WorldWideScience

Sample records for quadrupole time-of-flight mass

  1. High-throughput shotgun lipidomics by quadrupole time-of-flight mass spectrometry

    DEFF Research Database (Denmark)

    Ståhlman, Marcus; Ejsing, Christer S.; Tarasov, Kirill

    2009-01-01

    Technological advances in mass spectrometry and meticulous method development have produced several shotgun lipidomic approaches capable of characterizing lipid species by direct analysis of total lipid extracts. Shotgun lipidomics by hybrid quadrupole time-of-flight mass spectrometry allows...... the absolute quantification of hundreds of molecular glycerophospholipid species, glycerolipid species, sphingolipid species and sterol lipids. Future applications in clinical cohort studies demand detailed lipid molecule information and the application of high-throughput lipidomics platforms. In this review...... we describe a novel high-throughput shotgun lipidomic platform based on 96-well robot-assisted lipid extraction, automated sample infusion by mircofluidic-based nanoelectrospray ionization, and quantitative multiple precursor ion scanning analysis on a quadrupole time-of-flight mass spectrometer...

  2. Rapid Quadrupole-Time-of-Flight Mass Spectrometry Method Quantifies Oxygen-Rich Lignin Compound in Complex Mixtures

    Science.gov (United States)

    Boes, Kelsey S.; Roberts, Michael S.; Vinueza, Nelson R.

    2018-03-01

    Complex mixture analysis is a costly and time-consuming task facing researchers with foci as varied as food science and fuel analysis. When faced with the task of quantifying oxygen-rich bio-oil molecules in a complex diesel mixture, we asked whether complex mixtures could be qualitatively and quantitatively analyzed on a single mass spectrometer with mid-range resolving power without the use of lengthy separations. To answer this question, we developed and evaluated a quantitation method that eliminated chromatography steps and expanded the use of quadrupole-time-of-flight mass spectrometry from primarily qualitative to quantitative as well. To account for mixture complexity, the method employed an ionization dopant, targeted tandem mass spectrometry, and an internal standard. This combination of three techniques achieved reliable quantitation of oxygen-rich eugenol in diesel from 300 to 2500 ng/mL with sufficient linearity (R2 = 0.97 ± 0.01) and excellent accuracy (percent error = 0% ± 5). To understand the limitations of the method, it was compared to quantitation attained on a triple quadrupole mass spectrometer, the gold standard for quantitation. The triple quadrupole quantified eugenol from 50 to 2500 ng/mL with stronger linearity (R2 = 0.996 ± 0.003) than the quadrupole-time-of-flight and comparable accuracy (percent error = 4% ± 5). This demonstrates that a quadrupole-time-of-flight can be used for not only qualitative analysis but also targeted quantitation of oxygen-rich lignin molecules in complex mixtures without extensive sample preparation. The rapid and cost-effective method presented here offers new possibilities for bio-oil research, including: (1) allowing for bio-oil studies that demand repetitive analysis as process parameters are changed and (2) making this research accessible to more laboratories. [Figure not available: see fulltext.

  3. Analysis of phosphatidylcholine oxidation products in human plasma using quadrupole time-of flight mass spectrometry

    OpenAIRE

    Adachi, Junko; Asano, Migiwa; Yoshioka, Naoki; Nushida, Hideyuki; Ueno, Yasuhiro

    2006-01-01

    We report here an application of the previous method for the analysis ofphosphatidylcholine (PC) and lysophosphatidylcholine (lysoPC) oxidation products inhuman plasma using quadrupole time of flight (Q-TOF) mass spectrometry withelectrospray ionization. We separated these products using an HPLC C8 column witha gradient of methanol and 10 mM aqueous ammonium acetate. Monohydroperoxides,epoxyhydroxy derivatives, oxo derivatives, and trihydroxides of palmitoyl-linoleoyl(C16:0/C18:2) PC and stea...

  4. Gas chromatographic quadrupole time-of-flight full scan high resolution mass spectrometric screening of human urine in antidoping analysis

    NARCIS (Netherlands)

    Abushareeda, Wadha; Lyris, Emmanouil; Kraiem, Suhail; Wahaibi, Aisha Al; Alyazidi, Sameera; Dbes, Najib; Lommen, Arjen; Nielen, Michel; Horvatovich, Peter L.; Alsayrafi, Mohammed; Georgakopoulos, Costas

    2017-01-01

    This paper presents the development and validation of a high-resolution full scan (FS) electron impact ionization (EI) gas chromatography coupled to quadrupole Time-of-Flight mass spectrometry (GC/QTOF) platform for screening anabolic androgenic steroids (AAS) in human urine samples. The World

  5. Triple Quadrupole Versus High Resolution Quadrupole-Time-of-Flight Mass Spectrometry for Quantitative LC-MS/MS Analysis of 25-Hydroxyvitamin D in Human Serum

    Science.gov (United States)

    Geib, Timon; Sleno, Lekha; Hall, Rabea A.; Stokes, Caroline S.; Volmer, Dietrich A.

    2016-08-01

    We describe a systematic comparison of high and low resolution LC-MS/MS assays for quantification of 25-hydroxyvitamin D3 in human serum. Identical sample preparation, chromatography separations, electrospray ionization sources, precursor ion selection, and ion activation were used; the two assays differed only in the implemented final mass analyzer stage; viz. high resolution quadrupole-quadrupole-time-of-flight (QqTOF) versus low resolution triple quadrupole instruments. The results were assessed against measured concentration levels from a routine clinical chemiluminescence immunoassay. Isobaric interferences prevented the simple use of TOF-MS spectra for extraction of accurate masses and necessitated the application of collision-induced dissociation on the QqTOF platform. The two mass spectrometry assays provided very similar analytical figures of merit, reflecting the lack of relevant isobaric interferences in the MS/MS domain, and were successfully applied to determine the levels of 25-hydroxyvitamin D for patients with chronic liver disease.

  6. Gas chromatographic quadrupole time-of-flight full scan high resolution mass spectrometric screening of human urine in antidoping analysis

    NARCIS (Netherlands)

    Abushareeda, Wadha; Lyris, Emmanouil; Kraiem, Suhail; Wahaibi, Aisha Al; Alyazidi, Sameera; Dbes, Najib; Lommen, Arjen; Nielen, Michel; Horvatovich, Peter L.; Alsayrafi, Mohammed; Georgakopoulos, Costas

    2017-01-01

    This paper presents the development and validation of a high-resolution full scan (FS) electron impact ionization (EI) gas chromatography coupled to quadrupole Time-of-Flight mass spectrometry (GC/QTOF) platform for screening anabolic androgenic steroids (AAS) in human urine samples. The World

  7. Metabolic profiling of Hoodia, Chamomile, Terminalia Species and evaluation of commercial preparations using Ultra-High Performance Quadrupole Time of Flight-Mass Spectrometry

    Science.gov (United States)

    Ultra-High Performance-Quadrupole Time of Flight Mass Spectrometr(UHPLC-QToF-MS)profiling has become an impattant tool for identification of marker compounds and generation of metabolic patterns that could be interrogated using chemometric modeling software. Chemometric approaches can be used to ana...

  8. Quantification, confirmation and screening capability of UHPLC coupled to triple quadrupole and hybrid quadrupole time-of-flight mass spectrometry in pesticide residue analysis.

    Science.gov (United States)

    Grimalt, Susana; Sancho, Juan V; Pozo, Oscar J; Hernández, Félix

    2010-04-01

    The potential of three mass spectrometry (MS) analyzers (triple quadrupole, QqQ; time of flight, TOF; and quadrupole time of flight, QTOF) has been investigated and compared for quantification, confirmation and screening purposes in pesticide residue analysis of fruit and vegetable samples. For this purpose, analytical methodology for multiresidue determination of 11 pesticides, taken as a model, has been developed and validated in nine food matrices for the three mass analyzers coupled to ultra high pressure liquid chromatography. In all cases, limits of quantification around 0.01 mg/kg were reached, fulfilling the most restrictive case of baby-food analysis. Regarding absolute sensitivity, the lower limits of detection were obtained, as expected, for QqQ (100 fg), whereas slightly higher limits (300 fg) were obtained for both TOF and QTOF. Confirmative capacity of each analyzer was studied for each analyte based on the identification points (IPs) criterion, useful for a comprehensive comparison. QTOF mass analyzer showed the highest confirmatory capacity, although QqQ normally led to sufficient number of IPs, even at lower concentration levels. The potential of TOF MS was also investigated for screening purposes. To this aim, around 50 commercial fruits and vegetables samples were analyzed, searching for more than 400 pesticides. TOF MS proved to be an attractive analytical tool for rapid detection and reliable identification of a large number of pesticides thanks to the full spectrum acquisition at accurate mass with satisfactory sensitivity. This process is readily boosted when combined with specialized software packages, together with theoretical exact mass databases. Several pesticides (e.g. carbendazim in citrus and indoxacarb in grape) were detected in the samples. Further unequivocal confirmation of the identity was performed using reference standards and/or QTOF MS/MS experiments. Copyright 2010 John Wiley & Sons, Ltd.

  9. [Qualitative and quantitative analysis of amygdalin and its metabolite prunasin in plasma by ultra-high performance liquid chromatography-tandem quadrupole time of flight mass spectrometry and ultra-high performance liquid chromatography-tandem triple quadrupole mass spectrometry].

    Science.gov (United States)

    Gao, Meng; Wang, Yuesheng; Wei, Huizhen; Ouyang, Hui; He, Mingzhen; Zeng, Lianqing; Shen, Fengyun; Guo, Qiang; Rao, Yi

    2014-06-01

    A method was developed for the determination of amygdalin and its metabolite prunasin in rat plasma after intragastric administration of Maxing shigan decoction. The analytes were identified by ultra-high performance liquid chromatography-tandem quadrupole time of flight mass spectrometry and quantitatively determined by ultra-high performance liquid chromatography-tandem triple quadrupole mass spectrometry. After purified by liquid-liquid extraction, the qualitative analysis of amygdalin and prunasin in the plasma sample was performed on a Shim-pack XR-ODS III HPLC column (75 mm x 2.0 mm, 1.6 microm), using acetonitrile-0.1% (v/v) formic acid aqueous solution. The detection was performed on a Triple TOF 5600 quadrupole time of flight mass spectrometer. The quantitative analysis of amygdalin and prunasin in the plasma sample was performed by separation on an Agilent C18 HPLC column (50 mm x 2.1 mm, 1.7 microm), using acetonitrile-0.1% (v/v) formic acid aqueous solution. The detection was performed on an AB Q-TRAP 4500 triple quadrupole mass spectrometer utilizing electrospray ionization (ESI) interface operated in negative ion mode and multiple-reaction monitoring (MRM) mode. The qualitative analysis results showed that amygdalin and its metabolite prunasin were detected in the plasma sample. The quantitative analysis results showed that the linear range of amygdalin was 1.05-4 200 ng/mL with the correlation coefficient of 0.999 0 and the linear range of prunasin was 1.25-2 490 ng/mL with the correlation coefficient of 0.997 0. The method had a good precision with the relative standard deviations (RSDs) lower than 9.20% and the overall recoveries varied from 82.33% to 95.25%. The limits of detection (LODs) of amygdalin and prunasin were 0.50 ng/mL. With good reproducibility, the method is simple, fast and effective for the qualitative and quantitative analysis of the amygdalin and prunasin in plasma sample of rats which were administered by Maxing shigan decoction.

  10. Comprehensive analysis of a multidimensional liquid chromatography mass spectrometry dataset acquired on a quadrupole selecting, quadrupole collision cell, time-of-flight mass spectrometer: I. How much of the data is theoretically interpretable by search engines?

    Science.gov (United States)

    Chalkley, Robert J; Baker, Peter R; Hansen, Kirk C; Medzihradszky, Katalin F; Allen, Nadia P; Rexach, Michael; Burlingame, Alma L

    2005-08-01

    An in-depth analysis of a multidimensional chromatography-mass spectrometry dataset acquired on a quadrupole selecting, quadrupole collision cell, time-of-flight (QqTOF) geometry instrument was carried out. A total of 3269 CID spectra were acquired. Through manual verification of database search results and de novo interpretation of spectra 2368 spectra could be confidently determined as predicted tryptic peptides. A detailed analysis of the non-matching spectra was also carried out, highlighting what the non-matching spectra in a database search typically are composed of. The results of this comprehensive dataset study demonstrate that QqTOF instruments produce information-rich data of which a high percentage of the data is readily interpretable.

  11. Simultaneous determination of niacin and pyridoxine at trace levels by using diode array high-performance liquid chromatography and liquid chromatography with quadrupole time-of-flight tandem mass spectrometry.

    Science.gov (United States)

    Sel, Sabriye; Öztürk Er, Elif; Bakırdere, Sezgin

    2017-12-01

    A highly sensitive and simple diode-array high-performance liquid chromatography and liquid chromatography with quadrupole time-of-flight tandem mass spectrometry method was developed for the simultaneous determination of niacin and pyridoxine in pharmaceutical drugs, tap water, and wastewater samples. To determine the in vivo behavior of niacin and pyridoxine, analytes were subjected to simulated gastric conditions. The calibration plots of the diode-array high-performance liquid chromatography and liquid chromatography with quadrupole time-of-flight tandem mass spectrometry method showed good linearity over a wide concentration range with close to 1.0 correlation coefficients for both analytes. The limit of detection/limit of quantitation values for liquid chromatography quadrupole time-of-flight tandem mass spectrometry analysis were 1.98/6.59 and 1.3/4.4 μg/L for niacin and pyridoxine, respectively, while limit of detection/limit of quantitation values for niacin and pyridoxine in high-performance liquid chromatography analysis were 3.7/12.3 and 5.7/18.9 μg/L, respectively. Recovery studies were also performed to show the applicability of the developed methods, and percentage recovery values were found to be 90-105% in tap water and 94-97% in wastewater for both analytes. The method was also successfully applied for the qualitative and quantitative determination of niacin and pyridoxine in drug samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Accurate Mass GC/LC-Quadrupole Time of Flight Mass Spectrometry Analysis of Fatty Acids and Triacylglycerols of Spicy Fruits from the Apiaceae Family

    Directory of Open Access Journals (Sweden)

    Thao Nguyen

    2015-12-01

    Full Text Available The triacylglycerol (TAG structure and the regio-stereospecific distribution of fatty acids (FA of seed oils from most of the Apiaceae family are not well documented. The TAG structure ultimately determines the final physical properties of the oils and the position of FAs in the TAG molecule affects the digestion; absorption and metabolism; and physical and technological properties of TAGs. Fixed oils from the fruits of dill (Anethum graveolens, caraway (Carum carvi, cumin (Cuminum cyminum, coriander (Coriandrum sativum, anise (Pimpinella anisum, carrot (Daucus carota, celery (Apium graveolens, fennel (Foeniculum vulgare, and Khella (Ammi visnaga, all from the Apiaceae family, were extracted at room temperature in chloroform/methanol (2:1 v/v using percolators. Crude lipids were fractionated by solid phase extraction to separate neutral triacylglycerols (TAGs from other lipids components. Neutral TAGs were subjected to transesterification process to convert them to their corresponding fatty acids methyl esters (FAMES using 1% boron trifluoride (BF3 in methanol. FAMES were analyzed by gas chromatography-quadrupole time of flight (GC-QTOF mass spectrometry. Triglycerides were analyzed using high performance liquid chromatography-quadrupole time of flight (LC-QTOF mass spectrometry. Petroselinic acid was the major fatty acid in all samples ranging from 57% of the total fatty acids in caraway up to 82% in fennel. All samples contained palmitic (16:0, palmitoleic (C16:1n-9, stearic (C18:0, petroselinic (C18:1n-12, linoleic (C18:2n-6, linolinic (18:3n-3, and arachidic (C20:0 acids. TAG were analyzed using LC-QTOF for accurate mass identification and mass spectrometry/mass spectrometry (MS/MS techniques for regiospesific elucidation of the identified TAGs. Five major TAGs were detected in all samples but with different relative concentrations in all of the tested samples. Several other TAGs were detected as minor components and were present in some

  13. Performance optimisation of a new-generation orthogonal-acceleration quadrupole-time-of-flight mass spectrometer.

    Science.gov (United States)

    Bristow, Tony; Constantine, Jill; Harrison, Mark; Cavoit, Fabien

    2008-04-01

    Orthogonal-acceleration quadrupole time-of-flight (oa-QTOF) mass spectrometers, employed for accurate mass measurement, have been commercially available for well over a decade. A limitation of the early instruments of this type was the narrow ion abundance range over which accurate mass measurements could be made with a high degree of certainty. Recently, a new generation of oa-QTOF mass spectrometers has been developed and these allow accurate mass measurements to be recorded over a much greater range of ion abundances. This development has resulted from new ion detection technology and improved electronic stability or by accurate control of the number of ions reaching the detector. In this report we describe the results from experiments performed to evaluate the mass measurement performance of the Bruker micrOTOF-Q, a member of the new-generation oa-QTOFs. The relationship between mass accuracy and ion abundance has been extensively evaluated and mass measurement accuracy remained stable (+/-1.5 m m/z units) over approximately 3-4 orders of magnitude of ion abundance. The second feature of the Bruker micrOTOF-Q that was evaluated was the SigmaFit function of the software. This isotope pattern-matching algorithm provides an exact numerical comparison of the theoretical and measured isotope patterns as an additional identification tool to accurate mass measurement. The smaller the value, the closer the match between theoretical and measured isotope patterns. This information is then employed to reduce the number of potential elemental formulae produced from the mass measurements. A relationship between the SigmaFit value and ion abundance has been established. The results from the study for both mass accuracy and SigmaFit were employed to define the performance criteria for the micrOTOF-Q. This provided increased confidence in the selection of elemental formulae resulting from accurate mass measurements.

  14. [Structure identification of contaminants in a beverage product by liquid chromatography coupled with quadrupole time-of-flight mass spectrometry].

    Science.gov (United States)

    Miyamoto, Yasuhisa; Washida, Kazuto; Uyama, Atsuo; Mochizuki, Naoki

    2014-01-01

    The contaminants in a beverage product that had been reported to have a strange taste were identified. By comparative analysis with the normal product using liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (LC-QTOF-MS), six unknown compounds were detected in the total ion current chromatograms of the product in question. Detailed analysis of the mass spectra and product ion spectra of these compounds strongly suggested that the compounds were capric acid diethanolamide, lauric acid diethanolamide, myristic acid diethanolamide, lauryl dimethylaminoacetic acid, lauryl sulfate, and lauric acid, all of which are surfactants commonly used as ingredients of household detergents and shampoos. We searched commercially available detergent products to check for the presence of these six surfactants, and identified products that might have been intentionally or unintentionally mixed into the beverage product after opening.

  15. Characterization of goat colostrum oligosaccharides by nano-liquid chromatography on chip quadrupole time-of-flight mass spectrometry and hydrophilic interaction liquid chromatography-quadrupole mass spectrometry.

    Science.gov (United States)

    Martín-Ortiz, A; Salcedo, J; Barile, D; Bunyatratchata, A; Moreno, F J; Martin-García, I; Clemente, A; Sanz, M L; Ruiz-Matute, A I

    2016-01-08

    A detailed qualitative and quantitative characterization of goat colostrum oligosaccharides (GCO) has been carried out for the first time. Defatted and deproteinized colostrum samples, previously treated by size exclusion chromatography (SEC) to remove lactose, were analyzed by nanoflow liquid chromatography-quadrupole-time of flight mass spectrometry (Nano-LC-Chip-Q-TOF MS). Up to 78 oligosaccharides containing hexose, hexosamine, fucose, N-acetylneuraminic acid or N-glycolylneuraminic acid monomeric units were identified in the samples, some of them detected for the first time in goat colostra. As a second step, a hydrophilic interaction liquid chromatography coupled to mass spectrometry (HILIC-MS) methodology was developed for the separation and quantitation of the main GCO, both acidic and neutral carbohydrates. Among other experimental chromatographic conditions, mobile phase additives and column temperature were evaluated in terms of retention time, resolution, peak width and symmetry of target carbohydrates. Narrow peaks (wh: 0.2-0.6min) and good symmetry (As: 0.8-1.4) were obtained for GCO using an acetonitrile:water gradient with 0.1% ammonium hydroxide at 40°C. These conditions were selected to quantify the main oligosaccharides in goat colostrum samples. Values ranging from 140 to 315mgL(-1) for neutral oligosaccharides and from 83 to 251mgL(-1) for acidic oligosaccharides were found. The combination of both techniques resulted to be useful to achieve a comprehensive characterization of GCO. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Assessment of benzophenone-4 reactivity with free chlorine by liquid chromatography quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Negreira, N; Rodríguez, I; Rodil, R; Cela, R

    2012-09-19

    The stability of the UV filter benzophenone-4 (BP-4) in free chlorine-containing water was investigated, for the first time, by liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QqTOF-MS). High mass accuracy and resolution capabilities of this hybrid mass spectrometer were used for the reliable assignation of empirical formulae and chemical structures of BP-4 derivatives. Time-course profiles of the parent compound and its by-products were simultaneously recorded by direct injection of sample aliquots, after quenching the excess of chlorine, in the LC-QqTOF-MS system. At neutral pHs, in excess of chlorine, BP-4 showed a limited stability fitting a pseudo-first-order degradation kinetics. A noticeable reduction in the half-lives of BP-4 was observed when increasing the sample pH between 6 and 8 units and also in presence of bromide traces. The reaction pathway of this UV filter involved a first electrophilic substitution of hydrogen per chlorine (or bromide) in the phenolic ring, followed by oxidation of the carbonyl moiety to an ester group, which induced a further electrophilic substitution in the same aromatic ring. Above reactions were also noticed when mixing a BP-4 containing personal care product with chlorinated tap water and in chlorinated swimming pool and sewage water, previously spiked with a BP-4 standard. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Profiling the indole alkaloids in yohimbe bark with ultra-performance liquid chromatography coupled with ion mobility quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Sun, Jianghao; Baker, Andrew; Chen, Pei

    2011-09-30

    An ultra-performance liquid chromatography/ion mobility quadrupole time-of-flight mass spectrometry (UPLC/IM-QTOF-MS) method was developed for profiling the indole alkaloids in yohimbe bark. Many indole alkaloids with the yohimbine or ajmalicine core structure, plus methylated, oxidized and reduced species, were characterized. Common fragments and mass differences are described. It was shown that the use of IMS could provide another molecular descriptor, i.e. molecular shape by rotationally averaged collision cross-section; this is of great value for identification of constituents when reference materials are usually not available. Using the combination of high resolution (~40000) accurate mass measurement with time-aligned parallel (TAP) fragmentation, MS(E) (where E represents collision energy), ion mobility mass spectrometry (IMS) and UPLC chromatography, a total 55 indole alkaloids were characterized and a few new indole alkaloids are reported for the first time. Published in 2011 by John Wiley & Sons, Ltd.

  18. Implementation of dipolar direct current (DDC) collision-induced dissociation in storage and transmission modes on a quadrupole/time-of-flight tandem mass spectrometer.

    Science.gov (United States)

    Webb, Ian K; Londry, Frank A; McLuckey, Scott A

    2011-09-15

    Means for effecting dipolar direct current collision-induced dissociation (DDC CID) on a quadrupole/time-of-flight in a mass spectrometer have been implemented for the broadband dissociation of a wide range of analyte ions. The DDC fragmentation method in electrodynamic storage and transmission devices provides a means for inducing fragmentation of ions over a large mass-to-charge range simultaneously. It can be effected within an ion storage step in a quadrupole collision cell that is operated as a linear ion trap or as ions are continuously transmitted through the collision cell. A DDC potential is applied across one pair of rods in the quadrupole collision cell of a QqTOF hybrid mass spectrometer to effect fragmentation. In this study, ions derived from a small drug molecule, a model peptide, a small protein, and an oligonucleotide were subjected to the DDC CID method in either an ion trapping or an ion transmission mode (or both). Several key experimental parameters that affect DDC CID results, such as time, voltage, low mass cutoff, and bath gas pressure, are illustrated with protonated leucine enkephalin. The DDC CID dissociation method gives a readily tunable, broadband tool for probing the primary structures of a wide range of analyte ions. The method provides an alternative to the narrow resonance conditions of conventional ion trap CID and it can access more extensive sequential fragmentation, depending upon conditions. The DDC CID approach constitutes a collision analog to infrared multiphoton dissociation (IRMPD). Copyright © 2011 John Wiley & Sons, Ltd.

  19. Determination of sildenafil mixed into herbal honey mixture by ultra-performance liquid chromatography-quadrupole time of flight mass spectrometry

    Directory of Open Access Journals (Sweden)

    Neira Mustabasic

    2017-01-01

    Full Text Available There has been a number of reports of natural products contaminated with illegal adulterants that threaten consumer health because of their adverse pharmacological effects worldwide. In this study, a multi-residual ultra-performance liquid chromatography method with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS was applied for the identification of sildenafil added into a herbal honey mixture used as an immune system booster. Electrospray ionization (ESI source was applied and operated in the positive ion mode. The mobile phase consisted of 0.1% formic acid aqueous solution/acetonitrile (70:30, v/v using the isocratic gradient elution system at a detection wavelength of 290 nm. The compound of sildenafil added into traditional herbal mixed honey was identified according to the spectrum, chromatographic behavior, and mass spectral data were identified by comparison with the reference substance. The method is selective, sensitive and can be used to detect the sildenafil illegally added into traditional herbal medicinal preparations.

  20. Characterization of ornidazole metabolites in human bile after intraveneous doses by ultraperformance liquid chromatography/quadrupole time-of-flight mass spectrometry

    Directory of Open Access Journals (Sweden)

    Jiangbo Du

    2012-04-01

    Full Text Available Ultraperformance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF MS was used to characterize ornidazole metabolites in human bile after intravenous doses. A liquid chromatography tandem mass spectrometry (LC–MS/MS assay was developed for the determination of the bile level of ornidazole. Bile samples, collected from four patients with T-tube drainage after biliary tract surgery, were prepared by protein precipitation with acetonitrile before analysis. A total of 12 metabolites, including 10 novel metabolites, were detected and characterized. The metabolites of ornidazole in human bile were the products of hydrochloride (HCl elimination, oxidative dechlorination, hydroxylation, sulfation, diastereoisomeric glucuronation, and substitution of NO2 or Cl atom by cysteine or N-acetylcysteine, and oxidative dechlorination followed by further carboxylation. The bile levels of ornidazole at 12 h after multiple intravenous infusions were well above its minimal inhibitory concentration for common strains of anaerobic bacteria.

  1. Identification of berberrubine metabolites in rats by using ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Wang, Kun; Qiao, Miao; Chai, Liwei; Cao, Shijie; Feng, Xinchi; Ding, Liqin; Qiu, Feng

    2018-01-01

    Berberrubine, an isoquinoline alkaloid isolated from many medicinal plants, possesses diverse pharmacological activities, including glucose-lowering, lipid-lowering, anti-inflammatory, and anti-tumor effects. This study aimed to investigate the metabolic profile of berberrubine in vivo. Therefore, a rapid and reliable method using the ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and metabolynx™ software with mass defect filter (MDF) technique was developed. Plasma, bile, urine and feces samples were collected from rats after oral administration of berberrubine with a dose of 30.0mg/kg and analyzed to characterize the metabolites of berberrubine in vivo for the first time. A total of 57 metabolites were identified, including 54 metabolites in urine, 39 metabolites in plasma, 28 metabolites in bile and 18 metabolites in feces. The results indicated that demethylenation, reduction, hydroxylation, demethylation, glucuronidation, and sulfation were the major metabolic pathways of berberrubine in vivo. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Laser ablation synthesis of arsenic-phosphide Asm Pn clusters from As-P mixtures. Laser desorption ionisation with quadrupole ion trap time-of-flight mass spectrometry: The mass spectrometer as a synthesizer.

    Science.gov (United States)

    Kubáček, Pavel; Prokeš, Lubomír; Pamreddy, Annapurna; Peña-Méndez, Eladia María; Conde, José Elias; Alberti, Milan; Havel, Josef

    2018-05-30

    Only a few arsenic phosphides are known. A high potential for the generation of new compounds is offered by Laser Ablation Synthesis (LAS) and when Laser Desorption Ionization (LDI) is coupled with simultaneous Time-Of-Flight Mass Spectrometry (TOFMS), immediate identification of the clusters can be achieved. LAS was used for the generation of arsenic phosphides via laser ablation of phosphorus-arsenic mixtures while quadrupole ion trap time-of-flight mass spectrometry (QIT-TOFMS) was used to acquire the mass spectra. Many new As m P n ± clusters (479 binary and 369 mono-elemental) not yet described in the literature were generated in the gas phase and their stoichiometry determined. The likely structures for some of the observed clusters arbitrary selected (20) were computed by density functional theory (DFT) optimization. LAS is an advantageous approach for the generation of new As m P n clusters, while mass spectrometry was found to be an efficient technique for the determination of cluster stoichiometry. The results achieved might inspire the synthesis of new materials. Copyright © 2018 John Wiley & Sons, Ltd.

  3. Structural elucidation and identification of a new derivative of phenethylamine using quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Sekuła, Karolina; Zuba, Dariusz

    2013-09-30

    In recent years, the phenomenon of uncontrolled distribution of new psychoactive substances that were marketed without prior toxicological studies has been observed. Because many designer drugs are related in chemical structure, the potential for misidentifying them is an important problem. It is therefore essential to develop an analytical procedure for unequivocal elucidation of the structures of these compounds. The issue has been discussed in the context of 25I-NBMD [2-(4-iodo-2,5-dimethoxyphenyl)-N-[(2,3-methylenedioxyphenyl)methyl]ethanamine], a psychoactive substance first discovered on the drug market in 2012. The substance was extracted from blotter papers with methanol. Separation was achieved via liquid chromatography. Analysis was conducted by electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-QTOFMS). Identification of the psychoactive component was supported by electron impact gas chromatography/mass spectrometry (GC/EI-MS). The high accuracy of the LC/ESI-QTOFMS method allowed the molecular mass of the investigated substance (M(exp) = 441.0438 Da; mass error, ∆m = 0.2 ppm) and the formulae of ions formed during fragmentation to be determined. The main ions were recorded at m/z = 135.0440, 290.9876 and 305.9981. Structures of the obtained ions were elucidated in the tandem mass spectrometry (MS/MS) experiments by comparing them to mass spectra of previously detected derivatives of phenethylamine. The performed study indicated the potential for using LC/QTOFMS method to identify new designer drugs. This technique can be used supplementary to standard GC/MS. Prior knowledge of the fragmentation mechanisms of phenethylamines allowed to predict the mass spectra of the novel substance--25I-NBMD. Copyright © 2013 John Wiley & Sons, Ltd.

  4. New Potential Biomarker for Methasterone Misuse in Human Urine by Liquid Chromatography Quadrupole Time of Flight Mass Spectrometry.

    Science.gov (United States)

    Zhang, Jianli; Lu, Jianghai; Wu, Yun; Wang, Xiaobing; Xu, Youxuan; Zhang, Yinong; Wang, Yan

    2016-09-24

    In this study, methasterone urinary metabolic profiles were investigated by liquid chromatography quadrupole time of flight mass spectrometry (LC-QTOF-MS) in full scan and targeted MS/MS modes with accurate mass measurement. A healthy male volunteer was asked to take the drug and liquid-liquid extraction was employed to process urine samples. Chromatographic peaks for potential metabolites were hunted out with the theoretical [M - H](-) as a target ion in a full scan experiment and actual deprotonated ions were studied in targeted MS/MS experiment. Fifteen metabolites including two new sulfates (S1 and S2), three glucuronide conjugates (G2, G6 and G7), and three free metabolites (M2, M4 and M6) were detected for methasterone. Three metabolites involving G4, G5 and M5 were obtained for the first time in human urine samples. Owing to the absence of helpful fragments to elucidate the steroid ring structure of methasterone phase II metabolites, gas chromatography mass spectrometry (GC-MS) was employed to obtain structural information of the trimethylsilylated phase I metabolite released after enzymatic hydrolysis and the potential structure was inferred using a combined MS method. Metabolite detection times were also analyzed and G2 (18-nor-17β-hydroxymethyl-2α, 17α-dimethyl-androst-13-en-3α-ol-ξ-O-glucuronide) was thought to be new potential biomarker for methasterone misuse which can be detected up to 10 days.

  5. Characterization and quantitative analysis of surfactants in textile wastewater by liquid chromatography/quadrupole-time-of-flight mass spectrometry.

    Science.gov (United States)

    González, Susana; Petrović, Mira; Radetic, Maja; Jovancic, Petar; Ilic, Vesna; Barceló, Damià

    2008-05-01

    A method based on the application of ultra-performance liquid chromatography (UPLC) coupled to hybrid quadrupole-time-of-flight mass spectrometry (QqTOF-MS) with an electrospray (ESI) interface has been developed for the screening and confirmation of several anionic and non-ionic surfactants: linear alkylbenzenesulfonates (LAS), alkylsulfate (AS), alkylethersulfate (AES), dihexyl sulfosuccinate (DHSS), alcohol ethoxylates (AEOs), coconut diethanolamide (CDEA), nonylphenol ethoxylates (NPEOs), and their degradation products (nonylphenol carboxylate (NPEC), octylphenol carboxylate (OPEC), 4-nonylphenol (NP), 4-octylphenol (OP) and NPEO sulfate (NPEO-SO4). The developed methodology permits reliable quantification combined with a high accuracy confirmation based on the accurate mass of the (de)protonated molecules in the TOFMS mode. For further confirmation of the identity of the detected compounds the QqTOF mode was used. Accurate masses of product ions obtained by performing collision-induced dissociation (CID) of the (de)protonated molecules of parent compounds were matched with the ions obtained for a standard solution. The method was applied for the quantitative analysis and high accuracy confirmation of surfactants in complex mixtures in effluents from the textile industry. Positive identification of the target compounds was based on accurate mass measurement of the base peak, at least one product ion and the LC retention time of the analyte compared with that of a standard. The most frequently surfactants found in these textile effluents were NPEO and NPEO-SO4 in concentrations ranging from 0.93 to 5.68 mg/L for NPEO and 0.06 to 4.30 mg/L for NPEO-SO4. AEOs were also identified.

  6. Profiling of nonvolatiles in whiskeys using ultra high pressure liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-QTOF MS).

    Science.gov (United States)

    Collins, Thomas S; Zweigenbaum, Jerry; Ebeler, Susan E

    2014-11-15

    Commercial samples of 63 American whiskeys, including bourbon whiskeys, Tennessee whiskeys, rye whiskeys and other blended whiskeys were analysed using ultra high pressure liquid chromatography (UHPLC) coupled with quadrupole time-of-flight (QTOF) mass spectrometry (MS). The non-volatile composition of the whiskeys was used to model differences among the samples using discriminant analysis. The blended American whiskeys were readily distinguished from the remaining types. Additionally, most Tennessee whiskeys could be differentiated from bourbon and rye whiskeys. Similarly, younger (8 years old) whiskeys could be separated. The compounds important for differentiating among these whiskeys included wood derived phenolic compounds, lignan derived compounds and several C8 and larger lipids. A number of additional compounds differentiated the whiskeys but could not be identified using MS and MS/MS data alone. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Chiral separation and chemical profile of Dengzhan Shengmai by integrating comprehensive with multiple heart-cutting two-dimensional liquid chromatography coupled with quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Sheng, Ning; Zheng, Hao; Xiao, Yao; Wang, Zhe; Li, Menglin; Zhang, Jinlan

    2017-09-29

    Chemical profile for Chinese medicine formulas composed of several herbs is always a challenge due to a big array of small molecules with high chemical diversity so much as isomers. The present paper develops a feasible strategy to characterize and identify complex chemical constituents of a four-herb traditional Chinese medicine formula, Denzhan Shenmai (DZSM) by integrating comprehensive two-dimensional liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (LC×LC-qTOF-MS) with multiple heart-cutting two-dimensional liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (MHC-qTOF-MS). DZSM was separated by C8×C18 HPLC column system for comprehensive two-dimensional liquid chromatography system and 283 compounds most of which belonged to phenolic acid, flavonoid, saponin and lignan families were characterized and identified within 75min. Some isomers and compounds at low level were analyzed on C8×Chiral HPLC column system for multiple heart-cutting two-dimensional liquid chromatography system with 1D and 2D optimized gradient elution program. These 1D cutting fractions were successively separated on 2D chiral chromatographic column under extended the 2D gradient elution time from 30s to 5.0min. 12 pairs of isomer compounds were separated with good resolution. The combination of LC×LC and MHC system provides a powerful technique for global chemical profiling of DZSM and provided feasible strategy for other complex systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Profiling the Metabolism of Astragaloside IV by Ultra Performance Liquid Chromatography Coupled with Quadrupole/Time-of-Flight Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Xu-Dong Cheng

    2014-11-01

    Full Text Available Astragaloside IV is a compound isolated from the Traditional Chinese Medicine Astragalus membranaceus, that has been reported to have bioactivities against cardiovascular disease and kidney disease. There is limited information on the metabolism of astragaloside IV, which impedes comprehension of its biological actions and pharmacology. In the present study, an ultra-performance liquid chromatography coupled with quadrupole/time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS-based approach was developed to profile the metabolites of astragaloside IV in rat plasma, bile, urine and feces samples. Twenty-two major metabolites were detected. The major components found in plasma, bile, urine and feces included the parent chemical and phases I and II metabolites. The major metabolic reactions of astragaloside IV were hydrolysis, glucuronidation, sulfation and dehydrogenation. These results will help to improve understanding the metabolism and reveal the biotransformation profiling of astragaloside IV in vivo. The metabolic information obtained from our study will guide studies into the pharmacological activity and clinical safety of astragaloside IV.

  9. A homemade high-resolution orthogonal-injection time-of-flight mass spectrometer with a heated capillary inlet

    International Nuclear Information System (INIS)

    Guo Changjuan; Huang Zhengxu; Gao Wei; Nian Huiqing; Chen Huayong; Dong Junguo; Shen Guoying; Fu Jiamo; Zhou Zhen

    2008-01-01

    We describe a homemade high-resolution orthogonal-injection time-of-flight (O-TOF) mass spectrometer combing a heated capillary inlet. The O-TOF uses a heated capillary tube combined with a radio-frequency only quadrupole (rf-only quadrupole) as an interface to help the ion transmission from the atmospheric pressure to the low-pressure regions. The principle, configuration of the O-TOF, and the performance of the instrument are introduced in this paper. With electrospray ion source, the performances of the mass resolution, the sensitivity, the mass range, and the mass accuracy are described. We also include our results obtained by coupling atmospheric pressure matrix-assisted laser deporption ionization with this instrument

  10. Metabolomic approaches for orange origin discrimination by ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Díaz, Ramon; Pozo, Oscar J; Sancho, Juan V; Hernández, Félix

    2014-08-15

    In this work, hybrid quadrupole time-of-flight mass spectrometer (QTOF MS) coupled to ultra high performance liquid chromatography (UHPLC) has been used for biomarkers identification for correct authentication of Valencia (Spain) oranges. Differentiation from foreign Argentinean, Brazilian and South African oranges has been carried out using XCMS application and multivariate analysis to UHPLC-(Q)TOF MS data acquired in both, positive and negative ionisation modes. Several markers have been found and corroborated by analysing two seasons samples. A seasonal independent marker was found and its structure elucidated using accurate mass data and MS(E) fragmentation spectrum information. Empirical formula was searched in Reaxys database applying sub-structure filtering from the fragments obtained. Three possible structures were found and citrusin D, a compound present in sweet oranges, has been identified as the most plausible as it fits better with the product ion scan performed for this compound. As a result of data obtained in this work, citrusin D is suggested as a potential marker to distinguish the geographic origin of oranges. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. High-performance multiple-reflection time-of-flight mass spectrometers for research with exotic nuclei and for analytical mass spectrometry

    Science.gov (United States)

    Plaß, Wolfgang R.; Dickel, Timo; Ayet San Andres, Samuel; Ebert, Jens; Greiner, Florian; Hornung, Christine; Jesch, Christian; Lang, Johannes; Lippert, Wayne; Majoros, Tamas; Short, Devin; Geissel, Hans; Haettner, Emma; Reiter, Moritz P.; Rink, Ann-Kathrin; Scheidenberger, Christoph; Yavor, Mikhail I.

    2015-11-01

    A class of multiple-reflection time-of-flight mass spectrometers (MR-TOF-MSs) has been developed for research with exotic nuclei at present and future accelerator facilities such as GSI and FAIR (Darmstadt), and TRIUMF (Vancouver). They can perform highly accurate mass measurements of exotic nuclei, serve as high-resolution, high-capacity mass separators and be employed as diagnostics devices to monitor the production, separation and manipulation of beams of exotic nuclei. In addition, a mobile high-resolution MR-TOF-MS has been developed for in situ applications in analytical mass spectrometry ranging from environmental research to medicine. Recently, the MR-TOF-MS for GSI and FAIR has been further developed. A novel RF quadrupole-based ion beam switchyard has been developed that allows merging and splitting of ion beams as well as transport of ions into different directions. It efficiently connects a test and reference ion source and an auxiliary detector to the system. Due to an increase in the kinetic energy of the ions in the time-of-flight analyzer of the MR-TOF-MS, a given mass resolving power is now achieved in less than half the time-of-flight. Conversely, depending on the time-of-flight, the mass resolving power has been increased by a factor of more than two.

  12. Identification of metabolites of vindoline in rats using ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Zhang, Yuqian; Sun, Yupeng; Mu, Xiyan; Yuan, Lin; Wang, Qiao; Zhang, Lantong

    2017-08-15

    Vindoline (VDL) is an indole alkaloid, possessing hypoglycemic and vasodilator effects, and it is also the prodrug of many vinca alkaloids. In this paper, we analyzed in vivo (including plasma, urine, bile and faeces) and in vitro metabolic profile of VDL in rat with ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS/MS). The chromatographic separation was performed on a C 18 column with a mobile phase consisted of 3mM ammonium acetate buffer and acetonitrile at a flow rate of 300μL/min. The mass spectral analysis was conducted in a positive electrospray ionization mode, and on-line data acquisition method multiple mass defect filter (MMDF) combined with dynamic background subtraction (DBS) were used in the biological samples analysis to trace all the potential metabolites of VDL. Twenty-five metabolites of VDL were detected by comparing with the blank sample, of which there were 2 sulfate conjugates. These data suggested that the biotransformation of VDL was deacetylation, oxidation, deoxidization, methylation, dealkylation and sulfate conjugation. This study provides useful information for further study of the pharmacology and mechanism of VDL, meanwhile, the research method can be widely applied to speculate structural features of the metabolites of other vinca alkaloids. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Liquid chromatography/quadrupole-time-of-flight mass spectrometry with metabolic profiling of human urine as a tool for environmental analysis of dextromethorphan.

    Science.gov (United States)

    Thurman, E Michael; Ferrer, Imma

    2012-10-12

    We use the combination of liquid chromatography/quadrupole-time-of-flight mass spectrometry (LC/Q-TOF-MS) and urine metabolic profiling to find and identify the metabolites of dextromethorphan, a common over-the-counter (OTC) cough suppressant. Next, we use the combination of ion masses, their MS/MS fragmentation, and retention times to determine dextromethorphan and its metabolites in surface water impacted by wastewater. Prior to this study, neither dextromethorphan nor its metabolites have been reported in surface water; in spite of its common use in over 100 various OTC medications. We found that the concentration of the dextrorphan metabolite in surface water greatly exceeded the parent compound by factors of 5-10 times, which reflects the urine profile, where parent compound is approximately <2% of the total excreted drug based on ion intensities. Urine profiling also indicated that glucuronide metabolites are major phase 2 products (92% of the total) in urine and then are completely hydrolyzed in wastewater to dextrorphan and N-demethyldextrorphan, which are phase 1 metabolites-a "kind of reversal" of human metabolism. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Ultra high performance liquid chromatography coupled with electrospray ionization/quadrupole time-of-flight mass spectrometry for the rapid analysis of constituents in the traditional Chinese medicine formula Wu Ji Bai Feng Pill.

    Science.gov (United States)

    Duan, Shengnan; Qi, Wen; Zhang, Siwen; Huang, Kunkun; Yuan, Dan

    2017-10-01

    An ultra high performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry method in both positive and negative ion modes was established in order to comprehensively investigate the major constituents in Wu Ji Bai Feng Pill. Briefly, a Waters ACQUITY UPLC HSS C 18 column was used to separate the aqueous extract of Wu Ji Bai Feng Pill. A total of 0.1% formic acid in acetonitrile and 0.1% aqueous formic acid v/v were used as the mobile phase. All analytes were determined using quadrupole time-of-flight mass spectrometry with electrospray ionization source in positive and negative ion modes. At length, a total of 173 components including flavones and their glycosides, monoterpene glycosides, triterpene saponins, phenethylalchohol glycosides, iridoid glycosides, phthalides, tanshinones, phenolic acids, sesquiterpenoids and cyclopeptides were identified or tentatively characterized in Wu Ji Bai Feng Pill in an analysis of 16.0 min based on the accurate mass and tandem mass spectrometry behaviors. The developed method is rapid and highly sensitive to characterize the chemical constituents of Wu Ji Bai Feng Pill, which could not only be used for chemical standardization and quality control of Wu Ji Bai Feng Pill, but also be helpful for further study in vivo metabolism of Wu Ji Bai Feng Pill. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Fenofibrate Metabolism in the Cynomolgus Monkey using Ultraperformance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry-Based MetabolomicsS⃞

    Science.gov (United States)

    Liu, Aiming; Patterson, Andrew D.; Yang, Zongtao; Zhang, Xinying; Liu, Wei; Qiu, Fayang; Sun, He; Krausz, Kristopher W.; Idle, Jeffrey R.; Gonzalez, Frank J.; Dai, Renke

    2009-01-01

    Fenofibrate, widely used for the treatment of dyslipidemia, activates the nuclear receptor, peroxisome proliferator-activated receptor α. However, liver toxicity, including liver cancer, occurs in rodents treated with fibrate drugs. Marked species differences occur in response to fibrate drugs, especially between rodents and humans, the latter of which are resistant to fibrate-induced cancer. Fenofibrate metabolism, which also shows species differences, has not been fully determined in humans and surrogate primates. In the present study, the metabolism of fenofibrate was investigated in cynomolgus monkeys by ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOFMS)-based metabolomics. Urine samples were collected before and after oral doses of fenofibrate. The samples were analyzed in both positive-ion and negative-ion modes by UPLC-QTOFMS, and after data deconvolution, the resulting data matrices were subjected to multivariate data analysis. Pattern recognition was performed on the retention time, mass/charge ratio, and other metabolite-related variables. Synthesized or purchased authentic compounds were used for metabolite identification and structure elucidation by liquid chromatographytandem mass spectrometry. Several metabolites were identified, including fenofibric acid, reduced fenofibric acid, fenofibric acid ester glucuronide, reduced fenofibric acid ester glucuronide, and compound X. Another two metabolites (compound B and compound AR), not previously reported in other species, were characterized in cynomolgus monkeys. More importantly, previously unknown metabolites, fenofibric acid taurine conjugate and reduced fenofibric acid taurine conjugate were identified, revealing a previously unrecognized conjugation pathway for fenofibrate. PMID:19251819

  16. Rapid Identification of Steroidal Saponins in Trillium tschonoskii Maxim by Ultraperformance Liquid Chromatography Coupled to Electrospray Ionisation Quadrupole Time-of-Flight Tandem Mass Spectrometry.

    Science.gov (United States)

    Gao, Xin; Sun, Wenjun; Fu, Qiang; Niu, Xiaofeng

    2015-01-01

    Steroidal saponins in Trillium tschonoskii Maxim have many biological activities, including immunological regulation and anti-tumour. Comprehensive ingredient identification is critical for understanding its pharmacological mechanism and establishing quality control protocols. However, it is a challenging problem because of the complexity of steroidal saponins. To develop a UPLC-MS method for identifying and characterising steroidal saponins in the root and rhizome of T. tschonoskii. Methanolic extracts of T. tschonoskii were analysed by using ultraperformance liquid chromatography coupled to electrospray ionisation quadrupole time-of-flight tandem mass spectrometry (UPLC-ESI/QTOF/MS). The UPLC experiments were performed by means of a reversed-phase C18 -column and a binary mobile phase system consisting of water and acetonitrile with formic acid under gradient elution conditions. For the UPLC-MS measurements, positive and negative ion modes were used in order to obtain better tandem mass spectra and high-resolution mass spectra. Based on retention times, accurate mass and mass spectrometric fragmentation, a total of 31 saponins distributed over eight steroidal aglycone skeletons were identified or tentatively elucidated from T. tschonoskii. The UPLC-ESI/QTOF/MS method has proven to be a powerful tool for rapid identification of steroidal saponins in T. tschonoskii without tedious and time-consuming isolation of pure constituents. Copyright © 2015 John Wiley & Sons, Ltd.

  17. An improved pseudotargeted metabolomics approach using multiple ion monitoring with time-staggered ion lists based on ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Wang, Yang; Liu, Fang; Li, Peng; He, Chengwei; Wang, Ruibing; Su, Huanxing; Wan, Jian-Bo

    2016-07-13

    Pseudotargeted metabolomics is a novel strategy integrating the advantages of both untargeted and targeted methods. The conventional pseudotargeted metabolomics required two MS instruments, i.e., ultra-high performance liquid chromatography/quadrupole-time- of-flight mass spectrometry (UHPLC/Q-TOF MS) and UHPLC/triple quadrupole mass spectrometry (UHPLC/QQQ-MS), which makes method transformation inevitable. Furthermore, the picking of ion pairs from thousands of candidates and the swapping of the data between two instruments are the most labor-intensive steps, which greatly limit its application in metabolomic analysis. In the present study, we proposed an improved pseudotargeted metabolomics method that could be achieved on an UHPLC/Q-TOF/MS instrument operated in the multiple ion monitoring (MIM) mode with time-staggered ion lists (tsMIM). Full scan-based untargeted analysis was applied to extract the target ions. After peak alignment and ion fusion, a stepwise ion picking procedure was used to generate the ion lists for subsequent single MIM and tsMIM. The UHPLC/Q-TOF tsMIM MS-based pseudotargeted approach exhibited better repeatability and a wider linear range than the UHPLC/Q-TOF MS-based untargeted metabolomics method. Compared to the single MIM mode, the tsMIM significantly increased the coverage of the metabolites detected. The newly developed method was successfully applied to discover plasma biomarkers for alcohol-induced liver injury in mice, which indicated its practicability and great potential in future metabolomics studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Liquid chromatographic/electrospray ionization quadrupole/time of flight tandem mass spectrometric study of polyphenolic composition of different Vaccinium berry species and their comparative evaluation.

    Science.gov (United States)

    Ancillotti, Claudia; Ciofi, Lorenzo; Rossini, Daniele; Chiuminatto, Ugo; Stahl-Zeng, Jianru; Orlandini, Serena; Furlanetto, Sandra; Del Bubba, Massimo

    2017-02-01

    Ultra-high-performance liquid chromatography coupled with high-resolution quadrupole-time of flight mass spectrometry with both negative and positive ionization was used for comprehensively investigating the phenolic and polyphenolic compounds in berries from three spontaneous or cultivated Vaccinium species (i.e., Vaccinium myrtillus, Vaccinium uliginosum subsp. gaultherioides, and Vaccinium corymbosum). More than 200 analytes, among phenolic and polyphenolic compounds belonging to the classes of anthocyanins, monomeric and oligomeric flavonols, flavanols, dihydrochalcones, phenolic acids, together with other polyphenolic compounds of mixed structural characteristics, were identified. Some of the polyphenols herein investigated, such as anthocyanidin glucuronides and malvidin-feruloyl-hexosides in V. myrtillus, or anthocyanindin aldopentosides and coumaroyl-hexosides in V. uliginosum subsp. gaultherioides and a large number of proanthocyanidins with high molecular weight in all species, were described for the first time in these berries. Principal component analysis applied on original LC-TOF data, acquired in survey scan mode, successfully discriminated the three Vaccinium berry species investigated, on the basis of their polyphenolic composition, underlying one more time the fundamental role of mass spectrometry for food characterization.

  19. Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry.

    Science.gov (United States)

    Bandura, Dmitry R; Baranov, Vladimir I; Ornatsky, Olga I; Antonov, Alexei; Kinach, Robert; Lou, Xudong; Pavlov, Serguei; Vorobiev, Sergey; Dick, John E; Tanner, Scott D

    2009-08-15

    A novel instrument for real time analysis of individual biological cells or other microparticles is described. The instrument is based on inductively coupled plasma time-of-flight mass spectrometry and comprises a three-aperture plasma-vacuum interface, a dc quadrupole turning optics for decoupling ions from neutral components, an rf quadrupole ion guide discriminating against low-mass dominant plasma ions, a point-to-parallel focusing dc quadrupole doublet, an orthogonal acceleration reflectron analyzer, a discrete dynode fast ion detector, and an 8-bit 1 GHz digitizer. A high spectrum generation frequency of 76.8 kHz provides capability for collecting multiple spectra from each particle-induced transient ion cloud, typically of 200-300 micros duration. It is shown that the transients can be resolved and characterized individually at a peak frequency of 1100 particles per second. Design considerations and optimization data are presented. The figures of merit of the instrument are measured under standard inductively coupled plasma (ICP) operating conditions ( 900 for m/z = 159, the sensitivity with a standard sample introduction system of >1.4 x 10(8) ion counts per second per mg L(-1) of Tb and an abundance sensitivity of (6 x 10(-4))-(1.4 x 10(-3)) (trailing and leading masses, respectively) are shown. The mass range (m/z = 125-215) and abundance sensitivity are sufficient for elemental immunoassay with up to 60 distinct available elemental tags. When 500) can be used, which provides >2.4 x 10(8) cps per mg L(-1) of Tb, at (1.5 x 10(-3))-(5.0 x 10(-3)) abundance sensitivity. The real-time simultaneous detection of multiple isotopes from individual 1.8 microm polystyrene beads labeled with lanthanides is shown. A real time single cell 20 antigen expression assay of model cell lines and leukemia patient samples immuno-labeled with lanthanide-tagged antibodies is presented.

  20. Identification of metabolites of Helicid in vivo using ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Diao, Xinpeng; Liao, Man; Cheng, Xiaoye; Liang, Caijuan; Sun, Yupeng; Zhang, Xia; Zhang, Lantong

    2018-04-18

    Helicid is an active natural aromatic phenolic glycoside ingredient originating from well-known traditional Chinese herb medicine and has the significant effects of sedative hypnosis, anti-inflammatory analgesia and antidepressant. In this study, we analyzed the potential metabolites of Helicid in rats by multiple mass defect filter (MMDF)and dynamic background subtraction (DBS)in ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS). Moreover, we used a novel data processing method 'key product ions (KPIs)' to rapidly detect and identifymetabolites as an assistant tool. MetabolitePilot TM 2.0 software and PeakView TM 2.2 software were used for analyzing metabolites. Twenty metabolites of Helicid (including 15 phase I metabolites and 5 phase II metabolites) were detected by comparing with the blank samples, respectively. Thebiotransformationroute of Helicid was identified as demethylation, oxidation, dehydroxylation, hydrogenation, decarbonylation,glucuronide conjugation and methylation.This is the first study of simultaneously detecting and identifying Helicid metabolism in rats by employing UHPLC-Q-TOF-MS technology. This experiment not only proposed a method for rapidly detecting and identifying metabolites, but also provided useful information for further study of the pharmacology and mechanism of Helicid in vivo. Furthermore, it provided an effective method for the analysis of other aromatic phenolic glycosides metabolic components in vivo. This article is protected by copyright. All rights reserved.

  1. Quantification of short- and medium-chain chlorinated paraffins in environmental samples by gas chromatography quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Gao, Wei; Wu, Jing; Wang, Yawei; Jiang, Guibin

    2016-06-24

    Chlorinated paraffins (CPs) are technical products produced and used in bulk for a number of purposes. However, the analysis of CPs is challenging, as they are complex mixtures of compounds and isomers. We herein report the development of an analytical method for the analysis of short-chain CPs (SCCPs) and medium-chain CPs (MCCPs) using quadrupole time-of-flight high-resolution mass spectrometry (GC-NCI-qTOF-HRMS). This method employs gas chromatography with a chemical ionization source working in negative mode. The linear relationship between chlorination and the CP total response factors was applied to quantify the CP content and the congener group distribution patterns. In a single injection, 24 SCCP formula groups and 24 MCCP formula groups were quantified. Extraction of accurate masses using qTOF-HRMS allowed the SCCPs and MCCPs to be distinguished, with interference from other chemicals (e.g., PCBs) being largely avoided. The SCCP and MCCP detection limits were 24-81ng/mL and 27-170ng/mL, respectively. Comparison of the obtained results with analytical results from gas chromatography coupled with electron capture negative ionization low-resolution mass spectrometry (GC-ECNI-LRMS) indicate that the developed technique is a more accurate and convenient method for the analysis of CPs in samples from a range of matrices. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Metabolite Analysis of Toosendanin by an Ultra-High Performance Liquid Chromatography-Quadrupole-Time of Flight Mass Spectrometry Technique

    Directory of Open Access Journals (Sweden)

    Na Li

    2013-09-01

    Full Text Available Toosendanin is the major bioactive component of Melia toosendan Sieb. et Zucc., which is traditionally used for treatment of abdominal pain and as an insecticide. Previous studies reported that toosendanin possesses hepatotoxicity, but the mechanism remains unknown. Its bioavailability in rats is low, which indicates the hepatotoxicity might be induced by its metabolites. In this connection, in the current study, we examined the metabolites obtained by incubating toosendanin with human live microsomes, and then six of these metabolites (M1–M6 were identified for the first time by ultra-high performance liquid chromatography-quadrupole-time of flight mass spectrometry (UHPLC-Q-TOF/MS. Further analysis on the MS spectra showed M1, M2, and M3 are oxidative products and M6 is a dehydrogenation product, while M4 and M5 are oxidative and dehydrogenation products of toosendanin. Moreover, their possible structures were deduced from the MS/MS spectral features. Quantitative analysis demonstrated that M1-M5 levels rapidly increased and reached a plateau at 30 min, while M6 rapidly reached a maximal level at 20 min and then decreased slowly afterwards. These findings have provided valuable data not only for understanding the metabolic fate of toosendanin in liver microsomes, but also for elucidating the possible molecular mechanism of its hepatotoxicity.

  3. Simultaneous determination of organophosphorus pesticides in fruits and vegetables using atmospheric pressure gas chromatography quadrupole-time-of-flight mass spectrometry.

    Science.gov (United States)

    Cheng, Zhipeng; Dong, Fengshou; Xu, Jun; Liu, Xingang; Wu, Xiaohu; Chen, Zenglong; Pan, Xinglu; Gan, Jay; Zheng, Yongquan

    2017-09-15

    This paper describes the application of atmospheric pressure gas chromatography quadrupole-time-of-flight mass spectrometry for the simultaneous determination of organophosphorus pesticides in apple, pear, tomato, cucumber and cabbage. Soft ionization with atmospheric pressure ionization source was compared with traditional electron impact ionization (EI). The sensitivity of GC coupled to atmospheric pressure ionization (APGC) for all the analytes was enhanced by 1.0-8.2 times. The ionization modes with atmospheric pressure ionization source was studied by comparing the charge-transfer and proton-transfer conditions. The optimized QuEChERs method was used to pretreat the samples. The calibration curves were found linear from 10 to 1000μg/L, obtaining correlation coefficients higher than 0.9845. Satisfactory mean recovery values, in the range of 70.0-115.9%, and satisfactory precision, with all RSD r <19.7% and all RSD R values <19.5% at the three fortified concentration levels for all the fifteen OPPs. The results demonstrate the potential of APGC-QTOF-MS for routine quantitative analysis of organophosphorus pesticide in fruits and vegetables. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Quantitative analysis of veterinary drugs in bovine muscle and milk by liquid chromatography quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Saito-Shida, Shizuka; Sakai, Takatoshi; Nemoto, Satoru; Akiyama, Hiroshi

    2017-07-01

    A simple and reliable multiresidue method for quantitative determination of veterinary drugs in bovine muscle and milk using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) was developed. Critical MS parameters such as capillary voltage, cone voltage, collision energy, desolvation gas temperature and extraction mass window were carefully optimised to obtain the best possible sensitivity. Analytical samples were prepared using extraction with acetonitrile and hexane in the presence of anhydrous sodium sulphate and acetic acid, followed by ODS cartridge clean-up. The developed method was validated for 82 veterinary drugs in bovine muscle and milk at spike levels of 0.01 and 0.1 mg kg - 1 . With the exception of cefoperazone and phenoxymethylpenicillin, all these compounds exhibited sufficient signal intensity at 0.01 μg ml -1 (equivalent to 0.01 mg kg - 1 ), indicating the high sensitivity of the developed method. For most targets, the determined accuracies were within 70-120%, with repeatability and reproducibility being below 20% at both levels. Except for sulfathiazole in bovine muscle, no interfering peaks at target compound retention times were detected in the blank extract, indicating that the developed method is highly selective. The absence of sulfathiazole in bovine muscle was confirmed by simultaneous acquisition at low and high collision energies to afford exact masses of molecular adduct and fragment ions. Satisfactory linearity was observed for all compounds, with matrix effects being negligible for most targets in bovine muscle and milk at both spike levels. Overall, the results suggest that the developed LC-QTOF-MS method is suitable for routine regulatory-purpose analysis of veterinary drugs in bovine muscle and milk.

  5. Detection and quantification of neurotensin in human brain tissue by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

    DEFF Research Database (Denmark)

    Gobom, J; Kraeuter, K O; Persson, R

    2000-01-01

    A method was developed for mass spectrometric detection of neurotensin (NT)-like immunoreactivity and quantification of NT in human brain tissue. The method is based on immunoprecipitation followed by analysis using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF......-MS). The identity of the major component of the immunoprecipitates as neurotensin was confirmed by fragment ion analysis on an electrospray ionization quadrupole time-of-flight instrument. MALDI-TOF-MS quantification of NT was achieved using stable-isotope-labeled NT as the internal standard, yielding an error...

  6. Determination of Grayanotoxins from Rhododendron brachycarpum in Dietary Supplements and Homemade Wine by Liquid Chromatography-Quadrupole Time-of-Flight-Mass Spectrometry and Liquid Chromatography-Tandem Mass Spectrometry.

    Science.gov (United States)

    Hwang, Taeik; Noh, Eunyoung; Jeong, Ji Hye; Park, Sung-Kwan; Shin, Dongwoo; Kang, Hoil

    2018-02-28

    A sensitive and specific high-performance liquid chromatography-quadrupole time-of-flight-mass spectrometry (LC-QTOF-MS) method combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed for the determination of grayanotoxins I and III in dietary supplements and homemade wine. Grayanotoxins I and III were successfully extracted using solid-phase extraction cartridges, characterized by LC-QTOF-MS, and quantitated by LC-MS/MS. The LC-MS/MS calibration curves were linear over concentrations of 10-100 ng/mL (grayanotoxin I) and 20-400 ng/mL (grayanotoxin III). Grayanotoxins I and III were found in 51 foodstuffs, with quantitative determinations revealing total toxin concentrations of 18.4-101 000 ng/mL (grayanotoxin I) and 15.3-56 000 ng/mL (grayanotoxin III). The potential of the validated method was demonstrated by successful quantitative analysis of grayanotoxins I and III in dietary supplements and homemade wine; the method appears suitable for the routine detection of grayanotoxins I and III from Rhododendron brachycarpum.

  7. Multi-analysis strategy for metabolism of Andrographis paniculata in rat using liquid chromatography/quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Li, Wenlan; Sun, Xiangming; Xu, Ying; Wang, Xuezhi; Bai, Jing; Ji, Yubin

    2015-07-01

    Compared with chemical drugs, it is a huge challenge to identify active ingredients of multicomponent traditional Chinese medicine (TCM). For most TCMs, metabolism investigation of absorbed constituents is a feasible way to clarify the active material basis. Although Andrographis paniculata (AP) has been extensively researched by domestic and foreign scholars, its metabolism has seldom been fully addressed to date. In this paper, high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry was applied to analysis and characterization of AP metabolism in rat urine and feces samples after oral administration of ethanol extract. The differences in metabolites and metabolic pathways between the two biological samples were further compared. The chemical structures of 20 components were tentatively identified from drug-treated biological samples, including six prototype components and 14 metabolites, which underwent such main metabolic pathways as hydrolyzation, hydrogenation, dehydroxylation, deoxygenation, methylation, glucuronidation, sulfonation and sulfation. Two co-existing components were found in urine and feces samples, suggesting that some ingredients' metabolic processes were not unique. This study provides a comprehensive report on the metabolism of AP in rats, which will be helpful for understanding its mechanism. Copyright © 2014 John Wiley & Sons, Ltd.

  8. A novel ion cooling trap for multi-reflection time-of-flight mass spectrograph

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Y., E-mail: yito@riken.jp [SLOWRI Team, Nishina Accelerator-Based Research Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Schury, P. [SLOWRI Team, Nishina Accelerator-Based Research Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); New Mexico State University, Department Chemistry and Biochemistry, Las Cruces, NM 88003 (United States); Wada, M.; Naimi, S. [SLOWRI Team, Nishina Accelerator-Based Research Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Smorra, C. [SLOWRI Team, Nishina Accelerator-Based Research Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Sonoda, T. [SLOWRI Team, Nishina Accelerator-Based Research Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Mita, H. [SLOWRI Team, Nishina Accelerator-Based Research Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Takamine, A. [SLOWRI Team, Nishina Accelerator-Based Research Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Aoyama Gakuin University, 4-4-25 Shibuya, Shibuya-ku, Tokyo 150-8366 (Japan); Okada, K. [SLOWRI Team, Nishina Accelerator-Based Research Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554 (Japan); Ozawa, A. [University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Wollnik, H. [SLOWRI Team, Nishina Accelerator-Based Research Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); New Mexico State University, Department Chemistry and Biochemistry, Las Cruces, NM 88003 (United States)

    2013-12-15

    Highlights: • Fast cooling time: 2 ms. • High efficiency: ≈27% for {sup 23}Na{sup +} and ≈5.1% for {sup 7}Li{sup +}. • 100% Duty cycle with double trap system. -- Abstract: A radiofrequency quadrupole ion trap system for use with a multi-reflection time-of-flight mass spectrograph (MRTOF) for short-lived nuclei has been developed. The trap system consists of two different parts, an asymmetric taper trap and a flat trap. The ions are cooled to a sufficient small bunch for precise mass measurement with MRTOF in only 2 ms cooling time in the flat trap, then orthogonally ejected to the MRTOF for mass analysis. A trapping efficiency of ≈27% for {sup 23}Na{sup +} and ≈5.1% for {sup 7}Li{sup +} has been achieved.

  9. Quadrupole Time-of-Flight Mass Spectrometer

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: The system generates superior quality mass spectrometry (MS) and tandem mass spectrometry (MS/MS) data from both atmospheric pressure ionization (API) and...

  10. Rare earth elements determined in Antarctic ice by inductively coupled plasma-Time of flight, quadrupole and sector field-mass spectrometry: An inter-comparison study

    International Nuclear Information System (INIS)

    Dick, D.; Wegner, A.; Gabrielli, P.; Ruth, U.; Barbante, C.; Kriews, M.

    2008-01-01

    Inductively coupled plasma mass spectrometry (ICP-MS) is a suitable tool for multi-element analysis at low concentration levels. Rare earth element (REE) determinations in standard reference materials and small volumes of molten ice core samples from Antarctica have been performed with an ICP-time of flight-MS (ICP-TOF-MS) system. Recovery rates for REE in e.g. SPS-SW1 amounted to ∼103%, and the relative standard deviations were 3.4% for replicate analysis at REE concentrations in the lower ng L -1 range. Analyses of REE concentrations in Antarctic ice core samples showed that the ICP-TOF-MS technique meets the demands of restricted sample mass. The data obtained are in good agreement with ICP-Quadrupole-MS (ICP-Q-MS) and ICP-Sector Field-MS (ICP-SF-MS) results. The ICP-TOF-MS system determines accurately and precisely REE concentrations exceeding 5 ng L -1 while between 0.5 and 5 ng L -1 accuracy and precision are element dependent

  11. Multiple heart-cutting two dimensional liquid chromatography quadrupole time-of-flight mass spectrometry of pyrrolizidine alkaloids.

    Science.gov (United States)

    van de Schans, Milou G M; Blokland, Marco H; Zoontjes, Paul W; Mulder, Patrick P J; Nielen, Michel W F

    2017-06-23

    Pyrrolizidine alkaloids (PAs) and their and the corresponding N-oxides (PAs-ox) are genotoxic plant metabolites which can be present as unwanted contaminants in food products of herbal origin like tea and food supplements. PAs and PAs-ox come in a wide variety of molecular structures including many structural isomers. For toxicity assessment it is important to determine the composition of a sample and to resolve all isomeric PAs and PAs-ox, which is currently not possible in one liquid or gas chromatographic (LC or GC) run. In this study an online two dimensional liquid chromatography quadrupole time-of-flight mass spectrometry (2D-LC QToF-MS) method was developed to resolve isomeric PAs and PAs-ox. After comprehensive column and mobile phase selection a polar endcapped C 18 column was used at pH 3 in the first dimension, and a cross-linked C 18 column at pH 10 in the second dimension. Injection solvents, column IDs, flow rates and temperatures were carefully optimized. The method with column selection valve switching described in this study was able to resolve and visualize 20 individual PAs/PAs-ox (6 sets of isomers) in one 2D-LC QToF-MS run. Moreover, it was shown that all isomeric PAs/PAs-ox could be unambiguously annotated. The method was shown to be applicable for the determination and quantification of isomeric PAs/PAs-ox in plant extracts and could be easily extended to include other PAs and PAs-ox. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Investigation of cannabis biomarkers and transformation products in waters by liquid chromatography coupled to time of flight and triple quadrupole mass spectrometry.

    Science.gov (United States)

    Boix, Clara; Ibáñez, María; Bijlsma, Lubertus; Sancho, Juan V; Hernández, Félix

    2014-03-01

    11-Nor-9-carboxy-Δ(9)-tetrahydrocannabinol (THC-COOH) is commonly selected as biomarker for the investigation of cannabis consumption through wastewater analysis. The removal efficiency of THC-COOH in wastewater treatment plants (WWTPs) has been reported to vary between 31% and 98%. Accordingly, possible transformation products (TPs) of this metabolite might be formed during treatment processes or in receiving surface water under environmental conditions. In this work, surface water was spiked with THC-COOH and subjected to hydrolysis, chlorination and photo-degradation (both ultraviolet and simulated sunlight) experiments under laboratory-controlled conditions. One hydrolysis, eight chlorination, three ultraviolet photo-degradation and seven sunlight photo-degradation TPs were tentatively identified by liquid chromatography coupled to quadrupole time-of-flight mass spectrometer (LC-QTOF MS). In a subsequent step, THC-COOH and the identified TPs were searched in wastewater samples using LC coupled to tandem mass spectrometry (LC-MS/MS) with triple quadrupole. THC-COOH was found in all influent and effluent wastewater samples analyzed, although at significant lower concentrations in the effluent samples. The removal efficiency of WWTP under study was approximately 86%. Furthermore, THC-COOH was also investigated in several surface waters, and it was detected in 50% of the samples analyzed. Regarding TPs, none were found in influent wastewater, while one hydrolysis and five photo-degradation (simulated sunlight) TPs were detected in effluent and surface waters. The most detected compound, resulting from sunlight photo-degradation, was found in 60% of surface waters analyzed. This fact illustrates the importance of investigating these TPs in the aquatic environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. An integrated ion trap and time-of-flight mass spectrometer for chemical and photo- reaction dynamics studies

    International Nuclear Information System (INIS)

    Schowalter, Steven J.; Chen Kuang; Rellergert, Wade G.; Sullivan, Scott T.; Hudson, Eric R.

    2012-01-01

    We demonstrate the integration of a linear quadrupole trap with a simple time-of-flight mass spectrometer with medium-mass resolution (m/Δm∼ 50) geared towards the demands of atomic, molecular, and chemical physics experiments. By utilizing a novel radial ion extraction scheme from the linear quadrupole trap into the mass analyzer, a device with large trap capacity and high optical access is realized without sacrificing mass resolution. This provides the ability to address trapped ions with laser light and facilitates interactions with neutral background gases prior to analyzing the trapped ions. Here, we describe the construction and implementation of the device as well as present representative ToF spectra. We conclude by demonstrating the flexibility of the device with proof-of-principle experiments that include the observation of molecular-ion photodissociation and the measurement of trapped-ion chemical reaction rates.

  14. In Vitro and in Vivo Metabolite Profiling of Valnemulin Using Ultraperformance Liquid Chromatography–Quadrupole/Time-of-Flight Hybrid Mass Spectrometry

    Science.gov (United States)

    2015-01-01

    Valnemulin, a semisynthetic pleuromutilin derivative related to tiamulin, is broadly used to treat bacterial diseases of animals. Despite its widespread use, metabolism in animals has not yet been fully investigated. To better understand valnemulin biotransformation, in this study, metabolites of valnemulinin in in vitro and in vivo rats, chickens, swines, goats, and cows were identified and elucidated using ultraperformance liquid chromatography–quadrupole/time-of-flight hybrid mass spectrometry (UPLC-Q/TOF-MS). As a result, there were totally 7 metabolites of valnemulin identified in vitro and 75, 61, and 74 metabolites detected in in vivo rats, chickens, and swines, respectively, and the majority of metabolites were reported for the first time. The main metabolic pathways of valnemulin were found to be hydroxylation in the mutilin part (the ring system) and the side chain, oxidization on the sulfur of the side chain to form S-oxides, hydrolysis of the amido bond, and acetylization in the amido of the side chain. In addition, hydroxylation in the mutilin part was proposed to be the primary metabolic route. Furthermore, the results revealed that 2β-hydroxyvalnemulin (V1) and 8α-hydroxyvalnemulin (V2) were the major metabolites for rats and swines and S-oxides (V6) in chickens. PMID:25156794

  15. Multi-constituent determination and fingerprint analysis of Scutellaria indica L. using ultra high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Liang, Xianrui; Zhao, Cui; Su, Weike

    2015-11-01

    An ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry method integrating multi-constituent determination and fingerprint analysis has been established for quality assessment and control of Scutellaria indica L. The optimized method possesses the advantages of speediness, efficiency, and allows multi-constituents determination and fingerprint analysis in one chromatographic run within 11 min. 36 compounds were detected, and 23 of them were unequivocally identified or tentatively assigned. The established fingerprint method was applied to the analysis of ten S. indica samples from different geographic locations. The quality assessment was achieved by using principal component analysis. The proposed method is useful and reliable for the characterization of multi-constituents in a complex chemical system and the overall quality assessment of S. indica. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Urinary metabolomic profiling in rats exposed to dietary di(2-ethylhexyl) phthalate (DEHP) using ultra-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF-MS).

    Science.gov (United States)

    Dong, Xinwen; Zhang, Yunbo; Dong, Jin; Zhao, Yue; Guo, Jipeng; Wang, Zhanju; Liu, Mingqi; Na, Xiaolin; Wang, Cheng

    2017-07-01

    Di(2-ethylhexyl) phthalate (DEHP) is an omnipresent environmental chemical with widespread nonoccupational human exposure through multiple ways. Although considerable efforts have been invested to investigate mechanisms of DEHP toxicity, the key metabolic biomarkers of DEHP toxicity remain to be identified. The aim of this study was to assess the urinary metabonomics of dietary DEHP in rats using the technique of ultra-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF-MS). Fourteen female Wistar rats were divided into two groups and given increasing dietary doses of DEHP for 30 consecutive days. The urinary metabolite profile was studied using ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) enabled clusters to be clearly separated. Eleven principal urinary metabolites were identified as contributing to the clusters. The clusters in the positive electrospray ionization (ESI) mode were xanthurenic acid, kynurenic acid, nonate, N6-methyladenosine, and L-isoleucyl-L-proline. The clusters in the negative ESI mode were hippuric acid, tetrahydrocortisol, citric acid, phenylpropionylglycine, cPA(18:2(9Z, 12Z)/0:0), and LysoPC(14:1(9Z)). The urinary metabonomic changes indicated that exposure to dietary DEHP can affect energy-related metabolism, liver and renal function, fatty acid metabolism, and cause DNA damage in rats. The findings of this study on the urinary metabolites and metabolic pathways of DEHP may form the basis for future studies on the mechanisms of toxicity of this commonly found environmental chemical.

  17. Analysis of psychoactive substances in water by information dependent acquisition on a hybrid quadrupole time-of-flight mass spectrometer.

