous quantitative analysis of metabolites using ion-pair liquid chromatography-electrospray ionization mass spectrometry

    NARCIS (Netherlands)

    Coulier, L.; Bas, R.; Jespersen, S.; Verheij, E.; Werf, M.J. van der; Hankemeier, T.

    2006-01-01

    We have developed an analytical method, consisting of ion-pair liquid chromatography coupled to electrospray ionization mass spectrometry (IP-LC-ESI-MS), for the simultaneous quantitative analysis of several key classes of polar metabolites, like nucleotides, coenzyme A esters, sugar nucleotides,

  2. Quantitative chromatography in the analysis of labelled compounds 1. Quantitative paper chromotography of amino acids by A spot comparison technique

    International Nuclear Information System (INIS)

    Barakat, M.F.; Farag, A.N.; El-Gharbawy, A.A.

    1974-01-01

    For the determination of the specific activity of labelled compounds separated by paper sheet chromatography, it was found essential to perfect the quantitative aspect of the paper chromatographic technique. Actually, so far paper chromatography has been used as a separation tool mainly and its use in quantification of the separated materials is by far less studied. In the present work, the quantitative analysis of amino acids by paper sheet chromatography has been carried out by methods, depending on the use of the relative spot area values for correcting the experimental data obtained. The results obtained were good and reproducible. The main advantage of the proposed technique is its extreme simplicity. No complicated equipment of procedures are necessary

  3. A SVM-based quantitative fMRI method for resting-state functional network detection.

    Science.gov (United States)

    Song, Xiaomu; Chen, Nan-kuei

    2014-09-01

    Resting-state functional magnetic resonance imaging (fMRI) aims to measure baseline neuronal connectivity independent of specific functional tasks and to capture changes in the connectivity due to neurological diseases. Most existing network detection methods rely on a fixed threshold to identify functionally connected voxels under the resting state. Due to fMRI non-stationarity, the threshold cannot adapt to variation of data characteristics across sessions and subjects, and generates unreliable mapping results. In this study, a new method is presented for resting-state fMRI data analysis. Specifically, the resting-state network mapping is formulated as an outlier detection process that is implemented using one-class support vector machine (SVM). The results are refined by using a spatial-feature domain prototype selection method and two-class SVM reclassification. The final decision on each voxel is made by comparing its probabilities of functionally connected and unconnected instead of a threshold. Multiple features for resting-state analysis were extracted and examined using an SVM-based feature selection method, and the most representative features were identified. The proposed method was evaluated using synthetic and experimental fMRI data. A comparison study was also performed with independent component analysis (ICA) and correlation analysis. The experimental results show that the proposed method can provide comparable or better network detection performance than ICA and correlation analysis. The method is potentially applicable to various resting-state quantitative fMRI studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Applied quantitative finance

    CERN Document Server

    Chen, Cathy; Overbeck, Ludger

    2017-01-01

    This volume provides practical solutions and introduces recent theoretical developments in risk management, pricing of credit derivatives, quantification of volatility and copula modeling. This third edition is devoted to modern risk analysis based on quantitative methods and textual analytics to meet the current challenges in banking and finance. It includes 14 new contributions and presents a comprehensive, state-of-the-art treatment of cutting-edge methods and topics, such as collateralized debt obligations, the high-frequency analysis of market liquidity, and realized volatility. The book is divided into three parts: Part 1 revisits important market risk issues, while Part 2 introduces novel concepts in credit risk and its management along with updated quantitative methods. The third part discusses the dynamics of risk management and includes risk analysis of energy markets and for cryptocurrencies. Digital assets, such as blockchain-based currencies, have become popular b ut are theoretically challenging...

  5. Correlative SEM SERS for quantitative analysis of dimer nanoparticles.

    Science.gov (United States)

    Timmermans, F J; Lenferink, A T M; van Wolferen, H A G M; Otto, C

    2016-11-14

    A Raman microscope integrated with a scanning electron microscope was used to investigate plasmonic structures by correlative SEM-SERS analysis. The integrated Raman-SEM microscope combines high-resolution electron microscopy information with SERS signal enhancement from selected nanostructures with adsorbed Raman reporter molecules. Correlative analysis is performed for dimers of two gold nanospheres. Dimers were selected on the basis of SEM images from multi aggregate samples. The effect of the orientation of the dimer with respect to the polarization state of the laser light and the effect of the particle gap size on the Raman signal intensity is observed. Additionally, calculations are performed to simulate the electric near field enhancement. These simulations are based on the morphologies observed by electron microscopy. In this way the experiments are compared with the enhancement factor calculated with near field simulations and are subsequently used to quantify the SERS enhancement factor. Large differences between experimentally observed and calculated enhancement factors are regularly detected, a phenomenon caused by nanoscale differences between the real and 'simplified' simulated structures. Quantitative SERS experiments reveal the structure induced enhancement factor, ranging from ∼200 to ∼20 000, averaged over the full nanostructure surface. The results demonstrate correlative Raman-SEM microscopy for the quantitative analysis of plasmonic particles and structures, thus enabling a new analytical method in the field of SERS and plasmonics.

  6. Determination of Calcium in Cereal with Flame Atomic Absorption Spectroscopy: An Experiment for a Quantitative Methods of Analysis Course

    Science.gov (United States)

    Bazzi, Ali; Kreuz, Bette; Fischer, Jeffrey

    2004-01-01

    An experiment for determination of calcium in cereal using two-increment standard addition method in conjunction with flame atomic absorption spectroscopy (FAAS) is demonstrated. The experiment is intended to introduce students to the principles of atomic absorption spectroscopy giving them hands on experience using quantitative methods of…

  7. Credit Institutions Management Evaluation using Quantitative Methods

    Directory of Open Access Journals (Sweden)

    Nicolae Dardac

    2006-02-01

    Full Text Available Credit institutions supervising mission by state authorities is mostly assimilated with systemic risk prevention. In present, the mission is orientated on analyzing the risk profile of the credit institutions, the mechanism and existing systems as management tools providing to bank rules the proper instruments to avoid and control specific bank risks. Rating systems are sophisticated measurement instruments which are capable to assure the above objectives, such as success in banking risk management. The management quality is one of the most important elements from the set of variables used in the quoting process in credit operations. Evaluation of this quality is – generally speaking – fundamented on quantitative appreciations which can induce subjectivism and heterogeneity in quotation. The problem can be solved by using, complementary, quantitative technics such us DEA (Data Envelopment Analysis.

  8. Quantitative portable gamma spectroscopy sample analysis for non-standard sample geometries

    International Nuclear Information System (INIS)

    Enghauser, M.W.; Ebara, S.B.

    1997-01-01

    Utilizing a portable spectroscopy system, a quantitative method for analysis of samples containing a mixture of fission and activation products in nonstandard geometries was developed. The method can be used with various sample and shielding configurations where analysis on a laboratory based gamma spectroscopy system is impractical. The portable gamma spectroscopy method involves calibration of the detector and modeling of the sample and shielding to identify and quantify the radionuclides present in the sample. The method utilizes the intrinsic efficiency of the detector and the unattenuated gamma fluence rate at the detector surface per unit activity from the sample to calculate the nuclide activity and Minimum Detectable Activity (MDA). For a complex geometry, a computer code written for shielding applications (MICROSHIELD) is utilized to determine the unattenuated gamma fluence rate per unit activity at the detector surface. Lastly, the method is only applicable to nuclides which emit gamma rays and cannot be used for pure beta emitters. In addition, if sample self absorption and shielding is significant, the attenuation will result in high MDA's for nuclides which solely emit low energy gamma rays. The following presents the analysis technique and presents verification results demonstrating the accuracy of the method

  9. A general method for bead-enhanced quantitation by flow cytometry

    Science.gov (United States)

    Montes, Martin; Jaensson, Elin A.; Orozco, Aaron F.; Lewis, Dorothy E.; Corry, David B.

    2009-01-01

    Flow cytometry provides accurate relative cellular quantitation (percent abundance) of cells from diverse samples, but technical limitations of most flow cytometers preclude accurate absolute quantitation. Several quantitation standards are now commercially available which, when added to samples, permit absolute quantitation of CD4+ T cells. However, these reagents are limited by their cost, technical complexity, requirement for additional software and/or limited applicability. Moreover, few studies have validated the use of such reagents in complex biological samples, especially for quantitation of non-T cells. Here we show that addition to samples of known quantities of polystyrene fluorescence standardization beads permits accurate quantitation of CD4+ T cells from complex cell samples. This procedure, here termed single bead-enhanced cytofluorimetry (SBEC), was equally capable of enumerating eosinophils as well as subcellular fragments of apoptotic cells, moieties with very different optical and fluorescent characteristics. Relative to other proprietary products, SBEC is simple, inexpensive and requires no special software, suggesting that the method is suitable for the routine quantitation of most cells and other particles by flow cytometry. PMID:17067632

  10. Micro-computer system for quantitative image analysis of damage microstructure

    International Nuclear Information System (INIS)

    Kohyama, A.; Kohno, Y.; Satoh, K.; Igata, N.

    1984-01-01

    Quantitative image analysis of radiation induced damage microstructure is very important in evaluating material behaviors in radiation environment. But, quite a few improvement have been seen in quantitative analysis of damage microstructure in these decades. The objective of this work is to develop new system for quantitative image analysis of damage microstructure which could improve accuracy and efficiency of data sampling and processing and could enable to get new information about mutual relations among dislocations, precipitates, cavities, grain boundaries, etc. In this system, data sampling is done with X-Y digitizer. The cavity microstructure in dual-ion irradiated 316 SS is analyzed and the effectiveness of this system is discussed. (orig.)

  11. Comparison of 3D quantitative structure-activity relationship methods: Analysis of the in vitro antimalarial activity of 154 artemisinin analogues by hypothetical active-site lattice and comparative molecular field analysis

    Science.gov (United States)

    Woolfrey, John R.; Avery, Mitchell A.; Doweyko, Arthur M.

    1998-03-01

    Two three-dimensional quantitative structure-activity relationship (3D-QSAR) methods, comparative molecular field analysis (CoMFA) and hypothetical active site lattice (HASL), were compared with respect to the analysis of a training set of 154 artemisinin analogues. Five models were created, including a complete HASL and two trimmed versions, as well as two CoMFA models (leave-one-out standard CoMFA and the guided-region selection protocol). Similar r2 and q2 values were obtained by each method, although some striking differences existed between CoMFA contour maps and the HASL output. Each of the four predictive models exhibited a similar ability to predict the activity of a test set of 23 artemisinin analogues, although some differences were noted as to which compounds were described well by either model.

  12. Some potentialities of instrumental implementation of quantitative phase analysis techniques for ferromagnetic materials on the basis of Moessbauer effect

    International Nuclear Information System (INIS)

    Danilov, G.I.; Mamikonyan, S.V.; Shlokov, G.N.

    1973-01-01

    In the article the results of work are presented on instrument development for quantitative phase analysis of ferromagnetic materials on the basis of using Moessbauer effect. Analysis of the defined ferromagnetic phase content in sample is carried out by spectrum band intensity of this phase, brought in paramagnetic state. Tyrical structural scheme of instrument model is presented, intended for control of degree of ferritization of ferrite compositions in the process of low temperature baking. Advantages of the proposed method and possibilities of increasing accuracy and sensitivity of particular instruments schemes are discussed. Advantages of using resonance detectors in the proposed method are shown. Sources, detectors and measurement schemes considered, allowed to use proposed quantitative phase analysis method for analysis of ferrite compositions by 40-65% of its possibilities

  13. Visualization and quantitative analysis of the CSF pulsatile flow with cine MR phase imaging

    International Nuclear Information System (INIS)

    Katayama, Shinji; Itoh, Takahiko; Kinugasa, Kazushi; Asari, Shoji; Nishimoto, Akira; Tsuchida, Shohei; Ono, Atsushi; Ikezaki, Yoshikazu; Yoshitome, Eiji.

    1991-01-01

    The visualization and the quantitative analysis of the CSF pulsatile flow were performed on ten healthy volunteers with cine MR phase imaging, a combination of the phase-contrast technique and the cardiac-gating technique. The velocities appropriate for the visualization and the quantitative analysis of the CSF pulsatile flow were from 6.0 cm/sec to 15.0 cm/sec. The applicability of this method for the quantitative analysis was proven with a steady-flow phantom. Phase images clearly demonstrated a to-and-fro motion of the CSF flow in the anterior subarachnoid space and in the posterior subarachnoid space. The flow pattern of CSF on healthy volunteers depends on the cardiac cycle. In the anterior subarachnoid space, the cephalic CSF flow continued until a 70-msec delay after the R-wave of the ECG and then reversed to caudal. At 130-190 msec, the caudal CSF flow reached its maximum velocity; thereafter it reversed again to cephalic. The same turn appeared following the phase, but then the amplitude decreased. The cephalic peaked at 370-430 msec, while the caudal peaked at 490-550 msec. The flow pattern of the CSF flow in the posterior subarachnoid space was almost identical to that in the anterior subarachnoid space. Cine MR phase imaging is thus useful for the visualization and the quantitative analysis of the CSF pulsative flow. (author)

  14. Quantitative analysis of benzodiazepines in vitreous humor by high-performance liquid chromatography

    Science.gov (United States)

    Bazmi, Elham; Behnoush, Behnam; Akhgari, Maryam; Bahmanabadi, Leila

    2016-01-01

    Objective: Benzodiazepines are frequently screened drugs in emergency toxicology, drugs of abuse testing, and in forensic cases. As the variations of benzodiazepines concentrations in biological samples during bleeding, postmortem changes, and redistribution could be biasing forensic medicine examinations, hence selecting a suitable sample and a validated accurate method is essential for the quantitative analysis of these main drug categories. The aim of this study was to develop a valid method for the determination of four benzodiazepines (flurazepam, lorazepam, alprazolam, and diazepam) in vitreous humor using liquid–liquid extraction and high-performance liquid chromatography. Methods: Sample preparation was carried out using liquid–liquid extraction with n-hexane: ethyl acetate and subsequent detection by high-performance liquid chromatography method coupled to diode array detector. This method was applied to quantify benzodiazepines in 21 authentic vitreous humor samples. Linear curve for each drug was obtained within the range of 30–3000 ng/mL with coefficient of correlation higher than 0.99. Results: The limit of detection and quantitation were 30 and 100 ng/mL respectively for four drugs. The method showed an appropriate intra- and inter-day precision (coefficient of variation forensic toxicology laboratory. PMID:27635251

  15. New tools for comparing microscopy images : Quantitative analysis of cell types in Bacillus subtilis

    NARCIS (Netherlands)

    van Gestel, Jordi; Vlamakis, Hera; Kolter, Roberto

    2015-01-01

    Fluorescence microscopy is a method commonly used to examine individual differences between bacterial cells, yet many studies still lack a quantitative analysis of fluorescence microscopy data. Here we introduce some simple tools that microbiologists can use to analyze and compare their microscopy

  16. Validation of the Mass-Extraction-Window for Quantitative Methods Using Liquid Chromatography High Resolution Mass Spectrometry.

    Science.gov (United States)

    Glauser, Gaétan; Grund, Baptiste; Gassner, Anne-Laure; Menin, Laure; Henry, Hugues; Bromirski, Maciej; Schütz, Frédéric; McMullen, Justin; Rochat, Bertrand

    2016-03-15

    A paradigm shift is underway in the field of quantitative liquid chromatography-mass spectrometry (LC-MS) analysis thanks to the arrival of recent high-resolution mass spectrometers (HRMS). The capability of HRMS to perform sensitive and reliable quantifications of a large variety of analytes in HR-full scan mode is showing that it is now realistic to perform quantitative and qualitative analysis with the same instrument. Moreover, HR-full scan acquisition offers a global view of sample extracts and allows retrospective investigations as virtually all ionized compounds are detected with a high sensitivity. In time, the versatility of HRMS together with the increasing need for relative quantification of hundreds of endogenous metabolites should promote a shift from triple-quadrupole MS to HRMS. However, a current "pitfall" in quantitative LC-HRMS analysis is the lack of HRMS-specific guidance for validated quantitative analyses. Indeed, false positive and false negative HRMS detections are rare, albeit possible, if inadequate parameters are used. Here, we investigated two key parameters for the validation of LC-HRMS quantitative analyses: the mass accuracy (MA) and the mass-extraction-window (MEW) that is used to construct the extracted-ion-chromatograms. We propose MA-parameters, graphs, and equations to calculate rational MEW width for the validation of quantitative LC-HRMS methods. MA measurements were performed on four different LC-HRMS platforms. Experimentally determined MEW values ranged between 5.6 and 16.5 ppm and depended on the HRMS platform, its working environment, the calibration procedure, and the analyte considered. The proposed procedure provides a fit-for-purpose MEW determination and prevents false detections.

  17. Application of quantitative and qualitative methods for determination ...

    African Journals Online (AJOL)

    This article covers the issues of integration of qualitative and quantitative methods applied when justifying management decision-making in companies implementing lean manufacturing. The authors defined goals and subgoals and justified the evaluation criteria which lead to the increased company value if achieved.

  18. Automated quantitative cytological analysis using portable microfluidic microscopy.

    Science.gov (United States)

    Jagannadh, Veerendra Kalyan; Murthy, Rashmi Sreeramachandra; Srinivasan, Rajesh; Gorthi, Sai Siva

    2016-06-01

    In this article, a portable microfluidic microscopy based approach for automated cytological investigations is presented. Inexpensive optical and electronic components have been used to construct a simple microfluidic microscopy system. In contrast to the conventional slide-based methods, the presented method employs microfluidics to enable automated sample handling and image acquisition. The approach involves the use of simple in-suspension staining and automated image acquisition to enable quantitative cytological analysis of samples. The applicability of the presented approach to research in cellular biology is shown by performing an automated cell viability assessment on a given population of yeast cells. Further, the relevance of the presented approach to clinical diagnosis and prognosis has been demonstrated by performing detection and differential assessment of malaria infection in a given sample. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Quantitative analysis of fission products by γ spectrography

    International Nuclear Information System (INIS)

    Malet, G.

    1962-01-01

    The activity of the fission products present in treated solutions of irradiated fuels is given as a function of the time of cooling and of the irradiation time. The variation of the ratio ( 144 Ce + 144 Pr activity)/ 137 Cs activity) as a function of these same parameters is also given. From these results a method is deduced giving the 'age' of the solution analyzed. By γ-scintillation spectrography it was possible to estimate the following elements individually: 141 Ce, 144 Ce + 144 Pr, 103 Ru, 106 Ru + 106 Rh, 137 Cs, 95 Zr + 95 Nb. Yield curves are given for the case of a single emitter. Of the various existing methods, that of the least squares was used for the quantitative analysis of the afore-mentioned fission products. The accuracy attained varies from 3 to 10%. (author) [fr

  20. Characterization of working iron Fischer-Tropsch catalysts using quantitative diffraction methods

    Science.gov (United States)

    Mansker, Linda Denise

    This study presents the results of the ex-situ characterization of working iron Fischer-Tropsch synthesis (F-TS) catalysts, reacted hundreds of hours at elevated pressures, using a new quantitative x-ray diffraction analytical methodology. Compositions, iron phase structures, and phase particle morphologies were determined and correlated with the observed reaction kinetics. Conclusions were drawn about the character of each catalyst in its most and least active state. The identity of the active phase(s) in the Fe F-TS catalyst has been vigorously debated for more than 45 years. The highly-reduced catalyst, used to convert coal-derived syngas to hydrocarbon products, is thought to form a mixture of oxides, metal, and carbides upon pretreatment and reaction. Commonly, Soxhlet extraction is used to effect catalyst-product slurry separation; however, the extraction process could be producing irreversible changes in the catalyst, contributing to the conflicting results in the literature. X-ray diffraction doesn't require analyte-matrix separation before analysis, and can detect trace phases down to 300 ppm/2 nm; thus, working catalyst slurries could be characterized as-sampled. Data were quantitatively interpreted employing first principles methods, including the Rietveld polycrystalline structure method. Pretreated catalysts and pure phases were examined experimentally and modeled to explore specific behavior under x-rays. Then, the working catalyst slurries were quantitatively characterized. Empirical quantitation factors were calculated from experimental data or single crystal parameters, then validated using the Rietveld method results. In the most active form, after pretreatment in H 2 or in CO at Pambient, well-preserved working catalysts contained significant amounts of Fe7C3 with trace alpha-Fe, once reaction had commenced at elevated pressure. Amounts of Fe3O 4 were constant and small, with carbide dpavg 65 wt%, regardless of pretreatment gas and pressure, with

  1. Qualitative and quantitative chemical investigation of orthopedic alloys by combining wet digestion, spectro analytical methods and direct solid analysis

    Energy Technology Data Exchange (ETDEWEB)

    Figueiredo, Caio M.; Castro, Jeyne P.; Sperança, Marco A.; Fialho, Lucimar L.; Nóbrega, Joaquim A.; Pereira-Filho, Edenir R., E-mail: erpf@ufscar.br [Universidade Federal de São Carlos (GAIA/UFSCar), SP (Brazil). Grupo de Análise Instrumental Aplicada

    2018-05-01

    In this study, two laser-based techniques, laser-induced breakdown spectroscopy (LIBS) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) were used for analytical signal evaluation of Ti, Al, and V and investigation of possible harmful elements eventually present as minor elements in Ti alloys. Due to the lack of certified reference materials, samples were also analyzed by wavelength dispersive X-ray fluorescence (WDXRF) and inductively coupled plasma optical emission spectrometry (ICP OES) after microwave-assisted digestion. To maximize the efficiency of LIBS and LA-ICP-MS, operational conditions were adjusted aiming to find optimal analytical performance. LIBS showed several Ti emission lines and few signals for Al and V. LA-ICP-MS was able to detect all three major constituents. For quantitative analysis, the correlation of intensity signals from LIBS analysis with reference values obtained by ICP OES was not successful, showing that there are still difficulties for quantification using solid samples. Measurements using ICP OES showed that additionally to major constituents, only Fe was present in concentrations around 0.2%. Analysis by WDXRF confirmed the presence of Fe. Results using both methods, i.e., ICP OES and WDXRF, were in good agreement. (author)

  2. Quantitative evaluation methods of skin condition based on texture feature parameters

    Directory of Open Access Journals (Sweden)

    Hui Pang

    2017-03-01

    Full Text Available In order to quantitatively evaluate the improvement of the skin condition after using skin care products and beauty, a quantitative evaluation method for skin surface state and texture is presented, which is convenient, fast and non-destructive. Human skin images were collected by image sensors. Firstly, the median filter of the 3 × 3 window is used and then the location of the hairy pixels on the skin is accurately detected according to the gray mean value and color information. The bilinear interpolation is used to modify the gray value of the hairy pixels in order to eliminate the negative effect of noise and tiny hairs on the texture. After the above pretreatment, the gray level co-occurrence matrix (GLCM is calculated. On the basis of this, the four characteristic parameters, including the second moment, contrast, entropy and correlation, and their mean value are calculated at 45 ° intervals. The quantitative evaluation model of skin texture based on GLCM is established, which can calculate the comprehensive parameters of skin condition. Experiments show that using this method evaluates the skin condition, both based on biochemical indicators of skin evaluation methods in line, but also fully consistent with the human visual experience. This method overcomes the shortcomings of the biochemical evaluation method of skin damage and long waiting time, also the subjectivity and fuzziness of the visual evaluation, which achieves the non-destructive, rapid and quantitative evaluation of skin condition. It can be used for health assessment or classification of the skin condition, also can quantitatively evaluate the subtle improvement of skin condition after using skin care products or stage beauty.

