WorldWideScience

Sample records for quantifying habitat requirements

  1. Status and habitat requirements of the white sturgeon populations in the Columbia River downstream from McNary Dam

    International Nuclear Information System (INIS)

    Nigro, A.A.

    1991-09-01

    We report on our progress from April 1990 through March 1991 on determining the status and habitat requirements of white sturgeon populations in the Columbia River downstream from McNary Dam. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW), Washington Department of Fisheries (WDF), US Fish and Wildlife Service (FWS) and National Marine Fisheries Service (NMFS). Study objectives addressed by each agency are to describe the life history and population dynamics of subadults and adults between Bonneville and McNary dams and evaluate the need and identify potential methods for protecting, mitigating and enhancing populations downstream from NcNary Dam; to describe the white sturgeon recreational fishery between Bonneville and McNary dams, describe reproductive and early life history characteristics downstream from Bonneville Dam and describe life history and population dynamics of subadults and adults downstream from Bonneville Dam; to describe reproduction and early life history characteristics, define habitat requirements for spawning and rearing and quantify extent of habitat available between Bonneville and McNary dams; and to describe reproduction and early life history characteristics, define habitat requirements for spawning and rearing and quantify extent of habitat available downstream from Bonneville Dam. Our approach is to work concurrently downstream and upstream from Bonneville Dam. Upstream from Bonneville Dam we began work in the Dalles Reservoir in 1987 and expanded efforts to Bonneville Reservoir in 1988 and John Day Reservoir in 1989. Highlights of results of this work in the Dalles, Bonneville and John Day reservoirs are included in the four pages included in this report

  2. Quantifying Multiscale Habitat Structural Complexity: A Cost-Effective Framework for Underwater 3D Modelling

    Directory of Open Access Journals (Sweden)

    Renata Ferrari

    2016-02-01

    Full Text Available Coral reef habitat structural complexity influences key ecological processes, ecosystem biodiversity, and resilience. Measuring structural complexity underwater is not trivial and researchers have been searching for accurate and cost-effective methods that can be applied across spatial extents for over 50 years. This study integrated a set of existing multi-view, image-processing algorithms, to accurately compute metrics of structural complexity (e.g., ratio of surface to planar area underwater solely from images. This framework resulted in accurate, high-speed 3D habitat reconstructions at scales ranging from small corals to reef-scapes (10s km2. Structural complexity was accurately quantified from both contemporary and historical image datasets across three spatial scales: (i branching coral colony (Acropora spp.; (ii reef area (400 m2; and (iii reef transect (2 km. At small scales, our method delivered models with <1 mm error over 90% of the surface area, while the accuracy at transect scale was 85.3% ± 6% (CI. Advantages are: no need for an a priori requirement for image size or resolution, no invasive techniques, cost-effectiveness, and utilization of existing imagery taken from off-the-shelf cameras (both monocular or stereo. This remote sensing method can be integrated to reef monitoring and improve our knowledge of key aspects of coral reef dynamics, from reef accretion to habitat provisioning and productivity, by measuring and up-scaling estimates of structural complexity.

  3. Status and Habitat Requirements of White Sturgeon Populations in the Columbia River Downstream from McNary Dam, 1989-1990 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Nigro, Anthony A. (Oregon Department of Fish and Wildlife, Portland, OR)

    1990-09-01

    We report on our progress from April 1989 through March 1990 on determining the status and habitat requirements of white sturgeon populations in the Columbia River downstream from McNary Dam. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW), Washington Department of Fisheries (WDF), US Fish and Wildlife Service (FWS) and National Marine Fisheries Service (NMFS). Study objectives addressed by each agency are to describe the life history and population dynamics of subadults and adults between Bonneville and McNary dams and evaluate the need and identify potential methods for protecting, mitigating and enhancing populations downstream from McNary Dam, to describe the white sturgeon recreational fishery between Bonneville and McNary dams, describe reproductive and early life history characteristics downstream from Bonneville Dam and describe life history and population dynamics of subadults and adults downstream from Bonneville Dam, to describe reproduction and early life history characteristics, define habitat requirements for spawning and rearing and quantify extent of habitat available between Bonneville and McNary dams, and to describe reproduction and early life history characteristics, define habitat requirements for spawning and rearing and quantify extent of habitat available downstream from Bonneville Dam. Our approach is to work concurrently downstream and upstream from Bonneville Dam. Upstream from Bonneville Dam we began work in the Dalles Reservoir in 1987 and expanded efforts to Bonneville Reservoir in 1988 and John Day Reservoir in 1989. Highlights from this work is also included. 47 refs., 33 figs., 66 tabs.

  4. Quantifying requirements volatility effects

    NARCIS (Netherlands)

    Kulk, G.P.; Verhoef, C.

    2008-01-01

    In an organization operating in the bancassurance sector we identified a low-risk IT subportfolio of 84 IT projects comprising together 16,500 function points, each project varying in size and duration, for which we were able to quantify its requirements volatility. This representative portfolio

  5. Demographic and habitat requirements for conservation of bull trout

    Science.gov (United States)

    Bruce E. Rieman; John D. Mclntyre

    1993-01-01

    Elements in bull trout biology, population dynamics, habitat, and biotic interactions important to conservation of the species are identified. Bull trout appear to have more specific habitat requirements than other salmonids, but no critical thresholds of acceptable habitat condition were found. Size, temporal variation, and spatial distribution are likely to influence...

  6. Determination of Habitat Requirements For Birds in Suburban Areas

    Science.gov (United States)

    Jack Ward Thomas; Richard M. DeGraaf; Joseph C. Mawson

    1977-01-01

    Songbird populations can be related to habitat components by a method that allows the simultaneous determination of habitat requirements for a variety of species . Through correlation and multiple-regression analyses, 10 bird species were studied in a suburban habitat, which was stratified according to human density. Variables used to account for bird distribution...

  7. Quantifying the effect of seasonal and vertical habitat tracking on planktonic foraminifera proxies

    Directory of Open Access Journals (Sweden)

    L. Jonkers

    2017-06-01

    Full Text Available The composition of planktonic foraminiferal (PF calcite is routinely used to reconstruct climate variability. However, PF ecology leaves a large imprint on the proxy signal: seasonal and vertical habitats of PF species vary spatially, causing variable offsets from annual mean surface conditions recorded by sedimentary assemblages. PF seasonality changes with temperature in a way that minimises the environmental change that individual species experience and it is not unlikely that changes in depth habitat also result from such habitat tracking. While this behaviour could lead to an underestimation of spatial or temporal trends as well as of variability in proxy records, most palaeoceanographic studies are (implicitly based on the assumption of a constant habitat. Up to now, the effect of habitat tracking on foraminifera proxy records has not yet been formally quantified on a global scale. Here we attempt to characterise this effect on the amplitude of environmental change recorded in sedimentary PF using core top δ18O data from six species. We find that the offset from mean annual near-surface δ18O values varies with temperature, with PF δ18O indicating warmer than mean conditions in colder waters (on average by −0.1 ‰ (equivalent to 0.4 °C per °C, thus providing a first-order quantification of the degree of underestimation due to habitat tracking. We use an empirical model to estimate the contribution of seasonality to the observed difference between PF and annual mean δ18O and use the residual Δδ18O to assess trends in calcification depth. Our analysis indicates that given an observation-based model parametrisation calcification depth increases with temperature in all species and sensitivity analysis suggests that a temperature-related seasonal habitat adjustment is essential to explain the observed isotope signal. Habitat tracking can thus lead to a significant reduction in the amplitude of recorded environmental change

  8. Quantifying shark distribution patterns and species-habitat associations: implications of marine park zoning.

    Science.gov (United States)

    Espinoza, Mario; Cappo, Mike; Heupel, Michelle R; Tobin, Andrew J; Simpfendorfer, Colin A

    2014-01-01

    Quantifying shark distribution patterns and species-specific habitat associations in response to geographic and environmental drivers is critical to assessing risk of exposure to fishing, habitat degradation, and the effects of climate change. The present study examined shark distribution patterns, species-habitat associations, and marine reserve use with baited remote underwater video stations (BRUVS) along the entire Great Barrier Reef Marine Park (GBRMP) over a ten year period. Overall, 21 species of sharks from five families and two orders were recorded. Grey reef Carcharhinus amblyrhynchos, silvertip C. albimarginatus, tiger Galeocerdo cuvier, and sliteye Loxodon macrorhinus sharks were the most abundant species (>64% of shark abundances). Multivariate regression trees showed that hard coral cover produced the primary split separating shark assemblages. Four indicator species had consistently higher abundances and contributed to explaining most of the differences in shark assemblages: C. amblyrhynchos, C. albimarginatus, G. cuvier, and whitetip reef Triaenodon obesus sharks. Relative distance along the GBRMP had the greatest influence on shark occurrence and species richness, which increased at both ends of the sampling range (southern and northern sites) relative to intermediate latitudes. Hard coral cover and distance across the shelf were also important predictors of shark distribution. The relative abundance of sharks was significantly higher in non-fished sites, highlighting the conservation value and benefits of the GBRMP zoning. However, our results also showed that hard coral cover had a large effect on the abundance of reef-associated shark species, indicating that coral reef health may be important for the success of marine protected areas. Therefore, understanding shark distribution patterns, species-habitat associations, and the drivers responsible for those patterns is essential for developing sound management and conservation approaches.

  9. A guide to calculating habitat-quality metrics to inform conservation of highly mobile species

    Science.gov (United States)

    Bieri, Joanna A.; Sample, Christine; Thogmartin, Wayne E.; Diffendorfer, James E.; Earl, Julia E.; Erickson, Richard A.; Federico, Paula; Flockhart, D. T. Tyler; Nicol, Sam; Semmens, Darius J.; Skraber, T.; Wiederholt, Ruscena; Mattsson, Brady J.

    2018-01-01

    Many metrics exist for quantifying the relative value of habitats and pathways used by highly mobile species. Properly selecting and applying such metrics requires substantial background in mathematics and understanding the relevant management arena. To address this multidimensional challenge, we demonstrate and compare three measurements of habitat quality: graph-, occupancy-, and demographic-based metrics. Each metric provides insights into system dynamics, at the expense of increasing amounts and complexity of data and models. Our descriptions and comparisons of diverse habitat-quality metrics provide means for practitioners to overcome the modeling challenges associated with management or conservation of such highly mobile species. Whereas previous guidance for applying habitat-quality metrics has been scattered in diversified tracks of literature, we have brought this information together into an approachable format including accessible descriptions and a modeling case study for a typical example that conservation professionals can adapt for their own decision contexts and focal populations.Considerations for Resource ManagersManagement objectives, proposed actions, data availability and quality, and model assumptions are all relevant considerations when applying and interpreting habitat-quality metrics.Graph-based metrics answer questions related to habitat centrality and connectivity, are suitable for populations with any movement pattern, quantify basic spatial and temporal patterns of occupancy and movement, and require the least data.Occupancy-based metrics answer questions about likelihood of persistence or colonization, are suitable for populations that undergo localized extinctions, quantify spatial and temporal patterns of occupancy and movement, and require a moderate amount of data.Demographic-based metrics answer questions about relative or absolute population size, are suitable for populations with any movement pattern, quantify demographic

  10. Quantifying functional connectivity: The role of breeding habitat, abundance, and landscape features on range-wide gene flow in sage-grouse

    Science.gov (United States)

    Jeffrey R. Row; Kevin E. Doherty; Todd B. Cross; Michael K. Schwartz; Sara Oyler-McCance; Dave E. Naugle; Steven T. Knick; Bradley C. Fedy

    2018-01-01

    Functional connectivity, quantified using landscape genetics, can inform conservation through the identification of factors linking genetic structure to landscape mechanisms. We used breeding habitat metrics, landscape attributes and indices of grouse abundance, to compare fit between structural connectivity and genetic differentiation within five long‐established Sage...

  11. Quantifying Functional Reuse from Object Oriented Requirements Specifications

    NARCIS (Netherlands)

    Condori-Fernandez, Nelly; Condori-Fernández, N.; Pastor, O; Daneva, Maia; Abran, A.; Castro, J.; Quer, C.; Carvallo, J. B.; Fernandes da Silva, L.

    2008-01-01

    Software reuse is essential in improving efficiency and productivity in the software development process. This paper analyses reuse within requirements engineering phase by taking and adapting a standard functional size measurement method, COSMIC FFP. Our proposal attempts to quantify reusability

  12. GIS-based approach for quantifying landscape connectivity of Javan Hawk-Eagle habitat

    Science.gov (United States)

    Nurfatimah, C.; Syartinilia; Mulyani, Y. A.

    2018-05-01

    Javan Hawk-Eagle (Nisaetus bartelsi; JHE) is a law-protected endemic raptor which currently faced the decreased in number and size of habitat patches that will lead to patch isolation and species extinction. This study assessed the degree of connectivity between remnant habitat patches in central part of Java by utilizing Conefor Sensinode software as an additional tool for ArcGIS. The connectivity index was determined by three fractions which are infra, flux and connector. Using connectivity indices successfully identified 4 patches as core habitat, 9 patches as stepping-stone habitat and 6 patches as isolated habitat were derived from those connectivity indices. Those patches then being validated with land cover map derived from Landsat 8 of August 2014. 36% of core habitat covered by natural forest, meanwhile stepping stone habitat has 55% natural forest and isolated habitat covered by 59% natural forest. Isolated patches were caused by zero connectivity (PCcon = 0) and the patch size which too small to support viable JHE population. Yet, the condition of natural forest and the surrounding matrix landscape in isolated patches actually support the habitat need. Thus, it is very important to conduct the right conservation management system based on the condition of each patches.

  13. Two-dimensional hydrodynamic modeling to quantify effects of peak-flow management on channel morphology and salmon-spawning habitat in the Cedar River, Washington

    Science.gov (United States)

    Czuba, Christiana; Czuba, Jonathan A.; Gendaszek, Andrew S.; Magirl, Christopher S.

    2010-01-01

    The Cedar River in Washington State originates on the western slope of the Cascade Range and provides the City of Seattle with most of its drinking water, while also supporting a productive salmon habitat. Water-resource managers require detailed information on how best to manage high-flow releases from Chester Morse Lake, a large reservoir on the Cedar River, during periods of heavy precipitation to minimize flooding, while mitigating negative effects on fish populations. Instream flow-management practices include provisions for adaptive management to promote and maintain healthy aquatic habitat in the river system. The current study is designed to understand the linkages between peak flow characteristics, geomorphic processes, riverine habitat, and biological responses. Specifically, two-dimensional hydrodynamic modeling is used to simulate and quantify the effects of the peak-flow magnitude, duration, and frequency on the channel morphology and salmon-spawning habitat. Two study reaches, representative of the typical geomorphic and ecologic characteristics of the Cedar River, were selected for the modeling. Detailed bathymetric data, collected with a real-time kinematic global positioning system and an acoustic Doppler current profiler, were combined with a LiDAR-derived digital elevation model in the overbank area to develop a computational mesh. The model is used to simulate water velocity, benthic shear stress, flood inundation, and morphologic changes in the gravel-bedded river under the current and alternative flood-release strategies. Simulations of morphologic change and salmon-redd scour by floods of differing magnitude and duration enable water-resource managers to incorporate model simulation results into adaptive management of peak flows in the Cedar River. PDF version of a presentation on hydrodynamic modelling in the Cedar River in Washington state. Presented at the American Geophysical Union Fall Meeting 2010.

  14. The spatial structure of habitat selection: A caribou's-eye-view

    Science.gov (United States)

    Mayor, Stephen J.; Schaefer, James A.; Schneider, David C.; Mahoney, Shane P.

    2009-03-01

    Greater understanding of habitat selection requires investigation at the scales at which organisms perceive and respond to their environment. Such knowledge could reveal the relative importance of factors limiting populations and the extent of response to habitat changes, and so guide conservation initiatives. We conducted a novel, spatially explicit analysis of winter habitat selection by caribou ( Rangifer tarandus) in Newfoundland, Canada, to elucidate the spatial scales of habitat selection. We combined conventional hierarchical habitat analysis with a newly developed geospatial approach that quantifies selection across scales as the difference in variance between available and used sites. We used both ordination and univariate analyses of lichen and plant cover, snow hardness and depth. This represents the first use of ordination with geostatistics for the assessment of habitat selection. Caribou habitat selection was driven by shallow, soft snow and high cover of Cladina lichens and was strongest at feeding microsites (craters) and broader feeding areas. Habitat selection was most evident at distance lags of up to 15 km, perhaps an indication of the perceptual abilities of caribou.

  15. Quantifying structural physical habitat attributes using LIDAR and hyperspectral imagery - PRK

    Science.gov (United States)

    Structural physical habitat attributes include indices of stream size, channel gradient, substrate size, habitat complexity, and riparian vegetation cover and structure. The Environmental Monitoring and Assessment Program (EMAP) is designed to assess the status and trends of ecol...

  16. Modelling climate change impacts on stream habitat conditions

    DEFF Research Database (Denmark)

    Boegh, Eva; Conallin, John; Karthikeyan, Matheswaran

    Impact from groundwater abstraction on freshwater resources and ecosystems is an issue of sincere concern in Denmark and many other countries worldwide. In addition, climate change projections add complexity to the existing conflict between water demands to satisfy human needs and water demands...... required to conserve streams as biologically diverse and healthy ecosystems. Solutions to this intensifying conflict require a holistic approach whereby stream biota is related to their physical environment at catchment scale, as also demanded by the EU Water Framework Directive. In the present study......, climate impacts on stream ecological conditions were quantified by combining a heat and mass stream flow with a habitat suitability modelling approach. Habitat suitability indices were developed for stream velocity, water depth, water temperature and substrate. Generally, water depth was found...

  17. Quantifying the importance of patch-specific changes in habitat to metapopulation viability of an endangered songbird.

    Science.gov (United States)

    Horne, Jon S; Strickler, Katherine M; Alldredge, Mathew

    2011-10-01

    A growing number of programs seek to facilitate species conservation using incentive-based mechanisms. Recently, a market-based incentive program for the federally endangered Golden-cheeked Warbler (Dendroica chrysoparia) was implemented on a trial basis at Fort Hood, an Army training post in Texas, USA. Under this program, recovery credits accumulated by Fort Hood through contracts with private landowners are used to offset unintentional loss of breeding habitat of Golden-cheeked Warblers within the installation. Critical to successful implementation of such programs is the ability to value, in terms of changes to overall species viability, both habitat loss and habitat restoration or protection. In this study, we sought to answer two fundamental questions: Given the same amount of change in breeding habitat, does the change in some patches have a greater effect on metapopulation persistence than others? And if so, can characteristics of a patch (e.g., size or spatial location) be used to predict how the metapopulation will respond to these changes? To answer these questions, we describe an approach for using sensitivity analysis of a metapopulation projection model to predict how changes to specific habitat patches would affect species viability. We used a stochastic, discrete-time projection model based on stage-specific estimates of survival and fecundity, as well as various assumptions about dispersal among populations. To assess a particular patch's leverage, we quantified how much metapopulation viability was expected to change in response to changing the size of that patch. We then related original patch size and distance from the largest patch to each patch's leverage to determine if general patch characteristics could be used to develop guidelines for valuing changes to patches within a metapopulation. We found that both the characteristic that best predicted patch leverage and the magnitude of the relationship changed under different model scenarios

  18. Effects of Mitigative Measures on Productivity of White Sturgeon Populations in the Columbia River Downstream from McNary Dam; Determine Status and Habitat Requirements of White Sturgeon Populations in the Columbia and Snake Rivers Upstream from the McNary Dam, 1994-1995 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Beiningen, Kirk T. [Oregon Dept. of Fish and Wildlife, Portland, OR (US)

    1996-03-01

    The author reports on progress from April 1994 through March 1995 of research on white sturgeon in the lower Columbia River. The study began in July 1986 and is a cooperative effort of federal, state and tribal fisheries entities to determine the (1) the status and habitat requirements, and (2) the effects of mitigative measures on productivity of white sturgeon populations in the lower Columbia River. This report describes activities conducted during the third year of this contract's second phase. Information was collected, analyzed, and evaluated on sub-adult and adult life histories, population dynamics, quantity and quality of habitat, and production enhancement strategies. The report is divided into sections that evaluate success of developing and implementing a management plan for white sturgeon; evaluate growth, mortality, and contributions to fisheries of juvenile white sturgeon transplanted from areas downstream; describe the life history and population dynamics of sub-adult a nd adult white sturgeon; define habitat requirements for spawning and rearing of white sturgeon and quantify the extent of habitat available; describe reproductive and early life history characteristics of white sturgeon; and quantify physical habitat used by spawning and rearing white sturgeon in the free-flowing portion of the Columbia River.

  19. Effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and determine status and habitat requirements of white sturgeon populations in the Columbia and Snake Rivers upstream from the McNary Dam. Annual progress report, April 1994--March 1995

    International Nuclear Information System (INIS)

    Beiningen, K.T.

    1996-03-01

    The author reports on progress from April 1994 through March 1994 of research on white sturgeon in the lower Columbia River. The study began in July 1986 and is a cooperative effort of federal, state and tribal fisheries entities to determine the (1) the status and habitat requirements, and (2) the effects of mitigative measures on productivity of white sturgeon populations in the lower Columbia River. This report describes activities conducted during the third year of this contract's second phase. Information was collected, analyzed, and evaluated on subadult and adult life histories, population dynamics, quantity and quality of habitat, and production enhancement strategies. The report is divided into sections that evaluate success of developing and implementing a management plan for white sturgeon; evaluate growth, mortality, and contributions to fisheries of juvenile white sturgeon transplanted from areas downstream; describe the life history and population dynamics of subadult and adult white sturgeon; define habitat requirements for spawning and rearing of white sturgeon and quantify the extent of habitat available; describe reproductive and early life history characteristics of white sturgeon; and quantify physical habitat used by spawning and rearing white sturgeon in the free-flowing portion of the Columbia River

  20. Quantifying restoration effectiveness using multi-scale habitat models: implications for sage-grouse in the Great Basin

    Science.gov (United States)

    Arkle, Robert S.; Pilliod, David S.; Hanser, Steven E.; Brooks, Matthew L.; Chambers, Jeanne C.; Grace, James B.; Knutson, Kevin C.; Pyke, David A.; Welty, Justin L.

    2014-01-01

    conditions, but in most climates, establishing forbs and reducing cheatgrass dominance is unlikely. Reestablishing sagebrush cover will require more than 20 years using past restoration methods. Given current fire frequencies and restoration capabilities, protection of landscapes containing a mix of dwarf sagebrush and big sagebrush steppe, minimal human development, and low non-native plant cover may provide the best opportunity for conservation of sage-grouse habitats.

  1. Nesting habitat requirements and nestling diet in the Mediterranean populations of Crested Tits Lophophanes cristatus

    NARCIS (Netherlands)

    Atienzar, F.; Barba, E.; Holleman, L.J.M.; Belda, E.J.

    2009-01-01

    Most bird species show specific habitat requirements for breeding and feeding. We studied the pattern of habitat occupation, nestling diet and breeding performance of Crested Tits Lophophanes cristatus in a “typical” (coniferous) and an “atypical” (Holm Oak Quercus ilex) forest in eastern Spain

  2. Evaluation of Life History Diversity, Habitat Connectivity, and Survival Benefits Associated with Habitat Restoration Actions in the Lower Columbia River and Estuary, Annual Report 2010

    Energy Technology Data Exchange (ETDEWEB)

    Diefenderfer, Heida L.; Johnson, Gary E.; Sather, Nichole K.; Skalski, J. R.; Dawley, Earl M.; Coleman, Andre M.; Ostrand, Kenneth G.; Hanson, Kyle C.; Woodruff, Dana L.; Donley, Erin E.; Ke, Yinghai; Buenau, Kate E.; Bryson, Amanda J.; Townsend, Richard L.

    2011-10-01

    This report describes the 2010 research conducted under the U.S. Army Corps of Engineers (USACE) project EST-P-09-1, titled Evaluation of Life History Diversity, Habitat Connectivity, and Survival Benefits Associated with Habitat Restoration Actions in the Lower Columbia River and Estuary, and known as the 'Salmon Benefits' study. The primary goal of the study is to establish scientific methods to quantify habitat restoration benefits to listed salmon and trout in the lower Columbia River and estuary (LCRE) in three required areas: habitat connectivity, early life history diversity, and survival (Figure ES.1). The general study approach was to first evaluate the state of the science regarding the ability to quantify benefits to listed salmon and trout from habitat restoration actions in the LCRE in the 2009 project year, and then, if feasible, in subsequent project years to develop quantitative indices of habitat connectivity, early life history diversity, and survival. Based on the 2009 literature review, the following definitions are used in this study. Habitat connectivity is defined as a landscape descriptor concerning the ability of organisms to move among habitat patches, including the spatial arrangement of habitats (structural connectivity) and how the perception and behavior of salmon affect the potential for movement among habitats (functional connectivity). Life history is defined as the combination of traits exhibited by an organism throughout its life cycle, and for the purposes of this investigation, a life history strategy refers to the body size and temporal patterns of estuarine usage exhibited by migrating juvenile salmon. Survival is defined as the probability of fish remaining alive over a defined amount of space and/or time. The objectives of the 4-year study are as follows: (1) develop and test a quantitative index of juvenile salmon habitat connectivity in the LCRE incorporating structural, functional, and hydrologic components; (2

  3. Habitat loss and gain: Influence on habitat attractiveness for estuarine fish communities

    Science.gov (United States)

    Amorim, Eva; Ramos, Sandra; Elliott, Michael; Franco, Anita; Bordalo, Adriano A.

    2017-10-01

    Habitat structure and complexity influence the structuring and functioning of fish communities. Habitat changes are one of the main pressures affecting estuarine systems worldwide, yet the degree and rate of change and its impact on fish communities is still poorly understood. In order to quantify historical modifications in habitat structure, an ecohydrological classification system using physiotopes, i.e. units with homogenous abiotic characteristics, was developed for the lower Lima estuary (NW Portugal). Field data, aerial imagery, historical maps and interpolation methods were used to map input variables, including bathymetry, substratum (hard/soft), sediment composition, hydrodynamics (current velocity) and vegetation coverage. Physiotopes were then mapped for the years of 1933 and 2013 and the areas lost and gained over the 80 years were quantified. The implications of changes for the benthic and demersal fish communities using the lower estuary were estimated using the attractiveness to those communities of each physiotope, while considering the main estuarine habitat functions for fish, namely spawning, nursery, feeding and refuge areas and migratory routes. The lower estuary was highly affected due to urbanisation and development and, following a port/harbour expansion, its boundary moved seaward causing an increase in total area. Modifications led to the loss of most of its sandy and saltmarsh intertidal physiotopes, which were replaced by deeper subtidal physiotopes. The most attractive physiotopes for fish (defined as the way in which they supported the fish ecological features) decreased in area while less attractive ones increased, producing an overall lower attractiveness of the studied area in 2013 compared to 1933. The implications of habitat alterations for the fish using the estuary include potential changes in the nursery carrying capacity and the functioning of the fish community. The study also highlighted the poor knowledge of the impacts of

  4. L-Reactor Habitat Mitigation Study

    International Nuclear Information System (INIS)

    1988-02-01

    The L-Reactor Fish and Wildlife Resource Mitigation Study was conducted to quantify the effects on habitat of the L-Reactor restart and to identify the appropriate mitigation for these impacts. The completed project evaluated in this study includes construction of a 1000 acre reactor cooling reservoir formed by damming Steel Creek. Habitat impacts identified include a loss of approximately 3,700 average annual habitat units. This report presents a mitigation plan, Plan A, to offset these habitat losses. Plan A will offset losses for all species studied, except whitetailed deer. The South Carolina Wildlife and Marine Resources Department strongly recommends creation of a game management area to provide realistic mitigation for loss of deer habitats. 10 refs., 5 figs., 3 tabs

  5. Using urban forest assessment tools to model bird habitat potential

    Science.gov (United States)

    Lerman, Susannah B.; Nislow, Keith H.; Nowak, David J.; DeStefano, Stephen; King, David I.; Jones-Farrand, D. Todd

    2014-01-01

    The alteration of forest cover and the replacement of native vegetation with buildings, roads, exotic vegetation, and other urban features pose one of the greatest threats to global biodiversity. As more land becomes slated for urban development, identifying effective urban forest wildlife management tools becomes paramount to ensure the urban forest provides habitat to sustain bird and other wildlife populations. The primary goal of this study was to integrate wildlife suitability indices to an existing national urban forest assessment tool, i-Tree. We quantified available habitat characteristics of urban forests for ten northeastern U.S. cities, and summarized bird habitat relationships from the literature in terms of variables that were represented in the i-Tree datasets. With these data, we generated habitat suitability equations for nine bird species representing a range of life history traits and conservation status that predicts the habitat suitability based on i-Tree data. We applied these equations to the urban forest datasets to calculate the overall habitat suitability for each city and the habitat suitability for different types of land-use (e.g., residential, commercial, parkland) for each bird species. The proposed habitat models will help guide wildlife managers, urban planners, and landscape designers who require specific information such as desirable habitat conditions within an urban management project to help improve the suitability of urban forests for birds.

  6. A test of the habitat suitability model for Merriam's wild turkeys

    Science.gov (United States)

    Mark A. Rumble; Stanley H. Anderson

    1996-01-01

    An important research area regarding the wild turkey (Meleagris gallopavo) is development of sound habitat models. Habitat models provide standardized methods to quantify wild turkey habitat and stimulate new research hypotheses. Habitat suitability index (HSI) models show species-habitat relationships on a scale of O-l, with 1 being optimum. A...

  7. Habitat requirements and burrowing depths of rodents in relation to shallow waste burial sites

    Energy Technology Data Exchange (ETDEWEB)

    Gano, K.A.; States, J.B.

    1982-05-01

    The purpose of this paper is to provide a review of the literature and summarize information on factors affecting habitat selection and maximum recorded burrowing depths for representative small mammals that we consider most likely to inhibit waste burial sites in arid and semi-arid regions of the West. The information is intended for waste management designers who need to know what to expect from small mammals that may be present at a particular site. Waste repositories oculd be designed to exclude the deep burrowing rodents of a region by creating an unattractive habitat over the waste. Summaries are given for habitat requirements of each group along with generalized modifications that could be employed to deter habitation. Representatives from the major groups considered to be deep burrowers are discussed. Further, detailed information about a particular species can be obtained from the references cited.

  8. Habitat requirements and burrowing depths of rodents in relation to shallow waste burial sites

    International Nuclear Information System (INIS)

    Gano, K.A.; States, J.B.

    1982-05-01

    The purpose of this paper is to provide a review of the literature and summarize information on factors affecting habitat selection and maximum recorded burrowing depths for representative small mammals that we consider most likely to inhibit waste burial sites in arid and semi-arid regions of the West. The information is intended for waste management designers who need to know what to expect from small mammals that may be present at a particular site. Waste repositories oculd be designed to exclude the deep burrowing rodents of a region by creating an unattractive habitat over the waste. Summaries are given for habitat requirements of each group along with generalized modifications that could be employed to deter habitation. Representatives from the major groups considered to be deep burrowers are discussed. Further, detailed information about a particular species can be obtained from the references cited

  9. GIS habitat analysis for lesser prairie-chickens in southeastern New Mexico

    OpenAIRE

    Johnson, Kristine; Neville, Teri B; Neville, Paul

    2006-01-01

    Abstract Background We conducted Geographic Information System (GIS) habitat analyses for lesser prairie-chicken (LPCH, Tympanuchus pallidicinctus) conservation planning. The 876,799 ha study area included most of the occupied habitat for the LPCH in New Mexico. The objectives were to identify and quantify: 1. suitable LPCH habitat in New Mexico, 2. conversion of native habitats, 3. potential for habitat restoration, and 4. unsuitable habitat available for oil and gas activities. Results We f...

  10. Linking habitat mosaics and connectivity in a coral reef seascape

    KAUST Repository

    McMahon, Kelton

    2012-09-04

    Tropical marine ecosystems are under mounting anthropogenic pressure from overfishing and habitat destruction, leading to declines in their structure and function on a global scale. Although maintaining connectivity among habitats within a seascape is necessary for preserving population resistance and resilience, quantifying movements of individuals within seascapes remains challenging. Traditional methods of identifying and valuing potential coral reef fish nursery habitats are indirect, often relying on visual surveys of abundance and correlations of size and biomass among habitats. We used compound-specific stable isotope analyses to determine movement patterns of commercially important fish populations within a coral reef seascape. This approach allowed us to quantify the relative contributions of individuals from inshore nurseries to reef populations and identify migration corridors among important habitats. Our results provided direct measurements of remarkable migrations by juvenile snapper of over 30 km, between nurseries and reefs. We also found significant plasticity in juvenile nursery residency. Although a majority of individuals on coastal reefs had used seagrass nurseries as juveniles, many adults on oceanic reefs had settled directly into reef habitats. Moreover, seascape con figuration played a critical but heretofore unrecognized role in determining connectivity among habitats. Finally, our approach provides key quantitative data necessary to estimate the value of distinctive habitats to ecosystem services provided by seascapes.

  11. Linking habitat mosaics and connectivity in a coral reef seascape

    KAUST Repository

    McMahon, Kelton; Berumen, Michael L.; Thorrold, Simon R.

    2012-01-01

    Tropical marine ecosystems are under mounting anthropogenic pressure from overfishing and habitat destruction, leading to declines in their structure and function on a global scale. Although maintaining connectivity among habitats within a seascape is necessary for preserving population resistance and resilience, quantifying movements of individuals within seascapes remains challenging. Traditional methods of identifying and valuing potential coral reef fish nursery habitats are indirect, often relying on visual surveys of abundance and correlations of size and biomass among habitats. We used compound-specific stable isotope analyses to determine movement patterns of commercially important fish populations within a coral reef seascape. This approach allowed us to quantify the relative contributions of individuals from inshore nurseries to reef populations and identify migration corridors among important habitats. Our results provided direct measurements of remarkable migrations by juvenile snapper of over 30 km, between nurseries and reefs. We also found significant plasticity in juvenile nursery residency. Although a majority of individuals on coastal reefs had used seagrass nurseries as juveniles, many adults on oceanic reefs had settled directly into reef habitats. Moreover, seascape con figuration played a critical but heretofore unrecognized role in determining connectivity among habitats. Finally, our approach provides key quantitative data necessary to estimate the value of distinctive habitats to ecosystem services provided by seascapes.

  12. Linking habitat mosaics and connectivity in a coral reef seascape.

    Science.gov (United States)

    McMahon, Kelton W; Berumen, Michael L; Thorrold, Simon R

    2012-09-18

    Tropical marine ecosystems are under mounting anthropogenic pressure from overfishing and habitat destruction, leading to declines in their structure and function on a global scale. Although maintaining connectivity among habitats within a seascape is necessary for preserving population resistance and resilience, quantifying movements of individuals within seascapes remains challenging. Traditional methods of identifying and valuing potential coral reef fish nursery habitats are indirect, often relying on visual surveys of abundance and correlations of size and biomass among habitats. We used compound-specific stable isotope analyses to determine movement patterns of commercially important fish populations within a coral reef seascape. This approach allowed us to quantify the relative contributions of individuals from inshore nurseries to reef populations and identify migration corridors among important habitats. Our results provided direct measurements of remarkable migrations by juvenile snapper of over 30 km, between nurseries and reefs. We also found significant plasticity in juvenile nursery residency. Although a majority of individuals on coastal reefs had used seagrass nurseries as juveniles, many adults on oceanic reefs had settled directly into reef habitats. Moreover, seascape configuration played a critical but heretofore unrecognized role in determining connectivity among habitats. Finally, our approach provides key quantitative data necessary to estimate the value of distinctive habitats to ecosystem services provided by seascapes.

  13. Identifying Critical Habitat for Australian Freshwater Turtles in a Large Regulated Floodplain: Implications for Environmental Water Management

    Science.gov (United States)

    Ocock, J. F.; Bino, G.; Wassens, S.; Spencer, J.; Thomas, R. F.; Kingsford, R. T.

    2018-03-01

    Freshwater turtles face many threats, including habitat loss and river regulation reducing occupancy and contributing to population decline. Limited knowledge of hydrological conditions required to maintain viable turtle populations in large floodplain wetlands hinders effective adaptive management of environmental water in regulated rivers. We surveyed three turtle species over 4 years across the Lower Murrumbidgee River floodplain, a large wetland complex with a long history of water resource development. Using site and floodplain metrics and generalized linear models, within a Bayesian Model Averaging framework, we quantified the main drivers affecting turtle abundance. We also used a hierarchical modeling approach, requiring large sample sizes, quantifying possible environmental effects while accounting for detection probabilities of the eastern long-necked turtle ( Chelodina longicollis). The three species varied in their responses to hydrological conditions and connectivity to the main river channel. Broad-shelled turtles ( Chelodina expansa) and Macquarie River turtles ( Emydura macquarii macquarii) had restricted distributions, centered on frequently inundated wetlands close to the river, whereas the eastern long-necked turtles were more widely distributed, indicating an ability to exploit variable habitats. We conclude that turtle communities would benefit from long-term management strategies that maintain a spatiotemporal mosaic of hydrological conditions. More specifically, we identified characteristics of refuge habitats and stress the importance of maintaining their integrity during dry periods. Neighboring habitats can be targeted during increased water availability years to enhance feeding and dispersal opportunities for freshwater turtles.

  14. Modeling effects of conservation grassland losses on amphibian habitat

    Science.gov (United States)

    Mushet, David M.; Neau, Jordan L.; Euliss, Ned H.

    2014-01-01

    Amphibians provide many ecosystem services valued by society. However, populations have declined globally with most declines linked to habitat change. Wetlands and surrounding terrestrial grasslands form habitat for amphibians in the North American Prairie Pothole Region (PPR). Wetland drainage and grassland conversion have destroyed or degraded much amphibian habitat in the PPR. However, conservation grasslands can provide alternate habitat. In the United States, the Conservation Reserve Program (CRP) is the largest program maintaining grasslands on agricultural lands. We used an ecosystem services model (InVEST) parameterized for the PPR to quantify amphibian habitat over a six-year period (2007–2012). We then quantified changes in availability of amphibian habitat under various land-cover scenarios representing incremental losses (10%, 25%, 50%, 75%, and 100%) of CRP grasslands from 2012 levels. The area of optimal amphibian habitat in the four PPR ecoregions modeled (i.e., Northern Glaciated Plains, Northwestern Glaciated Plains, Lake Agassiz Plain, Des Moines Lobe) declined by approximately 22%, from 3.8 million ha in 2007 to 2.9 million ha in 2012. These losses were driven by the conversion of CRP grasslands to croplands, primarily for corn and soybean production. Our modeling identified an additional 0.8 million ha (26%) of optimal amphibian habitat that would be lost if remaining CRP lands are returned to crop production. An economic climate favoring commodity production over conservation has resulted in substantial losses of amphibian habitat across the PPR that will likely continue into the future. Other regions of the world face similar challenges to maintaining amphibian habitats.

  15. Maternal habitat affects germination requirements of Anabasis setifera, a succulent shrub of the Arabian deserts

    Directory of Open Access Journals (Sweden)

    Ali El-Keblawy

    2016-03-01

    Full Text Available The effects of maternal habitat on light and temperature requirements during germination were assessed for the succulent desert shrub Anabasis setifera. Seeds were collected from the Mediterranean habitats of Egypt and the hyper-arid subtropical habitats of the United Arab Emirates (UAE. Seeds from the two populations were germinated in three temperature treatments in both a light/dark regime and continuous darkness. Seeds from the Egyptian population germinated significantly greater and faster than those of UAE. Seeds stored for four months at room temperatures have little dormancy and germinate at wide range of temperatures and light conditions, but seeds stored four months in the natural habitat lost their ability to germinate and rotted 10 days after incubation. The germination response to temperature depended on the habitat type. Seeds of the Egyptian population attained a significantly greater germination at lower temperatures, compared with seeds from the UAE population, but there was no difference in germination between the two populations at higher temperatures. Germination of A. setifera was very fast; most seeds germinated within four days. These results reflect the adaptive strategy of germination in both populations, and may help explain the wide distribution of this species in different climatic regions.

  16. Newly Discovered Orangutan Species Requires Urgent Habitat Protection.

    Science.gov (United States)

    Sloan, Sean; Supriatna, Jatna; Campbell, Mason J; Alamgir, Mohammed; Laurance, William F

    2018-05-03

    Nater, et al.[1] recently identified a new orangutan species (Pongo tapanuliensis) in northern Sumatra, Indonesia-just the seventh described species of living great ape. The population of this critically-endangered species is perilously small, at only ∼800 individuals [1], ranking it among the planet's rarest fauna. We assert that P. tapanuliensis is highly vulnerable to extinction because its remaining habitat is small, fragmented, and poorly protected. While road incursions within its habitat are modest-road density is only one-eighth that of northern Sumatra-over one-fifth of its habitat is zoned for agricultural conversion or is comprised of mosaic agricultural and regrowth/degraded forest. Additionally, a further 8% will be affected by flooding and infrastructure development for a hydroelectric project. We recommend urgent steps to increase the chance that P. tapanuliensis will persist in the wild. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Quantifying the role of woody debris in providing bioenergetically favorable habitat for juvenile salmon

    Science.gov (United States)

    Harrison, L.; Hafs, A. W.; Utz, R.; Dunne, T.

    2013-12-01

    The habitat complexity of a riverine ecosystem substantially influences aquatic communities, and especially the bioenergetics of drift feeding fish. We coupled hydrodynamic and bioenergetic models to assess the influence of habitat complexity, generated via large woody debris (LWD) additions, on juvenile Chinook salmon (Oncorhynchus tshawytscha) growth potential in a river that lacked large wood. Model simulations indicated that LWD diversified the flow field, creating pronounced velocity gradients, which enhanced fish feeding and resting activities at the micro-habitat (sub-meter) scale. Fluid drag created by individual wood structures was increased under higher wood loading rates, leading to a 5-19% reduction in the reach-averaged velocity. We found that wood loading was asymptotically related to the reach-scale growth potential, suggesting that the river became saturated with LWD and additional loading would produce minimal benefit. In our study reach, LWD additions could potentially quadruple the potential growth area available before that limit was reached. Wood depletion in the world's rivers has been widely documented, leading to widespread attempts by river managers to reverse this trend by adding wood to simplified aquatic habitats, though systematic prediction of the effects of wood on fish growth has not been previously accomplished. We offer a quantitative, theory-based approach for assessing the role of wood on habitat potential as it affects fish growth at the micro-habitat and reach-scales. Fig. 1. Predicted flow field and salmon growth potential maps produced from model simulations with no woody debris (Graphs A and D), a low density (Graphs B and E), and a high density (Graphs C and E) of woody debris.

  18. Quantification of habitat fragmentation reveals extinction risk in terrestrial mammals

    Science.gov (United States)

    Crooks, Kevin R.; Burdett, Christopher L.; Theobald, David M.; King, Sarah R. B.; Rondinini, Carlo; Boitani, Luigi

    2017-01-01

    Although habitat fragmentation is often assumed to be a primary driver of extinction, global patterns of fragmentation and its relationship to extinction risk have not been consistently quantified for any major animal taxon. We developed high-resolution habitat fragmentation models and used phylogenetic comparative methods to quantify the effects of habitat fragmentation on the world’s terrestrial mammals, including 4,018 species across 26 taxonomic Orders. Results demonstrate that species with more fragmentation are at greater risk of extinction, even after accounting for the effects of key macroecological predictors, such as body size and geographic range size. Species with higher fragmentation had smaller ranges and a lower proportion of high-suitability habitat within their range, and most high-suitability habitat occurred outside of protected areas, further elevating extinction risk. Our models provide a quantitative evaluation of extinction risk assessments for species, allow for identification of emerging threats in species not classified as threatened, and provide maps of global hotspots of fragmentation for the world’s terrestrial mammals. Quantification of habitat fragmentation will help guide threat assessment and strategic priorities for global mammal conservation. PMID:28673992

  19. Benthic food webs support the production of sympatric flatfish larvae in estuarine nursery habitat

    Science.gov (United States)

    Identifying nursery habitats is of paramount importance to define proper management and conservation strategies for flatfish species. Flatfish nursery studies usually report upon habitat occupation, but few attempted to quantify the importance of those habitats to larvae developm...

  20. Managing for No Net Loss of Ecological Services: An Approach for Quantifying Loss of Coastal Wetlands due to Sea Level Rise.

    Science.gov (United States)

    Kassakian, Jennifer; Jones, Ann; Martinich, Jeremy; Hudgens, Daniel

    2017-05-01

    Sea level rise has the potential to substantially alter the extent and nature of coastal wetlands and the critical ecological services they provide. In making choices about how to respond to rising sea level, planners are challenged with weighing easily quantified risks (e.g., loss of property value due to inundation) against those that are more difficult to quantify (e.g., loss of primary production or carbon sequestration services provided by wetlands due to inundation). Our goal was to develop a cost-effective, appropriately-scaled, model-based approach that allows planners to predict, under various sea level rise and response scenarios, the economic cost of wetland loss-with the estimates proxied by the costs of future restoration required to maintain the existing level of wetland habitat services. Our approach applies the Sea Level Affecting Marshes Model to predict changes in wetland habitats over the next century, and then applies Habitat Equivalency Analysis to predict the cost of restoration projects required to maintain ecological services at their present, pre-sea level rise level. We demonstrate the application of this approach in the Delaware Bay estuary and in the Indian River Lagoon (Florida), and discuss how this approach can support future coastal decision-making.

  1. The influence of vertical and horizontal habitat structure on nationwide patterns of avian biodiversity

    Science.gov (United States)

    Patrick D. Culbert; Volker C. Radeloff; Curtis H. Flather; Josef M. Kellndorfer; Chadwick D. Rittenhouse; Anna M. Pidgeon

    2013-01-01

    With limited resources for habitat conservation, the accurate identification of high-value avian habitat is crucial. Habitat structure affects avian biodiversity but is difficult to quantify over broad extents. Our goal was to identify which measures of vertical and horizontal habitat structure are most strongly related to patterns of avian biodiversity across the...

  2. Using multiscale spatial models to assess potential surrogate habitat for an imperiled reptile.

    Directory of Open Access Journals (Sweden)

    Jennifer M Fill

    Full Text Available In evaluating conservation and management options for species, practitioners might consider surrogate habitats at multiple scales when estimating available habitat or modeling species' potential distributions based on suitable habitats, especially when native environments are rare. Species' dependence on surrogates likely increases as optimal habitat is degraded and lost due to anthropogenic landscape change, and thus surrogate habitats may be vital for an imperiled species' survival in highly modified landscapes. We used spatial habitat models to examine a potential surrogate habitat for an imperiled ambush predator (eastern diamondback rattlesnake, Crotalus adamanteus; EDB at two scales. The EDB is an apex predator indigenous to imperiled longleaf pine ecosystems (Pinus palustris of the southeastern United States. Loss of native open-canopy pine savannas and woodlands has been suggested as the principal cause of the species' extensive decline. We examined EDB habitat selection in the Coastal Plain tidewater region to evaluate the role of marsh as a potential surrogate habitat and to further quantify the species' habitat requirements at two scales: home range (HR and within the home range (WHR. We studied EDBs using radiotelemetry and employed an information-theoretic approach and logistic regression to model habitat selection as use vs.We failed to detect a positive association with marsh as a surrogate habitat at the HR scale; rather, EDBs exhibited significantly negative associations with all landscape patches except pine savanna. Within home range selection was characterized by a negative association with forest and a positive association with ground cover, which suggests that EDBs may use surrogate habitats of similar structure, including marsh, within their home ranges. While our HR analysis did not support tidal marsh as a surrogate habitat, marsh may still provide resources for EDBs at smaller scales.

  3. Coastal Critical Habitat Designations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Endangered Species Act (ESA) requires the Federal government to designate critical habitat, areas of habitat essential to the species' conservation, for ESA...

  4. Using an index of habitat patch proximity for landscape design

    Science.gov (United States)

    Eric J. Gustafson; George R. Parker

    1994-01-01

    A proximity index (PX) inspired by island biogeography theory is described which quantifies the spatial context of a habitat patch in relation to its neighbors. The index distinguishes sparse distributions of small habitat patches from clusters of large patches. An evaluation of the relationship between PX and variation in the spatial characteristics of clusters of...

  5. Representing connectivity: quantifying effective habitat availability based on area and connectivity for conservation status assessment and recovery.

    Science.gov (United States)

    Neel, Maile; Tumas, Hayley R; Marsden, Brittany W

    2014-01-01

    We apply a comprehensive suite of graph theoretic metrics to illustrate how landscape connectivity can be effectively incorporated into conservation status assessments and in setting conservation objectives. These metrics allow conservation practitioners to evaluate and quantify connectivity in terms of representation, resiliency, and redundancy and the approach can be applied in spite of incomplete knowledge of species-specific biology and dispersal processes. We demonstrate utility of the graph metrics by evaluating changes in distribution and connectivity that would result from implementing two conservation plans for three endangered plant species (Erigeron parishii, Acanthoscyphus parishii var. goodmaniana, and Eriogonum ovalifolium var. vineum) relative to connectivity under current conditions. Although distributions of the species differ from one another in terms of extent and specific location of occupied patches within the study landscape, the spatial scale of potential connectivity in existing networks were strikingly similar for Erigeron and Eriogonum, but differed for Acanthoscyphus. Specifically, patches of the first two species were more regularly distributed whereas subsets of patches of Acanthoscyphus were clustered into more isolated components. Reserves based on US Fish and Wildlife Service critical habitat designation would not greatly contribute to maintain connectivity; they include 83-91% of the extant occurrences and >92% of the aerial extent of each species. Effective connectivity remains within 10% of that in the whole network for all species. A Forest Service habitat management strategy excluded up to 40% of the occupied habitat of each species resulting in both range reductions and loss of occurrences from the central portions of each species' distribution. Overall effective network connectivity was reduced to 62-74% of the full networks. The distance at which each CHMS network first became fully connected was reduced relative to the full

  6. Past and predicted future effects of housing growth on open space conservation opportunity areas and habitat connectivity around National Wildlife Refuges

    Science.gov (United States)

    Hamilton, Christopher M.; Baumann, Matthias; Pidgeon, Anna M.; Helmers, David P.; Thogmartin, Wayne E.; Heglund, Patricia J.; Radeloff, Volker C.

    2016-01-01

    ContextHousing growth can alter suitability of matrix habitats around protected areas, strongly affecting movements of organisms and, consequently, threatening connectivity of protected area networks.ObjectivesOur goal was to quantify distribution and growth of housing around the U.S. Fish and Wildlife Service National Wildlife Refuge System. This is important information for conservation planning, particularly given promotion of habitat connectivity as a climate change adaptation measure.MethodsWe quantified housing growth from 1940 to 2000 and projected future growth to 2030 within three distances from refuges, identifying very low housing density open space, “opportunity areas” (contiguous areas with habitat corridors within these opportunity areas in 2000.ResultsOur results indicated that the number and area of open space opportunity areas generally decreased with increasing distance from refuges and with the passage of time. Furthermore, total area in habitat corridors was much lower than in opportunity areas. In addition, the number of corridors sometimes exceeded number of opportunity areas as a result of habitat fragmentation, indicating corridors are likely vulnerable to land use change. Finally, regional differences were strong and indicated some refuges may have experienced so much housing growth already that they are effectively too isolated to adapt to climate change, while others may require extensive habitat restoration work.ConclusionsWildlife refuges are increasingly isolated by residential housing development, potentially constraining the movement of wildlife and, therefore, their ability to adapt to a changing climate.

  7. A Tool for the Automated Design and Evaluation of Habitat Interior Layouts

    Science.gov (United States)

    Simon, Matthew A.; Wilhite, Alan W.

    2013-01-01

    The objective of space habitat design is to minimize mass and system size while providing adequate space for all necessary equipment and a functional layout that supports crew health and productivity. Unfortunately, development and evaluation of interior layouts is often ignored during conceptual design because of the subjectivity and long times required using current evaluation methods (e.g., human-in-the-loop mockup tests and in-depth CAD evaluations). Early, more objective assessment could prevent expensive design changes that may increase vehicle mass and compromise functionality. This paper describes a new interior design evaluation method to enable early, structured consideration of habitat interior layouts. This interior layout evaluation method features a comprehensive list of quantifiable habitat layout evaluation criteria, automatic methods to measure these criteria from a geometry model, and application of systems engineering tools and numerical methods to construct a multi-objective value function measuring the overall habitat layout performance. In addition to a detailed description of this method, a C++/OpenGL software tool which has been developed to implement this method is also discussed. This tool leverages geometry modeling coupled with collision detection techniques to identify favorable layouts subject to multiple constraints and objectives (e.g., minimize mass, maximize contiguous habitable volume, maximize task performance, and minimize crew safety risks). Finally, a few habitat layout evaluation examples are described to demonstrate the effectiveness of this method and tool to influence habitat design.

  8. Shallow rocky nursery habitat for fish: Spatial variability of juvenile fishes among this poorly protected essential habitat.

    Science.gov (United States)

    Cheminée, Adrien; Rider, Mary; Lenfant, Philippe; Zawadzki, Audrey; Mercière, Alexandre; Crec'hriou, Romain; Mercader, Manon; Saragoni, Gilles; Neveu, Reda; Ternon, Quentin; Pastor, Jérémy

    2017-06-15

    Coastal nursery habitats are essential for the renewal of adult fish populations. We quantified the availability of a coastal nursery habitat (shallow heterogeneous rocky bottoms) and the spatial variability of its juvenile fish populations along 250km of the Catalan coastline (France and Spain). Nurseries were present in 27% of the coastline, but only 2% of them benefited from strict protection status. For nine taxa characteristic of this habitat, total juvenile densities varied significantly between nursery sites along the coastline, with the highest densities being found on the northern sites. Recruitment level (i.e. a proxy of nursery value) was not explained by protection level, but it was moderately and positively correlated with an anthropization index. Patterns of spatial variations were taxa-specific. Exceptional observations of four juveniles of the protected grouper Epinephelus marginatus were recorded. Our data on habitat availability and recruitment levels provides important informations which help to focus MPA management efforts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Quantifying the Relative Importance of Climate and Habitat on Structuring the Species and Taxonomic Diversity of Aquatic Plants in a Biodiversity Hotspot of Tropical Asia

    International Nuclear Information System (INIS)

    Chen, Y.

    2015-01-01

    It has not been well known how climate and habitat variables will influence the distribution of plant species to some extents at mesoscale. In this report, by using the distribution of aquatic plants in Western Ghats, a biodiversity hotspot in tropical Asian region, I quantify the relative importance of climate and habitat variables on structuring spatially species richness and taxonomic diversity patterns using structural equation modeling. All the sampling qudrats in the region used for the study has a spatial resolution of 0.5 latitude x 0.5 longitude. The results showed that species richness is high in both northern and southern part of the region, while low in the middle part. In contrast, taxonomic distinctiveness is relatively homogeneous over all the sampling quadrats in the region. Structural equation modeling suggested that taxonomic distinctiveness patterns of aquatic plants in the region follow temperature (partial regression coefficient=0.31, p<0.05) and elevational (partial regression coefficient=0.31, p<0.05) gradients, while richness patterns cannot be explained by any of the currently used variables. In conclusion, environmental variables that are related to taxonomic distinctiveness would not be related to richness, given the fact that these two quantities are orthogonal more or less. Both climate and habitat are equally influential on taxonomic distinctiveness patterns for aquatic plants in Western Ghats of India. (author)

  10. Habitat persistence for sedentary organisms in managed rivers: the case for the federally endangered dwarf wedgemussel (Alasmidonta heterodon) in the Delaware River

    Science.gov (United States)

    Maloney, Kelly O.; Lellis, William A.; Bennett, Randy M.; Waddle, Terry J.

    2012-01-01

    1. To manage the environmental flow requirements of sedentary taxa, such as mussels and aquatic insects with fixed retreats, we need a measure of habitat availability over a variety of flows (i.e. a measure of persistent habitat). Habitat suitability measures in current environmental flow assessments are measured on a ‘flow by flow’ basis and thus are not appropriate for these taxa. Here, we present a novel measure of persistent habitat suitability for the dwarf wedgemussel (Alasmidonta heterodon), listed as federally endangered in the U.S.A., in three reaches of the Delaware River. 2. We used a two-dimensional hydrodynamic model to quantify suitable habitat over a range of flows based on modelled depth, velocity, Froude number, shear velocity and shear stress at three scales (individual mussel, mussel bed and reach). Baseline potentially persistent habitat was quantified as the sum of pixels that met all thresholds identified for these variables for flows ≥40 m3 s−1, and we calculated the loss of persistently suitable habitat by sequentially summing suitable habitat estimates at lower flows. We estimated the proportion of mussel beds exposed at each flow and the amount of change in the size of the mussel bed for one reach. 3. For two reaches, mussel beds occupied areas with lower velocity, shear velocity, shear stress and Froude number than the reach average at all flows. In the third reach, this was true only at higher flows. Together, these results indicate that beds were possible refuge areas from the effects of these hydrological parameters. Two reaches showed an increase in the amount of exposed mussel beds with decreasing flow. 4. Baseline potentially persistent habitat was less than half the areal extent of potentially suitable habitat, and it decreased with decreasing flow. Actually identified beds and modelled persistent habitat showed good spatial overlap, but identified beds occupied only a portion of the total modelled persistent

  11. Dispersal ability and habitat requirements determine landscape-level genetic patterns in desert aquatic insects.

    Science.gov (United States)

    Phillipsen, Ivan C; Kirk, Emily H; Bogan, Michael T; Mims, Meryl C; Olden, Julian D; Lytle, David A

    2015-01-01

    Species occupying the same geographic range can exhibit remarkably different population structures across the landscape, ranging from highly diversified to panmictic. Given limitations on collecting population-level data for large numbers of species, ecologists seek to identify proximate organismal traits-such as dispersal ability, habitat preference and life history-that are strong predictors of realized population structure. We examined how dispersal ability and habitat structure affect the regional balance of gene flow and genetic drift within three aquatic insects that represent the range of dispersal abilities and habitat requirements observed in desert stream insect communities. For each species, we tested for linear relationships between genetic distances and geographic distances using Euclidean and landscape-based metrics of resistance. We found that the moderate-disperser Mesocapnia arizonensis (Plecoptera: Capniidae) has a strong isolation-by-distance pattern, suggesting migration-drift equilibrium. By contrast, population structure in the flightless Abedus herberti (Hemiptera: Belostomatidae) is influenced by genetic drift, while gene flow is the dominant force in the strong-flying Boreonectes aequinoctialis (Coleoptera: Dytiscidae). The best-fitting landscape model for M. arizonensis was based on Euclidean distance. Analyses also identified a strong spatial scale-dependence, where landscape genetic methods only performed well for species that were intermediate in dispersal ability. Our results highlight the fact that when either gene flow or genetic drift dominates in shaping population structure, no detectable relationship between genetic and geographic distances is expected at certain spatial scales. This study provides insight into how gene flow and drift interact at the regional scale for these insects as well as the organisms that share similar habitats and dispersal abilities. © 2014 John Wiley & Sons Ltd.

  12. Riverine habitat dynamics

    Science.gov (United States)

    Jacobson, R.B.

    2013-01-01

    strategies requires that the role of physical habitat is correctly diagnosed and that restoration activities address true habitat limitations, including the role of dynamic habitats.

  13. Food Web Response to Habitat Restoration in Various Coastal Wetland Ecosystems

    Science.gov (United States)

    James, W. R.; Nelson, J. A.

    2017-12-01

    Coastal wetland habitats provide important ecosystem services, including supporting coastal food webs. These habitats are being lost rapidly. To combat the effects of these losses, millions of dollars have been invested to restore these habitats. However, the relationship between restoring habitat and restoring ecosystem functioning is poorly understood. Analyzing energy flow through food web comparisons between restored and natural habitats can give insights into ecosystem functioning. Using published stable isotope values from organisms in restored and natural habitats, we assessed the food web response of habitat restoration in salt marsh, mangrove, sea grass, and algal bed ecosystems. We ran Bayesian mixing models to quantify resource use by consumers and generated habitat specific niche hypervolumes for each ecosystem to assess food web differences between restored and natural habitats. Salt marsh, mangrove, and sea grass ecosystems displayed functional differences between restored and natural habitats. Salt marsh and mangrove food webs varied in the amount of each resource used, while the sea grass food web displayed more variation between individual organisms. The algal bed food web showed little variation between restored and natural habitats.

  14. Fuzzy modelling of Atlantic salmon physical habitat

    Science.gov (United States)

    St-Hilaire, André; Mocq, Julien; Cunjak, Richard

    2015-04-01

    Fish habitat models typically attempt to quantify the amount of available river habitat for a given fish species for various flow and hydraulic conditions. To achieve this, information on the preferred range of values of key physical habitat variables (e.g. water level, velocity, substrate diameter) for the targeted fishs pecies need to be modelled. In this context, we developed several habitat suitability indices sets for three Atlantic salmon life stages (young-of-the-year (YOY), parr, spawning adults) with the help of fuzzy logic modeling. Using the knowledge of twenty-seven experts, from both sides of the Atlantic Ocean, we defined fuzzy sets of four variables (depth, substrate size, velocity and Habitat Suitability Index, or HSI) and associated fuzzy rules. When applied to the Romaine River (Canada), median curves of standardized Weighted Usable Area (WUA) were calculated and a confidence interval was obtained by bootstrap resampling. Despite the large range of WUA covered by the expert WUA curves, confidence intervals were relatively narrow: an average width of 0.095 (on a scale of 0 to 1) for spawning habitat, 0.155 for parr rearing habitat and 0.160 for YOY rearing habitat. When considering an environmental flow value corresponding to 90% of the maximum reached by WUA curve, results seem acceptable for the Romaine River. Generally, this proposed fuzzy logic method seems suitable to model habitat availability for the three life stages, while also providing an estimate of uncertainty in salmon preferences.

  15. Weather conditions drive dynamic habitat selection in a generalist predator

    DEFF Research Database (Denmark)

    Sunde, Peter; Thorup, Kasper; Jacobsen, Lars B.

    2014-01-01

    Despite the dynamic nature of habitat selection, temporal variation as arising from factors such as weather are rarely quantified in species-habitat relationships. We analysed habitat use and selection (use/availability) of foraging, radio-tagged little owls (Athene noctua), a nocturnal, year...... and quadratic effects of temperature. Even when controlling for the temporal context, both land cover types were used more evenly than predicted from variation in availability (functional response in habitat selection). Use of two other land cover categories (pastures and moist areas) increased linearly...... with temperature and was proportional to their availability. The study shows that habitat selection by generalist foragers may be highly dependent on temporal variables such as weather, probably because such foragers switch between weather dependent feeding opportunities offered by different land cover types...

  16. Partitioning mechanisms of predator interference in different habitats.

    Science.gov (United States)

    Griffen, Blaine D; Byers, James E

    2006-01-01

    Prey are often consumed by multiple predator species. Predation rates on shared prey species measured in isolation often do not combine additively due to interference or facilitation among the predator species. Furthermore, the strength of predator interactions and resulting prey mortality may change with habitat type. We experimentally examined predation on amphipods in rock and algal habitats by two species of intertidal crabs, Hemigrapsus sanguineus (top predators) and Carcinus maenas (intermediate predators). Algae provided a safer habitat for amphipods when they were exposed to only a single predator species. When both predator species were present, mortality of amphipods was less than additive in both habitats. However, amphipod mortality was reduced more in rock than algal habitat because intermediate predators were less protected in rock habitat and were increasingly targeted by omnivorous top predators. We found that prey mortality in general was reduced by (1) altered foraging behavior of intermediate predators in the presence of top predators, (2) top predators switching to foraging on intermediate predators rather than shared prey, and (3) density reduction of intermediate predators. The relative importance of these three mechanisms was the same in both habitats; however, the magnitude of each was greater in rock habitat. Our study demonstrates that the strength of specific mechanisms of interference between top and intermediate predators can be quantified but cautions that these results may be habitat specific.

  17. Using dynamic Brownian bridge movement modelling to measure temporal patterns of habitat selection.

    Science.gov (United States)

    Byrne, Michael E; Clint McCoy, J; Hinton, Joseph W; Chamberlain, Michael J; Collier, Bret A

    2014-09-01

    Accurately describing animal space use is vital to understanding how wildlife use habitat. Improvements in GPS technology continue to facilitate collection of telemetry data at high spatial and temporal resolutions. Application of the recently introduced dynamic Brownian bridge movement model (dBBMM) to such data is promising as the method explicitly incorporates the behavioural heterogeneity of a movement path into the estimated utilization distribution (UD). Utilization distributions defining space use are normally estimated for time-scales ranging from weeks to months, obscuring much of the fine-scale information available from high-volume GPS data sets. By accounting for movement heterogeneity, the dBBMM provides a rigorous, behaviourally based estimate of space use between each set of relocations. Focusing on UDs generated between individual sets of locations allows us to quantify fine-scale circadian variation in habitat use. We used the dBBMM to estimate UDs bounding individual time steps for three terrestrial species with different life histories to illustrate how the method can be used to identify fine-scale variations in habitat use. We also demonstrate how dBBMMs can be used to characterize circadian patterns of habitat selection and link fine-scale patterns of habitat use to behaviour. We observed circadian patterns of habitat use that varied seasonally for a white-tailed deer (Odocoileus virginianus) and coyote (Canis latrans). We found seasonal patterns in selection by the white-tailed deer and were able to link use of conifer forests and agricultural fields to behavioural state of the coyote. Additionally, we were able to quantify the date in which a Rio Grande wild turkey (Meleagris gallopavo intermedia) initiated laying as well as when during the day, she was most likely to visit the nest site to deposit eggs. The ability to quantify circadian patterns of habitat use may have important implications for research and management of wildlife

  18. Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 1993 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, R. Todd

    1993-04-01

    The Umatilla Basin Anadromous Fish Habitat Enhancement Project is funded under the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program Measure 704 (d) (1) 34.02 and targets the improvement of water quality and restoration of riparian areas, holding, spawning and rearing habitats of steelhead, spring and fall chinook and coho salmon. The project focused on implementing instream and riparian habitat improvements on private lands on the Umatilla Indian Reservation (hereafter referred to as Reservation) from April 1, 1988 to March 31, 1992. These efforts resulted in enhancement of the lower 1/4 mile of Boston Canyon Creek, the lower 4 river miles of Meacham Creek and 3.2 river miles of the Umatilla River (downstream of the Meacham Creek confluence upstream to the Reservation East Boundary). In 1993, the project shifted emphasis to a comprehensive watershed approach consistent with other basin efforts and began to identify upland and riparian watershed-wide causative factors impacting fisheries habitat and natural fisheries production capabilities throughout the Umatilla River Watershed. Maintenance of existing habitat improvement projects was included under this comprehensive approach. Maintenance of existing gravel traps, instream and bank stabilization structures was required within project areas during the reporting period due to spring flooding damage and high bedload movement. Maintenance activities were completed between river mile (RM) 0.0 and RM 0.25 Boston Canyon Creek, between RM 0.0 and RM 4 Meacham Creek and between RM 78.5 and RM 79 Umatilla River. Habitat enhancement areas were seeded with native grass, legume, shrub and wildflower mixes and planted with willow cuttings to assist in floodplain recovery, stream channel stability and filtering of sediments during high flow periods. Water quality monitoring continued for temperature and turbidity throughout the upper Umatilla River Watershed. Survey of cross sections and

  19. Do nursery habitats provide shelter from flow for juvenile fish?

    Directory of Open Access Journals (Sweden)

    Darren M Parsons

    Full Text Available Juvenile fish nurseries are an essential life stage requirement for the maintenance of many fish populations. With many inshore habitats globally in decline, optimising habitat management by increasing our understanding of the relationship between juvenile fish and nursery habitats may be a prudent approach. Previous research on post-settlement snapper (Chrysophrys auratus has suggested that structure may provide a water flow refuge, allowing snapper to access high water flow sites that will also have a high flux of their pelagic prey. We investigated this hypothesis by describing how Artificial Seagrass Units (ASUs modified water flow while also using a multi-camera set up to quantify snapper position in relation to this water flow environment. Horizontal water flow was reduced on the down-current side of ASUs, but only at the height of the seagrass canopy. While the highest abundance of snapper did occur down-current of the ASUs, many snapper also occupied other locations or were too high in the water column to receive any refuge from water flow. The proportion of snapper within the water column was potentially driven by strategy to access zooplankton prey, being higher on the up-current side of ASUs and on flood tides. It is possible that post-settlement snapper alternate position to provide opportunities for both feeding and flow refuging. An alternative explanation relates to an observed interaction between post-settlement snapper and a predator, which demonstrated that snapper can utilise habitat structure when threatened. The nature of this relationship, and its overall importance in determining the value of nursery habitats to post-settlement snapper remains an elusive next step.

  20. Do nursery habitats provide shelter from flow for juvenile fish?

    Science.gov (United States)

    Parsons, Darren M; MacDonald, Iain; Buckthought, Dane; Middleton, Crispin

    2018-01-01

    Juvenile fish nurseries are an essential life stage requirement for the maintenance of many fish populations. With many inshore habitats globally in decline, optimising habitat management by increasing our understanding of the relationship between juvenile fish and nursery habitats may be a prudent approach. Previous research on post-settlement snapper (Chrysophrys auratus) has suggested that structure may provide a water flow refuge, allowing snapper to access high water flow sites that will also have a high flux of their pelagic prey. We investigated this hypothesis by describing how Artificial Seagrass Units (ASUs) modified water flow while also using a multi-camera set up to quantify snapper position in relation to this water flow environment. Horizontal water flow was reduced on the down-current side of ASUs, but only at the height of the seagrass canopy. While the highest abundance of snapper did occur down-current of the ASUs, many snapper also occupied other locations or were too high in the water column to receive any refuge from water flow. The proportion of snapper within the water column was potentially driven by strategy to access zooplankton prey, being higher on the up-current side of ASUs and on flood tides. It is possible that post-settlement snapper alternate position to provide opportunities for both feeding and flow refuging. An alternative explanation relates to an observed interaction between post-settlement snapper and a predator, which demonstrated that snapper can utilise habitat structure when threatened. The nature of this relationship, and its overall importance in determining the value of nursery habitats to post-settlement snapper remains an elusive next step.

  1. Loss and modification of habitat

    Science.gov (United States)

    Lemckert, Francis; Hecnar, Stephen; Pilliod, David S.; Wilkinson, John W.; Heatwole, Harold

    2012-01-01

    Amphibians live in a wide variety of habitats around the world, many of which have been modified or destroyed by human activities. Most species have unique life history characteristics adapted to specific climates, habitats (e.g., lentic, lotic, terrestrial, arboreal, fossorial, amphibious), and local conditions that provide suitable areas for reproduction, development and growth, shelter from environmental extremes, and predation, as well as connectivity to other populations or habitats. Although some species are entirely aquatic or terrestrial, most amphibians, as their name implies, lead a dual life and require a mosaic of habitats in both aquatic and terrestrial ecosystems. With over 6 billion people on Earth, most species are now persisting in habitats that have been directly or indirectly influenced by human activities. Some species have disappeared where their habitats have been completely destroyed, reduced, or rendered unsuitable. Habitat loss and degradation are widely considered by most researchers as the most important causes of amphibian population decline globally (Barinaga 1990; Wake and Morowitz 1991; Alford and Richards 1999). In this chapter, a background on the diverse habitat requirements of amphibians is provided, followed by a discussion of the effects of urbanization, agriculture, livestock grazing, timber production and harvesting, fire and hazardous fuel management, and roads on amphibians and their habitats. Also briefly discussed is the influence on amphibian habitats of natural disturbances, such as extreme weather events and climate change, given the potential for human activities to impact climate in the longer term. For amphibians in general, microhabitats are of greater importance than for other vertebrates. As ectotherms with a skin that is permeable to water and with naked gelatinous eggs, amphibians are physiologically constrained to be active during environmental conditions that provide appropriate body temperatures and adequate

  2. Habitat-induced degradation of sound signals: Quantifying the effects of communication sounds and bird location on blur ratio, excess attenuation, and signal-to-noise ratio in blackbird song

    DEFF Research Database (Denmark)

    Dabelsteen, T.; Larsen, O N; Pedersen, Simon Boel

    1993-01-01

    measures were calculated from changes of the amplitude functions (i.e., envelopes) of the degraded songs using a new technique which allowed a compensation for the contribution of the background noise to the amplitude values. Representative songs were broadcast in a deciduous forest without leaves......The habitat-induced degradation of the full song of the blackbird (Turdus merula) was quantified by measuring excess attenuation, reduction of the signal-to-noise ratio, and blur ratio, the latter measure representing the degree of blurring of amplitude and frequency patterns over time. All three...

  3. Habitat Suitability Index Models: Yellow-headed blackbird

    Science.gov (United States)

    Schroeder, Richard L.

    1982-01-01

    Habitat preferences of the yellow-headed blackbird (Xanthocephalus xanthocephalus) are described in this publication. It is one of a series of Habitat Suitability Index (HSI) models and was developed through an analysis of available infomration on the species-habitat requirements of the species. Habitat use information is presented in a review of the literature, followed by the development of an HSI model, designed for use in impact assessment and habitat management activities.

  4. A habitat overlap analysis derived from maxent for tamarisk and the south-western willow flycatcher

    Science.gov (United States)

    York, Patricia; Evangelista, Paul; Kumar, Sunil; Graham, James; Flather, Curtis; Stohlgren, Thomas

    2011-06-01

    Biologic control of the introduced and invasive, woody plant tamarisk ( Tamarix spp, saltcedar) in south-western states is controversial because it affects habitat of the federally endangered South-western Willow Flycatcher ( Empidonax traillii extimus). These songbirds sometimes nest in tamarisk where floodplain-level invasion replaces native habitats. Biologic control, with the saltcedar leaf beetle ( Diorhabda elongate), began along the Virgin River, Utah, in 2006, enhancing the need for comprehensive understanding of the tamarisk-flycatcher relationship. We used maximum entropy (Maxent) modeling to separately quantify the current extent of dense tamarisk habitat (>50% cover) and the potential extent of habitat available for E. traillii extimus within the studied watersheds. We used transformations of 2008 Landsat Thematic Mapper images and a digital elevation model as environmental input variables. Maxent models performed well for the flycatcher and tamarisk with Area Under the ROC Curve (AUC) values of 0.960 and 0.982, respectively. Classification of thresholds and comparison of the two Maxent outputs indicated moderate spatial overlap between predicted suitable habitat for E. traillii extimus and predicted locations with dense tamarisk stands, where flycatcher habitat will potentially change flycatcher habitats. Dense tamarisk habitat comprised 500 km2 within the study area, of which 11.4% was also modeled as potential habitat for E. traillii extimus. Potential habitat modeled for the flycatcher constituted 190 km2, of which 30.7% also contained dense tamarisk habitat. Results showed that both native vegetation and dense tamarisk habitats exist in the study area and that most tamarisk infestations do not contain characteristics that satisfy the habitat requirements of E. traillii extimus. Based on this study, effective biologic control of Tamarix spp. may, in the short term, reduce suitable habitat available to E. traillii extimus, but also has the potential

  5. Impact of habitat diversity on the sampling effort required for the assessment of river fish communities and IBI

    NARCIS (Netherlands)

    Van Liefferinge, C.; Simoens, I.; Vogt, C.; Cox, T.J.S.; Breine, J.; Ercken, D.; Goethals, P.; Belpaire, C.; Meire, P.

    2010-01-01

    The spatial variation in the fish communities of four small Belgian rivers with variable habitat diversity was investigated by electric fishing to define the minimum sampling distance required for optimal fish stock assessment and determination of the Index of Biotic Integrity. This study shows that

  6. Habitat and landscape characteristics underlying anuran community structure along an urban-rural gradient.

    Science.gov (United States)

    Pillsbury, Finn C; Miller, James R

    2008-07-01

    Urbanization has been cited as an important factor in worldwide amphibian declines, and although recent work has illustrated the important influence of broad-scale ecological patterns and processes on amphibian populations, little is known about the factors structuring amphibian communities in urban landscapes. We therefore examined amphibian community responses to wetland habitat availability and landscape characteristics along an urban-rural gradient in central Iowa, USA, a region experiencing rapid suburban growth. We conducted call surveys at 61 wetlands to estimate anuran calling activity, and quantified wetland habitat structure and landscape context. We used canonical correspondence analysis (CCA) to examine patterns in anuran community structure and identify the most important variables associated with those patterns. Urban density at the landscape scale had a significant negative influence on overall anuran abundance and diversity. While every species exhibited a decrease in abundance with increasing urban density, this pattern was especially pronounced for species requiring post-breeding upland habitats. Anurans most affected by urbanization were those associated with short hydroperiods, early breeding activity, and substantial upland habitat use. We suggest that broad-scale landscape fragmentation is an important factor underlying anuran community structure in this region, possibly due to limitations on the accessibility of otherwise suitable habitat in fragmented urban landscapes. This study underscores the importance of a regional approach to amphibian conservation in urban and urbanizing areas; in fragmented landscapes, a network of interconnected wetland and upland habitats may be more likely to support a successful, diverse anuran community than will isolated sites.