    Science.gov (United States)

    Andrés-Costa, María Jesús; Andreu, Vicente; Picó, Yolanda

    2016-08-26

    Emerging drugs of abuse, belonging to many different chemical classes, are attracting users with promises of "legal" highs and easy access via internet. Prevalence of their consumption and abuse through wastewater-based epidemiology can only be realized if a suitable analytical screening procedure exists to detect and quantify them in water. Solid-phase extraction and ultra-high performance liquid chromatography quadrupole time-of-flight-mass spectrometry (UHPLC-QqTOF-MS/MS) was applied for rapid suspect screening as well as for the quantitative determination of 42 illicit drugs and metabolites in water. Using this platform, we were able to identify amphetamines, tryptamines, piperazines, pyrrolidinophenones, arylcyclohexylamines, cocainics, opioids and cannabinoids. Additionally, paracetamol, carbamazepine, ibersartan, valsartan, sulfamethoxazole, terbumeton, diuron, etc. (including degradation products as 3-hydroxy carbamazepine or deethylterbuthylazine) were detected. This method encompasses easy sample preparation and rapid identification of psychoactive drugs against a database that cover more than 2000 compounds that ionized in positive mode, and possibility to identify metabolites and degradation products as well as unknown compounds. The method for river water, influent and effluents samples was fully validated for the target psychoactive substances including assessment of matrix effects (-88-67.8%), recovery (42-115%), precision (psychoactive drugs biomarkers and other water contaminants is demonstrated. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Reaction of β-blockers and β-agonist pharmaceuticals with aqueous chlorine. Investigation of kinetics and by-products by liquid chromatography quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Quintana, José Benito; Rodil, Rosario; Cela, Rafael

    2012-06-01

    The degradation of two β-blockers (atenolol and propranolol) and one β-receptor agonist (salbutamol) during water chlorination was investigated by liquid chromatography-mass spectrometry (LC-MS). An accurate-mass quadrupole time-of-flight system (QTOF) was used to follow the time course of the pharmaceuticals and also used in the identification of the by-products. The degradation kinetics of these drugs was investigated at different concentrations of chlorine, bromide and sample pH by means of a Box-Behnken experimental design. Depending on these factors, dissipation half-lives varied in the ranges 68-145 h for atenolol, 1.3-33 min for salbutamol and 42-8362 min for propranolol. Normally, an increase in chlorine dosage and pH resulted in faster degradation of these pharmaceuticals. Moreover, the presence of bromide in water samples also resulted in a faster transformation of atenolol at low chlorine doses. The use of an accurate-mass high-resolution LC-QTOF-MS system permitted the identification of a total of 14 by-products. The transformation pathway of β-blockers/agonists consisted mainly of halogenations, hydroxylations and dealkylations. Also, many of these by-products are stable, depending on the chlorination operational parameters employed.

  19. Rocket-borne time-of-flight mass spectrometry

    Science.gov (United States)

    Reiter, R. F.

    1976-01-01

    Theoretical and numerical analyses are made of planar, cylindrical and spherical-electrode two-field time-of-flight mass spectrometers in order to optimize their operating conditions. A method is introduced which can improve the resolving power of these instruments by a factor of 7.5. Potential barrier gating in time-of-flight mass spectrometers is also analyzed. Experimental studies of a miniature cylindrical-electrode and a hemispherical-electrode time-of-flight mass spectrometer are presented. Their sensitivity and ability to operate at D-region pressures with an open source make them ideal instruments for D-region ion composition measurements. A sounding rocket experiment package carrying a cylindrical electrode time-of-flight mass spectrometer was launched. The data indicate that essentially 100% of the positive electric charge on positive ions is carried by ions with mass-to-charge ratios greater than 500 below an altitude of 92 km. These heavy charge carriers were present at altitudes up to about 100 km.

  20. Rocket-borne time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Reiter, R.F.

    1976-08-01

    Theoretical and numerical analyses are made of planar-, cylindrical- and spherical-electrode two-field time-of-flight mass spectrometers in order to optimize their operating conditions. A method is introduced which can improve the resolving power of these instruments by a factor of 7.5. Potential barrier gating in time-of-flight mass spectrometers is also analyzed. Experimental studies of a miniature cylindrical-electrode and a hemispherical-electrode time-of-flight mass spectrometer are presented. Their sensitivity and ability to operate at D-region pressures with an open source make them ideal instruments for D-region ion composition measurements. A sounding rocket experiment package carrying a cylindrical electrode time-of-flight mass spectrometer was launched. The data indicate that essentially 100% of the positive electric charge on positive ions is carried by ions with mass-to-charge ratios greater than 500 below an altitude of 92 km. These heavy charge carriers were present at altitudes up to about 100 km

  1. An integrated ion trap and time-of-flight mass spectrometer for chemical and photo- reaction dynamics studies.

    Science.gov (United States)

    Schowalter, Steven J; Chen, Kuang; Rellergert, Wade G; Sullivan, Scott T; Hudson, Eric R

    2012-04-01

    We demonstrate the integration of a linear quadrupole trap with a simple time-of-flight mass spectrometer with medium-mass resolution (m/Δm ∼ 50) geared towards the demands of atomic, molecular, and chemical physics experiments. By utilizing a novel radial ion extraction scheme from the linear quadrupole trap into the mass analyzer, a device with large trap capacity and high optical access is realized without sacrificing mass resolution. This provides the ability to address trapped ions with laser light and facilitates interactions with neutral background gases prior to analyzing the trapped ions. Here, we describe the construction and implementation of the device as well as present representative ToF spectra. We conclude by demonstrating the flexibility of the device with proof-of-principle experiments that include the observation of molecular-ion photodissociation and the measurement of trapped-ion chemical reaction rates. © 2012 American Institute of Physics

  2. Focusing procedures in time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Ioanoviciu, D.

    2002-01-01

    Time-of-flight mass spectrometry is a fast growing field due to its ability to handle very fast processes and due to its theoretically unlimited mass range. The performances of the time-of-flight mass analysers are heavily dependent on the progress in ion optics, a periodically reviewed field. In this presentation the various focusing procedures in time-of-flight mass spectrometry are reviewed. For ions of the same charge and mass flight time differences result from different potentials at the location of formation and from the initial velocity spread. There is no simultaneous space and velocity focusing in time-of-flight mass spectrometry. Space focusing of first and second order can be reached in time-of-flight mass analysers having two homogeneous electric field ion sources followed by a field free space in front of the detector. Single and double stage homogeneous electric field mirrors can focus in time ions of different energies. These different energies result when ions leaving different initial sites and arriving simultaneously to an intermediate space focus. Convenient mass dispersion can be obtained by including a mirror. Initial velocity focusing is obtained by the delayed extraction procedure in drift space and mirror time-of-flight mass analysers. Post source pulse focusing aims at the same purpose. Ion source electrodes of hyperbolic shape, operated by high voltage pulses can bring major improvements of the resolution, especially at high masses. For each focusing procedure the geometric and/or electric conditions are given as well as the aberrations allowing the mass resolution determination. The various focusing procedures are compared and a prediction of their future performances was tempted. (author)

  3. Distribution patterns of flavonoids from three Momordica species by ultra-high performance liquid chromatography quadrupole time of flight mass spectrometry: a metabolomic profiling approach

    Directory of Open Access Journals (Sweden)

    Ntakadzeni Edwin Madala

    Full Text Available ABSTRACT Plants from the Momordica genus, Curcubitaceae, are used for several purposes, especially for their nutritional and medicinal properties. Commonly known as bitter gourds, melon and cucumber, these plants are characterized by a bitter taste owing to the large content of cucurbitacin compounds. However, several reports have shown an undisputed correlation between the therapeutic activities and polyphenolic flavonoid content. Using ultra-high performance liquid chromatography quadrupole time of flight mass spectrometry in combination with multivariate data models such as principal component analysis and hierarchical cluster analysis, three Momordica species (M. foetida Schumach., M. charantia L. and M. balsamina L. were chemo-taxonomically grouped based on their flavonoid content. Using a conventional mass spectrometric-based approach, thirteen flavonoids were tentatively identified and the three species were found to contain different isomers of the quercetin-, kaempferol- and isorhamnetin-O-glycosides. Our results indicate that Momordica species are overall very rich sources of flavonoids but do contain different forms thereof. Furthermore, to the best of our knowledge, this is a first report on the flavonoid content of M. balsamina L.

  4. Suspected-target pesticide screening using gas chromatography-quadrupole time-of-flight mass spectrometry with high resolution deconvolution and retention index/mass spectrum library.

    Science.gov (United States)

    Zhang, Fang; Wang, Haoyang; Zhang, Li; Zhang, Jing; Fan, Ruojing; Yu, Chongtian; Wang, Wenwen; Guo, Yinlong

    2014-10-01

    A strategy for suspected-target screening of pesticide residues in complicated matrices was exploited using gas chromatography in combination with hybrid quadrupole time-of-flight mass spectrometry (GC-QTOF MS). The screening workflow followed three key steps of, initial detection, preliminary identification, and final confirmation. The initial detection of components in a matrix was done by a high resolution mass spectrum deconvolution; the preliminary identification of suspected pesticides was based on a special retention index/mass spectrum (RI/MS) library that contained both the first-stage mass spectra (MS(1) spectra) and retention indices; and the final confirmation was accomplished by accurate mass measurements of representative ions with their response ratios from the MS(1) spectra or representative product ions from the second-stage mass spectra (MS(2) spectra). To evaluate the applicability of the workflow in real samples, three matrices of apple, spinach, and scallion, each spiked with 165 test pesticides in a set of concentrations, were selected as the models. The results showed that the use of high-resolution TOF enabled effective extractions of spectra from noisy chromatograms, which was based on a narrow mass window (5 mDa) and suspected-target compounds identified by the similarity match of deconvoluted full mass spectra and filtering of linear RIs. On average, over 74% of pesticides at 50 ng/mL could be identified using deconvolution and the RI/MS library. Over 80% of pesticides at 5 ng/mL or lower concentrations could be confirmed in each matrix using at least two representative ions with their response ratios from the MS(1) spectra. In addition, the application of product ion spectra was capable of confirming suspected pesticides with specificity for some pesticides in complicated matrices. In conclusion, GC-QTOF MS combined with the RI/MS library seems to be one of the most efficient tools for the analysis of suspected-target pesticide residues

  5. Use of liquid chromatography coupled to quadrupole time-of-flight mass spectrometry to investigate pesticide residues in fruits.

    Science.gov (United States)

    Grimalt, Susana; Pozo, Oscar J; Sancho, Juan V; Hernández, Félix

    2007-04-01

    In this paper, the potential of coupling liquid chromatography with hybrid quadrupole time-of-flight mass spectrometry (LC-QTOF) for the determination of pesticides in a variety of fruit samples (orange peel and flesh, banana skin and flesh, strawberry and pear) has been explored. The quantitative application at residue levels has been proven for two insecticides (buprofezin and hexythiazox), which were satisfactorily determined at three concentration levels, 0.1, 1, and 5 mg/kg, obtaining a suitable linearity range (correlation coefficient>0.99) of more than 2 orders of magnitude. Satisfactory recoveries have been obtained for both compounds at the three levels tested in all sample matrices, with lowest calibration levels (LCL) of 0.075 and 0.01 mg/kg. The excellent potential of QTOF for identification purposes is illustrated by the high number of identification points (IPs) earned, up to 21, at the highest concentration of 5 mg/kg, or between 11 and 21 at the 0.1 and 1 mg/kg levels. The application of LC-QTOF MS to real samples revealed the presence of several positives at concentrations close to the LCL, all of which were confirmed with more than 11 IPs. The potential of QTOF for elucidation of nontarget analytes has also been demonstrated by the finding of one transformation product (TP) of buprofezin in a banana skin sample. This TP was identified by obtaining the full scan product ion spectra at different collision energies with acceptable accurate mass deviation. The work performed in this paper illustrates the suitability and excellent confirmatory potential of LC-QTOF MS for pesticides residues analysis in food samples.

  6. An improved pseudotargeted metabolomics approach using multiple ion monitoring with time-staggered ion lists based on ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yang; Liu, Fang; Li, Peng; He, Chengwei; Wang, Ruibing; Su, Huanxing; Wan, Jian-Bo, E-mail: jbwan@umac.mo

    2016-07-13

    Pseudotargeted metabolomics is a novel strategy integrating the advantages of both untargeted and targeted methods. The conventional pseudotargeted metabolomics required two MS instruments, i.e., ultra-high performance liquid chromatography/quadrupole-time- of-flight mass spectrometry (UHPLC/Q-TOF MS) and UHPLC/triple quadrupole mass spectrometry (UHPLC/QQQ-MS), which makes method transformation inevitable. Furthermore, the picking of ion pairs from thousands of candidates and the swapping of the data between two instruments are the most labor-intensive steps, which greatly limit its application in metabolomic analysis. In the present study, we proposed an improved pseudotargeted metabolomics method that could be achieved on an UHPLC/Q-TOF/MS instrument operated in the multiple ion monitoring (MIM) mode with time-staggered ion lists (tsMIM). Full scan-based untargeted analysis was applied to extract the target ions. After peak alignment and ion fusion, a stepwise ion picking procedure was used to generate the ion lists for subsequent single MIM and tsMIM. The UHPLC/Q-TOF tsMIM MS-based pseudotargeted approach exhibited better repeatability and a wider linear range than the UHPLC/Q-TOF MS-based untargeted metabolomics method. Compared to the single MIM mode, the tsMIM significantly increased the coverage of the metabolites detected. The newly developed method was successfully applied to discover plasma biomarkers for alcohol-induced liver injury in mice, which indicated its practicability and great potential in future metabolomics studies. - Highlights: • An UHPLC/Q-TOF tsMIM MS-based pseudotargeted metabolomics was proposed. • Compared to full scan, the improved method exhibits better repeatability and a wider linear range. • The proposed method could achieve pseudotargeted analysis on one UHPLC/Q-TOF/MS instrument. • The developed method was successfully used to discover biomarkers for alcohol-induced liver injury.

  7. An improved pseudotargeted metabolomics approach using multiple ion monitoring with time-staggered ion lists based on ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Wang, Yang; Liu, Fang; Li, Peng; He, Chengwei; Wang, Ruibing; Su, Huanxing; Wan, Jian-Bo

    2016-01-01

    Pseudotargeted metabolomics is a novel strategy integrating the advantages of both untargeted and targeted methods. The conventional pseudotargeted metabolomics required two MS instruments, i.e., ultra-high performance liquid chromatography/quadrupole-time- of-flight mass spectrometry (UHPLC/Q-TOF MS) and UHPLC/triple quadrupole mass spectrometry (UHPLC/QQQ-MS), which makes method transformation inevitable. Furthermore, the picking of ion pairs from thousands of candidates and the swapping of the data between two instruments are the most labor-intensive steps, which greatly limit its application in metabolomic analysis. In the present study, we proposed an improved pseudotargeted metabolomics method that could be achieved on an UHPLC/Q-TOF/MS instrument operated in the multiple ion monitoring (MIM) mode with time-staggered ion lists (tsMIM). Full scan-based untargeted analysis was applied to extract the target ions. After peak alignment and ion fusion, a stepwise ion picking procedure was used to generate the ion lists for subsequent single MIM and tsMIM. The UHPLC/Q-TOF tsMIM MS-based pseudotargeted approach exhibited better repeatability and a wider linear range than the UHPLC/Q-TOF MS-based untargeted metabolomics method. Compared to the single MIM mode, the tsMIM significantly increased the coverage of the metabolites detected. The newly developed method was successfully applied to discover plasma biomarkers for alcohol-induced liver injury in mice, which indicated its practicability and great potential in future metabolomics studies. - Highlights: • An UHPLC/Q-TOF tsMIM MS-based pseudotargeted metabolomics was proposed. • Compared to full scan, the improved method exhibits better repeatability and a wider linear range. • The proposed method could achieve pseudotargeted analysis on one UHPLC/Q-TOF/MS instrument. • The developed method was successfully used to discover biomarkers for alcohol-induced liver injury.

  8. Effect of heating strategies on whey protein denaturation--Revisited by liquid chromatography quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Akkerman, M; Rauh, V M; Christensen, M; Johansen, L B; Hammershøj, M; Larsen, L B

    2016-01-01

    Previous standards in the area of effect of heat treatment processes on milk protein denaturation were based primarily on laboratory-scale analysis and determination of denaturation degrees by, for example, electrophoresis. In this study, whey protein denaturation was revisited by pilot-scale heating strategies and liquid chromatography quadrupole time-of-flight mass spectrometer (LC/MC Q-TOF) analysis. Skim milk was heat treated by the use of 3 heating strategies, namely plate heat exchanger (PHE), tubular heat exchanger (THE), and direct steam injection (DSI), under various heating temperatures (T) and holding times. The effect of heating strategy on the degree of denaturation of β-lactoglobulin and α-lactalbumin was determined using LC/MC Q-TOF of pH 4.5-soluble whey proteins. Furthermore, effect of heating strategy on the rennet-induced coagulation properties was studied by oscillatory rheometry. In addition, rennet-induced coagulation of heat-treated micellar casein concentrate subjected to PHE was studied. For skim milk, the whey protein denaturation increased significantly as T and holding time increased, regardless of heating method. High denaturation degrees were obtained for T >100°C using PHE and THE, whereas DSI resulted in significantly lower denaturation degrees, compared with PHE and THE. Rennet coagulation properties were impaired by increased T and holding time regardless of heating method, although DSI resulted in less impairment compared with PHE and THE. No significant difference was found between THE and PHE for effect on rennet coagulation time, whereas the curd firming rate was significantly larger for THE compared with PHE. Micellar casein concentrate possessed improved rennet coagulation properties compared with skim milk receiving equal heat treatment. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Online extraction-high performance liquid chromatography-diode array detector-quadrupole time-of-flight tandem mass spectrometry for rapid flavonoid profiling of Fructus aurantii immaturus.

    Science.gov (United States)

    Tong, Runna; Peng, Mijun; Tong, Chaoying; Guo, Keke; Shi, Shuyun

    2018-03-01

    Chemical profiling of natural products by high performance liquid chromatography (HPLC) was critical for understanding of their clinical bioactivities, and sample pretreatment steps have been considered as a bottleneck for analysis. Currently, concerted efforts have been made to develop sample pretreatment methods with high efficiency, low solvent and time consumptions. Here, a simple and efficient online extraction (OLE) strategy coupled with HPLC-diode array detector-quadrupole time-of-flight tandem mass spectrometry (HPLC-DAD-QTOF-MS/MS) was developed for rapid chemical profiling. For OLE strategy, guard column inserted with ground sample (2 mg) instead of sample loop was connected with manual injection valve, in which components were directly extracted and transferred to HPLC-DAD-QTOF-MS/MS system only by mobile phase without any extra time, solvent, instrument and operation. By comparison with offline heat-reflux extraction for Fructus aurantii immaturus (Zhishi), OLE strategy presented higher extraction efficiency perhaps because of the high pressure and gradient elution mode. A total of eighteen flavonoids were detected according to their retention times, UV spectra, exact mass, and fragmentation ions in MS/MS spectra, and compound 9, natsudaidain-3-O-glucoside, was discovered in Zhishi for the first time. It is concluded that the developed OLE-HPLC-DAD-QTOF-MS/MS system offers new perspectives for rapid chemical profiling of natural products. Copyright © 2018. Published by Elsevier B.V.

  10. Verification of protein biomarker specificity for the identification of biological stains by quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Legg, Kevin M; Powell, Roger; Reisdorph, Nichole; Reisdorph, Rick; Danielson, Phillip B

    2017-03-01

    Advances in proteomics technology over the past decade offer forensic serologists a greatly improved opportunity to accurately characterize the tissue source from which a DNA profile has been developed. Such information can provide critical context to evidence and can help to prioritize downstream DNA analyses. Previous proteome studies compiled panels of "candidate biomarkers" specific to each of five body fluids (i.e., peripheral blood, vaginal/menstrual fluid, seminal fluid, urine, and saliva). Here, a multiplex quadrupole time-of-flight mass spectrometry assay has been developed in order to verify the tissue/body fluid specificity the 23 protein biomarkers that comprise these panels and the consistency with which they can be detected across a sample population of 50 humans. Single-source samples of these human body fluids were accurately identified by the detection of one or more high-specificity biomarkers. Recovery of body fluid samples from a variety of substrates did not impede accurate characterization and, of the potential inhibitors assayed, only chewing tobacco juice appeared to preclude the identification of a target body fluid. Using a series of 2-component mixtures of human body fluids, the multiplex assay accurately identified both components in a single-pass. Only in the case of saliva and peripheral blood did matrix effects appear to impede the detection of salivary proteins. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Qualitative and quantitative characterization of secondary metabolites and carbohydrates in Bai-Hu-Tang using ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry and ultraperformance liquid chromatography coupled with photodiode array detector

    Directory of Open Access Journals (Sweden)

    Wei-Fang Zhong

    2017-10-01

    Full Text Available Bai-Hu-Tang (BHT, a classic traditional Chinese medicine (TCM formula used for clearing heat and promoting body fluid, consists of four traditional Chinese medicines, i.e., Gypsum Fibrosum (Shigao, Anemarrhenae Rhizoma (Zhimu, Glycyrrhizae Radix et Rhizoma Praeparata cum Melle (Zhigancao, and nonglutinous rice (Jingmi. The chemical composition of BHT still remains largely elusive thus far. To qualitatively and quantitatively characterize secondary metabolites and carbohydrates in BHT, here a combination of analytical approaches using ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry and ultraperformance liquid chromatography coupled with photodiode array detector was developed and validated. A total of 42 secondary metabolites in BHT were tentatively or definitely identified, of which 10 major chemicals were quantified by the extracting ion mode of quadrupole time-of-flight mass spectrometry. Meanwhile, polysaccharides, oligosaccharides, and monosaccharides in BHT were also characterized via sample pretreatment followed by sugar composition analysis. The quantitative results indicated that the determined chemicals accounted for 35.76% of the total extract of BHT, which demonstrated that the study could be instrumental in chemical dissection and quality control of BHT. The research deliverables not only laid the root for further chemical and biological evaluation of BHT, but also provided a comprehensive analytical strategy for chemical characterization of secondary metabolites and carbohydrates in traditional Chinese medicine formulas.

  12. Qualitative and quantitative characterization of secondary metabolites and carbohydrates in Bai-Hu-Tang using ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry and ultraperformance liquid chromatography coupled with photodiode array detector.

    Science.gov (United States)

    Zhong, Wei-Fang; Tong, Wing-Sum; Zhou, Shan-Shan; Yip, Ka-Man; Li, Song-Lin; Zhao, Zhong-Zhen; Xu, Jun; Chen, Hu-Biao

    2017-10-01

    Bai-Hu-Tang (BHT), a classic traditional Chinese medicine (TCM) formula used for clearing heat and promoting body fluid, consists of four traditional Chinese medicines, i.e., Gypsum Fibrosum (Shigao), Anemarrhenae Rhizoma (Zhimu), Glycyrrhizae Radix et Rhizoma Praeparata cum Melle (Zhigancao), and nonglutinous rice (Jingmi). The chemical composition of BHT still remains largely elusive thus far. To qualitatively and quantitatively characterize secondary metabolites and carbohydrates in BHT, here a combination of analytical approaches using ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry and ultraperformance liquid chromatography coupled with photodiode array detector was developed and validated. A total of 42 secondary metabolites in BHT were tentatively or definitely identified, of which 10 major chemicals were quantified by the extracting ion mode of quadrupole time-of-flight mass spectrometry. Meanwhile, polysaccharides, oligosaccharides, and monosaccharides in BHT were also characterized via sample pretreatment followed by sugar composition analysis. The quantitative results indicated that the determined chemicals accounted for 35.76% of the total extract of BHT, which demonstrated that the study could be instrumental in chemical dissection and quality control of BHT. The research deliverables not only laid the root for further chemical and biological evaluation of BHT, but also provided a comprehensive analytical strategy for chemical characterization of secondary metabolites and carbohydrates in traditional Chinese medicine formulas. Copyright © 2017. Published by Elsevier B.V.

  13. Metabolomic study of corticosterone-induced cytotoxicity in PC12 cells by ultra performance liquid chromatography-quadrupole/time-of-flight mass spectrometry.

    Science.gov (United States)

    Zhang, Hongye; Zheng, Hua; Zhao, Gan; Tang, Chaoling; Lu, Shiyin; Cheng, Bang; Wu, Fang; Wei, Jinbin; Liang, Yonghong; Ruan, Junxiang; Song, Hui; Su, Zhiheng

    2016-03-01

    Glucocorticoids (GCs) have been proved to be an important pathogenic factor of some neuropsychiatric disorders. Usually, a classical injury model based on corticosterone-induced cytotoxicity of differentiated rat pheochromocytoma (PC12) cells was used to stimulate the state of GC damage of hippocampal neurons and investigate its potential mechanisms involved. However, up to now, the mechanism of corticosterone-induced cytotoxicity in PC12 cells was still looking forward to further elucidation. In this work, the metabolomic study of the biochemical changes caused by corticosterone-induced cytotoxicity in differentiated PC12 cells with different corticosterone concentrations was performed for the first time, using the ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF MS). Partial least squares-discriminate analysis (PLS-DA) indicated that metabolic profiles of different corticosterone treatment groups deviated from the control group. A total of fifteen metabolites were characterized as potential biomarkers involved in corticosterone-induced cytotoxicity, which were corresponding to the dysfunctions of five pathways including glycerophospholipid metabolism, sphingolipid metabolism, oxidation of fatty acids, glycerolipid metabolism and sterol lipid metabolism. This study indicated that the rapid and holistic cell metabolomics approach might be a powerful tool to further study the pathogenesis mechanism of corticosterone-induced cytotoxicity in PC12 cells.

  14. Metabolite characterization of a novel anti-cancer agent, icotinib, in humans through liquid chromatography/quadrupole time-of-flight tandem mass spectrometry.

    Science.gov (United States)

    Liu, Dongyang; Jiang, Ji; Zhang, Li; Tan, Fenlai; Wang, Yingxiang; Hu, Pei

    2011-08-15

    Icotinib is a novel anti-cancer drug that has shown promising clinical efficacy and safety in patients with non-small-cell lung cancer (NSCLC). At this time, the metabolic fate of icotinib in humans is unknown. In the present study, a liquid chromatography/quadrupole time-of-flight tandem mass spectrometry (LC/Q-TOF MS) method was established to characterize metabolites of icotinib in human plasma, urine and feces. In addition, nuclear magnetic resonance (NMR) detection was utilized to determine the connection between side-chain and quinazoline groups for some complex metabolites. In total, 29 human metabolites (21 isomer metabolites) were characterized, of which 23 metabolites are novel compared to the metabolites in rats. This metabolic study revealed that icotinib was extensively metabolized at the 12-crown-4 ether moiety (ring-opening and further oxidation), carbon 15 (hydroxylation) and an acetylene moiety (oxidation) to yield 19 oxidized metabolites and to further form 10 conjugates with sulfate acid or glucuronic acid. To our knowledge, this is the first report of the human metabolic profile of icotinib. Study results indicated that significant attention should be paid to the metabolic profiles of NSCLC patients during the development of icotinib. Copyright © 2011 John Wiley & Sons, Ltd.

  15. Gas chromatography interfaced with atmospheric pressure ionization-quadrupole time-of-flight-mass spectrometry by low-temperature plasma ionization

    DEFF Research Database (Denmark)

    Norgaard, Asger W.; Kofoed-Sorensen, Vivi; Svensmark, Bo

    2013-01-01

    A low temperature plasma (LTP) ionization interface between a gas chromatograph (GC) and an atmospheric pressure inlet mass spectrometer, was constructed. This enabled time-of-flight mass spectrometric detection of GC-eluting compounds. The performance of the setup was evaluated by injection...

  16. Novel fluorinated surfactants tentatively identified in firefighters using liquid chromatography quadrupole time-of-flight tandem mass spectrometry and a case-control approach.

    Science.gov (United States)

    Rotander, Anna; Kärrman, Anna; Toms, Leisa-Maree L; Kay, Margaret; Mueller, Jochen F; Gómez Ramos, María José

    2015-02-17

    Fluorinated surfactant-based aqueous film-forming foams (AFFFs) are made up of per- and polyfluorinated alkyl substances (PFAS) and are used to extinguish fires involving highly flammable liquids. The use of perfluorooctanesulfonic acid (PFOS) and other perfluoroalkyl acids (PFAAs) in some AFFF formulations has been linked to substantial environmental contamination. Recent studies have identified a large number of novel and infrequently reported fluorinated surfactants in different AFFF formulations. In this study, a strategy based on a case-control approach using quadrupole time-of-flight tandem mass spectrometry (QTOF-MS/MS) and advanced statistical methods has been used to extract and identify known and unknown PFAS in human serum associated with AFFF-exposed firefighters. Two target sulfonic acids [PFOS and perfluorohexanesulfonic acid (PFHxS)], three non-target acids [perfluoropentanesulfonic acid (PFPeS), perfluoroheptanesulfonic acid (PFHpS), and perfluorononanesulfonic acid (PFNS)], and four unknown sulfonic acids (Cl-PFOS, ketone-PFOS, ether-PFHxS, and Cl-PFHxS) were exclusively or significantly more frequently detected at higher levels in firefighters compared to controls. The application of this strategy has allowed for identification of previously unreported fluorinated chemicals in a timely and cost-efficient way.

  17. Metabolic Profiling of Hoodia, Chamomile, Terminalia Species and Evaluation of Commercial Preparations Using Ultrahigh-Performance Liquid Chromatography Quadrupole-Time-of-Flight Mass Spectrometry.

    Science.gov (United States)

    Avula, Bharathi; Wang, Yan-Hong; Isaac, Giorgis; Yuk, Jimmy; Wrona, Mark; Yu, Kate; Khan, Ikhlas A

    2017-11-01

    Ultrahigh-performance liquid chromatography quadrupole-time-of-flight mass spectrometry (UHPLC-QToF-MS) profiling was used for the identification of marker compounds and generation of metabolic patterns that could be interrogated using chemometric modeling software. UHPLC-QToF-MS was used to generate comprehensive fingerprints of three botanicals ( Hoodia, Terminalia , and chamomile), each having different classes of compounds. Detection of a broad range of ions was carried out in full scan mode in both positive and negative modes over the range m/z 100-1700 using high-resolution mass spectrometry. Multivariate statistical analysis was used to extract relevant chemical information from the data to easily differentiate between Terminalia species, chamomile varieties, and quality control of Hoodia products. Using nontargeted analysis, identification of 37 compounds contributed to the differences between Terminalia species, 26 flavonoids were identified to show the differences between German and Roman chamomile, and 43 pregnane glycosides were identified from Hoodia gordonii samples. The UHPLC-QToF-MS-based chemical fingerprinting with principal component analysis was able to correctly distinguish botanicals and their commercial products. This work can be used as a basis to assure the quality of botanicals and commercial products. Georg Thieme Verlag KG Stuttgart · New York.

  18. Nontarget analysis of polar contaminants in freshwater sediments influenced by pharmaceutical industry using ultra-high-pressure liquid chromatography-quadrupole time-of-flight mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Terzic, Senka, E-mail: terzic@irb.h [Division of Marine and Environmental Research, Rudjer Boskovic Institute, 10000 Zagreb (Croatia); Ahel, Marijan [Division of Marine and Environmental Research, Rudjer Boskovic Institute, 10000 Zagreb (Croatia)

    2011-02-15

    A comprehensive analytical procedure for a reliable identification of nontarget polar contaminants in aquatic sediments was developed, based on the application of ultra-high-pressure liquid chromatography (UHPLC) coupled to hybrid quadrupole time-of-flight mass spectrometry (QTOFMS). The procedure was applied for the analysis of freshwater sediment that was highly impacted by wastewater discharges from the pharmaceutical industry. A number of different contaminants were successfully identified owing to the high mass accuracy of the QTOFMS system, used in combination with high chromatographic resolution of UHPLC. The major compounds, identified in investigated sediment, included a series of polypropylene glycols (n = 3-16), alkylbenzene sulfonate and benzalkonium surfactants as well as a number of various pharmaceuticals (chlorthalidone, warfarin, terbinafine, torsemide, zolpidem and macrolide antibiotics). The particular advantage of the applied technique is its capability to detect less known pharmaceutical intermediates and/or transformation products, which have not been previously reported in freshwater sediments. - Research highlights: UHPLC-QTOFMS coupling was applied for nontarget analysis of polar contaminants. Wide spectrum of polar contaminants was identified in polluted sediments. Pharmaceuticals and their intermediates were present in high concentrations. - Comprehensive analysis of freshwater sediments by UPLC/QTOF indicated importance of pharmaceutically-derived polar contaminants.

  19. A rapid method for simultaneous determination of 52 marker compounds in Xiao-Qing-Long-Tang by ultra high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Zhou, Lei; Qi, Wen; Xu, Cong; Makino, Toshiaki; Yuan, Dan

    2014-11-01

    Xiao-Qing-Long-Tang (XQLT) is a classical Chinese medicine formula. It is generally used for the treatment of common cold, bronchial asthma, and allergic rhinitis in Asia. In this study, a multicomponent quantification fingerprinting approach based on ultra high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry has been developed for the analysis of compounds in XQLT in 14.5 min. A total of 52 compounds were identified by co-chromatography of sample extract with authentic standards and comparing the retention time, UV spectra, molecular ions and characteristic fragment ions with those of authentic standards, or tentatively identified by MS(E) determination along with Mass Fragment software. Moreover, the method was validated for the simultaneous quantification of 16 components in XQLT commercial products. The method is practical for comprehensive standardization of XQLT and holistic comparison of its commercial products from different manufacturers. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Characterization of the multiple components of Acanthopanax Senticosus stem by ultra high performance liquid chromatography with quadrupole time-of-flight tandem mass spectrometry.

    Science.gov (United States)

    Sun, Hui; Liu, Jianhua; Zhang, Aihua; Zhang, Ying; Meng, Xiangcai; Han, Ying; Zhang, Yingzhi; Wang, Xijun

    2016-02-01

    Acanthopanax Senticosus Harms. has been used widely in traditional Chinese medicine for the treatment of chronic bronchitis, neurasthenia, hypertension and ischemic heart disease. However, the in vivo constituents of the stem of Acanthopanax Senticosus remain unknown. In this paper, ultra high performance liquid chromatography with electrospray ionization quadrupole time-of-flight mass spectrometry and the MarkerLynx(TM) software combined with multiple data processing approach were used to study the constituents in vitro and in vivo. The aqueous extract from the Acanthopanax Senticosus stem and the compositions in rat serum after intragastric administration were completely analyzed. Consequently, 115 compounds in the aqueous extract from Acanthopanax Senticosus stem and 41 compounds absorbed into blood were characterized. Of the 115 compounds in vitro, 54 were reported for first time, including sinapyl alcohol, sinapyl alcohol diglucoside, and 1-O-sinapoyl-β-D-glucose. In the 41 compounds in vivo, 7 were prototype components and 34 were metabolites which were from 21 components of aqueous extract from Acanthopanax Senticosus stem, and the metabolic pathways of the metabolites were elucidated for first time. The results narrowed the range of screening the active components and provided a basis for the study of action mechanism and pharmacology. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Metabolic profiles of physalin A in rats using ultra-high performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry.

    Science.gov (United States)

    Feng, Xinchi; Liu, Hongxia; Chai, Liwei; Ding, Liqin; Pan, Guixiang; Qiu, Feng

    2017-03-01

    Physalin A, one of the major active components isolated from the calyces of Physalis alkekengi var. franchetii is considered to be a promising natural product due to its anti-inflammatory and excellent antitumor activities. Until now, only one paper is available from our group concerning identification of two sulfonate metabolites from rat feces after physalin A treatment. All the other researches related to physalin A were focused on its extraction, separation and biological activities. In this research, a rapid and reliable ultra-high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS/MS) method was developed and employed for the comprehensive study of the metabolism of physalin A in vivo for the first time. A total of 24 proposed metabolites were identified in plasma, bile, urine and feces of rats after oral administration of physalin A. The results indicated that sulfonation, reduction and hydroxylation were the major metabolic pathways of physalin A in vivo. Furthermore, this research provides scientific and reliable support for full understanding of the metabolism of physalin A and the results could help to elucidate the safety and efficacy of physalin A, as well as other physalins. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Introduction of a 20 kHz Nd:YVO4 laser into a hybrid quadrupole time-of-flight mass spectrometer for MALDI-MS imaging.

    Science.gov (United States)

    Trim, Paul J; Djidja, Marie-Claude; Atkinson, Sally J; Oakes, Keith; Cole, Laura M; Anderson, David M G; Hart, Philippa J; Francese, Simona; Clench, Malcolm R

    2010-08-01

    A commercial hybrid quadrupole time-of-flight mass spectrometer has been modified for high-speed matrix-assisted laser desorption ionisation (MALDI) imaging using a short-pulse optical technology Nd:YVO(4) laser. The laser operating in frequency-tripled mode (lambda = 355 nm) is capable of delivering 1.5-ns pulses of energy at up to 8 microJ at 5-10 kHz and 3 microJ at 20 kHz. Experiments to improve beam homogeneity and reduce laser speckle by mechanical vibration of the fibre-optic laser delivery system are reported along with data from trial and tissue imaging experiments using the modified instrument. The laser appeared to yield best results for MALDI-MS imaging experiments when operating at repetition rates 5-10 kHz. Combining this with raster imaging allowed images of rat brain sections to be recorded in 37 min. Similarly, images of the distribution of peptides in "on-tissue" digest experiments from tumour tissues were recorded in 1 h and 30 min rather than the 8-h acquisition time previously used. A brief investigation of targeted protein analysis/imaging by multiple reaction monitoring experiments "on-tissue" is reported. A total of 26 transitions were recorded over a 3-s cycle time and images of abundant proteins were successfully recorded.

  3. A Liquid Chromatography-Quadrupole-Time of Flight Mass Spectrometry (LC-Q-TOF MS) Study for Analyzing 35 Corticosteroid Compounds: Elucidation of MS/MS Fragmentation Pathways

    International Nuclear Information System (INIS)

    Noh, Eunyoung; Yoon, Chang-Yong; Lee, Ji Hyun; Baek, Sun-Young; Do, Jung-Ah; Lee, Jung-min; Oh, Han Bin

    2016-01-01

    Corticosteroids have been often found to be added to a dietary supplement for the purpose of illegally improving the effect of their products. Thus, it is imperative to develop or improve a method that enables one to rapidly and reliably analyze corticosteroids in health or dietary supplements, for the safety management purpose. In the present study, results from liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS) experiments for the selected 35 corticosteroid compounds are presented, which can be useful for the qualitative screening of corticosteroids in health or dietary supplements. Specifically, retention times, accurate mass data of the protonated steroids, m/z values of major fragment ions are given for the 35 corticosteroids. Further, fragmentation pathways for the selected steroids are also suggested. Based on the suggested fragmentation pathways, it was shown that an unknown steroid compound can be readily identified using the knowledge of a group of unique and specific common skeletal fragments. The high selectivity and sensitivity of the LC-Q-TOF-MS/MS results combined with the knowledge of the fragmentation pathways can offer a new opportunity for rapid and accurate screening of corticosteroids, thus preventing health-related incidents involving adulterated products and clamping down on illegally circulated health products.

  4. A Liquid Chromatography-Quadrupole-Time of Flight Mass Spectrometry (LC-Q-TOF MS) Study for Analyzing 35 Corticosteroid Compounds: Elucidation of MS/MS Fragmentation Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Eunyoung; Yoon, Chang-Yong; Lee, Ji Hyun; Baek, Sun-Young; Do, Jung-Ah [Ministry of Food and Drug Safety, Cheongju (Korea, Republic of); Lee, Jung-min; Oh, Han Bin [Sogang University, Seoul (Korea, Republic of)

    2016-07-15

    Corticosteroids have been often found to be added to a dietary supplement for the purpose of illegally improving the effect of their products. Thus, it is imperative to develop or improve a method that enables one to rapidly and reliably analyze corticosteroids in health or dietary supplements, for the safety management purpose. In the present study, results from liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS) experiments for the selected 35 corticosteroid compounds are presented, which can be useful for the qualitative screening of corticosteroids in health or dietary supplements. Specifically, retention times, accurate mass data of the protonated steroids, m/z values of major fragment ions are given for the 35 corticosteroids. Further, fragmentation pathways for the selected steroids are also suggested. Based on the suggested fragmentation pathways, it was shown that an unknown steroid compound can be readily identified using the knowledge of a group of unique and specific common skeletal fragments. The high selectivity and sensitivity of the LC-Q-TOF-MS/MS results combined with the knowledge of the fragmentation pathways can offer a new opportunity for rapid and accurate screening of corticosteroids, thus preventing health-related incidents involving adulterated products and clamping down on illegally circulated health products.

  5. Structural characterization of monoterpene indole alkaloids in ethanolic extracts of Rauwolfia species by liquid chromatography with quadrupole time-of-flight mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    Sunil Kumar; Awantika Singh; Vikas Bajpai; Mukesh Srivastava; Bhim Pratap Singh; Brijesh Kumar

    2016-01-01

    Rauwolfia species (Apocynaceae) are medicinal plants well known worldwide due to its potent bioactive monoterpene indole alkaloids (MIAs) such as reserpine, ajmalicine, ajmaline, serpentine and yohimbine. Reserpine, ajmalicine and ajmaline are powerful antihypertensive, tranquilizing agents used in hypertension. Yohimbine is an aphrodisiac used in dietary supplements. As there is no report on the comparative and comprehensive phytochemical investigation of the roots of Rauwolfia species, we have developed an efficient and reliable liquid chromatography-tandem mass spectrometry (LC–MS/MS) method for ethanolic root extract of Rauwolfia species to elucidate the fragmentation pathways for dereplication of bioactive MIAs using high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (HPLC–ESI–QTOF–MS/MS) in positive ion mode. We identified and established diagnostic fragment ions and fragmentation pathways using reserpine, ajmalicine, ajmaline, serpentine and yohimbine. The MS/MS spectra of reserpine, ajmalicine, and ajmaline showed C-ring-cleavage whereas E-ring cleavage was observed in serpentine via Retro Diels Alder (RDA). A total of 47 bioactive MIAs were identified and characterized on the basis of their molecular formula, exact mass measurements and MS/MS analysis. Reserpine, ajmalicine, ajmaline, serpentine and yohimbine were unambiguously identified by comparison with their authentic standards and other 42 MIAs were tentatively identified and characterized from the roots of Rauwolfia hookeri, Rauwolfia micrantha, Rauwolfia serpentina, Rauwolfia verticillata, Rauwolfia tetraphylla and Rauwolfia vomitoria. Application of LC–MS followed by principal component analysis (PCA) has been successfully used to discriminate among six Rauwolfia species.

  6. A peptidomic approach for monitoring and characterising peptide cyanotoxins produced in Italian lakes by matrix-assisted laser desorption/ionisation and quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Ferranti, Pasquale; Nasi, Antonella; Bruno, Milena; Basile, Adriana; Serpe, Luigi; Gallo, Pasquale

    2011-05-15

    In recent years, the occurrence of cyanobacterial blooms in eutrophic freshwaters has been described all over the world, including most European countries. Blooms of cyanobacteria may produce mixtures of toxic secondary metabolites, called cyanotoxins. Among these, the most studied are microcystins, a group of cyclic heptapeptides, because of their potent hepatotoxicity and activity as tumour promoters. Other peptide cyanotoxins have been described whose structure and toxicity have not been thoroughly studied. Herein we present a peptidomic approach aimed to characterise and quantify the peptide cyanotoxins produced in two Italian lakes, Averno and Albano. The procedure was based on matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry mass spectrometry (MALDI-TOF-MS) analysis for rapid detection and profiling of the peptide mixture complexity, combined with liquid chromatography/electrospray ionisation quadrupole time-of- flight tandem mass spectrometry (LC/ESI-Q-TOF-MS/MS) which provided unambiguous structural identification of the main compounds, as well as accurate quantitative analysis of microcystins. In the case of Lake Averno, a novel variant of microcystin-RR and two novel anabaenopeptin variants (Anabaenopeptins B(1) and Anabaenopeptin F(1)), presenting homoarginine in place of the commonly found arginine, were detected and characterised. In Lake Albano, the peculiar peptide patterns in different years were compared, as an example of the potentiality of the peptidomic approach for fast screening analysis, prior to fine structural analysis and determination of cyanotoxins, which included six novel aeruginosin variants. This approach allows for wide range monitoring of cyanobacteria blooms, and to collect data for evaluating possible health risks to consumers, through the panel of the compounds produced along different years. Copyright © 2011 John Wiley & Sons, Ltd.

  7. Simultaneous quantitative determination of 11 sesquiterpene lactones in Jerusalem artichoke (Helianthus tuberosus L.) leaves by ultra high performance liquid chromatography with quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Yuan, Xiaoyan; Yang, Qianxu

    2017-04-01

    A method of ultra high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry was developed for the simultaneous quantification of 11 sesquiterpene lactones in 11 Jerusalem artichoke leaf samples harvested in a number of areas at different periods. The optimal chromatographic conditions were achieved on a ZORBAX Eclipse Plus C 18 column (3.0 × 150 mm, 1.8 μm) with linear gradient elution of methanol and water in 8 min. Quantitative analysis was carried out under selective ion monitoring mode. All of the sesquiterpene lactones showed good linearity (R 2 ≥ 0.9949), repeatability (relative standard deviations Jerusalem artichoke leaf samples from different areas. Among them, the content of sesquiterpene lactones in the sample collected from Dalian, Liaoning province was the highest and the early flowering period was considered to be the optimal harvest time. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Application of ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry in identification of three isoflavone glycosides and their corresponding metabolites.

    Science.gov (United States)

    Xu, Xiafen; Li, Xinhui; Liang, Xianrui

    2018-02-15

    Metabolites of isoflavones have attracted much attention in recent years due to their potential bioactivities. However, the complex constituents of the metabolic system and the low level of metabolites make them difficult to analyze. A mass spectrometry (MS) method was applied in our identification of metabolites and study of their fragmentation pathways due to the advantages of rapidity, sensitivity, and low level of sample consumption. Three isoflavone glycosides and their metabolites were identified using ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC/QTOF-MS). These metabolites were obtained by anaerobically incubating three isoflavone glycosides with human intestinal flora. The characteristic fragments of isoflavone glycosides and their metabolites were used for the identification work. Two metabolites from ononin, three metabolites from irilone-4'-O-β-D-glucoside, and five metabolites from sissotrin were identified respectively by the retention time (RT), accurate mass, and mass spectral fragmentation patterns. The losses of the glucosyl group, CO from the [M+H] + ion were observed for all the three isoflavone glycosides. The characteristic retro-Diels-Alder (RDA) fragmentation patterns were used to differentiate the compounds. The metabolic pathways of the three isoflavone glycosides were proposed according to the identified chemical structures of the metabolites. A selective, sensitive and rapid method was established for detecting and identifying three isoflavone glycosides and their metabolites using UPLC/QTOF-MS. The established method can be used for further rapid structural identification studies of metabolites and natural products. Furthermore, the proposed metabolic pathways will be helpful for understanding the in vivo metabolic process of isoflavone. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Nontarget analysis of polar contaminants in freshwater sediments influenced by pharmaceutical industry using ultra-high-pressure liquid chromatography-quadrupole time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Terzic, Senka; Ahel, Marijan

    2011-01-01

    A comprehensive analytical procedure for a reliable identification of nontarget polar contaminants in aquatic sediments was developed, based on the application of ultra-high-pressure liquid chromatography (UHPLC) coupled to hybrid quadrupole time-of-flight mass spectrometry (QTOFMS). The procedure was applied for the analysis of freshwater sediment that was highly impacted by wastewater discharges from the pharmaceutical industry. A number of different contaminants were successfully identified owing to the high mass accuracy of the QTOFMS system, used in combination with high chromatographic resolution of UHPLC. The major compounds, identified in investigated sediment, included a series of polypropylene glycols (n = 3-16), alkylbenzene sulfonate and benzalkonium surfactants as well as a number of various pharmaceuticals (chlorthalidone, warfarin, terbinafine, torsemide, zolpidem and macrolide antibiotics). The particular advantage of the applied technique is its capability to detect less known pharmaceutical intermediates and/or transformation products, which have not been previously reported in freshwater sediments. - Research highlights: → UHPLC-QTOFMS coupling was applied for nontarget analysis of polar contaminants. → Wide spectrum of polar contaminants was identified in polluted sediments. → Pharmaceuticals and their intermediates were present in high concentrations. - Comprehensive analysis of freshwater sediments by UPLC/QTOF indicated importance of pharmaceutically-derived polar contaminants.

  10. A Metabonomics Profiling Study on Phlegm Syndrome and Blood-Stasis Syndrome in Coronary Heart Disease Patients Using Liquid Chromatography/Quadrupole Time-of-Flight Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Linlin Zhao

    2014-01-01

    Full Text Available A metabonomics approach based on liquid chromatography/quadrupole time-of-flight mass spectrometry (LC-Q-TOF/MS was utilized to obtain potential biomarkers of coronary heart disease (CHD patients and investigate the ZHENG types differentiation in CHD patients. The plasma samples of 20 CHD patients with phlegm syndrome, 20 CHD patients with blood-stasis syndrome, and 16 healthy volunteers were collected in the study. 26 potential biomarkers were identified in the plasma of CHD patients and 19 differential metabolites contributed to the discrimination of phlegm syndrome and blood-stasis syndrome in CHD patients (VIP>1.5; P<0.05 which mainly involved purine metabolism, pyrimidine metabolism, amino acid metabolism, steroid biosynthesis, and arachidonic acid metabolism. This study demonstrated that metabonomics approach based on LC-MS was useful for studying pathologic changes of CHD patients and interpreting the differentiation of ZHENG types (phlegm and blood-stasis syndrome in traditional Chinese medicine (TCM.

  11. Identification of non-volatile compounds and their migration from hot melt adhesives used in food packaging materials characterized by ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Vera, Paula; Canellas, Elena; Nerín, Cristina

    2013-05-01

    The identification of unknown non-volatile migrant compounds from adhesives used in food contact materials is a very challenging task because of the number of possible compounds involved, given that adhesives are complex mixtures of chemicals. The use of ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-MS/QTOF) is shown to be a successful tool for identifying non-targeted migrant compounds from two hot melt adhesives used in food packaging laminates. Out of the seven migrants identified and quantified, five were amides and one was a compound classified in Class II of the Cramer toxicity. None of the migration values exceeded the recommended Cramer exposure values.

  12. Negative chemical ionization gas chromatography coupled to hybrid quadrupole time-of-flight mass spectrometry and automated accurate mass data processing for determination of pesticides in fruit and vegetables.

    Science.gov (United States)

    Besil, Natalia; Uclés, Samanta; Mezcúa, Milagros; Heinzen, Horacio; Fernández-Alba, Amadeo R

    2015-08-01

    Gas chromatography coupled to high resolution hybrid quadrupole time-of-flight mass spectrometry (GC-QTOF MS), operating in negative chemical ionization (NCI) mode and combining full scan with MSMS experiments using accurate mass analysis, has been explored for the automated determination of pesticide residues in fruit and vegetables. Seventy compounds were included in this approach where 50 % of them are not approved by the EU legislation. A global 76 % of the analytes could be identified at 1 μg kg(-1). Recovery studies were developed at three concentration levels (1, 5, and 10 μg kg(-1)). Seventy-seven percent of the detected pesticides at the lowest level yielded recoveries within the 70 %-120 % range, whereas 94 % could be quantified at 5 μg kg(-1), and the 100 % were determined at 10 μg kg(-1). Good repeatability, expressed as relative standard deviation (RSD home-made database was developed and applied to an automatic accurate mass data processing. Measured mass accuracies of the generated ions were mainly less than 5 ppm for at least one diagnostic ion. When only one ion was obtained in the single-stage NCI-MS, a representative product ion from MSMS experiments was used as identification criterion. A total of 30 real samples were analyzed and 67 % of the samples were positive for 12 different pesticides in the range 1.0-1321.3 μg kg(-1).

  13. Method for the elucidation of the elemental composition of low molecular mass chemicals using exact masses of product ions and neutral losses: application to environmental chemicals measured by liquid chromatography with hybrid quadrupole/time-of-flight mass spectrometry.

    Science.gov (United States)

    Suzuki, Shigeru; Ishii, Tetsuko; Yasuhara, Akio; Sakai, Shinichi

    2005-01-01

    A method for elucidating the elemental compositions of low molecular weight chemicals, based primarily on mass measurements made using liquid chromatography (LC) with time-of-flight mass spectrometry (TOFMS) and quadrupole/time-of-flight mass spectrometry (LC/QTOFMS), was developed and tested for 113 chemicals of environmental interest with molecular masses up to approximately 400 Da. As the algorithm incorporating the method is not affected by differences in the instrument used, or by the ionization method and other ionization conditions, the method is useful not only for LC/TOFMS, but also for all kinds of mass spectra measured with higher accuracy and precision (uncertainties of a few mDa) employing all ionization methods and on-line separation techniques. The method involves calculating candidate compositions for intact ionized molecules (ionized forms of the sample molecule that have lost or gained no more than a proton, i.e., [M+H](+) or [M-H](-)) as well as for fragment ions and corresponding neutral losses, and eliminating those atomic compositions for the molecules that are inconsistent with the corresponding candidate compositions of fragment ions and neutral losses. Candidate compositions were calculated for the measured masses of the intact ionized molecules and of the fragment ions and corresponding neutral losses, using mass uncertainties of 2 and 5 mDa, respectively. Compositions proposed for the ionized molecule that did not correspond to the sum of the compositions of a candidate fragment ion and its corresponding neutral loss were discarded. One, 2-5, 6-10, 11-20, and >20 candidate compositions were found for 65%, 39%, 1%, 1%, and 0%, respectively, for the 124 ionized molecules formed from the 113 chemicals tested (both positive and negative ions were obtained from 11 of the chemicals). However, no candidate composition was found for 2% of the test cases (i.e., 3 chemicals), for each of which the measured mass of one of the product ions was in

  14. Metabolism of Genipin in Rat and Identification of Metabolites by Using Ultraperformance Liquid Chromatography/Quadrupole Time-of-Flight Tandem Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Yue Ding

    2013-01-01

    Full Text Available The in vivo and in vitro metabolism of genipin was systematically investigated in the present study. Urine, plasma, feces, and bile were collected from rats after oral administration of genipin at a dose of 50 mg/kg body weight. A rapid and sensitive method using ultraperformance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC-Q/TOF MS was developed for analysis of metabolic profile of genipin in rat biological samples (urine, plasma, feces, and bile. A total of ten metabolites were detected and identified by comparing their fragmentation patterns with that of genipin using MetaboLynx software tools. On the basis of the chromatographic peak area, the sulfated and glucuronidated conjugates of genipin were identified as major metabolites. And the existence of major metabolites G1 and G2 was confirmed by the in vitro enzymatic study further. Then, metabolite G1 was isolated from rat bile by semipreparative HPLC. Its structure was unambiguously identified as genipin-1-o-glucuronic acid by comparison of its UV, IR, ESI-MS, 1H-NMR, and 13C-NMR spectra with conference. In general, genipin was a very active compound that would transform immediately, and the parent form of genipin could not be observed in rats biological samples. The biotransformation pathways of genipin involved demethylated, ring-opened, cysteine-conjugated, hydroformylated, glucuronidated, and sulfated transformations.

  15. Characterization and classification of seven citrus herbs by liquid chromatography-quadrupole time-of-flight mass spectrometry and genetic algorithm optimized support vector machines.

    Science.gov (United States)

    Duan, Li; Guo, Long; Liu, Ke; Liu, E-Hu; Li, Ping

    2014-04-25

    Citrus herbs have been widely used in traditional medicine and cuisine in China and other countries since the ancient time. However, the authentication and quality control of Citrus herbs has always been a challenging task due to their similar morphological characteristics and the diversity of the multi-components existed in the complicated matrix. In the present investigation, we developed a novel strategy to characterize and classify seven Citrus herbs based on chromatographic analysis and chemometric methods. Firstly, the chemical constituents in seven Citrus herbs were globally characterized by liquid chromatography combined with quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). Based on their retention time, UV spectra and MS fragmentation behavior, a total of 75 compounds were identified or tentatively characterized in these herbal medicines. Secondly, a segmental monitoring method based on LC-variable wavelength detection was developed for simultaneous quantification of ten marker compounds in these Citrus herbs. Thirdly, based on the contents of the ten analytes, genetic algorithm optimized support vector machines (GA-SVM) was employed to differentiate and classify the 64 samples covering these seven herbs. The obtained classifier showed good prediction performance and the overall prediction accuracy reached 96.88%. The proposed strategy is expected to provide new insight for authentication and quality control of traditional herbs. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Systematic chemical profiling of Citrus grandis 'Tomentosa' by ultra-fast liquid chromatography/diode-array detector/quadrupole time-of-flight tandem mass spectrometry.

    Science.gov (United States)

    Li, Pan-lin; Liu, Meng-hua; Hu, Jie-hui; Su, Wei-wei

    2014-03-01

    Citrus grandis 'Tomentosa', as the original plant of the traditional Chinese medicine "Huajuhong", has been used as antitussive and expectorant in clinic for thousands of years. The fruit epicarp and whole fruit of this plant were both literarily recorded and commonly used. In the present study, an ultra-fast liquid chromatography coupled with diode-array detection and quadrupole/time-of-flight mass spectrometry (UFLC-DAD-Q-TOF-MS/MS) based chemical profiling method was developed for rapid holistic quality evaluation of C. grandis 'Tomentosa', which laid basis for chemical comparison of two medicinal parts. As a result, forty-eight constituents, mainly belonging to flavonoids and coumarins, were unambiguously identified by comparison with reference standards and/or tentatively characterized by elucidating UV spectra, quasi-molecular ions and fragment ions referring to information available in literature. Both of the epicarp and whole fruit samples were rich in flavonoids and coumarins, but major flavonoids contents in whole fruit were significantly higher than in epicarp (P<0.5). The proposed method could be useful in quality control and standardization of C. grandis 'Tomentosa' raw materials and its products. Results obtained in this study will provide a basis for quality assessment and further study in vivo. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. A novel approach to the quantitative detection of anabolic steroids in bovine muscle tissue by means of a hybrid quadrupole time-of-flight-mass spectrometry instrument.

    Science.gov (United States)

    Bussche, Julie Vanden; Decloedt, Anneleen; Van Meulebroek, Lieven; De Clercq, Nathalie; Lock, Stephen; Stahl-Zeng, Jianru; Vanhaecke, Lynn

    2014-09-19

    In recent years, the analysis of veterinary drugs and growth-promoting agents has shifted from target-oriented procedures, mainly based on liquid chromatography coupled to triple-quadrupole mass spectrometry (LC-QqQ-MS), towards accurate mass full scan MS (such as Time-of-Flight (ToF) and Fourier Transform (FT)-MS). In this study, the performance of a hybrid analysis instrument (i.e. UHPLC-QuadrupoleTime-of-Flight-MS (QqToF-MS)), able to exploit both full scan HR and MS/MS capabilities within a single analytical platform, was evaluated for confirmatory analysis of anabolic steroids (gestagens, estrogens including stilbenes and androgens) in meat. The validation data was compared to previously obtained results (CD 2002/657/EC) for QqQ-MS and single stage Orbitrap-MS. Additionally, a fractional factorial design was used to shorten and optimize the sample extraction. Validation according to CD 2002/657/EC demonstrated that steroid analysis using QqToF has a higher competing value towards QqQ-MS in terms of selectivity/specificity, compared to single stage Orbitrap-MS. While providing excellent linearity, based on lack-of-fit calculations (F-test, α=0.05 for all steroids except 17β-ethinylestradiol: α=0.01), the sensitivity of QqToF-MS proved for 61.8% and 85.3% of the compounds more sensitive compared to QqQ-MS and Orbitrap-MS, respectively. Indeed, the CCα values, obtained upon ToF-MS/MS detection, ranged from 0.02 to 1.74μgkg(-1) for the 34 anabolic steroids, while for QqQ-MS and Orbitrap-MS values ranged from 0.04 to 0.88μgkg(-1) and from 0.07 to 2.50μgkg(-1), respectively. Using QqToF-MS and QqQ-MS, adequate precision was obtained as relative standard deviations for repeatability and within-laboratory reproducibility, were below 20%. In case of Orbitrap-MS, some compounds (i.e. some estrogens) displayed poor precision, which was possibly caused by some lack of sensitivity at lower concentrations and the absence of MRM-like experiments. Overall, it can be

  18. Quantification of 2'-deoxy-2'-β-fluoro-4'-azidocytidine in rat and dog plasma using liquid chromatography-quadrupole time-of-flight and liquid chromatography-triple quadrupole mass spectrometry: Application to bioavailability and pharmacokinetic studies.

    Science.gov (United States)

    Peng, Youmei; Cheng, Tiefeng; Dong, Lihong; Zhang, Yuhai; Chen, Xiaojing; Jiang, Jinhua; Zhang, Jingmin; Guo, Xiaohe; Guo, Mintong; Chang, Junbiao; Wang, Qingduan

    2014-09-01

    2'-Deoxy-2'-β-fluoro-4'-azidocytidine (FNC) is a novel pyrimidine analog that inhibits not only the replication of the hepatitis B virus (HBV), hepatitis C virus (HCV) and HIV but also the replication of lamivudine-resistant HBV, 4'-azidocytidine or 2'-β-methylcytidine-resistant HCV, and nucleoside reverse-transcriptase inhibitor-resistant HIV variants. The present study was undertaken to evaluate the absolute oral bioavailability of FNC in rats and the pharmacokinetic properties of FNC after intragastric administration of single and multiple doses in rats and dogs. A sensitive high-performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry (HPLC/Q-TOF MS) method and a reliable high-performance liquid chromatography tandem triple quadrupole mass spectrometry (HPLC/QqQ MS/MS) method were established for the determination of FNC in the rat and dog plasmas, respectively. The sample preparation involved a protein-precipitation method with methanol after the addition of lamivudine as an internal standard. FNC was analyzed by LC using a YMC-Pack Pro C18 column (150mm×4.6mm, 3μm) with methanol (containing 0.3% formic acid): 10mM ammonium acetate (containing 0.3% formic acid, pH 2.8) (35:65, v/v) as the mobile phase. Both mass spectrometers were equipped with an electrospray ionization interface in the positive-ion mode. The linear range was from 2.00 to 2000.00ngmL(-1) in rat plasma and 0.50 to 400.00ngmL(-1) in dog plasma. The intraday and interday precision were less than 10.55%, and the accuracy was in the range of -5.86 to 5.13%. The mean recoveries were greater than 82.70% and 82.97% for FNC and IS, respectively. The HPLC/Q-TOF MS and HPLC/QqQ MS/MS methods were both successfully applied in the pharmacokinetic studies of FNC in rats and dogs. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Screening of 485 Pesticide Residues in Fruits and Vegetables by Liquid Chromatography-Quadrupole-Time-of-Flight Mass Spectrometry Based on TOF Accurate Mass Database and QTOF Spectrum Library.

    Science.gov (United States)

    Pang, Guo-Fang; Fan, Chun-Lin; Chang, Qiao-Ying; Li, Jian-Xun; Kang, Jian; Lu, Mei-Ling

    2018-03-22

    This paper uses the LC-quadrupole-time-of-flight MS technique to evaluate the behavioral characteristics of MSof 485 pesticides under different conditions and has developed an accurate mass database and spectra library. A high-throughput screening and confirmation method has been developed for the 485 pesticides in fruits and vegetables. Through the optimization of parameters such as accurate mass number, time of retention window, ionization forms, etc., the method has improved the accuracy of pesticide screening, thus avoiding the occurrence of false-positive and false-negative results. The method features a full scan of fragments, with 80% of pesticide qualitative points over 10, which helps increase pesticide qualitative accuracy. The abundant differences of fragment categories help realize the effective separation and qualitative identification of isomer pesticides. Four different fruits and vegetables-apples, grapes, celery, and tomatoes-were chosen to evaluate the efficiency of the method at three fortification levels of 5, 10, and 20 μg/kg, and satisfactory results were obtained. With this method, a national survey of pesticide residues was conducted between 2012 and 2015 for 12 551 samples of 146 different fruits and vegetables collected from 638 sampling points in 284 counties across 31 provincial capitals/cities directly under the central government, which provided scientific data backup for ensuring pesticide residue safety of the fruits and vegetables consumed daily by the public. Meanwhile, the big data statistical analysis of the new technique also further proves it to be of high speed, high throughput, high accuracy, high reliability, and high informatization.

  20. Ion trajectories quadrupole mass filters

    International Nuclear Information System (INIS)

    Ursu, D.; Lupsa, N.; Muntean, F.

    1994-01-01

    The present paper aims at bringing some contributions to the understanding of ion motion in quadrupole mass filters. The theoretical treatment of quadrupole mass filter is intended to be a concise derivation of the important physical relationships using Mathieu functions. A simple iterative method of numerical computation has been used to simulate ion trajectories in an ideal quadrupole field. Finally, some examples of calculation are presented with the aid of computer graphics. (Author) 14 Figs., 1 Tab., 20 Refs

  1. Tissue-specific metabolite profiling of Cyperus rotundus L. rhizomes and (+)-nootkatone quantitation by laser microdissection, ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry, and gas chromatography-mass spectrometry techniques.

    Science.gov (United States)

    Jaiswal, Yogini; Liang, Zhitao; Guo, Ping; Ho, Hing-Man; Chen, Hubiao; Zhao, Zhongzhen

    2014-07-23

    Cyperus rotundus L. is a plant species commonly found in both India and China. The caused destruction of this plant is of critical concern for agricultural produce. Nevertheless, it can serve as a potential source of the commercially important sesquiterpenoid (+)-nootkatone. The present work describes comparative metabolite profiling and (+)-nootkatone content determination in rhizome samples collected from these two countries. Laser dissected tissues, namely, the cortex, hypodermal fiber bundles, endodermis, amphivasal vascular bundles, and whole rhizomes were analyzed by ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF MS). Gas chromatography-mass spectrometry (GC-MS) analysis was used for profiling of essential oil constituents and quantitation of (+)-nootkatone. The content of (+)-nootkatone was found to be higher in samples from India (30.47 μg/10 g) compared to samples from China (21.72 μg/10 g). The method was validated as per International Conference on Harmonisation (ICH) guidelines (Q2 R1). The results from this study can be applied for quality control and efficient utilization of this terpenoid-rich plant for several applications in food-based industries.

  2. Use of electron ionization and atmospheric pressure chemical ionization in gas chromatography coupled to time-of-flight mass spetrometry for screening and identification of organic pollutants in waters

    NARCIS (Netherlands)

    Portoles, T.; Mol, J.G.J.; Sancho, J.V.; Hernandez, F.

    2014-01-01

    A new approach has been developed for multiclass screening of organic contaminants in water based on the use of gas chromatography coupled to hybrid quadrupole high-resolution time-of-flight mass spectrometry with atmospheric pressure chemical ionization (GC–(APCI)QTOF MS). The soft ionization

  3. Screening of 439 Pesticide Residues in Fruits and Vegetables by Gas Chromatography-Quadrupole-Time-of-Flight Mass Spectrometry Based on TOF Accurate Mass Database and Q-TOF Spectrum Library.

    Science.gov (United States)

    Li, Jian-Xun; Li, Xiao-Ying; Chang, Qiao-Ying; Li, Yan; Jin, Ling-He; Pang, Guo-Fang; Fan, Chun-Lin

    2018-05-03

    Because of its unique characteristics of accurate mass full-spectrum acquisition, high resolution, and fast acquisition rates, GC-quadrupole-time-of-flight MS (GC-Q-TOF/MS) has become a powerful tool for pesticide residue analysis. In this study, a TOF accurate mass database and Q-TOF spectrum library of 439 pesticides were established, and the parameters of the TOF database were optimized. Through solid-phase extraction (SPE), whereby pesticides are extracted from fruit and vegetable substrates by using 40 mL 1% acetic acid in acetonitrile (v/v), purified by the Carbon/NH₂ SPE cartridge, and finally detected by GC-Q-TOF/MS, the rapid analysis of 439 pesticides in fruits and vegetables can be achieved. The methodology verification results show that more than 70 and 91% of pesticides, spiked in fruits and vegetables with concentrations of 10 and 100 μg/kg, respectively, saw recoveries that conform to the European Commission's criterion of between 70 and 120% with RSD ≤20%. Eighty-one percent of pesticides have screening detection limits lower than 10 μg/kg, which makes this a reliable analysis technology for the monitoring of pesticide residues in fruits and vegetables. This technology was further validated for its characteristics of high precision, high speed, and high throughput through successful detection of 9817 samples during 2013-2015.

  4. Eddy covariance emission and deposition flux measurements using proton transfer reaction – time of flightmass spectrometry (PTR-TOF-MS): comparison with PTR-MS measured vertical gradients and fluxes

    NARCIS (Netherlands)

    Park, J.H.; Goldstein, A.H.; Timkovsky, J|info:eu-repo/dai/nl/330541676; Fares, S.; Weber, R.; Karlik, J.; Holzinger, R.|info:eu-repo/dai/nl/337989338

    2013-01-01

    During summer 2010, a proton transfer reaction – time of flightmass spectrometer (PTR-TOF-MS) and a quadrupole proton transfer reaction mass spectrometer (PTR-MS) were deployed simultaneously for one month in an orange orchard in the Central Valley of California to collect continuous data

  5. Isobar Separation in a Multiple-Reflection Time-of-Flight Mass Spectrometer by Mass-Selective Re-Trapping

    Science.gov (United States)

    Dickel, Timo; Plaß, Wolfgang R.; Lippert, Wayne; Lang, Johannes; Yavor, Mikhail I.; Geissel, Hans; Scheidenberger, Christoph

    2017-06-01

    A novel method for (ultra-)high-resolution spatial mass separation in time-of-flight mass spectrometers is presented. Ions are injected into a time-of-flight analyzer from a radio frequency (rf) trap, dispersed in time-of-flight according to their mass-to-charge ratios and then re-trapped dynamically in the same rf trap. This re-trapping technique is highly mass-selective and after sufficiently long flight times can provide even isobaric separation. A theoretical treatment of the method is presented and the conditions for optimum performance of the method are derived. The method has been implemented in a multiple-reflection time-of-flight mass spectrometer and mass separation powers (FWHM) in excess of 70,000, and re-trapping efficiencies of up to 35% have been obtained for the protonated molecular ion of caffeine. The isobars glutamine and lysine (relative mass difference of 1/4000) have been separated after a flight time of 0.2 ms only. Higher mass separation powers can be achieved using longer flight times. The method will have important applications, including isobar separation in nuclear physics and (ultra-)high-resolution precursor ion selection in multiple-stage tandem mass spectrometry. [Figure not available: see fulltext.

  6. Thermogravimetric-quadrupole mass-spectrometric analysis of geochemical samples.

    Science.gov (United States)

    Gibson, E. K., Jr.; Johnson, S. M.

    1972-01-01

    Thermogravimetric-quadrupole mass-spectrometric-analysis techniques can be used to study a wide variety of problems involving decomposition processes and identification of released volatile components. A recording vacuum thermoanalyzer has been coupled with a quadrupole mass spectrometer. The rapid scan capabilities of the quadrupole mass spectrometer are used to identify the gaseous components released. The capability of the thermogravimetric-quadrupole mass spectrometer to provide analytical data for identification of the released volatile components, for determination of their sequence of release and for correlation of thermal-decomposition studies is illustrated by an analysis of the Orgueil carbonaceous chondrite.

  7. Analysis of human plasma lipids by using comprehensive two-dimensional gas chromatography with dual detection and with the support of high-resolution time-of-flight mass spectrometry for structural elucidation.

    Science.gov (United States)

    Salivo, Simona; Beccaria, Marco; Sullini, Giuseppe; Tranchida, Peter Q; Dugo, Paola; Mondello, Luigi

    2015-01-01

    The main focus of the present research is the analysis of the unsaponifiable lipid fraction of human plasma by using data derived from comprehensive two-dimensional gas chromatography with dual quadrupole mass spectrometry and flame ionization detection. This approach enabled us to attain both mass spectral information and analyte percentage data. Furthermore, gas chromatography coupled with high-resolution time-of-flight mass spectrometry was used to increase the reliability of identification of several unsaponifiable lipid constituents. The synergism between both the high-resolution gas chromatography and mass spectrometry processes enabled us to attain a more in-depth knowledge of the unsaponifiable fraction of human plasma. Additionally, information was attained on the fatty acid and triacylglycerol composition of the plasma samples, subjected to investigation by using comprehensive two-dimensional gas chromatography with dual quadrupole mass spectrometry and flame ionization detection and high-performance liquid chromatography with atmospheric pressure chemical ionization quadrupole mass spectrometry, respectively. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Matrix effect in analysis of pesticide residues in fruits and vegetables by high performance liquid chromatography with quadrupole-time of flight mass spectrometry

    Directory of Open Access Journals (Sweden)

    Andoralov A.M.

    2017-03-01

    Full Text Available For modern food safety control are using techniques that allow to determinate a large number of components. So for determination of pesticide residues in fruits and vegetables commonly used methods of gas and liquid chromatography with time-of-flight mass-spectrometric detection. This system allows to carry out quantitative determination several hundreds of pesticides and their identification by the characteristic fragments of the mass spectrum. The main problem when using mass spectrometric detection is a matrix effect, which is caused by the influence of matrix components extracted with pesticides from the sample. In this work, attempts have been made to reduce the influence of the matrix in the analysis of pesticide residues by high performance liquid chromatography with time of flight mass spectrometry (HPLC / TOFMS.

  9. Development and Application of an MSALL-Based Approach for the Quantitative Analysis of Linear Polyethylene Glycols in Rat Plasma by Liquid Chromatography Triple-Quadrupole/Time-of-Flight Mass Spectrometry.

    Science.gov (United States)

    Zhou, Xiaotong; Meng, Xiangjun; Cheng, Longmei; Su, Chong; Sun, Yantong; Sun, Lingxia; Tang, Zhaohui; Fawcett, John Paul; Yang, Yan; Gu, Jingkai

    2017-05-16

    Polyethylene glycols (PEGs) are synthetic polymers composed of repeating ethylene oxide subunits. They display excellent biocompatibility and are widely used as pharmaceutical excipients. To fully understand the biological fate of PEGs requires accurate and sensitive analytical methods for their quantitation. Application of conventional liquid chromatography-tandem mass spectrometry (LC-MS/MS) is difficult because PEGs have polydisperse molecular weights (MWs) and tend to produce multicharged ions in-source resulting in innumerable precursor ions. As a result, multiple reaction monitoring (MRM) fails to scan all ion pairs so that information on the fate of unselected ions is missed. This Article addresses this problem by application of liquid chromatography-triple-quadrupole/time-of-flight mass spectrometry (LC-Q-TOF MS) based on the MS ALL technique. This technique performs information-independent acquisition by allowing all PEG precursor ions to enter the collision cell (Q2). In-quadrupole collision-induced dissociation (CID) in Q2 then effectively generates several fragments from all PEGs due to the high collision energy (CE). A particular PEG product ion (m/z 133.08592) was found to be common to all linear PEGs and allowed their total quantitation in rat plasma with high sensitivity, excellent linearity and reproducibility. Assay validation showed the method was linear for all linear PEGs over the concentration range 0.05-5.0 μg/mL. The assay was successfully applied to the pharmacokinetic study in rat involving intravenous administration of linear PEG 600, PEG 4000, and PEG 20000. It is anticipated the method will have wide ranging applications and stimulate the development of assays for other pharmaceutical polymers in the future.

  10. Rapid Quantification and Quantitation of Alkaloids in Xinjiang Fritillaria by Ultra Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Aziz Mohammat

    2017-05-01

    Full Text Available The Fritillaria genus, including different kinds of medicinal and edible plants belonging to the Liliaceae family which have the function of treating and relieving a cough and eliminating phlegm, is widely planted in Xinjiang (China. There are few comprehensive studies reporting on the characterization of the chemical constituents of Fritillaria from Xinjiang, and to date, no work describing the quantitative differences between the components in Fritillaria from Xinjiang and related species. The purpose of this study was to develop qualitative and quantitative analytical methods by Ultra Performance Liquid Chromatography-Quadrupole Time-of-flight Mass Spectrometry (UPLC-QTOF-MS for the rapid quantification and quantitation of alkaloids in wild and cultivated Xinjiang Fritillaria, which could be used in the quality control of medicine based on this natural herb. Using the UPLC-QTOF-MS method, the chemical constituents of Xinjiang Fritillaria were identified by fragmentation information and retention behavior, and were compared to reference standards. Furthermore, a quantitative comparision of four major alkaloids in wild and cultivated Xinjiang Fritillaria was conducted by determining the content of Sipeimine-3β-d-glucoside, Sipeimine, Peimisine, and Yibeinoside A, respectively. A total of 89 characteristic peaks, including more than 40 alkaloids, were identified in the chromatographic results of Fritillaria. Four main alkaloids were quantified by using a validated method based on UPLC-QTOF-MS. The relative contents of Sipeimine-3β-d-glucoside, Sipeimine, Peimisine, and Yibeinoside A varied from 0.0013%~0.1357%, 0.0066%~0.1218%, 0.0033%~0.0437%, and 0.0019%~0.1398%, respectively. A rough separation of wild and cultivated Fritillaria could be achieved by the cluster analysis method.