  3. Quantitative evaluation methods of skin condition based on texture feature parameters.

    Science.gov (United States)

    Pang, Hui; Chen, Tianhua; Wang, Xiaoyi; Chang, Zhineng; Shao, Siqi; Zhao, Jing

    2017-03-01

    In order to quantitatively evaluate the improvement of the skin condition after using skin care products and beauty, a quantitative evaluation method for skin surface state and texture is presented, which is convenient, fast and non-destructive. Human skin images were collected by image sensors. Firstly, the median filter of the 3 × 3 window is used and then the location of the hairy pixels on the skin is accurately detected according to the gray mean value and color information. The bilinear interpolation is used to modify the gray value of the hairy pixels in order to eliminate the negative effect of noise and tiny hairs on the texture. After the above pretreatment, the gray level co-occurrence matrix (GLCM) is calculated. On the basis of this, the four characteristic parameters, including the second moment, contrast, entropy and correlation, and their mean value are calculated at 45 ° intervals. The quantitative evaluation model of skin texture based on GLCM is established, which can calculate the comprehensive parameters of skin condition. Experiments show that using this method evaluates the skin condition, both based on biochemical indicators of skin evaluation methods in line, but also fully consistent with the human visual experience. This method overcomes the shortcomings of the biochemical evaluation method of skin damage and long waiting time, also the subjectivity and fuzziness of the visual evaluation, which achieves the non-destructive, rapid and quantitative evaluation of skin condition. It can be used for health assessment or classification of the skin condition, also can quantitatively evaluate the subtle improvement of skin condition after using skin care products or stage beauty.

  4. Quantitative planar thallium-201 stress scintigraphy: A critical evaluation of the method

    International Nuclear Information System (INIS)

    Wackers, F.J.; Fetterman, R.C.; Mattera, J.A.; Clements, J.P.

    1985-01-01

    The results of quantitative analysis of planar thallium- 201 stress scintigraphy are superior to those of visual analysis. The increased sensitivity for detection of coronary artery disease is associated with maintenance of specificity. Consequently, the authors believe that quantitative analysis is the state-of-the-art for planar 201 Tl stress scintigraphy. They emphasize that for reliable and reproducible results, rigorous quality control and strict adherence to a standardized imaging protocol are necessary. An important feature is clarity of display of computer data. In this experience, the most important feature for making quantitative analysis reliable and accessible for a broader user market is simultaneous display of the lower limits of normal with processed patient data. This provides a simple visual impression of the degree and extent of abnormal 201 Tl distribution and kinetics relative to the lower limit of normal

  5. Quantitative Structure-Activity Relationship Analysis of the ...

    African Journals Online (AJOL)

    Erah

    Quantitative Structure-Activity Relationship Analysis of the Anticonvulsant ... Two types of molecular descriptors, including the 2D autocorrelation ..... It is based on the simulation of natural .... clustering anticonvulsant, antidepressant, and.

  6. Attenuated total internal reflection Fourier transform infrared spectroscopy: a quantitative approach for kidney stone analysis.

    Science.gov (United States)

    Gulley-Stahl, Heather J; Haas, Jennifer A; Schmidt, Katherine A; Evan, Andrew P; Sommer, André J

    2009-07-01

    The impact of kidney stone disease is significant worldwide, yet methods for quantifying stone components remain limited. A new approach requiring minimal sample preparation for the quantitative analysis of kidney stone components has been investigated utilizing attenuated total internal reflection Fourier transform infrared spectroscopy (ATR-FT-IR). Calcium oxalate monohydrate (COM) and hydroxylapatite (HAP), two of the most common constituents of urinary stones, were used for quantitative analysis. Calibration curves were constructed using integrated band intensities of four infrared absorptions versus concentration (weight %). The correlation coefficients of the calibration curves range from 0.997 to 0.93. The limits of detection range from 0.07 +/- 0.02% COM/HAP where COM is the analyte and HAP is the matrix, to 0.26 +/- 0.07% HAP/COM where HAP is the analyte and COM is the matrix. This study shows that linear calibration curves can be generated for the quantitative analysis of stone mixtures provided the system is well understood especially with respect to particle size.

  7. Digital Holographic Microscopy: Quantitative Phase Imaging and Applications in Live Cell Analysis

    Science.gov (United States)

    Kemper, Björn; Langehanenberg, Patrik; Kosmeier, Sebastian; Schlichthaber, Frank; Remmersmann, Christian; von Bally, Gert; Rommel, Christina; Dierker, Christian; Schnekenburger, Jürgen

    The analysis of complex processes in living cells creates a high demand for fast and label-free methods for online monitoring. Widely used fluorescence methods require specific labeling and are often restricted to chemically fixated samples. Thus, methods that offer label-free and minimally invasive detection of live cell processes and cell state alterations are of particular interest. In combination with light microscopy, digital holography provides label-free, multi-focus quantitative phase imaging of living cells. In overview, several methods for digital holographic microscopy (DHM) are presented. First, different experimental setups for the recording of digital holograms and the modular integration of DHM into common microscopes are described. Then the numerical processing of digitally captured holograms is explained. This includes the description of spatial and temporal phase shifting techniques, spatial filtering based reconstruction, holographic autofocusing, and the evaluation of self-interference holograms. Furthermore, the usage of partial coherent light and multi-wavelength approaches is discussed. Finally, potentials of digital holographic microscopy for quantitative cell imaging are illustrated by results from selected applications. It is shown that DHM can be used for automated tracking of migrating cells and cell thickness monitoring as well as for refractive index determination of cells and particles. Moreover, the use of DHM for label-free analysis in fluidics and micro-injection monitoring is demonstrated. The results show that DHM is a highly relevant method that allows novel insights in dynamic cell biology, with applications in cancer research and for drugs and toxicity testing.

  8. A quantitative method for evaluating alternatives. [aid to decision making

    Science.gov (United States)

    Forthofer, M. J.

    1981-01-01

    When faced with choosing between alternatives, people tend to use a number of criteria (often subjective, rather than objective) to decide which is the best alternative for them given their unique situation. The subjectivity inherent in the decision-making process can be reduced by the definition and use of a quantitative method for evaluating alternatives. This type of method can help decision makers achieve degree of uniformity and completeness in the evaluation process, as well as an increased sensitivity to the factors involved. Additional side-effects are better documentation and visibility of the rationale behind the resulting decisions. General guidelines for defining a quantitative method are presented and a particular method (called 'hierarchical weighted average') is defined and applied to the evaluation of design alternatives for a hypothetical computer system capability.

  9. A new method for quantitative assessment of resilience engineering by PCA and NT approach: A case study in a process industry

    International Nuclear Information System (INIS)

    Shirali, Gh.A.; Mohammadfam, I.; Ebrahimipour, V.

    2013-01-01

    In recent years, resilience engineering (RE) has attracted widespread interest from industry as well as academia because it presents a new way of thinking about safety and accident. Although the concept of RE was defined scholarly in various areas, there are only few which specifically focus on how to measure RE. Therefore, there is a gap in assessing resilience by quantitative methods. This research aimed at presenting a new method for quantitative assessment of RE using questionnaire and based on principal component analysis. However, six resilience indicators, i.e., top management commitment, Just culture, learning culture, awareness and opacity, preparedness, and flexibility were chosen, and the data related to those in the 11 units of a process industry using a questionnaire was gathered. The data was analyzed based on principal component analysis (PCA) approach. The analysis also leads to determination of the score of resilience indicators and the process units. The process units were ranked using these scores. Consequently, the prescribed approach can determine the poor indicators and the process units. This is the first study that considers a quantitative assessment in RE area which is conducted through PCA. Implementation of the proposed methods would enable the managers to recognize the current weaknesses and challenges against the resilience of their system. -- Highlights: •We quantitatively measure the potential of resilience. •The results are more tangible to understand and interpret. •The method facilitates comparison of resilience state among various process units. •The method facilitates comparison of units' resilience state with the best practice

  10. Quantitative fluorescence loss in photobleaching for analysis of protein transport and aggregation

    Directory of Open Access Journals (Sweden)

    Wüstner Daniel

    2012-11-01

    Full Text Available Abstract Background Fluorescence loss in photobleaching (FLIP is a widely used imaging technique, which provides information about protein dynamics in various cellular regions. In FLIP, a small cellular region is repeatedly illuminated by an intense laser pulse, while images are taken with reduced laser power with a time lag between the bleaches. Despite its popularity, tools are lacking for quantitative analysis of FLIP experiments. Typically, the user defines regions of interest (ROIs for further analysis which is subjective and does not allow for comparing different cells and experimental settings. Results We present two complementary methods to detect and quantify protein transport and aggregation in living cells from FLIP image series. In the first approach, a stretched exponential (StrExp function is fitted to fluorescence loss (FL inside and outside the bleached region. We show by reaction–diffusion simulations, that the StrExp function can describe both, binding/barrier–limited and diffusion-limited FL kinetics. By pixel-wise regression of that function to FL kinetics of enhanced green fluorescent protein (eGFP, we determined in a user-unbiased manner from which cellular regions eGFP can be replenished in the bleached area. Spatial variation in the parameters calculated from the StrExp function allow for detecting diffusion barriers for eGFP in the nucleus and cytoplasm of living cells. Polyglutamine (polyQ disease proteins like mutant huntingtin (mtHtt can form large aggregates called inclusion bodies (IB’s. The second method combines single particle tracking with multi-compartment modelling of FL kinetics in moving IB’s to determine exchange rates of eGFP-tagged mtHtt protein (eGFP-mtHtt between aggregates and the cytoplasm. This method is self-calibrating since it relates the FL inside and outside the bleached regions. It makes it therefore possible to compare release kinetics of eGFP-mtHtt between different cells and

  11. Quantitative analysis of terahertz spectra for illicit drugs using adaptive-range micro-genetic algorithm

    Science.gov (United States)

    Chen, Yi; Ma, Yong; Lu, Zheng; Peng, Bei; Chen, Qin

    2011-08-01

    In the field of anti-illicit drug applications, many suspicious mixture samples might consist of various drug components—for example, a mixture of methamphetamine, heroin, and amoxicillin—which makes spectral identification very difficult. A terahertz spectroscopic quantitative analysis method using an adaptive range micro-genetic algorithm with a variable internal population (ARVIPɛμGA) has been proposed. Five mixture cases are discussed using ARVIPɛμGA driven quantitative terahertz spectroscopic analysis in this paper. The devised simulation results show agreement with the previous experimental results, which suggested that the proposed technique has potential applications for terahertz spectral identifications of drug mixture components. The results show agreement with the results obtained using other experimental and numerical techniques.

  12. Quantitative analysis of 123I-metaiodobenzylguanidine myocardial scintigraphy by myocardial uptake using a phantom

    International Nuclear Information System (INIS)

    Momose, Mitsuru; Kobayashi, Hideki; Kashikura, Kenichi; Kanaya, Shinichi; Maki, Masako; Hosoda, Saichi; Kusakabe, Kiyoko

    1994-01-01

    To evaluate the quantitative analysis of 123 I-metaiodobenzylguanidine (MIBG) myocardial scintigraphy, total injected dose measured by first pass (FP) method (T FP ) was compared with that measured by phantom method using an acrylic phantom in 45 patients with cardiac disease. Heart per mediastinum ratio (H/M) was compared to myocardial uptake calculated with T FP . The total injected dose measured using the phantom in which the syringe was set in depth of 3.5 cm (T pham ) was correlated with T FP (r=0.73, p=0.0001). When T pham was corrected by body weight (c-T pham ), c-T pham showed better correlation with T FP . MU calculated by T FP (MU-FP) was well correlated with MU by c-T pham (MU-pham) (r=0.94, p=0.001). These results indicate that phantom method is sufficient to substitute for FP method. Though H/M was correlated with MU-FP (p<0.001), the interpatient variation was relatively large. Then the analysis by H/M is insufficient to substitute for the myocardial uptake. It is thought to be enough to use the phantom method on daily routine work, since this method is accurate and easy to quantitate the myocardial uptake of MIBG taking a short time. (author)

  13. Development of a rapid method for the quantitative determination of deoxynivalenol using Quenchbody

    Energy Technology Data Exchange (ETDEWEB)

    Yoshinari, Tomoya [Division of Microbiology, National Institute of Health Sciences, 1-18-1, Kamiyoga, Setagaya-ku, Tokyo 158-8501 (Japan); Ohashi, Hiroyuki; Abe, Ryoji; Kaigome, Rena [Biomedical Division, Ushio Inc., 1-12 Minamiwatarida-cho, Kawasaki-ku, Kawasaki 210-0855 (Japan); Ohkawa, Hideo [Research Center for Environmental Genomics, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501 (Japan); Sugita-Konishi, Yoshiko, E-mail: y-konishi@azabu-u.ac.jp [Department of Food and Life Science, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201 (Japan)

    2015-08-12

    Quenchbody (Q-body) is a novel fluorescent biosensor based on the antigen-dependent removal of a quenching effect on a fluorophore attached to antibody domains. In order to develop a method using Q-body for the quantitative determination of deoxynivalenol (DON), a trichothecene mycotoxin produced by some Fusarium species, anti-DON Q-body was synthesized from the sequence information of a monoclonal antibody specific to DON. When the purified anti-DON Q-body was mixed with DON, a dose-dependent increase in the fluorescence intensity was observed and the detection range was between 0.0003 and 3 mg L{sup −1}. The coefficients of variation were 7.9% at 0.003 mg L{sup −1}, 5.0% at 0.03 mg L{sup −1} and 13.7% at 0.3 mg L{sup −1}, respectively. The limit of detection was 0.006 mg L{sup −1} for DON in wheat. The Q-body showed an antigen-dependent fluorescence enhancement even in the presence of wheat extracts. To validate the analytical method using Q-body, a spike-and-recovery experiment was performed using four spiked wheat samples. The recoveries were in the range of 94.9–100.2%. The concentrations of DON in twenty-one naturally contaminated wheat samples were quantitated by the Q-body method, LC-MS/MS and an immunochromatographic assay kit. The LC-MS/MS analysis showed that the levels of DON contamination in the samples were between 0.001 and 2.68 mg kg{sup −1}. The concentrations of DON quantitated by LC-MS/MS were more strongly correlated with those using the Q-body method (R{sup 2} = 0.9760) than the immunochromatographic assay kit (R{sup 2} = 0.8824). These data indicate that the Q-body system for the determination of DON in wheat samples was successfully developed and Q-body is expected to have a range of applications in the field of food safety. - Highlights: • A rapid method for quantitation of DON using Q-body has been developed. • A recovery test using the anti-DON Q-body was performed. • The concentrations of DON in wheat

  14. GC-FID coupled with chemometrics for quantitative and chemical fingerprinting analysis of Alpinia oxyphylla oil.

    Science.gov (United States)

    Miao, Qing; Kong, Weijun; Zhao, Xiangsheng; Yang, Shihai; Yang, Meihua

    2015-01-01

    Analytical methods for quantitative analysis and chemical fingerprinting of volatile oils from Alpinia oxyphylla were established. The volatile oils were prepared by hydrodistillation, and the yields were between 0.82% and 1.33%. The developed gas chromatography-flame ionization detection (GC-FID) method showed good specificity, linearity, reproducibility, stability and recovery, and could be used satisfactorily for quantitative analysis. The results showed that the volatile oils contained 2.31-77.30 μL/mL p-cymene and 12.38-99.34 mg/mL nootkatone. A GC-FID fingerprinting method was established, and the profiles were analyzed using chemometrics. GC-MS was used to identify the principal compounds in the GC-FID profiles. The profiles of almost all the samples were consistent and stable. The harvesting time and source were major factors that affected the profile, while the volatile oil yield and the nootkatone content had minor secondary effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Visualisation and quantitative analysis of the rodent malaria liver stage by real time imaging.

    NARCIS (Netherlands)

    Ploemen, I.H.J.; Prudencio, M.; Douradinha, B.G.; Ramesar, J.; Fonager, J.; Gemert, G.J.A. van; Luty, A.J.F.; Hermsen, C.C.; Sauerwein, R.W.; Baptista, F.G.; Mota, M.M.; Waters, A.P.; Que, I.; Lowik, C.W.G.M.; Khan, S.M.; Janse, C.J.; Franke-Fayard, B.

    2009-01-01

    The quantitative analysis of Plasmodium development in the liver in laboratory animals in cultured cells is hampered by low parasite infection rates and the complicated methods required to monitor intracellular development. As a consequence, this important phase of the parasite's life cycle has been

  16. Clinical significance of quantitative analysis of thyroid peroxidase antibody (TPOAb) with chemiluminescence enzyme immunoassay

    International Nuclear Information System (INIS)

    Zhu Cuiying; Wang Qing; Huang Gang

    2004-01-01

    Objective: The only method of laboratory diagnosis for autoimmune thyroid diseases used to be serum TGA and TMA detections. Morerecently, quantitative analysis of TPOAb has been introduced. To assess the relative sensitivity of these tests , positive rates detected with the respective tests were compared. Methods: Serum TGA, TMA (with RIA) and TPOAb (with chemiluminescence enzyme immunoassay) were simultaneously detected in 998 cases of thyroid diseases (hyperthyroidism 307, Hashimoto's disease 193, simple goiter 498). For complementary sake, fine needle aspiration cytology was obtained in a number of cases including all the patients with Hashimoto's disease. Results: Positive detection rate of TPOAb in three groups of patients (hyperthyroidism, Hashimoto's, simple goiter) was 81.76%, 96.89 % and 42.97% respectively. With TMA, the positive rate was only 54.72%, 65.80%, 22.09% respectively. About one third more cases would be detected with the newer method. Conclusion: For the laboratory detection of auto immune thyroid diseases, quantitative analysis of TPOAb is much wore sensitive than the conventional TMA detection. (authors)

  17. Quantitative EEG analysis using error reduction ratio-causality test; validation on simulated and real EEG data.

    Science.gov (United States)

    Sarrigiannis, Ptolemaios G; Zhao, Yifan; Wei, Hua-Liang; Billings, Stephen A; Fotheringham, Jayne; Hadjivassiliou, Marios

    2014-01-01

    To introduce a new method of quantitative EEG analysis in the time domain, the error reduction ratio (ERR)-causality test. To compare performance against cross-correlation and coherence with phase measures. A simulation example was used as a gold standard to assess the performance of ERR-causality, against cross-correlation and coherence. The methods were then applied to real EEG data. Analysis of both simulated and real EEG data demonstrates that ERR-causality successfully detects dynamically evolving changes between two signals, with very high time resolution, dependent on the sampling rate of the data. Our method can properly detect both linear and non-linear effects, encountered during analysis of focal and generalised seizures. We introduce a new quantitative EEG method of analysis. It detects real time levels of synchronisation in the linear and non-linear domains. It computes directionality of information flow with corresponding time lags. This novel dynamic real time EEG signal analysis unveils hidden neural network interactions with a very high time resolution. These interactions cannot be adequately resolved by the traditional methods of coherence and cross-correlation, which provide limited results in the presence of non-linear effects and lack fidelity for changes appearing over small periods of time. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  18. The use of digital PCR to improve the application of quantitative molecular diagnostic methods for tuberculosis.