  7. Habitat fragmentation reduces grassland connectivity for both short-distance and long-distance wind-dispersed forbs

    NARCIS (Netherlands)

    Soons, M.B.; Messelink, J.H.; Jongejans, E.; Heil, G.W.

    2005-01-01

    1 Although habitat loss and fragmentation are assumed to threaten the regional survival of plant species, their effects on regional species dynamics via seed dispersal and colonization have rarely been quantified. 2 We assessed the impact of habitat loss and fragmentation on the connectivity, and

  8. Determination of Section 404 Permit and Habitat Mitigation Requirements

    Science.gov (United States)

    2012-09-01

    The Arizona Department of Transportation (ADOT) is committed to developing habitat, mitigation, : monitoring, and maintenance plans that replace the loss of the functions and values of an area and : are self-sustaining, thereby providing long-term co...

  9. Camouflage and individual variation in shore crabs (Carcinus maenas from different habitats.

    Directory of Open Access Journals (Sweden)

    Martin Stevens

    Full Text Available Camouflage is widespread throughout the natural world and conceals animals from predators in a vast range of habitats. Because successful camouflage usually involves matching aspects of the background environment, species and populations should evolve appearances tuned to their local habitat, termed phenotype-environment associations. However, although this has been studied in various species, little work has objectively quantified the appearances of camouflaged animals from different habitats, or related this to factors such as ontogeny and individual variation. Here, we tested for phenotype-environment associations in the common shore crab (Carcinus maenas, a species highly variable in appearance and found in a wide range of habitats. We used field surveys and digital image analysis of the colors and patterns of crabs found in four locations around Cornwall in the UK to quantify how individuals vary with habitat (predominantly rockpool, mussel bed, and mudflat. We find that individuals from sites comprising different backgrounds show substantial differences in several aspects of color and pattern, and that this is also dependent on life stage (adult or juvenile. Furthermore, the level of individual variation is dependent on site and life stage, with juvenile crabs often more variable than adults, and individuals from more homogenous habitats less diverse. Ours is the most comprehensive study to date exploring phenotype-environment associations for camouflage and individual variation in a species, and we discuss the implications of our results in terms of the mechanisms and selection pressures that may drive this.

  10. Camouflage and individual variation in shore crabs (Carcinus maenas) from different habitats.

    Science.gov (United States)

    Stevens, Martin; Lown, Alice E; Wood, Louisa E

    2014-01-01

    Camouflage is widespread throughout the natural world and conceals animals from predators in a vast range of habitats. Because successful camouflage usually involves matching aspects of the background environment, species and populations should evolve appearances tuned to their local habitat, termed phenotype-environment associations. However, although this has been studied in various species, little work has objectively quantified the appearances of camouflaged animals from different habitats, or related this to factors such as ontogeny and individual variation. Here, we tested for phenotype-environment associations in the common shore crab (Carcinus maenas), a species highly variable in appearance and found in a wide range of habitats. We used field surveys and digital image analysis of the colors and patterns of crabs found in four locations around Cornwall in the UK to quantify how individuals vary with habitat (predominantly rockpool, mussel bed, and mudflat). We find that individuals from sites comprising different backgrounds show substantial differences in several aspects of color and pattern, and that this is also dependent on life stage (adult or juvenile). Furthermore, the level of individual variation is dependent on site and life stage, with juvenile crabs often more variable than adults, and individuals from more homogenous habitats less diverse. Ours is the most comprehensive study to date exploring phenotype-environment associations for camouflage and individual variation in a species, and we discuss the implications of our results in terms of the mechanisms and selection pressures that may drive this.

  11. Habitat segregation in fish assemblages

    OpenAIRE

    Ibbotson, A.T.

    1990-01-01

    The segregation of habitats of fish assemblages found in the chalk streams and rivers within the Wessex, South West and Southern Water Authority boundaries in southern England have been examined. Habitat segregation is the most frequent type of resource partitioning in natural communities. The habitat of individual fish species will be defined in order to determine the following: (1) the requirements of each species in terms of depth, current velocity, substrate, cover etc.; (2) identify the ...

  12. Characterization of measurement errors using structure-from-motion and photogrammetry to measure marine habitat structural complexity.

    Science.gov (United States)

    Bryson, Mitch; Ferrari, Renata; Figueira, Will; Pizarro, Oscar; Madin, Josh; Williams, Stefan; Byrne, Maria

    2017-08-01

    Habitat structural complexity is one of the most important factors in determining the makeup of biological communities. Recent advances in structure-from-motion and photogrammetry have resulted in a proliferation of 3D digital representations of habitats from which structural complexity can be measured. Little attention has been paid to quantifying the measurement errors associated with these techniques, including the variability of results under different surveying and environmental conditions. Such errors have the potential to confound studies that compare habitat complexity over space and time. This study evaluated the accuracy, precision, and bias in measurements of marine habitat structural complexity derived from structure-from-motion and photogrammetric measurements using repeated surveys of artificial reefs (with known structure) as well as natural coral reefs. We quantified measurement errors as a function of survey image coverage, actual surface rugosity, and the morphological community composition of the habitat-forming organisms (reef corals). Our results indicated that measurements could be biased by up to 7.5% of the total observed ranges of structural complexity based on the environmental conditions present during any particular survey. Positive relationships were found between measurement errors and actual complexity, and the strength of these relationships was increased when coral morphology and abundance were also used as predictors. The numerous advantages of structure-from-motion and photogrammetry techniques for quantifying and investigating marine habitats will mean that they are likely to replace traditional measurement techniques (e.g., chain-and-tape). To this end, our results have important implications for data collection and the interpretation of measurements when examining changes in habitat complexity using structure-from-motion and photogrammetry.

  13. Food technology in space habitats

    Science.gov (United States)

    Karel, M.

    1979-01-01

    The research required to develop a system that will provide for acceptable, nutritious, and safe diets for man during extended space missions is discussed. The development of a food technology system for space habitats capable of converting raw materials produced in the space habitats into acceptable food is examined.

  14. Chroniques d'habitat et dynamique de populations de truite

    Directory of Open Access Journals (Sweden)

    CAPRA H.

    1995-04-01

    Full Text Available Une nouvelle méthode a permis de quantifier des Durées Continues d'Habitat Limitant (méthode DCHL à partir de chroniques d'habitat potentiel, pour la truite fario (Salmo trutta fario, L.. Cette méthode a été appliquée sur deux cours d'eau naturels et sur une station soumise à éclusée. Elle a été validée sur les deux cours d'eau naturels en ce qui concerne l'habitat limitant pour les jeunes truites de l'année (0+. Elle offre un outil pratique d'analyse des périodes d'habitat limitant en régime naturel. En situation d'éclusées, l'interprétation des résultats est différente et nécessite encore un effort important de suivi biologique.

  15. Predicting occurrence of juvenile shark habitat to improve conservation planning.

    Science.gov (United States)

    Oh, Beverly Z L; Sequeira, Ana M M; Meekan, Mark G; Ruppert, Jonathan L W; Meeuwig, Jessica J

    2017-06-01

    Fishing and habitat degradation have increased the extinction risk of sharks, and conservation strategies recognize that survival of juveniles is critical for the effective management of shark populations. Despite the rapid expansion of marine protected areas (MPAs) globally, the paucity of shark-monitoring data on large scales (100s-1000s km) means that the effectiveness of MPAs in halting shark declines remains unclear. Using data collected by baited remote underwater video systems (BRUVS) in northwestern Australia, we developed generalized linear models to elucidate the ecological drivers of habitat suitability for juvenile sharks. We assessed occurrence patterns at the order and species levels. We included all juvenile sharks sampled and the 3 most abundant species sampled separately (grey reef [Carcharhinus amblyrhynchos], sandbar [Carcharhinus plumbeus], and whitetip reef sharks [Triaenodon obesus]). We predicted the occurrence of juvenile sharks across 490,515 km 2 of coastal waters and quantified the representation of highly suitable habitats within MPAs. Our species-level models had higher accuracy (ĸ ≥ 0.69) and deviance explained (≥48%) than our order-level model (ĸ = 0.36 and deviance explained of 10%). Maps of predicted occurrence revealed different species-specific patterns of highly suitable habitat. These differences likely reflect different physiological or resource requirements between individual species and validate concerns over the utility of conservation targets based on aggregate species groups as opposed to a species-focused approach. Highly suitable habitats were poorly represented in MPAs with the most restrictions on extractive activities. This spatial mismatch possibly indicates a lack of explicit conservation targets and information on species distribution during the planning process. Non-extractive BRUVS provided a useful platform for building the suitability models across large scales to assist conservation planning across

  16. Habitat selection and post-release movement of reintroduced brown treecreeper individuals in restored temperate woodland.

    Directory of Open Access Journals (Sweden)

    Victoria A Bennett

    Full Text Available It is essential to choose suitable habitat when reintroducing a species into its former range. Habitat quality may influence an individual's dispersal decisions and also ultimately where they choose to settle. We examined whether variation in habitat quality (quantified by the level of ground vegetation cover and the installation of nest boxes influenced the movement, habitat choice and survival of a reintroduced bird species. We experimentally reintroduced seven social groups (43 individuals of the brown treecreeper (Climacteris picumnus into two nature reserves in south-eastern Australia. We radio-tracked 18 brown treecreepers from release in November 2009 until February 2010. We observed extensive movements by individuals irrespective of the release environment or an individual's gender. This indicated that individuals were capable of dispersing and actively selecting optimum habitat. This may alleviate pressure on wildlife planners to accurately select the most optimum release sites, so long as the species' requirements are met. There was significant variation in movement between social groups, suggesting that social factors may be a more important influence on movement than habitat characteristics. We found a significant effect of ground vegetation cover on the likelihood of settlement by social groups, with high rates of settlement and survival in dry forests, rather than woodland (where the species typically resides, which has implications for the success of woodland restoration. However, overall the effects of variation in habitat quality were not as strong as we had expected, and resulted in some unpredicted effects such as low survival and settlement in woodland areas with medium levels of ground vegetation cover. The extensive movement by individuals and unforeseen effects of habitat characteristics make it difficult to predict the outcome of reintroductions, the movement behaviour and habitat selection of reintroduced individuals

  17. A technical guide for monitoring wildlife habitat

    Science.gov (United States)

    M.M. Rowland; C.D. Vojta

    2013-01-01

    Information about status and trend of wildlife habitat is important for the U.S. Department of Agriculture, Forest Service to accomplish its mission and meet its legal requirements. As the steward of 193 million acres (ac) of Federal land, the Forest Service needs to evaluate the status of wildlife habitat and how it compares with desired conditions. Habitat monitoring...

  18. Pleistocene sea level fluctuation and host plant habitat requirement influenced the historical phylogeography of the invasive species Amphiareus obscuriceps (Hemiptera: Anthocoridae) in its native range.

    Science.gov (United States)

    Zhang, Danli; Ye, Zhen; Yamada, Kazutaka; Zhen, Yahui; Zheng, Chenguang; Bu, Wenjun

    2016-08-31

    On account of repeated exposure and submergence of the East China Sea (ECS) land bridge, sea level fluctuation played an important role in shaping the population structure of many temperate species across the ECS during the glacial period. The flower bug Amphiareus obscuriceps (Poppius, 1909) (Hemiptera: Anthocoridae) is an invasive species native to the Sino-Japanese Region (SJR) of East Asia. We tested the hypothesis of the ECS land bridge acting as a dispersal corridor or filter for A. obscuriceps during the glacial period. Specifically, we tested whether and the extent to which dispersal ability and host plant habitat requirement influenced the genetic structure of A. obscuriceps during the exposure of the ECS land bridge. Phylogenetic and network analyses indicated that A. obscuriceps is composed of two major lineages, i.e., China and Japan. Divergence time on both sides of the ECS was estimated to be approximately 1.07 (0.79-1.32) Ma, which was about the same period that the sea level increased. No significant Isolation by Distance (IBD) relationship was found between Фst and Euclidean distances in the Mantel tests, which is consistent with the hypothesis that this species has a good dispersal ability. Our Last Glacial Maximum (LGM) niche modeling of plants that constitute preferred habitats for A. obscuriceps exhibited a similar habitat gap on the exposed ECS continental shelf between China and Japan, but showed a continuous distribution across the Taiwan Strait. Our results suggest that ecological properties (habitat requirement and dispersal ability), together with sea level fluctuation during the Pleistocene across the ECS, have shaped the genetic structure and demographic history of A. obscuriceps in its native area. The host plant habitat requirement could also be a key to the colonization of the A. obscuriceps species during the exposure of the ECS land bridge. Our findings will shed light on the potential role of habitat requirement in the process of

  19. Soundscapes and Larval Settlement: Larval Bivalve Responses to Habitat-Associated Underwater Sounds.

    Science.gov (United States)

    Eggleston, David B; Lillis, Ashlee; Bohnenstiehl, DelWayne R

    2016-01-01

    We quantified the effects of habitat-associated sounds on the settlement response of two species of bivalves with contrasting habitat preferences: (1) Crassostrea virginicia (oyster), which prefers to settle on other oysters, and (2) Mercenaria mercenaria (clam), which settles on unstructured habitats. Oyster larval settlement in the laboratory was significantly higher when exposed to oyster reef sound compared with either off-reef or no-sound treatments. Clam larval settlement did not vary according to sound treatments. Similar to laboratory results, field experiments showed that oyster larval settlement in "larval housings" suspended above oyster reefs was significantly higher compared with off-reef sites.

  20. Forest fire impact on bird habitat in a mixed oak-pine forest in Puebla, Mexico

    Science.gov (United States)

    Laura P. Ponce-Calderón Ponce-Calderón; Dante A. Rodríguez-Trejo; Beatriz C. Aguilar-Váldez; Elvia. López-Pérez

    2013-01-01

    To assess the impact of different-severity wildfires on bird habitat, habitat quality was determined by analyzing the degree of richness association, abundance and diversity of bird species and vegetation structure (richness, abundance, diversity and coverage). These attributes were quantified with four sampling sites for birds and five for quadrant-centered points...

  1. Resource pulses in desert river habitats: productivity-biodiversity hotspots, or mirages?

    Science.gov (United States)

    Free, Carissa L; Baxter, Greg S; Dickman, Christopher R; Leung, Luke K P

    2013-01-01

    Resource pulses in the world's hot deserts are driven largely by rainfall and are highly variable in both time and space. However, run-on areas and drainage lines in arid regions receive more water more often than adjacent habitats, and frequently sustain relatively high levels of primary productivity. These landscape features therefore may support higher biotic diversity than other habitats, and potentially act as refuges for desert vertebrates and other biota during droughts. We used the ephemeral Field River in the Simpson Desert, central Australia, as a case study to quantify how resources and habitat characteristics vary spatially and temporally along the riparian corridor. Levels of moisture and nutrients were greater in the clay-dominated soils of the riverine corridor than in the surrounding sand dunes, as were cover values of trees, annual grasses, other annual plants and litter; these resources and habitat features were also greater near the main catchment area than in the distal reaches where the river channel runs out into extensive dune fields. These observations confirm that the riverine corridor is more productive than the surrounding desert, and support the idea that it may act as a refuge or as a channel for the ingress of peri-desert species. However, the work also demonstrates that species diversity of invertebrates and plants is not higher within the river corridor; rather, it is driven by rainfall and the accompanying increase in annual plants following a rain event. Further research is required to identify the biota that depend upon these resource pulses.

  2. Resource Pulses in Desert River Habitats: Productivity-Biodiversity Hotspots, or Mirages?

    Science.gov (United States)

    Free, Carissa L.; Baxter, Greg S.; Dickman, Christopher R.; Leung, Luke K. P.

    2013-01-01

    Resource pulses in the world's hot deserts are driven largely by rainfall and are highly variable in both time and space. However, run-on areas and drainage lines in arid regions receive more water more often than adjacent habitats, and frequently sustain relatively high levels of primary productivity. These landscape features therefore may support higher biotic diversity than other habitats, and potentially act as refuges for desert vertebrates and other biota during droughts. We used the ephemeral Field River in the Simpson Desert, central Australia, as a case study to quantify how resources and habitat characteristics vary spatially and temporally along the riparian corridor. Levels of moisture and nutrients were greater in the clay-dominated soils of the riverine corridor than in the surrounding sand dunes, as were cover values of trees, annual grasses, other annual plants and litter; these resources and habitat features were also greater near the main catchment area than in the distal reaches where the river channel runs out into extensive dune fields. These observations confirm that the riverine corridor is more productive than the surrounding desert, and support the idea that it may act as a refuge or as a channel for the ingress of peri-desert species. However, the work also demonstrates that species diversity of invertebrates and plants is not higher within the river corridor; rather, it is driven by rainfall and the accompanying increase in annual plants following a rain event. Further research is required to identify the biota that depend upon these resource pulses. PMID:24124446

  3. Missouri River Emergent Sandbar Habitat Monitoring Plan - A Conceptual Framework for Adaptive Management

    Science.gov (United States)

    Sherfy, Mark H.; Stucker, Jennifer H.; Anteau, Michael J.

    2009-01-01

    Habitat conditions are one of the most important factors determining distribution and productivity of least terns (Sternula antillarum) and piping plovers (Charadrius melodus) in the upper Missouri River system (Ziewitz and others, 1992; Kruse and others, 2002). Habitat conditions are known to change within and among seasons in response to variation in river flows, weather conditions, and management actions targeted at providing for the needs of terns and plovers. Although these principles are generally agreed upon, there is little empirical information available on the quantity and quality of tern and plover habitats in this system, particularly with reference to the major life history events that must be supported (egg laying, incubation, and brood rearing). Habitat requirements for these events are composed of two major categories: nesting and foraging habitat. In the case of piping plovers, these two requirements must occur on the same area because plover chicks are constrained to foraging near nesting sites prior to fledging (Knetter and others, 2002; Haffner, 2005). In contrast, least terns chicks are fed by the adults, allowing food procurement for broods to occur outside the immediate nesting area; however, food resources must be close enough to nesting locations to minimize foraging time. The complexity and dynamics of the upper Missouri River system introduce considerable uncertainty into how best to manage tern and plover habitats, and how best to evaluate the effectiveness of this management. An extensive program of habitat monitoring will be needed to address this complexity and support the management of least terns and piping plovers under the Missouri River Recovery Program. These needs are being addressed, in part, through a program of habitat creation and management targeted at improving quality and quantity of habitats for terns and plovers. Given the momentum of these projects and their associated costs, it is imperative that the capacity be

  4. Quantifying the contribution of riparian soils to the provision of ecosystem services.

    Science.gov (United States)

    de Sosa, Laura L; Glanville, Helen C; Marshall, Miles R; Prysor Williams, A; Jones, Davey L

    2018-05-15

    Riparian areas, the interface between land and freshwater ecosystems, are considered to play a pivotal role in the supply of regulating, provisioning, cultural and supporting services. Most previous studies, however, have tended to focus on intensive agricultural systems and only on a single ecosystem function. Here, we present the first study which attempts to assess a wide range of ecological processes involved in the provision of the ecosystem service of water quality regulation across a diverse range of riparian typologies. Specifically, we focus on 1) evaluating the spatial variation in riparian soils properties with respect to distance with the river and soil depth in contrasting habitat types; 2) gaining further insights into the underlying mechanisms of pollutant removal (i.e. pesticide sorption/degradation, denitrification, etc.) by riparian soils; and 3) quantify and evaluate how riparian vegetation across different habitat types contribute to the provision of watercourse shading. All the habitats were present within a single large catchment and included: (i) improved grassland, (ii) unimproved (semi-natural) grassland, (iii) broadleaf woodland, (iv) coniferous woodland, and (iv) mountain, heath and bog. Taking all the data together, the riparian soils could be statistically separated by habitat type, providing evidence that they deliver ecosystem services to differing extents. Overall, however, our findings seem to contradict the general assumption that soils in riparian area are different from neighbouring (non-riparian) areas and that they possess extra functionality in terms of ecosystem service provision. Watercourse shading was highly habitat specific and was maximal in forests (ca. 52% shade cover) in comparison to the other habitat types (7-17%). Our data suggest that the functioning of riparian areas in less intensive agricultural areas, such as those studied here, may be broadly predicted from the surrounding land use, however, further research

  5. Comparing GIS-based habitat models for applications in EIA and SEA

    International Nuclear Information System (INIS)

    Gontier, Mikael; Moertberg, Ulla; Balfors, Berit

    2010-01-01

    Land use changes, urbanisation and infrastructure developments in particular, cause fragmentation of natural habitats and threaten biodiversity. Tools and measures must be adapted to assess and remedy the potential effects on biodiversity caused by human activities and developments. Within physical planning, environmental impact assessment (EIA) and strategic environmental assessment (SEA) play important roles in the prediction and assessment of biodiversity-related impacts from planned developments. However, adapted prediction tools to forecast and quantify potential impacts on biodiversity components are lacking. This study tested and compared four different GIS-based habitat models and assessed their relevance for applications in environmental assessment. The models were implemented in the Stockholm region in central Sweden and applied to data on the crested tit (Parus cristatus), a sedentary bird species of coniferous forest. All four models performed well and allowed the distribution of suitable habitats for the crested tit in the Stockholm region to be predicted. The models were also used to predict and quantify habitat loss for two regional development scenarios. The study highlighted the importance of model selection in impact prediction. Criteria that are relevant for the choice of model for predicting impacts on biodiversity were identified and discussed. Finally, the importance of environmental assessment for the preservation of biodiversity within the general frame of biodiversity conservation is emphasised.

  6. Seasonal movements and multiscale habitat selection of Whooping Crane (Grus americana) in natural and agricultural wetlands

    Science.gov (United States)

    Pickens, Bradley A.; King, Sammy L.; Vasseur, Phillip L.; Zimorski, Sara E.; Selman, Will

    2017-01-01

    Eleven of 15 species of cranes (family: Gruidae) are considered vulnerable or endangered, and the increase of agriculture and aquaculture at the expense of natural wetlands and grasslands is a threat to Gruidae worldwide. A reintroduced population of Whooping Crane (Grus americana) was studied in coastal and agricultural wetlands of Louisiana and Texas, USA. The objectives were to compare Whooping Crane movements across seasons, quantify multiscale habitat selection, and identify seasonal shifts in selection. Whooping Cranes (n = 53) were tracked with satellite transmitters to estimate seasonal core-use areas (50% home range contours) via Brownian bridge movement models and assess habitat selection. Whooping Crane core-use areas (n = 283) ranged from 4.7 to 438.0 km2, and habitat selection changed seasonally as shallow water availability varied. Whooping Crane core-use areas were composed of more fresh marsh in spring/summer, but shifted towards rice and crawfish (Procambarus spp.) aquaculture in the fall/winter. Within core-use areas, aquaculture was most strongly selected, particularly in fall when fresh marsh became unsuitable. Overall, the shifting of Whooping Crane habitat selection over seasons is likely to require large, heterogeneous areas. Whooping Crane use of agricultural and natural wetlands may depend on spatio-temporal dynamics of water depth.

  7. Habitat quality influences population distribution, individual space use and functional responses in habitat selection by a large herbivore.

    Science.gov (United States)

    Bjørneraas, Kari; Herfindal, Ivar; Solberg, Erling Johan; Sæther, Bernt-Erik; van Moorter, Bram; Rolandsen, Christer Moe

    2012-01-01

    Identifying factors shaping variation in resource selection is central for our understanding of the behaviour and distribution of animals. We examined summer habitat selection and space use by 108 Global Positioning System (GPS)-collared moose in Norway in relation to sex, reproductive status, habitat quality, and availability. Moose selected habitat types based on a combination of forage quality and availability of suitable habitat types. Selection of protective cover was strongest for reproducing females, likely reflecting the need to protect young. Males showed strong selection for habitat types with high quality forage, possibly due to higher energy requirements. Selection for preferred habitat types providing food and cover was a positive function of their availability within home ranges (i.e. not proportional use) indicating functional response in habitat selection. This relationship was not found for unproductive habitat types. Moreover, home ranges with high cover of unproductive habitat types were larger, and smaller home ranges contained higher proportions of the most preferred habitat type. The distribution of moose within the study area was partly related to the distribution of different habitat types. Our study shows how distribution and availability of habitat types providing cover and high-quality food shape ungulate habitat selection and space use.

  8. Predicting spatial and temporal distribution of Indo-Pacific lionfish (Pterois volitans) in Biscayne Bay through habitat suitability modeling

    Science.gov (United States)

    Bernal, Nicholas A.; DeAngelis, Donald L.; Schofield, Pamela J.; Sullivan Sealey, Kathleen

    2014-01-01

    Invasive species may exhibit higher levels of growth and reproduction when environmental conditions are most suitable, and thus their effects on native fauna may be intensified. Understanding potential impacts of these species, especially in the nascent stages of a biological invasion, requires critical information concerning spatial and temporal distributions of habitat suitability. Using empirically supported environmental variables (e.g., temperature, salinity, dissolved oxygen, rugosity, and benthic substrate), our models predicted habitat suitability for the invasive lionfish (Pterois volitans) in Biscayne Bay, Florida. The use of Geographic Information Systems (GIS) as a platform for the modeling process allowed us to quantify correlations between temporal (seasonal) fluctuations in the above variables and the spatial distribution of five discrete habitat quality classes, whose ranges are supported by statistical deviations from the apparent best conditions described in prior studies. Analysis of the resulting models revealed little fluctuation in spatial extent of the five habitat classes on a monthly basis. Class 5, which represented the area with environmental variables closest to the best conditions for lionfish, occupied approximately one-third of Biscayne Bay, with subsequent habitats declining in area. A key finding from this study was that habitat suitability increased eastward from the coastline, where higher quality habitats were adjacent to the Atlantic Ocean and displayed marine levels of ambient water quality. Corroboration of the models with sightings from the USGS-NAS database appeared to support our findings by nesting 79 % of values within habitat class 5; however, field testing (i.e., lionfish surveys) is necessary to confirm the relationship between habitat classes and lionfish distribution.

  9. Monitoring and mapping selected riparian habitat along the lower Snake River

    Energy Technology Data Exchange (ETDEWEB)

    Downs, J. L; Tiller, B. L [Pacific Northwest Lab., Richland, WA (United States); Witter, M. [Shannon and Wilson, Inc., Seattle, WA (United States). Geotechnical and Environmental Consultants, Seattle, Washington (United States); Mazaika, R. [Corps of Engineers, Portland, OR (United States)

    1996-01-01

    Studies in this document were initiated to establish baseline information on riparian and wetland habitat conditions at the areas studied under the current reservoir operations on the lower Snake River. Two approaches were used to assess habitat at 28 study sites selected on the four pools on the lower Snake River. These areas all contribute significant riparian habitat along the river, and several of these areas are designated habitat management units. At 14 of the 28 sites, we monitored riparian habitat on three dates during the growing season to quantify vegetation abundance and composition along three transects: soil nutrients, moisture, and pH and water level and pH. A second approach involved identifying any differences in the extent and amount of riparian/wetland habitat currently found at the study areas from that previously documented. We used both ground and boat surveys to map and classify the changes in vegetative cover along the shoreline at the 14 monitoring sites and at 14 additional sites along the lower Snake selected to represent various riparian/wetland habitat conditions. Results of these mapping efforts are compared with maps of cover types previously generated using aerial photography taken in 1987.

  10. Satellite-based remote sensing of running water habitats at large riverscape scales: Tools to analyze habitat heterogeneity for river ecosystem management

    Science.gov (United States)

    Hugue, F.; Lapointe, M.; Eaton, B. C.; Lepoutre, A.

    2016-01-01

    We illustrate an approach to quantify patterns in hydraulic habitat composition and local heterogeneity applicable at low cost over very large river extents, with selectable reach window scales. Ongoing developments in remote sensing and geographical information science massively improve efficiencies in analyzing earth surface features. With the development of new satellite sensors and drone platforms and with the lowered cost of high resolution multispectral imagery, fluvial geomorphology is experiencing a revolution in mapping streams at high resolution. Exploiting the power of aerial or satellite imagery is particularly useful in a riverscape research framework (Fausch et al., 2002), where high resolution sampling of fluvial features and very large coverage extents are needed. This study presents a satellite remote sensing method that requires very limited field calibration data to estimate over various scales ranging from 1 m to many tens or river kilometers (i) spatial composition metrics for key hydraulic mesohabitat types and (ii) reach-scale wetted habitat heterogeneity indices such as the hydromorphological index of diversity (HMID). When the purpose is hydraulic habitat characterization applied over long river networks, the proposed method (although less accurate) is much less computationally expensive and less data demanding than two dimensional computational fluid dynamics (CFD). Here, we illustrate the tools based on a Worldview 2 satellite image of the Kiamika River, near Mont Laurier, Quebec, Canada, specifically over a 17-km river reach below the Kiamika dam. In the first step, a high resolution water depth (D) map is produced from a spectral band ratio (calculated from the multispectral image), calibrated with limited field measurements. Next, based only on known river discharge and estimated cross section depths at time of image capture, empirical-based pseudo-2D hydraulic rules are used to rapidly generate a two-dimensional map of flow velocity

  11. Quantifying the energy required for groundwater pumping across a regional aquifer system

    Science.gov (United States)

    Ronayne, M. J.; Shugert, D. T.

    2017-12-01

    Groundwater pumping can be a substantial source of energy expenditure, particularly in semiarid regions with large depths to water. In this study we assessed the energy required for groundwater pumping in the Denver Basin aquifer system, a group of sedimentary rock aquifers used for municipal water supply in Colorado. In recent decades, declining water levels in the Denver Basin aquifers has resulted in increased pumping lifts and higher energy use rates. We quantified the spatially variable energy intensity for groundwater pumping by analyzing spatial variations in the lift requirement. The median energy intensities for two major aquifers were 1.2 and 1.8 kWh m-3. Considering typical municipal well production rates and household water use in the study area, these results indicate that the energy cost associated with groundwater pumping can be a significant fraction (>20%) of the total electricity consumption for all household end uses. Pumping at this scale (hundreds of municipal wells producing from deep aquifers) also generates substantial greenhouse gas emissions. Analytical wellfield modeling conducted as part of this study clearly demonstrates how multiple components of the lift impact the energy requirement. Results provide guidance for water management strategies that reduce energy expenditure.

  12. Habitat Evaluation Procedures (HEP) Report; Gamblin Lake, Technical Report 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Entz, Ray

    2005-05-01

    On August 12, 2003, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Gamblin Lake property, an acquisition completed by the Kalispel Tribe of Indians in December 2002. Evaluation species and appropriate models include bald eagle, black-capped chickadee, mallard, muskrat, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Gamblin Lake Project provides a total of 273.28 Habitat Units (HUs) for the species evaluated. Conifer forest habitat provides 127.92 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. Forested wetland habitat provides 21.06 HUs for bald eagle, black-caped chickadee, mallard, and white-tailed deer. Wet meadow provides 78.05 HUs for Canada goose and mallard. Emergent wetland habitat provides 46.25 HUs for mallard, muskrat, and Canada goose. The objective of using HEP at the Gamblin Lake Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  13. Selection of habitat by the jaguar, Panthera onca (Carnivora: Felidae, in the upper Paraná River, Brazil

    Directory of Open Access Journals (Sweden)

    Laury Cullen Junior

    2013-08-01

    Full Text Available We used data from VHF and GPS radio-tagged jaguars, Panthera onca (Linnaeus, 1758 to quantify jaguar habitat selection and how adult individuals in the Upper Paraná River region selected among the available habitat types. We followed the framework in which animals make decisions about resource use at hierarchical stages, namely selection of home range within a study area (second-order selection and selection of patches within a home range (third-order selection. We quantified habitat preferences at two orders of selection with respect to habitat types and to test the null hypothesis that habitat utilization by jaguars was random at both study sites. Using compositional analysis, we assessed habitat selection by jaguars at second- and third-orders of selection. Jaguars consistently preferred dense marshes and primary forests, and avoided human-dominated areas such as intensively managed open pastures. Although the avoidance of disturbed and developed habitat types by jaguars is not surprising, this is the first study to document it. If small protected areas, such as the ones already existing in the Upper Paraná region, are to sustain jaguar populations they, must include and protect as many primary forests and marshlands as possible, so that jaguars can disperse, hunt wild prey and take care of their cubs without being disturbed. What is urgently needed in these jaguar-protected areas is the creation of larger protected areas that can sustain jaguars in their favored habitat.

  14. Methods for Quantifying Shallow-Water Habitat Availability in the Missouri River

    Energy Technology Data Exchange (ETDEWEB)

    Hanrahan, Timothy P.; Larson, Kyle B.

    2012-04-09

    As part of regulatory requirements for shallow-water habitat (SWH) restoration, the U.S. Army Corps of Engineers (USACE) completes periodic estimates of the quantity of SWH available throughout the lower 752 mi of the Missouri River. To date, these estimates have been made by various methods that consider only the water depth criterion for SWH. The USACE has completed estimates of SWH availability based on both depth and velocity criteria at four river bends (hereafter called reference bends), encompassing approximately 8 river miles within the lower 752 mi of the Missouri River. These estimates were made from the results of hydraulic modeling of water depth and velocity throughout each bend. Hydraulic modeling of additional river bends is not expected to be completed for deriving estimates of available SWH. Instead, future estimates of SWH will be based on the water depth criterion. The objective of this project, conducted by the Pacific Northwest National Laboratory for the USACE Omaha District, was to develop geographic information system methods for estimating the quantity of available SWH based on water depth only. Knowing that only a limited amount of water depth and channel geometry data would be available for all the remaining bends within the lower 752 mi of the Missouri River, the intent was to determine what information, if any, from the four reference bends could be used to develop methods for estimating SWH at the remaining bends. Specifically, we examined the relationship between cross-section channel morphology and relative differences between SWH estimates based on combined depth and velocity criteria and the depth-only criterion to determine if a correction factor could be applied to estimates of SWH based on the depth-only criterion. In developing these methods, we also explored the applicability of two commonly used geographic information system interpolation methods (TIN and ANUDEM) for estimating SWH using four different elevation data

  15. Quantifying and Mapping Habitat-Based Biodiversity Metrics Within an Ecosystem Services Framework

    Science.gov (United States)

    Ecosystem services have become a key issue of this century in resource management, conservation planning, human well-being, and environmental decision analysis. Mapping and quantifying ecosystem services have become strategic national interests for integrating ecology with econom...

  16. Deep Space Habitat Concept Demonstrator

    Science.gov (United States)

    Bookout, Paul S.; Smitherman, David

    2015-01-01

    This project will develop, integrate, test, and evaluate Habitation Systems that will be utilized as technology testbeds and will advance NASA's understanding of alternative deep space mission architectures, requirements, and operations concepts. Rapid prototyping and existing hardware will be utilized to develop full-scale habitat demonstrators. FY 2014 focused on the development of a large volume Space Launch System (SLS) class habitat (Skylab Gen 2) based on the SLS hydrogen tank components. Similar to the original Skylab, a tank section of the SLS rocket can be outfitted with a deep space habitat configuration and launched as a payload on an SLS rocket. This concept can be used to support extended stay at the Lunar Distant Retrograde Orbit to support the Asteroid Retrieval Mission and provide a habitat suitable for human missions to Mars.

  17. Loss and modification of habitat: Chapter 1

    Science.gov (United States)

    Lemckert, Francis; Hecnar, Stephen; Pilliod, David S.

    2012-01-01

    Amphibians live in a wide variety of habitats around the world, many of which have been modified or destroyed by human activities. Most species have unique life history characteristics adapted to specific climates, habitats (e.g., lentic, lotic, terrestrial, arboreal, fossorial, amphibious), and local conditions that provide suitable areas for reproduction, development and growth, shelter from environmental extremes, and predation, as well as connectivity to other populations or habitats. Although some species are entirely aquatic or terrestrial, most amphibians, as their name implies, lead a dual life and require a mosaic of habitats in both aquatic and terrestrial ecosystems. With over 6 billion people on Earth, most species are now persisting in habitats that have been directly or indirectly influenced by human activities. Some species have disappeared where their habitats have been completely destroyed, reduced, or rendered unsuitable. Habitat loss and degradation are widely considered by most researchers as the most important causes of amphibian population decline globally (Barinaga 1990; Wake and Morowitz 1991; Alford and Richards 1999). In this chapter, a background on the diverse habitat requirements of amphibians is provided, followed by a discussion of the effects of urbanization, agriculture, livestock grazing, timber production and harvesting, fire and hazardous fuel management, and roads on amphibians and their habitats. Also briefly discussed is the influence on amphibian habitats of natural disturbances, such as extreme weather events and climate change, given the potential for human activities to impact climate in the longer term. For amphibians in general, microhabitats are of greater importance than for other vertebrates. As ectotherms with a skin that is permeable to water and with naked gelatinous eggs, amphibians are physiologically constrained to be active during environmental conditions that provide appropriate body temperatures and adequate

  18. GIS habitat analysis for lesser prairie-chickens in southeastern New Mexico

    Directory of Open Access Journals (Sweden)

    Neville Paul

    2006-12-01

    Full Text Available Abstract Background We conducted Geographic Information System (GIS habitat analyses for lesser prairie-chicken (LPCH, Tympanuchus pallidicinctus conservation planning. The 876,799 ha study area included most of the occupied habitat for the LPCH in New Mexico. The objectives were to identify and quantify: 1. suitable LPCH habitat in New Mexico, 2. conversion of native habitats, 3. potential for habitat restoration, and 4. unsuitable habitat available for oil and gas activities. Results We found 16% of suitable habitat (6% of the study area distributed in 13 patches of at least 3,200 ha and 11% of suitable habitat (4% of the study area distributed in four patches over 7,238 ha. The area converted from native vegetation types comprised 17% of the study area. Ninety-five percent of agricultural conversion occurred on private lands in the northeastern corner of the study area. Most known herbicide-related conversions (82% occurred in rangelands in the western part of the study area, on lands managed primarily by the US Bureau of Land Management (BLM. We identified 88,190 ha (10% of the study area of habitats with reasonable restoration potential. Sixty-two percent of the primary population area (PPA contained occupied, suitable, or potentially suitable habitat, leaving 38% that could be considered for oil and gas development. Conclusion Although suitable LPCH habitat appears at first glance to be abundant in southeastern New Mexico, only a fraction of apparently suitable vegetation types constitute quality habitat. However, we identified habitat patches that could be restored through mesquite control or shin-oak reintroduction. The analysis also identified areas of unsuitable habitat with low restoration potential that could be targeted for oil and gas exploration, in lieu of occupied, high-quality habitats. Used in combination with GIS analysis and current LPCH population data, the habitat map represents a powerful conservation and management tool.

  19. GIS habitat analysis for lesser prairie-chickens in southeastern New Mexico.

    Science.gov (United States)

    Johnson, Kristine; Neville, Teri B; Neville, Paul

    2006-12-04

    We conducted Geographic Information System (GIS) habitat analyses for lesser prairie-chicken (LPCH, Tympanuchus pallidicinctus) conservation planning. The 876,799 ha study area included most of the occupied habitat for the LPCH in New Mexico. The objectives were to identify and quantify: 1. suitable LPCH habitat in New Mexico, 2. conversion of native habitats, 3. potential for habitat restoration, and 4. unsuitable habitat available for oil and gas activities. We found 16% of suitable habitat (6% of the study area) distributed in 13 patches of at least 3,200 ha and 11% of suitable habitat (4% of the study area) distributed in four patches over 7,238 ha. The area converted from native vegetation types comprised 17% of the study area. Ninety-five percent of agricultural conversion occurred on private lands in the northeastern corner of the study area. Most known herbicide-related conversions (82%) occurred in rangelands in the western part of the study area, on lands managed primarily by the US Bureau of Land Management (BLM). We identified 88,190 ha (10% of the study area) of habitats with reasonable restoration potential. Sixty-two percent of the primary population area (PPA) contained occupied, suitable, or potentially suitable habitat, leaving 38% that could be considered for oil and gas development. Although suitable LPCH habitat appears at first glance to be abundant in southeastern New Mexico, only a fraction of apparently suitable vegetation types constitute quality habitat. However, we identified habitat patches that could be restored through mesquite control or shin-oak reintroduction. The analysis also identified areas of unsuitable habitat with low restoration potential that could be targeted for oil and gas exploration, in lieu of occupied, high-quality habitats. Used in combination with GIS analysis and current LPCH population data, the habitat map represents a powerful conservation and management tool.

  20. Macrofaunal communities associated with chemosynthetic habitats from the U.S. Atlantic margin: A comparison among depth and habitat types

    Science.gov (United States)

    Bourque, Jill R.; Robertson, Craig M.; Brooke, Sandra; Demopoulos, Amanda W.J.

    2016-01-01

    Hydrocarbon seeps support distinct benthic communities capable of tolerating extreme environmental conditions and utilizing reduced chemical compounds for nutrition. In recent years, several locations of methane seepage have been mapped along the U.S. Atlantic continental slope. In 2012 and 2013, two newly discovered seeps were investigated in this region: a shallow site near Baltimore Canyon (BCS, 366–412 m) and a deep site near Norfolk Canyon (NCS, 1467–1602 m), with both sites containing extensive chemosynthetic mussel bed and microbial mat habitats. Sediment push cores, suction samples, and Ekman box cores were collected to quantify the abundance, diversity, and community structure of benthic macrofauna (>300 μm) in mussel beds, mats, and slope habitats at both sites. Community data from the deep site were also assessed in relation to the associated sediment environment (organic carbon and nitrogen, stable carbon and nitrogen isotopes, grain size, and depth). Infaunal assemblages and densities differed both between depths and among habitat types. Macrofaunal densities in microbial mats were four times greater than those present in mussel beds and slope sediments and were dominated by the annelid families Dorvilleidae, Capitellidae, and Tubificidae, while mussel habitats had higher proportions of crustaceans. Diversity was lower in BCS microbial mat habitats, but higher in mussel and slope sediments compared to NCS habitats. Multivariate statistical analysis revealed specific sediment properties as important for distinguishing the macrofaunal communities, including larger grain sizes present within NCS microbial mat habitats and depleted stable carbon isotopes (δ13C) in sediments present at mussel beds. These results suggest that habitat differences in the quality and source of organic matter are driving the observed patterns in the infaunal assemblages, including high β diversity and high variability in the macrofaunal community composition. This

  1. Tundra swan habitat preferences during migration in North Dakota

    Science.gov (United States)

    Earnst, Susan L.

    1994-01-01

    I studied tundra swan (Cygnus columbianus columbianus) habitat preference in North Dakota during autumn migration, 1988-89. Many thousand tundra swans stop in the Prairie Pothole region during autumn migration, but swan resource use has not been quantified. I examined habitat preference in relation to an index of sago pondweed (Potamogeton pectinatus) presence, extent of open water, and wetland size. I compared habitat preference derived from counts of all swans to those derived from foraging swans only and cygnets only. Foraging swans preferred wetlands with sago pondweed (P = 0.03); the number of foraging swans per wetland was >4 times higher on wetlands with sago pondweed than on wetlands without sago. In contrast, nonforaging swans did not prefer wetlands with sago pondweed (P = 0.85) but preferred large wetlands (P = 0.02) and those with a high proportion of contiguous open water (P feeding than adults (P = 0.03) and occurred proportionately more often in smaller flocks (P = 0.04), but cygnets and adults had similar habitat preferences.

  2. Cephalopod Experimental Projected Habitat (CEPH: Virtual Reality for Underwater Organisms

    Directory of Open Access Journals (Sweden)

    Noam Josef

    2018-03-01

    Full Text Available Cephalopods' visually driven, dynamic, and diverse skin display makes them a key animal model in sensory ethology and camouflage research. Development of novel methods is critically important in order to monitor and objectively quantify cephalopod behavior. In this work, the development of Cephalopod Experimental Projected Habitat (CEPH is described. This newly developed experimental design bridges computational and ethological sciences, providing a visually controlled arena which requires limited physical space and minimal previous technical background. Created from relatively inexpensive and readily available materials, the experimental apparatus utilizes reflected light which closely resembles natural settings. Preliminary results suggest the experimental design reproducibly challenges marine organisms with visually dynamic surroundings, including videos of prey and predator. This new approach should offer new avenues for marine organism sensory research and may serve researchers from various fields.

  3. Natural Propagation and Habitat Improvement, Volume I, Oregon, Supplement C, White River Habitat Inventory, 1983 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Heller, David

    1984-04-01

    More than 130 miles of stream fish habitat was inventoried and evaluated on the Mt. Hood National Forest during the first year of this multi-year project. First year tasks included field inventory and evaluation of habitat conditions on the White River and tributary streams thought to have the highest potential for supporting anadromous fish populations. All streams inventoried were located on the Mt. Hood National Forest. The surveyed area appears to contain most of the high quality anadromous fish habitat in the drainage. Habitat conditions appear suitable for steelhead, coho, and chinook salmon, and possibly sockeye. One hundred and twenty-four miles of potential anadromous fish habitat were identifed in the survey. Currently, 32 miles of this habitat would be readily accessible to anadromous fish. An additional 72 miles of habitat could be accessed with only minor passage improvement work. About 20 miles of habitat, however, will require major investment to provide fish passage. Three large lakes (Boulder, 14 acres; Badger, 45 acres; Clear, 550 acres) appear to be well-suited for rearing anadromous fish, although passage enhancement would be needed before self-sustaining runs could be established in any of the lakes.

  4. Landscape responses of bats to habitat fragmentation in Atlantic forest of paraguay

    Science.gov (United States)

    Gorresen, P.M.; Willig, M.R.

    2004-01-01

    Understanding effects of habitat loss and fragmentation on populations or communities is critical to effective conservation and restoration. This is particularly important for bats because they provide vital services to ecosystems via pollination and seed dispersal, especially in tropical and subtropical habitats. Based on more than 1,000 h of survey during a 15-month period, we quantified species abundances and community structure of phyllostomid bats at 14 sites in a 3,000-km2 region of eastern Paraguay. Abundance was highest for Artibeus lituratus in deforested landscapes and for Chrotopterus auritus in forested habitats. In contrast, Artibeus fimbriatus, Carollia perspicillata, Glossophaga soricina, Platyrrhinus lineatus, Pygoderma bilabiatum, and Sturnira lilium attained highest abundance in moderately fragmented forest landscapes. Forest cover, patch size, and patch density frequently were associated with abundance of species. At the community level, species richness was highest in partly deforested landscapes, whereas evenness was greatest in forested habitat. In general, the highest diversity of bats occurred in landscapes comprising moderately fragmented forest habitat. This underscores the importance of remnant habitat patches to conservation strategies.

  5. Evaluation of Life History Diversity, Habitat Connectivity, and Survival Benefits Associated with Habitat Restoration Actions in the Lower Columbia River and Estuary, Annual Report 2009

    Energy Technology Data Exchange (ETDEWEB)

    Diefenderfer, Heida L.; Johnson, Gary E.; Sather, Nichole K.; Skalski, John R.; Dawley, Earl M.; Coleman, Andre M.

    2010-08-01

    This report describes the 2009 research conducted under the U.S. Army Corps of Engineers (USACE or Corps) project EST-09-P-01, titled “Evaluation of Life History Diversity, Habitat Connectivity, and Survival Benefits Associated with Habitat Restoration Actions in the Lower Columbia River and Estuary.” The research was conducted by the Pacific Northwest National Laboratory, Marine Science Laboratory and Hydrology Group, in partnership with the University of Washington, School of Aquatic and Fishery Sciences, Columbia Basin Research, and Earl Dawley (NOAA Fisheries, retired). This Columbia River Fish Mitigation Program project, referred to as “Salmonid Benefits,” was started in FY 2009 to evaluate the state-of-the science regarding the ability to quantify the benefits to listed salmonids1 of habitat restoration actions in the lower Columbia River and estuary.

  6. Habitat selection responses of parents to offspring predation risk: An experimental test

    Science.gov (United States)

    Fontaine, J.J.; Martin, T.E.

    2006-01-01

    The ability of nest predation to influence habitat settlement decisions in birds is widely debated, despite its importance in limiting fitness. Here, we experimentally manipulated nest predation risk across a landscape and asked the question, do migratory birds assess and respond to variation in nest predation risk when choosing breeding habitats? We examined habitat preference by quantifying the density and settlement date of eight species of migratory passerines breeding in areas with and without intact nest predator communities. We found consistently more individuals nesting in areas with reduced nest predation than in areas with intact predator assemblages, although predation risk had no influence on settlement or breeding phenology. Additionally, those individuals occupying safer nesting habitats exhibited increased singing activity. These findings support a causal relationship between habitat choice and nest predation risk and suggest the importance of nest predation risk in shaping avian community structure and breeding activity. ?? 2006 by The University of Chicago. All rights reserved.

  7. Life on the rocks: habitat use drives morphological and performance evolution in lizards.

    Science.gov (United States)

    Goodman, Brett A; Miles, Donald B; Schwarzkopf, Lin

    2008-12-01

    As a group, lizards occupy a vast array of habitats worldwide, yet there remain relatively few cases where habitat use (ecology), morphology, and thus, performance, are clearly related. The best known examples include: increased limb length in response to increased arboreal perch diameter in anoles and increased limb length in response to increased habitat openness for some skinks. Rocky habitats impose strong natural selection on specific morphological characteristics, which differs from that imposed on terrestrial species, because moving about on inclined substrates of irregular sizes and shapes constrains locomotor performance in predictable ways. We quantified habitat use, morphology, and performance of 19 species of lizards (family Scincidae, subfamily Lygosominae) from 23 populations in tropical Australia. These species use habitats with considerable variation in rock availability. Comparative phylogenetic analyses revealed that occupation of rock-dominated habitats correlated with the evolution of increased limb length, compared to species from forest habitats that predominantly occupied leaf litter. Moreover, increased limb length directly affected performance, with species from rocky habitats having greater sprinting, climbing, and clinging ability than their relatives from less rocky habitats. Thus, we found that the degree of rock use is correlated with both morphological and performance evolution in this group of tropical lizards.

  8. Habitat Evaluation Procedures (HEP) Report; Beaver Lake, Technical Report 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Entz, Ray

    2005-05-01

    On August 14, 2003, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Beaver Lake property, an acquisition completed by the Kalispel Tribe of Indians in November 2002. Evaluation species and appropriate models include bald eagle, black-capped chickadee, Canada goose, mallard, muskrat, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Beaver Lake Project provides a total of 232.26 Habitat Units (HUs) for the species evaluated. Conifer forest habitat provides 136.58 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. Forested wetland habitat provides 20.02 HUs for bald eagle, black-caped chickadee, mallard, and white-tailed deer. Scrub-shrub wetland habitat provides 7.67 HUs for mallard, yellow warbler, and white-tailed deer. Grassland meadow provides 22.69 HUs for Canada goose and mallard. Emergent wetlands provide 35.04 HUs for Canada goose, mallard, and muskrat. Open water provided 10.26 HUs for Canada goose, mallard, and muskrat. The objective of using HEP at the Beaver Lake Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  9. The Earth Observation Data for Habitat Monitoring (EODHaM) system

    Science.gov (United States)

    Lucas, Richard; Blonda, Palma; Bunting, Peter; Jones, Gwawr; Inglada, Jordi; Arias, Marcela; Kosmidou, Vasiliki; Petrou, Zisis I.; Manakos, Ioannis; Adamo, Maria; Charnock, Rebecca; Tarantino, Cristina; Mücher, Caspar A.; Jongman, Rob H. G.; Kramer, Henk; Arvor, Damien; Honrado, Joāo Pradinho; Mairota, Paola

    2015-05-01

    To support decisions relating to the use and conservation of protected areas and surrounds, the EU-funded BIOdiversity multi-SOurce monitoring System: from Space TO Species (BIO_SOS) project has developed the Earth Observation Data for HAbitat Monitoring (EODHaM) system for consistent mapping and monitoring of biodiversity. The EODHaM approach has adopted the Food and Agriculture Organization Land Cover Classification System (LCCS) taxonomy and translates mapped classes to General Habitat Categories (GHCs) from which Annex I habitats (EU Habitats Directive) can be defined. The EODHaM system uses a combination of pixel and object-based procedures. The 1st and 2nd stages use earth observation (EO) data alone with expert knowledge to generate classes according to the LCCS taxonomy (Levels 1 to 3 and beyond). The 3rd stage translates the final LCCS classes into GHCs from which Annex I habitat type maps are derived. An additional module quantifies changes in the LCCS classes and their components, indices derived from earth observation, object sizes and dimensions and the translated habitat maps (i.e., GHCs or Annex I). Examples are provided of the application of EODHaM system elements to protected sites and their surrounds in Italy, Wales (UK), the Netherlands, Greece, Portugal and India.

  10. Simple measures of channel habitat complexity predict transient hydraulic storage in streams

    Science.gov (United States)

    Stream thalweg depth profiles (along path of greatest channel depth) and woody debris tallies have recently become components of routine field procedures for quantifying physical habitat in national stream monitoring efforts. Mean residual depth, standard deviation of thalweg dep...

  11. Developing and testing a computer vision method to quantify 3D movements of bottom-set gillnets on the seabed

    DEFF Research Database (Denmark)

    Savina, Esther; Krag, Ludvig Ahm; Madsen, Niels

    2018-01-01

    Gillnets are one of the most widely used fishing gears, but there is limited knowledge about their habitat effects, partly due to the lack of methodology to quantify such effects. A stereo imaging method was identified and adapted to quantify the dynamic behaviour of gillnets in-situ. Two cameras...... gillnets deployed in sandy habitats in the Danish coastal plaice fishery were assessed. The direct physical disruption of the seabed was minimal as the leadline was not penetrating into the seabed. Direct damage to the benthos could however originate from the sweeping movements of the nets, which were...... the general perception is that heavy gears are more destructive to the habitat, light nets were moving significantly more than heavy ones. The established methodology could be further applied to assess gear dynamic behaviour in situ of other static gears....

  12. The shark assemblage at French Frigate Shoals atoll, Hawai'i: species composition, abundance and habitat use.

    Science.gov (United States)

    Dale, Jonathan J; Stankus, Austin M; Burns, Michael S; Meyer, Carl G

    2011-02-10

    Empirical data on the abundance and habitat preferences of coral reef top predators are needed to evaluate their ecological impacts and guide management decisions. We used longline surveys to quantify the shark assemblage at French Frigate Shoals (FFS) atoll from May to August 2009. Fishing effort consisted of 189 longline sets totaling 6,862 hook hours of soak time. A total of 221 sharks from 7 species were captured, among which Galapagos (Carcharhinus galapagensis, 36.2%), gray reef (Carcharhinus amblyrhynchos, 25.8%) and tiger (Galeocerdo cuvier, 20.4%) sharks were numerically dominant. A lack of blacktip reef sharks (Carcharhinus melanopterus) distinguished the FFS shark assemblage from those at many other atolls in the Indo-Pacific. Compared to prior underwater visual survey estimates, longline methods more accurately represented species abundance and composition for the majority of shark species. Sharks were significantly less abundant in the shallow lagoon than adjacent habitats. Recaptures of Galapagos sharks provided the first empirical estimate of population size for any Galapagos shark population. The overall recapture rate was 5.4%. Multiple closed population models were evaluated, with Chao M(h) ranking best in model performance and yielding a population estimate of 668 sharks with 95% confidence intervals ranging from 289-1720. Low shark abundance in the shallow lagoon habitats suggests removal of a small number of sharks from the immediate vicinity of lagoonal islets may reduce short-term predation on endangered monk seal (Monachus schauinslandi) pups, but considerable fishing effort would be required to catch even a small number of sharks. Additional data on long-term movements and habitat use of sharks at FFS are required to better assess the likely ecological impacts of shark culling.

  13. Habitat Evaluation Procedures (HEP) Report : West Beaver Lake, 2004-2005 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Entz, Ray

    2005-02-01

    On September 7, 2004, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the West Beaver Lake property, an acquisition completed by the Kalispel Tribe of Indians in September 2004. Evaluation species and appropriate models include bald eagle, black-capped chickadee, mallard, muskrat, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The West Beaver Lake Project provides a total of 103.08 Habitat Units (HUs) for the species evaluated. Emergent wetland habitat provides 7.17 HUs for mallard and muskrat. Conifer forest habitat provides 95.91 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. The objective of using HEP at the West Beaver Lake Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  14. Habitat Evaluation Procedures (HEP) Report; Priest River Project, Technical Report 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Entz, Ray

    2005-05-01

    On July 6, 2004, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Priest River property, an acquisition completed by the Kalispel Tribe of Indians in 2001. Evaluation species and appropriate models include bald eagle, black-capped chickadee, Canada goose, mallard, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Priest River Project provides a total of 140.73 Habitat Units (HUs) for the species evaluated. Conifer forest habitat provides 60.05 HUs for bald eagle, black-capped chickadee, and white-tailed deer. Grassland meadow habitat provides 7.39 HUs for Canada goose and mallard. Scrub-shrub vegetation provides 71.13 HUs for mallard, yellow warbler, and white-tailed deer. Open water habitat provides 2.16 HUs for Canada goose and mallard. The objective of using HEP at the Priest River Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  15. Habitat Evaluation Procedures (HEP) Report; North Eaton Lake, Technical Report 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Entz, Ray

    2005-11-01

    On July 6, 2005, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the North Eaton Lake property, an acquisition completed by the Kalispel Tribe of Indians in November 2004. Evaluation species and appropriate models include bald eagle, black-capped chickadee, Canada goose, mallard, muskrat, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The North Eaton Lake Project provides a total of 235.05 Habitat Units (HUs) for the species evaluated. Open water habitat provides 9.38 HUs for Canada goose, mallard and muskrat. Emergent wetland habitat provides 11.36 HUs for Canada goose, mallard and muskrat. Forested wetland provides 10.97 HUs for bald eagle, black-capped chickadee, mallard and white-tailed deer. Conifer forest habitat provides 203.34 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. The objective of using HEP at the North Eaton Lake Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  16. Resource selection by the California condor (Gymnogyps californianus relative to terrestrial-based habitats and meteorological conditions.

    Directory of Open Access Journals (Sweden)

    James W Rivers

    Full Text Available Condors and vultures are distinct from most other terrestrial birds because they use extensive soaring flight for their daily movements. Therefore, assessing resource selection by these avian scavengers requires quantifying the availability of terrestrial-based habitats, as well as meteorological variables that influence atmospheric conditions necessary for soaring. In this study, we undertook the first quantitative assessment of habitat- and meteorological-based resource selection in the endangered California condor (Gymnogyps californianus within its California range and across the annual cycle. We found that condor use of terrestrial areas did not change markedly within the annual cycle, and that condor use was greatest for habitats where food resources and potential predators could be detected and where terrain was amenable for taking off from the ground in flight (e.g., sparse habitats, coastal areas. Condors originating from different release sites differed in their use of habitat, but this was likely due in part to variation in habitats surrounding release sites. Meteorological conditions were linked to condor use of ecological subregions, with thermal height, thermal velocity, and wind speed having both positive (selection and negative (avoidance effects on condor use in different areas. We found little evidence of systematic effects between individual characteristics (i.e., sex, age, breeding status or components of the species management program (i.e., release site, rearing method relative to meteorological conditions. Our findings indicate that habitat type and meteorological conditions can interact in complex ways to influence condor resource selection across landscapes, which is noteworthy given the extent of anthropogenic stressors that may impact condor populations (e.g., lead poisoning, wind energy development. Additional studies will be valuable to assess small-scale condor movements in light of these stressors to help minimize

  17. Modelling seasonal habitat suitability for wide-ranging species: Invasive wild pigs in northern Australia.

    Directory of Open Access Journals (Sweden)

    Jens G Froese

    Full Text Available Invasive wildlife often causes serious damage to the economy and agriculture as well as environmental, human and animal health. Habitat models can fill knowledge gaps about species distributions and assist planning to mitigate impacts. Yet, model accuracy and utility may be compromised by small study areas and limited integration of species ecology or temporal variability. Here we modelled seasonal habitat suitability for wild pigs, a widespread and harmful invader, in northern Australia. We developed a resource-based, spatially-explicit and regional-scale approach using Bayesian networks and spatial pattern suitability analysis. We integrated important ecological factors such as variability in environmental conditions, breeding requirements and home range movements. The habitat model was parameterized during a structured, iterative expert elicitation process and applied to a wet season and a dry season scenario. Model performance and uncertainty was evaluated against independent distributional data sets. Validation results showed that an expert-averaged model accurately predicted empirical wild pig presences in northern Australia for both seasonal scenarios. Model uncertainty was largely associated with different expert assumptions about wild pigs' resource-seeking home range movements. Habitat suitability varied considerably between seasons, retracting to resource-abundant rainforest, wetland and agricultural refuge areas during the dry season and expanding widely into surrounding grassland floodplains, savanna woodlands and coastal shrubs during the wet season. Overall, our model suggested that suitable wild pig habitat is less widely available in northern Australia than previously thought. Mapped results may be used to quantify impacts, assess risks, justify management investments and target control activities. Our methods are applicable to other wide-ranging species, especially in data-poor situations.

  18. The value of carbon sequestration and storage in coastal habitats

    Science.gov (United States)

    Beaumont, N. J.; Jones, L.; Garbutt, A.; Hansom, J. D.; Toberman, M.

    2014-01-01

    Coastal margin habitats are globally significant in terms of their capacity to sequester and store carbon, but their continuing decline, due to environmental change and human land use decisions, is reducing their capacity to provide this ecosystem service. In this paper the UK is used as a case study area to develop methodologies to quantify and value the ecosystem service of blue carbon sequestration and storage in coastal margin habitats. Changes in UK coastal habitat area between 1900 and 2060 are documented, the long term stocks of carbon stored by these habitats are calculated, and the capacity of these habitats to sequester CO2 is detailed. Changes in value of the carbon sequestration service of coastal habitats are then projected for 2000-2060 under two scenarios, the maintenance of the current state of the habitat and the continuation of current trends of habitat loss. If coastal habitats are maintained at their current extent, their sequestration capacity over the period 2000-2060 is valued to be in the region of £1 billion UK sterling (3.5% discount rate). However, if current trends of habitat loss continue, the capacity of the coastal habitats both to sequester and store CO2 will be significantly reduced, with a reduction in value of around £0.25 billion UK sterling (2000-2060; 3.5% discount rate). If loss-trends due to sea level rise or land reclamation worsen, this loss in value will be greater. This case study provides valuable site specific information, but also highlights global issues regarding the quantification and valuation of carbon sequestration and storage. Whilst our ability to value ecosystem services is improving, considerable uncertainty remains. If such ecosystem valuations are to be incorporated with confidence into national and global policy and legislative frameworks, it is necessary to address this uncertainty. Recommendations to achieve this are outlined.

  19. The importance of incorporating functional habitats into conservation planning for highly mobile species in dynamic systems.

    Science.gov (United States)

    Webb, Matthew H; Terauds, Aleks; Tulloch, Ayesha; Bell, Phil; Stojanovic, Dejan; Heinsohn, Robert

    2017-10-01

    The distribution of mobile species in dynamic systems can vary greatly over time and space. Estimating their population size and geographic range can be problematic and affect the accuracy of conservation assessments. Scarce data on mobile species and the resources they need can also limit the type of analytical approaches available to derive such estimates. We quantified change in availability and use of key ecological resources required for breeding for a critically endangered nomadic habitat specialist, the Swift Parrot (Lathamus discolor). We compared estimates of occupied habitat derived from dynamic presence-background (i.e., presence-only data) climatic models with estimates derived from dynamic occupancy models that included a direct measure of food availability. We then compared estimates that incorporate fine-resolution spatial data on the availability of key ecological resources (i.e., functional habitats) with more common approaches that focus on broader climatic suitability or vegetation cover (due to the absence of fine-resolution data). The occupancy models produced significantly (P increase or decrease in the area of one functional habitat (foraging or nesting) did not necessarily correspond to an increase or decrease in the other. Thus, an increase in the extent of occupied area may not equate to improved habitat quality or function. We argue these patterns are typical for mobile resource specialists but often go unnoticed because of limited data over relevant spatial and temporal scales and lack of spatial data on the availability of key resources. Understanding changes in the relative availability of functional habitats is crucial to informing conservation planning and accurately assessing extinction risk for mobile resource specialists. © 2017 Society for Conservation Biology.

  20. An Adaptive Modeling Technique for Instream Fish Habitat Preference of Japanese Medaka (Oryzias Latipes)

    OpenAIRE

    Fukuda, Shinji; Hiramatsu, Kazuaki; Mori, Makito; Shikasyo, Shiomi

    2005-01-01

    It is widely known that habitat selections of riverine fish differ within and between rivers. In our past study, the preference intensity of Japanese Medaka (Oryzias latipes) to three environmental factors of water depth, current velocity and cover ratio was quantified on laboratory open-channel experiments for developing a general habitat preference model. A simplified fuzzy reasoning method was introduced in consideration of essential vagueness of fish behaviors. The fuzzy preference inten...

  1. Habitat selection by chironomid larvae: fast growth requires fast food.

    NARCIS (Netherlands)

    de Haas, E.M.; Wagner, C.; Koelmans, A.A.; Kraak, M.H.S.; Admiraal, W.

    2006-01-01

    1. Sediments have been considered as a habitat, a cover from predators and a source of food, but also as a source of potential toxic compounds. Therefore, the choice of a suitable substrate is essential for the development of chironomids. 2. For the midge Chironomus riparius (Meigen 1804) the growth

  2. Population overlap and habitat segregation in wintering Black-tailed Godwits Limosa limosa

    NARCIS (Netherlands)

    Alves, Jose A.; Lourenco, Pedro M.; Piersma, Theunis; Sutherland, William J.; Gill, Jennifer A.

    2010-01-01

    Capsule Distinct breeding populations of migratory species may overlap both spatially and temporally, but differ in patterns of habitat use. This has important implications for population monitoring and conservation. Aims To quantify the extent to which two distinct breeding populations of a

  3. Habitat Requirements of Breeding Black-Backed Woodpeckers (Picoides arcticus in Managed, Unburned Boreal Forest

    Directory of Open Access Journals (Sweden)

    Junior A. Tremblay

    2009-06-01

    Full Text Available We investigated home-range characteristics and habitat selection by Black-backed Woodpeckers (Picoides arcticus in an unburned, boreal forest landscape managed by mosaic harvesting in Quebec, Canada. Habitat selection by this species was specifically examined to determine home-range establishment and foraging activities. We hypothesized that Black-backed Woodpeckers would respond to harvesting by adjusting their home-range size as a function of the amount of dead wood available. Twenty-two birds were tracked using radiotelemetry, and reliable estimates of home-range size were obtained for seven breeding individuals (six males and one female. The average home-range size was 151.5 ± 18.8 ha (range: 100.4-256.4 ha. Our results indicate that this species establishes home ranges in areas where both open and forested habitats are available. However, during foraging activities, individuals preferentially selected areas dominated by old coniferous stands. The study also showed that the spatial distribution of preferred foraging habitat patches influenced space use, with home-range area increasing with the median distance between old coniferous habitat patches available within the landscape. Finally, these data show that Black-backed Woodpeckers may successfully breed in an unburned forest with at least 35 m3 • ha-1 of dead wood, of which 42% (15 m3 • ha-1 is represented by dead wood at the early decay stage.

  4. Habitat Evaluation Procedures (HEP) Report; Calispell Creek Project, Technical Report 2004-2005.

    Energy Technology Data Exchange (ETDEWEB)

    Entz, Ray

    2005-02-01

    On July 13, 2004, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Calispell Creek property, an acquisition completed by the Kalispel Tribe of Indians in February 2004. Evaluation species and appropriate models include Canada goose, mallard, muskrat, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Calispell Creek Project provides a total of 138.17 Habitat Units (HUs) for the species evaluated. Emergent wetland habitat provides 5.16 HUs for mallard and muskrat. Grassland provides 132.02 HUs for mallard and Canada goose. Scrub-shrub vegetation provides 0.99 HUs for yellow warbler and white-tailed deer. The objective of using HEP at the Calispell Creek Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  5. Maize stubble as foraging habitat for wintering geese and swans in northern Europe

    DEFF Research Database (Denmark)

    Clausen, Kevin Kuhlmann; Madsen, Jesper; Nolet, Bart, A.

    2018-01-01

    Agricultural crops have become increasingly important foraging habitats to geese and swans in northern Europe, and a recent climate-driven expansion in the area of maize fields has led to a rapid increase in the exploitation of this habitat. However, due to the novelty of maize foraging in this r......Agricultural crops have become increasingly important foraging habitats to geese and swans in northern Europe, and a recent climate-driven expansion in the area of maize fields has led to a rapid increase in the exploitation of this habitat. However, due to the novelty of maize foraging...... in this region, little is known about the abundance and energetic value of this resource to foraging birds. In this study we quantify food availability, intake rates and energetic profitability of the maize stubble habitat, and describe the value of this increasingly cultivated crop to wintering geese and swans...... of geese and swans wintering in northern Europe....

  6. Modeling trade-offs between plant fiber and toxins: a framework for quantifying risks perceived by foraging herbivores.

    Science.gov (United States)

    Camp, Meghan J; Shipley, Lisa A; Johnson, Timothy R; Forbey, Jennifer Sorensen; Rachlow, Janet L; Crowell, Miranda M

    2015-12-01

    When selecting habitats, herbivores must weigh multiple risks, such as predation, starvation, toxicity, and thermal stress, forcing them to make fitness trade-offs. Here, we applied the method of paired comparisons (PC) to investigate how herbivores make trade-offs between habitat features that influence selection of food patches. The method of PC measures utility and the inverse of utility, relative risk, and makes trade-offs and indifferences explicit by forcing animals to make choices between two patches with different types of risks. Using a series of paired-choice experiments to titrate the equivalence curve and find the marginal rate of substitution for one risk over the other, we evaluated how toxin-tolerant (pygmy rabbit Brachylagus idahoensis) and fiber-tolerant (mountain cottontail rabbit Sylviagus nuttallii) herbivores differed in their hypothesized perceived risk of fiber and toxins in food. Pygmy rabbits were willing to consume nearly five times more of the toxin 1,8-cineole in their diets to avoid consuming higher levels of fiber than were mountain cottontails. Fiber posed a greater relative risk for pygmy rabbits than cottontails and cineole a greater risk for cottontails than pygmy rabbits. Our flexible modeling approach can be used to (1) quantify how animals evaluate and trade off multiple habitat attributes when the benefits and risks are difficult to quantify, and (2) integrate diverse risks that influence fitness and habitat selection into a single index of habitat value. This index potentially could be applied to landscapes to predict habitat selection across several scales.

  7. Current practices in the identification of critical habitat for threatened species.

    Science.gov (United States)

    Camaclang, Abbey E; Maron, Martine; Martin, Tara G; Possingham, Hugh P

    2015-04-01

    The term critical habitat is used to describe the subset of habitat that is essential to the survival and recovery of species. Some countries legally require that critical habitat of listed threatened and endangered species be identified and protected. However, there is little evidence to suggest that the identification of critical habitat has had much impact on species recovery. We hypothesized that this may be due at least partly to a mismatch between the intent of critical habitat identification, which is to protect sufficient habitat for species persistence and recovery, and its practice. We used content analysis to systematically review critical habitat documents from the United States, Canada, and Australia. In particular, we identified the major trends in type of information used to identify critical habitat and in occupancy of habitat identified as critical. Information about population viability was used to identify critical habitat for only 1% of the species reviewed, and for most species, designated critical habitat did not include unoccupied habitat. Without reference to population viability, it is difficult to determine how much of a species' occupied and unoccupied habitat will be required for persistence. We therefore conclude that the identification of critical habitat remains inconsistent with the goal of protecting sufficient habitat to support persistence and recovery of the species. Ensuring that critical habitat identification aligns more closely with its intent will improve the accuracy of the designations and may therefore help improve the benefits to species recovery when combined with adequate implementation and enforcement of legal protections. © 2014 Society for Conservation Biology.

  8. Assessing range-wide habitat suitability for the Lesser Prairie-Chicken

    Science.gov (United States)

    Jarnevich, Catherine S.; Holcombe, Tracy R.; Grisham, Blake A.; Timmer, Jennifer M.; Boal, Clint W.; Butler, Matthew; Pitman, James C.; Kyle, Sean; Klute, David; Beauprez, Grant M.; Janus, Allan; Van Pelt, William E.

    2016-01-01

    Population declines of many wildlife species have been linked to habitat loss incurred through land-use change. Incorporation of conservation planning into development planning may mitigate these impacts. The threatened Lesser Prairie-Chicken (Tympanuchus pallidicinctus) is experiencing loss of native habitat and high levels of energy development across its multijurisdictional range. Our goal was to explore relationships of the species occurrence with landscape characteristics and anthropogenic effects influencing its distribution through evaluation of habitat suitability associated with one particular habitat usage, lekking. Lekking has been relatively well-surveyed, though not consistently, in all jurisdictions. All five states in which Lesser Prairie-Chickens occur cooperated in development of a Maxent habitat suitability model. We created two models, one with state as a factor and one without state. When state was included it was the most important predictor, followed by percent of land cover consisting of known or suspected used vegetation classes within a 5000 m area around a lek. Without state, land cover was the most important predictor of relative habitat suitability for leks. Among the anthropogenic predictors, landscape condition, a measure of human impact integrated across several factors, was most important, ranking third in importance without state. These results quantify the relative suitability of the landscape within the current occupied range of Lesser Prairie-Chickens. These models, combined with other landscape information, form the basis of a habitat assessment tool that can be used to guide siting of development projects and targeting of areas for conservation.

  9. Habitat Evaluation Procedures (HEP) Report; Carey Creek, Technical Report 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Entz, Ray

    2005-05-01

    In August 2002, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Carey Creek property, an acquisition completed by the Kalispel Tribe of Indians in December 2001. Evaluation species and appropriate models include bald eagle, black-capped chickadee, Canada goose, mallard, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Carey Creek Project provides a total of 172.95 Habitat Units (HUs) for the species evaluated. Conifer forest habitat provides 4.91 HUs for bald eagle, black-capped chickadee, and white-tailed deer. Forested wetlands provide 52.68 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. Scrub-shrub wetlands provide 2.82 HUs for mallard, yellow warbler and white-tailed deer. Wet meadow and grassland meadow provide 98.13 HUs for mallard and Canada goose. Emergent wetlands provide 11.53 HUs for mallard, muskrat, and Canada goose. Open water provides 2.88 HUs for Canada goose, mallard, and muskrat. The objective of using HEP at the Carey Creek Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  10. Habitat Evaluation Procedures (HEP) Report; West Beaver Lake Project, Technical Report 2005

    Energy Technology Data Exchange (ETDEWEB)

    Entz, Ray

    2005-05-01

    On September 7, 2004, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the West Beaver Lake property, an acquisition completed by the Kalispel Tribe of Indians in September 2004. Evaluation species and appropriate models include bald eagle, black-capped chickadee, mallard, muskrat, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The West Beaver Lake Project provides a total of 82.69 Habitat Units (HUs) for the species evaluated. Emergent wetland habitat provides 8.80 HUs for mallard, muskrat, and Canada goose. Conifer forest habitat provides 70.33 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. Open water provides 3.30 HUs for mallard, muskrat, and Canada goose. The objective of using HEP at the West Beaver Lake Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  11. Quantifying the evidence for co-benefits between species conservation and climate change mitigation in giant panda habitats.

    Science.gov (United States)

    Li, Renqiang; Xu, Ming; Powers, Ryan; Zhao, Fen; Jetz, Walter; Wen, Hui; Sheng, Qingkai

    2017-10-05

    Conservationists strive for practical, cost-effective management solutions to forest-based species conservation and climate change mitigation. However, this is compromised by insufficient information about the effectiveness of protected areas in increasing carbon storage, and the co-benefits of species and carbon conservation remain poorly understood. Here, we present the first rigorous quantitative assessment of the roles of giant panda nature reserves (NRs) in carbon sequestration, and explore the co-benefits of habitat conservation and climate change mitigation. Results show that more than 90% of the studied panda NRs are effective in increasing carbon storage, with the mean biomass carbon density of the whole NRs exhibiting a 4.2% higher growth rate compared with lands not declared as NRs over the period 1988-2012, while this effectiveness in carbon storage masks important patterns of spatial heterogeneity across the giant panda habitats. Moreover, the significant associations have been identified between biomass carbon density and panda's habitat suitability in ~85% NRs and at the NR level. These findings suggest that the planning for carbon and species conservation co-benefits would enhance the greatest return on limited conservation investments, which is a critical need for the giant panda after its conservation status has been downgraded from "endangered" to "vulnerable".

  12. Influence of mountain pine beetle epidemic on winter habitat conditions for Merriam's turkeys: Management implications for current and future condition

    Science.gov (United States)

    Chadwick P. Lehman; Mark A. Rumble; Michael A. Battaglia; Todd R. Mills; Lance A. Asherin

    2016-01-01

    Understanding response of ponderosa pine (Pinus ponderosa) forest development following a mountain pine beetle (MPB; Dendroctonus ponderosae) epidemic has important management implications for winter habitat conditions for Merriam’s wild turkeys (Meleagris gallopavo merriami; hereafter, turkeys). Therefore, we quantified habitat changes over time for turkeys...