  11. Multi-ingredients determination and fingerprint analysis of leaves from Ilex latifolia using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Fan, Chunlin; Deng, Jiewei; Yang, Yunyun; Liu, Junshan; Wang, Ying; Zhang, Xiaoqi; Fai, Kuokchiu; Zhang, Qingwen; Ye, Wencai

    2013-10-01

    An ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) method integrating multi-ingredients determination and fingerprint analysis has been established for quality assessment and control of leaves from Ilex latifolia. The method possesses the advantages of speediness, efficiency, accuracy, and allows the multi-ingredients determination and fingerprint analysis in one chromatographic run within 13min. Multi-ingredients determination was performed based on the extracted ion chromatograms of the exact pseudo-molecular ions (with a 0.01Da window), and fingerprint analysis was performed based on the base peak chromatograms, obtained by negative-ion electrospray ionization QTOF-MS. The method validation results demonstrated our developed method possessing desirable specificity, linearity, precision and accuracy. The method was utilized to analyze 22 I. latifolia samples from different origins. The quality assessment was achieved by using both similarity analysis (SA) and principal component analysis (PCA), and the results from SA were consistent with those from PCA. Our experimental results demonstrate that the strategy integrated multi-ingredients determination and fingerprint analysis using UPLC-QTOF-MS technique is a useful approach for rapid pharmaceutical analysis, with promising prospects for the differentiation of origin, the determination of authenticity, and the overall quality assessment of herbal medicines. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Identification of N-nitrosamines in treated drinking water using nanoelectrospray ionization high-field asymmetric waveform ion mobility spectrometry with quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Zhao, Yuan Yuan; Liu, Xin; Boyd, Jessica M; Qin, Feng; Li, Jianjun; Li, Xing-Fang

    2009-01-01

    We report a nanoelectrospray ionization (nESI) with high-field asymmetric waveform ion mobility spectrometry (FAIMS) and tandem mass spectrometry (MS-MS) method for determination of small molecules of m/z 50 to 200 and its potential application in environmental analysis. Integration of nESI with FAIMS and MS-MS combines the advantages of these three techniques into one method. The nESI provides efficient sample introduction and ionization and allows for collection of multiple data from only microliters of samples. The FAIMS provides rapid separation, reduces or eliminates background interference, and improves the signal-to-noise ratio as much as 10-fold over nESI-MS-MS. The tandem quadrupole time-of-flight MS detection provides accurate mass and mass spectral measurements for structural identification. Characteristics of FAIMS compensation voltage (CV) spectra of seven nitrosamines, N-nitrosodimethylamine (NDMA), N-nitrosomethylethylamine (NMEA), N-nitrosodiethylamine (NDEA), N-nitrosodi-n-propylamine (NDPA), N-nitrosodi-n-butylamine (NDBA), N-nitrosopiperidine (NPip), and N-nitrosopyrrolidine (NPyr), were analyzed. The optimal CV of the nitrosamines (at DV -4000 V) were: -1.6 V, NDBA; 2.6 V, NDPA; 6.6 V, NPip; 8.8 V, NDEA; 13.2 V, NPyr; 14.4 V, NMEA; and 19.4 V, NDMA. Fragmentation patterns of the seven nitrosamines in the nESI-FAIMS-MS-MS were also obtained. The specific CV and MS-MS spectra resulted in positive identification of NPyr and NPip in a treated water sample, demonstrating the potential application of this technique in environmental analysis.

  13. Use of quadrupole time-of-flight mass spectrometry to determine proposed structures of transformation products of the herbicide bromacil after water chlorination.

    Science.gov (United States)

    Ibáñez, María; Sancho, Juan V; Pozo, Oscar J; Hernández, Félix

    2011-10-30

    The herbicide bromacil has been extensively used in the Spanish Mediterranean region, and although plant protection products containing bromacil have been withdrawn by the European Union, this compound is still frequently detected in surface and ground water of this area. However, the fast and complete disappearance of this compound has been observed in water intended for human consumption, after it has been subjected to chlorination. There is a concern about the possible degradation products formed, since they might be present in drinking water and might be hazardous. In this work, the sensitive full-spectrum acquisition, high resolution and exact mass capabilities of hybrid quadrupole time-of-flight (QTOF) mass spectrometry have allowed the discovery and proposal of structures of transformation products (TPs) of bromacil in water subjected to chlorination. Different ground water samples spiked at 0.5 µg/mL were subjected to the conventional chlorination procedure applied to drinking waters, sampling 2-mL aliquots at different time intervals (1, 10 and 30 min). The corresponding non-spiked water was used as control sample in each experiment. Afterwards, 50 μL of the water was directly injected into an ultra-high-pressure liquid chromatography (UHPLC)/electrospray ionization (ESI)-(Q)TOF system. The QTOF instrument enabled the simultaneous recording of two acquisition functions at different collision energies (MS(E) approach): the low-energy (LE) function, fixed at 4 eV, and the high-energy (HE) function, with a collision energy ramp from 15 to 40 eV. This approach enables the simultaneous acquisition of both parent (deprotonated and protonated molecules) and fragment ions in a single injection. The low mass errors observed for the deprotonated and protonated molecules (detected in LE function) allowed the assignment of a highly probable molecular formula. Fragment ions and neutral losses were investigated in both LE and HE spectra to elucidate the

  14. Simultaneous determination of thiamethoxam, clothianidin, and metazachlor residues in soil by ultrahigh performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Valverde, Silvia; Ares, Ana M; Bernal, José Luis; Nozal, María Jesús; Bernal, José

    2017-03-01

    A rapid pioneering method has been developed to simultaneously determine residues of three pesticides (thiamethoxam, clothianidin, and metazachlor) in soil by ultrahigh performance liquid chromatography coupled to a mass spectrometry detector (quadrupole time-of-flight). An efficient extraction procedure (90-105% average analyte recoveries) has also been proposed, involving solid-liquid extraction by a mixture of water and methanol (60:40, v/v), centrifugation, and concentration. A chromatographic analysis of the compounds was achieved in 5.5 min by means of a core-shell technology based column (Kinetex ® EVO C 18 , 50 × 2.1 mm, 1.7 μm, 100 Å). The mobile phase (0.3 mL/min, gradient elution mode) consisted of 0.1% v/v formic acid in water and 0.1% v/v formic acid in acetonitrile. The method was fully validated in terms of selectivity, detection and quantification limits, matrix effect, linearity, trueness, and precision. Low limits of detection and quantification were obtained, ranging from 0.2 to 3.0 μg/kg, which are similar to those published in previous studies, while the absence of a significant matrix effect allowed quantification of the pesticides with standard calibration curves. The proposed method was applied for an analysis of pesticides in several soil samples from experimental fields dedicated to oilseed rape cultivars. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Antioxidant activity and identification of bioactive compounds from leaves of Anthocephalus cadamba by ultra-performance liquid chromatography/electrospray ionization quadrupole time of flight mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    Madhu Chandel; Upendra Sharma; Neeraj Kumar; Bikram Singh; Satwinderjeet Kaur

    2012-01-01

    Objective: To evaluate the antioxidant potential of different extract/fractions of Anthocephalus cadamba (A. cadamba) (Roxb.) Miq. (Rubiaceae) and study the tentative identification of their active constituents. Methods: The extract/fractions were screened for antioxidant activity using various in vitro assays viz. DPPH assay, ABTS assay, superoxide anion radical scavenging assay, reducing power assay and plasmid DNA nicking assay. Total phenolic content of extract/fractions was determined by colorimetric method. An ultra-performance LC-electrospray-quadrupole-time of flight mass spectrometry method was used to analyse the active constituents of extract/fractions of A. cadamba. Results: The ethyl acetate fraction was found to be most active fraction in all the assays as compared to other extract/fractions. The IC50 value of ethyl acetate fraction (ETAC fraction) was 21.24 μg/mL, 1.12 μg/mL, 9.68 μg/mL and 57.81 μg/mL in DPPH assay, ABTS assay, reducing power assay and superoxide scavenging assay respectively. All the extract/fractions also showed the potential to protect the plasmid DNA (pBR322) against the attack of hydroxyl radicals generated by Fenton’s reagent. The bioactive compounds were identified by UPLC-ESI-QTOF-MS, by comparing the mass and λmax with literature values. Conclusions: The potential of the extract/fractions to scavenge different free radicals in different systems indicated that they may be useful therapeutic agents for treating radical-related pathologic damage.

  16. Metabolic profiling of nuciferine in rat urine, plasma, bile and feces after oral administration using ultra-high performance liquid chromatography-diode array detection-quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Wu, Xiao-Lei; Wu, Ming-Jiang; Chen, Xin-Ze; Ma, Hao-Ling; Ding, Li-Qin; Qiu, Feng; Pan, Qin; Zhang, De-Qin

    2017-06-05

    Nuciferine, a major alkaloid found in Nelumbinis Folium, exhibits a broad spectrum of bioactivities, such as antiobesity, anti-diabetes and anti-inflammatory. However, many research regarding nuciferine focused on the extraction, isolation and biological activity, the metabolism is not comprehensively explained in vivo. Thence, the present of this paper is to establish a simple method for speculating metabolites of nuciferine. A total of 15 metabolites were detected and tentatively identified through ultra high performance liquid chromatography-diode array detection-quadrupole time-of-flight mass spectrometry (UHPLC-DAD-QTOF-MS), including 7 new metabolites. Among them, we also discovered a previously unmentioned metabolically active site at the C 1 -OCH 3 position. These metabolites suggested that demethylation, oxidation, glucuronidation and sulfation were major metabolic pathways. This study provided significant experiment basis for its safety estimate and valuable information about the metabolism of nuciferine, which will be advantageous for new drug development. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Chemical fingerprint of Ganmaoling granule by double-wavelength ultra high performance liquid chromatography and ultra high performance liquid chromatography with quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Lou, Qiong; Ye, Xiaolan; Zhou, Yingyi; Li, Hua; Song, Fenyun

    2015-06-01

    A method incorporating double-wavelength ultra high performance liquid chromatography with quadrupole time-of-flight mass spectrometry was developed for the investigation of the chemical fingerprint of Ganmaoling granule. The chromatographic separations were performed on an ACQUITY UPLC HSS C18 column (2.1 × 50 mm, 1.8 μm) at 30°C using gradient elution with water/formic acid (1%) and acetonitrile at a flow rate of 0.4 mL/min. A total of 11 chemical constituents of Ganmaoling granule were identified from their molecular weight, UV spectra, tandem mass spectrometry data, and retention behavior by comparing the results with those of the reference standards or literature. And 25 peaks were selected as the common peaks for fingerprint analysis to evaluate the similarities among 25 batches of Ganmaoling granule. The results of principal component analysis and orthogonal projection to latent structures discriminant analysis showed that the important chemical markers that could distinguish the different batches were revealed as 4,5-di-O-caffeoylquinic acid, 3,5-di-O-caffeoylquinic acid, and 4-O-caffeoylquinic acid. This is the first report of the ultra high performance liquid chromatography chemical fingerprint and component identification of Ganmaoling granule, which could lay a foundation for further studies of Ganmaoling granule. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Metabolites identification of harmane in vitro/in vivo in rats by ultra-performance liquid chromatography combined with electrospray ionization quadrupole time-of-flight tandem mass spectrometry.

    Science.gov (United States)

    Li, Shuping; Liu, Wei; Teng, Liang; Cheng, Xuemei; Wang, Zhengtao; Wang, Changhong

    2014-04-01

    Harmane, a β-carboline alkaloid with a wide spectrum of pharmacological activities, is naturally present in the human diet, in numerous foodstuffs and in hallucinogenic plants such as Peganum harmala, Banisteriopsis caapi and Tribulus terrestris. However, the precise metabolic fate of harmane remains unknown. In order to know whether harmane is extensively metabolized, a rapid and sensitive method using ultra-performance liquid chromatography combined with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC/ESI-QTOF-MS) was used to analyze the metabolic profile of harmane in vitro and in vivo in rats. A total of 21 metabolites were identified from the rat liver microsomes and rat liver S9 (9), rat urine (11), feces (16), bile (16), and plasma (10) after a single oral administration of harmane using MetaboLynx™ and MassFragment ™ software tools. It indicated that the biliary and faecal clearance were the major excretion routes for harmane as well as its metabolites. The specific CLogP values combined with different acidic and alkaline mobile phase were helpful and useful for distinguishing N-oxidation and monohydroxylation metabolites. The metabolic transformation pathways of harmane included monohydroxylation, dihydroxylation, N-oxidation, O-glucuronide conjugation, O-sulphate conjugation, and glutathione conjugation. In conclusion, this study showed an insight into the metabolism of harmane. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Atmospheric pressure gas chromatography quadrupole-time-of-flight mass spectrometry for simultaneous determination of fifteen organochlorine pesticides in soil and water.

    Science.gov (United States)

    Cheng, Zhipeng; Dong, Fengshou; Xu, Jun; Liu, Xingang; Wu, Xiaohu; Chen, Zenglong; Pan, Xinglu; Zheng, Yongquan

    2016-02-26

    In this study, the application of atmospheric pressure gas chromatography quadrupole-time-of-flight mass spectrometry (APGC-QTOF-MS) has been investigated for simultaneous determination of fifteen organochlorine pesticides in soil and water. Soft ionization of atmospheric pressure gas chromatography was evaluated by comparing with traditional more energetic electron impact ionization (EI). APGC-QTOF-MS showed a sensitivity enhancement by approximately 7-305 times. The QuEChERs (Quick, Easy, Cheap, Effective, Rugged, and Safe) method was used to pretreat the soil samples and solid phase extraction (SPE) cleanup was used for water samples. Precision, accuracy and stability experiments were undertaken to evaluate the feasibility of the method. The results showed that the mean recoveries for all the pesticides from the soil samples were 70.3-118.9% with 0.4-18.3% intra-day relative standard deviations (RSD) and 1.0-15.6% inter-day RSD at 10, 50 and 500 μg/L levels, while the mean recoveries of water samples were 70.0-118.0% with 1.1-17.8% intra-day RSD and 0.5-12.2% inter-day RSD at 0.1, 0.5 and 1.0 μg/L levels. Excellent linearity (0.9931 ≦ r(2)≤ 0.9999) was obtained for each pesticides in the soil and water matrix calibration curves within the range of 0.01-1.0mg/L. The limits of detection (LOD) for each of the 15 pesticides was less than 3.00 μg/L, while the limit of quantification (LOQ) was less than 9.99 μg/L in soil and water. Furthermore, the developed method was successfully applied to monitor the targeted pesticides in real soil and water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. A new approach for accurate mass assignment on a multi-turn time-of-flight mass spectrometer.

    Science.gov (United States)

    Hondo, Toshinobu; Jensen, Kirk R; Aoki, Jun; Toyoda, Michisato

    2017-12-01

    A simple, effective accurate mass assignment procedure for a time-of-flight mass spectrometer is desirable. External mass calibration using a mass calibration standard together with an internal mass reference (lock mass) is a common technique for mass assignment, however, using polynomial fitting can result in mass-dependent errors. By using the multi-turn time-of-flight mass spectrometer infiTOF-UHV, we were able to obtain multiple time-of-flight data from an ion monitored under several different numbers of laps that was then used to calculate a mass calibration equation. We have developed a data acquisition system that simultaneously monitors spectra at several different lap conditions with on-the-fly centroid determination and scan law estimation, which is a function of acceleration voltage, flight path, and instrumental time delay. Less than 0.9 mDa mass errors were observed for assigned mass to charge ratios ( m/z) ranging between 4 and 134 using only 40 Ar + as a reference. It was also observed that estimating the scan law on-the-fly provides excellent mass drift compensation.

  1. Early Metabolome Profiling and Prognostic Value in Paraquat-Poisoned Patients: Based on Ultraperformance Liquid Chromatography Coupled To Quadrupole Time-of-Flight Mass Spectrometry.

    Science.gov (United States)

    Hu, Lufeng; Hong, Guangliang; Tang, Yahui; Wang, Xianqin; Wen, Congcong; Lin, Feiyan; Lu, Zhongqiu

    2017-12-18

    Paraquat (PQ) has caused countless deaths throughout the world. There remains no effective treatment for PQ poisoning. Here we study the blood metabolome of PQ-poisoned patients using ultraperformance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF MS). Patients were divided into groups according to blood PQ concentration. Healthy subjects served as controls. Metabolic features were statistically analyzed using multivariate pattern-recognition techniques to identify the most important metabolites. Selected metabolites were further compared with a series of clinical indexes to assess the prognostic value. PQ-poisoned patients showed substantial differences compared with healthy subjects. Based on variable of importance in the project (VIP) values and statistical analysis, 17 metabolites were selected and identified. These metabolites well-classified low PQ-poisoned patients, high PQ-poisoned patients, and healthy subjects, which was better than that of a complete blood count (CBC). Among the 17 metabolites, 20:3/18:1-PC (PC), LPA (0:0/16:0) (LPA), 19-oxo-deoxycorticosterone (19-oxo-DOC), and eicosapentaenoic acid (EPA) had prognostic value. In particular, EPA was the most sensitive one. Besides, the levels of EPA was correlated with LPA and 19-oxo-DOC. If EPA was excessively consumed, then prognosis was poor. In conclusion, the serum metabolome is substantially perturbed by PQ poisoning. EPA is the most important biomarker in early PQ poisoning.

  2. Strategy for Comprehensive Profiling and Identification of Acidic Glycosphingolipids Using Ultra-High-Performance Liquid Chromatography Coupled with Quadrupole Time-of-Flight Mass Spectrometry.

    Science.gov (United States)

    Hu, Ting; Jia, Zhixin; Zhang, Jin-Lan

    2017-07-18

    Acidic glycosphingolipids (AGSLs), which mainly consist of ganglioside and sulfatide moieties, are highly concentrated in the central nervous system. Comprehensive profiling of AGSLs has historically been challenging because of their high complexity and the lack of standards. In this study, a novel strategy was developed to comprehensively profile AGSLs using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Ganglioside isomers with different glycan chains such as GD1a/GD1b were completely separated on a C18 column for the first time to our knowledge, facilitated by the addition of formic acid in the mobile phase. A mathematical model was established to predict the retention times (RTs) of all theoretically possible AGSLs on the basis of the good logarithmic relationship between the ceramide carbon numbers of the AGSLs in the reference material and their RTs. A data set was created of 571 theoretically possible AGSLs, including the ceramide carbon numbers, RTs, and high-resolution quasi-molecular ions. A novel fast identification strategy was established for global AGSL profiling by comparing the high-resolution quasi-molecular ions and RTs of the tested peaks to those in the data set of 571 AGSLs. Using this strategy, 199 AGSL candidates were identified in rat brain tissue. MS/MS fragments were further collected for these 199 candidates to confirm their identity as AGSLs. This novel strategy was employed to profile AGSLs in brain tissue samples from control rats and model rats with bilateral common carotid artery (2-VO) cerebral ischemia. Forty AGSLs were significantly different between the control and model groups, and these differences were further interpreted.

  3. Quantitative analysis of flavanones from citrus fruits by using mesoporous molecular sieve-based miniaturized solid phase extraction coupled to ultrahigh-performance liquid chromatography and quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Cao, Wan; Ye, Li-Hong; Cao, Jun; Xu, Jing-Jing; Peng, Li-Qing; Zhu, Qiong-Yao; Zhang, Qian-Yun; Hu, Shuai-Shuai

    2015-08-07

    An analytical procedure based on miniaturized solid phase extraction (SPE) and ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry was developed and validated for determination of six flavanones in Citrus fruits. The mesoporous molecular sieve SBA-15 as a solid sorbent was characterised by Fourier transform-infrared spectroscopy and scanning electron microscopy. Additionally, compared with reported extraction techniques, the mesoporous SBA-15 based SPE method possessed the advantages of shorter analysis time and higher sensitivity. Furthermore, considering the different nature of the tested compounds, all of the parameters, including the SBA-15 amount, solution pH, elution solvent, and the sorbent type, were investigated in detail. Under the optimum condition, the instrumental detection and quantitation limits calculated were less than 4.26 and 14.29ngmL(-1), respectively. The recoveries obtained for all the analytes were ranging from 89.22% to 103.46%. The experimental results suggested that SBA-15 was a promising material for the purification and enrichment of target flavanones from complex citrus fruit samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Inhomogeneous oscillatory electric field time-of-flight mass spectrometer

    International Nuclear Information System (INIS)

    Carrico, J.P.

    1977-01-01

    The mass-to-charge ratio of an ion can be determined from the measurement of its flight time in an inhomogeneous, oscillatory electric field produced by the potential distribution V(x, y, t) = Vsub(DC) + Vsub(AC) cos ωt) (αsub(x)X 2 + αsub(y)Y 2 + αsub(z)Z 2 ). The governing equation of motion is the Mathieu equation. The principle of operation of this novel mass spectrometer is described and results of computer calculations of the flight time and resolution are reported. An experimental apparatus and results and results demonstrating the feasibility of this mass spectrometer principle are described. (author)

  5. Combined use of liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) and high performance liquid chromatography with photodiode array detector (HPLC-DAD) in systematic toxicological analysis.

    Science.gov (United States)

    Broecker, Sebastian; Pragst, Fritz; Bakdash, Abdulsallam; Herre, Sieglinde; Tsokos, Michael

    2011-10-10

    Time of flight mass spectrometry provides new possibilities of substance identification by determination of the molecular formula from accurate molecular mass and isotope pattern. However, the huge number of possible isomers requires additional evidence. As a suitable way for routine performance of systematic toxicological analysis, a method for combined use of liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) and high performance liquid chromatography with diode array detector (HPLC-DAD) was developed and applied to blood samples from 77 death cases. The blood samples were prepared by extraction with CH(2)Cl(2) and by protein precipitation with acetonitrile (1:4 (v/v)). The evaporated extracts were reconstituted in 35% acetonitril/0.1% formic acid/H(2)O and aliquots were injected for analysis by LC-QTOF-MS (Agilent 6530) and HPLC-DAD (Agilent 1200). A valve switching system enabled simultaneous operation of both separated chromatographic lines under their respective optimal conditions using the same autosampler. The ESI-QTOF-MS instrument was run in data dependent acquisition mode with switching between MS and MS/MS (cycle time 1.1s) and measuring the full mass spectra and the collision induced dissociation (CID) fragment spectra of all essential [M+H](+) ions. Libraries of accurate mass CID spectra (~2500 substances) and of DAD-UV spectra (~3300 substances) of the authors were used for substance identification. The application of this procedure is demonstrated in detail at four examples with multiple drug intake or administration. In the 77 cases altogether 198 substances were identified (87 by DAD and 195 by QTOF-MS) with a frequency between 1 and 20. In practical application, the sample preparation proved to be suitable for both techniques and for a wide variety of substances with different polarity. The automatic performance of the measurements was efficient and robust. Mutual confirmation, decrease of false positive and

  6. Determination of thyroid hormones in placenta using isotope-dilution liquid chromatography quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Li, Zhong-Min; Giesert, Florian; Vogt-Weisenhorn, Daniela; Main, Katharina Maria; Skakkebæk, Niels Erik; Kiviranta, Hannu; Toppari, Jorma; Feldt-Rasmussen, Ulla; Shen, Heqing; Schramm, Karl-Werner; De Angelis, Meri

    2018-01-26

    The transplacental passage of thyroid hormones (THs) is of great significance since the maternal THs are vitally important in ensuring the normal fetal development. In this paper, we determined the concentrations of seven THs, viz. L-thyroxine (T 4 ), 3,3',5-triiodo-l-thyronine (T 3 ), 3,3',5'-triiodo-l-thyronine (rT 3 ), 3,3'-diiodo-l-thyronine (T 2 ), 3,5-diiodo-l-thyronine (rT 2 ), 3-iodo-l-thyronine (T 1 ) and 3-iodothyronamine (T 1 AM), in placenta using isotope dilution liquid chromatography quadrupole time-of-flight mass spectrometry. We optimized the method using isotopically labeled quantification standards ( 13 C 6 -T 4 , 13 C 6 -T 3 , 13 C 6 -rT 3 and 13 C 6 -T 2 ) and recovery standard ( 13 C 12 -T 4 ) in combination with solid-liquid extraction, liquid-liquid extraction and solid phase extraction. The linearity was obtained in the range of 0.5-150 pg uL -1 with R 2 values >0.99. The method detection limits (MDLs) ranged from 0.01 ng g -1 to 0.2 ng g -1 , while the method quantification limits (MQLs) were between 0.04 ng g -1 and 0.7 ng g -1 . The spike-recoveries for THs (except for T 1 and T 1 AM) were in the range of 81.0%-112%, with a coefficient of variation (CV) of 0.5-6.2%. The intra-day CVs and inter-day CVs were 0.5%-10.3% and 1.19%-8.88%, respectively. Concentrations of the THs were 22.9-35.0 ng g -1  T 4 , 0.32-0.46 ng g -1  T 3 , 2.86-3.69 ng g -1 rT 3 , 0.16-0.26 ng g -1  T 2 , and < MDL for other THs in five human placentas, and 2.05-3.51 ng g -1  T 4 , 0.37-0.62 ng g -1  T 3 , 0.96-1.3 ng g -1 rT 3 , 0.07-0.13 ng g -1  T 2 and < MDL for other THs in five mouse placentas. The presence of T 2 was tracked in placenta for the first time. This method with improved selectivity and sensitivity allows comprehensive evaluation of TH homeostasis in research of metabolism and effects of environmental contaminant exposures. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Trace analysis of total naphthenic acids in aqueous environmental matrices by liquid chromatography/mass spectrometry-quadrupole time of flight mass spectrometry direct injection.

    Science.gov (United States)

    Brunswick, Pamela; Shang, Dayue; van Aggelen, Graham; Hindle, Ralph; Hewitt, L Mark; Frank, Richard A; Haberl, Maxine; Kim, Marcus

    2015-07-31

    A rapid and sensitive liquid chromatography quadrupole time of flight method has been established for the determination of total naphthenic acid concentrations in aqueous samples. This is the first methodology that has been adopted for routine, high resolution, high throughput analysis of total naphthenic acids at trace levels in unprocessed samples. A calibration range from 0.02 to 1.0μgmL(-1) total Merichem naphthenic acids was validated and demonstrated excellent accuracy (97-111% recovery) and precision (1.9% RSD at 0.02μgmL(-1)). Quantitative validation was also demonstrated in a non-commercial oil sands process water (OSPW) acid extractable organics (AEOs) fraction containing a higher percentage of polycarboxylic acid isomers than the Merichem technical mix. The chromatographic method showed good calibration linearity of ≥0.999 RSQ to 0.005μgmL(-1) total naphthenic acids with a precision <3.1% RSD and a calculated detection limit of 0.0004μgmL(-1) employing Merichem technical mix reference material. The method is well suited to monitoring naturally occurring and industrially derived naphthenic acids (and other AEOs) present in surface and ground waters in the vicinity of mining developments. The advantage of the current method is its direct application to unprocessed environmental samples and to examine natural naphthenic acid isomer profiles. It is noted that where the isomer profile of samples differs from that of the reference material, results should be considered semi-quantitative due to the lack of matching isomer content. The fingerprint profile of naphthenic acids is known to be transitory during aging and the present method has the ability to adapt to monitoring of these changes in naphthenic acid content. The method's total ion scan approach allows for data previously collected to be examined retrospectively for specific analyte mass ions of interest. A list of potential naphthenic acid isomers that decrease in response with aging is proposed

  8. Accurate determination of 3-alkyl-2-methoxypyrazines in wines by gas chromatography quadrupole time-of-flight tandem mass spectrometry following solid-phase extraction and dispersive liquid-liquid microextraction.

    Science.gov (United States)

    Fontana, Ariel; Rodríguez, Isaac; Cela, Rafael

    2017-09-15

    A new reliable method for the determination 3-alkyl-2-methoxypyrazines (MPs) in wine samples based on the sequential combination of solid-phase extraction (SPE), dispersive liquid-liquid microextraction (DLLME) and gas chromatography (GC) quadrupole time-of-flight accurate tandem mass spectrometry (QTOF-MS/MS) is presented. Primary extraction of target analytes was carried out by using a reversed-phase Oasis HLB (200mg) SPE cartridge combined with acetonitrile as elution solvent. Afterwards, the SPE extract was submitted to DLLME concentration using 0.06mL carbon tetrachloride (CCl 4 ) as extractant. Under final working conditions, sample concentration factors above 379 times and limits of quantification (LOQs) between 0.3 and 2.1ngL -1 were achieved. Moreover, the overall extraction efficiency of the method was unaffected by the particular characteristics of each wine; thus, accurate results (relative recoveries from 84 to 108% for samples spiked at concentrations from 5 to 25ngL -1 ) were obtained using matrix-matched standards, without using standard additions over every sample. Highly selective chromatographic records were achieved considering a mass window of 5mDa, centered in the quantification product ion corresponding to each compound. Twelve commercial wines, elaborated with grapes from different varieties and geographical origins, were processed with the optimized method. The 2-isobutyl-3-methoxypyrazine (IBMP) was determined at levels above the LOQs of the method in half of the samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Simultaneous detection and identification of precursors, degradation and co-products of chemical warfare agents in drinking water by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Tak, Vijay; Purohit, Ajay; Pardasani, Deepak; Goud, D Raghavender; Jain, Rajeev; Dubey, D K

    2014-11-28

    Environmental markers of chemical warfare agents (CWAs) comprise millions of chemical structures. The simultaneous detection and identification of these environmental markers poses difficulty due to their diverse chemical properties. In this work, by using ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF), a generic analytical method for the detection and identification of wide range of environmental markers of CWAs (including precursors, degradation and co-products of nerve agents and sesqui-mustards) in drinking water, was developed. The chromatographic analysis of 55 environmental markers of CWAs including isomeric and isobaric compounds was accomplished within 20 min, using 1.8 μm particle size column. Subsequent identification of the compounds was achieved by the accurate mass measurement of either protonated molecule [M+H](+) or ammonium adduct [M+NH4](+) and fragment ions. Isomeric and isobaric compounds were distinguished by chromatographic retention time, characteristic fragment ions generated by both in-source collision induced dissociation (CID) and CID in the collision cell by MS/MS experiments. The exact mass measurement errors for all ions were observed less than 3 ppm with internal calibration. The method limits of detection (LODs) and limits of quantification (LOQs) were determined in drinking water and found to be 1-50 ng mL(-1) and 5-125 ng mL(-1), respectively. Applicability of the proposed method was proved by determining the environmental markers of CWAs in aqueous samples provided by Organization for the Prohibition of Chemical Weapons during 34th official proficiency test. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Identification and characterization of vilazodone metabolites in rats and microsomes by ultrahigh-performance liquid chromatography/quadrupole time-of-flight tandem mass spectrometry.

    Science.gov (United States)

    Chavan, Balasaheb B; Kalariya, Pradipbhai D; Tiwari, Shristy; Nimbalkar, Rakesh D; Garg, Prabha; Srinivas, R; Talluri, M V N Kumar

    2017-12-15

    Vilazodone is a selective serotonin reuptake inhibitor (SSRI) used for the treatment of major depressive disorder (MDD). An extensive literature search found few reports on the in vivo and in vitro metabolism of vilazodone. Therefore, we report a comprehensive in vivo and in vitro metabolic identification and structural characterization of vilazodone using ultrahigh-performance liquid chromatography/quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF/MS/MS) and in silico toxicity study of the metabolites. To identify in vivo metabolites of vilazodone, blood, urine and faeces samples were collected at different time intervals starting from 0 h to 48 h after oral administration of vilazodone to Sprague-Dawley rats. The in vitro metabolism study was conducted with human liver microsomes (HLM) and rat liver microsomes (RLM). The samples were prepared using an optimized sample preparation approach involving protein precipitation followed by solid-phase extraction. The metabolites have been identified and characterized by using LC/ESI-MS/MS. A total of 12 metabolites (M1-M12) were identified in in vivo and in vitro matrices and characterized by LC/ESI-MS/MS. The majority of the metabolites were observed in urine, while a few metabolites were present in faeces and plasma. Two metabolites were observed in the in vitro study. A semi-quantitative study based on percentage counts shows that metabolites M11, M6 and M8 were observed in higher amounts in urine, faeces and plasma, respectively. The structures of all the 12 metabolites were elucidated by using LC/ESI-MS/MS. The study suggests that vilazodone was metabolized via hydroxylation, dihydroxylation, glucuronidation, oxidative deamination, dealkylation, dehydrogenation and dioxidation. All the metabolites were screened for toxicity using an in silico tool. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Analysis of 44 drugs of abuse and metabolites in wastewater and river water using a hybrid quadrupole time-of-flight tandem mass spectrometry

    Science.gov (United States)

    Andres-Costa, M. Jesus; Andreu, Vicente; Picó, Yolanda

    2016-04-01

    The presence of drugs of abuse in the aquatic environment has been recognized as an important issue for the ecosystem due their possible negative effect on it (Richardson, 2011). Incomplete removal of these substances during wastewater treatment could be one of the causes of their release in the environment (Zuccato and Castiglioni, 2009). Pollution by illicit drug residues at very low concentrations is generalized in populated areas, with potential risks for human health and the environment (Zuccato, 2008; Castiglioni et al 2007).The aim of this study was to screen and quantify 44 drugs of abuse and metabolites of wastewater samples using a hybrid quadrupole time-of-flight tandem mass spectrometry and furthermore carry out a post-target screening to identify additional compounds present in the water samples. Wastewater samples were collected from the influent and effluent of three wastewater treatment plants (WWTPs) in Valencia and river water samples form Turia River Basin. Illicit drugs were extracted by solid-phase extraction (SPE). The chromatography was performed with an Agilent 1260 Infinity ultra high performance liquid chromatography (UHPLC). The UHPLC system was coupled to a hybrid quadrupole time-of-flight ABSciex Triple TOFTM 5600. All analytes were analyzed in positive mode. Acquiring full scan MS data was employed for quantification of drugs of abuse, and automatic data dependent information product ion spectra (IDA-MS/MS) was checked for identifying emerging illicit drugs and other compounds in water samples. The use of a database containing 1212 compounds achieved high confidence results for a wide number of contaminants. In the present study, the presence of compounds that belong to amphetamines group (amphetamine, methamphetamine, ephedrine, MDMA, MDA and MDEA), tryptamines (bufotenine), pirrolidinophenone group (α-PVP and 4'-MePHP), arylcyclohexylamines (ketamine), cocainics (cocaine, benzoylecgonine, cocaethylene and ecgonine methyl ester) and

  12. Matrix-assisted laser desorption/ionization coupled with quadrupole/orthogonal acceleration time-of-flight mass spectrometry for protein discovery, identification, and structural analysis.

    Science.gov (United States)

    Baldwin, M A; Medzihradszky, K F; Lock, C M; Fisher, B; Settineri, T A; Burlingame, A L

    2001-04-15

    The design and operation of a novel UV-MALDI ionization source on a commercial QqoaTOF mass spectrometer (Applied Biosystem/MDS Sciex QSTAR Pulsar) is described. Samples are loaded on a 96-well target plate, the movement of which is under software control and can be readily automated. Unlike conventional high-energy MALDI-TOF, the ions are produced with low energies (5-10 eV) in a region of relatively low vacuum (8 mTorr). Thus, they are cooled by extensive low-energy collisions before selection in the quadrupole mass analyzer (Q1), potentially giving a quasi-continuous ion beam ideally suited to the oaTOF used for mass analysis of the fragment ions, although ion yields from individual laser shots may vary widely. Ion dissociation is induced by collisions with argon in an rf-only quadrupole cell, giving typical low-energy CID spectra for protonated peptide ions. Ions separated in the oaTOF are registered by a four-anode detector and time-to-digital converter and accumulated in "bins" that are 625 ps wide. Peak shapes depend upon the number of ion counts in adjacent bins. As expected, the accuracy of mass measurement is shown to be dependent upon the number of ions recorded for a particular peak. With internal calibration, mass accuracy better than 10 ppm is attainable for peaks that contain sufficient ions to give well-defined Gaussian profiles. By virtue of its high resolution, capability for accurate mass measurements, and sensitivity in the low-femotomole range, this instrument is ideally suited to protein identification for proteomic applications by generation of peptide tags, manual sequence interpretation, identification of modifications such as phosphorylation, and protein structural elucidation. Unlike the multiply charged ions typical of electrospray ionization, the singly charged MALDI-generated peptide ions show a linear dependence of optimal collision energy upon molecular mass, which is advantageous for automated operation. It is shown that the novel

  13. Time-of-flight mass spectrometer

    International Nuclear Information System (INIS)

    Ivanov, M.A.; Kozlov, B.N.; Mamyrin, B.A.; Shmikk, D.V.; Shebelin, V.G.

    1981-01-01

    A time-of-flight mass spectrometer containing a pulsed ion source with an electron gun and two electrodes limiting ionization range, drift space and ion acceptor, is described. To expand functional possibilities, a slot collimator of the gas stream, two quantum generators and two diaphragms for the inlet of quantum generator radiation located on both sides of the ion source, are introduced in the ion source. The above invention enables to study details of the complex interaction process of laser radiation with molecules of the gas stream, which is actual for laser isotope separation

  14. Antioxidant activity and ultra-performance LC-electrospray ionization-quadrupole time-of-flight mass spectrometry for phenolics-based fingerprinting of Rose species: Rosa damascena, Rosa bourboniana and Rosa brunonii.

    Science.gov (United States)

    Kumar, Neeraj; Bhandari, Pamita; Singh, Bikram; Bari, Shamsher S

    2009-02-01

    Roses are one of the most important groups of ornamental plants and their fruits and flowers are used in a wide variety of food, nutritional products and different traditional medicines. The antioxidant activity of methanolic extracts from fresh flowers of three rose species (Rosa damascena, Rosa bourboniana and Rosa brunonii) was evaluated by 1,1-diphenyl-2-picryl hydrazyl (DPPH) free-radical method. The ability to scavenge DPPH radical was measured by the discoloration of the solution. The methanolic extract from R. brunonii exhibited maximum free-radical-scavenging activity (64.5+/-0.38%) followed by R. bourboniana (51.8+/-0.46%) and R. damascena (43.6+/-0.25%) at 100 microg/ml. Simultaneously, ultra-performance liquid chromatography coupled with electrospray ionization-quadrupole time-of-flight mass spectrometry (UPLC-ESI-QTOF-MS) was used to study phenolic composition in the methanolic extracts from the fresh flowers of rose species. The phenolic constituents were further investigated by direct infusion-ESI-QTOF-MS/MS in negative ion mode. Characteristic Electrospray ionization tandem mass spectrometry (ESI-MS/MS) spectra with other diagnostic fragment ions generated by retro Diels-Alder (RDA) fragmentation pathways were recorded for the flavonoids. Distinct similarities were observed in the relative distribution of polyphenolic compounds among the three species. The dominance of quercetin, kaempferol and their glycosides was observed in all the three species.

  15. Application of characteristic ion filtering with ultra-high performance liquid chromatography quadrupole time of flight tandem mass spectrometry for rapid detection and identification of chemical profiling in Eucommia ulmoides Oliv.

    Science.gov (United States)

    He, Mingzhen; Jia, Jia; Li, Junmao; Wu, Bei; Huang, Wenping; Liu, Mi; Li, Yan; Yang, Shilin; Ouyang, Hui; Feng, Yulin

    2018-06-15

    Efficient targeted identification of chemical constituents from traditional Chinese medicine is still a major challenge. In this study, we used a characteristic ion filtering strategy to characterize compounds of Eucommia ulmoides Oliv. by ultra-high performance liquid chromatography quadrupole time of flight tandem mass spectrometry (UHPLC-ESI-Q-TOF-MS/MS). By using the ion filtering approach, target constituents of Eucommia ulmoides Oliv. were easily tentatively identified from the enormous LC/MS data set. The strategy consisted of the following three steps: 1) To establishing a characteristic ion database by diagnostic product ions or neutral loss fragments; 2) To evaluate the structural information of the compounds by high-resolution diagnostic characteristic ion filtering; 3) To confirm the different classes by chemical profiling according to their MS/MS spectra. In this study, characteristic ions are summarized as five major groups of compounds in Eucommia ulmoides Oliv. In total, 113 compounds were tentatively identified, including 23 potentially novel compounds. The results form a foundation for the quality control and chemical basis of Eucommia ulmoides Oliv. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Monoacylglycerol Analysis Using MS/MSALL Quadruple Time of Flight Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Fei Gao

    2016-08-01

    Full Text Available Monoacylglycerols (MAGs are structural and bioactive metabolites critical for biological function. Development of facile tools for measuring MAG are essential to understand its role in different diseases and various pathways. A data-independent acquisition method, MS/MSALL, using electrospray ionization (ESI coupled quadrupole time of flight mass spectrometry (MS, was utilized for the structural identification and quantitative analysis of individual MAG molecular species. Compared with other acylglycerols, diacylglycerols (DAG and triacylglycerols (TAG, MAG characteristically presented as a dominant protonated ion, [M + H]+, and under low collision energy as fatty acid-like fragments due to the neutral loss of the glycerol head group. At low concentrations (<10 pmol/µL, where lipid-lipid interactions are rare, there was a strong linear correlation between ion abundance and MAG concentration. Moreover, using the MS/MSALL method the major MAG species from human plasma and mouse brown and white adipose tissues were quantified in less than 6 min. Collectively, these results demonstrate that MS/MSALL analysis of MAG is an enabling strategy for the direct identification and quantitative analysis of low level MAG species from biological samples with high throughput and sensitivity.

  17. Development and validation of an ultra-performance liquid chromatography quadrupole time of flight mass spectrometry method for rapid quantification of free amino acids in human urine.

    Science.gov (United States)

    Joyce, Richard; Kuziene, Viktorija; Zou, Xin; Wang, Xueting; Pullen, Frank; Loo, Ruey Leng

    2016-01-01

    An ultra-performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-qTOF-MS) method using hydrophilic interaction liquid chromatography was developed and validated for simultaneous quantification of 18 free amino acids in urine with a total acquisition time including the column re-equilibration of less than 18 min per sample. This method involves simple sample preparation steps which consisted of 15 times dilution with acetonitrile to give a final composition of 25 % aqueous and 75 % acetonitrile without the need of any derivatization. The dynamic range for our calibration curve is approximately two orders of magnitude (120-fold from the lowest calibration curve point) with good linearity (r (2) ≥ 0.995 for all amino acids). Good separation of all amino acids as well as good intra- and inter-day accuracy (amino acids in the prepared urine samples was found to be stable for 72 h at 4 °C, after one freeze thaw cycle and for up to 4 weeks at -80 °C. We have applied this method to quantify the content of 18 free amino acids in 646 urine samples from a dietary intervention study. We were able to quantify all 18 free amino acids in these urine samples, if they were present at a level above the LOD. We found our method to be reproducible (accuracy and precision were typically <10 % for QCL, QCM and QCH) and the relatively high sample throughput nature of this method potentially makes it a suitable alternative for the analysis of urine samples in clinical setting.

  18. The calculus and the design of a miniature quadrupole mass filter: a selected solution from different types of mass analyzers

    International Nuclear Information System (INIS)

    Cuna, C.; Ioanoviciu, D.; Lupsa, N.; Chis, A.

    2002-01-01

    The mass spectrometers are very precise tools used in chemical and isotopic analysis for environmental surveillance. Traditionally environmental analysis is done by sampling the soil, air or water and taking the sample back to the laboratory for analysis. To avoid the difficulties related with the sample alteration during the sampling process and the transport the analysis 'in situ' is to be preferred. This type of analysis combines the sampling and analysis and produces an analytical result almost instantly. Fast-response detection methods are highly desirable in cases where relatively short-lived species are to be examined. Theoretically, any type of mass analyzers can be miniaturized, but some are better suited for miniaturization than others. We studied comparatively different types of mass analyzers that can be miniaturized, especially quadrupole, magnetic sector and time of flight types, in view to select from all these, the best solution for our purpose, the application to the 'in situ' environmental monitoring and inspection, analytical process control. We investigated and calculated the properties of some geometrical arrangements that we reported, one of these being a double focusing mass analyzer with electric deflector and magnetic deflector combined in a reversed geometry. From the different calculated versions we selected the following one, with the characteristic parameters: n = 62, f = 2 MHz, L = 0.07 m, r 0 = 2.616 x 10 -3 m, E z = 5 V, R housing = 3.5 r 0 , V m = 1000 V, R max = 200, M max = 200 u. Starting from these mechanical and electrical parameters we calculated and designed a miniature quadrupole mass spectrometer. A theoretical study of the ion trajectories in the quadrupole analyzer by matrix formalism as well as by using Mathieu functions was made. Using the program SIMION 6, the trajectories inside the quadrupole filter were also simulated. The calculus of the ion trajectories starts by numerically solving of the Mathieu type equation

  19. Atmospheric pressure gas chromatography coupled to quadrupole-time of flight mass spectrometry as a powerful tool for identification of non intentionally added substances in acrylic adhesives used in food packaging materials.

    Science.gov (United States)

    Canellas, E; Vera, P; Domeño, C; Alfaro, P; Nerín, C

    2012-04-27

    Acrylic adhesives are used to manufacture multilayer laminates that are used in food packaging to form the geometric shape of the package as well as to stick labels on the packages. Once applied on the packaging adhesives can supply potential migrants that could endanger the packaged food. Adhesives are complex matrices where intentionally and non intentionally added substances are present, but the identification of the migrants is required by law. In this study atmospheric pressure gas chromatography coupled to a quadrupole hyphenated to a time of flight mass spectrometer (APGC-MS/Q-TOF) has been explored for identification of unknowns coming from three different acrylic adhesives. The results are compared to those obtained by conventional GC-MS-Q (quadrupole). Sixteen compounds were identified by GC-MS/Q and five of them were confirmed by APGC-MS/Q-TOF as their molecular ions were found. Moreover, additional three new compounds were identified and their structure was elucidated working with the spectra obtained by APGC-MS/Q-TOF. This finding was very relevant as these compounds were biocides suspected to be allergenic and cytotoxic in humans. Migration studies were carried out using Tenax as solid food simulant and the results showed that the three acrylic adhesives tested in this work were safe for being used in food packaging materials since the migration of compounds previously identified was below the limit established in the current legislation. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Unbiased metabolite profiling by liquid chromatography-quadrupole time-of-flight mass spectrometry and multivariate data analysis for herbal authentication: classification of seven Lonicera species flower buds.

    Science.gov (United States)

    Gao, Wen; Yang, Hua; Qi, Lian-Wen; Liu, E-Hu; Ren, Mei-Ting; Yan, Yu-Ting; Chen, Jun; Li, Ping

    2012-07-06

    Plant-based medicines become increasingly popular over the world. Authentication of herbal raw materials is important to ensure their safety and efficacy. Some herbs belonging to closely related species but differing in medicinal properties are difficult to be identified because of similar morphological and microscopic characteristics. Chromatographic fingerprinting is an alternative method to distinguish them. Existing approaches do not allow a comprehensive analysis for herbal authentication. We have now developed a strategy consisting of (1) full metabolic profiling of herbal medicines by rapid resolution liquid chromatography (RRLC) combined with quadrupole time-of-flight mass spectrometry (QTOF MS), (2) global analysis of non-targeted compounds by molecular feature extraction algorithm, (3) multivariate statistical analysis for classification and prediction, and (4) marker compounds characterization. This approach has provided a fast and unbiased comparative multivariate analysis of the metabolite composition of 33-batch samples covering seven Lonicera species. Individual metabolic profiles are performed at the level of molecular fragments without prior structural assignment. In the entire set, the obtained classifier for seven Lonicera species flower buds showed good prediction performance and a total of 82 statistically different components were rapidly obtained by the strategy. The elemental compositions of discriminative metabolites were characterized by the accurate mass measurement of the pseudomolecular ions and their chemical types were assigned by the MS/MS spectra. The high-resolution, comprehensive and unbiased strategy for metabolite data analysis presented here is powerful and opens the new direction of authentication in herbal analysis. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Analysis of the Constituents in “Zhu She Yong Xue Shuan Tong” by Ultra High Performance Liquid Chromatography with Quadrupole Time-of-Flight Mass Spectrometry Combined with Preparative High Performance Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Lin-Lin Wang

    2015-11-01

    Full Text Available “Zhu She Yong Xue Shuan Tong” lyophilized powder (ZSYXST, consists of a series of saponins extracted from Panax notoginseng, which has been widely used in China for the treatment of strokes. In this study, an ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS combined with preparative high performance liquid chromatography (PHPLC method was developed to rapidly identify both major and minor saponins in ZSYXST. Some high content components were removed through PHPLC in order to increase the sensitivity of the trace saponins. Then, specific characteristic fragment ions in both positive and negative mode were utilized to determine the types of aglycone, saccharide, as well as the saccharide chain linkages. As a result, 94 saponins, including 20 pairs of isomers and ten new compounds, which could represent higher than 98% components in ZSYXST, were identified or tentatively identified in commercial ZSYXST samples.

  2. Metabolomics study on primary dysmenorrhea patients during the luteal regression stage based on ultra performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry

    Science.gov (United States)

    Fang, Ling; Gu, Caiyun; Liu, Xinyu; Xie, Jiabin; Hou, Zhiguo; Tian, Meng; Yin, Jia; Li, Aizhu; Li, Yubo

    2017-01-01

    Primary dysmenorrhea (PD) is a common gynecological disorder which, while not life-threatening, severely affects the quality of life of women. Most patients with PD suffer ovarian hormone imbalances caused by uterine contraction, which results in dysmenorrhea. PD patients may also suffer from increases in estrogen levels caused by increased levels of prostaglandin synthesis and release during luteal regression and early menstruation. Although PD pathogenesis has been previously reported on, these studies only examined the menstrual period and neglected the importance of the luteal regression stage. Therefore, the present study used urine metabolomics to examine changes in endogenous substances and detect urine biomarkers for PD during luteal regression. Ultra performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry was used to create metabolomic profiles for 36 patients with PD and 27 healthy controls. Principal component analysis and partial least squares discriminate analysis were used to investigate the metabolic alterations associated with PD. Ten biomarkers for PD were identified, including ornithine, dihydrocortisol, histidine, citrulline, sphinganine, phytosphingosine, progesterone, 17-hydroxyprogesterone, androstenedione, and 15-keto-prostaglandin F2α. The specificity and sensitivity of these biomarkers was assessed based on the area under the curve of receiver operator characteristic curves, which can be used to distinguish patients with PD from healthy controls. These results provide novel targets for the treatment of PD. PMID:28098892

  3. Ion mobility analyzer - quadrupole mass spectrometer system design

    International Nuclear Information System (INIS)

    Cuna, C; Leuca, M; Lupsa, N; Mirel, V; Cuna, Stela; Cosma, V; Tusa, Florina; Bocos-Bintintan, V

    2009-01-01

    Because of their extremely high sensitivity for chemicals with elevated electronegativity or high proton affinity the ion mobility analysers are ideal for the ultra-trace detection of toxic or explosive chemicals, most of these situated often at concentration levels of sub-ppb (parts-per-billion). Ion mobility spectrometers (IMS) can be used to identify illicit drugs or environmental pollutants. Since resolution of an IMS is relatively low, to achieve an accurate identification of target analyte it is recommended to couple the IMS with a quadrupole mass spectrometer (QMS) or a time of flight mass spectrometer, acquiring in this way confirmatory information. This coupling is made through a specific interface. In this paper, an experimental model of such a tandem instrument, IMS-QMS is described. Accomplishment of this general purpose will be done, overcoming a series of specific issues. This implies the solving, using innovative solutions, of a series of complex issues: ensuring the stability of the ions beam generated by ion source; transfer with a good efficiency of the ionic current from IMS analyser to QMS; and realization of a special electronic circuitry which will be able to detect both positive and negative ions.

  4. Ion mobility analyzer - quadrupole mass spectrometer system design

    Energy Technology Data Exchange (ETDEWEB)

    Cuna, C; Leuca, M; Lupsa, N; Mirel, V; Cuna, Stela; Cosma, V; Tusa, Florina [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania); Bocos-Bintintan, V, E-mail: cornel.cuna@itim-cj.r [Babes-Bolyai University, Faculty of Environmental Sciences, 3 Fantanele, 400294 Cluj Napoca (Romania)

    2009-08-01

    Because of their extremely high sensitivity for chemicals with elevated electronegativity or high proton affinity the ion mobility analysers are ideal for the ultra-trace detection of toxic or explosive chemicals, most of these situated often at concentration levels of sub-ppb (parts-per-billion). Ion mobility spectrometers (IMS) can be used to identify illicit drugs or environmental pollutants. Since resolution of an IMS is relatively low, to achieve an accurate identification of target analyte it is recommended to couple the IMS with a quadrupole mass spectrometer (QMS) or a time of flight mass spectrometer, acquiring in this way confirmatory information. This coupling is made through a specific interface. In this paper, an experimental model of such a tandem instrument, IMS-QMS is described. Accomplishment of this general purpose will be done, overcoming a series of specific issues. This implies the solving, using innovative solutions, of a series of complex issues: ensuring the stability of the ions beam generated by ion source; transfer with a good efficiency of the ionic current from IMS analyser to QMS; and realization of a special electronic circuitry which will be able to detect both positive and negative ions.

  5. A compact time-of-flight mass spectrometer for ion source characterization

    International Nuclear Information System (INIS)

    Chen, L.; Wan, X.; Jin, D. Z.; Tan, X. H.; Huang, Z. X.; Tan, G. B.

    2015-01-01

    A compact time-of-flight mass spectrometer with overall dimension of about 413 × 250 × 414 mm based on orthogonal injection and angle reflection has been developed for ion source characterization. Configuration and principle of the time-of-flight mass spectrometer are introduced in this paper. The mass resolution is optimized to be about 1690 (FWHM), and the ion energy detection range is tested to be between about 3 and 163 eV with the help of electron impact ion source. High mass resolution and compact configuration make this spectrometer useful to provide a valuable diagnostic for ion spectra fundamental research and study the mass to charge composition of plasma with wide range of parameters

  6. Cyclodextrin-based miniaturized solid phase extraction for biopesticides analysis in water and vegetable juices samples analyzed by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Peng, Li-Qing; Ye, Li-Hong; Cao, Jun; Chang, Yan-Xu; Li, Qin; An, Mingrui; Tan, Zhijing; Xu, Jing-Jing

    2017-07-01

    A cyclodextrin-based miniaturized solid-phase extraction was developed to extract biopesticides from water and vegetable juices. The analytes were detected by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. In the solid-phase extraction (SPE) procedure, the liquid sample solution is passed through a packed column filled with 40mg of HP-β-CD, and then the target analytes are absorbed and finally eluted with methanol-acetic acid (90:10, v/v) into a collection tube. The limits of quantification ranged from 3.73 to 16.51ng/mL for a water matrix, from 2.62 to 13.23ng/mL for an orange juice matrix and from 1.76 to 10.35ng/mL for a tomato juice matrix, respectively. The average recovery values were in the range of 88.3-95.9% for the spiked samples. The established methodology was successfully applied to analyze sanguinarine, berberine, rotenone and osthole in water, orange juice and tomato juice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Indirect enantioseparation of fluoxetine in mouse serum by derivatization with 1R-(-)-menthyl chloroformate followed by ultra high performance liquid chromatography and quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Zhao, Jing; Jin, Yan; Shin, Yujin; Jeong, Kyung Min; Lee, Jeongmi

    2016-03-01

    Here we describe a simple and sensitive analytical method for the enantioselective quantification of fluoxetine in mouse serum using ultra high performance liquid chromatography with quadrupole time-of-flight mass spectrometry. The sample preparation method included a simple deproteinization with acetonitrile in 50 μL of serum, followed by derivatization of the extracts in 50 μL of 2 mM 1R-(-)-menthyl chloroformate at 45ºC for 55 min. These conditions were statistically optimized through response surface methodology using a central composite design. Under the optimized conditions, neither racemization nor kinetic resolution occurred. The derivatized diastereomers were readily resolved on a conventional sub-2 μm C18 column under a simple gradient elution of aqueous methanol containing 0.1% formic acid. The established method was validated and found to be linear, precise, and accurate over the concentration range of 5.0-1000.0 ng/mL for both R and S enantiomers (r(2) > 0.993). Stability tests of the prepared samples at three different concentration levels showed that the R- and S-fluoxetine derivatives were relatively stable for 48 h. No significant matrix effects were observed. Last, the developed method was successfully used for enantiomeric analysis of real serum samples collected at a number of time points from mice administered with racemic fluoxetine. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Sensitive screening of abused drugs in dried blood samples using ultra-high-performance liquid chromatography-ion booster-quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Chepyala, Divyabharathi; Tsai, I-Lin; Liao, Hsiao-Wei; Chen, Guan-Yuan; Chao, Hsi-Chun; Kuo, Ching-Hua

    2017-03-31

    An increased rate of drug abuse is a major social problem worldwide. The dried blood spot (DBS) sampling technique offers many advantages over using urine or whole blood sampling techniques. This study developed a simple and efficient ultra-high-performance liquid chromatography-ion booster-quadrupole time-of-flight mass spectrometry (UHPLC-IB-QTOF-MS) method for the analysis of abused drugs and their metabolites using DBS. Fifty-seven compounds covering the most commonly abused drugs, including amphetamines, opioids, cocaine, benzodiazepines, barbiturates, and many other new and emerging abused drugs, were selected as the target analytes of this study. An 80% acetonitrile solvent with a 5-min extraction by Geno grinder was used for sample extraction. A Poroshell column was used to provide efficient separation, and under optimal conditions, the analytical times were 15 and 5min in positive and negative ionization modes, respectively. Ionization parameters of both electrospray ionization source and ion booster (IB) source containing an extra heated zone were optimized to achieve the best ionization efficiency of the investigated abused drugs. In spite of their structural diversity, most of the abused drugs showed an enhanced mass response with the high temperature ionization from an extra heated zone of IB source. Compared to electrospray ionization, the ion booster (IB) greatly improved the detection sensitivity for 86% of the analytes by 1.5-14-fold and allowed the developed method to detect trace amounts of compounds on the DBS cards. The validation results showed that the coefficients of variation of intra-day and inter-day precision in terms of the signal intensity were lower than 19.65%. The extraction recovery of all analytes was between 67.21 and 115.14%. The limits of detection of all analytes were between 0.2 and 35.7ngmL -1 . The stability study indicated that 7% of compounds showed poor stability (below 50%) on the DBS cards after 6 months of storage at

  9. Analysis of Therapeutic Effect of Ilex hainanensis Merr. Extract on Nonalcoholic Fatty Liver Disease through Urine Metabolite Profiling by Ultraperformance Liquid Chromatography/Quadrupole Time of Flight Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Jing-jing Li

    2013-01-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD, the most common form of chronic liver disease, is increased worldwide in parallel with the obesity epidemic. Our previous studies have showed that the extract of I. hainanensis (EIH can prevent NAFLD in rat fed with high-fat diet. In this work, we aimed to find biomarkers of NAFLD and investigate the therapeutic effects of EIH. NAFLD model was induced in male Sprague-Dawley rats by high-fat diet. The NAFLD rats were administered EIH orally (250 mg/kg for two weeks. After the experimental period, samples of 24 h urine were collected and analyzed by ultraperformance liquid chromatography/quadrupole time of flight mass spectrometry (UPLC-Q-TOF. Orthogonal partial least squares analysis (OPLSs models were built to find biomarkers of NAFLD and investigate the therapeutic effects of EIH. 22 metabolites, which are distributed in several metabolic pathways, were identified as potential biomarkers of NAFLD. Taking these biomarkers as screening indexes, EIH could reverse the pathological process of NAFLD through regulating the disturbed pathway of metabolism. The metabolomic results not only supply a systematic view of the development and progression of NAFLD but also provide a theoretical basis for the prevention or treatment of NAFLD.

  10. Profiling analysis of low molecular weight heparins by multiple heart-cutting two dimensional chromatography with quadruple time-of-flight mass spectrometry.

    Science.gov (United States)

    Ouyang, Yilan; Zeng, Yangyang; Rong, Yinxiu; Song, Yue; Shi, Lv; Chen, Bo; Yang, Xinlei; Xu, Naiyu; Linhardt, Robert J; Zhang, Zhenqing

    2015-09-01

    Low molecular weight heparins (LMWHs) are polydisperse and microheterogenous mixtures of polysaccharides used as anticoagulant drugs. Profiling analysis is important for obtaining deeper insights into the structure of LMWHs. Previous oligosaccharide mapping methods are relatively low resolution and are unable to show an entire picture of the structural complexity of LMWHs. In the current study a profiling method was developed relying on multiple heart-cutting, two-dimensional, ultrahigh performance liquid chromatography with quadruple time-of-flight mass spectrometry. This represents an efficient, automated, and robust approach for profiling LMWHs. Using size-exclusion chromatography and ion-pairing reversed-phase chromatography in a two-dimensional separation, LMW components of different sizes and LMW components of the same size but with different charges and polarities can be resolved, providing a more complete picture of a LMWH. Structural information on each component was then obtained with quadrupole time-of-flight mass spectrometry. More than 80 and 120 oligosaccharides were observed and unambiguously assigned from the LMWHs, nadroparin and enoxaparin, respectively. This method might be useful for quality control of LMWHs and as a powerful tool for heparin-related glycomics.

  11. Proton Transfer Time-of-Flight Mass Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Thomas B. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-03-01

    The Proton Transfer Reaction Mass Spectrometer (PTRMS) measures gas-phase compounds in ambient air and headspace samples before using chemical ionization to produce positively charged molecules, which are detected with a time-of-flight (TOF) mass spectrometer. This ionization method uses a gentle proton transfer reaction method between the molecule of interest and protonated water, or hydronium ion (H3O+), to produce limited fragmentation of the parent molecule. The ions produced are primarily positively charged with the mass of the parent ion, plus an additional proton. Ion concentration is determined by adding the number of ions counted at the molecular ion’s mass-to-charge ratio to the number of air molecules in the reaction chamber, which can be identified according to the pressure levels in the reaction chamber. The PTRMS allows many volatile organic compounds in ambient air to be detected at levels from 10–100 parts per trillion by volume (pptv). The response time is 1 to 10 seconds.

  12. Multiple-ion-beam time-of-flight mass spectrometer

    International Nuclear Information System (INIS)

    Rohrbacher, Andreas; Continetti, Robert E.

    2001-01-01

    An innovative approach to increase the throughput of mass spectrometric analyses using a multiple-ion-beam mass spectrometer is described. Two sample spots were applied onto a laser desorption/ionization target and each spot was simultaneously irradiated by a beam of quadrupled Nd:YLF laser radiation (261.75 nm) to produce ions by laser-desorption ionization. Acceleration of the ions in an electric field created parallel ion beams that were focused by two parallel einzel lens systems. After a flight path of 2.34 m, the ions were detected with a microchannel plate-phosphor screen assembly coupled with a charge coupled device camera that showed two resolved ion beams. Time-of-flight mass spectra were also obtained with this detector. Experiments were performed using both metal atom cations (Ti + and Cr + ) produced by laser desorption/ionization and the molecular ions of two different proteins (myoglobin and lysozyme), created by matrix assisted laser desorption/ionization using an excess of nicotinic acid as matrix

  13. Metabolomics Study of Resina Draconis on Myocardial Ischemia Rats Using Ultraperformance Liquid Chromatography/Quadrupole Time-of-Flight Mass Spectrometry Combined with Pattern Recognition Methods and Metabolic Pathway Analysis

    Directory of Open Access Journals (Sweden)

    Yunpeng Qi

    2013-01-01

    Full Text Available Resina draconis (bright red resin isolated from Dracaena cochinchinensis, RD has been clinically used for treatment of myocardial ischemia (MI for many years. However, the mechanisms of its pharmacological action on MI are still poorly understood. This study aimed to characterize the plasma metabolic profiles of MI and investigate the mechanisms of RD on MI using ultraperformance liquid chromatography/quadrupole time-of-flight mass spectrometry-based metabolomics combined with pattern recognition methods and metabolic pathway analysis. Twenty metabolite markers characterizing metabolic profile of MI were revealed, which were mainly involved in aminoacyl-tRNA biosynthesis, phenylalanine, tyrosine, and tryptophan biosynthesis, vascular smooth muscle contraction, sphingolipid metabolism, and so forth. After RD treatment, however, levels of seven MI metabolite markers, including phytosphingosine, sphinganine, acetylcarnitine, cGMP, cAMP, L-tyrosine, and L-valine, were turned over, indicating that RD is likely to alleviate MI through regulating the disturbed vascular smooth muscle contraction, sphingolipid metabolism, phenylalanine metabolism, and BCAA metabolism. To our best knowledge, this is the first comprehensive study to investigate the mechanisms of RD for treating MI, from a metabolomics point of view. Our findings are very valuable to gain a better understanding of MI metabolic profiles and provide novel insights for exploring the mechanisms of RD on MI.

  14. Tentative Structural Assignment of a Glucuronide Metabolite of Methyltestosterone in Tilapia Bile by Liquid Chromatography-Quadrupole-Time-of-Flight Mass Spectrometry.

    Science.gov (United States)

    Nishshanka, Upul; Chu, Pak-Sin; Evans, Eric; Reimschuessel, Renate; Hasbrouck, Nicholas; Amarasinghe, Kande; Jayasuriya, Hiranthi

    2015-06-24

    Methyltestosterone (MT), a strong androgenic steroid, is not approved for use in fish aquaculture in the United States. It is used in the U.S. under an investigational new animal drug exemption (INAD) only during the early life stages of fish. There is a possibility that farmers feed fish with MT to enhance production for economic gains. Therefore, there is a need to develop methods for the detection of MT and its metabolite residues in fish tissue for monitoring purposes. Previously, our laboratory developed a liquid chromatography-quadrupole time-of-flight (LC-QTOF) method for characterization of 17-O-glucuronide metabolite (MT-glu) in bile of tilapia dosed with MT. The system used was an Agilent 6530 Q-TOF equipped with electrospray jet stream technology, operating in positive ion mode. Retrospective analysis of the data generated in that experiment by a feature-finding algorithm, combined with a search against an in-house library of possible MT-metabolites, resulted in the discovery of a major glucuronide metabolite of MT in the bile extracts. Preliminary data indicate it to be a glucuronide of a hydroxylated MT (OHMT-glu) which persists in tilapia bile for at least 2 weeks after dosing. We present the tentative structural assignment of the OHMT-glu in tilapia bile and time course of development. This glucuronide can serve as a marker to monitor illegal use of MT in tilapia culture.

  15. The advantages of orthogonal acceleration in ICP time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Gaal, Andrew

    2004-01-01

    The OptiMass 8000 incorporates an orthogonal acceleration time-of-flight mass spectrometer. A general schematic of the instrument is given. The continuous ion beam is chopped by an orthogonal accelerator. A push out pulse supply is coupled to the accelerator for providing repetitive push-out voltages at a frequency of 30 kHz. The ion packets that are sliced out of the beam then travel within the field free space towards the SMARTGATE ion blanker. Orthogonal accelerator parameters are set to enable temporal-spatial focusing at the SMARTGATE ion blanker, so that iso-mass ion packets are resolved in time. Any ion packets of unwanted specie are ejected from the direction of travel by supplying pulsed voltages onto the deflection plates of the SMARTGATE. The ions to be measured are let through SMARTGATE and travel further down the field free space, to enter the ion reflectron. The ion reflectron increases the resolution of the mass spectrometer by means of temporal-energy focussing. After reflection, the ions travel within the field free space towards the discrete-dynode detector. In comparison to other acceleration geometries used in elemental time-of-flight mass spectrometry the OptiMass 8000 orthogonal acceleration geometry ultimately leads to superior resolution. As the energy spread is about 3 orders of magnitude lower in the time-of-flight direction for an oaTOFMS in comparison to an on-axis system, aberration acquired in the initial stages of acceleration are much lower. As a result the orthogonal acceleration scheme provides superior resolution at the first spatial focus point and the detector. The orthogonal acceleration time-of-flight analyzer of the OptiMass 8000 is able to provide resolution of at least 1800 at mass 238. (author)

  16. Avalanche photodiode based time-of-flight mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ogasawara, Keiichi, E-mail: kogasawara@swri.edu; Livi, Stefano A.; Desai, Mihir I.; Ebert, Robert W.; McComas, David J.; Walther, Brandon C. [Southwest Research Institute, 6220 Culebra Road, San Antonio, Texas 78238 (United States)

    2015-08-15

    This study reports on the performance of Avalanche Photodiodes (APDs) as a timing detector for ion Time-of-Flight (TOF) mass spectroscopy. We found that the fast signal carrier speed in a reach-through type APD enables an extremely short timescale response with a mass or energy independent <2 ns rise time for <200 keV ions (1−40 AMU) under proper bias voltage operations. When combined with a microchannel plate to detect start electron signals from an ultra-thin carbon foil, the APD comprises a novel TOF system that successfully operates with a <0.8 ns intrinsic timing resolution even using commercial off-the-shelf constant-fraction discriminators. By replacing conventional total-energy detectors in the TOF-Energy system, APDs offer significant power and mass savings or an anti-coincidence background rejection capability in future space instrumentation.

  17. Identification of metabolites in human and rat urine after oral administration of Xiao-Qing-Long-Tang granule using ultra high performance liquid chromatography combined with quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Zhou, Lei; Zhang, Qiang; Qi, Wen; Yan, Shuai; Qu, Jialin; Makino, Toshiaki; Yuan, Dan

    2017-09-01

    Xiao-Qing-Long-Tang is a traditional Chinese formula used for the treatment of cold syndrome, bronchitis, and nasal allergies for thousands of years. However, the in vivo integrated metabolism of its multiple components and the active chemical constituents of Xiao-Qing-Long-Tang remain unknown. In this study, a method using ultra high performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry was established for the detection and identification of the metabolites in human and rat urine after oral administration of Xiao-Qing-Long-Tang. A total of 19 compounds were detected or tentatively identified in human urine samples, including eight prototypes and 11 metabolites. Also, a total of 50 compounds were detected or tentatively identified in rat urine samples, including 15 prototypes and 35 metabolites detected with either a highly sensitive extracted ion chromatogram method or the MS E determination using Mass Fragment software. Our results indicated that phase Ⅱ reactions (e.g. glucuronidation and sulfation) were the main metabolic pathways of flavones, while phase I reactions (e.g. demethylation and hydroxylation) were the major metabolic reaction for alkaloids, lignans, and ginger essential oil. This investigation provided important structural information on the metabolism of Xiao-Qing-Long-Tang and provided evidence to obtain a more comprehensive metabolic profile. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Study on transfer rule of chemical constituents of tianshu capsule in productive process by high-performance liquid chromatography coupled with diode-array detection and quadrupole time-of-flight tandem mass spectrometry

    International Nuclear Information System (INIS)

    Lian, Y.P.; Xie, D.W.; Li, Y.J.; Xiao, W.; Huang, W.Z.; Ding, G.

    2016-01-01

    To develop a sensitive and accurate method for the fingerprint study and transfer rule of chemical constituents from Ligusticum chuanxiong Hort and Gastrodia elata Blume to Tianshu capsule in productive process, a high performance liquid chromatography coupled with diode-array detection and electrospray ionization quadrupole time-of-flight mass spectrometry (LC/QTOF-MS) method was established for analysis. The reference fingerprints of aqueous extract intermediate of medicinal material, alcohol extract intermediate of medicinal material and Tianshu capsule was established. The methodology was studied and the similarity was more than 0.99. The chromatographic methods demonstrated a good precision, repeatability, stability, with relative standard deviations of less than 3 percent for relative retention time and relative peak area. According to these fingerprints, some chemical constituents in the fingerprints were identified or tentatively identified based on their retention time, exact molecular weight and literature. Among of them 26 constituents were from Ligusticum chuanxiong Hort and nine components were from Gastrodia elata Blume. 25 out of 26 compounds had entered a transfer process and 17 compounds were transferred from intermediates to the final preparation, the Tianshu capsule. Thus, it is reasonable enough to use this transfer process to demonstrate the production technology. To sum up, this method is sensitive, accurate and useful,and it could provide us an approach to evaluate the production technology of Tianshu capsule. (author)

  19. Chemical Profiling of Re-Du-Ning Injection by Ultra-Performance Liquid Chromatography Coupled with Electrospray Ionization Tandem Quadrupole Time-of-Flight Mass Spectrometry through the Screening of Diagnostic Ions in MSE Mode

    Science.gov (United States)

    Wang, Zhenzhong; Geng, Jianliang; Dai, Yi; Xiao, Wei; Yao, Xinsheng

    2015-01-01

    The broad applications and mechanism explorations of traditional Chinese medicine prescriptions (TCMPs) require a clear understanding of TCMP chemical constituents. In the present study, we describe an efficient and universally applicable analytical approach based on ultra-performance liquid chromatography coupled to electrospray ionization tandem quadrupole time-of-flight mass spectrometry (UPLC-ESI-Q/TOF-MS) with the MSE (E denotes collision energy) data acquisition mode, which allowed the rapid separation and reliable determination of TCMP chemical constituents. By monitoring diagnostic ions in the high energy function of MSE, target peaks of analogous compounds in TCMPs could be rapidly screened and identified. “Re-Du-Ning” injection (RDN), a eutherapeutic traditional Chinese medicine injection (TCMI) that has been widely used to reduce fever caused by viral infections in clinical practice, was studied as an example. In total, 90 compounds, including five new iridoids and one new sesquiterpene, were identified or tentatively characterized by accurate mass measurements within 5 ppm error. This analysis was accompanied by MS fragmentation and reference standard comparison analyses. Furthermore, the herbal sources of these compounds were unambiguously confirmed by comparing the extracted ion chromatograms (EICs) of RDN and ingredient herbal extracts. Our work provides a certain foundation for further studies of RDN. Moreover, the analytical approach developed herein has proven to be generally applicable for profiling the chemical constituents in TCMPs and other complicated mixtures. PMID:25875968

  20. A versatile triple radiofrequency quadrupole system for cooling, mass separation and bunching of exotic nuclei

    Science.gov (United States)

    Haettner, Emma; Plaß, Wolfgang R.; Czok, Ulrich; Dickel, Timo; Geissel, Hans; Kinsel, Wadim; Petrick, Martin; Schäfer, Thorsten; Scheidenberger, Christoph

    2018-02-01

    The combination of in-flight separation with a gas-filled stopping cell has opened a new field for experiments with exotic nuclei. For instance, at the SHIP/SHIPTRAP facility at GSI in Darmstadt high-precision mass measurements of rare nuclei have been successfully performed. In order to extend the reach of SHIPTRAP to exotic nuclei that are produced together with high rates of unwanted reaction products, a novel compact radio frequency quadrupole (RFQ) system has been developed. It implements ion cooling, identification and separation according to mass numbers and bunching capabilities. The system has a total length of one meter only and consists of an RFQ cooler, an RFQ mass filter and an RFQ buncher. A mass resolving power (FWHM) of 240 at a transmission efficiency of 90% has been achieved. The suppression of contaminants from neighboring masses by more than four orders of magnitude has been demonstrated at rates exceeding 106 ions/s. A longitudinal emittance of 0.45 eV μs has been achieved with the RFQ buncher, which will enable improved time-of-flight mass spectrometry downstream of the device. With this triple RFQ system the measurement of e.g. N= Z nuclides in the region up to tin will become possible at SHIPTRAP. The technology is also well suited for other rare-isotope facilities with experimental setups behind a stopping cell, such as the fragment separator FRS with the FRS Ion Catcher at GSI.

  1. Multi-elemental analysis of aqueous geochemical samples by quadrupole inductively coupled plasma-mass spectrometry (ICP-MS)

    Science.gov (United States)

    Wolf, Ruth E.; Adams, Monique

    2015-01-01

    Typically, quadrupole inductively coupled plasma-mass spectrometry (ICP-MS) is used to determine as many as 57 major, minor, and trace elements in aqueous geochemical samples, including natural surface water and groundwater, acid mine drainage water, and extracts or leachates from geological samples. The sample solution is aspirated into the inductively coupled plasma (ICP) which is an electrodeless discharge of ionized argon gas at a temperature of approximately 6,000 degrees Celsius. The elements in the sample solution are subsequently volatilized, atomized, and ionized by the ICP. The ions generated are then focused and introduced into a quadrupole mass filter which only allows one mass to reach the detector at a given moment in time. As the settings of the mass analyzer change, subsequent masses are allowed to impact the detector. Although the typical quadrupole ICP-MS system is a sequential scanning instrument (determining each mass separately), the scan speed of modern instruments is on the order of several thousand masses per second. Consequently, typical total sample analysis times of 2–3 minutes are readily achievable for up to 57 elements.

  2. Short-term toxicity assessments of an antibiotic metabolite in Wistar rats and its metabonomics analysis by ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Han, Hongxing; Xiao, Hailong; Lu, Zhenmei

    2016-02-15

    4-Epi-oxytetracycline (4-EOTC), one of main oxytetracycline (OTC) metabolites, can be commonly detected in food and environment. The toxicity and effects of OTC on animals have been well characterized; however, its metabolites have never been studied systemically. This study aims to investigate 15-day oral dose toxicity and urine metabonomics changes of 4-EOTC after repeated administration in Wistar rats at daily doses of 0.5, 5.0 and 50.0mg/kg bw (bodyweight). Hematology and clinical chemistry parameters, including white blood cell count, red blood cell count, total protein, globulin and albumin/globulin, were obviously altered in rats of 5.0 and 50.0mg/kg bw. Histopathology changes of kidney and liver tissues were also observed in high-dose groups. Urinary metabolites from all groups were analyzed using ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). Seventeen metabolites contributing to the clusters were identified as potential biomarkers from multivariate analysis, including aminoadipic acid, 6-phosphogluconate, sebacic acid, pipecolic acid, etc. The significant changes of these biomarkers demonstrated metabonomic variations in treated rats, especially lysine and purine metabolism. For the first time in this paper, we combined the results of toxicity and metabonomics induced by 4-EOTC for the serious reconsideration of the safety and potential risks of antibiotics and its degradation metabolites. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Quasi-dynamic mode of nanomembranes for time-of-flight mass spectrometry of proteins.