    Science.gov (United States)

    Devonshire, Alison S; O'Sullivan, Denise M; Honeyborne, Isobella; Jones, Gerwyn; Karczmarczyk, Maria; Pavšič, Jernej; Gutteridge, Alice; Milavec, Mojca; Mendoza, Pablo; Schimmel, Heinz; Van Heuverswyn, Fran; Gorton, Rebecca; Cirillo, Daniela Maria; Borroni, Emanuele; Harris, Kathryn; Barnard, Marinus; Heydenrych, Anthenette; Ndusilo, Norah; Wallis, Carole L; Pillay, Keshree; Barry, Thomas; Reddington, Kate; Richter, Elvira; Mozioğlu, Erkan; Akyürek, Sema; Yalçınkaya, Burhanettin; Akgoz, Muslum; Žel, Jana; Foy, Carole A; McHugh, Timothy D; Huggett, Jim F

    2016-08-03

    Real-time PCR (qPCR) based methods, such as the Xpert MTB/RIF, are increasingly being used to diagnose tuberculosis (TB). While qualitative methods are adequate for diagnosis, the therapeutic monitoring of TB patients requires quantitative methods currently performed using smear microscopy. The potential use of quantitative molecular measurements for therapeutic monitoring has been investigated but findings have been variable and inconclusive. The lack of an adequate reference method and reference materials is a barrier to understanding the source of such disagreement. Digital PCR (dPCR) offers the potential for an accurate method for quantification of specific DNA sequences in reference materials which can be used to evaluate quantitative molecular methods for TB treatment monitoring. To assess a novel approach for the development of quality assurance materials we used dPCR to quantify specific DNA sequences in a range of prototype reference materials and evaluated accuracy between different laboratories and instruments. The materials were then also used to evaluate the quantitative performance of qPCR and Xpert MTB/RIF in eight clinical testing laboratories. dPCR was found to provide results in good agreement with the other methods tested and to be highly reproducible between laboratories without calibration even when using different instruments. When the reference materials were analysed with qPCR and Xpert MTB/RIF by clinical laboratories, all laboratories were able to correctly rank the reference materials according to concentration, however there was a marked difference in the measured magnitude. TB is a disease where the quantification of the pathogen could lead to better patient management and qPCR methods offer the potential to rapidly perform such analysis. However, our findings suggest that when precisely characterised materials are used to evaluate qPCR methods, the measurement result variation is too high to determine whether molecular quantification

  19. Determination of γ-rays emitting radionuclides in surface water: application of a quantitative biosensing method

    International Nuclear Information System (INIS)

    Wolterbeek, H. Th.; Van der Meer, A. J. G. M.

    1995-01-01

    A quantitative biosensing method has been developed for the determination of γ-rays emitting radionuclides in surface water. The method is based on the concept that at equilibrium the specific radioactivity in the biosensor is equal to the specific radioactivity in water. The method consists of the measurement of both the radionuclide and the related stable isotope (element) in the biosensor and the determination of the element in water. This three-way analysis eliminates problems such as unpredictable biosensor behaviour, effects of water elemental composition or further abiotic parameters on accumulation levels: what remains is the generally high enrichment (bioaccumulation factor BCF) of elements and radionuclides in the biosensor material. Using water plants, the method is shown to be three to five orders of magnitude more sensitive than the direct analysis of water. (author)

  20. Determination of {gamma}-rays emitting radionuclides in surface water: application of a quantitative biosensing method

    Energy Technology Data Exchange (ETDEWEB)

    Wolterbeek, H Th; Van der Meer, A. J. G. M. [Delft University of Technology, Interfaculty Reactor Institute, Mekelweg 15, 2629 JB Delft (Netherlands)

    1995-12-01

    A quantitative biosensing method has been developed for the determination of {gamma}-rays emitting radionuclides in surface water. The method is based on the concept that at equilibrium the specific radioactivity in the biosensor is equal to the specific radioactivity in water. The method consists of the measurement of both the radionuclide and the related stable isotope (element) in the biosensor and the determination of the element in water. This three-way analysis eliminates problems such as unpredictable biosensor behaviour, effects of water elemental composition or further abiotic parameters on accumulation levels: what remains is the generally high enrichment (bioaccumulation factor BCF) of elements and radionuclides in the biosensor material. Using water plants, the method is shown to be three to five orders of magnitude more sensitive than the direct analysis of water. (author)

  1. Network analysis of quantitative proteomics on asthmatic bronchi: effects of inhaled glucocorticoid treatment

    Directory of Open Access Journals (Sweden)

    Sihlbom Carina

    2011-09-01

    Full Text Available Abstract Background Proteomic studies of respiratory disorders have the potential to identify protein biomarkers for diagnosis and disease monitoring. Utilisation of sensitive quantitative proteomic methods creates opportunities to determine individual patient proteomes. The aim of the current study was to determine if quantitative proteomics of bronchial biopsies from asthmatics can distinguish relevant biological functions and whether inhaled glucocorticoid treatment affects these functions. Methods Endobronchial biopsies were taken from untreated asthmatic patients (n = 12 and healthy controls (n = 3. Asthmatic patients were randomised to double blind treatment with either placebo or budesonide (800 μg daily for 3 months and new biopsies were obtained. Proteins extracted from the biopsies were digested and analysed using isobaric tags for relative and absolute quantitation combined with a nanoLC-LTQ Orbitrap mass spectrometer. Spectra obtained were used to identify and quantify proteins. Pathways analysis was performed using Ingenuity Pathway Analysis to identify significant biological pathways in asthma and determine how the expression of these pathways was changed by treatment. Results More than 1800 proteins were identified and quantified in the bronchial biopsies of subjects. The pathway analysis revealed acute phase response signalling, cell-to-cell signalling and tissue development associations with proteins expressed in asthmatics compared to controls. The functions and pathways associated with placebo and budesonide treatment showed distinct differences, including the decreased association with acute phase proteins as a result of budesonide treatment compared to placebo. Conclusions Proteomic analysis of bronchial biopsy material can be used to identify and quantify proteins using highly sensitive technologies, without the need for pooling of samples from several patients. Distinct pathophysiological features of asthma can be

  2. EBprot: Statistical analysis of labeling-based quantitative proteomics data.

    Science.gov (United States)

    Koh, Hiromi W L; Swa, Hannah L F; Fermin, Damian; Ler, Siok Ghee; Gunaratne, Jayantha; Choi, Hyungwon

    2015-08-01

    Labeling-based proteomics is a powerful method for detection of differentially expressed proteins (DEPs). The current data analysis platform typically relies on protein-level ratios, which is obtained by summarizing peptide-level ratios for each protein. In shotgun proteomics, however, some proteins are quantified with more peptides than others, and this reproducibility information is not incorporated into the differential expression (DE) analysis. Here, we propose a novel probabilistic framework EBprot that directly models the peptide-protein hierarchy and rewards the proteins with reproducible evidence of DE over multiple peptides. To evaluate its performance with known DE states, we conducted a simulation study to show that the peptide-level analysis of EBprot provides better receiver-operating characteristic and more accurate estimation of the false discovery rates than the methods based on protein-level ratios. We also demonstrate superior classification performance of peptide-level EBprot analysis in a spike-in dataset. To illustrate the wide applicability of EBprot in different experimental designs, we applied EBprot to a dataset for lung cancer subtype analysis with biological replicates and another dataset for time course phosphoproteome analysis of EGF-stimulated HeLa cells with multiplexed labeling. Through these examples, we show that the peptide-level analysis of EBprot is a robust alternative to the existing statistical methods for the DE analysis of labeling-based quantitative datasets. The software suite is freely available on the Sourceforge website http://ebprot.sourceforge.net/. All MS data have been deposited in the ProteomeXchange with identifier PXD001426 (http://proteomecentral.proteomexchange.org/dataset/PXD001426/). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A Stereological Method for the Quantitative Evaluation of Cartilage Repair Tissue

    Science.gov (United States)

    Nyengaard, Jens Randel; Lind, Martin; Spector, Myron

    2015-01-01

    Objective To implement stereological principles to develop an easy applicable algorithm for unbiased and quantitative evaluation of cartilage repair. Design Design-unbiased sampling was performed by systematically sectioning the defect perpendicular to the joint surface in parallel planes providing 7 to 10 hematoxylin–eosin stained histological sections. Counting windows were systematically selected and converted into image files (40-50 per defect). The quantification was performed by two-step point counting: (1) calculation of defect volume and (2) quantitative analysis of tissue composition. Step 2 was performed by assigning each point to one of the following categories based on validated and easy distinguishable morphological characteristics: (1) hyaline cartilage (rounded cells in lacunae in hyaline matrix), (2) fibrocartilage (rounded cells in lacunae in fibrous matrix), (3) fibrous tissue (elongated cells in fibrous tissue), (4) bone, (5) scaffold material, and (6) others. The ability to discriminate between the tissue types was determined using conventional or polarized light microscopy, and the interobserver variability was evaluated. Results We describe the application of the stereological method. In the example, we assessed the defect repair tissue volume to be 4.4 mm3 (CE = 0.01). The tissue fractions were subsequently evaluated. Polarized light illumination of the slides improved discrimination between hyaline cartilage and fibrocartilage and increased the interobserver agreement compared with conventional transmitted light. Conclusion We have applied a design-unbiased method for quantitative evaluation of cartilage repair, and we propose this algorithm as a natural supplement to existing descriptive semiquantitative scoring systems. We also propose that polarized light is effective for discrimination between hyaline cartilage and fibrocartilage. PMID:26069715

  4. Quantitative model analysis with diverse biological data: applications in developmental pattern formation.

    Science.gov (United States)

    Pargett, Michael; Umulis, David M

    2013-07-15

    Mathematical modeling of transcription factor and signaling networks is widely used to understand if and how a mechanism works, and to infer regulatory interactions that produce a model consistent with the observed data. Both of these approaches to modeling are informed by experimental data, however, much of the data available or even acquirable are not quantitative. Data that is not strictly quantitative cannot be used by classical, quantitative, model-based analyses that measure a difference between the measured observation and the model prediction for that observation. To bridge the model-to-data gap, a variety of techniques have been developed to measure model "fitness" and provide numerical values that can subsequently be used in model optimization or model inference studies. Here, we discuss a selection of traditional and novel techniques to transform data of varied quality and enable quantitative comparison with mathematical models. This review is intended to both inform the use of these model analysis methods, focused on parameter estimation, and to help guide the choice of method to use for a given study based on the type of data available. Applying techniques such as normalization or optimal scaling may significantly improve the utility of current biological data in model-based study and allow greater integration between disparate types of data. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Quantitative angiography methods for bifurcation lesions

    DEFF Research Database (Denmark)

    Collet, Carlos; Onuma, Yoshinobu; Cavalcante, Rafael

    2017-01-01

    Bifurcation lesions represent one of the most challenging lesion subsets in interventional cardiology. The European Bifurcation Club (EBC) is an academic consortium whose goal has been to assess and recommend the appropriate strategies to manage bifurcation lesions. The quantitative coronary...... angiography (QCA) methods for the evaluation of bifurcation lesions have been subject to extensive research. Single-vessel QCA has been shown to be inaccurate for the assessment of bifurcation lesion dimensions. For this reason, dedicated bifurcation software has been developed and validated. These software...

  6. Instrumentation and quantitative methods of evaluation. Progress report, January 15-September 14, 1986

    International Nuclear Information System (INIS)

    Beck, R.N.

    1986-09-01

    This document reports progress under grant entitled ''Instrumentation and Quantitative Methods of Evaluation.'' Individual reports are presented on projects entitled the physical aspects of radionuclide imaging, image reconstruction and quantitative evaluation, PET-related instrumentation for improved quantitation, improvements in the FMI cyclotron for increased utilization, and methodology for quantitative evaluation of diagnostic performance

  7. Qualitative and quantitative analysis of micro and macro aspects of agricultural finance

    Directory of Open Access Journals (Sweden)

    Veselinović Branislav

    2014-01-01

    Full Text Available The epicenter of this analysis is to provide an overview of the current situation in micro and macro agricultural finance in Serbia and the EU. One of the goals of this research is to consider the weaknesses and potentials of agricultural policy in Serbia, through comparison with more developed countries. In this qualitative and quantitative analysis, authors used comparation method, analysis and synthesis method, inductive and deductive method, and a local and international literature review. There are several important conclusions which can be drawn from this manuscript. Access to finance among farmers and agricultural SMEs is among the poorest of any sector in Serbia. The Serbian financial sector offers a poor range of loan products to the agricultural sector. Therefore, existing mechanisms for micro and macro agricultural finance in Serbia are not adequate and a change should be made in approach.

  8. On the quantitative X-ray phase analysis of R-Co alloys

    International Nuclear Information System (INIS)

    Lyubushkin, V.A.; Lyubushkina, L.M.; Vetoshkin, I.D.

    1982-01-01

    Using the method of quantitative X-ray phase analysis two-phase (RCo 5 -R 2 Co 17 ) alloys Sm-Co and Pr-Co have been studied. The investigations are made using the DRON-2.0 dif,ractometer in filtrated FeKα-radiation. Calibration diagrams for model binary mixtures are built, their use is recommended for express-evaluation of the amount of the phase determined. Test of the technique suggested is carried out

  9. Artificial neural network for on-site quantitative analysis of soils using laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    El Haddad, J. [Univ. Bordeaux, LOMA, UMR 5798, F-33400 Talence (France); CNRS, LOMA, UMR 5798, F-33400 Talence (France); Villot-Kadri, M.; Ismaël, A.; Gallou, G. [IVEA Solution, Centre Scientifique d' Orsay, Bât 503, 91400 Orsay (France); Michel, K.; Bruyère, D.; Laperche, V. [BRGM, Service Métrologie, Monitoring et Analyse, 3 avenue Claude Guillemin, B.P 36009, 45060 Orléans Cedex (France); Canioni, L. [Univ. Bordeaux, LOMA, UMR 5798, F-33400 Talence (France); CNRS, LOMA, UMR 5798, F-33400 Talence (France); Bousquet, B., E-mail: bruno.bousquet@u-bordeaux1.fr [Univ. Bordeaux, LOMA, UMR 5798, F-33400 Talence (France); CNRS, LOMA, UMR 5798, F-33400 Talence (France)

    2013-01-01

    Nowadays, due to environmental concerns, fast on-site quantitative analyses of soils are required. Laser induced breakdown spectroscopy is a serious candidate to address this challenge and is especially well suited for multi-elemental analysis of heavy metals. However, saturation and matrix effects prevent from a simple treatment of the LIBS data, namely through a regular calibration curve. This paper details the limits of this approach and consequently emphasizes the advantage of using artificial neural networks well suited for non-linear and multi-variate calibration. This advanced method of data analysis is evaluated in the case of real soil samples and on-site LIBS measurements. The selection of the LIBS data as input data of the network is particularly detailed and finally, resulting errors of prediction lower than 20% for aluminum, calcium, copper and iron demonstrate the good efficiency of the artificial neural networks for on-site quantitative LIBS of soils. - Highlights: ► We perform on-site quantitative LIBS analysis of soil samples. ► We demonstrate that univariate analysis is not convenient. ► We exploit artificial neural networks for LIBS analysis. ► Spectral lines other than the ones from the analyte must be introduced.

  10. Artificial neural network for on-site quantitative analysis of soils using laser induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    El Haddad, J.; Villot-Kadri, M.; Ismaël, A.; Gallou, G.; Michel, K.; Bruyère, D.; Laperche, V.; Canioni, L.; Bousquet, B.

    2013-01-01

    Nowadays, due to environmental concerns, fast on-site quantitative analyses of soils are required. Laser induced breakdown spectroscopy is a serious candidate to address this challenge and is especially well suited for multi-elemental analysis of heavy metals. However, saturation and matrix effects prevent from a simple treatment of the LIBS data, namely through a regular calibration curve. This paper details the limits of this approach and consequently emphasizes the advantage of using artificial neural networks well suited for non-linear and multi-variate calibration. This advanced method of data analysis is evaluated in the case of real soil samples and on-site LIBS measurements. The selection of the LIBS data as input data of the network is particularly detailed and finally, resulting errors of prediction lower than 20% for aluminum, calcium, copper and iron demonstrate the good efficiency of the artificial neural networks for on-site quantitative LIBS of soils. - Highlights: ► We perform on-site quantitative LIBS analysis of soil samples. ► We demonstrate that univariate analysis is not convenient. ► We exploit artificial neural networks for LIBS analysis. ► Spectral lines other than the ones from the analyte must be introduced

  11. X-ray fluorescence method for trace analysis and imaging

    International Nuclear Information System (INIS)

    Hayakawa, Shinjiro

    2000-01-01

    X-ray fluorescence analysis has a long history as conventional bulk elemental analysis with medium sensitivity. However, with the use of synchrotron radiation x-ray fluorescence method has become a unique analytical technique which can provide tace elemental information with the spatial resolution. To obtain quantitative information of trace elemental distribution by using the x-ray fluorescence method, theoretical description of x-ray fluorescence yield is described. Moreover, methods and instruments for trace characterization with a scanning x-ray microprobe are described. (author)

  12. Use of local noise power spectrum and wavelet analysis in quantitative image quality assurance for EPIDs

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soyoung [Department of Radiation Oncology, University Hospitals Case and Medical Center, Cleveland, Ohio 44106 (United States); Yan, Guanghua; Bassett, Philip; Samant, Sanjiv, E-mail: samant@ufl.edu [Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, Florida 32608 (United States); Gopal, Arun [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201 (United States)

    2016-09-15

    Purpose: To investigate the use of local noise power spectrum (NPS) to characterize image noise and wavelet analysis to isolate defective pixels and inter-subpanel flat-fielding artifacts for quantitative quality assurance (QA) of electronic portal imaging devices (EPIDs). Methods: A total of 93 image sets including custom-made bar-pattern images and open exposure images were collected from four iViewGT a-Si EPID systems over three years. Global quantitative metrics such as modulation transform function (MTF), NPS, and detective quantum efficiency (DQE) were computed for each image set. Local NPS was also calculated for individual subpanels by sampling region of interests within each subpanel of the EPID. The 1D NPS, obtained by radially averaging the 2D NPS, was fitted to a power-law function. The r-square value of the linear regression analysis was used as a singular metric to characterize the noise properties of individual subpanels of the EPID. The sensitivity of the local NPS was first compared with the global quantitative metrics using historical image sets. It was then compared with two commonly used commercial QA systems with images collected after applying two different EPID calibration methods (single-level gain and multilevel gain). To detect isolated defective pixels and inter-subpanel flat-fielding artifacts, Haar wavelet transform was applied on the images. Results: Global quantitative metrics including MTF, NPS, and DQE showed little change over the period of data collection. On the contrary, a strong correlation between the local NPS (r-square values) and the variation of the EPID noise condition was observed. The local NPS analysis indicated image quality improvement with the r-square values increased from 0.80 ± 0.03 (before calibration) to 0.85 ± 0.03 (after single-level gain calibration) and to 0.96 ± 0.03 (after multilevel gain calibration), while the commercial QA systems failed to distinguish the image quality improvement between the two

  13. High-performance hybrid Orbitrap mass spectrometers for quantitative proteome analysis

    DEFF Research Database (Denmark)

    Williamson, James C; Edwards, Alistair V G; Verano-Braga, Thiago

    2016-01-01

    We present basic workups and quantitative comparisons for two current generation Orbitrap mass spectrometers, the Q Exactive Plus and Orbitrap Fusion Tribrid, which are widely considered two of the highest performing instruments on the market. We assessed the performance of two quantitative methods...... on both instruments, namely label-free quantitation and stable isotope labeling using isobaric tags, for studying the heat shock response in Escherichia coli. We investigated the recently reported MS3 method on the Fusion instrument and the potential of MS3-based reporter ion isolation Synchronous...... Precursor Selection (SPS) and its impact on quantitative accuracy. We confirm that the label-free approach offers a more linear response with a wider dynamic range than MS/MS-based isobaric tag quantitation and that the MS3/SPS approach alleviates but does not eliminate dynamic range compression. We...

  14. Development of CD3 cell quantitation algorithms for renal allograft biopsy rejection assessment utilizing open source image analysis software.