  13. Stable Isotope Analysis Reveals That Agricultural Habitat Provides an Important Dietary Component for Nonbreeding Dunlin

    Directory of Open Access Journals (Sweden)

    Lesley Joan Evans Ogden

    2005-12-01

    Full Text Available Although shorebirds spending the winter in temperate areas frequently use estuarine and supratidal (upland feeding habitats, the relative contribution of each habitat to individual diets has not been directly quantified. We quantified the proportional use that Calidris alpina pacifica (Dunlin made of estuarine vs. terrestrial farmland resources on the Fraser River Delta, British Columbia, using stable isotope analysis (δ13C, δ15N of blood from 268 Dunlin over four winters, 1997 through 2000. We tested for individual, age, sex, morphological, seasonal, and weather-related differences in dietary sources. Based on single- (δ13C and dual-isotope mixing models, the agricultural habitat contributed approximately 38% of Dunlin diet averaged over four winters, with the balance from intertidal flats. However, there was a wide variation among individuals in the extent of agricultural feeding, ranging from about 1% to 95% of diet. Younger birds had a significantly higher terrestrial contribution to diet (43% than did adults (35%. We estimated that 6% of adults and 13% of juveniles were obtaining at least 75% of their diet from terrestrial sources. The isotope data provided no evidence for sex or overall body size effects on the proportion of diet that is terrestrial in origin. The use of agricultural habitat by Dunlin peaked in early January. Adult Dunlin obtained a greater proportion of their diet terrestrially during periods of lower temperatures and high precipitation, whereas no such relationship existed for juveniles. Seasonal variation in the use of agricultural habitat suggests that it is used more during energetically stressful periods. The terrestrial farmland zone appears to be consistently important as a habitat for juveniles, but for adults it may provide an alternative feeding site used as a buffer against starvation during periods of extreme weather. Loss or reduction of agricultural habitat adjacent to estuaries may negatively impact

  14. Seasonal narwhal habitat associations in the high Arctic

    DEFF Research Database (Denmark)

    Laidre, K.L.; Heide-Jørgensen, M.P.; Logdson, M.L.

    2004-01-01

    Movements and behavior of top marine predators are often closely linked with productive oceanic fronts or regional prey aggregations. Consequently, it is of interest to quantify habitat needs and preferences, which can facilitate predictions of conditions favoring persistence and success....... Multivariate habitat models of movements and dive behavior of narwhals (Monodon monoceros, Linnaeus) in the eastern Canadian high Arctic and West Greenland were developed using data collected from satellite telemetry studies on three separate sub-populations. Twenty-six narwhals were captured between 1993...... and 2000 and fitted with satellite-linked time-depth recorders. Geographic positions of whales at 24-h time steps were linked to dive behavior variables compressed on a daily scale, including numbers of dives to different target depths or durations, time near the surface, daily dive rate, and travel speed...

  15. Future changes in Yuan River ecohydrology: Individual and cumulative impacts of climates change and cascade hydropower development on runoff and aquatic habitat quality.

    Science.gov (United States)

    Wen, Xin; Liu, Zhehua; Lei, Xiaohui; Lin, Rongjie; Fang, Guohua; Tan, Qiaofeng; Wang, Chao; Tian, Yu; Quan, Jin

    2018-08-15

    The eco-hydrological system in southwestern China is undergoing great changes in recent decades owing to climate change and extensive cascading hydropower exploitation. With a growing recognition that multiple drivers often interact in complex and nonadditive ways, the purpose of this study is to predict the potential future changes in streamflow and fish habitat quality in the Yuan River and quantify the individual and cumulative effect of cascade damming and climate change. The bias corrected and spatial downscaled Coupled Model Intercomparison Project Phase 5 (CMIP5) General Circulation Model (GCM) projections are employed to drive the Soil and Water Assessment Tool (SWAT) hydrological model and to simulate and predict runoff responses under diverse scenarios. Physical habitat simulation model is established to quantify the relationship between river hydrology and fish habitat, and the relative change rate is used to assess the individual and combined effects of cascade damming and climate change. Mean annual temperature, precipitation and runoff in 2015-2100 show an increasing trend compared with that in 1951-2010, with a particularly pronounced difference between dry and wet years. The ecological habitat quality is improved under cascade hydropower development since that ecological requirement has been incorporated in the reservoir operation policy. As for middle reach, the runoff change from January to August is determined mainly by damming, and climate change influence becomes more pronounced in dry seasons from September to December. Cascade development has an effect on runoff of lower reach only in dry seasons due to the limited regulation capacity of reservoirs, and climate changes have an effect on runoff in wet seasons. Climate changes have a less significant effect on fish habitat quality in middle reach than damming, but a more significant effect in lower reach. In addition, the effect of climate changes on fish habitat quality in lower reach is high

  16. Summary Report for Bureau of Fisheries Stream Habitat Surveys : Willamette River Basin, 1934-1942, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Bruce A.; Clark, Sharon E.; Sedell, James R.

    1995-01-01

    This document contains summary reports of stream habitat-surveys, conducted in the Willamette River basin, by the Bureau of Fisheries (BOF, now National Marine Fisheries Service) from 1934-1942. These surveys were part of a larger project to survey streams in the Columbia River basin that provided, or had provided, spawning and rearing habitat for salmon and steelhead (Rich, 1948). The purpose of the survey was, as described by Rich, 'to determine the present condition of the various tributaries with respect to their availability and usefulness for the migration, breeding, and rearing of migratory fishes'. Current estimates of the loss of anadromous fish habitat in the Columbia River Basin are based on a series of reports published from 1949-1952 by the U.S. Fish and Wildlife Service. The reports were brief, qualitative accounts of over 5000 miles of stream surveys conducted by the BOF from 1934-1946 (Bryant, 1949; Bryant and Parkhurst, 1950; Parkhurst, 1950a-c; Parkhurst et al., 1950). Despite their brevity, these BOF reports have formed the basis for estimating fish habitat losses and conditions in the Columbia River Basin (Fulton, 1968, 1970; Thompson, 1976; NPPC, 1986). Recently, the field notebooks from the BOF surveys were discovered. The data is now archived and stored in the Forest Science DataBank at Oregon State University (Stafford et al., 1984; 1988). These records are the earliest and most comprehensive documentation available of the condition and extent of anadromous fish habitat before hydropower development in the Columbia River Basin. They provide the baseline data for quantifying changes and setting a benchmark for future restoration of anadromous fish habitat throughout the Basin. The summaries contained in this book are exact replicates of the originals. Due to discrepancies between the field data and the summaries, the database should be used to assess pool and substrate conditions. This data is available from the Bonneville Power

  17. Combining a dispersal model with network theory to assess habitat connectivity.

    Science.gov (United States)

    Lookingbill, Todd R; Gardner, Robert H; Ferrari, Joseph R; Keller, Cherry E

    2010-03-01

    Assessing the potential for threatened species to persist and spread within fragmented landscapes requires the identification of core areas that can sustain resident populations and dispersal corridors that can link these core areas with isolated patches of remnant habitat. We developed a set of GIS tools, simulation methods, and network analysis procedures to assess potential landscape connectivity for the Delmarva fox squirrel (DFS; Sciurus niger cinereus), an endangered species inhabiting forested areas on the Delmarva Peninsula, USA. Information on the DFS's life history and dispersal characteristics, together with data on the composition and configuration of land cover on the peninsula, were used as input data for an individual-based model to simulate dispersal patterns of millions of squirrels. Simulation results were then assessed using methods from graph theory, which quantifies habitat attributes associated with local and global connectivity. Several bottlenecks to dispersal were identified that were not apparent from simple distance-based metrics, highlighting specific locations for landscape conservation, restoration, and/or squirrel translocations. Our approach links simulation models, network analysis, and available field data in an efficient and general manner, making these methods useful and appropriate for assessing the movement dynamics of threatened species within landscapes being altered by human and natural disturbances.

  18. Habitat Evaluation Procedures (HEP) Report; Upper Trimble Project, Technical Report 2004-2005.

    Energy Technology Data Exchange (ETDEWEB)

    Entz, Ray

    2005-02-01

    On July 13, 2004, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Upper Trimble property, an acquisition completed by the Kalispel Tribe of Indians in March 2004. Evaluation species and appropriate models include bald eagle, black-capped chickadee, Canada goose, mallard, muskrat, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Upper Trimble Project provides a total of 250.67 Habitat Units (HUs) for the species evaluated. Wet meadow provides 136.92 HUs for mallard, muskrat, and Canada goose. Mixed forest habitat provides 111.88 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. Scrub-shrub vegetation provides 1.87 HUs for yellow warbler, and white-tailed deer. The objective of using HEP at the Upper Trimble Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  19. Predictive Modeling of Spinner Dolphin (Stenella longirostris) Resting Habitat in the Main Hawaiian Islands

    Science.gov (United States)

    Thorne, Lesley H.; Johnston, David W.; Urban, Dean L.; Tyne, Julian; Bejder, Lars; Baird, Robin W.; Yin, Suzanne; Rickards, Susan H.; Deakos, Mark H.; Mobley, Joseph R.; Pack, Adam A.; Chapla Hill, Marie

    2012-01-01

    Predictive habitat models can provide critical information that is necessary in many conservation applications. Using Maximum Entropy modeling, we characterized habitat relationships and generated spatial predictions of spinner dolphin (Stenella longirostris) resting habitat in the main Hawaiian Islands. Spinner dolphins in Hawai'i exhibit predictable daily movements, using inshore bays as resting habitat during daylight hours and foraging in offshore waters at night. There are growing concerns regarding the effects of human activities on spinner dolphins resting in coastal areas. However, the environmental factors that define suitable resting habitat remain unclear and must be assessed and quantified in order to properly address interactions between humans and spinner dolphins. We used a series of dolphin sightings from recent surveys in the main Hawaiian Islands and a suite of environmental variables hypothesized as being important to resting habitat to model spinner dolphin resting habitat. The model performed well in predicting resting habitat and indicated that proximity to deep water foraging areas, depth, the proportion of bays with shallow depths, and rugosity were important predictors of spinner dolphin habitat. Predicted locations of suitable spinner dolphin resting habitat provided in this study indicate areas where future survey efforts should be focused and highlight potential areas of conflict with human activities. This study provides an example of a presence-only habitat model used to inform the management of a species for which patterns of habitat availability are poorly understood. PMID:22937022

  20. Non-target effects on songbirds from habitat manipulation for Greater Sage-Grouse: Implications for the umbrella species concept

    Science.gov (United States)

    Carlisle, Jason D.; Chalfoun, Anna D.; Smith, Kurt T.; Beck, Jeffery L.

    2018-01-01

    The “umbrella species” concept is a conservation strategy in which creating and managing reserve areas to meet the needs of one species is thought to benefit other species indirectly. Broad-scale habitat protections on behalf of an umbrella species are assumed to benefit co-occurring taxa, but targeted management actions to improve local habitat suitability for the umbrella species may produce unintended effects on other species. Our objective was to quantify the effects of a common habitat treatment (mowing of big sagebrush [Artemisia tridentata]) intended to benefit a high-profile umbrella species (Greater Sage-Grouse [Centrocercus urophasianus]) on 3 sympatric songbird species of concern. We used a before–after control-impact experimental design spanning 3 yr in Wyoming, USA, to quantify the effect of mowing on the abundance, nest-site selection, nestling condition, and nest survival of 2 sagebrush-obligate songbirds (Brewer's Sparrow [Spizella breweri] and Sage Thrasher [Oreoscoptes montanus]) and one open-habitat generalist songbird (Vesper Sparrow [Pooecetes gramineus]). Mowing was associated with lower abundance of Brewer's Sparrows and Sage Thrashers but higher abundance of Vesper Sparrows. We found no Brewer's Sparrows or Sage Thrashers nesting in the mowed footprint posttreatment, which suggests complete loss of nesting habitat for these species. Mowing was associated with higher nestling condition and nest survival for Vesper Sparrows but not for the sagebrush-obligate species. Management prescriptions that remove woody biomass within a mosaic of intact habitat may be tolerated by sagebrush-obligate songbirds but are likely more beneficial for open-habitat generalist species. By definition, umbrella species conservation entails habitat protections at broad spatial scales. We caution that habitat manipulations to benefit Greater Sage-Grouse could negatively affect nontarget species of conservation concern if implemented across large spatial extents.

  1. A spatial model to assess the effects of hydropower operations on Columbia River fall Chinook Salmon spawning habitat

    Science.gov (United States)

    Hatten, James R.; Tiffan, Kenneth F.; Anglin, Donald R.; Haeseker, Steven L.; Skalicky, Joseph J.; Schaller, Howard

    2009-01-01

    Priest Rapids Dam on the Columbia River produces large daily and hourly streamflow fluctuations throughout the Hanford Reach during the period when fall Chinook salmon Oncorhynchus tshawytscha are selecting spawning habitat, constructing redds, and actively engaged in spawning. Concern over the detrimental effects of these fluctuations prompted us to quantify the effects of variable flows on the amount and persistence of fall Chinook salmon spawning habitat in the Hanford Reach. Specifically, our goal was to develop a management tool capable of quantifying the effects of current and alternative hydrographs on predicted spawning habitat in a spatially explicit manner. Toward this goal, we modeled the water velocities and depths that fall Chinook salmon experienced during the 2004 spawning season, plus what they would probably have experienced under several alternative (i.e., synthetic) hydrographs, using both one- and two-dimensional hydrodynamic models. To estimate spawning habitat under existing or alternative hydrographs, we used cell-based modeling and logistic regression to construct and compare numerous spatial habitat models. We found that fall Chinook salmon were more likely to spawn at locations where velocities were persistently greater than 1 m/s and in areas where fluctuating water velocities were reduced. Simulations of alternative dam operations indicate that the quantity of spawning habitat is expected to increase as streamflow fluctuations are reduced during the spawning season. The spatial habitat models that we developed provide management agencies with a quantitative tool for predicting, in a spatially explicit manner, the effects of different flow regimes on fall Chinook salmon spawning habitat in the Hanford Reach. In addition to characterizing temporally varying habitat conditions, our research describes an analytical approach that could be applied in other highly variable aquatic systems.

  2. Fish habitat mitigation measures for hydrotechnical projects

    International Nuclear Information System (INIS)

    McPhail, G.D.; MacMillan, D.B.; Katopodis, C.

    1992-01-01

    In recent years, the identification and mitigation of environmental impacts of hydrotechnical projects, particularly on fish and fish habitats, have become a major component of project planning and design. Potential impacts to fish and fish habitat may include increased fish mortality, decreased species diversity, and loss or decreases in fish production due to loss of habitat or alteration of its suitability. These impacts arise from flooding of riverine habitat, alteration of flow quantity and distribution, changes in morphology, and alteration of water quality, including suspended sediments, temperature, dissolved oxygen, and mercury. The results of a study for the Canadian Federal Department of Fisheries and Oceans Central and Arctic Region, examining fish habitat mitigation techniques for their applicability to hydrotechnical projects in Canada are summarized. The requirements for achievement and verification of the no net loss policy for a project are discussed. 10 refs., 2 tabs

  3. Using otolith chemical and structural analysis to investigate reservoir habitat use by juvenile Chinook salmon Oncorhynchus tshawytscha.

    Science.gov (United States)

    Bourret, S L; Kennedy, B P; Caudill, C C; Chittaro, P M

    2014-11-01

    Isotopic composition of (87) Sr:(86) Sr and natural elemental tracers (Sr, Ba, Mg, Mn and Ca) were quantified from otoliths in juvenile and adult Chinook salmon Oncorhynchus tshawytscha to assess the ability of otolith microchemistry and microstructure to reconstruct juvenile O. tshawytscha rearing habitat and growth. Daily increments were measured to assess relative growth between natal rearing habitats. Otolith microchemistry was able to resolve juvenile habitat use between reservoir and natal tributary rearing habitats (within headwater basins), but not among catchments. Results suggest that 90% (n = 18) of sampled non-hatchery adults returning to the Middle Fork Willamette River were reared in a reservoir and 10% (n = 2) in natal tributary habitat upstream from the reservoir. Juveniles collected in reservoirs had higher growth rates than juveniles reared in natal streams. The results demonstrate the utility of otolith microchemistry and microstructure to distinguish among rearing habitats, including habitats in highly altered systems. © 2014 The Fisheries Society of the British Isles.

  4. Mapping anuran habitat suitability to estimate effects of grassland and wetland conservation programs

    Science.gov (United States)

    Mushet, David M.; Euliss, Ned H.; Stockwell, Craig A.

    2012-01-01

    The conversion of the Northern Great Plains of North America to a landscape favoring agricultural commodity production has negatively impacted wildlife habitats. To offset impacts, conservation programs have been implemented by the U.S. Department of Agriculture and other agencies to restore grassland and wetland habitat components. To evaluate effects of these efforts on anuran habitats, we used call survey data and environmental data in ecological niche factor analyses implemented through the program Biomapper to quantify habitat suitability for five anuran species within a 196 km2 study area. Our amphibian call surveys identified Northern Leopard Frogs (Lithobates pipiens), Wood Frogs (Lithobates sylvaticus), Boreal Chorus Frogs (Pseudacris maculata), Great Plains Toads (Anaxyrus cognatus), and Woodhouse’s Toads (Anaxyrus woodhousii) occurring within the study area. Habitat suitability maps developed for each species revealed differing patterns of suitable habitat among species. The most significant findings of our mapping effort were 1) the influence of deep-water overwintering wetlands on suitable habitat for all species encountered except the Boreal Chorus Frog; 2) the lack of overlap between areas of core habitat for both the Northern Leopard Frog and Wood Frog compared to the core habitat for both toad species; and 3) the importance of conservation programs in providing grassland components of Northern Leopard Frog and Wood Frog habitat. The differences in habitats suitable for the five species we studied in the Northern Great Plains, i.e., their ecological niches, highlight the importance of utilizing an ecosystem based approach that considers the varying needs of multiple species in the development of amphibian conservation and management plans.

  5. Seasonal changes in habitat availability and the distribution and abundance of salmonids along a stream gradient from headwaters to mouth in coastal Oregon

    Science.gov (United States)

    Gordon H. Reeves; Jack D. Sleeper; Dirk W. Lang

    2011-01-01

    Visual estimation techniques were used to quantify seasonal habitat characteristics, habitat use, and longitudinal distribution of juvenile steelhead Oncorhynchus mykiss, coastal cutthroat trout O. clarkii clarkii and coho salmon O. kisutch in a coastal Oregon basin. At the channel unit scale, fish...

  6. Life stage and species identity affect whether habitat subsidies enhance or simply redistribute consumer biomass.

    Science.gov (United States)

    Keller, Danielle A; Gittman, Rachel K; Bouchillon, Rachel K; Fodrie, F Joel

    2017-10-01

    Quantifying the response of mobile consumers to changes in habitat availability is essential for determining the degree to which population-level productivity is habitat limited rather than regulated by other, potentially density-independent factors. Over landscape scales, this can be explored by monitoring changes in density and foraging as habitat availability varies. As habitat availability increases, densities may: (1) decrease (unit-area production decreases; weak habitat limitation); (2) remain stable (unit-area production remains stable; habitat limitation) or (3) increase (unit-area production increases; strong habitat limitation). We tested the response of mobile estuarine consumers over 5 months to changes in habitat availability in situ by comparing densities and feeding rates on artificial reefs that were or were not adjacent to neighbouring artificial reefs or nearby natural reefs. Using either constructed or natural reefs to manipulate habitat availability, we documented threefold density decreases among juvenile stone crabs as habitat increased (i.e. weak habitat imitation). However, for adult stone crabs, density remained stable across treatments, demonstrating that habitat limitation presents a bottleneck in this species' later life history. Oyster toadfish densities also did not change with increasing habitat availability (i.e. habitat limitation), but densities of other cryptic fishes decreased as habitat availability increased (i.e. weak limitation). Feeding and abundance data suggested that some mobile fishes experience habitat limitation, or, potentially in one case, strong limitation across our habitat manipulations. These findings of significant, community-level habitat limitation provide insight into how global declines in structurally complex estuarine habitats may have reduced the fishery production of coastal ecosystems. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  7. Quantifying changes in flooding and habitats in the Tonle Sap Lake (Cambodia) caused by water infrastructure development and climate change in the Mekong Basin.

    Science.gov (United States)

    Arias, Mauricio E; Cochrane, Thomas A; Piman, Thanapon; Kummu, Matti; Caruso, Brian S; Killeen, Timothy J

    2012-12-15

    The economic value of the Tonle Sap Lake Floodplain to Cambodia is arguably among the highest provided to a nation by a single ecosystem around the world. Nonetheless, the Mekong River Basin is changing rapidly due to accelerating water infrastructure development (hydropower, irrigation, flood control, and water supply) and climate change, bringing considerable modifications to the flood pulse of the Tonle Sap Lake in the foreseeable future. This paper presents research conducted to determine how the historical flooding regime, together with human action, influenced landscape patterns of habitats in the Tonle Sap Lake, and how these habitats might shift as a result of hydrological changes. Maps of water depth, annual flood duration, and flood frequency were created for recent historical hydrological conditions and for simulated future scenarios of water infrastructure development and climate change. Relationships were then established between the historical flood maps and land cover, and these were subsequently applied to assess potential changes to habitat cover in future decades. Five habitat groups were clearly distinguishable based on flood regime, physiognomic patterns, and human activity: (1) Open water, flooded for 12 months in an average hydrological year; (2) Gallery forest, with flood duration of 9 months annually; (3) Seasonally flooded habitats, flooded 5-8 months and dominated by shrublands and grasslands; (4) transitional habitats, flooded 1-5 months and dominated by abandoned agricultural fields, receding rice/floating rice, and lowland grasslands; and (5) Rainfed habitats, flooded up to 1 month and consisting mainly of wet season rice fields and village crops. It was found that water infrastructure development could increase the area of open water (+18 to +21%) and the area of rainfed habitats (+10 to +14%), while reducing the area covered with seasonally flooded habitats (-13 to -22%) and gallery forest (-75 to -83%). Habitat cover shifts as a

  8. Quantifying restoration effectiveness using multi-scale habitat models: Implications for sage-grouse in the Great Basin

    Science.gov (United States)

    Robert S. Arkle; David S. Pilliod; Steven E. Hanser; Matthew L. Brooks; Jeanne C. Chambers; James B. Grace; Kevin C. Knutson; David A. Pyke; Justin L. Welty; Troy A. Wirth

    2014-01-01

    A recurrent challenge in the conservation of wide-ranging, imperiled species is understanding which habitats to protect and whether we are capable of restoring degraded landscapes. For Greater Sage-grouse (Centrocercus urophasianus), a species of conservation concern in the western United States, we approached this problem by developing multi-scale empirical models of...

  9. Testing projected wild bee distributions in agricultural habitats: predictive power depends on species traits and habitat type.

    Science.gov (United States)

    Marshall, Leon; Carvalheiro, Luísa G; Aguirre-Gutiérrez, Jesús; Bos, Merijn; de Groot, G Arjen; Kleijn, David; Potts, Simon G; Reemer, Menno; Roberts, Stuart; Scheper, Jeroen; Biesmeijer, Jacobus C

    2015-10-01

    Species distribution models (SDM) are increasingly used to understand the factors that regulate variation in biodiversity patterns and to help plan conservation strategies. However, these models are rarely validated with independently collected data and it is unclear whether SDM performance is maintained across distinct habitats and for species with different functional traits. Highly mobile species, such as bees, can be particularly challenging to model. Here, we use independent sets of occurrence data collected systematically in several agricultural habitats to test how the predictive performance of SDMs for wild bee species depends on species traits, habitat type, and sampling technique. We used a species distribution modeling approach parametrized for the Netherlands, with presence records from 1990 to 2010 for 193 Dutch wild bees. For each species, we built a Maxent model based on 13 climate and landscape variables. We tested the predictive performance of the SDMs with independent datasets collected from orchards and arable fields across the Netherlands from 2010 to 2013, using transect surveys or pan traps. Model predictive performance depended on species traits and habitat type. Occurrence of bee species specialized in habitat and diet was better predicted than generalist bees. Predictions of habitat suitability were also more precise for habitats that are temporally more stable (orchards) than for habitats that suffer regular alterations (arable), particularly for small, solitary bees. As a conservation tool, SDMs are best suited to modeling rarer, specialist species than more generalist and will work best in long-term stable habitats. The variability of complex, short-term habitats is difficult to capture in such models and historical land use generally has low thematic resolution. To improve SDMs' usefulness, models require explanatory variables and collection data that include detailed landscape characteristics, for example, variability of crops and

  10. Summary Report for Bureau of Fisheries Stream Habitat Surveys : Yakima River Basin, 1934-1942, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Bruce A.; Clark, Sharon E.; Sedell, James R.

    1996-01-01

    This document contains summary reports of stream habitat surveys, conducted in the Yakima River basin, by the Bureau of Fisheries (BOF, now National Marine Fisheries Service) from 1934-1942. These surveys were part of a larger project to survey streams in the Columbia River basin that provided, or had provided, spawning and rearing habitat for salmon and steelhead (Rich, 1948). The purpose of the survey was, as described by Rich, 'to determine the present condition of the various tributaries with respect to their availability and usefulness for the migration, breeding, and rearing of migratory fishes'. Current estimates of the loss of anadromous fish habitat in the Columbia River Basin are based on a series of reports published from 1949-1952 by the U.S. Fish and Wildlife Service. The reports were brief, qualitative accounts of over 5000 miles of stream surveys conducted by the BOF from 1934-1946 (Bryant, 1949; Bryant and Parkhurst, 1950; Parkhurst, 1950a-c; Parkhurst et al., 1950). Despite their brevity, these BOF reports have formed the basis for estimating fish habitat losses and conditions in the Columbia River Basin (Fulton, 1968, 1970; Thompson, 1976; NPPC, 1986). Recently, the field notebooks from the BOF surveys were discovered. The data is now archived and stored in the Forest Science DataBank at Oregon State University (Stafford et al., 1984; 1988). These records are the earliest and most comprehensive documentation available of the condition and extent of anadromous fish habitat before hydropower development in the Columbia River Basin. They provide the baseline data for quantifying changes and setting a benchmark for future restoration of anadromous fish habitat throughout the Basin. The summaries in this book are exact replicates of the originals. Due to discrepancies between the field data and the summaries, the database should be used to assess pool and substrate conditions. This data is available from the Bonneville Power Administration

  11. A Method to Analyze the Potential of Optical Remote Sensing for Benthic Habitat Mapping

    Directory of Open Access Journals (Sweden)

    Rodrigo A. Garcia

    2015-10-01

    Full Text Available Quantifying the number and type of benthic classes that are able to be spectrally identified in shallow water remote sensing is important in understanding its potential for habitat mapping. Factors that impact the effectiveness of shallow water habitat mapping include water column turbidity, depth, sensor and environmental noise, spectral resolution of the sensor and spectral variability of the benthic classes. In this paper, we present a simple hierarchical clustering method coupled with a shallow water forward model to generate water-column specific spectral libraries. This technique requires no prior decision on the number of classes to output: the resultant classes are optically separable above the spectral noise introduced by the sensor, image based radiometric corrections, the benthos’ natural spectral variability and the attenuating properties of a variable water column at depth. The modeling reveals the effect reducing the spectral resolution has on the number and type of classes that are optically distinct. We illustrate the potential of this clustering algorithm in an analysis of the conditions, including clustering accuracy, sensor spectral resolution and water column optical properties and depth that enabled the spectral distinction of the seagrass Amphibolis antartica from benthic algae.

  12. Global patterns of fragmentation and connectivity of mammalian carnivore habitat

    OpenAIRE

    Crooks, Kevin R.; Burdett, Christopher L.; Theobald, David M.; Rondinini, Carlo; Boitani, Luigi

    2011-01-01

    Although mammalian carnivores are vulnerable to habitat fragmentation and require landscape connectivity, their global patterns of fragmentation and connectivity have not been examined. We use recently developed high-resolution habitat suitability models to conduct comparative analyses and to identify global hotspots of fragmentation and connectivity for the world's terrestrial carnivores. Species with less fragmentation (i.e. more interior high-quality habitat) had larger geographical ranges...

  13. Climate Tolerances and Habitat Requirements Jointly Shape the Elevational Distribution of the American Pika (Ochotona princeps, with Implications for Climate Change Effects.

    Directory of Open Access Journals (Sweden)

    Leah H Yandow

    Full Text Available Some of the most compelling examples of ecological responses to climate change are elevational range shifts of individual species, which have been observed throughout the world. A growing body of evidence, however, suggests substantial mediation of simple range shifts due to climate change by other limiting factors. Understanding limiting factors for a species within different contexts, therefore, is critical for predicting responses to climate change. The American pika (Ochotona princeps is an ideal species for investigating distributions in relation to climate because of their unusual and well-understood natural history as well as observed shifts to higher elevation in parts of their range. We tested three hypotheses for the climatic or habitat characteristics that may limit pika presence and abundance: summer heat, winter snowpack, and forage availability. We performed these tests using an index of pika abundance gathered in a region where environmental influences on pika distribution have not been well-characterized. We estimated relative pika abundance via scat surveys and quantified climatic and habitat characteristics across two North-Central Rocky Mountain Ranges, the Wind River and Bighorn ranges in Wyoming, USA. Pika scat density was highest at mid-elevations and increased linearly with forage availability in both ranges. Scat density also increased with temperatures conducive to forage plant growth, and showed a unimodal relationship with the number of days below -5°C, which is modulated by insulating snowpack. Our results provide support for both the forage availability and winter snowpack hypotheses. Especially in montane systems, considering the context-dependent nature of climate effects across regions and elevations as well as interactions between climatic and other critical habitat characteristics, will be essential for predicting future species distributions.

  14. Climate tolerances and habitat requirements jointly shape the elevational distribution of the American Pika (Ochotona princeps), with implications for climate change effects

    Science.gov (United States)

    Yandow, Leah H.; Chalfoun, Anna D.; Doak, Daniel F.

    2015-01-01

    Some of the most compelling examples of ecological responses to climate change are elevational range shifts of individual species, which have been observed throughout the world. A growing body of evidence, however, suggests substantial mediation of simple range shifts due to climate change by other limiting factors. Understanding limiting factors for a species within different contexts, therefore, is critical for predicting responses to climate change. The American pika (Ochotona princeps) is an ideal species for investigating distributions in relation to climate because of their unusual and well-understood natural history as well as observed shifts to higher elevation in parts of their range. We tested three hypotheses for the climatic or habitat characteristics that may limit pika presence and abundance: summer heat, winter snowpack, and forage availability. We performed these tests using an index of pika abundance gathered in a region where environmental influences on pika distribution have not been well-characterized. We estimated relative pika abundance via scat surveys and quantified climatic and habitat characteristics across two North-Central Rocky Mountain Ranges, the Wind River and Bighorn ranges in Wyoming, USA. Pika scat density was highest at mid-elevations and increased linearly with forage availability in both ranges. Scat density also increased with temperatures conducive to forage plant growth, and showed a unimodal relationship with the number of days below -5°C, which is modulated by insulating snowpack. Our results provide support for both the forage availability and winter snowpack hypotheses. Especially in montane systems, considering the context-dependent nature of climate effects across regions and elevations as well as interactions between climatic and other critical habitat characteristics, will be essential for predicting future species distributions.

  15. Mapping Habitats and Developing Baselines in Offshore Marine Reserves with Little Prior Knowledge: A Critical Evaluation of a New Approach.

    Directory of Open Access Journals (Sweden)

    Emma Lawrence

    Full Text Available The recently declared Australian Commonwealth Marine Reserve (CMR Network covers a total of 3.1 million km2 of continental shelf, slope, and abyssal habitat. Managing and conserving the biodiversity values within this network requires knowledge of the physical and biological assets that lie within its boundaries. Unfortunately very little is known about the habitats and biological assemblages of the continental shelf within the network, where diversity is richest and anthropogenic pressures are greatest. Effective management of the CMR estate into the future requires this knowledge gap to be filled efficiently and quantitatively. The challenge is particularly great for the shelf as multibeam echosounder (MBES mapping, a key tool for identifying and quantifying habitat distribution, is time consuming in shallow depths, so full coverage mapping of the CMR shelf assets is unrealistic in the medium-term. Here we report on the results of a study undertaken in the Flinders Commonwealth Marine Reserve (southeast Australia designed to test the benefits of two approaches to characterising shelf habitats: (i MBES mapping of a continuous (~30 km2 area selected on the basis of its potential to include a range of seabed habitats that are potentially representative of the wider area, versus; (ii a novel approach that uses targeted mapping of a greater number of smaller, but spatially balanced, locations using a Generalized Random Tessellation Stratified sample design. We present the first quantitative estimates of habitat type and sessile biological communities on the shelf of the Flinders reserve, the former based on three MBES analysis techniques. We contrast the quality of information that both survey approaches offer in combination with the three MBES analysis methods. The GRTS approach enables design based estimates of habitat types and sessile communities and also identifies potential biodiversity hotspots in the northwest corner of the reserve's IUCN

  16. Mapping Habitats and Developing Baselines in Offshore Marine Reserves with Little Prior Knowledge: A Critical Evaluation of a New Approach.

    Science.gov (United States)

    Lawrence, Emma; Hayes, Keith R; Lucieer, Vanessa L; Nichol, Scott L; Dambacher, Jeffrey M; Hill, Nicole A; Barrett, Neville; Kool, Johnathan; Siwabessy, Justy

    2015-01-01

    The recently declared Australian Commonwealth Marine Reserve (CMR) Network covers a total of 3.1 million km2 of continental shelf, slope, and abyssal habitat. Managing and conserving the biodiversity values within this network requires knowledge of the physical and biological assets that lie within its boundaries. Unfortunately very little is known about the habitats and biological assemblages of the continental shelf within the network, where diversity is richest and anthropogenic pressures are greatest. Effective management of the CMR estate into the future requires this knowledge gap to be filled efficiently and quantitatively. The challenge is particularly great for the shelf as multibeam echosounder (MBES) mapping, a key tool for identifying and quantifying habitat distribution, is time consuming in shallow depths, so full coverage mapping of the CMR shelf assets is unrealistic in the medium-term. Here we report on the results of a study undertaken in the Flinders Commonwealth Marine Reserve (southeast Australia) designed to test the benefits of two approaches to characterising shelf habitats: (i) MBES mapping of a continuous (~30 km2) area selected on the basis of its potential to include a range of seabed habitats that are potentially representative of the wider area, versus; (ii) a novel approach that uses targeted mapping of a greater number of smaller, but spatially balanced, locations using a Generalized Random Tessellation Stratified sample design. We present the first quantitative estimates of habitat type and sessile biological communities on the shelf of the Flinders reserve, the former based on three MBES analysis techniques. We contrast the quality of information that both survey approaches offer in combination with the three MBES analysis methods. The GRTS approach enables design based estimates of habitat types and sessile communities and also identifies potential biodiversity hotspots in the northwest corner of the reserve's IUCN zone IV, and in

  17. Changes in habitat availability for outmigrating juvenile salmon (Oncorhychus spp.) following estuary restoration

    Science.gov (United States)

    Ellings, Christopher S.; Davis, Melanie; Grossman, Eric E.; Hodgson, Sayre; Turner, Kelley L.; Woo PR, Isa; Nakai, Glynnis; Takekawa, Jean E.; Takekawa, John Y.

    2016-01-01

    The restoration of the Nisqually River Delta (Washington, U.S.A.) represents one of the largest efforts toward reestablishing the ecosystem function and resilience of modified habitat in the Puget Sound, particularly for anadromous salmonid species. The opportunity for outmigrating salmon to access and benefit from the expansion of available tidal habitat can be quantified by several physical attributes, which are related to the ecological and physiological responses of juvenile salmon. We monitored a variety of physical parameters to measure changes in opportunity potential from historic, pre-restoration, and post-restoration habitat conditions at several sites across the delta. These parameters included channel morphology, water quality, tidal elevation, and landscape connectivity. We conducted fish catch surveys across the delta to determine if salmon was utilizing restored estuary habitat. Overall major channel area increased 42% and major channel length increased 131% from pre- to post-restoration conditions. Furthermore, the results of our tidal inundation model indicated that major channels were accessible up to 75% of the time, as opposed to 30% pre-restoration. Outmigrating salmon utilized this newly accessible habitat as quickly as 1 year post-restoration. The presence of salmon in restored tidal channels confirmed rapid post-restoration increases in opportunity potential on the delta despite habitat quality differences between restored and reference sites.

  18. Landsat 8 and ICESat-2: Performance and potential synergies for quantifying dryland ecosystem vegetation cover and biomass

    Science.gov (United States)

    Glenn, Nancy F.; Neuenschwander, Amy; Vierling, Lee A.; Spaete, Lucas; Li, Aihua; Shinneman, Douglas; Pilliod, David S.; Arkle, Robert; McIlroy, Susan

    2016-01-01

    The Landsat 8 mission provides new opportunities for quantifying the distribution of above-ground carbon at moderate spatial resolution across the globe, and in particular drylands. Furthermore, coupled with structural information from space-based and airborne laser altimetry, Landsat 8 provides powerful capabilities for large-area, long-term studies that quantify temporal and spatial changes in above-ground biomass and cover. With the planned launch of ICESat-2 in 2017 and thus the potential to couple Landsat 8 and ICESat-2 data, we have unprecedented opportunities to address key challenges in drylands, including quantifying fuel loads, habitat quality, biodiversity, carbon cycling, and desertification.

  19. Predicted deep-sea coral habitat suitability for the U.S. West coast.

    Directory of Open Access Journals (Sweden)

    John M Guinotte

    Full Text Available Regional scale habitat suitability models provide finer scale resolution and more focused predictions of where organisms may occur. Previous modelling approaches have focused primarily on local and/or global scales, while regional scale models have been relatively few. In this study, regional scale predictive habitat models are presented for deep-sea corals for the U.S. West Coast (California, Oregon and Washington. Model results are intended to aid in future research or mapping efforts and to assess potential coral habitat suitability both within and outside existing bottom trawl closures (i.e. Essential Fish Habitat (EFH and identify suitable habitat within U.S. National Marine Sanctuaries (NMS. Deep-sea coral habitat suitability was modelled at 500 m×500 m spatial resolution using a range of physical, chemical and environmental variables known or thought to influence the distribution of deep-sea corals. Using a spatial partitioning cross-validation approach, maximum entropy models identified slope, temperature, salinity and depth as important predictors for most deep-sea coral taxa. Large areas of highly suitable deep-sea coral habitat were predicted both within and outside of existing bottom trawl closures and NMS boundaries. Predicted habitat suitability over regional scales are not currently able to identify coral areas with pin point accuracy and probably overpredict actual coral distribution due to model limitations and unincorporated variables (i.e. data on distribution of hard substrate that are known to limit their distribution. Predicted habitat results should be used in conjunction with multibeam bathymetry, geological mapping and other tools to guide future research efforts to areas with the highest probability of harboring deep-sea corals. Field validation of predicted habitat is needed to quantify model accuracy, particularly in areas that have not been sampled.

  20. Stratification of habitats for identifying habitat selection by Merriam's turkeys

    Science.gov (United States)

    Mark A. Rumble; Stanley H. Anderson

    1992-01-01

    Habitat selection patterns of Merriam’s Turkeys were compared in hierarchical analyses of three levels of habitat stratification. Habitat descriptions in first-level analyses were based on dominant species of vegetation. Habitat descriptions in second-level analyses were based on dominant species of vegetation and overstory canopy cover. Habitat descriptions in third-...

  1. Modeling Impacts of Climate Change on Giant Panda Habitat

    Directory of Open Access Journals (Sweden)

    Melissa Songer

    2012-01-01

    Full Text Available Giant pandas (Ailuropoda melanoleuca are one of the most widely recognized endangered species globally. Habitat loss and fragmentation are the main threats, and climate change could significantly impact giant panda survival. We integrated giant panda habitat information with general climate models (GCMs to predict future geographic distribution and fragmentation of giant panda habitat. Results support a major general prediction of climate change—a shift of habitats towards higher elevation and higher latitudes. Our models predict climate change could reduce giant panda habitat by nearly 60% over 70 years. New areas may become suitable outside the current geographic range but much of these areas is far from the current giant panda range and only 15% fall within the current protected area system. Long-term survival of giant pandas will require the creation of new protected areas that are likely to support suitable habitat even if the climate changes.

  2. Modeling the Effect of Geomorphic Change Triggered by Large Wood Addition on Salmon Habitat in a Forested Coastal Watershed

    Science.gov (United States)

    Bair, R.; Segura, C.; Lorion, C.

    2015-12-01

    Large wood (LW) additions are often part of fish habitat restorations in the PNW where historic forest clear-cutting limited natural wood recruitment. These efforts' relative successes are rarely reported in terms of ecological significance to different life stages of fish. Understanding the effectiveness of LW additions will contribute to successfully managing forest land. In this study we quantify the geomorphic change of a restoration project involving LW additions to three alluvial reaches in Mill Creek, OR. The reaches are 110-130m in plane-bed morphology and drain 2-16km2. We quantify the change in available habitat to different life stages of coho salmon in terms of velocity (v), shear stress (t), flow depth, and grain size distributions (GSD) considering existing thresholds in the literature for acceptable habitat. Flow conditions before and after LW additions are assessed using a 2D hydrodynamic model (FaSTMECH). Model inputs include detailed channel topography, discharge, and surface GSD. The spatial-temporal variability of sediment transport was also quantified based the modeled t distributions and the GSD to document changes in the overall geomorphic regime. Initial modeling results for pre wood conditions show mean t and v values ranging between 0 and 26N/m2 and between 0 and 2.4m/s, respectively for up to bankfull flow (Qbf). The distributions of both t and v become progressively wider and peak at higher values as flow increases with the notable exception at Qbf for which the area of low velocity increases noticeably. The spatial distributions of velocity results indicates that the extent of suitable habitat for adult coho decreased by 18% between flows 30 and 55% of BF. However the area of suitable habitat increased by 15% between 0.55Qbf and Qbf as the flow spreads from the channel into the floodplain. We expect the LW will enhance floodplain connectivity and thus available habitat by creating additional areas of low v during winter flows.

  3. Quantifying predation pressure along an urbanisation gradient in Denmark using artificial caterpillars

    DEFF Research Database (Denmark)

    Ferrante, Marco; Lo Cacciato, Alessandro; Lövei, Gabor L

    2014-01-01

    Urbanisation results in a marked modification of habitats and influences several ecological processes, some of which give rise to beneficial ecological services. Natural pest control, the effect of predators on prey is one of such services. We quantified changes in the incidence of predation...... an urbanisation gradient (rural-suburban-urban). Artificial caterpillars were placed on the ground in order to obtain an estimate of the incidence of predation at ground level. Half (50%) of the 1398 caterpillars were "attacked" and 28.8% of the bites were those of chewing insects. We attributed the majority.......3% in suburban and 16.4% in urban forest fragments. Mammals exerted the highest predation pressure in suburban habitats (22.2% vs. 4.9% in forest, and 8.1% in urban forest fragments)....

  4. Spatial analyses of benthic habitats to define coral reef ecosystem regions and potential biogeographic boundaries along a latitudinal gradient.

    Directory of Open Access Journals (Sweden)

    Brian K Walker

    Full Text Available Marine organism diversity typically attenuates latitudinally from tropical to colder climate regimes. Since the distribution of many marine species relates to certain habitats and depth regimes, mapping data provide valuable information in the absence of detailed ecological data that can be used to identify and spatially quantify smaller scale (10 s km coral reef ecosystem regions and potential physical biogeographic barriers. This study focused on the southeast Florida coast due to a recognized, but understudied, tropical to subtropical biogeographic gradient. GIS spatial analyses were conducted on recent, accurate, shallow-water (0-30 m benthic habitat maps to identify and quantify specific regions along the coast that were statistically distinct in the number and amount of major benthic habitat types. Habitat type and width were measured for 209 evenly-spaced cross-shelf transects. Evaluation of groupings from a cluster analysis at 75% similarity yielded five distinct regions. The number of benthic habitats and their area, width, distance from shore, distance from each other, and LIDAR depths were calculated in GIS and examined to determine regional statistical differences. The number of benthic habitats decreased with increasing latitude from 9 in the south to 4 in the north and many of the habitat metrics statistically differed between regions. Three potential biogeographic barriers were found at the Boca, Hillsboro, and Biscayne boundaries, where specific shallow-water habitats were absent further north; Middle Reef, Inner Reef, and oceanic seagrass beds respectively. The Bahamas Fault Zone boundary was also noted where changes in coastal morphologies occurred that could relate to subtle ecological changes. The analyses defined regions on a smaller scale more appropriate to regional management decisions, hence strengthening marine conservation planning with an objective, scientific foundation for decision making. They provide a framework

  5. Seasonal habitat associations of the wolverine in central Idaho

    Science.gov (United States)

    Jeffrey P. Copeland; James M. Peek; Craig R. Groves; Wayne E. Melquist; Kevin S. Mckelvey; Gregory W. McDaniel; Clinton D. Long; Charles E. Harris

    2007-01-01

    Although understanding habitat relationships remains fundamental to guiding wildlife management, these basic prerequisites remain vague and largely unstudied for the wolverine. Currently, a study of wolverine ecology conducted in Montana, USA, in the 1970s is the sole source of information on habitat requirements of wolverines in the conterminous United States. The...

  6. Impact assessment of ionising radiation on wildlife: meeting the requirements of the EU birds and habitat directives

    International Nuclear Information System (INIS)

    Copplestone, D.; Wood, M.D.; Bielby, S.; Jones, S.R.; Vives, J.; Beresford, N.A.; Zinger, I.

    2004-01-01

    In the UK, research funded by the Environment Agency/English Nature has provided a tool for calculating doses received by biota in coastal, freshwater and terrestrial ecosystems. The approach uses the reference organism concept where the organism of interest (feature organism) is equated to a particular reference organism (based on its physical geometry and ecology). The exposure of the reference organism, and consequently the feature organism, to different radionuclides and dose rates can be assessed using a spreadsheet-based mathematical tool. This assessment tool was developed in 2001 and provided an internationally recognised starting point from which more refined assessment tools could develop. As the need for conducting specific assessments under the UK Habitat Regulations became apparent, it was recognised that some targeted refinement of the assessment tool was required. One of the major problems with the tool related to a lack of species-specific data and a lack of information on certain radionuclides appearing in discharges that may be impacting on sites/species to be protected. A second research and development project was therefore undertaken to reduce the uncertainties associated with the assessment tool by collating additional species-specific data, developing a mathematical system for ensuring that the most appropriate reference organism was selected and extending the range of radionuclides included in the assessment. This specific expansion to the assessment tool was directed towards ensuring that species at Natura 2000 sites (Special Protection Areas (SPAs) and Special Areas of Conservation (SACs)) were adequately protected. The species targeted (feature species) for this assessment were species protected under the EC Habitats Directive and those that are characteristic of habitats protected under the Directive. The paper will show how typical dimensions of each feature species are collated and each feature species mathematically aligned with the

  7. Protecting Marine Biodiversity: A Comparison of Individual Habitat Quotas (IHQs) and Marine Protected Areas

    OpenAIRE

    Kurt Schnier; Dan Holland

    2005-01-01

    Fisheries managers in the United States are required to identify and mitigate the adverse impacts of fishing activity on essential fish habitat (EFH). There are additional concerns that the viability of noncommercial species, animals that are habitat dependent and/or are themselves constituents of fishery habitat may still be threatened. We consider a cap-and-trade system for habitat conservation, individual habitat quotas for fisheries, to achieve habitat conservation and species protection ...

  8. Assessing predation risks for small fish in a large river ecosystem between contrasting habitats and turbidity conditions

    Science.gov (United States)

    Dodrill, Michael J.; Yard, Mike; Pine, William E.

    2016-01-01

    This study examined predation risk for juvenile native fish between two riverine shoreline habitats, backwater and debris fan, across three discrete turbidity levels (low, intermediate, high) to understand environmental risks associated with habitat use in a section of the Colorado River in Grand Canyon, AZ. Inferences are particularly important to juvenile native fish, including the federally endangered humpback chub Gila cypha. This species uses a variety of habitats including backwaters which are often considered important rearing areas. Densities of two likely predators, adult rainbow trout Oncorhynchus mykiss and adult humpback chub, were estimated between habitats using binomial mixture models to examine whether higher predator density was associated with patterns of predation risk. Tethering experiments were used to quantify relative predation risk between habitats and turbidity conditions. Under low and intermediate turbidity conditions, debris fan habitat showed higher relative predation risk compared to backwaters. In both habitats the highest predation risk was observed during intermediate turbidity conditions. Density of likely predators did not significantly differ between these habitats. This information can help managers in Grand Canyon weigh flow policy options designed to increase backwater availability or extant turbidity conditions.

  9. Saproxylic Hemiptera Habitat Associations

    Science.gov (United States)

    Michael D. Ulyshen; James L. Hanula; Robert L. Blinn; Gene. Kritsky

    2012-01-01

    Understanding the habitat requirements of organisms associated with dead wood is important in order to conserve them in managed forests. Unfortunately, many of the less diverse saproxylic taxa, including Hemiptera, remain largely unstudied. An effort to rear insects from dead wood taken from two forest types (an upland pine-dominated and a bottomland mixed hardwood),...

  10. Individual variation in habitat use in two stream fish assemblages

    Directory of Open Access Journals (Sweden)

    Luisa Resende Manna

    2015-12-01

    Full Text Available The habitat use is an individual choice that is influenced by physical conditions such as substrate type, food resources availability and adequate depth. However, habitat use is often measured only through interspecific variability because intraspecific variability is supposed to be low. Here, the differences in habitat use by two stream fish assemblages in two different environments (Brazilian rainforest and semiarid were investigated at both interspecific and intraspecific levels. We performed 55 hours of underwater observation in a 200 meters long stretch in each stream and quantified the following habitat descriptors: (i water velocity, (ii distance from the stream bank, (iii substratum, (iv water column depth, (v aquatic cover, and (vi canopy percentage. To compare intra and interspecific variability we summarized the multivariate habitat use databases using Principal Components Analysis (PCA on Euclidean distance. An Analysis of Similarity (ANOSIM was performed to test the differences in habitat use by the two assemblages. Besides, in each fish community we did an Analysis of Variance (ANOVA to test within vs between species variability for individual position on each PCA axes. To go further than these univariate tests, the differences among the species and assemblages were tested with Permutational Multivariate Analysis of Variance (PERMANOVA. The habitat use between assemblages was significantly different (ANOSIM – R=0.14; p<0.001. PERMANOVA revealed significant differences among species in both assemblages (Rainforest - F=7.25; p<0.001; semiarid - F=4.84; p<0.001. Lower F values in the semiarid assemblage revealed a higher level of intraspecific variability for this assemblage. Our findings showed high intra and interspecific variability in both stream fish assemblages and highlight the importance of measuring individual’s differences for this feature of fish biodiversity. Additionally, the versatility described for tropical

  11. An empirical assessment and comparison of species-based and habitat-based surrogates: a case study of forest vertebrates and large old trees.

    Science.gov (United States)

    Lindenmayer, David B; Barton, Philip S; Lane, Peter W; Westgate, Martin J; McBurney, Lachlan; Blair, David; Gibbons, Philip; Likens, Gene E

    2014-01-01

    A holy grail of conservation is to find simple but reliable measures of environmental change to guide management. For example, particular species or particular habitat attributes are often used as proxies for the abundance or diversity of a subset of other taxa. However, the efficacy of such kinds of species-based surrogates and habitat-based surrogates is rarely assessed, nor are different kinds of surrogates compared in terms of their relative effectiveness. We use 30-year datasets on arboreal marsupials and vegetation structure to quantify the effectiveness of: (1) the abundance of a particular species of arboreal marsupial as a species-based surrogate for other arboreal marsupial taxa, (2) hollow-bearing tree abundance as a habitat-based surrogate for arboreal marsupial abundance, and (3) a combination of species- and habitat-based surrogates. We also quantify the robustness of species-based and habitat-based surrogates over time. We then use the same approach to model overall species richness of arboreal marsupials. We show that a species-based surrogate can appear to be a valid surrogate until a habitat-based surrogate is co-examined, after which the effectiveness of the former is lost. The addition of a species-based surrogate to a habitat-based surrogate made little difference in explaining arboreal marsupial abundance, but altered the co-occurrence relationship between species. Hence, there was limited value in simultaneously using a combination of kinds of surrogates. The habitat-based surrogate also generally performed significantly better and was easier and less costly to gather than the species-based surrogate. We found that over 30 years of study, the relationships which underpinned the habitat-based surrogate generally remained positive but variable over time. Our work highlights why it is important to compare the effectiveness of different broad classes of surrogates and identify situations when either species- or habitat-based surrogates are likely

  12. Neural basis for generalized quantifier comprehension.

    Science.gov (United States)

    McMillan, Corey T; Clark, Robin; Moore, Peachie; Devita, Christian; Grossman, Murray

    2005-01-01

    Generalized quantifiers like "all cars" are semantically well understood, yet we know little about their neural representation. Our model of quantifier processing includes a numerosity device, operations that combine number elements and working memory. Semantic theory posits two types of quantifiers: first-order quantifiers identify a number state (e.g. "at least 3") and higher-order quantifiers additionally require maintaining a number state actively in working memory for comparison with another state (e.g. "less than half"). We used BOLD fMRI to test the hypothesis that all quantifiers recruit inferior parietal cortex associated with numerosity, while only higher-order quantifiers recruit prefrontal cortex associated with executive resources like working memory. Our findings showed that first-order and higher-order quantifiers both recruit right inferior parietal cortex, suggesting that a numerosity component contributes to quantifier comprehension. Moreover, only probes of higher-order quantifiers recruited right dorsolateral prefrontal cortex, suggesting involvement of executive resources like working memory. We also observed activation of thalamus and anterior cingulate that may be associated with selective attention. Our findings are consistent with a large-scale neural network centered in frontal and parietal cortex that supports comprehension of generalized quantifiers.

  13. Habitat Use Database - Groundfish Essential Fish Habitat (EFH) Habitat Use Database (HUD)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Habitat Use Database (HUD) was specifically designed to address the need for habitat-use analyses in support of groundfish EFH, HAPCs, and fishing and nonfishing...

  14. Spawning Habitat Studies of Hanford Reach Fall Chinook Salmon (Oncorhynchus tshawytscha), Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Geist, David R.; Arntzen, Evan V.; Chien, Yi-Ju (Pacific Northwest National Laboratory)

    2009-03-02

    agricultural and industrial development. In some cases, the riverbed is armored such that it is more difficult for spawners to move, while in other cases the intrusion of fine sediment into spawning gravels has reduced water flow to sensitive eggs and young fry. Recovery of fall Chinook salmon populations may involve habitat restoration through such actions as dam removal and reservoir drawdown. In addition, habitat protection will be accomplished through set-asides of existing high-quality habitat. A key component to evaluating these actions is quantifying the salmon spawning habitat potential of a given river reach so that realistic recovery goals for salmon abundance can be developed. Quantifying salmon spawning habitat potential requires an understanding of the spawning behavior of Chinook salmon, as well as an understanding of the physical habitat where these fish spawn. Increasingly, fish biologists are recognizing that assessing the physical habitat of riverine systems where salmon spawn goes beyond measuring microhabitat like water depth, velocity, and substrate size. Geomorphic features of the river measured over a range of spatial scales set up the physical template upon which the microhabitat develops, and successful assessments of spawning habitat potential incorporate these geomorphic features. We had three primary objectives for this study. The first objective was to determine the relationship between physical habitats at different spatial scales and fall Chinook salmon spawning locations. The second objective was to estimate the fall Chinook salmon redd capacity for the Reach. The third objective was to suggest a protocol for determining preferable spawning reaches of fall Chinook salmon. To ensure that we collected physical data within habitat that was representative of the full range of potential spawning habitat, the study area was stratified based on geomorphic features of the river using a two-dimensional river channel index that classified the river cross

  15. Condition varies with habitat choice in postbreeding forest birds

    Science.gov (United States)

    Scott H. Stoleson

    2013-01-01

    Many birds that are experiencing population declines require extensive tracts of mature forest habitat for breeding. Recent work suggests that at least some may shift their habitat use to early-successional areas after nesting but before migration. I used constant-effort mist netting in regenerating clearcuts (4-8 years postcut) and dense mature-forest understories to...

  16. Impact of fisheries on seabed bottom habitat

    NARCIS (Netherlands)

    Piet, Gerjan; Hintzen, Niels; Quirijns, Floor

    2018-01-01

    The Marine Stewardship Council (MSC) released new certification requirements in 2014. The new requirements come with new guidelines for scoring fisheries for several Performance Indicators (PIs). One of the adjusted PIs is PI 2.4.1: the Habitats outcome indicator:“The Unit of Assessment (UoA) does

  17. The global distribution of deep-water Antipatharia habitat

    Science.gov (United States)

    Yesson, Chris; Bedford, Faye; Rogers, Alex D.; Taylor, Michelle L.

    2017-11-01

    Antipatharia are a diverse group of corals with many species found in deep water. Many Antipatharia are habitat for associates, have extreme longevity and some species can occur beyond 8500 m depth. As they are major constituents of'coral gardens', which are Vulnerable Marine Ecosystems (VMEs), knowledge of their distribution and environmental requirements is an important pre-requisite for informed conservation planning particularly where the expense and difficulty of deep-sea sampling prohibits comprehensive surveys. This study uses a global database of Antipatharia distribution data to perform habitat suitability modelling using the Maxent methodology to estimate the global extent of black coral habitat suitability. The model of habitat suitability is driven by temperature but there is notable influence from other variables of topography, surface productivity and oxygen levels. This model can be used to predict areas of suitable habitat, which can be useful for conservation planning. The global distribution of Antipatharia habitat suitability shows a marked contrast with the distribution of specimen observations, indicating that many potentially suitable areas have not been sampled, and that sampling effort has been disproportionate to shallow, accessible areas inside marine protected areas (MPAs). Although 25% of Antipatharia observations are located in MPAs, only 7-8% of predicted suitable habitat is protected, which is short of the Convention on Biological Diversity target to protect 10% of ocean habitats by 2020.

  18. Coastal habitats as surrogates for taxonomic, functional and trophic structures of benthic faunal communities.

    Science.gov (United States)

    Törnroos, Anna; Nordström, Marie C; Bonsdorff, Erik

    2013-01-01

    Due to human impact, there is extensive degradation and loss of marine habitats, which calls for measures that incorporate taxonomic as well as functional and trophic aspects of biodiversity. Since such data is less easily quantifiable in nature, the use of habitats as surrogates or proxies for biodiversity is on the rise in marine conservation and management. However, there is a critical gap in knowledge of whether pre-defined habitat units adequately represent the functional and trophic structure of communities. We also lack comparisons of different measures of community structure in terms of both between- (β) and within-habitat (α) variability when accounting for species densities. Thus, we evaluated a priori defined coastal habitats as surrogates for traditional taxonomic, functional and trophic zoobenthic community structure. We focused on four habitats (bare sand, canopy-forming algae, seagrass above- and belowground), all easily delineated in nature and defined through classification systems. We analyzed uni- and multivariate data on species and trait diversity as well as stable isotope ratios of benthic macrofauna. A good fit between habitat types and taxonomic and functional structure was found, although habitats were more similar functionally. This was attributed to within-habitat heterogeneity so when habitat divisions matched the taxonomic structure, only bare sand was functionally distinct. The pre-defined habitats did not meet the variability of trophic structure, which also proved to differentiate on a smaller spatial scale. The quantification of trophic structure using species density only identified an epi- and an infaunal unit. To summarize the results we present a conceptual model illustrating the match between pre-defined habitat types and the taxonomic, functional and trophic community structure. Our results show the importance of including functional and trophic aspects more comprehensively in marine management and spatial planning.

  19. CisLunar Habitat Internal Architecture Design Criteria

    Science.gov (United States)

    Jones, R.; Kennedy, K.; Howard, R.; Whitmore, M.; Martin, C.; Garate, J.

    2017-01-01

    Lunar Habitat Internal Architecture Study is to become a forcing function to establish a common understanding of CisLunar Phase-1 Habitation Internal Architecture design criteria, processes, and tools. The scope of the CisLunar Habitat Internal Architecture study is to design, develop, demonstrate, and evaluate a Phase-1 CisLunar Habitat common module internal architecture based on design criteria agreed to by NASA, the International Partners, and Commercial Exploration teams. This task is to define the CisLunar Phase-1 Internal Architecture Government Reference Design, assist NASA in becoming a "smart buyer" for Phase-1 Habitat Concepts, and ultimately to derive standards and requirements from the Internal Architecture Design Process. The first step was to define a Habitat Internal Architecture Design Criteria and create a structured philosophy to be used by design teams as a filter by which critical aspects of consideration would be identified for the purpose of organizing and utilizing interior spaces. With design criteria in place, the team will develop a series of iterative internal architecture concept designs which will be assessed by means of an evaluation criteria and process. These assessments will successively drive and refine the design, leading to the combination and down-selection of design concepts. A single refined reference design configuration will be developed into in a medium-to-high fidelity mockup. A multi-day human-in-the-loop mission test will fully evaluate the reference design and validate its configuration. Lessons learned from the design and evaluation will enable the team to identify appropriate standards for Phase-1 CisLunar Habitat Internal Architecture and will enable NASA to develop derived requirements in support of maturing CisLunar Habitation capabilities. This paper will describe the criteria definition process, workshop event, and resulting CisLunar Phase-1 Habitat Internal Architecture Design Criteria.

  20. Advantages of a Modular Mars Surface Habitat Approach

    Science.gov (United States)

    Rucker, Michelle A.; Hoffman, Stephan J.; Andrews, Alida; Watts, Kevin

    2018-01-01

    Early crewed Mars mission concepts developed by the National Aeronautics and Space Administration (NASA) assumed a single, large habitat would house six crew members for a 500-day Mars surface stay. At the end of the first mission, all surface equipment, including the habitat, -would be abandoned and the process would be repeated at a different Martian landing site. This work was documented in a series of NASA publications culminating with the Mars Design Reference Mission 5.0 (NASA-SP-2009-566). The Evolvable Mars Campaign (EMC) explored whether re-using surface equipment at a single landing site could be more affordable than the Apollo-style explore-abandon-repeat mission cadence. Initial EMC assumptions preserved the single, monolithic habitat, the only difference being a new requirement to reuse the surface habitat for multiple expedition crews. A trade study comparing a single large habitat versus smaller, modular habitats leaned towards the monolithic approach as more mass-efficient. More recent work has focused on the operational aspects of building up Mars surface infrastructure over multiple missions, and has identified compelling advantages of the modular approach that should be considered before making a final decision. This paper explores Mars surface mission operational concepts and integrated system analysis, and presents an argument for the modular habitat approach.

  1. Seagrass habitat metabolism increases short-term extremes and long-term offset of CO2 under future ocean acidification.

    Science.gov (United States)

    Pacella, Stephen R; Brown, Cheryl A; Waldbusser, George G; Labiosa, Rochelle G; Hales, Burke

    2018-04-10

    The role of rising atmospheric CO 2 in modulating estuarine carbonate system dynamics remains poorly characterized, likely due to myriad processes driving the complex chemistry in these habitats. We reconstructed the full carbonate system of an estuarine seagrass habitat for a summer period of 2.5 months utilizing a combination of time-series observations and mechanistic modeling, and quantified the roles of aerobic metabolism, mixing, and gas exchange in the observed dynamics. The anthropogenic CO 2 burden in the habitat was estimated for the years 1765-2100 to quantify changes in observed high-frequency carbonate chemistry dynamics. The addition of anthropogenic CO 2 alters the thermodynamic buffer factors (e.g., the Revelle factor) of the carbonate system, decreasing the seagrass habitat's ability to buffer natural carbonate system fluctuations. As a result, the most harmful carbonate system indices for many estuarine organisms [minimum pH T , minimum Ω arag , and maximum pCO 2(s.w.) ] change up to 1.8×, 2.3×, and 1.5× more rapidly than the medians for each parameter, respectively. In this system, the relative benefits of the seagrass habitat in locally mitigating ocean acidification increase with the higher atmospheric CO 2 levels predicted toward 2100. Presently, however, these mitigating effects are mixed due to intense diel cycling of CO 2 driven by aerobic metabolism. This study provides estimates of how high-frequency pH T , Ω arag , and pCO 2(s.w.) dynamics are altered by rising atmospheric CO 2 in an estuarine habitat, and highlights nonlinear responses of coastal carbonate parameters to ocean acidification relevant for water quality management.

  2. Habitat Evaluation Procedures (HEP) Report; Tacoma Creek South Project, Technical Report 2003-2005.

    Energy Technology Data Exchange (ETDEWEB)

    Entz, Ray

    2005-02-01

    On July 6, 2004, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Tacoma Creek South property, an acquisition completed by the Kalispel Tribe of Indians in June 2004. Evaluation species and appropriate models include bald eagle, black-capped chickadee, Canada goose, mallard, muskrat, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Tacoma Creek South Project provides a total of 190.79 Habitat Units (HUs) for the species evaluated. Emergent wetlands provide 20.51 HUs for Canada goose, mallard, and muskrat. Grassland provides 1.65 HUs for Canada goose and mallard. Scrub-shrub vegetation provides 11.76 HUs for mallard, yellow warbler, and white-tailed deer. Conifer forest habitat provides 139.92 HUs for bald eagle, black-capped chickadee, and white-tailed deer. Deciduous forest also provides 19.15 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. The objective of using HEP at the Tacoma Creek South Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  3. Effects of hurricanes Katrina and Rita on Louisiana black bear habitat

    Science.gov (United States)

    Clark, Joseph D.; Murrow, Jennifer L.

    2012-01-01

    The Louisiana black bear (Ursus americanus luteolus) is comprised of 3 subpopulations, each being small, geographically isolated, and vulnerable to extinction. Hurricanes Katrina and Rita struck the Louisiana and Mississippi coasts in 2005, potentially altering habitat occupied by this federally threatened subspecies. We used data collected on radio-telemetered bears from 1993 to 1995 and pre-hurricane landscape data to develop a habitat model based on the Mahalanobis distance (D2) statistic. We then applied that model to post-hurricane landscape data where the telemetry data were collected (i.e., occupied study area) and where bear range expansion might occur (i.e., unoccupied study area) to quantify habitat loss or gain. The D2 model indicated that quality bear habitat was associated with areas of high mast-producing forest density, low water body density, and moderate forest patchiness. Cross-validation and testing on an independent data set in central Louisiana indicated that prediction and transferability of the model were good. Suitable bear habitat decreased from 348 to 345 km2 (0.9%) within the occupied study area and decreased from 34,383 to 33,891 km2 (1.4%) in the unoccupied study area following the hurricanes. Our analysis indicated that bear habitat was not significantly degraded by the hurricanes, although changes that could have occurred on a microhabitat level would be more difficult to detect at the resolution we used. We suggest that managers continue to monitor the possible long-term effects of these hurricanes (e.g., vegetation changes from flooding, introduction of toxic chemicals, or water quality changes).

  4. Surface Habitat Systems

    Science.gov (United States)

    Kennedy, Kriss J.

    2009-01-01

    The Surface Habitat Systems (SHS) Focused Investment Group (FIG) is part of the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) effort to provide a focused direction and funding to the various projects that are working on human surface habitat designs and technologies for the planetary exploration missions. The overall SHS-FIG effort focuses on directing and guiding those projects that: 1) develop and demonstrate new surface habitat system concepts, innovations, and technologies to support human exploration missions, 2) improve environmental systems that interact with human habitats, 3) handle and emplace human surface habitats, and 4) focus on supporting humans living and working in habitats on planetary surfaces. The activity areas of the SHS FIG described herein are focused on the surface habitat project near-term objectives as described in this document. The SHS-FIG effort focuses on mitigating surface habitat risks (as identified by the Lunar Surface Systems Project Office (LSSPO) Surface Habitat Element Team; and concentrates on developing surface habitat technologies as identified in the FY08 gap analysis. The surface habitat gap assessment will be updated annually as the surface architecture and surface habitat definition continues to mature. These technologies are mapped to the SHS-FIG Strategic Development Roadmap. The Roadmap will bring to light the areas where additional innovative efforts are needed to support the development of habitat concepts and designs and the development of new technologies to support of the LSSPO Habitation Element development plan. Three specific areas of development that address Lunar Architecture Team (LAT)-2 and Constellation Architecture Team (CxAT) Lunar habitat design issues or risks will be focused on by the SHS-FIG. The SHS-FIG will establish four areas of development that will help the projects prepare in their planning for surface habitat systems development. Those development areas are

  5. Physical habitat classification and instream flow modeling to determine habitat availability during low-flow periods, North Fork Shenandoah River, Virginia

    Science.gov (United States)

    Krstolic, Jennifer L.; Hayes, Donald C.; Ruhl, Peter M.

    2006-01-01

    Increasing development and increasing water withdrawals for public, industrial, and agricultural water supply threaten to reduce streamflows in the Shenandoah River basin in Virginia. Water managers need more information to balance human water-supply needs with the daily streamflows necessary for maintaining the aquatic ecosystems. To meet the need for comprehensive information on hydrology, water supply, and instream-flow requirements of the Shenandoah River basin, the U.S. Geological Survey and the Northern Shenandoah Valley Regional Commission conducted a cooperative investigation of habitat availability during low-flow periods on the North Fork Shenandoah River. Historic streamflow data and empirical data on physical habitat, river hydraulics, fish community structure, and recreation were used to develop a physical habitat simulation model. Hydraulic measurements were made during low, medium, and high flows in six reaches at a total of 36 transects that included riffles, runs, and pools, and that had a variety of substrates and cover types. Habitat suitability criteria for fish were developed from detailed fish-community sampling and microhabitat observations. Fish were grouped into four guilds of species and life stages with similar habitat requirements. Simulated habitat was considered in the context of seasonal flow regimes to show the availability of flows that sustain suitable habitat during months when precipitation and streamflow are scarce. The North Fork Shenandoah River basin was divided into three management sections for analysis purposes: the upper section, middle section, and lower section. The months of July, August, and September were chosen to represent a low-flow period in the basin with low mean monthly flows, low precipitation, high temperatures, and high water withdrawals. Exceedance flows calculated from the combined data from these three months describe low-flow periods on the North Fork Shenandoah River. Long-term records from three

  6. Environmental factors and habitat use influence body condition of individuals in a species at risk, the grizzly bear.

    Science.gov (United States)

    Bourbonnais, Mathieu L; Nelson, Trisalyn A; Cattet, Marc R L; Darimont, Chris T; Stenhouse, Gordon B; Janz, David M

    2014-01-01

    Metrics used to quantify the condition or physiological states of individuals provide proactive mechanisms for understanding population dynamics in the context of environmental factors. Our study examined how anthropogenic disturbance, habitat characteristics and hair cortisol concentrations interpreted as a sex-specific indicator of potential habitat net-energy demand affect the body condition of grizzly bears (n = 163) in a threatened population in Alberta, Canada. We quantified environmental variables by modelling spatial patterns of individual habitat use based on global positioning system telemetry data. After controlling for gender, age and capture effects, we assessed the influence of biological and environmental variables on body condition using linear mixed-effects models in an information theoretical approach. Our strongest model suggested that body condition was improved when patterns of habitat use included greater vegetation productivity, increased influence of forest harvest blocks and oil and gas well sites, and a higher percentage of regenerating and coniferous forest. However, body condition was negatively affected by habitat use in close proximity to roads and in areas where potential energetic demands were high. Poor body condition was also associated with increased selection of parks and protected areas and greater seasonal vegetation productivity. Adult females, females with cubs-of-year, juvenile females and juvenile males were in poorer body condition compared with adult males, suggesting that intra-specific competition and differences in habitat use based on gender and age may influence body condition dynamics. Habitat net-energy demand also tended to be higher in areas used by females which, combined with observed trends in body condition, could affect reproductive success in this threatened population. Our results highlight the importance of considering spatiotemporal variability in environmental factors and habitat use when assessing

  7. The Nutritional Geometry of Resource Scarcity: Effects of Lean Seasons and Habitat Disturbance on Nutrient Intakes and Balancing in Wild Sifakas.

    Directory of Open Access Journals (Sweden)

    Mitchell T Irwin

    Full Text Available Animals experience spatial and temporal variation in food and nutrient supply, which may cause deviations from optimal nutrient intakes in both absolute amounts (meeting nutrient requirements and proportions (nutrient balancing. Recent research has used the geometric framework for nutrition to obtain an improved understanding of how animals respond to these nutritional constraints, among them free-ranging primates including spider monkeys and gorillas. We used this framework to examine macronutrient intakes and nutrient balancing in sifakas (Propithecus diadema at Tsinjoarivo, Madagascar, in order to quantify how these vary across seasons and across habitats with varying degrees of anthropogenic disturbance. Groups in intact habitat experience lean season decreases in frugivory, amounts of food ingested, and nutrient intakes, yet preserve remarkably constant proportions of dietary macronutrients, with the proportional contribution of protein to the diet being highly consistent. Sifakas in disturbed habitat resemble intact forest groups in the relative contribution of dietary macronutrients, but experience less seasonality: all groups' diets converge in the lean season, but disturbed forest groups largely fail to experience abundant season improvements in food intake or nutritional outcomes. These results suggest that: (1 lemurs experience seasonality by maintaining nutrient balance at the expense of calories ingested, which contrasts with earlier studies of spider monkeys and gorillas, (2 abundant season foods should be the target of habitat management, even though mortality might be concentrated in the lean season, and (3 primates' within-group competitive landscapes, which contribute to variation in social organization, may vary in complex ways across habitats and seasons.

  8. Global patterns of fragmentation and connectivity of mammalian carnivore habitat.

    Science.gov (United States)

    Crooks, Kevin R; Burdett, Christopher L; Theobald, David M; Rondinini, Carlo; Boitani, Luigi

    2011-09-27

    Although mammalian carnivores are vulnerable to habitat fragmentation and require landscape connectivity, their global patterns of fragmentation and connectivity have not been examined. We use recently developed high-resolution habitat suitability models to conduct comparative analyses and to identify global hotspots of fragmentation and connectivity for the world's terrestrial carnivores. Species with less fragmentation (i.e. more interior high-quality habitat) had larger geographical ranges, a greater proportion of habitat within their range, greater habitat connectivity and a lower risk of extinction. Species with higher connectivity (i.e. less habitat isolation) also had a greater proportion of high-quality habitat, but had smaller, not larger, ranges, probably reflecting shorter distances between habitat patches for species with restricted distributions; such species were also more threatened, as would be expected given the negative relationship between range size and extinction risk. Fragmentation and connectivity did not differ among Carnivora families, and body mass was associated with connectivity but not fragmentation. On average, only 54.3 per cent of a species' geographical range comprised high-quality habitat, and more troubling, only 5.2 per cent of the range comprised such habitat within protected areas. Identification of global hotspots of fragmentation and connectivity will help guide strategic priorities for carnivore conservation.

  9. Landscape Metrics to Assess Habitat Suitability for Conversation Bird Species in the Southeastern United States

    National Research Council Canada - National Science Library

    Dove, Linda

    2001-01-01

    .... The degree to which a given species is affected by habitat fragmentation is dependent on the complex interaction of the habitat requirements of the species and the shape, size, and makeup of the fragmented habitat...

  10. Prisoners in their habitat? Generalist dispersal by habitat specialists: a case study in southern water vole (Arvicola sapidus.

    Directory of Open Access Journals (Sweden)

    Alejandro Centeno-Cuadros

    Full Text Available Habitat specialists inhabiting scarce and scattered habitat patches pose interesting questions related to dispersal such as how specialized terrestrial mammals do to colonize distant patches crossing hostile matrices. We assess dispersal patterns of the southern water vole (Arvicola sapidus, a habitat specialist whose habitat patches are distributed through less than 2% of the study area (overall 600 km² and whose populations form a dynamic metapopulational network. We predict that individuals will require a high ability to move through the inhospitable matrix in order to avoid genetic and demographic isolations. Genotypes (N = 142 for 10 microsatellites and sequences of the whole mitochondrial Control Region (N = 47 from seven localities revealed a weak but significant genetic structure partially explained by geographic distance. None of the landscape models had a significant effect on genetic structure over that of the Euclidean distance alone and no evidence for efficient barriers to dispersal was found. Contemporary gene flow was not severely limited for A. sapidus as shown by high migration rates estimates (>10% between non-neighbouring areas. Sex-biased dispersal tests did not support differences in dispersal rates, as shown by similar average axial parent-offspring distances, in close agreement with capture-mark-recapture estimates. As predicted, our results do not support any preferences of the species for specific landscape attributes on their dispersal pathways. Here, we combine field and molecular data to illustrate how a habitat specialist mammal might disperse like a habitat generalist, acquiring specific long-distance dispersal strategies as an adaptation to patchy, naturally fragmented, heterogeneous and unstable habitats.

  11. A frog's-eye view of the landscape : quantifying connectivity for fragmented amphibian populations

    NARCIS (Netherlands)

    Vos, C.C.