    Science.gov (United States)

    Park, Jonghoo; Kim, Hyunseok; Blick, Robert H

    2012-04-21

    Mechanical resonators realized on the nano-scale by now offer applications in mass-sensing of biomolecules with extraordinary sensitivity. The general idea is that perfect mechanical biosensors should be of extremely small size to achieve zeptogram sensitivity in weighing single molecules similar to a balance. However, the small scale and long response time of weighing biomolecules with a cantilever restrict their usefulness as a high-throughput method. Commercial mass spectrometry (MS) such as electro-spray ionization (ESI)-MS and matrix-assisted laser desorption/ionization (MALDI)-time of flight (TOF)-MS are the gold standards to which nanomechanical resonators have to live up to. These two methods rely on the ionization and acceleration of biomolecules and the following ion detection after a mass selection step, such as time-of-flight (TOF). Hence, the spectrum is typically represented in m/z, i.e. the mass to ionization charge ratio. Here, we describe the feasibility and mass range of detection of a new mechanical approach for ion detection in time-of-flight mass spectrometry, the principle of which is that the impinging ion packets excite mechanical oscillations in a silicon nitride nanomembrane. These mechanical oscillations are henceforth detected via field emission of electrons from the nanomembrane. Ion detection is demonstrated in MALDI-TOF analysis over a broad range with angiotensin, bovine serum albumin (BSA), and an equimolar protein mixture of insulin, BSA, and immunoglobulin G (IgG). We find an unprecedented mass range of operation of the nanomembrane detector.

  4. Sensitive characterization of polyphenolic antioxidants in Polygonatum odoratum by selective solid phase extraction and high performance liquid chromatography-diode array detector-quadrupole time-of-flight tandem mass spectrometry.

    Science.gov (United States)

    Hu, Xin; Zhao, Huading; Shi, Shuyun; Li, Hui; Zhou, Xiaoling; Jiao, Feipeng; Jiang, Xinyu; Peng, Dongming; Chen, Xiaoqin

    2015-08-10

    The complexity of natural products always leads to the co-elution of interfering compounds with bioactive compounds, which then has a detrimental effect on structural elucidation. Here, a new method, based on selective solid phase extraction combined with 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) spiking and high performance liquid chromatography-diode array detector-quadrupole time-of-flight tandem mass spectrometry (HPLC-DAD-QTOF-MS/MS), is described for sensitive screening, selective extraction and identification of polyphenolic antioxidants in Polygonatum odoratum. First, 25 polyphenolic antioxidants (1-25) were screened by DPPH spiking with HPLC. Second, polydopamine coated Fe3O4 microspheres (Fe3O4@PDA) were prepared to selectively extract target antioxidants with extraction efficiency from 55% to 100% when the amount of Fe3O4@PDA, extraction time, desorption solvent and time were 10mg, 20 min, acetonitrile, and 5 min. Third, 25 antioxidants (10 cinnamides and 15 homoisoflavanones) were identified by HPLC-DAD-QTOF-MS/MS. Furthermore, the DPPH scavenging activities of purified compounds (IC50, 1.6-32.8 μg/mL) validated the method. Among the identified antioxidants, four of them (12, 13, 18 and 19) were new compounds, four of them (2, 4, 8 and 14) were first obtained from family Liliaceae, five of them (1, 3, 5, 7 and 9) were first reported in genus Polygonatum, while one compound (24) was first identified in this species. The results indicated that the proposed method was an efficient and sensitive approach to explore polyphenolic antioxidants from complex natural products. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. A new ultrahigh performance liquid chromatography with diode array detection coupled to electrospray ionization and quadrupole time-of-flight mass spectrometry analytical strategy for fast analysis and improved characterization of phenolic compounds in apple products.

    Science.gov (United States)

    Ramirez-Ambrosi, M; Abad-Garcia, B; Viloria-Bernal, M; Garmon-Lobato, S; Berrueta, L A; Gallo, B

    2013-11-05

    A new, rapid, selective and sensitive ultrahigh performance liquid chromatography with diode array detection coupled to electrospray ionization and quadrupole time-of-flight mass spectrometry (UHPLC-DAD-ESI-Q-ToF-MS) strategy using automatic and simultaneous acquisition of exact mass at high and low collision energy, MS(E), has been developed to obtain polyphenolic profile of apples, apple pomace and apple juice from Asturian cider apples in a single run injection of 22 min. MS(E) spectral data acquisition overcomes chromatographic co-elution problems, performing simultaneous collection of precursor ions as well as other ions produced as a result of their fragmentation, which allows resolving complex spectra from mixtures of precursor ions in an unsupervised way and eases their interpretation. Using this technique, 52 phenolic compounds of five different classes were readily characterized in these apple extracts in both positive and negative ionization modes. The spectral data for phenolic compounds obtained using this acquisition mode are comparable to those obtained by conventional LC-MS/MS as exemplified in this work. Among the 52 phenolic compounds identified in this work, 2 dihydrochalcones and 3 flavonols have been tentatively identified for the first time in apple products. Moreover, 2 flavanols, 4 dihydrochalcones, 9 hydroxycinnamic acids and 4 flavonols had not been previously reported in apple by ToF analysis to our knowledge. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Ion optics of a time-of-flight mass spectrometer with electrostatic sector analyzers

    International Nuclear Information System (INIS)

    Sakurai, T.; Ito, H.; Matsuo, T.

    1995-01-01

    The ion optics for a high resolution time-of-flight mass spectrometer with electrostatic sector analyzers have been investigated. The multiple focusing (triple isochronous focusing and triple spacial focusing) conditions can be achieved by using a symmetrical arrangement of the sectors in a mass spectrometer. Both high mass resolution and high ion transmission can be accomplished simultaneously. The principles of MS/MS and MS/MS/MS analyses using a TOF mass spectrometer with electrostatic sector analyzers have been proposed. Product ion spectra can be obtained by measuring the total flight times and the kinetic energy of the products without any additional separation processes, any coincidence techniques or any special timing circuits. In an experiment, MS/MS and MS/MS/MS mass spectra have been obtained. The first generation product ions have been produced by a metastable decay, and the second generation products have been produced by a sequential decay. (orig.)

  7. Liquid chromatography coupled to different atmospheric pressure ionization sources-quadrupole-time-of-flight mass spectrometry and post-column addition of metal salt solutions as a powerful tool for the metabolic profiling of Fusarium oxysporum.

    Science.gov (United States)

    Cirigliano, Adriana M; Rodriguez, M Alejandra; Gagliano, M Laura; Bertinetti, Brenda V; Godeas, Alicia M; Cabrera, Gabriela M

    2016-03-25

    Fusarium oxysporum L11 is a non-pathogenic soil-borne fungal strain that yielded an extract that showed antifungal activity against phytopathogens. In this study, reversed-phase high-performance liquid chromatography (RP-HPLC) coupled to different atmospheric pressure ionization sources-quadrupole-time-of-flight mass spectrometry (API-QTOF-MS) was applied for the comprehensive profiling of the metabolites from the extract. The employed sources were electrospray (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI). Post-column addition of metal solutions of Ca, Cu and Zn(II) was also tested using ESI. A total of 137 compounds were identified or tentatively identified by matching their accurate mass signals, suggested molecular formulae and MS/MS analysis with previously reported data. Some compounds were isolated and identified by NMR. The extract was rich in cyclic peptides like cyclosporins, diketopiperazines and sansalvamides, most of which were new, and are reported here for the first time. The use of post-column addition of metals resulted in a useful strategy for the discrimination of compound classes since specific adducts were observed for the different compound families. This technique also allowed the screening for compounds with metal binding properties. Thus, the applied methodology is a useful choice for the metabolic profiling of extracts and also for the selection of metabolites with potential biological activities related to interactions with metal ions. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Identification and analysis of chemical constituents and rat serum metabolites in Suan-Zao-Ren granule using ultra high performance liquid chromatography quadrupole time-of-flight mass spectrometry combined with multiple data processing approaches.

    Science.gov (United States)

    Du, Yiyang; He, Bosai; Li, Qing; He, Jiao; Wang, Di; Bi, Kaishun

    2017-07-01

    Suan-Zao-Ren granule is widely used to treat insomnia in China. However, because of the complexity and diversity of the chemical compositions in traditional Chinese medicine formula, the comprehensive analysis of constituents in vitro and in vivo is rather difficult. In our study, an ultra high performance liquid chromatography with quadrupole time-of-flight mass spectrometry and the PeakView® software, which uses multiple data processing approaches including product ion filter, neutral loss filter, and mass defect filter, method was developed to characterize the ingredients and rat serum metabolites in Suan-Zao-Ren granule. A total of 101 constituents were detected in vitro. Under the same analysis conditions, 68 constituents were characterized in rat serum, including 35 prototype components and 33 metabolites. The metabolic pathways of main components were also illustrated. Among them, the metabolic pathways of timosaponin AI were firstly revealed. The bioactive compounds mainly underwent the phase I metabolic pathways including hydroxylation, oxidation, hydrolysis, and phase II metabolic pathways including sulfate conjugation, glucuronide conjugation, cysteine conjugation, acetycysteine conjugation, and glutathione conjugation. In conclusion, our results showed that this analysis approach was extremely useful for the in-depth pharmacological research of Suan-Zao-Ren granule and provided a chemical basis for its rational. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Multi-Reflection Time-of-Flight Mass Separation and Spectrometry

    CERN Document Server

    Kreim, Susanne; Wolf, R N

    2014-01-01

    The mass of a nucleus is one of its most fundamental ground-state properties and reveals the strength of nuclear binding. Investigating the binding energy of nuclei with respect to the number of protons and neutrons in a nucleus is important for advancing nuclear theory and increases our understanding of nucleosynthesis in supernovae and neutron stars. Precision mass measurements on radioactive nuclides belong to the state-of-the-art techniques [1, 2]. Presently, four complementary techniques are applied: isochronous and Schottky mass spectrometry in storage rings (IMS and SMS, respectively), magnetic-rigidity time-of-flight (TOF-ρ) measurements, and Penning-trap mass spectrometry (PTMS). With measurement cycles in the sub-ms range, IMS and TOF-Bρ MS are well suited for very short-lived species while offering moderate relative precision on the level of 10−6. A higher precision is achieved by SMS but with the need for measurement times on the order of several seconds. As soon as masses with a relative prec...

  10. Validation of a qualitative screening method for pesticides in fruits and vegetables by gas chromatography quadrupole-time of flight mass spectrometry with atmospheric pressure chemical ionization

    Energy Technology Data Exchange (ETDEWEB)

    Portolés, T. [Research Institute for Pesticides and Water, University Jaume I, 12071 Castellón (Spain); RIKILT Institute of Food Safety, Wageningen University and Research Centre, Akkermaalsbos 2, 6708 WB Wageningen (Netherlands); Mol, J.G.J. [RIKILT Institute of Food Safety, Wageningen University and Research Centre, Akkermaalsbos 2, 6708 WB Wageningen (Netherlands); Sancho, J.V.; López, Francisco J. [Research Institute for Pesticides and Water, University Jaume I, 12071 Castellón (Spain); Hernández, F., E-mail: hernandf@uji.es [Research Institute for Pesticides and Water, University Jaume I, 12071 Castellón (Spain)

    2014-08-01

    Highlights: • Applicability of GC-(APCI)QTOF MS as new tool for wide-scope screening of pesticides in fruits and vegetables demonstrated. • Validation of screening method according to SANCO/12571/2013. • Detection of the pesticides based on the presence of M+·/MH+ in most cases. • Screening detection limit 0.01 mg kg{sup −1} for 77% of the pesticides investigated. • Successful identification at 0.01 mg kg{sup −1} for 70% of the pesticides/matrix combinations. - Abstract: A wide-scope screening method was developed for the detection of pesticides in fruit and vegetables. The method was based on gas chromatography coupled to a hybrid quadrupole time-of-flight mass spectrometer with an atmospheric pressure chemical ionization source (GC-(APCI)QTOF MS). A non-target acquisition was performed through two alternating scan events: one at low collision energy and another at a higher collision energy ramp (MS{sup E}). In this way, both protonated molecule and/or molecular ion together with fragment ions were obtained in a single run. Validation was performed according to SANCO/12571/2013 by analysing 20 samples (10 different commodities in duplicate), fortified with a test set of 132 pesticides at 0.01, 0.05 and 0.20 mg kg{sup −1}. For screening, the detection was based on one diagnostic ion (in most cases the protonated molecule). Overall, at the 0.01 mg kg{sup −1} level, 89% of the 2620 fortifications made were detected. The screening detection limit for individual pesticides was 0.01 mg kg{sup −1} for 77% of the pesticides investigated. The possibilities for identification according to the SANCO criteria, requiring two ions with a mass accuracy ≤±5 ppm and an ion-ratio deviation ≤±30%, were investigated. At the 0.01 mg kg{sup −1} level, identification was possible for 70% of the pesticides detected during screening. This increased to 87% and 93% at the 0.05 and 0.20 mg kg{sup −1} level, respectively. Insufficient sensitivity for the second

  11. Short-term toxicity assessments of an antibiotic metabolite in Wistar rats and its metabonomics analysis by ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Han, Hongxing; Xiao, Hailong; Lu, Zhenmei

    2016-01-01

    4-Epi-oxytetracycline (4-EOTC), one of main oxytetracycline (OTC) metabolites, can be commonly detected in food and environment. The toxicity and effects of OTC on animals have been well characterized; however, its metabolites have never been studied systemically. This study aims to investigate 15-day oral dose toxicity and urine metabonomics changes of 4-EOTC after repeated administration in Wistar rats at daily doses of 0.5, 5.0 and 50.0 mg/kg bw (bodyweight). Hematology and clinical chemistry parameters, including white blood cell count, red blood cell count, total protein, globulin and albumin/globulin, were obviously altered in rats of 5.0 and 50.0 mg/kg bw. Histopathology changes of kidney and liver tissues were also observed in high-dose groups. Urinary metabolites from all groups were analyzed using ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). Seventeen metabolites contributing to the clusters were identified as potential biomarkers from multivariate analysis, including aminoadipic acid, 6-phosphogluconate, sebacic acid, pipecolic acid, etc. The significant changes of these biomarkers demonstrated metabonomic variations in treated rats, especially lysine and purine metabolism. For the first time in this paper, we combined the results of toxicity and metabonomics induced by 4-EOTC for the serious reconsideration of the safety and potential risks of antibiotics and its degradation metabolites. - Highlights: • 4-Epioxytetracycline (4-EOTC) induced damages in liver and kidney. • Metabonomics changes especially amino acid and purine metabolism were observed. • Security of OTC metabolite 4-EOTC should be taken into serious reconsideration.

  12. Short-term toxicity assessments of an antibiotic metabolite in Wistar rats and its metabonomics analysis by ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Han, Hongxing [College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058 (China); Xiao, Hailong [Hangzhou Institute for Food and Drug Control, Hangzhou 310004 (China); Lu, Zhenmei, E-mail: lzhenmei@zju.edu.cn [College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058 (China)

    2016-02-15

    4-Epi-oxytetracycline (4-EOTC), one of main oxytetracycline (OTC) metabolites, can be commonly detected in food and environment. The toxicity and effects of OTC on animals have been well characterized; however, its metabolites have never been studied systemically. This study aims to investigate 15-day oral dose toxicity and urine metabonomics changes of 4-EOTC after repeated administration in Wistar rats at daily doses of 0.5, 5.0 and 50.0 mg/kg bw (bodyweight). Hematology and clinical chemistry parameters, including white blood cell count, red blood cell count, total protein, globulin and albumin/globulin, were obviously altered in rats of 5.0 and 50.0 mg/kg bw. Histopathology changes of kidney and liver tissues were also observed in high-dose groups. Urinary metabolites from all groups were analyzed using ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). Seventeen metabolites contributing to the clusters were identified as potential biomarkers from multivariate analysis, including aminoadipic acid, 6-phosphogluconate, sebacic acid, pipecolic acid, etc. The significant changes of these biomarkers demonstrated metabonomic variations in treated rats, especially lysine and purine metabolism. For the first time in this paper, we combined the results of toxicity and metabonomics induced by 4-EOTC for the serious reconsideration of the safety and potential risks of antibiotics and its degradation metabolites. - Highlights: • 4-Epioxytetracycline (4-EOTC) induced damages in liver and kidney. • Metabonomics changes especially amino acid and purine metabolism were observed. • Security of OTC metabolite 4-EOTC should be taken into serious reconsideration.

  13. Rapid resolution liquid chromatography coupled with quadrupole time-of-flight mass spectrometry-based metabolomics approach to study the effects of jieduquyuziyin prescription on systemic lupus erythematosus.

    Science.gov (United States)

    Ding, Xinghong; Hu, Jinbo; Wen, Chengping; Ding, Zhishan; Yao, Li; Fan, Yongsheng

    2014-01-01

    Jieduquyuziyin prescription (JP), a traditional Chinese medicine (TCM) prescription, has been widely used for the clinical treatment of systemic lupus erythematosus (SLE). However, the complex chemical constituents of JP and the multifactorial pathogenesis of SLE make research on the therapeutic mechanism of JP in SLE challenging. In this paper, a serum metabolomics approach based on rapid resolution liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (RRLC-Q-TOF/MS) was employed to acquire the metabolic characteristics of serum samples obtained from mice in the SLE model group, JP-treated group, prednisone acetate (PA)-treated group and control group. The orthogonal partial least squares (OPLS) was applied to recognize metabolic patterns, and an obvious separation of groups was obtained. Thirteen metabolites, namely, phosphatidylethanolamine (PE 20:3), hepoxilin B3, lyso- phosphatidylethanolamine (lyso-PE 22:6), 12S-hydroxypentaenoic acid (12S-HEPE), traumatic acid, serotonin, platelet-activating factor (PAF), phosphatidylcholine (PC 20:5),eicosapentaenoic acid (EPA), 12(S)-hydroxyei- cosatetraenoic acid (12S-HETE), 14-hydroxy docosahexaenoic acid (14-HDOHE), lyso-phosphatidylcholine (lyso-PC 20:4), and indole acetaldehyde, were identified and characterized as differential metabolites involved in the pathogenesis of SLE. After treatment with JP, the relative content of 12(S)-HETE, PAF, 12(S)-HEPE, EPA, PE (20:3), Lyso-PE(22:6), and 14-HDOHE were effectively regulated, which suggested that the therapeutic effects of JP on SLE may involve regulating disturbances to the metabolism of unsaturated fatty acid, tryptophan and phospholipid. This research also demonstrated that metabolomics is a powerful tool for researching complex disease mechanisms and evaluating the mechanism of action of TCM.

  14. The Profiling and Identification of the Absorbed Constituents and Metabolites of Guizhi Decoction in Rat Plasma and Urine by Rapid Resolution Liquid Chromatography Combined with Quadrupole-Time-of-Flight Mass Spectrometry

    Science.gov (United States)

    Xiang, Hongjun; Zhang, Lishi; Song, Jiannan; Fan, Bin; Nie, Yinglan; Bai, Dong; Lei, Haimin

    2016-01-01

    Guizhi decoction (GZD), a well-known traditional Chinese medicine (TCM) prescription consisting of Ramulus Cinnamomi, Radix Paeoniae Alba, Radix Glycyrrhizae, Fructus Jujubae and Rhizoma Zingiberis Recens, is usually used for the treatment of common colds, influenza, and other pyretic conditions in the clinic. However, the absorbed ingredients and metabolic compounds of GZD have not been reported. In this paper, a method incorporating rapid resolution liquid chromatography (RRLC) with quadrupole-time-of-flight mass spectrometry (Q-TOF-MS) was used to identify ingredients after oral administration of GZD. Identification of the primary components in GZD, drug-containing serum and urine samples was carried out in order to investigate the assimilation and metabolites of the decoction in vivo. By comparing the total ion chromatograms (TICs) of GZD, a total of 71 constituents were detected or characterized. By comparing TICs of blank and dosed rat plasma, a total of 15 constituents were detected and identified as prototypes according to their retention time (tR) and MS, MS/MS data. Based on this, neutral loss scans of 80 and 176 Da in samples of rat plasma and urine helped us to identify most of the metabolites. Results showed that the predominant metabolic pathways of (epi) catechin and gallic acid were sulfation, methylation, glucuronidation and dehydroxylation; the major metabolic pathways of flavone were hydrolysis, sulfation and glucuronidation. Furthermore, degradation, oxidation and ring fission were found to often occur in the metabolism process of GZD in vivo. PMID:27626411

  15. Determination of perfluorinated alkyl acids in corn, popcorn and popcorn bags before and after cooking by focused ultrasound solid-liquid extraction, liquid chromatography and quadrupole-time of flight mass spectrometry.

    Science.gov (United States)

    Moreta, Cristina; Tena, María Teresa

    2014-08-15

    An analytical method is proposed to determine ten perfluorinated alkyl acids (PFAAs) [nine perfluorocarboxylic acids (PFCAs) and perfluorooctane sulfonate (PFOS)] in corn, popcorn and microwave popcorn packaging by focused ultrasound solid-liquid extraction (FUSLE) and ultra high performance liquid chromatography (UHPLC) coupled to quadrupole-time of flight mass spectrometry (QTOF-MS/MS). Selected PFAAs were extracted efficiently in only one 10-s cycle by FUSLE, a simple, safe and inexpensive technique. The developed method was validated for microwave popcorn bags matrix as well as corn and popcorn matrices in terms of linearity, matrix effect error, detection and quantification limits, repeatability and recovery values. The method showed good accuracy with recovery values around 100% except for the lowest chain length PFAAs, satisfactory reproducibility with RSDs under 16%, and sensitivity with limits of detection in the order of hundreds picograms per gram of sample (between 0.2 and 0.7ng/g). This method was also applied to the analysis of six microwave popcorn bags and the popcorn inside before and after cooking. PFCAs contents between 3.50ng/g and 750ng/g were found in bags, being PFHxA (perfluorohexanoic acid) the most abundant of them. However, no PFAAs were detected either corn or popcorn, therefore no migration was assumed. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Structural elucidation of AgAsS2 glass by the analysis of clusters formed during laser desorption ionisation applying quadrupole ion trap time-of-flight mass spectrometry.

    Science.gov (United States)

    Mawale, Ravi Madhukar; Alberti, Milan; Zhang, Bo; Fraenkl, Max; Wagner, Tomas; Havel, Josef

    2016-03-15

    The structure of AgA(s)S2 glass, which has a broad range of applications, is still not well understood and a systematic mass spectrometric analysis of AgA(s)S2 glass is currently not available. Elucidation of the structure should help in the development of this material. The AgA(s)S2 glass was prepared by the melt-quenched technique. Laser desorption ionisation (LDI) using quadrupole ion trap time-of-flight mass spectrometry (QIT-TOFMS) was used to follow the generation of Ag(m)As(n)S(x) clusters. The stoichiometry of the clusters generated was determined via collision-induced dissociation (CID) and modelling of isotopic patterns. The AgA(s)S2 glass was characterised by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. The LDI of AgA(s)S2 glass leads to the formation of unary (Ag+/− and As(3+)) species, 38 binary (As(n)S(x), Ag(m)S(x)), and 98 ternary (Ag(m)As(n)S(x)) singly charged clusters. The formation of silver-rich nano-grains during AgA(s)S2 glass synthesis has been identified using TEM analysis and also verified by QIT-TOFMS. TOFMS was shown to be a useful technique to study the generation of Ag(m)As(n)S(x )clusters. SEM, TEM and EDX analysis proved that the structure of AgA(s)S2 glass is ‘grain-like’ where grains are either: (1) Silver-rich ‘islands’ (Ag(m,) m up to 39) connected by arsenic and/or sulfur or arsenic sulfide chains or (2) silver sulfide (Ag2S)m (m = 9-20) clusters also similarly inter-connected. This obtained structural information may be useful for the development of ultra-high-density phase-change storage and memory devices using this kind of glass as a base.

  17. A metabolic way to investigate related hurdles causing poor bioavailability in oral delivery of isoacteoside in rats employing ultrahigh-performance liquid chromatography/quadrupole time-of-flight tandem mass spectrometry.

    Science.gov (United States)

    Cui, Qingling; Pan, Yingni; Yan, Xiaowei; Qu, Bao; Liu, Xiaoqiu; Xiao, Wei

    2017-02-28

    Isoacteoside (ISAT), a phenylethanoid glycoside that acts as the principal bioactive component in traditional Chinese medicines, possesses broad pharmacological effects such as neuroprotective, antihypertensive and hepatoprotective activities. However, its pharmaceutical development has been severely limited due to the poor oral bioavailability. It is essential and significant to investigate related hurdles leading to the poor bioavailability of isoacteoside. Whole animal metabolism studies were conducted in rats, followed by metabolic mechanism including gastrointestinal stability, intestinal flora metabolism and intestinal enzyme metabolism employing the powerful method ultrahigh-performance liquid chromatography combined with quadrupole time-of-flight tandem mass spectrometry (UPLC/QTOF-MS/MS). A simple, rapid and sensitive method has been developed which comprehensively revealed the underlying cause of poor bioavailability of ISAT in a metabolic manner. The prototype of ISAT and its combined metabolites have not been detected in plasma. Furthermore, the residual content of the parent compound in in vitro experiments was approximately 59%, 5% and barely none in intestinal bacteria, intestinal S9 and simulated intestinal juice at 6 h, respectively. The present work has demonstrated that the factors causing the poor bioavailability of isoacteoside should be attributed to the metabolism. In general, the metabolism that resulted from intestinal flora and intestinal enzymes were predominant reasons giving rise to the poor bioavailability of ISAT, which also suggested that metabolites might be responsible for the excellent pharmacological effect of ISAT. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Rapid wide-scope screening of drugs of abuse, prescription drugs with potential for abuse and their metabolites in influent and effluent urban wastewater by ultrahigh pressure liquid chromatography-quadrupole-time-of-flight-mass spectrometry

    International Nuclear Information System (INIS)

    Hernandez, Felix; Bijlsma, Lubertus; Sancho, Juan V.; Diaz, Ramon; Ibanez, Maria

    2011-01-01

    This work illustrates the potential of hybrid quadrupole-time-of-flight mass spectrometry (QTOF MS) coupled to ultrahigh pressure liquid chromatography (UHPLC) to investigate the presence of drugs of abuse in wastewater. After solid-phase extraction with Oasis MCX cartridges, seventy-six illicit drugs, prescription drugs with potential for abuse, and metabolites were investigated in the samples by TOF MS using electrospray interface under positive ionization mode, with MS data acquired over an m/z range of 50-1000 Da. For 11 compounds, reference standards were available, and experimental data (e.g., retention time and fragmentation data) could be obtained, facilitating a more confident identification. The use of a QTOF instrument enabled the simultaneous application of two acquisition functions with different collision energies: a low energy (LE) function, where none or poor fragmentation took place, and a high energy (HE) function, where fragmentation in the collision cell was promoted. This approach, known as MS E , enabled the simultaneous acquisition of full-spectrum accurate mass data of both protonated molecules and fragment ions in a single injection, providing relevant information that facilitates the rapid detection and reliable identification of these emerging contaminants in the sample matrices analyzed. In addition, isomeric compounds, like the opiates, morphine and norcodeine, could be discriminated by their specific fragments observed in HE TOF MS spectra, without the need of reference standards. UHPLC-QTOF MS was proven to be a powerful and efficient technique for rapid wide-scope screening and identification of many relevant drugs in complex matrices, such as influent and effluent urban wastewater.

  19. Rapid wide-scope screening of drugs of abuse, prescription drugs with potential for abuse and their metabolites in influent and effluent urban wastewater by ultrahigh pressure liquid chromatography-quadrupole-time-of-flight-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Felix, E-mail: felix.hernandez@qfa.uji.es [Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat s/n, E-12071 Castellon (Spain); Bijlsma, Lubertus, E-mail: bijlsma@guest.uji.es [Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat s/n, E-12071 Castellon (Spain); Sancho, Juan V.; Diaz, Ramon; Ibanez, Maria [Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat s/n, E-12071 Castellon (Spain)

    2011-01-17

    This work illustrates the potential of hybrid quadrupole-time-of-flight mass spectrometry (QTOF MS) coupled to ultrahigh pressure liquid chromatography (UHPLC) to investigate the presence of drugs of abuse in wastewater. After solid-phase extraction with Oasis MCX cartridges, seventy-six illicit drugs, prescription drugs with potential for abuse, and metabolites were investigated in the samples by TOF MS using electrospray interface under positive ionization mode, with MS data acquired over an m/z range of 50-1000 Da. For 11 compounds, reference standards were available, and experimental data (e.g., retention time and fragmentation data) could be obtained, facilitating a more confident identification. The use of a QTOF instrument enabled the simultaneous application of two acquisition functions with different collision energies: a low energy (LE) function, where none or poor fragmentation took place, and a high energy (HE) function, where fragmentation in the collision cell was promoted. This approach, known as MS{sup E}, enabled the simultaneous acquisition of full-spectrum accurate mass data of both protonated molecules and fragment ions in a single injection, providing relevant information that facilitates the rapid detection and reliable identification of these emerging contaminants in the sample matrices analyzed. In addition, isomeric compounds, like the opiates, morphine and norcodeine, could be discriminated by their specific fragments observed in HE TOF MS spectra, without the need of reference standards. UHPLC-QTOF MS was proven to be a powerful and efficient technique for rapid wide-scope screening and identification of many relevant drugs in complex matrices, such as influent and effluent urban wastewater.

  20. Identification of phase I and II metabolites of the new designer drug α-pyrrolidinohexiophenone (α-PHP) in human urine by liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS).

    Science.gov (United States)

    Paul, Michael; Bleicher, Sergej; Guber, Susanne; Ippisch, Josef; Polettini, Aldo; Schultis, Wolfgang

    2015-11-01

    Pyrrolidinophenones represent one emerging class of newly encountered drugs of abuse, also known as 'new psychoactive substances', with stimulating psychoactive effects. In this work, we report on the detection of the new designer drug α-pyrrolidinohexiophenone (α-PHP) and its phase I and II metabolites in a human urine sample of a drug abuser. Determination and structural elucidation of these metabolites have been achieved by liquid chromatography electrospray ionisation quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS). By tentative identification, the exact and approximate structures of 19 phase I metabolites and nine phase II glucuronides were elucidated. Major metabolic pathways revealed the reduction of the ß-keto moieties to their corresponding alcohols, didesalkylation of the pyrrolidine ring, hydroxylation and oxidation of the aliphatic side chain leading to n-hydroxy, aldehyde and carboxylate metabolites, and oxidation of the pyrrolidine ring to its lactam followed by ring cleavage and additional hydroxylation, reduction and oxidation steps and combinations thereof. The most abundant phase II metabolites were glucuronidated ß-keto-reduced alcohols. Besides the great number of metabolites detected in this sample, α-PHP is still one of the most abundant ions together with its ß-keto-reduced alcoholic dihydro metabolite. Monitoring of these metabolites in clinical and forensic toxicology may unambiguously prove the abuse of the new designer drug α-PHP. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Reversed-phase ultra-high-performance liquid chromatography coupled to electrospray ionization-quadrupole-time-of-flight mass spectrometry as a powerful tool for metabolic profiling of vegetables: Lactuca sativa as an example of its application.

    Science.gov (United States)

    Abu-Reidah, I M; Contreras, M M; Arráez-Román, D; Segura-Carretero, A; Fernández-Gutiérrez, A

    2013-10-25

    Lettuce (Lactuca sativa), a leafy vegetal widely consumed worldwide, fresh cut or minimally processed, constitutes a major dietary source of natural antioxidants and bioactive compounds. In this study, reversed-phase ultra-high-performance liquid chromatography (RP-UHPLC) coupled to electrospray ionization-quadrupole-time-of-flight mass spectrometry (ESI-QTOF-MS) was applied for the comprehensive profiling of polar and semi-polar metabolites from three lettuce cultivars (baby, romaine, and iceberg). The UHPLC systems allowed the use of a small-particle-size C18 column (1.8 μm), with very fine resolution for the separation of up to seven isomers, and the QTOF mass analyzer enabled sensitive detection with high mass resolution and accuracy in full scan. Thus, a total of 171 compounds were tentatively identified by matching their accurate mass signals and suggested molecular formula with those previously reported in family Asteraceae. Afterwards, their structures were also corroborated by the MS/MS data provided by the QTOF analyzer. Well-known amino acids, organic acids, sesquiterpene lactones, phenolic acids and flavonoids were characterized, e.g. lactucin, lactucopicrin, caftaric acid, chlorogenic acid, caffeoylmalic acid, chicoric acid, isochlorogenic acid A, luteolin, and quercetin glycosides. For this plant species, this is the first available report of several isomeric forms of the latter polyphenols and other types of components such as nucleosides, peptides, and tryptophan-derived alkaloids. Remarkably, 10 novel structures formed by the conjugation of known amino acids and sesquiterpene lactones were also proposed. Thus, the methodology applied is a useful option to develop an exhaustive metabolic profiling of plants that helps to explain their potential biological activities and folk uses. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Metabonomics study of the therapeutic mechanism of fenugreek galactomannan on diabetic hyperglycemia in rats, by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Jiang, Wenyue; Gao, Lu; Li, Pengdong; Kan, Hong; Qu, Jiale; Men, Lihui; Liu, Zhiqiang; Liu, Zhongying

    2017-02-15

    Fenugreek is a traditional plant for the treatment of diabetes. Galactomannan, an active major component in fenugreek seeds, has shown hypoglycemic activity. The present study was performed to investigate the therapeutic mechanism underlying fenugreek galactomannan (F-GAL) in treating diabetes, using a metabonomics approach based on ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS). The F-GAL used for study was highly purified, and its yield, purity, and galactose/mannose ratio were characterized by capillary zone electrophoresis (CZE) and a modified phenol-sulfuric acid method. After treatment of streptozotocin (STZ)-induced diabetic rats with F-GAL for 28days, urine and serum samples were analyzed by UPLC-QTOF/MS. Multivariate statistical approaches such as principal component analysis (PCA) and orthogonal projection to latent structures squares-discriminant analysis (OPLS-DA) were applied to distinguish the non-diabetic/untreated, diabetic/untreated, and diabetic/F-GAL-treated groups. Then, potential biomarkers were identified that may help elucidate the underlying therapeutic mechanism of F-GAL in diabetes. The results demonstrated that there was a clear separation among the three groups in the PCA model. Fourteen potential biomarkers were identified by OPLS-DA, and they were determined to be produced in response to the therapeutic effects of F-GAL. These biomarkers were involved in histidine metabolism, tryptophan metabolism, energy metabolism, phenylalanine metabolism, sphingolipid metabolism, glycerophospholipid metabolism, and arachidonic acid metabolism. In conclusion, our study demonstrates that a metabonomics approach is a powerful, novel tool that can be used to evaluate the underlying therapeutic mechanisms of herb extracts. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. COINTOF mass spectrometry: design of a time-of-flight analyzer and development of the analysis method

    International Nuclear Information System (INIS)

    Teyssier, C.

    2012-01-01

    DIAM (Device for the irradiation of molecular clusters) is a newly designed experimental setup to investigate processes resulting from the irradiation of molecular nano-systems by 20-150 keV protons. One of its specificities relies on the original technique of mass spectrometry named COINTOF (Correlated Ion and Neutral Time Of Flight) consisting in correlated measurements of the time of flight of charged and neutral fragments produced by the dissociation of a single molecular ion parent. A strategy of treatment and analysis of the detection signals was developed to distinguish two fragments close in time ( 3 O + and two water molecules. The distribution of the time of flight difference between the two neutral fragments is measured providing an estimate of the kinetic energy release of a few eV. In parallel, a second time-of-flight mass spectrometer was designed. It associates a linear time-of-flight and an orthogonal time-of-flight and integrates position detectors (delay line anode). Simulations demonstrate the potentials of the new analyzer. Finally, research works were led at the laboratory R.-J. A. Levesque (Universite de Montreal) on the imaging capabilities of the multi-pixel detectors of the MPX-ATLAS collaboration. (author)

  4. A mechanical nanomembrane detector for time-of-flight mass spectrometry.

    Science.gov (United States)

    Park, Jonghoo; Qin, Hua; Scalf, Mark; Hilger, Ryan T; Westphall, Michael S; Smith, Lloyd M; Blick, Robert H

    2011-09-14

    We describe here a new principle for ion detection in time-of-flight (TOF) mass spectrometry in which an impinging ion packet excites mechanical vibrations in a silicon nitride (Si(3)N(4)) nanomembrane. The nanomembrane oscillations are detected by means of time-varying field emission of electrons from the mechanically oscillating nanomembrane. Ion detection is demonstrated in the MALDI-TOF analysis of proteins varying in mass from 5729 (insulin) to 150,000 (Immunoglobulin G) daltons. The detector response agrees well with the predictions of a thermomechanical model in which the impinging ion packet causes a nonuniform temperature distribution in the nanomembrane, exciting both fundamental and higher order oscillations.

  5. Double-arm time-of-flight mass-spectrometer of nuclear fragments

    International Nuclear Information System (INIS)

    Ajvazian, G.M.; Astabatyan, R.A.

    1995-01-01

    A double-arm time-of-flight spectrometer of nuclear fragments for the investigation of heavy nuclei photofission in the intermediate energy range is described. The calibration results and working characteristics of the spectrometer, obtained using 252 Cf as a source of spontaneous fission, are presented. A mass resolution of σ m ∼2-3 a.m.u. was obtained within the registered fragments mass range of 80-160 a.m.u. The spectrometer was tested in the experiment on the investigation of 238 U nuclei fission by Bremsstahlung photons with Eγ max=1.75 GeV

  6. Laser ionization time of flight mass spectrometer for isotope mass detection and elemental analysis of materials

    Science.gov (United States)

    Ahmed, Nasar; Ahmed, Rizwan; Umar, Z. A.; Aslam Baig, M.

    2017-08-01

    In this paper we present the construction and modification of a linear time-of-flight mass spectrometer to improve its mass resolution. This system consists of a laser ablation/ionization section based on a Q-switched Nd:YAG laser (532 nm, 500 mJ, 5 ns pulse duration) integrated with a one meter linear time-of-flight mass spectrometer coupled with an electric sector and a magnetic lens and outfitted with a channeltron electron multiplier for ion detection. The resolution of the system has been improved by optimizing the accelerating potential and inserting a magnetic lens after the extraction region. The isotopes of lithium, lead and cadmium samples have been resolved and detected in accordance with their natural abundance. The capability of the system has been further exploited to determine the elemental composition of a brass alloy, having a certified composition of zinc and copper. Our results are in excellent agreement with its certified composition. This setup is found to be extremely efficient and convenient for fast analyses of any solid sample.

  7. Calibration of matrix-assisted laser desorption/ionization time-of-flight peptide mass fingerprinting spectra

    DEFF Research Database (Denmark)

    Hjernø, Karin; Højrup, Peter

    2007-01-01

    This chapter describes a number of aspects important for calibration of matrix-assisted laser desorption/ionization time-of-flight spectra prior to peptide mass fingerprinting searches. Both multipoint internal calibration and mass defect-based calibration is illustrated. The chapter describes ho...

  8. Direct trace analysis of metals and alloys in a quadrupole ion-trap mass spectrometer

    CERN Document Server

    Song, K S; Yang, M; Cha, H K; Lee, J M; Lee, G H

    1999-01-01

    An ion-trap mass spectrometer adopting a quadrupole ion-trap and laser ablation/ionization method was constructed. The developed system was tested for composition analysis of some metals (Cu, stainless), and alloys (hastalloy C, mumetal) by mass spectrometry. Samples were analyzed by using laser ablation from a sample probe tip followed by a mass analysis with the quadrupole ion-trap. The quadrupole ion-trap was modified to enable laser ablation by a XeCl excimer laser pulse that passed radially through the ring electrode. A mass scan of the produced ions was performed in the mass selective instability mode wherein trapped ions were successively detected by increasing the rf voltage through the ring electrode. Factors affecting the mass resolution, such as pressure of buffer gas and ablation laser power, are discussed.

  9. Ultra-high performance liquid chromatography coupled with quadrupole/time of flight mass spectrometry based chemical profiling approach for the holistic quality control of complex Kang-Jing formula preparations.

    Science.gov (United States)

    Yang, Xiao-Huan; Cheng, Xiao-Lan; Qin, Bing; Cai, Zhuo-Ya; Cai, Xiong; Liu, Shao; Wang, Qi; Qin, Yong

    2016-05-30

    The Kang-Jing (KJ) formula is a compound preparation made from 12 kinds of herbs. So far, four different methods (M1-M4) have been documented for KJ preparation, but the influence of preparation methods on the holistic quality of KJ have remained unknown. In this study, a strategy was proposed to investigate the influence of different preparation methods on the holistic quality of KJ using ultra-high performance liquid chromatography coupled with quadrupole/time of flight mass spectrometry (UHPLC-QTOF-MS/MS) based chemical profiling. A total of 101 compounds mainly belonging to flavonoids, tanshinones, monoterpene glycosides, triterpenoid saponins, alkaloids, phenolic acids and volatile oils, were identified. Among these compounds, glaucine was detected only in M3/M4 samples, while two dehydrocorydaline isomers merely detected in M2/M3/M4 samples. Tetrahydrocolumbamine, ethylic lithospermic acid, salvianolic acid E and rosmarimic acid were only detected in M1/M3/M4 samples. In the subsequent quantitative analysis, 12 major compounds were determined by UHPLC-MS/MS. The proposed method was validated with respect to linearity, accuracy, precision and recovery. It was found that the contents of marker compounds varied significantly in samples prepared by different methods. These results demonstrated that preparation method does significantly affect the holistic quality of KJ. UHPLC-QTOF-MS/MS based chemical profiling approach is efficient and reliable for comprehensive quality evaluation of KJ. Collectively, this study provide the chemical evidence for revealing the material basis of KJ, and establish a simple and accurate chemical profiling method for its quality control. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Screening for in vitro metabolites of kakkalide and irisolidone in human and rat intestinal bacteria by ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Zhang, Guozhe; Gong, Tianxing; Kano, Yoshihiro; Yuan, Dan

    2014-02-01

    Kakkalide and irisolidone, the main isoflavones of Flos Puerariae, exhibit a wide spectrum of bioactivities. Intestinal bacteria biotransformation plays an important role in the metabolic pathways of flavones, and is directly related to the bioactivities of the prodrugs after oral administration. To the best of our knowledge, the metabolic pathways of kakkalide and irisolidone in vitro have not been comprehensively studied yet. This paper describes the strategy using ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC/Q-TOF MS) for the rapid analysis of the metabolic profiles of kakkalide and irisolidone after incubated with human and rat intestinal bacteria. Bacteria incubated samples were prepared and analyzed after incubated under anaerobic conditions for 48 h. A total of 17 metabolites, including parent compounds, were detected in human and rat intestinal bacteria incubated samples. The results obtained indicate that hydrolysis, dehydroxylation, demethoxylation, demethylation, hydroxylation, decarbonylation, and reduction were the detected metabolic pathways of kakkalide and irisolidone in vitro. The conversion rate of irisolidone in human and rat bacteria was 8.57% and 6.51%, respectively. Biochanin A was the relatively main metabolite of irisolidone, and the content of biochanin A in human and rat bacteria was 3.68% and 4.25%, respectively. The conversion rate of kakkalide in human and rat bacteria was 99.92% and 98.58%, respectively. Irisolidone was the main metabolite of kakkalide, and the content of irisolidone in human and rat bacteria was 89.58% and 89.38%, respectively. This work not only provides the evidence of kakkalide and irisolidone metabolites in vivo, but also demonstrates a simple, fast, sensitive, and inexpensive method for identification of metabolites of other compounds transformed by intestinal bacteria. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Ion beam properties after mass filtering with a linear radiofrequency quadrupole

    International Nuclear Information System (INIS)

    Ferrer, R.; Kwiatkowski, A.A.; Bollen, G.; Lincoln, D.L.; Morrissey, D.J.; Pang, G.K.; Ringle, R.; Savory, J.; Schwarz, S.

    2014-01-01

    The properties of ion beams passing through a linear radiofrequency quadrupole mass filter were investigated with special attention to their dependence on the mass resolving power. Experimentally, an increase of the transverse emittance was observed as the mass-to-charge selectivity of the mass filter was raised. The experimental behavior was confirmed by beam transport simulations. -- Highlights: • The ion-optical properties of a Quadrupole Mass Filter (QMF) are presented. • Measured beam emittances follow a trend to larger values for smaller A/Q ratios and increasing mass resolution. • The experimental behavior was confirmed by beam transport simulations. • The use of a QMF for mass filtering comes at the cost of emittance growth of the ion beam

  12. Laser desorption and time-of-flight mass spectrometry. Fundamentals .Applications

    International Nuclear Information System (INIS)

    Chaurand, P.

    1994-11-01

    Time-of-flight mass spectrometry is a very powerful technique for the analysis of heavy molecular ions (100 000 u and more). The ejection in the gas phase and the ionization of these molecules is now possible through the MALDI technique (Matrix Assisted Laser Desorption Ionization). This technique consists in mixing the heavy molecules to be analysed with a organic matrix which absorbs at the wavelength of the laser. The necessary irradiance are of the order of 10 6 W/cm 2 . In these conditions we have shown that the mass resolutions are optimum and that the relative mass accuracies are of the order of 10 -4 . We have also demonstrated that the emission angle of the molecular ions in MALDI depends on the incident angle of the laser light. During the desorption process, the molecular ions are emitted in the opposite direction of the incident laser light. This effect is particularly important for the design of the accelerating stage of the time-of-flight spectrometers. Problems relative to the detection of these heavy molecular ions have been studied in details between 0.5 10 4 m/s and 10 5 m/s. The velocity threshold of the electronic emission is lower than the value of 0.5 10 4 m/s. The relation between the electronic emission and the projectile velocity is complex. Finally, examples on mass identification of C 60 molecules and derivated C 60 are presented. Desorption methods are compared. (author). 32 refs., 34 figs

  13. Electrostatic mirror of time-of-flight focusing of charged particles and its application to mass spectrometry

    International Nuclear Information System (INIS)

    Berger, C.

    1985-01-01

    This invention is more particularly aimed at the electrostatic devices used in time-of-flight mass spectrometers. To obtain a better resolution and a maximum transmission, the mirror is characterized by three annular electrodes with same radius R: - having at least an inner conductor surface related to an electric source, - delimiting by their facing ends cross-sections, - spaced successively with coaxial arrangement, - having an axial length for the center electrode equal to 0,9 R and for the end electrodes a length enough to give to them a behaviour equivalent to a infinite length tube cylinder. Ion beams are reflected by the mirror which in the same time realizes the time-of-flight unicity for ion. TOF unicity means that time of flight will be the same for equal mass ions [fr

  14. [Separation and identification of bovine lactoferricin by high performance liquid chromatography-matrix-assisted laser desorption/ionization time of flight/ time of flight mass spectrometry].

    Science.gov (United States)

    An, Meichen; Liu, Ning

    2010-02-01

    A high performance liquid chromatography-matrix-assisted laser desorption/ionization time of flight/time of flight mass spectrometry (HPLC-MALDI-TOF/TOF MS) method was developed for the separation and identification of bovine lactoferricin (LfcinB). Bovine lactoferrin was hydrolyzed by pepsin and then separated by ion exchange chromatography and reversed-phase liquid chromatography (RP-LC). The antibacterial activities of the fractions from RP-LC separation were determined and the protein concentration of the fraction with the highest activity was measured, whose sequence was indentified by MALDI-TOF/TOF MS. The relative molecular mass of LfcinB was 3 124.89 and the protein concentration was 18.20 microg/mL. The method of producing LfcinB proposed in this study has fast speed, high accuracy and high resolution.

  15. Separation and characterization of chemical constituents in Ginkgo biloba extract by off-line hydrophilic interaction×reversed-phase two-dimensional liquid chromatography coupled with quadrupole-time of flight mass spectrometry.

    Science.gov (United States)

    Ji, Shuai; He, Dan-Dan; Wang, Tian-Yun; Han, Jie; Li, Zheng; Du, Yan; Zou, Jia-Hui; Guo, Meng-Zhe; Tang, Dao-Quan

    2017-11-30

    Ginkgo biloba extract (GBE), derived from the leaves of Ginkgo biloba L., is one of the most widely used traditional Chinese medicines worldwide. Due to high structural diversity and low abundance of chemical constituents in GBE, conventional reversed-phase liquid chromatography has limited power to meet the needs of its quality control. In this study, an off-line hydrophilic interaction×reversed-phase two-dimensional liquid chromatography (HILIC×RP 2D-LC) system coupled with diode array detection (DAD) and quadrupole time-of-flight mass spectrometry (qTOF-MS) was established to comprehensively analyze the chemical constituents of GBE. After optimizing the chromatographic columns and mobile phase of 2D-LC, a Waters XBridge Amide column using acetonitrile/water/formic acid as the mobile phase was selected as the first dimension to fractionate GBE, and the obtained fractions were further separated on an Agilent Zorbax XDB-C18 column with methanol/water/formic acid as the mobile phase. As a result, a total of 125 compounds were detected in GBE. The orthogonality of the 2D-LC system was 69.5%, and the practical peak capacity was 3864 and 2994, respectively, calculated by two different methods. The structures of 104 compounds were tentatively characterized by qTOF-MS analysis, and 21 of them were further confirmed by comparing with reference standards. This established HILIC×RP 2D-LC-qTOF/MS system can greatly improve the separation and characterization of natural products in GBE or other complicated herbal extracts. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Development of a hand-portable photoionization time-of-flight mass spectrometer

    International Nuclear Information System (INIS)

    Dieckman, S.L.; Bostrom, G.A.; Waterfield, L.G.; Jendrzejczyk, J.A.; Raptis, A.C.

    1996-01-01

    ANL is currently developing a portable chemical sensor system based on laser desorption photoionization time-of-flight mass spectrometry. It will incorporate direct sampling, a cryocooler base sample adsorption and concentration, and direct surface multiphoton ionization. All components will be in a package 9 x 11 x 4 in., weighing 15-18 lbs. A sample spectrum is given for a NaCl sample

  17. Miniature Time of Flight Mass Spectrometer for Space and Extraterrestrial Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The PI has developed a miniature time-of-flight mass spectrometer (TOF-MS), which can be op-timized for space and extraterrestrial applications, by using a...

  18. Series fabrication of the main quadrupole cold masses for the LHC begins

    CERN Multimedia

    2003-01-01

    Three hundred and sixty main quadrupole (MQ) magnets will perform the principal beam focusing around the 27 km LHC ring. CERN and CEA-Saclay began collaborating on the development and prototyping of these magnets in 1989. This resulted in five highly successful quadrupole units - also known as short straight sections - one of which was integrated for testing in String 1, and two others of the final design in String 2. Once the tests had confirmed the validity of the design and realization, the fabrication of the 360 cold masses had to be transferred to industry.The German firm ACCEL Instruments was entrusted both with the construction of the quadrupole magnets themselves, and with their assembly into the cold masses together with various combinations of corrector magnets produced by other European manufacturers. Here we see the first of the cold masses containing the MQ magnet of the machine arcs together with two types of corrector magnet ready for shipping to CERN. Pictured with this first unit, delivered o...

  19. Portable, remotely operated, computer-controlled, quadrupole mass spectrometer for field use

    International Nuclear Information System (INIS)

    Friesen, R.D.; Newton, J.C.; Smith, C.F.

    1982-04-01

    A portable, remote-controlled mass spectrometer was required at the Nevada Test Site to analyze prompt post-event gas from the nuclear cavity in support of the underground testing program. A Balzers QMG-511 quadrupole was chosen for its ability to be interfaced to a DEC LSI-11 computer and to withstand the ground movement caused by this field environment. The inlet system valves, the pumps, the pressure and temperature transducers, and the quadrupole mass spectrometer are controlled by a read-only-memory-based DEC LSI-11/2 with a high-speed microwave link to the control point which is typically 30 miles away. The computer at the control point is a DEC LSI-11/23 running the RSX-11 operating system. The instrument was automated as much as possible because the system is run by inexperienced operators at times. The mass spectrometer has been used on an initial field event with excellent performance. The gas analysis system is described, including automation by a novel computer control method which reduces operator errors and allows dynamic access to the system parameters

  20. A reflecting time-of-flight mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Tang, X

    1991-01-01

    The design, construction and operation of a reflecting time-of-flight mass spectrometer and the details of the ion mirror are discussed. The principle of velocity focusing with a single-stage ion mirror and the effect of the acceleration region are discussed. The performance of the reflecting instrument is described. Its detection limit is illustrated by observation of [M + H][sup +] ions from [approximately]5-35 femtomoles of various peptides. The factors that affect the resolution are discussed. The principle and operation of the reflecting instrument as a tandem mass spectrometer is described; this involves correlated detection of neutral and ionized fragments. The efficiency, resolution, sensitivity, and mass determination of daughter ions by this method are discussed. Methods of sample preparation are described. By using a nitrocellulose substrate, organic molecular ions as large as bovine insulin (MW 5733) were detected for the first time with low energy (keV) ion bombardment of a solid surface. Many daughter ion spectra resulting from metastable decay of parent ions have been studied. Secondary ions [(CsI)[sub n]Cs][sup +] with n up to [approximately]50 were detected; all clusters were found to be metastable, with most lifetimes <100 [mu]s, and for n>10 the daughter ions are dominant in the mass spectrum. Peptides of mass up to [approximately]2000 u have been studied with the correlated method; the daughter ion spectra were found to be strongly influenced by the identity of the bound cation (H[sup +], Na[sup +], K[sup +], or Ag[sup +]). Many daughter ions formed by known reactions yield structure and sequence information about the peptides. In addition, the [M + Na][sup +] and [M + Ag][sup +] ions decompose by a previously unreported pathway, namely, rearrangement of a C-terminal carboxyl oxygen onto the daughter ion containing the N-terminus. Both the reflected spectra and daughter ion spectra were found useful in peptide sequencing.

  1. Metabolites profile of Gualou Xiebai Baijiu decoction (a classical traditional Chinese medicine prescription) in rats by ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry.

    Science.gov (United States)

    Lin, Pei; Qin, Zifei; Yao, Zhihong; Wang, Li; Zhang, Weiyang; Yu, Yang; Dai, Yi; Zhou, Hua; Yao, Xinsheng

    2018-05-15

    Gualou Xiebai Baijiu decoction (GLXB), a well-known classic traditional Chinese medicine prescription, has been widely used to treat coronary heart diseases for thousands of years in Eastern Asian countries due to its remarkable clinical effect. However, due to lack of in vivo metabolism research, the chemical components responsible for the therapeutic effects still remain unclear. In this work, a reliable "representative structure based homologous xenobiotics identification" (RSBHXI) strategy based on ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF-MS) were applied to investigate the chemical components in GLXB extracts. As a result, 133 chemical components were characterized based on summarized fragmentation patterns, of which 41 components were confirmed unambiguously with authentic standards. Furthermore, a total of 138 GLXB-related xenobiotics were identified or tentatively characterized after oral administration of GLXB extracts. Moreover, to better understand the metabolic pathways of characteristic components in GLXB, metabolites profiles of five steroidal saponins and two flavonoids were performed, respectively. Since the metabolic pathways of five representative saponins had been finished in our previous study, we focused on the in vivo metabolism of two flavonoids. A total of 36 and 20 metabolites were detected in rat biological samples after oral administration of luteolin-7-O-β-D-glucopyranoside and rutin, respectively. The results indicated that dehydration, hydrolysis, hydroxylation, methylation, glucuronidation and sulfation were the main metabolic reactions, following the metabolic soft spots of GLXB-related flavonoids. Taken altogether, this study would be helpful for the further pharmacokinetics, pharmacological evaluation and quality control of GLXB. Copyright © 2018. Published by Elsevier B.V.

  2. LVGEMS Time-of-Flight Mass Spectrometry on Satellites

    Science.gov (United States)

    Herrero, Federico

    2013-01-01

    NASA fs investigations of the upper atmosphere and ionosphere require measurements of composition of the neutral air and ions. NASA is able to undertake these observations, but the instruments currently in use have their limitations. NASA has extended the scope of its research in the atmosphere and now requires more measurements covering more of the atmosphere. Out of this need, NASA developed multipoint measurements using miniaturized satellites, also called nanosatellites (e.g., CubeSats), that require a new generation of spectrometers that can fit into a 4 4 in. (.10 10 cm) cross-section in the upgraded satellites. Overall, the new mass spectrometer required for the new depth of atmospheric research must fulfill a new level of low-voltage/low-power requirements, smaller size, and less risk of magnetic contamination. The Low-Voltage Gated Electrostatic Mass Spectrometer (LVGEMS) was developed to fulfill these requirements. The LVGEMS offers a new spectrometer that eliminates magnetic field issues associated with magnetic sector mass spectrometers, reduces power, and is about 1/10 the size of previous instruments. LVGEMS employs the time of flight (TOF) technique in the GEMS mass spectrometer previously developed. However, like any TOF mass spectrometer, GEMS requires a rectangular waveform of large voltage amplitude, exceeding 100 V -- that means that the voltage applied to one of the GEMS electrodes has to change from 0 to 100 V in a time of only a few nanoseconds. Such electronic speed requires more power than can be provided in a CubeSat. In the LVGEMS, the amplitude of the rectangular waveform is reduced to about 1 V, compatible with digital electronics supplies and requiring little power.

  3. First Direct Mass Measurements of Nuclides around Z =100 with a Multireflection Time-of-Flight Mass Spectrograph

    Science.gov (United States)

    Ito, Y.; Schury, P.; Wada, M.; Arai, F.; Haba, H.; Hirayama, Y.; Ishizawa, S.; Kaji, D.; Kimura, S.; Koura, H.; MacCormick, M.; Miyatake, H.; Moon, J. Y.; Morimoto, K.; Morita, K.; Mukai, M.; Murray, I.; Niwase, T.; Okada, K.; Ozawa, A.; Rosenbusch, M.; Takamine, A.; Tanaka, T.; Watanabe, Y. X.; Wollnik, H.; Yamaki, S.

    2018-04-01

    The masses of 246Es, 251Fm, and the transfermium nuclei Md-252249 and 254No, produced by hot- and cold-fusion reactions, in the vicinity of the deformed N =152 neutron shell closure, have been directly measured using a multireflection time-of-flight mass spectrograph. The masses of 246Es and 249,250,252Md were measured for the first time. Using the masses of Md,250249 as anchor points for α decay chains, the masses of heavier nuclei, up to 261Bh and 266Mt, were determined. These new masses were compared with theoretical global mass models and demonstrated to be in good agreement with macroscopic-microscopic models in this region. The empirical shell gap parameter δ2 n derived from three isotopic masses was updated with the new masses and corroborates the existence of the deformed N =152 neutron shell closure for Md and Lr.

  4. A fragmentation study of kaempferol using electrospray quadrupole time-of-flight mass spectrometry at high mass resolution

    Science.gov (United States)

    March, Raymond E.; Miao, Xiu-Sheng

    2004-02-01

    A mass spectrometric method based on the combined use of electrospray ionization, collision-induced dissociation and tandem mass spectrometry at high mass resolution has been applied to an investigation of the structural characterization of protonated and deprotonated kaempferol (3,5,7,4'-tetrahydroxyflavone). Low-energy product ion mass spectra of [M+H]+ ions showed simple fragmentations of the C ring that permitted characterization of the substituents in the A and B rings. In addition, four rearrangement reactions accompanied by losses of C2H2O, CHO[radical sign], CO, and H2O were observed. Low-energy product ion mass spectra of [M-H]- ions showed only four rearrangement reactions accompanied by losses of OH[radical sign], CO, CH2O, and C2H2O. The use of elevated cone voltages permitted observation of product ion mass spectra of selected primary and secondary fragment ions so that each fragment ion reported was observed as a direct product of its immediate precursor ion. Product ion mass spectra examined at high mass resolution allowed unambiguous determination of the elemental composition of fragment ions and resolution of two pairs of isobars. Fragmentation mechanisms and ion structures have been proposed.

  5. Polymer and Additive Mass Spectrometry Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Shear, Trevor Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-06

    The use of mass spectrometry in fields related to polymers has increased significantly over the past three decades and will be explored in this literature review. The importance of this technique is highlighted when exploring how polymers degrade, verifying purchased materials, and as internal requirements change. The primary focus will be on four ionization techniques and the triple quadrupole and quadrupole / time-of-flight mass spectrometers. The advantages and limitations of each will also be explored.

  6. Polymer Analysis by Liquid Chromatography/Electrospray Ionization Time-of-Flight Mass Spectrometry.

    Science.gov (United States)

    Nielen, M W; Buijtenhuijs, F A

    1999-05-01

    Hyphenation of liquid chromatography (LC) techniques with electrospray ionization (ESI) orthogonal acceleration time-of-flight (oa-TOF) mass spectrometry (MS) provides both MS-based structural information and LC-based quantitative data in polymer analysis. In one experimental setup, three different LC modes are interfaced with MS:  size-exclusion chromatography (SEC/MS), gradient polymer elution chromatography (GPEC/MS), and liquid chromatography at the critical point of adsorption (LCCC/MS). In SEC/MS, both absolute mass calibration of the SEC column based on the polymer itself and determination of monomers and end groups from the mass spectra are achieved. GPEC/MS shows detailed chemical heterogeneity of the polymer and the chemical composition distribution within oligomer groups. In LCCC/MS, the retention behavior is primarily governed by chemical heterogeneities, such as different end group functionalities, and quantitative end group calculations can be easily made. The potential of these methods and the benefit of time-of-flight analyzers in polymer analysis are discussed using SEC/MS of a polydisperse poly(methyl methacrylate) sample, GPEC/MS of dipropoxylated bisphenol A/adipic acid polyester resin, LCCC/MS of alkylated poly(ethylene glycol), and LCCC/MS of terephthalic acid/neopentyl glycol polyester resin.

  7. Fully automatic and precise data analysis developed for time-of-flight mass spectrometry.

    Science.gov (United States)

    Meyer, Stefan; Riedo, Andreas; Neuland, Maike B; Tulej, Marek; Wurz, Peter

    2017-09-01

    Scientific objectives of current and future space missions are focused on the investigation of the origin and evolution of the solar system with the particular emphasis on habitability and signatures of past and present life. For in situ measurements of the chemical composition of solid samples on planetary surfaces, the neutral atmospheric gas and the thermal plasma of planetary atmospheres, the application of mass spectrometers making use of time-of-flight mass analysers is a technique widely used. However, such investigations imply measurements with good statistics and, thus, a large amount of data to be analysed. Therefore, faster and especially robust automated data analysis with enhanced accuracy is required. In this contribution, an automatic data analysis software, which allows fast and precise quantitative data analysis of time-of-flight mass spectrometric data, is presented and discussed in detail. A crucial part of this software is a robust and fast peak finding algorithm with a consecutive numerical integration method allowing precise data analysis. We tested our analysis software with data from different time-of-flight mass spectrometers and different measurement campaigns thereof. The quantitative analysis of isotopes, using automatic data analysis, yields results with an accuracy of isotope ratios up to 100 ppm for a signal-to-noise ratio (SNR) of 10 4 . We show that the accuracy of isotope ratios is in fact proportional to SNR -1 . Furthermore, we observe that the accuracy of isotope ratios is inversely proportional to the mass resolution. Additionally, we show that the accuracy of isotope ratios is depending on the sample width T s by T s 0.5 . Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Multiple-reflection time-of-flight mass spectrometry for in situ applications

    Science.gov (United States)

    Dickel, T.; Plaß, W. R.; Lang, J.; Ebert, J.; Geissel, H.; Haettner, E.; Jesch, C.; Lippert, W.; Petrick, M.; Scheidenberger, C.; Yavor, M. I.

    2013-12-01

    Multiple-reflection time-of-flight mass spectrometers (MR-TOF-MS) have recently been installed at different low-energy radioactive ion beam facilities. They are used as isobar separators with high ion capacity and as mass spectrometers with high mass resolving power and accuracy for short-lived nuclei. Furthermore, MR-TOF-MS have a huge potential for applications in other fields, such as chemistry, biology, medicine, space science, and homeland security. The development, commissioning and results of an MR-TOF-MS is presented, which serves as proof-of-principle to show that very high mass resolving powers (∼105) can be achieved in a compact device (length ∼30 cm). Based on this work, an MR-TOF-MS for in situ application has been designed. For the first time, this device combines very high mass resolving power (>105), mobility, and an atmospheric pressure inlet in one instrument. It will enable in situ measurements without sample preparation at very high mass accuracy. Envisaged applications of this mobile MR-TOF-MS are discussed.

  9. Identification of microorganisms using superconducting tunnel junctions and time-of-flight mass spectrometry

    Science.gov (United States)

    Ullom, J. N.; Frank, M.; Horn, J. M.; Labov, S. E.; Langry, K.; Benner, W. H.

    2000-04-01

    We present time-of-flight measurements of biological material ejected from bacterial spores following laser irradiation. Ion impacts are registered on a microchannel plate detector and on a Superconducting Tunnel Junction (STJ) detector. We compare mass spectra obtained with the two detectors. The STJ has better sensitivity to massive ions and also measures the energy of each ion. We show evidence that spores of different bacillus species produce distinctive mass spectra and associate the observed mass peaks with coat proteins.

  10. Identification of microorganisms using superconducting tunnel junctions and time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Ullom, J.N.; Frank, M.; Horn, J.M.; Labov, S.E.; Langry, K.; Benner, W.H.

    2000-01-01

    We present time-of-flight measurements of biological material ejected from bacterial spores following laser irradiation. Ion impacts are registered on a microchannel plate detector and on a Superconducting Tunnel Junction (STJ) detector. We compare mass spectra obtained with the two detectors. The STJ has better sensitivity to massive ions and also measures the energy of each ion. We show evidence that spores of different bacillus species produce distinctive mass spectra and associate the observed mass peaks with coat proteins

  11. Proteomic analysis of proteins expressing in regions of rat brain by a combination of SDS-PAGE with nano-liquid chromatography-quadrupole-time of flight tandem mass spectrometry

    Directory of Open Access Journals (Sweden)

    Maekawa Tsuyoshi

    2010-07-01

    Full Text Available Abstract Background Most biological functions controlled by the brain and their related disorders are closely associated with activation in specific regions of the brain. Neuroproteomics has been applied to the analysis of whole brain, and the general pattern of protein expression in all regions has been elucidated. However, the comprehensive proteome of each brain region remains unclear. Results In this study, we carried out comparative proteomics of six regions of the adult rat brain: thalamus, hippocampus, frontal cortex, parietal cortex, occipital cortex, and amygdala using semi-quantitative analysis by Mascot Score of the identified proteins. In order to identify efficiently the proteins that are present in the brain, the proteins were separated by a combination of SDS-PAGE on a C18 column-equipped nano-liquid chromatograph, and analyzed by quadrupole-time of flight-tandem-mass spectrometry. The proteomic data show 2,909 peptides in the rat brain, with more than 200 identified as region-abundant proteins by semi-quantitative analysis. The regions containing the identified proteins are membrane (20.0%, cytoplasm (19.5%, mitochondrion (17.1%, cytoskeleton (8.2%, nucleus (4.7%, extracellular region (3.3%, and other (18.0%. Of the identified proteins, the expressions of glial fibrillary acidic protein, GABA transporter 3, Septin 5, heat shock protein 90, synaptotagmin, heat shock protein 70, and pyruvate kinase were confirmed by immunoblotting. We examined the distributions in rat brain of GABA transporter 3, glial fibrillary acidic protein, and heat shock protein 70 by immunohistochemistry, and found that the proteins are localized around the regions observed by proteomic analysis and immunoblotting. IPA analysis indicates that pathways closely related to the biological functions of each region may be activated in rat brain. Conclusions These observations indicate that proteomics in each region of adult rat brain may provide a novel way to

  12. Investigation of the Effect of Rice Wine on the Metabolites of the Main Components of Herbal Medicine in Rat Urine by Ultrahigh-Performance Liquid Chromatography-Quadrupole/Time-of-Flight Mass Spectrometry: A Case Study on Cornus officinalis

    Directory of Open Access Journals (Sweden)

    Gang Cao

    2013-01-01

    Full Text Available Ultrahigh-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry (UPLC-QTOF/MS was developed for rapid and sensitive analysis of the effect of rice wine on the metabolites of the main components of herbal medicine in rat urine. Using Cornus officinalis as a model of herbal medicine, the metabolite profiles of crude and processed (steaming the crude drug presteeped in rice wine Cornus officinalis extracts in rat urine were investigated. The metabolites of Cornus officinalis were identified by using dynamic adjustment of the fragmentor voltage to produce structure-relevant fragment ions. In this work, we identified the parent compounds and metabolites of crude and processed Cornus officinalis in rats. In total, three parent compounds and seventeen new metabolites of Cornus officinalis were found in rats. The contents of the parent compounds and metabolites in vivo varied significantly after intragastric (i.g. administration of aqueous extracts of crude and processed Cornus officinalis. Data from this study suggests that UPLC-QTOF/MS could be used as a potential tool for uncovering the effects of excipients found in the metabolites of the main components of herbal medicine, in vivo, to predict and discover the processing mechanisms of herbal medicine.

  13. Physical design of time-of-flight mass spectrometer in energetic cluster impact deposition apparatus

    International Nuclear Information System (INIS)

    Yu Guoqing; Shi Ying; Chen Jingsheng; Zhu Dezhang; Pan Haochang; Xu Hongjie

    1999-01-01

    The principle and physical design of the time-of-flight mass spectrometer equipped in the energetic cluster impact deposition apparatus are introduced. Some problems existed in experiments and their solutions are also discussed

  14. Series fabrication of the main quadrupole cold masses for the LHC begins

    CERN Multimedia

    2003-01-01

    Three hundred and sixty main quadrupole (MQ) magnets will perform the principal beam focusing around the 27 km LHC ring. CERN and CEA-Saclay began collaborating on the development and prototyping of these magnets in 1989. This resulted in five highly successful quadrupole units - also known as short straight sections - one of which was integrated for testing in String 1, and two others of the final design in String 2. Once the tests had confirmed the validity of the design and realization, the fabrication of the 360 cold masses had to be transferred to industry.The German firm ACCEL Instruments was entrusted both with the construction of the quadrupole magnets themselves, and with their assembly into the cold masses together with various combinations of corrector magnets produced by other European manufacturers. Here we see the first of the cold masses containing the MQ magnet of the machine arcs together with two types of corrector magnet ready for shipping to CERN. This first unit was delivered on 12 Februa...

  15. The mass spectral density in quantitative time-of-flight mass spectrometry of polymers

    Science.gov (United States)

    Tate, Ranjeet S.; Ebeling, Dan; Smith, Lloyd M.

    2001-03-01

    Time-of-flight mass spectrometry (TOF-MS) is being increasingly used for the study of polymers, for example to obtain the distribution of molecular masses for polymer samples. Serious efforts have also been underway to use TOF-MS for DNA sequencing. In TOF-MS the data is obtained in the form of a time-series that represents the distribution in arrival times of ions of various m/z ratios. This time-series data is then converted to a "mass-spectrum" via a coordinate transformation from the arrival time (t) to the corresponding mass-to-charge ratio (m/z = const. t^2). In this transformation, it is important to keep in mind that spectra are distributions, or densities of weight +1, and thus do not transform as functions. To obtain the mass-spectral density, it is necessary to include a multiplicative factor of √m/z. Common commercial instruments do not take this factor into account. Dropping this factor has no effect on qualitative analysis (detection) or local quantitative measurements, since S/N or signal-to-baseline ratios are unaffected for peaks with small dispersions. However, there are serious consequences for general quantitative analyses. In DNA sequencing applications, loss of signal intensity is in part attributed to multiple charging; however, since the √m/z factor is not taken into account, this conclusion is based on an overestimate (by a factor of √z) of the relative amount of the multiply charged species. In the study of polymers, the normalized dispersion is underestimated by approximately (M_w/Mn -1)/2. In terms of M_w/Mn itself, for example, a M_w/M_n=1.5 calculated without the √m factor corresponds in fact to a M_w/M_n=1.88.

  16. Comparison of linear intrascan and interscan dynamic ranges of Orbitrap and ion-mobility time-of-flight mass spectrometers.

    Science.gov (United States)

    Kaufmann, Anton; Walker, Stephan

    2017-11-30

    The linear intrascan and interscan dynamic ranges of mass spectrometers are important in metabolome and residue analysis. A large linear dynamic range is mandatory if both low- and high-abundance ions have to be detected and quantitated in heavy matrix samples. These performance criteria, as provided by modern high-resolution mass spectrometry (HRMS), were systematically investigated. The comparison included two generations of Orbitraps, and an ion mobility quadrupole time-of-flight (QTOF) system In addition, different scan modes, as provided by the utilized instruments, were investigated. Calibration curves of different compounds covering a concentration range of five orders of magnitude were measured to evaluate the linear interscan dynamic range. The linear intrascan dynamic range and the resulting mass accuracy were evaluated by repeating these measurements in the presence of a very intense background. Modern HRMS instruments can show linear dynamic ranges of five orders of magnitude. Often, however, the linear dynamic range is limited by the detection capability (sensitivity and selectivity) and by the electrospray ionization. Orbitraps, as opposed to TOF instruments, show a reduced intrascan dynamic range. This is due to the limited C-trap and Orbitrap capacity. The tested TOF instrument shows poorer mass accuracies than the Orbitraps. In contrast, hyphenation with an ion-mobility device seems not to affect the linear dynamic range. The linear dynamic range of modern HRMS instrumentation has been significantly improved. This also refers to the virtual absence of systematic mass shifts at high ion abundances. The intrascan dynamic range of the current Orbitrap technology may still be a limitation when analyzing complex matrix extracts. On the other hand, the linear dynamic range is not only limited by the detector technology, but can also be shortened by peripheral devices, where the ionization and transfer of ions take place. Copyright © 2017 John Wiley

  17. Potential of gas chromatography-orthogonal acceleration time-of-flight mass spectrometry (GC-oaTOFMS) in flavor research.

    Science.gov (United States)

    Fay, Laurent B; Newton, Anthony; Simian, Hervé; Robert, Fabien; Douce, David; Hancock, Peter; Green, Martin; Blank, Imre

    2003-04-23

    Gas chromatography-orthogonal acceleration time-of-flight mass spectrometry (GC-oaTOFMS) is an emerging technique offering a straightforward access to a resolving power up to 7000. This paper deals with the use of GC-oaTOFMS to identify the flavor components of a complex seafood flavor extract and to quantify furanones formed in model Maillard reactions. A seafood extract was selected as a representative example for complex food flavors and was previously analyzed using GC-quadrupole MS, leaving several molecules unidentified. GC-oaTOFMS analysis was focused on these unknowns to evaluate its potential in flavor research, particularly for determining exact masses. N-Methyldithiodimethylamine, 6-methyl-5-hepten-2-one, and tetrahydro-2,4-dimethyl-4H-pyrrolo[2,1-d]-1,3,5-dithiazine were successfully identified on the basis of the precise mass determination of their molecular ions and their major fragments. A second set of experiments was performed to test the capabilities of the GC-oaTOFMS for quantification. Calibration curves were found to be linear over a dynamic range of 10(3) for the quantification of furanones. The quantitative data obtained using GC-oaTOFMS confirmed earlier results that the formation of 4-hydroxy-2,5-dimethyl-3(2H)-furanone was favored in the xylose/glycine model reaction and 2(or 5)-ethyl-4-hydroxy-5(or 2)-methyl-3(2H)-furanone in the xylose/alanine model reaction. It was concluded that GC-oaTOFMS may become a powerful analytical tool for the flavor chemist for both identification and quantification purposes, the latter in particular when combined with stable isotope dilution assay.

  18. High-throughput analysis of amino acids in plant materials by single quadrupole mass spectrometry

    DEFF Research Database (Denmark)

    Dahl-Lassen, Rasmus; van Hecke, Jan Julien Josef; Jørgensen, Henning

    2018-01-01

    that it is very time consuming with typical chromatographic run times of 70 min or more. Results: We have here developed a high-throughput method for analysis of amino acid profiles in plant materials. The method combines classical protein hydrolysis and derivatization with fast separation by UHPLC and detection...... reducing the overall analytical costs compared to methods based on more advanced mass spectrometers....... by a single quadrupole (QDa) mass spectrometer. The chromatographic run time is reduced to 10 min and the precision, accuracy and sensitivity of the method are in line with other recent methods utilizing advanced and more expensive mass spectrometers. The sensitivity of the method is at least a factor 10...

  19. Dynamical interplay between pairing and quadrupole correlations in odd-mass nuclei

    International Nuclear Information System (INIS)

    Kaneko, Kazunari; Takada, Kenjiro; Sakata, Fumihiko; Tazaki, Shigeru.

    1982-01-01

    Study of the dynamical interplay between pairing and quadrupole correlations in odd-mass nuclei has been developed. One of the purposes of this paper is to predict that the new collective excited states may exist system-atically in odd-mass nuclei. Other purpose is to discuss a new collective band structure on the top of a unique-parity one-quasiparticle state. Through the numerical calculations, it has been clarified that the dynamical mutual interplay between the pairing and the quadrupole degrees of freedom played an important role in the odd-mass transitional nuclei to bring about the new type of collective states. The results of calculation were compared with the experimental data. (Kato, T.)