    Science.gov (United States)

    Moon, Andres; Smith, Geoffrey H; Kong, Jun; Rogers, Thomas E; Ellis, Carla L; Farris, Alton B Brad

    2018-02-01

    Renal allograft rejection diagnosis depends on assessment of parameters such as interstitial inflammation; however, studies have shown interobserver variability regarding interstitial inflammation assessment. Since automated image analysis quantitation can be reproducible, we devised customized analysis methods for CD3+ T-cell staining density as a measure of rejection severity and compared them with established commercial methods along with visual assessment. Renal biopsy CD3 immunohistochemistry slides (n = 45), including renal allografts with various degrees of acute cellular rejection (ACR) were scanned for whole slide images (WSIs). Inflammation was quantitated in the WSIs using pathologist visual assessment, commercial algorithms (Aperio nuclear algorithm for CD3+ cells/mm 2 and Aperio positive pixel count algorithm), and customized open source algorithms developed in ImageJ with thresholding/positive pixel counting (custom CD3+%) and identification of pixels fulfilling "maxima" criteria for CD3 expression (custom CD3+ cells/mm 2 ). Based on visual inspections of "markup" images, CD3 quantitation algorithms produced adequate accuracy. Additionally, CD3 quantitation algorithms correlated between each other and also with visual assessment in a statistically significant manner (r = 0.44 to 0.94, p = 0.003 to algorithms presents salient correlations with established methods of CD3 quantitation. These analysis techniques are promising and highly customizable, providing a form of on-slide "flow cytometry" that can facilitate additional diagnostic accuracy in tissue-based assessments.

  15. Application of multivariable analysis methods to the quantitative detection of gas by tin dioxide micro-sensors; Application des methodes d'analyse multivariables a la detection quantitative de gaz par microcapteurs a base de dioxyde d'etain

    Energy Technology Data Exchange (ETDEWEB)

    Perdreau, N.

    2000-01-17

    The electric conductivity of tin dioxide depends on the temperature of the material and on the nature and environment of the surrounding gas. This work shows that the treatment by multivariable analysis methods of electric conductance signals of one sensor allows to determine concentrations of binary or ternary mixtures of ethanol (0-80 ppm), carbon monoxide (0-300 ppm) and methane (0-1000 ppm). A part of this study has consisted of the design and the implementation of an automatic testing bench allowing to acquire the electric conductance of four sensors in thermal cycle and under gaseous cycles. It has also revealed some disturbing effects (humidity,..) of the measurement. Two techniques of sensor fabrication have been used to obtain conductances (depending of temperature) distinct for each gas, reproducible for the different sensors and enough stable with time to allow the exploitation of the signals by multivariable analysis methods (tin dioxide under the form of thin layers obtained by reactive evaporation or under the form of sintered powder bars). In a last part, it has been shown that the quantitative determination of gas by the application of chemo-metry methods is possible although the relation between the electric conductances in one part and the temperatures and concentrations in another part is non linear. Moreover, the modelling with the 'Partial Least Square' method and a pretreatment allows to obtain performance data comparable to those obtained with neural networks. (O.M.)

  16. Multivariate quantitative structure-pharmacokinetic relationships (QSPKR) analysis of adenosine A(1) receptor agonists in rat

    NARCIS (Netherlands)

    Van der Graaf, PH; Nilsson, J; Van Schaick, EA; Danhof, M

    The aim of this study was to investigate the feasibility of a quantitative structure-pharmacokinetic relationships (QSPKR) method based on contemporary three-dimensional (3D) molecular characterization and multivariate statistical analysis. For this purpose, the programs SYBYL/CoMFA, GRID, and

  17. Multivariate analysis of quantitative traits can effectively classify rapeseed germplasm

    Directory of Open Access Journals (Sweden)

    Jankulovska Mirjana

    2014-01-01

    Full Text Available In this study, the use of different multivariate approaches to classify rapeseed genotypes based on quantitative traits has been presented. Tree regression analysis, PCA analysis and two-way cluster analysis were applied in order todescribe and understand the extent of genetic variability in spring rapeseed genotype by trait data. The traits which highly influenced seed and oil yield in rapeseed were successfully identified by the tree regression analysis. Principal predictor for both response variables was number of pods per plant (NP. NP and 1000 seed weight could help in the selection of high yielding genotypes. High values for both traits and oil content could lead to high oil yielding genotypes. These traits may serve as indirect selection criteria and can lead to improvement of seed and oil yield in rapeseed. Quantitative traits that explained most of the variability in the studied germplasm were classified using principal component analysis. In this data set, five PCs were identified, out of which the first three PCs explained 63% of the total variance. It helped in facilitating the choice of variables based on which the genotypes’ clustering could be performed. The two-way cluster analysissimultaneously clustered genotypes and quantitative traits. The final number of clusters was determined using bootstrapping technique. This approach provided clear overview on the variability of the analyzed genotypes. The genotypes that have similar performance regarding the traits included in this study can be easily detected on the heatmap. Genotypes grouped in the clusters 1 and 8 had high values for seed and oil yield, and relatively short vegetative growth duration period and those in cluster 9, combined moderate to low values for vegetative growth duration and moderate to high seed and oil yield. These genotypes should be further exploited and implemented in the rapeseed breeding program. The combined application of these multivariate methods

  18. The development of quantitative determination method of organic acids in complex poly herbal extraction

    Directory of Open Access Journals (Sweden)

    I. L. Dyachok

    2016-08-01

    Full Text Available Aim. The development of sensible, economical and expressive method of quantitative determination of organic acids in complex poly herbal extraction counted on izovaleric acid with the use of digital technologies. Materials and methods. Model complex poly herbal extraction of sedative action was chosen as a research object. Extraction is composed of these medical plants: Valeriana officinalis L., Crataégus, Melissa officinalis L., Hypericum, Mentha piperita L., Húmulus lúpulus, Viburnum. Based on chemical composition of plant components, we consider that main pharmacologically active compounds, which can be found in complex poly herbal extraction are: polyphenolic substances (flavonoids, which are contained in Crataégus, Viburnum, Hypericum, Mentha piperita L., Húmulus lúpulus; also organic acids, including izovaleric acid, which are contained in Valeriana officinalis L., Mentha piperita L., Melissa officinalis L., Viburnum; the aminoacid are contained in Valeriana officinalis L. For the determination of organic acids content in low concentration we applied instrumental method of analysis, namely conductometry titration which consisted in the dependences of water solution conductivity of complex poly herbal extraction on composition of organic acids. Result. The got analytical dependences, which describes tangent lines to the conductometry curve before and after the point of equivalence, allow to determine the volume of solution expended on titration and carry out procedure of quantitative determination of organic acids in the digital mode. Conclusion. The proposed method enables to determine the point of equivalence and carry out quantitative determination of organic acids counted on izovaleric acid with the use of digital technologies, that allows to computerize the method on the whole.

  19. A novel method for rapid comparative quantitative analysis of nuclear fuel cycles

    International Nuclear Information System (INIS)

    Eastham, Sebastian D.; Coates, David J.; Parks, Geoffrey T.

    2012-01-01

    Highlights: ► Metric framework determined to compare nuclear fuel cycles. ► Fast and thermal reactors simulated using MATLAB models, including thorium. ► Modelling uses deterministic methods instead of Monte–Carlo for speed. ► Method rapidly identifies relative cycle strengths and weaknesses. ► Significant scope for use in project planning and cycle optimisation. - Abstract: One of the greatest obstacles facing the nuclear industry is that of sustainability, both in terms of the finite reserves of uranium ore and the production of highly radiotoxic spent fuel which presents proliferation and environmental hazards. Alternative nuclear technologies have been suggested as a means of delivering enhanced sustainability with proposals including fast reactors, the use of thorium fuel and tiered fuel cycles. The debate as to which is the most appropriate technology continues, with each fuel system and reactor type delivering specific advantages and disadvantages which can be difficult to compare fairly. This paper demonstrates a framework of performance metrics which, coupled with a first-order lumped reactor model to determine nuclide population balances, can be used to quantify the aforementioned pros and cons for a range of different fuel and reactor combinations. The framework includes metrics such as fuel efficiency, spent fuel toxicity and proliferation resistance, and relative cycle performance is analysed through parallel coordinate plots, yielding a quantitative comparison of disparate cycles.

  20. Preparing systems engineering and computing science students in disciplined methods, quantitative, and advanced statistical techniques to improve process performance

    Science.gov (United States)

    McCray, Wilmon Wil L., Jr.

    The research was prompted by a need to conduct a study that assesses process improvement, quality management and analytical techniques taught to students in U.S. colleges and universities undergraduate and graduate systems engineering and the computing science discipline (e.g., software engineering, computer science, and information technology) degree programs during their academic training that can be applied to quantitatively manage processes for performance. Everyone involved in executing repeatable processes in the software and systems development lifecycle processes needs to become familiar with the concepts of quantitative management, statistical thinking, process improvement methods and how they relate to process-performance. Organizations are starting to embrace the de facto Software Engineering Institute (SEI) Capability Maturity Model Integration (CMMI RTM) Models as process improvement frameworks to improve business processes performance. High maturity process areas in the CMMI model imply the use of analytical, statistical, quantitative management techniques, and process performance modeling to identify and eliminate sources of variation, continually improve process-performance; reduce cost and predict future outcomes. The research study identifies and provides a detail discussion of the gap analysis findings of process improvement and quantitative analysis techniques taught in U.S. universities systems engineering and computing science degree programs, gaps that exist in the literature, and a comparison analysis which identifies the gaps that exist between the SEI's "healthy ingredients " of a process performance model and courses taught in U.S. universities degree program. The research also heightens awareness that academicians have conducted little research on applicable statistics and quantitative techniques that can be used to demonstrate high maturity as implied in the CMMI models. The research also includes a Monte Carlo simulation optimization

  1. Quantitative charge-tags for sterol and oxysterol analysis.

    Science.gov (United States)

    Crick, Peter J; William Bentley, T; Abdel-Khalik, Jonas; Matthews, Ian; Clayton, Peter T; Morris, Andrew A; Bigger, Brian W; Zerbinati, Chiara; Tritapepe, Luigi; Iuliano, Luigi; Wang, Yuqin; Griffiths, William J

    2015-02-01

    Global sterol analysis is challenging owing to the extreme diversity of sterol natural products, the tendency of cholesterol to dominate in abundance over all other sterols, and the structural lack of a strong chromophore or readily ionized functional group. We developed a method to overcome these challenges by using different isotope-labeled versions of the Girard P reagent (GP) as quantitative charge-tags for the LC-MS analysis of sterols including oxysterols. Sterols/oxysterols in plasma were extracted in ethanol containing deuterated internal standards, separated by C18 solid-phase extraction, and derivatized with GP, with or without prior oxidation of 3β-hydroxy to 3-oxo groups. By use of different isotope-labeled GPs, it was possible to analyze in a single LC-MS analysis both sterols/oxysterols that naturally possess a 3-oxo group and those with a 3β-hydroxy group. Intra- and interassay CVs were sterols/oxysterols in a single analytical run and can be used to identify inborn errors of cholesterol synthesis and metabolism. © 2014 American Association for Clinical Chemistry.

  2. Pattern decomposition and quantitative-phase analysis in pulsed neutron transmission

    International Nuclear Information System (INIS)

    Steuwer, A.; Santisteban, J.R.; Withers, P.J.; Edwards, L.

    2004-01-01

    Neutron diffraction methods provide accurate quantitative insight into material properties with applications ranging from fundamental physics to applied engineering research. Neutron radiography or tomography on the other hand, are useful tools in the non-destructive spatial imaging of materials or engineering components, but are less accurate with respect to any quantitative analysis. It is possible to combine the advantages of diffraction and radiography using pulsed neutron transmission in a novel way. Using a pixellated detector at a time-of-flight source it is possible to collect 2D 'images' containing a great deal of interesting information in the thermal regime. This together with the unprecedented intensities available at spallation sources and improvements in computing power allow for a re-assessment of the transmission methods. It opens the possibility of simultaneous imaging of diverse material properties such as strain or temperature, as well as the variation in attenuation, and can assist in the determination of phase volume fraction. Spatial and time resolution (for dynamic experiment) are limited only by the detector technology and the intensity of the source. In this example, phase information contained in the cross-section is extracted from Bragg edges using an approach similar to pattern decomposition

  3. Quantitative mass-spectrometric analysis of hydrogen helium isotope mixtures

    International Nuclear Information System (INIS)

    Langer, U.

    1998-12-01

    This work deals with the mass-spectrometric method for the quantitative analysis of hydrogen-helium-isotope mixtures, with special attention to fusion plasma diagnostics. The aim was to use the low-resolution mass spectrometry, a standard measuring method which is well established in science and industry. This task is solved by means of the vector mass spectrometry, where a mass spectrum is repeatedly measured, but with stepwise variation of the parameter settings of a quadruple mass spectrometer. In this way, interfering mass spectra can be decomposed and, moreover, it is possible to analyze underestimated mass spectra of complex hydrogen-helium-isotope mixtures. In this work experimental investigations are presented which show that there are different parameters which are suitable for the UMS-method. With an optimal choice of the parameter settings hydrogen-helium-isotope mixtures can be analyzed with an accuracy of 1-3 %. In practice, a low sensitivity for small helium concentration has to be noted. To cope with this task, a method for selective hydrogen pressure reduction has been developed. Experimental investigations and calculations show that small helium amounts (about 1 %) in a hydrogen atmosphere can be analyzed with an accuracy of 3 - 10 %. Finally, this work deals with the effects of the measuring and calibration error on the resulting error in spectrum decomposition. This aspect has been investigated both in general mass-spectrometric gas analysis and in the analysis of hydrogen-helium-mixtures by means of the vector mass spectrometry. (author)

  4. Evaluation of the Possibility of Applying Spatial 3D Imaging Using X-Ray Computed Tomography Reconstruction Methods for Quantitative Analysis of Multiphase Materials / Rentgenowska Analiza Ilościowa Materiałów Wielofazowych Z Wykorzystaniem Przestrzennego Obrazowania (3D Przy Użyciu Metod Rekonstrukcji Tomografii Komputerowej

    Directory of Open Access Journals (Sweden)

    Matysik P.

    2015-12-01

    Full Text Available In this paper the possibility of using X-ray computed tomography (CT in quantitative metallographic studies of homogeneous and composite materials is presented. Samples of spheroidal cast iron, Fe-Ti powder mixture compact and epoxy composite reinforced with glass fibers, were subjected to comparative structural tests. Volume fractions of each of the phase structure components were determined by conventional methods with the use of a scanning electron microscopy (SEM and X-ray diffraction (XRD quantitative analysis methods. These results were compared with those obtained by the method of spatial analysis of the reconstructed CT image. Based on the comparative analysis, taking into account the selectivity of data verification methods and the accuracy of the obtained results, the authors conclude that the method of computed tomography is suitable for quantitative analysis of several types of structural materials.

  5. A novel approach for evaluating the performance of real time quantitative loop-mediated isothermal amplification-based methods.

    Science.gov (United States)

    Nixon, Gavin J; Svenstrup, Helle F; Donald, Carol E; Carder, Caroline; Stephenson, Judith M; Morris-Jones, Stephen; Huggett, Jim F; Foy, Carole A

    2014-12-01

    Molecular diagnostic measurements are currently underpinned by the polymerase chain reaction (PCR). There are also a number of alternative nucleic acid amplification technologies, which unlike PCR, work at a single temperature. These 'isothermal' methods, reportedly offer potential advantages over PCR such as simplicity, speed and resistance to inhibitors and could also be used for quantitative molecular analysis. However there are currently limited mechanisms to evaluate their quantitative performance, which would assist assay development and study comparisons. This study uses a sexually transmitted infection diagnostic model in combination with an adapted metric termed isothermal doubling time (IDT), akin to PCR efficiency, to compare quantitative PCR and quantitative loop-mediated isothermal amplification (qLAMP) assays, and to quantify the impact of matrix interference. The performance metric described here facilitates the comparison of qLAMP assays that could assist assay development and validation activities.

  6. An approach for quantitative image quality analysis for CT

    Science.gov (United States)

    Rahimi, Amir; Cochran, Joe; Mooney, Doug; Regensburger, Joe

    2016-03-01

    An objective and standardized approach to assess image quality of Compute Tomography (CT) systems is required in a wide variety of imaging processes to identify CT systems appropriate for a given application. We present an overview of the framework we have developed to help standardize and to objectively assess CT image quality for different models of CT scanners used for security applications. Within this framework, we have developed methods to quantitatively measure metrics that should correlate with feature identification, detection accuracy and precision, and image registration capabilities of CT machines and to identify strengths and weaknesses in different CT imaging technologies in transportation security. To that end we have designed, developed and constructed phantoms that allow for systematic and repeatable measurements of roughly 88 image quality metrics, representing modulation transfer function, noise equivalent quanta, noise power spectra, slice sensitivity profiles, streak artifacts, CT number uniformity, CT number consistency, object length accuracy, CT number path length consistency, and object registration. Furthermore, we have developed a sophisticated MATLAB based image analysis tool kit to analyze CT generated images of phantoms and report these metrics in a format that is standardized across the considered models of CT scanners, allowing for comparative image quality analysis within a CT model or between different CT models. In addition, we have developed a modified sparse principal component analysis (SPCA) method to generate a modified set of PCA components as compared to the standard principal component analysis (PCA) with sparse loadings in conjunction with Hotelling T2 statistical analysis method to compare, qualify, and detect faults in the tested systems.

  7. Mass spectrometric methods for trace analysis of metals

    International Nuclear Information System (INIS)

    Bahr, U.; Schulten, H.R.

    1981-01-01

    A brief outline is given of the principles of mass spectrometry (MS) and the fundamentals of qualitative and quantitative mass spectrometric analysis emphasizing recent developments and results. Classical methods of the analysis of solids, i.e. spark-source MS and thermal ionization MS, as well as recent methods of metal analysis are described. Focal points in this survey of recently developed techniques include secondary ion MS, laser probe MS, plasma ion source MS, gas discharge MS and field desorption MS. Here, a more detailed description is given and the merits of these emerging methods are discussed more explicitly. In particular, the results of the field desorption techniques in elemental analyses are reviewed and critically evaluated

  8. Embedding Quantitative Methods by Stealth in Political Science: Developing a Pedagogy for Psephology

    Science.gov (United States)

    Gunn, Andrew

    2017-01-01

    Student evaluations of quantitative methods courses in political science often reveal they are characterised by aversion, alienation and anxiety. As a solution to this problem, this paper describes a pedagogic research project with the aim of embedding quantitative methods by stealth into the first-year undergraduate curriculum. This paper…

  9. Quantitative MRI analysis of the brain after twenty-two years of neuromyelitis optica indicates focal tissue damage

    DEFF Research Database (Denmark)

    Aradi, Mihaly; Koszegi, Edit; Orsi, Gergely

    2013-01-01

    ). In such abnormal NAWM regions, biexponential diffusion analysis and quantitative spectroscopy indicated extracellular edema and axonal loss, respectively. Repeated analysis 6 months later identified the same alterations. Such patchy alterations were not detectable in the NAWM of the 3 cases with short-term NMO......BACKGROUND: The long-term effect of neuromyelitis optica (NMO) on the brain is not well established. METHODS: After 22 years of NMO, a patient's brain was examined by quantitative T1- and T2-weighted mono- and biexponential diffusion and proton spectroscopy. It was compared to 3 cases with short...

  10. Parameter determination for quantitative PIXE analysis using genetic algorithms

    International Nuclear Information System (INIS)

    Aspiazu, J.; Belmont-Moreno, E.

    1996-01-01

    For biological and environmental samples, PIXE technique is in particular advantage for elemental analysis, but the quantitative analysis implies accomplishing complex calculations that require the knowledge of more than a dozen parameters. Using a genetic algorithm, the authors give here an account of the procedure to obtain the best values for the parameters necessary to fit the efficiency for a X-ray detector. The values for some variables involved in quantitative PIXE analysis, were manipulated in a similar way as the genetic information is treated in a biological process. The authors carried out the algorithm until they reproduce, within the confidence interval, the elemental concentrations corresponding to a reference material

  11. ATR-FTIR spectroscopy and quantitative multivariate analysis of paints and coating materials

    Science.gov (United States)

    Hayes, Philippa Alice; Vahur, Signe; Leito, Ivo

    2014-12-01

    The applicability of ATR-FTIR spectroscopy with partial least squares (PLS) data analysis was evaluated for quantifying the components of mixtures of paint binding media and pigments, and alkyd resins. PLS methods were created using a number of standard mixtures. Validation and measurement uncertainty estimation was carried out. Binary, ternary and quaternary mixtures of several common binding media and pigments were quantified, with standard measurement uncertainties in most cases below 3 g/100 g. Classes of components - aromatic anhydrides and alcohols - used in alkyd resin synthesis were also successfully quantified, with standard uncertainties in the range of 2-3 g/100 g. This is a more demanding application because in alkyd resins aromatic anhydrides and alcohols have reacted to form a polyester, and are not present in their original forms. Once a PLS method has been calibrated, analysis time and cost are significantly reduced from typical quantitative methods such as GC/MS. This is beneficial in the case of routine analysis where the components are known.

  12. A new method of linkage analysis using LOD scores for quantitative traits supports linkage of monoamine oxidase activity to D17S250 in the Collaborative Study on the Genetics of Alcoholism pedigrees.