    1999-01-01

    The spatial habitat requirements are studied for two amphibian species: the tree frog ( Hyla arborea ) and the moor frog ( Rana arvalis ). Fragmentation, the destruction of suitable habitat, results in small fragments that are separated by

  12. Estimating the magnitude of morphoscapes: how to measure the morphological component of biodiversity in relation to habitats using geometric morphometrics

    Science.gov (United States)

    Fontaneto, Diego; Panisi, Martina; Mandrioli, Mauro; Montardi, Dario; Pavesi, Maurizio; Cardini, Andrea

    2017-08-01

    Ecological indicators are currently developed to account for the different facets of loss of biological diversity due to direct or indirect effects of human activities. Most ecological indicators include species richness as a metric. Others, such as functional traits and phylogenetic diversity, account for differences in species, even when species richness is the same. Here, we describe and apply a different indicator, called morphoscape dimension, accounting for morphological variability across habitats in a geographical region. We use the case of ground beetles (Coleoptera: Carabidae) in four different habitats in the Po Plain in Northern Italy to exemplify how to quantify the magnitude of the morphological space (i.e. the dimension of the morphoscape) occupied by the species in each habitat using geometric morphometrics. To this aim, we employed a variety of metrics of morphological disparity related to univariate size, and more complex multivariate shape and form. Our `proof of concept' suggests that metrics assessing size and form might largely tend to simply mirror the information provided by species richness, whereas shape morphoscape disparity may be able to account for non-trivial differences in species traits amongst habitats. This is indicated by the woodland morphoscape being on average bigger than that of crops, the most species-rich habitat, despite having almost 20% less species. We conclude suggesting that the analysis of morphoscape dimension has the potential to become a new additional and complimentary tool in the hands of conservation biologists and ecologists to explore and quantify habitat complexity and inform decisions on management and conservation based on a wide set of ecological indicators.

  13. Habitat-related specialization of lateral-line system morphology in a habitat-generalist and a habitat-specialist New Zealand eleotrid.

    Science.gov (United States)

    Vanderpham, J P; Nakagawa, S; Senior, A M; Closs, G P

    2016-04-01

    An investigation of intraspecific habitat-related patterns of variation in oculoscapular lateral-line superficial neuromasts (SN) identified a decrease in the ratio of total SNs to pores, and a trend towards decreased asymmetry in SNs in the habitat-generalist common bully Gobiomorphus cotidianus from fluvial habitats compared to lacustrine habitats, suggesting habitat-related phenotypic variability. A greater ratio of pores to SNs, as well as less variation in the total number and asymmetry of SNs observed in the fluvial habitat-specialist redfin bully Gobiomorphus huttoni may provide further evidence of variations in the oculoscapular lateral-line morphology of fluvial habitat G. cotidianus individuals serving as adaptations to more turbulent environments. © 2016 The Fisheries Society of the British Isles.

  14. An approach of habitat degradation assessment for characterization on coastal habitat conservation tendency.

    Science.gov (United States)

    Zhou, Xi-Yin; Lei, Kun; Meng, Wei

    2017-09-01

    Coastal zones are population and economy highly intensity regions all over the world, and coastal habitat supports the sustainable development of human society. The accurate assessment of coastal habitat degradation is the essential prerequisite for coastal zone protection. In this study, an integrated framework of coastal habitat degradation assessment including landuse classification, habitat classifying and zoning, evaluation criterion of coastal habitat degradation and coastal habitat degradation index has been established for better regional coastal habitat assessment. Through establishment of detailed three-class landuse classification, the fine landscape change is revealed, the evaluation criterion of coastal habitat degradation through internal comparison based on the results of habitat classifying and zoning could indicate the levels of habitat degradation and distinguish the intensity of human disturbances in different habitat subareas under the same habitat classification. Finally, the results of coastal habitat degradation assessment could be achieved through coastal habitat degradation index (CHI). A case study of the framework is carried out in the Circum-Bohai-Sea-Coast, China, and the main results show the following: (1) The accuracy of all land use classes are above 90%, which indicates a satisfactory accuracy for the classification map. (2) The Circum-Bohai-Sea-Coast is divided into 3 kinds of habitats and 5 subareas. (3) In the five subareas of the Circum-Bohai-Sea-Coast, the levels of coastal habitat degradation own significant difference. The whole Circum-Bohai-Sea-Coast generally is in a worse state according to area weighting of each habitat subarea. This assessment framework of coastal habitat degradation would characterize the landuse change trend, realize better coastal habitat degradation assessment, reveal the habitat conservation tendency and distinguish intensity of human disturbances. Furthermore, it would support for accurate coastal

  15. Application of habitat thresholds in conservation: Considerations, limitations, and future directions

    Directory of Open Access Journals (Sweden)

    Yntze van der Hoek

    2015-01-01

    Full Text Available Habitat thresholds are often interpreted as the minimum required area of habitat, and subsequently promoted as conservation targets in natural resource policies and planning. Unfortunately, several recent reviews and messages of caution on the application of habitat thresholds in conservation have largely fallen on deaf ears, leading to a dangerous oversimplification and generalization of the concept. We highlight the prevalence of oversimplification/over-generalization of results from habitat threshold studies in policy documentation, the consequences of such over-generalization, and directions for habitat threshold studies that have conservation applications without risking overgeneralization. We argue that in order to steer away from misapplication of habitat thresholds in conservation, we should not focus on generalized nominal habitat values (i.e., amounts or percentages of habitat, but on the use of habitat threshold modeling for comparative exercises of area-sensitivity or the identification of environmental dangers. In addition, we should remain focused on understanding the processes and mechanisms underlying species responses to habitat change. Finally, studies could that focus on deriving nominal value threshold amounts should do so only if the thresholds are detailed, species-specific, and translated to conservation targets particular to the study area only.

  16. Habitat Concepts for Deep Space Exploration

    Science.gov (United States)

    Smitherman, David; Griffin, Brand N.

    2014-01-01

    Future missions under consideration requiring human habitation beyond the International Space Station (ISS) include deep space habitats in the lunar vicinity to support asteroid retrieval missions, human and robotic lunar missions, satellite servicing, and Mars vehicle servicing missions. Habitat designs are also under consideration for missions beyond the Earth-Moon system, including transfers to near-Earth asteroids and Mars orbital destinations. A variety of habitat layouts have been considered, including those derived from the existing ISS designs and those that could be fabricated from the Space Launch System (SLS) propellant tanks. This paper presents a comparison showing several options for asteroid, lunar, and Mars mission habitats using ISS derived and SLS derived modules and identifies some of the advantages and disadvantages inherent in each. Key findings indicate that the larger SLS diameter modules offer built-in compatibility with the launch vehicle, single launch capability without on-orbit assembly, improved radiation protection, lighter structures per unit volume, and sufficient volume to accommodate consumables for long duration missions without resupply. The information provided with the findings includes mass and volume comparison data that should be helpful to future exploration mission planning efforts.

  17. Deep Space Habitat Wireless Smart Plug

    Science.gov (United States)

    Morgan, Joseph A.; Porter, Jay; Rojdev, Kristina; Carrejo, Daniel B.; Colozza, Anthony J.

    2014-01-01

    NASA has been interested in technology development for deep space exploration, and one avenue of developing these technologies is via the eXploration Habitat (X-Hab) Academic Innovation Challenge. In 2013, NASA's Deep Space Habitat (DSH) project was in need of sensors that could monitor the power consumption of various devices in the habitat with added capability to control the power to these devices for load shedding in emergency situations. Texas A&M University's Electronic Systems Engineering Technology Program (ESET) in conjunction with their Mobile Integrated Solutions Laboratory (MISL) accepted this challenge, and over the course of 2013, several undergraduate students in a Capstone design course developed five wireless DC Smart Plugs for NASA. The wireless DC Smart Plugs developed by Texas A&M in conjunction with NASA's Deep Space Habitat team is a first step in developing wireless instrumentation for future flight hardware. This paper will further discuss the X-Hab challenge and requirements set out by NASA, the detailed design and testing performed by Texas A&M, challenges faced by the team and lessons learned, and potential future work on this design.

  18. Scale-Dependent Habitat Selection and Size-Based Dominance in Adult Male American Alligators.

    Directory of Open Access Journals (Sweden)

    Bradley A Strickland

    Full Text Available Habitat selection is an active behavioral process that may vary across spatial and temporal scales. Animals choose an area of primary utilization (i.e., home range then make decisions focused on resource needs within patches. Dominance may affect the spatial distribution of conspecifics and concomitant habitat selection. Size-dependent social dominance hierarchies have been documented in captive alligators, but evidence is lacking from wild populations. We studied habitat selection for adult male American alligators (Alligator mississippiensis; n = 17 on the Pearl River in central Mississippi, USA, to test whether habitat selection was scale-dependent and individual resource selectivity was a function of conspecific body size. We used K-select analysis to quantify selection at the home range scale and patches within the home range to determine selection congruency and important habitat variables. In addition, we used linear models to determine if body size was related to selection patterns and strengths. Our results indicated habitat selection of adult male alligators was a scale-dependent process. Alligators demonstrated greater overall selection for habitat variables at the patch level and less at the home range level, suggesting resources may not be limited when selecting a home range for animals in our study area. Further, diurnal habitat selection patterns may depend on thermoregulatory needs. There was no relationship between resource selection or home range size and body size, suggesting size-dependent dominance hierarchies may not have influenced alligator resource selection or space use in our sample. Though apparent habitat suitability and low alligator density did not manifest in an observed dominance hierarchy, we hypothesize that a change in either could increase intraspecific interactions, facilitating a dominance hierarchy. Due to the broad and diverse ecological roles of alligators, understanding the factors that influence their

  19. Scale-dependent habitat selection and size-based dominance in adult male American alligators

    Science.gov (United States)

    Strickland, Bradley A.; Vilella, Francisco; Belant, Jerrold L.

    2016-01-01

    Habitat selection is an active behavioral process that may vary across spatial and temporal scales. Animals choose an area of primary utilization (i.e., home range) then make decisions focused on resource needs within patches. Dominance may affect the spatial distribution of conspecifics and concomitant habitat selection. Size-dependent social dominance hierarchies have been documented in captive alligators, but evidence is lacking from wild populations. We studied habitat selection for adult male American alligators (Alligator mississippiensis; n = 17) on the Pearl River in central Mississippi, USA, to test whether habitat selection was scale-dependent and individual resource selectivity was a function of conspecific body size. We used K-select analysis to quantify selection at the home range scale and patches within the home range to determine selection congruency and important habitat variables. In addition, we used linear models to determine if body size was related to selection patterns and strengths. Our results indicated habitat selection of adult male alligators was a scale-dependent process. Alligators demonstrated greater overall selection for habitat variables at the patch level and less at the home range level, suggesting resources may not be limited when selecting a home range for animals in our study area. Further, diurnal habitat selection patterns may depend on thermoregulatory needs. There was no relationship between resource selection or home range size and body size, suggesting size-dependent dominance hierarchies may not have influenced alligator resource selection or space use in our sample. Though apparent habitat suitability and low alligator density did not manifest in an observed dominance hierarchy, we hypothesize that a change in either could increase intraspecific interactions, facilitating a dominance hierarchy. Due to the broad and diverse ecological roles of alligators, understanding the factors that influence their social dominance

  20. Understanding Existing Salmonid Habitat Availability and Connectivity to Improve River Management

    Science.gov (United States)

    Duffin, J.; Yager, E.; Tonina, D.; Benjankar, R. M.

    2017-12-01

    In the Pacific Northwest river restoration is common for salmon conservation. Mangers need methods to help target restoration to problem areas in rivers to create habitat that meets a species' needs. Hydraulic models and habitat suitability curves provide basic information on habitat availability and overall quality, but these analyses need to be expanded to address habitat quality based on the accessibility of habitats required for multiple life stages. Scientists are starting to use connectivity measurements to understand the longitudinal proximity of habitat patches, which can be used to address the habitat variability of a reach. By evaluating the availability and quality of habitat and calculating the connectivity between complementary habitats, such as spawning and rearing habitats, we aim to identify areas that should be targeted for restoration. To meet these goals, we assessed Chinook salmon habitat on the Lemhi River in Idaho. The depth and velocity outputs from a 2D hydraulic model are used in conjunction with locally created habitat suitability curves to evaluate the availability and quality of habitat for multiple Chinook salmon life stages. To assess the variability of the habitat, connectivity between habitat patches necessary for different life stages is calculated with a proximity index. A spatial representation of existing habitat quality and connectivity between complimentary habitats can be linked to river morphology by the evaluation of local geomorphic characteristics, including sinuosity and channel units. The understanding of the current habitat availability for multiple life stage needs, the connectivity between these habitat patches, and their relationship with channel morphology can help managers better identify restoration needs and direct their limited resources.

  1. Modeling the Habitat of the Red-Crowned Crane (Grus japonensis Wintering in Cheorwon-Gun to Support Decision Making

    Directory of Open Access Journals (Sweden)

    Ho Gul Kim

    2016-06-01

    Full Text Available Cheorwon-gun is an important wintering area for the red-crowned crane (Grus japonensis. Although eco-tourism has been recently proposed as a means to stimulate the local economy, it may have adverse effects on the crane. We believe a science-based conservation plan is needed to mitigate these negative effects. To this end, our study had three objectives: (1 to analyze the red-crowned crane habitat and its suitability in Cheorwon-gun, using field surveys and habitat modeling; (2 to check the feasibility of alternative habitat patches across demilitarized zones (DMZs; and (3 to propose a conceptual diagram that minimizes habitat loss during development activities. We aim to quantify habitat suitability, the farmland area needed to support existing crane populations in wintertime, disturbance caused by human activities, and vehicular spatial patterns. These data could be used in spatial planning. The framework of this study and the process of making a conceptual diagram could be applied to other areas where there is a conflict between development and habitat conservation.

  2. The impacts of mobile fishing gear on seafloor habitats in the Gulf of Maine (Northwest Atlantic): implications for conservation of fish populations

    Science.gov (United States)

    Auster, Peter J.; Malatesta, Richard J.; Langton, Richard W.; Watting, Les; Valentine, Page C.; Donaldson, Carol Lee S.; Langton, Elizabeth W.; Shepard, Andrew N.; Babb, War G.

    1997-01-01

    Fishing gear alters seafloor habitats, but the extent of these alterations, and their effects, have not been quantified extensively in the northwest Atlantic. Understanding the extent of these impacts, and their effects on populations of living marine resources, is needed to properly manage current and future levels of fishing effort and fishing power. For example, the entire U.S. side of the Gulf of Maine was impacted annually by mobile fishing gear between 1984 and 1990, based on calculations of area swept by trawl and dredge gear. Georges Bank was imparted three to nearly four times annually during the same period. Studies at three sites in the Gulf of Maine (off Swans Island, Jeffreys Bank, and Stellwagen Bank) showed that mobile fishing gear altered the physical structure (=complexity) of benthic habitats. Complexity was reduced by direct removal of biogenic (e.g., sponges, hydrozoans, bryozoans, amphipod tubes, holothurians, shell aggregates) and‐ sedimentary (e.g., sand waves, depressions) structures. Also, removal of organisms that create.structures (e.g., crabs, scallops) indirectly reduced complexity. Reductions in habitat complexity may lead to increased predation on juveniles of harvested species and ultimately recruitment to the harvestable stock. Because of a lack of reference sites, where use of mobile fishing is prohibited, no empirical studies have yet been conducted on a scale that could demonstrate population level effects of habitat‐management options. If marine fisheries management is to evolve toward an ecosystem or habitat management approach, experiments are required on the effects of habitat change, both anthropogenic and natural.

  3. Assessment of the landscape connectivity of the Puuc-Chenes region, Mexico, based on the habitat requirements of jaguar (Panthera onca

    Directory of Open Access Journals (Sweden)

    Eduardo Salazar

    2017-03-01

    Full Text Available The Yucatan Peninsula is included as part of the initiative for the Mesoamerican Biological Corridor. In its central area, are located three Protected Natural Areas (PNA: the Biocultural Puuc Reserve (RBP, by its Spanish acronym, the Bala’an K’aax flora and fauna protected area (APB, by its Spanish acronym, Quintana Roo, and the Calakmul Biosphere Reserve (RBC, by its Spanish acronym, Campeche. The Puuc-Chenes region is located in the center of the Yucatan Peninsula - among these PNAs - which included important fragments of vegetation that in the past formed a continuum through the forests of the Yucatan Peninsula, constituting an important link to keep the connectivity of the Mayan forest. However, the expansion of the agricultural frontier is causing the fragmentation of the habitat. In the present study, the structural and functional connectivity of the Puuc-Chenes region is analyzed, based on habitat requirements of the Panthera onca (jaguar by sex. Both, male and female, prefer tropical forest, however, P. onca males dare to transit in secondary vegetation and inclusively in agricultural areas. Males make inroads to villages more often than females, coming close to, and even crossing roads. P. onca males have a home range of 60 km2. In the present study, the ArcMap, FRAGSTATS and IDRISI software were used to analyses the structural and functional connectivity of the landscape, based on the known differences of habitat requirements for P. onca males and females. A vegetation and land use map of the studied area was elaborated, based on Landsat 7 ETM+ images, with 30 m size pixels. The following cover classes were differentiated: tropical forest, secondary forest, agriculture, urban, and water polls, which were validated in the fields. The Puuc-Chenes has an extension of 972 578 ha. Tropical forest was the dominant vegetation cover (49.8% with the largest patch index covering 19.7% of the total landscape. The landscape had 2 509 fragments

  4. A National Approach for Mapping and Quantifying Habitat-based Biodiversity Metrics Across Multiple Spatial Scales

    Science.gov (United States)

    Ecosystem services, i.e., "services provided to humans from natural systems," have become a key issue of this century in resource management, conservation planning, and environmental decision analysis. Mapping and quantifying ecosystem services have become strategic national inte...

  5. Influence of seasonality and gestation on habitat selection by northern Mexican gartersnakes (Thamnophis eques megalops.

    Directory of Open Access Journals (Sweden)

    Tiffany A Sprague

    Full Text Available Species conservation requires a thorough understanding of habitat requirements. The northern Mexican gartersnake (Thamnophis eques megalops was listed as threatened under the U.S. Endangered Species Act in 2014. Natural resource managers are interested in understanding the ecology of this subspecies to guide management decisions and to determine what features are necessary for habitat creation and restoration. Our objective was to identify habitat selection of northern Mexican gartersnakes in a highly managed, constructed wetland hatchery. We deployed transmitters on 42 individual gartersnakes and documented use of habitat types and selection of specific habitat features. Habitat selection was similar between males and females and varied seasonally. During the active season (March-October, gartersnakes primarily selected wetland edge habitat with abundant cover. Gestating females selected similar locations but with less dense cover. During the inactive season (November-February, gartersnakes selected upland habitats, including rocky slopes with abundant vegetation. These results of this study can help inform management of the subspecies, particularly in human-influenced habitats. Conservation of this subspecies should incorporate a landscape-level approach that includes abundant wetland edge habitat with a mosaic of dense cover for protection and sparsely vegetated areas for basking connected to terrestrial uplands for overwintering.

  6. The relevance of morphology for habitat use and locomotion in two species of wall lizards

    Science.gov (United States)

    Gomes, Verónica; Carretero, Miguel A.; Kaliontzopoulou, Antigoni

    2016-01-01

    Understanding if morphological differences between organisms that occupy different environments are associated to differences in functional performance can suggest a functional link between environmental and morphological variation. In this study we examined three components of the ecomorphological paradigm - morphology, locomotor performance and habitat use - using two syntopic wall lizards endemic to the Iberian Peninsula as a case study to establish whether morphological variation is associated with habitat use and determine the potential relevance of locomotor performance for such an association. Differences in habitat use between both lizards matched patterns of morphological variation. Indeed, individuals of Podarcis guadarramae lusitanicus, which are more flattened, used more rocky environments, whereas Podarcis bocagei, which have higher heads, used more vegetation than rocks. These patterns translated into a significant association between morphology and habitat use. Nevertheless, the two species were only differentiated in some of the functional traits quantified, and locomotor performance did not exhibit an association with morphological traits. Our results suggest that the link between morphology and habitat use is mediated by refuge use, rather than locomotor performance, in this system, and advise caution when extrapolating morphology-performance-environment associations across organisms.

  7. Space Use and Habitat Selection by Resident and Transient Coyotes (Canis latrans.

    Directory of Open Access Journals (Sweden)

    Joseph W Hinton

    Full Text Available Little information exists on coyote (Canis latrans space use and habitat selection in the southeastern United States and most studies conducted in the Southeast have been carried out within small study areas (e.g., ≤1,000 km2. Therefore, studying the placement, size, and habitat composition of coyote home ranges over broad geographic areas could provide relevant insights regarding how coyote populations adjust to regionally varying ecological conditions. Despite an increasing number of studies of coyote ecology, few studies have assessed the role of transiency as a life-history strategy among coyotes. During 2009-2011, we used GPS radio-telemetry to study coyote space use and habitat selection on the Albemarle Peninsula of northeastern North Carolina. We quantified space use and 2nd- and 3rd-order habitat selection for resident and transient coyotes to describe space use patterns in a predominantly agricultural landscape. The upper limit of coyote home-range size was approximately 47 km2 and coyotes exhibiting shifting patterns of space use of areas >65 km2 were transients. Transients exhibited localized space use patterns for short durations prior to establishing home ranges, which we defined as "biding" areas. Resident and transient coyotes demonstrated similar habitat selection, notably selection of agricultural over forested habitats. However, transients exhibited stronger selection for roads than resident coyotes. Although transient coyotes are less likely to contribute reproductively to their population, transiency may be an important life history trait that facilitates metapopulation dynamics through dispersal and the eventual replacement of breeding residents lost to mortality.

  8. Space use and habitat selection by resident and transient coyotes (Canis latrans)

    Science.gov (United States)

    Hinton, Joseph W; van Manen, Frank T.; Chamberlain, Michael J

    2015-01-01

    Little information exists on coyote (Canis latrans) space use and habitat selection in the southeastern United States and most studies conducted in the Southeast have been carried out within small study areas (e.g., ≤1,000 km2). Therefore, studying the placement, size, and habitat composition of coyote home ranges over broad geographic areas could provide relevant insights regarding how coyote populations adjust to regionally varying ecological conditions. Despite an increasing number of studies of coyote ecology, few studies have assessed the role of transiency as a life-history strategy among coyotes. During 2009–2011, we used GPS radio-telemetry to study coyote space use and habitat selection on the Albemarle Peninsula of northeastern North Carolina. We quantified space use and 2nd- and 3rd-order habitat selection for resident and transient coyotes to describe space use patterns in a predominantly agricultural landscape. The upper limit of coyote home-range size was approximately 47 km2 and coyotes exhibiting shifting patterns of space use of areas >65 km2 were transients. Transients exhibited localized space use patterns for short durations prior to establishing home ranges, which we defined as “biding” areas. Resident and transient coyotes demonstrated similar habitat selection, notably selection of agricultural over forested habitats. However, transients exhibited stronger selection for roads than resident coyotes. Although transient coyotes are less likely to contribute reproductively to their population, transiency may be an important life history trait that facilitates metapopulation dynamics through dispersal and the eventual replacement of breeding residents lost to mortality.

  9. Quantifying Transmission.

    Science.gov (United States)

    Woolhouse, Mark

    2017-07-01

    Transmissibility is the defining characteristic of infectious diseases. Quantifying transmission matters for understanding infectious disease epidemiology and designing evidence-based disease control programs. Tracing individual transmission events can be achieved by epidemiological investigation coupled with pathogen typing or genome sequencing. Individual infectiousness can be estimated by measuring pathogen loads, but few studies have directly estimated the ability of infected hosts to transmit to uninfected hosts. Individuals' opportunities to transmit infection are dependent on behavioral and other risk factors relevant given the transmission route of the pathogen concerned. Transmission at the population level can be quantified through knowledge of risk factors in the population or phylogeographic analysis of pathogen sequence data. Mathematical model-based approaches require estimation of the per capita transmission rate and basic reproduction number, obtained by fitting models to case data and/or analysis of pathogen sequence data. Heterogeneities in infectiousness, contact behavior, and susceptibility can have substantial effects on the epidemiology of an infectious disease, so estimates of only mean values may be insufficient. For some pathogens, super-shedders (infected individuals who are highly infectious) and super-spreaders (individuals with more opportunities to transmit infection) may be important. Future work on quantifying transmission should involve integrated analyses of multiple data sources.

  10. Global screening for Critical Habitat in the terrestrial realm.

    Science.gov (United States)

    Brauneder, Kerstin M; Montes, Chloe; Blyth, Simon; Bennun, Leon; Butchart, Stuart H M; Hoffmann, Michael; Burgess, Neil D; Cuttelod, Annabelle; Jones, Matt I; Kapos, Val; Pilgrim, John; Tolley, Melissa J; Underwood, Emma C; Weatherdon, Lauren V; Brooks, Sharon E

    2018-01-01

    Critical Habitat has become an increasingly important concept used by the finance sector and businesses to identify areas of high biodiversity value. The International Finance Corporation (IFC) defines Critical Habitat in their highly influential Performance Standard 6 (PS6), requiring projects in Critical Habitat to achieve a net gain of biodiversity. Here we present a global screening layer of Critical Habitat in the terrestrial realm, derived from global spatial datasets covering the distributions of 12 biodiversity features aligned with guidance provided by the IFC. Each biodiversity feature is categorised as 'likely' or 'potential' Critical Habitat based on: 1. Alignment between the biodiversity feature and the IFC Critical Habitat definition; and 2. Suitability of the spatial resolution for indicating a feature's presence on the ground. Following the initial screening process, Critical Habitat must then be assessed in-situ by a qualified assessor. This analysis indicates that a total of 10% and 5% of the global terrestrial environment can be considered as likely and potential Critical Habitat, respectively, while the remaining 85% did not overlap with any of the biodiversity features assessed and was classified as 'unknown'. Likely Critical Habitat was determined principally by the occurrence of Key Biodiversity Areas and Protected Areas. Potential Critical Habitat was predominantly characterised by data representing highly threatened and unique ecosystems such as ever-wet tropical forests and tropical dry forests. The areas we identified as likely or potential Critical Habitat are based on the best available global-scale data for the terrestrial realm that is aligned with IFC's Critical Habitat definition. Our results can help businesses screen potential development sites at the early project stage based on a range of biodiversity features. However, the study also demonstrates several important data gaps and highlights the need to incorporate new and

  11. Freshwater ecosystems and resilience of Pacific salmon: Habitat Management based on natural variability

    Science.gov (United States)

    Bisson, P.A.; Dunham, J.B.; Reeves, G.H.

    2009-01-01

    In spite of numerous habitat restoration programs in fresh waters with an aggregate annual funding of millions of dollars, many populations of Pacific salmon remain significantly imperiled. Habitat restoration strategies that address limited environmental attributes and partial salmon life-history requirements or approaches that attempt to force aquatic habitat to conform to idealized but ecologically unsustainable conditions may partly explain this lack of response. Natural watershed processes generate highly variable environmental conditions and population responses, i.e., multiple life histories, that are often not considered in restoration. Examples from several locations underscore the importance of natural variability to the resilience of Pacific salmon. The implication is that habitat restoration efforts will be more likely to foster salmon resilience if they consider processes that generate and maintain natural variability in fresh water. We identify three specific criteria for management based on natural variability: the capacity of aquatic habitat to recover from disturbance, a range of habitats distributed across stream networks through time sufficient to fulfill the requirements of diverse salmon life histories, and ecological connectivity. In light of these considerations, we discuss current threats to habitat resilience and describe how regulatory and restoration approaches can be modified to better incorporate natural variability. ?? 2009 by the author(s).

  12. Freshwater Ecosystems and Resilience of Pacific Salmon: Habitat Management Based on Natural Variability

    Directory of Open Access Journals (Sweden)

    Peter A. Bisson

    2009-06-01

    Full Text Available In spite of numerous habitat restoration programs in fresh waters with an aggregate annual funding of millions of dollars, many populations of Pacific salmon remain significantly imperiled. Habitat restoration strategies that address limited environmental attributes and partial salmon life-history requirements or approaches that attempt to force aquatic habitat to conform to idealized but ecologically unsustainable conditions may partly explain this lack of response. Natural watershed processes generate highly variable environmental conditions and population responses, i.e., multiple life histories, that are often not considered in restoration. Examples from several locations underscore the importance of natural variability to the resilience of Pacific salmon. The implication is that habitat restoration efforts will be more likely to foster salmon resilience if they consider processes that generate and maintain natural variability in fresh water. We identify three specific criteria for management based on natural variability: the capacity of aquatic habitat to recover from disturbance, a range of habitats distributed across stream networks through time sufficient to fulfill the requirements of diverse salmon life histories, and ecological connectivity. In light of these considerations, we discuss current threats to habitat resilience and describe how regulatory and restoration approaches can be modified to better incorporate natural variability.

  13. Summary Report for Bureau of Fisheries Stream Habitat Surveys : Clearwater, Salmon, Weiser, and Payette River Basins, 1934-1942, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Bruce A.; Clark, Sharon E.; Sedell, James R.

    1995-01-01

    This document contains summary reports of stream habitat surveys, conducted in Idaho, by the Bureau of Fisheries (BOF, now National Marine Fisheries Service) from 1938-1942.. These surveys were part of a larger project to survey streams in the Columbia River basin that provided, or had provided, spawning and rearing habitat for salmon and steelhead (Rich, 1948). The purpose of the survey was, as described by Rich, 'to determine the present condition of the various tributaries with respect to their availability and usefulness for the migration, breeding, and rearing of migratory fishes'. The Idaho portion of the survey consisted of extensive surveys of the Clearwater, Salmon, Weiser, and Payette River Subbasins. Current estimates of the loss of anadromous fish habitat in the Columbia River Basin are based on a series of reports published from 1949-1952 by the U.S. Fish and Wildlife Service. The reports were brief, qualitative accounts of over 5000 miles of stream surveys conducted by the BOF from 1934-1946 (Bryant, 1949; Bryant and Parkhurst, 1950; Parkhurst, 1950a-c; Parkhurst et al., 1950). Despite their brevity, these BOF reports have formed the basis for estimating fish habitat losses and conditions in the Columbia River Basin (Fulton, 1968, 1970; Thompson, 1976; NPPC, 1986). Recently, the field notebooks from the BOF surveys were discovered. The data is now archived and stored in the Forest Science DataBank at Oregon State University (Stafford et al., 1984; 1988). These records are the earliest and most comprehensive documentation available of the condition and extent of anadromous fish habitat before hydropower development in the Columbia River Basin. They provide the baseline data for quantifying changes and setting a benchmark for future restoration of anadromous fish habitat throughout the Basin. The summaries contained in this book are exact replicates of the originals. Due to discrepancies between the field data and the summaries, the database

  14. Quantifying uncertainty and resilience on coral reefs using a Bayesian approach

    International Nuclear Information System (INIS)

    Van Woesik, R

    2013-01-01

    Coral reefs are rapidly deteriorating globally. The contemporary management option favors managing for resilience to provide reefs with the capacity to tolerate human-induced disturbances. Yet resilience is most commonly defined as the capacity of a system to absorb disturbances without changing fundamental processes or functionality. Quantifying no change, or the uncertainty of a null hypothesis, is nonsensical using frequentist statistics, but is achievable using a Bayesian approach. This study outlines a practical Bayesian framework that quantifies the resilience of coral reefs using two inter-related models. The first model examines the functionality of coral reefs in the context of their reef-building capacity, whereas the second model examines the recovery rates of coral cover after disturbances. Quantifying intrinsic rates of increase in coral cover and habitat-specific, steady-state equilibria are useful proxies of resilience. A reduction in the intrinsic rate of increase following a disturbance, or the slowing of recovery over time, can be useful indicators of stress; a change in the steady-state equilibrium suggests a phase shift. Quantifying the uncertainty of key reef-building processes and recovery parameters, and comparing these parameters against benchmarks, facilitates the detection of loss of resilience and provides signals of imminent change. (letter)

  15. Quantifying uncertainty and resilience on coral reefs using a Bayesian approach

    Science.gov (United States)

    van Woesik, R.

    2013-12-01

    Coral reefs are rapidly deteriorating globally. The contemporary management option favors managing for resilience to provide reefs with the capacity to tolerate human-induced disturbances. Yet resilience is most commonly defined as the capacity of a system to absorb disturbances without changing fundamental processes or functionality. Quantifying no change, or the uncertainty of a null hypothesis, is nonsensical using frequentist statistics, but is achievable using a Bayesian approach. This study outlines a practical Bayesian framework that quantifies the resilience of coral reefs using two inter-related models. The first model examines the functionality of coral reefs in the context of their reef-building capacity, whereas the second model examines the recovery rates of coral cover after disturbances. Quantifying intrinsic rates of increase in coral cover and habitat-specific, steady-state equilibria are useful proxies of resilience. A reduction in the intrinsic rate of increase following a disturbance, or the slowing of recovery over time, can be useful indicators of stress; a change in the steady-state equilibrium suggests a phase shift. Quantifying the uncertainty of key reef-building processes and recovery parameters, and comparing these parameters against benchmarks, facilitates the detection of loss of resilience and provides signals of imminent change.

  16. Seagrass habitat metabolism increases short-term extremes and long-term offset of CO2 under future ocean acidification

    Science.gov (United States)

    Pacella, Stephen R.; Brown, Cheryl A.; Waldbusser, George G.; Labiosa, Rochelle G.; Hales, Burke

    2018-04-01

    The role of rising atmospheric CO2 in modulating estuarine carbonate system dynamics remains poorly characterized, likely due to myriad processes driving the complex chemistry in these habitats. We reconstructed the full carbonate system of an estuarine seagrass habitat for a summer period of 2.5 months utilizing a combination of time-series observations and mechanistic modeling, and quantified the roles of aerobic metabolism, mixing, and gas exchange in the observed dynamics. The anthropogenic CO2 burden in the habitat was estimated for the years 1765–2100 to quantify changes in observed high-frequency carbonate chemistry dynamics. The addition of anthropogenic CO2 alters the thermodynamic buffer factors (e.g., the Revelle factor) of the carbonate system, decreasing the seagrass habitat’s ability to buffer natural carbonate system fluctuations. As a result, the most harmful carbonate system indices for many estuarine organisms [minimum pHT, minimum Ωarag, and maximum pCO2(s.w.)] change up to 1.8×, 2.3×, and 1.5× more rapidly than the medians for each parameter, respectively. In this system, the relative benefits of the seagrass habitat in locally mitigating ocean acidification increase with the higher atmospheric CO2 levels predicted toward 2100. Presently, however, these mitigating effects are mixed due to intense diel cycling of CO2 driven by aerobic metabolism. This study provides estimates of how high-frequency pHT, Ωarag, and pCO2(s.w.) dynamics are altered by rising atmospheric CO2 in an estuarine habitat, and highlights nonlinear responses of coastal carbonate parameters to ocean acidification relevant for water quality management.

  17. Trade-offs between wood supply and caribou habitat in northwestern Ontario

    Directory of Open Access Journals (Sweden)

    Daniel McKenney

    1998-03-01

    Full Text Available Woodland caribou habitat management in northwestern Ontario is a complex spatial problem. The Strategic Forest Management Model (SFMM, a linear programming PC-based planning tool being developed in Ontario, was used to examine the impacts of alternative management strategies on caribou habitat. The management alternatives investigated included the cessation of timber management and maximising the present value of wood production without any explicit concern (in the model for caribou. Three major findings are worth noting: 1 trying to maintain prime caribou habitat within active Forest Management Units will come at a cost to wood supply but the cost will depend on the absolute amount of area affected and the spatial configuration of that land in relation to mills. The cost of maintaining caribou habitat in one management unit at a level about 25 000 hectares is roughly $324 000 per year (about 3 cents for each Ontario resident. The imposition of an even-flow constraint on wood production is in fact potentially more costly; 2 Given the region is heavily dominated by spruce aged 90 years and over, forest succession and fire disturbance will likely cause large declines in prime caribou habitat in the near to medium term (20 to 40 years even if no timber harvesting occurs; 3 The complexities of the trade-offs in this resource management problem highlight the limitations of any single modelling tool to satisfactorily address all issues. Planners need to take advantage of a wide range of analytical techniques to quantify the issues and formulate integrated policies.

  18. A geospatial modelling approach to predict seagrass habitat recovery under multiple stressor regimes

    Science.gov (United States)

    Restoration of estuarine seagrass habitats requires a clear understanding of the modes of action of multiple interacting stressors including nutrients, climate change, coastal land-use change, and habitat modification. We have developed and demonstrated a geospatial modeling a...

  19. The Habitat Connection.

    Science.gov (United States)

    Naturescope, 1987

    1987-01-01

    Consists of activities which address the causes of habitat destruction and the effects of habitat loss on animals and plants. Identifies habitat loss as the major reason for the endangerment and extinction of plant and animal species. (ML)

  20. Tracking changes and preventing loss in critical tiger habitat.

    Science.gov (United States)

    Joshi, Anup R; Dinerstein, Eric; Wikramanayake, Eric; Anderson, Michael L; Olson, David; Jones, Benjamin S; Seidensticker, John; Lumpkin, Susan; Hansen, Matthew C; Sizer, Nigel C; Davis, Crystal L; Palminteri, Suzanne; Hahn, Nathan R

    2016-04-01

    The global population of wild tigers remains dangerously low at fewer than 3500 individuals. Habitat loss, along with poaching, can undermine the international target recovery of doubling the number of wild tigers by 2022. Using a new satellite-based monitoring system, we analyzed 14 years of forest loss data within the 76 landscapes (ranging from 278 to 269,983 km(2)) that have been prioritized for conservation of wild tigers. Our analysis provides an update of the status of tiger habitat and describes new applications of technology to detect precisely where forest loss is occurring in order to curb future habitat loss. Across the 76 landscapes, forest loss was far less than anticipated (79,597 ± 22,629 km(2), 7.7% of remaining habitat) over the 14-year study period (2001-2014). Habitat loss was unevenly distributed within a subset of 29 landscapes deemed most critical for doubling wild tiger populations: 19 showed little change (1.5%), whereas 10 accounted for more than 98% (57,392 ± 16,316 km(2)) of habitat loss. Habitat loss in source population sites within 76 landscapes ranged from no loss to 435 ± 124 km(2) ([Formula: see text], SD = 89, total = 1676 ± 476 km(2)). Doubling the tiger population by 2022 requires moving beyond tracking annual changes in habitat. We highlight near-real-time forest monitoring technologies that provide alerts of forest loss at relevant spatial and temporal scales to prevent further erosion.

  1. Modified forest rotation lengths: Long-term effects on landscape-scale habitat availability for specialized species.

    Science.gov (United States)

    Roberge, Jean-Michel; Öhman, Karin; Lämås, Tomas; Felton, Adam; Ranius, Thomas; Lundmark, Tomas; Nordin, Annika

    2018-03-15

    We evaluated the long-term implications from modifying rotation lengths in production forests for four forest-reliant species with different habitat requirements. By combining simulations of forest development with habitat models, and accounting both for stand and landscape scale influences, we projected habitat availability over 150 years in a large Swedish landscape, using rotation lengths which are longer (+22% and +50%) and shorter (-22%) compared to current practices. In terms of mean habitat availability through time, species requiring older forest were affected positively by extended rotations, and negatively by shortened rotations. For example, the mean habitat area for the treecreeper Certhia familiaris (a bird preferring forest with larger trees) increased by 31% when rotations were increased by 22%, at a 5% cost to net present value (NPV) and a 7% decrease in harvested volume. Extending rotation lengths by 50% provided more habitat for this species compared to a 22% extension, but at a much higher marginal cost. In contrast, the beetle Hadreule elongatula, which is dependent on sun-exposed dead wood, benefited from shortened rather than prolonged rotations. Due to an uneven distribution of stand-ages within the landscape, the relative amounts of habitat provided by different rotation length scenarios for a given species were not always consistent through time during the simulation period. If implemented as a conservation measure, prolonging rotations will require long-term strategic planning to avoid future bottlenecks in habitat availability, and will need to be accompanied by complementary measures accounting for the diversity of habitats necessary for the conservation of forest biodiversity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 1995 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, R.Todd

    1996-05-01

    During the 1995 - 96 project period, four new habitat enhancement projects were implemented under the Umatilla River Basin Anadromous Fish Habitat Enhancement Project by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) in the upper Umatilla River Basin. A total of 38,644 feet of high tensile smooth wire fencing was constructed along 3.6 miles of riparian corridor in the Meacham Creek, Wildhorse Creek, Greasewood Creek, West Fork of Greasewood Creek and Mission Creek watersheds. Additional enhancements on Wildhorse Creek and the lower Greasewood Creek System included: (1) installation of 0.43 miles of smooth wire between river mile (RM) 10.25 and RM 10.5 Wildhorse Creek (fence posts and structures had been previously placed on this property during the 1994 - 95 project period), (2) construction of 46 sediment retention structures in stream channels and maintenance to 18 existing sediment retention structures between RM 9.5 and RM 10.25 Wildhorse Creek, and (3) revegetation of stream corridor areas and adjacent terraces with 500 pounds of native grass seed or close species equivalents and 5,000 native riparian shrub/tree species to assist in floodplain recovery, stream channel stability and filtering of sediments during high flow periods. U.S. Fish and Wildlife Service (USFWS), Bureau of Indian Affairs (BIA) and Environmental Protection Agency (EPA) funds were cost shared with Bonneville Power Administration (BPA) funds, provided under this project, to accomplish habitat enhancements. Water quality monitoring continued and was expanded for temperature and turbidity throughout the upper Umatilla River Watershed. Physical habitat surveys were conducted on the lower 13 river miles of Wildhorse Creek and within the Greasewood Creek Project Area to characterize habitat quality and to quantify various habitat types by area.

  3. Habitat use of the Louisiana Waterthrush during the non-breeding season in Puerto Rico

    Science.gov (United States)

    M.T. Hallworth; L.R. Reitsma; K. Parent

    2011-01-01

    We used radiotelemetry to quantify habitat and spatial use patterns of neighboring Louisiana Waterthrush (Parkesia motacilla) along two streams in the Caribbean National Forest in Puerto Rico during 2005–2007. Home range sizes varied with younger birds having larger home ranges and core areas than older birds. All birds occupied some length of stream but a wide range...

  4. Habitat and Recreational Fishing Opportunity in Tampa Bay: Linking Ecological and Ecosystem Services to Human Beneficiaries

    Science.gov (United States)

    Estimating value of estuarine habitat to human beneficiaries requires that we understand how habitat alteration impacts function through both production and delivery of ecosystem goods and services (EGS). Here we expand on the habitat valuation technique of Bell (1997) with an es...

  5. Concurrent assessment of fish and habitat in warmwater streams in Wyoming

    Science.gov (United States)

    Quist, M.C.; Hubert, W.A.; Rahel, F.J.

    2006-01-01

    Fisheries research and management in North America have focused largely on sport fishes, but native non-game fishes have attracted increased attention due to their declines. The Warmwater Stream Assessment (WSA) was developed to evaluate simultaneously both fish and habitat in Wyoming streams by a process that includes three major components: (1) stream-reach selection and accumulation of existing information, (2) fish and habitat sampling and (3) summarisation and evaluation of fish and habitat information. Fish are sampled by electric fishing or seining and habitat is measured at reach and channel-unit (i.e. pool, run, riffle, side channel, or backwater) scales. Fish and habitat data are subsequently summarised using a data-matrix approach. Hierarchical decision trees are used to assess critical habitat requirements for each fish species expected or found in the reach. Combined measurements of available habitat and the ecology of individual species contribute to the evaluation of the observed fish assemblage. The WSA incorporates knowledge of the fish assemblage and habitat features to enable inferences of factors likely influencing both the fish assemblage and their habitat. The WSA was developed for warmwater streams in Wyoming, but its philosophy, process and conceptual basis may be applied to environmental assessments in other geographical areas. ?? 2006 Blackwell Publishing Ltd.

  6. Summary Report for Bureau of Fisheries Stream Habitat Surveys : Umatilla, Tucannon, Asotin, and Grande Ronde River Basins, 1934-1942, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Bruce A.; Clark, Sharon E.; Sedell, James R.

    1995-01-01

    This document contains summary reports of stream habitat surveys, conducted in the Umatilla and Grande Ronde River basins, by the Bureau of Fisheries (BOF, now National Marine Fisheries Service) from 1938-1942. These surveys were part of a larger project to survey streams in the Columbia River basin that provided, or had provided, spawning and rearing habitat for salmon and steelhead (Rich, 1948). The purpose of the survey was, as described by Rich, 'to determine the present condition of the various tributaries with respect to their availability and usefulness for the migration, breeding, and rearing of migratory fishes'. Current estimates of the loss of anadromous fish habitat in the Columbia River Basin are based on a series of reports published from 1949-1952 by the U.S. Fish and Wildlife Service. The reports were brief, qualitative accounts of over 5000 miles of stream surveys conducted by the BOF from 1934-1946 (Bryant, 1949; Bryant and Parkhurst, 1950; Parkhurst, 1950a-c; Parkhurst et al 1950). Despite their brevity, these BOF reports have formed the basis for estimating fish habitat losses and conditions in the Columbia River Basin (Fulton, 1968, 1970; Thompson, 1976; NPPC, 1986). Recently, the field notebooks from the BOF surveys were discovered. The data is now archived and stored in the Forest Science DataBank at Oregon State University (Stafford et al., 1984; 1988). These records are the earliest and most comprehensive documentation available of the condition and extent of anadromous fish habitat before hydropower development in the Columbia River Basin. They provide the baseline data for quantifying changes and setting a benchmark for future restoration of anadromous fish habitat throughout the Basin. The summaries contained in this book are exact replicates of the originals. Due to discrepancies between the field data and the summaries, the database should be used to assess pool and substrate conditions. This data is available from the

  7. Plant functional traits reveal the relative contribution of habitat and food preferences to the diet of grasshoppers.

    Science.gov (United States)

    Ibanez, Sébastien; Manneville, Olivier; Miquel, Christian; Taberlet, Pierre; Valentini, Alice; Aubert, Serge; Coissac, Eric; Colace, Marie-Pascale; Duparc, Quentin; Lavorel, Sandra; Moretti, Marco

    2013-12-01

    Food preferences and food availability are two major determinants of the diet of generalist herbivores and of their spatial distribution. How do these factors interact and eventually lead to diet differentiation in co-occurring herbivores? We quantified the diet of four grasshopper species co-occurring in subalpine grasslands using DNA barcoding of the plants contained in the faeces of individuals sampled in the field. The food preferences of each grasshopper species were assessed by a choice (cafeteria) experiment from among 24 plant species common in five grassland plots, in which the four grasshoppers were collected, while the habitat was described by the relative abundance of plant species in the grassland plots. Plant species were characterised by their leaf economics spectrum (LES), quantifying their nutrient vs. structural tissue content. The grasshoppers' diet, described by the mean LES of the plants eaten, could be explained by their plant preferences but not by the available plants in their habitat. The diet differed significantly across four grasshopper species pairs out of six, which validates food preferences assessed in standardised conditions as indicators for diet partitioning in nature. In contrast, variation of the functional diversity (FD) for LES in the diet was mostly correlated to the FD of the available plants in the habitat, suggesting that diet mixing depends on the environment and is not an intrinsic property of the grasshopper species. This study sheds light on the mechanisms determining the feeding niche of herbivores, showing that food preferences influence niche position whereas habitat diversity affects niche breadth.

  8. Habitat associations of juvenile fish at Ningaloo Reef, Western Australia: the importance of coral and algae.

    Directory of Open Access Journals (Sweden)

    Shaun K Wilson

    2010-12-01

    Full Text Available Habitat specificity plays a pivotal role in forming community patterns in coral reef fishes, yet considerable uncertainty remains as to the extent of this selectivity, particularly among newly settled recruits. Here we quantified habitat specificity of juvenile coral reef fish at three ecological levels; algal meadows vs. coral reefs, live vs. dead coral and among different coral morphologies. In total, 6979 individuals from 11 families and 56 species were censused along Ningaloo Reef, Western Australia. Juvenile fishes exhibited divergence in habitat use and specialization among species and at all study scales. Despite the close proximity of coral reef and algal meadows (10's of metres 25 species were unique to coral reef habitats, and seven to algal meadows. Of the seven unique to algal meadows, several species are known to occupy coral reef habitat as adults, suggesting possible ontogenetic shifts in habitat use. Selectivity between live and dead coral was found to be species-specific. In particular, juvenile scarids were found predominantly on the skeletons of dead coral whereas many damsel and butterfly fishes were closely associated with live coral habitat. Among the coral dependent species, coral morphology played a key role in juvenile distribution. Corymbose corals supported a disproportionate number of coral species and individuals relative to their availability, whereas less complex shapes (i.e. massive & encrusting were rarely used by juvenile fish. Habitat specialisation by juvenile species of ecological and fisheries importance, for a variety of habitat types, argues strongly for the careful conservation and management of multiple habitat types within marine parks, and indicates that the current emphasis on planning conservation using representative habitat areas is warranted. Furthermore, the close association of many juvenile fish with corals susceptible to climate change related disturbances suggests that identifying and

  9. Optimal resource allocation to survival and reproduction in parasitic wasps foraging in fragmented habitats.

    Directory of Open Access Journals (Sweden)

    Eric Wajnberg

    Full Text Available Expansion and intensification of human land use represents the major cause of habitat fragmentation. Such fragmentation can have dramatic consequences on species richness and trophic interactions within food webs. Although the associated ecological consequences have been studied by several authors, the evolutionary effects on interacting species have received little research attention. Using a genetic algorithm, we quantified how habitat fragmentation and environmental variability affect the optimal reproductive strategies of parasitic wasps foraging for hosts. As observed in real animal species, the model is based on the existence of a negative trade-off between survival and reproduction resulting from competitive allocation of resources to either somatic maintenance or egg production. We also asked to what degree plasticity along this trade-off would be optimal, when plasticity is costly. We found that habitat fragmentation can indeed have strong effects on the reproductive strategies adopted by parasitoids. With increasing habitat fragmentation animals should invest in greater longevity with lower fecundity; yet, especially in unpredictable environments, some level of phenotypic plasticity should be selected for. Other consequences in terms of learning ability of foraging animals were also observed. The evolutionary consequences of these results are discussed.

  10. Coefficients of productivity for Yellowstone's grizzly bear habitat

    Science.gov (United States)

    Mattson, David John; Barber, Kim; Maw, Ralene; Renkin, Roy

    2004-01-01

    This report describes methods for calculating coefficients used to depict habitat productivity for grizzly bears in the Yellowstone ecosystem. Calculations based on these coefficients are used in the Yellowstone Grizzly Bear Cumulative Effects Model to map the distribution of habitat productivity and account for the impacts of human facilities. The coefficients of habitat productivity incorporate detailed information that was collected over a 20-year period (1977-96) on the foraging behavior of Yellowstone's bears and include records of what bears were feeding on, when and where they fed, the extent of that feeding activity, and relative measures of the quantity consumed. The coefficients also incorporate information, collected primarily from 1986 to 1992, on the nutrient content of foods that were consumed, their digestibility, characteristic bite sizes, and the energy required to extract and handle each food. Coefficients were calculated for different time periods and different habitat types, specific to different parts of the Yellowstone ecosystem. Stratifications included four seasons of bear activity (spring, estrus, early hyperphagia, late hyperphagia), years when ungulate carrion and whitebark pine seed crops were abundant versus not, areas adjacent to (bear activity in each region, habitat type, and time period were incorporated into calculations, controlling for the effects of proximity to human facilities. The coefficients described in this report and associated estimates of grizzly bear habitat productivity are unique among many efforts to model the conditions of bear habitat because calculations include information on energetics derived from the observed behavior of radio-marked bears.

  11. Historic Habitat Opportunities and Food-Web Linkages of Juvenile Salmon in the Columbia River Estuary, Annual Report of Research.

    Energy Technology Data Exchange (ETDEWEB)

    Bottom, Daniel L.; Simenstad, Charles A.; Campbell, Lance [Northwest Fisheries Science Center

    2009-05-15

    In 2002 with support from the U.S. Army Corps of Engineers (USACE), an interagency research team began investigating salmon life histories and habitat use in the lower Columbia River estuary to fill significant data gaps about the estuary's potential role in salmon decline and recovery . The Bonneville Power Administration (BPA) provided additional funding in 2004 to reconstruct historical changes in estuarine habitat opportunities and food web linkages of Columbia River salmon (Onchorhynchus spp.). Together these studies constitute the estuary's first comprehensive investigation of shallow-water habitats, including selected emergent, forested, and scrub-shrub wetlands. Among other findings, this research documented the importance of wetlands as nursery areas for juvenile salmon; quantified historical changes in the amounts and distributions of diverse habitat types in the lower estuary; documented estuarine residence times, ranging from weeks to months for many juvenile Chinook salmon (O. tshawytscha); and provided new evidence that contemporary salmonid food webs are supported disproportionately by wetland-derived prey resources. The results of these lower-estuary investigations also raised many new questions about habitat functions, historical habitat distributions, and salmon life histories in other areas of the Columbia River estuary that have not been adequately investigated. For example, quantitative estimates of historical habitat changes are available only for the lower 75 km of the estuary, although tidal influence extends 217 km upriver to Bonneville Dam. Because the otolith techniques used to reconstruct salmon life histories rely on detection of a chemical signature (strontium) for salt water, the estuarine residency information we have collected to date applies only to the lower 30 or 35 km of the estuary, where fish first encounter ocean water. We lack information about salmon habitat use, life histories, and growth within the long tidal

  12. Modeling of Iranian Cheetah Habitat using Ecological Niche Factor Analysis (Case Study: Dare Anjir Wildlife Refuge

    Directory of Open Access Journals (Sweden)

    N. Zamani

    2016-03-01

    Full Text Available Evaluation of habitat sustainability indexes is essential in wildlife management and conservation of rare species. Suitable habitats are required in wildlife managements and conservation also, they increase reproduction and survival rate of species. In this study in order to mapping habitat sustainability and recognizing habitat requirements of Iranian Cheetah (Acinonyx jubatus venaticus, field data from Dare Anjir  wildlife refuge were collected since autumn 2009 until summer 2011. Ecological Niche Factor Analysis approach has been used to develop habitat suitability model. In this method primary maps of  habitat variables including elevation, slope, aspect, vegetation cover, distance from water sources and environmental monitoring stations have been produced by Idrisi and Biomapper software and imported in Biomapper. The output scores obtained from the analysis showed that Iranian cheetah tends to mountain areas where has more topographical features for camouflage in order to hunting, and northern aspects which have more humidity, denser vegetation cover and more preys . Our result showed that the Iranian cheetah has medium niche width and prefer marginal habitats.

  13. Saving Salmon Through Advances in Fluvial Remote Sensing: Applying the Optimal Band Ratio Analysis (OBRA) for Bathymetric Mapping of Over 250 km of River Channel and Habitat Classification

    Science.gov (United States)

    Richardson, R.; Legleiter, C. J.; Harrison, L.

    2015-12-01

    Salmonids are threatened with extinction across the world from the fragmentation of riverine ecosystems from dams and diversions. In California, efforts to expand the range of spawnable habitat for native salmon by transporting fish around reservoirs is a potentially species saving idea. But, strong scientific evidence of the amount of high quality habitat is required to make these difficult management decisions. Remote sensing has long been used in fluvial settings to identify physical parameters that drive the quality of aquatic habitat; however, the true strength of remote sensing to cover large spatial extents has not been applied with the resolution that is relevant to salmonids. This project utilizes hyperspectral data of over 250 km of the Tuolumne and Merced Rivers to extract depth and bed slope from the wetted channel and NIR LiDAR for the surrounding topography. The Optimal Band Ratio Analysis (OBRA) has proven as an effective tool to create bathymetric maps of river channels in ideal settings with clear water, high amounts of bottom reflectance, and less than 3 meters deep over short distances. Results from this study show that OBRA can be applied over larger riverscapes at high resolutions (0.5 m). The depth and bed slope estimations are used to classify habitat units that are crucial to quantifying the quality and amount of habitat in these river that once produced large populations of native salmonids. As more managers look to expand habitat for these threatened species the tools developed here will be cost effective over the large extents that salmon migrate to spawn.

  14. Habitat requirements of the long-tailed ground squirrel (Spermophilus undulatus) in the southern Altai

    Czech Academy of Sciences Publication Activity Database

    Řičánková, V.; Fric, Zdeněk; Chlachula, J.; Šťastná, P.; Faltýnková, A.; Zemek, František

    2006-01-01

    Roč. 270, - (2006), s. 1-8 ISSN 0952-8369 Institutional research plan: CEZ:AV0Z60870520 Keywords : Spermophilus undulatus * Altai mountains * habitat selection * predation risk * grazing Subject RIV: EH - Ecology, Behaviour Impact factor: 1.413, year: 2006

  15. Food web structure shaped by habitat size and climate across a latitudinal gradient.

    Science.gov (United States)

    Romero, Gustavo Q; Piccoli, Gustavo C O; de Omena, Paula M; Gonçalves-Souza, Thiago

    2016-10-01

    Habitat size and climate are known to affect the trophic structure and dynamics of communities, but their interactive effects are poorly understood. Organisms from different trophic levels vary in terms of metabolic requirements and heat dissipation. Indeed, larger species such as keystone predators require more stable climatic conditions than their prey. Likewise, habitat size disproportionally affects large-sized predators, which require larger home ranges and are thus restricted to larger habitats. Therefore, food web structure in patchy ecosystems is expected to be shaped by habitat size and climate variations. Here we investigate this prediction using natural aquatic microcosm (bromeliad phytotelmata) food webs composed of litter resources (mainly detritus), detritivores, mesopredators, and top predators (damselflies). We surveyed 240 bromeliads of varying sizes (water retention capacity) across 12 open restingas in SE Brazil spread across a wide range of tropical latitudes (-12.6° to -27.6°, ca. 2,000 km) and climates (Δ mean annual temperature = 5.3°C). We found a strong increase in predator-to-detritivore mass ratio with habitat size, which was representative of a typical inverted trophic pyramid in larger ecosystems. However, this relationship was contingent among the restingas; slopes of linear models were steeper in more stable and favorable climates, leading to inverted trophic pyramids (and top-down control) being more pronounced in environments with more favorable climatic conditions. By contrast, detritivore-resource and mesopredator-detritivore mass ratios were not affected by habitat size or climate variations across latitudes. Our results highlight that the combined effects of habitat size, climate and predator composition are pivotal to understanding the impacts of multiple environmental factors on food web structure and dynamics. © 2016 by the Ecological Society of America.

  16. Influence of Habitat and Intrinsic Characteristics on Survival of Neonatal Pronghorn.

    Directory of Open Access Journals (Sweden)

    Christopher N Jacques

    Full Text Available Increased understanding of the influence of habitat (e.g., composition, patch size and intrinsic (e.g., age, birth mass factors on survival of neonatal pronghorn (Antilocapra americana is a prerequisite to successful management programs, particularly as they relate to population dynamics and the role of population models in adaptive species management. Nevertheless, few studies have presented empirical data quantifying the influence of habitat variables on survival of neonatal pronghorn. During 2002-2005, we captured and radiocollared 116 neonates across two sites in western South Dakota. We documented 31 deaths during our study, of which coyote (Canis latrans predation (n = 15 was the leading cause of mortality. We used known fate analysis in Program MARK to investigate the influence of intrinsic and habitat variables on neonatal survival. We generated a priori models that we grouped into habitat and intrinsic effects. The highest-ranking model indicated that neonate mortality was best explained by site, percent grassland, and open water habitat; 90-day survival (0.80; 90% CI = 0.71-0.88 declined 23% when grassland and water increased from 80.1 to 92.3% and 0.36 to 0.40%, respectively, across 50% natal home ranges. Further, our results indicated that grassland patch size and shrub density were important predictors of neonate survival; neonate survival declined 17% when shrub density declined from 5.0 to 2.5 patches per 100 ha. Excluding the site covariates, intrinsic factors (i.e., sex, age, birth mass, year, parturition date were not important predictors of survival of neonatal pronghorns. Further, neonatal survival may depend on available land cover and interspersion of habitats. We have demonstrated that maintaining minimum and maximum thresholds for habitat factors (e.g., percentages of grassland and open water patches, density of shrub patches throughout natal home ranges will in turn, ensure relatively high (>0.50 neonatal survival rates

  17. Influence of habitat and intrinsic characteristics on survival of neonatal pronghorn

    Science.gov (United States)

    Jacques, Christopher N.; Jenks, Jonathan A.; Grovenburg, Troy W.; Klaver, Robert W.

    2015-01-01

    Increased understanding of the influence of habitat (e.g., composition, patch size) and intrinsic (e.g., age, birth mass) factors on survival of neonatal pronghorn (Antilocapra americana) is a prerequisite to successful management programs, particularly as they relate to population dynamics and the role of population models in adaptive species management. Nevertheless, few studies have presented empirical data quantifying the influence of habitat variables on survival of neonatal pronghorn. During 2002–2005, we captured and radiocollared 116 neonates across two sites in western South Dakota. We documented 31 deaths during our study, of which coyote (Canis latrans) predation (n = 15) was the leading cause of mortality. We used known fate analysis in Program MARK to investigate the influence of intrinsic and habitat variables on neonatal survival. We generated a priori models that we grouped into habitat and intrinsic effects. The highest-ranking model indicated that neonate mortality was best explained by site, percent grassland, and open water habitat; 90-day survival (0.80; 90% CI = 0.71–0.88) declined 23% when grassland and water increased from 80.1 to 92.3% and 0.36 to 0.40%, respectively, across 50% natal home ranges. Further, our results indicated that grassland patch size and shrub density were important predictors of neonate survival; neonate survival declined 17% when shrub density declined from 5.0 to 2.5 patches per 100 ha. Excluding the site covariates, intrinsic factors (i.e., sex, age, birth mass, year, parturition date) were not important predictors of survival of neonatal pronghorns. Further, neonatal survival may depend on available land cover and interspersion of habitats. We have demonstrated that maintaining minimum and maximum thresholds for habitat factors (e.g., percentages of grassland and open water patches, density of shrub patches) throughout natal home ranges will in turn, ensure relatively high (>0.50) neonatal survival rates

  18. Habitat use of Alburnoides namaki, in the Jajroud River (Namak Lake basin, Iran)

    OpenAIRE

    Melahat Hoghoghi; Soheil Eagderi; Bahmen Shams-Esfandabad

    2016-01-01

    A fish species prefer a particular habitat where provides its biological requirements, hence, understanding their habitat use and preferences are crucial for their effective management and protection. This study was conducted to assess the habitat use and selection patterns of Alburnoides namaki, an endemic fish in Jajroud River, Namak Lake basin, Iran. The river was sampled at 18 equally spaced sites. A number of environmental variables, including elevation, water depth, river width, river s...

  19. Space Use and Habitat Selection by Resident and Transient Red Wolves (Canis rufus.

    Directory of Open Access Journals (Sweden)

    Joseph W Hinton

    Full Text Available Recovery of large carnivores remains a challenge because complex spatial dynamics that facilitate population persistence are poorly understood. In particular, recovery of the critically endangered red wolf (Canis rufus has been challenging because of its vulnerability to extinction via human-caused mortality and hybridization with coyotes (Canis latrans. Therefore, understanding red wolf space use and habitat selection is important to assist recovery because key aspects of wolf ecology such as interspecific competition, foraging, and habitat selection are well-known to influence population dynamics and persistence. During 2009-2011, we used global positioning system (GPS radio-telemetry to quantify space use and 3rd-order habitat selection for resident and transient red wolves on the Albemarle Peninsula of eastern North Carolina. The Albemarle Peninsula was a predominantly agricultural landscape in which red wolves maintained spatially stable home ranges that varied between 25 km2 and 190 km2. Conversely, transient red wolves did not maintain home ranges and traversed areas between 122 km2 and 681 km2. Space use by transient red wolves was not spatially stable and exhibited shifting patterns until residency was achieved by individual wolves. Habitat selection was similar between resident and transient red wolves in which agricultural habitats were selected over forested habitats. However, transients showed stronger selection for edges and roads than resident red wolves. Behaviors of transient wolves are rarely reported in studies of space use and habitat selection because of technological limitations to observed extensive space use and because they do not contribute reproductively to populations. Transients in our study comprised displaced red wolves and younger dispersers that competed for limited space and mating opportunities. Therefore, our results suggest that transiency is likely an important life-history strategy for red wolves that

  20. Space use and habitat selection by resident and transient red wolves (Canis rufus)

    Science.gov (United States)

    Hinton, Joseph W.; Proctor, Christine; Kelly, Marcella J.; van Manen, Frank T.; Vaughan, Michael R.; Chamberlain, Michael J.

    2016-01-01

    Recovery of large carnivores remains a challenge because complex spatial dynamics that facilitate population persistence are poorly understood. In particular, recovery of the critically endangered red wolf (Canis rufus) has been challenging because of its vulnerability to extinction via human-caused mortality and hybridization with coyotes (Canis latrans). Therefore, understanding red wolf space use and habitat selection is important to assist recovery because key aspects of wolf ecology such as interspecific competition, foraging, and habitat selection are well-known to influence population dynamics and persistence. During 2009–2011, we used global positioning system (GPS) radio-telemetry to quantify space use and 3rd-order habitat selection for resident and transient red wolves on the Albemarle Peninsula of eastern North Carolina. The Albemarle Peninsula was a predominantly agricultural landscape in which red wolves maintained spatially stable home ranges that varied between 25 km2 and 190 km2. Conversely, transient red wolves did not maintain home ranges and traversed areas between 122 km2 and 681 km2. Space use by transient red wolves was not spatially stable and exhibited shifting patterns until residency was achieved by individual wolves. Habitat selection was similar between resident and transient red wolves in which agricultural habitats were selected over forested habitats. However, transients showed stronger selection for edges and roads than resident red wolves. Behaviors of transient wolves are rarely reported in studies of space use and habitat selection because of technological limitations to observed extensive space use and because they do not contribute reproductively to populations. Transients in our study comprised displaced red wolves and younger dispersers that competed for limited space and mating opportunities. Therefore, our results suggest that transiency is likely an important life-history strategy for red wolves that facilitates

  1. The Relationship between Habitat Loss and Fragmentation during Urbanization: An Empirical Evaluation from 16 World Cities.

    Directory of Open Access Journals (Sweden)

    Zhifeng Liu

    Full Text Available Urbanization results in habitat loss and habitat fragmentation concurrently, both influencing biodiversity and ecological processes. To evaluate these impacts, it is important to understand the relationships between habitat loss and habitat fragmentation per se (HLHF during urbanization. The objectives of this study were two-fold: 1 to quantify the different forms of the HLHF relationship during urbanization using multiple landscape metrics, and 2 to test the validity of the HLHF relations reported in the literature. Our analysis was based on a long-term urbanization dataset (1800-2000 of 16 large cities from around the world. Habitat area was represented as the percentage of non-built-up area in the landscape, while habitat fragmentation was measured using several landscape metrics. Our results show that the relationship between habitat loss and habitat fragmentation during urbanization is commonly monotonic-linear, exponential, or logarithmic, indicating that the degree of habitat fragmentation per se increases with habitat loss in general. We compared our results with 14 hypothesized HLHF relationships based on simulated landscapes found in the literature, and found that four of them were consistent with those of urbanization, whereas the other ten were not. Also, we identified six new HLHF relationships when fragmentation was measured by total core area, normalized total core area, patch density, edge density and landscape shape index, respectively. In addition, our study demonstrated that the "space-for-time" approach, frequently used in ecology and geography, generated specious HLHF relationships, suggesting that this approach is largely inappropriate for analyses of urban landscapes that are highly heterogeneous in space and unusually contingent in dynamics. Our results show both generalities and idiosyncrasies of the HLHF relationship, providing new insights for assessing ecological effects of urbanization.

  2. Remote maintenance systems requirements are being developed to provide design guidelines for machine components, to define maintenance interfaces, and to quantify maintenance equipment and procedures needed

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Tabor, M.A.

    1988-01-01

    Remote maintenance systems requirements are being developed to provide design guidelines for machine components, to define maintenance interfaces, and to quantify maintenance equipment and procedures needed

  3. Sand quarry wetlands provide high-quality habitat for native amphibians

    Directory of Open Access Journals (Sweden)

    M. Sievers

    2017-05-01

    Full Text Available Anthropogenic disturbances to habitats influence the fitness of individual animals, the abundance of their populations, and the composition of their communities. Wetlands in particular are frequently degraded and destroyed, impacting the animals that inhabit these important ecosystems. The creation of wetlands during and following sand extraction processes is inevitable, and thus, sand quarries have the potential to support aquatic animals. To determine how amphibians utilise these wetlands, I conducted nocturnal call surveys at wetlands within the Kables Sands quarry, New South Wales, Australia, and within surrounding reference wetlands, and quantified levels of developmental instability (DI as a proxy for fitness. Whilst quarry and reference wetlands were largely similar in terms of environmental characteristics, quarry wetlands consistently harboured more amphibian species and individuals. Using unsigned asymmetry as a measure of DI, frogs from the quarry sites exhibited significantly lower levels of DI compared to reference wetlands, indicating that quarry wetlands may be comparatively higher quality. Levels of DI within quarry wetlands also compared favourably to data from healthy frog populations extracted from the literature. Further enhancing the suitability of quarry wetlands would require minimal effort, with potentially significant increases in local and regional biodiversity. Documenting species presence and quantifying individual fitness by measuring limb lengths is an economically and logistically feasible method to assess the health of quarry wetlands. Overall, the methods outlined here provide a powerful, yet simple, tool to assess the overall health and suitability of quarry wetlands that could be easily adopted at quarries throughout the world.

  4. Quantifying sex, race, and age specific differences in bone microstructure requires measurement of anatomically equivalent regions.

    Science.gov (United States)

    Ghasem-Zadeh, Ali; Burghardt, Andrew; Wang, Xiao-Fang; Iuliano, Sandra; Bonaretti, Serena; Bui, Minh; Zebaze, Roger; Seeman, Ego

    2017-08-01

    Individuals differ in forearm length. As microstructure differs along the radius, we hypothesized that errors may occur when sexual and racial dimorphisms are quantified at a fixed distance from the radio-carpal joint. Microstructure was quantified ex vivo in 18 cadaveric radii using high resolution peripheral quantitative computed tomography and in vivo in 158 Asian and Caucasian women and men at a fixed region of interest (ROI), a corrected ROI positioned at 4.5-6% of forearm length and using the fixed ROI adjusted for cross sectional area (CSA), forearm length or height. Secular effects of age were assessed by comparing 38 younger and 33 older women. Ex vivo, similar amounts of bone mass fashioned adjacent cross sections. Larger distal cross sections had thinner porous cortices of lower matrix mineral density (MMD), a larger medullary CSA and higher trabecular density. Smaller proximal cross-sections had thicker less porous cortices of higher MMD, a small medullary canal with little trabecular bone. Taller persons had more distally positioned fixed ROIs which moved proximally when corrected. Shorter persons had more proximally positioned fixed ROIs which moved distally when corrected, so dimorphisms lessened. In the corrected ROIs, in Caucasians, women had 0.6 SD higher porosity and 0.6 SD lower trabecular density than men (pmicrostructure requires measurement of anatomically equivalent regions. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Visual motion detection and habitat preference in Anolis lizards.

    Science.gov (United States)

    Steinberg, David S; Leal, Manuel

    2016-11-01

    The perception of visual stimuli has been a major area of inquiry in sensory ecology, and much of this work has focused on coloration. However, for visually oriented organisms, the process of visual motion detection is often equally crucial to survival and reproduction. Despite the importance of motion detection to many organisms' daily activities, the degree of interspecific variation in the perception of visual motion remains largely unexplored. Furthermore, the factors driving this potential variation (e.g., ecology or evolutionary history) along with the effects of such variation on behavior are unknown. We used a behavioral assay under laboratory conditions to quantify the visual motion detection systems of three species of Puerto Rican Anolis lizard that prefer distinct structural habitat types. We then compared our results to data previously collected for anoles from Cuba, Puerto Rico, and Central America. Our findings indicate that general visual motion detection parameters are similar across species, regardless of habitat preference or evolutionary history. We argue that these conserved sensory properties may drive the evolution of visual communication behavior in this clade.

  6. Habitat use by mountain nyala Tragelaphus buxtoni determined using stem bite diameters at point of browse, bite rates, and time budgets in the Bale Mountains National Park, Ethiopia

    Directory of Open Access Journals (Sweden)

    Solomon A. TADESSE, Burt P. KOTLER

    2013-12-01

    Full Text Available We studied the habitat use of mountain nyala Tragelaphus buxtoni in the northern edge of the Bale Mountains National Park, Ethiopia. The aims of this study were to: (1 measure and quantify habitat-specific stem bite diameters of mountain nyala foraging on common natural plant species in two major habitat types (i.e. grasslands versus woodlands, and (2 quantify the bite rates (number of bites per minute and the activity time budgets of mountain nyala as functions of habitat type and sex-age category. We randomly laid out three transects in each habitat type. Following each transect, through focal animal observations, we assessed and quantified stem diameters at point of browse (dpb, bite rates, and time budgets of mountain nyala in grasslands versus woodlands. Stem dpb provide a measure of natural giving-up densities (GUDs and can be used to assess foraging costs and efficiencies, with greater stem dpb corresponding to lower costs and greater efficiencies. The results showed that stem dpb, bite rates, induced vigilance, and proportion of time spent in feeding differed between habitats. In particular, mountain nyala had greater stem dpb, higher bite rates, and spent a greater proportion of their time in feeding and less in induced vigilance in the grasslands. In addition, adult females had the highest bite rates, and the browse species Solanum marginatum had the greatest stem dpb. Generally, grasslands provide the mountain nyala with several advantages over the woodlands, including offering lower foraging costs, greater safety, and more time for foraging. The study advocates how behavioural indicators and natural GUDs are used to examine the habitat use of the endangered mountain nyala through applying non-invasive techniques. We conclude that the resulting measures are helpful for guiding conservation and management efforts and could be applicable to a number of endangered wildlife species including the mountain nyala [Current Zoology 59 (6 : 707

  7. Degradation of natural habitats by roads: Comparing land-take and noise effect zone

    International Nuclear Information System (INIS)

    Madadi, Hossein; Moradi, Hossein; Soffianian, Alireza; Salmanmahiny, Abdolrassoul; Senn, Josef; Geneletti, Davide

    2017-01-01

    Roads may act as barriers, negatively influencing the movement of animals, thereby causing disruption in landscapes. Roads cause habitat loss and fragmentation not only through their physical occupation, but also through traffic noise. The aim of this study is to provide a method to quantify the habitat degradation including habitat loss and fragmentation due to road traffic noise and to compare it with those of road land-take. Two types of fragmentation effects are determined: structural fragmentation (based on road land-take only), and functional fragmentation (noise effect zone fragmentation, buffer using a threshold of 40 dB). Noise propagation for roads with a traffic volume of more than 1000 vehicles per day was simulated by Calculation of Road Traffic Noise (CRTN) model. Habitat loss and fragmentation through land-take and noise effect zone were calculated and compared in Zagros Mountains in western Iran. The study area is characterized by three main habitat types (oak forest, scattered woodland and temperate grassland) which host endangered and protected wildlife species. Due to topographic conditions, land cover type, and the traffic volume in the region, the noise effect zone ranged from 50 to 2000 m which covers 18.3% (i.e. 516,929.95 ha) of the total study area. The results showed that the habitat loss due to noise effect zone is dramatically higher than that due to road land-take only (35% versus 1.04% of the total area). Temperate grasslands lost the highest proportion of the original area by both land-take and noise effect zone, but most area was lost in scattered woodland as compared to the other two habitat types. The results showed that considering the noise effect zone for habitat fragmentation resulted in an increase of 25.8% of the area affected (316,810 ha) as compared to using the land-take only (555,874 ha vs. 239,064 ha, respectively). The results revealed that the degree of habitat fragmentation is increasing by considering the noise

  8. National Coral Reef Monitoring Program: Towed-diver Surveys of Benthic Habitat, Key Benthic Species, and Marine Debris Sightings of the Marianas since 2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The towed-diver method is used to conduct benthic surveys, assessing large-scale disturbances (e.g., bleaching) and quantifying benthic components such as habitat...

  9. National Coral Reef Monitoring Program: Towed-diver Surveys of Benthic Habitat, Key Benthic Species, and Marine Debris Sightings of American Samoa in 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The towed-diver method is used to conduct benthic surveys, assessing large-scale disturbances (e.g., bleaching) and quantifying benthic components such as habitat...

  10. Does Wyoming's Core Area Policy Protect Winter Habitats for Greater Sage-Grouse?

    Science.gov (United States)

    Smith, Kurt T.; Beck, Jeffrey L.; Pratt, Aaron C.

