WorldWideScience

Sample records for quadrupole resonance study

  1. Nuclear quadrupole resonance applied for arsenic oxide study

    International Nuclear Information System (INIS)

    Correia, J.A.S.

    1991-04-01

    The objectives of this study are mounting a pulsed Nuclear Quadrupole Resonance (NQR) building a flow cryostat capable of varying the temperature continuously from 77 K to 340 K and using the spectrometer and the cryostat to study the polycrystalline arsenic oxide. The spin-lattice relaxation time (T 1 ), the spin-spin relaxation time (T 2 ) and the resonance frequency are obtained as a function of temperature. These data are obtained in 77 to 330 K interval. The relaxation times are obtained using the spin echo technique. The spin echo phenomenon is due to refocusing spins, when a 180 0 C pulse is applied after a 90 0 C pulse. The spin-lattice relaxation time is obtained using the plot of echo amplitude versus the repetition time. The spin-spin relaxation time is obtained using the plot of echo amplitude versus the separation between the 90 0 C - 180 0 C pulses. The theory developed by Bayer is used to explain the spin-lattice relaxation time and the frequency temperature dependence. The spin-spin relaxation time is discussed using the Bloch equations. (author)

  2. (14) N nuclear quadrupole resonance study of piroxicam: confirmation of new polymorphic form V.

    Science.gov (United States)

    Lavrič, Zoran; Pirnat, Janez; Lužnik, Janko; Puc, Uroš; Trontelj, Zvonko; Srčič, Stane

    2015-06-01

    A new polymorphic crystal form of piroxicam was discovered while preparing crystalline samples of piroxicam for (14) N nuclear quadrupole resonance (NQR) analysis. The new crystal form, designated as V, was prepared by evaporative recrystallization from dichloromethane. Three known polymorphic forms (I, II, and III) were also prepared. Our aim was to apply (14) N NQR to characterize the new polymorphic form of piroxicam and compare the results with those of the other known polymorphic forms. Additional analytical methods used for characterization were X-ray powder diffraction (XRPD), thermal analysis, and vibrational spectroscopy. For the first time, a complete set of nine characteristic (14) N NQR frequencies was found for each prepared polymorph of piroxicam. The consistent set of measured frequencies and calculated characteristic quadrupole parameters found for the new polymorphic form V is a convincing evidence that we are dealing with a new form. The already known piroxicam polymorphic forms were characterized similarly. The XRPD results were in accordance with the conclusions of (14) N NQR analysis. The performed study clearly demonstrates a strong potential of (14) N NQR method to be applied as a highly discriminative spectroscopic analytical tool to characterize polymorphic forms. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  3. An 17O nuclear quadrupole double resonance study of several crystal hydrates

    Science.gov (United States)

    Gosling, P.; Rabbani, S. R.

    1987-05-01

    Using the technique of double resonance with coupled multiplets (DRCM), 17O double resonance signals were detected in natural abundance from the H 2O molecule in the hydrates BeSO 4 · 4H 2O, AlCl 3 · 6H 2O, CH 3COOLi · 2H 2O, LiClO 4 · 3H 2O, Sr(OH) 2 · H 2O, Ba(OH) 2 · 8H 2O, LiBr · 2H 2O and MgSO 4 · 7H 2O. Using the DRCM technique approximate values for the HOH bond angle and the OH bond length were determined from the dipolar structure present on the 17O double resonance signals. A Townes and Dailey analysis was used to examine the small differences in the 17O quadrupole coupling constants and asymmetry parameters between these samples.

  4. Spectroscopic data bank of nuclear quadrupole resonance

    International Nuclear Information System (INIS)

    Grechishkin, V.S.; Grechishkina, R.V.

    1997-01-01

    Capabilities of a special spectroscopic database application program are described. The work conducted has demonstrated the efficiency of the Microsoft Office package for control of spectroscopic databases and analysis of technological mixtures in a field of radio spectroscopy like nuclear quadrupole resonance

  5. The giant quadrupole resonance in highly excited rotating nuclei

    International Nuclear Information System (INIS)

    Civitarese, O.; Furui, S.; Ploszajczak, M.; Faessler, A.

    1983-01-01

    The giant quadrupole resonance in highly excited, fast rotating nuclei is studied as a function of both the nuclear temperature and the nuclear angular momentum. The photo-absorption cross sections for quadrupole radiation in 156 Dy, 160 Er and 164 Er are evaluated within the linear response theory. The strength functions of the γ-ray spectrum obtained from the decay of highly excited nuclear states by deexcitation of the isoscalar quadrupole mode show a fine structure, which depends on the temperature T, the angular momentum I and the deformation of the nucleus β. The splitting of the modes associated with the signature-conserving and signature-changing components of the quadrupole field is discussed. (orig.)

  6. Detection of quadrupole interactions by muon level crossing resonance

    International Nuclear Information System (INIS)

    Cox, S.F.J.

    1991-12-01

    The positive muon proves to be a very versatile and sensitive magnetic resonance probe: implanted in virtually any material its polarisation may be monitored via the asymmetry in its radioactive decay, giving information on the sites occupied by the muon in lattices or molecules, and the local fields experienced at these sites. The scope of these experiments has been greatly extended by the development of a technique of cross relaxation or level crossing resonance which allows quadrupole splittings on nuclei adjacent to the muon to be measured. The principles of the technique, and the conditions necessary for detection of the spectra, are described, together with a number of applications. Studies of the muon level crossing resonance in copper have given valuable information on the crystallographic site, electronic structure and low temperature mobility of the interstitial defect. In semiconductors, muons are expected to trap at other impurities -notably acceptors - in processes analogous to the passivation of dopants by hydrogen. Muons implanted in ice produce a significant change in the quadrupole coupling constant of adjacent 17 O nuclei which may be traced to the effects of the large muon zero point energy; the resonance spectrum also exhibits temperature dependent features which may be informative on the nature and lifetime of defects in the ice structure. Muon level crossing resonance has already been studied in an oxide superconductor and this relatively young field is now wide open for quadrupole interaction studies in other materials, using a variety of nuclei. (author)

  7. Commissioning results of the HZB quadrupole resonator

    CERN Document Server

    Kleindienst, Raphael; Knobloch, Jens; Kugeler, Oliver

    2015-01-01

    Recent cavity results with niobium have demonstrated the necessity of a good understanding of both the BCS and residual resistance. For a complete picture and comparison with theory, it is essential that one can measure the RF properties as a function of field, temperature, frequency and ambient magnetic field. Standard cavity measurements are limited in their ability to change all parameters freely and in a controlled manner. On the other hand, most sample measurement setups operate at fairly high frequency, where the surface resistance is always BCS dominated. The quadrupole resonator, originally developed at CERN, is ideally suited for characterization of samples at typical cavity RF frequencies. We report on a modified version of the QPR with improved RF figures of merit for high-field operation. Experimental challenges in the commissioning run and alternate designs for simpler sample changes are shown alongside measurement results of a large grain niobium sample.