    Science.gov (United States)

    Curtis, David; Knight, Jo; Sham, Pak C

    2005-09-01

    Although LOD score methods have been applied to diseases with complex modes of inheritance, linkage analysis of quantitative traits has tended to rely on non-parametric methods based on regression or variance components analysis. Here, we describe a new method for LOD score analysis of quantitative traits which does not require specification of a mode of inheritance. The technique is derived from the MFLINK method for dichotomous traits. A range of plausible transmission models is constructed, constrained to yield the correct population mean and variance for the trait but differing with respect to the contribution to the variance due to the locus under consideration. Maximized LOD scores under homogeneity and admixture are calculated, as is a model-free LOD score which compares the maximized likelihoods under admixture assuming linkage and no linkage. These LOD scores have known asymptotic distributions and hence can be used to provide a statistical test for linkage. The method has been implemented in a program called QMFLINK. It was applied to data sets simulated using a variety of transmission models and to a measure of monoamine oxidase activity in 105 pedigrees from the Collaborative Study on the Genetics of Alcoholism. With the simulated data, the results showed that the new method could detect linkage well if the true allele frequency for the trait was close to that specified. However, it performed poorly on models in which the true allele frequency was much rarer. For the Collaborative Study on the Genetics of Alcoholism data set only a modest overlap was observed between the results obtained from the new method and those obtained when the same data were analysed previously using regression and variance components analysis. Of interest is that D17S250 produced a maximized LOD score under homogeneity and admixture of 2.6 but did not indicate linkage using the previous methods. However, this region did produce evidence for linkage in a separate data set

  13. A Systematic Approach for Quantitative Analysis of Multidisciplinary Design Optimization Framework

    Science.gov (United States)

    Kim, Sangho; Park, Jungkeun; Lee, Jeong-Oog; Lee, Jae-Woo

    An efficient Multidisciplinary Design and Optimization (MDO) framework for an aerospace engineering system should use and integrate distributed resources such as various analysis codes, optimization codes, Computer Aided Design (CAD) tools, Data Base Management Systems (DBMS), etc. in a heterogeneous environment, and need to provide user-friendly graphical user interfaces. In this paper, we propose a systematic approach for determining a reference MDO framework and for evaluating MDO frameworks. The proposed approach incorporates two well-known methods, Analytic Hierarchy Process (AHP) and Quality Function Deployment (QFD), in order to provide a quantitative analysis of the qualitative criteria of MDO frameworks. Identification and hierarchy of the framework requirements and the corresponding solutions for the reference MDO frameworks, the general one and the aircraft oriented one were carefully investigated. The reference frameworks were also quantitatively identified using AHP and QFD. An assessment of three in-house frameworks was then performed. The results produced clear and useful guidelines for improvement of the in-house MDO frameworks and showed the feasibility of the proposed approach for evaluating an MDO framework without a human interference.

  14. Mixing Methods in Organizational Ethics and Organizational Innovativeness Research : Three Approaches to Mixed Methods Analysis

    OpenAIRE

    Riivari, Elina

    2015-01-01

    This chapter discusses three categories of mixed methods analysis techniques: variableoriented, case-oriented, and process/experience-oriented. All three categories combine qualitative and quantitative approaches to research methodology. The major differences among the categories are the focus of the study, available analysis techniques and timely aspect of the study. In variable-oriented analysis, the study focus is relationships between the research phenomena. In case-oriente...

  15. Methods in quantitative image analysis.

    Science.gov (United States)

    Oberholzer, M; Ostreicher, M; Christen, H; Brühlmann, M

    1996-05-01

    The main steps of image analysis are image capturing, image storage (compression), correcting imaging defects (e.g. non-uniform illumination, electronic-noise, glare effect), image enhancement, segmentation of objects in the image and image measurements. Digitisation is made by a camera. The most modern types include a frame-grabber, converting the analog-to-digital signal into digital (numerical) information. The numerical information consists of the grey values describing the brightness of every point within the image, named a pixel. The information is stored in bits. Eight bits are summarised in one byte. Therefore, grey values can have a value between 0 and 256 (2(8)). The human eye seems to be quite content with a display of 5-bit images (corresponding to 64 different grey values). In a digitised image, the pixel grey values can vary within regions that are uniform in the original scene: the image is noisy. The noise is mainly manifested in the background of the image. For an optimal discrimination between different objects or features in an image, uniformity of illumination in the whole image is required. These defects can be minimised by shading correction [subtraction of a background (white) image from the original image, pixel per pixel, or division of the original image by the background image]. The brightness of an image represented by its grey values can be analysed for every single pixel or for a group of pixels. The most frequently used pixel-based image descriptors are optical density, integrated optical density, the histogram of the grey values, mean grey value and entropy. The distribution of the grey values existing within an image is one of the most important characteristics of the image. However, the histogram gives no information about the texture of the image. The simplest way to improve the contrast of an image is to expand the brightness scale by spreading the histogram out to the full available range. Rules for transforming the grey value

  16. A novel quantitative approach for eliminating sample-to-sample variation using a hue saturation value analysis program.

    Science.gov (United States)

    Yabusaki, Katsumi; Faits, Tyler; McMullen, Eri; Figueiredo, Jose Luiz; Aikawa, Masanori; Aikawa, Elena

    2014-01-01

    As computing technology and image analysis techniques have advanced, the practice of histology has grown from a purely qualitative method to one that is highly quantified. Current image analysis software is imprecise and prone to wide variation due to common artifacts and histological limitations. In order to minimize the impact of these artifacts, a more robust method for quantitative image analysis is required. Here we present a novel image analysis software, based on the hue saturation value color space, to be applied to a wide variety of histological stains and tissue types. By using hue, saturation, and value variables instead of the more common red, green, and blue variables, our software offers some distinct advantages over other commercially available programs. We tested the program by analyzing several common histological stains, performed on tissue sections that ranged from 4 µm to 10 µm in thickness, using both a red green blue color space and a hue saturation value color space. We demonstrated that our new software is a simple method for quantitative analysis of histological sections, which is highly robust to variations in section thickness, sectioning artifacts, and stain quality, eliminating sample-to-sample variation.

  17. Problems with the quantitative spectroscopic analysis of oxygen rich Czech coals

    Energy Technology Data Exchange (ETDEWEB)

    Pavlikova, H.; Machovic, V.; Cerny, J. [Inst. of Chemical Technology, Prague (Czechoslovakia); Sebestova, E. [Inst. of Rock Structure and Mechanics, Prague (Czechoslovakia)

    1995-12-01

    Solid state NMR and FTIR spectroscopies are two main methods used for the structural analysis of coals and their various products. Obtaining quantitative parameters from coals, such as arornaticity (f{sub a}) by the above mentioned methods can be a rather difficult task. Coal samples of various rank were chosen for the quantitative NMR, FTIR and EPR analyses. The aromaticity was obtained by the FTIR, {sup 13}C CP/MAS and SP/MAS NMR experiments. The content of radicals and saturation characteristics of coals were measured by EPR spectroscopy. The following problems have been discussed: 1. The relationship between the amount of free radicals (N{sub g}) and f{sub a} by NMR. 2. The f{sub a} obtained by solid state NMR and FTIR spectroscopies. 3. The differences between the f{sub a} measured by CP and SP/NMR experiments. 4. The relationship between the content of oxygen groups and the saturation responses of coals. The reliability of our results was checked by measuring the structural parameters of Argonne premium coals.

  18. Increasing Literacy in Quantitative Methods: The Key to the Future of Canadian Psychology

    Science.gov (United States)

    Counsell, Alyssa; Cribbie, Robert A.; Harlow, Lisa. L.

    2016-01-01

    Quantitative methods (QM) dominate empirical research in psychology. Unfortunately most researchers in psychology receive inadequate training in QM. This creates a challenge for researchers who require advanced statistical methods to appropriately analyze their data. Many of the recent concerns about research quality, replicability, and reporting practices are directly tied to the problematic use of QM. As such, improving quantitative literacy in psychology is an important step towards eliminating these concerns. The current paper will include two main sections that discuss quantitative challenges and opportunities. The first section discusses training and resources for students and presents descriptive results on the number of quantitative courses required and available to graduate students in Canadian psychology departments. In the second section, we discuss ways of improving quantitative literacy for faculty, researchers, and clinicians. This includes a strong focus on the importance of collaboration. The paper concludes with practical recommendations for improving quantitative skills and literacy for students and researchers in Canada. PMID:28042199

  19. Increasing Literacy in Quantitative Methods: The Key to the Future of Canadian Psychology.

    Science.gov (United States)

    Counsell, Alyssa; Cribbie, Robert A; Harlow, Lisa L

    2016-08-01

    Quantitative methods (QM) dominate empirical research in psychology. Unfortunately most researchers in psychology receive inadequate training in QM. This creates a challenge for researchers who require advanced statistical methods to appropriately analyze their data. Many of the recent concerns about research quality, replicability, and reporting practices are directly tied to the problematic use of QM. As such, improving quantitative literacy in psychology is an important step towards eliminating these concerns. The current paper will include two main sections that discuss quantitative challenges and opportunities. The first section discusses training and resources for students and presents descriptive results on the number of quantitative courses required and available to graduate students in Canadian psychology departments. In the second section, we discuss ways of improving quantitative literacy for faculty, researchers, and clinicians. This includes a strong focus on the importance of collaboration. The paper concludes with practical recommendations for improving quantitative skills and literacy for students and researchers in Canada.

  20. The Digital Image Processing And Quantitative Analysis In Microscopic Image Characterization

    International Nuclear Information System (INIS)

    Ardisasmita, M. Syamsa

    2000-01-01

    Many electron microscopes although have produced digital images, but not all of them are equipped with a supporting unit to process and analyse image data quantitatively. Generally the analysis of image has to be made visually and the measurement is realized manually. The development of mathematical method for geometric analysis and pattern recognition, allows automatic microscopic image analysis with computer. Image processing program can be used for image texture and structure periodic analysis by the application of Fourier transform. Because the development of composite materials. Fourier analysis in frequency domain become important for measure the crystallography orientation. The periodic structure analysis and crystal orientation are the key to understand many material properties like mechanical strength. stress, heat conductivity, resistance, capacitance and other material electric and magnetic properties. In this paper will be shown the application of digital image processing in microscopic image characterization and analysis in microscopic image

  1. Comparison of conventional, model-based quantitative planar, and quantitative SPECT image processing methods for organ activity estimation using In-111 agents

    International Nuclear Information System (INIS)

    He, Bin; Frey, Eric C

    2006-01-01

    Accurate quantification of organ radionuclide uptake is important for patient-specific dosimetry. The quantitative accuracy from conventional conjugate view methods is limited by overlap of projections from different organs and background activity, and attenuation and scatter. In this work, we propose and validate a quantitative planar (QPlanar) processing method based on maximum likelihood (ML) estimation of organ activities using 3D organ VOIs and a projector that models the image degrading effects. Both a physical phantom experiment and Monte Carlo simulation (MCS) studies were used to evaluate the new method. In these studies, the accuracies and precisions of organ activity estimates for the QPlanar method were compared with those from conventional planar (CPlanar) processing methods with various corrections for scatter, attenuation and organ overlap, and a quantitative SPECT (QSPECT) processing method. Experimental planar and SPECT projections and registered CT data from an RSD Torso phantom were obtained using a GE Millenium VH/Hawkeye system. The MCS data were obtained from the 3D NCAT phantom with organ activity distributions that modelled the uptake of 111 In ibritumomab tiuxetan. The simulations were performed using parameters appropriate for the same system used in the RSD torso phantom experiment. The organ activity estimates obtained from the CPlanar, QPlanar and QSPECT methods from both experiments were compared. From the results of the MCS experiment, even with ideal organ overlap correction and background subtraction, CPlanar methods provided limited quantitative accuracy. The QPlanar method with accurate modelling of the physical factors increased the quantitative accuracy at the cost of requiring estimates of the organ VOIs in 3D. The accuracy of QPlanar approached that of QSPECT, but required much less acquisition and computation time. Similar results were obtained from the physical phantom experiment. We conclude that the QPlanar method, based

  2. QUALITATIVE AND QUANTITATIVE METHODS OF SUICIDE RESEARCH IN OLD AGE

    OpenAIRE

    Ojagbemi, A.

    2017-01-01

    This paper examines the merits of the qualitative and quantitative methods of suicide research in the elderly using two studies identified through a free search of the Pubmed database for articles that might have direct bearing on suicidality in the elderly. The studies have been purposively selected for critical appraisal because they meaningfully reflect the quantitative and qualitative divide as well as the social, economic, and cultural boundaries between the elderly living in sub-Saharan...

  3. Methods in carbon K-edge NEXAFS: Experiment and analysis

    International Nuclear Information System (INIS)

    Watts, B.; Thomsen, L.; Dastoor, P.C.

    2006-01-01

    Near-edge X-ray absorption spectroscopy (NEXAFS) is widely used to probe the chemistry and structure of surface layers. Moreover, using ultra-high brilliance polarised synchrotron light sources, it is possible to determine the molecular alignment of ultra-thin surface films. However, the quantitative analysis of NEXAFS data is complicated by many experimental factors and, historically, the essential methods of calibration, normalisation and artefact removal are presented in the literature in a somewhat fragmented manner, thus hindering their integrated implementation as well as their further development. This paper outlines a unified, systematic approach to the collection and quantitative analysis of NEXAFS data with a particular focus upon carbon K-edge spectra. As a consequence, we show that current methods neglect several important aspects of the data analysis process, which we address with a combination of novel and adapted techniques. We discuss multiple approaches in solving the issues commonly encountered in the analysis of NEXAFS data, revealing the inherent assumptions of each approach and providing guidelines for assessing their appropriateness in a broad range of experimental situations

  4. New approaches for the analysis of confluent cell layers with quantitative phase digital holographic microscopy

    Science.gov (United States)

    Pohl, L.; Kaiser, M.; Ketelhut, S.; Pereira, S.; Goycoolea, F.; Kemper, Björn

    2016-03-01

    Digital holographic microscopy (DHM) enables high resolution non-destructive inspection of technical surfaces and minimally-invasive label-free live cell imaging. However, the analysis of confluent cell layers represents a challenge as quantitative DHM phase images in this case do not provide sufficient information for image segmentation, determination of the cellular dry mass or calculation of the cell thickness. We present novel strategies for the analysis of confluent cell layers with quantitative DHM phase contrast utilizing a histogram based-evaluation procedure. The applicability of our approach is illustrated by quantification of drug induced cell morphology changes and it is shown that the method is capable to quantify reliable global morphology changes of confluent cell layers.

  5. Computer compensation for NMR quantitative analysis of trace components

    International Nuclear Information System (INIS)

    Nakayama, T.; Fujiwara, Y.

    1981-01-01

    A computer program has been written that determines trace components and separates overlapping components in multicomponent NMR spectra. This program uses the Lorentzian curve as a theoretical curve of NMR spectra. The coefficients of the Lorentzian are determined by the method of least squares. Systematic errors such as baseline/phase distortion are compensated and random errors are smoothed by taking moving averages, so that there processes contribute substantially to decreasing the accumulation time of spectral data. The accuracy of quantitative analysis of trace components has been improved by two significant figures. This program was applied to determining the abundance of 13C and the saponification degree of PVA

  6. Qualitative and quantitative analysis of anthraquinones in rhubarbs by high performance liquid chromatography with diode array detector and mass spectrometry.

    Science.gov (United States)

    Wei, Shao-yin; Yao, Wen-xin; Ji, Wen-yuan; Wei, Jia-qi; Peng, Shi-qi

    2013-12-01

    Rhubarb is well known in traditional Chinese medicines (TCMs) mainly due to its effective purgative activity. Anthraquinones, including anthraquinone derivatives and their glycosides, are thought to be the major active components in rhubarb. To improve the quality control method of rhubarb, we studied on the extraction method, and did qualitative and quantitative analysis of widely used rhubarbs, Rheum tanguticum Maxim. ex Balf. and Rheum palmatum L., by HPLC-photodiode array detection (HPLC-DAD) and HPLC-mass spectrum (HPLC-MS) on a Waters SymmetryShield RP18 column (250 mm × 4.6 mm i.d., 5 μm). Amount of five anthraquinones was viewed as the evaluating standard. A standardized characteristic fingerprint of rhubarb was provided. From the quantitative analysis, the rationality was demonstrated for ancestors to use these two species of rhubarb equally. Under modern extraction methods, the amount of five anthraquinones in Rheum tanguticum Maxim. ex Balf. is higher than that in Rheum palmatum L. Among various extraction methods, ultrasonication with 70% methanol for 30 min is a promising one. For HPLC analysis, mobile phase consisted of methanol and 0.1% phosphoric acid in water with a gradient program, the detection wavelength at 280nm for fingerprinting analysis and 254 nm for quantitative analysis are good choices. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Quantitative CT analysis of small pulmonary vessels in lymphangioleiomyomatosis

    International Nuclear Information System (INIS)

    Ando, Katsutoshi; Tobino, Kazunori; Kurihara, Masatoshi; Kataoka, Hideyuki; Doi, Tokuhide; Hoshika, Yoshito; Takahashi, Kazuhisa; Seyama, Kuniaki

    2012-01-01

    Backgrounds: Lymphangioleiomyomatosis (LAM) is a destructive lung disease that share clinical, physiologic, and radiologic features with chronic obstructive pulmonary disease (COPD). This study aims to identify those features that are unique to LAM by using quantitative CT analysis. Methods: We measured total cross-sectional areas of small pulmonary vessels (CSA) less than 5 mm 2 and 5–10 mm 2 and calculated percentages of those lung areas (%CSA), respectively, in 50 LAM and 42 COPD patients. The extent of cystic destruction (LAA%) and mean parenchymal CT value were also calculated and correlated with pulmonary function. Results: The diffusing capacity for carbon monoxide/alveolar volume (DL CO /VA %predicted) was similar for both groups (LAM, 44.4 ± 19.8% vs. COPD, 45.7 ± 16.0%, p = 0.763), but less tissue damage occurred in LAM than COPD (LAA% 21.7 ± 16.3% vs. 29.3 ± 17.0; p CO /VA %predicted, %CSA and mean parenchymal CT value were still greater for LAM than COPD (p < 0.05). Conclusions: Quantitative CT analysis revealing a correlation between cystic destruction and CSA in COPD but not LAM indicates that this approach successfully reflects different mechanisms governing the two pathologic courses. Such determinations of small pulmonary vessel density may serve to differentiate LAM from COPD even in patients with severe lung destruction.

  8. Tannin structural elucidation and quantitative ³¹P NMR analysis. 2. Hydrolyzable tannins and proanthocyanidins.

    Science.gov (United States)

    Melone, Federica; Saladino, Raffaele; Lange, Heiko; Crestini, Claudia

    2013-10-02

    An unprecedented analytical method that allows simultaneous structural and quantitative characterization of all functional groups present in tannins is reported. In situ labeling of all labile H groups (aliphatic and phenolic hydroxyls and carboxylic acids) with a phosphorus-containing reagent (Cl-TMDP) followed by quantitative ³¹P NMR acquisition constitutes a novel fast and reliable analytical tool for the analysis of tannins and proanthocyanidins with significant implications for the fields of food and feed analyses, tannery, and the development of natural polyphenolics containing products.

  9. A novel iris transillumination grading scale allowing flexible assessment with quantitative image analysis and visual matching.

    Science.gov (United States)

    Wang, Chen; Brancusi, Flavia; Valivullah, Zaheer M; Anderson, Michael G; Cunningham, Denise; Hedberg-Buenz, Adam; Power, Bradley; Simeonov, Dimitre; Gahl, William A; Zein, Wadih M; Adams, David R; Brooks, Brian

    2018-01-01

    To develop a sensitive scale of iris transillumination suitable for clinical and research use, with the capability of either quantitative analysis or visual matching of images. Iris transillumination photographic images were used from 70 study subjects with ocular or oculocutaneous albinism. Subjects represented a broad range of ocular pigmentation. A subset of images was subjected to image analysis and ranking by both expert and nonexpert reviewers. Quantitative ordering of images was compared with ordering by visual inspection. Images were binned to establish an 8-point scale. Ranking consistency was evaluated using the Kendall rank correlation coefficient (Kendall's tau). Visual ranking results were assessed using Kendall's coefficient of concordance (Kendall's W) analysis. There was a high degree of correlation among the image analysis, expert-based and non-expert-based image rankings. Pairwise comparisons of the quantitative ranking with each reviewer generated an average Kendall's tau of 0.83 ± 0.04 (SD). Inter-rater correlation was also high with Kendall's W of 0.96, 0.95, and 0.95 for nonexpert, expert, and all reviewers, respectively. The current standard for assessing iris transillumination is expert assessment of clinical exam findings. We adapted an image-analysis technique to generate quantitative transillumination values. Quantitative ranking was shown to be highly similar to a ranking produced by both expert and nonexpert reviewers. This finding suggests that the image characteristics used to quantify iris transillumination do not require expert interpretation. Inter-rater rankings were also highly similar, suggesting that varied methods of transillumination ranking are robust in terms of producing reproducible results.