    2016-10-01

    Conservation reserves established to protect important habitat for wildlife species are used world-wide as a wildlife conservation measure. Effective reserves must adequately protect year-round habitats to maintain wildlife populations. Wyoming's Sage-Grouse Core Area policy was established to protect breeding habitats for greater sage-grouse ( Centrocercus urophasianus). Protecting only one important seasonal habitat could result in loss or degradation of other important habitats and potential declines in local populations. The purpose of our study was to identify the timing of winter habitat use, the extent which individuals breeding in Core Areas used winter habitats, and develop resource selection functions to assess effectiveness of Core Areas in conserving sage-grouse winter habitats in portions of 5 Core Areas in central and north-central Wyoming during winters 2011-2015. We found that use of winter habitats occured over a longer period than current Core Area winter timing stipulations and a substantial amount of winter habitat outside of Core Areas was used by individuals that bred in Core Areas, particularly in smaller Core Areas. Resource selection functions for each study area indicated that sage-grouse were selecting habitats in response to landscapes dominated by big sagebrush and flatter topography similar to other research on sage-grouse winter habitat selection. The substantial portion of sage-grouse locations and predicted probability of selection during winter outside small Core Areas illustrate that winter requirements for sage-grouse are not adequately met by existing Core Areas. Consequently, further considerations for identifying and managing important winter sage-grouse habitats under Wyoming's Core Area Policy are warranted.

  11. Coastal vertebrate exposure to predicted habitat changes due to sea level rise

    Science.gov (United States)

    Hunter, Elizabeth A.; Nibbelink, Nathan P.; Alexander, Clark R.; Barrett, Kyle; Mengak, Lara F.; Guy, Rachel; Moore, Clinton; Cooper, Robert J.

    2015-01-01

    Sea level rise (SLR) may degrade habitat for coastal vertebrates in the Southeastern United States, but it is unclear which groups or species will be most exposed to habitat changes. We assessed 28 coastal Georgia vertebrate species for their exposure to potential habitat changes due to SLR using output from the Sea Level Affecting Marshes Model and information on the species’ fundamental niches. We assessed forecasted habitat change up to the year 2100 using three structural habitat metrics: total area, patch size, and habitat permanence. Almost all of the species (n = 24) experienced negative habitat changes due to SLR as measured by at least one of the metrics. Salt marsh and ocean beach habitats experienced the most change (out of 16 categorical land cover types) across the three metrics and species that used salt marsh extensively (rails and marsh sparrows) were ranked highest for exposure to habitat changes. Species that nested on ocean beaches (Diamondback Terrapins, shorebirds, and terns) were also ranked highly, but their use of other foraging habitats reduced their overall exposure. Future studies on potential effects of SLR on vertebrates in southeastern coastal ecosystems should focus on the relative importance of different habitat types to these species’ foraging and nesting requirements. Our straightforward prioritization approach is applicable to other coastal systems and can provide insight to managers on which species to focus resources, what components of their habitats need to be protected, and which locations in the study area will provide habitat refuges in the face of SLR.

  12. The micro-habitat methodology. Application protocols

    Energy Technology Data Exchange (ETDEWEB)

    Sabaton, C; Valentin, S; Souchon, Y

    1995-06-01

    A strong need has been felt for guidelines to help various entities in applying the micro-habitat methodology, particularly in impact studies on hydroelectric installations. CEMAGREF and Electricite de France have developed separately two protocols with five major steps: reconnaissance of the river, selection of representative units to be studied in greater depth, morpho-dynamic measurements at one or more rates of discharge and hydraulic modeling, coupling of hydraulic and biological models, calculation of habitat-quality scores for fish, analysis of results. The two approaches give very comparable results and are essentially differentiated by the hydraulic model used. CEMAGREF uses a one-dimensional model requiring measurements at only one discharge rate. Electricite de France uses a simplified model based on measurements at several rates of discharge. This approach is possible when discharge can be controlled in the study area during data acquisition, as is generally the case downstream of hydroelectric installations. The micro-habitat methodology is now a fully operational tool with which to study changes in fish habitat quality in relation to varying discharge. It provides an element of assessment pertinent to the choice of instreaming flow to be maintained downstream of a hydroelectric installation; this information is essential when the flow characteristics (velocity, depth) and the nature of the river bed are the preponderant factors governing habitat suitability for trout or salmon. The ultimate decision must nonetheless take into account any other potentially limiting factors for the biocenoses on the one hand, and the target water use objectives on the other. In many cases, compromises must be found among different uses, different species and different stages in the fish development cycle. (Abstract Truncated)

  13. Modeling marbled murrelet (Brachyramphus marmoratus) habitat using LiDAR-derived canopy data

    Science.gov (United States)

    Hagar, Joan C.; Eskelson, Bianca N.I.; Haggerty, Patricia K.; Nelson, S. Kim; Vesely, David G.

    2014-01-01

    LiDAR (Light Detection And Ranging) is an emerging remote-sensing tool that can provide fine-scale data describing vertical complexity of vegetation relevant to species that are responsive to forest structure. We used LiDAR data to estimate occupancy probability for the federally threatened marbled murrelet (Brachyramphus marmoratus) in the Oregon Coast Range of the United States. Our goal was to address the need identified in the Recovery Plan for a more accurate estimate of the availability of nesting habitat by developing occupancy maps based on refined measures of nest-strand structure. We used murrelet occupancy data collected by the Bureau of Land Management Coos Bay District, and canopy metrics calculated from discrete return airborne LiDAR data, to fit a logistic regression model predicting the probability of occupancy. Our final model for stand-level occupancy included distance to coast, and 5 LiDAR-derived variables describing canopy structure. With an area under the curve value (AUC) of 0.74, this model had acceptable discrimination and fair agreement (Cohen's κ = 0.24), especially considering that all sites in our sample were regarded by managers as potential habitat. The LiDAR model provided better discrimination between occupied and unoccupied sites than did a model using variables derived from Gradient Nearest Neighbor maps that were previously reported as important predictors of murrelet occupancy (AUC = 0.64, κ = 0.12). We also evaluated LiDAR metrics at 11 known murrelet nest sites. Two LiDAR-derived variables accurately discriminated nest sites from random sites (average AUC = 0.91). LiDAR provided a means of quantifying 3-dimensional canopy structure with variables that are ecologically relevant to murrelet nesting habitat, and have not been as accurately quantified by other mensuration methods.

  14. Bird communities of the arctic shrub tundra of Yamal: habitat specialists and generalists.

    Directory of Open Access Journals (Sweden)

    Vasiliy Sokolov

    Full Text Available BACKGROUND: The ratio of habitat generalists to specialists in birds has been suggested as a good indicator of ecosystem changes due to e.g. climate change and other anthropogenic perturbations. Most studies focusing on this functional component of biodiversity originate, however, from temperate regions. The Eurasian Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by domestic reindeer and growing human activity. METHODOLOGY/PRINCIPAL FINDINGS: Here we monitored bird communities in a tundra landscape harbouring shrub and open habitats in order to analyse bird habitat relationships and quantify habitat specialization. We used ordination methods to analyse habitat associations and estimated the proportions of specialists in each of the main habitats. Correspondence Analysis identified three main bird communities, inhabiting upland, lowland and dense willow shrubs. We documented a stable structure of communities despite large multiannual variations of bird density (from 90 to 175 pairs/km(2. Willow shrub thickets were a hotspot for bird density, but not for species richness. The thickets hosted many specialized species whose main distribution area was south of the tundra. CONCLUSION/SIGNIFICANCE: If current arctic changes result in a shrubification of the landscape as many studies suggested, we would expect an increase in the overall bird abundance together with an increase of local specialists, since they are associated with willow thickets. The majority of these species have a southern origin and their increase in abundance would represent a strengthening of the boreal component in the southern tundra, perhaps at the expense of species typical of the subarctic zone, which appear to be generalists within this zone.

  15. Variability of haloxylon ammodendron (C. A. Mey) bunge populations from different habitats

    International Nuclear Information System (INIS)

    Lv, C.

    2015-01-01

    Haloxylon ammodendron (C.A. Mey) Bunge occupies a wide range of different habitats in north-west China. The aim of this study was to quantify variation in population growth characteristics of H. ammodendron from different sites and to relate this variation to different environmental conditions. To this end, 6 populations with visible differences were chosen and a range of morphological as well as seed-related characteristics like density, height, crown, basal diameter, seed mass, 1000 seed weight, seed number, seed diameter and germination rate were measured. The variations in the averages of overall traits were explained. The differences between-populations were 33 percentage, whereas those within population were 67 percentage. The largest variation was detected in morphological-related traits between-populations (38 percentage). In particular, the density, height, 1000 seed weight and germination rate differed strongly between populations. The population growth characteristics were closely related to the soil property at the sites of origin. The soil property can explain most of the variations in the morphological-related traits. They were concluded that the diversity of population growth characteristics in different habitats provides the potential of population reproduction and the protection of original habitats is extremely important. (author)

  16. Modeling habitat split: landscape and life history traits determine amphibian extinction thresholds.

    Directory of Open Access Journals (Sweden)

    Carlos Roberto Fonseca

    Full Text Available Habitat split is a major force behind the worldwide decline of amphibian populations, causing community change in richness and species composition. In fragmented landscapes, natural remnants, the terrestrial habitat of the adults, are frequently separated from streams, the aquatic habitat of the larvae. An important question is how this landscape configuration affects population levels and if it can drive species to extinction locally. Here, we put forward the first theoretical model on habitat split which is particularly concerned on how split distance - the distance between the two required habitats - affects population size and persistence in isolated fragments. Our diffusive model shows that habitat split alone is able to generate extinction thresholds. Fragments occurring between the aquatic habitat and a given critical split distance are expected to hold viable populations, while fragments located farther away are expected to be unoccupied. Species with higher reproductive success and higher diffusion rate of post-metamorphic youngs are expected to have farther critical split distances. Furthermore, the model indicates that negative effects of habitat split are poorly compensated by positive effects of fragment size. The habitat split model improves our understanding about spatially structured populations and has relevant implications for landscape design for conservation. It puts on a firm theoretical basis the relation between habitat split and the decline of amphibian populations.

  17. Modeling habitat split: landscape and life history traits determine amphibian extinction thresholds.

    Science.gov (United States)

    Fonseca, Carlos Roberto; Coutinho, Renato M; Azevedo, Franciane; Berbert, Juliana M; Corso, Gilberto; Kraenkel, Roberto A

    2013-01-01

    Habitat split is a major force behind the worldwide decline of amphibian populations, causing community change in richness and species composition. In fragmented landscapes, natural remnants, the terrestrial habitat of the adults, are frequently separated from streams, the aquatic habitat of the larvae. An important question is how this landscape configuration affects population levels and if it can drive species to extinction locally. Here, we put forward the first theoretical model on habitat split which is particularly concerned on how split distance - the distance between the two required habitats - affects population size and persistence in isolated fragments. Our diffusive model shows that habitat split alone is able to generate extinction thresholds. Fragments occurring between the aquatic habitat and a given critical split distance are expected to hold viable populations, while fragments located farther away are expected to be unoccupied. Species with higher reproductive success and higher diffusion rate of post-metamorphic youngs are expected to have farther critical split distances. Furthermore, the model indicates that negative effects of habitat split are poorly compensated by positive effects of fragment size. The habitat split model improves our understanding about spatially structured populations and has relevant implications for landscape design for conservation. It puts on a firm theoretical basis the relation between habitat split and the decline of amphibian populations.

  18. Developmental plasticity of shell morphology of quagga mussels from shallow and deep-water habitats of the Great Lakes.

    Science.gov (United States)

    Peyer, Suzanne M; Hermanson, John C; Lee, Carol Eunmi

    2010-08-01

    The invasive zebra mussel (Dreissena polymorpha) has quickly colonized shallow-water habitats in the North American Great Lakes since the 1980s but the quagga mussel (Dreissena bugensis) is becoming dominant in both shallow and deep-water habitats. While quagga mussel shell morphology differs between shallow and deep habitats, functional causes and consequences of such difference are unknown. We examined whether quagga mussel shell morphology could be induced by three environmental variables through developmental plasticity. We predicted that shallow-water conditions (high temperature, food quantity, water motion) would yield a morphotype typical of wild quagga mussels from shallow habitats, while deep-water conditions (low temperature, food quantity, water motion) would yield a morphotype present in deep habitats. We tested this prediction by examining shell morphology and growth rate of quagga mussels collected from shallow and deep habitats and reared under common-garden treatments that manipulated the three variables. Shell morphology was quantified using the polar moment of inertia. Of the variables tested, temperature had the greatest effect on shell morphology. Higher temperature (approximately 18-20 degrees C) yielded a morphotype typical of wild shallow mussels regardless of the levels of food quantity or water motion. In contrast, lower temperature (approximately 6-8 degrees C) yielded a morphotype approaching that of wild deep mussels. If shell morphology has functional consequences in particular habitats, a plastic response might confer quagga mussels with a greater ability than zebra mussels to colonize a wider range of habitats within the Great Lakes.

  19. The influence of fine-scale habitat features on regional variation in population performance of alpine White-tailed Ptarmigan

    Science.gov (United States)

    Fedy, B.; Martin, K.

    2011-01-01

    It is often assumed (explicitly or implicitly) that animals select habitat features to maximize fitness. However, there is often a mismatch between preferred habitats and indices of individual and population measures of performance. We examined the influence of fine-scale habitat selection on the overall population performance of the White-tailed Ptarmigan (Lagopus leucura), an alpine specialist, in two subdivided populations whose habitat patches are configured differently. The central region of Vancouver Island, Canada, has more continuous and larger habitat patches than the southern region. In 2003 and 2004, using paired logistic regression between used (n = 176) and available (n = 324) sites, we identified food availability, distance to standing water, and predator cover as preferred habitat components . We then quantified variation in population performance in the two regions in terms of sex ratio, age structure (n = 182 adults and yearlings), and reproductive success (n = 98 females) on the basis of 8 years of data (1995-1999, 2002-2004). Region strongly influenced females' breeding success, which, unsuccessful hens included, was consistently higher in the central region (n = 77 females) of the island than in the south (n = 21 females, P = 0.01). The central region also had a much higher proportion of successful hens (87%) than did the south (55%, P < 0.001). In light of our findings, we suggest that population performance is influenced by a combination of fine-scale habitat features and coarse-scale habitat configuration. ?? The Cooper Ornithological Society 2011.

  20. Nest trampling and ground nesting birds: Quantifying temporal and spatial overlap between cattle activity and breeding redshank.

    Science.gov (United States)

    Sharps, Elwyn; Smart, Jennifer; Mason, Lucy R; Jones, Kate; Skov, Martin W; Garbutt, Angus; Hiddink, Jan G

    2017-08-01

    Conservation grazing for breeding birds needs to balance the positive effects on vegetation structure and negative effects of nest trampling. In the UK, populations of Common redshank Tringa totanus breeding on saltmarshes declined by >50% between 1985 and 2011. These declines have been linked to changes in grazing management. The highest breeding densities of redshank on saltmarshes are found in lightly grazed areas. Conservation initiatives have encouraged low-intensity grazing at nest trampling. If livestock distribution is not spatially or temporally homogenous but concentrated where and when redshank breed, rates of nest trampling may be much higher than expected based on livestock density alone. By GPS tracking cattle on saltmarshes and monitoring trampling of dummy nests, this study quantified (i) the spatial and temporal distribution of cattle in relation to the distribution of redshank nesting habitats and (ii) trampling rates of dummy nests. The distribution of livestock was highly variable depending on both time in the season and the saltmarsh under study, with cattle using between 3% and 42% of the saltmarsh extent and spending most their time on higher elevation habitat within 500 m of the sea wall, but moving further onto the saltmarsh as the season progressed. Breeding redshank also nest on these higher elevation zones, and this breeding coincides with the early period of grazing. Probability of nest trampling was correlated to livestock density and was up to six times higher in the areas where redshank breed. This overlap in both space and time of the habitat use of cattle and redshank means that the trampling probability of a nest can be much higher than would be expected based on standard measures of cattle density. Synthesis and applications : Because saltmarsh grazing is required to maintain a favorable vegetation structure for redshank breeding, grazing management should aim to keep livestock away from redshank nesting habitat between mid

  1. Defining critical habitats of threatened and endemic reef fishes with a multivariate approach.

    Science.gov (United States)

    Purcell, Steven W; Clarke, K Robert; Rushworth, Kelvin; Dalton, Steven J

    2014-12-01

    Understanding critical habitats of threatened and endemic animals is essential for mitigating extinction risks, developing recovery plans, and siting reserves, but assessment methods are generally lacking. We evaluated critical habitats of 8 threatened or endemic fish species on coral and rocky reefs of subtropical eastern Australia, by measuring physical and substratum-type variables of habitats at fish sightings. We used nonmetric and metric multidimensional scaling (nMDS, mMDS), Analysis of similarities (ANOSIM), similarity percentages analysis (SIMPER), permutational analysis of multivariate dispersions (PERMDISP), and other multivariate tools to distinguish critical habitats. Niche breadth was widest for 2 endemic wrasses, and reef inclination was important for several species, often found in relatively deep microhabitats. Critical habitats of mainland reef species included small caves or habitat-forming hosts such as gorgonian corals and black coral trees. Hard corals appeared important for reef fishes at Lord Howe Island, and red algae for mainland reef fishes. A wide range of habitat variables are required to assess critical habitats owing to varied affinities of species to different habitat features. We advocate assessments of critical habitats matched to the spatial scale used by the animals and a combination of multivariate methods. Our multivariate approach furnishes a general template for assessing the critical habitats of species, understanding how these vary among species, and determining differences in the degree of habitat specificity. © 2014 Society for Conservation Biology.

  2. Species’ traits help predict small mammal responses to habitat homogenization by an invasive grass

    Science.gov (United States)

    Ceradini, Joseph P.; Chalfoun, Anna D.

    2017-01-01

    Invasive plants can negatively affect native species, however, the strength, direction, and shape of responses may vary depending on the type of habitat alteration and the natural history of native species. To prioritize conservation of vulnerable species, it is therefore critical to effectively predict species’ responses to invasive plants, which may be facilitated by a framework based on species’ traits. We studied the population and community responses of small mammals and changes in habitat heterogeneity across a gradient of cheatgrass (Bromus tectorum) cover, a widespread invasive plant in North America. We live-trapped small mammals over two summers and assessed the effect of cheatgrass on native small mammal abundance, richness, and species-specific and trait-based occupancy, while accounting for detection probability and other key habitat elements. Abundance was only estimated for the most common species, deer mice (Peromyscus maniculatus). All species were pooled for the trait-based occupancy analysis to quantify the ability of small mammal traits (habitat association, mode of locomotion, and diet) to predict responses to cheatgrass invasion. Habitat heterogeneity decreased with cheatgrass cover. Deer mouse abundance increased marginally with cheatgrass. Species richness did not vary with cheatgrass, however, pocket mouse (Perognathus spp.) and harvest mouse (Reithrodontomys spp.) occupancy tended to decrease and increase, respectively, with cheatgrass cover, suggesting a shift in community composition. Cheatgrass had little effect on occupancy for deer mice, 13-lined ground squirrels (Spermophilus tridecemlineatus), and Ord's kangaroo rat (Dipodomys ordii). Species’ responses to cheatgrass primarily corresponded with our a priori predictions based on species’ traits. The probability of occupancy varied significantly with a species’ habitat association but not with diet or mode of locomotion. When considered within the context of a rapid

  3. Bird-community responses to habitat creation in a long-term, large-scale natural experiment.

    Science.gov (United States)

    Whytock, Robin C; Fuentes-Montemayor, Elisa; Watts, Kevin; Barbosa De Andrade, Patanjaly; Whytock, Rory T; French, Paul; Macgregor, Nicholas A; Park, Kirsty J

    2018-04-01

    Ecosystem function and resilience are compromised when habitats become fragmented due to land-use change. This has led to national and international conservation strategies aimed at restoring habitat extent and improving functional connectivity (i.e., maintaining dispersal processes). However, biodiversity responses to landscape-scale habitat creation and the relative importance of spatial and temporal scales are poorly understood, and there is disagreement over which conservation strategies should be prioritized. We used 160 years of historic post-agricultural woodland creation as a natural experiment to evaluate biodiversity responses to habitat creation in a landscape context. Birds were surveyed in 101 secondary, broadleaf woodlands aged 10-160 years with ≥80% canopy cover and in landscapes with 0-17% broadleaf woodland cover within 3000 m. We used piecewise structural equation modeling to examine the direct and indirect relationships between bird abundance and diversity, ecological continuity, patch characteristics, and landscape structure and quantified the relative conservation value of local and landscape scales for bird communities. Ecological continuity indirectly affected overall bird abundance and species richness through its effects on stand structure, but had a weaker influence (effect size near 0) on the abundance and diversity of species most closely associated with woodland habitats. This was probably because woodlands were rapidly colonized by woodland generalists in ≤10 years (minimum patch age) but were on average too young (median 50 years) to be colonized by woodland specialists. Local patch characteristics were relatively more important than landscape characteristics for bird communities. Based on our results, biodiversity responses to habitat creation depended on local- and landscape-scale factors that interacted across time and space. We suggest that there is a need for further studies that focus on habitat creation in a landscape

  4. Human Aspects and Habitat Studies from EuroGeoMars Campaign

    Science.gov (United States)

    Boche-Sauvan, L.; Pletser, V.; Foing, B. H.; Eurogeomars Team

    2009-04-01

    Introduction: In a human space mission, the human factor is one of the dominant aspects, which may strongly influence work results and efficiency. To quantify such a difficult and uncontrollable aspect of space missions, it is necessary to reproduce as exactly as possible the environmental and technical conditions in which astronauts may be confronted: limited re-sources, social interactions in an isolated and cramped area… We will take the benefit of the EuroGeoMars campaign in the Mars Desert Research Station (MDRS, Mars Society) in Utah to observe and measure these characteristics. EuroGeoMars campaign: The EuroGeoMars team aims at assessing the development of scientific protocols and techniques in geology and biology research in planetary conditions. In this framework, MRDS simulation constitutes its main achievement. The scientific investigations conducted in MRDS are expected to provide valuable results, beyond the simple reflection on how managing planetary specific conditions. Nevertheless, the different scientific protocols, even tailored for extreme environmental conditions, require an exhaustive analysis to evaluate how the results and their timing may possibly be affected. MDRS: The MDRS habitat will demand the crew members to work in a cramped environment, surrounded by dust and very limited manpower. Moreover, energy power and communication bandwidth will be limited to the crew members. Human aspects and habitat studies: The crewmember will work in an uncomfortable environment in the habitat: dust, cramping and crowd. Moreover, the sustainibility of the mission will relie on an optimal energy and ressources sharing. This will impose a planification of the different investigating activities. The study of the human aspects and habitat will be performed in terms of impact on scientific and technical tasks rather than in terms of crew's comfort. As any astronaut will previously be aware of the daily condition, we want to improve the working conditions

  5. Chapter 13 Application of landscape and habitat suitability models to conservation: the Hoosier National Forest land-management plan

    Science.gov (United States)

    Chadwick D. Rittenhouse; Stephen R. Shifley; William D. Dijak; Zhaofei Fan; Frank R., III Thompson; Joshua J. Millspaugh; Judith A. Perez; Cynthia M. Sandeno

    2011-01-01

    We demonstrate an approach to integrated land-management planning and quantify differences in vegetation and avian habitat conditions among 5 management alternatives as part of the Hoosier National Forest planning process. The alternatives differed in terms of the type, extent, magnitude, frequency, and location of management activities. We modeled ecological processes...

  6. Ruddy Shelduck Tadorna ferruginea home range and habitat use during the non-breeding season in Assam, India

    Science.gov (United States)

    Namgail, T.; Takekawa, John Y.; Sivananinthaperumal, B.; Areendran, G.; Sathiyaselvam, P.; Mundkur, T.; Mccracken, T.; Newman, S.

    2011-01-01

    India is an important non-breeding ground for migratory waterfowl in the Central Asian Flyway. Millions of birds visit wetlands across the country, yet information on their distribution, abundance, and use of resources is rudimentary at best. Limited information suggests that populations of several species of migratory ducks are declining due to encroachment of wetland habitats largely by agriculture and industry. The development of conservation strategies is stymied by a lack of ecological information on these species. We conducted a preliminary assessment of the home range and habitat use of Ruddy Shelduck Tadorna ferruginea in the northeast Indian state of Assam. Seven Ruddy Shelducks were fitted with solar-powered Global Positioning System (GPS) satellite transmitters, and were tracked on a daily basis during the winter of 2009-2010. Locations from all seven were used to describe habitat use, while locations from four were used to quantify their home range, as the other three had too few locations (2 (range = 22-87 km2) and an average home range (95% contour) of 610 km2 (range = 222-1,550 km2). Resource Selection Functions (RSF), used to describe habitat use, showed that the birds frequented riverine wetlands more than expected, occurred on grasslands and shrublands in proportion to their availability, and avoided woods and cropland habitats. The core use areas for three individuals (75%) were on the Brahmaputra River, indicating their preference for riverine habitats. Management and protection of riverine habitats and nearby grasslands may benefit conservation efforts for the Ruddy Shelduck and waterfowl species that share these habitats during the non-breeding season.

  7. Habitats and Species Covered by the EEC Habitats Directive

    DEFF Research Database (Denmark)

    Pihl, S.; Søgaard, B.; Ejrnæs, R.

    of Conservation (SAC's), Natura 2000. The designations are based upon the presence of 60 of the natural habitat types listed in Annex I of the Directive and approx. 44 of the species listed in Annex II which occur within the territory of Denmark and for the conservation of which the Community has a special...... and the Danish county authorities have initiated a co-operative programme to provide and compile the data necessary to assess the conservation status of the natural habitat types and species concerned. The purpose of this report is to present the conservation status of the habitats and species in Denmark...

  8. Columbia River wildlife mitigation habitat evaluation procedures report: Scotch Creek Wildlife Area, Berg Brothers, and Douglas County pygmy rabbit projects

    International Nuclear Information System (INIS)

    Ashley, P.R.; Ratassepp, J.; Berger, M.; Judd, S.L.

    1997-01-01

    This Habitat Evaluation Procedure study was conducted to determine baseline habitat units (HUs) on the Scotch Creek, Mineral Hill, Pogue Mountain, Chesaw and Tunk Valley Habitat Areas (collectively known as the Scotch Creek Wildlife Area) in Okanogan County, Sagebrush Flat and the Dormaler property in Douglas County, and the Berg Brothers ranch located in Okanogan County within the Colville Reservation. A HEP team comprised of individuals from the Washington Department of Fish and Wildlife, the Confederated Tribes of the Colville Reservation, and the Natural Resources Conservation Service (Appendix A) conducted baseline habitat surveys using the following HEP evaluation species: mule deer (Odocoileus hemionus), sharp-tailed grouse (Tympanuchus phasianellus), pygmy rabbit (Brachylagus idahoensis), white-tailed deer (Odocoileus virginiana), mink (Mustela vison), Canada goose (Branta canadensis), downy woodpecker (Picoides pubescens), Lewis woodpecker (Melanerpes lewis), and Yellow warbler (Dendroica petechia). Results of the HEP analysis are listed below. General ratings (poor, marginal, fair, etc.,) are described in Appendix B. Mule deer habitat was marginal lacking diversity and quantify of suitable browse species. Sharp-tailed grouse habitat was marginal lacking residual nesting cover and suitable winter habitat Pygmy rabbit habitat was in fair condition except for the Dormaier property which was rated marginal due to excessive shrub canopy closure at some sites. This report is an analysis of baseline habitat conditions on mitigation project lands and provides estimated habitat units for mitigation crediting purposes. In addition, information from this document could be used by wildlife habitat managers to develop management strategies for specific project sites

  9. Columbia River Wildlife Mitigation Habitat Evaluation Procedures Report / Scotch Creek Wildlife Area, Berg Brothers, and Douglas County Pygmy Rabbit Projects.

    Energy Technology Data Exchange (ETDEWEB)

    Ashley, Paul R.

    1997-01-01

    This Habitat Evaluation Procedure study was conducted to determine baseline habitat units (HUs) on the Scotch Creek, Mineral Hill, Pogue Mountain, Chesaw and Tunk Valley Habitat Areas (collectively known as the Scotch Creek Wildlife Area) in Okanogan County, Sagebrush Flat and the Dormaler property in Douglas County, and the Berg Brothers ranch located in Okanogan County within the Colville Reservation. A HEP team comprised of individuals from the Washington Department of Fish and Wildlife, the Confederated Tribes of the Colville Reservation, and the Natural Resources Conservation Service (Appendix A) conducted baseline habitat surveys using the following HEP evaluation species: mule deer (Odocoileus hemionus), sharp-tailed grouse (Tympanuchus phasianellus), pygmy rabbit (Brachylagus idahoensis), white-tailed deer (Odocoileus virginiana), mink (Mustela vison), Canada goose (Branta canadensis), downy woodpecker (Picoides pubescens), Lewis woodpecker (Melanerpes lewis), and Yellow warbler (Dendroica petechia). Results of the HEP analysis are listed below. General ratings (poor, marginal, fair, etc.,) are described in Appendix B. Mule deer habitat was marginal lacking diversity and quantify of suitable browse species. Sharp-tailed grouse habitat was marginal lacking residual nesting cover and suitable winter habitat Pygmy rabbit habitat was in fair condition except for the Dormaier property which was rated marginal due to excessive shrub canopy closure at some sites. This report is an analysis of baseline habitat conditions on mitigation project lands and provides estimated habitat units for mitigation crediting purposes. In addition, information from this document could be used by wildlife habitat managers to develop management strategies for specific project sites.

  10. National Coral Reef Monitoring Program: Towed-diver Surveys of Benthic Habitat, Key Benthic Species, and Marine Debris Sightings of the Hawaiian Archipelago in 2016

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The towed-diver method is used to conduct benthic surveys, assessing large-scale disturbances (e.g., bleaching) and quantifying benthic components such as habitat...

  11. Habitat functionality for the ecosystem service of pest control: reproduction and feeding sites of pests and natural enemies

    NARCIS (Netherlands)

    Bianchi, F.J.J.A.; Schellhorn, N.A.; Cunningham, S.A.

    2013-01-01

    1 Landscape management for enhanced natural pest control requires knowledge of the ecological function of the habitats present in the landscape mosaic. However, little is known about which habitat types in agricultural landscapes function as reproduction habitats for arthropod pests and predators

  12. Magellanic Woodpeckers in three national parks of central-southern Chile: habitat effects and population variation over the last two decades

    Directory of Open Access Journals (Sweden)

    Pablo M. Vergara

    2017-12-01

    Full Text Available A major challenge for protected areas is providing wildlife with enough suitable habitat to cope with stochastic environment and increased pressure from the surrounding landscapes. In this study, we addressed changes in local populations of Magellanic Woodpeckers (Campephilus magellanicus occupying three national parks of central-southern Chile. We compared the breeding and postbreeding abundance of woodpeckers during the 1990s with the present (2016 abundance (n = 4 years, and assessed the extent to which abundance was explained by forest type and quality of foraging habitat (as quantified through the plant senescence reflectance index; PSRI. Results show a distinctive temporal variation in woodpecker abundance at each park, with local populations of Magellanic Woodpeckers declining by 42.2% in Conguillío National Park, but increasing by 34.3% in Nahuelbuta National Park. Woodpeckers responded to forest conditions within each park such that their abundance increased with high quality of foraging habitat, i.e., large PSRI values, and the presence of old-growth Monkey puzzle (Araucaria araucana - Nothofagus pumilio mixed forest. Anecdotal evidence suggests that populations of woodpeckers in Conguillío National Park might have responded negatively to large-scale disturbances from recent forest fires affecting part of the forest area within park. Because stochastic events seemed to strongly mediate population changes, our findings suggest that regional conservation of Magellanic Woodpeckers requires expanding the current conservation area network in central-southern Chile.

  13. Modelling Fish Habitat Suitability in the Eastern English Channel. Application to community habitat level

    OpenAIRE

    Vaz, Sandrine; Carpentier, Andre; Loots, Christophe; Koubbi, Philippe

    2004-01-01

    Valuable marine habitats and living resources can be found in the Eastern English Channel and in 2003, a Franco-British Interreg IIIA project, ‘Eastern Channel Habitat Atlas for Marine Resource Management’ (CHARM), was initiated to support decision-making for management of essential fish habitats. Fish habitat corresponds to geographic areas within which ranges of environmental factors define the presence of a particular species. Habitat Suitability index (HSI) modelling was used to relate fi...

  14. Two-dimensional physical habitat modeling of effects of habitat structures on urban stream restoration

    Directory of Open Access Journals (Sweden)

    Dongkyun Im

    2011-12-01

    Full Text Available River corridors, even if highly modified or degraded, still provide important habitats for numerous biological species, and carry high aesthetic and economic values. One of the keys to urban stream restoration is recovery and maintenance of ecological flows sufficient to sustain aquatic ecosystems. In this study, the Hongje Stream in the Seoul metropolitan area of Korea was selected for evaluating a physically-based habitat with and without habitat structures. The potential value of the aquatic habitat was evaluated by a weighted usable area (WUA using River2D, a two-dimensional hydraulic model. The habitat suitability for Zacco platypus in the Hongje Stream was simulated with and without habitat structures. The computed WUA values for the boulder, spur dike, and riffle increased by about 2%, 7%, and 131%, respectively, after their construction. Also, the three habitat structures, especially the riffle, can contribute to increasing hydraulic heterogeneity and enhancing habitat diversity.

  15. A habitat assessment for Florida panther population expansion into central Florida

    Science.gov (United States)

    Thatcher, C.A.; Van Manen, F.T.; Clark, J.D.

    2009-01-01

    One of the goals of the Florida panther (Puma concolor coryi) recovery plan is to expand panther range north of the Caloosahatchee River in central Florida. Our objective was to evaluate the potential of that region to support panthers. We used a geographic information system and the Mahalanobis distance statistic to develop a habitat model based on landscape characteristics associated with panther home ranges. We used cross-validation and an independent telemetry data set to test the habitat model. We also conducted a least-cost path analysis to identify potential habitat linkages and to provide a relative measure of connectivity among habitat patches. Variables in our model were paved road density, major highways, human population density, percentage of the area permanently or semipermanently flooded, and percentage of the area in natural land cover. Our model clearly identified habitat typical of that found within panther home ranges based on model testing with recent telemetry data. We identified 4 potential translocation sites that may support a total of approximately 36 panthers. Although we identified potential habitat linkages, our least-cost path analyses highlighted the extreme isolation of panther habitat in portions of the study area. Human intervention will likely be required if the goal is to establish female panthers north of the Caloosahatchee in the near term.

  16. Habitat structure mediates biodiversity effects on ecosystem properties.

    Science.gov (United States)

    Godbold, J A; Bulling, M T; Solan, M

    2011-08-22

    Much of what we know about the role of biodiversity in mediating ecosystem processes and function stems from manipulative experiments, which have largely been performed in isolated, homogeneous environments that do not incorporate habitat structure or allow natural community dynamics to develop. Here, we use a range of habitat configurations in a model marine benthic system to investigate the effects of species composition, resource heterogeneity and patch connectivity on ecosystem properties at both the patch (bioturbation intensity) and multi-patch (nutrient concentration) scale. We show that allowing fauna to move and preferentially select patches alters local species composition and density distributions, which has negative effects on ecosystem processes (bioturbation intensity) at the patch scale, but overall positive effects on ecosystem functioning (nutrient concentration) at the multi-patch scale. Our findings provide important evidence that community dynamics alter in response to localized resource heterogeneity and that these small-scale variations in habitat structure influence species contributions to ecosystem properties at larger scales. We conclude that habitat complexity forms an important buffer against disturbance and that contemporary estimates of the level of biodiversity required for maintaining future multi-functional systems may need to be revised.

  17. Strategies for monitoring terrestrial animals and habitats

    Science.gov (United States)

    Richard Holthausen; Raymond L. Czaplewski; Don DeLorenzo; Greg Hayward; Winifred B. Kessler; Pat Manley; Kevin S. McKelvey; Douglas S. Powell; Leonard F. Ruggiero; Michael K. Schwartz; Bea Van Horne; Christina D. Vojta

    2005-01-01

    This General Technical Report (GTR) addresses monitoring strategies for terrestrial animals and habitats. It focuses on monitoring associated with National Forest Management Act planning and is intended to apply primarily to monitoring efforts that are broader than individual National Forests. Primary topics covered in the GTR are monitoring requirements; ongoing...

  18. Dam operations may improve aquatic habitat and offset negative effects of climate change.

    Science.gov (United States)

    Benjankar, Rohan; Tonina, Daniele; McKean, James A; Sohrabi, Mohammad M; Chen, Quiwen; Vidergar, Dmitri

    2018-05-01

    Dam operation impacts on stream hydraulics and ecological processes are well documented, but their effect depends on geographical regions and varies spatially and temporally. Many studies have quantified their effects on aquatic ecosystem based mostly on flow hydraulics overlooking stream water temperature and climatic conditions. Here, we used an integrated modeling framework, an ecohydraulics virtual watershed, that links catchment hydrology, hydraulics, stream water temperature and aquatic habitat models to test the hypothesis that reservoir management may help to mitigate some impacts caused by climate change on downstream flows and temperature. To address this hypothesis we applied the model to analyze the impact of reservoir operation (regulated flows) on Bull Trout, a cold water obligate salmonid, habitat, against unregulated flows for dry, average, and wet climatic conditions in the South Fork Boise River (SFBR), Idaho, USA. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. A Study of the Effects of Gas Well Compressor Noise on Breeding Bird Populations of the Rattlesnake Canyon Habitat Management Area, San Juan County, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    LaGory, K.E.; Chang, Young-Soo; Chun, K.C.; Reeves, T.; Liebich, R.; Smith, K.

    2001-06-04

    This report, conducted from May through July 2000, addressed the potential effect of compressor noise on breeding birds in gas-production areas administered by the FFO, specifically in the Rattlesnake Canyon Habitat Management Area northeast of Farmington, New Mexico. The study was designed to quantify and characterize noise output from these compressors and to determine if compressor noise affected bird populations in adjacent habitat during the breeding season.

  20. European red list of habitats. Part 1: Marine habitats

    NARCIS (Netherlands)

    Gubbay, S.; Sanders, N.; Haynes, T.; Janssen, J.A.M.; Rodwell, J.R.; Nieto, A.; Garcia Criado, M.; Beal, S.; Borg, J.

    2016-01-01

    The European Red List of Habitats provides an overview of the risk
    of collapse (degree of endangerment) of marine, terrestrial and
    freshwater habitats in the European Union (EU28) and adjacent
    regions (EU28+), based on a consistent set of categories and
    criteria, and detailed data

  1. Integrated Systems Health Management for Sustainable Habitats (Using Sustainability Base as a Testbed)

    Science.gov (United States)

    Martin, Rodney A.

    2017-01-01

    Habitation systems provide a safe place for astronauts to live and work in space and on planetary surfaces. They enable crews to live and work safely in deep space, and include integrated life support systems, radiation protection, fire safety, and systems to reduce logistics and the need for resupply missions. Innovative health management technologies are needed in order to increase the safety and mission-effectiveness for future space habitats on other planets, asteroids, or lunar surfaces. For example, off-nominal or failure conditions occurring in safety-critical life support systems may need to be addressed quickly by the habitat crew without extensive technical support from Earth due to communication delays. If the crew in the habitat must manage, plan and operate much of the mission themselves, operations support must be migrated from Earth to the habitat. Enabling monitoring, tracking, and management capabilities on-board the habitat and related EVA platforms for a small crew to use will require significant automation and decision support software.Traditional caution and warning systems are typically triggered by out-of-bounds sensor values, but can be enhanced by including machine learning and data mining techniques. These methods aim to reveal latent, unknown conditions while still retaining and improving the ability to provide highly accurate alerts for known issues. A few of these techniques will briefly described, along with performance targets for known faults and failures. Specific system health management capabilities required for habitat system elements (environmental control and life support systems, etc.) may include relevant subsystems such as water recycling systems, photovoltaic systems, electrical power systems, and environmental monitoring systems. Sustainability Base, the agency's flagship LEED-platinum certified green building acts as a living laboratory for testing advanced information and sustainable technologies that provides an

  2. Wildlife habitats in managed rangelands—the Great Basin of southeastern Oregon: manmade habitats.

    Science.gov (United States)

    Chris Maser; Jack Ward Thomas; Ira David Luman; Ralph. Anderson

    1979-01-01

    Manmade structures on rangelands provide specialized habitats for some species. These habitats and how they function as specialized habitat features are examined in this publication. The relationships of the wildlife of the Great Basin to such structures are detailed.

  3. Habitat use and movement of the endangered Arroyo Toad (Anaxyrus californicus) in coastal southern California

    Science.gov (United States)

    Gallegos, Elizabeth; Lyren, Lisa M.; Lovich, Robert E.; Mitrovich, Milan J.; Fisher, Robert N.

    2011-01-01

    Information on the habitat use and movement patterns of Arroyo Toads (Anaxyrus californicus) is limited. The temporal and spatial characteristics of terrestrial habitat use, especially as it relates to upland use in coastal areas of the species' range, are poorly understood. We present analyses of radiotelemetry data from 40 individual adult toads tracked at a single site in coastal southern California from March through November of 2004. We quantify adult Arroyo Toad habitat use and movements and interpret results in the context of their life history. We show concentrated activity by both male and female toads along stream terraces during and after breeding, and, although our fall sample size is low, the continued presence of adult toads in the floodplain through the late fall. Adult toads used open sandy flats with sparse vegetation. Home-range size and movement frequency varied as a function of body mass. Observed spatial patterns of movement and habitat use both during and outside of the breeding period as well as available climatological data suggest that overwintering of toads in floodplain habitats of near-coastal areas of southern California may be more common than previously considered. If adult toads are not migrating out of the floodplain at the close of the breeding season but instead overwinter on stream terraces in near-coastal areas, then current management practices that assume toad absence from floodplain habitats may be leaving adult toads over-wintering on stream terraces vulnerable to human disturbance during a time of year when Arroyo Toad mortality is potentially highest.

  4. Variation in habitat connectivity generates positive correlations between species and genetic diversity in a metacommunity.

    Science.gov (United States)

    Lamy, T; Jarne, P; Laroche, F; Pointier, J-P; Huth, G; Segard, A; David, P

    2013-09-01

    An increasing number of studies are simultaneously investigating species diversity (SD) and genetic diversity (GD) in the same systems, looking for 'species- genetic diversity correlations' (SGDCs). From negative to positive SGDCs have been reported, but studies have generally not quantified the processes underlying these correlations. They were also mostly conducted at large biogeographical scales or in recently degraded habitats. Such correlations have not been looked for in natural networks of connected habitat fragments (metacommunities), and the underlying processes remain elusive in most systems. We investigated these issues by studying freshwater snails in a pond network in Guadeloupe (Lesser Antilles). We recorded SD and habitat characteristics in 232 ponds and assessed GD in 75 populations of two species. Strongly significant and positive SGDCs were detected in both species. Based on a decomposition of SGDC as a function of variance-covariance of habitat characteristics, we showed that connectivity (opportunity of water flow between a site and the nearest watershed during the rainy season) has the strongest contribution on SGDCs. More connective sites received both more alleles and more species through immigration resulting in both higher GD and higher SD. Other habitat characteristics did not contribute, or contributed negatively, to SGDCs. This is true of the desiccation frequency of ponds during the dry season, presumably because species markedly differ in their ability to tolerate desiccation. Our study shows that variation in environmental characteristics of habitat patches can promote SGDCs at metacommunity scale when the studied species respond homogeneously to these environmental characteristics. © 2013 John Wiley & Sons Ltd.

  5. Effects of natural-channel-design restoration on habitat quality in Catskill Mountain streams, New York

    Science.gov (United States)

    Ernst, Anne G.; Baldigo, Barry P.; Mulvihill, Christiane; Vian, Mark

    2010-01-01

    Stream restoration has received much attention in recent years, yet there has been little effort to evaluate its impacts on physical habitat, stability, and biota. A popular but controversial stream restoration approach is natural channel design (NCD), which cannot be adequately evaluated without a long-term, independent assessment of its effects on stream habitat. Six reaches of five Catskill Mountain streams in southeastern New York were restored during 2000–2003 following NCD techniques to decrease bed and bank degradation, decrease sediment loads, and improve water quality. Habitat surveys were conducted during summer low flows from 2001 to 2007. The effects of the NCD projects on stream condition were assessed via a before–after–control–impact study design to quantify the net changes in stream and bank habitat variables relative to those in unaltered control reaches. Analysis of variance tests of three different measures of bank stability show that on average stream stability increased at treatment sites for 2–5 years after restoration. Mean channel depth, thalweg depth, and the pool–riffle ratio generally increased, whereas mean channel width, percent streambank coverage by trees, and shade decreased. Habitat suitability indices for local salmonid species increased at four of six reaches after restoration. The changes in channel dimensions rendered them generally more characteristic of stabler stream forms in the given valley settings. Although these studies were done relatively soon after project completion, our findings demonstrate that habitat conditions can be improved in degraded Catskill Mountain streams through NCD restoration.

  6. POPULASI DAN HABITAT Nepenthes ampullaria Jack. DI CAGAR ALAM MANDOR, KALIMANTAN BARAT

    Directory of Open Access Journals (Sweden)

    Maysarah .

    2017-04-01

    Full Text Available Nepenthes ampullaria Jack. is a species which adapted on the nutrient-poor areas in Mandor nature reserve.  Its could be increasing the quality of Mandor nature reserve as protected area. This research aims to study the population and habitat of N. ampullaria in the Mandor nature reserve. This study was conducted at two habitats, heath forest and peat swamp forest. Observations were made on, population abundance and habitat factors of  N. ampullaria. The results showed that the highest population density of N. ampullaria was in heath forest. Their are growth in groups. Vegetation analysis showed that constituent species habitat of N. ampullaria consist of 69 species from 39 familly. Result of identification to insects showed Formicidae is dominant family that trapped in pitcher of N. ampullaria. Temperature and humidity in N. ampullaria’s habitat has been switable for requirements growth of pitcher plant. Rainfall during the study was normally. Ratio of sand and soil on both affected the improvement of individual N. ampullaria in Mandor nature reserve. Keywords: habitat, Mandor nature reserve, Nepenthes ampullaria Jack, population

  7. Habitat and forage associations of a naturally colonising insect pollinator, the tree bumblebee Bombus hypnorum.

    Science.gov (United States)

    Crowther, Liam P; Hein, Pierre-Louis; Bourke, Andrew F G

    2014-01-01

    Bumblebees (Bombus species) are major pollinators of commercial crops and wildflowers but factors affecting their abundance, including causes of recent population declines, remain unclear. Investigating the ecology of species with expanding ranges provides a potentially powerful means of elucidating these factors. Such species may also bring novel pollination services to their new ranges. We therefore investigated landscape-scale habitat use and foraging preferences of the Tree Bumblebee, B. hypnorum, a recent natural colonist that has rapidly expanded its range in the UK over the past decade. Counts of B. hypnorum and six other Bombus species were made in March-June 2012 within a mixed landscape in south-eastern Norfolk, UK. The extent of different landscape elements around each transect was quantified at three scales (250 m, 500 m and 1500 m). We then identified the landscape elements that best predicted the density of B. hypnorum and other Bombus species. At the best fitting scale (250 m), B. hypnorum density was significantly positively associated with extent of both urban and woodland cover and significantly negatively associated with extent of oilseed rape cover. This combination of landscape predictors was unique to B. hypnorum. Urban and woodland cover were associated with B. hypnorum density at three and two, respectively, of the three scales studied. Relative to other Bombus species, B. hypnorum exhibited a significantly higher foraging preference for two flowering trees, Crataegus monogyna and Prunus spinosa, and significantly lower preferences for Brassica napus, Glechoma hederacea and Lamium album. Our study provides novel, quantitative support for an association of B. hypnorum with urban and woodland landscape elements. Range expansion in B. hypnorum appears to depend, on exploitation of widespread habitats underutilised by native Bombus species, suggesting B. hypnorum will readily co-exist with these species. These findings suggest that management

  8. Habitat degradation may affect niche segregation patterns in lizards

    Science.gov (United States)

    Pelegrin, N.; Chani, J. M.; Echevarria, A. L.; Bucher, E. H.

    2013-08-01

    Lizards partition resources in three main niche dimensions: time, space and food. Activity time and microhabitat use are strongly influenced by thermal environment, and may differ between species according to thermal requirements and tolerance. As thermal characteristics are influenced by habitat structure, microhabitat use and activity of lizards can change in disturbed habitats. We compared activity and microhabitat use of two abundant lizard species of the Semi-arid Chaco of Argentina between a restored and a highly degraded Chaco forest, to determine how habitat degradation affects lizard segregation in time and space, hypothesizing that as activity and microhabitat use of lizards are related to habitat structure, activity and microhabitat use of individual species can be altered in degraded habitats, thus changing segregation patterns between them. Activity changed from an overlapped pattern in a restored forest to a segregated pattern in a degraded forest. A similar trend was observed for microhabitat use, although to a less extent. No correlation was found between air temperature and lizard activity, but lizard activity varied along the day and among sites. Contrary to what was believed, activity patterns of neotropical diurnal lizards are not fixed, but affected by multiple factors related to habitat structure and possibly to interspecific interactions. Changes in activity patterns and microhabitat use in degraded forests may have important implications when analyzing the effects of climate change on lizard species, due to synergistic effects.

  9. Mosquito (Diptera: Culicidae) grouping based on larval habitat characteristics in high mountain ecosystems of Antioquia, Colombia.

    Science.gov (United States)

    Rosero-García, Doris; Rúa-Uribe, Guillermo; Correa, Margarita M; Conn, Jan E; Uribe-Soto, Sandra

    2018-06-01

    Information about mosquito ecology in the high mountain ecosystems of the Neotropical region is sparse. In general, few genera and species have been reported in these ecosystems and there is no information available on habitats and the mosquitoes occupying them. In the present study, specimens collected from NW Colombia in HME were grouped using larval habitat data via an Operational Taxonomic Unit (OTU) determination. A total of 719 mosquitoes was analyzed belonging to 44 OTUs. The analysis considered habitat features and clustered the specimens into six groups from A-F. Five of these included species from different genera, suggesting common habitat requirements. Group E with four genera, seven subgenera, and six species occupied the highest areas (above 3,000 m), whereas three groups (B, D, F) were detected at lower altitudes (1,960-2,002 m). Bromeliads were the most common larval habitat, with 47% (335/719) of the specimens; five genera, six subgenera, and eight species were identified and classified into 66% (29/44) of the OTUs. This work showed some similarities to the habitat requirements and provides a grouping system that constitutes an important baseline for the classification of mosquito fauna from high mountain ecosystems according to altitude and larval habitat. © 2018 The Society for Vector Ecology.

  10. Quantifying changes and influences on mottled duck density in Texas

    Science.gov (United States)

    Ross, Beth; Haukos, David A.; Walther, Patrick

    2018-01-01

    Understanding the relative influence of environmental and intrinsic effects on populations is important for managing and conserving harvested species, especially those species inhabiting changing environments. Additionally, climate change can increase the uncertainty associated with management of species in these changing environments, making understanding factors affecting their populations even more important. Coastal ecosystems are particularly threatened by climate change; the combined effects of increasing severe weather events, sea level rise, and drought will likely have non-linear effects on coastal marsh wildlife species and their associated habitats. A species of conservation concern that persists in these coastal areas is the mottled duck (Anas fulvigula). Mottled ducks in the western Gulf Coast are approximately 50% below target abundance numbers established by the Gulf Coast Joint Venture for Texas and Louisiana, USA. Although evidence for declines in mottled duck abundance is apparent, specific causes of the decrease remain unknown. Our goals were to determine where the largest declines in mottled duck population were occurring along the system of Texas Gulf Coast National Wildlife Refuges and quantify the relative contribution of environmental and intrinsic effects on changes to relative population density. We modeled aerial survey data of mottled duck density along the Texas Gulf Coast from 1986–2015 to quantify effects of extreme weather events on an index to mottled duck density using the United States Climate Extremes Index and Palmer Drought Severity Index. Our results indicate that decreases in abundance are best described by an increase in days with extreme 1-day precipitation from June to November (hurricane season) and an increase in drought severity. Better understanding those portions of the life cycle affected by environmental conditions, and how to manage mottled duck habitat in conjunction with these events will likely be key to

  11. Dynamics of soil chemistry in different serpentine habitats from Serbia

    Directory of Open Access Journals (Sweden)

    Vicić Dražen D.

    2014-01-01

    Full Text Available To enhance understanding of edaphic conditions in serpentine habitats, a thorough investigation of chemical and mechanical properties of three soils from disjunct ultramafic outcrops in the central Balkans was undertaken. Soil from a nearby chemically-contrasting limestone habitat was also analyzed. Three plant species differently associated with serpentine (Halacsya sendtneri, Cheilanthes marantae, and Seseli rigidum were references for site and soil selection. Twenty elements were scanned for, and fourteen were measured in seven sequentially-extracted soil fractions. Quantified soil properties also included: pH, levels of free CaCO3, organic matter, P2O5, K2O, N, C, S, cation exchange capacity, total organic carbon, field capacity and soil mechanical composition. The usual harsh components for plant growth in serpentine soil such as elevated Mg:Ca ratio, high levels of Ni, Cr, or Co, were significantly lower in the available fractions. There was a significant positive correlation of organic matter and field capacity, with most available Ca (70-80% found in the mobile, rather than the organically-bound fraction. This showed that a more favorable Mg:Ca ratio is highly dependent upon a higher field capacity, which is also in accordance with a more developed vegetation. Increasing the availability of metals (Al, Ba, Ca, Cr, Cu, Mg, Ni, Zn in a more developed serpentine grassland and forest vegetation, occurred only simultaneously with decrease of the Mg:Ca ratio and rise in other factors of fertility (N, P, K. Progressive development of ecosystem complexity therefore raised the availability of metals, but also reduced harsh Mg:Ca ratio disproportion, boosted levels of nutrients and raised soil field capacity. Principal components analysis confirmed that the main differences among serpentine habitats lay primarily in factors of fertility. The common habitat which hosts all three reference species offers intermediate conditions in a plant habitat

  12. Diversity and Community Composition of Vertebrates in Desert River Habitats

    Science.gov (United States)

    Free, C. L.; Baxter, G. S.; Dickman, C. R.; Lisle, A.; Leung, L. K.-P.

    2015-01-01

    Animal species are seldom distributed evenly at either local or larger spatial scales, and instead tend to aggregate in sites that meet their resource requirements and maximise fitness. This tendency is likely to be especially marked in arid regions where species could be expected to concentrate at resource-rich oases. In this study, we first test the hypothesis that productive riparian sites in arid Australia support higher vertebrate diversity than other desert habitats, and then elucidate the habitats selected by different species. We addressed the first aim by examining the diversity and composition of vertebrate assemblages inhabiting the Field River and adjacent sand dunes in the Simpson Desert, western Queensland, over a period of two and a half years. The second aim was addressed by examining species composition in riparian and sand dune habitats in dry and wet years. Vertebrate species richness was estimated to be highest (54 species) in the riverine habitats and lowest on the surrounding dune habitats (45 species). The riverine habitats had different species pools compared to the dune habitats. Several species, including the agamid Gowidon longirostris and tree frog Litoria rubella, inhabited the riverine habitats exclusively, while others such as the skinks Ctenotus ariadnae and C. dux were captured only in the dune habitats. The results suggest that, on a local scale, diversity is higher along riparian corridors and that riparian woodland is important for tree-dependent species. Further, the distribution of some species, such as Mus musculus, may be governed by environmental variables (e.g. soil moisture) associated with riparian corridors that are not available in the surrounding desert environment. We conclude that inland river systems may be often of high conservation value, and that management should be initiated where possible to alleviate threats to their continued functioning. PMID:26637127

  13. A Human Centred Interior Design of a Habitat Module for the International Space Station

    Science.gov (United States)

    Burattini, C.

    Since the very beginning of Space exploration, the interiors of a space habitat had to meet technological and functional requirements. Space habitats have now to meet completely different requirements related to comfort or at least to liveable environments. In order to reduce psychological drawbacks afflicting the crew during long periods of isolation in an extreme environment, one of the most important criteria is to assure high habitability levels. As a result of the Transhab project cancellation, the International Space Station (ISS) is actually made up of several research laboratories, but it has only one module for housing. This is suitable for short-term missions; middle ­ long stays require new solutions in terms of public and private spaces, as well as personal compartments. A design concept of a module appositely fit for living during middle-long stays aims to provide ISS with a place capable to satisfy habitability requirements. This paper reviews existing Space habitats and crew needs in a confined and extreme environment. The paper then describes the design of a new and human centred approach to habitation module typologies.

  14. Variable responses of fish assemblages, habitat, and stability to natural-channel-design restoration in Catskill Mountain streams

    Science.gov (United States)

    Baldigo, Barry P.; Ernst, Anne G.; Warren, Dana R.; Miller, Sarah J.

    2010-01-01

    Natural-channel-design (NCD) restorations were recently implemented within large segments of five first- and second-order streams in the Catskill Mountains of New York in an attempt to increase channel stability, reduce bed and bank erosion, and sustain water quality. In conjunction with these efforts, 54 fish and habitat surveys were done from 1999 to 2007 at six restored reaches and five stable control reaches to evaluate the effects of NCD restoration on fish assemblages, habitat, and bank stability. A before–after–control–impact study design and two-factor analysis of variance were used to quantify the net changes in habitat and fish population and community indices at treatment reaches relative to those at unaltered control reaches. The density and biomass of fish communities were often dominated by one or two small prey species and no or few predator species before restoration and by one or more trout (Salmonidae) species after restoration. Significant increases in community richness (30%), diversity (40%), species or biomass equitability (32%), and total biomass (up to 52%) in at least four of the six restored reaches demonstrate that NCD restorations can improve the health and sustainability of fish communities in geomorphically unstable Catskill Mountain streams over the short to marginally long term. Bank stability, stream habitat, and trout habitat suitability indices (HSIs) generally improved significantly at the restored reaches, but key habitat features and trout HSIs did not change or decreased at two of them. Fish communities and trout populations at these two reaches were not positively affected by NCD restorations. Though NCD restorations often had a positive effect on habitat and fish communities, our results show that the initial habitat conditions limit the relative improvements than can be achieved, habitat quality and stability do not necessarily respond in unison, and biotic and abiotic responses cannot always be generalized.

  15. Habitat risk assessment for regional ocean planning in the U.S. Northeast and Mid-Atlantic.

    Science.gov (United States)

    Wyatt, Katherine H; Griffin, Robert; Guerry, Anne D; Ruckelshaus, Mary; Fogarty, Michael; Arkema, Katie K

    2017-01-01

    Coastal habitats provide important benefits to people, including habitat for species targeted by fisheries and opportunities for tourism and recreation. Yet, such human activities also can imperil these habitats and undermine the ecosystem services they provide to people. Cumulative risk assessment provides an analytical framework for synthesizing the influence of multiple stressors across habitats and decision-support for balancing human uses and ecosystem health. To explore cumulative risk to habitats in the U.S. Northeast and Mid-Atlantic Ocean Planning regions, we apply the open-source InVEST Habitat Risk Assessment model to 13 habitats and 31 stressors in an exposure-consequence framework. In doing so, we advance the science priorities of EBM and both regional planning bodies by synthesizing the wealth of available data to improve our understanding of human uses and how they affect marine resources. We find that risk to ecosystems is greatest first, along the coast, where a large number of stressors occur in close proximity and secondly, along the continental shelf, where fewer, higher consequence activities occur. Habitats at greatest risk include soft and hard-bottom nearshore areas, tidal flats, soft-bottom shelf habitat, and rocky intertidal zones-with the degree of risk varying spatially. Across all habitats, our results indicate that rising sea surface temperatures, commercial fishing, and shipping consistently and disproportionally contribute to risk. Further, our findings suggest that management in the nearshore will require simultaneously addressing the temporal and spatial overlap as well as intensity of multiple human activities and that management in the offshore requires more targeted efforts to reduce exposure from specific threats. We offer a transparent, generalizable approach to evaluating cumulative risk to multiple habitats and illustrate the spatially heterogeneous nature of impacts along the eastern Atlantic coast and the importance of

  16. Quantifying the spatial and temporal variation in dose from external exposure to radiation: a new tool for use on free-ranging wildlife

    International Nuclear Information System (INIS)

    Hinton, Thomas G.; Byrne, Michael E.; Webster, Sarah; Beasley, James C.

    2015-01-01

    Inadequate dosimetry is often the fundamental problem in much of the controversial research dealing with radiation effects on free-ranging wildlife. Such research is difficult because of the need to measure dose from several potential pathways of exposure (i.e., internal contamination, external irradiation, and inhalation). Difficulties in quantifying external exposures can contribute significantly to the uncertainties of dose-effect relationships. Quantifying an animal's external exposure due to spatial–temporal use of habitats that can vary by orders of magnitude in radiation levels is particularly challenging. Historically, wildlife dosimetry studies have largely ignored or been unable to accurately quantify variability in external dose because of technological limitations. The difficulties of quantifying the temporal–spatial aspects of external irradiation prompted us to develop a new dosimetry instrument for field research. We merged two existing technologies [Global Positioning Systems (GPS) and electronic dosimeters] to accommodate the restrictive conditions of having a combined unit small enough to be unobtrusively worn on the neck of a free-ranging animal, and sufficiently robust to withstand harsh environmental conditions. The GPS–dosimeter quantifies the spatial and temporal variation in external dose as wildlife traverse radioactively contaminated habitats and sends, via satellites, an animal's location and short term integrated dose to the researcher at a user-defined interval. Herein we describe: (1) the GPS–dosimeters; (2) tests to compare their uniformity of response to external irradiation under laboratory conditions; (3) field tests of their durability when worn on wildlife under natural conditions; and (4) a field application of the new technology at a radioactively contaminated site. Use of coupled GPS–dosimetry will allow, for the first time, researchers to better understand the relationship of animals to their contaminated

  17. An allometric approach to quantify the extinction vulnerability of birds and mammals.

    Science.gov (United States)

    Hilbers, J P; Schipper, A M; Hendriks, A J; Verones, F; Pereira, H M; Huijbregts, M A J

    2016-03-01

    Methods to quantify the vulnerability of species to extinction are typically limited by the availability of species-specific input data pertaining to life-history characteristics and population dynamics. This lack of data hampers global biodiversity assessments and conservation planning. Here, we developed a new framework that systematically quantifies extinction risk based on allometric relationships between various wildlife demographic parameters and body size. These allometric relationships have a solid theoretical and ecological foundation. Extinction risk indicators included are (1) the probability of extinction, (2) the mean time to extinction, and (3) the critical patch size. We applied our framework to assess the global extinction vulnerability of terrestrial carnivorous and non-carnivorous birds and mammals. Irrespective of the indicator used, large-bodied species were found to be more vulnerable to extinction than their smaller counterparts. The patterns with body size were confirmed for all species groups by a comparison with IUCN data on the proportion of extant threatened species: the models correctly predicted a multimodal distribution with body size for carnivorous birds and a monotonic distribution for mammals and non-carnivorous birds. Carnivorous mammals were found to have higher extinction risks than non-carnivores, while birds were more prone to extinction than mammals. These results are explained by the allometric relationships, predicting the vulnerable species groups to have lower intrinsic population growth rates, smaller population sizes, lower carrying capacities, or larger dispersal distances, which, in turn, increase the importance of losses due to environmental stochastic effects and dispersal activities. Our study is the first to integrate population viability analysis and allometry into a novel, process-based framework that is able to quantify extinction risk of a large number of species without requiring data-intensive, species

  18. Estimating thermal regimes of bull trout and assessing the potential effects of climate warming on critical habitats

    Science.gov (United States)

    Jones, Leslie A.; Muhlfeld, Clint C.; Marshall, Lucy A.; McGlynn, Brian L.; Kershner, Jeffrey L.

    2013-01-01

    Understanding the vulnerability of aquatic species and habitats under climate change is critical for conservation and management of freshwater systems. Climate warming is predicted to increase water temperatures in freshwater ecosystems worldwide, yet few studies have developed spatially explicit modelling tools for understanding the potential impacts. We parameterized a nonspatial model, a spatial flow-routed model, and a spatial hierarchical model to predict August stream temperatures (22-m resolution) throughout the Flathead River Basin, USA and Canada. Model comparisons showed that the spatial models performed significantly better than the nonspatial model, explaining the spatial autocorrelation found between sites. The spatial hierarchical model explained 82% of the variation in summer mean (August) stream temperatures and was used to estimate thermal regimes for threatened bull trout (Salvelinus confluentus) habitats, one of the most thermally sensitive coldwater species in western North America. The model estimated summer thermal regimes of spawning and rearing habitats at <13 C° and foraging, migrating, and overwintering habitats at <14 C°. To illustrate the useful application of such a model, we simulated climate warming scenarios to quantify potential loss of critical habitats under forecasted climatic conditions. As air and water temperatures continue to increase, our model simulations show that lower portions of the Flathead River Basin drainage (foraging, migrating, and overwintering habitat) may become thermally unsuitable and headwater streams (spawning and rearing) may become isolated because of increasing thermal fragmentation during summer. Model results can be used to focus conservation and management efforts on populations of concern, by identifying critical habitats and assessing thermal changes at a local scale.

  19. Predicting habitat distribution to conserve seagrass threatened by sea level rise

    Science.gov (United States)

    Saunders, M. I.; Baldock, T.; Brown, C. J.; Callaghan, D. P.; Golshani, A.; Hamylton, S.; Hoegh-guldberg, O.; Leon, J. X.; Lovelock, C. E.; Lyons, M. B.; O'Brien, K.; Mumby, P.; Phinn, S. R.; Roelfsema, C. M.

    2013-12-01

    Sea level rise (SLR) over the 21st century will cause significant redistribution of valuable coastal habitats. Seagrasses form extensive and highly productive meadows in shallow coastal seas support high biodiversity, including economically valuable and threatened species. Predictive habitat models can inform local management actions that will be required to conserve seagrass faced with multiple stressors. We developed novel modelling approaches, based on extensive field data sets, to examine the effects of sea level rise and other stressors on two representative seagrass habitats in Australia. First, we modelled interactive effects of SLR, water clarity and adjacent land use on estuarine seagrass meadows in Moreton Bay, Southeast Queensland. The extent of suitable seagrass habitat was predicted to decline by 17% by 2100 due to SLR alone, but losses were predicted to be significantly reduced through improvements in water quality (Fig 1a) and by allowing space for seagrass migration with inundation. The rate of sedimentation in seagrass strongly affected the area of suitable habitat for seagrass in sea level rise scenarios (Fig 1b). Further research to understand spatial, temporal and environmental variability of sediment accretion in seagrass is required. Second, we modelled changes in wave energy distribution due to predicted SLR in a linked coral reef and seagrass ecosystem at Lizard Island, Great Barrier Reef. Scenarios where the water depth over the coral reef deepened due to SLR and minimal reef accretion, resulted in larger waves propagating shoreward, changing the existing hydrodynamic conditions sufficiently to reduce area of suitable habitat for seagrass. In a scenario where accretion of the coral reef was severely compromised (e.g. warming, acidification, overfishing), the probability of the presence of seagrass declined significantly. Management to maintain coral health will therefore also benefit seagrasses subject to SLR in reef environments. Further

  20. A NEW HABITAT CLASSIFICATION AND MANUAL FOR STANDARDIZED HABITAT MAPPING

    Directory of Open Access Journals (Sweden)

    A. KUN

    2007-01-01

    Full Text Available Today the documentation of natural heritage with scientific methods but for conservation practice – like mapping of actual vegetation – becomes more and more important. For this purpose mapping guides containing only the names and descriptions of vegetation types are not sufficient. Instead, new, mapping-oriented vegetation classification systems and handbooks are needed. There are different standardised systems fitted to the characteristics of a region already published and used successfully for surveying large territories. However, detailed documentation of the aims and steps of their elaboration is still missing. Here we present a habitat-classification method developed specifically for mapping and the steps of its development. Habitat categories and descriptions reflect site conditions, physiognomy and species composition as well. However, for species composition much lower role was given deliberately than in the phytosociological systems. Recognition and mapping of vegetation types in the field is highly supported by a definition, list of subtypes and list of ‘types not belonging to this habitat category’. Our system is two-dimensional: the first dimension is habitat type, the other is naturalness based habitat quality. The development of the system was conducted in two steps, over 200 mappers already tested it over 7000 field days in different projects.

  1. National Coral Reef Monitoring Program: Towed-diver Surveys of Benthic Habitat, Key Benthic Species, and Marine Debris Sightings of the Pacific Remote Island Areas since 2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The towed-diver method is used to conduct benthic surveys, assessing large-scale disturbances (e.g., bleaching) and quantifying benthic components such as habitat...

  2. Avian responses to an extreme ice storm are determined by a combination of functional traits, behavioural adaptations and habitat modifications.

    Science.gov (United States)

    Zhang, Qiang; Hong, Yongmi; Zou, Fasheng; Zhang, Min; Lee, Tien Ming; Song, Xiangjin; Rao, Jiteng

    2016-03-01

    The extent to which species' traits, behavior and habitat synergistically determine their response to extreme weather events (EWE) remains poorly understood. By quantifying bird and vegetation assemblages before and after the 2008 ice storm in China, combined with interspecific interactions and foraging behaviours, we disentangled whether storm influences avian reassembly directly via functional traits (i.e. behavioral adaptations), or indirectly via habitat variations. We found that overall species richness decreased, with 20 species detected exclusively before the storm, and eight species detected exclusively after. These shifts in bird relative abundance were linked to habitat preferences, dietary guild and flocking behaviours. For instance, forest specialists at higher trophic levels (e.g. understory-insectivores, woodpeckers and kingfishers) were especially vulnerable, whereas open-habitat generalists (e.g. bulbuls) were set to benefit from potential habitat homogenization. Alongside population fluctuations, we found that community reassembly can be rapidly adjusted via foraging plasticity (i.e. increased flocking propensity and reduced perching height). And changes in preferred habitat corresponded to a variation in bird assemblages and traits, as represented by intact canopy cover and high density of large trees. Accurate predictions of community responses to EWE are crucial to understanding ecosystem disturbances, thus linking species-oriented traits to a coherent analytical framework.

  3. Habitat Ecology Visual Surveys of Demersal Fishes and Habitats off California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Since 1992, the Habitat Ecology team has been conducting fishery independent, visual surveys of demersal fishes and associated habitats in deep water (20 to 900...

  4. Long-term habitat changes in a protected area: Implications for herpetofauna habitat management and restoration.

    Directory of Open Access Journals (Sweden)

    Chantel E Markle

    Full Text Available Point Pelee National Park, located at the southern-most tip of Canada's mainland, historically supported a large number of herpetofauna species; however, despite nearly a century of protection, six snake and five amphibian species have disappeared, and remaining species-at-risk populations are thought to be in decline. We hypothesized that long-term changes in availability and distribution of critical habitat types may have contributed to the disappearance of herpetofauna. To track habitat changes we used aerial image data spanning 85 years (1931-2015 and manually digitized and classified image data using a standardized framework. Change-detection analyses were used to evaluate the relative importance of proportionate loss and fragmentation of 17 habitat types. Marsh habitat diversity and aquatic connectivity has declined since 1931. The marsh matrix transitioned from a graminoid and forb shallow marsh interspersed with water to a cattail dominated marsh, altering critical breeding, foraging, and overwintering habitat. Reduced diversity of marsh habitats appears to be linked to the expansion of invasive Phragmites australis, which invaded prior to 2000. Loss of open habitats such as savanna and meadow has reduced availability of high quality thermoregulation habitat for reptiles. Restoration of the northwestern region and tip of Point Pelee National Park to a mixed landscape of shallow wetlands (cattail, graminoid, forb, open water and eradication of dense Phragmites stands should improve habitat diversity. Our results suggest that long-term landscape changes resulting from habitat succession and invasive species can negatively affect habitat suitability for herpetofauna and protection of land alone does not necessarily equate to protection of sensitive herpetofauna.

  5. Long-term habitat changes in a protected area: Implications for herpetofauna habitat management and restoration.

    Science.gov (United States)

    Markle, Chantel E; Chow-Fraser, Gillian; Chow-Fraser, Patricia

    2018-01-01

    Point Pelee National Park, located at the southern-most tip of Canada's mainland, historically supported a large number of herpetofauna species; however, despite nearly a century of protection, six snake and five amphibian species have disappeared, and remaining species-at-risk populations are thought to be in decline. We hypothesized that long-term changes in availability and distribution of critical habitat types may have contributed to the disappearance of herpetofauna. To track habitat changes we used aerial image data spanning 85 years (1931-2015) and manually digitized and classified image data using a standardized framework. Change-detection analyses were used to evaluate the relative importance of proportionate loss and fragmentation of 17 habitat types. Marsh habitat diversity and aquatic connectivity has declined since 1931. The marsh matrix transitioned from a graminoid and forb shallow marsh interspersed with water to a cattail dominated marsh, altering critical breeding, foraging, and overwintering habitat. Reduced diversity of marsh habitats appears to be linked to the expansion of invasive Phragmites australis, which invaded prior to 2000. Loss of open habitats such as savanna and meadow has reduced availability of high quality thermoregulation habitat for reptiles. Restoration of the northwestern region and tip of Point Pelee National Park to a mixed landscape of shallow wetlands (cattail, graminoid, forb, open water) and eradication of dense Phragmites stands should improve habitat diversity. Our results suggest that long-term landscape changes resulting from habitat succession and invasive species can negatively affect habitat suitability for herpetofauna and protection of land alone does not necessarily equate to protection of sensitive herpetofauna.

  6. Habitat Blocks and Wildlife Corridors

    Data.gov (United States)

    Vermont Center for Geographic Information — Habitat blocks are areas of contiguous forest and other natural habitats that are unfragmented by roads, development, or agriculture. Vermonts habitat blocks are...

  7. Comparative nest-site habitat of painted redstarts and red-faced warblers in the Madrean Sky Islands of southeastern Arizona

    Science.gov (United States)

    Joseph L. Ganey; William M. Block; Jamie S. Sanderlin; Jose M. Iniguez

    2015-01-01

    Conservation of avian species requires understanding their nesting habitat requirements. We compared 3 aspects of habitat at nest sites (topographic characteristics of nest sites, nest placement within nest sites, and canopy stratification within nest sites) of 2 related species of ground-nesting warblers (Red-faced Warblers, Cardellina rubrifrons, n = 17...

  8. Isotopic Differences between Forage Consumed by a Large Herbivore in Open, Closed, and Coastal Habitats: New Evidence from a Boreal Study System.

    Directory of Open Access Journals (Sweden)

    Marie-Andrée Giroux

    Full Text Available Documenting habitat-related patterns in foraging behaviour at the individual level and over large temporal scales remains challenging for large herbivores. Stable isotope analysis could represent a valuable tool to quantify habitat-related foraging behaviour at the scale of individuals and over large temporal scales in forest dwelling large herbivores living in coastal environments, because the carbon (δ13C or nitrogen (δ15N isotopic signatures of forage can differ between open and closed habitats or between terrestrial and littoral forage, respectively. Here, we examined if we could detect isotopic differences between the different assemblages of forage taxa consumed by white-tailed deer that can be found in open, closed, supralittoral, and littoral habitats. We showed that δ13C of assemblages of forage taxa were 3.0 ‰ lower in closed than in open habitats, while δ15N were 2.0 ‰ and 7.4 ‰ higher in supralittoral and littoral habitats, respectively, than in terrestrial habitats. Stable isotope analysis may represent an additional technique for ecologists interested in quantifiying the consumption of terrestrial vs. marine autotrophs. Yet, given the relative isotopic proximity and the overlap between forage from open, closed, and supralittoral habitats, the next step would be to determine the potential to estimate their contribution to herbivore diet.

  9. Influences of forest and rangeland management on salmonid fishes and their habitats

    National Research Council Canada - National Science Library

    Meehan, William R

    1991-01-01

    Contents : Stream ecosystems - Salmonid distributions and life histories - Habitat requirements of salmonids in streams - Natural processes - Timber harvesting, silvicultrue and watershed processes - Forest...

  10. 75 FR 34975 - Notice of Estuary Habitat Restoration Council's Intent to Revise its Estuary Habitat Restoration...

    Science.gov (United States)

    2010-06-21

    ... Estuary Habitat Restoration Council's Intent to Revise its Estuary Habitat Restoration Strategy; Request... interagency Estuary Habitat Restoration Council, is providing notice of the Council's intent to revise the ''Estuary Habitat Restoration Strategy'' and requesting public comments to guide its revision. DATES...

  11. Vacant habitats in the Universe.

    Science.gov (United States)

    Cockell, Charles S

    2011-02-01

    The search for life on other planets usually makes the assumption that where there is a habitat, it will contain life. On the present-day Earth, uninhabited habitats (or vacant habitats) are rare, but might occur, for example, in subsurface oils or impact craters that have been thermally sterilized in the past. Beyond Earth, vacant habitats might similarly exist on inhabited planets or on uninhabited planets, for example on a habitable planet where life never originated. The hypothesis that vacant habitats are abundant in the Universe is testable by studying other planets. In this review, I discuss how the study of vacant habitats might ultimately inform an understanding of how life has influenced geochemical conditions on Earth. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. A concept for extraction of habitat features from laser scanning and hypersprectral imaging for evaluation of Natura 2000 sites - the ChangeHabitats2 project approach

    Science.gov (United States)

    Székely, B.; Kania, A.; Pfeifer, N.; Heilmeier, H.; Tamás, J.; Szöllősi, N.; Mücke, W.