  8. Semimicroscopic description of the giant quadrupole resonances in deformed nuclei

    International Nuclear Information System (INIS)

    Kurchev, G.; Malov, L.A.; Nesterenko, V.O.; Soloviev, V.G.

    1976-01-01

    The calculation results of the giant quadrupole isoscalar and isovector resonances performed within the random phase approximation are represented. The strength functions for E2-transitions are calculated for doubly even deformed nuclei in the regions 150 (<=) A < 190 and 228 (<=) A < 248 in the energy interval (0-40) MeV. The following integral characteristics of giant quadrupole resonances are obtained: the position, widths, the contribution to the energy weighted sum rule and the contribution to the total cross section of photoabsorption. The calculations have shown that giant quadrupole resonances are common for all the considered nuclei. The calculated characteristics of the isoscalar giant quadrupole resonance agree with the available experimental data. The calculations also show that the semimicroscopic theory can be successfully applied for the description of giant multipole resonances

  9. Strong quadrupole interaction in electron paramagnetic resonance. Study of the indium hexacyanide (III) in KCl irradiated with electrons

    International Nuclear Information System (INIS)

    Vugman, N.V.

    1973-08-01

    The radiation effects in ]Ir III (CN) 6 ] 3- diamagnetic complexe inserted in the KCl lattice and irradiated with electrons of 2MeV by electron spin resonance (ESR) are analysed. Formulas for g and A tensors in the ligand field approximation, are derivated to calculate non coupling electron density in the metal. The X polarization field of inner shells is positive, indicating a 6s function mixture in the non coupling electron molecular orbital. The observed hyperfine structure is assigned to 4 equivalent nitrogen and one non equivalent nitrogen. This hypothesis is verified by experience of isotope substitution with 15 N. The s and p spin density in ligands are calculated and discussed in terms of molecular obitals. The effects of strong quadrupole interaction into the EPR spectra of ]Ir II (CN) 5 ] 3- complex are analysed by MAGNSPEC computer program to diagonalize the Spin Hamiltonian of the system. Empiric rules for EPR espectrum interpretation with strong quadrupole interaction. A review of EPR technique and a review of main concepts of crystal-field and ligand field theories, are also presented. (M.C.K.) [pt

  10. Using nitrogen-14 nuclear quadrupole resonance and electric field gradient information for the study of radiation effects

    International Nuclear Information System (INIS)

    Iselin, L.H.

    1995-12-01

    Nitrogen-14 nuclear quadrupole resonance (NQR) was used in an attempt to detect the effects of ionizing radiation on organic material. Previously reported resonances for urea were detected at 2,913.32 ± 0.01 kHz and 2,347.88 ± 0.08 kHz with associated T 2 * values 780 ± 20 micros and 523 ± 24 micros, respectively. The previously unreported ν - line for urea-d 4 was detected at 2,381 ± 0.04 Khz and used to determine accurately for the first time the values for the nuclear quadrupole coupling constant χ (3,548.74 ± 0.03 kHz) and the asymmetry parameter η (0.31571 ± 0.00007) for urea-d 4 . The inverse linewidth parameter T 2 * for ν + was measured at 928 ± 23 micros and for ν - at 721 ± 12 micros. Townes and Dailey analysis was performed and urea-d 4 exhibits a 0.004 increase in lone pair electronic density and a slight decrease in N-H bond electronic density, as compared to urea, probably due to the mass difference. A relationship is proposed, referred to as NQR linewidth analysis, between the dynamic spin relaxation times T 2 and T 2 * and the widths of the distributions of the NQR parameters. Linewidth analysis is presented as a tool for possible use in future NQR work in all area, not just radiation effects. This relationship is tested using sodium nitrite T 2 and T 2 * values for ν - and ν - as a function of temperature

  11. Using nitrogen-14 nuclear quadrupole resonance and electric field gradient information for the study of radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    Iselin, L.H.

    1995-12-01

    Nitrogen-14 nuclear quadrupole resonance (NQR) was used in an attempt to detect the effects of ionizing radiation on organic material. Previously reported resonances for urea were detected at 2,913.32 {+-} 0.01 kHz and 2,347.88 {+-} 0.08 kHz with associated T{sub 2}* values 780 {+-} 20 {micro}s and 523 {+-} 24 {micro}s, respectively. The previously unreported {nu}{sub {minus}} line for urea-d{sup 4} was detected at 2,381 {+-} 0.04 Khz and used to determine accurately for the first time the values for the nuclear quadrupole coupling constant {chi} (3,548.74 {+-} 0.03 kHz) and the asymmetry parameter {eta} (0.31571 {+-} 0.00007) for urea-d{sup 4}. The inverse linewidth parameter T{sub 2}* for {nu}{sub +} was measured at 928 {+-} 23 {micro}s and for {nu}{sub {minus}} at 721 {+-} 12 {micro}s. Townes and Dailey analysis was performed and urea-d{sup 4} exhibits a 0.004 increase in lone pair electronic density and a slight decrease in N-H bond electronic density, as compared to urea, probably due to the mass difference. A relationship is proposed, referred to as NQR linewidth analysis, between the dynamic spin relaxation times T{sub 2} and T{sub 2}* and the widths of the distributions of the NQR parameters. Linewidth analysis is presented as a tool for possible use in future NQR work in all area, not just radiation effects. This relationship is tested using sodium nitrite T{sub 2} and T{sub 2}* values for {nu}{sub {minus}} and {nu}{sub {minus}} as a function of temperature.