  10. Quantitative methods for management and economics

    CERN Document Server

    Chakravarty, Pulak

    2009-01-01

    ""Quantitative Methods for Management and Economics"" is specially prepared for the MBA students in India and all over the world. It starts from the basics, such that even a beginner with out much mathematical sophistication can grasp the ideas and then comes forward to more complex and professional problems. Thus, both the ordinary students as well as ""above average: i.e., ""bright and sincere"" students would be benefited equally through this book.Since, most of the problems are solved or hints are given, students can do well within the short duration of the semesters of their busy course.

  11. Meta-analysis is not an exact science: Call for guidance on quantitative synthesis decisions.

    Science.gov (United States)

    Haddaway, Neal R; Rytwinski, Trina

    2018-05-01

    Meta-analysis is becoming increasingly popular in the field of ecology and environmental management. It increases the effective power of analyses relative to single studies, and allows researchers to investigate effect modifiers and sources of heterogeneity that could not be easily examined within single studies. Many systematic reviewers will set out to conduct a meta-analysis as part of their synthesis, but meta-analysis requires a niche set of skills that are not widely held by the environmental research community. Each step in the process of carrying out a meta-analysis requires decisions that have both scientific and statistical implications. Reviewers are likely to be faced with a plethora of decisions over which effect size to choose, how to calculate variances, and how to build statistical models. Some of these decisions may be simple based on appropriateness of the options. At other times, reviewers must choose between equally valid approaches given the information available to them. This presents a significant problem when reviewers are attempting to conduct a reliable synthesis, such as a systematic review, where subjectivity is minimised and all decisions are documented and justified transparently. We propose three urgent, necessary developments within the evidence synthesis community. Firstly, we call on quantitative synthesis experts to improve guidance on how to prepare data for quantitative synthesis, providing explicit detail to support systematic reviewers. Secondly, we call on journal editors and evidence synthesis coordinating bodies (e.g. CEE) to ensure that quantitative synthesis methods are adequately reported in a transparent and repeatable manner in published systematic reviews. Finally, where faced with two or more broadly equally valid alternative methods or actions, reviewers should conduct multiple analyses, presenting all options, and discussing the implications of the different analytical approaches. We believe it is vital to tackle

  12. Quantitative image analysis of intra-tumoral bFGF level as a molecular marker of paclitaxel resistance

    Directory of Open Access Journals (Sweden)

    Wientjes M Guillaume

    2008-01-01

    Full Text Available Abstract Background The role of basic fibroblast growth factor (bFGF in chemoresistance is controversial; some studies showed a relationship between higher bFGF level and chemoresistance while other studies showed the opposite finding. The goal of the present study was to quantify bFGF levels in archived tumor tissues, and to determine its relationship with chemosensitivity. Methods We established an image analysis-based method to quantify and convert the immunostaining intensity of intra-tumor bFGF to concentrations; this was accomplished by generating standard curves using human xenograft tumors as the renewable tissue source for simultaneous image analysis and ELISA. The relationships between bFGF concentrations and tumor chemosensitivity of patient tumors (n = 87 to paclitaxel were evaluated using linear regression analysis. Results The image analysis results were compared to our previous results obtained using a conventional, semi-quantitative visual scoring method. While both analyses indicated an inverse relationship between bFGF level and tumor sensitivity to paclitaxel, the image analysis method, by providing bFGF levels in individual tumors and therefore more data points (87 numerical values as opposed to four groups of staining intensities, further enabled the quantitative analysis of the relationship in subgroups of tumors with different pathobiological properties. The results show significant correlation between bFGF level and tumor sensitivity to the antiproliferation effect, but not the apoptotic effect, of paclitaxel. We further found stronger correlations of bFGF level and paclitaxel sensitivity in four tumor subgroups (high stage, positive p53 staining, negative aFGF staining, containing higher-than-median bFGF level, compared to all other groups. These findings suggest that the relationship between intra-tumoral bFGF level and paclitaxel sensitivity was context-dependent, which may explain the previous contradictory findings

  13. A novel approach for evaluating the performance of real time quantitative loop-mediated isothermal amplification-based methods

    Directory of Open Access Journals (Sweden)

    Gavin J. Nixon

    2014-12-01

    Full Text Available Molecular diagnostic measurements are currently underpinned by the polymerase chain reaction (PCR. There are also a number of alternative nucleic acid amplification technologies, which unlike PCR, work at a single temperature. These ‘isothermal’ methods, reportedly offer potential advantages over PCR such as simplicity, speed and resistance to inhibitors and could also be used for quantitative molecular analysis. However there are currently limited mechanisms to evaluate their quantitative performance, which would assist assay development and study comparisons. This study uses a sexually transmitted infection diagnostic model in combination with an adapted metric termed isothermal doubling time (IDT, akin to PCR efficiency, to compare quantitative PCR and quantitative loop-mediated isothermal amplification (qLAMP assays, and to quantify the impact of matrix interference. The performance metric described here facilitates the comparison of qLAMP assays that could assist assay development and validation activities.

  14. Dynamic and quantitative method of analyzing service consistency evolution based on extended hierarchical finite state automata.

    Science.gov (United States)

    Fan, Linjun; Tang, Jun; Ling, Yunxiang; Li, Benxian

    2014-01-01

    This paper is concerned with the dynamic evolution analysis and quantitative measurement of primary factors that cause service inconsistency in service-oriented distributed simulation applications (SODSA). Traditional methods are mostly qualitative and empirical, and they do not consider the dynamic disturbances among factors in service's evolution behaviors such as producing, publishing, calling, and maintenance. Moreover, SODSA are rapidly evolving in terms of large-scale, reusable, compositional, pervasive, and flexible features, which presents difficulties in the usage of traditional analysis methods. To resolve these problems, a novel dynamic evolution model extended hierarchical service-finite state automata (EHS-FSA) is constructed based on finite state automata (FSA), which formally depict overall changing processes of service consistency states. And also the service consistency evolution algorithms (SCEAs) based on EHS-FSA are developed to quantitatively assess these impact factors. Experimental results show that the bad reusability (17.93% on average) is the biggest influential factor, the noncomposition of atomic services (13.12%) is the second biggest one, and the service version's confusion (1.2%) is the smallest one. Compared with previous qualitative analysis, SCEAs present good effectiveness and feasibility. This research can guide the engineers of service consistency technologies toward obtaining a higher level of consistency in SODSA.

  15. Dynamic and Quantitative Method of Analyzing Service Consistency Evolution Based on Extended Hierarchical Finite State Automata

    Directory of Open Access Journals (Sweden)

    Linjun Fan

    2014-01-01

    Full Text Available This paper is concerned with the dynamic evolution analysis and quantitative measurement of primary factors that cause service inconsistency in service-oriented distributed simulation applications (SODSA. Traditional methods are mostly qualitative and empirical, and they do not consider the dynamic disturbances among factors in service’s evolution behaviors such as producing, publishing, calling, and maintenance. Moreover, SODSA are rapidly evolving in terms of large-scale, reusable, compositional, pervasive, and flexible features, which presents difficulties in the usage of traditional analysis methods. To resolve these problems, a novel dynamic evolution model extended hierarchical service-finite state automata (EHS-FSA is constructed based on finite state automata (FSA, which formally depict overall changing processes of service consistency states. And also the service consistency evolution algorithms (SCEAs based on EHS-FSA are developed to quantitatively assess these impact factors. Experimental results show that the bad reusability (17.93% on average is the biggest influential factor, the noncomposition of atomic services (13.12% is the second biggest one, and the service version’s confusion (1.2% is the smallest one. Compared with previous qualitative analysis, SCEAs present good effectiveness and feasibility. This research can guide the engineers of service consistency technologies toward obtaining a higher level of consistency in SODSA.

  16. Multilayers quantitative X-ray fluorescence analysis applied to easel paintings.

    Science.gov (United States)

    de Viguerie, Laurence; Sole, V Armando; Walter, Philippe

    2009-12-01

    X-ray fluorescence spectrometry (XRF) allows a rapid and simple determination of the elemental composition of a material. As a non-destructive tool, it has been extensively used for analysis in art and archaeology since the early 1970s. Whereas it is commonly used for qualitative analysis, recent efforts have been made to develop quantitative treatment even with portable systems. However, the interpretation of the results obtained with this technique can turn out to be problematic in the case of layered structures such as easel paintings. The use of differential X-ray attenuation enables modelling of the various layers: indeed, the absorption of X-rays through different layers will result in modification of intensity ratio between the different characteristic lines. This work focuses on the possibility to use XRF with the fundamental parameters method to reconstruct the composition and thickness of the layers. This method was tested on several multilayers standards and gives a maximum error of 15% for thicknesses and errors of 10% for concentrations. On a painting test sample that was rather inhomogeneous, the XRF analysis provides an average value. This method was applied in situ to estimate the thickness of the layers a painting from Marco d'Oggiono, pupil of Leonardo da Vinci.

  17. Matrix effect and correction by standard addition in quantitative liquid chromatographic-mass spectrometric analysis of diarrhetic shellfish poisoning toxins.

    Science.gov (United States)

    Ito, Shinya; Tsukada, Katsuo

    2002-01-11

    An evaluation of the feasibility of liquid chromatography-mass spectrometry (LC-MS) with atmospheric pressure ionization was made for quantitation of four diarrhetic shellfish poisoning toxins, okadaic acid, dinophysistoxin-1, pectenotoxin-6 and yessotoxin in scallops. When LC-MS was applied to the analysis of scallop extracts, large signal suppressions were observed due to coeluting substances from the column. To compensate for these matrix signal suppressions, the standard addition method was applied. First, the sample was analyzed and then the sample involving the addition of calibration standards is analyzed. Although this method requires two LC-MS runs per analysis, effective correction of quantitative errors was found.

  18. A method for normalizing pathology images to improve feature extraction for quantitative pathology

    International Nuclear Information System (INIS)

    Tam, Allison; Barker, Jocelyn; Rubin, Daniel

    2016-01-01

    Purpose: With the advent of digital slide scanning technologies and the potential proliferation of large repositories of digital pathology images, many research studies can leverage these data for biomedical discovery and to develop clinical applications. However, quantitative analysis of digital pathology images is impeded by batch effects generated by varied staining protocols and staining conditions of pathological slides. Methods: To overcome this problem, this paper proposes a novel, fully automated stain normalization method to reduce batch effects and thus aid research in digital pathology applications. Their method, intensity centering and histogram equalization (ICHE), normalizes a diverse set of pathology images by first scaling the centroids of the intensity histograms to a common point and then applying a modified version of contrast-limited adaptive histogram equalization. Normalization was performed on two datasets of digitized hematoxylin and eosin (H&E) slides of different tissue slices from the same lung tumor, and one immunohistochemistry dataset of digitized slides created by restaining one of the H&E datasets. Results: The ICHE method was evaluated based on image intensity values, quantitative features, and the effect on downstream applications, such as a computer aided diagnosis. For comparison, three methods from the literature were reimplemented and evaluated using the same criteria. The authors found that ICHE not only improved performance compared with un-normalized images, but in most cases showed improvement compared with previous methods for correcting batch effects in the literature. Conclusions: ICHE may be a useful preprocessing step a digital pathology image processing pipeline

  19. A method for normalizing pathology images to improve feature extraction for quantitative pathology

    Energy Technology Data Exchange (ETDEWEB)

    Tam, Allison [Stanford Institutes of Medical Research Program, Stanford University School of Medicine, Stanford, California 94305 (United States); Barker, Jocelyn [Department of Radiology, Stanford University School of Medicine, Stanford, California 94305 (United States); Rubin, Daniel [Department of Radiology, Stanford University School of Medicine, Stanford, California 94305 and Department of Medicine (Biomedical Informatics Research), Stanford University School of Medicine, Stanford, California 94305 (United States)

    2016-01-15

    Purpose: With the advent of digital slide scanning technologies and the potential proliferation of large repositories of digital pathology images, many research studies can leverage these data for biomedical discovery and to develop clinical applications. However, quantitative analysis of digital pathology images is impeded by batch effects generated by varied staining protocols and staining conditions of pathological slides. Methods: To overcome this problem, this paper proposes a novel, fully automated stain normalization method to reduce batch effects and thus aid research in digital pathology applications. Their method, intensity centering and histogram equalization (ICHE), normalizes a diverse set of pathology images by first scaling the centroids of the intensity histograms to a common point and then applying a modified version of contrast-limited adaptive histogram equalization. Normalization was performed on two datasets of digitized hematoxylin and eosin (H&E) slides of different tissue slices from the same lung tumor, and one immunohistochemistry dataset of digitized slides created by restaining one of the H&E datasets. Results: The ICHE method was evaluated based on image intensity values, quantitative features, and the effect on downstream applications, such as a computer aided diagnosis. For comparison, three methods from the literature were reimplemented and evaluated using the same criteria. The authors found that ICHE not only improved performance compared with un-normalized images, but in most cases showed improvement compared with previous methods for correcting batch effects in the literature. Conclusions: ICHE may be a useful preprocessing step a digital pathology image processing pipeline.

  20. Quantitative scenario analysis of low and intermediate level radioactive repository

    International Nuclear Information System (INIS)

    Lee, Keon Jae; Lee, Sang Yoon; Park, Keon Baek; Song, Min Cheon; Lee, Ho Jin

    1998-03-01

    Derivation of hypothetical radioactive waste disposal facility os conducted through sub-component characteristic analysis and conceptual modeling. It is studied that quantitative analysis of constructed scenario in terms of annual effective dose equivalent. This study is sequentially conducted according to performance assessment of radioactive waste disposal facility such as : ground water flow analysis, source term analysis, ground water transport, surface water transport, dose and pathways. The routine program module such as VAM2D-PAGAN-GENII is used for quantitative scenario analysis. Detailed data used in this module are come from experimental data of Korean territory and default data given within this module. Is case of blank data for code execution, it is estimated through reasonable engineering sense

  1. Quantitative analysis of total retronecine esters-type pyrrolizidine alkaloids in plant by high performance liquid chromatography

    International Nuclear Information System (INIS)

    Zhang Fang; Wang Changhong; Xiong Aizhen; Wang Wan; Yang Li; Branford-White, Christopher J.; Wang Zhengtao; Bligh, S.W. Annie

    2007-01-01

    Pyrrolizidine alkaloids (PAs) are alkaloids which typically contain a necine (7-hydroxy-1-hydroxymethyl-6,7-dihydro-5H-pyrrolizidine) base unit, and they can be found in one third of the higher plants around the world. They are hepatotoxic, mutagenic and carcinogenic and pose a threat to human health and safety. A specific, quick and sensitive method is therefore needed to detect and quantify the PAs sometimes in trace amount in herbs, tea or food products. Based on high performance liquid chromatography with prior derivatization of the alkaloids using o-chloranil and Ehrlich's reagent, we report an improved method for quantitative analysis of the total amount of retronecine esters-type pyrrolizidine alkaloids (RET-PAs) in a plant extract. The total quantitation of RET-PAs is achieved because of a common colored retronecine marker, a 7-ethoxy-1-ethoxylmethyl retronecine derivative, is produced with all the different RET-PAs during the derivatization reaction. The chemical identity of the common retronecine marker was characterized on-line by positive mode electrospray ionization mass spectrometry and nuclear magnetic resonance spectroscopy. The limit of detection using the improved method is 0.26 nmol mL -1 and the limit of quantitation is 0.79 nmol mL -1 . The advantages of this method are much enhanced sensitivity in detection and quantitation, and, no restriction on the choice of RET-PA as a calibration standard. Application of the developed method to the quantitation of total RET esters-type PAs in Senecio scandens from different regions of China is also reported

  2. Quantitative analysis of total retronecine esters-type pyrrolizidine alkaloids in plant by high performance liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Fang; Wang Changhong; Xiong Aizhen; Wang Wan; Yang Li [Key Laboratory of Standardization of Chinese Medicines of Ministry of Education, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Zhangjiang Hi-Tech Park, Shanghai 201203 (China); Branford-White, Christopher J. [Institute for Health Research and Policy, London Metropolitan University, 166-220 Holloway Road, London N7 8DB (United Kingdom); Wang Zhengtao [Key Laboratory of Standardization of Chinese Medicines of Ministry of Education, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Zhangjiang Hi-Tech Park, Shanghai 201203 (China); School of Chinese Pharmacy, China Pharmaceutical University, Nanjing 210038 (China)], E-mail: wangzt@shutcm.edu.cn; Bligh, S.W. Annie [Institute for Health Research and Policy, London Metropolitan University, 166-220 Holloway Road, London N7 8DB (United Kingdom)], E-mail: a.bligh@londonmet.ac.uk

    2007-12-12

    Pyrrolizidine alkaloids (PAs) are alkaloids which typically contain a necine (7-hydroxy-1-hydroxymethyl-6,7-dihydro-5H-pyrrolizidine) base unit, and they can be found in one third of the higher plants around the world. They are hepatotoxic, mutagenic and carcinogenic and pose a threat to human health and safety. A specific, quick and sensitive method is therefore needed to detect and quantify the PAs sometimes in trace amount in herbs, tea or food products. Based on high performance liquid chromatography with prior derivatization of the alkaloids using o-chloranil and Ehrlich's reagent, we report an improved method for quantitative analysis of the total amount of retronecine esters-type pyrrolizidine alkaloids (RET-PAs) in a plant extract. The total quantitation of RET-PAs is achieved because of a common colored retronecine marker, a 7-ethoxy-1-ethoxylmethyl retronecine derivative, is produced with all the different RET-PAs during the derivatization reaction. The chemical identity of the common retronecine marker was characterized on-line by positive mode electrospray ionization mass spectrometry and nuclear magnetic resonance spectroscopy. The limit of detection using the improved method is 0.26 nmol mL{sup -1} and the limit of quantitation is 0.79 nmol mL{sup -1}. The advantages of this method are much enhanced sensitivity in detection and quantitation, and, no restriction on the choice of RET-PA as a calibration standard. Application of the developed method to the quantitation of total RET esters-type PAs in Senecio scandens from different regions of China is also reported.

  3. Quantitative Analysis of Rat Dorsal Root Ganglion Neurons Cultured on Microelectrode Arrays Based on Fluorescence Microscopy Image Processing.

    Science.gov (United States)

    Mari, João Fernando; Saito, José Hiroki; Neves, Amanda Ferreira; Lotufo, Celina Monteiro da Cruz; Destro-Filho, João-Batista; Nicoletti, Maria do Carmo

    2015-12-01

    Microelectrode Arrays (MEA) are devices for long term electrophysiological recording of extracellular spontaneous or evocated activities on in vitro neuron culture. This work proposes and develops a framework for quantitative and morphological analysis of neuron cultures on MEAs, by processing their corresponding images, acquired by fluorescence microscopy. The neurons are segmented from the fluorescence channel images using a combination of segmentation by thresholding, watershed transform, and object classification. The positioning of microelectrodes is obtained from the transmitted light channel images using the circular Hough transform. The proposed method was applied to images of dissociated culture of rat dorsal root ganglion (DRG) neuronal cells. The morphological and topological quantitative analysis carried out produced information regarding the state of culture, such as population count, neuron-to-neuron and neuron-to-microelectrode distances, soma morphologies, neuron sizes, neuron and microelectrode spatial distributions. Most of the analysis of microscopy images taken from neuronal cultures on MEA only consider simple qualitative analysis. Also, the proposed framework aims to standardize the image processing and to compute quantitative useful measures for integrated image-signal studies and further computational simulations. As results show, the implemented microelectrode identification method is robust and so are the implemented neuron segmentation and classification one (with a correct segmentation rate up to 84%). The quantitative information retrieved by the method is highly relevant to assist the integrated signal-image study of recorded electrophysiological signals as well as the physical aspects of the neuron culture on MEA. Although the experiments deal with DRG cell images, cortical and hippocampal cell images could also be processed with small adjustments in the image processing parameter estimation.

  4. Development of quantitative methods for spill response planning: a trajectory analysis planner

    International Nuclear Information System (INIS)

    Galt, J.A.; Payton, D.L.

    1999-01-01

    In planning for response to oil spills, a great deal of information must be assimilated. Typically, geophysical flow patterns, ocean turbulence, complex chemical processes, ecological setting, fisheries activities, economics of land use, and engineering constraints on response equipment all need to be considered. This presents a formidable analysis problem. It can be shown, however, that if an appropriate set of evaluation data is available, an objective function and appropriate constraints can be formulated. From these equations, the response problem can be cast in terms of game theory of decision analysis and an optimal solution can be obtained using common scarce-resource allocation methods. The optimal solution obtained by this procedure maximises the expected return over all possible implementations of a given set of response options. While considering the development of an optimal spill response, it is useful to consider whether (in the absence of complete data) implementing some subset of these methods is possible to provide relevant and useful information for the spill planning process, even though it may fall short of a statistically optimal solution. In this work we introduce a trajectory analysis planning (TAP) methodology that can provide a cohesive framework for integrating physical transport processes, environmental sensitivity of regional sites, and potential response options. This trajectory analysis planning methodology can be shown to implement a significant part of the game theory analysis and provide 'minimum regret' strategy advice, without actually carrying out the optimisation procedures. (Author)

  5. NNAlign: A Web-Based Prediction Method Allowing Non-Expert End-User Discovery of Sequence Motifs in Quantitative Peptide Data

    DEFF Research Database (Denmark)

    Andreatta, Massimo; Schafer-Nielsen, Claus; Lund, Ole

    2011-01-01

    Recent advances in high-throughput technologies have made it possible to generate both gene and protein sequence data at an unprecedented rate and scale thereby enabling entirely new "omics"-based approaches towards the analysis of complex biological processes. However, the amount and complexity...... to interpret large data sets. We have recently developed a method, NNAlign, which is generally applicable to any biological problem where quantitative peptide data is available. This method efficiently identifies underlying sequence patterns by simultaneously aligning peptide sequences and identifying motifs...... associated with quantitative readouts. Here, we provide a web-based implementation of NNAlign allowing non-expert end-users to submit their data (optionally adjusting method parameters), and in return receive a trained method (including a visual representation of the identified motif) that subsequently can...