  20. Nuclear Forensics: Measurements of Uranium Oxides Using Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS)

    Science.gov (United States)

    2010-03-01

    Isotope Ratio Analysis of Actinides , Fission Products, and Geolocators by High- efficiency Multi-collector Thermal Ionization Mass Spectrometry...Information, 1999. Hou, Xiaolin, and Per Roos. “ Critical Comparison of radiometric and Mass Spectrometric Methods for the Determination of...NUCLEAR FORENSICS: MEASUREMENTS OF URANIUM OXIDES USING TIME-OF-FLIGHT SECONDARY ION MASS

  1. Contamination measurements with quadrupole mass spectrometer

    International Nuclear Information System (INIS)

    Bohatka, S.; Berecz, I.; Langer, G.

    1981-01-01

    A sensitive quadrupole mass spectrometer of our own construction was used for different purity measurements. The analysis of gases in operating rooms showed a 1 ppm-10 5 ppm concentration of narcotics and helped to develop an effective and cheap method for regenerating narcotic filters. We regularly control the gases used in radioactive pollution measurements by internal GM counters and in radiocarbon dating technique. Combustion products and the gases of a fermenter are investigated for industrial application. (orig.) [de

  2. Application of quadrupole mass spectrometer to the 40Ar-39Ar geochronological study

    International Nuclear Information System (INIS)

    Takigami, Yutaka; Nishijima, Tadashi; Koike, Toshio; Okuma, Kouichi.

    1984-01-01

    A Quadrupole Mass Spectrometer (QMS) has commonly been used for qualitative analyses of gases in organic chemistry or for monitoring the vacuum conditions in industrial machines. No attempt has been made, however, to apply it to geochronological studies because of its disadvantages such as the difficulty in obtaining precise isotope ratios due to triangular peak shapes and poor reproducibility. On the other hand, there are advantages that a QMS is relatively inexpensive and gives a shorter scanning time for analysis compared with a sector type mass spectrometer. The latter characteristics is useful for 40 Ar/ 39 Ar geochronological studies, since it gives a lower background in the QMS and the possibility to obtain many more data from one sample in a limited time. In this study, we have tried to improve a commercial QMS at many parts, such as rf-generator, quadrupole, ionization chamber, source magnet, and so on, in order to meet the requirements to use it for geochronological studies. With the use of the improved QMS equipped with an on-line microcomputer, we could obtain Ar isotope data which are sufficiently precise for the 40 Ar/ 39 Ar geochronological studies. (author)

  3. An improvement of isochronous mass spectrometry: Velocity measurements using two time-of-flight detectors

    International Nuclear Information System (INIS)

    Shuai, P.; Xu, X.; Zhang, Y.H.; Xu, H.S.; Litvinov, Yu. A.; Wang, M.

    2016-01-01

    Isochronous mass spectrometry (IMS) in storage rings is a powerful tool for mass measurements of exotic nuclei with very short half-lives down to several tens of microseconds, using a multicomponent secondary beam separated in-flight without cooling. However, the inevitable momentum spread of secondary ions limits the precision of nuclear masses determined by using IMS. Therefore, the momentum measurement in addition to the revolution period of stored ions is crucial to reduce the influence of the momentum spread on the standard deviation of the revolution period, which would lead to a much improved mass resolving power of IMS. One of the proposals to upgrade IMS is that the velocity of secondary ions could be directly measured by using two time-of-flight (double TOF) detectors installed in a straight section of a storage ring. In this paper, we outline the principle of IMS with double TOF detectors and the method to correct the momentum spread of stored ions.

  4. High mass resolution time of flight mass spectrometer for measuring products in heterogeneous catalysis in highly sensitive microreactors

    DEFF Research Database (Denmark)

    Andersen, Thomas; Jensen, Robert; Christensen, M. K.

    2012-01-01

    We demonstrate a combined microreactor and time of flight system for testing and characterization of heterogeneous catalysts with high resolution mass spectrometry and high sensitivity. Catalyst testing is performed in silicon-based microreactors which have high sensitivity and fast thermal...

  5. Hydrogen isotope analysis by quadrupole mass spectrometry

    International Nuclear Information System (INIS)

    Ellefson, R.E.; Moddeman, W.E.; Dylla, H.F.

    1981-03-01

    The analysis of isotopes of hydrogen (H, D, T) and helium ( 3 He, 4 He) and selected impurities using a quadrupole mass spectrometer (QMS) has been investigated as a method of measuring the purity of tritium gas for injection into the Tokamak Fusion Test Reactor (TFTR). A QMS was used at low resolution, m/Δm 3 He, and 4 He in HT/D 2

  6. Time-of-flight mass spectrographs—From ions to neutral atoms

    Science.gov (United States)

    Möbius, E.; Galvin, A. B.; Kistler, L. M.; Kucharek, H.; Popecki, M. A.

    2016-12-01

    After their introduction to space physics in the mid 1980s time-of-flight (TOF) spectrographs have become a main staple in spaceborne mass spectrometry. They have largely replaced magnetic spectrometers, except when extremely high mass resolution is required to identify complex molecules, for example, in the vicinity of comets or in planetary atmospheres. In combination with electrostatic analyzers and often solid state detectors, TOF spectrographs have become key instruments to diagnose space plasma velocity distributions, mass, and ionic charge composition. With a variety of implementation schemes that also include isochronous electric field configurations, TOF spectrographs can respond to diverse science requirements. This includes a wide range in mass resolution to allow the separation of medium heavy isotopes or to simply provide distributions of the major species, such as H, He, and O, to obtain information on source tracers or mass fluxes. With a top-hat analyzer at the front end, or in combination with deflectors for three-axis stabilized spacecraft, the distribution function of ions can be obtained with good time resolution. Most recently, the reach of TOF ion mass spectrographs has been extended to include energetic neutral atoms. After selecting the arrival direction with mechanical collimation, followed by conversion to ions, adapted TOF sensors form a new branch of the spectrograph family tree. We review the requirements, challenges, and implementation schemes for ion and neutral atom spectrographs, including potential directions for the future, while largely avoiding overlap with complementary contributions in this special issue.

  7. Untargeted metabolomic analysis using liquid chromatography quadrupole time-of-flight mass spectrometry for non-volatile profiling of wines

    International Nuclear Information System (INIS)

    Arbulu, M.; Sampedro, M.C.; Gómez-Caballero, A.; Goicolea, M.A.; Barrio, R.J.

    2015-01-01

    Highlights: • An untargeted metabolomic method for the non-volatile profile of the Graciano wine was developed. • 411 different metabolites in Graciano Vitis vinifera red wine were identified. • 15 compounds could serve to differentiate Graciano and Tempranillo wines. • An enological database (WinMet) with 2080 compounds was constructed. - Abstract: The current study presents a method for comprehensive untargeted metabolomic fingerprinting of the non-volatile profile of the Graciano Vitis vinifera wine variety, using liquid chromatography/electrospray ionization time of flight mass spectrometry (LC–ESI-QTOF). Pre-treatment of samples, chromatographic columns, mobile phases, elution gradients and ionization sources, were evaluated for the extraction of the maximum number of metabolites in red wine. Putative compounds were extracted from the raw data using the extraction algorithm, molecular feature extractor (MFE). For the metabolite identification the WinMet database was designed based on electronic databases and literature research and includes only the putative metabolites reported to be present in oenological matrices. The results from WinMet were compared with those in the METLIN database to evaluate how much the databases overlap for performing identifications. The reproducibility of the analysis was assessed using manual processing following replicate injections of Vitis vinifera cv. Graciano wine spiked with external standards. In the present work, 411 different metabolites in Graciano Vitis vinifera red wine were identified, including primary wine metabolites such as sugars (4%), amino acids (23%), biogenic amines (4%), fatty acids (2%), and organic acids (32%) and secondary metabolites such as phenols (27%) and esters (8%). Significant differences between varieties Tempranillo and Graciano were related to the presence of fifteen specific compounds

  8. Untargeted metabolomic analysis using liquid chromatography quadrupole time-of-flight mass spectrometry for non-volatile profiling of wines

    Energy Technology Data Exchange (ETDEWEB)

    Arbulu, M. [Department of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country, 01006 Vitoria-Gasteiz (Spain); Sampedro, M.C. [Central Service of Analysis, SGIker, University of the Basque Country, 01006 Vitoria-Gasteiz (Spain); Gómez-Caballero, A.; Goicolea, M.A. [Department of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country, 01006 Vitoria-Gasteiz (Spain); Barrio, R.J., E-mail: r.barrio@ehu.es [Department of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country, 01006 Vitoria-Gasteiz (Spain)

    2015-02-09

    Highlights: • An untargeted metabolomic method for the non-volatile profile of the Graciano wine was developed. • 411 different metabolites in Graciano Vitis vinifera red wine were identified. • 15 compounds could serve to differentiate Graciano and Tempranillo wines. • An enological database (WinMet) with 2080 compounds was constructed. - Abstract: The current study presents a method for comprehensive untargeted metabolomic fingerprinting of the non-volatile profile of the Graciano Vitis vinifera wine variety, using liquid chromatography/electrospray ionization time of flight mass spectrometry (LC–ESI-QTOF). Pre-treatment of samples, chromatographic columns, mobile phases, elution gradients and ionization sources, were evaluated for the extraction of the maximum number of metabolites in red wine. Putative compounds were extracted from the raw data using the extraction algorithm, molecular feature extractor (MFE). For the metabolite identification the WinMet database was designed based on electronic databases and literature research and includes only the putative metabolites reported to be present in oenological matrices. The results from WinMet were compared with those in the METLIN database to evaluate how much the databases overlap for performing identifications. The reproducibility of the analysis was assessed using manual processing following replicate injections of Vitis vinifera cv. Graciano wine spiked with external standards. In the present work, 411 different metabolites in Graciano Vitis vinifera red wine were identified, including primary wine metabolites such as sugars (4%), amino acids (23%), biogenic amines (4%), fatty acids (2%), and organic acids (32%) and secondary metabolites such as phenols (27%) and esters (8%). Significant differences between varieties Tempranillo and Graciano were related to the presence of fifteen specific compounds.

  9. Quadrupole mass detector in the field of weak plane gravitational waves

    International Nuclear Information System (INIS)

    Borisova, L.B.

    1978-01-01

    Studied is the behaviour of the system which consists of two test particles connected by a string (quadrupole mass detector) and placed in the field of weak plane monochromatic gravitational waves. It is shown that at cross orientation of the detector the gravitational wave effecting such a system excites oscillations in it with the frequency equal to that of the gravitational wave source. The role of the driving force is played by the periodical change with the time of the equilibrium position. The gravitational wave does not influence the detector at its longitudinal orientation

  10. In-flight fast-timing measurements in "1"5"2Sm

    International Nuclear Information System (INIS)

    Plaisir, C.; Gaudefroy, L.; Meot, V.; Blanc, A.; Daugas, J.M.; Roig, O.; Arnal, N.; Bonnet, T.; Gobet, F.; Hannachi, F.; Tarisien, M.; Versteegen, M.; Roger, T.; Rejmund, M.; Navin, A.; Schmitt, C.; Fremont, G.; Goupil, J.; Pancin, J.; Spitaels, C.; Zielinska, M.

    2014-01-01

    We report on the first application of in-flight fast-timing measurements, a method developed in order to directly measure lifetimes in the picosecond to nanosecond range. As a proof of principle of the method, lifetimes of the states belonging to the ground-state band in "1"5"2Sm are measured up to the 8"+_1 state. An excellent agreement with recommended values is found. A slightly improved determination of the spectroscopic quadrupole moment of the 4"+_1 state is also reported. In-flight fast-timing measurements open interesting opportunities for future studies of collective properties in radioactive nuclei. (authors)

  11. Data acquisition and control system for quadrupole mass spectrometer using an add-on card to an IBM PC

    International Nuclear Information System (INIS)

    Paal, A.; Szadai, J.; Szekely, G.

    1991-01-01

    An RF/DC unit, a dedicated interface card and the PCQMS software was designed to upgrade the existing quadrupole mass spectrometer of ATOMKI series Q300C to Q300PC. The new units and the software features are described. Display modes, all in high resolution graphics are provided to include ion monitoring table, ion monitoring analog, intensity vs time or temperature, scan bargraph and scan analog. The quadrupole mass spectrometer performance has been improved by the new modifications for data acquisition and control to be accomplished automatically. (R.P.) 3 refs.; 4 figs

  12. Resveratrol Metabolism in a Non-Human Primate, the Grey Mouse Lemur (Microcebus murinus), Using Ultra-High-Performance Liquid Chromatography–Quadrupole Time of Flight

    Science.gov (United States)

    Menet, Marie-Claude; Marchal, Julia; Dal-Pan, Alexandre; Taghi, Méryam; Nivet-Antoine, Valérie; Dargère, Delphine; Laprévote, Olivier; Beaudeux, Jean-Louis; Aujard, Fabienne; Epelbaum, Jacques; Cottart, Charles-Henry

    2014-01-01

    The grey mouse lemur (Microcebus murinus) is a non-human primate used to study the ageing process. Resveratrol is a polyphenol that may increase lifespan by delaying age-associated pathologies. However, no information about resveratrol absorption and metabolism is available for this primate. Resveratrol and its metabolites were qualitatively and quantitatively analyzed in male mouse-lemur plasma (after 200 mg.kg−1 of oral resveratrol) by ultra-high performance liquid chromatography (UHPLC), coupled to a quadrupole-time-of-flight (Q-TOF) mass spectrometer used in full-scan mode. Data analyses showed, in MSE mode, an ion common to resveratrol and all its metabolites: m/z 227.072, and an ion common to dihydro-resveratrol metabolites: m/z 229.08. A semi-targeted study enabled us to identify six hydrophilic resveratrol metabolites (one diglucurono-conjugated, two monoglucurono-conjugated, one monosulfo-conjugated and two both sulfo- and glucurono-conjugated derivatives) and three hydrophilic metabolites of dihydro-resveratrol (one monoglucurono-conjugated, one monosulfo-conjugated, and one both sulfo- and glucurono-conjugated derivatives). The presence of such metabolites has been already detected in the mouse, rat, pig, and humans. Free resveratrol was measurable for several hours in mouse-lemur plasma, and its two main metabolites were trans-resveratrol-3-O-glucuronide and trans-resveratrol-3-sulfate. Free dihydro-resveratrol was not measurable whatever the time of plasma collection, while its hydrophilic metabolites were present at 24 h after intake. These data will help us interpret the effect of resveratrol in mouse lemurs and provide further information on the inter-species characteristics of resveratrol metabolism. PMID:24663435

  13. Behaviour of quadrupole mass spectrometer towards noble gases

    International Nuclear Information System (INIS)

    Hasibullah

    1980-01-01

    This paper describes a quadrupole mass spectrometric set-up for noble gas analysis with its potential application to material accountancy at the input accountability tank of a reprocessing facility. Linear dependence of ion source pressure on the inlet pressure was considered to be practicable criterion for the functionality of the instrument. Short term and long term sensitivity variations have also been discussed. No memory effect was observed under the experimental conditions. (author)

  14. Multiple-reflection time-of-flight mass spectrometry for in situ applications

    International Nuclear Information System (INIS)

    Dickel, T.; Plaß, W.R.; Lang, J.; Ebert, J.; Geissel, H.; Haettner, E.; Jesch, C.; Lippert, W.; Petrick, M.; Scheidenberger, C.; Yavor, M.I.

    2013-01-01

    Highlights: • MR-TOF-MS: huge potential in chemistry, medicine, space science, homeland security. • Compact MR-TOF-MS (length ∼30 cm) with very high mass resolving powers (10 5 ). • Combination of high resolving power (>10 5 ), mobility, API for in situ measurements. • Envisaged applications of mobile MR-TOF-MS. -- Abstract: Multiple-reflection time-of-flight mass spectrometers (MR-TOF-MS) have recently been installed at different low-energy radioactive ion beam facilities. They are used as isobar separators with high ion capacity and as mass spectrometers with high mass resolving power and accuracy for short-lived nuclei. Furthermore, MR-TOF-MS have a huge potential for applications in other fields, such as chemistry, biology, medicine, space science, and homeland security. The development, commissioning and results of an MR-TOF-MS is presented, which serves as proof-of-principle to show that very high mass resolving powers (∼10 5 ) can be achieved in a compact device (length ∼30 cm). Based on this work, an MR-TOF-MS for in situ application has been designed. For the first time, this device combines very high mass resolving power (>10 5 ), mobility, and an atmospheric pressure inlet in one instrument. It will enable in situ measurements without sample preparation at very high mass accuracy. Envisaged applications of this mobile MR-TOF-MS are discussed

  15. Multiple-reflection time-of-flight mass spectrometry for in situ applications

    Energy Technology Data Exchange (ETDEWEB)

    Dickel, T., E-mail: t.dickel@gsi.de [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); Plaß, W.R. [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); Lang, J.; Ebert, J. [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen (Germany); Geissel, H.; Haettner, E. [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); Jesch, C.; Lippert, W.; Petrick, M. [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen (Germany); Scheidenberger, C. [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); Yavor, M.I. [Institute for Analytical Instrumentation, Russian Academy of Sciences, 190103 St. Petersburg (Russian Federation)

    2013-12-15

    Highlights: • MR-TOF-MS: huge potential in chemistry, medicine, space science, homeland security. • Compact MR-TOF-MS (length ∼30 cm) with very high mass resolving powers (10{sup 5}). • Combination of high resolving power (>10{sup 5}), mobility, API for in situ measurements. • Envisaged applications of mobile MR-TOF-MS. -- Abstract: Multiple-reflection time-of-flight mass spectrometers (MR-TOF-MS) have recently been installed at different low-energy radioactive ion beam facilities. They are used as isobar separators with high ion capacity and as mass spectrometers with high mass resolving power and accuracy for short-lived nuclei. Furthermore, MR-TOF-MS have a huge potential for applications in other fields, such as chemistry, biology, medicine, space science, and homeland security. The development, commissioning and results of an MR-TOF-MS is presented, which serves as proof-of-principle to show that very high mass resolving powers (∼10{sup 5}) can be achieved in a compact device (length ∼30 cm). Based on this work, an MR-TOF-MS for in situ application has been designed. For the first time, this device combines very high mass resolving power (>10{sup 5}), mobility, and an atmospheric pressure inlet in one instrument. It will enable in situ measurements without sample preparation at very high mass accuracy. Envisaged applications of this mobile MR-TOF-MS are discussed.

  16. Development of a totally computer-controlled triple quadrupole mass spectrometer system

    International Nuclear Information System (INIS)

    Wong, C.M.; Crawford, R.W.; Barton, V.C.; Brand, H.R.; Neufeld, K.W.; Bowman, J.E.

    1983-01-01

    A totally computer-controlled triple quadrupole mass spectrometer (TQMS) is described. It has a number of unique features not available on current commercial instruments, including: complete computer control of source and all ion axial potentials; use of dual computers for data acquisition and data processing; and capability for self-adaptive control of experiments. Furthermore, it has been possible to produce this instrument at a cost significantly below that of commercial instruments. This triple quadrupole mass spectrometer has been constructed using components commercially available from several different manufacturers. The source is a standard Hewlett-Packard 5985B GC/MS source. The two quadrupole analyzers and the quadrupole CAD region contain Balzers QMA 150 rods with Balzers QMG 511 rf controllers for the analyzers and a Balzers QHS-511 controller for the CAD region. The pulsed-positive-ion-negative-ion-chemical ionization (PPINICI) detector is made by Finnigan Corporation. The mechanical and electronics design were developed at LLNL for linking these diverse elements into a functional TQMS as described. The computer design for total control of the system is unique in that two separate LSI-11/23 minicomputers and assorted I/O peripherals and interfaces from several manufacturers are used. The evolution of this design concept from totally computer-controlled instrumentation into future self-adaptive or ''expert'' systems for instrumental analysis is described. Operational characteristics of the instrument and initial results from experiments involving the analysis of the high explosive HMX (1,3,5,7-Tetranitro-1,3,5,7-Tetrazacyclooctane) are presented

  17. A high performance Time-of-Flight detector applied to isochronous mass measurement at CSRe

    International Nuclear Information System (INIS)

    Mei Bo; Tu Xiaolin; Wang Meng; Xu Hushan; Mao Ruishi; Hu Zhengguo; Ma Xinwen; Yuan Youjin; Zhang Xueying; Geng Peng; Shuai Peng; Zang Yongdong; Tang Shuwen; Ma Peng; Lu Wan; Yan Xinshuai; Xia Jiawen; Xiao Guoqing; Guo Zhongyan; Zhang Hongbin

    2010-01-01

    A high performance Time-of-Flight detector has been designed and constructed for isochronous mass spectrometry at the experimental Cooler Storage Ring (CSRe). The detector has been successfully used in an experiment to measure the masses of the N∼Z∼33 nuclides near the proton drip-line. Of particular interest is the mass of 65 As. A maximum detection efficiency of 70% and a time resolution of 118±8 ps (FWHM) have been achieved in the experiment. The dependence of detection efficiency and signal average pulse height (APH) on atomic number Z has been studied. The potential of APH for Z identification has been discussed.

  18. Identification of regioisomers of methylated kaempferol and quercetin by ultra high performance liquid chromatography quadrupole time-of-flight (UHPLC–QTOF) tandem mass spectrometry combined with diagnostic fragmentation pattern analysis

    International Nuclear Information System (INIS)

    Ma, Chengying; Lv, Haipeng; Zhang, Xinzhong; Chen, Zongmao; Shi, Jiang; Lu, Meiling; Lin, Zhi

    2013-01-01

    Highlights: •Found methane elimination is position-specific for methylated flavonols. •Found retro Diels–Alder fragments retained methoxy at original ring of flavonols. •Proposed a diagnostic pattern for discriminating regioisomers of flavonols. •Identified the specificity of three novel flavonol O-methyltransferases. •Identified six biologically active compounds and four new compounds. -- Abstract: The O-methylation of active flavonoids can enhance their antiallergic, anticancerous, and cardioprotective effects depending on the methylation position. Thus, it is biologically and pharmacologically important to differentiate methylated flavonoid regioisomers. In this study, we examined the regioisomers of methylated kaempferol and quercetin using ultra high performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry. The methyl groups on the flavonoids can generally be cleaved as methyl radicals in a position-independent manner. We found that methyl groups can be cleaved as methane. If there are protons adjacent the methoxy on the flavonol rings, intra-molecule proton transfer can occur via collision-induced dissociation, and one molecule of methane can then be eliminated. The remaining charged fragment ([M+H−CH 4 ] + ) reflects the adjacent structure and is specific to the methoxy position. Furthermore, the retro Diels–Alder (RDA) fragmentation of methylated flavonols can generate fragments with the methoxy at the original methylated ring. Combining the position-specific [M+H−CH 4 ] + fragment with the RDA fragments provides a diagnostic pattern for rapidly identifying methylated regioisomeric flavonols. Along with their retention behaviour, we have successfully identified ten regioisomers of methylated kaempferol and quercetin, which include six compounds previously reported in plants and shown to be biologically active. The developed approach is sensitive, rapid, reliable, and requires few standard compounds. It is highly

  19. Identification of regioisomers of methylated kaempferol and quercetin by ultra high performance liquid chromatography quadrupole time-of-flight (UHPLC–QTOF) tandem mass spectrometry combined with diagnostic fragmentation pattern analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Chengying; Lv, Haipeng; Zhang, Xinzhong; Chen, Zongmao; Shi, Jiang [Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008 (China); Lu, Meiling, E-mail: meilinglu@hotmail.com [Chemical Analysis Group, Agilent Technologies, No. 3 Wangjing North Road, Chaoyang Distr., Beijing 100102 (China); Lin, Zhi, E-mail: linz@mail.tricaas.com [Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008 (China)

    2013-09-17

    Highlights: •Found methane elimination is position-specific for methylated flavonols. •Found retro Diels–Alder fragments retained methoxy at original ring of flavonols. •Proposed a diagnostic pattern for discriminating regioisomers of flavonols. •Identified the specificity of three novel flavonol O-methyltransferases. •Identified six biologically active compounds and four new compounds. -- Abstract: The O-methylation of active flavonoids can enhance their antiallergic, anticancerous, and cardioprotective effects depending on the methylation position. Thus, it is biologically and pharmacologically important to differentiate methylated flavonoid regioisomers. In this study, we examined the regioisomers of methylated kaempferol and quercetin using ultra high performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry. The methyl groups on the flavonoids can generally be cleaved as methyl radicals in a position-independent manner. We found that methyl groups can be cleaved as methane. If there are protons adjacent the methoxy on the flavonol rings, intra-molecule proton transfer can occur via collision-induced dissociation, and one molecule of methane can then be eliminated. The remaining charged fragment ([M+H−CH{sub 4}]{sup +}) reflects the adjacent structure and is specific to the methoxy position. Furthermore, the retro Diels–Alder (RDA) fragmentation of methylated flavonols can generate fragments with the methoxy at the original methylated ring. Combining the position-specific [M+H−CH{sub 4}]{sup +} fragment with the RDA fragments provides a diagnostic pattern for rapidly identifying methylated regioisomeric flavonols. Along with their retention behaviour, we have successfully identified ten regioisomers of methylated kaempferol and quercetin, which include six compounds previously reported in plants and shown to be biologically active. The developed approach is sensitive, rapid, reliable, and requires few standard

  20. Expert systems technology applied to instrument operation and data acquisition of a triple quadrupole mass spectrometer (TQMS)

    International Nuclear Information System (INIS)

    Wong, C.M.

    1984-01-01

    This presentation covers the work done at Lawrence Livermore National Laboratory by some computer programmers and analytical chemists specializing in mass spectrometry to develop an expert system for real-time tuning and optimization of operations of a triple quadrupole mass spectrometer (TQMS). This capability is important to increase the sensitivity possible for selected compounds throughout the entire mass range of the instrument, rather than settling for the traditional normalized calibration which lowers sensitivity at both ends of the mass scale

  1. Comparison of ion coupling strategies for a microengineered quadrupole mass filter.

    Science.gov (United States)

    Wright, Steven; Syms, Richard R A; O'Prey, Shane; Hong, Guodong; Holmes, Andrew S

    2009-01-01

    The limitations of conventional machining and assembly techniques require that designs for quadrupole mass analyzers with rod diameters less than a millimeter are not merely scale versions of larger instruments. We show how silicon planar processing techniques and microelectromechanical systems (MEMS) design concepts can be used to incorporate complex features into the construction of a miniature quadrupole mass filter chip that could not easily be achieved using other microengineering approaches. Three designs for the entrance and exit to the filter consistent with the chosen materials and techniques have been evaluated. The differences between these seemingly similar structures have a significant effect on the performance. Although one of the designs results in severe attenuation of transmission with increasing mass, the other two can be scanned to m/z = 400 without any corruption of the mass spectrum. At m/z = 219, the variation in the transmission of the three designs was found to be approximately four orders of magnitude. A maximum resolution of M/DeltaM = 87 at 10% peak height has been achieved at m/z = 219 with a filter operated at 6 MHz and constructed using rods measuring (508 +/- 5) microm in diameter.

  2. Position sensitive detection coupled to high-resolution time-of-flight mass spectrometry: Imaging for molecular beam deflection experiments

    International Nuclear Information System (INIS)

    Abd El Rahim, M.; Antoine, R.; Arnaud, L.; Barbaire, M.; Broyer, M.; Clavier, Ch.; Compagnon, I.; Dugourd, Ph.; Maurelli, J.; Rayane, D.

    2004-01-01

    We have developed and tested a high-resolution time-of-flight mass spectrometer coupled to a position sensitive detector for molecular beam deflection experiments. The major achievement of this new spectrometer is to provide a three-dimensional imaging (X and Y positions and time-of-flight) of the ion packet on the detector, with a high acquisition rate and a high resolution on both the mass and the position. The calibration of the experimental setup and its application to molecular beam deflection experiments are discussed

  3. A new method of alpha ray measurement using a Quadrupole Mass Spectrometer

    International Nuclear Information System (INIS)

    Iwata, Y.; Inoue, Y.; Minowa, M.

    2007-01-01

    We propose a new method of alpha (α)-ray measurement that detects helium atoms with a Quadrupole Mass Spectrometer (QMS). A demonstration is undertaken with a plastic-covered 241 Am α-emitting source to detect α-rays stopped in the capsule. We successfully detect helium atoms that diffuse out of the capsule by accumulating them for 1-20h in a closed chamber. The detected amount is found to be proportional to the accumulation time. Our method is applicable to probe α-emitting radioactivity in bulk material

  4. Mass Spectrometry Instrumentation in Proteomics

    DEFF Research Database (Denmark)

    Sprenger, Richard Remko; Roepstorff, Peter

    2012-01-01

    Mass spectrometry has evolved into a crucial technology for the field of proteomics, enabling the comprehensive study of proteins in biological systems. Innovative developments have yielded flexible and versatile mass spectrometric tools, including quadrupole time-of-flight, linear ion trap......, Orbitrap and ion mobility instruments. Together they offer various and complementary capabilities in terms of ionization, sensitivity, speed, resolution, mass accuracy, dynamic range and methods of fragmentation. Mass spectrometers can acquire qualitative and quantitative information on a large scale...

  5. A small sized time-of-flight mass spectrometer for simultaneous measurement of neutral and ionic species effusing from plasma, 1

    International Nuclear Information System (INIS)

    Horiuchi, Yukihiko

    1986-01-01

    A principle for simultaneous and real time measurement of neutral and ionic species effusing from plasma by using a time-of-flight mass spectrometer is proposed. A simple, small sized time-of-flight mass spectrometer combined with a dc glow discharge tube and an ion sampling electrode system for the simultaneous measurement on the basis of the proposed plinciple, has been constructed and tested. Details of the experimental setup including the geometry and the electronic hardware are described. It is shown that mass spectra of neutrals and ions from the positive column of the argon dc glow discharge are successfully observed on a single oscilloscope display. (author)

  6. ALICE Time of Flight Module

    CERN Multimedia

    The Time-Of-Flight system of ALICE consists of 90 such modules, each containing 15 or 19 Multigap Resistive Plate Chamber (MRPC) strips. This detector is used for identification of charged particles. It measures with high precision (50 ps) the time of flight of charged particles and therefore their velocity. The curvature of the particle trajectory inside the magnetic field gives the momentum, thus the particle mass is calculated and the particle is identified The MRPC is a stack of resistive glass plates, separated from each other by nylon fishing line. The mass production of the chambers (~1600, covering a surface of 150 m2) was done at INFN Bologna, while the first prototypes were bult at CERN.

  7. TOF plotter - a program to perform routine analysis time-of-flight mass spectral data

    International Nuclear Information System (INIS)

    Knippel, Brad C.; Padgett, Clifford W.; Marcus, R. Kenneth

    2004-01-01

    The main article discusses the operation and application of the program to mass spectral data files. This laboratory has recently reported the construction and characterization of a linear time-of-flight mass spectrometer (ToF-MS) utilizing a radio frequency glow discharge ionization source. Data acquisition and analysis was performed using a digital oscilloscope and Microsoft Excel, respectively. Presently, no software package is available that is specifically designed for time-of-flight mass spectral analysis that is not instrument dependent. While spreadsheet applications such as Excel offer tremendous utility, they can be cumbersome when repeatedly performing tasks which are too complex or too user intensive for macros to be viable. To address this situation and make data analysis a faster, simpler task, our laboratory has developed a Microsoft Windows-based software program coded in Microsoft Visual Basic. This program enables the user to rapidly perform routine data analysis tasks such as mass calibration, plotting and smoothing on x-y data sets. In addition to a suite of tools for data analysis, a number of calculators are built into the software to simplify routine calculations pertaining to linear ToF-MS. These include mass resolution, ion kinetic energy and single peak identification calculators. A detailed description of the software and its associated functions is presented followed by a characterization of its performance in the analysis of several representative ToF-MS spectra obtained from different GD-ToF-MS systems

  8. Atmospheric pressure solid analysis probe coupled to quadrupole-time of flight mass spectrometry as a tool for screening and semi-quantitative approach of polycyclic aromatic hydrocarbons, nitro-polycyclic aromatic hydrocarbons and oxo-polycyclic aromatic hydrocarbons in complex matrices.

    Science.gov (United States)

    Carrizo, Daniel; Domeño, Celia; Nerín, Isabel; Alfaro, Pilar; Nerín, Cristina

    2015-01-01

    A new screening and semi-quantitative approach has been developed for direct analysis of polycyclic aromatic hydrocarbons (PAHs) and their nitro and oxo derivatives in environmental and biological matrices using atmospheric pressure solid analysis probe (ASAP) quadrupole-time of flight mass spectrometry (Q-TOF-MS). The instrumental parameters were optimized for the analysis of all these compounds, without previous sample treatment, in soil, motor oil, atmospheric particles (ashes) and biological samples such as urine and saliva of smokers and non-smokers. Ion source parameters in the MS were found to be the key parameters, with little variation within PAHs families. The optimized corona current was 4 µA, sample cone voltage 80 V for PAHs, nitro-PAHs and oxo-PAHs, while the desolvation temperatures varied from 300°C to 500°C. The analytical method performance was checked using a certified reference material. Two deuterated compounds were used as internal standards for semi-quantitative purposes together with the pure individual standard for each compound and the corresponding calibration plot. The compounds nitro PAH 9-nitroanthracene and oxo-PAH 1,4-naphthalenedione, were found in saliva and urine in a range below 1 µg/g while the range of PAHs in these samples was below 2 µg/g. Environmental samples provided higher concentration of all pollutants than urine and saliva. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Determination of spatial distribution of melamine-cyanuric acid crystals in rat kidney tissue by histology and imaging matrix-assisted laser desorption/ionization quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Kim, Chae-Wook; Yun, Jun-Won; Bae, Il-Hong; Lee, Joon-Seok; Kang, Hyun-Jin; Joo, Kyung-Mi; Jeong, Hye-Jin; Chung, Jin-Ho; Park, Young-Ho; Lim, Kyung-Min

    2010-01-01

    After the outbreak of acute renal failure associated with melamine-contaminated pet food, many attempts have been made to uncover the mechanism underlying the renal toxicity caused by melamine and melamine-related compounds. Using rat models, we investigated the renal crystal formation following the ingestion of a melamine-cyanuric acid mixture (M+CA, 1:1) to gain insight into the M+CA-induced renal toxicity. M+CA did not induce toxicity in precision-cut kidney slices, suggesting that M+CA does not have a direct nephrotoxicity. On the contrary, oral administration of M+CA for 3 days induced nephrotoxicity as determined by increased serum blood urea nitrogen and creatinine, reduced creatinine clearance, and enlarged kidneys in the animals treated with 50 mg/kg M+CA (melamine, 25 mg/kg, and cyanuric acid, 25 mg/kg; 2 of 10 animals) and 100 mg/kg M+CA (9 of 9 animals). While urine crystals were found in all animals treated with M+CA (25-100 mg/kg), histological examination revealed that renal crystals could be observed only in the kidneys of animals showing signs of nephrotoxicity. Remarkably, at 50 mg/kg M+CA, crystals were observed mainly in the medulla region of the kidney, while at 100 mg/kg, crystals were disseminated throughout the cortex and medulla regions. To further investigate the crystal formation by M+CA, matrix-assisted laser desorption/ionization quadrupole time-of-flight (MALDI-Q-TOF) imaging mass spectrometry detecting melamine distribution through monitoring the product ion (m/z 85, M + H) from melamine (m/z 127, M + H) was developed to directly obtain the image of melamine distribution in the kidney. The distribution image of melamine in kidney tissue confirmed that dense points of melamine were located only in the medulla region at 50 mg/kg M+CA, while at 100 mg/kg, they were disseminated widely from the cortex to medulla. These results demonstrated that M+CA ingestion could lead to crystal formation in kidney tubules along the osmotic gradient and

  10. Analytical applications of ion/molecule reactions in a triple quadrupole mass spectrometer

    International Nuclear Information System (INIS)

    Kinter, M.T.

    1986-01-01

    The development of triple quadrupole mass spectrometers as a means of performing tandem mass spectrometry has provided a versatile instrument on which the ion/molecule reactions of a mass selected ion can be studied. This dissertation details the application of ion/molecule reactions in a triple quadrupole to two analytical problems. Part I. Ion/Molecule Reactions of Ammonia with Translationally Excited C 2 H 5 O + /Ions. The ability to impart low center-of-mass translational energies, which upon collision are converted into internal energy, allows the observation of reactions that require energy input. In addition, the systematic variation of the ion kinetic energy, often referred to as energy-resolved mass spectrometer, adds another dimension to the mass spectrum and can allow the observation of thresholds for reactions requiring energy input. This investigation develops methods for determining these thresholds. Part 2. The Use of Ion/Molecule Reactions in selected Reaction Monitoring GC/MSD/MS Analyses. An approach to improving the selectivity of an analysis is to improve the selectivity of the detection method. In GC/MS, one method has been to monitor a selected fragmentation reaction, either metastable or collisionally activated, in a selected reaction monitoring (SRM) analysis. This develops the use of ion/molecule reactions for selected reaction monitoring analyses

  11. Tandem Mass Spectrometry on a Miniaturized Laser Desorption Time-of-Flight Mass Spectrometer

    Science.gov (United States)

    Li, Xiang; Cornish, Timothy; Getty, Stephanie A.; Brinckerhoff, William B.

    2016-01-01

    Tandem mass spectrometry (MSMS) is a powerful and widely-used technique for identifying the molecular structure of organic constituents of a complex sample. Application of MSMS to the study of unknown planetary samples on a remote space mission would contribute to our understanding of the origin, evolution, and distribution of extraterrestrial organics in our solar system. Here we report on the realization of MSMS on a miniaturized laser desorption time-of-flight mass spectrometer (LD-TOF-MS), which is one of the most promising instrument types for future planetary missions. This achievement relies on two critical components: a curved-field reflectron and a pulsed-pin ion gate. These enable use of the complementary post-source decay (PSD) and laser-assisted collision induced dissociation (L-CID) MSMS methods on diverse measurement targets with only modest investment in instrument resources such as volume and weight. MSMS spectra of selected molecular targets in various organic standards exhibit excellent agreement when compared with results from a commercial, laboratory-scale TOF instrument, demonstrating the potential of this powerful technique in space and planetary environments.

  12. Study of the intrinsic background noise of a quadrupole mass spectrometer

    International Nuclear Information System (INIS)

    Sysoev, A.A.; Islamov, I.M.; Khafizov, R.S.

    1977-01-01

    A proper background noise of a quadrupole mass-spectrometer is studied. The main sources of the noise have been analysed as well as their contributions to the overall noise of the device. It is shown that the main contribution is made by the photocurrent of the first dynode of the secondary-electron multiplier from ultraviolet radiation. The construction of the detecting system of the mass-spectrometer is given allowing one to increase the signal-to-noise ratio by a factor of > 500

  13. An Improvement on Space Focusing Resolution in Two-Field Time-of-Flight Mass Spectrometers

    International Nuclear Information System (INIS)

    Yildirim, M.; Aydin, R.; Akin, U.; Kilic, H. S.; Sise, O.; Ulu, M.; Dogan, M.

    2007-01-01

    Time-of-Flight Mass Spectrometer (TOFMS) is a sophisticated device for the mass selective analysis of a variety of samples. The main limitation on TOFMS technique is the obtainable resolution where the two main limiting factors are the initial space and energy spread of particles created in ionization region. Similar charged particles starting at different points will reach the detector at different times. So, this problem makes space focusing is very important subject. We have presented principles of two-fields TOFMS with second-order space focusing both using analytical methods and ray-tracing simulation. This work aims understanding of ion optical system clearly and gives hint of expectation for future developments

  14. Dual cascade time-of-flight mass spectrometer basing on electrostatic mirrors with two dimensional fields

    International Nuclear Information System (INIS)

    Glikman, L. G.; Goloskokov, Yu. V.; Karetskaya, S.P.; Mit', A.G.

    1999-01-01

    In the report [1] we have suggested the scheme of time-of-flight spectrometer containing two electrostatic mirrors with two dimensional field that doesn't depend on one of the Cartesian coordinates). In the articles [2,3] there have been found conditions for obtaining high quality of time-of-flight and spatial focusing. One of basic advantages of this scheme - is availability of intermediate stigmatic image. In the plane where this image is it's possible to place controlled diaphragm that limits ion scatter along the energy if the scatter is too large. With the help of this diaphragm at the spectrometer you can register mass spectrum with the selected energy. Good focusing quality allows reducing of initial ion energy by this increasing the time of their flight and thus analyzers resolving ability. Ion source and receiver are spaced at rather a long distances. This can be useful to solve some practical tasks

  15. Mass measurements of {sup 238}U-projectile fragments for the first time with a multiple-reflection time-of-flight mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, Jens

    2016-07-01

    Mass measurements of short-lived uranium projectile fragments were performed for the first time with a Multiple-Reflexion-Time-of-Flight Mass Spectrometer (MR-TOF-MS). A major part of this doctoral work was a novel development of a data analysis method for the MR-TOF-MS mass measurements of exotic nuclei at the fragment separator FRS at GSI. The developed method was successfully applied to the data obtained from two pilot experiments with the MR-TOF-MS at the FRS in 2012 and 2014. A substantial upgrade of the experimental setup of the MR-TOF-MS was also performed in the frame work of this doctoral thesis after the first run. In the experiments projectile fragments were created with 1000 MeV/u {sup 238}U ions in a Be/Nb target at the entrance of the in-flight separator FRS. The exotic nuclei were spatially separated, energy bunched and slowed down with the ion-optical system of the FRS combined with monoenergetic and homogeneous degraders. At the final focal plane of the FRS the fragments were completely slowed down and thermalized in a cryogenic stopping cell (CSC) filled with 3-5 mg/cm{sup 2} pure helium gas. The exotic nuclei were fast extracted from the CSC to enable mass measurements of very short-lived fragments with the MR-TOF-MS. The achievement of this goal was successfully demonstrated with the mass measurement of {sup 220}Ra ions with a half-life of 17.9 ms and 11 detected events. The mass measurements of the isobars {sup 211}Fr, {sup 211}Po and {sup 211}Rn have clearly demonstrated the scientific potential of the MR-TOF-MS for the investigation of exotic nuclei and the power of the data analysis system. Difficult measurements with overlapping mass distributions with only a few counts in the measured spectra were the challenge for the new data analysis method based on the maximum likelihood method. The drifts during the measurements were corrected with the developed time-resolved calibration method. After the improvements of the setup as a consequence of

  16. Development of grazing incidence devices for space-borne time of flight mass spectrometry

    Science.gov (United States)

    Cadu, A.; Devoto, P.; Louarn, P.; Sauvaud, J.-A.

    2012-04-01

    Time of flight mass spectrometer is widely used to study space plasmas in planetary and solar missions. This space-borne instrument selects ions in function of their energy through an electrostatic analyzer. Particles are then post-accelerated to energies in the range of 20 keV to cross a carbon foil. At the foil exit, electrons are emitted and separated from ion beam in the time of flight section. A first detector (a Micro-Channel Plate or MCP) emits a start signal at electron arrival and a second one emits a stop signal at incident ion end of path. The time difference gives the speed of the particle and its mass can be calculated, knowing its initial energy. However, current instruments suffer from strong limitations. The post acceleration needs very high voltage power supplies which are heavy, have a high power consumption and imply technical constraints for the development. A typical instrument weighs from 5 to 6 kg, includes a 20 kV power supply, consumes a least 5 W and encounters corona effect and electrical breakdown problems. Moreover, despite the particle high energy range, scattering and straggling phenomena in the carbon foil significantly reduce the instrument overall resolution. Some methods, such as electrostatic focus lenses or reflectrons, really improve mass separation but global system efficiency remains very low because of the charge state dependence of such devices. The main purpose of our work is to replace carbon foil by grazing incidence MCP's - also known as MPO's, for Micro Pore Optics - for electron emission. Thus, incident particles would back-scatter onto the channel inner surface with an angle of a few degrees. With this solution, we can decrease dispersion sources and lower the power supplies to post accelerate ions. The result would be a lighter and simpler instrument with a substantial resolution improvement. We have first simulated MPO's behavior with TRIM and MARLOWE Monte-Carlo codes. Energy scattering and output angle computed

  17. A qualitative study of amlodipine and its related compounds by electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Gibbons, John; Pugh, Jonathan; Dimopoulos-Italiano, Gina; Pike, Richard

    2006-01-01

    A comprehensive structural analysis of amlodipine and certain related compounds was performed by electrospray ionization tandem mass spectrometry. Triple quadrupole and quadrupole time-of-flight instruments were used to provide collision-induced dissociation and accurate mass measurement for selected product and second-generation product ions. A unique ion rearrangement was observed, which was found to be characteristic of certain dihydropyridines. This study provides a fundamental understanding of the fragmentation of these compounds. The structural elucidation of an unknown impurity is presented as an example. Copyright (c) 2006 John Wiley & Sons, Ltd.

  18. Biotransformation and metabolic profile of Xian-Ling-Gu-Bao capsule, a traditional Chinese medicine prescription, with rat intestinal microflora by ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry analysis.

    Science.gov (United States)

    Gao, Meng-Xue; Tang, Xi-Yang; Zhang, Feng-Xiang; Yao, Zhi-Hong; Yao, Xin-Sheng; Dai, Yi

    2018-04-01

    Xian-Ling-Gu-Bao capsule (XLGB), a well-known traditional Chinese medicine prescription, has been used for the prevention and treatment of osteoporosis. The safety and efficacy of XLGB have been confirmed based on the principle of evidence-based medicine. XLGB is usually administered orally, after which its multiple components are brought into contact with intestinal microflora in the alimentary tract and biotransformed. However, investigations on the comprehensive metabolic profile of XLGB are absent. In this study, 12 representative compounds bearing different typical structures (including iridoid glycosides, prenylated flavonol glycosides, prenylated flavonoids, triterpenoid saponins, steroidal saponins, coumarins and monoterpene phenols) were selected and then investigated for their biotransformation in rat intestinal microflora. In addition, the metabolic profile of XLGB in rat intestinal microflora was investigated by ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. As a result, a total of 87 biotransformation components were identified from incubated solutions of 12 representative compounds and XLGB, which underwent 16 metabolic reactions (including deglycosylation, glycosylation, dehydrogenation, hydrogenation, oxidation, epoxidation, hydroxylation, dehydration, hydration, hydrolysis, methylation, isomerization, cyclization, pyrolysis reaction, amino acid conjugation and nucleophilic addition reaction with NH 3 ). This demonstrated that the deglycosylation reaction by cleavage of the sugar moieties is the main metabolic pathway of a variety of glycosides, including prenylated flavonol glycosides, coumarin glycosides, iridoid glycosides and saponins. In addition, compared with the biotransformation of 12 representative compounds, a different biotransformed fate was observed in the XLGB incubated samples of rat intestinal microflora. It is worth noting that the amino acid conjugation was first discovered

  19. Ultra-high performance liquid chromatography coupled with photo-diode array and quadrupole/time-of-flight mass spectrometry based chemical profiling approach to evaluate the influence of preparation methods on the holistic quality of Qiong-Yu-Gao, a traditional complex herbal medicine.

    Science.gov (United States)

    Xu, Jin-Di; Mao, Qian; Shen, Hong; Zhu, Ling-Ying; Li, Song-Lin; Yan, Ru

    2013-08-23

    Qiong-Yu-Gao (QYG), consisting of Rehmanniae Radix (RR), Poriae (PO) and Ginseng Radix (GR), is a commonly used tonic traditional complex herbal medicine (CHM). So far, three different methods have been documented for preparation of QYG, i.e. method 1 (M1): mixing powders of GR and PO with decoction of RR; method 2 (M2): combining the decoction of RR and PO with the decoction of GR; method 3 (M3): decocting the mixture of RR, GR and PO. In present study, an ultra-high performance liquid chromatography coupled with photo-diode array and quadrupole/time-of-flight mass spectrometry (UHPLC-PDA-QTOF-MS/MS) based chemical profiling approach was developed to investigate the influence of the three preparation methods on the holistic quality of QYG. All detected peaks were unambiguously identified by comparing UV spectra, accurate mass data/characteristic mass fragments and retention times with those of reference compounds, and/or tentatively assigned by matching empirical molecular formula with that of known compounds, and/or elucidating quasi-molecular ions and fragment ions referring to information available in literature. A total of 103 components, mainly belonging to ginsenosides, phenethylalcohol glycosides, iridoid glycosides and triterpenoid acids, were identified, of which 5 degraded ginsenosides were putatively determined to be newly generated during preparation procedures of QYG samples. Triterpenoid acids and malonyl-ginsenosides were detected only in M1 samples, while degraded ginsenosides were merely detectable in M2/M3 samples. The possible reasons for the difference among chemical profiles of QYG samples prepared with three methods were also discussed. It could be concluded that preparation method do significantly affect the holistic quality of QYG. The influence of the altered chemical profiles on the bioactivity of QYG needs further investigation. The present study demonstrated that UHPLC-PDA-QTOF-MS/MS based chemical profiling approach is efficient and

  20. Invited Article: Characterization of background sources in space-based time-of-flight mass spectrometers

    International Nuclear Information System (INIS)

    Gilbert, J. A.; Gershman, D. J.; Gloeckler, G.; Lundgren, R. A.; Zurbuchen, T. H.; Orlando, T. M.; McLain, J.; Steiger, R. von

    2014-01-01

    For instruments that use time-of-flight techniques to measure space plasma, there are common sources of background signals that evidence themselves in the data. The background from these sources may increase the complexity of data analysis and reduce the signal-to-noise response of the instrument, thereby diminishing the science value or usefulness of the data. This paper reviews several sources of background commonly found in time-of-flight mass spectrometers and illustrates their effect in actual data using examples from ACE-SWICS and MESSENGER-FIPS. Sources include penetrating particles and radiation, UV photons, energy straggling and angular scattering, electron stimulated desorption of ions, ion-induced electron emission, accidental coincidence events, and noise signatures from instrument electronics. Data signatures of these sources are shown, as well as mitigation strategies and design considerations for future instruments

  1. ALICE Time Of Flight Detector

    CERN Multimedia

    Alici, A

    2013-01-01

    Charged particles in the intermediate momentum range are identified in ALICE by the Time Of Flight (TOF) detector. The time measurement with the TOF, in conjunction with the momentum and track length measured by the tracking detector, is used to calculate the particle mass.

  2. Control of Strobilurin Fungicides in Wheat Using Direct Analysis in Real Time Accurate Time-of-Flight and Desorption Electrospray Ionization Linear Ion Trap Mass Spectrometry

    NARCIS (Netherlands)

    Schurek, J.; Vaclavik, L.; Hooijerink, H.; Lacina, O.; Poustka, J.; Sharman, M.; Caldow, M.; Nielen, M.W.F.; Hajslova, J.

    2008-01-01

    Ambient mass spectrometry has been used for the analysis of strobilurin residues in wheat. The use of this novel, challenging technique, employing a direct analysis in a real time (DART) ion-source coupled with a time-of-flight mass spectrometer (TOF MS) and a desorption electrospray ionization

  3. Characterisation of Stevia Rebaudiana by comprehensive two-dimensional liquid chromatography time-of-flight mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Pól, Jaroslav; Hohnová, B.; Hyötyläinen, T.

    2007-01-01

    Roč. 1150, 1-2 (2007), s. 85-92 ISSN 0021-9673 R&D Projects: GA AV ČR KJB4031405 Institutional research plan: CEZ:AV0Z40310501 Keywords : comprehensive two-dimensional liquid chromatography * time-of-flight mass spectrometry * Stevia rebaudiana Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.641, year: 2007

  4. Characterization of Ni(II) complexes of Schiff bases of amino acids and (S)-N-(2-benzoylphenyl)-1-benzylpyrrolidine-2-carboxamide using ion trap and QqTOF electrospray ionization tandem mass spectrometry

    NARCIS (Netherlands)

    Jirasko, Robert; Holcapek, Michal; Kolarova, Lenka; Nadvornik, Milan; Popkov, Alexander

    This work demonstrates the application of electrospray ionization mass spectrometry (ESI-MS) using two different mass analyzers, ion trap and hybrid quadrupole time-of-flight (QqTOF) mass analyzer, for the structural characterization of Ni(II) complexes of Schiff bases of

  5. Metabolomics Analysis of Health Functions of Physalis Pubescens L. using by Ultra-performance Liquid Chromatography/Electrospray Ionization Quadruple Time-of-Flight Mass Spectrometry

    Institute of Scientific and Technical Information of China (English)

    Hang Chu; Hui Sun; Guang-Li Yan; Ai-Hua Zhang; Chang Liu; Hui Dong; Xiang-Cai Meng; Xi-Jun Wang

    2015-01-01

    Herbal medicines may benefit from metabolomics studies, and applying metabolomics may provide answers about which herbal interventions may be effective for individuals, which metabolic processes are triggered, and the subsequent chemical pathways of activity. Physalis pubescens L (PPL) is an herbal fruit for one year living plant and has been developed into healthy function’s food. However, the mechanisms of health functions are still unclear. To comprehensively and holistically assess its anti-fatigue and antioxidant effects, a novel integrative metabolomics approach was applied. In this study, we present metabolomics analysis applying ultra performance liquid chromatography coupled to quadrupole with time-of-flight mass spectrometry (UPLC-Q/TOF-MS) to determine metabolite alterations after oral administration PPL to rats. Fifteen metabolites in urine were identified as potential biomarkers. Pattern analysis of the UPLC-Q/TOF-MS data disclosed that PPL could relieve fatigue rats by ameliorating the disturbance in amino acids metabolism and energy metabolism, alleviating the oxidative stress from reactive oxygen species and the inflammatory damage, and recovering the destructed regulation. Based on these results, we demonstrated that PPL is a promising source of natural anti-fatigue and antioxidants material for use in functional foods and medicines.

  6. High precision mass measurements of thermalized relativistic uranium projectile and fission fragments with a multiple-reflection time-of-flight mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Ayet San Andres, Samuel [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Justus Liebig Universitaet, Giessen (Germany); Collaboration: FRS Ion Catcher-Collaboration

    2016-07-01

    At the FRS Ion Catcher at GSI, a relativistic beam of {sup 238}U at 1GeV/u was used to produce fission and projectile fragments on a beryllium target. The ions were separated in-flight at the FRS, thermalized in a cryogenic stopping cell and transferred to a multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) where high precision mass measurements were performed. The masses of several fission and projectile fragments were measured (including short-lived nuclei with half-lives down to 18 ms) and the possibility of tailoring an isomerically clean beam for other experiments was demonstrated. With the demonstrated performance of the MR-TOF-MS and the expected production rates of exotic nuclei far from stability at the next-generation facilities such as FAIR, novel mass measurements of nuclei close to the neutron drip line will be possible and key information for understanding the r-process will be available. The results from the last experiment and an outlook of possible future mass measurements close to the neutron drip line at FAIR with the MR-TOF-MS are presented.

  7. Time-of-flight spectrometers

    International Nuclear Information System (INIS)

    Carrico, J.P.

    1976-01-01

    The flight time of an ion in an inhomogeneous, oscillatory electric field (IOFE) is an m/e-dependent property of this field and is independent of the initial position and velocity. The d.c. component of the equation of motion for an ion in the IOFE describes a harmonic oscillation of constant period. When ions oscillate for many periods with one species overtaking another the motion may no longer be truly periodic although the resulting period or 'quasi-period' still remains independent of the initial conditions. This period or 'quasi-period' is used in the time-of-flight mass spectrometer described. The principle of operation is also described and both analytical and experimental results are reported. (B.D.)

  8. A quadrupole mass spectrometer system for nuclear safeguards applications

    International Nuclear Information System (INIS)

    Evans, P.J.

    1987-12-01

    An on-line enrichment monitor for nuclear safeguards-related surveillance of a pilot-scale gas centrifuge plant is described. This monitor utilises a quadrupole mass spectrometer to measure the isotopic composition of UF 6 in the feed and product gas streams. Details of the design and construction are given, and several difficulties are identified and discussed. Finally, the performance of this system is illustrated with typical results

  9. A new Time-of-Flight mass measurement project for exotic nuclei and ultra-high precision detector development

    Directory of Open Access Journals (Sweden)

    Sun Bao-Hua

    2016-01-01

    Full Text Available The time-of-flight (TOF mass spectrometry (MS, a high-resolution magnetic spectrometer equipped with a fast particle tracking system, is well recognized by its ability in weighing the most exotic nuclei. Currently such TOF-MS can achieve a mass resolution power of about 2×10−4. We show that the mass resolution can be further improved by one order of magnitude with augmented timing and position detectors. We report the progress in developing ultra-fast detectors to be used in TOF-MS.

  10. Detection of polydimethylsiloxanes transferred from silicone-coated parchment paper to baked goods using direct analysis in real time mass spectrometry.

    Science.gov (United States)

    Jakob, Andreas; Crawford, Elizabeth A; Gross, Jürgen H

    2016-04-01

    The non-stick properties of parchment papers are achieved by polydimethylsiloxane (PDMS) coatings. During baking, PDMS can thus be extracted from the silicone-coated parchment into the baked goods. Positive-ion direct analysis in real time (DART) mass spectrometry (MS) is highly efficient for the analysis of PDMS. A DART-SVP source was coupled to a quadrupole-time-of-flight mass spectrometer to detect PDMS on the contact surface of baked goods after use of silicone-coated parchment papers. DART spectra from the bottom surface of baked cookies and pizzas exhibited signals because of PDMS ions of the general formula [(C2H6SiO)n  + NH4 ](+) in the m/z 800-1900 range. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Phenotypic identification of Porphyromonas gingivalis validated with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

    NARCIS (Netherlands)

    Rams, Thomas E; Sautter, Jacqueline D; Getreu, Adam; van Winkelhoff, Arie J

    OBJECTIVE: Porphyromonas gingivalis is a major bacterial pathogen in human periodontitis. This study used matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry to assess the accuracy of a rapid phenotypic identification scheme for detection of cultivable P.

  12. Design of the multi-reflection time-of-flight mass spectrometer for the RAON facility

    International Nuclear Information System (INIS)

    Yoon, J.W.; Park, Y.H.; Park, S.J.; Kim, G.D.; Kim, Y.K.

    2014-01-01

    A multi-reflection time-of-flight mass spectrometer (MR-TOF-MS) has been proposed for high precision mass measurements on the future Korean heavy ion accelerator called RAON. MR-TOF-MS will allow us to reach very high mass resolving power (> 10 5 ) with extremely short measurement times (several ms) in a compact device. The MR-TOF-MS is composed of two electrostatic ion mirrors in combination with einzel lenses. The principle is that the injected ions travel for hundreds of revolutions inside MR-TOF-MS and ions with different masses are temporally separated. When temporal separation becomes larger than the ion bunch width, ions are extracted from the MR-TOF-MS by switching off the mirror voltages, and then arrive at a detector plane located at time focus, where an MCP detector for the mass measurement or an ion gate for the isobar separation is deployed. In this paper, simulation results for the MR-TOF-MS design using SIMION code are presented. Temporal broadenings, caused by the kinetic energy spread and the transverse emittance, were minimized by optimization of the electrode potentials, and it was demonstrated that the mass resolving power of 10 5 is achievable for the condition of an energy spread of ±30 eV and an emittance of 0.75 π*mm*mrad

  13. First on-line applications of multi-reflection time-of-flight mass separator at ISOLTRAP and the mass measurement of $^{82}$Zn

    CERN Document Server

    Wolf, Robert

    This thesis describes the implementation and first on-line application of a multi-reflection time-of-flight (MR-ToF) mass analyzer for high-resolution mass separation at the ISOLTRAP mass spectrometer at ISOLDE/CERN. On the one hand, the major objective was to improve ISOLTRAPs mass-measurement capabilities with respect to the ratio of delivered contaminating ions to ions of interest. On the other hand, the time necessary to purify wanted from unwanted species should be reduced as much as possible to enable access to even more exotic nuclei. The device has been set up, optimized and tested at the University of Greifswald before its move to ISOLTRAP. The achieved performance comprises mass resolving powers of up to 200000 reached at observation times of 30ms and a contamination suppression of about four orders of magnitude by use of a Bradbury-Nielsen gate. With the characteristics, it outperforms clearly the so far state-of-the-art purification method of a gas-filled Penning trap. To improve the utilization o...

  14. [Special application of matrix-assisted laser desorption ionization time-of-flight mass spectrometry in clinical microbiological diagnostics].

    Science.gov (United States)

    Nagy, Erzsébet; Abrók, Marianna; Bartha, Noémi; Bereczki, László; Juhász, Emese; Kardos, Gábor; Kristóf, Katalin; Miszti, Cecilia; Urbán, Edit

    2014-09-21

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry as a new possibility for rapid identification of bacteria and fungi revolutionized the clinical microbiological diagnostics. It has an extreme importance in the routine microbiological laboratories, as identification of the pathogenic species rapidly will influence antibiotic selection before the final determination of antibiotic resistance of the isolate. The classical methods for identification of bacteria or fungi, based on biochemical tests, are influenced by many environmental factors. The matrix-assisted laser desorption ionization time-of-flight mass spectrometry is a rapid method which is able to identify a great variety of the isolated bacteria and fungi based on the composition of conserved ribosomal proteins. Recently several other applications of the method have also been investigated such as direct identification of pathogens from the positive blood cultures. There are possibilities to identify bacteria from the urine samples in urinary tract infection or from other sterile body fluids. Using selective enrichment broth Salmonella sp from the stool samples can be identified more rapidly, too. The extended spectrum beta-lactamase or carbapenemase production of the isolated bacteria can be also detected by this method helping the antibiotic selection in some cases. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry based methods are suitable to investigate changes in deoxyribonucleic acid or ribonucleic acid, to carry out rapid antibiotic resistance determination or other proteomic analysis. The aim of this paper is to give an overview about present possibilities of using this technique in the clinical microbiological routine procedures.

  15. Comprehensive Characterization of Extractable and Nonextractable Phenolic Compounds by High-Performance Liquid Chromatography-Electrospray Ionization-Quadrupole Time-of-Flight of a Grape/Pomegranate Pomace Dietary Supplement.

    Science.gov (United States)

    Pérez-Ramírez, Iza F; Reynoso-Camacho, Rosalía; Saura-Calixto, Fulgencio; Pérez-Jiménez, Jara

    2018-01-24

    Grape and pomegranate are rich sources of phenolic compounds, and their derived products could be used as ingredients for the development of functional foods and dietary supplements. However, the profile of nonextractable or macromolecular phenolic compounds in these samples has not been evaluated. Here, we show a comprehensive characterization of extractable and nonextractable phenolic compounds of a grape/pomegranate pomace dietary supplement using high-performance liquid chromatography-electrospray ionization-quadrupole time-of-flight (HPLC-ESI-QTOF) and matrix-assisted laser desorption/ionization (MALDI)-TOF techniques. The main extractable phenolic compounds were several anthocyanins (principally malvidin 3-O-glucoside) as well as gallotannins and gallagyl derivatives; some phenolic compounds were reported in grape or pomegranate for the first time. Additionally, there was a high proportion of nonextractable phenolic compounds, including vanillic acid, and dihydroxybenzoic acid. Unidentified polymeric structures were detected by MALDI-TOF MS analysis. This study shows that mixed grape and pomegranate pomaces are a source of different classes of phenolic compounds including a high proportion of nonextractable phenolic compounds.

  16. Detection of Bacteriocins by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry

    OpenAIRE

    Rose, Natisha L.; Sporns, Peter; McMullen, Lynn M.

    1999-01-01

    The use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the detection of bacteriocins was investigated. A 30-s water wash of the sample on the MALDI-TOF MS probe was effective in removing contaminants of the analyte. This method was used for rapid detection of nisin, pediocin, brochocin A and B, and enterocin A and B from culture supernatants and for detection of enterocin B throughout its purification.

  17. Derivatization of Dextran for Multiply Charged Ion Formation and Electrospray Ionization Time-of-Flight Mass Spectrometric Analysis

    Science.gov (United States)

    Tapia, Jesus B.; Hibbard, Hailey A. J.; Reynolds, Melissa M.

    2017-10-01

    We present the use of a simple, one-pot derivatization to allow the polysaccharide dextran to carry multiple positive charges, shifting its molecular weight distribution to a lower m/ z range. We performed this derivatization because molecular weight measurements of polysaccharides by mass spectrometry are challenging because of their lack of readily ionizable groups. The absence of ionizable groups limits proton abstraction and suppresses proton adduction during the ionization process, producing mass spectra with predominantly singly charged metal adduct ions, thereby limiting the detection of large polysaccharides. To address this challenge, we derivatized dextran T1 (approximately 1 kDa) by attaching ethylenediamine, giving dextran readily ionizable, terminal amine functional groups. The attached ethylenediamine groups facilitated proton adduction during the ionization process in positive ion mode. Using the low molecular weight dextran T1, we tracked the number of ethylenediamine attachments by measuring the mass shift from underivatized to derivatized dextran T1. Using electrospray ionization time-of-flight mass spectrometry, we observed derivatized dextran chains ranging from two to nine glucose residues with between one and four attachments/charges. Our success in shifting derivatized dextran T1 toward the low m/ z range suggests potential for this derivatization as a viable route for analysis of high molecular weight polysaccharides using electrospray ionization time-of-flight mass spectrometry. [Figure not available: see fulltext.

  18. Effect of ion entry acceptance conditions on the performance of a quadrupole mass spectrometer operated in upper and lower stability regions

    International Nuclear Information System (INIS)

    Turner, P.; Taylor, S.; Gibson, J.R.

    2005-01-01

    Computer simulation of ion motion in a quadrupole mass spectrometer has been used to examine the effect of initial ion conditions on performance when operated in the first and third zones of the Mathieu stability diagram. Commercial instruments frequently use round electrodes instead of the better-performing hyperbolic electrodes because the cost of manufacturing is lower. However, adverse features are seen when using round electrodes. Here further insight is provided and a possible method of correction is suggested. For the first time, ion origin for the first stability region for a round electrode quadrupole has been reported

  19. Laser Time-of-Flight Mass Spectrometry for Future In Situ Planetary Missions

    Science.gov (United States)

    Getty, S. A.; Brinckerhoff, W. B.; Cornish, T.; Ecelberger, S. A.; Li, X.; Floyd, M. A. Merrill; Chanover, N.; Uckert, K.; Voelz, D.; Xiao, X.; hide

    2012-01-01

    Laser desorption/ionization time-of-flight mass spectrometry (LD-TOF-MS) is a versatile, low-complexity instrument class that holds significant promise for future landed in situ planetary missions that emphasize compositional analysis of surface materials. Here we describe a 5kg-class instrument that is capable of detecting and analyzing a variety of analytes directly from rock or ice samples. Through laboratory studies of a suite of representative samples, we show that detection and analysis of key mineral composition, small organics, and particularly, higher molecular weight organics are well suited to this instrument design. A mass range exceeding 100,000 Da has recently been demonstrated. We describe recent efforts in instrument prototype development and future directions that will enhance our analytical capabilities targeting organic mixtures on primitive and icy bodies. We present results on a series of standards, simulated mixtures, and meteoritic samples.

  20. Real-time monitoring of Lévy flights in a single quantum system

    Science.gov (United States)

    Issler, M.; Höller, J.; Imamoǧlu, A.

    2016-02-01

    Lévy flights are random walks where the dynamics is dominated by rare events. Even though they have been studied in vastly different physical systems, their observation in a single quantum system has remained elusive. Here we analyze a periodically driven open central spin system and demonstrate theoretically that the dynamics of the spin environment exhibits Lévy flights. For the particular realization in a single-electron charged quantum dot driven by periodic resonant laser pulses, we use Monte Carlo simulations to confirm that the long waiting times between successive nuclear spin-flip events are governed by a power-law distribution; the corresponding exponent η =-3 /2 can be directly measured in real time by observing the waiting time distribution of successive photon emission events. Remarkably, the dominant intrinsic limitation of the scheme arising from nuclear quadrupole coupling can be minimized by adjusting the magnetic field or by implementing spin echo.

  1. Screening and confirmation criteria for hormone residue analysis using liquid chromatography accurate mass time-of-flight, Fourier transform ion cyclotron resonance and orbitrap mass spectrometry techniques

    NARCIS (Netherlands)

    Nielen, M.W.F.; Engelen, M.C. van; Zuiderent, R.; Ramaker, R.

    2007-01-01

    An emerging trend is recognised in hormone and veterinary drug residue analysis from liquid chromatography tandem mass spectrometry (LC/MS/MS) based screening and confirmation towards accurate mass alternatives such as LC coupled with time-of-flight (TOF), Fourier transform ion cyclotron resonance

  2. Application of time-of-flight mass spectrometry with laser-based photoionization methods for analytical pyrolysis of PVC

    Energy Technology Data Exchange (ETDEWEB)

    Streibel, T.; Muehlberger, F. [GSF - Forschungszentrum fuer Umwelt und Gesundheit GmbH, Neuherberg (Germany); Adam, T.; Zimmermann, R. [Augsburg Univ. (Germany); Cao, L. [National Center for Iron and Steel, Beijing, BJ (China)

    2004-09-15

    Chlorinated benzenes and phenols generated from PVC pyrolysis are known to be precursors of PCDD/F formation. Therefore, selective and sensitive monitoring of these substances during PVC pyrolysis processes on an on-line, real-time basis could be very useful for the understanding of PCDD/F formation pathways. In this study, we investigated the pyrolysis gas from PVC samples derived from steel recycling by means of simultaneous single photon ionization/resonance-enhanced multiphoton ionization time-of-flight mass spectrometry (SPI/REMPI-TOFMS). The application of these soft photo-ionization techniques in mass spectrometry enables a fast and comprehensive analysis of this complex matrix without generating fragment ions, which would interfere with molecule ions making interpretation of the obtained mass spectra very difficult.

  3. Interfacing an aspiration ion mobility spectrometer to a triple quadrupole mass spectrometer

    International Nuclear Information System (INIS)

    Adamov, Alexey; Viidanoja, Jyrki; Kaerpaenoja, Esko; Paakkanen, Heikki; Ketola, Raimo A.; Kostiainen, Risto; Sysoev, Alexey; Kotiaho, Tapio

    2007-01-01

    This article presents the combination of an aspiration-type ion mobility spectrometer with a mass spectrometer. The interface between the aspiration ion mobility spectrometer and the mass spectrometer was designed to allow for quick mounting of the aspiration ion mobility spectrometer onto a Sciex API-300 triple quadrupole mass spectrometer. The developed instrumentation is used for gathering fundamental information on aspiration ion mobility spectrometry. Performance of the instrument is demonstrated using 2,6-di-tert-butyl pyridine and dimethyl methylphosphonate

  4. Laser sputter neutral mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    King, B.V.; Clarke, M.; Hu, H.; Betz [Newcastle Univ., NSW (Australia). Dept. of Physics

    1993-12-31

    Laser sputter neutral mass spectrometry (LSNMS) is an emerging technique for highly sensitive surface analysis. In this technique a target is bombarded with a pulsed beam of keV ions. The sputtered particles are intercepted by a high intensity pulsed laser beam above the surface and ionised with almost 100% efficiency. The photions may then be mass analysed using a quadrupole or, more commonly, using time of flight (TOF) techniques. In this method photoions are extracted from the ionisation region, accelerated to a known energy E{sub o} and strike a channelplate detector a distance `d` away. The flight time `t` of the photoions is then related to their mass by `d` {radical}m / {radical} 2E{sub o} so measurement of `t` allows mass spectra to be obtained. It is found that LSNMS is an emerging technique of great sensitivity and flexibility, useful for both applied analysis and to investigate basic sputtering processes. 4 refs., 3 figs.

  5. Laser sputter neutral mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    King, B V; Clarke, M; Hu, H; Betz, [Newcastle Univ., NSW (Australia). Dept. of Physics

    1994-12-31

    Laser sputter neutral mass spectrometry (LSNMS) is an emerging technique for highly sensitive surface analysis. In this technique a target is bombarded with a pulsed beam of keV ions. The sputtered particles are intercepted by a high intensity pulsed laser beam above the surface and ionised with almost 100% efficiency. The photions may then be mass analysed using a quadrupole or, more commonly, using time of flight (TOF) techniques. In this method photoions are extracted from the ionisation region, accelerated to a known energy E{sub o} and strike a channelplate detector a distance `d` away. The flight time `t` of the photoions is then related to their mass by `d` {radical}m / {radical} 2E{sub o} so measurement of `t` allows mass spectra to be obtained. It is found that LSNMS is an emerging technique of great sensitivity and flexibility, useful for both applied analysis and to investigate basic sputtering processes. 4 refs., 3 figs.

  6. Generalized Kerr spacetime with an arbitrary mass quadrupole moment: geometric properties versus particle motion

    International Nuclear Information System (INIS)

    Bini, Donato; Geralico, Andrea; Luongo, Orlando; Quevedo, Hernando

    2009-01-01

    An exact solution of Einstein's field equations in empty space first found in 1985 by Quevedo and Mashhoon is analyzed in detail. This solution generalizes Kerr spacetime to include the case of matter with an arbitrary mass quadrupole moment and is specified by three parameters, the mass M, the angular momentum per unit mass a and the quadrupole parameter q. It reduces to the Kerr spacetime in the limiting case q = 0 and to the Erez-Rosen spacetime when the specific angular momentum a vanishes. The geometrical properties of such a solution are investigated. Causality violations, directional singularities and repulsive effects occur in the region close to the source. Geodesic motion and accelerated motion are studied on the equatorial plane which, due to the reflection symmetry property of the solution, also turns out to be a geodesic plane.

  7. Simultaneous analysis by Quadrupole-Orbitrap mass spectrometry and UHPLC-MS/MS for the determination of sedative-hypnotics and sleep inducers in adulterated products.

    Science.gov (United States)

    Lee, Ji Hyun; Park, Han Na; Choi, Ji Yeon; Kim, Nam Sook; Park, Hyung-Joon; Park, Seong Soo; Baek, Sun Young

    2017-12-01

    Adulterated products are continuously detected in society and cause problems. In this study, we developed and validated a method for determining synthetic sedative-hypnotics and sleep inducers, including barbital, benzodiazepam, zolpidem, and first-generation antihistamines, in adulterated products using Quadrupole-Orbitrap mass spectrometry and ultrahigh performance liquid chromatography with tandem mass spectrometry. In Quadrupole-Orbitrap mass spectrometry analysis, target compounds were confirmed using a combination of retention time, mass tolerance, mass accuracy, and fragment ions. For quantification, several validation parameters were employed using ultrahigh performance liquid chromatography with tandem mass spectrometry. The limit of detection and limit of quantitation was 0.05-53 and 0.17-177 ng/mL, respectively. The correlation coefficient for linearity was more than 0.995. The intra- and interassay accuracies were 86-110 and 84-111%, respectively. Their precision values were evaluated as within 4.0 (intraday) and 10.7% (interday). Mean recoveries of target compounds in adulterated products ranged from 85 to 116%. The relative standard deviation of stability was less than 10.7% at 4°C for 48 h. The 144 adulterated products obtained over 3 years (2014-2016) from online and in-person vendors were tested using established methods. After rapidly screening with Quadrupole-Orbitrap mass spectrometry, the detected samples were quantified using ultrahigh performance liquid chromatography with tandem mass spectrometry. Two of them were adulterated with phenobarbital. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Ion optics of a new time-of-flight mass spectrometer for quantitative surface analysis

    International Nuclear Information System (INIS)

    Veryovkin, Igor V.; Calaway, Wallis F.; Pellin, Michael J.

    2004-01-01

    A new time-of-flight instrument for quantitative surface analysis was developed and constructed at Argonne National Laboratory. It implements ion sputtering and laser desorption for probing analyzed samples and can operate in regimes of secondary neutral mass spectrometry with laser post-ionization and secondary ion mass spectrometry. The instrument incorporates two new ion optics developments: (1) 'push-pull' front end ion optics and (2) focusing and deflecting lens. Implementing these novel elements significantly enhance analytical capabilities of the instrument. Extensive three-dimensional computer simulations of the instrument were conducted in SIMION 3D (c) to perfect its ion optics. The operating principles of the new ion optical systems are described, and a scheme of the new instrument is outlined together with its operating modes

  9. Two-step Laser Time-of-Flight Mass Spectrometry to Elucidate Organic Diversity in Planetary Surface Materials.

    Science.gov (United States)

    Getty, Stephanie A.; Brinckerhoff, William B.; Cornish, Timothy; Li, Xiang; Floyd, Melissa; Arevalo, Ricardo Jr.; Cook, Jamie Elsila; Callahan, Michael P.

    2013-01-01

    Laser desorption/ionization time-of-flight mass spectrometry (LD-TOF-MS) holds promise to be a low-mass, compact in situ analytical capability for future landed missions to planetary surfaces. The ability to analyze a solid sample for both mineralogical and preserved organic content with laser ionization could be compelling as part of a scientific mission pay-load that must be prepared for unanticipated discoveries. Targeted missions for this instrument capability include Mars, Europa, Enceladus, and small icy bodies, such as asteroids and comets.