  12. Low-frequency nuclear quadrupole resonance with a dc SQUID

    Energy Technology Data Exchange (ETDEWEB)

    Chang, J.W.

    1991-07-01

    Conventional pure nuclear quadrupole resonance (NQR) is a technique well suited for the study of very large quadrupolar interactions. Numerous nuclear magnetic resonance (NMR) techniques have been developed for the study of smaller quadrupolar interactions. However, there are many nuclei which have quadrupolar interactions of intermediate strength. Quadrupolar interactions in this region have traditionally been difficult or unfeasible to detect. This work describes the development and application of a SQUID NQR technique which is capable of measuring intermediate strength quadrupolar interactions, in the range of a few hundred kilohertz to several megahertz. In this technique, a dc SQUID (Superconducting QUantum Interference Device) is used to monitor the longitudinal sample magnetization, as opposed to the transverse magnetization, as a rf field is swept in frequency. This allows the detection of low-frequency nuclear quadrupole resonances over a very wide frequency range with high sensitivity. The theory of this NQR technique is discussed and a description of the dc SQUID system is given. In the following chapters, the spectrometer is discussed along with its application to the study of samples containing half-odd-integer spin quadrupolar nuclei, in particular boron-11 and aluminum-27. The feasibility of applying this NQR technique in the study of samples containing integer spin nuclei is discussed in the last chapter. 140 refs., 46 figs., 6 tabs.

  13. Giant quadrupole resonance in 12C, 24Mg, and 27Al observed via deuteron inelastic scattering

    International Nuclear Information System (INIS)

    Chang, C.C.; Didelez, J.P.; Kwiatowski, K.; Wo, J.R.

    1977-06-01

    Giant quadrupole resonance in 12 C, 24 Mg, and 27 Al was studied using 70 MeV deuteron beam. The results clearly show, in all three targets, resonance-like structures peaked at E/sub x/ approximately 63A/sup -1/3/ MeV, with a width of about 10 MeV. The experimental angular distributions for these resonances agree well with the l = 2 DWBA prediction. For 12 C, a binary splitting was observed, and for 24 Mg, there are indications of finer structure in the main giant quadrupole resonance region

  14. Radio-frequency quadrupole resonator for linear accelerator

    Science.gov (United States)

    Moretti, A.

    1982-10-19

    An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.

  15. Application of nuclear quadrupole resonance relaxometry to study the influence of the environment on the surface of the crystallites of powder

    Energy Technology Data Exchange (ETDEWEB)

    Sinyavsky, Nikolay Ya. [Immanuel Kant Baltic Federal Univ., Kaliningrad (Russian Federation); Kaliningrad State Technical Univ. (Russian Federation); Mershiev, Ivan G.; Kupriyanova, Galina S. [Immanuel Kant Baltic Federal Univ., Kaliningrad (Russian Federation)

    2015-10-01

    The results of the experimental study of the influence of the environment surrounding the surface of the crystallites of a KClO{sub 3} powder on the distribution of the spin-spin and spin-lattice relaxation times for {sup 35}Cl nuclear quadrupole resonance are described. It was found that the distributions of the spin-lattice relaxation times are unimodal and distributions of the spin-spin relaxation times are bimodal for all samples we studied. T{sub 1} - T{sub 2} and T{sub 1ρ} - T{sub 2} correlations by means of the two-dimensional (2D) inverse Laplace transform are obtained. The efficiency of the method for the study of surface phenomena in solids is demonstrated.

  16. Application of nuclear quadrupole resonance relaxometry to study the influence of the environment on the surface of the crystallites of powder

    International Nuclear Information System (INIS)

    Sinyavsky, Nikolay Ya.; Mershiev, Ivan G.; Kupriyanova, Galina S.

    2015-01-01

    The results of the experimental study of the influence of the environment surrounding the surface of the crystallites of a KClO 3 powder on the distribution of the spin-spin and spin-lattice relaxation times for 35 Cl nuclear quadrupole resonance are described. It was found that the distributions of the spin-lattice relaxation times are unimodal and distributions of the spin-spin relaxation times are bimodal for all samples we studied. T 1 - T 2 and T 1ρ - T 2 correlations by means of the two-dimensional (2D) inverse Laplace transform are obtained. The efficiency of the method for the study of surface phenomena in solids is demonstrated.

  17. Manometer extension for high pressure measurement: nuclear quadrupole resonance study of Cu2O with a modified Bridgman anvil cell up to 10 GPa.

    Science.gov (United States)

    Fukazawa, H; Yamatoji, N; Kohori, Y; Terakura, C; Takeshita, N; Tokura, Y; Takagi, H

    2007-01-01

    We report (63)Cu nuclear quadrupole resonance (NQR) measurement of Cu(2)O under pressure up to about 10 GPa at low temperatures. Because the lattice parameter of Cu(2)O changes with increasing pressure, the electric field gradient at the Cu site also changes correspondingly with pressure. This enables us to use the Cu(2)O as an in situ manometer for high pressure nuclear magnetic resonance/NQR up to about 9 GPa.

  18. {1H}/{2H} and {1H}/{17O} nuclear quadrupole double-resonance study of several hydroxide compounds. II. The water molecule

    Science.gov (United States)

    Poplett, Ian J. F.

    Using the technique of double resonance with coupled multiplets at 77 K and room temperature, 17O double-resonance signals were detected from the H 2O molecules in a number of hydrates of the alkali metal and alkaline earth metal hydroxides at natural abundance. The deuteron double-resonance signals were measured in deuterated samples at 77 K using double resonance by level crossing. The correlations between the 17O and 2H quadrupole coupling constants and the hydrogen bond strength are discussed. The 17O DRCM results for BeSO 4 · 4H 2O are included.

  19. Quantized TDHF for isoscalar giant quadrupole resonances in spherical nuclei

    International Nuclear Information System (INIS)

    Drozdz, S.; Okolowicz, J.; Ploszajczak, M.; Caurier, E.