    2012-04-01

    The goal of the ChangeHabitats2 project is the development of cost- and time-efficient habitat assessment strategies by employing effective field work techniques supported by modern airborne remote sensing methods, i.e. hyperspectral imagery and laser scanning (LiDAR). An essential task of the project is the design of a novel field work technique that on the one hand fulfills the reporting requirements of the Flora-Fauna-Habitat (FFH-) directive and on the other hand serves as a reference for the aerial data analysis. Correlations between parameters derived from remotely sensed data and terrestrial field measurements shall be exploited in order to create half- or fully-automated methods for the extraction of relevant Natura2000 habitat parameters. As a result of these efforts a comprehensive conceptual model has been developed for extraction and integration of Natura 2000 relevant geospatial data. This scheme is an attempt to integrate various activities within ChangeHabitats2 project defining pathways of development, as well as encompassing existing data processing chains, theoretical approaches and field work. The conceptual model includes definition of processing levels (similar to those existing in remote sensing), whereas these levels cover the range from the raw data to the extracted habitat feature. For instance, the amount of dead wood (standing or lying on the surface) is an important evaluation criterion for the habitat. The tree trunks lying on the ground surface typically can be extracted from the LiDAR point cloud, and the amount of wood can be estimated accordingly. The final result will be considered as a habitat feature derived from laser scanning data. Furthermore, we are also interested not only in the determination of the specific habitat feature, but also in the detection of its variations (especially in deterioration). In this approach the variation of this important habitat feature is considered to be a differential habitat feature, that can

  13. Relevance of multiple spatial scales in habitat models: A case study with amphibians and grasshoppers

    Science.gov (United States)

    Altmoos, Michael; Henle, Klaus

    2010-11-01

    Habitat models for animal species are important tools in conservation planning. We assessed the need to consider several scales in a case study for three amphibian and two grasshopper species in the post-mining landscapes near Leipzig (Germany). The two species groups were selected because habitat analyses for grasshoppers are usually conducted on one scale only whereas amphibians are thought to depend on more than one spatial scale. First, we analysed how the preference to single habitat variables changed across nested scales. Most environmental variables were only significant for a habitat model on one or two scales, with the smallest scale being particularly important. On larger scales, other variables became significant, which cannot be recognized on lower scales. Similar preferences across scales occurred in only 13 out of 79 cases and in 3 out of 79 cases the preference and avoidance for the same variable were even reversed among scales. Second, we developed habitat models by using a logistic regression on every scale and for all combinations of scales and analysed how the quality of habitat models changed with the scales considered. To achieve a sufficient accuracy of the habitat models with a minimum number of variables, at least two scales were required for all species except for Bufo viridis, for which a single scale, the microscale, was sufficient. Only for the European tree frog ( Hyla arborea), at least three scales were required. The results indicate that the quality of habitat models increases with the number of surveyed variables and with the number of scales, but costs increase too. Searching for simplifications in multi-scaled habitat models, we suggest that 2 or 3 scales should be a suitable trade-off, when attempting to define a suitable microscale.

  14. Virtual environment to quantify the influence of colour stimuli on the performance of tasks requiring attention.

    Science.gov (United States)

    Silva, Alessandro P; Frère, Annie F

    2011-08-19

    Recent studies indicate that the blue-yellow colour discrimination is impaired in ADHD individuals. However, the relationship between colour and performance has not been investigated. This paper describes the development and the testing of a virtual environment that is capable to quantify the influence of red-green versus blue-yellow colour stimuli on the performance of people in a fun and interactive way, being appropriate for the target audience. An interactive computer game based on virtual reality was developed to evaluate the performance of the players.The game's storyline was based on the story of an old pirate who runs across islands and dangerous seas in search of a lost treasure. Within the game, the player must find and interpret the hints scattered in different scenarios. Two versions of this game were implemented. In the first, hints and information boards were painted using red and green colours. In the second version, these objects were painted using blue and yellow colours. For modelling, texturing, and animating virtual characters and objects the three-dimensional computer graphics tool Blender 3D was used. The textures were created with the GIMP editor to provide visual effects increasing the realism and immersion of the players. The games were tested on 20 non-ADHD volunteers who were divided into two subgroups (A1 and A2) and 20 volunteers with ADHD who were divided into subgroups B1 and B2. Subgroups A1 and B1 used the first version of the game with the hints painted in green-red colors, and subgroups A2 and B2 the second version using the same hints now painted in blue-yellow. The time spent to complete each task of the game was measured. Data analyzed with ANOVA two-way and posthoc TUKEY LSD showed that the use of blue/yellow instead of green/red colors decreased the game performance of all participants. However, a greater decrease in performance could be observed with ADHD participants where tasks, that require attention, were most affected

  15. Can animal habitat use patterns influence their vulnerability to extreme climate events? An estuarine sportfish case study.

    Science.gov (United States)

    Boucek, Ross E; Heithaus, Michael R; Santos, Rolando; Stevens, Philip; Rehage, Jennifer S

    2017-10-01

    Global climate forecasts predict changes in the frequency and intensity of extreme climate events (ECEs). The capacity for specific habitat patches within a landscape to modulate stressors from extreme climate events, and animal distribution throughout habitat matrices during events, could influence the degree of population level effects following the passage of ECEs. Here, we ask (i) does the intensity of stressors of an ECE vary across a landscape? And (ii) Do habitat use patterns of a mobile species influence their vulnerability to ECEs? Specifically, we measured how extreme cold spells might interact with temporal variability in habitat use to affect populations of a tropical, estuarine-dependent large-bodied fish Common Snook, within Everglades National Park estuaries (FL US). We examined temperature variation across the estuary during cold disturbances with different degrees of severity, including an extreme cold spell. Second, we quantified Snook distribution patterns when the passage of ECEs is most likely to occur from 2012 to 2016 using passive acoustic tracking. Our results revealed spatial heterogeneity in the intensity of temperature declines during cold disturbances, with some habitats being consistently 3-5°C colder than others. Surprisingly, Snook distributions during periods of greatest risk to experience an extreme cold event varied among years. During the winters of 2013-2014 and 2014-2015 a greater proportion of Snook occurred in the colder habitats, while the winters of 2012-2013 and 2015-2016 featured more Snook observed in the warmest habitats. This study shows that Snook habitat use patterns could influence vulnerability to extreme cold events, however, whether Snook habitat use increases or decreases their vulnerability to disturbance depends on the year, creating temporally dynamic vulnerability. Faunal global change research should address the spatially explicit nature of extreme climate events and animal habitat use patterns to identify

  16. Linking occurrence and fitness to persistence: Habitat-based approach for endangered Greater Sage-Grouse

    Science.gov (United States)

    Aldridge, Cameron L.; Boyce, Mark S.

    2007-01-01

    Detailed empirical models predicting both species occurrence and fitness across a landscape are necessary to understand processes related to population persistence. Failure to consider both occurrence and fitness may result in incorrect assessments of habitat importance leading to inappropriate management strategies. We took a two-stage approach to identifying critical nesting and brood-rearing habitat for the endangered Greater Sage-Grouse (Centrocercus urophasianus) in Alberta at a landscape scale. First, we used logistic regression to develop spatial models predicting the relative probability of use (occurrence) for Sage-Grouse nests and broods. Secondly, we used Cox proportional hazards survival models to identify the most risky habitats across the landscape. We combined these two approaches to identify Sage-Grouse habitats that pose minimal risk of failure (source habitats) and attractive sink habitats that pose increased risk (ecological traps). Our models showed that Sage-Grouse select for heterogeneous patches of moderate sagebrush cover (quadratic relationship) and avoid anthropogenic edge habitat for nesting. Nests were more successful in heterogeneous habitats, but nest success was independent of anthropogenic features. Similarly, broods selected heterogeneous high-productivity habitats with sagebrush while avoiding human developments, cultivated cropland, and high densities of oil wells. Chick mortalities tended to occur in proximity to oil and gas developments and along riparian habitats. For nests and broods, respectively, approximately 10% and 5% of the study area was considered source habitat, whereas 19% and 15% of habitat was attractive sink habitat. Limited source habitats appear to be the main reason for poor nest success (39%) and low chick survival (12%). Our habitat models identify areas of protection priority and areas that require immediate management attention to enhance recruitment to secure the viability of this population. This novel

  17. The minimum area requirements (MAR) for giant panda: an empirical study.

    Science.gov (United States)

    Qing, Jing; Yang, Zhisong; He, Ke; Zhang, Zejun; Gu, Xiaodong; Yang, Xuyu; Zhang, Wen; Yang, Biao; Qi, Dunwu; Dai, Qiang

    2016-12-08

    Habitat fragmentation can reduce population viability, especially for area-sensitive species. The Minimum Area Requirements (MAR) of a population is the area required for the population's long-term persistence. In this study, the response of occupancy probability of giant pandas against habitat patch size was studied in five of the six mountain ranges inhabited by giant panda, which cover over 78% of the global distribution of giant panda habitat. The probability of giant panda occurrence was positively associated with habitat patch area, and the observed increase in occupancy probability with patch size was higher than that due to passive sampling alone. These results suggest that the giant panda is an area-sensitive species. The MAR for giant panda was estimated to be 114.7 km 2 based on analysis of its occupancy probability. Giant panda habitats appear more fragmented in the three southern mountain ranges, while they are large and more continuous in the other two. Establishing corridors among habitat patches can mitigate habitat fragmentation, but expanding habitat patch sizes is necessary in mountain ranges where fragmentation is most intensive.

  18. Flat and complex temperate reefs provide similar support for fish: Evidence for a unimodal species-habitat relationship.

    Directory of Open Access Journals (Sweden)

    Avery B Paxton

    Full Text Available Structural complexity, a form of habitat heterogeneity, influences the structure and function of ecological communities, generally supporting increased species density, richness, and diversity. Recent research, however, suggests the most complex habitats may not harbor the highest density of individuals and number of species, especially in areas with elevated human influence. Understanding nuances in relationships between habitat heterogeneity and ecological communities is warranted to guide habitat-focused conservation and management efforts. We conducted fish and structural habitat surveys of thirty warm-temperate reefs on the southeastern US continental shelf to quantify how structural complexity influences fish communities. We found that intermediate complexity maximizes fish abundance on natural and artificial reefs, as well as species richness on natural reefs, challenging the current paradigm that abundance and other fish community metrics increase with increasing complexity. Naturally occurring rocky reefs of flat and complex morphologies supported equivalent abundance, biomass, species richness, and community composition of fishes. For flat and complex morphologies of rocky reefs to receive equal consideration as essential fish habitat (EFH, special attention should be given to detecting pavement type rocky reefs because their ephemeral nature makes them difficult to detect with typical seafloor mapping methods. Artificial reefs of intermediate complexity also maximized fish abundance, but human-made structures composed of low-lying concrete and metal ships differed in community types, with less complex, concrete structures supporting lower numbers of fishes classified largely as demersal species and metal ships protruding into the water column harboring higher numbers of fishes, including more pelagic species. Results of this study are essential to the process of evaluating habitat function provided by different types and shapes of

  19. Prioritizing tropical habitats for long-distance migratory songbirds: an assessment of habitat quality at a stopover site in Colombia

    Directory of Open Access Journals (Sweden)

    Nicholas J. Bayly

    2016-12-01

    Full Text Available Long-distance migratory birds are declining globally and migration has been identified as the primary source of mortality in this group. Despite this, our lack of knowledge of habitat use and quality at stopovers, i.e., sites where the energy for migration is accumulated, remains a barrier to designing appropriate conservation measures, especially in tropical regions. There is therefore an urgent need to assess stopover habitat quality and concurrently identify efficient and cost-effective methods for doing so. Given that fuel deposition rates directly influence stopover duration, departure fuel load, and subsequent speed of migration, they are expected to provide a direct measure of habitat quality and have the advantage of being measurable through body-mass changes. Here, we examined seven potential indicators of quality, including body-mass change, for two ecologically distinct Neotropical migratory landbirds on stopover in shade-coffee plantations and tropical humid premontane forest during spring migration in Colombia: (1 rate of body-mass change; (2 foraging rate; (3 recapture rate; (4 density; (5 flock size; (6 age and sex ratios; and (7 body-mass distribution. We found higher rates of mass change in premontane forest than in shade-coffee in Tennessee Warbler Oreothlypis peregrina, a difference that was mirrored in higher densities and body masses in forest. In Gray-cheeked Thrush Catharus minimus, a lack of recaptures in shade-coffee and higher densities in forest, also suggested that forest provided superior fueling conditions. For a reliable assessment of habitat quality, we therefore recommend using a suite of indicators, taking into account each species' ecology and methodological considerations. Our results also imply that birds stopping over in lower quality habitats may spend a longer time migrating and require more stopovers, potentially leading to important carryover effects on reproductive fitness. Evaluating habitat quality is

  20. BIOLOGI POPULASI RAJUNGAN (PORTUNUS PELAGICUS DAN KARAKTERISTIK LINGKUNGAN HABITAT ESENSIALNYA SEBAGAI UPAYA AWAL PERLINDUNGAN DI LAMPUNG TIMUR

    Directory of Open Access Journals (Sweden)

    Rahmat Kurnia

    2014-04-01

    Full Text Available There are several option management measures in preventing sustainability stock of the blue swimming crab (Portunus pelagicus, i.e., nursery ground conservation. Thus, the objective of this study was to analyses habitat characteristic and its population biology in the PGN marine embayment of Labuhan Maringgai, as one among crab habitat essential in East Lampung coastal water. The potential nursery ground conservation was assessed by habitat suitability index, carrying capacity, distribution and abundance as well as crabs size. The result shows that environmental condition was still suitable, even though the habitat carrying capacity tend to degraded by an increasing of turbidity and sedimentation at the embayment mouth. The crabs captured were also not representing of peak abundance season and recruitment during sampling period, while those crab size almost 100% under Lm50. The strategic management directive is required to control in utilization of crab’s essential habitat, including crab fishing by any fishing gear resulted undersize captured crabs. Meanwhile, to propose habitat essential conservation might need more consideration and comprehensive study, including social economic and cultural aspects and co-management approach may be required in management measure applied.

  1. Habitat modeling and genetic signatures of postglacial recolonization for tidal estuaries

    Science.gov (United States)

    Dolby, G. A.; Jacobs, D. K.

    2014-12-01

    Pleistocene glacial cycles are a foremost influence on the genetic diversity and species distribution patterns observed today. Though much work has centered on biotic response to such climatic forcing, little of it has regarded estuarine or other aquatic coastal taxa whose habitat formation is a function of sea level, hydrography, and coastal geomorphology. These physical parameters required for habitat formation suggest that glacial cycles impart a significant effect on such taxa through glacially driven eustatic changes. Additionally, the steepened coastline and rainfall-limited Mediterranean climate suggest limited glacial habitat for estuarine species in southern and Baja California. Here we present GIS modeled habitat for tidal estuaries for three co-distributed estuarine fishes (Gillichthys mirabilis, Quietula y-cauda, Fundulus parvipinnis) since the last glacial maximum. Parameterization of sea level and slope enables biologically relevant temporal resolution of near-millennial scale. At lowstand our approach reveals two refuges along the coast at 1000km distance from each other, with habitat rapidly increasing 15 - 12 ka during meltwater pulse 1A. Habitat area peaked in the early Holocene and began decreasing with the current stillstand roughly 7 ka, probably as a result of coastal maturation towards less tidal systems. To target the postglacial recolonization process we applied discriminant function analysis to highly polymorphic microsatellite data to partition out the alleles associated with refuges identified a priori by habitat modeling. The frequencies of these alleles were calculated for all individuals at intervening populations and regressed against geographic distance. This analysis revealed nonlinear mixing curves, suggesting uneven allelic mixing efficiency along the coastline, perhaps as a result of differential habitat origination times as indicated by the habitat models. These results highlight the dynamism of estuarine habitat in recent

  2. Habitat Effects on the Breeding Performance of Three Forest-Dwelling Hawks.

    Science.gov (United States)

    Björklund, Heidi; Valkama, Jari; Tomppo, Erkki; Laaksonen, Toni

    2015-01-01

    Habitat loss causes population declines, but the mechanisms are rarely known. In the European Boreal Zone, loss of old forest due to intensive forestry is suspected to cause declines in forest-dwelling raptors by reducing their breeding performance. We studied the boreal breeding habitat and habitat-associated breeding performance of the northern goshawk (Accipiter gentilis), common buzzard (Buteo buteo) and European honey buzzard (Pernis apivorus). We combined long-term Finnish bird-of-prey data with multi-source national forest inventory data at various distances (100-4000 m) around the hawk nests. We found that breeding success of the goshawk was best explained by the habitat within a 2000-m radius around the nests; breeding was more successful with increasing proportions of old spruce forest and water, and decreasing proportions of young thinning forest. None of the habitat variables affected significantly the breeding success of the common buzzard or the honey buzzard, or the brood size of any of the species. The amount of old spruce forest decreased both around goshawk and common buzzard nests and throughout southern Finland in 1992-2010. In contrast, the area of young forest increased in southern Finland but not around hawk nests. We emphasize the importance of studying habitats at several spatial and temporal scales to determine the relevant species-specific scale and to detect environmental changes. Further effort is needed to reconcile the socioeconomic and ecological functions of forests and habitat requirements of old forest specialists.

  3. Habitat Effects on the Breeding Performance of Three Forest-Dwelling Hawks.

    Directory of Open Access Journals (Sweden)

    Heidi Björklund

    Full Text Available Habitat loss causes population declines, but the mechanisms are rarely known. In the European Boreal Zone, loss of old forest due to intensive forestry is suspected to cause declines in forest-dwelling raptors by reducing their breeding performance. We studied the boreal breeding habitat and habitat-associated breeding performance of the northern goshawk (Accipiter gentilis, common buzzard (Buteo buteo and European honey buzzard (Pernis apivorus. We combined long-term Finnish bird-of-prey data with multi-source national forest inventory data at various distances (100-4000 m around the hawk nests. We found that breeding success of the goshawk was best explained by the habitat within a 2000-m radius around the nests; breeding was more successful with increasing proportions of old spruce forest and water, and decreasing proportions of young thinning forest. None of the habitat variables affected significantly the breeding success of the common buzzard or the honey buzzard, or the brood size of any of the species. The amount of old spruce forest decreased both around goshawk and common buzzard nests and throughout southern Finland in 1992-2010. In contrast, the area of young forest increased in southern Finland but not around hawk nests. We emphasize the importance of studying habitats at several spatial and temporal scales to determine the relevant species-specific scale and to detect environmental changes. Further effort is needed to reconcile the socioeconomic and ecological functions of forests and habitat requirements of old forest specialists.

  4. Habitat and conservation status of the beaver in the Sierra San Luis Sonora, Mexico

    Science.gov (United States)

    Karla Pelz Serrano; Eduardo Ponce Guevara; Carlos A. Lopez Gonzalez

    2005-01-01

    The status of beaver (Castor canadensis) in northeastern Sonora, Mexico, is uncertain. We surveyed the Cajon Bonito River to assess the beaver’s status and habitat and found five colonies. Limiting factors appear to be pollution due to animal waste, deforestation of riparian trees, and human exploitation. Beavers did not appear to require habitat...

  5. The importance of historical land use in the maintenance of early successional habitat for a threatened rattlesnake

    Directory of Open Access Journals (Sweden)

    Eric M. McCluskey

    2018-01-01

    Full Text Available Understanding how historic habitat changes have impacted species and searching the past for clues to better understand the current plight of threatened species can help inform and improve future conservation efforts. We coupled species distribution modeling with historical imagery analysis to assess how changes in land use/land cover have influenced the distribution of eastern massasauga rattlesnake (Sistrurus catenatus, a federally threatened species, and its habitat in northeastern Ohio over the past ∼75 years. We also examined land use/land cover changes throughout southern Michigan for a broader perspective on the influence of historical processes on contemporary habitat. There was a pronounced shift in northeastern Ohio land cover from 1938 to 2011 with forest cover becoming the predominant land cover type as agricultural fields were abandoned and succession occurred. Most known eastern massasauga locations in the area were at some point used for agriculture and higher habitat suitability values were associated with agricultural fields that were eventually abandoned. We observed more stable habitat conditions across southern Michigan populations indicating agricultural abandonment was not as necessary for habitat creation in this part of their range. We present a new approach for linking historical landscapes to present day habitat suitability models; permitting inferences on how prior land use/land cover states have influenced the current distribution of species and their habitats. We demonstrate how agricultural abandonment was an important source of early successional habitat for a species that requires an open canopy, a finding applicable to a broad array of species with similar habitat requirements. Keywords: Eastern massasauga, Agriculture, Aerial photography, Maxent

  6. Quantifying Surface Coal-Mining Patterns to Promote Regional Sustainability in Ordos, Inner Mongolia

    Directory of Open Access Journals (Sweden)

    Xiaoji Zeng

    2018-04-01

    Full Text Available Ordos became the new “coal capital” of China within a few decades since the country’s economic reform in 1978, as large-scale surface coal mining dramatically propelled its per capita GDP from being one of the lowest to one of the highest in China, exceeding Hong Kong in 2009. Surface coal-mining areas (SCMAs have continued to expand in this region during recent decades, resulting in serious environmental and socioeconomic consequences. To understand these impacts and promote regional sustainability, quantifying the spatiotemporal patterns of SCMAs is urgently needed. Thus, the main objectives of this study were to quantify the spatiotemporal patterns of SCMAs in the Ordos region from 1990 to 2015, and to examine some of the major environmental and socioeconomic impacts in the study region. We extracted the SCMAs using remote-sensing data, and then quantified their spatiotemporal patterns using landscape metrics. The loss of natural habitat and several socioeconomic indicators were examined in relation to surface coal mining. Our results show that the area of SCMAs increased from 7.12 km2 to 355.95 km2, an increase of nearly 49 times from 1990 to 2015 in the Ordos region. The number of SCMAs in this region increased from 82 to 651, a nearly seven-fold increase. In particular, Zhungeer banner (an administrative division, Yijinhuoluo banner, Dongsheng District and Dalate banner in the north-eastern part of the Ordos region had higher growth rates of SCMAs. The income gap between urban and rural residents increased along with the growth in SCMAs, undermining social equity in the Ordos region. Moreover, the rapid increase in SCMAs resulted in natural habitat loss (including grasslands, forests, and deserts across this region. Thus, we suggest that regional sustainability in Ordos needs to emphasize effective measures to curb large-scale surface coal mining in order to reduce the urban–rural income gap, and to restore degraded natural

  7. Hydrologic and water-quality rehabilitation of environments for suitable fish habitat

    Science.gov (United States)

    Zhao, C. S.; Yang, S. T.; Xiang, H.; Liu, C. M.; Zhang, H. T.; Yang, Z. L.; Zhang, Y.; Sun, Y.; Mitrovic, S. M.; Yu, Q.; Lim, R. P.

    2015-11-01

    Aquatic ecological rehabilitation is attracting increasing public and research attention, but without knowledge of the responses of aquatic species to their habitats the success of habitat restoration is uncertain. Thus efficient study of species response to habitat, through which to prioritize the habitat factors influencing aquatic ecosystems, is highly important. However many current models have too high requirement for assemblage information and have great bias in results due to consideration of only the species' attribute of presence/absence, abundance or biomass, thus hindering the wider utility of these models. This paper, using fish as a case, presents a framework for identification of high-priority habitat factors based on the responses of aquatic species to their habitats, using presence/absence, abundance and biomass data. This framework consists of four newly developed sub-models aiming to determine weightings for the evaluation of species' contributions to their communities, to quantitatively calculate an integrated habitat suitability index for multi-species based on habitat factors, to assess the suitable probability of habitat factors and to assess the rehabilitation priority of habitat factors. The framework closely links hydrologic, physical and chemical habitat factors to fish assemblage attributes drawn from monitoring datasets on hydrology, water quality and fish assemblages at a total of 144 sites, where 5084 fish were sampled and tested. Breakpoint identification techniques based on curvature in cumulated dominance along with a newly developed weighting calculation model based on theory of mass systems were used to help identify the dominant fish, based on which the presence and abundance of multiple fish were normalized to estimate the integrated habitat suitability index along gradients of various factors, based on their variation with principal habitat factors. Then, the appropriate probability of every principal habitat factor was

  8. Colonization and extinction in dynamic habitats: an occupancy approach for a Great Plains stream fish assemblage.

    Science.gov (United States)

    Falke, Jeffrey A; Bailey, Larissa L; Fausch, Kurt D; Bestgen, Kevin R

    2012-04-01

    Despite the importance of habitat in determining species distribution and persistence, habitat dynamics are rarely modeled in studies of metapopulations. We used an integrated habitat-occupancy model to simultaneously quantify habitat change, site fidelity, and local colonization and extinction rates for larvae of a suite of Great Plains stream fishes in the Arikaree River, eastern Colorado, USA, across three years. Sites were located along a gradient of flow intermittency and groundwater connectivity. Hydrology varied across years: the first and third being relatively wet and the second dry. Despite hydrologic variation, our results indicated that site suitability was random from one year to the next. Occupancy probabilities were also independent of previous habitat and occupancy state for most species, indicating little site fidelity. Climate and groundwater connectivity were important drivers of local extinction and colonization, but the importance of groundwater differed between periods. Across species, site extinction probabilities were highest during the transition from wet to dry conditions (range: 0.52-0.98), and the effect of groundwater was apparent with higher extinction probabilities for sites not fed by groundwater. Colonization probabilities during this period were relatively low for both previously dry sites (range: 0.02-0.38) and previously wet sites (range: 0.02-0.43). In contrast, no sites dried or remained dry during the transition from dry to wet conditions, yielding lower but still substantial extinction probabilities (range: 0.16-0.63) and higher colonization probabilities (range: 0.06-0.86), with little difference among sites with and without groundwater. This approach of jointly modeling both habitat change and species occupancy will likely be useful to incorporate effects of dynamic habitat on metapopulation processes and to better inform appropriate conservation actions.

  9. Proceedings of a workshop on fish habitat suitability index models

    Science.gov (United States)

    Terrell, James W.

    1984-01-01

    One of the habitat-based methodologies for impact assessment currently in use by the U.S. Fish and Wildlife Service is the Habitat Evaluation Procedures (HEP) (U.S. Fish and Wildlife Service 1980). HEP is based on the assumption that the quality of an area as wildlife habitat at a specified target year can be described by a single number, called a Habitat Suitability Index (HSI). An HSI of 1.0 represents optimum habitat: an HSI of 0.0 represents unsuitable habitat. The verbal or mathematical rules by which an HSI is assigned to an area are called an HSI model. A series of Habitat Suitability Index (HSI) models, described by Schamberger et al. (1982), have been published to assist users in applying HEP. HSI model building approaches are described in U.S. Fish and Wildlife Service (1981). One type of HSI model described in detail requires the development of Suitability Index (SI) graphs for habitat variables believed to be important for the growth, survival, standing crop, or other measure of well-being for a species. Suitability indices range from 0 to 1.0, with 1.0 representing optimum conditions for the variable. When HSI models based on suitability indices are used, habitat variable values are measured, or estimated, and converted to SI's through the use of a Suitability Index graph for each variable. Individual SI's are aggregated into an HSI. Standard methods for testing this type of HSI model did not exist at the time the studies reported in this document were performed. A workshop was held in Fort Collins, Colorado, February 14-15, 1983, that brought together biologists experienced in the use, development, and testing of aquatic HSI models, in an effort to address the following objectives: (1) review the needs of HSI model users; (2) discuss and document the results of aquatic HSI model tests; and (3) provide recommendations for the future development, testing, modification, and use of HSI models. Individual presentations, group discussions, and group

  10. Species Richness Responses to Structural or Compositional Habitat Diversity between and within Grassland Patches: A Multi-Taxon Approach

    Science.gov (United States)

    Lengyel, Szabolcs; Déri, Eszter; Magura, Tibor

    2016-01-01

    Habitat diversity (spatial heterogeneity within and between habitat patches in a landscape, HD) is often invoked as a driver of species diversity at small spatial scales. However, the effect of HD on species richness (SR) of multiple taxa is not well understood. We quantified HD and SR in a wet-dry gradient of open grassland habitats in Hortobágy National Park (E-Hungary) and tested the effect of compositional and structural factors of HD on SR of flowering plants, orthopterans, true bugs, spiders, ground beetles and birds. Our dataset on 434 grassland species (170 plants, 264 animals) showed that the wet-dry gradient (compositional HD at the between-patch scale) was primarily related to SR in orthopterans, ground-dwelling arthropods, and all animals combined. The patchiness, or plant association richness, of the vegetation (compositional HD at the within-patch scale) was related to SR of vegetation-dwelling arthropods, whereas vegetation height (structural HD at the within-patch scale) was related to SR of ground-dwelling arthropods and birds. Patch area was related to SR only in birds, whereas management (grazing, mowing, none) was related to SR of plants and true bugs. All relationships between HD and SR were positive, indicating increasing SR with increasing HD. However, total SR was not related to HD because different taxa showed similar positive responses to different HD variables. Our findings, therefore, show that even though HD positively influences SR in a wide range of grassland taxa, each taxon responds to different compositional or structural measures of HD, resulting in the lack of a consistent relationship between HD and SR when taxon responses are pooled. The idiosyncratic responses shown here exemplify the difficulties in detecting general HD-SR relationships over multiple taxa. Our results also suggest that management and restoration aimed specifically to sustain or increase the diversity of habitats are required to conserve biodiversity in

  11. Species Richness Responses to Structural or Compositional Habitat Diversity between and within Grassland Patches: A Multi-Taxon Approach.

    Directory of Open Access Journals (Sweden)

    Szabolcs Lengyel

    Full Text Available Habitat diversity (spatial heterogeneity within and between habitat patches in a landscape, HD is often invoked as a driver of species diversity at small spatial scales. However, the effect of HD on species richness (SR of multiple taxa is not well understood. We quantified HD and SR in a wet-dry gradient of open grassland habitats in Hortobágy National Park (E-Hungary and tested the effect of compositional and structural factors of HD on SR of flowering plants, orthopterans, true bugs, spiders, ground beetles and birds. Our dataset on 434 grassland species (170 plants, 264 animals showed that the wet-dry gradient (compositional HD at the between-patch scale was primarily related to SR in orthopterans, ground-dwelling arthropods, and all animals combined. The patchiness, or plant association richness, of the vegetation (compositional HD at the within-patch scale was related to SR of vegetation-dwelling arthropods, whereas vegetation height (structural HD at the within-patch scale was related to SR of ground-dwelling arthropods and birds. Patch area was related to SR only in birds, whereas management (grazing, mowing, none was related to SR of plants and true bugs. All relationships between HD and SR were positive, indicating increasing SR with increasing HD. However, total SR was not related to HD because different taxa showed similar positive responses to different HD variables. Our findings, therefore, show that even though HD positively influences SR in a wide range of grassland taxa, each taxon responds to different compositional or structural measures of HD, resulting in the lack of a consistent relationship between HD and SR when taxon responses are pooled. The idiosyncratic responses shown here exemplify the difficulties in detecting general HD-SR relationships over multiple taxa. Our results also suggest that management and restoration aimed specifically to sustain or increase the diversity of habitats are required to conserve

  12. The contribution of Earth observation technologies to the reporting obligations of the Habitats Directive and Natura 2000 network in a protected wetland

    Directory of Open Access Journals (Sweden)

    Adrián Regos

    2018-03-01

    Full Text Available Background Wetlands are highly productive systems that supply a host of ecosystem services and benefits. Nonetheless, wetlands have been drained and filled to provide sites for building houses and roads and for establishing farmland, with an estimated worldwide loss of 64–71% of wetland systems since 1900. In Europe, the Natura 2000 network is the cornerstone of current conservation strategies. Every six years, Member States must report on implementation of the European Habitats Directive. The present study aims to illustrate how Earth observation (EO technologies can contribute to the reporting obligations of the Habitats Directive and Natura 2000 network in relation to wetland ecosystems. Methods We analysed the habitat changes that occurred in a protected wetland (in NW Spain, 13 years after its designation as Natura 2000 site (i.e., between 2003 and 2016. For this purpose, we analysed optical multispectral bands and water-related and vegetation indices derived from data acquired by Landsat 7 TM, ETM+ and Landsat 8 OLI sensors. To quantify the uncertainty arising from the algorithm used in the classification procedure and its impact on the change analysis, we compared the habitat change estimates obtained using 10 different classification algorithms and two ensemble classification approaches (majority and weighted vote. Results The habitat maps derived from the ensemble approaches showed an overall accuracy of 94% for the 2003 data (Kappa index of 0.93 and of 95% for the 2016 data (Kappa index of 0.94. The change analysis revealed important temporal dynamics between 2003 and 2016 for the habitat classes identified in the study area. However, these changes depended on the classification algorithm used. The habitat maps obtained from the two ensemble classification approaches showed a reduction in habitat classes dominated by salt marshes and meadows (24.6–26.5%, natural and semi-natural grasslands (25.9–26.5% or sand dunes (20.7–20

  13. Impacts of habitat loss and fragmentation on the activity budget, ranging ecology and habitat use of Bale monkeys (Chlorocebus djamdjamensis) in the southern Ethiopian Highlands.

    Science.gov (United States)

    Mekonnen, Addisu; Fashing, Peter J; Bekele, Afework; Hernandez-Aguilar, R Adriana; Rueness, Eli K; Nguyen, Nga; Stenseth, Nils Chr

    2017-07-01

    Understanding the extent to which primates in forest fragments can adjust behaviorally and ecologically to changes caused by deforestation is essential to designing conservation management plans. During a 12-month period, we studied the effects of habitat loss and degradation on the Ethiopian endemic, bamboo specialist, Bale monkey (Chlorocebus djamdjamensis) by comparing its habitat quality, activity budget, ranging ecology and habitat use in continuous forest and two fragments. We found that habitat loss and fragmentation resulted in major differences in vegetation composition and structure between forest types. We also found that Bale monkeys in continuous forest spent more time feeding and traveling and less time resting and socializing than monkeys in fragments. Bale monkeys in continuous forest also had higher movement rates (m/hr) than monkeys in fragments. Bale monkeys in continuous forest used exclusively bamboo and mixed bamboo forest habitats while conspecifics in fragments used a greater variety of habitats including human use areas (i.e., matrix). Our findings suggest that Bale monkeys in fragments use an energy minimization strategy to cope with the lower availability of the species' primary food species, bamboo (Arundinaria alpina). We contend that Bale monkeys may retain some of the ancestral ecological flexibility assumed to be characteristic of the genus Chlorocebus, within which all extant species except Bale monkeys are regarded as ecological generalists. Our results suggest that, like other bamboo eating primates (e.g., the bamboo lemurs of Madagascar), Bale monkeys can cope with a certain threshold of habitat destruction. However, the long-term conservation prospects for Bale monkeys in fragments remain unclear and will require further monitoring to be properly evaluated. © 2017 Wiley Periodicals, Inc.

  14. Anopheline larval habitats seasonality and species distribution: a prerequisite for effective targeted larval habitats control programmes.

    Directory of Open Access Journals (Sweden)

    Eliningaya J Kweka

    Full Text Available Larval control is of paramount importance in the reduction of malaria vector abundance and subsequent disease transmission reduction. Understanding larval habitat succession and its ecology in different land use managements and cropping systems can give an insight for effective larval source management practices. This study investigated larval habitat succession and ecological parameters which influence larval abundance in malaria epidemic prone areas of western Kenya.A total of 51 aquatic habitats positive for anopheline larvae were surveyed and visited once a week for a period of 85 weeks in succession. Habitats were selected and identified. Mosquito larval species, physico-chemical parameters, habitat size, grass cover, crop cycle and distance to nearest house were recorded. Polymerase chain reaction revealed that An. gambiae s.l was the most dominant vector species comprised of An.gambiae s.s (77.60% and An.arabiensis (18.34%, the remaining 4.06% had no amplification by polymerase chain reaction. Physico-chemical parameters and habitat size significantly influenced abundance of An. gambiae s.s (P = 0.024 and An. arabiensis (P = 0.002 larvae. Further, larval species abundance was influenced by crop cycle (P≤0.001, grass cover (P≤0.001, while distance to nearest houses significantly influenced the abundance of mosquito species larvae (r = 0.920;P≤0.001. The number of predator species influenced mosquito larval abundance in different habitat types. Crop weeding significantly influenced with the abundance of An.gambiae s.l (P≤0.001 when preceded with fertilizer application. Significantly higher anopheline larval abundance was recorded in habitats in pasture compared to farmland (P = 0.002. When habitat stability and habitat types were considered, hoof print were the most productive followed by disused goldmines.These findings suggest that implementation of effective larval control programme should be targeted with larval

  15. Agricultural utilisation and potential suitability of the Sysľovské polia Special Protection Area (south-western Slovakia landscape in relation to the habitat requirements of the red-footed falcon (Falco vespertinus

    Directory of Open Access Journals (Sweden)

    Zemko Martin

    2017-12-01

    Full Text Available Intensification of land use in an agricultural landscape significantly affects biodiversity also in protected areas. This can be observed in the Sysľovské polia Special Protection Area in relation to the occurrence of the red-footed falcon (Falco vespertinus. The objective of this study was to evaluate the landscape structure and suitability of agrotechnical procedures for the habitat demands of this species in the course of the period from 2004 until 2017. The utilisation was assessed on the basis of four landscape elements representation in 1949 and 2017. The next step was analysis of landscape patches. The aim was to quantify the diversity and the spatial structure of the landscape mosaic using Shannon’s Diversity Index and Evenness Index as well as Simpson’s Diversity Index and Evenness Index and spatial pattern analysis in the Fragstats software programme. Assessment of crop suitability was carried out according to the following criteria: representation of positive/negative agricultural crops, diversity of crops in crop rotation, and (non-observance of crop rotation. It was found that the agricultural landscape use did not change significantly. The study area has been used as an intensively-farmed agricultural landscape for a long time. The landscape elements have remained almost identical, with dominance of arable land. Differences emerged in the analysis of the micropatches, which are represented by natural hedgerows consisting of various species of trees, shrubs and grasses. The results show a decrease in the diversity of patches and changes in the structure of the landscape patches, which may be important in terms of the preservation of the habitat of fauna which form an important part of the F vespertinus diet. On the basis of the evaluation of the suitability of agricultural crop growing, we found that there were some areas showing negative values in all the criteria, and thus they require changes in the crop rotation focusing

  16. Identifying Farm Pond Habitat Suitability for the Common Moorhen (Gallinula chloropus: A Conservation-Perspective Approach

    Directory of Open Access Journals (Sweden)

    Chun-Hsien Lai

    2018-04-01

    Full Text Available The purpose of this study was to establish a habitat-suitability assessment model for Gallinula chloropus, or the Common Moorhen, to be applied to the selection of the most suitable farm pond for habitat conservation in Chiayi County, Taiwan. First, the fuzzy Delphi method was employed to evaluate habitat selection factors and calculate the weights of these factors. The results showed that the eight crucial factors, by importance, in descending order, were (1 area ratio of farmlands within 200 m of the farm pond; (2 pond area; (3 pond perimeter; (4 aquatic plant coverage of the pond surface; (5 drought period; (6 coverage of high and low shrubs around the pond bank; (7 bank type; and (8 water-surface-to-bank distance. Subsequently, field evaluations of 75 farm ponds in Chiayi County were performed. The results indicated that 15 farm ponds had highly-suitable habitats and were inhabited by unusually high numbers of Common Moorhens; these habitats were most in need of conservation. A total of two farm ponds were found to require habitat-environment improvements, and Common Moorhens with typical reproductive capacity could be appropriately introduced into 22 farm ponds to restore the ecosystem of the species. Additionally, the habitat suitability and number of Common Moorhens in 36 farm ponds were lower than average; these ponds could be used for agricultural irrigation, detention basins, or for recreational use by community residents. Finally, the total habitat suitability scores and occurrence of Common Moorhens in each farm pond were used to verify the accuracy of the habitat-suitability assessment model for the Common Moorhen. The overall accuracy was 0.8, and the Kappa value was 0.60, which indicates that the model established in this study exhibited high credibility. To sum up, this is an applicable framework not only to assess the habitat suitability of farm ponds for Common Moorhens, but also to determine whether a particular location may

  17. Changes in forest habitat classes under alternative climate and land-use change scenarios in the northeast and midwest, USA

    Science.gov (United States)

    Brian G. Tavernia; Mark D. Nelson; Michael E. Goerndt; Brian F. Walters; Chris Toney

    2013-01-01

    Large-scale and long-term habitat management plans are needed to maintain the diversity of habitat classes required by wildlife species. Planning efforts would benefit from assessments of potential climate and land-use change effects on habitats. We assessed climate and land-use driven changes in areas of closed- and open-canopy forest across the Northeast and Midwest...

  18. Habitat and Biodiversity: One out of five essential soil functions for agricultural soils

    Science.gov (United States)

    Trinsoutrot Gattin, Isabelle; Creamer, Rachel; van Leeuwen, Jeroen; Vrebos, Dirk; Gatti, Fabio; Bampa, Francesca; Schulte, Rogier; Rutgers, Michiel

    2017-04-01

    Current agricultural challenges require developing new agricultural systems that can optimize the ecological functioning of soils in order to limit the use of chemical inputs (i.e. disease suppression) and maintain a high organic matter content. This implies our ability to evaluate the effects of management practices on immediate performance objectives (i.e. fertility linked to nutrient cycling) but also in longer-term objective (i.e. C cycling and storage) in a variety of agro-climatic conditions. These issues demand the development of systemic approaches for understanding the determinants of soil functioning. In ecology, it is generally accepted that there are many positive relationships between soil biodiversity indicators and the functioning of ecosystems. Indeed, soil organisms and their interactions are essential drivers of ecosystem processes and impact the response, resilience and adaptability of ecosystems to environmental pressures. Thus, maintaining soil biodiversity is a condition for the sustainability of cropping systems. In this new context, the European project Landmark considers soil functions as a key to the improvement of agricultural land management towards sustainable development goals, amongst the five functions is soil biodiversity and habitat provisioning. We propose to present how we manage within this project to deal with this challenging objective at three spatial scales : field, landscape (regional) and European (policy). We aim to define a link between the physical, chemical and biological soil properties and "habitat & biodiversity" soil function in order to identify key indicators which modulate biodiversity. This will allow us to quantify and assess this soil function, in order to provide insight in win wins and tradeoffs in soil functions to enhance management practices which optimise the biodiversity in European agricultural systems.

  19. Habitat specialization through germination cueing: a comparative study of herbs from forests and open habitats.

    Science.gov (United States)

    Ten Brink, Dirk-Jan; Hendriksma, Harmen Pieter; Bruun, Hans Henrik

    2013-02-01

    This study examined the adaptive association between seed germination ecology and specialization to either forest or open habitats across a range of evolutionary lineages of seed plants, in order to test the hypotheses that (1) species' specialization to open vs. shaded habitats is consistently accompanied by specialization in their regeneration niche; and (2) species are thereby adapted to utilize different windows of opportunity in time (season) and space (habitat). Seed germination response to temperature, light and stratification was tested for 17 congeneric pairs, each consisting of one forest species and one open-habitat species. A factorial design was used with temperature levels and diurnal temperature variation (10 °C constant, 15-5 °C fluctuating, 20 °C constant, 25-15 °C fluctuating), and two light levels (light and darkness) and a cold stratification treatment. The congeneric species pair design took phylogenetic dependence into account. Species from open habitats germinated better at high temperatures, whereas forest species performed equally well at low and high temperatures. Forest species tended to germinate only after a period of cold stratification that could break dormancy, while species from open habitats generally germinated without cold stratification. The empirically derived germination strategies correspond quite well with establishment opportunities for forest and open-habitat plant species in nature. Annual changes in temperature and light regime in temperate forest delimit windows of opportunity for germination and establishment. Germination strategies of forest plants are adaptations to utilize such narrow windows in time. Conversely, lack of fit between germination ecology and environment may explain why species of open habitats generally fail to establish in forests. Germination strategy should be considered an important mechanism for habitat specialization in temperate herbs to forest habitats. The findings strongly suggest that

  20. California Condor Critical Habitat

    Data.gov (United States)

    California Natural Resource Agency — These Data identify (in general) the areas where critical habitat for the California Condor occur. Critical habitat for the species consists of the following 10...

  1. Impact of experimental habitat manipulation on northern bobwhite survival

    Science.gov (United States)

    Peters, David C.; Brooke, Jarred M.; Tanner, Evan P.; Unger, Ashley M.; Keyser, Patrick D.; Harper, Craig A.; Clark, Joseph D.; Morgan, John J.

    2015-01-01

    = 0.025] vs. 0.355 [SE = 0.035]) on treatment than control units. Among habitat covariates, litter depth (β = −0.387, 95%CI = −0.5809 to −0.1930) was the most influential effect (negative) on survival. Additional experiments across a wider range of habitat conditions may be required to determine management intensity or duration thresholds required to elicit greater changes in survival for northern bobwhite populations.

  2. Headwater Stream Management Dichotomies: Local Amphibian Habitat vs. Downstream Fish Habitat

    Science.gov (United States)

    Jackson, C. R.

    2002-12-01

    Small headwater streams in mountainous areas of the Pacific Northwest often do not harbor fish populations because of low water depth and high gradients. Rather, these streams provide habitat for dense assemblages of stream-dwelling amphibians. A variety of management goals have been suggested for such streams such as encouraging large woody debris recruitment to assist in sediment trapping and valley floor formation, encouraging large woody debris recruitment to provide downstream wood when debris flows occur, providing continuous linear stream buffers within forest harvest areas to provide shade and bank stability, etc. A basic problem with analying the geomorphic or biotic benefits of any of these strategies is the lack of explicit management goals for such streams. Should managers strive to optimize downstream fish habitat, local amphibian habitat, or both? Through observational data and theoretical considerations, it will be shown that these biotic goals will lead to very different geomorphic management recommendations. For instance, woody debris greater than 60 cm diameter may assist in valley floor development, but it is likely to create subsurface channel flow of unknown value to amphibians. Trapping and retention of fine sediments within headwater streams may improve downstream spawning gravels, but degrades stream-dwelling amphibian habitat. In response to the need for descriptive information on habitat and channel morphology specific to small, non-fish-bearing streams in the Pacific Northwest, morphologies and wood frequencies in forty-two first- and second-order forested streams less than four meters wide were surveyed. Frequencies and size distributions of woody debris were compared between small streams and larger fish-bearing streams as well as between second-growth and virgin timber streams. Statistical models were developed to explore dominant factors affecting channel morphology and habitat. Findings suggest geomorphological relationships

  3. HABSEED: a Simple Spatially Explicit Meta-Populations Model Using Remote Sensing Derived Habitat Quality Data

    Science.gov (United States)

    Heumann, B. W.; Guichard, F.; Seaquist, J. W.

    2005-05-01

    The HABSEED model uses remote sensing derived NPP as a surrogate for habitat quality as the driving mechanism for population growth and local seed dispersal. The model has been applied to the Sahel region of Africa. Results show that the functional response of plants to habitat quality alters population distribution. Plants more tolerant of medium quality habitat have greater distributions to the North while plants requiring only the best habitat are limited to the South. For all functional response types, increased seed production results in diminishing returns. Functional response types have been related to life history tradeoffs and r-K strategies based on the results. Results are compared to remote sensing derived vegetation land cover.

  4. Evaluating the habitat of the critically endangered Kipunji monkey ...

    African Journals Online (AJOL)

    Effective conservation of threatened species requires a good understanding of their habitat. Most primates are threatened by tropical forest loss. One population of the critically endangered kipunji monkey Rungwecebus kipunji occurs in a restricted part of one forest in southern Tanzania. This restricted range is something of ...

  5. Pacific Reef Assessment and Monitoring Program: Towed-diver Surveys of Benthic Habitat, Key Benthic Species, including Marine Debris Sightings, of the U.S. Pacific Reefs from 2000 to 2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The towed-diver method is used to conduct benthic surveys, assessing large-scale disturbances (e.g., bleaching) and quantifying benthic components such as habitat...

  6. Effect of urbanisation on habitat generalists: starlings not so flexible?

    Science.gov (United States)

    Mennechez, Gwénaëlle; Clergeau, Philippe

    2006-09-01

    The small variability of habitat generalist abundances in relation to landscape changes has been related to their behavioural flexibility. We hypothesise that successful generalists, such as the starling, compensate for feeding resource difficulties (poor quality of food, accessibility) in habitats such as urban ecosystems and that its behavioural flexibility allows for similar breeding performance in rural and urban areas. Along an urbanisation gradient we compared simultaneously (1) success factors such as the abundance of breeding starlings, their breeding performance and the fitness of nestlings, and (2) possible flexibility quantified through the rate of parental food-provisioning, and the composition and the amount of food delivered to nestlings. Abundance of breeding starlings are similar throughout the urbanisation gradient, but urbanisation profoundly and negatively affects reproductive parameters of starlings. Differences in the amount of food delivered to nestlings by parents (less food in town centre), and the small masses of nestlings reared in the urban sectors support the idea that urban nestlings received insufficient food loads. Despite modifications to their diurnal food-provisioning rhythm and the incorporation of some human food refuse into their diet, starling parents have a significantly reduced production of young in the urban centre sector. We rebut the idea that the "generalist" starling is able to breed successfully anywhere: other more "specialist" species succeed in producing their young by innovating more in terms of diet resources. We suggest defining successful birds with respect to colonisation or invasion process through behavioural innovation rather than an ambiguous habitat generalist definition.

  7. Habitat characteristics provide insights of carbon storage in seagrass meadows

    KAUST Repository

    Mazarrasa, Inés

    2018-02-17

    Seagrass meadows provide multiple ecosystem services, yet they are among the most threatened ecosystems on earth. Because of their role as carbon sinks, protection and restoration of seagrass meadows contribute to climate change mitigation. Blue Carbon strategies aim to enhance CO2 sequestration and avoid greenhouse gasses emissions through the management of coastal vegetated ecosystems, including seagrass meadows. The implementation of Blue Carbon strategies requires a good understanding of the habitat characteristics that influence Corg sequestration. Here, we review the existing knowledge on Blue Carbon research in seagrass meadows to identify the key habitat characteristics that influence Corg sequestration in seagrass meadows, those factors that threaten this function and those with unclear effects. We demonstrate that not all seagrass habitats have the same potential, identify research priorities and describe the implications of the results found for the implementation and development of efficient Blue Carbon strategies based on seagrass meadows.

  8. Metapopulation responses to patch connectivity and quality are masked by successional habitat dynamics.

    Science.gov (United States)

    Hodgson, Jenny A; Moilanen, Atte; Thomas, Chris D

    2009-06-01

    Many species have to track changes in the spatial distribution of suitable habitat from generation to generation. Understanding the dynamics of such species will likely require spatially explicit models, and patch-based metapopulation models are potentially appropriate. However, relatively little attention has been paid to developing metapopulation models that include habitat dynamics, and very little to testing the predictions of these models. We tested three predictions from theory about the differences between dynamic habitat metapopulations and their static counterparts using long-term survey data from two metapopulations of the butterfly Plebejus argus. As predicted, we showed first that the metapopulation inhabiting dynamic habitat had a lower level of habitat occupancy, which could not be accounted for by other differences between the metapopulations. Secondly, we found that patch occupancy did not significantly increase with increasing patch connectivity in dynamic habitat, whereas there was a strong positive connectivity-occupancy relationship in static habitat. Thirdly, we found no significant relationship between patch occupancy and patch quality in dynamic habitat, whereas there was a strong, positive quality-occupancy relationship in static habitat. Modeling confirmed that the differences in mean patch occupancy and connectivity-occupancy slope could arise without changing the species' metapopulation parameters-importantly, without changing the dependence of colonization upon connectivity. We found that, for a range of landscape scenarios, successional simulations always produced a lower connectivity-occupancy slope than comparable simulations with static patches, whether compared like-for-like or controlling for mean occupancy. We conclude that landscape-scale studies may often underestimate the importance of connectivity for species occurrence and persistence because habitat turnover can obscure the connectivity-occupancy relationship in commonly

  9. Genomics meets applied ecology: Characterizing habitat quality for sloths in a tropical agroecosystem.

    Science.gov (United States)

    Fountain, Emily D; Kang, Jung Koo; Tempel, Douglas J; Palsbøll, Per J; Pauli, Jonathan N; Zachariah Peery, M

    2018-01-01

    Understanding how habitat quality in heterogeneous landscapes governs the distribution and fitness of individuals is a fundamental aspect of ecology. While mean individual fitness is generally considered a key to assessing habitat quality, a comprehensive understanding of habitat quality in heterogeneous landscapes requires estimates of dispersal rates among habitat types. The increasing accessibility of genomic approaches, combined with field-based demographic methods, provides novel opportunities for incorporating dispersal estimation into assessments of habitat quality. In this study, we integrated genomic kinship approaches with field-based estimates of fitness components and approximate Bayesian computation (ABC) procedures to estimate habitat-specific dispersal rates and characterize habitat quality in two-toed sloths (Choloepus hoffmanni) occurring in a Costa Rican agricultural ecosystem. Field-based observations indicated that birth and survival rates were similar in a sparsely shaded cacao farm and adjacent cattle pasture-forest mosaic. Sloth density was threefold higher in pasture compared with cacao, whereas home range size and overlap were greater in cacao compared with pasture. Dispersal rates were similar between the two habitats, as estimated using ABC procedures applied to the spatial distribution of pairs of related individuals identified using 3,431 single nucleotide polymorphism and 11 microsatellite locus genotypes. Our results indicate that crops produced under a sparse overstorey can, in some cases, constitute lower-quality habitat than pasture-forest mosaics for sloths, perhaps because of differences in food resources or predator communities. Finally, our study demonstrates that integrating field-based demographic approaches with genomic methods can provide a powerful means for characterizing habitat quality for animal populations occurring in heterogeneous landscapes. © 2017 John Wiley & Sons Ltd.

  10. New England wildlife: management forested habitats

    Science.gov (United States)

    Richard M. DeGraaf; Mariko Yamasaki; William B. Leak; John W. Lanier

    1992-01-01

    Presents silvicultural treatments for six major cover-type groups in New England to produce stand conditions that provide habitat opportunities for a wide range of wildlife species. Includes matrices for species occurrence and utilization by forested and nonforested habitats, habitat breadth and size class, and structural habitat features for the 338 wildlife species...

  11. Wildlife habitat considerations

    Science.gov (United States)

    Helen Y. Smith

    2000-01-01

    Fire, insects, disease, harvesting, and precommercial thinning all create mosaics on Northern Rocky Mountain landscapes. These mosaics are important for faunal habitat. Consequently, changes such as created openings or an increase in heavily stocked areas affect the water, cover, and food of forest habitats. The “no action” alternative in ecosystem management of low...

  12. Waterbird habitat in California's Central Valley basins under climate, urbanization, and water management scenarios

    Science.gov (United States)

    Matchett, Elliott L.; Fleskes, Joseph

    2018-01-01

    California's Central Valley provides critical, but threatened habitat and food resources for migrating and wintering waterfowl, shorebirds, and other waterbirds. The Central Valley is comprised of nine basins that were defined by the Central Valley Joint Venture (CVJV) to assist in conservation planning. Basins vary in composition and extent of habitats, which primarily include croplands and wetlands that rely on water supplies shared with other competing human and environmental uses. Changes in climate, urban development, and water supply management are uncertain and could reduce future availability of water supplies supporting waterbird habitats and limit effectiveness of wetland restoration planned by the CVJV to support wintering waterbirds. We modeled 17 plausible scenarios including combinations of three climate projections, three urbanization rates, and five water supply management options to promote agricultural and urban water uses, with and without wetland restoration. Our research examines the reduction in quantity and quality of habitats during the fall migration-wintering period by basin under each scenario, and the efficacy of planned wetland restoration to compensate reductions in flooded areas of wetland habitats. Scenario combinations of projected climate, urbanization, and water supply management options reduced availability of flooded cropland and wetland habitats during fall-winter and degraded the quality of seasonal wetlands (i.e., summer-irrigation for improved forage production), though the extent and frequency of impacts varied by basin. Planned wetland restoration may substantially compensate for scenario-related effects on wetland habitats in each basin. However, results indicate that Colusa, Butte, Sutter, San Joaquin, and Tulare Basins may require additional conservation to support summer-irrigation of seasonal wetlands and winter-flooding of cropland habitats. Still further conservation may be required to provide sufficient areas of

  13. Mechanisms Affecting Population Density in Fragmented Habitat

    Directory of Open Access Journals (Sweden)

    Lutz Tischendorf

    2005-06-01

    Full Text Available We conducted a factorial simulation experiment to analyze the relative importance of movement pattern, boundary-crossing probability, and mortality in habitat and matrix on population density, and its dependency on habitat fragmentation, as well as inter-patch distance. We also examined how the initial response of a species to a fragmentation event may affect our observations of population density in post-fragmentation experiments. We found that the boundary-crossing probability from habitat to matrix, which partly determines the emigration rate, is the most important determinant for population density within habitat patches. The probability of crossing a boundary from matrix to habitat had a weaker, but positive, effect on population density. Movement behavior in habitat had a stronger effect on population density than movement behavior in matrix. Habitat fragmentation and inter-patch distance may have a positive or negative effect on population density. The direction of both effects depends on two factors. First, when the boundary-crossing probability from habitat to matrix is high, population density may decline with increasing habitat fragmentation. Conversely, for species with a high matrix-to-habitat boundary-crossing probability, population density may increase with increasing habitat fragmentation. Second, the initial distribution of individuals across the landscape: we found that habitat fragmentation and inter-patch distance were positively correlated with population density when individuals were distributed across matrix and habitat at the beginning of our simulation experiments. The direction of these relationships changed to negative when individuals were initially distributed across habitat only. Our findings imply that the speed of the initial response of organisms to habitat fragmentation events may determine the direction of observed relationships between habitat fragmentation and population density. The time scale of post

  14. Degradation of male and female rufous-and-white wren songs in a tropical forest: effects of sex, perch height, and habitat

    DEFF Research Database (Denmark)

    Barker, Nicole K.S.; Dabelsteen, Torben; Mennill, Daniel J.

    2009-01-01

    We performed a song transmission experiment to investigate the effects of distance, song post height, receiver perch height, signaller sex, and microhabitat on song degradation in rufous-and-white wrens (Thryothorus rufalbus), a neotropical duetting songbird. We quantified the effects of these fa......We performed a song transmission experiment to investigate the effects of distance, song post height, receiver perch height, signaller sex, and microhabitat on song degradation in rufous-and-white wrens (Thryothorus rufalbus), a neotropical duetting songbird. We quantified the effects...... of these factors on excess attenuation, signal-to-noise ratio, tail-to-signal ratio, and blur ratio of male and female songs. As expected, song degradation increased with distance between signaller and receiver. Songs transmitted best when emitted from moderate heights (5-7 m), although this pattern varied....... Rufous-and-white wren songs appeared more attenuated in open field than forest habitats, but microhabitat conditions within the forests exerted a strong influence on song degradation. These findings match previous studies showing an effect of distance, song post height, and habitat, but contrast...

  15. Nursery use of shallow habitats by epibenthic fishes in Maine nearshore waters

    Science.gov (United States)

    Lazzari, M. A.; Sherman, S.; Kanwit, J. K.

    2003-01-01

    Species richness and abundance of epibenthic fishes were quantified with daytime beam trawl tows in shallow water habitats during April-November 2000 of three mid-coast Maine estuaries: Casco Bay, Muscongus Bay and the Weskeag River. Five shallow (Gasterosteus aculeatus, Apeltes quadracus, Pungitius pungitius, Myoxocephalus aenaeus, and Cylcopterus lumpus. The fish community of mid-coast estuaries was dominated by young-of-the-year (YOY) and juvenile fishes and all of the habitat types function as nursery areas. Twelve species (38%) of commercial and recreational importance were collected in the three estuaries, but the percentage was higher in Casco Bay (44%) and the Weskeag River (46%). These species included Anguilla rostrata, Clupea harengus, Gadus morhua, Microgadus tomcod, Pollachius virens, Urophycis chuss, Urophycis regia, Urophycis tenuis, Osmerus mordax, Macrozoarces americanus, Tautogolabrus adspersus, and Pleuronectes americanus. Four species, G. morhua, M. tomcod, P. virens, and U. tenuis were more common in spring than summer or autumn. P. americanus was most abundant in summer followed by spring and autumn. This study documents the importance of shallow estuarine areas in Maine as nurseries for these species.

  16. Virtual environment to quantify the influence of colour stimuli on the performance of tasks requiring attention

    Directory of Open Access Journals (Sweden)

    Frère Annie F

    2011-08-01

    where tasks, that require attention, were most affected. Conclusions The game proved to be a user-friendly tool capable to detect and quantify the influence of color on the performance of people executing tasks that require attention and showed to be attractive for people with ADHD.

  17. Sound solutions for habitat monitoring

    Science.gov (United States)

    Mary M. Rowland; Lowell H. Suring; Christina D. Vojta

    2015-01-01

    For agencies and organizations to effectively manage wildlife, knowledge about the status and trend of wildlife habitat is critical. Traditional wildlife monitoring, however, has focused on populations rather than habitat, because ultimately population status drives long-term species viability. Still, habitat loss has contributed to the decline of nearly all at-risk...

  18. Sound transmission at ground level in a short-grass prairie habitat and its implications for long-range communication in the swift fox Vulpes velox

    DEFF Research Database (Denmark)

    Darden, Safi K; Pedersen, Simon B; Larsen, Ole N

    2008-01-01

    The acoustic environment of swift foxes Vulpes velox vocalizing close to the ground and the effect of propagation on individual identity information in vocalizations were quantified in a transmission experiment in prairie habitat. Sounds were propagated (0.45 m above the ground) at distances up t...

  19. The Use of Aerial RGB Imagery and LIDAR in Comparing Ecological Habitats and Geomorphic Features on a Natural versus Man-Made Barrier Island

    Directory of Open Access Journals (Sweden)

    Carlton P. Anderson

    2016-07-01

    Full Text Available The Mississippi (MS barrier island chain along the northern Gulf of Mexico coastline is subject to rapid changes in habitat, geomorphology and elevation by natural and anthropogenic disturbances. The purpose of this study was to compare habitat type coverage with respective elevation, geomorphic features and short-term change between the naturally-formed East Ship Island and the man-made Sand Island. Ground surveys, multi-year remotely-sensed data, habitat classifications and digital elevation models were used to quantify short-term habitat and geomorphic change, as well as to examine the relationships between habitat types and micro-elevation. Habitat types and species composition were the same on both islands with the exception of the algal flat existing on the lower elevated spits of East Ship. Both islands displayed common patterns of vegetation succession and ranges of existence in elevation. Additionally, both islands showed similar geomorphic features, such as fore and back dunes and ponds. Storm impacts had the most profound effects on vegetation and geomorphic features throughout the study period. Although vastly different in age, these two islands show remarkable commonalities among the traits investigated. In comparison to East Ship, Sand Island exhibits key characteristics of a natural barrier island in terms of its vegetated habitats, geomorphic features and response to storm impacts, although it was established anthropogenically only decades ago.

  20. Shaken but not stirred: Multiscale habitat suitability modeling of sympatric marten species (Martes martes and Martes foina) in the northern Iberian Peninsula

    Science.gov (United States)

    Maria Vergara; Samuel A. Cushman; Fermin Urra; Aritz Ruiz-Gonzalez

    2016-01-01

    Multispecies and multiscale habitat suitability models (HSM) are important to identify the environmental variables and scales influencing habitat selection and facilitate the comparison of closely related species with different ecological requirements. Objectives This study explores the multiscale relationships of habitat suitability for the pine (Martes...

  1. A Candidate Vegetation Index of Biological Integrity Based on Species Dominance and Habitat Fidelity

    Science.gov (United States)

    Gara, Brian D; Stapanian, Martin A.

    2015-01-01

    Indices of biological integrity of wetlands based on vascular plants (VIBIs) have been developed in many areas of the USA and are used in some states to make critical management decisions. An underlying concept of all VIBIs is that they respond negatively to disturbance. The Ohio VIBI (OVIBI) is calculated from 10 metrics, which are different for each wetland vegetation class. We present a candidate vegetation index of biotic integrity based on floristic quality (VIBI-FQ) that requires only two metrics to calculate an overall score regardless of vegetation class. These metrics focus equally on the critical ecosystem elements of diversity and dominance as related to a species’ degree of fidelity to habitat requirements. The indices were highly correlated but varied among vegetation classes. Both indices responded negatively with a published index of wetland disturbance in 261 Ohio wetlands. Unlike VIBI-FQ, however, errors in classifying wetland vegetation may lead to errors in calculating OVIBI scores. This is especially critical when assessing the ecological condition of rapidly developing ecosystems typically associated with wetland restoration and creation projects. Compared to OVIBI, the VIBI-FQ requires less field work, is much simpler to calculate and interpret, and can potentially be applied to all habitat types. This candidate index, which has been “standardized” across habitats, would make it easier to prioritize funding because it would score the “best” and “worst” of all habitats appropriately and allow for objective comparison across different vegetation classes.

  2. Home-range size and habitat use of European Nightjars Caprimulgus europaeus nesting in a complex plantation-forest landscape

    OpenAIRE

    Sharps, Katrina; Henderson, Ian; Conway, Greg; Armour-Chelu, Neal; Dolman, Paul

    2015-01-01

    In Europe, the consequences of commercial plantation management for birds of conservation concern are poorly understood. The European Nightjar Caprimulgus europaeus is a species of conservation concern across Europe due to population depletion through habitat loss. Pine plantation-forest is now a key Nightjar nesting habitat, particularly in northwestern Europe, and increased understanding of foraging habitat selection is required. We radiotracked 31 Nightjars in an extensive (185-km2) comple...

  3. Habitat and forage associations of a naturally colonising insect pollinator, the tree bumblebee Bombus hypnorum.

    Directory of Open Access Journals (Sweden)

    Liam P Crowther

    Full Text Available Bumblebees (Bombus species are major pollinators of commercial crops and wildflowers but factors affecting their abundance, including causes of recent population declines, remain unclear. Investigating the ecology of species with expanding ranges provides a potentially powerful means of elucidating these factors. Such species may also bring novel pollination services to their new ranges. We therefore investigated landscape-scale habitat use and foraging preferences of the Tree Bumblebee, B. hypnorum, a recent natural colonist that has rapidly expanded its range in the UK over the past decade. Counts of B. hypnorum and six other Bombus species were made in March-June 2012 within a mixed landscape in south-eastern Norfolk, UK. The extent of different landscape elements around each transect was quantified at three scales (250 m, 500 m and 1500 m. We then identified the landscape elements that best predicted the density of B. hypnorum and other Bombus species. At the best fitting scale (250 m, B. hypnorum density was significantly positively associated with extent of both urban and woodland cover and significantly negatively associated with extent of oilseed rape cover. This combination of landscape predictors was unique to B. hypnorum. Urban and woodland cover were associated with B. hypnorum density at three and two, respectively, of the three scales studied. Relative to other Bombus species, B. hypnorum exhibited a significantly higher foraging preference for two flowering trees, Crataegus monogyna and Prunus spinosa, and significantly lower preferences for Brassica napus, Glechoma hederacea and Lamium album. Our study provides novel, quantitative support for an association of B. hypnorum with urban and woodland landscape elements. Range expansion in B. hypnorum appears to depend, on exploitation of widespread habitats underutilised by native Bombus species, suggesting B. hypnorum will readily co-exist with these species. These findings suggest

  4. Indicators: Physical Habitat Complexity

    Science.gov (United States)

    Physical habitat complexity measures the amount and variety of all types of cove at the water’s edge in lakes. In general, dense and varied shoreline habitat is able to support more diverse communities of aquatic life.

  5. Remote Sensing for Threatened and Endangered Species Habitat Assessment on Military Lands: A Literature Review

    National Research Council Canada - National Science Library

    Tweddale, Scott A; Melton, Robert H

    2005-01-01

    .... To meet the requirements of the Endangered Species Act, the DoD requires accurate, cost-effective surveying and monitoring methods to characterize and monitor the habitats of TES on military training and testing lands...

  6. Are ant assemblages of Brazilian veredas characterised by location or habitat type?

    Science.gov (United States)

    Costa-Milanez, C B; Lourenço-Silva, G; Castro, P T A; Majer, J D; Ribeiro, S P

    2014-02-01

    Wetland areas in the Brazilian Cerrado, known as "veredas", represent ecosystems formed on sandy soils with high concentrations of peat, and are responsible for the recharge of aquiferous reservoirs. They are currently under threat by various human activities, most notably the clearing of vegetation for Eucalyptus plantations. Despite their ecological importance and high conservation value, little is known about the actual effects of human disturbance on the animal community. To assess how habitat within different veredas, and plantations surrounding them affect ant assemblages, we selected four independent vereda locations, two being impacted by Eucalyptus monoculture (one younger and one mature plantation) and two controls, where the wetland was surrounded by cerrado vegetation. Ant sampling was conducted in May 2010 (dry season) using three complementary methods, namely baits, pitfall traps, and hand collection, in the wetland and in the surrounding habitats. A total of 7,575 ants were sampled, belonging to seven subfamilies, 32 genera and 124 species. Ant species richness and abundance did not differ between vereda locations, but did between the habitats. When impacted by the monoculture, ant species richness and abundance decreased in wetlands, but were less affected in the cerrado habitat. Ant species composition differed between the three habitats and between vereda locations. Eucalyptus plantations had an ant species composition defined by high dominance of Pheidole sp. and Solenopsis invicta, while natural habitats were defined by Camponotus and Crematogaster species. Atta sexdens was strictly confined to native habitats of non-impacted "veredas". Eucalyptus monocultures require high quantities of water in the early stages, which may have caused a decrease in groundwater level in the wetland, allowing hypogeic ants such as Labidus praedator to colonise this habitat.

  7. Fuels Management and Habitat Restoration Activities Benefit Eastern Hognose Snakes (Heterodon platirhinos) in a Disturbance-Dependent Ecosystem

    Science.gov (United States)

    Michael E. Akresh; David I. King; Brad C. Timm; Robert T. Brooks

    2017-01-01

    Eastern Hognose Snakes (Heterodon platirhinos) are considered a species of conservation concern in the northeast United States because of their association with rare and declining habitats such as pine barrens and shrublands. These are disturbance-dependent habitats that currently require management to persist. We studied Eastern Hognose Snakes on...

  8. Mapping the seabed and habitats in National Marine Sanctuaries - Examples from the East, Gulf and West Coasts

    Science.gov (United States)

    Valentine, Page C.; Cochrane, Guy R.; Scanlon, Kathryn M.

    2003-01-01

    The National Marine Sanctuary System requires seabed and habitat maps to serve as a basis for managing sanctuary resources and for conducting research. NOAA, the agency that manages the sanctuaries, and the USGS have conducted mapping projects in three sanctuaries (Stellwagen Bank NMS, Flower Garden Banks NMS, and Channel Islands NMS) with an emphasis on collaboration of geologists and biologists from the two agencies and from academic institutions. Mapping of seabed habitats is a developing field that requires the integration of geologic and biologic studies and the use of swath imaging techniques such as multibeam and sidescan sonar. Major products of swath mapping are shaded-relief topographic imagery which shows seabed features in great detail, and backscatter imagery which provides an indication of the types of materials that constitute the seabed. Sea floor images provide an excellent basis for conducting the groundtruthing studies (using video, photo, and sampling techniques) that are required to collect the data necessary for making meaningful interpretative maps of the seabed. The compilation of interpretive maps showing seabed environments and habitats also requires the development of a sea floor classification system that will be a basis for comparing, managing, and researching characteristic areas of the seabed. Seabed maps of the sanctuaries are proving useful for management and research decisions that address commercial and recreational fishing, habitat disturbance, engineering projects, tourism, and cultural resources.

  9. Habitat characteristics provide insights of carbon storage in seagrass meadows.

    Science.gov (United States)

    Mazarrasa, Inés; Samper-Villarreal, Jimena; Serrano, Oscar; Lavery, Paul S; Lovelock, Catherine E; Marbà, Núria; Duarte, Carlos M; Cortés, Jorge

    2018-02-16

    Seagrass meadows provide multiple ecosystem services, yet they are among the most threatened ecosystems on earth. Because of their role as carbon sinks, protection and restoration of seagrass meadows contribute to climate change mitigation. Blue Carbon strategies aim to enhance CO 2 sequestration and avoid greenhouse gasses emissions through the management of coastal vegetated ecosystems, including seagrass meadows. The implementation of Blue Carbon strategies requires a good understanding of the habitat characteristics that influence C org sequestration. Here, we review the existing knowledge on Blue Carbon research in seagrass meadows to identify the key habitat characteristics that influence C org sequestration in seagrass meadows, those factors that threaten this function and those with unclear effects. We demonstrate that not all seagrass habitats have the same potential, identify research priorities and describe the implications of the results found for the implementation and development of efficient Blue Carbon strategies based on seagrass meadows. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Architecture and life support systems for a rotating space habitat

    Science.gov (United States)

    Misra, Gaurav

    Life Support Systems are critical to sustain human habitation of space over long time periods. As orbiting space habitats become operational in the future, support systems such as atmo-sphere, food, water etc. will play a very pivotal role in sustaining life. To design a long-duration space habitat, it's important to consider the full gamut of human experience of the environment. Long-term viability depends on much more than just the structural or life support efficiency. A space habitat isn't just a machine; it's a life experience. To be viable, it needs to keep the inhabitants satisfied with their condition. This paper provides conceptual research on several key factors that influence the growth and sustainability of humans in a space habitat. Apart from the main life support system parameters, the architecture (both interior and exterior) of the habitat will play a crucial role in influencing the liveability in the space habitat. In order to ensure the best possible liveability for the inhabitants, a truncated (half cut) torus is proposed as the shape of the habitat. This structure rotating at an optimum rpm will en-sure 1g pseudo gravity to the inhabitants. The truncated torus design has several advantages over other proposed shapes such as a cylinder or a sphere. The design provides minimal grav-ity variation (delta g) in the living area, since its flat outer pole ensures a constant gravity. The design is superior in economy of structural and atmospheric mass. Interior architecture of the habitat addresses the total built environment, drawing from diverse disciplines includ-ing physiology, psychology, and sociology. Furthermore, factors such as line of sight, natural sunlight and overhead clearance have been discussed in the interior architecture. Substantial radiation shielding is also required in order to prevent harmful cosmic radiations and solar flares from causing damage to inhabitants. Regolith shielding of 10 tons per meter square is proposed for the

  11. Multi-scale analysis to uncover habitat use of red-crowned cranes: Implications for conservation

    Directory of Open Access Journals (Sweden)

    Chunyue LIU, Hongxing JIANG, Shuqing ZHANG, Chunrong LI,Yunqiu HOU, Fawen QIAN

    2013-10-01

    Full Text Available A multi-scale approach is essential to assess the factors that limit avian habitat use. Numerous studies have examined habitat use by the red-crowned crane, but integrated multi-scale habitat use information is lacking. We evaluated the effects of several habitat variables quantified across many spatial scales on crane use and abundance in two periods (2000 and 2009 at Yancheng National Nature Reserve, China. The natural wetlands decreased in area by 30,601 ha (-6.9% from 2000 to 2009, predominantly as a result of conversion to aquaculture ponds and farmland, and the remaining was under degradation due to expansion of the exotic smooth cordgrass. The cranes are focusing in on either larger patches or those that are in close proximity to each other in both years, but occupied patches had smaller size, less proximity and more regular boundaries in 2009. At landscape scales, the area percentage of common seepweed, reed ponds and paddy fields had a greater positive impact on crane presence than the area percentage of aquaculture ponds. The cranes were more abundant in patches that had a greater percent area of common seepweed and reed ponds, while the percent area of paddy fields was inversely related to crane abundance in 2009 due to changing agricultural practices. In 2009, cranes tended to use less fragmented plots in natural wetlands and more fragmented plots in anthropogenic paddy fields, which were largely associated with the huge loss and degradation of natural habitats between the two years. Management should focus on restoration of large patches of natural wetlands, and formation of a relatively stable area of large paddy field and reed pond to mitigate the loss of natural wetlands [Current Zoology 59 (5: 604–617, 2013].

  12. Urbanization effects on stream habitat characteristics in Boston, Massachusetts; Birmingham, Alabama; and Salt Lake City, Utah

    Science.gov (United States)

    Short, T.M.; Giddings, E.M.P.; Zappia, H.; Coles, J.F.