  6. Automated approach to quantitative error analysis

    International Nuclear Information System (INIS)

    Bareiss, E.H.

    1977-04-01

    A method is described how a quantitative measure for the robustness of a given neutron transport theory code for coarse network calculations can be obtained. A code that performs this task automatically and at only nominal cost is described. This code also generates user-oriented benchmark problems which exhibit the analytic behavior at interfaces. 5 figures, 1 table

  7. Rapid quantitative analysis of individual anthocyanin content based on high-performance liquid chromatography with diode array detection with the pH differential method.

    Science.gov (United States)

    Wang, Huayin

    2014-09-01

    A new quantitative technique for the simultaneous quantification of the individual anthocyanins based on the pH differential method and high-performance liquid chromatography with diode array detection is proposed in this paper. The six individual anthocyanins (cyanidin 3-glucoside, cyanidin 3-rutinoside, petunidin 3-glucoside, petunidin 3-rutinoside, and malvidin 3-rutinoside) from mulberry (Morus rubra) and Liriope platyphylla were used for demonstration and validation. The elution of anthocyanins was performed using a C18 column with stepwise gradient elution and individual anthocyanins were identified by high-performance liquid chromatography with tandem mass spectrometry. Based on the pH differential method, the high-performance liquid chromatography peak areas of maximum and reference absorption wavelengths of anthocyanin extracts were conducted to quantify individual anthocyanins. The calibration curves for these anthocyanins were linear within the range of 10-5500 mg/L. The correlation coefficients (r(2)) all exceeded 0.9972, and the limits of detection were in the range of 1-4 mg/L at a signal-to-noise ratio ≥5 for these anthocyanins. The proposed quantitative analysis was reproducible with good accuracy of all individual anthocyanins ranging from 96.3 to 104.2% and relative recoveries were in the range 98.4-103.2%. The proposed technique is performed without anthocyanin standards and is a simple, rapid, accurate, and economical method to determine individual anthocyanin contents. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Development of method quantitative content of dihydroquercetin. Report 1

    Directory of Open Access Journals (Sweden)

    Олександр Юрійович Владимиров

    2016-01-01

    Full Text Available Today is markedly increasing scientific interest in the study of flavonoids in plant objects due to their high biological activity. In this regard, the urgent task of analytical chemistry is in developing available analytical techniques of determination for flavonoids in plant objects.Aim. The aim was to develop specific techniques of quantitative determination for dihydroquercetin and determination of its validation characteristics.Methods. The technique for photocolorimetric quantification of DQW, which was based on the specific reaction of cyanidine chloride formation when added zinc powder to dihydroquercetin solution in an acidic medium has been elaborated.Results. Photocolorimetric technique of determining flavonoids recalculating on DQW has been developed, its basic validation characteristics have been determined. The obtained metrological characteristics of photocolorimetric technique for determining DQW did not exceed admissibility criteria in accordance with the requirements of the State Pharmacopoeia of Ukraine.Conclusions. By the results of statistical analysis of experimental data, it has been stated that the developed technique can be used for quantification of DQW. Metrological data obtained indicate that the method reproduced in conditions of two different laboratories with confidence probability 95 % unit value deviation was 101,85±2,54 %

  9. Quantitative analysis of pulmonary perfusion using time-resolved parallel 3D MRI - initial results

    International Nuclear Information System (INIS)

    Fink, C.; Buhmann, R.; Plathow, C.; Puderbach, M.; Kauczor, H.U.; Risse, F.; Ley, S.; Meyer, F.J.

    2004-01-01

    Purpose: to assess the use of time-resolved parallel 3D MRI for a quantitative analysis of pulmonary perfusion in patients with cardiopulmonary disease. Materials and methods: eight patients with pulmonary embolism or pulmonary hypertension were examined with a time-resolved 3D gradient echo pulse sequence with parallel imaging techniques (FLASH 3D, TE/TR: 0.8/1.9 ms; flip angle: 40 ; GRAPPA). A quantitative perfusion analysis based on indicator dilution theory was performed using a dedicated software. Results: patients with pulmonary embolism or chronic thromboembolic pulmonary hypertension revealed characteristic wedge-shaped perfusion defects at perfusion MRI. They were characterized by a decreased pulmonary blood flow (PBF) and pulmonary blood volume (PBV) and increased mean transit time (MTT). Patients with primary pulmonary hypertension or eisenmenger syndrome showed a more homogeneous perfusion pattern. The mean MTT of all patients was 3.3 - 4.7 s. The mean PBF and PBV showed a broader interindividual variation (PBF: 104-322 ml/100 ml/min; PBV: 8 - 21 ml/100 ml). Conclusion: time-resolved parallel 3D MRI allows at least a semi-quantitative assessment of lung perfusion. Future studies will have to assess the clinical value of this quantitative information for the diagnosis and management of cardiopulmonary disease. (orig.) [de

  10. Validated ¹H and 13C Nuclear Magnetic Resonance Methods for the Quantitative Determination of Glycerol in Drug Injections.

    Science.gov (United States)

    Lu, Jiaxi; Wang, Pengli; Wang, Qiuying; Wang, Yanan; Jiang, Miaomiao

    2018-05-15

    In the current study, we employed high-resolution proton and carbon nuclear magnetic resonance spectroscopy (¹H and 13 C NMR) for quantitative analysis of glycerol in drug injections without any complex pre-treatment or derivatization on samples. The established methods were validated with good specificity, linearity, accuracy, precision, stability, and repeatability. Our results revealed that the contents of glycerol were convenient to calculate directly via the integration ratios of peak areas with an internal standard in ¹H NMR spectra, while the integration of peak heights were proper for 13 C NMR in combination with an external calibration of glycerol. The developed methods were both successfully applied in drug injections. Quantitative NMR methods showed an extensive prospect for glycerol determination in various liquid samples.

  11. Comparison of two label-free global quantitation methods, APEX and 2D gel electrophoresis, applied to the Shigella dysenteriae proteome

    Directory of Open Access Journals (Sweden)

    Fleischmann Robert D

    2009-06-01

    Full Text Available Abstract The in vitro stationary phase proteome of the human pathogen Shigella dysenteriae serotype 1 (SD1 was quantitatively analyzed in Coomassie Blue G250 (CBB-stained 2D gels. More than four hundred and fifty proteins, of which 271 were associated with distinct gel spots, were identified. In parallel, we employed 2D-LC-MS/MS followed by the label-free computationally modified spectral counting method APEX for absolute protein expression measurements. Of the 4502 genome-predicted SD1 proteins, 1148 proteins were identified with a false positive discovery rate of 5% and quantitated using 2D-LC-MS/MS and APEX. The dynamic range of the APEX method was approximately one order of magnitude higher than that of CBB-stained spot intensity quantitation. A squared Pearson correlation analysis revealed a reasonably good correlation (R2 = 0.67 for protein quantities surveyed by both methods. The correlation was decreased for protein subsets with specific physicochemical properties, such as low Mr values and high hydropathy scores. Stoichiometric ratios of subunits of protein complexes characterized in E. coli were compared with APEX quantitative ratios of orthologous SD1 protein complexes. A high correlation was observed for subunits of soluble cellular protein complexes in several cases, demonstrating versatile applications of the APEX method in quantitative proteomics.

  12. A quality quantitative method of silicon direct bonding based on wavelet image analysis

    Science.gov (United States)

    Tan, Xiao; Tao, Zhi; Li, Haiwang; Xu, Tiantong; Yu, Mingxing

    2018-04-01

    The rapid development of MEMS (micro-electro-mechanical systems) has received significant attention from researchers in various fields and subjects. In particular, the MEMS fabrication process is elaborate and, as such, has been the focus of extensive research inquiries. However, in MEMS fabrication, component bonding is difficult to achieve and requires a complex approach. Thus, improvements in bonding quality are relatively important objectives. A higher quality bond can only be achieved with improved measurement and testing capabilities. In particular, the traditional testing methods mainly include infrared testing, tensile testing, and strength testing, despite the fact that using these methods to measure bond quality often results in low efficiency or destructive analysis. Therefore, this paper focuses on the development of a precise, nondestructive visual testing method based on wavelet image analysis that is shown to be highly effective in practice. The process of wavelet image analysis includes wavelet image denoising, wavelet image enhancement, and contrast enhancement, and as an end result, can display an image with low background noise. In addition, because the wavelet analysis software was developed with MATLAB, it can reveal the bonding boundaries and bonding rates to precisely indicate the bond quality at all locations on the wafer. This work also presents a set of orthogonal experiments that consist of three prebonding factors, the prebonding temperature, the positive pressure value and the prebonding time, which are used to analyze the prebonding quality. This method was used to quantify the quality of silicon-to-silicon wafer bonding, yielding standard treatment quantities that could be practical for large-scale use.

  13. Quantitative methods for analysing cumulative effects on fish migration success: a review.

    Science.gov (United States)

    Johnson, J E; Patterson, D A; Martins, E G; Cooke, S J; Hinch, S G

    2012-07-01

    It is often recognized, but seldom addressed, that a quantitative assessment of the cumulative effects, both additive and non-additive, of multiple stressors on fish survival would provide a more realistic representation of the factors that influence fish migration. This review presents a compilation of analytical methods applied to a well-studied fish migration, a more general review of quantitative multivariable methods, and a synthesis on how to apply new analytical techniques in fish migration studies. A compilation of adult migration papers from Fraser River sockeye salmon Oncorhynchus nerka revealed a limited number of multivariable methods being applied and the sub-optimal reliance on univariable methods for multivariable problems. The literature review of fisheries science, general biology and medicine identified a large number of alternative methods for dealing with cumulative effects, with a limited number of techniques being used in fish migration studies. An evaluation of the different methods revealed that certain classes of multivariable analyses will probably prove useful in future assessments of cumulative effects on fish migration. This overview and evaluation of quantitative methods gathered from the disparate fields should serve as a primer for anyone seeking to quantify cumulative effects on fish migration survival. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  14. THE STUDY OF SOCIAL REPRESENTATIONS BY THE VIGNETTE METHOD: A QUANTITATIVE INTERPRETATION

    Directory of Open Access Journals (Sweden)

    Ж В Пузанова

    2017-12-01

    Full Text Available The article focuses on the prospects of creating vignettes as a new method in empirical sociology. It is a good alternative to the conventional mass survey methods. The article consists of a few sections differing by the focus. The vignette method is not popular among Russian scientists, but has a big history abroad. A wide range of problems can be solved by this method (e.g. the prospects for guardianship and its evaluation, international students’ adaptation to the educational system, social justice studies, market-ing and business research, etc.. The vignette method can be used for studying different problems including sensitive questions (e.g. HIV, drugs, psychological trauma, etc., because it is one of the projective techniques. Projective techniques allow to obtain more reliable information, because the respondent projects one situation on the another, but at the same time responds to his own stimulus. The article considers advantages and disadvantages of the method. The authors provide information about the limitations of the method. The article presents the key principles for designing and developing the vignettes method depending on the research type. The authors provide examples of their own vignettes tested in the course of their own empirical research. The authors highlight the advantages of the logical-combinatorial approaches (especially the JSM method with its dichotomy for the analysis of data in quantitative research. Also they consider another method of the analysis of the data that implies the technique of “steeping”, i.e. when the respondent gets new information step by step, which extends his previous knowledge.

  15. Quantitative analysis of biological fluids by electron probe and X ray spectrometry

    International Nuclear Information System (INIS)

    Girod, Chantal

    1986-01-01

    In order to know the kidney normal operation and to have an insight on cellular transport mechanisms and hormonal regulations at the nephron level, a technique based on the use of an electron probe has been developed for the elemental analysis of micro-volumes of biological fluids. This academic document reports applications of this technique on animals on which such fluids have been sampled at different levels of the nephron. As these samples are available in too small volumes to be dosed by conventional methods, they have been quantitatively analysed by using an electronic probe based analyser in order to determine concentrations of all elements with an atomic number greater than that of carbon. After a presentation of the implemented method and hardware, the author thus describes how an analysis is performed, and reports and discusses an example (analysis conditions, data acquisition, data processing, minimum detectable concentration, reasons for measurement scattering)

  16. Qualitative and quantitative analysis of environmental samples by laser-induced breakdown spectrometry

    International Nuclear Information System (INIS)

    Zorov, N B; Popov, A M; Zaytsev, S M; Labutin, T A

    2015-01-01

    The key achievements in the determination of trace amounts of components in environmental samples (soils, ores, natural waters, etc.) by laser-induced breakdown spectrometry are considered. Unique capabilities of this method make it suitable for rapid analysis of metals and alloys, glasses, polymers, objects of cultural heritage, archaeological and various environmental samples. The key advantages of the method that account for its high efficiency are demonstrated, in particular, a small amount of analyzed material, the absence of sample preparation, the possibility of local and remote analysis of either one or several elements. The use of chemometrics in laser-induced breakdown spectrometry for qualitative sample classification is described in detail. Various approaches to improving the figures of merit of quantitative analysis of environmental samples are discussed. The achieved limits of detection for most elements in geochemical samples are critically evaluated. The bibliography includes 302 references

  17. What Really Happens in Quantitative Group Research? Results of a Content Analysis of Recent Quantitative Research in "JSGW"

    Science.gov (United States)

    Boyle, Lauren H.; Whittaker, Tiffany A.; Eyal, Maytal; McCarthy, Christopher J.

    2017-01-01

    The authors conducted a content analysis on quantitative studies published in "The Journal for Specialists in Group Work" ("JSGW") between 2012 and 2015. This brief report provides a general overview of the current practices of quantitative group research in counseling. The following study characteristics are reported and…

  18. Quantitative analysis of fission products by {gamma} spectrography; Analyse quantitative des produits de fission par spectrographie {gamma}

    Energy Technology Data Exchange (ETDEWEB)

    Malet, G

    1962-07-01

    The activity of the fission products present in treated solutions of irradiated fuels is given as a function of the time of cooling and of the irradiation time. The variation of the ratio ({sup 144}Ce + {sup 144}Pr activity/{sup 137}Cs activity) as a function of these same parameters is also given. From these results a method is deduced giving the 'age' of the solution analyzed. By {gamma}-scintillation spectrography it was possible to estimate the following elements individually: {sup 141}Ce, {sup 144}Ce + {sup 144}Pr, {sup 103}Ru, {sup 106}Ru + {sup 106}Rh, {sup 137}Cs, {sup 95}Zr + {sup 95}Nb. Yield curves are given for the case of a single emitter. Of the various existing methods, that of the least squares was used for the quantitative analysis of the afore-mentioned fission products. The accuracy attained varies from 3 to 10%. (author) [French] L'activite des produits de fission presents dans les solutions de traitement de combustibles irradies est donnee en fonction du temps de refroidissement et du temps d'irradiation. On etudie de plus la variation du rapport Activite du {sup 144}Ce + {sup 144}Pr /Activite du {sup 137}Cs en fonction de ces memes parametres. De ces resultats, on deduit une methode donnant l'age de la solution analysee. La spectrographie {gamma} a scintillation a permis le dosage individuel des produits suivants: {sup 141}Ce, {sup 144}Ce + {sup 144}Pr, {sup 103}Ru, {sup 106}Ru + {sup 106}Rh, {sup 137}Cs, {sup 95}Zr + {sup 95}Nb. Des courbes de rendement sont donnees dans le cas d'un emetteur unique. Des differentes methodes existantes, la methode des moindres carres a ete employee pour l'analyse quantitative des produits de fission precites. La precision obtenue varie entre 3 et 10 pour cent. (auteur)

  19. DREAM: a method for semi-quantitative dermal exposure assessment

    NARCIS (Netherlands)

    Wendel de Joode, B. van; Brouwer, D.H.; Kromhout, H.; Hemmen, J.J. van

    2003-01-01

    This paper describes a new method (DREAM) for structured, semi-quantitative dermal exposure assessment for chemical or biological agents that can be used in occupational hygiene or epidemiology. It is anticipated that DREAM could serve as an initial assessment of dermal exposure, amongst others,

  20. Quantitative strain analysis of surfaces and interfaces using extremely asymmetric x-ray diffraction

    International Nuclear Information System (INIS)

    Akimoto, Koichi; Emoto, Takashi

    2010-01-01

    Strain can reduce carrier mobility and the reliability of electronic devices and affect the growth mode of thin films and the stability of nanometer-scale crystals. To control lattice strain, a technique for measuring the minute lattice strain at surfaces and interfaces is needed. Recently, an extremely asymmetric x-ray diffraction method has been developed for this purpose. By employing Darwin's dynamical x-ray diffraction theory, quantitative evaluation of strain at surfaces and interfaces becomes possible. In this paper, we review our quantitative strain analysis studies on native SiO 2 /Si interfaces, reconstructed Si surfaces, Ni/Si(111)-H interfaces, sputtered III-V compound semiconductor surfaces, high-k/Si interfaces, and Au ion-implanted Si. (topical review)

  1. Quantitative analysis of crystalline pharmaceuticals in tablets by pattern-fitting procedure using X-ray diffraction pattern.

    Science.gov (United States)

    Takehira, Rieko; Momose, Yasunori; Yamamura, Shigeo

    2010-10-15

    A pattern-fitting procedure using an X-ray diffraction pattern was applied to the quantitative analysis of binary system of crystalline pharmaceuticals in tablets. Orthorhombic crystals of isoniazid (INH) and mannitol (MAN) were used for the analysis. Tablets were prepared under various compression pressures using a direct compression method with various compositions of INH and MAN. Assuming that X-ray diffraction pattern of INH-MAN system consists of diffraction intensities from respective crystals, observed diffraction intensities were fitted to analytic expression based on X-ray diffraction theory and separated into two intensities from INH and MAN crystals by a nonlinear least-squares procedure. After separation, the contents of INH were determined by using the optimized normalization constants for INH and MAN. The correction parameter including all the factors that are beyond experimental control was required for quantitative analysis without calibration curve. The pattern-fitting procedure made it possible to determine crystalline phases in the range of 10-90% (w/w) of the INH contents. Further, certain characteristics of the crystals in the tablets, such as the preferred orientation, size of crystallite, and lattice disorder were determined simultaneously. This method can be adopted to analyze compounds whose crystal structures are known. It is a potentially powerful tool for the quantitative phase analysis and characterization of crystals in tablets and powders using X-ray diffraction patterns. Copyright 2010 Elsevier B.V. All rights reserved.

  2. Quantitative proteomic analysis of post-translational modifications of human histones

    DEFF Research Database (Denmark)

    Beck, Hans Christian; Nielsen, Eva C; Matthiesen, Rune

    2006-01-01

    , and H4 in a site-specific and dose-dependent manner. This unbiased analysis revealed that a relative increase in acetylated peptide from the histone variants H2A, H2B, and H4 was accompanied by a relative decrease of dimethylated Lys(57) from histone H2B. The dose-response results obtained...... by quantitative proteomics of histones from HDACi-treated cells were consistent with Western blot analysis of histone acetylation, cytotoxicity, and dose-dependent expression profiles of p21 and cyclin A2. This demonstrates that mass spectrometry-based quantitative proteomic analysis of post-translational...