    1988-01-01

    The time-dependent Hartree-Fock theory supplemented with the regularity and single-valuedness quantization condition for the gauge invariant component of the wavefunction is applied to the description of the centroid energy and escape width of isoscalar giant quadrupole resonances in 16 O, 40 Ca and 110 Zr. Calculations are performed using the Skyrme SIII effective interaction. An important role of the finite oscillation amplitude in the mean-field dynamics is emphasized. (orig.)

  20. An analytical method for estimating the 14N nuclear quadrupole resonance parameters of organic compounds with complex free induction decays for radiation effects studies

    International Nuclear Information System (INIS)

    Iselin, L.H.

    1992-01-01

    The use of 14 N nuclear quadrupole resonance (NQR) as a radiation dosimetry tool has only recently been explored. An analytical method for analyzing 14 N NQR complex free induction decays is presented with the background necessary to conduct pulsed NQR experiments. The 14 N NQR energy levels and possible transitions are derived in step-by-step detail. The components of a pulsed NQR spectrometer are discussed along with the experimental techniques for conducting radiation effects experiments using the spectrometer. Three data analysis techniques -- the power spectral density Fourier transform, state space singular value decomposition (HSVD), and nonlinear curve fitting (using the downhill simplex method of global optimization and the Levenberg-Marquart method) -- are explained. These three techniques are integrated into an analytical method which uses these numerical techniques in this order to determine the physical NQR parameters. Sample data sets of urea and guanidine sulfate data are used to demonstrate how these methods can be employed to analyze both simple and complex free induction decays. By determining baseline values for biologically significant organics, radiation effects on the NQR parameters can be studied to provide a link between current radiation dosimetry techniques and the biological effects of radiation

  1. Isotopic dependence of the giant quadrupole resonance in the stable even-mass molybdenum nuclei

    International Nuclear Information System (INIS)

    Moalem, A.; Gaillard, Y.; Bemolle, A.M.; Buenerd, M.; Chauvin, J.; Duhamel, G.; Lebrun, D.; Martin, P.; Perrin, G.; de Saintignon, P.

    1979-01-01

    Inelastic scattering of 110 MeV 3 He particles is used to probe the quadrupole strength in the even Mo isotopes. The peak position of the giant quadrupole resonance is found to decrease more rapidly than predicted by the A/sup -1/3/ law, a behavior very similar to that exhibited by the photonuclear giant dipole resonance. The width and strength of the giant quadrupole resonance are practically constant in 92 Mo through 100 Mo

  2. Radio Frequency Interference Suppression for Landmine Detection by Quadrupole Resonance

    Science.gov (United States)

    Liu, Guoqing; Jiang, Yi; Xiong, Hong; Li, Jian; Barrall, Geoffrey A.

    2006-12-01

    The quadrupole resonance (QR) technology can be used as a confirming sensor for buried plastic landmine detection by detecting the explosives within the mine. We focus herein on the detection of TNT mines via the QR sensor. Since the frequency of the QR signal is located within the AM radio frequency band, the QR signal can be corrupted by strong radio frequency interferences (RFIs). Hence to detect the very weak QR signal, RFI mitigation is essential. Reference antennas, which receive RFIs only, can be used together with the main antenna, which receives both the QR signal and the RFIs, for RFI mitigation. The RFIs are usually colored both spatially and temporally, and hence exploiting only the spatial diversity of the antenna array may not give the best performance. We exploit herein both the spatial and temporal correlations of the RFIs to improve the TNT detection performance.

  3. Spin dipole and quadrupole resonances in 40Ca

    International Nuclear Information System (INIS)

    Baker, F.T.; Love, W.G.; Bimbot, L.; Fergerson, R.W.; Glashausser, C.; Green, A.; Jones, K.; Nanda, S.

    1989-01-01

    Angular distributions of the double differential cross section d 2 σ/dΩ dE(σ) and the spin-flip probability S nn have been measured for inclusive proton inelastic scattering from 40 Ca at 319 MeV. Excitation energies (ω) up to about 40 MeV have been investigated over the angular range from 3.5 degree to 12 degree in the laboratory (0.3 to 0.9 fm -1 ). Here, multipole decompositions of angular distributions of σS nn for the 40 Ca(rvec p,rvec p ') reaction at 319 MeV have been performed in order to compare ΔS=1 strength observed with sum rules. In contrast to the well-known quenching of Gamow-Teller and M1 resonances, the spin-dipole resonance has a total measured strength which is larger than that predicted by the energy-weighted sum rule. The spin-dipole strength distribution supports asymmetric widths predicted by calculations including 2p-2h mixing. The spin-quadrupole resonance is observed near ω=35 MeV and its total strength for ω<40 MeV estimated

  4. Collisional damping of giant monopole and quadrupole resonances

    International Nuclear Information System (INIS)

    Yildirim, S.; Gokalp, A.; Yilmaz, O.; Ayik, S.

    2001-01-01

    Collisional damping widths of giant monopole and quadrupole excitations for 120 Sn and 208 Pb at zero and finite temperatures are calculated within Thomas-Fermi approximation by employing the microscopic in-medium cross-sections of Li and Machleidt and the phenomenological Skyrme and Gogny forces, and are compared with each other. The results for the collisional widths of giant monopole and quadrupole vibrations at zero temperature as a function of the mass number show that the collisional damping of giant monopole vibrations accounts for about 30 - 40% of the observed widths at zero temperature, while for giant quadrupole vibrations it accounts for only 20 - 30% of the observed widths at zero temperature. (orig.)

  5. The pygmy quadrupole resonance and neutron-skin modes in 124Sn

    Directory of Open Access Journals (Sweden)

    M. Spieker

    2016-01-01

    Full Text Available We present an extensive experimental study of the recently predicted pygmy quadrupole resonance (PQR in Sn isotopes, where complementary probes were used. In this study, (α,α′γ and (γ,γ′ experiments were performed on 124Sn. In both reactions, Jπ=2+ states below an excitation energy of 5 MeV were populated. The E2 strength integrated over the full transition densities could be extracted from the (γ,γ′ experiment, while the (α,α′γ experiment at the chosen kinematics strongly favors the excitation of surface modes because of the strong α-particle absorption in the nuclear interior. The excitation of such modes is in accordance with the quadrupole-type oscillation of the neutron skin predicted by a microscopic approach based on self-consistent density functional theory and the quasiparticle-phonon model (QPM. The newly determined γ-decay branching ratios hint at a non-statistical character of the E2 strength, as it has also been recently pointed out for the case of the pygmy dipole resonance (PDR. This allows us to distinguish between PQR-type and multiphonon excitations and, consequently, supports the recent first experimental indications of a PQR in 124Sn.