    2005-01-01

    Relations between stream habitat and urban land-use intensity were examined in 90 stream reaches located in or near the metropolitan areas of Salt Lake City, Utah (SLC); Birmingham, Alabama (BIR); and Boston, Massachusetts (BOS). Urban intensity was based on a multi-metric index (urban intensity index or UII) that included measures of land cover, socioeconomic organization, and urban infrastructure. Twenty-eight physical variables describing channel morphology, hydraulic properties, and streambed conditions were examined. None of the habitat variables was significantly correlated with urbanization intensity in all three study areas. Urbanization effects on stream habitat were less apparent for streams in SLC and BIR, owing to the strong influence of basin slope (SLC) and drought conditions (BIR) on local flow regimes. Streamflow in the BOS study area was not unduly influenced by similar conditions of climate and physiography, and habitat conditions in these streams were more responsive to urbanization. Urbanization in BOS contributed to higher discharge, channel deepening, and increased loading of fine-grained particles to stream channels. The modifying influence of basin slope and climate on hydrology of streams in SLC and BIR limited our ability to effectively compare habitat responses among different urban settings and identify common responses that might be of interest to restoration or water management programs. Successful application of land-use models such as the UII to compare urbanization effects on stream habitat in different environmental settings must account for inherent differences in natural and anthropogenic factors affecting stream hydrology and geomorphology. The challenge to future management of urban development is to further quantify these differences by building upon existing models, and ultimately develop a broader understanding of urbanization effects on aquatic ecosystems. ?? 2005 by the American Fisheries Society.

  13. Juvenile flatfish in the northern Baltic Sea - long-term decline and potential links to habitat characteristics

    Science.gov (United States)

    Jokinen, Henri; Wennhage, Håkan; Ollus, Victoria; Aro, Eero; Norkko, Alf

    2016-01-01

    Flatfish in the northern Baltic Sea are facing multiple environmental pressures due to on-going large-scale ecosystem changes linked to eutrophication and climate change. Shallow juvenile habitats of flatfishes are expected to be especially susceptible to these environmental pressures. Using previously unpublished historical and present-state data on juvenile flatfish in nursery areas along the Finnish coast we demonstrate a drastic (up to 40 ×) decline in 1-Y-O flounder densities since the 1980s and a particularly low current occurrence of both flounders and turbots in several known juvenile habitats. As a consequence of ongoing coastal eutrophication vegetation coverage and filamentous algae have generally increased in shallow areas. We examined the predicted negative effect of vegetation/algae by exploring quantitative relationships between juvenile flatfish (flounder and turbot) occurrence and vegetation/algae among other environmental factors in shallow juvenile habitats. Despite sparse occurrence of juveniles we found a significant negative relationship between flatfish abundance and vegetation cover, implicating eutrophication as a potential major driver affecting the value of juvenile habitat. Shallow littoral habitats play a particularly central role for flatfish due to the spatial concentration of fish in these areas during the critical juvenile stage. Despite their importance, these areas have been relatively poorly studied in the northern Baltic Sea, which makes it difficult to quantify overall changes in environmental conditions and to relate these changes to flatfish recruitment. The low present-state flatfish densities recorded preclude strong inferences of the role of habitat quality to be drawn. Our study does, however, provide a baseline for future assessment. Based on existing evidence, we cannot thus establish any bottlenecks but hypothesize that the current low occurrence of juvenile flatfish, and the population decline of flounder on the

  14. 3.10. Habitat restoration and creation

    OpenAIRE

    2016-01-01

    1.12.1 Terrestrial habitat Based on the collated evidence, what is the current assessment of the effectiveness of interventions for terrestrial habitat restoration and creation? Beneficial ● Replant vegetation Likely to be beneficial ● Clear vegetation● Create artificial hibernacula or aestivation sites● Create refuges● Restore habitat connectivity Unknown effectiveness (limited evidence) ● Change mowing regime No evidence found (no assessment) ● Create habitat connectivity Beneficial Repla...

  15. Habitat Heterogeneity Variably Influences Habitat Selection by Wild Herbivores in a Semi-Arid Tropical Savanna Ecosystem.

    Directory of Open Access Journals (Sweden)

    Victor K Muposhi

    Full Text Available An understanding of the habitat selection patterns by wild herbivores is critical for adaptive management, particularly towards ecosystem management and wildlife conservation in semi arid savanna ecosystems. We tested the following predictions: (i surface water availability, habitat quality and human presence have a strong influence on the spatial distribution of wild herbivores in the dry season, (ii habitat suitability for large herbivores would be higher compared to medium-sized herbivores in the dry season, and (iii spatial extent of suitable habitats for wild herbivores will be different between years, i.e., 2006 and 2010, in Matetsi Safari Area, Zimbabwe. MaxEnt modeling was done to determine the habitat suitability of large herbivores and medium-sized herbivores. MaxEnt modeling of habitat suitability for large herbivores using the environmental variables was successful for the selected species in 2006 and 2010, except for elephant (Loxodonta africana for the year 2010. Overall, large herbivores probability of occurrence was mostly influenced by distance from rivers. Distance from roads influenced much of the variability in the probability of occurrence of medium-sized herbivores. The overall predicted area for large and medium-sized herbivores was not different. Large herbivores may not necessarily utilize larger habitat patches over medium-sized herbivores due to the habitat homogenizing effect of water provisioning. Effect of surface water availability, proximity to riverine ecosystems and roads on habitat suitability of large and medium-sized herbivores in the dry season was highly variable thus could change from one year to another. We recommend adaptive management initiatives aimed at ensuring dynamic water supply in protected areas through temporal closure and or opening of water points to promote heterogeneity of wildlife habitats.

  16. Comparing the plant diversity between artificial forest and nature growth forest in a giant panda habitat.

    Science.gov (United States)

    Kang, Dongwei; Wang, Xiaorong; Li, Shuang; Li, Junqing

    2017-06-15

    Artificial restoration is an important way to restore forests, but little is known about its effect on the habitat restoration of the giant panda. In the present study, we investigated the characteristics of artificial forest in the Wanglang Nature Reserve to determine whether through succession it has formed a suitable habitat for the giant panda. We compared artificial forest characteristics with those of natural habitat used by the giant panda. We found that the dominant tree species in artificial forest differed from those in the natural habitat. The artificial forest had lower plant species richness and diversity in the tree and shrub layers than did the latter, and its community structure was characterized by smaller tree and bamboo sizes, and fewer and lower bamboo clumps, but more trees and larger shrub sizes. The typical community collocation of artificial forest was a "Picea asperata + no-bamboo" model, which differs starkly from the giant panda's natural habitat. After several years of restoration, the artificial forest has failed to become a suitable habitat for the giant panda. Therefore, a simple way of planting individual trees cannot restore giant panda habitat; instead, habitat restoration should be based on the habitat requirements of the giant panda.

  17. Radial Internal Material Handling System (RIMS) for Circular Habitat Volumes

    Science.gov (United States)

    Howe, Alan S.; Haselschwardt, Sally; Bogatko, Alex; Humphrey, Brian; Patel, Amit

    2013-01-01

    On planetary surfaces, pressurized human habitable volumes will require a means to carry equipment around within the volume of the habitat, regardless of the partial gravity (Earth, Moon, Mars, etc.). On the NASA Habitat Demonstration Unit (HDU), a vertical cylindrical volume, it was determined that a variety of heavy items would need to be carried back and forth from deployed locations to the General Maintenance Work Station (GMWS) when in need of repair, and other equipment may need to be carried inside for repairs, such as rover parts and other external equipment. The vertical cylindrical volume of the HDU lent itself to a circular overhead track and hoist system that allows lifting of heavy objects from anywhere in the habitat to any other point in the habitat interior. In addition, the system is able to hand-off lifted items to other material handling systems through the side hatches, such as through an airlock. The overhead system consists of two concentric circle tracks that have a movable beam between them. The beam has a hoist carriage that can move back and forth on the beam. Therefore, the entire system acts like a bridge crane curved around to meet itself in a circle. The novelty of the system is in its configuration, and how it interfaces with the volume of the HDU habitat. Similar to how a bridge crane allows coverage for an entire rectangular volume, the RIMS system covers a circular volume. The RIMS system is the first generation of what may be applied to future planetary surface vertical cylinder habitats on the Moon or on Mars.

  18. Dos and Don’ts for butterflies of the Habitats Directive of the European Union

    Directory of Open Access Journals (Sweden)

    Chris van Swaay

    2012-03-01

    Full Text Available Twenty-nine butterfly species are listed on the Annexes of the Habitats Directive. To assist everyone who wants or needs to take action for one of these species, we compiled an overview of the habitat requirements and ecology of each species, as well as information on their conservation status in Europe. This was taken from the recent Red List and their main biogeographical regions (taken from the first reporting on Article 17 of the Directive. Most important are the Dos and Don`ts, which summarize in a few bullet points what to do and what to avoid in order to protect and conserve these butterflies and their habitats.

  19. Assessing multi-taxa sensitivity to the human footprint, habitat fragmentation and loss by exploring alternative scenarios of dispersal ability and population size: A simulation approach

    Science.gov (United States)

    Brian K. Hand; Samuel A. Cushman; Erin L. Landguth; John Lucotch

    2014-01-01

    Quantifying the effects of landscape change on population connectivity is compounded by uncertainties about population size and distribution and a limited understanding of dispersal ability for most species. In addition, the effects of anthropogenic landscape change and sensitivity to regional climatic conditions interact to strongly affect habitat...

  20. Habitat associations of chorusing anurans in the Lower Mississippi River Alluvial valley

    Science.gov (United States)

    Lichtenberg, J.S.; King, S.L.; Grace, J.B.; Walls, S.C.

    2006-01-01

    Amphibian populations have declined worldwide. To pursue conservation efforts adequately, land managers need more information concerning amphibian habitat requirements. To address this need, we examined relationships between anurans and habitat characteristics of wetlands in the Lower Mississippi River Alluvial Valley (LMAV). We surveyed chorusing anurans in 31 wetlands in 2000 and 28 wetlands in 2001, and measured microhabitat variables along the shoreline within the week following each survey. We recorded 12 species of anurans during our study. Species richness was significantly lower in 2000 than 2001 (t-test, P < 0.001) and correlated with an ongoing drought. We found species richness to be significantly greater at lake sites compared to impoundment, swale, and riverine sites (ANOVA, P = 0.002). We used stepwise regression to investigate the wetland types and microhabitat characteristics associated with species richness of chorusing anurans. Microhabitat characteristics associated with species richness included dense herbaceous vegetation and accumulated litter along the shoreline. Individual species showed species-specific habitat associations. The bronze frog, American bullfrog, and northern cricket frog were positively associated with lake sites (Fisher's Exact Test, P < 0.05), however wetland type did not significantly influence any additional species. Using bivariate correlations, we found that six of the seven most common species had significant associations with microhabitat variables. Overall, our findings support the view that conservation and enhancement of amphibian communities in the LMAV and elsewhere requires a matrix of diverse wetland types and habitat conditions. ?? 2006, The Society of Wetland Scientists.

  1. 75 FR 24545 - Endangered and Threatened Wildlife and Plants; Designation of Critical Habitat for the Polar Bear...

    Science.gov (United States)

    2010-05-05

    ... Critical Habitat for the Polar Bear in the United States AGENCY: Fish and Wildlife Service, Interior... designation of critical habitat for the polar bear (Ursus maritimus) under the Endangered Species Act of 1973... for the polar bear and on the DEA, and an amended required determinations section of the proposal. We...

  2. Coarse- and fine-scale patterns of distribution and habitat selection places an Amazonian floodplain curassow in double jeopardy

    Directory of Open Access Journals (Sweden)

    Gabriel A. Leite

    2018-05-01

    Full Text Available Patterns of habitat selection are influenced by local productivity, resource availability, and predation risk. Species have taken millions of years to hone the macro- and micro-habitats they occupy, but these may now overlap with contemporary human threats within natural species ranges. Wattled Curassow (Crax globulosa, an endemic galliform species of the western Amazon, is threatened by both hunting and habitat loss, and is restricted to white-water floodplain forests of major Amazonian rivers. In this study conducted along the Juruá River, Amazonas, Brazil, we quantified the ranging ecology and fine-scale patterns of habitat selection of the species. We estimated the home range size of C. globulosa using conventional VHF telemetry. To estimate patterns of habitat selection, we used geo-locations of day ranges to examine the extent and intensity of use across the floodplain, which were then compared to a high-resolution flood map of the study area. We captured two females and one male, which we monitored for 13 months between September 2014 and September 2015. Average home range size was 283 ha, based on the 95% aLoCoH estimator. Wattled Curassows selected areas of prolonged flood pulses (six to eight months/year and had a consistent tendency to be near open water, usually in close proximity to river banks and lakes, especially during the dry season. Amazonian floodplains are densely settled, and the small portions of floodplain habitat used by Wattled Curassows are both the most accessible to hunters and most vulnerable to deforestation. As a result, the geographic and ecological distribution of Wattled Curassows places them at much higher extinction risk at multiple spatial scales, highlighting the need to consider habitat preferences within their conservation strategy.

  3. Anthropogenic areas as incidental substitutes for original habitat.

    Science.gov (United States)

    Martínez-Abraín, Alejandro; Jiménez, Juan

    2016-06-01

    One speaks of ecological substitutes when an introduced species performs, to some extent, the ecosystem function of an extirpated native species. We suggest that a similar case exists for habitats. Species evolve within ecosystems, but habitats can be destroyed or modified by natural and human-made causes. Sometimes habitat alteration forces animals to move to or remain in a suboptimal habitat type. In that case, the habitat is considered a refuge, and the species is called a refugee. Typically refugee species have lower population growth rates than in their original habitats. Human action may lead to the unintended generation of artificial or semiartificial habitat types that functionally resemble the essential features of the original habitat and thus allow a population growth rate of the same magnitude or higher than in the original habitat. We call such areas substitution habitats and define them as human-made habitats within the focal species range that by chance are partial substitutes for the species' original habitat. We call species occupying a substitution habitat adopted species. These are 2 new terms in conservation biology. Examples of substitution habitats are dams for European otters, wheat and rice fields for many steppeland and aquatic birds, and urban areas for storks, falcons, and swifts. Although substitution habitats can bring about increased resilience against the agents of global change, the conservation of original habitat types remains a conservation priority. © 2016 Society for Conservation Biology.

  4. Meta-analysis of California Spotted Owl (Strix occidentalis occidentalis) territory occupancy in the Sierra Nevada: habitat associations and their implications for forest management

    Science.gov (United States)

    Douglas J. Tempel; John J. Keane; R. J. Gutierrez; Jared D. Wolfe; Gavin M. Jones; Alexander Koltunov; Carlos M. Ramirez; William J. Berigan; Claire V. Gallagher; Thomas E. Munton; Paula A. Shaklee; Sheila A. Whitmore; M. Zachariah Peery

    2016-01-01

    We assessed the occupancy dynamics of 275 California Spotted Owl (Strix occidentalis occidentalis) territories in 4 study areas in the Sierra Nevada, California, USA, from 1993 to 2011. We used Landsat data to develop maps of canopy cover for each study area, which we then used to quantify annual territory-specific habitat...

  5. Birds and bird habitats: guidelines for wind power projects

    International Nuclear Information System (INIS)

    2010-10-01

    Established in 2009, the Green Energy Act aims to increase the use of renewable energy sources including wind, water, solar and bioenergy in Ontario. The development of these resources is a major component of the province's plan, which aims to mitigate the contribution to climate change and to involve the Ontario's economy in the improvement of the quality of the environment. The Green Energy Act also considers as important the implementation of a coordinated provincial approval process, suggesting the integration of all Ministry requirements into a unique process during the evaluation of newly proposed renewable energy projects. The Ministry of the Environment's Renewable Energy Approval Regulation details the requirements for wind power projects involving significant natural features. Birds are an important part of Ontario's biodiversity and, according to the Ministry of Natural Resources, their habitats are considered as significant wildlife habitat (SWH). The Renewable Energy Approval Regulation and this guideline are meant to provide elements and guidance in order to protect bird SWH during the selection of a location of wind power facilities. . 27 refs., 1 tab., 2 figs.

  6. Identifying western yellow-billed cuckoo breeding habitat with a dual modelling approach

    Science.gov (United States)

    Johnson, Matthew J.; Hatten, James R.; Holmes, Jennifer A.; Shafroth, Patrick B.

    2017-01-01

    The western population of the yellow-billed cuckoo (Coccyzus americanus) was recently listed as threatened under the federal Endangered Species Act. Yellow-billed cuckoo conservation efforts require the identification of features and area requirements associated with high quality, riparian forest habitat at spatial scales that range from nest microhabitat to landscape, as well as lower-suitability areas that can be enhanced or restored. Spatially explicit models inform conservation efforts by increasing ecological understanding of a target species, especially at landscape scales. Previous yellow-billed cuckoo modelling efforts derived plant-community maps from aerial photography, an expensive and oftentimes inconsistent approach. Satellite models can remotely map vegetation features (e.g., vegetation density, heterogeneity in vegetation density or structure) across large areas with near perfect repeatability, but they usually cannot identify plant communities. We used aerial photos and satellite imagery, and a hierarchical spatial scale approach, to identify yellow-billed cuckoo breeding habitat along the Lower Colorado River and its tributaries. Aerial-photo and satellite models identified several key features associated with yellow-billed cuckoo breeding locations: (1) a 4.5 ha core area of dense cottonwood-willow vegetation, (2) a large native, heterogeneously dense forest (72 ha) around the core area, and (3) moderately rough topography. The odds of yellow-billed cuckoo occurrence decreased rapidly as the amount of tamarisk cover increased or when cottonwood-willow vegetation was limited. We achieved model accuracies of 75–80% in the project area the following year after updating the imagery and location data. The two model types had very similar probability maps, largely predicting the same areas as high quality habitat. While each model provided unique information, a dual-modelling approach provided a more complete picture of yellow-billed cuckoo habitat

  7. Quantifying camouflage: how to predict detectability from appearance.

    Science.gov (United States)

    Troscianko, Jolyon; Skelhorn, John; Stevens, Martin

    2017-01-06

    Quantifying the conspicuousness of objects against particular backgrounds is key to understanding the evolution and adaptive value of animal coloration, and in designing effective camouflage. Quantifying detectability can reveal how colour patterns affect survival, how animals' appearances influence habitat preferences, and how receiver visual systems work. Advances in calibrated digital imaging are enabling the capture of objective visual information, but it remains unclear which methods are best for measuring detectability. Numerous descriptions and models of appearance have been used to infer the detectability of animals, but these models are rarely empirically validated or directly compared to one another. We compared the performance of human 'predators' to a bank of contemporary methods for quantifying the appearance of camouflaged prey. Background matching was assessed using several established methods, including sophisticated feature-based pattern analysis, granularity approaches and a range of luminance and contrast difference measures. Disruptive coloration is a further camouflage strategy where high contrast patterns disrupt they prey's tell-tale outline, making it more difficult to detect. Disruptive camouflage has been studied intensely over the past decade, yet defining and measuring it have proven far more problematic. We assessed how well existing disruptive coloration measures predicted capture times. Additionally, we developed a new method for measuring edge disruption based on an understanding of sensory processing and the way in which false edges are thought to interfere with animal outlines. Our novel measure of disruptive coloration was the best predictor of capture times overall, highlighting the importance of false edges in concealment over and above pattern or luminance matching. The efficacy of our new method for measuring disruptive camouflage together with its biological plausibility and computational efficiency represents a substantial

  8. Effects of habitat features on size-biased predation on salmon by bears.

    Science.gov (United States)

    Andersson, Luke C; Reynolds, John D

    2017-05-01

    Predators can drive trait divergence among populations of prey by imposing differential selection on prey traits. Habitat characteristics can mediate predator selectivity by providing refuge for prey. We quantified the effects of stream characteristics on biases in the sizes of spawning salmon caught by bears (Ursus arctos and U. americanus) on the central coast of British Columbia, Canada by measuring size-biased predation on spawning chum (Oncorhynchus keta) and pink (O. gorbuscha) salmon in 12 streams with varying habitat characteristics. We tested the hypotheses that bears would catch larger than average salmon (size-biased predation) and that this bias toward larger fish would be higher in streams that provide less protection to spawning salmon from predation (e.g., less pools, wood, undercut banks). We then we tested for how such size biases in turn translate into differences among populations in the sizes of the fish. Bears caught larger-than-average salmon as the spawning season progressed and as predicted, this was most pronounced in streams with fewer refugia for the fish (i.e., wood and undercut banks). Salmon were marginally smaller in streams with more pronounced size-biased predation but this predictor was less reliable than physical characteristics of streams, with larger fish in wider, deeper streams. These results support the hypothesis that selective forces imposed by predators can be mediated by habitat characteristics, with potential consequences for physical traits of prey.

  9. Quantifying Matter

    CERN Document Server

    Angelo, Joseph A

    2011-01-01

    Quantifying Matter explains how scientists learned to measure matter and quantify some of its most fascinating and useful properties. It presents many of the most important intellectual achievements and technical developments that led to the scientific interpretation of substance. Complete with full-color photographs, this exciting new volume describes the basic characteristics and properties of matter. Chapters include:. -Exploring the Nature of Matter. -The Origin of Matter. -The Search for Substance. -Quantifying Matter During the Scientific Revolution. -Understanding Matter's Electromagnet

  10. Bat habitat research. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Keller, B.L.; Bosworth, W.R.; Doering, R.W.

    1993-12-31

    This progress report describes activities over the current reporting period to characterize the habitats of bats on the INEL. Research tasks are entitled Monitoring bat habitation of caves on the INEL to determine species present, numbers, and seasons of use; Monitor bat use of man-made ponds at the INEL to determine species present and rates of use of these waters; If the Big Lost River is flowing on the INEL and/or if the Big Lost River sinks contain water, determine species present, numbers and seasons of use; Determine the habitat requirement of Townsend`s big-eared bats, including the microclimate of caves containing Townsend`s big-eared bats as compared to other caves that do not contain bats; Determine and describe an economical and efficient bat census technique to be used periodically by INEL scientists to determine the status of bats on the INEL; and Provide a suggestive management and protective plan for bat species on the INEL that might, in the future, be added to the endangered and sensitive list;

  11. Seasonal habitat use and selection by grizzly bears in Northern British Columbia

    Science.gov (United States)

    Milakovic, B.; Parker, K.L.; Gustine, D.D.; Lay, R.J.; Walker, A.B.D.; Gillingham, M.P.

    2012-01-01

    We defined patterns of habitat use and selection by female grizzly bears (Ursus arctos) in the Besa-Prophet watershed of northern British Columbia. We fitted 13 adult females with Geographic Positioning System (GPS) radio-collars and monitored them between 2001 and 2004. We examined patterns of habitat selection by grizzly bears relative to topographical attributes and 3 potential surrogates of food availability: land-cover class, vegetation biomass or quality (as measured by the Normalized Difference Vegetation Index), and selection value for prey species themselves (moose [Alces alces], elk [Cervus elaphus], woodland caribou [Rangifer tarandus], Stone's sheep [Ovis dalli stonei]). Although vegetation biomass and quality, and selection values for prey were important in seasonal selection by some individual bears, land-cover class, elevation, aspect, and vegetation diversity most influenced patterns of habitat selection across grizzly bears, which rely on availability of plant foods and encounters with ungulate prey. Grizzly bears as a group avoided conifer stands and areas of low vegetation diversity, and selected for burned land-cover classes and high vegetation diversity across seasons. They also selected mid elevations from what was available within seasonal ranges. Quantifying relative use of different attributes helped place selection patterns within the context of the landscape. Grizzly bears used higher elevations (1,595??31 m SE) in spring and lower elevations (1,436??27 m) in fall; the range of average elevations used among individuals was highest (500 m) during the summer. During all seasons, grizzly bears most frequented aspects with high solar gain. Use was distributed across 10 land-cover classes and depended on season. Management and conservation actions must maintain a diverse habitat matrix distributed across a large elevational gradient to ensure persistence of grizzly bears as levels of human access increase in the northern Rocky Mountains

  12. Estimating fish exploitation and aquatic habitat loss across diffuse inland recreational fisheries.

    Science.gov (United States)

    de Kerckhove, Derrick Tupper; Minns, Charles Kenneth; Chu, Cindy

    2015-01-01

    The current state of many freshwater fish stocks worldwide is largely unknown but suspected to be vulnerable to exploitation from recreational fisheries and habitat degradation. Both these factors, combined with complex ecological dynamics and the diffuse nature of inland fisheries could lead to an invisible collapse: the drastic decline in fish stocks without great public or management awareness. In this study we provide a method to address the pervasive knowledge gaps in regional rates of exploitation and habitat degradation, and demonstrate its use in one of North America's largest and most diffuse recreational freshwater fisheries (Ontario, Canada). We estimated that (1) fish stocks were highly exploited and in apparent danger of collapse in management zones close to large population centres, and (2) fish habitat was under a low but constant threat of degradation at rates comparable to deforestation in Ontario and throughout Canada. These findings confirm some commonly held, but difficult to quantify, beliefs in inland fisheries management but also provide some further insights including (1) large anthropogenic projects greater than one hectare could contribute much more to fish habitat loss on an area basis than the cumulative effect of smaller projects within one year, (2) hooking mortality from catch-and-release fisheries is likely a greater source of mortality than the harvest itself, and (3) in most northern management zones over 50% of the fisheries resources are not yet accessible to anglers. While this model primarily provides a framework to prioritize management decisions and further targeted stock assessments, we note that our regional estimates of fisheries productivity and exploitation were similar to broadscale monitoring efforts by the Province of Ontario. We discuss the policy implications from our results and extending the model to other jurisdictions and countries.

  13. Predicting the effects of proposed Mississippi River diversions on oyster habitat quality; application of an oyster habitat suitability index model

    Science.gov (United States)

    Soniat, Thomas M.; Conzelmann, Craig P.; Byrd, Jason D.; Roszell, Dustin P.; Bridevaux, Joshua L.; Suir, Kevin J.; Colley, Susan B.

    2013-01-01

    In an attempt to decelerate the rate of coastal erosion and wetland loss, and protect human communities, the state of Louisiana developed its Comprehensive Master Plan for a Sustainable Coast. The master plan proposes a combination of restoration efforts including shoreline protection, marsh creation, sediment diversions, and ridge, barrier island, and hydrological restoration. Coastal restoration projects, particularly the large-scale diversions of fresh water from the Mississippi River, needed to supply sediment to an eroding coast potentially impact oyster populations and oyster habitat. An oyster habitat suitability index model is presented that evaluates the effects of a proposed sediment and freshwater diversion into Lower Breton Sound. Voluminous freshwater, needed to suspend and broadly distribute river sediment, will push optimal salinities for oysters seaward and beyond many of the existing reefs. Implementation and operation of the Lower Breton Sound diversion structure as proposed would render about 6,173 ha of hard bottom immediately east of the Mississippi River unsuitable for the sustained cultivation of oysters. If historical harvests are to be maintained in this region, a massive and unprecedented effort to relocate private leases and restore oyster bottoms would be required. Habitat suitability index model results indicate that the appropriate location for such efforts are to the east and north of the Mississippi River Gulf Outlet.

  14. Butterflies of the high altitude Atacama Desert: habitat use and conservation

    Directory of Open Access Journals (Sweden)

    Emma eDespland

    2014-09-01

    Full Text Available The butterfly fauna of the high-altitude desert of Northern Chile, though depauperate, shows high endemism, is poorly known and is of considerable conservation concern. This study surveys butterflies along the Andean slope between 2400 and 500 m asl (prepuna, puna and Andean steppe habitats as well as in high and low altitude wetlands and in the neoriparian vegetation of agricultural sites. We also include historical sightings from museum records. We compare abundances between altitudes, between natural and impacted sites, as well as between two sampling years with different precipitation regimes. The results confirm high altitudinal turnover and show greatest similarity between wetland and slope faunas at similar altitudes. Results also underscore vulnerability to weather fluctuations, particularly in the more arid low-altitude sites, where abundances were much lower in the low precipitation sampling season and several species were not observed at all. Finally, we show that some species have shifted to the neoriparian vegetation of the agricultural landscape, whereas others were only observed in less impacted habitats dominated by native plants. These results suggest that acclimation to novel habitats depends on larval host plant use. The traditional agricultural environment can provide habitat for many, but not all, native butterfly species, but an estimation of the value of these habitats requires better understanding of butterfly life-history strategies and relationships with host plants.

  15. An Expert-Based Assessment Model for Evaluating Habitat Suitability of Pond-Breeding Amphibians

    Directory of Open Access Journals (Sweden)

    Shin-Ruoh Juang

    2017-02-01

    reliability of the habitat suitability assessment model. In brief, the proposed method can be applied, not only to assess the sustainability of frog habitats and degradation risks, but also to determine which locations may require future attention regarding conservation implementation. Furthermore, findings in this study provide useful background knowledge to all associated stakeholders when designing and implementing plans of wildlife habitat management and restoration at farm ponds.

  16. Stomach nematodes (Mastophorus muris) in rats (Rattus rattus) are associated with coconut (Cocos nucifera) habitat at Palmyra Atoll.

    Science.gov (United States)

    Lafferty, Kevin D; Hathaway, Stacie A; Wegmann, Alex S; Shipley, Frank S; Backlin, Adam R; Helm, Joel; Fisher, Robert N

    2010-02-01

    Black rats ( Rattus rattus ) and their stomach nematodes (Mastophorus muris) were historically introduced to islets at Palmyra Atoll in the central Pacific Line Islands. To investigate patterns of parasitism, we trapped rats and quantified nematodes on 13 islets of various sizes and habitat types. Most rats were parasitized (59%) with an average of 12 worms per infected rat. Islet size did not greatly influence parasite population biology. Nematodes also did not appear to affect rat condition (weight to skull length). The only strong and consistent factor associated with the mean abundance of nematodes in rats was habitat (dominant cover and locally dominant plant species). Thus, nematodes were much more abundant in rats from sites dominated by coconut trees (Cocos nucifera). Coconut trees may also be an introduced species at Palmyra Atoll.

  17. Habitat fragmentation in arid zones: a case study of Linaria nigricans under land use changes (SE Spain).

    Science.gov (United States)

    Peñas, Julio; Benito, Blas; Lorite, Juan; Ballesteros, Miguel; Cañadas, Eva María; Martinez-Ortega, Montserrat

    2011-07-01

    Habitat fragmentation due to human activities is one of the most important causes of biodiversity loss. In Mediterranean areas the species have co-evolved with traditional farming, which has recently been replaced for more severe and aggressive practices. We use a methodological approach that enables the evaluation of the impact that agriculture and land use changes have for the conservation of sensitive species. As model species, we selected Linaria nigricans, a critically endangered plant from arid and semiarid ecosystems in south-eastern Spain. A chronosequence of the evolution of the suitable habitat for the species over more than 50 years has been reconstructed and several geometrical fragmentation indices have been calculated. A new index called fragmentation cadence (FC) is proposed to quantify the historical evolution of habitat fragmentation regardless of the habitat size. The application of this index has provided objective forecasting of the changes of each remnant population of L. nigricans. The results indicate that greenhouses and construction activities (mainly for tourist purposes) exert a strong impact on the populations of this endangered species. The habitat depletion showed peaks that constitute the destruction of 85% of the initial area in only 20 years for some populations of L. nigricans. According to the forecast established by the model, a rapid extinction could take place and some populations may disappear as early as the year 2030. Fragmentation-cadence analysis can help identify population units of primary concern for its conservation, by means of the adoption of improved management and regulatory measures.

  18. National Coral Reef Monitoring Program: Towed-diver Surveys of Benthic Habitat, Key Benthic Species, including Marine Debris Sightings, of American Samoa from 2015-02-15 to 2015-03-23 (NCEI Accession 0157566)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The towed-diver method is used to conduct benthic surveys, assessing large-scale disturbances (e.g., bleaching) and quantifying benthic components such as habitat...

  19. Models of Marine Fish Biodiversity: Assessing Predictors from Three Habitat Classification Schemes.

    Science.gov (United States)

    Yates, Katherine L; Mellin, Camille; Caley, M Julian; Radford, Ben T; Meeuwig, Jessica J

    2016-01-01

    Prioritising biodiversity conservation requires knowledge of where biodiversity occurs. Such knowledge, however, is often lacking. New technologies for collecting biological and physical data coupled with advances in modelling techniques could help address these gaps and facilitate improved management outcomes. Here we examined the utility of environmental data, obtained using different methods, for developing models of both uni- and multivariate biodiversity metrics. We tested which biodiversity metrics could be predicted best and evaluated the performance of predictor variables generated from three types of habitat data: acoustic multibeam sonar imagery, predicted habitat classification, and direct observer habitat classification. We used boosted regression trees (BRT) to model metrics of fish species richness, abundance and biomass, and multivariate regression trees (MRT) to model biomass and abundance of fish functional groups. We compared model performance using different sets of predictors and estimated the relative influence of individual predictors. Models of total species richness and total abundance performed best; those developed for endemic species performed worst. Abundance models performed substantially better than corresponding biomass models. In general, BRT and MRTs developed using predicted habitat classifications performed less well than those using multibeam data. The most influential individual predictor was the abiotic categorical variable from direct observer habitat classification and models that incorporated predictors from direct observer habitat classification consistently outperformed those that did not. Our results show that while remotely sensed data can offer considerable utility for predictive modelling, the addition of direct observer habitat classification data can substantially improve model performance. Thus it appears that there are aspects of marine habitats that are important for modelling metrics of fish biodiversity that are

  20. Are ant assemblages of Brazilian veredas characterised by location or habitat type?

    Directory of Open Access Journals (Sweden)

    CB Costa-Milanez

    Full Text Available Wetland areas in the Brazilian Cerrado, known as “veredas”, represent ecosystems formed on sandy soils with high concentrations of peat, and are responsible for the recharge of aquiferous reservoirs. They are currently under threat by various human activities, most notably the clearing of vegetation for Eucalyptus plantations. Despite their ecological importance and high conservation value, little is known about the actual effects of human disturbance on the animal community. To assess how habitat within different veredas, and plantations surrounding them affect ant assemblages, we selected four independent vereda locations, two being impacted by Eucalyptus monoculture (one younger and one mature plantation and two controls, where the wetland was surrounded by cerrado vegetation. Ant sampling was conducted in May 2010 (dry season using three complementary methods, namely baits, pitfall traps, and hand collection, in the wetland and in the surrounding habitats. A total of 7,575 ants were sampled, belonging to seven subfamilies, 32 genera and 124 species. Ant species richness and abundance did not differ between vereda locations, but did between the habitats. When impacted by the monoculture, ant species richness and abundance decreased in wetlands, but were less affected in the cerrado habitat. Ant species composition differed between the three habitats and between vereda locations. Eucalyptus plantations had an ant species composition defined by high dominance of Pheidole sp. and Solenopsis invicta, while natural habitats were defined by Camponotus and Crematogaster species. Atta sexdens was strictly confined to native habitats of non-impacted “veredas”. Eucalyptus monocultures require high quantities of water in the early stages, which may have caused a decrease in groundwater level in the wetland, allowing hypogeic ants such as Labidus praedator to colonise this habitat.

  1. Habitat Evaluation Procedures (HEP) Report : Rainwater Wildlife Area, 1998-2001 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Allen

    2004-01-01

    vegetation species, allowance of normative processes such as fire occurrence, and facilitating development of natural stable stream channels and associated floodplains. Implementation of habitat enhancement and restoration activities could generate an additional 1,850 habitat units in 10 years. Baseline and estimated future habitat units total 7,035.3 for the Rainwater Wildlife Area. Habitat protection, enhancement and restoration will require long-term commitments from managers to increase probabilities of success and meet the goals and objectives of the Northwest Power Planning Council's Fish and Wildlife Mitigation Program. Longer-term benefits of protection and enhancement activities include increases in native species diversity and plant community resiliency in all cover types. Watershed conditions, including floodplain/riparian, and instream habitat quality should improve as well providing multiple benefits for terrestrial and aquatic resources. While such benefits are not necessarily recognized by HEP models and reflected in the number of habitat units generated, they are consistent with the NPPC Fish and Wildlife Program.

  2. Habitat selection and risk of predation: re-colonization by lynx had limited impact on habitat selection by roe deer.

    Directory of Open Access Journals (Sweden)

    Gustaf Samelius

    Full Text Available Risk of predation is an evolutionary force that affects behaviors of virtually all animals. In this study, we examined how habitat selection by roe deer was affected by risk of predation by Eurasian lynx - the main predator of roe deer in Scandinavia. Specifically, we compared how habitat selection by roe deer varied (1 before and after lynx re-established in the study area and (2 in relation to habitat-specific risk of predation by lynx. All analyses were conducted at the spatial and temporal scales of home ranges and seasons. We did not find any evidence that roe deer avoided habitats in which the risk of predation by lynx was greatest and information-theoretic model selection showed that re-colonization by lynx had limited impact on habitat selection by roe deer despite lynx predation causing 65% of known mortalities after lynx re-colonized the area. Instead we found that habitat selection decreased when habitat availability increased for 2 of 5 habitat types (a pattern referred to as functional response in habitat selection. Limited impact of re-colonization by lynx on habitat selection by roe deer in this study differs from elk in North America altering both daily and seasonal patterns in habitat selection at the spatial scales of habitat patches and home ranges when wolves were reintroduced to Yellowstone National Park. Our study thus provides further evidence of the complexity by which animals respond to risk of predation and suggest that it may vary between ecosystems and predator-prey constellations.

  3. Habitat selection and risk of predation: re-colonization by lynx had limited impact on habitat selection by roe deer.

    Science.gov (United States)

    Samelius, Gustaf; Andrén, Henrik; Kjellander, Petter; Liberg, Olof

    2013-01-01

    Risk of predation is an evolutionary force that affects behaviors of virtually all animals. In this study, we examined how habitat selection by roe deer was affected by risk of predation by Eurasian lynx - the main predator of roe deer in Scandinavia. Specifically, we compared how habitat selection by roe deer varied (1) before and after lynx re-established in the study area and (2) in relation to habitat-specific risk of predation by lynx. All analyses were conducted at the spatial and temporal scales of home ranges and seasons. We did not find any evidence that roe deer avoided habitats in which the risk of predation by lynx was greatest and information-theoretic model selection showed that re-colonization by lynx had limited impact on habitat selection by roe deer despite lynx predation causing 65% of known mortalities after lynx re-colonized the area. Instead we found that habitat selection decreased when habitat availability increased for 2 of 5 habitat types (a pattern referred to as functional response in habitat selection). Limited impact of re-colonization by lynx on habitat selection by roe deer in this study differs from elk in North America altering both daily and seasonal patterns in habitat selection at the spatial scales of habitat patches and home ranges when wolves were reintroduced to Yellowstone National Park. Our study thus provides further evidence of the complexity by which animals respond to risk of predation and suggest that it may vary between ecosystems and predator-prey constellations.

  4. Submarine canyons represent an essential habitat network for krill hotspots in a Large Marine Ecosystem.

    Science.gov (United States)

    Santora, Jarrod A; Zeno, Ramona; Dorman, Jeffrey G; Sydeman, William J

    2018-05-15

    Submarine canyon systems are ubiquitous features of marine ecosystems, known to support high levels of biodiversity. Canyons may be important to benthic-pelagic ecosystem coupling, but their role in concentrating plankton and structuring pelagic communities is not well known. We hypothesize that at the scale of a large marine ecosystem, canyons provide a critical habitat network, which maintain energy flow and trophic interactions. We evaluate canyon characteristics relative to the distribution and abundance of krill, critically important prey in the California Current Ecosystem. Using a geological database, we conducted a census of canyon locations, evaluated their dimensions, and quantified functional relationships with krill hotspots (i.e., sites of persistently elevated abundance) derived from hydro-acoustic surveys. We found that 76% of krill hotspots occurred within and adjacent to canyons. Most krill hotspots were associated with large shelf-incising canyons. Krill hotspots and canyon dimensions displayed similar coherence as a function of latitude and indicate a potential regional habitat network. The latitudinal migration of many fish, seabirds and mammals may be enhanced by using this canyon-krill network to maintain foraging opportunities. Biogeographic assessments and predictions of krill and krill-predator distributions under climate change may be improved by accounting for canyons in habitat models.

  5. Greater sage-grouse winter habitat use on the eastern edge of their range

    Science.gov (United States)

    Swanson, Christopher C.; Rumble, Mark A.; Grovenburg, Troy W.; Kaczor, Nicholas W.; Klaver, Robert W.; Herman-Brunson, Katie M.; Jenks, Jonathan A.; Jensen, Kent C.

    2013-01-01

    Greater sage-grouse (Centrocercus urophasianus) at the western edge of the Dakotas occur in the transition zone between sagebrush and grassland communities. These mixed sagebrush (Artemisia sp.) and grasslands differ from those habitats that comprise the central portions of the sage-grouse range; yet, no information is available on winter habitat selection within this region of their distribution. We evaluated factors influencing greater sage-grouse winter habitat use in North Dakota during 2005–2006 and 2006–2007 and in South Dakota during 2006–2007 and 2007–2008. We captured and radio-marked 97 breeding-age females and 54 breeding-age males from 2005 to 2007 and quantified habitat selection for 98 of these birds that were alive during winter. We collected habitat measurements at 340 (177 ND, 163 SD) sage-grouse use sites and 680 random (340 each at 250 m and 500 m from locations) dependent sites. Use sites differed from random sites with greater percent sagebrush cover (14.75% use vs. 7.29% random; P 2 use vs. 0.94 plants/m2 random; P ≤ 0.001), but lesser percent grass cover (11.76% use vs. 16.01% random; P ≤ 0.001) and litter cover (4.34% use vs. 5.55% random; P = 0.001) and lower sagebrush height (20.02 cm use vs. 21.35 cm random; P = 0.13) and grass height (21.47 cm use vs. 23.21 cm random; P = 0.15). We used conditional logistic regression to estimate winter habitat selection by sage-grouse on continuous scales. The model sagebrush cover + sagebrush height + sagebrush cover × sagebrush height (wi = 0.60) was the most supported of the 13 models we considered, indicating that percent sagebrush cover strongly influenced selection. Logistic odds ratios indicated that the probability of selection by sage-grouse increased by 1.867 for every 1% increase in sagebrush cover (95% CI = 1.627–2.141) and by 1.041 for every 1 cm increase in sagebrush height (95% CI = 1.002–1.082). The

  6. Wanaket Wildlife Area Management Plan : Five-Year Plan for Protecting, Enhancing, and Mitigating Wildlife Habitat Losses for the McNary Hydroelectric Facility.

    Energy Technology Data Exchange (ETDEWEB)

    Confederated Tribes of the Umatilla Indian Reservation Wildlife Program

    2001-09-01

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) propose to continue to protect, enhance, and mitigate wildlife and wildlife habitat at the Wanaket Wildlife Area. The Wanaket Wildlife Area was approved as a Columbia River Basin Wildlife Mitigation Project by the Bonneville Power Administration (BPA) and Northwest Power Planning Council (NWPPC) in 1993. This management plan will provide an update of the original management plan approved by BPA in 1995. Wanaket will contribute towards meeting BPA's obligation to compensate for wildlife habitat losses resulting from the construction of the McNary Hydroelectric facility on the Columbia River. By funding the enhancement and operation and maintenance of the Wanaket Wildlife Area, BPA will receive credit towards their mitigation debt. The purpose of the Wanaket Wildlife Area management plan update is to provide programmatic and site-specific standards and guidelines on how the Wanaket Wildlife Area will be managed over the next five years. This plan provides overall guidance on both short and long term activities that will move the area towards the goals, objectives, and desired future conditions for the planning area. The plan will incorporate managed and protected wildlife and wildlife habitat, including operations and maintenance, enhancements, and access and travel management. Specific project objectives are related to protection and enhancement of wildlife habitats and are expressed in terms of habitat units (HU's). Habitat units were developed by the US Fish and Wildlife Service's Habitat Evaluation Procedures (HEP), and are designed to track habitat gains and/or losses associated with mitigation and/or development projects. Habitat Units for a given species are a product of habitat quantity (expressed in acres) and habitat quality estimates. Habitat quality estimates are developed using Habitat Suitability Indices (HSI). These indices are based on quantifiable habitat features such

  7. Seasonal variation in coastal marine habitat use by the European shag: Insights from fine scale habitat selection modeling and diet

    Science.gov (United States)

    Michelot, Candice; Pinaud, David; Fortin, Matthieu; Maes, Philippe; Callard, Benjamin; Leicher, Marine; Barbraud, Christophe

    2017-07-01

    Studies of habitat selection by higher trophic level species are necessary for using top predator species as indicators of ecosystem functioning. However, contrary to terrestrial ecosystems, few habitat selection studies have been conducted at a fine scale for coastal marine top predator species, and fewer have coupled diet data with habitat selection modeling to highlight a link between prey selection and habitat use. The aim of this study was to characterize spatially and oceanographically, at a fine scale, the habitats used by the European Shag Phalacrocorax aristotelis in the Special Protection Area (SPA) of Houat-Hœdic in the Mor Braz Bay during its foraging activity. Habitat selection models were built using in situ observation data of foraging shags (transect sampling) and spatially explicit environmental data to characterize marine benthic habitats. Observations were first adjusted for detectability biases and shag abundance was subsequently spatialized. The influence of habitat variables on shag abundance was tested using Generalized Linear Models (GLMs). Diet data were finally confronted to habitat selection models. Results showed that European shags breeding in the Mor Braz Bay changed foraging habitats according to the season and to the different environmental and energetic constraints. The proportion of the main preys also varied seasonally. Rocky and coarse sand habitats were clearly preferred compared to fine or muddy sand habitats. Shags appeared to be more selective in their foraging habitats during the breeding period and the rearing of chicks, using essentially rocky areas close to the colony and consuming preferentially fish from the Labridae family and three other fish families in lower proportions. During the post-breeding period shags used a broader range of habitats and mainly consumed Gadidae. Thus, European shags seem to adjust their feeding strategy to minimize energetic costs, to avoid intra-specific competition and to maximize access

  8. Use of Occupancy Models to Evaluate Expert Knowledge-based Species-Habitat Relationships

    Directory of Open Access Journals (Sweden)

    Monica N. Iglecia

    2012-12-01

    Full Text Available Expert knowledge-based species-habitat relationships are used extensively to guide conservation planning, particularly when data are scarce. Purported relationships describe the initial state of knowledge, but are rarely tested. We assessed support in the data for suitability rankings of vegetation types based on expert knowledge for three terrestrial avian species in the South Atlantic Coastal Plain of the United States. Experts used published studies, natural history, survey data, and field experience to rank vegetation types as optimal, suitable, and marginal. We used single-season occupancy models, coupled with land cover and Breeding Bird Survey data, to examine the hypothesis that patterns of occupancy conformed to species-habitat suitability rankings purported by experts. Purported habitat suitability was validated for two of three species. As predicted for the Eastern Wood-Pewee (Contopus virens and Brown-headed Nuthatch (Sitta pusilla, occupancy was strongly influenced by vegetation types classified as "optimal habitat" by the species suitability rankings for nuthatches and wood-pewees. Contrary to predictions, Red-headed Woodpecker (Melanerpes erythrocephalus models that included vegetation types as covariates received similar support by the data as models without vegetation types. For all three species, occupancy was also related to sampling latitude. Our results suggest that covariates representing other habitat requirements might be necessary to model occurrence of generalist species like the woodpecker. The modeling approach described herein provides a means to test expert knowledge-based species-habitat relationships, and hence, help guide conservation planning.

  9. Quantifying The Relative Importance Of Phylogeny And Environmental Preferences As Drivers Of Gene Content In Prokaryotic Microorganisms

    Directory of Open Access Journals (Sweden)

    Javier eTamames

    2016-03-01

    Full Text Available Two complementary forces shape microbial genomes: vertical inheritance of genes by phylogenetic descent, and acquisition of new genes related to adaptation to particular habitats and lifestyles. Quantification of the relative importance of each driving force proved difficult. We determined the contribution of each factor, and identified particular genes or biochemical/cellular processes linked to environmental preferences (i.e., propensity of a taxon to live in particular habitats. Three types of data were confronted: [i] complete genomes, which provide gene content of different taxa; [ii] phylogenetic information, via alignment of 16S rRNA sequences, which allowed determination of the distance between taxa, and [iii] distribution of species in environments via 16S rRNA sampling experiments, reflecting environmental preferences of different taxa. The combination of these three datasets made it possible to describe and quantify the relationships among them. We found that, although phylogenetic descent was responsible for shaping most genomes, a discernible part of the latter was correlated to environmental adaptations. Particular families of genes were identified as environmental markers, as supported by direct studies such as metagenomic sequencing. These genes are likely important for adaptation of bacteria to particular conditions or habitats, such as carbohydrate or glycan metabolism genes being linked to host-associated environments.

  10. How spatio-temporal habitat connectivity affects amphibian genetic structure.

    Science.gov (United States)

    Watts, Alexander G; Schlichting, Peter E; Billerman, Shawn M; Jesmer, Brett R; Micheletti, Steven; Fortin, Marie-Josée; Funk, W Chris; Hapeman, Paul; Muths, Erin; Murphy, Melanie A

    2015-01-01

    Heterogeneous landscapes and fluctuating environmental conditions can affect species dispersal, population genetics, and genetic structure, yet understanding how biotic and abiotic factors affect population dynamics in a fluctuating environment is critical for species management. We evaluated how spatio-temporal habitat connectivity influences dispersal and genetic structure in a population of boreal chorus frogs (Pseudacris maculata) using a landscape genetics approach. We developed gravity models to assess the contribution of various factors to the observed genetic distance as a measure of functional connectivity. We selected (a) wetland (within-site) and (b) landscape matrix (between-site) characteristics; and (c) wetland connectivity metrics using a unique methodology. Specifically, we developed three networks that quantify wetland connectivity based on: (i) P. maculata dispersal ability, (ii) temporal variation in wetland quality, and (iii) contribution of wetland stepping-stones to frog dispersal. We examined 18 wetlands in Colorado, and quantified 12 microsatellite loci from 322 individual frogs. We found that genetic connectivity was related to topographic complexity, within- and between-wetland differences in moisture, and wetland functional connectivity as contributed by stepping-stone wetlands. Our results highlight the role that dynamic environmental factors have on dispersal-limited species and illustrate how complex asynchronous interactions contribute to the structure of spatially-explicit metapopulations.

  11. How spatio-temporal habitat connectivity affects amphibian genetic structure

    Science.gov (United States)

    Watts, Alexander G.; Schlichting, P; Billerman, S; Jesmer, B; Micheletti, S; Fortin, M.-J.; Funk, W.C.; Hapeman, P; Muths, Erin L.; Murphy, M.A.

    2015-01-01

    Heterogeneous landscapes and fluctuating environmental conditions can affect species dispersal, population genetics, and genetic structure, yet understanding how biotic and abiotic factors affect population dynamics in a fluctuating environment is critical for species management. We evaluated how spatio-temporal habitat connectivity influences dispersal and genetic structure in a population of boreal chorus frogs (Pseudacris maculata) using a landscape genetics approach. We developed gravity models to assess the contribution of various factors to the observed genetic distance as a measure of functional connectivity. We selected (a) wetland (within-site) and (b) landscape matrix (between-site) characteristics; and (c) wetland connectivity metrics using a unique methodology. Specifically, we developed three networks that quantify wetland connectivity based on: (i) P. maculata dispersal ability, (ii) temporal variation in wetland quality, and (iii) contribution of wetland stepping-stones to frog dispersal. We examined 18 wetlands in Colorado, and quantified 12 microsatellite loci from 322 individual frogs. We found that genetic connectivity was related to topographic complexity, within- and between-wetland differences in moisture, and wetland functional connectivity as contributed by stepping-stone wetlands. Our results highlight the role that dynamic environmental factors have on dispersal-limited species and illustrate how complex asynchronous interactions contribute to the structure of spatially-explicit metapopulations.

  12. Habitat Suitability Index Models: Red-winged blackbird

    Science.gov (United States)

    Short, Henry L.

    1985-01-01

    A review and synthesis of existing information were used to develop a Habitat Suitability Index (HSI) model for the red-winged blackbird (Agelaius phoeniceus L.). The model consolidates habitat use information into a framework appropriate for field application, and is scaled to produce an index between 0.0 (unsuitable habitat) to 1.0 (optimum habitat). HSI models are designed to be used with Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service.

  13. Asotin Creek instream habitat alteration projects : habitat evaluation, adult and juvenile habitat utilization and water temperature monitoring : 2001 progress report

    International Nuclear Information System (INIS)

    Bumgarner, Joseph D.

    2002-01-01

    Asotin Creek originates from a network of deeply incised streams on the slopes of the Blue Mountains of southeastern Washington. The watershed drains an area of 322 square miles that provides a mean annual flow of 74 cfs. The geomorphology of the watershed exerts a strong influence on biologic conditions for fish within the stream. Historic and contemporary land-use practices have had a profound impact on the kind, abundance, and distribution of anadromous salmonids in the watershed. Fish habitat in Asotin Creek and other local streams has been affected by agricultural development, grazing, tilling practices, logging, recreational activities and implementation of flood control structures (Neilson 1950). The Asotin Creek Model Watershed Master Plan was completed in 1994. The plan was developed by a landowner steering committee for the Asotin County Conservation District (ACCD), with technical support from various Federal, State and local entities. Actions identified within the plan to improve the Asotin Creek ecosystem fall into four main categories: (1) Stream and Riparian, (2) Forestland, (3) Rangeland, and (4) Cropland. Specific actions to be carried out within the stream and in the riparian area to improve fish habitat were: (1) create more pools, (2) increase the amount of large organic debris (LOD), (3) increase the riparian buffer zone through tree planting, and (4) increase fencing to limit livestock access. All of these actions, in combination with other activities identified in the Plan, are intended to stabilize the river channel, reduce sediment input, increase the amount of available fish habitat (adult and juvenile) and protect private property. Evaluation work described within this report was to document the success or failure of the program regarding the first two items listed (increasing pools and LOD). Beginning in 1996, the ACCD, with cooperation from local landowners and funding from Bonneville Power Administration began constructing instream

  14. Rainwater Wildlife Area Habitat Evaluation Procedures Report; A Columbia Basin Wildlife Mitigation Project.

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Allen B.

    2004-01-01

    vegetation species, allowance of normative processes such as fire occurrence, and facilitating development of natural stable stream channels and associated floodplains. Implementation of habitat enhancement and restoration activities could generate an additional 1,850 habitat units in 10 years. Baseline and estimated future habitat units total 7,035.3 for the Rainwater Wildlife Area. Habitat protection, enhancement and restoration will require long-term commitments from managers to increase probabilities of success and meet the goals and objectives of the Northwest Power Planning Council's Fish and Wildlife Mitigation Program.

  15. Moving Targets and Biodiversity Offsets for Endangered Species Habitat: Is Lesser Prairie Chicken Habitat a Stock or Flow?

    Directory of Open Access Journals (Sweden)

    Todd K. BenDor

    2014-03-01

    Full Text Available The US Fish and Wildlife Service will make an Endangered Species Act listing decision for the lesser prairie chicken (Tympanuchus pallidicinctus; “LPC” in March 2014. Based on the findings of a single, Uzbek antelope study, conservation plans put forth for the LPC propose to modify and re-position habitat in the landscape through a series of temporary preservation/restoration efforts. We argue that for certain species, including the LPC, dynamic habitat offsets represent a dangerous re-interpretation of habitat provision and recovery programs, which have nearly-universally viewed ecosystem offsets (habitat, wetlands, streams, etc. as “stocks” that accumulate characteristics over time. Any effort to create a program of temporary, moving habitat offsets must consider species’ (1 life history characteristics, (2 behavioral tendencies (e.g., avoidance of impacted areas, nesting/breeding site fidelity, and (3 habitat restoration characteristics, including long temporal lags in reoccupation. If misapplied, species recovery programs using temporary, moving habitat risk further population declines.

  16. A meta-analysis of lesser prairie-chicken nesting and brood-rearing habitats: implications for habitat management

    Science.gov (United States)

    Hagen, Christian A.; Grisham, Blake A.; Boal, Clint W.; Haukos, David A.

    2013-01-01

    The distribution and range of lesser prairie-chicken (Tympanuchus pallidicinctus) has been reduced by >90% since European settlement of the Great Plains of North America. Currently, lesser prairie-chickens occupy 3 general vegetation communities: sand sagebrush (Artemisia filifolia), sand shinnery oak (Quercus havardii), and mixed-grass prairies juxtaposed with Conservation Reserve Program grasslands. As a candidate for protection under the Endangered Species Act, there is a need for a synthesis that characterizes habitat structure rangewide. Thus, we conducted a meta-analysis of vegetation characteristics at nest sites and brood habitats to determine whether there was an overall effect (Hedges' d) of habitat selection and to estimate average (95% CI) habitat characteristics at use sites. We estimated effect sizes (di) from the difference between use (nests and brood sites) and random sampling sites for each study (n = 14), and derived an overall effect size (d++). There was a general effect for habitat selection as evidenced by low levels of variation in effect sizes across studies and regions. There was a small to medium effect (d++) = 0.20-0.82) of selection for greater vertical structure (visual obstruction) by nesting females in both vegetation communities, and selection against bare ground (d++ = 0.20-0.58). Females with broods exhibited less selectivity for habitat components except for vertical structure. The variation of d++ was greater during nesting than brooding periods, signifying a seasonal shift in habitat use, and perhaps a greater range of tolerance for brood-rearing habitat. The overall estimates of vegetation cover were consistent with those provided in management guidelines for the species.

  17. Wildlife Habitat Evaluation Handbook.

    Science.gov (United States)

    Neilson, Edward L., Jr.; Benson, Delwin E.

    The National 4-H Wildlife Invitational is a competitive event to teach youth about the fundamentals of wildlife management. Youth learn that management for wildlife means management of wildlife habitat and providing for the needs of wildlife. This handbook provides information about wildlife habitat management concepts in both urban and rural…

  18. Linking stream flow and groundwater to avian habitat in a desert riparian system.

    Science.gov (United States)

    Merritt, David M; Bateman, Heather L

    2012-10-01

    Increasing human populations have resulted in aggressive water development in arid regions. This development typically results in altered stream flow regimes, reduced annual flow volumes, changes in fluvial disturbance regimes, changes in groundwater levels, and subsequent shifts in ecological patterns and processes. Balancing human demands for water with environmental requirements to maintain functioning ecosystems requires quantitative linkages between water in streams and ecosystem attributes. Streams in the Sonoran Desert provide important habitat for vertebrate species, including resident and migratory birds. Habitat structure, food, and nest-building materials, which are concentrated in riparian areas, are provided directly or indirectly by vegetation. We measured riparian vegetation, groundwater and surface water, habitat structure, and bird occurrence along Cherry Creek, a perennial tributary of the Salt River in central Arizona, USA. The purpose of this work was to develop an integrated model of groundwater-vegetation-habitat structure and bird occurrence by: (1) characterizing structural and provisioning attributes of riparian vegetation through developing a bird habitat index (BHI), (2) validating the utility of our BHI through relating it to measured bird community composition, (3) determining the riparian plant species that best explain the variability in BHI, (4) developing predictive models that link important riparian species to fluvial disturbance and groundwater availability along an arid-land stream, and (5) simulating the effects of changes in flow regime and groundwater levels and determining their consequences for riparian bird communities. Riparian forest and shrubland vegetation cover types were correctly classified in 83% of observations as a function of fluvial disturbance and depth to water table. Groundwater decline and decreased magnitude of fluvial disturbance caused significant shifts in riparian cover types from riparian forest to

  19. National Coral Reef Monitoring Program: Towed-diver Surveys of Benthic Habitat, Key Benthic Species, including Marine Debris Sightings, of the Hawaiian Archipelago from 2016-07-13 to 2016-09-26 (NCEI Accession 0157565)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The towed-diver method is used to conduct benthic surveys, assessing large-scale disturbances (e.g., bleaching) and quantifying benthic components such as habitat...

  20. National Coral Reef Monitoring Program: Towed-diver Surveys of Benthic Habitats, Key Benthic Species, and Marine Debris Sightings of the Mariana Archipelago from 2017-05-04 to 2017-06-20 (NCEI Accession 0166629)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The towed-diver method is used to conduct benthic surveys, assessing large-scale disturbances (e.g., bleaching) and quantifying benthic components such as habitat...

  1. Effects of Changes in Lugu Lake Water Quality on Schizothorax Yunnansis Ecological Habitat Based on HABITAT Model

    Science.gov (United States)

    Huang, Wei; Mynnet, Arthur

    Schizothorax Yunnansis is an unique fish species only existing in Lugu Lake, which is located in the southwestern China. The simulation and research on Schizothorax Yunnansis habitat environment have a vital significance to protect this rare fish. With the development of the tourism industry, there bring more pressure on the environmental protection. The living environment of Schizothorax Yunnansis is destroyed seriously because the water quality is suffering the sustaining pollution of domestic sewage from the peripheral villages. This paper analyzes the relationship between water quality change and Schizothorax Yunnansis ecological habitat and evalutes Schizothorax Yunnansis's ecological habitat impact based on HABITAT model. The results show that when the TP concentration in Lugu Lake does not exceed Schizothorax Yunnansis's survival threshold, Schizothorax Yunnansis can get more nutrients and the suitable habitat area for itself is increased. Conversely, it can lead to TP toxicity in the Schizothorax Yunnansis and even death. Therefore, unsuitable habitat area for Schizothorax Yunnansis is increased. It can be seen from the results that HABITAT model can assist in ecological impact assessment studies by translating results of hydrological, water quality models into effects on the natural environment and human society.

  2. Overview: Cross-habitat flux of nutrients and detritus

    Science.gov (United States)

    Vanni, M.J.; DeAngelis, D.L.; Schindler, D.E.; Huxel, G.R.; Polis, G.A.; Power, M.E.; Huxel, G.R.

    2004-01-01

    Ecologists have long known that all ecosystems receive considerable quantities of materials from outside their boundaries (e.g., Elton 1927), and quantifying the magnitude of such fluxes has long been a central tenet of ecosystem ecology (e.g., Odum 1971). Thus, one might think that the consequences of such fluxes for food webs would be well understood. However, food webs have traditionally been viewed as if they were isolated from surrounding habitats, a habit that has been particularly persistent in the modeling of food webs. When fluxes from the outside have been considered, they have largely been restricted to constant inputs directly affecting the base of the food web (e.g., solar energy or nutrients), and usually only such issues as their effects on equilibrium conditions have been considered (e.g., the well-known relationships between nutrient inputs and average densities of various food web members).

  3. Critical Habitat :: NOAA Fisheries

    Science.gov (United States)

    occupied by the species at the time of listing, if they contain physical or biological features essential essential for conservation. Critical Habitat Maps NOTE: The critical habitat maps provided here are for Data Leatherback Turtle (U.S. West Coast) » Biological Report » Economic Report 2012 77 FR 4170 Go to

  4. Riparian Habitat - Product of 2 riparian habitat workshops

    Data.gov (United States)

    California Natural Resource Agency — In two riparian habitat workshops held between 2001 and 2002, scientists and managers identified the need for determining the scope of a consistent and acceptable...

  5. Habitat stability, predation risk and 'memory syndromes'.

    Science.gov (United States)

    Dalesman, S; Rendle, A; Dall, S R X

    2015-05-27

    Habitat stability and predation pressure are thought to be major drivers in the evolutionary maintenance of behavioural syndromes, with trait covariance only occurring within specific habitats. However, animals also exhibit behavioural plasticity, often through memory formation. Memory formation across traits may be linked, with covariance in memory traits (memory syndromes) selected under particular environmental conditions. This study tests whether the pond snail, Lymnaea stagnalis, demonstrates consistency among memory traits ('memory syndrome') related to threat avoidance and foraging. We used eight populations originating from three different habitat types: i) laboratory populations (stable habitat, predator-free); ii) river populations (fairly stable habitat, fish predation); and iii) ditch populations (unstable habitat, invertebrate predation). At a population level, there was a negative relationship between memories related to threat avoidance and food selectivity, but no consistency within habitat type. At an individual level, covariance between memory traits was dependent on habitat. Laboratory populations showed no covariance among memory traits, whereas river populations showed a positive correlation between food memories, and ditch populations demonstrated a negative relationship between threat memory and food memories. Therefore, selection pressures among habitats appear to act independently on memory trait covariation at an individual level and the average response within a population.

  6. NEPR Benthic Habitat Map 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This benthic habitat map was created from a semi-automated habitat mapping process, using a combination of bathymetry, satellite imagery, aerial imagery and...

  7. Hydraulic, geomorphic, and trout habitat conditions of the Lake Fork of the Gunnison River in Hinsdale County, Lake City, Colorado, Water Years 2010-2011

    Science.gov (United States)

    Williams, Cory A.; Richards, Rodney J.; Schaffrath, Keelin R.

    2015-01-01

    Channel rehabilitation, or reconfiguration, to mitigate a variety of riverine problems has become a common practice in the western United States. However, additional work to monitor and assess the channel response to, and the effectiveness of, these modifications over longer periods of time (decadal or longer) is still needed. The Lake Fork of the Gunnison River has been an area of active channel modification to accommodate the needs of the Lake City community since the 1950s. The Lake Fork Valley Conservancy District began a planning process to assess restoration options for a reach of the Lake Fork in Lake City to enhance hydraulic and ecologic characteristics of the reach. Geomorphic channel form is affected by land-use changes within the basin and geologic controls within the reach. The historic channel was defined as a dynamic, braided channel with an active flood plain. This can result in a natural tendency for the channel to braid. A braided channel can affect channel stability of reconfigured reaches when a single-thread meandering channel is imposed on the stream. The U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board and Colorado River Water Conservation District, began a study in 2010 to quantify existing hydraulic and habitat conditions for a reach of the Lake Fork of the Gunnison River in Lake City, Colorado. The purpose of this report is to quantify existing Lake Fork hydraulic and habitat conditions and establish a baseline against which post-reconfiguration conditions can be compared. This report (1) quantifies the existing hydraulic and geomorphic conditions in a 1.1-kilometer section of the Lake Fork at Lake City that has been proposed as a location for future channel-rehabilitation efforts, (2) characterizes the habitat suitability of the reach for two trout species based on physical conditions within the stream, and (3) characterizes the current riparian canopy density.

  8. Environmental Monitoring as Part of Life Support for the Crew Habitat for Lunar and Mars Missions

    Science.gov (United States)

    Jan, Darrell L.

    2010-01-01

    Like other crewed space missions, future missions to the moon and Mars will have requirements for monitoring the chemical and microbial status of the crew habitat. Monitoring the crew habitat becomes more critical in such long term missions. This paper will describe the state of technology development for environmental monitoring of lunar lander and lunar outpost missions, and the state of plans for future missions.

  9. A single launch lunar habitat derived from an NSTS external tank

    Science.gov (United States)

    King, Charles B.; Butterfield, Ansel J.; Hypes, Warren D.; Nealy, John E.; Simonsen, Lisa C.

    1990-01-01

    A concept for using a spent External Tank from the National Space Transportation System (Shuttle) to derive a Lunar habitat is described. The concept is that the External Tank is carried into Low-Earth Orbit (LEO) where the oxygen tank-intertank subassembly is separated from the hydrogen tank, berthed to Space Station Freedom and the subassembly outfitted as a 12-person Lunar habitat using extravehicular activity (EVA) and intravehicular activity (IVA). A single launch of the NSTS Orbiter can place the External Tank in LEO, provide orbiter astronauts for disassembly of the External Tank, and transport the required subsystem hardware for outfitting the Lunar habitat. An estimate of the astronauts' EVA and IVA is provided. The liquid oxygen tank-intertank modifications utilize existing structures and openings for human access without compromising the structural integrity of the tank. The modification includes installation of living quarters, instrumentation, and an air lock. Feasibility studies of the following additional systems include micrometeoroid and radiation protection, thermal-control, environmental-control and life-support, and propulsion. The converted Lunar habitat is designed for unmanned transport and autonomous soft landing on the Lunar surface without need for site preparation. Lunar regolith is used to fill the micrometeoroid shield volume for radiation protection using a conveyor. The Lunar habitat concept is considered to be feasible by the year 2000 with the concurrent development of a space transfer vehicle and a Lunar lander for crew changeover and resupply.

  10. Quantifiers and working memory

    NARCIS (Netherlands)

    Szymanik, J.; Zajenkowski, M.

    2010-01-01

    The paper presents a study examining the role of working memory in quantifier verification. We created situations similar to the span task to compare numerical quantifiers of low and high rank, parity quantifiers and proportional quantifiers. The results enrich and support the data obtained

  11. Quantifiers and working memory

    NARCIS (Netherlands)

    Szymanik, J.; Zajenkowski, M.

    2009-01-01

    The paper presents a study examining the role of working memory in quantifier verification. We created situations similar to the span task to compare numerical quantifiers of low and high rank, parity quantifiers and proportional quantifiers. The results enrich and support the data obtained

  12. Measurement of the carrying capacity of benthic habitats using a metabolic-rate based index.

    Science.gov (United States)

    Edgar, G J

    1993-03-01

    Carrying capacities of grazed habitats are typically expressed as numbers or biomass of animals per unit area; however, such parameters are appropriate only when the body size of animals is constant because consumption and other metabolic-rate based parameters such as respiration and production are proportional to body mass raised by a power of ≈0.75 rather than 0 or 1. Habitat carrying levels are therefore better expressed in the form of an index of total community consumption by summing the body masses of individual animals after they have been scaled using a biomass exponent of ≈0.75. A parameter scaled in this way,P 20 , varied in a predictable manner when calculated for the mobile epifaunal assemblages associated with rope fibre habitats placed at marine and estuarine sites;P 20 showed no significant difference between 17 shallow, clear-water sites worldwide, but declined consistently when photosynthesis was reduced.P 20 also did not vary significantly when calculated for the mobile epifaunal communities associated with fourAmphibolis antarctica seagrass habitats in Australia ([Formula: see text] = 100 µg ·g -1 · day -1 ), and reached but did not significantly exceed a ceiling of ≈280 μg · g -1 · day -1 forSargassum plants. These results are consistent with the hypothesis that the production of shallow-water epifaunal communities of grazers is constrained by resource ceilings which can be quantified using metabolic-rate based indices. If this "production ceiling" hypothesis is correct then diffuse competition is generally more important than predation or environmental disturbance in restricting the growth of mobile epifaunal populations.

  13. Stomach nematodes (Mastophorus Muris) in rats (Rattus rattus) are associated with coconut (Cocos nucifera) Habitat at palmyra atoll

    Science.gov (United States)

    Lafferty, K.D.; Hathaway, S.A.; Wegmann, A.S.; Shipley, F.S.; Backlin, A.R.; Helm, J.; Fisher, R.N.

    2010-01-01

    Black rats (Rattus rattus) and their stomach nematodes (Mastophorus muris) were historically introduced to islets at Palmyra Atoll in the central Pacific Line Islands. To investigate patterns of parasitism, we trapped rats and quantified nematodes on 13 islets of various sizes and habitat types. Most rats were parasitized (59) with an average of 12 worms per infected rat. Islet size did not greatly influence parasite population biology. Nematodes also did not appear to affect rat condition (weight to skull length). The only strong and consistent factor associated with the mean abundance of nematodes in rats was habitat (dominant cover and locally dominant plant species). Thus, nematodes were much more abundant in rats from sites dominated by coconut trees (Cocos nucifera). Coconut trees may also be an introduced species at Palmyra Atoll. ?? American Society of Parasitologists 2010.

  14. Habitat features and distribution of Salamandra salamandra in underground springs

    Directory of Open Access Journals (Sweden)

    Raoul Manenti

    2009-12-01

    Full Text Available Subterranean habitats are among the less known terrestrial habitats, but can reveal an unexpected biodiversity, and can play an underestimated role for amphibians. The fire salamander Salamandra salamandra is sometimes found in underground environments, but the factors affecting its distribution in subterranean spaces remain substantially unexplored. We repeatedly surveyed some hypogeous springs, such as draining galleries and “bottini” in NW Italy, in order to evaluate the relationship between environmental features and distribution of S. salamandra in these underground springs. We performed visual encounter surveys to assess the occurrence of larvae, juveniles or adults in springs. We also recorded four habitat variables: easy of access, isolation, macrobenthos richness and forest cover of the surrounding landscape. We used generalized linear models to evaluate the relationships between habitat features and occurrence of larvae. We observed larvae of S. salamandra in 13 out of 22 springs; their presence was associated to springs with high easy of access and with relatively rich macrobenthos communities. In underground springs, larval development apparently required longer time than in nearby epigeous streams. Nevertheless, S. salamandra can attain metamorphosis in this environment. The occurrence of S. salamandra in underground environments was not accidental, but repeated in the time and interesting from an ecological point of view, confirming the high plasticity of the species.

  15. Salmon River Habitat Enhancement, 1984 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Konopacky, Richard C.

    1986-04-01

    This report has four volumes: a Tribal project annual report (Part 1) and three reports (Parts 2, 3, and 4) prepared for the Tribes by their engineering subcontractor. The Tribal project annual report contains reports for four subprojects within Project 83-359. Subproject I involved habitat and fish inventories in Bear Valley Creek, Valley County, Idaho that will be used to evaluate responses to ongoing habitat enhancement. Subproject II is the coordination/planning activities of the Project Leader in relation to other BPA-funded habitat enhancement projects that have or will occur within the traditional Treaty (Fort Bridger Treaty of 1868) fishing areas of the Shoshone-Bannock Tribes, Fort Hall Reservation, Idaho. Subproject III involved habitat and fish inventories (pretreatment) and habitat problem identification on the Yankee Fork of the Salmon River (including Jordan Creek). Subproject IV during 1985 involved habitat problem identification in the East Fork of the Salmon River and habitat and fish inventories (pretreatment) in Herd Creek, a tributary to the East Fork.

  16. NORTHWOODS Wildlife Habitat Data Base

    Science.gov (United States)

    Mark D. Nelson; Janine M. Benyus; Richard R. Buech

    1992-01-01

    Wildlife habitat data from seven Great Lakes National Forests were combined into a wildlife-habitat matrix named NORTHWOODS. Several electronic file formats of NORTHWOODS data base and documentation are available on floppy disks for microcomputers.

  17. Chapter 1: Assessing pollinator habitat services to optimize conservation programs

    Science.gov (United States)

    Iovanna, Richard; Ando , Amy W.; Swinton, Scott; Hellerstein, Daniel; Kagan, Jimmy; Mushet, David M.; Otto, Clint R.; Rewa, Charles A.

    2017-01-01

    Pollination services have received increased attention over the past several years, and protecting foraging area is beginning to be reflected in conservation policy. This case study considers the prospects for doing so in a more analytically rigorous manner, by quantifying the pollination services for sites being considered for ecological restoration. The specific policy context is the Conservation Reserve Program (CRP), which offers financial and technical assistance to landowners seeking to convert sensitive cropland back to some semblance of the prairie (or, to a lesser extent, forest or wetland) ecosystem that preceded it. Depending on the mix of grasses and wildflowers that are established, CRP enrollments can provide pollinator habitat. Further, depending on their location, they will generate related services, such as biological control of crop pests, recreation, and aesthetics. While offers to enroll in CRP compete based on cost and some anticipated benefits, the eligibility and ranking criteria do not reflect these services to a meaningful degree. Therefore, we develop a conceptual value diagram to identify the sequence of steps and associated models and data necessary to quantify the full range of services, and find that critical data gaps, some of which are artifacts of policy, preclude the application of benefit-relevant indicators (BRIs) or monetization. However, we also find that there is considerable research activity underway to fill these gaps. In addition, a modeling framework has been developed that can estimate field-level effects on services as a function of landscape context. The approach is inherently scalable and not limited in geographic scope, which is essential for a program with a national footprint. The parameters in this framework are sufficiently straightforward that expert judgment could be applied as a stopgap approach until empirically derived estimates are available. While monetization of benefit-relevant indicators of yield

  18. Habitat fragmentation effects on birds in grasslands and wetlands: A critique of our knowledge

    Science.gov (United States)

    Johnson, D.H.

    2001-01-01

    Habitat fragmentation exacerbates the problem of habitat loss for grassland and wetland birds. Remaining patches of grasslands and wetlands may be too small, too isolated, and too influenced by edge effects to maintain viable populations of some breeding birds. Knowledge of the effects of fragmentation on bird populations is critically important for decisions about reserve design, grassland and wetland management, and implementation of cropland set-aside programs that benefit wildlife. In my review of research that has been conducted on habitat fragmentation, I found at least five common problems in the methodology used. The results of many studies are compromised by these problems: passive sampling (sampling larger areas in larger patches), confounding effects of habitat heterogeneity, consequences of inappropriate pooling of data from different species, artifacts associated with artificial nest data, and definition of actual habitat patches. As expected, some large-bodied birds with large territorial requirements, such as the northern harrier (Circus cyaneus), appear area sensitive. In addition, some small species of grassland birds favor patches of habitat far in excess of their territory size, including the Savannah (Passerculus sandwichensis), grasshopper (Ammodramus savannarum) and Henslow's (A. henslowii) sparrows, and the bobolink (Dolichonyx oryzivorus). Other species may be area sensitive as well, but the data are ambiguous. Area sensitivity among wetland birds remains unknown since virtually no studies have been based on solid methodologies. We need further research on grassland bird response to habitat that distinguishes supportable conclusions from those that may be artifactual.

  19. 50 CFR 17.94 - Critical habitats.

    Science.gov (United States)

    2010-10-01

    ... habitats. (a) The areas listed in § 17.95 (fish and wildlife) and § 17.96 (plants) and referred to in the... physical constituent elements within the defined area of Critical Habitat that are essential to the... 50 Wildlife and Fisheries 2 2010-10-01 2010-10-01 false Critical habitats. 17.94 Section 17.94...