  10. First on-line applications of a multi-reflection time-of-flight mass separator at ISOLTRAP and the mass measurement of 82Zn

    International Nuclear Information System (INIS)

    Wolf, Robert

    2013-01-01

    This thesis describes the implementation and first on-line application of a multi-reflection time-of-flight (MR-ToF) mass analyzer for high-resolution mass separation at the ISOLTRAP mass spectrometer at ISOLDE/CERN. On the one hand, the major objective was to improve ISOLTRAPs mass-measurement capabilities with respect to the ratio of delivered contaminating ions to ions of interest. On the other hand, the time necessary to purify wanted from unwanted species should be reduced as much as possible to enable access to even more exotic nuclei. The device has been set up, optimized and tested at the University of Greifswald before its move to ISOLTRAP. The achieved performance comprises mass resolving powers of up to 2 x 10 5 reached at observation times of 30 ms and a contamination suppression of about four orders of magnitude by use of a Bradbury-Nielsen gate. With the characteristics, it outperforms clearly the so far state-of-the-art purification method of a gas-filled Penning trap. To improve the utilization of the MR-ToF mass analyzer, the in-trap lift method has been developed. It simplifies the application and optimization of the device, which is a crucial time factor in an on-line experiment. The device was the first of its kind successfully applied to radioactive ion beams for a mass analysis, for a mass separation (in combination with the Bradbury-Nielsen gate) as a preparatory step for a subsequent Penning-trap mass measurement and as a high-precision mass spectrometer of its own. The later was recently used for the first mass measurement of the neutron-rich calcium isotopes 53 Ca and 54 Ca. The so-far achieved mass-resolving power of 2 x 10 5 belongs to the highest reported for time-of-flight mass analyzers at all. The first successful application of the MR-ToF system as the only mass separator at ISOLTRAP resulted in the mass measurement of 82 Zn. The new mass value has been compared to mass extrapolations of the most recent Hartree-Fock-Bogolyubov (HFB

  11. Mass Spectrometry for Research and Application in Therapeutic Drug Monitoring or Clinical and Forensic Toxicology.

    Science.gov (United States)

    Maurer, Hans H

    2018-04-30

    This paper reviews current applications of various hyphenated low- and high-resolution mass spectrometry techniques in the field of therapeutic drug monitoring and clinical/forensic toxicology in both research and practice. They cover gas chromatography, liquid chromatography, matrix-assisted laser desorption ionization, or paper spray ionization coupled to quadrupole, ion trap, time-of-flight, or Orbitrap mass analyzers.

  12. Radiofrequency glow discharge time of flight mass spectrometry: pulsed vs. continuous mode

    International Nuclear Information System (INIS)

    Lobo, L.; Pereiro, R.; Sanz-Medel, A.; Bordel, N.; Tempez, A.; Chapon, P.; Hohl, M.; Michler, J.

    2009-01-01

    Full text: Glow discharge (GD) is a well established tool for the direct analysis of solids. The application field of the original direct current GD, restricted to conductive samples, has been extended by radiofrequency powered GDs that can be applied for conductive and non-conductive samples. Moreover, the introduction of pulsed GD has opened the possibility of applying higher instantaneous powers that can improve the atomization-ionization processes and therefore the sensitivity. Furthermore, pulsed-GD may enable temporal separation of discharge gas species from the sample ions. In this work the analytical performances of radiofrequency and pulsed radiofrequency glow discharges are evaluated by using a time of flight mass analyzer (TOFMS). (author)

  13. Accurate mass analysis of ethanesulfonic acid degradates of acetochlor and alachlor using high-performance liquid chromatography and time-of-flight mass spectrometry

    Science.gov (United States)

    Thurman, E.M.; Ferrer, I.; Parry, R.

    2002-01-01

    Degradates of acetochlor and alachlor (ethanesulfonic acids, ESAs) were analyzed in both standards and in a groundwater sample using high-performance liquid chromatography-time-of-flight mass spectrometry with electrospray ionization. The negative pseudomolecular ion of the secondary amide of acetochlor ESA and alachlor ESA gave average masses of 256.0750??0.0049 amu and 270.0786??0.0064 amu respectively. Acetochlor and alachlor ESA gave similar masses of 314.1098??0.0061 amu and 314.1153??0.0048 amu; however, they could not be distinguished by accurate mass because they have the same empirical formula. On the other hand, they may be distinguished using positive-ion electrospray because of different fragmentation spectra, which did not occur using negative-ion electrospray.

  14. Phonon-assisted field emission in silicon nanomembranes for time-of-flight mass spectrometry of proteins.

    Science.gov (United States)

    Park, Jonghoo; Aksamija, Zlatan; Shin, Hyun-Cheol; Kim, Hyunseok; Blick, Robert H

    2013-06-12

    Time-of-flight (TOF) mass spectrometry has been considered as the method of choice for mass analysis of large intact biomolecules, which are ionized in low charge states by matrix-assisted-laser-desorption/ionization (MALDI). However, it remains predominantly restricted to the mass analysis of biomolecules with a mass below about 50,000 Da. This limitation mainly stems from the fact that the sensitivity of the standard detectors decreases with increasing ion mass. We describe here a new principle for ion detection in TOF mass spectrometry, which is based upon suspended silicon nanomembranes. Impinging ion packets on one side of the suspended silicon nanomembrane generate nonequilibrium phonons, which propagate quasi-diffusively and deliver thermal energy to electrons within the silicon nanomembrane. This enhances electron emission from the nanomembrane surface with an electric field applied to it. The nonequilibrium phonon-assisted field emission in the suspended nanomembrane connected to an effective cooling of the nanomembrane via field emission allows mass analysis of megadalton ions with high mass resolution at room temperature. The high resolution of the detector will give better insight into high mass proteins and their functions.

  15. Application of artificial intelligence to triple quadrupole mass spectrometry (TQMS)

    International Nuclear Information System (INIS)

    Wong, C.M.; Crawford, R.W.; Kehler, T.P.; Kunz, J.C.

    1984-01-01

    At Lawrence Livermore National Laboratory the authors have designed a totally computerized triple quadrupole mass spectrometer with the ultimate goal of using it as a prototype for ''knowledge-based'' instrument control. As an ''intelligent'' instrument, with its computer-based data acquisition and control system, it has the ability to learn and respond quickly. The intelligence is encoded in the system using the representation and rule-based reasoning heuristic techniques of Artificial Intelligence. These techniques are used to encode heuristic knowledge, or the intuition, formal and informal rules, and experiential knowledge that the human expert normally uses to make decisions and arrive at solutions in a specific domain problem. In this specific case, the knowledge the authors are encoding is a tuning procedure for the spectrometer, including heuristics to describe a self-adaptive, feedback control process for real-time optimization or tuning of the data acquisition procedure throughout the entire data collection process

  16. Comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry peak sorting algorithm.

    Science.gov (United States)

    Oh, Cheolhwan; Huang, Xiaodong; Regnier, Fred E; Buck, Charles; Zhang, Xiang

    2008-02-01

    We report a novel peak sorting method for the two-dimensional gas chromatography/time-of-flight mass spectrometry (GC x GC/TOF-MS) system. The objective of peak sorting is to recognize peaks from the same metabolite occurring in different samples from thousands of peaks detected in the analytical procedure. The developed algorithm is based on the fact that the chromatographic peaks for a given analyte have similar retention times in all of the chromatograms. Raw instrument data are first processed by ChromaTOF (Leco) software to provide the peak tables. Our algorithm achieves peak sorting by utilizing the first- and second-dimension retention times in the peak tables and the mass spectra generated during the process of electron impact ionization. The algorithm searches the peak tables for the peaks generated by the same type of metabolite using several search criteria. Our software also includes options to eliminate non-target peaks from the sorting results, e.g., peaks of contaminants. The developed software package has been tested using a mixture of standard metabolites and another mixture of standard metabolites spiked into human serum. Manual validation demonstrates high accuracy of peak sorting with this algorithm.

  17. Identification of molecules in graphite furnace by laser ionization time-of-flight mass spectrometry: sulfur and chlorine containing compounds

    CSIR Research Space (South Africa)

    Raseleka, RM

    2004-01-01

    Full Text Available An electro thermal vaporizer (ETV) coupled to a time-of-flight mass spectrometer (TOF-MS) with laser ionization (LI) was applied to the identification of molecules from sulphur and chlorine matrices in the furnace. An interface was developed...

  18. Peroxy Radicals Observed in a Forested Environment with Time of Flight Mass Spectrometry

    Science.gov (United States)

    Cantrell, C. A.; Mauldin, L.; Nowak, J. B.

    2017-12-01

    Observations of peroxy radicals were made using time-of-flight chemical ionization mass spectrometry (ToF-CIMS) during the PROPHET-AMOS (Program for Research on Oxidants, Photochemistry, Emissions and Transport - Atmospheric Measurements of Oxidants in Summer) campaign in summer 2016 at the University of Michigan Biological Station (UMBS) in the northern lower peninsula of Michigan. The environment is one of high isoprene productivity and generally low NOx, depending on the origin of air masses that are sampled, and has been the subject of several comprehensive atmospheric observational studies. The ToF-CIMS was configured to measure OH, HO2+RO2, and extremely oxygenated volatile organic compounds (ELVOCs) in a cycle of about 5 minutes for each. This presentation examines the time- and chemical coordinate-dependent behavior of the peroxy radicals, and compares the observations with models that are constrained by observations of the controlling variables. The results are used to estimate factors such as the photochemical production rate of ozone and other atmospheric oxidation parameters for this remote forest site.

  19. Characterization of peptide-oligonucleotide heteroconjugates by mass spectrometry.

    OpenAIRE

    Jensen, O N; Kulkarni, S; Aldrich, J V; Barofsky, D F

    1996-01-01

    Two peptide-oligothymidylic acids, prepared by joining an 11 residue synthetic peptide containing one internal carboxyl group (Asp side chain) to amino-linker-5'pdT6 and amino-linker-5'pdT10 oligonucleotides, were analyzed by matrix-assisted laser desorption/ionization (MALDI) on a linear time-of-flight mass spectrometer and by electrospray ionization (ESI) on a triple-quadrupole system. These synthetic compounds model peptide-nucleic acid heteroconjugates encountered in antisense research an...

  20. Time-of-flight secondary ion mass spectrometry with energetic cluster ion impact ionization for highly sensitive chemical structure characterization

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, K., E-mail: k.hirata@aist.go.jp [National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan); Saitoh, Y.; Chiba, A.; Yamada, K.; Narumi, K. [Takasaki Advanced Radiation Research Institute (TARRI), Japan Atomic Energy Agency (JAEA), Takasaki, Gumma 370-1292 (Japan)

    2013-11-01

    Energetic cluster ions with energies of the order of sub MeV or greater were applied to time-of-flight (TOF) secondary ion (SI) mass spectrometry. This gave various advantages including enhancement of SIs required for chemical structure characterization and prevention of charging effects in SI mass spectra for organic targets. We report some characteristic features of TOF SI mass spectrometry using energetic cluster ion impact ionization and discuss two future applications of it.

  1. Preanalytical and analytical variation of surface-enhanced laser desorption-ionization time-of-flight mass spectrometry of human serum

    DEFF Research Database (Denmark)

    Albrethsen, Jakob; Bøgebo, Rikke; Olsen, Jesper

    2006-01-01

    BACKGROUND: Surface-enhanced laser desorption-ionization time-of-flight (SELDI-TOF) mass spectrometry of human serum is a potential diagnostic tool in human diseases. In the present study, the preanalytical and analytical variation of SELDI-TOF mass spectrometry of serum was assessed in healthy...... was 18% (6%-34%, n=4) for 16 peaks, and inter-individual CV was 38% (16%-56%, n=16) for 20 peaks. CONCLUSIONS: The pre-analytical and analytical conditions of SELDI-TOF mass spectrometry of serum have a significant impact on the protein peaks, with the number of peaks low and the assay variation high...

  2. A multiple-orbit time-of-flight mass spectrometer based on a low energy electrostatic storage ring

    Science.gov (United States)

    Sullivan, M. R.; Spanjers, T. L.; Thorn, P. A.; Reddish, T. J.; Hammond, P.

    2012-11-01

    The results are presented for an electrostatic storage ring, consisting of two hemispherical deflector analyzers (HDA) connected by two separate sets of cylindrical lenses, used as a time-of-flight mass spectrometer. Based on the results of charged particle simulations and formal matrix model, the Ion Storage Ring is capable of operating with multiple stable orbits, for both single and multiply charged ions simultaneously.

  3. Design of a reflex time-of-flight mass spectrometer for the study of the desorption of molecular ions

    International Nuclear Information System (INIS)

    Riggi, F.

    1991-01-01

    A reflex time-of-flight mass spectrometer for the study of the desorption and dissociation of molecular ions has been designed. A general overview of the instrument is reported, together with the different experimental aspects of the technique. These include mechanical and vacuum solutions, secondary ion optics in the electrostatic mirror, electronics, data acquisition and analysis

  4. Analysis of ibuprofen and its main metabolites in roots, shoots, and seeds of cowpea (Vigna unguiculata L. Walp) using liquid chromatography-quadrupole time-of-flight mass spectrometry: uptake, metabolism, and translocation.

    Science.gov (United States)

    Picó, Yolanda; Alvarez-Ruiz, Rodrigo; Wijaya, Leonard; Alfarhan, Ahmed; Alyemeni, Mohammed; Barceló, Damià

    2018-01-01

    A liquid chromatography quadruple time-of-flight mass spectrometry (LC-QqTOF-MS/MS) method was developed for simultaneous quantitative analysis of ibuprofen (IBU), 1- and 2-hydroxyibuprofen (1-OH IBU and 2-OH IBU), and carboxyibuprofen (CBX IBU) while preserving the ability of the instrument to get precursor and product ion mass spectra of non-target compounds. The trigger was the precursor ions reaching 100 cps intensity. Sample preparation was carried out by ultrasound solid-liquid extraction with methanol as extraction solvent at pH  70% for all target analytes at low and high concentration levels. The lowest limit of quantification was cowpea (Vigna unguiculata (L.) Walp) treated at high IBU concentrations and its presence in vegetables irrigated with treated water. Up to 46 metabolites, mostly hydroxylated metabolites and conjugates with hexosides and amino acids, were identified. The most abundant metabolites were also identified in an eggplant sample. Graphical Abstract ᅟ Ibuprofen metabolite identification.

  5. First Isochronous Time-of-Flight Mass Measurements of Short-Lived Projectile Fragments in the ESR

    International Nuclear Information System (INIS)

    Stadlmann, J.; Geissel, H.; Hausmann, M.; Nolden, F.; Radon, T.; Schatz, H.; Scheidenberger, C.; Attallah, F.; Beckert, K.; Bosch, F.; Falch, M.; Franczak, B.; Franzke, B.; Kerscher, Th.; Klepper, O.; Kluge, H.J.; Kozhuharov, C.; Loebner, K.E.G.; Muenzenberg, G.; Novikov, Yu.N.; Steck, M.; Sun, Z.; Suemmerer, K.; Weick, H.; Wollnik, H.

    2000-01-01

    A new method for precise mass measurements of short-lived hot nuclei is presented. These nuclei were produced via projectile fragmentation, separated with the FRS and injected into the storage ring ESR being operated in the isochronous mode. The revolution time of the ions is measured with a time-of-flight detector sensitive to single particles. This new method allows access to exotic nuclei with half-lives in the microsecond region. First results from this novel method obtained with measurements on neutron-deficient fragments of a chromium primary beam with half-lives down to 50 ms are reported. A precision of deltam/m ≤ 5 · 10 -6 has been achieved

  6. Dustbuster: a New Generation Impact-ionization Time-of-flight Mass Spectrometer for in situ Analysis of Cosmic Dust

    Science.gov (United States)

    Austin, D. E.; Ahrens, T. J.; Beauchamp, J. L.

    2000-10-01

    We have developed and tested a small impact-ionization time-of-flight mass spectrometer for analysis of cosmic dust, suitable for use on deep space missions. This mass spectrometer, named Dustbuster, incorporates a large target area and a reflectron, simultaneously optimizing mass resolution, sensitivity, and collection efficiency. Dust particles hitting the 65-cm2 target plate are partially ionized. The resulting ions are accelerated through a modified reflectron that focuses the ions in space and time to produce high-resolution spectra. The instrument, shown below, measures 10 x 10 x 20 cm, has a mass of 500 g, and consumes little power. Laser desorption ionization of metal and mineral samples (embedded in the impact plate) simulates particle impacts for instrument performance tests. Mass resolution in these experiments is near 200, permitting resolution of isotopes. The mass spectrometer can be combined with other instrument components to determine dust particle trajectories and sizes. This project was funded by NASA's Planetary Instrument Definition and Development Program.

  7. Determination of thyroid hormones in mouse tissues by isotope-dilution microflow liquid chromatography-mass spectrometry method

    DEFF Research Database (Denmark)

    De Angelis, Meri; Giesert, Florian; Finan, Brian

    2016-01-01

    ). The nano-UPLC system was interfaced with a quadrupole time-of-flight mass spectrometer (Q-TOF2-MS) using the positive ion mode electrospray ionization. In our analytical method the instrumental calibration curves were constructed from 0 to 100pgμL(-1) and all of them showed good linearity (r(2)>0.99...

  8. SSC collider quadrupole cold mass design and development

    International Nuclear Information System (INIS)

    Farrell, R.A.; Murray, F.S.; Jonas, P.A.; Mischler, W.R.; Blecher, L.

    1992-01-01

    Approximately 1,664 focussing and defocussing superconducting quadrupoles are required for the two SSC collider rings. Collider quadruple magnets (CQMS) must satisfy stringent performance, reliability, life and low cost criteria. Performance requirements include field uniformity, training, quench, tracking, thermal cycling and alignment. The CQM cold mass design presented incorporates lessons IGC and Alsthom Intermagnetics S.A. (AISA), our joint venture with GEC-Alsthom, learned in the design, development and manufacture of 500 MRI, 160 high-field custom and 126 HERA quadruple superconducting magnets. This baseline design reflects careful quantitative assessment of coil winding placement and collar material, evaluation of field uniformity and mechanical performance of the magnet coil ends using 3-D modeling and analysis, and considers tolerance and process variability. Selected CQM cold mass design highlights and a proposed prototype development program that allows incorporation of test feedback into the design to minimize risk are detailed in this paper. This information may be helpful to SSCL in the design and development of prototype CQM'S

  9. Time of flight secondary ion mass spectrometry: A powerful high throughput screening tool

    International Nuclear Information System (INIS)

    Smentkowski, Vincent S.; Ostrowski, Sara G.

    2007-01-01

    Combinatorial materials libraries are becoming more complicated; successful screening of these libraries requires the development of new high throughput screening methodologies. Time of flight secondary ion mass spectrometry (ToF-SIMS) is a surface analytical technique that is able to detect and image all elements (including hydrogen which is problematic for many other analysis instruments) and molecular fragments, with high mass resolution, during a single measurement. Commercial ToF-SIMS instruments can image 500 μm areas by rastering the primary ion beam over the region of interest. In this work, we will show that large area analysis can be performed, in one single measurement, by rastering the sample under the ion beam. We show that an entire 70 mm diameter wafer can be imaged in less than 90 min using ToF-SIMS stage (macro)rastering techniques. ToF-SIMS data sets contain a wealth of information since an entire high mass resolution mass spectrum is saved at each pixel in an ion image. Multivariate statistical analysis (MVSA) tools are being used in the ToF-SIMS community to assist with data interpretation; we will demonstrate that MVSA tools provide details that were not obtained using manual (univariate) analysis

  10. Multi-detection of corticosteroids in sports doping and veterinary control using high-resolution liquid chromatography/time-of-flight mass spectrometry

    NARCIS (Netherlands)

    Touber, M.E.; Engelen, M.C.; Georgakopoulus, C.; Rhijn, van J.A.; Nielen, M.W.F.

    2007-01-01

    A liquid chromatography/time-of-flight mass spectrometry (LC/TOFMS) method was developed using the latest high-resolution LC column technology, the ultra performance liquid chromatography (UPLC (TM)), and electrospray ionization (ESI) in the positive ion mode. Gradient UPLC separation conditions

  11. Use of liquid chromatography hybrid triple-quadrupole mass spectrometry for the detection of emodin metabolites in rat bile and urine.

    Science.gov (United States)

    Wu, Songyan; Zhang, Yaqing; Zhang, Zunjian; Song, Rui

    2017-10-01

    Emodin is the representative form of rhubarb, which is widely used in traditional Chinese medicine for the treatment of purgative, anti-inflammatory, antioxidative and antiviral, etc. Previous reports demonstrated that emodin glucuronide was the major metabolite in plasma. Owing to the extensive conjugation reactions of polyphenols, the aim of this study was to identify the metabolites of emodin in rat bile and urine. Neutral loss and precursor ion scan methods of triple-quadrupole mass spectrometer revealed 13 conjugated metabolites in rat bile and 22 metabolites in rat urine, which included four phase I and 18 phase II metabolites. The major metabolites in rat biosamples were emodin glucuronoconjugates. Moreover, rhein monoglucuronide, chrysophanol monoglucuronide and rhein sulfate were proposed for the first time after oral administration of emodin. Overall, liquid chromatography hybrid triple-quadrupole mass spectrometry analysis leads to the discovery of several novel emodin metabolites in rat bile and urine and underscores that conjugated with glucuronic acid is the main metabolic pathway. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Global study of quadrupole correlation effects

    International Nuclear Information System (INIS)

    Bender, M.; Bertsch, G.F.; Heenen, P.-H.

    2006-01-01

    We discuss the systematics of ground-state quadrupole correlations of binding energies and mean-square charge radii for all even-even nuclei, from 16 O up to the superheavies, for which data are available. To that aim we calculate their correlated J=0 ground state by means of the angular-momentum and particle-number projected generator coordinate method, using the axial mass quadrupole moment as the generator coordinate and self-consistent mean-field states restricted only by axial, parity, and time-reversal symmetries. The calculation is performed within the framework of a nonrelativistic self-consistent mean-field model by use of the same Skyrme interaction SLy4 and to a density-dependent pairing force to generate the mean-field configurations and to mix them. These are the main conclusions of our study: (i) The quadrupole correlation energy varies between a few 100 keV and about 5.5 MeV. It is affected by shell closures, but varies only slightly with mass and asymmetry. (ii) Projection on angular momentum J=0 provides the major part of the energy gain of up to about 4 MeV; all nuclei in the study, including doubly magic ones, gain energy by deformation. (iii) The mixing of projected states with different intrinsic axial deformations adds a few 100 keV up to 1.5 MeV to the correlation energy. (iv) Typically nuclei below mass A≤60 have a larger correlation energy than static deformation energy whereas the heavier deformed nuclei have larger static deformation energy than correlation energy. (v) Inclusion of the quadrupole correlation energy improves the description of mass systematics, particularly around shell closures, and of differential quantities, namely two-nucleon separation energies and two-nucleon gaps. The correlation energy provides an explanation of 'mutually enhanced magicity'. (vi) The correlation energy tends to decrease the shell effect on binding energies around magic numbers, but the magnitude of the suppression is not large enough to explain

  13. Identification of Wheat Varieties Using Matrix-assisted Laser Desorption/Ionisation Time-of-flight Mass Spectrometry and an Artificial Neural network

    DEFF Research Database (Denmark)

    Bloch, Helle Aagaard; Kesmir, Can; Petersen, Marianne Kjerstine

    1999-01-01

    A novel tool for variety identification of wheat (Triticum aestivum L,) has been developed: an artificial neural network (ANN) is used to classify the gliadin fraction analysed by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS). The robustness...

  14. Structural characterization of suppressor lipids by high-resolution mass spectrometry

    DEFF Research Database (Denmark)

    Rovillos, Mary Joy; Pauling, Josch Konstantin; Hannibal-Bach, Hans Kristian

    2016-01-01

    RATIONALE: Suppressor lipids were originally identified in 1993 and reported to encompass six lipid classes that enable Saccharomyces cerevisiae to live without sphingolipids. Structural characterization, using non-mass spectrometric approaches, revealed that these suppressor lipids are very long...... chain fatty acid (VLCFA)-containing glycerophospholipids with polar head groups that are typically incorporated into sphingolipids. Here we report, for the first time, the structural characterization of the yeast suppressor lipids using high-resolution mass spectrometry. METHODS: Suppressor lipids were...... isolated by preparative chromatography and subjected to structural characterization using hybrid quadrupole time-of-flight and ion trap-orbitrap mass spectrometry. RESULTS: Our investigation recapitulates the overall structural features of the suppressor lipids and provides an in-depth characterization...

  15. Time-of-flight mass spectrometry assessment of fluconazole and climbazole UV and UV/H2O2 degradability: Kinetics study and transformation products elucidation.

    Science.gov (United States)

    Castro, Gabriela; Casado, Jorge; Rodríguez, Isaac; Ramil, María; Ferradás, Aida; Cela, Rafael

    2016-01-01

    The efficiency of UV irradiation for the removal of the antimycotic drugs fluconazole (FCZ) and climbazole (CBZ) from water samples is evaluated. Degradation experiments, at laboratory scale, were carried out with spiked aliquots of ultrapure water solutions and treated wastewater samples using low-pressure mercury lamps emitting at 254 nm. Time course of precursor pollutants and identification of arising transformation products (TPs) was performed by injection of different reaction time aliquots in a liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) system. Chemical structures of identified TPs were proposed from their full-product ion spectra, acquired using different collision energies. During UV irradiation experiments, the half-lives (t1/2) of FCZ and CBZ were similar in ultrapure water solutions and wastewater samples; however, the first species was more recalcitrant than the second one. Four TPs were identified in case of FCZ resulting from substitution of fluorine atoms by hydroxyl moieties and intramolecular cyclization with fluorine removal. CBZ interacted with UV radiation through reductive dechlorination, hydroxylation and cleavage of the ether bond; moreover, five additional primary TPs, with the same empirical formula as CBZ, were also noticed. Given the relatively long t1/2 of FCZ under direct photolysis (ca. 42 min), UV irradiation was combined with H2O2 addition to promote formation of reactive hydroxyl radicals. Under such conditions, the degradation rate of FCZ was enhanced significantly and no TPs were detected. These latter conditions allowed also the effective removal of CBZ TPs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Identification of organic sulfur compounds in coal bitumen obtained by different extraction techniques using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometric detection

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Maria Elisabete; Cappelli Fontanive, Fernando; Bastos Caramao, Elina; Alcaraz Zini, Claudia [Universidade Federal do Rio Grande do Sul, Instituto de Quimica, Porto Alegre, RS (Brazil); Oliveira, Jose Vladimir de [URI, Universidade Regional Integrada do Alto Uruguai e das Missoes, Erechim, RS (Brazil)

    2011-11-15

    The determination of organic sulfur compounds (OSC) in coal is of great interest. Technically and operationally these compounds are not easily removed and promote corrosion of equipment. Environmentally, the burning of sulfur compounds leads to the emission of SO{sub x} gases, which are major contributors to acid rain. Health-wise, it is well known that these compounds have mutagenic and carcinogenic properties. Bitumen can be extracted from coal by different techniques, and use of gas chromatography coupled to mass spectrometric detection enables identification of compounds present in coal extracts. The OSC from three different bitumens were tentatively identified by use of three different extraction techniques: accelerated solvent extraction (ASE), ultrasonic extraction (UE), and supercritical-fluid extraction (SFE). Results obtained from one-dimensional gas chromatography (1D GC) coupled to quadrupole mass spectrometric detection (GC-qMS) and from two-dimensional gas chromatography with time-of-flight mass spectrometric detection (GC x GC-TOFMS) were compared. By use of 2D GC, a greater number of OSC were found in ASE bitumen than in SFE and UE bitumens. No OSC were identified with 1D GC-qMS, although some benzothiophenes and dibenzothiophenes were detected by use of EIM and SIM modes. GC x GC-TOFMS applied to investigation of OSC in bitumens resulted in analytical improvement, as more OSC classes and compounds were identified (thiols, sulfides, thiophenes, naphthothiophenes, benzothiophenes, and benzonaphthothiophenes). The roof-tile effect was observed for OSC and PAH in all bitumens. Several co-elutions among analytes and with matrix interferents were solved by use of GC x GC. (orig.)

  17. Determination of organic compounds in nano-particles by laser breakdown and resonant ionization time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Deguchi, Yoshihiro; Tanaka, Nobuyuki

    2005-01-01

    Laser breakdown and resonance ionization time-of-flight mass spectrometry (TOFMS) with a differential mobility analyzer (DMA) was developed and applied to detect compositions and organic substances in nano-particles. The laser breakdown TOFMS method is capable of reaching pptv sensitivity, which is generally much better than the normal LIBS techniques. The system was demonstrated to successfully detect signals in the mass range of 1 to 300 amu for 60 and 140 nm particles in diesel engine exhaust. The detected signals showed that the nano-particles contained both aromatic and chain hydrocarbons

  18. Development of realtime monitoring technology for laser photoreaction product - Development of glow discharge-mass spectrometry (GD-MS) hybrid techniques for trace analysis of refractory elements

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Chun [Kyungnam University, Masan (Korea); Kim, Ha Suck [Seoul National University, Seoul (Korea); Kim, Hyo Jin [Dongduk Women' s University, Seoul (Korea)

    2000-04-01

    This research is focusing on development of hybrid techniques of glow discharge-mass spectrometry for the trace analysis of refractory elements. At first, we developed a glow discharge(GD) ionization cell and its characteristics was investigated. The new GD cell was designed based on direct current hollow cathode glow discharge and it is used for quadrupole mass analyzer and time-of-flight mass analyzer. Currently, GD-quadrupole mass spectrometry is working for the analysis of refractory elements. The experimental results show relatively good for trace analysis. In addition, ion mobile spectrometry using plasma and liquid discharge technique were investigated for the analysis of refractory elements and both techniques need more investigation to deduce the their usefulness. 30 refs., 67 figs., 4 tabs. (Author)

  19. Design and realization of a space-borne reflectron time of flight mass spectrometer: electronics and measuring head

    International Nuclear Information System (INIS)

    Devoto, P.

    2006-03-01

    The purpose of this thesis is the design of the electronics of a time of flight mass spectrometer, the making and the vacuum tests of a prototype which can be put onboard a satellite. A particular effort was necessary to decrease to the maximum the mass and electric consumption of the spectrometer, which led to the development of new circuits. The work completed during this thesis initially concerns the electronics of the measuring equipment which was conceived in a concern for modularity. A complete 'reflectron' type mass spectrometer was then designed, simulated and developed. The built prototype, which uses the developed electronics, was exposed to ion flows of different masses and energies in the CESR vacuum chambers. Its measured performances validate the implemented principles and show that an identical mass spectrometer can be put onboard a satellite with profit, for planetary or solar missions. (author)

  20. Capsule Typing of Haemophilus influenzae by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry.

    Science.gov (United States)

    Månsson, Viktor; Gilsdorf, Janet R; Kahlmeter, Gunnar; Kilian, Mogens; Kroll, J Simon; Riesbeck, Kristian; Resman, Fredrik

    2018-03-01

    Encapsulated Haemophilus influenzae strains belong to type-specific genetic lineages. Reliable capsule typing requires PCR, but a more efficient method would be useful. We evaluated capsule typing by using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Isolates of all capsule types (a-f and nontypeable; n = 258) and isogenic capsule transformants (types a-d) were investigated. Principal component and biomarker analyses of mass spectra showed clustering, and mass peaks correlated with capsule type-specific genetic lineages. We used 31 selected isolates to construct a capsule typing database. Validation with the remaining isolates (n = 227) showed 100% sensitivity and 92.2% specificity for encapsulated strains (a-f; n = 61). Blinded validation of a supplemented database (n = 50) using clinical isolates (n = 126) showed 100% sensitivity and 100% specificity for encapsulated strains (b, e, and f; n = 28). MALDI-TOF mass spectrometry is an accurate method for capsule typing of H. influenzae.

  1. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry: protocol standardization and database expansion for rapid identification of clinically important molds.

    Science.gov (United States)

    Paul, Saikat; Singh, Pankaj; Rudramurthy, Shivaprakash M; Chakrabarti, Arunaloke; Ghosh, Anup K

    2017-12-01

    To standardize the matrix-assisted laser desorption ionization-time of flight mass spectrometry protocols and expansion of existing Bruker Biotyper database for mold identification. Four different sample preparation methods (protocol A, B, C and D) were evaluated. On analyzing each protein extraction method, reliable identification and best log scores were achieved through protocol D. The same protocol was used to identify 153 clinical isolates. Of these 153, 123 (80.3%) were accurately identified by using existing database and remaining 30 (19.7%) were not identified due to unavailability in database. On inclusion of missing main spectrum profile in existing database, all 153 isolates were identified. Matrix-assisted laser desorption ionization-time of flight mass spectrometry can be used for routine identification of clinically important molds.

  2. Development of a broad toxicological screening technique for urine using ultra-performance liquid chromatography and time-of-flight mass spectrometry

    DEFF Research Database (Denmark)

    Lee, Hon Kit; Ho, Chung Shun; Iu, Yan Ping Heidi

    2009-01-01

    Withdrawal of the support for the REMEDi HS drug profiling system has necessitated its replacement within our laboratories with an alternative broad toxicological screening technique. To this end, a novel method, based on ultra-performance liquid chromatography (UPLC) and time-of-flight (TOF) mass...

  3. Desorption electrospray ionisation mass spectrometry: A rapid screening tool for veterinary drug preparations and forensic samples from hormone crime investigations

    NARCIS (Netherlands)

    Nielen, M.W.F.; Hooijerink, H.; Claassen, F.C.; Engelen, M.C.; Beek, van T.A.

    2009-01-01

    Hormone and veterinary drug screening and forensics can benefit from the recent developments in desorption electrospray ionisation (DESI) mass spectrometry (MS). In this work the feasibility of DESI application has been studied. Using a linear ion trap or quadrupole time-of-flight (TOF) MS

  4. A gas monitoring facility with a quadrupole mass spectrometer for the ZEUS transition-radiation chambers

    International Nuclear Information System (INIS)

    Kapp, U.

    1988-07-01

    A gas analysis facility for the ZEUS transition-radiation chambers based on a quadrupole mass spectrometer is described. After a description of the spectrometer, the vacuum system, and the software, some test results are presented. (HSI)

  5. Sequencing of Isotope-Labeled Small RNA Using Femtosecond Laser Ablation Time-of-Flight Mass Spectrometry

    Science.gov (United States)

    Kurata-Nishimura, Mizuki; Ando, Yoshinari; Kobayashi, Tohru; Matsuo, Yukari; Suzuki, Harukazu; Hayashizaki, Yoshihide; Kawai, Jun

    2010-04-01

    A novel method for the analysis of sequences of small RNAs using nucleotide triphosphates labeled with stable isotopes has been developed using time-of-flight mass spectroscopy combined with femtosecond laser ablation (fsLA-TOF-MS). Small RNAs synthesized with nucleotides enriched in 13C and 15N were efficiently atomized and ionized by single-shot fsLA and the isotope ratios 13C/12C and 15N/14N were evaluated using the TOF-MS method. By comparing the isotope ratios among four different configurations, the number of nucleotide contents of the control RNA sample were successfully reproduced.

  6. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: a new possibility for the identification and typing of anaerobic bacteria.

    Science.gov (United States)

    Nagy, Elizabeth

    2014-01-01

    Anaerobic bacteria predominate in the normal flora of humans and are important, often life-threatening pathogens in mixed infections originating from the indigenous microbiota. The isolation and identification of anaerobes by phenotypic and DNA-based molecular methods at a species level is time-consuming and laborious. Following the successful adaptation of the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the routine laboratory identification of bacteria, the extensive development of a database has been initiated to use this method for the identification of anaerobic bacteria. Not only frequently isolated anaerobic species, but also newly recognized and taxonomically rearranged genera and species can be identified using direct smear samples or whole-cell protein extraction, and even phylogenetically closely related species can be identified correctly by means of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Typing of anaerobic bacteria on a subspecies level, determination of antibiotic resistance and direct identification of blood culture isolates will revolutionize anaerobe bacteriology in the near future.

  7. Direct mass measurements in the light neutron-rich region using a combined energy and time-of-flight technique

    International Nuclear Information System (INIS)

    Pillai, C.; Swenson, L.W.; Vieira, D.J.; Butler, G.W.; Wouters, J.M.; Rokni, S.H.; Vaziri, K.; Remsberg, L.P.

    1985-01-01

    This experiment has demonstrated that direct mass measurements can be performed (albeit of low precision in this first attempt) using the M proportional to ET 2 method. This technique has the advantage that many particle-bound nuclei, produced in fragmentation reactions can be measured simultaneously, independent of their N or Z. The main disadvantage of this approach is that both energy and time-of-flight must be measured precisely on an absolute scale. Although some mass walk with N and Z was observed in this experiment, these uncertainties were largely removed by extrapolating the smooth dependence observed for known nuclei which lie closer to the valley of β-stability. Mass measurements for several neutron-rich light nuclei ranging from 17 C to 26 Ne have been performed. In all cases these measurements agree with the latest mass compilation of Wapstra and Audi. The masses of 20 N and 24 F have been determined for the first time

  8. Analysis of Marine Aerosol Polysaccharides by Pyrolysis Time-of-Flight Mass Spectrometry

    Science.gov (United States)

    Lawler, M. J.; Grieman, M. M.; Sengur, I.; Saltzman, E. S.

    2017-12-01

    The relationship between surface ocean biological productivity and marine cloud formation and properties has been explored for decades, but the impacts of marine biogenic emissions on cloudiness and climate remain highly uncertain. This is in part due to the challenge of directly linking biogenic materials in the surface ocean with cloud-forming aerosol. It has been shown that polysaccharide gel-forming materials, also known as transparent exopolymers, may be mechanically ejected from the sea surface during air bubble bursting (Leck and Bigg, 2005). Existing analysis methods for such aerosols require considerable sample mass and sample preparation. As part of the multi-year seasonal North Atlantic Aerosols and Marine Ecosystems Study (NAAMES), ambient submicron marine aerosol was collected in November 2015 and May 2016 from the R/V Atlantis at using a Particle into Liquid Sampler (PILS). These samples of roughly 15 minute time resolution were frozen and returned to UC Irvine for analysis. A new technique has been developed to attempt to quantify polysaccharide material in these ambient samples. A small subsample (1- 5 µL) is taken from the PILS vial samples and allowed to dry on a Pt ribbon filament in the chemical ionization source region of a time-of-flight mass spectrometer. The sample then undergoes a two-step heating process, in which volatilizable molecules are first desorbed and then non-volatilizable large molecules such as polysaccharides are pyrolyzed. These desorbed molecules and decomposition products are ionized using either O2- or H3O+ reagent ion and are directly sampled into the mass spectrometer. The resulting spectra can then be compared to standards of known polysaccharide materials for quantification and potentially structural and/or compositional information.

  9. First spatial separation of a heavy ion isomeric beam with a multiple-reflection time-of-flight mass spectrometer

    Science.gov (United States)

    Dickel, T.; Plaß, W. R.; Ayet San Andres, S.; Ebert, J.; Geissel, H.; Haettner, E.; Hornung, C.; Miskun, I.; Pietri, S.; Purushothaman, S.; Reiter, M. P.; Rink, A.-K.; Scheidenberger, C.; Weick, H.; Dendooven, P.; Diwisch, M.; Greiner, F.; Heiße, F.; Knöbel, R.; Lippert, W.; Moore, I. D.; Pohjalainen, I.; Prochazka, A.; Ranjan, M.; Takechi, M.; Winfield, J. S.; Xu, X.

    2015-05-01

    211Po ions in the ground and isomeric states were produced via 238U projectile fragmentation at 1000 MeV/u. The 211Po ions were spatially separated in flight from the primary beam and other reaction products by the fragment separator FRS. The ions were energy-bunched, slowed-down and thermalized in a gas-filled cryogenic stopping cell (CSC). They were then extracted from the CSC and injected into a high-resolution multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS). The excitation energy of the isomer and, for the first time, the isomeric-to-ground state ratio were determined from the measured mass spectrum. In the subsequent experimental step, the isomers were spatially separated from the ions in the ground state by an ion deflector and finally collected with a silicon detector for decay spectroscopy. This pioneering experimental result opens up unique perspectives for isomer-resolved studies. With this versatile experimental method new isomers with half-lives longer than a few milliseconds can be discovered and their decay properties can be measured with highest sensitivity and selectivity. These experiments can be extended to studies with isomeric beams in nuclear reactions.

  10. One Hundred False-Positive Amphetamine Specimens Characterized by Liquid Chromatography Time-of-Flight Mass Spectrometry.

    Science.gov (United States)

    Marin, Stephanie J; Doyle, Kelly; Chang, Annie; Concheiro-Guisan, Marta; Huestis, Marilyn A; Johnson-Davis, Kamisha L

    2016-01-01

    Some amphetamine (AMP) and ecstacy (MDMA) urine immunoassay (IA) kits are prone to false-positive results due to poor specificity of the antibody. We employed two techniques, high-resolution mass spectrometry (HRMS) and an in silico structure search, to identify compounds likely to cause false-positive results. Hundred false-positive IA specimens for AMP and/or MDMA were analyzed by an Agilent 6230 time-of-flight (TOF) mass spectrometer. Separately, SciFinder (Chemical Abstracts) was used as an in silico structure search to generate a library of compounds that are known to cross-react with AMP/MDMA IAs. Chemical formulas and exact masses of 145 structures were then compared against masses identified by TOF. Compounds known to have cross-reactivity with the IAs were identified in the structure-based search. The chemical formulas and exact masses of 145 structures (of 20 chemical formulas) were compared against masses identified by TOF. Urine analysis by HRMS correlates accurate mass with chemical formulae, but provides little information regarding compound structure. Structural data of targeted antigens can be utilized to correlate HRMS-derived chemical formulas with structural analogs. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. An energy-filtering device coupled to a quadrupole mass spectrometer for soft-landing molecular ions on surfaces with controlled energy

    Energy Technology Data Exchange (ETDEWEB)

    Bodin, A.; Laloo, R.; Abeilhou, P.; Guiraud, L.; Gauthier, S.; Martrou, D. [Nanosciences Group, CEMES, CNRS UPR 8011 and University Toulouse III - Paul Sabatier, 29 rue Jeanne Marvig, BP94347, F-31055 Toulouse Cedex 4 (France)

    2013-09-15

    We have developed an energy-filtering device coupled to a quadrupole mass spectrometer to deposit ionized molecules on surfaces with controlled energy in ultra high vacuum environment. Extensive numerical simulations as well as direct measurements show that the ion beam flying out of a quadrupole exhibits a high-energy tail decreasing slowly up to several hundred eV. This energy distribution renders impossible any direct soft-landing deposition of molecular ions. To remove this high-energy tail by energy filtering, a 127° electrostatic sector and a specific triplet lenses were designed and added after the last quadrupole of a triple quadrupole mass spectrometer. The results obtained with this energy-filtering device show clearly the elimination of the high-energy tail. The ion beam that impinges on the sample surface satisfies now the soft-landing criterion for molecular ions, opening new research opportunities in the numerous scientific domains involving charges adsorbed on insulating surfaces.

  12. Compact Two-step Laser Time-of-Flight Mass Spectrometer for in Situ Analyses of Aromatic Organics on Planetary Missions

    Science.gov (United States)

    Getty, Stephanie; Brickerhoff, William; Cornish, Timothy; Ecelberger, Scott; Floyd, Melissa

    2012-01-01

    RATIONALE A miniature time-of-flight mass spectrometer has been adapted to demonstrate two-step laser desorption-ionization (LOI) in a compact instrument package for enhanced organics detection. Two-step LDI decouples the desorption and ionization processes, relative to traditional laser ionization-desorption, in order to produce low-fragmentation conditions for complex organic analytes. Tuning UV ionization laser energy allowed control ofthe degree of fragmentation, which may enable better identification of constituent species. METHODS A reflectron time-of-flight mass spectrometer prototype measuring 20 cm in length was adapted to a two-laser configuration, with IR (1064 nm) desorption followed by UV (266 nm) postionization. A relatively low ion extraction voltage of 5 kV was applied at the sample inlet. Instrument capabilities and performance were demonstrated with analysis of a model polycyclic aromatic hydrocarbon, representing a class of compounds important to the fields of Earth and planetary science. RESULTS L2MS analysis of a model PAH standard, pyrene, has been demonstrated, including parent mass identification and the onset o(tunable fragmentation as a function of ionizing laser energy. Mass resolution m/llm = 380 at full width at half-maximum was achieved which is notable for gas-phase ionization of desorbed neutrals in a highly-compact mass analyzer. CONCLUSIONS Achieving two-step laser mass spectrometry (L2MS) in a highly-miniature instrument enables a powerful approach to the detection and characterization of aromatic organics in remote terrestrial and planetary applications. Tunable detection of parent and fragment ions with high mass resolution, diagnostic of molecular structure, is possible on such a compact L2MS instrument. Selectivity of L2MS against low-mass inorganic salt interferences is a key advantage when working with unprocessed, natural samples, and a mechanism for the observed selectivity is presented.

  13. Laser desorption and time-of-flight mass spectrometry. Fundamentals .Applications; Desorption laser et spectrometrie de masse par temps de vol. Aspects fondamentaux. Applications

    Energy Technology Data Exchange (ETDEWEB)

    Chaurand, P

    1994-11-01

    Time-of-flight mass spectrometry is a very powerful technique for the analysis of heavy molecular ions (100 000 u and more). The ejection in the gas phase and the ionization of these molecules is now possible through the MALDI technique (Matrix Assisted Laser Desorption Ionization). This technique consists in mixing the heavy molecules to be analysed with a organic matrix which absorbs at the wavelength of the laser. The necessary irradiance are of the order of 10{sup 6} W/cm{sup 2}. In these conditions we have shown that the mass resolutions are optimum and that the relative mass accuracies are of the order of 10{sup -4}. We have also demonstrated that the emission angle of the molecular ions in MALDI depends on the incident angle of the laser light. During the desorption process, the molecular ions are emitted in the opposite direction of the incident laser light. This effect is particularly important for the design of the accelerating stage of the time-of-flight spectrometers. Problems relative to the detection of these heavy molecular ions have been studied in details between 0.5 10{sup 4} m/s and 10{sup 5} m/s. The velocity threshold of the electronic emission is lower than the value of 0.5 10{sup 4} m/s. The relation between the electronic emission and the projectile velocity is complex. Finally, examples on mass identification of C{sub 60} molecules and derivated C{sub 60} are presented. Desorption methods are compared. (author). 32 refs., 34 figs.

  14. Identification of barley and rye varieties using matrix- assisted laser desorption/ionisation time-of-flight mass spectrometry with neural networks

    DEFF Research Database (Denmark)

    Bloch, H.A.; Petersen, Marianne Kjerstine; Sperotto, Maria Maddalena

    2001-01-01

    developed, which combines analysis of alcohol-soluble wheat proteins (gliadins) using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry with neural networks. Here we have applied the same method for the identification of both barley (Hordeum vulgare L.) and rye (Secale cereale L.......) varieties. For barley, 95% of the mass spectra were correctly classified. This is an encouraging result, since in earlier experiments only a grouping into subsets of varieties was possible. However, the method was not useful in the classification of rye, due to the strong similarity between mass spectra...

  15. Analysis of carbohydrates in Fusarium verticillioides using size-exclusion HPLC – DRI and direct analysis in real time ionization – time-of-flightmass spectrometry (DART-MS)

    Science.gov (United States)

    Direct analysis in real time ionization – time-of-flightmass spectrometry (DART-MS) and size-exclusion HPLC – DRI are used, respectively, to qualitatively and quantitatively determine the carbohydrates extracted from the corn rot fungus Fusarium verticillioides. In situ permethylation in the DART...

  16. Comprehensive Two-dimensional Liquid Chromatography coupled to High Resolution Time of Flight Mass Spectrometry for Chemical Characterization of Sewage Treatment Plant Effluents

    NARCIS (Netherlands)

    Ouyang, X.; Leonards, P.E.G.; Legler, J.; van der Oost, R.; de Boer, J.; Lamoree, M.H.

    2015-01-01

    For the first time a comprehensive two-dimensional liquid chromatography (LC. ×. LC) system coupled with a high resolution time-of-flight mass spectrometer (HR-ToF MS) was developed and applied for analysis of emerging toxicants in wastewater effluent. The system was optimized and validated using

  17. Regiospecific analysis of neutral ether lipids by liquid chromatography/electrospray ionization/single quadrupole mass spectrometry: validation with synthetic compounds

    DEFF Research Database (Denmark)

    Hartvigsen, Karsten; Ravandi, A.; Bukhave, Klaus

    2001-01-01

    A reversed-phase high-performance liquid chromatography (HPLC) method with on-line electrospray ionization/collision-induced dissociation/mass spectrometry (ESI/CID/MS) is presented for the regiospecific analysis of synthetic reference compounds of neutral ether lipids. The reference compounds were...... characterized by chromatographic retention times, full mass spectra, and fragmentation patterns as an aid to clarify the regiospecificity of ether lipids from natural sources. The results clearly show that single quadrupole mass spectroscopic analysis may elucidate the regiospecific structure of neutral ether...... + H - H2O](+), whereas the reverse situation characterized the sn-3 species. Furthermore, corresponding sn-2 and sn-3 species were separated by the chromatographic system. However, loss of water was promoted as fatty acid unsaturation was raised, which may complicate interpretation of the mass spectra...

  18. Measurement of time dependent fields in high gradient superconducting quadrupoles for the Tevatron

    International Nuclear Information System (INIS)

    Lamm, M.J.; Coulter, K.; Gourlay, S.; Jaffery, T.S.

    1990-10-01

    Magnetic field measurements have been performed on prototype and production magnets from two high gradient superconducting quadrupoles designs. One design is a double shell quadrupole with 36 strand Rutherford cable. The other design is a single shell quadrupole with 5 individually monolithic strands connected in series. These magnets have similar bore diameters and cable dimensions. However, there are significant differences between the two designs, as well as differences between prototype and production magnets within each design, with regard to Cu to superconductor ratio, filament diameter and filament spacing to strand diameter. The time dependence of fixed currents of the measured magnetic fields is discussed. 9 refs., 6 figs., 1 tab

  19. Determination of the Isotope Ratio for Metal Samples Using a Laser Ablation/Ionization Time-of-flight Mass Spectrometry

    International Nuclear Information System (INIS)

    Song, Kyu Seok; Cha, Hyung Ki; Kim, Duk Hyeon; Min, Ki Hyun

    2004-01-01

    The laser ablation/ionization time-of-flight mass spectrometry is applied to the isotopic analysis of solid samples using a home-made instrument. The technique is convenient for solid sample analysis due to the onestep process of vaporization and ionization of the samples. The analyzed samples were lead, cadmium, molybdenum, and ytterbium. To optimize the analytical conditions of the technique, several parameters, such as laser energy, laser wavelength, size of the laser beam on the samples surface, and high voltages applied on the ion source electrodes were varied. Low energy of laser light was necessary to obtain the optimal mass resolution of spectra. The 532 nm light generated mass spectra with the higher signal-to-noise ratio compared with the 355 nm light. The best mass resolution obtained in the present study is ∼1,500 for the ytterbium

  20. X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry characterization of aging effects on the mineral fibers treated with aminopropylsilane and quaternary ammonium compounds

    DEFF Research Database (Denmark)

    Zafar, Ashar; Schjødt-Thomsen, Jan; Sodhi, R.

    2012-01-01

    (PCA) was applied to the time-of-flight secondary ion mass spectrometry spectra, and an increase in the intensities of APS characteristic peaks were observed after aging. The observed increase in the signals of APS originates from underlying silanized fibers after the removal of the surfactant......X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry were used to investigate the aging effects on the aminopropylsilane (APS) and quaternary ammonium surfactant-treated mineral fibers. APS-coated mineral fiber samples were treated with cationic surfactant...

  1. A SIMPLE AND RAPID MATRIX-ASSISTED LASER DESORPTION/IONIZATION TIME OF FLIGHT MASS SPECTROMETRY METHOD TO SCREEN FISH PLASMA SAMPLES FOR ESTROGEN-RESPONSIVE BIOMARKERS

    Science.gov (United States)

    In this study, we describe and evaluate the performance of a simple and rapid mass spectral method for screening fish plasma for estrogen-responsive biomarkers using matrix assisted laster desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) couopled with a short...

  2. Quantitative Determination of Bioactive Constituents in Noni Juice by High-performance Liquid Chromatography with Electrospray Ionization Triple Quadrupole Mass Spectrometry.

    Science.gov (United States)

    Yan, Yongqiu; Lu, Yu; Jiang, Shiping; Jiang, Yu; Tong, Yingpeng; Zuo, Limin; Yang, Jun; Gong, Feng; Zhang, Ling; Wang, Ping

    2018-01-01

    Noni juice has been extensively used as folk medicine for the treatment of arthritis, infections, analgesic, colds, cancers, and diabetes by Polynesians for many years. Due to the lack of standard scientific evaluation methods, various kinds of commercial Noni juice with different quality and price were available on the market. To establish a sensitive, reliable, and accurate high-performance liquid chromatography with electrospray ionization triple quadrupole mass spectrometry (HPLC-ESI-MS/MS) method for separation, identification, and simultaneous quantitative analysis of bioactive constituents in Noni juice. The analytes and eight batches of commercially available samples from different origins were separated and analyzed by the HPLC-ESI-MS/MS method on an Agilent ZORBAX SB-C 18 (150 mm × 4.6 mm i.d., 5 μm) column using a gradient elution of acetonitrile-methanol-0.05% glacial acetic acid in water (v/v) at a constant flow rate of 0.5 mL/min. Seven components were identification and all of the assay parameters were within the required limits. Components were within the correlation coefficient values ( R 2 ≥ 0.9993) at the concentration ranges tested. The precision of the assay method was high-performance liquid chromatography with electrospray ionization triple quadrupole mass spectrometryThe presented method was successfully applied to the quality control of eight batches of commercially available samples of Noni juiceThis method is simple, sensitive, reliable, accurate, and efficient method with strong specificity, good precision, and high recovery rate and provides a reliable basis for quality control of Noni juice. Abbreviations used: HPLC-ESI-MS/MS: High-performance liquid chromatography with electrospray ionization triple quadrupole mass spectrometry, LOD: Limit of detection, LOQ: Limit of quantitation, S/N: Signal-to-noise ratio, RSD: Relative standard deviations, DP: Declustering potential, CE: Collision energy, MRM: Multiple reaction monitoring, RT

  3. The ARGUS time-of-flight system

    International Nuclear Information System (INIS)

    Heller, R.; Klinger, T.; Salomon, R.; Schubert, K.R.; Stiewe, J.; Waldi, R.; Weseler, S.

    1985-01-01

    The time-of-flight system of the ARGUS detector at the DORIS e + e - storage ring consists of 64 barrel scintillation counters covering 75% of 4π, and 2x48 end cap counters, covering 17% of 4π. The barrel counters are viewed by two phototubes each, while the end cap counters have one tube only. The time-of-flight system serves as a part of the fast trigger and identifies charged particles. The time resolution achieved during the first year of ARGUS operation is 210 ps for Bhabhas (which are used for the off-line monitoring of the system), and 220 ps for hadrons, both in barrel and end cap counters. This converts into a three standard deviation mass separation up to 700 MeV/c between pions and kaons and 1200 MeV/c between kaons and protons. Electrons can be separated from heavier particles up to 230 MeV/c. (orig.)

  4. Comprehensive two-dimensional liquid chromatography–time-of-flight mass spectrometry in the analysis of acidic compounds in atmospheric aerosols

    Czech Academy of Sciences Publication Activity Database

    Pól, Jaroslav; Hohnová, B.; Jussila, M.; Hyötyläinen, T.

    2006-01-01

    Roč. 1130, č. 1 (2006), s. 64-71 ISSN 0021-9673. [International Symposium on Hyphenated Techniques in Chromatography and Hyphenated Chromatographic Analyzers /9./. York, 08.02.2006-10.02.2006] Institutional research plan: CEZ:AV0Z40310501 Keywords : comprehensive two-dimensional liquid chromatography * time-of-flight mass spectrometry * atmospheric aerosol analysis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.554, year: 2006

  5. Inorganic trace analysis by laser ionization mass spectrometry

    International Nuclear Information System (INIS)

    Becker, S.; Dietze, H.J.

    1991-01-01

    Among the different spectrometric techniques for trace analysis Laser Ionization Mass Spectrometry (LIMS) is well established as a trace analytic method with a wide coverage. In the LIMS the sample material is evaporated and ionized by means of a focused pulsed laser beam in a laser microplasma, which is formed in the spot area of the irradiated sample. All chemical elements in the sample materials are evaporated and ionized in the laser plasma. The formed ions are separated according to mass and energy by a time-of-flight, quadrupole or double focusing mass spectrometer. In this review the characteristics and analytical features, some recent developments, and applications of laser ionization mass spectrometry in inorganic trace analysis are described. (orig.)

  6. Laser ionization mass spectrometry in inorganic trace analysis

    International Nuclear Information System (INIS)

    Becker, J.S.; Dietze, H.J.

    1992-01-01

    Among the different spectrometric techniques for trace analysis Laser Ionization Mass Spectrometry (LIMS) is well established as a trace analytical method. With the LIMS technique the sample material is evaporated and ionized by means of a focused pulsed laser in a laser microplasma, which is formed in the spot area of the irradiated sample. All chemical elements in the sample materials are evaporated and ionized in the laser plasma. The ions formed are separated according to their mass and energy by a time-of-flight, quadrupole or double focusing mass spectrometer. In this review the characteristics and analytical features, some recent developments and applications of laser ionization mass spectrometry in inorganic trace analysis are described. (orig.)

  7. Direct Laser Ablation and Ionization of Solids for Chemical Analysis by Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Holt, J K; Nelson, E J; Klunder, G L [Forensic Science Center, Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States)

    2007-04-15

    A laser ablation/ionization mass spectrometer system is described for the direct chemical analysis of solids. An Nd:YAG laser is used for ablation and ionization of the sample in a quadrupole ion trap operated in an ion-storage (IS) mode that is coupled with a reflectron time-of-flight mass spectrometer (TOF-MS). Single pulse experiments have demonstrated simultaneous detection of up to 14 elements present in glasses in the ppm range. However, detection of the components has produced non-stoichiometric results due to difference in ionization potentials and fractionation effects. Time-of-flight secondary ionization mass spectrometry (TOF-SIMS) was used to spatially map elemental species on the surface and provide further evidence of fractionation effects. Resolution (m/{delta}m) of 1500 and detection limits of approximately 10 pg have been achieved with a single laser pulse. The system configuration and related operating principles for accurately measuring low concentrations of isotopes are described.

  8. Simultaneous determination of iridoid glycosides, phenethylalcohol glycosides and furfural derivatives in Rehmanniae Radix by high performance liquid chromatography coupled with triple-quadrupole mass spectrometry

    DEFF Research Database (Denmark)

    Xu, Jun; Wu, Jie; Zhu, Ling-Ying

    2012-01-01

    In this study, a sensitive and selective method for simultaneously quantifying eight major components (four iridoid glycosides, three phenethylalcohol glycosides and one furfural derivative) of Rehmanniae Radix by high performance liquid chromatography coupled with triple-quadrupole mass spectrom......In this study, a sensitive and selective method for simultaneously quantifying eight major components (four iridoid glycosides, three phenethylalcohol glycosides and one furfural derivative) of Rehmanniae Radix by high performance liquid chromatography coupled with triple-quadrupole mass...

  9. Hydrogen atom scrambling in selectively labeled anionic peptides upon collisional activation by MALDI tandem time-of-flight mass spectrometry

    DEFF Research Database (Denmark)

    Bache, Nicolai; Rand, Kasper Dyrberg; Roepstorff, Peter

    2008-01-01

    have now measured the level of hydrogen scrambling in a deprotonated, selectively labeled peptide using MALDI tandem time-of-flight mass spectrometry. Our results conclusively show that hydrogen scrambling is prevalent in the deprotonated peptide upon collisional activation. The amide hydrogens ((1)H....../(2)H) have migrated extensively in the anionic peptide, thereby erasing the original regioselective deuteration pattern obtained in solution....

  10. A new time of flight mass spectrometer for absolute dissociative electron attachment cross-section measurements in gas phase

    Science.gov (United States)

    Chakraborty, Dipayan; Nag, Pamir; Nandi, Dhananjay

    2018-02-01

    A new time of flight mass spectrometer (TOFMS) has been developed to study the absolute dissociative electron attachment (DEA) cross section using a relative flow technique of a wide variety of molecules in gas phase, ranging from simple diatomic to complex biomolecules. Unlike the Wiley-McLaren type TOFMS, here the total ion collection condition has been achieved without compromising the mass resolution by introducing a field free drift region after the lensing arrangement. The field free interaction region is provided for low energy electron molecule collision studies. The spectrometer can be used to study a wide range of masses (H- ion to few hundreds atomic mass unit). The mass resolution capability of the spectrometer has been checked experimentally by measuring the mass spectra of fragment anions arising from DEA to methanol. Overall performance of the spectrometer has been tested by measuring the absolute DEA cross section of the ground state SO2 molecule, and the results are satisfactory.

  11. The ANTARES recoil time-of-flight spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J.W.; Russell, G.J. [New South Wales Univ., Kensington, NSW (Australia); Cohen, D.D.; Dytlewski, N. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    The Australian National Tandem for Applied Research (ANTARES), is a 8MV FN tandem particle accelerator at the Australian Nuclear Science and Technology Organisation. Research on the accelerator is divided between two groups, Accelerator Mass Spectrometry (AMS) and lon Beam Analysis (IBA). The IBA group carries out a range of research projects from nuclear physics to materials characterisation. The major IBA project on the accelerator is a recoil time-of-flight spectrometer which consists of two electrostatic time pulse generators and an ion-implanted surface barrier detector. The spectrometer is ideally suited to the profiling of layered multi-element materials, and has been used to characterise materials such as metal-germanides, optoelectronics, superconductors and catalytic converters. This paper will describe the time-of-flight system as well as some recent materials characterisation results. 1 refs., 3 figs.

  12. The ANTARES recoil time-of-flight spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J W; Russell, G J [New South Wales Univ., Kensington, NSW (Australia); Cohen, D D; Dytlewski, N [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1997-12-31

    The Australian National Tandem for Applied Research (ANTARES), is a 8MV FN tandem particle accelerator at the Australian Nuclear Science and Technology Organisation. Research on the accelerator is divided between two groups, Accelerator Mass Spectrometry (AMS) and lon Beam Analysis (IBA). The IBA group carries out a range of research projects from nuclear physics to materials characterisation. The major IBA project on the accelerator is a recoil time-of-flight spectrometer which consists of two electrostatic time pulse generators and an ion-implanted surface barrier detector. The spectrometer is ideally suited to the profiling of layered multi-element materials, and has been used to characterise materials such as metal-germanides, optoelectronics, superconductors and catalytic converters. This paper will describe the time-of-flight system as well as some recent materials characterisation results. 1 refs., 3 figs.

  13. Chemical discrimination of lubricant marketing types using direct analysis in real time time-of-flight mass spectrometry.

    Science.gov (United States)

    Maric, Mark; Harvey, Lauren; Tomcsak, Maren; Solano, Angelique; Bridge, Candice

    2017-06-30

    In comparison to other violent crimes, sexual assaults suffer from very low prosecution and conviction rates especially in the absence of DNA evidence. As a result, the forensic community needs to utilize other forms of trace contact evidence, like lubricant evidence, in order to provide a link between the victim and the assailant. In this study, 90 personal bottled and condom lubricants from the three main marketing types, silicone-based, water-based and condoms, were characterized by direct analysis in real time time of flight mass spectrometry (DART-TOFMS). The instrumental data was analyzed by multivariate statistics including hierarchal cluster analysis, principal component analysis, and linear discriminant analysis. By interpreting the mass spectral data with multivariate statistics, 12 discrete groupings were identified, indicating inherent chemical diversity not only between but within the three main marketing groups. A number of unique chemical markers, both major and minor, were identified, other than the three main chemical components (i.e. PEG, PDMS and nonoxynol-9) currently used for lubricant classification. The data was validated by a stratified 20% withheld cross-validation which demonstrated that there was minimal overlap between the groupings. Based on the groupings identified and unique features of each group, a highly discriminating statistical model was then developed that aims to provide the foundation for the development of a forensic lubricant database that may eventually be applied to casework. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Comprehensive Analysis of Tiamulin Metabolites in Various Species of Farm Animals Using Ultra-High-Performance Liquid Chromatography Coupled to Quadrupole/Time-of-Flight.

    Science.gov (United States)

    Sun, Feifei; Yang, Shupeng; Zhang, Huiyan; Zhou, Jinhui; Li, Yi; Zhang, Jinzhen; Jin, Yue; Wang, Zhanhui; Li, Yanshen; Shen, Jianzhong; Zhang, Suxia; Cao, Xingyuan

    2017-01-11

    Tiamulin is an antimicrobial widely used in veterinary practice to treat dysentery and pneumonia in pigs and poultry. However, knowledge about the metabolism of tiamulin is very limited in farm animals. To better understand the biotransformation of tiamulin, in the present study, in vitro and in vivo metabolites of tiamulin in rats, chickens, swine, goats, and cows were identified and elucidated using ultra-high performance liquid chromatography coupled to quadrupole/time-of-flight. As a result, a total of 26 metabolites of tiamulin, identified in vitro and in vivo, and majority of metabolites were revealed for the first time. In all farm animals, tiamulin undergoes phase I metabolic routes of hydroxylation in the mutilin part (the ring system), S-oxidation and N-deethylation on side chain, and no phase II metabolite was detected. Among these, 2β- and 8α-hydroxylation and N-deethylation were the main metabolic pathways of tiamulin in farm animals. In addition, we have put forward that 8a-hydroxy-tiamulin and 8a-hydroxy-N-deethyl-tiamulin could be hydroxylated into 8a-hydroxy-mutilin, the marker residue of tiamulin in swine. Furthermore, a significant interspecies difference was observed on the metabolism of tiamulin among various farm animals. The possible marker residues for tiamulin in swine were 8α-hydroxy-tiamulin, N-deethyl-tiamulin, and 8α-hydroxy-N-deethyl-tiamulin, which were consistent with the hypothesis proposed by the European Agency for the Evaluation of Medicinal Products. However, results in present study indicated that three metabolites (2β-hydroxy-tiamulin, N-deethyl-tiamulin, and 2β-hydroxy-N-deethyl-tiamulin) of tiamulin in chickens had larger yields, which implied that 2β-hydroxy-mutilin or N-deethyl-tiamulin was more likely to be regarded as the potential marker residue of tiamulin in chickens.

  15. High mass resolution, high angular acceptance time-of-flight mass spectroscopy for planetary missions under the Planetary Instrument Definition and Development Program (PIDDP)

    Science.gov (United States)

    Young, David T.

    1991-01-01

    This final report covers three years and several phases of work in which instrumentation for the Planetary Instrument Definition and Development Program (PIDDP) were successfully developed. There were two main thrusts to this research: (1) to develop and test methods for electrostatically scanning detector field-of-views, and (2) to improve the mass resolution of plasma mass spectrometers to M/delta M approximately 25, their field-of-view (FOV) to 360 degrees, and their E-range to cover approximately 1 eV to 50 keV. Prototypes of two different approaches to electrostatic scanning were built and tested. The Isochronous time-of-flight (TOF) and the linear electric field 3D TOF devices were examined.

  16. Miniature mass analyzer

    CERN Document Server

    Cuna, C; Lupsa, N; Cuna, S; Tuzson, B

    2003-01-01

    The paper presents the concept of different mass analyzers that were specifically designed as small dimension instruments able to detect with great sensitivity and accuracy the main environmental pollutants. The mass spectrometers are very suited instrument for chemical and isotopic analysis, needed in environmental surveillance. Usually, this is done by sampling the soil, air or water followed by laboratory analysis. To avoid drawbacks caused by sample alteration during the sampling process and transport, the 'in situ' analysis is preferred. Theoretically, any type of mass analyzer can be miniaturized, but some are more appropriate than others. Quadrupole mass filter and trap, magnetic sector, time-of-flight and ion cyclotron mass analyzers can be successfully shrunk, for each of them some performances being sacrificed but we must know which parameters are necessary to be kept unchanged. To satisfy the miniaturization criteria of the analyzer, it is necessary to use asymmetrical geometries, with ion beam obl...

  17. Identification and classification of components in flash pyrolysis oil and hydrodeoxygenated oils by two-dimensional gas chromatography and time-of-flight mass spectrometry

    NARCIS (Netherlands)

    Marsman, J. H.; Wildschut, J.; Evers, P.; Heeres, H. J.; Koning de, S.

    2008-01-01

    Hydrodeoxygenated pyrolysis oils (HDO) are considered promising renewable liquid energy carriers. To gain insights in the various reaction pathways taking place during the hydrodeoxygenation reaction of pyrolysis oil, two-dimensional gas chromatography with time-of-flight mass spectrometric analyses

  18. Precision measurements with the multi-reflection time-of-flight mass spectrometer of ISOLTRAP at ISOLDE/CERN

    Energy Technology Data Exchange (ETDEWEB)

    Atanasov, Dinko; Ascher, Pauline; Borgmann, Christopher; Boehm, Christine; Eliseev, Sergey; Eronen, Tommi; George, Sebastian; Kisler, Dmitry; Naimi, Sarah [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Beck, Dietrich; Herfurth, Frank; Litvinov, Yuri; Minaya Ramirez, Enrique; Neidherr, Dennis [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt (Germany); Breitenfeldt, Martin [Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200d - bus 2418, 3001 Heverlee (Belgium); Cakirli, Burcu [University of Istanbul, Department of Physics, 34134 Istanbul (Turkey); Cocolios, Thomas Elias [University of Manchester, Manchester (United Kingdom); Herlert, Alexander Josef [FAIR GmbH, Planckstr. 1, D-64291 Darmstadt (Germany); Kowalska, Magdalena [CERN, Geneva 23, 1211 Geneva (Switzerland); Kreim, Susanne [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); CERN, Geneva 23, 1211 Geneva (Switzerland); Lunney, David; Manea, Vladimir [CSNSM-IN2P3-CNRS, 91405 Orsay Campus, Bat. 104, 108 (France); Rosenbusch, Marco; Schweikhard, Lutz; Wienholtz, Frank; Wolf, Robert [Ernst-Moritz-Arndt-Universitaet, Institut fuer Physik, Felix-Hausdorff-Str. 6, 17487 Greifswald (Germany); Stanja, Juliane; Zuber, Kai [Institut fuer Kern- und Teilchenphysik, Technische Universitaet Dresden, Zellescher Weg 19, 01069 Dresden (Germany)

    2014-07-01

    The masses of exotic nuclides are among the most important input parameters for modern nuclear theory and astrophysical models. At the high-precision Penning-trap mass spectrometer ISOLTRAP at ISOLDE/CERN, a multi-reflection time-of-flight mass spectrometer (MR-ToF-MS) in combination with a Bradbury-Nielsen gate (BNG) can be used to achieve high-resolution isobar purification with mass-resolving powers of 105 in a few tens of milliseconds. Furthermore, the MR-ToF device can be used as a spectrometer to determine the masses of nuclides with very low yields and short half-lives, where a Penning-trap mass measurement becomes impractical due to the lower transport efficiency and decay losses during the purification and measurement cycles. Recent cross-check experiments show that the MR-ToF MS allows mass measurements with uncertainties in the sub-ppm range. In a first application the mass measurements of the nuclides 53,54Ca was performed, delivered with production rates as low as 10/s and half-lives of only 90(6) ms. The nuclides serve as important benchmarks for testing modern chiral effective theory with realistic 3-body forces. The contribution presents the on-line mass spectrometer ISOLTRAP focusing on the new applications, which became possible after the implementation of the MR-ToF MS into the current setup. In particular, the mass measurements of the neutron-rich calcium isotopes up to A=54 are discussed. In addition, measurements of the isotonic potassium isotopes are reported.

  19. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for direct bacterial identification from positive blood culture pellets.

    Science.gov (United States)

    Prod'hom, Guy; Bizzini, Alain; Durussel, Christian; Bille, Jacques; Greub, Gilbert

    2010-04-01

    An ammonium chloride erythrocyte-lysing procedure was used to prepare a bacterial pellet from positive blood cultures for direct matrix-assisted laser desorption-ionization time of flight (MALDI-TOF) mass spectrometry analysis. Identification was obtained for 78.7% of the pellets tested. Moreover, 99% of the MALDI-TOF identifications were congruent at the species level when considering valid scores. This fast and accurate method is promising.

  20. The potential of using laser ablation inductively coupled plasma time of flight mass spectrometry (LA-ICP-TOF-MS) in the forensic analysis of micro debris.

    Science.gov (United States)

    Scadding, Cameron J; Watling, R John; Thomas, Allen G

    2005-08-15

    The majority of crimes result in the generation of some form of physical evidence, which is available for collection by crime scene investigators or police. However, this debris is often limited in amount as modern criminals become more aware of its potential value to forensic scientists. The requirement to obtain robust evidence from increasingly smaller sized samples has required refinement and modification of old analytical techniques and the development of new ones. This paper describes a new method for the analysis of oxy-acetylene debris, left behind at a crime scene, and the establishment of its co-provenance with single particles of equivalent debris found on the clothing of persons of interest (POI). The ability to rapidly determine and match the elemental distribution patterns of debris collected from crime scenes to those recovered from persons of interest is essential in ensuring successful prosecution. Traditionally, relatively large amounts of sample (up to several milligrams) have been required to obtain a reliable elemental fingerprint of this type of material [R.J. Walting , B.F. Lynch, D. Herring, J. Anal. At. Spectrom. 12 (1997) 195]. However, this quantity of material is unlikely to be recovered from a POI. This paper describes the development and application of laser ablation inductively coupled plasma time of flight mass spectrometry (LA-ICP-TOF-MS), as an analytical protocol, which can be applied more appropriately to the analysis of micro-debris than conventional quadrupole based mass spectrometry. The resulting data, for debris as small as 70mum in diameter, was unambiguously matched between a single spherule recovered from a POI and a spherule recovered from the scene of crime, in an analytical procedure taking less than 5min.

  1. A time of flight detector for high energy heavy particles

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Z.; O`Connor, D.J. [Newcastle Univ., NSW (Australia). Dept. of Physics

    1993-12-31

    As a commonly used method to measure the energy of a particle with known mass, the flight time of the particle travelling over a certain distance is measured. A detector based on this principle is called a time-of-flight (TOF) detector which has attracted interests constantly during the last 15 years. For high energy heavy particle energy detection, TOF detector is an appropriated choice and such a system, developed recently, is described in this paper. 8 refs., 3 figs.

  2. A time of flight detector for high energy heavy particles

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Z; O` Connor, D J [Newcastle Univ., NSW (Australia). Dept. of Physics

    1994-12-31

    As a commonly used method to measure the energy of a particle with known mass, the flight time of the particle travelling over a certain distance is measured. A detector based on this principle is called a time-of-flight (TOF) detector which has attracted interests constantly during the last 15 years. For high energy heavy particle energy detection, TOF detector is an appropriated choice and such a system, developed recently, is described in this paper. 8 refs., 3 figs.

  3. Time series analysis methods and applications for flight data

    CERN Document Server

    Zhang, Jianye

    2017-01-01

    This book focuses on different facets of flight data analysis, including the basic goals, methods, and implementation techniques. As mass flight data possesses the typical characteristics of time series, the time series analysis methods and their application for flight data have been illustrated from several aspects, such as data filtering, data extension, feature optimization, similarity search, trend monitoring, fault diagnosis, and parameter prediction, etc. An intelligent information-processing platform for flight data has been established to assist in aircraft condition monitoring, training evaluation and scientific maintenance. The book will serve as a reference resource for people working in aviation management and maintenance, as well as researchers and engineers in the fields of data analysis and data mining.

  4. Dual Source Time-of-flight Mass Spectrometer and Sample Handling System

    Science.gov (United States)

    Brinckerhoff, W.; Mahaffy, P.; Cornish, T.; Cheng, A.; Gorevan, S.; Niemann, H.; Harpold, D.; Rafeek, S.; Yucht, D.

    We present details of an instrument under development for potential NASA missions to planets and small bodies. The instrument comprises a dual ionization source (laser and electron impact) time-of-flight mass spectrometer (TOF-MS) and a carousel sam- ple handling system for in situ analysis of solid materials acquired by, e.g., a coring drill. This DSTOF instrument could be deployed on a fixed lander or a rover, and has an open design that would accommodate measurements by additional instruments. The sample handling system (SHS) is based on a multi-well carousel, originally de- signed for Champollion/DS4. Solid samples, in the form of drill cores or as loose chips or fines, are inserted through an access port, sealed in vacuum, and transported around the carousel to a pyrolysis cell and/or directly to the TOF-MS inlet. Samples at the TOF-MS inlet are xy-addressable for laser or optical microprobe. Cups may be ejected from their holders for analyzing multiple samples or caching them for return. Samples are analyzed with laser desorption and evolved-gas/electron-impact sources. The dual ion source permits studies of elemental, isotopic, and molecular composition of unprepared samples with a single mass spectrometer. Pulsed laser desorption per- mits the measurement of abundance and isotope ratios of refractory elements, as well as the detection of high-mass organic molecules in solid samples. Evolved gas analysis permits similar measurements of the more volatile species in solids and aerosols. The TOF-MS is based on previous miniature prototypes at JHU/APL that feature high sensitivity and a wide mass range. The laser mode, in which the sample cup is directly below the TOF-MS inlet, permits both ablation and desorption measurements, to cover elemental and molecular species, respectively. In the evolved gas mode, sample cups are raised into a small pyrolysis cell and heated, producing a neutral gas that is elec- tron ionized and pulsed into the TOF-MS. (Any imaging

  5. Identification of AKB-48 and 5F-AKB-48 Metabolites in Authentic Human Urine Samples Using Human Liver Microsomes and Time of Flight Mass Spectrometry.