  6. Thermalization time-scale of the giant quadrupole resonance

    International Nuclear Information System (INIS)

    Grigorescu, M.

    1997-01-01

    The effects of temperature and dissipation on the quantum transition rates are investigated using a Heisenberg-Langevin equation for the density matrix. This approach is applied to described the isothermal and adiabatic evolution towards thermalization of the nuclear giant quadrupole shape vibration within a collective two state model. (author)

  7. Design study of 50 kG/in. quadrupole magnet

    International Nuclear Information System (INIS)

    Ishibashi, K.; McInturff, A.D.

    1982-09-01

    A design study was made on a three-shell quadrupole magnet with an operational field gradient of 2.0 T/cm, which would represent one of the world's highest values for an accelerator quadrupole. The conductor specifications required the magnet to be cooled by 1.8K, 1 atm superfluid helium. Magnetic and mechanical considerations are described and discussed

  8. Thermal mixing in multiple-pulse nuclear quadrupole resonance spin-locking

    International Nuclear Information System (INIS)

    Beltjukov, P A; Kibrik, G E; Furman, G B; Goren, S D

    2007-01-01

    We report on an experimental and theoretical nuclear quadrupole resonance (NQR) multiple-pulse spin-locking study of the thermal mixing process in solids containing nuclei of two different sorts, I>1/2 and S = 1/2, coupled by dipole-dipole interactions and influenced by an external magnetic field. Two coupled equations for the inverse spin temperatures of both the spin systems describing the mutual spin-lattice relaxation and the thermal mixing were obtained using the method of the nonequilibrium state operator. It is shown that the relaxation process is realized with non-exponential time dependence described by a sum of two exponents. The calculated relaxation time versus the multiple-pulse field parameters agrees well with the obtained experimental data in 1,4-dichloro-2-nitrobenzene. The calculated magnetization relaxation time versus the strength of the applied magnetic field agrees well with the obtained experimental data

  9. Electric dipole approximation and allowed electric quadrupole resonances in multiphoton absorption

    International Nuclear Information System (INIS)

    Rachman, A.; Laplanche, G.; Flank, Y.; Jaouen, M.

    1977-01-01

    In this communication the results of a theoretical study of the two-photon transition probability rate of atomic caesium from the ground state 6S are presented. By using the multipole expansion of the interaction hamiltonian we predict a one-photon allowed electric-quadrupole resonance for the double 6D 3/2-6D 5/2, the 6S→nD transitions being forbidden in the electric-dipole approximation. The calculation is made in the framework of perturbation theory to the lowest non-vanishing order, the initial and final atomic states are calculated using the quantum defect method (QDM), as well as the Green's function method which is used to perform the infinite summation over the complete set unperturbed atomic states [fr

  10. A novel power amplification scheme for nuclear magnetic resonance/nuclear quadrupole resonance systems

    Science.gov (United States)

    Zhang, Xinwang; Schemm, Nathan; Balkır, Sina

    2011-03-01

    Nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR)-based chemical analysis systems have been widely utilized in various areas such as medicine, security, and academic research. In these applications, the power amplifier stage plays a key role in generating the required oscillating magnetic fields within a radio frequency coil that serves as the probe. However, the bulky size and relatively low efficiency of the traditional power amplification schemes employed present a bottleneck for the realization of compact sized and portable NMR and NQR systems. To address this problem, this work presents a class D voltage-switching power amplification scheme with novel fast-start and fast-stop functions that are suitable for generating ideal NMR and NQR excitation signals. Compared to the traditional analog power amplifiers (PAs), the proposed switched-mode PA can achieve significant improvement on the power efficiency as well as the physical volume. A PA circuit for portable NQR-based explosive detection systems has been designed and built using the proposed scheme with 1 kW possible maximum output power and 10 MHz maximum operating frequency. Test results show that the presented PA achieves more than 60% measured efficiency within a highly compact volume while sustaining fast start and stop of excitation signals in the order of microseconds.

  11. Topology of the interactions pattern in pharmaceutically relevant polymorphs of methylxanthines (caffeine, theobromine, and theophiline): combined experimental (¹H-¹⁴N nuclear quadrupole double resonance) and computational (DFT and Hirshfeld-based) study.

    Science.gov (United States)

    Latosińska, Jolanta Natalia; Latosińska, Magdalena; Olejniczak, Grzegorz A; Seliger, Janez; Žagar, Veselko

    2014-09-22

    Three anhydrous methylxanthines: caffeine (1,3,7-trimethylxanthine; 1,3,7-trimethyl-1H-purine-2,6-(3H,7H)-dione) and its two metabolites theophylline (1,3-dimethylxanthine; 1,3-dimethyl-7H-purine-2,6-dione) and theobromine (3,7-dimethyl-xanthine; 3,7-dimethyl-7H-purine-2,6-dione), which reveal multifaceted therapeutic potential, have been studied experimentally in solid state by (1)H-(14)N NMR-NQR (nuclear magnetic resonance-nuclear quadrupole resonance) double resonance (NQDR). For each compound the complete NQR spectrum consisting of 12 lines was recorded. The multiplicity of NQR lines indicates the presence of a stable β form of anhydrous caffeine at 233 K and stable form II of anhydrous theobromine at 213 K. The assignment of signals detected in NQR experiment to particular nitrogen atoms was made on the basis of quantum chemistry calculations performed for monomer, cluster, and solid at the DFT/GGA/BLYP/DPD level. The shifts due to crystal packing interactions were evaluated, and the multiplets detected by NQR were assigned to N(9) in theobromine and N(1) and N(9) in caffeine. The ordering theobromine > theophylline > caffeine site and theophylline theobromine theobromine) to π···π stacking (caffeine). Substantial differences in the intermolecular interactions in stable forms of methylxanthines differing in methylation (site or number) were analyzed within the Hirshfeld surface-based approach. The analysis of local environment of the nitrogen nucleus permitted drawing some conclusions on the nature of the interactions required for effective processes of recognition and binding of a given methylxanthine to A1-A(2A) receptor (target for caffeine in the brain). Although the interactions responsible for linking neighboring methylxanthines molecules in crystals and methylxanthines with targets in the human organism can differ significantly, the knowledge of the topology of interactions provides reliable preliminary information about the nature of this binding.