  3. LC-MS/MS method development for quantitative analysis of acetaminophen uptake by the aquatic fungus Mucor hiemalis.

    Science.gov (United States)

    Esterhuizen-Londt, Maranda; Schwartz, Katrin; Balsano, Evelyn; Kühn, Sandra; Pflugmacher, Stephan

    2016-06-01

    Acetaminophen is a pharmaceutical, frequently found in surface water as a contaminant. Bioremediation, in particular, mycoremediation of acetaminophen is a method to remove this compound from waters. Owing to the lack of quantitative analytical method for acetaminophen in aquatic organisms, the present study aimed to develop a method for the determination of acetaminophen using LC-MS/MS in the aquatic fungus Mucor hiemalis. The method was then applied to evaluate the uptake of acetaminophen by M. hiemalis, cultured in pellet morphology. The method was robust, sensitive and reproducible with a lower limit of quantification of 5 pg acetaminophen on column. It was found that M. hiemalis internalize the pharmaceutical, and bioaccumulate it with time. Therefore, M. hiemalis was deemed a suitable candidate for further studies to elucidate its pharmaceutical tolerance and the longevity in mycoremediation applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Neutron activation analysis: A primary method of measurement

    Energy Technology Data Exchange (ETDEWEB)

    Greenberg, Robert R., E-mail: robert.greenberg@nist.gov [National Institute of Standards and Technology, Gaithersburg, MD 20899-8395 (United States); Bode, Peter, E-mail: p.bode@tudelft.nl [Delft University of Technology, Delft (Netherlands); De Nadai Fernandes, Elisabete A., E-mail: lis@cena.usp.br [Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, Piracicaba, SP (Brazil)

    2011-03-15

    Neutron activation analysis (NAA), based on the comparator method, has the potential to fulfill the requirements of a primary ratio method as defined in 1998 by the Comite Consultatif pour la Quantite de Matiere - Metrologie en Chimie (CCQM, Consultative Committee on Amount of Substance - Metrology in Chemistry). This thesis is evidenced in this paper in three chapters by: demonstration that the method is fully physically and chemically understood; that a measurement equation can be written down in which the values of all parameters have dimensions in SI units and thus having the potential for metrological traceability to these units; that all contributions to uncertainty of measurement can be quantitatively evaluated, underpinning the metrological traceability; and that the performance of NAA in CCQM key-comparisons of trace elements in complex matrices between 2000 and 2007 is similar to the performance of Isotope Dilution Mass Spectrometry (IDMS), which had been formerly designated by the CCQM as a primary ratio method.

  5. Application of neural networks to quantitative spectrometry analysis

    International Nuclear Information System (INIS)

    Pilato, V.; Tola, F.; Martinez, J.M.; Huver, M.

    1999-01-01

    Accurate quantitative analysis of complex spectra (fission and activation products), relies upon experts' knowledge. In some cases several hours, even days of tedious calculations are needed. This is because current software is unable to solve deconvolution problems when several rays overlap. We have shown that such analysis can be correctly handled by a neural network, and the procedure can be automated with minimum laboratory measurements for networks training, as long as all the elements of the analysed solution figure in the training set and provided that adequate scaling of input data is performed. Once the network has been trained, analysis is carried out in a few seconds. On submitting to a test between several well-known laboratories, where unknown quantities of 57 Co, 58 Co, 85 Sr, 88 Y, 131 I, 139 Ce, 141 Ce present in a sample had to be determined, the results yielded by our network classed it amongst the best. The method is described, including experimental device and measures, training set designing, relevant input parameters definition, input data scaling and networks training. Main results are presented together with a statistical model allowing networks error prediction

  6. A probabilistic method for computing quantitative risk indexes from medical injuries compensation claims.

    Science.gov (United States)

    Dalle Carbonare, S; Folli, F; Patrini, E; Giudici, P; Bellazzi, R

    2013-01-01

    The increasing demand of health care services and the complexity of health care delivery require Health Care Organizations (HCOs) to approach clinical risk management through proper methods and tools. An important aspect of risk management is to exploit the analysis of medical injuries compensation claims in order to reduce adverse events and, at the same time, to optimize the costs of health insurance policies. This work provides a probabilistic method to estimate the risk level of a HCO by computing quantitative risk indexes from medical injury compensation claims. Our method is based on the estimate of a loss probability distribution from compensation claims data through parametric and non-parametric modeling and Monte Carlo simulations. The loss distribution can be estimated both on the whole dataset and, thanks to the application of a Bayesian hierarchical model, on stratified data. The approach allows to quantitatively assessing the risk structure of the HCO by analyzing the loss distribution and deriving its expected value and percentiles. We applied the proposed method to 206 cases of injuries with compensation requests collected from 1999 to the first semester of 2007 by the HCO of Lodi, in the Northern part of Italy. We computed the risk indexes taking into account the different clinical departments and the different hospitals involved. The approach proved to be useful to understand the HCO risk structure in terms of frequency, severity, expected and unexpected loss related to adverse events.

  7. The use of Triangulation in Social Sciences Research : Can qualitative and quantitative methods be combined?

    Directory of Open Access Journals (Sweden)

    Ashatu Hussein

    2015-03-01

    Full Text Available This article refers to a study in Tanzania on fringe benefits or welfare via the work contract1 where we will work both quantitatively and qualitatively. My focus is on the vital issue of combining methods or methodologies. There has been mixed views on the uses of triangulation in researches. Some authors argue that triangulation is just for increasing the wider and deep understanding of the study phenomenon, while others have argued that triangulation is actually used to increase the study accuracy, in this case triangulation is one of the validity measures. Triangulation is defined as the use of multiple methods mainly qualitative and quantitative methods in studying the same phenomenon for the purpose of increasing study credibility. This implies that triangulation is the combination of two or more methodological approaches, theoretical perspectives, data sources, investigators and analysis methods to study the same phenomenon.However, using both qualitative and quantitative paradigms in the same study has resulted into debate from some researchers arguing that the two paradigms differ epistemologically and ontologically. Nevertheless, both paradigms are designed towards understanding about a particular subject area of interest and both of them have strengths and weaknesses. Thus, when combined there is a great possibility of neutralizing the flaws of one method and strengthening the benefits of the other for the better research results. Thus, to reap the benefits of two paradigms and minimizing the drawbacks of each, the combination of the two approaches have been advocated in this article. The quality of our studies on welfare to combat poverty is crucial, and especially when we want our conclusions to matter in practice.

  8. The Study on the Quantitative Analysis in LPG Tank's Fire and Explosion

    Energy Technology Data Exchange (ETDEWEB)

    Bae, S.J.; Kim, B.J. [Department of chemical Engineering, Soongsil University, Seoul (Korea)

    1999-04-01

    Chemical plant's fire and explosion does not only damage to the chemical plants themselves but also damage to people in or near of the accident spot and the neighborhood of chemical plant. For that reason, Chemical process safety management has become important. One of safety management methods is called 'the quantitative analysis', which is used to reduce and prevent the accident. The results of the quantitative analysis could be used to arrange the equipments, evaluate the minimum safety distance, prepare the safety equipments. In this study we make the computer program to make easy to do quantitative analysis of the accident. The output of the computer program is the magnitude of fire(pool fire and fireball) and explosion (UVCE and BLEVE) effects. We used the thermal radiation as a measure of fire magnitude and used the overpressure as a measure of explosion magnitude. In case of BLEVE, the fly distance of fragment can be evaluated. Also probit analysis was done in every case. As the case study, Buchun LPG explosion accident in Korea was analysed by the program developed. The simulation results showed that the permissible distance was 800m and probit analysis showed that 1st degree burn, 2nd degree burn, and death distances are 450, 280, 260m, respectively. the simulation results showed the good agreement with the result from SAFER PROGRAM made by DuPont. 13 refs., 4 figs., 2 tabs.

  9. On the use of quantitative methods in the Danish food industry

    DEFF Research Database (Denmark)

    Juhl, Hans Jørn; Østergaard, Peder; Kristensen, Kai

    1997-01-01

    Executive summary 1. The paper examines the use of quantitative methods in the Danish food industry and a comparison is made between the food industry and other manufacturing industries. Data was collected in 1991 and 107 manufacturing companies filled in the questionnaire. 20 of the companies were...... orientation is expected to lead to a more intensive use of proactive methods. It will be obvious to compare results from the new investigation with the results presented in this report in order to identify any trends in the use of quantitative methods....... in this paper does not lead to any striking differences between food companies and other manufacturing companies. In both cases there is a heavy concentration on methods used to analyze internal processes. 4. The increasing focus on food products ready for consumption and the general increase in focus on market...

  10. [Quantitative image analysis in pulmonary pathology - digitalization of preneoplastic lesions in human bronchial epithelium (author's transl)].

    Science.gov (United States)

    Steinbach, T; Müller, K M; Kämper, H

    1979-01-01

    The report concerns the first phase of a quantitative study of normal and abnormal bronchial epithelium with the objective of establishing the digitalization of histologic patterns. Preparative methods, data collecting and handling, and further mathematical analysis are described. In cluster and discriminatory analysis the digitalized histologic features can be used to separate and classify the individual cases into the respective diagnostic groups.

  11. A quantitative impact analysis of sensor failures on human operator's decision making in nuclear power plants

    International Nuclear Information System (INIS)

    Seong, Poong Hyun

    2004-01-01

    In emergency or accident situations in nuclear power plants, human operators take important roles in generating appropriate control signals to mitigate accident situation. In human reliability analysis (HRA) in the framework of probabilistic safety assessment (PSA), the failure probabilities of such appropriate actions are estimated and used for the safety analysis of nuclear power plants. Even though understanding the status of the plant is basically the process of information seeking and processing by human operators, it seems that conventional HRA methods such as THERP, HCR, and ASEP does not pay a lot of attention to the possibilities of providing wrong information to human operators. In this paper, a quantitative impact analysis of providing wrong information to human operators due to instrument faults or sensor failures is performed. The quantitative impact analysis is performed based on a quantitative situation assessment model. By comparing the situation in which there are sensor failures and the situation in which there are not sensor failures, the impact of sensor failures can be evaluated quantitatively. It is concluded that the impact of sensor failures are quite significant at the initial stages, but the impact is gradually reduced as human operators make more and more observations. Even though the impact analysis is highly dependent on the situation assessment model, it is expected that the conclusions made based on other situation assessment models with be consistent with the conclusion made in this paper. (author)

  12. New 'ex vivo' radioisotopic method of quantitation of platelet deposition

    Energy Technology Data Exchange (ETDEWEB)

    Badimon, L.; Fuster, V.; Chesebro, J.H.; Dewanjee, M.K.

    1983-01-01

    We have developed a sensitive and quantitative method of 'ex vivo' evaluation of platelet deposition on collagen strips, from rabbit Achilles tendon, superfused by flowing blood and applied it to four animal species, cat, rabbit, dog and pig. Autologous platelets were labeled with indium-111-tropolone, injected to the animal 24 hr before the superfusion and the number of deposited platelets was quantitated from the tendon gamma-radiation and the blood platelet count. We detected some platelet consumption with superfusion time when blood was reinfused entering the contralateral jugular vein after collagen contact but not if blood was discarded after the contact. Therefore, in order to have a more physiological animal model we decided to discard blood after superfusion of the tendon. In all species except for the cat there was a linear relationship between increase of platelet on the tendon and time of exposure to blood superfusion. The highest number of platelets deposited on the collagen was found in cats, the lowest in dogs. Ultrastructural analysis showed the platelets were deposited as aggregates after only 5 min of superfusion.

  13. Quantitative analysis of some brands of chloroquine tablets ...

    African Journals Online (AJOL)

    Quantitative analysis of some brands of chloroquine tablets marketed in Maiduguri using spectrophotometric ... and compared with that of the standard, wavelength of maximum absorbance at 331nm for chloroquine. ... HOW TO USE AJOL.

  14. Quantitative Analysis of Microbes in Water Tank of G.A. Siwabessy Reactor

    International Nuclear Information System (INIS)

    Itjeu Karliana; Diah Dwiana Lestiani

    2003-01-01

    The quality of water in reactor system has an important role because it could effect the function as a coolant and the operation of reactor indirectly. The study of microbe analyzes has been carried out to detect the existence of microbes in water tank and quantitative analyzes of microbes also has been applied as a continuation of the previous study. The samples is taken out from the end side of reactor GA Siwabessy's tank, inoculated in TSA (Tripcase Soy Agar) medium, put in incubator at 30 - 35 o C for 4 days. The results of experiment show the reconfirmation for the existence of bacteria and the un-existence of yield. The quantitative analysis with TPC method show the growth rate of bacteria is twice in 24 hours. (author)

  15. Quantitation of valve regurgitation severity by three-dimensional vena contracta area is superior to flow convergence method of quantitation on transesophageal echocardiography.

    Science.gov (United States)

    Abudiab, Muaz M; Chao, Chieh-Ju; Liu, Shuang; Naqvi, Tasneem Z

    2017-07-01

    Quantitation of regurgitation severity using the proximal isovelocity acceleration (PISA) method to calculate effective regurgitant orifice (ERO) area has limitations. Measurement of three-dimensional (3D) vena contracta area (VCA) accurately grades mitral regurgitation (MR) severity on transthoracic echocardiography (TTE). We evaluated 3D VCA quantitation of regurgitant jet severity using 3D transesophageal echocardiography (TEE) in 110 native mitral, aortic, and tricuspid valves and six prosthetic valves in patients with at least mild valvular regurgitation. The ASE-recommended integrative method comprising semiquantitative and quantitative assessment of valvular regurgitation was used as a reference method, including ERO area by 2D PISA for assigning severity of regurgitation grade. Mean age was 62.2±14.4 years; 3D VCA quantitation was feasible in 91% regurgitant valves compared to 78% by the PISA method. When both methods were feasible and in the presence of a single regurgitant jet, 3D VCA and 2D PISA were similar in differentiating assigned severity (ANOVAP<.001). In valves with multiple jets, however, 3D VCA had a better correlation to assigned severity (ANOVAP<.0001). The agreement of 2D PISA and 3D VCA with the integrative method was 47% and 58% for moderate and 65% and 88% for severe regurgitation, respectively. Measurement of 3D VCA by TEE is superior to the 2D PISA method in determination of regurgitation severity in multiple native and prosthetic valves. © 2017, Wiley Periodicals, Inc.

  16. Quantitative analysis of thorium-containing materials using an Industrial XRF analyzer

    International Nuclear Information System (INIS)

    Hasikova, J.; Titov, V.; Sokolov, A.

    2014-01-01

    Thorium (Th) as nuclear fuel is clean and safe and offers significant advantages over uranium. The technology for several types of thorium reactors is proven but still must be developed on a commercial scale. In the case of commercialization of thorium nuclear reactor thorium raw materials will be on demand. With this, mining and processing companies producing Th and rare earth elements will require prompt and reliable methods and instrumentation for Th quantitative on-line analysis. Potential applicability of X-ray fluorescence conveyor analyzer CON-X series is discussed for Th quantitative or semi-quantitative on-line measurement in several types of Th-bearing materials. Laboratory study of several minerals (zircon sands and limestone as unconventional Th resources; monazite concentrate as Th associated resources and uranium ore residues after extraction as a waste product) was performed and analyzer was tested for on-line quantitative measurements of Th contents along with other major and minor components. Th concentration range in zircon sand is 50-350 ppm; its detection limit at this level is estimated at 25- 50 ppm in 5 minute measurements depending on the type of material. On-site test of the CON-X analyzer for continuous analysis of thorium traces along with other elements in zircon sand showed that accuracy of Th measurements is within 20% relative. When Th content is higher than 1% as in the concentrate of monazite ore (5-8% ThO_2) accuracy of Th determination is within 1% relative. Although preliminary on-site test is recommended in order to address system feasibility at a large scale, provided results show that industrial conveyor XRF analyzer CON-X series can be effectively used for analytical control of mining and processing streams of Th-bearing materials. (author)

  17. Quantitative analysis or rare earths by X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Taam, Isabel; Mantovano, J.L.; Gante, Valdir; Jesus, Camila S.

    2013-01-01

    Rare earths ores and compounds are of growing importance to the worldwide industry. Its applications range from raw material to catalysts, manufacturing of electronics and even super magnets. Therefore, the demand for quick and accurate quantitative analysis methods is continuously growing. Current quantification methods of rare earths involve the separation of these elements by ion exchange and liquid-liquid extraction prior to the analysis itself, processes both time and reagent consuming. In the present work, we propose a method that directly quantifies by XRF technique the following rare earths: La, Pr, Nd, Sm and Gd in a concentrated liquor whose matrix also contains Ca, Y, PO4, U and Th. We evaluated the analytical interference of each element present on the sample on X-rays spectrum. The studied samples are certified standards and the obtained results have been compared to EDTA titration results, an already well-established and widely trusted method.We also measured the matrix effect thus using a complex rare earths standard. Results show that quantification by XRF technique is as accurate as the results in dose titration with EDTA for the same elements, with the advantage of exempting the previous separation step from each rare earth and from other elements present in the matrix (such as U and Th). (author)

  18. Global scaling for semi-quantitative analysis in FP-CIT SPECT.

    Science.gov (United States)

    Kupitz, D; Apostolova, I; Lange, C; Ulrich, G; Amthauer, H; Brenner, W; Buchert, R

    2014-01-01

    Semi-quantitative characterization of dopamine transporter availability from single photon emission computed tomography (SPECT) with 123I-ioflupane (FP-CIT) is based on uptake ratios relative to a reference region. The aim of this study was to evaluate the whole brain as reference region for semi-quantitative analysis of FP-CIT SPECT. The rationale was that this might reduce statistical noise associated with the estimation of non-displaceable FP-CIT uptake. 150 FP-CIT SPECTs were categorized as neurodegenerative or non-neurodegenerative by an expert. Semi-quantitative analysis of specific binding ratios (SBR) was performed with a custom-made tool based on the Statistical Parametric Mapping software package using predefined regions of interest (ROIs) in the anatomical space of the Montreal Neurological Institute. The following reference regions were compared: predefined ROIs for frontal and occipital lobe and whole brain (without striata, thalamus and brainstem). Tracer uptake in the reference region was characterized by the mean, median or 75th percentile of its voxel intensities. The area (AUC) under the receiver operating characteristic curve was used as performance measure. The highest AUC of 0.973 was achieved by the SBR of the putamen with the 75th percentile in the whole brain as reference. The lowest AUC for the putamen SBR of 0.937 was obtained with the mean in the frontal lobe as reference. We recommend the 75th percentile in the whole brain as reference for semi-quantitative analysis in FP-CIT SPECT. This combination provided the best agreement of the semi-quantitative analysis with visual evaluation of the SPECT images by an expert and, therefore, is appropriate to support less experienced physicians.

  19. Characterising Ageing in the Human Brainstem Using Quantitative Multimodal MRI Analysis

    Directory of Open Access Journals (Sweden)

    Christian eLambert

    2013-08-01

    Full Text Available Ageing is ubiquitous to the human condition. The MRI correlates of healthy ageing have been extensively investigated using a range of modalities, including volumetric MRI, quantitative MRI and DTI. Despite this, the reported brainstem related changes remain sparse. This is, in part, due to the technical and methodological limitations in quantitatively assessing and statistically analysing this region. By utilising a new method of brainstem segmentation, a large cohort of 100 healthy adults were assessed in this study for the effects of ageing within the human brainstem in vivo. Using quantitative MRI (qMRI, tensor based morphometry (TBM and voxel based quantification (VBQ, the volumetric and quantitative changes across healthy adults between 19-75 years were characterised. In addition to the increased R2* in substantia nigra corresponding to increasing iron deposition with age, several novel findings were reported in the current study. These include selective volumetric loss of the brachium conjunctivum, with a corresponding decrease in magnetisation transfer (MT and increase in proton density (PD, accounting for the previously described midbrain shrinkage. Additionally, we found increases in R1 and PD in several pontine and medullary structures. We consider these changes in the context of well-characterised, functional age-related changes, and propose potential biophysical mechanisms. This study provides detailed quantitative analysis of the internal architecture of the brainstem and provides a baseline for further studies of neurodegenerative diseases that are characterised by early, pre-clinical involvement of the brainstem, such as Parkinson’s and Alzheimer’s diseases.

  20. Reproducibility of CSF quantitative culture methods for estimating rate of clearance in cryptococcal meningitis.

    Science.gov (United States)

    Dyal, Jonathan; Akampurira, Andrew; Rhein, Joshua; Morawski, Bozena M; Kiggundu, Reuben; Nabeta, Henry W; Musubire, Abdu K; Bahr, Nathan C; Williams, Darlisha A; Bicanic, Tihana; Larsen, Robert A; Meya, David B; Boulware, David R

    2016-05-01

    Quantitative cerebrospinal fluid (CSF) cultures provide a measure of disease severity in cryptococcal meningitis. The fungal clearance rate by quantitative cultures has become a primary endpoint for phase II clinical trials. This study determined the inter-assay accuracy of three different quantitative culture methodologies. Among 91 participants with meningitis symptoms in Kampala, Uganda, during August-November 2013, 305 CSF samples were prospectively collected from patients at multiple time points during treatment. Samples were simultaneously cultured by three methods: (1) St. George's 100 mcl input volume of CSF with five 1:10 serial dilutions, (2) AIDS Clinical Trials Group (ACTG) method using 1000, 100, 10 mcl input volumes, and two 1:100 dilutions with 100 and 10 mcl input volume per dilution on seven agar plates; and (3) 10 mcl calibrated loop of undiluted and 1:100 diluted CSF (loop). Quantitative culture values did not statistically differ between St. George-ACTG methods (P= .09) but did for St. George-10 mcl loop (Pmethods was high (r≥0.88). For detecting sterility, the ACTG-method had the highest negative predictive value of 97% (91% St. George, 60% loop), but the ACTG-method had occasional (∼10%) difficulties in quantification due to colony clumping. For CSF clearance rate, St. George-ACTG methods did not differ overall (mean -0.05 ± 0.07 log10CFU/ml/day;P= .14) on a group level; however, individual-level clearance varied. The St. George and ACTG quantitative CSF culture methods produced comparable but not identical results. Quantitative cultures can inform treatment management strategies. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.