    Science.gov (United States)

    Vikingsson, Svante; Josefsson, Martin; Gréen, Henrik

    2015-01-01

    The occurrence of structurally related synthetic cannabinoids makes the identification of unique markers of drug intake particularly challenging. The aim of this study was to identify unique and abundant metabolites of AKB-48 and 5F-AKB-48 for toxicological screening in urine. Investigations of authentic urine samples from forensic cases in combination with human liver microsome (HLM) experiments were used for identification of metabolites. HLM incubations of AKB-48 and 5F-AKB-48 along with 35 urine samples from authentic cases were analyzed with liquid chromatography quadrupole tandem time of flight mass spectrometry. Using HLMs 41 metabolites of AKB-48 and 37 metabolites of 5F-AKB-48 were identified, principally represented by hydroxylation but also ketone formation and dealkylation. Monohydroxylated metabolites were replaced by di- and trihydroxylated metabolites within 30 min. The metabolites from the HLM incubations accounted for on average 84% (range, 67-100) and 91% (range, 71-100) of the combined area in the case samples for AKB-48 and 5F-AKB-48, respectively. While defluorinated metabolites accounted for on average 74% of the combined area after a 5F-AKB-48 intake only a few identified metabolites were shared between AKB-48 and 5F-AKB-48, illustrating the need for a systematic approach to identify unique metabolites. HLMs in combination with case samples seem suitable for this purpose. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Ion-storage in radiofrequency electric quadrupole field

    International Nuclear Information System (INIS)

    Gheorghe, V.

    1976-01-01

    The confinement of charged particles in a quadrupole radiofrequency electric field are presented. The stability diagrams and phase space trajectories for the quadrupole mass spectrometer and for the ion trap are represented and their main characteristics are discussed. (author)

  7. Reduction of the jitter of single-flux-quantum time-to-digital converters for time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Sano, K.; Muramatsu, Y.; Yamanashi, Y.; Yoshikawa, N.; Zen, N.; Ohkubo, M.

    2014-01-01

    Highlights: • We proposed single-flux-quantum (SFQ) time-to-digital converters (TDCs) for TOF-MS. • SFQ TDC can measure time intervals between multiple signals with high-resolution. • SFQ TDC can directly convert the time intervals into binary data. • We designed two types of SFQ TDCs to reduce the jitter. • The jitter is reduced to less than 100 ps. - Abstract: We have been developing a high-resolution superconducting time-of-flight mass spectrometry (TOF-MS) system, which utilizes a superconducting strip ion detector (SSID) and a single-flux-quantum (SFQ) time-to-digital converter (TDC). The SFQ TDC can measure time intervals between multiple input signals and directly convert them into binary data. In our previous study, 24-bit SFQ TDC with a 3 × 24-bit First-In First-Out (FIFO) buffer was designed and implemented using the AIST Nb standard process 2 (STP2), whose time resolution and dynamic range are 100 ps and 1.6 ms, respectively. In this study we reduce the jitter of the TDC by using two different approaches: one uses an on-chip clock generator with an on-chip low-pass filter for reducing the noise in the bias current, and the other uses a low-jitter external clock source at room temperature. We confirmed that the jitter is reduced to less than 100 ps in the latter approach

  8. Reduction of the jitter of single-flux-quantum time-to-digital converters for time-of-flight mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Sano, K., E-mail: sano-kyosuke-cw@ynu.jp [Department Electrical and Computer Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501 (Japan); Muramatsu, Y.; Yamanashi, Y.; Yoshikawa, N. [Department Electrical and Computer Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501 (Japan); Zen, N.; Ohkubo, M. [Research Institute of Instrumentation Frontier, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba 305-8568 (Japan)

    2014-09-15

    Highlights: • We proposed single-flux-quantum (SFQ) time-to-digital converters (TDCs) for TOF-MS. • SFQ TDC can measure time intervals between multiple signals with high-resolution. • SFQ TDC can directly convert the time intervals into binary data. • We designed two types of SFQ TDCs to reduce the jitter. • The jitter is reduced to less than 100 ps. - Abstract: We have been developing a high-resolution superconducting time-of-flight mass spectrometry (TOF-MS) system, which utilizes a superconducting strip ion detector (SSID) and a single-flux-quantum (SFQ) time-to-digital converter (TDC). The SFQ TDC can measure time intervals between multiple input signals and directly convert them into binary data. In our previous study, 24-bit SFQ TDC with a 3 × 24-bit First-In First-Out (FIFO) buffer was designed and implemented using the AIST Nb standard process 2 (STP2), whose time resolution and dynamic range are 100 ps and 1.6 ms, respectively. In this study we reduce the jitter of the TDC by using two different approaches: one uses an on-chip clock generator with an on-chip low-pass filter for reducing the noise in the bias current, and the other uses a low-jitter external clock source at room temperature. We confirmed that the jitter is reduced to less than 100 ps in the latter approach.

  9. Current status of matrix-assisted laser desorption ionisation-time of flight mass spectrometry in the clinical microbiology laboratory.

    Science.gov (United States)

    Kok, Jen; Chen, Sharon C A; Dwyer, Dominic E; Iredell, Jonathan R

    2013-01-01

    The integration of matrix-assisted laser desorption ionisation-time of flight mass spectrometry (MALDI-TOF MS) into many clinical microbiology laboratories has revolutionised routine pathogen identification. MALDI-TOF MS complements and has good potential to replace existing phenotypic identification methods. Results are available in a more clinically relevant timeframe, particularly in bacteraemic septic shock. Novel applications include strain typing and the detection of antimicrobial resistance, but these are not widely used. This review discusses the technical aspects, current applications, and limitations of MALDI-TOF MS.

  10. Determination of suspected allergens in cosmetic products by headspace-programmed temperature vaporization-fast gas chromatography-quadrupole mass spectrometry.

    Science.gov (United States)

    del Nogal Sánchez, Miguel; Pérez-Pavón, José Luis; Moreno Cordero, Bernardo

    2010-07-01

    In the present work, a strategy for the qualitative and quantitative analysis of 24 volatile compounds listed as suspected allergens in cosmetics by the European Union is reported. The list includes benzyl alcohol, limonene, linalool, methyl 2-octynoate, beta-citronellol, geraniol, citral (two isomers), 7-hydroxycitronellal, anisyl alcohol, cinnamal, cinnamyl alcohol, eugenol, isoeugenol (two isomers), coumarin, alpha-isomethyl ionone, lilial, alpha-amylcinnamal, lyral, alpha-amylcinnamyl alcohol, farnesol (three isomers), alpha-hexyl cinnamal, benzyl cinnamate, benzyl benzoate, and benzyl salicylate. The applicability of a headspace (HS) autosampler in combination with a gas chromatograph (GC) equipped with a programmable temperature vaporizer (PTV) and a quadrupole mass spectrometry (qMS) detector is explored. By using a headspace sampler, sample preparation is reduced to introducing the sample into the vial. This reduces the analysis time and the experimental errors associated with this step of the analytical process. Two different injection techniques were used: solvent-vent injection and hot-split injection. The first offers a way to improve sensitivity at the same time maintaining the simple headspace instrumentation and it is recommended for compounds at trace levels. The use of a liner packed with Tenax-TA allowed the compounds of interest to be retained during the venting process. The signals obtained when hot-split injection was used allowed quantification of all the compounds according to the thresholds of the European Cosmetics Directive. Monodimensional gas chromatography coupled to a conventional quadrupole mass spectrometry detector was used and the 24 analytes were separated appropriately along a run time of about 12 min. Use of the standard addition procedure as a quantification technique overcame the matrix effect. It should be emphasized that the method showed good precision and accuracy. Furthermore, it is rapid, simple, and--in view of the

  11. Quadrupole Ion Traps

    Indian Academy of Sciences (India)

    to do precision spectroscopic measurements on these ions. ... Bonn, investigated the non-magnetic quadrupole mass filter, .... the details of which will be discussed in the subse- ... the radial plane the ion undergoes a circular motion with the.

  12. Development of a new corona discharge based ion source for high resolution time-of-flight chemical ionization mass spectrometer to measure gaseous H2SO4 and aerosol sulfate

    Science.gov (United States)

    Zheng, Jun; Yang, Dongsen; Ma, Yan; Chen, Mindong; Cheng, Jin; Li, Shizheng; Wang, Ming

    2015-10-01

    A new corona discharge (CD) based ion source was developed for a commercial high-resolution time-of-flight chemical ionization mass spectrometer (HRToF-CIMS) (Aerodyne Research Inc.) to measure both gaseous sulfuric acid (H2SO4) and aerosol sulfate after thermal desorption. Nitrate core ions (NO3-) were used as reagent ions and were generated by a negative discharge in zero air followed by addition of excess nitrogen dioxide (NO2) to convert primary ions and hydroxyl radicals (OH) into NO3- ions and nitric acid (HNO3). The CD-HRToF-CIMS showed no detectable interference from hundreds parts per billion by volume (ppbv) of sulfur dioxide (SO2). Unlike the atmospheric pressure ionization (API) ToF-CIMS, the CD ion source was integrated onto the ion-molecule reaction (IMR) chamber and which made it possible to measure aerosol sulfate by coupling to a filter inlet for gases and aerosols (FIGAERO). Moreover, compared with a quadrupole-based mass spectrometer, the desired HSO4- signal was detected by its exact mass of m/z 96.960, which was well resolved from the potential interferences of HCO3-ṡ(H2O)2 (m/z 97.014) and O-ṡH2OṡHNO3 (m/z 97.002). In this work, using laboratory-generated standards the CD-HRToF-CIMS was demonstrated to be able to detect as low as 3.1 × 105 molecules cm-3 gaseous H2SO4 and 0.5 μg m-3 ammonium sulfate based on 10-s integration time and two times of the baseline noise. The CD ion source had the advantages of low cost and a simple but robust structure. Since the system was non-radioactive and did not require corrosive HNO3 gas, it can be readily field deployed. The CD-HRToF-CIMS can be a powerful tool for both field and laboratory studies of aerosol formation mechanism and the chemical processes that were critical to understand the evolution of aerosols in the atmosphere.

  13. Rapid detection of undesired cosmetic ingredients by matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Ouyang, Jie; An, Dongli; Chen, Tengteng; Lin, Zhiwei

    2017-10-01

    In recent years, cosmetic industry profits soared due to the widespread use of cosmetics, which resulted in illicit manufacturers and products of poor quality. Therefore, the rapid and accurate detection of the composition of cosmetics has become crucial. At present, numerous methods, such as gas chromatography and liquid chromatography-mass spectrometry, were available for the analysis of cosmetic ingredients. However, these methods present several limitations, such as failure to perform comprehensive and rapid analysis of the samples. Compared with other techniques, matrix-assisted laser desorption ionization time-of-flight mass spectrometry offered the advantages of wide detection range, fast speed and high accuracy. In this article, we briefly summarized how to select a suitable matrix and adjust the appropriate laser energy. We also discussed the rapid identification of undesired ingredients, focusing on antibiotics and hormones in cosmetics.

  14. Parametric evaluation of laser ablation and ionization time-of-flight mass spectrometry with ion guide cooling cell

    International Nuclear Information System (INIS)

    Peng Ding; He Jian; Yu Quan; Chen Lizhi; Hang Wei; Huang Benli

    2008-01-01

    A novel laser ablation and ionization time-of-flight mass spectrometer has been used for direct elemental analysis of alloys. The system was incorporated with an ion guide cooling cell to reduce the kinetic energy distribution for the purpose of better resolution. Parametric studies have been conducted on the system with respect to the buffer gas pressure and the distance from sample to the nozzle to obtain the maximal signal intensities. In order to obtain satisfactory relative sensitivity coefficients (RSC) for different elements, the influence of the laser irradiance, nozzle voltage, rf frequency and voltage of the hexapole were also investigated. Under the optimized conditions, the RSC of different elements were available for direct semi-quantitative analysis. The mass resolving power (FWHM) of the spectrometer was approximately 7000 (m/Δm) and the limit of detection (LOD) was 10 -6 g/g

  15. Hot filament-dissociation of (CH3)3SiH and (CH3)4Si, probed by vacuum ultra violet laser time of flight mass spectroscopy.

    Science.gov (United States)

    Sharma, Ramesh C; Koshi, Mitsuo

    2006-11-01

    The decomposition of trimethylsilane and tetramethylsilane has been investigated for the first time, using hot wire (catalytic) at various temperatures. Trimethylsilane is catalytic-dissociated in these species SiH(2), CH(3)SiH, CH(3), CH(2)Si. Time of flight mass spectroscopy signal of these species are linearly increasing with increasing catalytic-temperature. Time of flight mass spectroscopy (TOFMS) signals of (CH(3))(3)SiH and photodissociated into (CH(3))(2)SiH are decreasing with increasing hot filament temperature. TOFMS signal of (CH(3))(4)Si is decreasing with increasing hot wire temperature, but (CH(3))(3)Si signal is almost constant with increasing the temperature. We calculated activation energies of dissociated species of the parental molecules for fundamental information of reaction kinetics for the first time. Catalytic-dissociation of trimethylsilane, and tetramethylsilane single source time of flight coupled single photon VUV (118 nm) photoionization collisionless radicals at temperature range of tungsten filament 800-2360 K. The study is focused to understand the fundamental information on reaction kinetics of these molecules at hot wire temperature, and processes of catalytic-chemical vapour deposition (Cat-CVD) technique which could be implemented in amorphous and crystalline SiC semiconductors thin films.

  16. Simultaneous Determination of Ten Constituents in Chaiqin Qingning Capsule by High-performance Liquid Chromatography Coupled with Triple-quadrupole Mass Spectrometry.

    Science.gov (United States)

    Li, Ting Yu; Huo, Xiao Kui; Zheng, Lu; Wang, Chao; Cong, Hai Jian; Xiang, Ting; Zhang, Lin; Zhang, Bao Jing; Huang, Shan Shan; Wu, Bin; Li, Xin Yu

    2017-01-01

    Chaiqin Qingning Capsule (CQQNC) was a prescription of Traditional Chinese Medicine with the effects of clearing away heat and removing toxin, harmonizing the exterior and interior, it was widely used in Asian, for example, China and Japan, different batches of the raws materials and different processing time may be the vital factor which raised a challenge to control the quality of the CQQNC. In this experiment, a high-performance liquid chromatography-mass spectrometry/MS (HPLC-MS/MS) method was developed to simultaneously determine ten bioactive components for the quality control of CQQNC. Chromatographic separation was achieved using an XBridge BEH C18 column (150 mm × 4.6 mm, 2.5 μm) with a mobile phase composed of 10 mm aqueous ammonium acetate and acetonitrile using a gradient elution in 20 min. This study was conducted by multiple reaction monitoring mode through electrospray ionization resource with a negative ionization mode. The established method was validated with good performance of precision, accuracy, stability, and reproducibility and was utilized to simultaneously quantify ten constituents of CQQNC obtained from seven different batches. It is the first time to report the rapid and simultaneous analysis of the ten compounds in CQQNC by HPLC-MS/MS and apply to determine 10 constituents in 7 batches of CQQNC bought from drug store in china. This method could be considered as good quality criteria to control the quality of CQQNC. In this paper, a simple, specific, and rapid high-performance liquid chromatogram coupled with triple-quadrupole mass spectrometry method for simultaneous quantification of ten constituents in Chaiqin Qingning Capsule has been developed for the first time. This method could be considered as good quality criteria to control the quality of CQQNC. Abbreviations used: CHM: Chinese herbal medicine; TCM: Traditional Chinese Medicine; CQQNC: Triple-quadrupole mass spectrometry Chaiqin Qingning Capsules; HPLC-MS/MS: High liquid

  17. Simultaneous Determination of Ten Constituents in Chaiqin Qingning Capsule by High-performance Liquid Chromatography Coupled with Triple-quadrupole Mass Spectrometry

    Science.gov (United States)

    Li, Ting Yu; Huo, Xiao Kui; Zheng, Lu; Wang, Chao; Cong, Hai Jian; Xiang, Ting; Zhang, Lin; Zhang, Bao Jing; Huang, Shan Shan; Wu, Bin; Li, Xin Yu

    2017-01-01

    Background: Chaiqin Qingning Capsule (CQQNC) was a prescription of Traditional Chinese Medicine with the effects of clearing away heat and removing toxin, harmonizing the exterior and interior, it was widely used in Asian, for example, China and Japan, different batches of the raws materials and different processing time may be the vital factor which raised a challenge to control the quality of the CQQNC. Experimental Methods: In this experiment, a high-performance liquid chromatography-mass spectrometry/MS (HPLC-MS/MS) method was developed to simultaneously determine ten bioactive components for the quality control of CQQNC. Chromatographic separation was achieved using an XBridge BEH C18 column (150 mm × 4.6 mm, 2.5 μm) with a mobile phase composed of 10 mm aqueous ammonium acetate and acetonitrile using a gradient elution in 20 min. This study was conducted by multiple reaction monitoring mode through electrospray ionization resource with a negative ionization mode. Results: The established method was validated with good performance of precision, accuracy, stability, and reproducibility and was utilized to simultaneously quantify ten constituents of CQQNC obtained from seven different batches. Conclusion: It is the first time to report the rapid and simultaneous analysis of the ten compounds in CQQNC by HPLC-MS/MS and apply to determine 10 constituents in 7 batches of CQQNC bought from drug store in china. This method could be considered as good quality criteria to control the quality of CQQNC. SUMMARY In this paper, a simple, specific, and rapid high-performance liquid chromatogram coupled with triple-quadrupole mass spectrometry method for simultaneous quantification of ten constituents in Chaiqin Qingning Capsule has been developed for the first time. This method could be considered as good quality criteria to control the quality of CQQNC. Abbreviations used: CHM: Chinese herbal medicine; TCM: Traditional Chinese Medicine; CQQNC: Triple-quadrupole mass

  18. Gibbs free energy of formation of lanthanum rhodate by quadrupole mass spectrometer

    International Nuclear Information System (INIS)

    Prasad, R.; Banerjee, Aparna; Venugopal, V.

    2003-01-01

    The ternary oxide in the system La-Rh-O is of considerable importance because of its application in catalysis. Phase equilibria in the pseudo-binary system La 2 O 3 -Rh 2 O 3 has been investigated by Shevyakov et. al. Gibbs free energy of LaRhO 3 (s) was determined by Jacob et. al. using a solid state Galvanic cell in the temperature range 890 to 1310 K. No other thermodynamic data were available in the literature. Hence it was decided to determine Gibbs free energy of formation of LaRhO 3 (s) by an independent technique, viz. quadrupole mass spectrometer (QMS) coupled with a Knudsen effusion cell and the results are presented

  19. The performance and the characterization of laser ablation aerosol particle time-of-flight mass spectrometry (LAAP-ToF-MS)

    Science.gov (United States)

    Gemayel, Rachel; Hellebust, Stig; Temime-Roussel, Brice; Hayeck, Nathalie; Van Elteren, Johannes T.; Wortham, Henri; Gligorovski, Sasho

    2016-05-01

    Hyphenated laser ablation-mass spectrometry instruments have been recognized as useful analytical tools for the detection and chemical characterization of aerosol particles. Here we describe the performances of a laser ablation aerosol particle time-of-flight mass spectrometer (LAAP-ToF-MS) which was designed for aerodynamic particle sizing using two 405 nm scattering lasers and characterization of the chemical composition of single aerosol particle via ablation/ionization by a 193 nm excimer laser and detection in a bipolar time-of-flight mass spectrometer with a mass resolving power of m/Δm > 600.We describe a laboratory based optimization strategy for the development of an analytical methodology for characterization of atmospheric particles using the LAAP-ToF-MS instrument in combination with a particle generator, a differential mobility analyzer and an optical particle counter. We investigated the influence of particle number concentration, particle size and particle composition on the detection efficiency. The detection efficiency is a product of the scattering efficiency of the laser diodes and the ionization efficiency or hit rate of the excimer laser. The scattering efficiency was found to vary between 0.6 and 1.9 % with an average of 1.1 %; the relative standard deviation (RSD) was 17.0 %. The hit rate exhibited good repeatability with an average value of 63 % and an RSD of 18 %. In addition to laboratory tests, the LAAP-ToF-MS was used to sample ambient air during a period of 6 days at the campus of Aix-Marseille University, situated in the city center of Marseille, France. The optimized LAAP-ToF-MS methodology enables high temporal resolution measurements of the chemical composition of ambient particles, provides new insights into environmental science, and a new investigative tool for atmospheric chemistry and physics, aerosol science and health impact studies.

  20. All systems go for LHC quadrupoles

    CERN Multimedia

    2003-01-01

    The series fabrication of the Main Quadrupole cold masses for the LHC has begun with the delivery of the first unit on February 12th. The superconducting dipole magnets required to bend the proton beams around the LHC are often in the news. Less famous, perhaps, but equally important are the 360 main quadrupole (MQ) magnets, which will perform the principal focusing around the 27 km ring. CERN and CEA-Saclay began collaborating on the development and prototyping of these magnets in 1989. This resulted in five highly successful quadrupole units - also known as short straight sections - one of which was integrated for testing in String 1, and two others of the final design in String 2. Once the tests had confirmed the validity of the design and realization, the fabrication of the 360 cold masses had to be transferred to industry. After highly competitive tendering, the German firm ACCEL Instruments was entrusted both with the construction of the quadrupole magnets themselves, and with their assembly into the co...

  1. A compact fast data acquisition and data analysis system for time of flight mass spectrometry. Time and S.I. intensity measurements with a new multistop TDC

    International Nuclear Information System (INIS)

    Della-Negra, S.; Le Beyec, Y.

    1987-01-01

    A data acquisition and processing system for time of flight mass spectrometry, based on a PC-AT computer with an additional memory card was developed, and analysis software was written. About 100,000 counts/sec can be analyzed and stored in the memory. In the coincidence mode, 1000 start events with 10 stop events (per sec) on one time digital converter allow 10 spectra to be recorded. Examples of printouts are shown

  2. Proton transfer reaction time-of-flight mass spectrometry advancement in detection of hazardous substances

    International Nuclear Information System (INIS)

    Agarwal, B.

    2012-01-01

    Proton Transfer Reaction Mass Spectrometry (PTR-MS) is a mass spectrometric technique based on chemical ionization, which provides very rapid measurements (within seconds) of volatile organic compounds in air, usually without special sample preparation, and with a very low detection limit. The detection and study of product ion patterns of threat agents such as explosives and drugs and some major environmental pollutants (isocyanates and polychlorinated biphenyls (PCBs)) is explored in detail here using PTR-MS, specifically Proton Transfer Reaction Time-of-Flight Mass Spectrometry (PTR-TOF-MS). The proton transfer reaction (PTR) principle works on the detection of the compound in the vapor phase. For some compounds, which have extremely low vapor pressures, both sample and inlet line heating were needed. Generally, the protonated parent molecule (MH+) is found to be the dominant product ion, which therefore provides us with a higher level of confidence in the assignment of a trace compound. However, for several compounds, dissociative proton transfer can occur at various degrees resulting in other product ions. Analysis of other compounds, such as the presence of taggants and impurities were carried out, and in certain compounds unusual E/N anomalies were discovered (E/N is an instrumental set of parameters, where E is the electric field strength and N is the number density). Head space measurements above four different drinks (plain water, tea, red wine and white wine) spiked with four different 'date rape' drugs were also conducted. (author)

  3. Investigations of chemical warfare agents and toxic industrial compounds with proton-transfer-reaction mass spectrometry for a real-time threat monitoring scenario.

    Science.gov (United States)

    Kassebacher, Thomas; Sulzer, Philipp; Jürschik, Simone; Hartungen, Eugen; Jordan, Alfons; Edtbauer, Achim; Feil, Stefan; Hanel, Gernot; Jaksch, Stefan; Märk, Lukas; Mayhew, Chris A; Märk, Tilmann D

    2013-01-30

    Security and protection against terrorist attacks are major issues in modern society. One especially challenging task is the monitoring and protection of air conditioning and heating systems of buildings against terrorist attacks with toxic chemicals. As existing technologies have low selectivity, long response times or insufficient sensitivity, there is a need for a novel approach such as we present here. We have analyzed various chemical warfare agents (CWAs) and/or toxic industrial compounds (TICs) and related compounds, namely phosgene, diphosgene, chloroacetone, chloroacetophenone, diisopropylaminoethanol, and triethyl phosphate, utilizing a high-resolution proton-transfer-reaction time-of-flight mass spectrometry (PTR-TOFMS) instrument with the objective of finding key product ions and their intensities, which will allow a low-resolution quadrupole mass spectrometry based PTR-MS system to be used with high confidence in the assignment of threat agents in the atmosphere. We obtained high accuracy PTR-TOFMS mass spectra of the six compounds under study at two different values for the reduced electric field in the drift tube (E/N). From these data we have compiled a table containing product ions, and isotopic and E/N ratios for highly selective threat compound detection with a compact and cost-effective quadrupole-based PTR-MS instrument. Furthermore, using chloroacetophenone (tear gas), we demonstrated that this instrument's response is highly linear in the concentration range of typical Acute Exposure Guideline Levels (AEGLs). On the basis of the presented results it is possible to develop a compact and cost-effective PTR-QMS instrument that monitors air supply systems and triggers an alarm as soon as the presence of a threat agent is detected. We hope that this real-time surveillance device will help to seriously improve safety and security in environments vulnerable to terrorist attacks with toxic chemicals. Copyright © 2012 John Wiley & Sons, Ltd.

  4. Influence of Culture Media on Detection of Carbapenem Hydrolysis by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry.

    Science.gov (United States)

    Ramos, Ana Carolina; Carvalhaes, Cecília Godoy; Cordeiro-Moura, Jhonatha Rodrigo; Rockstroh, Anna Carolina; Machado, Antonia Maria Oliveira; Gales, Ana Cristina

    2016-07-01

    In this study, we evaluated the influence of distinct bacterial growth media on detection of carbapenemase hydrolysis by matrix-assisted laser desorption ionization-time of flight mass spectrometry. False-negative results were observed for OXA-25-, OXA-26-, and OXA-72-producing Acinetobacter baumannii isolates grown on MacConkey agar medium. The other culture media showed 100% sensitivity and 100% specificity for detecting carbapenemase. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. The Laser Ablation Ion Funnel: Sampling for in situ Mass Spectrometry on Mars

    Science.gov (United States)

    Johnson, Paul V.; Hodyss, Robert; Tang, Keqi; Brinckerhoff, William B.; Smith, Richard D.

    2011-01-01

    A considerable investment has been made by NASA and other space agencies to develop instrumentation suitable for in situ analytical investigation of extra terrestrial bodies including various mass spectrometers (time-of-flight, quadrupole ion trap, quadrupole mass filters, etc.). However, the front-end sample handling that is needed to collect and prepare samples for interrogation by such instrumentation remains underdeveloped. Here we describe a novel approach tailored to the exploration of Mars where ions are created in the ambient atmosphere via laser ablation and then efficiently transported into a mass spectrometer for in situ analysis using an electrodynamic ion funnel. This concept would enable elemental and isotopic analysis of geological samples with the analysis of desorbed organic material a possibility as well. Such an instrument would be suitable for inclusion on all potential missions currently being considered such as the Mid-Range Rover, the Astrobiology Field Laboratory, and Mars Sample Return (i.e., as a sample pre-selection triage instrument), among others.

  6. Development of a Portable Single Photon Ionization-Photoelectron Ionization Time-of-Flight Mass Spectrometer

    Directory of Open Access Journals (Sweden)

    Yunguang Huang

    2015-01-01

    Full Text Available A vacuum ultraviolet lamp based single photon ionization- (SPI- photoelectron ionization (PEI portable reflecting time-of-flight mass spectrometer (TOFMS was designed for online monitoring gas samples. It has a dual mode ionization source: SPI for analyte with ionization energy (IE below 10.6 eV and PEI for IE higher than 10.6 eV. Two kinds of sampling inlets, a capillary inlet and a membrane inlet, are utilized for high concentration and trace volatile organic compounds, respectively. A mass resolution of 1100 at m/z 64 has been obtained with a total size of 40 × 31 × 29 cm, the weight is 27 kg, and the power consumption is only 70 W. A mixture of benzene, toluene, and xylene (BTX, SO2, and discharging products of SF6 were used to test its performance, and the result showed that the limit of quantitation for BTX is as low as 5 ppbv (S/N = 10 : 1 with linear dynamic ranges greater than four orders of magnitude. The portable TOFMS was also evaluated by analyzing volatile organic compounds from wine and decomposition products of SF6 inside of a gas-insulated switchgear.

  7. Complete Analysis of a Biologically Active Tetrapeptide: A Project Utilizing Thin-Layer Chromatography and Tandem Quadrupole Mass Spectrometry

    Science.gov (United States)

    Lefevre, Joseph W.; Dodsworth, David W.

    2000-04-01

    The biologically active tetrapeptide d-Ala-Gly-l-Phe-d-Leu ([des-Tyr1-d-Ala2-d-Leu5]enkephalin) was analyzed for its amino acid content and stereochemistry by normal and reversed-phase thin-layer chromatography (TLC), and its sequence was determined by tandem quadrupole mass spectrometry. The project involved sequential N-dansylation of a portion of the tetrapeptide, hydrolysis, isolation, and identification of the N-terminal amino acid as dansyl-alanine by comparison with standards using normal-phase TLC. A second portion of the tetrapeptide was hydrolyzed and the resulting four free amino acids were converted to their corresponding dansyl derivatives and purified by preparative normal-phase TLC. The three dansyl amino acids not identified previously were identified by TLC. The stereochemistry of each was determined by comparison with dansyl-dl-amino acid standards using reversed-phase TLC in the presence of ß-cyclodextrin, a chiral mobile phase additive. Finally, the correct amino acid sequence was determined by tandem quadrupole mass spectrometry. This project gives students valuable experience in microscale synthesis, both normal and reversed-phase TLC, stereochemical analysis, and mass spectrometry.

  8. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Direct Bacterial Identification from Positive Blood Culture Pellets ▿

    OpenAIRE

    Prod'hom, Guy; Bizzini, Alain; Durussel, Christian; Bille, Jacques; Greub, Gilbert

    2010-01-01

    An ammonium chloride erythrocyte-lysing procedure was used to prepare a bacterial pellet from positive blood cultures for direct matrix-assisted laser desorption-ionization time of flight (MALDI-TOF) mass spectrometry analysis. Identification was obtained for 78.7% of the pellets tested. Moreover, 99% of the MALDI-TOF identifications were congruent at the species level when considering valid scores. This fast and accurate method is promising.

  9. Gas chromatography--inductively coupled plasma--time-of-flight mass spectrometry for the speciation analysis of organolead compounds in environmental water samples.

    Science.gov (United States)

    Heisterkamp, M; Adams, F C

    2001-07-01

    The application of inductively coupled plasma--time-of-flight mass spectrometry for the speciation analysis of organolead compounds in environmental waters is described. Construction of the transfer line was achieved by means of a relatively simple and rapid coupling procedure. Derivatization of the ionic lead species was achieved by in-situ propylation with sodium tetrapropylborate; simultaneous extraction of the derivatized compounds in hexane was followed by separation and detection by capillary gas chromatography hyphenated to inductively coupled plasma-time-of-flight mass spectrometry. Detection limits for the different organolead species ranged from 10 to 15 fg (as Pb), corresponding to procedural detection limits between 50 and 75 ng L(-1), on the basis of a 50 mL snow sample, extraction with 200 microL hexane, and subsequent injection of 1 microL of the organic extract on to the column. The accuracy of the system was confirmed by additional analysis of the water samples by capillary gas chromatography coupled with microwave-induced plasma-atomic-emission spectrometry and the analysis of a standard reference material CRM 605 (road dust) with a certified content of trimethyllead.

  10. Low-molecular weight protein profiling of genetically modified maize using fast liquid chromatography electrospray ionization and time-of-flight mass spectrometry.

    Science.gov (United States)

    Koc, Anna; Cañuelo, Ana; Garcia-Reyes, Juan F; Molina-Diaz, Antonio; Trojanowicz, Marek

    2012-06-01

    In this work, the use of liquid chromatography coupled to electrospray time-of-flight mass spectrometry (LC-TOFMS) has been evaluated for the profiling of relatively low-molecular weight protein species in both genetically modified (GM) and non-GM maize. The proposed approach consisted of a straightforward sample fractionation with different water and ethanol-based buffer solutions followed by separation and detection of the protein species using liquid chromatography with a small particle size (1.8 μm) C(18) column and electrospray-time-of-flight mass spectrometry detection in the positive ionization mode. The fractionation of maize reference material containing different content of transgenic material (from 0 to 5% GM) led to five different fractions (albumins, globulins, zeins, zein-like glutelins, and glutelins), all of them containing different protein species (from 2 to 52 different species in each fraction). Some relevant differences in the quantity and types of protein species were observed in the different fractions of the reference material (with different GM contents) tested, thus revealing the potential use of the proposed approach for fast protein profiling and to detect tentative GMO markers in maize. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Gas-phase pesticide measurement using iodide ionization time-of-flight mass spectrometry

    Directory of Open Access Journals (Sweden)

    T. Murschell

    2017-06-01

    Full Text Available Volatilization and subsequent processing in the atmosphere are an important environmental pathway for the transport and chemical fate of pesticides. However, these processes remain a particularly poorly understood component of pesticide lifecycles due to analytical challenges in measuring pesticides in the atmosphere. Most pesticide measurements require long (hours to days sampling times coupled with offline analysis, inhibiting observation of meteorologically driven events or investigation of rapid oxidation chemistry. Here, we present chemical ionization time-of-flight mass spectrometry with iodide reagent ions as a fast and sensitive measurement of four current-use pesticides. These semi-volatile pesticides were calibrated with injections of solutions onto a filter and subsequently volatilized to generate gas-phase analytes. Trifluralin and atrazine are detected as iodide–molecule adducts, while permethrin and metolachlor are detected as adducts between iodide and fragments of the parent analyte molecule. Limits of detection (1 s are 0.37, 0.67, 0.56, and 1.1 µg m−3 for gas-phase trifluralin, metolachlor, atrazine, and permethrin, respectively. The sensitivities of trifluralin and metolachlor depend on relative humidity, changing as much as 70 and 59, respectively, as relative humidity of the sample air varies from 0 to 80 %. This measurement approach is thus appropriate for laboratory experiments and potentially near-source field measurements.

  12. In-line monitoring of effluents from HTGR fuel particle preparation processes using a time-of-flight mass spectrometer

    International Nuclear Information System (INIS)

    Lee, D.A.; Costanzo, D.A.; Stinton, D.P.; Carpenter, J.A.; Rainey, W.T. Jr.; Canada, D.C.; Carter, J.A.

    1976-08-01

    The carbonization, conversion, and coating processes in the manufacture of HTGR fuel particles have been studied with the use of a time-of-flight mass spectrometer. Non-condensable effluents from these fluidized-bed processes have been monitored continuously from the beginning to the end of the process. The processes which have been monitored are these: uranium-loaded ion exchange resin carbonization, the carbothermic reduction of UO 2 to UC 2 , buffer and low temperature isotropic pyrocarbon coatings of fuel kernels, SiC coating of the kernels, and high-temperature particle annealing. Changes in concentrations of significant molecules with time and temperature have been useful in the interpretation of reaction mechanisms and optimization of process procedures

  13. Improved ultra-performance liquid chromatography with electrospray ionization quadrupole-time-of-flight high-definition mass spectrometry method for the rapid analysis of the chemical constituents of a typical medical formula: Liuwei Dihuang Wan.

    Science.gov (United States)

    Wang, Ping; Lv, Hai tao; Zhang, Ai hua; Sun, Hui; Yan, Guang li; Han, Ying; Wu, Xiu hong; Wang, Xi jun

    2013-11-01

    Liuwei Dihuang Wan (LDW), a classic Chinese medicinal formula, has been used to improve or restore declined functions related to aging and geriatric diseases, such as impaired mobility, vision, hearing, cognition, and memory. It has attracted increasing attention as one of the most popular and valuable herbal medicines. However, the systematic analysis of the chemical constituents of LDW is difficult and thus has not been well established. In this paper, a rapid, sensitive, and reliable ultra-performance LC with ESI quadrupole TOF high-definition MS method with automated MetaboLynx analysis in positive and negative ion mode was established to characterize the chemical constituents of LDW. The analysis was performed on a Waters UPLC™ HSS T3 using a gradient elution system. MS/MS fragmentation behavior was proposed for aiding the structural identification of the components. Under the optimized conditions, a total of 50 peaks were tentatively characterized by comparing the retention time and MS data. It is concluded that a rapid and robust platform based on ultra-performance LC with ESI quadrupole TOF high-definition MS has been successfully developed for globally identifying multiple constituents of traditional Chinese medicine prescriptions. This is the first report on the systematic analysis of the chemical constituents of LDW. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Quantification of VX Nerve Agent in Various Food Matrices by Solid-Phase Extraction Ultra-Performance Liquid ChromatographyTime-of-Flight Mass Spectrometry

    Science.gov (United States)

    2016-04-01

    QUANTIFICATION OF VX NERVE AGENT IN VARIOUS FOOD MATRICES BY SOLID - PHASE EXTRACTION ULTRA-PERFORMANCE...TITLE AND SUBTITLE Quantification of VX Nerve Agent in Various Food Matrices by Solid - Phase Extraction Ultra-Performance Liquid Chromatography...QUANTIFICATION OF VX NERVE AGENT IN VARIOUS FOOD MATRICES BY SOLID - PHASE EXTRACTION ULTRA-PERFORMANCE LIQUID CHROMATOGRAPHY–TIME-OF-FLIGHT MASS

  15. Use of matrix-assisted laser desorption ionization-time of flight mass spectrometry for caspofungin susceptibility testing of Candida and Aspergillus species.

    Science.gov (United States)

    De Carolis, Elena; Vella, Antonietta; Florio, Ada R; Posteraro, Patrizia; Perlin, David S; Sanguinetti, Maurizio; Posteraro, Brunella

    2012-07-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was evaluated for testing susceptibility to caspofungin of wild-type and fks mutant isolates of Candida and Aspergillus. Complete essential agreement was observed with the CLSI reference method, with categorical agreement for 94.1% of the Candida isolates tested. Thus, MALDI-TOF MS is a reliable and accurate method to detect fungal isolates with reduced caspofungin susceptibility.

  16. Particle identification by time-of-flight measurement in the SAPHIR

    International Nuclear Information System (INIS)

    Hoffmann-Rothe, P.

    1993-02-01

    Using photoproduction data which have been measured with the SAPHIR-detector with different target materials (C H 2 solid , H 2 liquid , D 2 liquid ) a detailed investigation and discussion of the detectors performance to measure the time of flight of charged particles and to separate between particles of different mass has been accomplished. A FORTRAN program has been written which provides a calibration of the scintillator panels of the TOF hodoscopes, calculates correction factors for the time-walk effect an finally, by combining the time of flight with track momentum measurement, determines particle masses. The current configuration of the detector makes it possible to separate between proton and pion up to a particle momentum of 1.6 GeV/c. Proton and kaon can be separated up to a momentum of 1.3 GeV/c, kaon and pion up to a momentum of 0.85 GeV/c. (prog.) [de

  17. Screening of environmental contaminants in honey bee wax comb using gas chromatography-high-resolution time-of-flight mass spectrometry.

    Science.gov (United States)

    Gómez-Ramos, M M; García-Valcárcel, A I; Tadeo, J L; Fernández-Alba, A R; Hernando, M D

    2016-03-01

    This study reports an analytical approach intended to be used for investigation of non-targeted environmental contaminants and to characterize the organic pollution pattern of bee wax comb samples. The method comprises a generic extraction followed by detection with gas chromatography coupled to high-resolution time-of-flight mass spectrometry (GC-TOF-MS), operated in electron impact ionization (EI) mode. The screening approach for the investigation of non-targeted contaminants consisted of initial peak detection by deconvolution and matching the first-stage mass spectra EI-MS(1) with a nominal mass spectral library. To gain further confidence in the structural characterization of the contaminants under investigation, the molecular formula of representative ions (molecular ion when present in the EI spectrum) and, for at least other two fragment ions, was provided for those with an accurate mass scoring (mass error contaminants in 50 samples of bee wax comb. This approach has allowed the tentative identification of some GC-amenable contaminants belonging to different chemical groups, among them, phthalates and polycyclic aromatic hydrocarbons (PAHs), along with residues of veterinary treatments used in apiculture.

  18. Differentiation of Clinically Relevant mucorales Rhizopus microsporus and R. arrhizus by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS)

    NARCIS (Netherlands)

    Dolatabadi, S.; Kolecka, A.; Versteeg, Matthijs; de Hoog, Sybren G; Boekhout, Teun

    This study addresses the usefulness of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) for reliable identification of the two most frequently occuring clinical species of Rhizopus, namely R. arrhizus with its two varieties arrhizus and delemar and R.

  19. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry identification of large colony beta-hemolytic streptococci containing Lancefield groups A, C, and G

    DEFF Research Database (Denmark)

    Salgård Jensen, Christian; Dam-Nielsen, Casper; Arpi, Magnus

    2015-01-01

    BACKGROUND: The aim of this study was to investigate whether large colony beta-hemolytic streptococci containing Lancefield groups A, C, and G can be adequately identified using matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-ToF). Previous studies show varying...

  20. Hybrid quadrupole-orbitrap mass spectrometry analysis with accurate-mass database and parallel reaction monitoring for high-throughput screening and quantification of multi-xenobiotics in honey.

    Science.gov (United States)

    Li, Yi; Zhang, Jinzhen; Jin, Yue; Wang, Lin; Zhao, Wen; Zhang, Wenwen; Zhai, Lifei; Zhang, Yaping; Zhang, Yongxin; Zhou, Jinhui

    2016-01-15

    This study reports a rapid, automated screening and quantification method for the determination of multi-xenobiotic residues in honey using ultra-high performance liquid chromatography-hybrid quadrupole-Orbitrap mass spectrometry (UHPLC-Q-Orbitrap) with a user-built accurate-mass database plus parallel reaction monitoring (PRM). The database contains multi-xenobiotic information including formulas, adduct types, theoretical exact mass and retention time, characteristic fragment ions, ion ratios, and mass accuracies. A simple sample preparation method was developed to reduce xenobiotic loss in the honey samples. The screening method was validated based on retention time deviation, mass accuracy via full scan-data-dependent MS/MS (full scan-ddMS2), multi-isotope ratio, characteristic ion ratio, sensitivity, and positive/negative switching performance between the spiked sample and corresponding standard solution. The quantification method based on the PRM mode is a promising new quantitative tool which we validated in terms of selectivity, linearity, recovery (accuracy), repeatability (precision), decision limit (CCα), detection capability (CCβ), matrix effects, and carry-over. The optimized methods proposed in this study enable the automated screening and quantification of 157 compounds in less than 15 min in honey. The results of this study, as they represent a convenient protocol for large-scale screening and quantification, also provide a research approach for analysis of various contaminants in other matrices. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Ion-neutral potential models in atmospheric pressure ion mobility time-of-flight mass spectrometry IM(tof)MS.

    Science.gov (United States)

    Steiner, Wes E; English, William A; Hill, Herbert H

    2006-02-09

    The ion mobilities and their respective masses of several classes of amines (primary, secondary, and tertiary) were measured by electrospray ionization atmospheric pressure ion mobility time-of-flight mass spectrometry IM(tof)MS. The experimental data obtained were comparatively analyzed by the one-temperature kinetic theory of Chapman-Enskog. Several theoretical models were used to estimate the collision cross-sections; they include the rigid-sphere, polarization-limit, 12-6-4, and 12-4 potential models. These models were investigated to represent the interaction potentials contained within the collision integral that occurs between the polyatomic ions and the neutral drift gas molecules. The effectiveness of these collision cross-section models on predicting the mobility of these amine ions was explored. Moreover, the effects of drift gas selectivity on the reduced-mass term and in the collision cross-section term was examined. Use of a series of drift gases, namely, helium, neon, argon, nitrogen, and carbon dioxide, made it possible to distinguish between mass effects and polarizability effects. It was found that the modified 12-4 potential that compensates for the center of charge not being at the same location as the centers of mass showed improved agreement over the other collision cross-section models with respect to experimental data.

  2. Determination of aminoglycoside residues in milk and muscle based on a simple and fast extraction procedure followed by liquid chromatography coupled to tandem mass spectrometry and time of flight mass spectrometry.

    Science.gov (United States)

    Arsand, Juliana Bazzan; Jank, Louíse; Martins, Magda Targa; Hoff, Rodrigo Barcellos; Barreto, Fabiano; Pizzolato, Tânia Mara; Sirtori, Carla

    2016-07-01

    Antibiotics are widely used in veterinary medicine mainly for treatment and prevention of diseases. The aminoglycosides are one of the antibiotics classes that have been extensively employed in animal husbandry for the treatment of bacterial infections, but also as growth promotion. The European Union has issued strict Maximum Residue Levels (MRLs) for aminoglycosides in several animal origin products including bovine milk, bovine, swine and poultry muscle. This paper describes a fast and simple analytical method for the determination of ten aminoglycosides (spectinomycin, tobramycin, gentamicin, kanamycin, hygromycin, apramycin, streptomycin, dihydrostreptomycin, amikacin and neomycin) in bovine milk and bovine, swine and poultry muscle. For sample preparation, an extraction method was developed using trichloroacetic acid and clean up with low temperature precipitation and C18 bulk. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was used to carry out quantitative analysis and liquid chromatography-quadrupole-time of flight-mass spectrometry (LC-QTOF-MS) was used to screening purposes. Both methods were validated according to the European Union Commission Directive 2002/657/EC. Good performance characteristics were obtained for recovery, precision, calibration curve, specificity, decision limits (CCα) and detection capabilities (CCβ) in all matrices evaluated. The detection limit (LOD) and quantification limit (LOQ) were ranging from 5 to 100ngg(-1) and 12.5 to 250ngg(-1), respectively. Good linearity (r)-above 0.99-was achieved in concentrations ranging from 0.0 to 2.0×MRL. Recoveries ranged from 36.8% to 98.0% and the coefficient of variation from 0.9 to 20.2%, noting that all curves have been made into their own matrices in order to minimize the matrix effects. The CCβ values obtained in qualitative method were between 25 and 250ngg(-1). The proposed method showed to be simple, easy, and adequate for high-throughput analysis of a large

  3. Ion-neutral transport through quadrupole interfaces of mass-spectrometer systems

    International Nuclear Information System (INIS)

    Jugroot, M.; Groth, C.P.T.; Thomson, B.A.; Baranov, V.; Collings, B.A.; French, J.B.

    2004-01-01

    The transport of free ions through highly under-expanded jet flows of neutral gases and in the presence of applied electric fields is investigated by continuum-based numerical simulations. In particular, numerical results are described which are relevant to ion flows occurring in quadrupole interfaces of mass spectrometer systems. A five-moment mathematical model and parallel multi-block numerical solution procedure is developed for predicting the ion transport. The model incorporates the effects of ion-neutral collision processes and is used in conjunction with a Navier-Stokes model and flow solver for the neutral gas to examine the key influences controlling the ion motion. The effects of the neutral gas flow, electric fields (both dc and rf), and flow field geometry on ion mobility are carefully assessed. The capability of controlling the charged particle motions through a combination of directed neutral flow and applied electric field is demonstrated for these high-speed, hypersonic, jet flows. (author)

  4. Use of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry for Caspofungin Susceptibility Testing of Candida and Aspergillus Species

    Science.gov (United States)

    De Carolis, Elena; Vella, Antonietta; Florio, Ada R.; Posteraro, Patrizia; Perlin, David S.; Posteraro, Brunella

    2012-01-01

    Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) was evaluated for testing susceptibility to caspofungin of wild-type and fks mutant isolates of Candida and Aspergillus. Complete essential agreement was observed with the CLSI reference method, with categorical agreement for 94.1% of the Candida isolates tested. Thus, MALDI-TOF MS is a reliable and accurate method to detect fungal isolates with reduced caspofungin susceptibility. PMID:22535984

  5. Discrimination of Bacillus anthracis Spores by Direct in-situ Analysis of Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry

    International Nuclear Information System (INIS)

    Jeong, Youngsu; Lee, Jonghee; Kim, Seongsoo

    2013-01-01

    The rapid and accurate identification of biological agents is a critical step in the case of bio-terror and biological warfare attacks. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry has been widely used for the identification of microorganisms. In this study, we describe a method for the rapid and accurate discrimination of Bacillus anthracis spores using MALDI-TOF MS. Our direct in-situ analysis of MALDI-TOF MS does not involve subsequent high-resolution mass analyses and sample preparation steps. This method allowed the detection of species-specific biomarkers from each Bacillus spores. Especially, B. anthracis spores had specific biomarker peaks at 2503, 3089, 3376, 6684, 6698, 6753, and 6840 m/z. Cluster and PCA analyses of the mass spectra of Bacillus spores revealed distinctively separated clusters and within-groups similarity. Therefore, we believe that this method is effective in the real-time identification of biological warfare agents such as B. anthracis as well as other microorganisms in the field

  6. Discrimination of Bacillus anthracis Spores by Direct in-situ Analysis of Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Youngsu; Lee, Jonghee; Kim, Seongsoo [Agency for Defense Development, Daejeon (Korea, Republic of)

    2013-09-15

    The rapid and accurate identification of biological agents is a critical step in the case of bio-terror and biological warfare attacks. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry has been widely used for the identification of microorganisms. In this study, we describe a method for the rapid and accurate discrimination of Bacillus anthracis spores using MALDI-TOF MS. Our direct in-situ analysis of MALDI-TOF MS does not involve subsequent high-resolution mass analyses and sample preparation steps. This method allowed the detection of species-specific biomarkers from each Bacillus spores. Especially, B. anthracis spores had specific biomarker peaks at 2503, 3089, 3376, 6684, 6698, 6753, and 6840 m/z. Cluster and PCA analyses of the mass spectra of Bacillus spores revealed distinctively separated clusters and within-groups similarity. Therefore, we believe that this method is effective in the real-time identification of biological warfare agents such as B. anthracis as well as other microorganisms in the field.

  7. Electrospray ionization tandem mass spectrometry of ammonium cationized polyethers.

    Science.gov (United States)

    Nasioudis, Andreas; Heeren, Ron M A; van Doormalen, Irene; de Wijs-Rot, Nicolette; van den Brink, Oscar F

    2011-05-01

    Quaternary ammonium salts (Quats) and amines are known to facilitate the MS analysis of high molar mass polyethers by forming low charge state adduct ions. The formation, stability, and behavior upon collision-induced dissociation (CID) of adduct ions of polyethers with a variety of Quats and amines were studied by electrospray ionization quadrupole time-of-flight, quadrupole ion trap, and linear ion trap tandem mass spectrometry (MS/MS). The linear ion trap instrument was part of an Orbitrap hybrid mass spectrometer that allowed accurate mass MS/MS measurements. The Quats and amines studied were of different degree of substitution, structure, and size. The stability of the adduct ions was related to the structure of the cation, especially the amine's degree of substitution. CID of singly/doubly charged primary and tertiary ammonium cationized polymers resulted in the neutral loss of the amine followed by fragmentation of the protonated product ions. The latter reveals information about the monomer unit, polymer sequence, and endgroup structure. In addition, the detection of product ions retaining the ammonium ion was observed. The predominant process in the CID of singly charged quaternary ammonium cationized polymers was cation detachment, whereas their doubly charged adduct ions provided the same information as the primary and tertiary ammonium cationized adduct ions. This study shows the potential of specific amines as tools for the structural elucidation of high molar mass polyethers. © American Society for Mass Spectrometry, 2011

  8. Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of clinically important yeast species.

    Science.gov (United States)

    Stevenson, Lindsay G; Drake, Steven K; Shea, Yvonne R; Zelazny, Adrian M; Murray, Patrick R

    2010-10-01

    We evaluated the use of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for the rapid identification of yeast species. Using Bruker Daltonics MALDI BioTyper software, we created a spectral database library with m/z ratios of 2,000 to 20,000 Da for 109 type and reference strains of yeast (44 species in 8 genera). The database was tested for accuracy by use of 194 clinical isolates (23 species in 6 genera). A total of 192 (99.0%) of the clinical isolates were identified accurately by MALDI-TOF MS. The MALDI-TOF MS-based method was found to be reproducible and accurate, with low consumable costs and minimal preparation time.

  9. Collisional activation by MALDI tandem time-of-flight mass spectrometry induces intramolecular migration of amide hydrogens in protonated peptides

    DEFF Research Database (Denmark)

    Jørgensen, Thomas J D; Bache, Nicolai; Roepstorff, Peter

    2005-01-01

    of doubly protonated peptides that the original regioselective deuterium pattern of these peptides is completely erased (Jørgensen, T. J. D., Gårdsvoll, H., Ploug, M., and Roepstorff, P. (2005) Intramolecular migration of amide hydrogens in protonated peptides upon collisional activation. J. Am. Chem. Soc...... randomization among all exchangeable sites (i.e. all N- and O-linked hydrogens) also occurs upon high energy collisional activation of singly protonated peptides. This intense proton/deuteron traffic precludes the use of MALDI tandem time-of-flight mass spectrometry to obtain reliable information...

  10. High-temperature quadrupole mass spectrometer for studying vaporization from materials heated by a CO2 laser

    International Nuclear Information System (INIS)

    Fredin, L.; Hansen, G.P.; Sampson, M.P.; Margrave, J.L.; Behrens, R.G.

    1986-09-01

    To evaluate the effectiveness of mass spectrometry techniques in studying vaporization from selected materials, we designed a mass spectrometer than can be used either with a continuous wave or pulsed laser heating system or with a conventional furnace heating system. Our experimental apparatus, the components of which are described in detail, consisted of a quadrupole mass spectrometer positioned in a crossed-beam configuration, controlling electronics, a data acquisition system, a vacuum system, a cryogenic collimation system, and a laser heating system. Results of mass spectral scans taken during laser pyrolysis of polymeric materials and laser vaporization of graphite were compatible with data reported in other studies. Results of mass spectral studies of laser-induced combustion in the Ti + C system are also presented

  11. Laser desorption/ionization time-of-flight mass spectrometry of triacylglycerols and other components in fingermark samples.

    Science.gov (United States)

    Emerson, Beth; Gidden, Jennifer; Lay, Jackson O; Durham, Bill

    2011-03-01

    The chemical composition of fingermarks could potentially be important for determining investigative leads, placing individuals at the time of a crime, and has applications as biomarkers of disease. Fingermark samples containing triacylglycerols (TAGs) and other components were analyzed using laser desorption/ionization (LDI) time-of-flight mass spectrometry (TOF MS). Only LDI appeared to be useful for this application while conventional matrix-assisted LDI-TOF MS was not. Tandem MS was used to identify/confirm selected TAGs. A limited gender comparison, based on a simple t-distribution and peaks intensities, indicated that two TAGs showed gender specificity at the 95% confidence level and two others at 97.5% confidence. Because gender-related TAGs differences were most often close to the standard deviation of the measurements, the majority of the TAGs showed no gender specificity. Thus, LDI-TOF MS is not a reliable indicator of gender based on fingermark analysis. Cosmetic ingredients present in some samples were identified. © 2011 American Academy of Forensic Sciences.

  12. Comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry in the identification of organic compounds in atmospheric aerosols from coniferous forest

    NARCIS (Netherlands)

    Kallio, M.; Jussila, M.; Rissanen, T.; Anttila, P.; Hartonen, K.; Reissell, A.; Vreuls, R.J.J.; Adahchour, M.; Hyotylainen, T.

    2006-01-01

    Comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC × GC-TOF-MS) was applied in the identification of organic compounds in atmospheric aerosols from coniferous forest. The samples were collected at Hyytiälä, Finland, as part of the QUEST campaign, in

  13. Characterization of foot- and mouth disease virus antigen by surface-enhanced laser desorption ionization-time of flight-mass spectrometry in aqueous and oil-emulsion formulations

    NARCIS (Netherlands)

    Harmsen, M.M.; Jansen, J.; Westra, D.F.; Coco-Martin, J.M.

    2010-01-01

    We have used a novel method, surface-enhanced laser desorption ionization-time of flight-mass spectrometry (SELDI-TOF-MS), to characterize foot-and-mouth disease virus (FMDV) vaccine antigens. Using specific capture with FMDV binding recombinant antibody fragments and tryptic digestion of FMDV

  14. Construction and simulation of a multi-reflection time-of-flight mass spectrometer at the University of Notre Dame

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, B.E., E-mail: bschult4@nd.edu; Kelly, J.M.; Nicoloff, C.; Long, J.; Ryan, S.; Brodeur, M.

    2016-06-01

    One of the most significant problems in the production of rare isotopes is the simultaneous production of contaminants, often time isobaric. Thus, a high-resolution beam purification method is required which needs to be compatible with both the low yield and short half-life of the desired radionuclide. A multi-reflection time-of-flight mass spectrometer meets all these criteria, in addition to boasting a smaller footprint relative to traditional separator dipole magnets. Such a device is currently under construction at the University of Notre Dame and is intended to be coupled to the IG-ISOL source of the planned cyclotron facility. The motivation and conceptual design are presented, as well as the status of simulations to determine the feasibility of using a Bradbury–Nielsen gate for bunching ion beams during initial system testing.

  15. Characterization of a Carbon Nanotube Field Emission Electron Gun for the VAPoR Miniaturized Pyrolysis-Time-of-Flight Mass Spectrometer

    Science.gov (United States)

    Getty, Stephanie; Li, Mary; Costen, Nicholas; Hess, Larry; Feng, Steve; King, Todd; Brinckerhoff, William; Mahaffy, Paul; Glavin, Daniel

    2009-01-01

    We are developing the VAPoR (Volatile Analysis by Pyrolysis of Regolith) instrument towards studying soil composition, volatiles, and trapped noble gases in the polar regions of the Moon. VAPOR will ingest a soil sample and conduct analysis by pyrolysis and time-of-flight mass spectrometry (ToF-MS). Here, we describe miniaturization efforts within this development, including a carbon nanotube (CNT) field emission electron gun that is under consideration for use as the electron impact ionization source for the ToF-MS.

  16. An ion source for radiofrequency-pulsed glow discharge time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    González Gago, C.; Lobo, L.; Pisonero, J.; Bordel, N.; Pereiro, R.; Sanz-Medel, A.

    2012-01-01

    A Grimm-type glow discharge (GD) has been designed and constructed as an ion source for pulsed radiofrequency GD spectrometry when coupled to an orthogonal time of flight mass spectrometer. Pulse shapes of argon species and analytes were studied as a function of the discharge conditions using a new in-house ion source (UNIOVI GD) and results have been compared with a previous design (PROTOTYPE GD). Different behavior and shapes of the pulse profiles have been observed for the two sources evaluated, particularly for the plasma gas ionic species detected. In the more analytically relevant region (afterglow), signals for 40 Ar + with this new design were negligible, while maximum intensity was reached earlier in time for 41 (ArH) + than when using the PROTOTYPE GD. Moreover, while maximum 40 Ar + signals measured along the pulse period were similar in both sources, 41 (ArH) + and 80 (Ar 2 ) + signals tend to be noticeable higher using the PROTOTYPE chamber. The UNIOVI GD design was shown to be adequate for sensitive direct analysis of solid samples, offering linear calibration graphs and good crater shapes. Limits of detection (LODs) are in the same order of magnitude for both sources, although the UNIOVI source provides slightly better LODs for those analytes with masses slightly higher than 41 (ArH) + . - Highlights: ► A new RF-pulsed GD ion source (UNIOVI GD) coupled to TOFMS has been characterized. ► Linear calibration graphs and LODs in the low ppm range are achieved. ► Craters with flat bottoms and vertical walls are obtained. ► UNIOVI source can be easily cleaned as it does not require flow tube. ► UNIOVI GD has a simple design and thus its manufacture is easy and cheap.

  17. Cassini Ion Mass Spectrometer Peak Calibrations from Statistical Analysis of Flight Data

    Science.gov (United States)

    Woodson, A. K.; Johnson, R. E.

    2017-12-01

    The Cassini Ion Mass Spectrometer (IMS) is an actuating time-of-flight (TOF) instrument capable of resolving ion mass, energy, and trajectory over a field of view that captures nearly the entire sky. One of three instruments composing the Cassini Plasma Spectrometer, IMS sampled plasma throughout the Kronian magnetosphere from 2004 through 2012 when it was permanently disabled due to an electrical malfunction. Initial calibration of the flight instrument at Southwest Research Institute (SwRI) was limited to a handful of ions and energies due to time constraints, with only about 30% of planned measurements carried out prior to launch. Further calibration measurements were subsequently carried out after launch at SwRI and Goddard Space Flight Center using the instrument prototype and engineering model, respectively. However, logistical differences among the three calibration efforts raise doubts as to how accurately the post-launch calibrations describe the behavior of the flight instrument. Indeed, derived peak parameters for some ion species differ significantly from one calibration to the next. In this study we instead perform a statistical analysis on 8 years of flight data in order to extract ion peak parameters that depend only on the response of the flight instrument itself. This is accomplished by first sorting the TOF spectra based on their apparent compositional similarities (e.g. primarily water group ions, primarily hydrocarbon ions, etc.) and normalizing each spectrum. The sorted, normalized data are then binned according to TOF, energy, and counts in order to generate energy-dependent probability density maps of each ion peak contour. Finally, by using these density maps to constrain a stochastic peak fitting algorithm we extract confidence intervals for the model parameters associated with various measured ion peaks, establishing a logistics-independent calibration of the body of IMS data gathered over the course of the Cassini mission.

  18. Gas chromatography/multiphoton ionization/time-of-flight mass spectrometry of polychlorinated biphenyls

    International Nuclear Information System (INIS)

    Matsui, Taiki; Uchimura, Tomohiro; Imasaka, Totaro

    2011-01-01

    A sample mixture of polychlorinated biphenyls (PCBs) was measured by gas chromatography/multiphoton ionization/time-of-flight mass spectrometry (GC/MPI/TOF-MS) using four types of laser sources. When a fourth harmonic emission (266 nm) of a picosecond Nd:YAG laser (1064 nm) was utilized, highly chlorinated PCBs larger than hepta-CBs were not observed. A fifth harmonic emission (213 nm) of the picosecond Nd:YAG laser allowed the measurement of PCBs from di-CBs to octa-CBs, and the limit of detection (LOD) was several pg for each component of PCBs. The LOD for the total amount of PCBs, which was calculated using the protocol provided by the Ministry of the Environment, Japan, was 1000 pg. The signal intensity of the congeners with chlorine atoms at the ortho positions (non-coplanar PCBs) was enhanced by using the fifth harmonic emission. When the fourth harmonic emission remaining after fifth harmonic generation was simultaneously used, the LOD for total PCBs was improved to 667 pg. The PCB sample was also measured using a third harmonic emission (267 nm) of a femtosecond Ti:sapphire laser (800 nm), providing an LOD of 677 pg. Thus, the two-color beam (266/213 nm) of a picosecond Nd:YAG laser had a comparable, or even slightly superior, performance to the more expensive femtosecond Ti:sapphire laser.

  19. Isotopic dependence of the giant quadrupole resonance in the stable even-mass molybdenum nuclei

    International Nuclear Information System (INIS)

    Moalem, A.; Gaillard, Y.; Bemolle, A.M.; Buenerd, M.; Chauvin, J.; Duhamel, G.; Lebrun, D.; Martin, P.; Perrin, G.; de Saintignon, P.

    1979-01-01

    Inelastic scattering of 110 MeV 3 He particles is used to probe the quadrupole strength in the even Mo isotopes. The peak position of the giant quadrupole resonance is found to decrease more rapidly than predicted by the A/sup -1/3/ law, a behavior very similar to that exhibited by the photonuclear giant dipole resonance. The width and strength of the giant quadrupole resonance are practically constant in 92 Mo through 100 Mo

  20. Identification of wheat varieties using matrix-assisted laserdesorption/ionisation time-of-flight mass spectrometry and anartificial neural network

    DEFF Research Database (Denmark)

    Bloch, Helle Aagaard; Kesmir, Can; Petersen, Marianne Kjerstine

    1999-01-01

    of this novelmethod with respect to various experimental parameters has been tested. The results can be summarised: (i)With this approach 97% of the wheat varieties can be classified correctly with a corresponding correlationcoefficient of 1.0, (ii) The method is fast since the time of extracting gliadins from flour......A novel tool for variety identification of wheat (Triticum aestivum L.) has been developed: an artificialneural network (ANN) is used to classify the gliadin fraction analysed by matrix-assisted laserdesorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS). The robustness...... by the identity of the operator making theanalysis. This study demonstrates that a combination of an ANN and MALDI-TOFMS analysis of thegliadin fraction provides a fast and reliable tool for the variety identification of wheat. Copyright 1999 JohnWiley & Sons, Ltd....

  1. Characterization of olive oil volatiles by multi-step direct thermal desorption-comprehensive gas chromatography-time-of-flight mass spectrometry using a programmed temperature vaporizing injector

    NARCIS (Netherlands)

    de Koning, S.; Kaal, E.; Janssen, H.-G.; van Platerink, C.; Brinkman, U.A.Th.

    2008-01-01

    The feasibility of a versatile system for multi-step direct thermal desorption (DTD) coupled to comprehensive gas chromatography (GC × GC) with time-of-flight mass spectrometric (TOF-MS) detection is studied. As an application the system is used for the characterization of fresh versus aged olive

  2. Differential fragmentation patterns of pectin oligogalacturonides observed by nanoelectrospray quadrupole ion-trap mass spectrometry using automated spectra interpretation

    DEFF Research Database (Denmark)

    Mutenda, Kudzai E; Matthiesen, Rune; Roepstorff, Peter

    2007-01-01

    Oligogalacturonides of different degrees of polymerization (DP) and methyl esterification (DE) were structurally analyzed by nanoESI quadrupole ion-trap mass spectrometry. The fragmentation patterns of the oligogalacturonides were compared using the program 'Virtual Expert Mass Spectrometrist...... with free carboxylic acid groups underwent higher water loss compared to fully methyl-esterified oligogalacturonides under the same fragmentation conditions. Cross-ring cleavage, in which fragmentation occurs across the ring system of the galacturonate residue and signified by unique mass losses...... water loss than methyl-esterified ones will be postulated. In addition, the VEMS program was extended to automatically interpret and assign the fragment ions peaks generated in this study....

  3. Ultra-fast liquid chromatography coupled with electrospray ionization time-of-flight mass spectrometry for the rapid phenolic profiling of red maple (Acer rubrum) leaves.

    Science.gov (United States)

    Li, Chunting; Seeram, Navindra P

    2018-03-07

    The red maple (Acer rubrum) species is economically important to North America because of its sap, which is used to produce maple syrup. In addition, various other red maple plant parts, including leaves, were used as a traditional medicine by the Native Americans. Currently, red maple leaves are being used for nutraceutical and cosmetic applications but there are no published analytical methods for comprehensive phytochemical characterization of this material. Herein, a rapid and sensitive method using liquid chromatography with electrospray ionization time-of-flight tandem mass spectrometry was developed to characterize the phenolics in a methanol extract of red maple leaves and a proprietary phenolic-enriched red maple leaves extract (Maplifa™). Time-of-flight mass spectrometry and tandem mass spectrometry experiments led to the identification of 106 phenolic compounds in red maples leaves with the vast majority of these compounds also detected in Maplifa™. The compounds included 68 gallotannins, 25 flavonoids, gallic acid, quinic acid, catechin, epicatechin, and nine other gallic acid derivatives among which 11 are potentially new and 75 are being reported from red maple for the first time. The developed method to characterize red maple leaves phenolics is rapid and highly sensitive and could aid in future standardization and quality control of this botanical ingredient. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Qualitative and Quantitative Analysis of Andrographis paniculata by Rapid Resolution Liquid Chromatography/Time-of-Flight Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Jian-Fei Qin

    2013-09-01

    Full Text Available A rapid resolution liquid chromatography/time-of-flight tandem mass spectrometry (RRLC-TOF/MS method was developed for qualitative and quantitative analysis of the major chemical constituents in Andrographis paniculata. Fifteen compounds, including flavonoids and diterpenoid lactones, were unambiguously or tentatively identified in 10 min by comparing their retention times and accurate masses with standards or literature data. The characteristic fragmentation patterns of flavonoids and diterpenoid lactones were summarized, and the structures of the unknown compounds were predicted. Andrographolide, dehydroandrographolide and neoandrographolide were further quantified as marker substances. It was found that the calibration curves for all analytes showed good linearity (R2 > 0.9995 within the test ranges. The overall limits of detection (LODs and limits of quantification (LOQs were 0.02 μg/mL to 0.06 μg/mL and 0.06 μg/mL to 0.2 μg/mL, respectively. The relative standard deviations (RSDs for intra- and inter-day precisions were below 3.3% and 4.2%, respectively. The mean recovery rates ranged from 96.7% to 104.5% with the relative standard deviations (RSDs less than 2.72%. It is concluded that RRLC-TOF/MS is powerful and practical in qualitative and quantitative analysis of complex plant samples due to time savings, sensitivity, precision, accuracy and lowering solvent consumption.

  5. Background-free beta-decay half-life measurements by in-trap decay and high-resolution MR-ToF mass analysis

    Science.gov (United States)

    Wolf, R. N.; Atanasov, D.; Blaum, K.; Kreim, S.; Lunney, D.; Manea, V.; Rosenbusch, M.; Schweikhard, L.; Welker, A.; Wienholtz, F.; Zuber, K.

    2016-06-01

    In-trap decay in ISOLTRAP's radiofrequency quadrupole (RFQ) ion beam cooler and buncher was used to determine the lifetime of short-lived nuclides. After various storage times, the remaining mother nuclides were mass separated from accompanying isobaric contaminations by the multi-reflection time-of-flight mass separator (MR-ToF MS), allowing for a background-free ion counting. A feasibility study with several online measurements shows that the applications of the ISOLTRAP setup can be further extended by exploiting the high resolving power of the MR-ToF MS in combination with in-trap decay and single-ion counting.

  6. Time of flight measurement on the SOFIA experiment

    International Nuclear Information System (INIS)

    Bail, A.; Taieb, J.; Chatillon, A.; Belier, G.; Laurent, B.; Pellereau, E.

    2011-01-01

    The SOFIA experiment, which will be held at GSI (Darmstadt (Germany)) will allow to completely determine the mass and charge numbers of fragments produced in the fission reaction of radioactive actinides in reverse kinematics. Therefore, a dedicated setup has been developed for the Time of Flight measurement of relativistic heavy ions. The studies, which led to the choice of the adequate plastic scintillators and photomultipliers, are presented. Tests have been undertaken with the ELSA laser and electron beam facility. They shown that a suitable choice would be EJ-232 plastic scintillator for the ToF wall and EJ-232Q for the start detector and Hamamatsu H6533 and H10580 photomultipliers. This was confirmed by two test experiments realized at GSI with relativistic heavy ion beam ( 56 Fe and 238 U), where a time of flight resolution better than 20 ps FWHM was reached. (authors)

  7. Time of flight measurement on the SOFIA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bail, A.; Taieb, J.; Chatillon, A.; Belier, G.; Laurent, B.; Pellereau, E. [CEA/DAM/DIF, Arpajon (France)

    2011-07-01

    The SOFIA experiment, which will be held at GSI (Darmstadt (Germany)) will allow to completely determine the mass and charge numbers of fragments produced in the fission reaction of radioactive actinides in reverse kinematics. Therefore, a dedicated setup has been developed for the Time of Flight measurement of relativistic heavy ions. The studies, which led to the choice of the adequate plastic scintillators and photomultipliers, are presented. Tests have been undertaken with the ELSA laser and electron beam facility. They shown that a suitable choice would be EJ-232 plastic scintillator for the ToF wall and EJ-232Q for the start detector and Hamamatsu H6533 and H10580 photomultipliers. This was confirmed by two test experiments realized at GSI with relativistic heavy ion beam ({sup 56}Fe and {sup 238}U), where a time of flight resolution better than 20 ps FWHM was reached. (authors)

  8. Collisional damping of giant monopole and quadrupole resonances

    International Nuclear Information System (INIS)

    Yildirim, S.; Gokalp, A.; Yilmaz, O.; Ayik, S.

    2001-01-01

    Collisional damping widths of giant monopole and quadrupole excitations for 120 Sn and 208 Pb at zero and finite temperatures are calculated within Thomas-Fermi approximation by employing the microscopic in-medium cross-sections of Li and Machleidt and the phenomenological Skyrme and Gogny forces, and are compared with each other. The results for the collisional widths of giant monopole and quadrupole vibrations at zero temperature as a function of the mass number show that the collisional damping of giant monopole vibrations accounts for about 30 - 40% of the observed widths at zero temperature, while for giant quadrupole vibrations it accounts for only 20 - 30% of the observed widths at zero temperature. (orig.)

  9. Long-term changes in the sensitivity of quadrupole mass spectrometers

    International Nuclear Information System (INIS)

    Blanchard, W.R.; McCarthy, P.J.; Dylla, H.F.; LaMarche, P.H.; Simpkins, J.E.

    1986-02-01

    We routinely use quadrupole mass spectrometers (QMS) to monitor vacuum conditions, gas purity, and plasma-wall interactions in the Tokamak Fusion Test Reactor (TFTR) at Princeton. Two QMS systems have been operating on TFTR continuously for a two-year period. Both QMS systems are absolutely calibrated at weekly intervals using a six-part standard gas mixture. The calibration procedure is based on the use of transfer standards (ion gauge and capacitance manometer) that are calibrated against a primary standard (spinning rotor gauge) on an external vacuum system. We have identified variations in the efficiency of the QMS ionizer and drifts in the sensitivity of the electron multiplier ion detector to be the major reasons for the observed changes in overall OMS sensitivity. Weekly variations in sensitivity greater than 100% have been observed following system bakeout at 150 0 C and with the use of rhenium filaments which were initially in the QMS ionizer. Operation of the QMS systems with tungsten filaments and at constant temperature has yielded more stable operation with weekly sensitivity changes generally being less than 10%. 7 refs., 7 figs

  10. Performance of matrix-assisted laser desorption-time of flight mass spectrometry for identification of clinical yeast isolates

    DEFF Research Database (Denmark)

    Rosenvinge, Flemming S; Dzajic, Esad; Knudsen, Elisa

    2013-01-01

    Accurate and fast yeast identification is important when treating patients with invasive fungal disease as susceptibility to antifungal agents is highly species related. Matrix-assisted laser desorption-time of flight mass spectrometry (MALDI-TOF-MS) provides a powerful tool with a clear potential...... spectra output, all 13 isolates were correctly identified, resulting in an overall identification performance of 92%. No misidentifications occurred with the two systems. Of the routine isolates one laboratory identified 99/99 (100%) and 90/99 (91%) to species level by Saramis/Axima and conventional...... identification, respectively, whereas the other laboratory identified 83/98 (85%) to species level by both BioTyper/Bruker and conventional identification. Both MALDI-TOF-MS systems are fast, have built-in databases that cover the majority of clinically relevant Candida species, and have an accuracy...

  11. Accurate screening for synthetic preservatives in beverage using high performance liquid chromatography with time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Li Xiuqin; Zhang Feng; Sun Yanyan; Yong Wei; Chu Xiaogang; Fang Yanyan; Zweigenbaum, Jerry

    2008-01-01

    In this study, liquid chromatography time-of-flight mass spectrometry (HPLC/TOF-MS) is applied to qualitation and quantitation of 18 synthetic preservatives in beverage. The identification by HPLC/TOF-MS is accomplished with the accurate mass (the subsequent generated empirical formula) of the protonated molecules [M + H]+ or the deprotonated molecules [M - H]-, along with the accurate mass of their main fragment ions. In order to obtain sufficient sensitivity for quantitation purposes (using the protonated or deprotonated molecule) and additional qualitative mass spectrum information provided by the fragments ions, segment program of fragmentor voltages is designed in positive and negative ion mode, respectively. Accurate mass measurements are highly useful in the complex sample analyses since they allow us to achieve a high degree of specificity, often needed when other interferents are present in the matrix. The mass accuracy typically obtained is routinely better than 3 ppm. The 18 compounds behave linearly in the 0.005-5.0 mg.kg -1 concentration range, with correlation coefficient >0.996. The recoveries at the tested concentrations of 1.0 mg.kg -1 -100 mg.kg -1 are 81-106%, with coefficients of variation -1 , which are far below the required maximum residue level (MRL) for these preservatives in foodstuff. The method is suitable for routine quantitative and qualitative analyses of synthetic preservatives in foodstuff

  12. Analysis of Phospholipid Mixtures from Biological Tissues by Matrix-Assisted Laser Desorption and Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS): A Laboratory Experiment

    Science.gov (United States)

    Eibisch, Mandy; Fuchs, Beate; Schiller, Jurgen; Sub, Rosmarie; Teuber, Kristin

    2011-01-01

    Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) is increasingly used to investigate the phospholipid (PL) compositions of tissues and body fluids, often without previous separation of the total mixture into the individual PL classes. Therefore, the questions of whether all PL classes are detectable…

  13. Structural calculations and experimental detection of small Ga mS n clusters using time-of-flight mass spectrometry

    Science.gov (United States)

    BelBruno, J. J.; Sanville, E.; Burnin, A.; Muhangi, A. K.; Malyutin, A.