  12. New resonant circuits for the ISOLTRAP radiofrequency quadrupole trap

    CERN Document Server

    SENECAL, Pierre

    2015-01-01

    This report describes my work during my Summer Student Program. My main project was building and testing a resonance-circuit box for a radio-frequency power supply used with the radio-frequency cooler and buncher.

  13. Antiferromagnetic spin fluctuations and unconventional nodeless superconductivity in an iron-based new superconductor (Ca4Al2O(6-y))(Fe2As2): 75As nuclear quadrupole resonance study.

    Science.gov (United States)

    Kinouchi, H; Mukuda, H; Yashima, M; Kitaoka, Y; Shirage, P M; Eisaki, H; Iyo, A

    2011-07-22

    We report 75As nuclear quadrupole resonance studies on (Ca4Al2O(6-y))(Fe2As2) with T(c) = 27  K. Measurement of nuclear-spin-relaxation rate 1/T1 has revealed a significant development of two-dimensional antiferromagnetic spin fluctuations down to T(c) in association with the smallest As-Fe-As bond angle. Below T(c), the temperature dependence of 1/T1 without any trace of the coherence peak is well accounted for by a nodeless s(±)-wave multiple-gaps model. From the fact that its T(c) is comparable to T(c) = 28  K in the optimally doped LaFeAsO(1-y) in which antiferromagnetic spin fluctuations are not dominant, we remark that antiferromagnetic spin fluctuations are not a unique factor for enhancing T(c) among Fe-based superconductors, but a condition for optimizing superconductivity should be addressed from the lattice structure point of view.

  14. Measurement of the 14N nuclear quadrupole resonance frequencies by the solid effect

    Science.gov (United States)

    Seliger, J.; Žagar, V.

    2008-07-01

    1H- 14N nuclear quadrupole double resonance using magnetic field cycling between high and low magnetic field and solid effect in the low magnetic field is analyzed in details. The transition probabilities per unit time for the solid-effect transitions are calculated. The double resonance spectra are calculated in the limiting cases of fast and slow nitrogen spin-lattice relaxation. The double resonance spectra are measured in histamine and quinolinic acid. The experimental spectra are analyzed and the 14N NQR frequencies are determined.

  15. Giant quadrupole resonance in 24Mg, 27Al, and 28Si

    International Nuclear Information System (INIS)

    Youngblood, D.H.; Rozsa, C.M.; Moss, J.M.; Brown, D.R.; Bronson, J.D.

    1977-01-01

    The giant-resonance region of 24 Mg, 27 Al, and 28 Si was studied by inelastic scattering of 126-MeV α particles. In contrast to results at 96 MeV, considerable clustering of E2 strength was observed for 27 Al at E/sub x/ approx. 20.1 MeV with GAMMA approx. 7.6 MeV exhausting about 35% of the E2 energy weighted sum rule. E2 strength was also located in 24 Mg in two clusters of states at E-bar/sub x/ approx. 18.2, 24.4 MeV; however, contributions from other multipoles cannot be neglected. In 28 Si a multipeaked group was observed at E/sub x/ approx. 19.4 MeV with GAMMA approx. 4 MeV but no L assignment was made. The energy dependence of the cross section for the giant quadrupole resonance was found to be consistent with distorted-wave Born approximation predictions

  16. DC superconducting quantum interference device usable in nuclear quadrupole resonance and zero field nuclear magnetic spectrometers

    Science.gov (United States)

    Fan, Non Q.; Clarke, John

    1993-01-01

    A spectrometer for measuring the nuclear quadrupole resonance spectra or the zero-field nuclear magnetic resonance spectra generated by a sample is disclosed. The spectrometer uses an amplifier having a dc SQUID operating in a flux-locked loop for generating an amplified output as a function of the intensity of the signal generated by the sample. The flux-locked loop circuit includes an integrator. The amplifier also includes means for preventing the integrator from being driven into saturation. As a result, the time for the flux-locked loop to recover from the excitation pulses generated by the spectrometer is reduced.

  17. Quadrupole corrections to matrix elements of transitions in resonant reactions of muonic molecule formation

    International Nuclear Information System (INIS)

    Faifman, M.P.; Strizh, T.A.; Armour, E.A.G.; Harston, M.R.

    1996-01-01

    The calculated resonant formation rates of the muonic molecules DDμ and DTμ are presented. The approach developed earlier for calculating the transition matrix elements in the dipole approximation has been extended to include the quadrupole terms in the multipole expansion of the interaction operator. The calculated dependence of the DTμ formation rates on the energies of the incident Tμ muonic atoms shows that the effect of including the quadrupole correction is to reduce the magnitude of the peak rates by about 20-30% at the different temperatures, compared to those calculated in the dipole approximation. The dependence on temperature for the DDμ formation rates is obtained with the differences between the presented and previous calculations being less than 5%. (orig.)

  18. Investigation of Corrosion Inhibitors by Nuclear Quadrupole Resonance Relaxometry Method

    Directory of Open Access Journals (Sweden)

    Nikolay Sinyavsky

    2015-12-01

    Full Text Available The changes taking place with the corrosion-resistant coating, but not the state of the surface subjected to corrosion are investigated in this paper in contrast to traditional approaches. We used the method of nitrogen relaxometry NQR and multi-exponential inversion of decay of longitudinal and transverse components of the nuclear magnetization is applied for the first time for this purpose. The results of experimental studies of changes in the distributions of spin-spin and spin-lattice relaxation of crystallite powder of sodium nitrite and urotropin, the mixture of which is used as a corrosion inhibitor of ferrous metals are considered.