  20. Evaluation of two methods of estimating larval habitat productivity in western Kenya highlands

    Directory of Open Access Journals (Sweden)

    Munga Stephen

    2011-06-01

    Full Text Available Abstract Background Malaria vector intervention and control programs require reliable and accurate information about vector abundance and their seasonal distribution. The availability of reliable information on the spatial and temporal productivity of larval vector habitats can improve targeting of larval control interventions and our understanding of local malaria transmission and epidemics. The main objective of this study was to evaluate two methods of estimating larval habitat productivity in the western Kenyan highlands, the aerial sampler and the emergence trap. Methods The study was conducted during the dry and rainy seasons in 2008, 2009 and 2010. Aerial samplers and emergence traps were set up for sixty days in each season in three habitat types: drainage ditches, natural swamps, and abandoned goldmines. Aerial samplers and emergence traps were set up in eleven places in each habitat type. The success of each in estimating habitat productivity was assessed according to method, habitat type, and season. The effect of other factors including algae cover, grass cover, habitat depth and width, and habitat water volume on species productivity was analysed using stepwise logistic regression Results Habitat productivity estimates obtained by the two sampling methods differed significantly for all species except for An. implexus. For for An. gambiae s.l. and An. funestus, aerial samplers performed better, 21.5 and 14.6 folds, than emergence trap respectively, while the emergence trap was shown to be more efficient for culicine species. Seasonality had a significant influence on the productivity of all species monitored. Dry season was most productive season. Overall, drainage ditches had significantly higher productivity in all seasons compared to other habitat types. Algae cover, debris, chlorophyll-a, and habitat depth and size had significant influence with respect to species. Conclusion These findings suggest that the aerial sampler is the

  1. Habitat use of Alburnoides namaki, in the Jajroud River (Namak Lake basin, Iran

    Directory of Open Access Journals (Sweden)

    Melahat Hoghoghi

    2016-01-01

    Full Text Available A fish species prefer a particular habitat where provides its biological requirements, hence, understanding their habitat use and preferences are crucial for their effective management and protection. This study was conducted to assess the habitat use and selection patterns of Alburnoides namaki, an endemic fish in Jajroud River, Namak Lake basin, Iran. The river was sampled at 18 equally spaced sites. A number of environmental variables, including elevation, water depth, river width, river slope, velocity, substrate type, average diameter of bed stone, riparian vegetation type and total dissolved solid (TDS and the relative abundance of A. namaki were recorded at each site. The results showed that A. namaki mostly selects upper parts of the river with higher slope, higher depth, lower width, lower velocity, bed rock substrate i.e. bed with boulder cover, TDS of 100-150 ppm, and deciduous forest and residential area riparian type compared with the available ranges. This study provides the habitat use and environmental factors affecting on the distribution of A. namaki in the Jajroud River.

  2. The areal extent of brown shrimp habitat suitability in Mobile Bay, Alabama, USA: Targeting vegetated habitat restoration

    Science.gov (United States)

    Smith, L.M.; Nestlerode, J.A.; Harwell, L.C.; Bourgeois, P.

    2010-01-01

    The availability of wetlands and shallow water habitats significantly influences Gulf of Mexico (GOM) penaeid shrimp fishery productivity. However, the GOM region has the highest rate of wetland loss in the USA. Protection and management of these vital GOM habitats are critical to sustainable shrimp fisheries. Brown shrimp (Farfantepenaeus aztecus) are a major component of GOM fisheries. We present an approach for estimating the areal extent of suitable habitat for post-larval and juvenile brown shrimp in Mobile Bay, Alabama, using an existing habitat suitability index model for the northern GOM calculated from probabilistic survey of water quality and sediment data, land cover data, and submerged aquatic vegetation coverages. This estuarine scale approach is intended to support targeted protection and restoration of these habitats. These analyses indicate that approximately 60% of the area of Mobile Bay is categorized as suitable to near optimal for post-larval and juvenile shrimp and 38% of the area is marginally to minimally suitable. We identify potential units within Mobile Bay for targeted restoration to improve habitat suitability. ?? 2010 Springer Science+Business Media B.V.

  3. Quantifying changes in multiple ecosystem services during 1992-2012 in the Sanjiang Plain of China.

    Science.gov (United States)

    Wang, Zongming; Mao, Dehua; Li, Lin; Jia, Mingming; Dong, Zhangyu; Miao, Zhenghong; Ren, Chunying; Song, Changchun

    2015-05-01

    Rapid and periodic assessment of the impact of land cover changes on ecosystem services at regional levels is essential to understanding services and sustainability of ecosystems. This study focused on quantifying and assessing changes of multiple ecosystem services in the Sanjiang Plain of China as a result of land cover changes over the period of 1992-2012. This region is important for its large area of natural wetlands and intensive agriculture. The ecosystem services that were assessed for this region included its regulating services (water yield and ecosystem carbon stocks), supporting services (suitable waterbird habitats), and provisioning services (food production), and the approach to the assessment was composed of the surface energy balance algorithms for land (SEBAL), soil survey re-sampling method and an empirical waterbird habitat suitability model. This large scale and integrated investigation represents the first systematic evaluation on the status of ecosystem carbon stocks in the Sanjiang Plain in addition to the development of an effective model for analysis of waterbird habitat suitability with the use of both remote sensing and geographic information systems (GIS). More importantly, the result from this study has confirmed trade-offs between ecosystem services and negative consequences to environment in this region. The trade-offs were typically manifested by increased water yield and significantly grown food production, which is in contrast with significant losses in ecosystem carbon stocks (-14%) and suitable waterbird habitats (-23%) mainly due to the conversion of land cover from wetland to farmland. This finding implies that land use planning and policy making for this economically important region should take ecosystem service losses into account in order to preserve its natural ecosystems in the best interest of society. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Crocodiles in the Sahara desert: an update of distribution, habitats and population status for conservation planning in Mauritania.

    Directory of Open Access Journals (Sweden)

    José C Brito

    Full Text Available BACKGROUND: Relict populations of Crocodylus niloticus persist in Chad, Egypt and Mauritania. Although crocodiles were widespread throughout the Sahara until the early 20(th century, increased aridity combined with human persecution led to local extinction. Knowledge on distribution, occupied habitats, population size and prey availability is scarce in most populations. This study evaluates the status of Saharan crocodiles and provides new data for Mauritania to assist conservation planning. METHODOLOGY/PRINCIPAL FINDINGS: A series of surveys in Mauritania detected crocodile presence in 78 localities dispersed across 10 river basins and most tended to be isolated within river basins. Permanent gueltas and seasonal tâmoûrts were the most common occupied habitats. Crocodile encounters ranged from one to more than 20 individuals, but in most localities less than five crocodiles were observed. Larger numbers were observed after the rainy season and during night sampling. Crocodiles were found dead in between water points along dry river-beds suggesting the occurrence of dispersal. CONCLUSION/SIGNIFICANCE: Research priorities in Chad and Egypt should focus on quantifying population size and pressures exerted on habitats. The present study increased in by 35% the number of known crocodile localities in Mauritania. Gueltas are crucial for the persistence of mountain populations. Oscillations in water availability throughout the year and the small dimensions of gueltas affect biological traits, including activity and body size. Studies are needed to understand adaptation traits of desert populations. Molecular analyses are needed to quantify genetic variability, population sub-structuring and effective population size, and detect the occurrence of gene flow. Monitoring is needed to detect demographical and genetical trends in completely isolated populations. Crocodiles are apparently vulnerable during dispersal events. Awareness campaigns focusing on

  5. Energetic benefits of enhanced summer roosting habitat for little brown bats (Myotis lucifugus) recovering from white-nose syndrome.

    Science.gov (United States)

    Wilcox, Alana; Willis, Craig K R

    2016-01-01

    Habitat modification can improve outcomes for imperilled wildlife. Insectivorous bats in North America face a range of conservation threats, including habitat loss and white-nose syndrome (WNS). Even healthy bats face energetic constraints during spring, but enhancement of roosting habitat could reduce energetic costs, increase survival and enhance recovery from WNS. We tested the potential of artificial heating of bat roosts as a management tool for threatened bat populations. We predicted that: (i) after hibernation, captive bats would be more likely to select a roost maintained at a temperature near their thermoneutral zone; (ii) bats recovering from WNS at the end of hibernation would show a stronger preference for heated roosts compared with healthy bats; and (iii) heated roosts would result in biologically significant energy savings. We housed two groups of bats (WNS-positive and control) in separate flight cages following hibernation. Over 7.5 weeks, we quantified the presence of individuals in heated vs. unheated bat houses within each cage. We then used a series of bioenergetic models to quantify thermoregulatory costs in each type of roost under a number of scenarios. Bats preferentially selected heated bat houses, but WNS-affected bats were much more likely to use the heated bat house compared with control animals. Our model predicted energy savings of up to 81.2% for bats in artificially heated roosts if roost temperature was allowed to cool at night to facilitate short bouts of torpor. Our results are consistent with research highlighting the importance of roost microclimate and suggest that protection and enhancement of high-quality, natural roosting environments should be a priority response to a range of threats, including WNS. Our findings also suggest the potential of artificially heated bat houses to help populations recover from WNS, but more work is needed before these might be implemented on a large scale.

  6. Why Deep Space Habitats Should Be Different from the International Space Station

    Science.gov (United States)

    Griffin, Brand; Brown, MacAulay

    2016-01-01

    It is tempting to view the International Space Station (ISS) as a model for deep space habitats. This is not a good idea for many reasons. The ISS does not have a habitation module; instead the individual crew quarters are dispersed across several modules, the galley is in the US Laboratory and the waste hygiene compartment is in a Node. This distributed arrangement may be inconvenient but more important differences distinguish a deep space habitat from the ISS. First, the Space Shuttle launch system that shaped, sized, and delivered most ISS elements has been retired. Its replacement, the Space Launch System (SLS), is specifically designed for human exploration beyond low-Earth orbit and is capable of transporting more efficient, large diameter, heavy-lift payloads. Next, because of the Earth's protective geomagnetic field, ISS crews are naturally shielded from lethal radiation. Deep space habitat designs must include either a storm shelter or strategically positioned equipment and stowage for radiation protection. Another important difference is the increased transit time with no opportunity for an ISS-type emergency return. It takes 7 to 10 days to go between Earth and cis-lunar locations and 1000 days for the Mars habitat transit. This long commute calls for greater crew autonomy with habitats designed for the crew to fix their own problems. The ISS rack-enclosed, densely packaged subsystems are a product of the Shuttle era and not maintenance friendly. A solution better suited for deep space habitats spreads systems out allowing direct access to single-layer packaging and providing crew access to each component without having to remove another. Operational readiness is another important discriminator. The ISS required over 100 flights to build, resupply, and transport the crew, whereas SLS offers the capability to launch a fully provisioned habitat that is operational without additional outfitting or resupply flights.

  7. Survey design, statistical analysis, and basis for statistical inferences in coastal habitat injury assessment: Exxon Valdez oil spill

    International Nuclear Information System (INIS)

    McDonald, L.L.; Erickson, W.P.; Strickland, M.D.

    1995-01-01

    The objective of the Coastal Habitat Injury Assessment study was to document and quantify injury to biota of the shallow subtidal, intertidal, and supratidal zones throughout the shoreline affected by oil or cleanup activity associated with the Exxon Valdez oil spill. The results of these studies were to be used to support the Trustee's Type B Natural Resource Damage Assessment under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). A probability based stratified random sample of shoreline segments was selected with probability proportional to size from each of 15 strata (5 habitat types crossed with 3 levels of potential oil impact) based on those data available in July, 1989. Three study regions were used: Prince William Sound, Cook Inlet/Kenai Peninsula, and Kodiak/Alaska Peninsula. A Geographic Information System was utilized to combine oiling and habitat data and to select the probability sample of study sites. Quasi-experiments were conducted where randomly selected oiled sites were compared to matched reference sites. Two levels of statistical inferences, philosophical bases, and limitations are discussed and illustrated with example data from the resulting studies. 25 refs., 4 figs., 1 tab

  8. The impact of engineered log jams on bed morphology, flow characteristics and habitat diversity under low flow

    Science.gov (United States)

    Ockelford, A.; Crabbe, E.; Crowe Curran, J.; Parsons, D. R.; Shugar, D. H.; Burr, A.; Kennedy, K.; Coe, T.

    2017-12-01

    Wood jams are an important and ubiquitous feature of many river channels with their number, placement and spatial configuration determining their influence on channel morphology and flow characteristics. Further, engineered log jams are increasingly being constructed to develop, restore or maintain habitat diversity for key indicator specie such as salmon. However, questions remain as to the inter relationships between the logjams, the channel morphology, the flow characteristics and the habitat diversity under low flow conditions. Four engineered and one natural logjam were analyzed over a 3km reach of the South Fork Nooksack River, North Cascades National Park, USA during the summer low flow period. Non-intrusive three-dimensional topographic surveys of the river bed morphology surrounding the logjams was collected using a shallow water multibeam system. This was combined with terrestrial laser scans of the structure of the log jams above the waterline. Co-located high resolution flow velocity data was collected using an Acoustic Doppler Current Profiler. Discussion concentrates on providing a quantitative understanding of the effect of logjams on reach scale morphodynamics under low flow conditions. Multivariate statistical analysis of flow and topographic data in combination with log jam morphology allow the influences of the logjam on habitat suitability for key indicator species to be quantified. Results will be framed in terms of the effectiveness of the different logjam configurations on generating and promoting habitat diversity such as to aid future design and implementation.

  9. National Coral Reef Monitoring Program: Towed-diver Surveys of Benthic Habitat, Key Benthic Species, including Marine Debris Sightings, of the Pacific Remote Island Areas from 2015-01-26 to 2015-04-26 (NCEI Accession 0157564)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The towed-diver method is used to conduct benthic surveys, assessing large-scale disturbances (e.g., bleaching) and quantifying benthic components such as habitat...

  10. National Coral Reef Monitoring Program: Towed-diver Surveys of Benthic Habitats, Key Benthic Species, and Marine Debris Sightings of the Pacific Remote Island Areas from 2017-04-02 to 2017-04-20 (NCEI Accession 0164023)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The towed-diver method is used to conduct benthic surveys, assessing large-scale disturbances (e.g., bleaching) and quantifying benthic components such as habitat...

  11. An evaluation of the use of ERTS-1 satellite imagery for grizzly bear habitat analysis. [Montana

    Science.gov (United States)

    Varney, J. R.; Craighead, J. J.; Sumner, J. S.

    1974-01-01

    Improved classification and mapping of grizzly habitat will permit better estimates of population density and distribution, and allow accurate evaluation of the potential effects of changes in land use, hunting regulation, and management policies on existing populations. Methods of identifying favorable habitat from ERTS-1 multispectral scanner imagery were investigated and described. This technique could reduce the time and effort required to classify large wilderness areas in the Western United States.

  12. Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, R. Todd; Sexton, Amy D.

    2003-02-01

    development of a 105-foot well for off-stream livestock watering at approximately River Mile 12.0 Wildhorse Creek and construction of an engineered stream ford at approximately River Mile 3.0 Mission Creek. A total of $277,848 in financial cost share assistance was provided by the Confederated Tribes of the Umatilla Indian Reservation, U.S. Bureau of Indian Affairs, U.S. Environmental Protection Agency, U.S. Department of Agriculture, National Oceanic and Atmospheric Administration, U.S. Workforce Investment Act, Oregon Watershed Enhancement Board, Umatilla County and Pheasants Forever for planning efforts and habitat enhancements. Monitoring continued to quantify baseline conditions and the effects of habitat enhancements in the upper basin. Daily stream temperatures were collected from June through September at 22 sites. Suspended sediment samples were obtained at three gage stations to arrive at daily sediment load estimates. Photographs were taken at 96 existing and three newly established photo points to document habitat recovery and pre-project conditions. Transects were measured at three stream channel cross sections to assist with engineering and design and to obtain baseline data regarding channel morphology. Biological inventories were conducted at River Mile 3.0 Mission Creek to determine pre-project fish utilization above and below the passage barrier. Post-project inventories were also conducted at River Mile 85.0 of the Umatilla River at a project site completed in 1999. Umatilla Subbasin Watershed Assessment efforts were continued under a subcontract with Eco-Pacific. This watershed assessment document and working databases will be completed in fiscal year 2002 and made available to assist project personnel with sub-watershed prioritization of habitat needs. Water Works Consulting, Duck Creek Associates and Ed Salminen Consulting were subcontracted for watershed assessment and restoration planning in the Meacham Creek Subwatershed. A document detailing current

  13. The influence of mitigation on sage-grouse habitat selection within an energy development field.

    Directory of Open Access Journals (Sweden)

    Bradley C Fedy

    Full Text Available Growing global energy demands ensure the continued growth of energy development. Energy development in wildlife areas can significantly impact wildlife populations. Efforts to mitigate development impacts to wildlife are on-going, but the effectiveness of such efforts is seldom monitored or assessed. Greater sage-grouse (Centrocercus urophasianus are sensitive to energy development and likely serve as an effective umbrella species for other sagebrush-steppe obligate wildlife. We assessed the response of birds within an energy development area before and after the implementation of mitigation action. Additionally, we quantified changes in habitat distribution and abundance in pre- and post-mitigation landscapes. Sage-grouse avoidance of energy development at large spatial scales is well documented. We limited our research to directly within an energy development field in order to assess the influence of mitigation in close proximity to energy infrastructure. We used nest-location data (n = 488 within an energy development field to develop habitat selection models using logistic regression on data from 4 years of research prior to mitigation and for 4 years following the implementation of extensive mitigation efforts (e.g., decreased activity, buried powerlines. The post-mitigation habitat selection models indicated less avoidance of wells (well density β = 0.18 ± 0.08 than the pre-mitigation models (well density β = -0.09 ± 0.11. However, birds still avoided areas of high well density and nests were not found in areas with greater than 4 wells per km2 and the majority of nests (63% were located in areas with ≤ 1 well per km2. Several other model coefficients differed between the two time periods and indicated stronger selection for sagebrush (pre-mitigation β = 0.30 ± 0.09; post-mitigation β = 0.82 ± 0.08 and less avoidance of rugged terrain (pre-mitigation β = -0.35 ± 0.12; post-mitigation β = -0.05 ± 0.09. Mitigation efforts

  14. Integrating the Public in Mosquito Management: Active Education by Community Peers Can Lead to Significant Reduction in Peridomestic Container Mosquito Habitats

    Science.gov (United States)

    Healy, Kristen; Hamilton, George; Crepeau, Taryn; Healy, Sean; Unlu, Isik; Farajollahi, Ary; Fonseca, Dina M.

    2014-01-01

    Mosquito species that utilize peridomestic containers for immature development are commonly aggressive human biters, and because they often reach high abundance, create significant nuisance. One of these species, the Asian tiger mosquito Aedes albopictus, is an important vector of emerging infectious diseases, such as dengue, chikungunya, and Zika fevers. Integrated mosquito management (IMM) of Ae. albopictus is particularly difficult because it requires access to private yards in urban and suburban residences. It has become apparent that in the event of a public health concern due to this species, homeowners will have to be active participants in the control process by reducing mosquito habitats in their properties, an activity known as source reduction. However, limited attempts at quantifying the effect of source reduction by homeowners have had mixed results. Of note, many mosquito control programs in the US have some form of education outreach, however the primary approach is often passive focusing on the distribution of education materials as flyers. In 2010, we evaluated the use of active community peer education in a source reduction program, using AmeriCorps volunteers. The volunteers were mobilized over a 4-week period, in two areas with approximately 1,000 residences each in urban Mercer and suburban Monmouth counties in New Jersey, USA. The volunteers were first provided training on peridomestic mosquitoes and on basic approaches to reducing the number of container habitats for mosquito larvae in backyards. Within the two treatment areas the volunteers successfully engaged 758 separate homes. Repeated measures analysis of variance showed a significant reduction in container habitats in the sites where the volunteers actively engaged the community compared to untreated control areas in both counties. Our results suggest that active education using community peer educators can be an effective means of source reduction, and a critical tool in the arsenal

  15. Does learning or instinct shape habitat selection?

    Directory of Open Access Journals (Sweden)

    Scott E Nielsen

    Full Text Available Habitat selection is an important behavioural process widely studied for its population-level effects. Models of habitat selection are, however, often fit without a mechanistic consideration. Here, we investigated whether patterns in habitat selection result from instinct or learning for a population of grizzly bears (Ursus arctos in Alberta, Canada. We found that habitat selection and relatedness were positively correlated in female bears during the fall season, with a trend in the spring, but not during any season for males. This suggests that habitat selection is a learned behaviour because males do not participate in parental care: a genetically predetermined behaviour (instinct would have resulted in habitat selection and relatedness correlations for both sexes. Geographic distance and home range overlap among animals did not alter correlations indicating that dispersal and spatial autocorrelation had little effect on the observed trends. These results suggest that habitat selection in grizzly bears are partly learned from their mothers, which could have implications for the translocation of wildlife to novel environments.

  16. Variability in leaf optical properties among 26 species from a broad range of habitats

    International Nuclear Information System (INIS)

    Knapp, A.K.; Carter, G.A.

    1998-01-01

    Leaves from 26 species with growth forms from annual herbs to trees were collected from open, intermediate, and shaded understory habitats in Mississippi and Kansas, USA. Leaf optical properties including reflectance, transmittance, and absorptance in visible and near infrared (NIR) wavelengths were measured along with leaf thickness and specific leaf mass (SLM). These leaf properties and internal light scattering have been reported to vary with light availability in studies that have focused on a limited number of species. Our objective was to determine whether these patterns in leaf optics and light availability were consistent when a greater number of species were evaluated. Leaf thickness and SLM varied by tenfold among species sampled, but within-habitat variance was high. Although there was a strong trend toward thicker leaves in open habitats, only SLM was significantly greater in open vs. understory habitats. In contrast, leaf optical properties were strikingly similar among habitats. Reflectance and reflectance/transmittance in the NIR were used to estimate internal light scattering and there were strong relationships (r2 0.65) between these optical properties and leaf thickness. We concluded that leaf thickness, which did not vary consistently among habitats, was the best predictor of NIR reflectance and internal light scattering. However, because carbon allocation to leaves was lower in understory species (low SLM) yet gross optical properties were similar among all habitats, the energy investment by shade leaves required to achieve optical equivalence with sun leaves was lower. Differences in leaf longevity and growth form within a habitat may help explain the lack of consistent patterns in leaf optics as the number of species sampled increases

  17. Quantifying the severity of hurricanes on extinction probabilities of a primate population: Insights into "Island" extirpations.

    Science.gov (United States)

    Ameca y Juárez, Eric I; Ellis, Edward A; Rodríguez-Luna, Ernesto

    2015-07-01

    Long-term studies quantifying impacts of hurricane activity on growth and trajectory of primate populations are rare. Using a 14-year monitored population of Alouatta palliata mexicana as a study system, we developed a modeling framework to assess the relative contribution of hurricane disturbance and two types of human impacts, habitat loss, and hunting, on quasi-extinction risk. We found that the scenario with the highest level of disturbance generated a 21% increase in quasi-extinction risk by 40 years compared to scenarios of intermediate disturbance, and around 67% increase relative to that found in low disturbance scenarios. We also found that the probability of reaching quasi-extinction due to human disturbance alone was below 1% by 40 years, although such scenarios reduced population size by 70%, whereas the risk of quasi-extinction ranged between 3% and 65% for different scenarios of hurricane severity alone, in absence of human impacts. Our analysis moreover found that the quasi-extinction risk driven by hunting and hurricane disturbance was significantly lower than the quasi-extinction risk posed by human-driven habitat loss and hurricane disturbance. These models suggest that hurricane disturbance has the potential to exceed the risk posed by human impacts, and, in particular, to substantially increase the speed of the extinction vortex driven by habitat loss relative to that driven by hunting. Early mitigation of habitat loss constituted the best method for reducing quasi-extinction risk: the earlier habitat loss is halted, the less vulnerable the population becomes to hurricane disturbance. By using a well-studied population of A. p. mexicana, we help understand the demographic impacts that extreme environmental disturbance can trigger on isolated populations of taxa already endangered in other systems where long-term demographic data are not available. For those experiencing heavy anthropogenic pressure and lacking sufficiently evolved coping

  18. Habitat preference of Roan Antelope (Hippotragus equinus ...

    African Journals Online (AJOL)

    Key words: Habitat Preference, Roan Antelope, Seasons. INTRODUCTION. Habitat quality and quantity have been identified as the primary limiting factors that influence animal population dynamics. (Jansen et al., 2001). Habitat influences the presence, abundance, distribution, movement and behavior of game animals.

  19. Between a rock and a hard place: habitat selection in female-calf humpback whale (Megaptera novaeangliae Pairs on the Hawaiian breeding grounds.

    Directory of Open Access Journals (Sweden)

    Rachel Cartwright

    Full Text Available The Au'au Channel between the islands of Maui and Lanai, Hawaii comprises critical breeding habitat for humpback whales (Megaptera novaeangliae of the Central North Pacific stock. However, like many regions where marine mega-fauna gather, these waters are also the focus of a flourishing local eco-tourism and whale watching industry. Our aim was to establish current trends in habitat preference in female-calf humpback whale pairs within this region, focusing specifically on the busy, eastern portions of the channel. We used an equally-spaced zigzag transect survey design, compiled our results in a GIS model to identify spatial trends and calculated Neu's Indices to quantify levels of habitat use. Our study revealed that while mysticete female-calf pairs on breeding grounds typically favor shallow, inshore waters, female-calf pairs in the Au'au Channel avoided shallow waters (<20 m and regions within 2 km of the shoreline. Preferred regions for female-calf pairs comprised water depths between 40-60 m, regions of rugged bottom topography and regions that lay between 4 and 6 km from a small boat harbor (Lahaina Harbor that fell within the study area. In contrast to other humpback whale breeding grounds, there was only minimal evidence of typical patterns of stratification or segregation according to group composition. A review of habitat use by maternal females across Hawaiian waters indicates that maternal habitat choice varies between localities within the Hawaiian Islands, suggesting that maternal females alter their use of habitat according to locally varying pressures. This ability to respond to varying environments may be the key that allows wildlife species to persist in regions where human activity and critical habitat overlap.

  20. The distribution and habitat requirements of the genus Orobanche L. (Orobanchaceae in SE Poland

    Directory of Open Access Journals (Sweden)

    Renata Piwowarczyk

    2011-05-01

    Full Text Available The distribution of the genus Orobanche in SE Poland is presented. The study area stretches between the Vistula and the Bug rivers, and comprises the Polish areas of the Lublin-Lwów Upland, the Wołyń Upland and the southern part of Polesie. Eight species of the genus Orobanche: O. alba, O. alsatica, O. arenaria, O. caryophyllacea, O. elatior, O. lutea, O. pallidiflora, O. picridis, were collected during floristic investigations conducted between 1999 and 2010. The hosts, abundance and habitat preferences at the localities are given and a supplemented map of the distribution in SE Poland is included.

  1. Habitat-specific population growth of a farmland bird.

    Directory of Open Access Journals (Sweden)

    Debora Arlt

    Full Text Available BACKGROUND: To assess population persistence of species living in heterogeneous landscapes, the effects of habitat on reproduction and survival have to be investigated. METHODOLOGY/PRINCIPAL FINDINGS: We used a matrix population model to estimate habitat-specific population growth rates for a population of northern wheatears Oenanthe oenanthe breeding in farmland consisting of a mosaic of distinct habitat (land use types. Based on extensive long-term data on reproduction and survival, habitats characterised by tall field layers (spring- and autumn-sown crop fields, ungrazed grasslands displayed negative stochastic population growth rates (log lambda(s: -0.332, -0.429, -0.168, respectively, that were markedly lower than growth rates of habitats characterised by permanently short field layers (pastures grazed by cattle or horses, and farmyards, log lambda(s: -0.056, +0.081, -0.059. Although habitats differed with respect to reproductive performance, differences in habitat-specific population growth were largely due to differences in adult and first-year survival rates, as shown by a life table response experiment (LTRE. CONCLUSIONS/SIGNIFICANCE: Our results show that estimation of survival rates is important for realistic assessments of habitat quality. Results also indicate that grazed grasslands and farmyards may act as source habitats, whereas crop fields and ungrazed grasslands with tall field layers may act as sink habitats. We suggest that the strong decline of northern wheatears in Swedish farmland may be linked to the corresponding observed loss of high quality breeding habitat, i.e. grazed semi-natural grasslands.

  2. Pacific Reef Assessment and Monitoring Program: Towed-diver Surveys of Benthic Habitats, Key Benthic Species, and Marine Debris Sightings of the U.S. Pacific Reefs from 2000-09-09 to 2012-05-19 (NCEI Accession 0163745)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The towed-diver method is used to conduct benthic surveys, assessing large-scale disturbances (e.g., bleaching) and quantifying benthic components such as habitat...

  3. Teaching animal habitat selection using wildlife tracking equipment

    Science.gov (United States)

    Laskowski, Jessica; Gillespie, Caitlyn R.; Corral, Lucia; Oden, Amy; Fricke, Kent A.; Fontaine, Joseph J.

    2016-01-01

    We present a hands-on outdoor activity coupled with classroom discussion to teach students about wildlife habitat selection, the process by which animals choose where to live. By selecting locations or habitats with many benefits (e.g., food, shelter, mates) and few costs (e.g., predators), animals improve their ability to survive and reproduce. Biologists track animal movement using radio telemetry technology to study habitat selection so they can better provide species with habitats that promote population growth. We present a curriculum in which students locate “animals” (transmitters) using radio telemetry equipment and apply math skills (use of fractions and percentages) to assess their “animal's” habitat selection by comparing the availability of habitat types with the proportion of “animals” they find in each habitat type.

  4. Creating complex habitats for restoration and reconciliation

    NARCIS (Netherlands)

    Loke, L.H.L.; Ladle, R.J.; Bouma, T.J.; Todd, P.A.

    2015-01-01

    Simplification of natural habitats has become a major conservation challenge and there is a growing consensus that incorporating and enhancing habitat complexity is likely to be critical for future restoration efforts. Habitat complexity is often ascribed an important role in controlling species

  5. The functional value of Caribbean coral reef, seagrass and mangrove habitats to ecosystem processes.

    Science.gov (United States)

    Harborne, Alastair R; Mumby, Peter J; Micheli, Fiorenza; Perry, Christopher T; Dahlgren, Craig P; Holmes, Katherine E; Brumbaugh, Daniel R

    2006-01-01

    overall functional roles of different habitats. The resulting ordination suggests that each habitat has a unique suite of functional values and, potentially, a distinct role within the ecosystem. This review shows that further data are required for many habitat types and processes, particularly forereef and escarpment habitats on reefs and for seagrass beds and mangroves. Furthermore, many data were collected prior to the regional mass mortality of Diadema and Acropora, and subsequent changes to benthic communities have, in many cases, altered a habitat's functional value, hindering the use of these data for parameterising maps and models. Similarly, few data exist on how functional values change when environmental parameters, such as water clarity, are altered by natural or anthropogenic influences or the effects of a habitat's spatial context within the seascape. Despite these limitations, sufficient data are available to construct maps and models to better understand tropical marine ecosystem processes and assist more effective mitigation of threats that alter habitats and their functional values.

  6. Habitat specialization through germination cueing

    DEFF Research Database (Denmark)

    Ten Brink, Dirk-Jan; Hendriksma, Harmen; Bruun, Hans Henrik

    2013-01-01

    This study examined the adaptive association between seed germination ecology and specialization to either forest or open habitats across a range of evolutionary lineages of seed plants, in order to test the hypotheses that (1) species' specialization to open vs. shaded habitats is consistently...

  7. Regional habitat needs of a nationally listed species, Canada Warbler (Cardellina canadensis, in Alberta, Canada

    Directory of Open Access Journals (Sweden)

    Jeffrey R. Ball

    2016-12-01

    Full Text Available Understanding factors that affect the distribution and abundance of species is critical to developing effective management plans for conservation. Our goal was to quantify the distribution and abundance of Canada Warbler (Cardellina canadensis, a threatened old-forest associate in Alberta, Canada. The Canada Warbler has declined across its range, including in Alberta where habitat loss and alteration from urban expansion, forestry, and energy development are changing the forest landscape. We used 110,427 point count survey visits from 32,287 unique survey stations to model local-level (150-m radius circular buffers and stand-level (564-m radius circular buffers habitat associations of the Canada Warbler. We found that habitat supporting higher densities of Canada Warblers was locally concentrated yet broadly distributed across Alberta's boreal forest region. Canada Warblers were most commonly associated with older deciduous forest at the local scale, particularly near small, incised streams, and greater amounts of deciduous forest at the stand scale. Predicted density was lower in other forest types and younger age classes measured at the local scale. There was little evidence that local-scale fragmentation (i.e., edges created by linear features influenced Canada Warbler abundance. However, current forestry practices in the province likely will reduce the availability of Canada Warbler habitat over time by cutting old deciduous forest stands. Our results suggest that conservation efforts aimed at Canada Warbler focus on retaining large stands of old deciduous forest, specifically stands adjacent to streams, by increasing the width of deciduous retention buffers along streams during harvest and increasing the size and number of old forest residual patches in harvested stands.

  8. Habitat Use and Selection by Giant Pandas

    Science.gov (United States)

    Hull, Vanessa; Zhang, Jindong; Huang, Jinyan; Zhou, Shiqiang; Viña, Andrés; Shortridge, Ashton; Li, Rengui; Liu, Dian; Xu, Weihua; Ouyang, Zhiyun; Zhang, Hemin; Liu, Jianguo

    2016-01-01

    Animals make choices about where to spend their time in complex and dynamic landscapes, choices that reveal information about their biology that in turn can be used to guide their conservation. Using GPS collars, we conducted a novel individual-based analysis of habitat use and selection by the elusive and endangered giant pandas (Ailuropoda melanoleuca). We constructed spatial autoregressive resource utilization functions (RUF) to model the relationship between the pandas' utilization distributions and various habitat characteristics over a continuous space across seasons. Results reveal several new insights, including use of a broader range of habitat characteristics than previously understood for the species, particularly steep slopes and non-forest areas. We also used compositional analysis to analyze habitat selection (use with respect to availability of habitat types) at two selection levels. Pandas selected against low terrain position and against the highest clumped forest at the at-home range level, but no significant factors were identified at the within-home range level. Our results have implications for modeling and managing the habitat of this endangered species by illustrating how individual pandas relate to habitat and make choices that differ from assumptions made in broad scale models. Our study also highlights the value of using a spatial autoregressive RUF approach on animal species for which a complete picture of individual-level habitat use and selection across space is otherwise lacking. PMID:27627805

  9. Habitat Use and Selection by Giant Pandas.

    Directory of Open Access Journals (Sweden)

    Vanessa Hull

    Full Text Available Animals make choices about where to spend their time in complex and dynamic landscapes, choices that reveal information about their biology that in turn can be used to guide their conservation. Using GPS collars, we conducted a novel individual-based analysis of habitat use and selection by the elusive and endangered giant pandas (Ailuropoda melanoleuca. We constructed spatial autoregressive resource utilization functions (RUF to model the relationship between the pandas' utilization distributions and various habitat characteristics over a continuous space across seasons. Results reveal several new insights, including use of a broader range of habitat characteristics than previously understood for the species, particularly steep slopes and non-forest areas. We also used compositional analysis to analyze habitat selection (use with respect to availability of habitat types at two selection levels. Pandas selected against low terrain position and against the highest clumped forest at the at-home range level, but no significant factors were identified at the within-home range level. Our results have implications for modeling and managing the habitat of this endangered species by illustrating how individual pandas relate to habitat and make choices that differ from assumptions made in broad scale models. Our study also highlights the value of using a spatial autoregressive RUF approach on animal species for which a complete picture of individual-level habitat use and selection across space is otherwise lacking.

  10. Pelagic habitat visualization: the need for a third (and fourth) dimension: HabitatSpace

    Science.gov (United States)

    Beegle-Krause, C; Vance, Tiffany; Reusser, Debbie; Stuebe, David; Howlett, Eoin

    2009-01-01

    Habitat in open water is not simply a 2-D to 2.5-D surface such as the ocean bottom or the air-water interface. Rather, pelagic habitat is a 3-D volume of water that can change over time, leading us to the term habitat space. Visualization and analysis in 2-D is well supported with GIS tools, but a new tool was needed for visualization and analysis in four dimensions. Observational data (cruise profiles (xo, yo, z, to)), numerical circulation model fields (x,y,z,t), and trajectories (larval fish, 4-D line) need to be merged together in a meaningful way for visualization and analysis. As a first step toward this new framework, UNIDATA’s Integrated Data Viewer (IDV) has been used to create a set of tools for habitat analysis in 4-D. IDV was designed for 3-D+time geospatial data in the meteorological community. NetCDF JavaTM libraries allow the tool to read many file formats including remotely located data (e.g. data available via OPeNDAP ). With this project, IDV has been adapted for use in delineating habitat space for multiple fish species in the ocean. The ability to define and visualize boundaries of a water mass, which meets specific biologically relevant criteria (e.g., volume, connectedness, and inter-annual variability) based on model results and observational data, will allow managers to investigate the survival of individual year classes of commercially important fisheries. Better understanding of the survival of these year classes will lead to improved forecasting of fisheries recruitment.

  11. Study on impact of habitat degradation on proximate composition and amino acid profile of Indian major carps from different habitats

    Directory of Open Access Journals (Sweden)

    Bilal Hussain

    2018-05-01

    Full Text Available This investigation is aimed to study an impact of habitat degradation on proximate composition and amino acid (AAs profile of Catla catla, Labeo rohita and Cirrhinus mrigala collected from polluted, non-polluted area (upstream and a commercial fish farm. The amino acid profile was estimated by the amino acid analyzer. C. catla collected from the polluted environment had highest lipid, protein and ash contents (12.04 ± 0.01, 13.45 ± 0.01 and 0.93 ± 0.03%, respectively. The high protein content (14.73 ± 0.01 and 14.12 ± 0. 01% was recorded in C. catla procured from non-polluted (upstream wild habitat of River Chenab and controlled commercial fish farm. Farmed fish species showed comparatively higher moisture contents followed by upstream and polluted area fishes. C. mrigala showed significant differences in amino acid and proximate composition collected from a polluted site of the river Chenab. C. catla collected from non-polluted site of the river showed an excellent nutrient profile, followed by L. rohita (wild and farmed and C. mrigala (polluted area, respectively. All fishes from the polluted areas of the River Chenab indicated a significant decrease in the concentration of some AAs when compared to farmed and wild (upstream major carps. Omitting of some important AAs was also observed in the meat of fish harvested from polluted habitat of this river. C. mrigala and L. rohita exhibited a significant increase in the concentration of some of non-essential amino acids such as cysteine in their meat. The results indicated that wild fish (upstream and farmed fish species had highest protein contents and amino acid profile and hence appeared to be the best for human consumption. The proximate composition and AAs profiles of fish harvested from the polluted area of the river clearly indicated that efforts shall be made for the restoration of habitat to continue the requirement of high quality fish meat at a low cost to the

  12. Varying energetic costs of Brent Geese along a continuum from aquatic to agricultural habitats: the importance of habitat-specific energy expenditure

    DEFF Research Database (Denmark)

    Clausen, Kevin Kuhlmann; Clausen, Preben; Fox, Anthony David

    2013-01-01

    and alert than birds feeding in aquatic areas, and also spent much less time roosting. Frequency of disturbance was found to be higher in terrestrial habitats compared to aquatic habitats. These stress-related behavioural differences between habitats highlight the vulnerability of the species associated...... with adapting to different food sources. Combining time-budgets with activity-specific BMR-multiplicators showed that activity-based metabolic rates ranged from 1.7 to 2.7 × BMR within habitats exploited by Brent Geese, and emphasized that aquatic areas represent the energetically least expensive foraging...... habitat for these birds. This is largely the result of habitat-specific variation in time spent flying. These findings underline the importance of measuring habitat-specific behaviour and disturbance when studying avian energetics, and demonstrate the risk of uncritically using allometric relationships...

  13. Data Collection and Simulation of Ecological Habitat and Recreational Habitat in the Shenandoah River, Virginia

    Science.gov (United States)

    Krstolic, Jennifer L.

    2015-01-01

    This report presents updates to methods, describes additional data collected, documents modeling results, and discusses implications from an updated habitat-flow model that can be used to predict ecological habitat for fish and recreational habitat for canoeing on the main stem Shenandoah River in Virginia. Given a 76-percent increase in population predictions for 2040 over 1995 records, increased water-withdrawal scenarios were evaluated to determine the effects on habitat and recreation in the Shenandoah River. Projected water demands for 2040 vary by watershed: the North Fork Shenandoah River shows a 55.9-percent increase, the South Fork Shenandoah River shows a 46.5-percent increase, and the main stem Shenandoah River shows a 52-percent increase; most localities are projected to approach the total permitted surface-water and groundwater withdrawals values by 2040, and a few localities are projected to exceed these values.

  14. Growth rates of Porites astreoides and Orbicella franksi in mesophotic habitats surrounding St. Thomas, US Virgin Islands

    Science.gov (United States)

    Groves, Sarah H.; Holstein, Daniel M.; Enochs, Ian C.; Kolodzeij, Graham; Manzello, Derek P.; Brandt, Marilyn E.; Smith, Tyler B.

    2018-06-01

    Mesophotic coral ecosystems (MCEs) are deep (> 30 m), light-dependent communities that are abundant in many parts of the global ocean. MCEs are potentially connected to shallow reefs via larval exchange and may act as refuges for reef organisms. However, MCE community level recovery after disturbance, and thus, community resilience, are poorly understood components of their capacity as refuges. To assess the potential for disturbance and growth to drive community structure on MCEs with differential biophysical conditions and coral communities, we collected colonies of Orbicella franksi and Porites astreoides and used computerized tomography to quantify calcification. The divergence of coral growth rates in MCEs with different environmental conditions may be species specific; habitat-forming O. franksi have slow and consistent growth rates of 0.2 cm yr-1 below 30 m, regardless of mesophotic habitat, compared to 1.0 cm yr-1 in shallow-water habitats. Slow skeletal growth rates in MCEs suggest that rates of recovery from disturbance will likely also be slow. Localized buffering of MCEs from the stressors affecting shallow reefs is therefore crucial to the long-term capacity of these sites to serve as refugia, given that skeletal extension and recovery from disturbance in MCEs will be significantly slower than on shallow reefs.

  15. Habitat Evaluation Procedures (HEP) Report; Steigerwald Lake National Wildlife Refuge, Technical Report 2000-2001.

    Energy Technology Data Exchange (ETDEWEB)

    Allard, Donna

    2001-09-01

    Steigenvald Lake National Wildlife Refuge (NWR, refuge) was established as a result of the U. S. Army Corps of Engineers (COE) transferring ownership of the Stevenson tract located in the historic Steigerwald Lake site to the U.S. Fish and Wildlife Service (FWS, Service) for the mitigation of the fish and wildlife losses associated with the construction of a second powerhouse at the Bonneville Dam on the Columbia River and relocation of the town of North Bonneville (Public Law 98-396). The construction project was completed in 1983 and resulted in the loss of approximately 577 acres of habitat on the Washington shore of the Columbia River (USFWS, 1982). The COE determined that acquisition and development of the Steigenvald Lake area, along with other on-site project management actions, would meet their legal obligation to mitigate for these impacts (USCOE, 1985). Mitigation requirements included restoration and enhancement of this property to increase overall habitat diversity and productivity. From 1994 to 1999, 317 acres of additional lands, consisting of four tracts of contiguous land, were added to the original refuge with Bonneville Power Administration (BPA) funds provided through the Washington Wildlife Mitigation Agreement. These tracts comprised Straub (191 acres), James (90 acres), Burlington Northern (27 acres), and Bliss (9 acres). Refer to Figure 1. Under this Agreement, BPA budgeted $2,730,000 to the Service for 'the protection, mitigation, and enhancement of wildlife and wildlife habitat that was adversely affected by the construction of Federal hydroelectric dams on the Columbia River or its tributaries' in the state of Washington (BPA, 1993). Lands acquired for mitigation resulting from BPA actions are evaluated using the habitat evaluation procedures (HEP) methodology, which quantifies how many Habitat Units (HUs) are to be credited to BPA. HUs or credits gained lessen BPA's debt, which was formally tabulated in the Federal Columbia

  16. Density and habitat requirements of sympatric hares and cottontails in northern Italy

    Directory of Open Access Journals (Sweden)

    Anna Vidus Rosin

    2010-06-01

    Full Text Available Abstract From 2005 to 2009, densities and habitat selection by the European hare (Lepus europaeus and Eastern cottontail (Sylvilagus floridanus were assessed during feeding activity in an intensively cultivated area in northern Italy. Hare average density (74 ind./km2 was comparable to the highest values reported for European farming areas. Preand post-breeding density fluctuated widely across the study years, probably as a consequence of changes in the carrying capacity of the study area. Cottontail population size progressively increased, as expected for a recently introduced species supported by high reproductive performances. Hares used both crops and spontaneous vegetation during their feeding activity. Conversely, cottontails avoided winter cereals and preferred to feed on alfalfa. Our results suggest that simplified agro-ecosystems cannot maintain high density hare populations even at a short time scale. Landscape heterogeneity could enhance the chances of coexistence between the two lagomorphs.
    Riassunto Densità ed esigenze ecologiche della lepre e del silvilago in condizioni di simpatria in Italia settentrionale Tra il 2005 e il 2009, la densità e l’uso del habitat durante l’attività di alimentazione da parte della Lepre europea (Lepus europaeus e del Silvilago (Sylvilagus floridanus sono stati indagati in un’area intensamente coltivata nell’Italia settentrionale. La densità media della lepre nell’area di studio (74 ind./km2 corrisponde ai valori maggiori riportati per le aree agricole europee. Le densità pre- e post riproduttive della lepre hanno mostrato sensibili fluttuazioni durante il periodo di studio, probabilmente dovute ai cambiamenti stagionali della capacità portante dell’area di studio. L’abbondanza del silvilago è aumentata durante gli ultimi tre anni di studio, come prevedibile per una

  17. Assessing habitat selection when availability changes

    Science.gov (United States)

    Arthur, S.; Garner, G.; ,

    1996-01-01

    We present a method of comparing data on habitat use and availability that allows availability to differ among observations. This method is applicable when habitats change over time and when animals are unable to move throughout a predetermined study area between observations. We used maximum-likelihood techniques to derive an index that estimates the probability that each habitat type would be used if all were equally available. We also demonstrate how these indices can be used to compare relative use of available habitats, assign them ranks, and assess statistical differences between pairs of indices. The set of these indices for all habitats can be compared between groups of animals that represent different seasons, sex or age classes, or experimental treatments. This method allows quantitative comparisons among types and is not affected by arbitrary decisions about which habitats to include in the study. We provide an example by comparing the availability of four categories of sea ice concentration to their use by adult female polar bears, whose movements were monitored by satellite radio tracking in the Bering and Chukchi Seas during 1990. Use of ice categories by bears was nonrandom, and the pattern of use differed between spring and late summer seasons.

  18. Habitat features and predictive habitat modeling for the Colorado chipmunk in southern New Mexico

    Science.gov (United States)

    Rivieccio, M.; Thompson, B.C.; Gould, W.R.; Boykin, K.G.

    2003-01-01

    Two subspecies of Colorado chipmunk (state threatened and federal species of concern) occur in southern New Mexico: Tamias quadrivittatus australis in the Organ Mountains and T. q. oscuraensis in the Oscura Mountains. We developed a GIS model of potentially suitable habitat based on vegetation and elevation features, evaluated site classifications of the GIS model, and determined vegetation and terrain features associated with chipmunk occurrence. We compared GIS model classifications with actual vegetation and elevation features measured at 37 sites. At 60 sites we measured 18 habitat variables regarding slope, aspect, tree species, shrub species, and ground cover. We used logistic regression to analyze habitat variables associated with chipmunk presence/absence. All (100%) 37 sample sites (28 predicted suitable, 9 predicted unsuitable) were classified correctly by the GIS model regarding elevation and vegetation. For 28 sites predicted suitable by the GIS model, 18 sites (64%) appeared visually suitable based on habitat variables selected from logistic regression analyses, of which 10 sites (36%) were specifically predicted as suitable habitat via logistic regression. We detected chipmunks at 70% of sites deemed suitable via the logistic regression models. Shrub cover, tree density, plant proximity, presence of logs, and presence of rock outcrop were retained in the logistic model for the Oscura Mountains; litter, shrub cover, and grass cover were retained in the logistic model for the Organ Mountains. Evaluation of predictive models illustrates the need for multi-stage analyses to best judge performance. Microhabitat analyses indicate prospective needs for different management strategies between the subspecies. Sensitivities of each population of the Colorado chipmunk to natural and prescribed fire suggest that partial burnings of areas inhabited by Colorado chipmunks in southern New Mexico may be beneficial. These partial burnings may later help avoid a fire

  19. Instream Physical Habitat Modelling Types

    DEFF Research Database (Denmark)

    Conallin, John; Boegh, Eva; Krogsgaard, Jørgen

    2010-01-01

    The introduction of the EU Water Framework Directive (WFD) is providing member state water resource managers with significant challenges in relation to meeting the deadline for 'Good Ecological Status' by 2015. Overall, instream physical habitat modelling approaches have advantages and disadvanta......The introduction of the EU Water Framework Directive (WFD) is providing member state water resource managers with significant challenges in relation to meeting the deadline for 'Good Ecological Status' by 2015. Overall, instream physical habitat modelling approaches have advantages...... suit their situations. This paper analyses the potential of different methods available for water managers to assess hydrological and geomorphological impacts on the habitats of stream biota, as requested by the WFD. The review considers both conventional and new advanced research-based instream...... physical habitat models. In parametric and non-parametric regression models, model assumptions are often not satisfied and the models are difficult to transfer to other regions. Research-based methods such as the artificial neural networks and individual-based modelling have promising potential as water...

  20. Assessing landscape constraints on species abundance: Does the neighborhood limit species response to local habitat conservation programs?

    Science.gov (United States)

    Jorgensen, Christopher F.; Powell, Larkin A.; Lusk, Jeffrey J.; Bishop, Andrew A.; Fontaine, Joseph J.

    2014-01-01

    Landscapes in agricultural systems continue to undergo significant change, and the loss of biodiversity is an ever-increasing threat. Although habitat restoration is beneficial, management actions do not always result in the desired outcome. Managers must understand why management actions fail; yet, past studies have focused on assessing habitat attributes at a single spatial scale, and often fail to consider the importance of ecological mechanisms that act across spatial scales. We located survey sites across southern Nebraska, USA and conducted point counts to estimate Ring-necked Pheasant abundance, an economically important species to the region, while simultaneously quantifying landscape effects using a geographic information system. To identify suitable areas for allocating limited management resources, we assessed land cover relationships to our counts using a Bayesian binomial-Poisson hierarchical model to construct predictive Species Distribution Models of relative abundance. Our results indicated that landscape scale land cover variables severely constrained or, alternatively, facilitated the positive effects of local land management for Ring-necked Pheasants.

  1. Quantifying seining detection probability for fishes of Great Plains sand‐bed rivers

    Science.gov (United States)

    Mollenhauer, Robert; Logue, Daniel R.; Brewer, Shannon K.

    2018-01-01

    Species detection error (i.e., imperfect and variable detection probability) is an essential consideration when investigators map distributions and interpret habitat associations. When fish detection error that is due to highly variable instream environments needs to be addressed, sand‐bed streams of the Great Plains represent a unique challenge. We quantified seining detection probability for diminutive Great Plains fishes across a range of sampling conditions in two sand‐bed rivers in Oklahoma. Imperfect detection resulted in underestimates of species occurrence using naïve estimates, particularly for less common fishes. Seining detection probability also varied among fishes and across sampling conditions. We observed a quadratic relationship between water depth and detection probability, in which the exact nature of the relationship was species‐specific and dependent on water clarity. Similarly, the direction of the relationship between water clarity and detection probability was species‐specific and dependent on differences in water depth. The relationship between water temperature and detection probability was also species dependent, where both the magnitude and direction of the relationship varied among fishes. We showed how ignoring detection error confounded an underlying relationship between species occurrence and water depth. Despite imperfect and heterogeneous detection, our results support that determining species absence can be accomplished with two to six spatially replicated seine hauls per 200‐m reach under average sampling conditions; however, required effort would be higher under certain conditions. Detection probability was low for the Arkansas River Shiner Notropis girardi, which is federally listed as threatened, and more than 10 seine hauls per 200‐m reach would be required to assess presence across sampling conditions. Our model allows scientists to estimate sampling effort to confidently assess species occurrence, which

  2. Integration Process for the Habitat Demonstration Unit

    Science.gov (United States)

    Gill, Tracy; Merbitz, Jerad; Kennedy, Kriss; Tri, Terry; Howe, A. Scott

    2010-01-01

    The Habitat Demonstration Unit (HDU) is an experimental exploration habitat technology and architecture test platform designed for analog demonstration activities The HDU project has required a team to integrate a variety of contributions from NASA centers and outside collaborators and poses a challenge in integrating these disparate efforts into a cohesive architecture To complete the development of the HDU from conception in June 2009 to rollout for operations in July 2010, a cohesive integration strategy has been developed to integrate the various systems of HDU and the payloads, such as the Geology Lab, that those systems will support The utilization of interface design standards and uniquely tailored reviews have allowed for an accelerated design process Scheduled activities include early fit-checks and the utilization of a Habitat avionics test bed prior to equipment installation into HDU A coordinated effort to utilize modeling and simulation systems has aided in design and integration concept development Modeling tools have been effective in hardware systems layout, cable routing and length estimation, and human factors analysis Decision processes on the shell development including the assembly sequence and the transportation have been fleshed out early on HDU to maximize the efficiency of both integration and field operations Incremental test operations leading up to an integrated systems test allows for an orderly systems test program The HDU will begin its journey as an emulation of a Pressurized Excursion Module (PEM) for 2010 field testing and then may evolve to a Pressurized Core Module (PCM) for 2011 and later field tests, depending on agency architecture decisions The HDU deployment will vary slightly from current lunar architecture plans to include developmental hardware and software items and additional systems called opportunities for technology demonstration One of the HDU challenges has been designing to be prepared for the integration of

  3. Distribution, habitat and adaptability of the genus Tapirus.

    Science.gov (United States)

    García, Manolo J; Medici, Emília Patrícia; Naranjo, Eduardo J; Novarino, Wilson; Leonardo, Raquel S

    2012-12-01

    In this manuscript, as a starting point, the ancient and current distribution of the genus Tapirus are summarized, from its origins, apparently in Europe, to current ranges. Subsequently, original and current tapir habitats are described, as well as changes in ancient habitats. As the manuscript goes on, we examine the ways in which tapir species interact with their habitats and the main aspects of habitat use, spatial ecology and adaptability. Having reviewed the historic and current distribution of tapirs, as well as their use and selection of habitats, we introduce the concept of adaptability, considering that some of the tapir physiological characteristics and behavioral strategies can reduce the negative impact of habitat alteration and climate change. Finally, we provide recommendations for future research priorities. The conservation community is still missing important pieces of information for the effective conservation of tapirs and their remaining habitats in Central and South America and Southeast Asia. Reconstructing how tapir species reached their current distribution ranges, interpreting how they interact with their habitats and gathering information regarding the strategies they use to cope with habitat changes will increase our understanding about these animals and contribute to the development of conservation strategies. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.

  4. Habitat stability, predation risk and ‘memory syndromes’

    Science.gov (United States)

    Dalesman, S.; Rendle, A.; Dall, S.R.X.

    2015-01-01

    Habitat stability and predation pressure are thought to be major drivers in the evolutionary maintenance of behavioural syndromes, with trait covariance only occurring within specific habitats. However, animals also exhibit behavioural plasticity, often through memory formation. Memory formation across traits may be linked, with covariance in memory traits (memory syndromes) selected under particular environmental conditions. This study tests whether the pond snail, Lymnaea stagnalis, demonstrates consistency among memory traits (‘memory syndrome’) related to threat avoidance and foraging. We used eight populations originating from three different habitat types: i) laboratory populations (stable habitat, predator-free); ii) river populations (fairly stable habitat, fish predation); and iii) ditch populations (unstable habitat, invertebrate predation). At a population level, there was a negative relationship between memories related to threat avoidance and food selectivity, but no consistency within habitat type. At an individual level, covariance between memory traits was dependent on habitat. Laboratory populations showed no covariance among memory traits, whereas river populations showed a positive correlation between food memories, and ditch populations demonstrated a negative relationship between threat memory and food memories. Therefore, selection pressures among habitats appear to act independently on memory trait covariation at an individual level and the average response within a population. PMID:26013966

  5. Application of Landsat 5-TM and GIS data to elk habitat studies in northern Idaho

    Science.gov (United States)

    Hayes, Stephen Gordon

    1999-12-01

    . Examination of Type I and Type II likelihood ratio test error rates indicated that topographic normalization increased accuracy in sapling/pole closed forest, clearcuts, open forest, and shrubfields. Non-Lambertian models that allowed the Minnaert constant (k) to vary as a function of solar incidence and vegetation type offered no improvement in accuracy over the non-Lambertian model with k estimated for each TM band. The bias of habitat use proportion estimates, derived from the most accurate map, was quantified and the applicability of the non-Lambertian model to elk habitat mapping is discussed.

  6. Habitat suitability—density relationship in an endangered woodland species: the case of the Blue Chaffinch (Fringilla polatzeki

    Directory of Open Access Journals (Sweden)

    Luis M. Carrascal

    2017-09-01

    Full Text Available Background Understanding constraints to the distribution of threatened species may help to ascertain whether there are other suitable sectors for reducing the risks associated with species that are recorded in only one protected locality, and to inform about the suitability of other areas for reintroduction or translocation programs. Methods We studied the Gran Canaria blue chaffinch (Fringilla polatzeki, a habitat specialist endemic of the Canary Islands restricted to the pine forest of Inagua, the only area where the species has been naturally present as a regular breeder in the last 25 years. A suitability distribution model using occurrences with demographic relevance (i.e., nest locations of successful breeding attempts analysed using boosted classification trees was built considering orographic, climatic and habitat structure predictors. By means of a standardized survey program we monitored the yearly abundance of the species in 100 sectors since the declaration of Inagua as a Strict Nature Reserve in 1994. Results The variables with the highest relative importance in blue chaffinch habitat preferences were pine height, tree cover, altitude, and rainfall during the driest trimester (July–September. The observed local abundance of the blue chaffinch in Inagua (survey data was significantly correlated with habitat suitability derived from modelling the location of successful nesting attempts (using linear and quantile regressions. The outcomes of the habitat suitability model were used to quantify the suitability of other natural, historic, pine forests of Gran Canaria. Tamadaba is the forest with most suitable woodland patches for the species. We estimated a population size of 195–430 blue chaffinches in Inagua since 2011 (95% CI, the smallest population size of a woodland passerine in the Western Palearctic. Discussion Habitat suitability obtained from modelling the location of successful breeding attempts is a good surrogate of the

  7. Environmental variation and habitat separation among small mammals

    International Nuclear Information System (INIS)

    Vickery, W.L.; Iverson, S.L.; Mihok, S.; Schwartz, B.

    1989-01-01

    Habitat use and population density of five species of forest small mammals were monitored by annual spring snap-trap censuses at Pinawa, Manitoba, over 14 years. Population sizes were positively correlated among species and showed no evidence of density-dependent effects. Species were habitat selectors. Habitat use by species did not vary among years. Habitat separation between the dominant species was not correlated with environmental variables or with population size. We suggest that habitat selection and positive covariance among species abundances are the principal factors characterizing the dynamics of this community

  8. Mourning Dove nesting habitat and nest success in Central Missouri

    Science.gov (United States)

    Drobney, R.D.; Schulz, J.H.; Sheriff, S.L.; Fuemmeler, W.J.

    1998-01-01

    Previous Mourning Dove (Zenaida macroura) nesting studies conducted in areas containing a mixture of edge and continuous habitats have focused on edge habitats. Consequently, little is known about the potential contribution of continuous habitats to dove production. In this study we evaluated the relative importance of these two extensive habitat types by monitoring the habitat use and nest success of 59 radio-marked doves during 1990-1991 in central Missouri. Of 83 nests initiated by our marked sample, most (81.9%) were located in edge habitats. Although continuous habitats were selected less as nest sites, the proportion of successful nests did not differ significantly from that in edge habitats. Our data indicate that continuous habitats should not be considered marginal nesting habitat. If the intensity of use and nest success that we observed are representative regionally or nationally, continuous habitats could contribute substantially to annual Mourning Dove production because of the high availability of these habitats throughout much of the Mourning Dove breeding range.

  9. Status and Habitat Requirements of White Sturgeon Populations in the Columbia River Downstream from McNary Dam, 1988-1989 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Nigro, Anthony A. (Oregon Dept. of Fish and Wildlife, Portland, OR (USA))

    1989-09-01

    We report on our progress from April 1988 through March 1989 on determining the status and habitat requirements of white sturgeon populations in the Columbia River downstream from McNary Dam. Highlights of results of our work in the Dalles and Bonneville reservoirs are: using setlines, we caught 1,586 sturgeon in The Dalles Reservoir and 484 sturgeon in Bonneville Reservoir in 1988. Fork length of fish caught ranged from 34 cm to 274 cm. Of the fish caught we marked 1,248 in The Dalles Reservoir and 341 in Bonneville Reservoir. Of the fish marked in 1988, we recaptured 82 in The Dalles Reservoir and none in Bonneville Reservoir. We recaptured 89 fish marked in 1987 in The Dalles Reservoir. Anglers recaptured 35 fish marked in 1988 and 16 fish marked in 1987 in The Dalles Reservoir. Anglers recaptured 2 sturgeon marked in 1988 in Bonneville Reservoir. Individual papers were processed separately for the data base.

  10. Quantifying the effects of ecological constraints on trait expression using novel trait-gradient analysis parameters.

    Science.gov (United States)

    Ottaviani, Gianluigi; Tsakalos, James L; Keppel, Gunnar; Mucina, Ladislav

    2018-01-01

    Complex processes related to biotic and abiotic forces can impose limitations to assembly and composition of plant communities. Quantifying the effects of these constraints on plant functional traits across environmental gradients, and among communities, remains challenging. We define ecological constraint ( C i ) as the combined, limiting effect of biotic interactions and environmental filtering on trait expression (i.e., the mean value and range of functional traits). Here, we propose a set of novel parameters to quantify this constraint by extending the trait-gradient analysis (TGA) methodology. The key parameter is ecological constraint, which is dimensionless and can be measured at various scales, for example, on population and community levels. It facilitates comparing the effects of ecological constraints on trait expressions across environmental gradients, as well as within and among communities. We illustrate the implementation of the proposed parameters using the bark thickness of 14 woody species along an aridity gradient on granite outcrops in southwestern Australia. We found a positive correlation between increasing environmental stress and strength of ecological constraint on bark thickness expression. Also, plants from more stressful habitats (shrublands on shallow soils and in sun-exposed locations) displayed higher ecological constraint for bark thickness than plants in more benign habitats (woodlands on deep soils and in sheltered locations). The relative ease of calculation and dimensionless nature of C i allow it to be readily implemented at various scales and make it widely applicable. It therefore has the potential to advance the mechanistic understanding of the ecological processes shaping trait expression. Some future applications of the new parameters could be investigating the patterns of ecological constraints (1) among communities from different regions, (2) on different traits across similar environmental gradients, and (3) for the same

  11. Intra-population variation in activity ranges, diel patterns, movement rates, and habitat use of American alligators in a subtropical estuary

    Science.gov (United States)

    Rosenblatt, Adam E.; Heithaus, Michael R.; Mazzotti, Frank J.; Cherkiss, Michael; Jeffery, Brian M.

    2013-12-01

    Movement and habitat use patterns are fundamental components of the behaviors of mobile animals and help determine the scale and types of interactions they have with their environments. These behaviors are especially important to quantify for top predators because they can have strong effects on lower trophic levels as well as the wider ecosystem. Many studies of top predator movement and habitat use focus on general population level trends, which may overlook important intra-population variation in behaviors that now appear to be common. In an effort to better understand the prevalence of intra-population variation in top predator movement behaviors and the potential effects of such variation on ecosystem dynamics, we examined the movement and habitat use patterns of a population of adult American alligators (Alligator mississippiensis) in a subtropical estuary for nearly four years. We found that alligators exhibited divergent behaviors with respect to activity ranges, movement rates, and habitat use, and that individualized behaviors were stable over multiple years. We also found that the variations across the three behavioral metrics were correlated such that consistent behavioral types emerged, specifically more exploratory individuals and more sedentary individuals. Our study demonstrates that top predator populations can be characterized by high degrees of intra-population variation in terms of movement and habitat use behaviors that could lead to individuals filling different ecological roles in the same ecosystem. By extension, one-size-fits-all ecosystem and species-specific conservation and management strategies that do not account for potential intra-population variation in top predator behaviors may not produce the desired outcomes in all cases.

  12. A test of the substitution-habitat hypothesis in amphibians.

    Science.gov (United States)

    Martínez-Abraín, Alejandro; Galán, Pedro

    2017-12-08

    Most examples that support the substitution-habitat hypothesis (human-made habitats act as substitutes of original habitat) deal with birds and mammals. We tested this hypothesis in 14 amphibians by using percentage occupancy as a proxy of habitat quality (i.e., higher occupancy percentages indicate higher quality). We classified water body types as original habitat (no or little human influence) depending on anatomical, behavioral, or physiological adaptations of each amphibian species. Ten species had relatively high probabilities (0.16-0.28) of occurrence in original habitat, moderate probability of occurrence in substitution habitats (0.11-0.14), and low probability of occurrence in refuge habitats (0.05-0.08). Thus, the substitution-habitat hypothesis only partially applies to amphibians because the low occupancy of refuges could be due to the negligible human persecution of this group (indicating good conservation status). However, low occupancy of refuges could also be due to low tolerance of refuge conditions, which could have led to selective extinction or colonization problems due to poor dispersal capabilities. That original habitats had the highest probabilities of occupancy suggests amphibians have a good conservation status in the region. They also appeared highly adaptable to anthropogenic substitution habitats. © 2017 Society for Conservation Biology.

  13. Frugivorous bats maintain functional habitat connectivity in agricultural landscapes but rely strongly on natural forest fragments.

    Science.gov (United States)

    Ripperger, Simon P; Kalko, Elisabeth K V; Rodríguez-Herrera, Bernal; Mayer, Frieder; Tschapka, Marco

    2015-01-01

    Anthropogenic changes in land use threaten biodiversity and ecosystem functioning by the conversion of natural habitat into agricultural mosaic landscapes, often with drastic consequences for the associated fauna. The first step in the development of efficient conservation plans is to understand movement of animals through complex habitat mosaics. Therefore, we studied ranging behavior and habitat use in Dermanura watsoni (Phyllostomidae), a frugivorous bat species that is a valuable seed disperser in degraded ecosystems. Radio-tracking of sixteen bats showed that the animals strongly rely on natural forest. Day roosts were exclusively located within mature forest fragments. Selection ratios showed that the bats foraged selectively within the available habitat and positively selected natural forest. However, larger daily ranges were associated with higher use of degraded habitats. Home range geometry and composition of focal foraging areas indicated that wider ranging bats performed directional foraging bouts from natural to degraded forest sites traversing the matrix over distances of up to three hundred meters. This behavior demonstrates the potential of frugivorous bats to functionally connect fragmented areas by providing ecosystem services between natural and degraded sites, and highlights the need for conservation of natural habitat patches within agricultural landscapes that meet the roosting requirements of bats.

  14. Frugivorous bats maintain functional habitat connectivity in agricultural landscapes but rely strongly on natural forest fragments.

    Directory of Open Access Journals (Sweden)

    Simon P Ripperger

    Full Text Available Anthropogenic changes in land use threaten biodiversity and ecosystem functioning by the conversion of natural habitat into agricultural mosaic landscapes, often with drastic consequences for the associated fauna. The first step in the development of efficient conservation plans is to understand movement of animals through complex habitat mosaics. Therefore, we studied ranging behavior and habitat use in Dermanura watsoni (Phyllostomidae, a frugivorous bat species that is a valuable seed disperser in degraded ecosystems. Radio-tracking of sixteen bats showed that the animals strongly rely on natural forest. Day roosts were exclusively located within mature forest fragments. Selection ratios showed that the bats foraged selectively within the available habitat and positively selected natural forest. However, larger daily ranges were associated with higher use of degraded habitats. Home range geometry and composition of focal foraging areas indicated that wider ranging bats performed directional foraging bouts from natural to degraded forest sites traversing the matrix over distances of up to three hundred meters. This behavior demonstrates the potential of frugivorous bats to functionally connect fragmented areas by providing ecosystem services between natural and degraded sites, and highlights the need for conservation of natural habitat patches within agricultural landscapes that meet the roosting requirements of bats.

  15. Predictive habitat modelling as a tool to assess the change in distribution and extent of an OSPAR priority habitat under an increased ocean temperature scenario: consequences for marine protected area networks and management.

    Science.gov (United States)

    Gormley, Kate S G; Porter, Joanne S; Bell, Michael C; Hull, Angela D; Sanderson, William G

    2013-01-01

    The aims of this study were to determine the extent and distribution of an OSPAR priority habitat under current baseline ocean temperatures; to illustrate the prospect for habitat loss under a changing ocean temperature scenario; and to demonstrate the potential application of predictive habitat mapping in "future-proofing" conservation and biodiversity management. Maxent modelling and GIS environmental envelope analysis of the biogenic bed forming species, Modiolus modiolus was carried out. The Maxent model was tested and validated using 75%/25% training/test occurrence records and validated against two sampling biases (the whole study area and a 20km buffer). The model was compared to the envelope analysis and the area under the receiver operating characteristic curve (Area Under the curve; AUC) was evaluated. The performance of the Maxent model was rated as 'good' to 'excellent' on all replicated runs and low variation in the runs was recorded from the AUC values. The extent of "most suitable", "less suitable" and "unsuitable" habitat was calculated for the baseline year (2009) and the projected increased ocean temperature scenarios (2030, 2050, 2080 and 2100). A loss of 100% of "most suitable" habitat was reported by 2080. Maintaining a suitable level of protection of marine habitats/species of conservation importance may require management of the decline and migration rather than maintenance of present extent. Methods applied in this study provide the initial application of a plausible "conservation management tool".

  16. Predictive habitat modelling as a tool to assess the change in distribution and extent of an OSPAR priority habitat under an increased ocean temperature scenario: consequences for marine protected area networks and management.

    Directory of Open Access Journals (Sweden)

    Kate S G Gormley

    Full Text Available The aims of this study were to determine the extent and distribution of an OSPAR priority habitat under current baseline ocean temperatures; to illustrate the prospect for habitat loss under a changing ocean temperature scenario; and to demonstrate the potential application of predictive habitat mapping in "future-proofing" conservation and biodiversity management. Maxent modelling and GIS environmental envelope analysis of the biogenic bed forming species, Modiolus modiolus was carried out. The Maxent model was tested and validated using 75%/25% training/test occurrence records and validated against two sampling biases (the whole study area and a 20km buffer. The model was compared to the envelope analysis and the area under the receiver operating characteristic curve (Area Under the curve; AUC was evaluated. The performance of the Maxent model was rated as 'good' to 'excellent' on all replicated runs and low variation in the runs was recorded from the AUC values. The extent of "most suitable", "less suitable" and "unsuitable" habitat was calculated for the baseline year (2009 and the projected increased ocean temperature scenarios (2030, 2050, 2080 and 2100. A loss of 100% of "most suitable" habitat was reported by 2080. Maintaining a suitable level of protection of marine habitats/species of conservation importance may require management of the decline and migration rather than maintenance of present extent. Methods applied in this study provide the initial application of a plausible "conservation management tool".

  17. Habitat modeling for biodiversity conservation.

    Science.gov (United States)

    Bruce G. Marcot

    2006-01-01

    Habitat models address only 1 component of biodiversity but can be useful in addressing and managing single or multiple species and ecosystem functions, for projecting disturbance regimes, and in supporting decisions. I review categories and examples of habitat models, their utility for biodiversity conservation, and their roles in making conservation decisions. I...

  18. Restricted cross-scale habitat selection by American beavers.

    Science.gov (United States)

    Francis, Robert A; Taylor, Jimmy D; Dibble, Eric; Strickland, Bronson; Petro, Vanessa M; Easterwood, Christine; Wang, Guiming

    2017-12-01

    Animal habitat selection, among other ecological phenomena, is spatially scale dependent. Habitat selection by American beavers Castor canadensis (hereafter, beaver) has been studied at singular spatial scales, but to date no research addresses multi-scale selection. Our objectives were to determine if beaver habitat selection was specialized to semiaquatic habitats and if variables explaining habitat selection are consistent between landscape and fine spatial scales. We built maximum entropy (MaxEnt) models to relate landscape-scale presence-only data to landscape variables, and used generalized linear mixed models to evaluate fine spatial scale habitat selection using global positioning system (GPS) relocation data. Explanatory variables between the landscape and fine spatial scale were compared for consistency. Our findings suggested that beaver habitat selection at coarse (study area) and fine (within home range) scales was congruent, and was influenced by increasing amounts of woody wetland edge density and shrub edge density, and decreasing amounts of open water edge density. Habitat suitability at the landscape scale also increased with decreasing amounts of grass frequency. As territorial, central-place foragers, beavers likely trade-off open water edge density (i.e., smaller non-forested wetlands or lodges closer to banks) for defense and shorter distances to forage and obtain construction material. Woody plants along edges and expanses of open water for predator avoidance may limit beaver fitness and subsequently determine beaver habitat selection.

  19. Habitat specialization in tropical continental shelf demersal fish assemblages.

    Directory of Open Access Journals (Sweden)

    Ben M Fitzpatrick

    Full Text Available The implications of shallow water impacts such as fishing and climate change on fish assemblages are generally considered in isolation from the distribution and abundance of these fish assemblages in adjacent deeper waters. We investigate the abundance and length of demersal fish assemblages across a section of tropical continental shelf at Ningaloo Reef, Western Australia, to identify fish and fish habitat relationships across steep gradients in depth and in different benthic habitat types. The assemblage composition of demersal fish were assessed from baited remote underwater stereo-video samples (n = 304 collected from 16 depth and habitat combinations. Samples were collected across a depth range poorly represented in the literature from the fringing reef lagoon (1-10 m depth, down the fore reef slope to the reef base (10-30 m depth then across the adjacent continental shelf (30-110 m depth. Multivariate analyses showed that there were distinctive fish assemblages and different sized fish were associated with each habitat/depth category. Species richness, MaxN and diversity declined with depth, while average length and trophic level increased. The assemblage structure, diversity, size and trophic structure of demersal fishes changes from shallow inshore habitats to deeper water habitats. More habitat specialists (unique species per habitat/depth category were associated with the reef slope and reef base than other habitats, but offshore sponge-dominated habitats and inshore coral-dominated reef also supported unique species. This suggests that marine protected areas in shallow coral-dominated reef habitats may not adequately protect those species whose depth distribution extends beyond shallow habitats, or other significant elements of demersal fish biodiversity. The ontogenetic habitat partitioning which is characteristic of many species, suggests that to maintain entire species life histories it is necessary to protect corridors of

  20. Use of habitats as surrogates of biodiversity for efficient coral reef conservation planning in Pacific Ocean islands.

    Science.gov (United States)

    Dalleau, Mayeul; Andréfouët, Serge; Wabnitz, Colette C C; Payri, Claude; Wantiez, Laurent; Pichon, Michel; Friedman, Kim; Vigliola, Laurent; Benzoni, Francesca

    2010-04-01

    Marine protected areas (MPAs) have been highlighted as a means toward effective conservation of coral reefs. New strategies are required to more effectively select MPA locations and increase the pace of their implementation. Many criteria exist to design MPA networks, but generally, it is recommended that networks conserve a diversity of species selected for, among other attributes, their representativeness, rarity, or endemicity. Because knowledge of species' spatial distribution remains scarce, efficient surrogates are urgently needed. We used five different levels of habitat maps and six spatial scales of analysis to identify under which circumstances habitat data used to design MPA networks for Wallis Island provided better representation of species than random choice alone. Protected-area site selections were derived from a rarity-complementarity algorithm. Habitat surrogacy was tested for commercial fish species, all fish species, commercially harvested invertebrates, corals, and algae species. Efficiency of habitat surrogacy varied by species group, type of habitat map, and spatial scale of analysis. Maps with the highest habitat thematic complexity provided better surrogates than simpler maps and were more robust to changes in spatial scales. Surrogates were most efficient for commercial fishes, corals, and algae but not for commercial invertebrates. Conversely, other measurements of species-habitat associations, such as richness congruence and composition similarities provided weak results. We provide, in part, a habitat-mapping methodology for designation of MPAs for Pacific Ocean islands that are characterized by habitat zonations similar to Wallis. Given the increasing availability and affordability of space-borne imagery to map habitats, our approach could appreciably facilitate and improve current approaches to coral reef conservation and enhance MPA implementation.