    2009-08-01

    Ga mS n clusters were generated by laser ablation of a solid sample of Ga 2S 3. The resulting molecules were analyzed in a time-of-flight mass spectrometer. In addition to atomic species, the spectra exhibited evidence for the existence of GaS3+, GaS4+, GaS5+, and GaS6+ clusters. The potential neutral and cationic structures of the observed Ga mS n clusters were computationally investigated using a density-functional approach. Reference is made to the kinetic pathways required for production of clusters from the starting point of the stoichiometric molecule or molecular ion. Cluster atomization enthalpies are compared with bulk values from the literature.

  14. The Assessment of Selectivity in Different Quadrupole-Orbitrap Mass Spectrometry Acquisition Modes

    Science.gov (United States)

    Berendsen, Bjorn J. A.; Wegh, Robin S.; Meijer, Thijs; Nielen, Michel W. F.

    2015-02-01

    Selectivity of the confirmation of identity in liquid chromatography (tandem) mass spectrometry using Q-Orbitrap instrumentation was assessed using different acquisition modes based on a representative experimental data set constructed from 108 samples, including six different matrix extracts and containing over 100 analytes each. Single stage full scan, all ion fragmentation, and product ion scanning were applied. By generating reconstructed ion chromatograms using unit mass window in targeted MS2, selected reaction monitoring (SRM), regularly applied using triple-quadrupole instruments, was mimicked. This facilitated the comparison of single stage full scan, all ion fragmentation, (mimicked) SRM, and product ion scanning applying a mass window down to 1 ppm. Single factor Analysis of Variance was carried out on the variance (s2) of the mass error to determine which factors and interactions are significant parameters with respect to selectivity. We conclude that selectivity is related to the target compound (mainly the mass defect), the matrix, sample clean-up, concentration, and mass resolution. Selectivity of the different instrumental configurations was quantified by counting the number of interfering peaks observed in the chromatograms. We conclude that precursor ion selection significantly contributes to selectivity: monitoring of a single product ion at high mass accuracy with a 1 Da precursor ion window proved to be equally selective or better to monitoring two transition products in mimicked SRM. In contrast, monitoring a single fragment in all ion fragmentation mode results in significantly lower selectivity versus mimicked SRM. After a thorough inter-laboratory evaluation study, the results of this study can be used for a critical reassessment of the current identification points system and contribute to the next generation of evidence-based and robust performance criteria in residue analysis and sports doping.

  15. Shock tube/time-of-flight mass spectrometer for high temperature kinetic studies

    International Nuclear Information System (INIS)

    Tranter, Robert S.; Giri, Binod R.; Kiefer, John H.

    2007-01-01

    A shock tube (ST) with online, time-of-flight mass spectrometric (TOF-MS) detection has been constructed for the study of elementary reactions at high temperature. The ST and TOF-MS are coupled by a differentially pumped molecular beam sampling interface, which ensures that the samples entering the TOF-MS are not contaminated by gases drawn from the cold end wall thermal boundary layer in the ST. Additionally, the interface allows a large range of postshock pressures to be used in the shock tube while maintaining high vacuum in the TOF-MS. The apparatus and the details of the sampling system are described along with an analysis in which cooling of the sampled gases and minimization of thermal boundary layer effects are discussed. The accuracy of kinetic measurements made with the apparatus has been tested by investigating the thermal unimolecular dissociation of cyclohexene to ethylene and 1,3-butadiene, a well characterized reaction for which considerable literature data that are in good agreement exist. The experiments were performed at nominal reflected shock wave pressures of 600 and 1300 Torr, and temperatures ranging from 1260 to 1430 K. The rate coefficients obtained are compared with the earlier shock tube studies and are found to be in very good agreement. As expected no significant difference is observed in the rate constant between pressures of 600 and 1300 Torr

  16. Development of suspect and non-target screening methods for detection of organic contaminants in highway runoff and fish tissue with high-resolution time-of-flight mass spectrometry.

    Science.gov (United States)

    Du, Bowen; Lofton, Jonathan M; Peter, Katherine T; Gipe, Alexander D; James, C Andrew; McIntyre, Jenifer K; Scholz, Nathaniel L; Baker, Joel E; Kolodziej, Edward P

    2017-09-20

    Untreated urban stormwater runoff contributes to poor water quality in receiving waters. The ability to identify toxicants and other bioactive molecules responsible for observed adverse effects in a complex mixture of contaminants is critical to effective protection of ecosystem and human health, yet this is a challenging analytical task. The objective of this study was to develop analytical methods using liquid chromatography coupled to high-resolution quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) to detect organic contaminants in highway runoff and in runoff-exposed fish (adult coho salmon, Oncorhynchus kisutch). Processing of paired water and tissue samples facilitated contaminant prioritization and aided investigation of chemical bioavailability and uptake processes. Simple, minimal processing effort solid phase extraction (SPE) and elution procedures were optimized for water samples, and selective pressurized liquid extraction (SPLE) procedures were optimized for fish tissues. Extraction methods were compared by detection of non-target features and target compounds (e.g., quantity and peak area), while minimizing matrix interferences. Suspect screening techniques utilized in-house and commercial databases to prioritize high-risk detections for subsequent MS/MS characterization and identification efforts. Presumptive annotations were also screened with an in-house linear regression (log K ow vs. retention time) to exclude isobaric compounds. Examples of confirmed identifications (via reference standard comparison) in highway runoff include ethoprophos, prometon, DEET, caffeine, cotinine, 4(or 5)-methyl-1H-methylbenzotriazole, and acetanilide. Acetanilide was also detected in runoff-exposed fish gill and liver samples. Further characterization of highway runoff and fish tissues (14 and 19 compounds, respectively with tentative identification by MS/MS data) suggests that many novel or poorly characterized organic contaminants exist in urban

  17. Rapid identification of bacteria in positive blood culture broths by matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    Science.gov (United States)

    Stevenson, Lindsay G; Drake, Steven K; Murray, Patrick R

    2010-02-01

    Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry is a rapid, accurate method for identifying bacteria and fungi recovered on agar culture media. We report herein a method for the direct identification of bacteria in positive blood culture broths by MALDI-TOF mass spectrometry. A total of 212 positive cultures were examined, representing 32 genera and 60 species or groups. The identification of bacterial isolates by MALDI-TOF mass spectrometry was compared with biochemical testing, and discrepancies were resolved by gene sequencing. No identification (spectral score of blood culture broth. Of the bacteria with a spectral score of > or = 1.7, 162 (95.3%) of 170 isolates were correctly identified. All 8 isolates of Streptococcus mitis were misidentified as being Streptococcus pneumoniae isolates. This method provides a rapid, accurate, definitive identification of bacteria within 1 h of detection in positive blood cultures with the caveat that the identification of S. pneumoniae would have to be confirmed by an alternative test.

  18. Quadrupole Moments And Gamma Deformation Of Wobbling Excitations In 163Ln

    International Nuclear Information System (INIS)

    Goergen, A.; Hagemann, G.B.; Sletten, G.; Hamamoto, I.; Bengtsson, R.; Clark, R.M.; Cromaz, M.; Fallon, P.; Lee, I.Y.; Macchiavelli, A.O.; Ward, D.; Huebel, H.

    2005-01-01

    Wobbling is an excitation mode unique to triaxial nuclei. Even though it is a general consequence of triaxiality in nuclei, it has so far only been observed in the odd-mass Lu isotopes around 163Lu. The principal evidence for the wobbling mode is based on the pattern of rotational bands characterized and described by a wobbling phonon number and the decay between different bands belonging to the same family. A new measurement revealed lifetimes of states in an excited wobbling band for the first time and gave access to absolute transition probabilities for both in-band and interband transitions. A general recipe how to derive quadrupole moments for triaxial nuclei from experimental data is discussed. The results show a remarkable similarity of the quadrupole moments for the different bands, further supporting the wobbling scenario. A decrease of the quadrupole moments is observed with increasing spin. This is attributed to an increase in triaxiality with spin, which can at the same time explain the dependence of the interband transitions on spin. Such an increase in triaxiality is qualitatively reproduced by cranking calculations to which the experimental results are compared

  19. LEMS: application of the method to study the static quadrupole moment of the K=35/2 isomer in 179W

    International Nuclear Information System (INIS)

    Neyens, G.; Vyvey, K.; Byrne, A.P.; Dracoulis, G.D.; Blaha, P.

    1997-01-01

    The method of the level mixing spectroscopy (LEMS) was applied for the first time for the study of the static quadrupole moments of high-K isomers in the A∼180 mass region. Results from a preliminary experiment for the static quadrupole moment of the 35/2 - (750 ns) isomer in 179 W give a limit for its upper value Q 2 <0.343. (orig.). With 1 fig

  20. Linear electric field time-of-flight ion mass spectrometer

    Science.gov (United States)

    Funsten, Herbert O [Los Alamos, NM; Feldman, William C [Los Alamos, NM

    2008-06-10

    A linear electric field ion mass spectrometer having an evacuated enclosure with means for generating a linear electric field located in the evacuated enclosure and means for injecting a sample material into the linear electric field. A source of pulsed ionizing radiation injects ionizing radiation into the linear electric field to ionize atoms or molecules of the sample material, and timing means determine the time elapsed between ionization of atoms or molecules and arrival of an ion out of the ionized atoms or molecules at a predetermined position.

  1. In cleanroom, sub-ppb real-time monitoring of volatile organic compounds using proton-transfer reaction/time of flight/mass spectrometry

    Science.gov (United States)

    Hayeck, Nathalie; Maillot, Philippe; Vitrani, Thomas; Pic, Nicolas; Wortham, Henri; Gligorovski, Sasho; Temime-Roussel, Brice; Mizzi, Aurélie; Poulet, Irène

    2014-04-01

    Refractory compounds such as Trimethylsilanol (TMS) and other organic compounds such as propylene glycol methyl ether acetate (PGMEA) used in the photolithography area of microelectronic cleanrooms have irreversible dramatic impact on optical lenses used on photolithography tools. There is a need for real-time, continuous measurements of organic contaminants in representative cleanroom environment especially in lithography zone. Such information is essential to properly evaluate the impact of organic contamination on optical lenses. In this study, a Proton-Transfer Reaction-Time-of-Flight Mass spectrometer (PTR-TOF-MS) was applied for real-time and continuous monitoring of fugitive organic contamination induced by the fabrication process. Three types of measurements were carried out using the PTR-TOF-MS in order to detect the volatile organic compounds (VOCs) next to the tools in the photolithography area and at the upstream and downstream of chemical filters used to purge the air in the cleanroom environment. A validation and verification of the results obtained with PTR-TOF-MS was performed by comparing these results with those obtained with an off-line technique that is Automated Thermal Desorber - Gas Chromatography - Mass Spectrometry (ATD-GC-MS) used as a reference analytical method. The emerged results from the PTR-TOF-MS analysis exhibited the temporal variation of the VOCs levels in the cleanroom environment during the fabrication process. While comparing the results emerging from the two techniques, a good agreement was found between the results obtained with PTR-TOF-MS and those obtained with ATD-GC-MS for the PGMEA, toluene and xylene. Regarding TMS, a significant difference was observed ascribed to the technical performance of both instruments.

  2. Time-of-flight mass spectrometry of laser exploding foil initiated PETN samples

    Science.gov (United States)

    Fajardo, Mario E.; Molek, Christopher D.; Fossum, Emily C.

    2017-01-01

    We report the results of time-of-flight mass spectrometry (TOFMS) measurements of the gaseous products of thin-film pentaerythritol tetranitrate [PETN, C(CH2NO3)4] samples reacting in vacuo. The PETN sample spots are produced by masked physical vapor deposition [A.S. Tappan, et al., AIP Conf. Proc. 1426, 677 (2012)] onto a first-surface aluminum mirror. A pulsed laser beam imaged through the soda lime glass mirror substrate converts the aluminum layer into a high-temperature high-pressure plasma which initiates chemical reactions in the overlying PETN sample. We had previously proposed [E.C. Fossum, et al., AIP Conf. Proc. 1426, 235 (2012)] to exploit differences in gaseous product chemical identities and molecular velocities to provide a chemically-based diagnostic for distinguishing between "detonation-like" and deflagration responses. Briefly: we expect in-vacuum detonations to produce hyperthermal (v˜10 km/s) thermodynamically-stable products such as N2, CO2, and H2O, and for deflagrations to produce mostly reaction intermediates, such as NO and NO2, with much slower molecular velocities - consistent with the expansion-quenched thermal decomposition of PETN. We observe primarily slow reaction intermediates (NO2, CH2NO3) at low laser pulse energies, the appearance of NO at intermediate laser pulse energies, and the appearance of hyperthemal CO/N2 at mass 28 amu at the highest laser pulse energies. However, these results are somewhat ambiguous, as the NO, NO2, and CH2NO3 intermediates persist and all species become hyperthermal at the higher laser pulse energies. Also, the purported CO/N2 signal at 28 amu may be contaminated by silicon ablated from the glass mirror substrate. We plan to mitigate these problems in future experiments by adopting the "Buelow" sample configuration which employs an intermediate foil barrier to shield the energetic material from the laser and the laser driven plasma [S.J. Buelow, et al., AIP Conf. Proc. 706, 1377 (2003)].

  3. Inductively coupled plasma mass spectrometry with a twin quadrupole instrument using laser ablation sample introduction and monodisperse dried microparticulate injection

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Lloyd A. [Iowa State Univ., Ames, IA (United States)

    1996-10-17

    The focus of this dissertation is the use of a twin quadrupole inductively coupled plasma mass spectrometer (ICP-MS) for the simultaneous detection of two m/z values. The twin quadrupole ICP-MS is used with laser ablation sample introduction in both the steady state (10 Hz) and single pulse modes. Steady state signals are highly correlated and the majority of flicker noise cancels when the ratio is calculated. Using a copper sample, the isotope ratio 63Cu+/65Cu+ is measured with a relative standard deviation (RSD) of 0.26%. Transient signals for single laser pulses are also obtained. Copper isotope ratio measurements for several laser pulses are measured with an RSD of 0.85%. Laser ablation (LA) is used with steel samples to assess the ability of the twin quadrupole ICP-MS to eliminate flicker noise of minor components of steel samples. Isotopic and internal standard ratios are measured in the first part of this work. The isotope ratio 52Cr+/53Cr+ (Cr present at 1.31 %) can be measured with an RSD of 0.06 % to 0.1 %. For internal standard elements, RSDs improve from 1.9 % in the Cr+ signal to 0.12% for the ratio of 51V+ to 52Cr+. In the second part of this work, one mass spectrometer is scanned while the second channel measures an individual m/z value. When the ratio of these two signals is calculated, the peak shapes in the mass spectrum are improved significantly. Pulses of analyte and matrix ions from individual drops are measured simultaneously using the twin quadrupole ICP-MS with monodisperse dried microparticulate injection (MDMI). At modest Pb concentrations (500 ppm), a shoulder on the leading edge of the Li+ signal becomes apparent. Space charge effects are consistent with the disturbances seen.

  4. Optimization of the isotopic analysis of UF6 by quadrupole mass spectrometry technique

    International Nuclear Information System (INIS)

    Porto, Peterson

    2006-01-01

    In the present work a procedure for determination of the isotopic ratio 238 U/ 235 U in UF 6 samples was established using a quadrupole mass spectrometer with ionization by electron impact and ion detection by Faraday cup or electron multiplier. For this, the following items were optimized in the spectrometer: the parameters in the ion source that provided the most intense peak, with good shape, for the corresponding mass of the most abundant isotope; the resolution that reduced the non linear effects and the number of analytic cycles that reduced the uncertainty in the results. The measurement process was characterized with respect to the effects of mass discrimination, linearity and memory effect. The mass discrimination showed to be linearly dependent of the sample pressure in the batch volume, for the pressure ranges from 0.15 to 0.30 mbar and from 0.30 to 0.40 mbar. The spectrometer was shown linear in the measurement of isotopic ratios between 0.005 and 0.045. The memory factor for the ion source and for the introduction system were, respectively, 1.000 ± 0.001 and 1.003 ± 0.003; the first one can be ignored, the second one can be eliminated by washing the batch volume with the new sample. A methodology for routine analysis of UF 6 samples and the determination of the uncertainties were set up in details as well. (author)

  5. On the elemental analysis of different cigarette brands using laser induced breakdown spectroscopy and laser-ablation time of flight mass spectrometry

    Science.gov (United States)

    Ahmed, Nasar; Umar, Zeshan A.; Ahmed, Rizwan; Aslam Baig, M.

    2017-10-01

    We present qualitative and quantitative analysis of the trace elements present in different brands of tobacco available in Pakistan using laser induced breakdown spectroscopy (LIBS) and Laser ablation Time of Flight Mass Spectrometer (LA-TOFMS). The compositional analysis using the calibration free LIBS technique is based on the observed emission spectra of the laser produced plasma plume whereas the elemental composition analysis using LA-TOFMS is based on the mass spectra of the ions produced by laser ablation. The optical emission spectra of these samples contain spectral lines of calcium, magnesium, sodium, potassium, silicon, strontium, barium, lithium and aluminum with varying intensities. The corresponding mass spectra of the elements were detected in LA-TOF-MS with their composition concentration. The analysis of different brands of cigarettes demonstrates that LIBS coupled with a LA-TOF-MS is a powerful technique for the elemental analysis of the trace elements in any solid sample.

  6. Detection of over 100 selenium metabolites in selenized yeast by liquid chromatography electrospray time-of-flight mass spectrometry.

    Science.gov (United States)

    Gilbert-López, Bienvenida; Dernovics, Mihaly; Moreno-González, David; Molina-Díaz, Antonio; García-Reyes, Juan F

    2017-08-15

    The characterization of the selenometabolome of Selenized(Se)-yeast, that is the fraction of water soluble low-molecular weight Se-metabolites produced in Se-yeast is of paramount interest to expand the knowledge on the composition of this food supplement. In this work, we have applied liquid chromatography electrospray time-of-flight mass spectrometry (LC-TOFMS) to search for Se-species from the low molecular weight range fraction of the selenized yeast used for food supplements. Prior to LC-TOFMS, sample treatment consisted of ultrasound assisted water extraction followed by size exclusion fractionation assisted with off-line inductively coupled plasma mass spectrometry detection of isotope 82 Se. The fraction corresponding to low-molecular weight species was subjected to LC-TOFMS using electrospray ionization in the positive ion mode. The detection of the suspected selenized species has been based on the information obtained from accurate mass measurements of both the protonated molecules and fragments from in-source CID fragmentation; along with the characteristic isotope pattern exhibited by the presence of Se. The approach enables the detection of 103 selenized species, most of them not previously reported, in the range from ca. 300-650Da. Besides the detection of selenium species, related sulphur derivate metabolites were detected based on the accurate mass shift due to the substitution of sulphur and selenium. Copyright © 2017. Published by Elsevier B.V.

  7. Time of flight spectrometry in heavy ions backscattering analysis

    International Nuclear Information System (INIS)

    Chevarier, A.; Chevarier, N.

    1983-05-01

    Time of flight spectrometry for backscattering analysis of MeV heavy ions is proposed. The capabilities and limitations of this method are investigated. Depth and mass resolution obtained in measurements of oxide films thickness as well as in GaAs layers analysis are presented. The importance of minimizing pile-up without significant loss of resolution by use of an adequate absorber set just in front of the rear detector is underlined

  8. Evaluation of matrix-assisted laser desorption/ionization time of flight mass spectrometry for the identification of ceratopogonid and culicid larvae.

    Science.gov (United States)

    Steinmann, I C; Pflüger, V; Schaffner, F; Mathis, A; Kaufmann, C

    2013-03-01

    Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) was evaluated for the rapid identification of ceratopogonid larvae. Optimal sample preparation as evaluated with laboratory-reared biting midges Culicoides nubeculosus was the homogenization of gut-less larvae in 10% formic acid, and analysis of 0.2 mg/ml crude protein homogenate mixed with SA matrix at a ratio of 1:1.5. Using 5 larvae each of 4 ceratopogonid species (C. nubeculosus, C. obsoletus, C. decor, and Dasyhelea sp.) and of 2 culicid species (Aedes aegypti, Ae. japonicus), biomarker mass sets between 27 and 33 masses were determined. In a validation study, 67 larvae belonging to the target species were correctly identified by automated database-based identification (91%) or manual full comparison (9%). Four specimens of non-target species did not yield identification. As anticipated for holometabolous insects, the biomarker mass sets of adults cannot be used for the identification of larvae, and vice versa, because they share only very few similar masses as shown for C. nubeculosus, C. obsoletus, and Ae. japonicus. Thus, protein profiling by MALDI-TOF as a quick, inexpensive and accurate alternative tool is applicable to identify insect larvae of vector species collected in the field.

  9. Analysis of drugs of forensic interest with capillary zone electrophoresis/time-of-flight mass spectrometry based on the use of non-volatile buffers.

    Science.gov (United States)

    Gottardo, Rossella; Mikšík, Ivan; Aturki, Zeineb; Sorio, Daniela; Seri, Catia; Fanali, Salvatore; Tagliaro, Franco

    2012-02-01

    The present work is aimed at investigating the influence of the background electrolyte composition and concentration on the separation efficiency and resolution and mass spectrometric detection of illicit drugs in a capillary zone electrophoresis-electrospray ionization-time of flight mass spectrometry (CZE-ESI-TOF MS) system. The effect of phosphate, borate and Tris buffers on the separation and mass spectrometry response of a mixture of 3,4-methylenedioxyamphetamine, 3,4-methylenedioxymethamphetamine, methadone, cocaine, morphine, codeine and 6-monoacetylmorphine was studied, in comparison with a reference ammonium formate separation buffer. Inorganic non-volatile borate and Tris buffers proved hardly suitable for capillary electrophoresis-mass spectrometry (CE-MS) analysis, but quite unexpectedly ammonium phosphate buffers showed good separation and ionization performances for all the analytes tested. Applications of this method to real samples of hair from drug addicts are also provided. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Time of flight and range of the motion of a projectile in a constant gravitational field

    Directory of Open Access Journals (Sweden)

    P. A. Karkantzakos

    2009-01-01

    Full Text Available In this paper we study the classical problem of the motion of a projectile in a constant gravitational field under the influenceof a retarding force proportional to the velocity. Specifically, we express the time of flight, the time of fall and the range ofthe motion as a function of the constant of resistance per unit mass of the projectile. We also prove that the time of fall isgreater than the time of rise with the exception of the case of zero constant of resistance where we have equality. Finally weprove a formula from which we can compute the constant of resistance per unit mass of the projectile from time of flight andrange of the motion when the acceleration due to gravity and the initial velocity of the projectile are known.

  11. Rapid Identification of Intact Staphylococcal Bacteriophages Using Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Dana Štveráková

    2018-04-01

    Full Text Available Staphylococcus aureus is a major causative agent of infections associated with hospital environments, where antibiotic-resistant strains have emerged as a significant threat. Phage therapy could offer a safe and effective alternative to antibiotics. Phage preparations should comply with quality and safety requirements; therefore, it is important to develop efficient production control technologies. This study was conducted to develop and evaluate a rapid and reliable method for identifying staphylococcal bacteriophages, based on detecting their specific proteins using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS profiling that is among the suggested methods for meeting the regulations of pharmaceutical authorities. Five different phage purification techniques were tested in combination with two MALDI-TOF MS matrices. Phages, either purified by CsCl density gradient centrifugation or as resuspended phage pellets, yielded mass spectra with the highest information value if ferulic acid was used as the MALDI matrix. Phage tail and capsid proteins yielded the strongest signals whereas the culture conditions had no effect on mass spectral quality. Thirty-seven phages from Myoviridae, Siphoviridae or Podoviridae families were analysed, including 23 siphophages belonging to the International Typing Set for human strains of S. aureus, as well as phages in preparations produced by Microgen, Bohemia Pharmaceuticals and MB Pharma. The data obtained demonstrate that MALDI-TOF MS can be used to effectively distinguish between Staphylococcus-specific bacteriophages.

  12. Theory of the time orbiting potential (TOP) quadrupole magnetic trap for cold atoms

    Energy Technology Data Exchange (ETDEWEB)

    Minogin, V.G.; Richmond, J.A.; Opat, G.I.

    1997-12-31

    An analytical theory of the time orbiting potential (TOP) quadrupole magnetic trap for cold atoms is developed. It is shown that the rotating magnetic filed used to create the time-average harmonic potential is responsible for the formation of quasi-energy states of an atom in the trap. It is found that the motion of an atom near the origin of the trap can be represented as consisting of slow motion in the effective potential and fast oscillations with small amplitude. Dipole, quadrupole and higher order atomic transitions between quasi-energy states are shown to be responsible for an additional effective potential for slow atomic motion which is proportional to the fourth power of the atomic co-ordinate. Eigenstates and eigenfunctions are used to calculate the co-ordinate distribution for a single atom. It is concluded that at low temperature the quantum statistical co-ordinate distribution for a single atom exhibits a narrow central peak due to the ground state population, together with relatively broad wings due to the excited state population. (authors). 20 refs., 1 tab., 6 figs.

  13. Isochronicity corrections for isochronous mass measurements at the HIRFL-CSRe

    International Nuclear Information System (INIS)

    Gao, Xiang; Yuan, You-Jin; Yang, Jian-cheng; Litvinov, S.; Wang, Meng; Litvinov, Y.; Zhang, Wei; Yin, Da-Yu; Shen, Guo-Dong; Chai, Wei-ping; Shi, Jian; Shang, Peng

    2014-01-01

    Isochronous Mass Spectrometry (IMS) is a unique experimental method for mass measurement experiments on short-lived nuclei. Mass measurements of 78 Kr projectile fragments were performed in HIRFL-CSRe at the Institute of Modern Physics (IMP), Chinese Academy of Sciences. The short-lived secondary beams were produced by bombarding a 15 mm thick beryllium-target in the Radioactive Ion Beam Line (RIBLL2) and were then injected into the CSRe storage ring. The masses of stored ions were measured by employing the IMS technique, which is based on the determination of the ion revolution times. A dedicated time-of-flight (TOF) detector is used for the latter purpose. However, the isochronicity, and thus the mass resolving power, depends on the momentum spread and the transverse emittance of the injected beams, Here, we present the first-order isochronicity optimization, the chromaticity and second-order isochronicity corrections through the modification of the quadrupole and sextupole field strengths. With the help of these corrections, the mass resolution of Δm/m=10 −6 can be achieved

  14. Isochronicity corrections for isochronous mass measurements at the HIRFL-CSRe

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Xiang [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Yuan, You-Jin; Yang, Jian-cheng [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Litvinov, S. [GSI, Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Wang, Meng [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Litvinov, Y. [GSI, Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Zhang, Wei; Yin, Da-Yu [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Shen, Guo-Dong [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Chai, Wei-ping; Shi, Jian [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Shang, Peng [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China)

    2014-11-01

    Isochronous Mass Spectrometry (IMS) is a unique experimental method for mass measurement experiments on short-lived nuclei. Mass measurements of {sup 78}Kr projectile fragments were performed in HIRFL-CSRe at the Institute of Modern Physics (IMP), Chinese Academy of Sciences. The short-lived secondary beams were produced by bombarding a 15 mm thick beryllium-target in the Radioactive Ion Beam Line (RIBLL2) and were then injected into the CSRe storage ring. The masses of stored ions were measured by employing the IMS technique, which is based on the determination of the ion revolution times. A dedicated time-of-flight (TOF) detector is used for the latter purpose. However, the isochronicity, and thus the mass resolving power, depends on the momentum spread and the transverse emittance of the injected beams, Here, we present the first-order isochronicity optimization, the chromaticity and second-order isochronicity corrections through the modification of the quadrupole and sextupole field strengths. With the help of these corrections, the mass resolution of Δm/m=10{sup −6} can be achieved.

  15. Analytical detection of explosives and illicit, prescribed and designer drugs using proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS)

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Bishu; Petersson, Fredrik; Juerschik, Simone [Institut fuer Ionenphysik und Angewandte Physik, Universitaet Innsbruck, Technikerstr. 25, 6020 Innsbruck (Austria); Sulzer, Philipp; Jordan, Alfons [IONICON Analytik GmbH, Eduard-Bodem-Gasse 3, 6020 Innsbruck (Austria); Maerk, Tilmann D. [Institut fuer Ionenphysik und Angewandte Physik, Universitaet Innsbruck, Technikerstr. 25, 6020 Innsbruck (Austria); IONICON Analytik GmbH, Eduard-Bodem-Gasse 3, 6020 Innsbruck (Austria); Watts, Peter; Mayhew, Chris A. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 4TT (United Kingdom)

    2011-07-01

    This work demonstrates the extremely favorable features of Proton Transfer Reaction Time-of-flight Mass Spectrometry (PTR-TOF-MS) for the detection and identification of solid explosives, chemical warfare agent simulants and illicit, prescribed and designer drugs in real time. Here, we report the use of PTR-TOF, for the detection of explosives (e.g., trinitrotoluene, trinitrobenzene) and illicit, prescribed and designer drugs (e.g., ecstasy, morphine, heroin, ethcathinone, 2C-D). For all substances, the protonated parent ion (as we used H{sub 3}O{sup +} as a reagent ion) could be detected, providing a high level of confidence in their identification since the high mass resolution allows compounds having the same nominal mass to be separated. We varied the E/N from 90 to 220 T{sub d} (1 T{sub d}=10{sup -17} Vcm{sup -1}). This allowed us to study fragmentation pathways as a function of E/N (reduced electric field). For a few compounds rather unusual E/N dependencies were also discovered.

  16. Improved fatty acid detection in micro-algae and aquatic meiofauna species using a direct thermal desorption interface combined with comprehensive gas chromatography-time-of-flight mass spectrometry

    NARCIS (Netherlands)

    Akoto, L.; Stellaard, F.; Irth, H.; Vreuls, R.J.J.; Pel, R.

    2008-01-01

    Comprehensive two-dimensional gas chromatography (GC × GC) with time-of-flight mass spectrometry detection is used to profile the fatty acid composition of whole/intact aquatic microorganisms such as the common fresh water green algae Scenedesmus acutus and the filamentous cyanobacterium Limnothrix

  17. Improved fatty acid detection in micro-algae and aquatic meiofauna species using a direct thermal desorption interface combined with comprehensive gas chromatography–time-of-flight mass spectrometry

    NARCIS (Netherlands)

    Akoto, L.; Stellaard, F.; Irth, H.; Vreuls, R.J.J.; Pel, R.

    2008-01-01

    Comprehensive two-dimensional gas chromatography (GC × GC) with time-of-flight mass spectrometry detection is used to profile the fatty acid composition of whole/intact aquatic microorganisms such as the common fresh water green algae Scenedesmus acutus and the filamentous cyanobacterium Limnothrix

  18. Improved fatty acid detection in micro-algae and aquatic meiofauna species using a direct thermal desorption interface combined with comprehensive gas chromatography-time-of-flight mass spectrometry

    NARCIS (Netherlands)

    Akoto, Lawrence; Stellaard, Frans; Irth, Hubertus; Vreuls, Rene J. J.; Pel, Roel

    2008-01-01

    Comprehensive two-dimensional gas chromatography (GC x GC) with time-of-flight mass spectrometry detection is used to profile the fatty acid composition of whole/intact aquatic microorganisms such as the common fresh water green algae Scenedesmus acutus and the filamentous cyanobacterium Limnothrix

  19. The Time-Of-Flight detector of ALICE at LHC: construction, test and commissioning with cosmic rays

    CERN Document Server

    Preghenella, Roberto

    2009-01-01

    After several years of research and development the Time-Of-Flight detector of ALICE (A Large Ion Collider Experiment) has been constructed and is presently fully installed and operative in the experimental area located at the interaction point n.2 of the LHC (Large Hadron Collider) at CERN. Particle identification in ALICE is essential, as many observables are either mass or flavour dependent, therefore many different techniques are used to cover the largest possible momentum range. As said, the TOF (Time- Of-Flight) detector, of which a comprehensive review is given in Chapter 2, is dedicated to hadron identification at medium momenta. The detector exploits the novel technology based on the Multigap Resistive Plate Chamber (MRPC) which guarantees the excellent performance required for a very large time-of-flight array. The construction of the ALICE TOF detector has required the assembly of a large number of MRPC detectors which has been successfully carried out thanks to a careful mass production controlled...

  20. Algebraic formulation of collective models. I. The mass quadrupole collective model

    International Nuclear Information System (INIS)

    Rosensteel, G.; Rowe, D.J.

    1979-01-01

    This paper is the first in a series of three which together present a microscopic formulation of the Bohr--Mottelson (BM) collective model of the nucleus. In this article the mass quadrupole collective (MQC) model is defined and shown to be a generalization of the BM model. The MQC model eliminates the small oscillation assumption of BM and also yields the rotational and CM (3) submodels by holonomic constraints on the MQC configuration space. In addition, the MQC model is demonstrated to be an algebraic model, so that the state space of the MQC model carries an irrep of a Lie algebra of microscopic observables, the MQC algebra. An infinite class of new collective models is then given by the various inequivalent irreps of this algebra. A microscopic embedding of the BM model is achieved by decomposing the representation of the MQC algebra on many-particle state space into its irreducible components. In the second paper this decomposition is studied in detail. The third paper presents the symplectic model, which provides the realization of the collective model in the harmonic oscillator shell model

  1. Deterioration of the Skew Quadrupole Moment in Tevatron Dipoles Over Time

    CERN Document Server

    Syphers, Michael J

    2005-01-01

    During the 20 years since it was first commissioned, the Fermilab Tevatron has developed strong coupling between the two transverse degrees of freedom. A circuit of skew quadrupole magnets is used to correct for coupling and, though capable, its required strength has increased since 1983 by more than an order of magnitude. In more recent years changes to the Tevatron for colliding beams operation have altered the skew quadrupole corrector distribution and strong local coupling become evident, often encumbering routine operation during the present physics run. Detailed magnet measurements were performed on each individual magnet during construction, and in early 2003 it was realized that measurements could be performed on the magnets in situ which could determine coil movements within the iron yoke since the early 1980's. It was discovered that the superconducting coils had become vertically displaced relative to their yokes since their construction. The ensuing systematic skew quadrupole field introduced by t...

  2. A general screening method for doping agents in human urine by solid phase extraction and liquid chromatography/time-of-flight mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Kolmonen, Marjo [Forensic Toxicology Division, Department of Forensic Medicine, University of Helsinki (Finland) and Doping Control Laboratory, United Laboratories Ltd., Helsinki (Finland)]. E-mail: marjo.kolmonen@helsinki.fi; Leinonen, Antti [Doping Control Laboratory, United Laboratories Ltd., Helsinki (Finland); Pelander, Anna [Forensic Toxicology Division, Department of Forensic Medicine, University of Helsinki (Finland); Ojanperae, Ilkka [Forensic Toxicology Division, Department of Forensic Medicine, University of Helsinki (Finland)

    2007-02-28

    A general screening method based on solid phase extraction (SPE) and liquid chromatography/time-of-flight mass spectrometry (LC/TOFMS) was developed and investigated with 124 different doping agents, including stimulants, {beta}-blockers, narcotics, {beta}{sub 2}-adrenergic agonists, agents with anti-estrogenic activity, diuretics and cannabinoids. Mixed mode cation exchange/C8 cartridges were applied to SPE, and chromatography was based on gradient elution on a C18 column. Ionization of the analytes was achieved with electrospray ionization in the positive mode. Identification by LC/TOFMS was based on retention time, accurate mass and isotopic pattern. Validation of the method consisted of analysis of specificity, analytical recovery, limit of detection and repeatability. The minimum required performance limit (MRPL), established by World Anti-Doping Agency (WADA), was attained to 97 doping agents. The extraction recoveries varied between 33 and 98% and the median was 58%. Mass accuracy was always better than 5 ppm, corresponding to a maximum mass error of 0.7 mDa. The repeatability of the method for spiked urine samples, expressed as median of relative standard deviations (RSD%) at concentrations of MRPL and 10 times MRPL, were 14% and 9%, respectively. The suitability of the LC/TOFMS method for doping control was demonstrated with authentic urine samples.

  3. Data acquisition system for a positron tomograph using time-of-flight information

    International Nuclear Information System (INIS)

    Bertin, Francois.

    1981-12-01

    Progress in nuclear instrumentation has led to the development of scintillators much faster than the NaI crystal traditionally used in nuclear medicine. As a result it is now possible to measure time-of-flight, i.e. the time between the arrival of two γ rays emitted in coincidence on two detectors. With this extra information the β + annihilation site may be located. The introduction of time-of-flight in tomographic techniques called for research along two lines: - ''theoretical'' research leading to the creation of a new image reconstruction algorithm taking into account time-of-flight information - applied research leading to the development of an efficient measurement line and sophisticated data acquisition and processing electronics. This research has been carried out at LETI and is briefly outlined in chapter I. Chapter II shows how the introduction of time-of-flight and the modification of the reconstruction algorithm complicate the electronic and informatic equipment of the tomograph. Several acquisition and processing strategies are proposed, then the need to use an intermediate mass storage and hence to design a complex acquisition operator is demonstrated. Chapter III examines the structure of the acquisition operator and the resulting block diagram is presented in detail in chapter IV [fr

  4. Coevaporation of Y, BaF2, and Cu utilizing a quadrupole mass spectrometer as a rate measuring probe

    International Nuclear Information System (INIS)

    Hudner, J.; Oestling, M.; Ohlsen, H.; Stolt, L.

    1991-01-01

    An ultrahigh vacuum coevaporator equipped with three sources for preparation of Y--BaF 2 --Cu--O thin films is described. Evaporation rates of Y, BaF 2 , and Cu were controlled using a quadrupole mass spectrometer operating in a multiplexed mode. To evaluate the method depositions have been performed using different source configurations and evaporation rates. Utilizing Rutherford backscattering spectrometry absolute values of the actual evaporation rates were determined. It was observed that the mass-spectrometer sensitivity is highest for Y, followed by BaF 2 (BaF + is the measured ion) and Cu. A partial pressure of oxygen during evaporation of Y, BaF 2 , and Cu affected mainly the rate of Y. It is shown that the mass spectrometer can be utilized to precisely control the film composition

  5. Osteoblast cell membrane chromatography coupled with liquid chromatography and time-of-flight mass spectrometry for screening specific active components from traditional Chinese medicines.

    Science.gov (United States)

    Wang, Nani; Zhang, Qiaoyan; Xin, Hailiang; Shou, Dan; Qin, Luping

    2017-11-01

    A method using osteoblast membrane chromatography coupled with liquid chromatography and time-of-flight mass spectrometry was developed to recognize and identify the specific active components from traditional Chinese medicines. Primary rat osteoblasts were used for the preparation of the stationary phase in the cell chromatography method. Retention components from the cell chromatography were collected and analyzed by liquid chromatography with time-of-flight mass spectrometry. This method was applied in screening active components from extracts of four traditional Chinese medicines. In total, 24 potentially active components with different structures were retained by osteoblast cell chromatography. There were five phenolic glucosides and one triterpenoid saponin from Curculigo orchioides Gaertn, two organic acids and ten flavonoids from Epimedium sagittatum Maxim, one phthalide compound and one organic acid from Angelica sinensis Diels, and two flavonoids and two saponins from Anemarrhena asphodeloides Bunge. Among those, four components (icariin, curculigoside, ferulaic acid, and timosaponin BII) were used for in vitro pharmacodynamics validation. They significantly increased the osteoblast proliferation, alkaline phosphatase activity, levels of bone gla protein and collagen type 1, and promoted mineralized nodule formation. The developed method was an effective screening method for finding active components from complex medicines that act on bone diseases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. On-target digestion of collected bacteria for MALDI mass spectrometry.

    Science.gov (United States)

    Dugas, Alton J; Murray, Kermit K

    2008-10-03

    An on-target protein digestion system was developed for the identification of microorganisms in collected bioaerosols using off-line matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Bacteria analysis techniques based on MALDI-MS were adapted for use with an orthogonal MALDI quadrupole-time-of-flight mass spectrometer. Bioaerosols were generated using a pneumatic nebulizer and infused into a chamber for sampling. An Andersen N6 single-stage impactor was used to collect the bioaerosols on a MALDI target. On-target digestion was carried out inside temporary mini-wells placed over the impacted samples. The wells served as miniature reactors for proteolysis. Collected test aerosol particles containing the protein cytochrome c and E. coli bacteria were proteolyzed in situ using trypsin or cyanogen bromide. A total of 19 unique proteins were identified for E. coli. Using the TOF-MS spectra of the digested samples, peptide mass mapping was performed using the MASCOT search engine and an iterative search technique.

  7. Measurements of quadrupole magnets

    International Nuclear Information System (INIS)

    Conradie, J.L.; Fourie, D.T.; Cornell, J.C.; Lloyd, G.C.W.

    1987-01-01

    Measurements carried out on quadrupole magnets using a long asymmetric rotating coil are described. Although the method itself is fairly well-known, the introduction of microprocessors has made this once-tedious technique into a useful and simple method of evaluating quadrupole magnets. The rotating-coil device and a variety of coil sizes are now commercially available. The coil contains a large number of extremely fine wires, embedded in a carefully balanced fibre-glass rotor, resulting in a reasonable induced voltage when the coil is rotated. A digital harmonic analyser is then used to obtain the integrated multipole content of the waveform, while the coil is rotating. By integrating over time, one can average out random noise and increase the reliability and repeatability of the measurements. Because the harmonic analysis is done in real time, the method is quick, easy and accurate, and has been extended to locate the precise magnetic centre of the quadrupole magnet by adjusting its position relative to the coil axis so as to minimize the dipole content of the output waveform. Results of these measurements are compared with those obtained with an optical method using a suspension of magnetite. The observed light pattern is explained analytically. (author)

  8. Fast monitoring of motor exhaust components by resonant multi-photon ionisation and time-of-flight mass spectrometry

    Science.gov (United States)

    Franzen, Jochen; Frey, Rüdiger; Nagel, Holger

    1995-03-01

    A new analytical procedure is provided by the combination of two types of spectroscopy. Resonant ionization of selected compounds by multiphoton ionization is based on results of absorption spectroscopy for the compound molecules of interest and time-of-flight mass spectrometry serves for the unambigious detection of these compounds. An interesting application of this method is the fast exhaust gas analysis. In the development of future combustion engines, the management of dynamic motor processes becomes predominant because by more than 90 % of all the dangerous exhaust pollutions are produced in instationary motor phases such as fast speed or load changes. The investigation of dynamic processes however, requires fast analytical procedures with millisecond time resolution together with the capability to measure individual components in a very complex gas mixture The objectives for a development project of such an instrument were set by the Research Association for Combustion Engines (Forschungsvereinigung Verbrennungskraftmaschinen, FVV, Germany): Up to ten substances should be monitored synchroneously with a time resolution of about 10 milliseconds, with concentration limits of 1 part per million and with a precision better than 10 % relative standard deviation. Such a laser mass spectrometer for fast multi-component automotive exhaust analyses has been developed in a joint research project by Bruker-Franzen Analytik GmbH, Dornier GmbH and the Technical University of Munich. The system has been applied at a motor test facility to investigate the emissions of the aromatic hydrocarbons benzene, toluene and xylene, of nitric oxide and acetaldehyde in stationary and dynamic engine operation. These measurements demonstrate that strong emission of these pollutants takes place at instationary engine operation and in particular that these compounds are emitted at different times, giving new information about the processes in the combustion chamber and in the exhaust pipe.

  9. Double-photoionization of helium including quadrupole radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    Colgan, James [Los Alamos National Laboratory; Ludlow, J A [AUBURN UNIV; Lee, Teck - Ghee [AUBURN UNIV; Pindzola, M S [AUBURN UNIV; Robicheaux, F [AUBURN UNIV

    2009-01-01

    Non-perturbative time-dependent close-coupling calculations are carried out for the double photoionization of helium including both dipole and quadrupole radiation effects. At a photon energy of 800 eV, accessible at CUlTent synchrotron light sources, the quadrupole interaction contributes around 6% to the total integral double photoionization cross section. The pure quadrupole single energy differential cross section shows a local maxima at equal energy sharing, as opposed to the minimum found in the pure dipole single energy differential cross section. The sum of the pure dipole and pure quadrupole single energy differentials is insensitive to non-dipole effects at 800 eV. However, the triple differential cross section at equal energy sharing of the two ejected electrons shows strong non-dipole effects due to the quadrupole interaction that may be experimentally observable.

  10. Identification of Blood Culture Isolates Directly from Positive Blood Cultures by Use of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry and a Commercial Extraction System: Analysis of Performance, Cost, and Turnaround Time

    OpenAIRE

    Lagacé-Wiens, Philippe R. S.; Adam, Heather J.; Karlowsky, James A.; Nichol, Kimberly A.; Pang, Paulette F.; Guenther, Jodi; Webb, Amanda A.; Miller, Crystal; Alfa, Michelle J.

    2012-01-01

    Matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry represents a revolution in the rapid identification of bacterial and fungal pathogens in the clinical microbiology laboratory. Recently, MALDI-TOF has been applied directly to positive blood culture bottles for the rapid identification of pathogens, leading to reductions in turnaround time and potentially beneficial patient impacts. The development of a commercially available extraction kit (Bruker Sepsit...

  11. Principles of time-of-flight tomography

    International Nuclear Information System (INIS)

    Campagnolo, R.; Garderet, P.; Lecomte, J.L.; Bouvier, A.; Darier, P.; Soussaline, F.

    1983-03-01

    After a short introduction to the physics of time-of-flight positron tomography, the various aspects of this technique are presented. The characteristics including data acquisition and image reconstruction system of a positron tomograph (TTV01) which uses time-of-flight information, are described. The preliminary results obtained with TTV01, such as resolution and sensitivity, as well as phantom images, are presented [fr

  12. Applicability of hybrid linear ion trap-high resolution mass spectrometry and quadrupole-linear ion trap-mass spectrometry for mycotoxin analysis in baby food.

    Science.gov (United States)

    Rubert, Josep; James, Kevin J; Mañes, Jordi; Soler, Carla

    2012-02-03

    Recent developments in mass spectrometers have created a paradoxical situation; different mass spectrometers are available, each of them with their specific strengths and drawbacks. Hybrid instruments try to unify several advantages in one instrument. In this study two of wide-used hybrid instruments were compared: hybrid quadrupole-linear ion trap-mass spectrometry (QTRAP®) and the hybrid linear ion trap-high resolution mass spectrometry (LTQ-Orbitrap®). Both instruments were applied to detect the presence of 18 selected mycotoxins in baby food. Analytical parameters were validated according to 2002/657/CE. Limits of quantification (LOQs) obtained by QTRAP® instrument ranged from 0.45 to 45 μg kg⁻¹ while lower limits of quantification (LLOQs) values were obtained by LTQ-Orbitrap®: 7-70 μg kg⁻¹. The correlation coefficients (r) in both cases were upper than 0.989. These values highlighted that both instruments were complementary for the analysis of mycotoxin in baby food; while QTRAP® reached best sensitivity and selectivity, LTQ-Orbitrap® allowed the identification of non-target and unknowns compounds. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. The coupling of supercritical fluid chromatography and field ionization time-of-flight high-resolution mass spectrometry for rapid and quantitative analysis of petroleum middle distillates.

    Science.gov (United States)

    Qian, Kuangnan; Diehl, John W; Dechert, Gary J; DiSanzo, Frank P

    2004-01-01

    We report the first coupling of supercritical fluid chromatography (SFC) with field ionization time-of-flight high-resolution mass spectrometry (FI-ToF HRMS), in parallel with ultraviolet (UV) detection and flame ionization detection (FID), for rapid and quantitative analysis of petroleum middle distillates. SFC separates petroleum middle distillates into saturates and 1- to 3-ring aromatics. FI generates molecular ions for hydrocarbon species eluted from the SFC. The high resolution and exact mass measurements by ToF mass spectrometry provide elemental compositions of the molecules in the petroleum product. The amounts of saturates and aromatic ring types were quantified using the parallel SFC-FID assisted by SFC-UV. With a proper carbon-number calibration, the detailed composition of the petroleum middle distillate was rapidly determined.

  14. Action spectroscopy of SrCl{sup +} using an integrated ion trap time-of-flight mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Puri, Prateek, E-mail: teek24@ucla.edu; Schowalter, Steven J.; Hudson, Eric R. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095 (United States); Kotochigova, Svetlana; Petrov, Alexander [Department of Physics, Temple University, Philadelphia, Pennsylvania 19122 (United States)

    2014-07-07

    The photodissociation cross-section of SrCl{sup +} is measured in the spectral range of 36 000–46 000 cm{sup −1} using a modular time-of-flight mass spectrometer (TOF-MS). By irradiating a sample of trapped SrCl{sup +} molecular ions with a pulsed dye laser, X{sup 1}Σ{sup +} state molecular ions are electronically excited to the repulsive wall of the A{sup 1}Π state, resulting in dissociation. Using the TOF-MS, the product fragments are detected and the photodissociation cross-section is determined for a broad range of photon energies. Detailed ab initio calculations of the SrCl{sup +} molecular potentials and spectroscopic constants are also performed and are found to be in good agreement with experiment. The spectroscopic constants for SrCl{sup +} are also compared to those of another alkaline earth halogen, BaCl{sup +}, in order to highlight structural differences between the two molecular ions. This work represents the first spectroscopy and ab initio calculations of SrCl{sup +}.

  15. Species identification of clinical isolates of anaerobic bacteria: a comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry systems

    DEFF Research Database (Denmark)

    Justesen, Ulrik Stenz; Holm, Anette; Knudsen, Elisa

    2011-01-01

    We compared two matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) systems (Shimadzu/SARAMIS and Bruker) on a collection of consecutive clinically important anaerobic bacteria (n = 290). The Bruker system had more correct identifications to the species level...... (67.2% versus 49.0%), but also more incorrect identifications (7.9% versus 1.4%). The system databases need to be optimized to increase identification levels. However, MALDI-TOF MS in its present version seems to be a fast and inexpensive method for identification of most clinically important...

  16. Determination of Prazosin and Simvastatin in Landfill Leachate using Liquid Chromatography-Time of Flight-Mass Spectrometry

    International Nuclear Information System (INIS)

    Zainab Haider Mussa; Zainab Haider Mussa; Fouad Fadhil Al-Qaim; Fouad Fadhil Al-Qaim; Md Pauzi Abdullah; Mohamed Rozali Othman

    2016-01-01

    Human pharmaceuticals have been shown to occur in considerably high amounts in sewage treatment plant (STP) effluents and surface waters. So far there is no data available on the occurrence of prazosin and simvastatin in leachate sample in Malaysia. Thus, this study is the first report to analysis of prazosin and simvastatin in leachate samples by using solid phase extraction-liquid chromatography-time of flight-mass spectrometry (SPE-LC-TOF-MS). The proposed method included isolation and reconstitute procedure. The linearity range was achieved at 1.5-3000 μg/ L and 0.8-125 μg/ L for prazosin and simvstatin, respectively with a determination coefficient (R 2 ) > 0.99. The limit of quantification (LOQ) for prazosin and simvastatin was calculated at 2.1 and 0.5 ng/ L in deionised water (DIW), meanwhile it was recorded at 3.5 and 2.4 ng/ L for prazosin and simvastatin in effluent sample, respectively. Two pharmaceutical compounds were detected in the leachate samples: prazosin and simvastatin at concentrations levels of 3850 and 415 ng/ L, respectively. (author)

  17. Picosecond resolution on relativistic heavy ions' time-of-flight measurement

    International Nuclear Information System (INIS)

    Ebran, A.; Taieb, J.; Belier, G.; Chatillon, A.; Laurent, B.; Martin, J.-F.; Pellereau, E.

    2013-01-01

    We developed a time-of-flight measurement system for relativistic heavy ions with a requested resolution of 40 ps Full Width Half Maximum. Such a resolution is mandatory to assign the correct mass number to every fission fragment, identified using the Bρ-ToF-ΔE method with the recoil spectrometer designed for the SOFIA experiment—which hold very recently at GSI. To achieve such a performance, fast plastic scintillators read-out by dedicated photomultiplier tubes were chosen among other possible options. We have led several test-measurements from 2009 to 2011, in order to investigate: the effect of the addition of a quenching molecule in the scintillator's matrix, the influence of the detector's size and the impact of the photomultiplier tube. The contribution of the dedicated electronics is also characterized. Time-of-flight measurements were performed realized with electron pulses and relativistic heavy ions, respectively provided by the LASER driven electron–accelerator (ELSA) at CEA–DAM Ile-de-France and by the SIS18/FRS facility at GSI. The reported results exhibit a time resolution better than 20 ps Full Width Half Maximum reached with the last prototype at GSI with an Uranium beam. These results confirm that the SOFIA experiment should enable the measurement of the relativistic fission fragments' time-of-flight with the requested resolution

  18. The LHC Main Quadrupoles during Series Fabrication

    CERN Document Server

    Tortschanoff, Theodor; Durante, M; Hagen, P; Klein, U; Krischel, D; Payn, A; Rossi, L; Schellong, B; Schmidt, P; Simon, F; Schirm, K-M; Todesco, E

    2006-01-01

    By the end of August 2005 about 320 of the 400 main LHC quadrupole magnets have been fabricated and about 220 of them assembled into their cold masses, together with corrector magnets. About 130 of them have been cold tested in their cryostats and most of the quadrupoles exceeded their nominal excitation, i.e. 12,000 A, after no more than two training quenches. During this series fabrication, the quality of the magnets and cold masses was thoroughly monitored by means of warm magnetic field measurements, of strict geometrical checking, and of various electrical verifications. A number of modifications were introduced in order to improve the magnet fabrication, mainly correction of the coil geometry for achieving the specified field quality and measures for avoiding coil insulation problems. Further changes concern the electrical connectivity and insulation of instrumentation, and of the corrector magnets inside the cold masses. The contact resistances for the bus-bar connections to the quench protection diode...

  19. Analysis of additives in dairy products by liquid chromatography coupled to quadrupole-orbitrap mass spectrometry.

    Science.gov (United States)

    Jia, Wei; Ling, Yun; Lin, Yuanhui; Chang, James; Chu, Xiaogang

    2014-04-04

    A new method combining QuEChERS with ultrahigh-performance liquid chromatography and electrospray ionization quadrupole Orbitrap high-resolution mass spectrometry (UHPLC/ESI Q-Orbitrap) was developed for the highly accurate and sensitive screening of 43 antioxidants, preservatives and synthetic sweeteners in dairy products. Response surface methodology was employed to optimize a quick, easy, cheap, effective, rugged, and safe (QuEChERS) sample preparation method for the determination of 42 different analytes in dairy products for the first time. After optimization, the maximum predicted recovery was 99.33% rate for aspartame under the optimized conditions of 10 mL acetionitrile, 1.52 g sodium acetate, 410 mg PSA and 404 mgC18. For the matrices studied, the recovery rates of the other 42 compounds ranged from 89.4% to 108.2%, with coefficient of variation 0.999. The limits of detection for the analytes are in the range 0.0001-3.6 μg kg(-1). This method has been successfully applied on screening of antioxidants, preservatives and synthetic sweeteners in commercial dairy product samples, and it is very useful for fast screening of different food additives. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Metabolic profiling of yeast culture using gas chromatography coupled with orthogonal acceleration accurate mass time-of-flight mass spectrometry: application to biomarker discovery.

    Science.gov (United States)

    Kondo, Elsuida; Marriott, Philip J; Parker, Rhiannon M; Kouremenos, Konstantinos A; Morrison, Paul; Adams, Mike

    2014-01-07

    Yeast and yeast cultures are frequently used as additives in diets of dairy cows. Beneficial effects from the inclusion of yeast culture in diets for dairy mammals have been reported, and the aim of this study was to develop a comprehensive analytical method for the accurate mass identification of the 'global' metabolites in order to differentiate a variety of yeasts at varying growth stages (Diamond V XP, Yea-Sacc and Levucell). Microwave-assisted derivatization for metabolic profiling is demonstrated through the analysis of differing yeast samples developed for cattle feed, which include a wide range of metabolites of interest covering a large range of compound classes. Accurate identification of the components was undertaken using GC-oa-ToFMS (gas chromatography-orthogonal acceleration-time-of-flight mass spectrometry), followed by principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) for data reduction and biomarker discovery. Semi-quantification (fold changes in relative peak areas) was reported for metabolites identified as possible discriminative biomarkers (p-value 2), including D-ribose (four fold decrease), myo-inositol (five fold increase), L-phenylalanine (three fold increase), glucopyranoside (two fold increase), fructose (three fold increase) and threitol (three fold increase) respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Identification of protein biomarkers in Dupuytren's contracture using surface enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF-MS).

    Science.gov (United States)

    O'Gorman, David; Howard, Jeffrey C; Varallo, Vincenzo M; Cadieux, Peter; Bowley, Erin; McLean, Kris; Pak, Brian J; Gan, Bing Siang

    2006-06-01

    To study the protein expression profiles associated with Dupuytren's contracture (DC) to identify potential disease protein biomarkers (PBM) using a proteomic technology--Surface Enhanced Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (SELDI-TOF-MS). Normal and disease palmar fascia from DC patients were analyzed using Ciphergen's SELDI-TOF-MS Protein Biological System II (PBSII) ProteinChip reader. Analysis of the resulting SELDI-TOF spectra was carried out using the peak cluster analysis program (BioMarker Wizard, Ciphergen). Common peak clusters were then filtered using a bootstrap algorithm called SAM (Significant Analysis of Microarrays) for increased fidelity in our analysis. Several differentially expressed low molecular weight (mass standard deviation for both methods of biomarker-rich low molecular weight region of the human proteome. Application of such novel technology may help clinicians to focus on specific molecular abnormalities in diseases with no known molecular pathogenesis, and uncover therapeutic and/or diagnostic targets.

  2. Initial value gravitational quadrupole radiation theorem

    International Nuclear Information System (INIS)

    Winicour, J.

    1987-01-01

    A rigorous version of the quadrupole radiation formula is derived using the characteristic initial value formulation of a general relativistic fluid space-time. Starting from initial data for a Newtonian fluid, an algorithm is presented that determines characteristic initial data for a one-parameter family of general relativistic fluid space-times. At the initial time, a one-parameter family of space-times with this initial data osculates the evolution of the Newtonian fluid and has leading order news function equal to the third time derivative of the transverse Newtonian quadrupole moment

  3. Discrimination of white ginseng origins using multivariate statistical analysis of data sets

    Directory of Open Access Journals (Sweden)

    Hyuk-Hwan Song

    2014-07-01

    Conclusion: Results suggest that ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry coupled with OPLS-DA is an efficient tool for identifying the difference between the geographical origins of white ginsengs.

  4. ISABELLE insertion quadrupoles

    International Nuclear Information System (INIS)

    Kaugerts, J.; Polk, I.; Sampson, W.; Dahl, P.F.

    1979-01-01

    Beam focussing and control at the beam intersection regions of ISABELLE is accomplished by a number of superconducting insertion quadrupoles. These magnets differ from the standard ISABELLE quadrupoles in various ways. In particular, the requirements of limited space near the intersections and aperture for beam extraction impose constraints on their configuration. To achieve optimum beam focussing and provide tuning flexibility calls for stronger quadrupole trim windings than those in the standard quadrupoles. The magnetic and mechanical design of the insertion quadrupoles and their associated correction and steering windings to accomplish the above tasks is presented

  5. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Analysis of Gram-Positive, Catalase-Negative Cocci Not Belonging to the Streptococcus or Enterococcus Genus and Benefits of Database Extension

    DEFF Research Database (Denmark)

    Christensen, Jens Jørgen; Dargis, Rimtas; Hammer, Monja

    2012-01-01

    Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry with a Bruker Daltonics microflex LT system was applied to 90 well-characterized catalase-negative, Gram-positive cocci not belonging to the streptococci or enterococci. Biotyper version 2.0.43.1 software...

  6. Determination of vanillin, ethyl vanillin, and coumarin in infant formula by liquid chromatography-quadrupole linear ion trap mass spectrometry.

    Science.gov (United States)

    Shen, Yan; Han, Chao; Liu, Bin; Lin, Zhengfeng; Zhou, Xiujin; Wang, Chengjun; Zhu, Zhenou

    2014-02-01

    A simple, precise, accurate, and validated liquid chromatography-quadrupole linear ion trap mass spectrometry method was developed for the determination of vanillin, ethyl vanillin, and coumarin in infant formula samples. Following ultrasonic extraction with methanol/water (1:1, vol/vol), and clean-up on an HLB solid-phase extraction cartridge (Waters Corp., Milford, MA), samples were separated on a Waters XSelect HSS T3 column (150 × 2.1-mm i.d., 5-μm film thickness; Waters Corp.), with 0.1% formic acid solution-acetonitrile as mobile phase at a flow rate of 0.25 mL/min. Quantification of the target was performed by the internal standard approach, using isotopically labeled compounds for each chemical group, to correct matrix effects. Data acquisition was carried out in multiple reaction monitoring transitions mode, monitoring 2 multiple reaction monitoring transitions to ensure an accurate identification of target compounds in the samples. Additional identification and confirmation of target compounds were performed using the enhanced product ion modus of the linear ion trap. The novel liquid chromatography-quadrupole linear ion trap mass spectrometry platform offers the best sensitivity and specificity for characterization and quantitative determination of vanillin, ethyl vanillin, and coumarin in infant formula and fulfills the quality criteria for routine laboratory application. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Urine testing for designing steroids by liquid chromatography and androgen bioaasay detection and electrospray quadrupole time-of-flight mass spectrometry identification

    NARCIS (Netherlands)

    Nielen, M.W.F.; Bovee, T.F.H.; Engelen, M.C.; Rutgers, P.; Hamers, A.R.M.; Rhijn, van J.A.; Hoogenboom, L.A.P.

    2006-01-01

    New anabolic steroids show up occasionally in sports doping and in veterinary control. The discovery of these designer steroids is facilitated by findings of illicit preparations, thus allowing bioactivity testing, structure elucidation using NMR and mass spectrometry, and final incorporation in

  8. Shock-tube study of the decomposition of tetramethylsilane using gas chromatography and high-repetition-rate time-of-flight mass spectrometry.

    Science.gov (United States)

    Sela, P; Peukert, S; Herzler, J; Fikri, M; Schulz, C

    2018-04-25

    The decomposition of tetramethylsilane was studied in shock-tube experiments in a temperature range of 1270-1580 K and pressures ranging from 1.5 to 2.3 bar behind reflected shock waves combining gas chromatography/mass spectrometry (GC/MS) and high-repetition-rate time-of-flight mass spectrometry (HRR-TOF-MS). The main observed products were methane (CH4), ethylene (C2H4), ethane (C2H6), and acetylene (C2H2). In addition, the formation of a solid deposit was observed, which was identified to consist of silicon- and carbon-containing nanoparticles. A kinetics sub-mechanism with 13 silicon species and 20 silicon-containing reactions was developed. It was combined with the USC_MechII mechanism for hydrocarbons, which was able to simulate the experimental observations. The main decomposition channel of TMS is the Si-C bond scission forming methyl (CH3) and trimethylsilyl radicals (Si(CH3)3). The rate constant for TMS decomposition is represented by the Arrhenius expression ktotal[TMS → products] = 5.9 × 1012 exp(-267 kJ mol-1/RT) s-1.

  9. Solid phase extraction in combination with comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry for the detailed investigation of volatiles in South African red wines

    NARCIS (Netherlands)

    Weldegergis, B.T.; Crouch, A.M.; Górecki, T.; Villiers, de A.

    2011-01-01

    Comprehensive two-dimensional gas chromatography in combination with time-of-flight mass spectrometry (GC × GC–TOFMS) has been applied for the analysis of volatile compounds in three young South African red wines. In spite of the significant benefits offered by GC × GC–TOFMS for the separation and

  10. Performance of Matrix-Assisted Laser Desorption Ionization−Time of Flight Mass Spectrometry for Identification of Aspergillus, Scedosporium, and Fusarium spp. in the Australian Clinical Setting

    Science.gov (United States)

    Sleiman, Sue; Halliday, Catriona L.; Chapman, Belinda; Brown, Mitchell; Nitschke, Joanne; Lau, Anna F.

    2016-01-01

    We developed an Australian database for the identification of Aspergillus, Scedosporium, and Fusarium species (n = 28) by matrix-assisted laser desorption ionization−time of flight mass spectrometry (MALDI-TOF MS). In a challenge against 117 isolates, species identification significantly improved when the in-house-built database was combined with the Bruker Filamentous Fungi Library compared with that for the Bruker library alone (Aspergillus, 93% versus 69%; Fusarium, 84% versus 42%; and Scedosporium, 94% versus 18%, respectively). PMID:27252460

  11. Determination of the binding sites for oxaliplatin on insulin using mass spectrometry-based approaches

    DEFF Research Database (Denmark)

    Møller, Charlotte; Sprenger, Richard R.; Stürup, Stefan

    2011-01-01

    Using insulin as a model protein for binding of oxaliplatin to proteins, various mass spectrometric approaches and techniques were compared. Several different platinum adducts were observed, e.g. addition of one or two diaminocyclohexane platinum(II) (Pt(dach)) molecules. By top-down analysis...... and fragmentation of the intact insulin-oxaliplatin adduct using nano-electrospray ionisation quadrupole time-of-flight mass spectrometry (nESI-Q-ToF-MS), the major binding site was assigned to histidine5 on the insulin B chain. In order to simplify the interpretation of the mass spectrum, the disulphide bridges...... were reduced. This led to the additional identification of cysteine6 on the A chain as a binding site along with histidine5 on the B chain. Digestion of insulin-oxaliplatin with endoproteinase Glu-C (GluC) followed by reduction led to the formation of five peptides with Pt(dach) attached...

  12. Direct matrix-assisted laser desorption ionization time-of-flight mass spectrometry improves appropriateness of antibiotic treatment of bacteremia.

    Directory of Open Access Journals (Sweden)

    Anne L M Vlek

    Full Text Available Matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS allows the identification of microorganisms directly from positive blood culture broths. Use of the MALDI-TOF MS for rapid identification of microorganisms from blood culture broths can reduce the turnaround time to identification and may lead to earlier appropriate treatment of bacteremia. During February and April 2010, direct MALDI-TOF MS was routinely performed on all positive blood cultures. During December 2009 and March 2010 no direct MALDI-TOF MS was used. Information on antibiotic therapy was collected from the hospital and intensive care units' information systems from all positive blood cultures during the study period. In total, 253 episodes of bacteremia were included of which 89 during the intervention period and 164 during the control period. Direct performance of MALDI-TOF MS on positive blood culture broths reduced the time till species identification by 28.8-h and was associated with an 11.3% increase in the proportion of patients receiving appropriate antibiotic treatment 24 hours after blood culture positivity (64.0% in the control period versus 75.3% in the intervention period (p0.01. Routine implementation of this technique increased the proportion of patients on adequate antimicrobial treatment within 24 hours.

  13. Direct matrix-assisted laser desorption ionization time-of-flight mass spectrometry improves appropriateness of antibiotic treatment of bacteremia.

    Science.gov (United States)

    Vlek, Anne L M; Bonten, Marc J M; Boel, C H Edwin

    2012-01-01

    Matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) allows the identification of microorganisms directly from positive blood culture broths. Use of the MALDI-TOF MS for rapid identification of microorganisms from blood culture broths can reduce the turnaround time to identification and may lead to earlier appropriate treatment of bacteremia. During February and April 2010, direct MALDI-TOF MS was routinely performed on all positive blood cultures. During December 2009 and March 2010 no direct MALDI-TOF MS was used. Information on antibiotic therapy was collected from the hospital and intensive care units' information systems from all positive blood cultures during the study period. In total, 253 episodes of bacteremia were included of which 89 during the intervention period and 164 during the control period. Direct performance of MALDI-TOF MS on positive blood culture broths reduced the time till species identification by 28.8-h and was associated with an 11.3% increase in the proportion of patients receiving appropriate antibiotic treatment 24 hours after blood culture positivity (64.0% in the control period versus 75.3% in the intervention period (p0.01)). Routine implementation of this technique increased the proportion of patients on adequate antimicrobial treatment within 24 hours.

  14. Compositional characterisation of rare earth magnet materials by glow discharge quadrupole mass spectrometry

    International Nuclear Information System (INIS)

    Reddy, M.A.; Shekhar, R.; Kumar, Sunil Jai

    2014-01-01

    In this paper, glow discharge quadrupole mass spectrometric (GD-QMS) studies on Sm-Pr-Co compound magnetic materials are reported. The composition of these magnetic materials produced from different manufacturing routes (imported, indigenous) was determined. The results are compared with the results obtained by an alternative analytic technique, inductively coupled plasma atomic emission spectrometry (ICP-AES), after complete dissolution of the material in the appropriate acids. For perfectly homogeneous material both the wet chemical method and direct solid analysis method should give the same result. A close examination of both the results indicates that for imported materials the values obtained by wet chemical method and direct solid method are in close agreement. This indicates that the imported (solid) material is highly homogeneous. For indigenous materials, it shows a large difference in the values of Co and Sm. This reveals that the solid material prepared is not as homogenous as the imported materials

  15. Determination of the isotopic ratio 235U/238U in UF6 using quadrupole mass spectrometry

    International Nuclear Information System (INIS)

    Kusahara, Helena Sueco

    1979-01-01

    In this work measurements of isotope ratios 235 U / 23 '8U in uranium hexafluoride are carried out using a quadrupole mass spectrometer. The operational parameters, which affect the final precision of the results, are standardized. Optimized procedures for the preparation of uranium hexafluoride samples by fluorination of uranium oxides using cobalt trifluoride method are established. Careful attention is given to the process of purification of uranium hexafluoride samples by fractional distillation. Adequate statistical methods for analysing the results obtained for single ratio measurements as well as the ratio ' of isotopic ratios of sample and standard ar.e developed. A precision of about 10 -4 for single ratio measurements and accuracy of about 0,3% for the ratio of sample and standard ratios are obtained. These results agree with the values which have been obtained using magnetic mass spectrometers. The procedures and methods established in this work can be employed in the systematic uranium isotope analysis in UF 6 form. (author)

  16. Chemometric and multivariate statistical analysis of time-of-flight secondary ion mass spectrometry spectra from complex Cu-Fe sulfides.

    Science.gov (United States)

    Kalegowda, Yogesh; Harmer, Sarah L

    2012-03-20

    Time-of-flight secondary ion mass spectrometry (TOF-SIMS) spectra of mineral samples are complex, comprised of large mass ranges and many peaks. Consequently, characterization and classification analysis of these systems is challenging. In this study, different chemometric and statistical data evaluation methods, based on monolayer sensitive TOF-SIMS data, have been tested for the characterization and classification of copper-iron sulfide minerals (chalcopyrite, chalcocite, bornite, and pyrite) at different flotation pulp conditions (feed, conditioned feed, and Eh modified). The complex mass spectral data sets were analyzed using the following chemometric and statistical techniques: principal component analysis (PCA); principal component-discriminant functional analysis (PC-DFA); soft independent modeling of class analogy (SIMCA); and k-Nearest Neighbor (k-NN) classification. PCA was found to be an important first step in multivariate analysis, providing insight into both the relative grouping of samples and the elemental/molecular basis for those groupings. For samples exposed to oxidative conditions (at Eh ~430 mV), each technique (PCA, PC-DFA, SIMCA, and k-NN) was found to produce excellent classification. For samples at reductive conditions (at Eh ~ -200 mV SHE), k-NN and SIMCA produced the most accurate classification. Phase identification of particles that contain the same elements but a different crystal structure in a mixed multimetal mineral system has been achieved.

  17. Rapid Differentiation of Haemophilus influenzae and Haemophilus haemolyticus by Use of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry with ClinProTools Mass Spectrum Analysis.

    Science.gov (United States)

    Chen, Jonathan H K; Cheng, Vincent C C; Wong, Chun-Pong; Wong, Sally C Y; Yam, Wing-Cheong; Yuen, Kwok-Yung

    2017-09-01

    Haemophilus influenzae is associated with severe invasive disease, while Haemophilus haemolyticus is considered part of the commensal flora in the human respiratory tract. Although the addition of a custom mass spectrum library into the matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) system could improve identification of these two species, the establishment of such a custom database is technically complicated and requires a large amount of resources, which most clinical laboratories cannot afford. In this study, we developed a mass spectrum analysis model with 7 mass peak biomarkers for the identification of H. influenzae and H. haemolyticus using the ClinProTools software. We evaluated the diagnostic performance of this model using 408 H. influenzae and H. haemolyticus isolates from clinical respiratory specimens from 363 hospitalized patients and compared the identification results with those obtained with the Bruker IVD MALDI Biotyper. The IVD MALDI Biotyper identified only 86.9% of H. influenzae (311/358) and 98.0% of H. haemolyticus (49/50) clinical isolates to the species level. In comparison, the ClinProTools mass spectrum model could identify 100% of H. influenzae (358/358) and H. haemolyticus (50/50) clinical strains to the species level and significantly improved the species identification rate (McNemar's test, P mass spectrometry to handle closely related bacterial species when the proprietary spectrum library failed. This approach should be useful for the differentiation of other closely related bacterial species. Copyright © 2017 American Society for Microbiology.

  18. Short communication: Identification of subclinical cow mastitis pathogens in milk by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Barreiro, J R; Ferreira, C R; Sanvido, G B; Kostrzewa, M; Maier, T; Wegemann, B; Böttcher, V; Eberlin, M N; dos Santos, M V

    2010-12-01

    Subclinical mastitis is a common and easily disseminated disease in dairy herds. Its routine diagnosis via bacterial culture and biochemical identification is a difficult and time-consuming process. In this work, we show that matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) allows bacterial identification with high confidence and speed (1 d for bacterial growth and analysis). With the use of MALDI-TOF MS, 33 bacterial culture isolates from milk of different dairy cows from several farms were analyzed, and the results were compared with those obtained by classical biochemical methods. This proof-of-concept case demonstrates the reliability of MALDI-TOF MS bacterial identification, and its increased selectivity as illustrated by the additional identification of coagulase-negative Staphylococcus species and mixed bacterial cultures. Matrix-assisted laser desorption-ionization mass spectrometry considerably accelerates the diagnosis of mastitis pathogens, especially in cases of subclinical mastitis. More immediate and efficient animal management strategies for mastitis and milk quality control in the dairy industry can therefore be applied. Copyright © 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Rescuing the nonjet (NJ) azimuth quadrupole from the flow narrative

    Science.gov (United States)

    Trainor, Thomas A.

    2017-04-01

    According to the flow narrative commonly applied to high-energy nuclear collisions a cylindrical-quadrupole component of 1D azimuth angular correlations is conventionally denoted by quantity υ2 and interpreted to represent elliptic flow. Jet angular correlations may also contribute to υ2 data "nonflow" depending on the method used to calculate υ2, but 2D graphical methods are available to insure accurate separation. The nonjet (NJ) quadrupole has various properties inconsistent with a flow interpretation, including the observation that NJ quadrupole centrality variation in A-A collisions has no relation to strongly-varying jet modication ("jet quenching") in those collisions commonly attributed to jet interaction with a flowing dense medium. In this presentation I describe isolation of quadrupole spectra from pt-differential υ2(pt) data from the RHIC and LHC. I demonstrate that quadrupole spectra have characteristics very different from the single-particle spectra for most hadrons, that quadrupole spectra indicate a common boosted hadron source for a small minority of hadrons that "carry" the NJ quadrupole structure, that the narrow source-boost distribution is characteristic of an expanding thin cylindrical shell (strongly contradicting hydro descriptions), and that in the boost frame a single universal quadrupole spectrum (Lévy distribution) on transverse mass mt accurately describes data for several hadron species scaled according to their statistical-model abundances. The quadrupole spectrum shape changes very little from RHIC to LHC energies. Taken in combination those characteristics strongly suggest a unique nonflow (and nonjet) QCD mechanism for the NJ quadrupole conventionally represented by υ2.

  20. Rescuing the nonjet (NJ azimuth quadrupole from the flow narrative

    Directory of Open Access Journals (Sweden)

    Trainor Thomas A.

    2017-01-01

    Full Text Available According to the flow narrative commonly applied to high-energy nuclear collisions a cylindrical-quadrupole component of 1D azimuth angular correlations is conventionally denoted by quantity υ2 and interpreted to represent elliptic flow. Jet angular correlations may also contribute to υ2 data “nonflow” depending on the method used to calculate υ2, but 2D graphical methods are available to insure accurate separation. The nonjet (NJ quadrupole has various properties inconsistent with a flow interpretation, including the observation that NJ quadrupole centrality variation in A-A collisions has no relation to strongly-varying jet modication (“jet quenching” in those collisions commonly attributed to jet interaction with a flowing dense medium. In this presentation I describe isolation of quadrupole spectra from pt-differential υ2(pt data from the RHIC and LHC. I demonstrate that quadrupole spectra have characteristics very different from the single-particle spectra for most hadrons, that quadrupole spectra indicate a common boosted hadron source for a small minority of hadrons that “carry” the NJ quadrupole structure, that the narrow source-boost distribution is characteristic of an expanding thin cylindrical shell (strongly contradicting hydro descriptions, and that in the boost frame a single universal quadrupole spectrum (Lévy distribution on transverse mass mt accurately describes data for several hadron species scaled according to their statistical-model abundances. The quadrupole spectrum shape changes very little from RHIC to LHC energies. Taken in combination those characteristics strongly suggest a unique nonflow (and nonjet QCD mechanism for the NJ quadrupole conventionally represented by υ2.