  19. Design and first measurements of an alternative calorimetry chamber for the HZB quadrupole resonator

    CERN Document Server

    Keckert, Sebastian; Knobloch, Jens; Kugeler, Oliver

    2015-01-01

    The systematic research on superconducting thin films requires dedicated testing equipment. The Quadrupole Resonator (QPR) is a specialized tool to characterize the superconducting RF properties of circular planar samples. A calorimetric measurement of the RF surface losses allows the surface resistance to be measured with sub nano-ohm resolution. This measurement can be performed over a wide temperature and magnetic field range, at frequencies of 433, 866 and 1300 MHz. The system at Helmholtz-Zentrum Berlin (HZB) is based on a resonator built at CERN and has been optimized to lower peak electric fields and an improved resolution. In this paper the design of an alternative calorimetry chamber is presented, providing flat samples for coating which are easy changeable. All parts are connected by screwing connections and no electron beam welding is required. Furthermore this design enables exchangeability of samples between the resonators at HZB and CERN. First measurements with the new design show ambiguous r...

  20. The quadrupole resonator Construction, RF System Field Calculations and First Applications

    CERN Document Server

    Chiaveri, Enrico; Mahner, E; Tessier, J M

    1998-01-01

    The quadrupole resonator allows measurement of the RF properties of superconducting (sc) films deposited on disk-shaped metallic substrates. We describe the construction of the apparatus, the brazing and electron-beam welding procedures, the arrangements for compensating mechanical tolerances of samples and for assuring reproducible sample illumination. We explain the special features of the RF sy stem and give the results of field calculations with a 3D cavity code. Finally we present first measurements of Nb on Cu film samples and compare them with calibrations done with a bulk Nb sample.

  1. Study of some options for the CLIC final focusing quadrupole

    CERN Document Server

    Aleksa, Martin

    2002-01-01

    This paper describes a feasibility study and the preliminary design for the CLIC final focusing quadrupoles. A possible design for a quadrupole consisting of rare-earth permanent magnet material is introduced. Due to its radiation hardness and its high remanence, Sm2Co17 seems to be the best suited permanent magnet material. The very high field gradients of 450 T/m can be achieved if pre-magnetized sectors made of permanent magnet material are assembled in ”zero clearance” design. An alternative solution with small superconducting coils is presented and briefly discussed, but would need further investigations.

  2. Investigation of Wavelet-Based Enhancements to Nuclear Quadrupole Resonance Explosives Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kercel, Stephen W.; Dress, William B.; Hibbs, Andrew D.; Barrall, Geoffrey A.

    1998-06-01

    Nuclear Quadrupole Resonance (NQR) is effective for the detection and identification of certain types of explosives such as RDX, PETN and TNT. In explosive detection, the NQR response of certain 14N nuclei present in the crystalline material is probed. The 14N nuclei possess a nuclear quadrupole moment which in the presence of an electric field gradient produces an energy level splitting which may be excited by radio-frequency magnetic fields. Pulsing on the sample with a radio signal of the appropriate frequency produces a transient NQR response which may then be detected. Since the resonant frequency is dependent upon both the quadrupole moment of the 14N nucleus and the nature of the local electric field gradients, it is very compound specific. Under DARPA sponsorship, the authors are using multiresolution methods to investigate the enhancement of operation of NQR explosives detectors used for land mine detection. For this application, NQR processing time must be reduced to less than one second. False alarm responses due to acoustic and piezoelectric ringing must be suppressed. Also, as TNT is the most prevalent explosive found in land mines, NQR detection of TNT must be made practical despite unfavorable relaxation tunes. All three issues require improvement in signal-to-noise ratio, and all would benefit from improved feature extraction. This paper reports some of the insights provided by multiresolution methods that can be used to obtain these improvements. It includes results of multiresolution analysis of experimentally observed NQR signatures for RDX responses and various false alarm signatures in the absence of explosive compounds.

  3. Neutron components of isoscalar giant quadrupole resonance states in 58,60,62,64Ni

    International Nuclear Information System (INIS)

    Antalik, R.

    1989-01-01

    The neutron-proton matrix element ratios (η) for isoscalar giant quadrupole resonance states of even Ni isotopes are investigated within the framework of the shell model quasiparticle random-phase approximation. The dependence of η ratios on radial neutron and proton ground state density distribution differences (Δ np ) is found to be about 1.0-1.5 Δ np . The theoretical η ratios are 14-23% lower than the hydrodynamical limit. The agreement between theoretical and experimental η ratios is observed for 58 Ni and 60 Ni isotopes. The η ratios for 62 Ni and 64 Ni suggested by the resonance π ± inelastic scattering cannot be interpreted even including the radial variations of the neutron fields. 18 refs.; 3 tabs

  4. Capacitor-based detection of nuclear magnetization: nuclear quadrupole resonance of surfaces.

    Science.gov (United States)

    Gregorovič, Alan; Apih, Tomaž; Kvasić, Ivan; Lužnik, Janko; Pirnat, Janez; Trontelj, Zvonko; Strle, Drago; Muševič, Igor

    2011-03-01

    We demonstrate excitation and detection of nuclear magnetization in a nuclear quadrupole resonance (NQR) experiment with a parallel plate capacitor, where the sample is located between the two capacitor plates and not in a coil as usually. While the sensitivity of this capacitor-based detection is found lower compared to an optimal coil-based detection of the same amount of sample, it becomes comparable in the case of very thin samples and even advantageous in the proximity of conducting bodies. This capacitor-based setup may find its application in acquisition of NQR signals from the surface layers on conducting bodies or in a portable tightly integrated nuclear magnetic resonance sensor. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Design studies of a high-current radiofrequency quadrupole for ...

    Indian Academy of Sciences (India)

    A 3 MeV, 30 mA radiofrequency quadrupole (RFQ) accelerator has been designed for the low-energy high-intensity proton accelerator (LEHIPA) project at BARC, India. The beam and cavity dynamics studies were performed using the computer codes LIDOS, TOUTATIS, SUPERFISH and CST microwave studio. We have ...

  6. Design studies of a high-current radiofrequency quadrupole for ...

    Indian Academy of Sciences (India)

    Abstract. A 3 MeV, 30 mA radiofrequency quadrupole (RFQ) accelerator has been de- signed for the low-energy high-intensity proton accelerator (LEHIPA) project at BARC,. India. The beam and cavity dynamics studies were performed using the computer codes. LIDOS, TOUTATIS, SUPERFISH and CST microwave studio.

  7. Design studies of a high-current radiofrequency quadrupole for ...

    Indian Academy of Sciences (India)

    LEHIPA [9] mainly consists of a 50 keV ECR ion source, low energy beam trans- port (LEBT) line, 3 MeV radiofrequency quadrupole (RFQ) accelerator, medium energy beam transport (MEBT) line and a 20 MeV drift tube Linac (DTL). The beam dynamics of RFQ Linacs have been extensively studied by LANL [10].

  8. A preliminary quadrupole asymmetry study of a β=0.12 superconducting single spoke cavity

    Science.gov (United States)

    Yang, Zi-Qin; Lu, Xiang-Yang; Yang, Liu; Luo, Xing; Zhou, Kui; Quan, Sheng-Wen

    2014-10-01

    An Accelerator Driven System (ADS) has been launched in China for nuclear waste transmutation. For the application of high intensity proton beam acceleration, the quadrupole asymmetry effect needs to be carefully evaluated for cavities. Single spoke cavities are the main accelerating structures in the low energy front-end. The single spoke cavity has small transverse electromagnetic field asymmetry, which may lead to transverse RF defocusing asymmetry and beam envelope asymmetry. A superconducting single spoke resonator (PKU-2 Spoke) of β=0.12 and f=325 MHz with a racetrack-shaped inner conductor has been designed at Peking university. The study of its RF field quadrupole asymmetry and its effect on transverse momentum change has been performed. The quadrupole asymmetry study has also been performed on a β=0.12 and f=325 MHz ring-shaped single spoke cavity. Our results show that the quadrupole asymmetry is very small for both the racetrack-shaped and the ring-shaped single spoke cavity.

  9. Integral split ring resonator loaded with drift tubes and RF quadrupoles

    International Nuclear Information System (INIS)

    Fang, J.X.; Chen, C.E.

    1985-01-01

    In order to improve the mechanical stability, the coupled split ring (also spirals) resonators, loaded either with drift tubes or RF Quadrupoles, are integrated together through conducting bars. Investigations on 1/2 and full scale models (50 cm in tank diameter) show considerable improvement on the overall rigidity of the structure while keeping the RF efficiency high. The operating frequency can be greatly reduced by the integration to 24 and 14 MHz for loading with drift tubes and RFQ respectively. The integration also flattens the accelerating voltage distribution and enhances the mode separation and thus facilitates the assembling and commissioning of the accelerating structure. An equivalent circuit of the integral split ring, which agrees well with the experiments, has been developed

  10. Fine structure of the isoscalar giant quadrupole resonance from high-resolution inelastic proton scattering experiments

    International Nuclear Information System (INIS)

    Shevchenko, A.

    2005-02-01

    In the present work the phenomenon of fine structure in the region of the isoscalar giant quadrupole resonance in a number of heavy and medium-heavy nuclei is systematically investigated for the first time. High energy-resolution inelastic proton scattering experiments were carried out in September-October 2001 and in October 2003 at the iThemba LABS cyclotron facility in South Africa with an incident proton energy of 200 MeV. The obtained data with the energy resolution of triangle E 58 Ni, 89 Y, 90 Zr, 120 Sn, 142 Nd, 166 Er, 208 Pb), thereby establishing the global character of this phenomenon. Fine structure can be described using characteristic energy scales, appearing as a result of the decay of collective modes towards the compound nucleus through a hierarchy of couplings to complex degrees of freedom. For the extraction of the characteristic energy scales from the spectra an entropy index method and a novel technique based on the wavelet analysis are utilized. The global analysis of available data shows the presence of three groups of scales, according to their values. To the first group belong the scales with the values around and below 100 keV, which were detected in all the nuclei studied. The second group contains intermediate scales in the range of 100 keV to 1 MeV. These scales show large variations depending on the nuclear structure of the nucleus. The largest scales above 1 MeV are classified to the third group, describing the global structure of the resonance (the width). The interpretation of the observed scales is realized via the comparison with microscopic model calculations including the coupling of the initial one-particle-one-hole excitations to more complex configurations. A qualitative agreement of the experimentally observed scales with those obtained from the theoretical predictions supports the suggestion of the origin of fine structure from the coupling to the two-particle-two-hole states. However, quantitatively, large deviations are

  11. Homotopy analysis method to study a quadrupole mass filter.

    Science.gov (United States)

    Seddighi Chaharborj, S; Seddighi Chahrborj, S; Sadat Kiai, S M; Abu Bakar, M R; Ziaeian, I; Gheisari, Y

    2012-04-01

    The homotopy analysis method (HAM) is applied to study the behavior of a hyperbolic rods of quadrupole mass filter and a sinusoidal potential form V(ac)  cos(Ωt). Numerical computation method of a 20th-order HAM is employed to compare the physical properties of the confined ions with fifth-order Runge-Kutta method. Also, comparison is made for the first stability region, the ion trajectories in real time, the polar plots, and the ion trajectory in x - y plan. The results show that the two methods are fairly similar; therefore, the HAM method has potential application to solve linear and nonlinear equations of the charge particle confinement in quadrupole field. Copyright © 2012 John Wiley & Sons, Ltd.

  12. SNS Resonance Control Cooling Systems and Quadrupole Magnet Cooling Systems DIW Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Magda, Karoly [ORNL

    2018-01-01

    This report focuses on control of the water chemistry for the Spallation Neutron Source (SNS) Resonance Control Cooling System (RCCS)/Quadrupole Magnet Cooling System (QMCS) deionized water (DIW) cooling loops. Data collected from spring 2013 through spring 2016 are discussed, and an operations regime is recommended.It was found that the RCCS operates with an average pH of 7.24 for all lines (from 7.0 to 7.5, slightly alkaline), the average low dissolved oxygen is in the area of < 36 ppb, and the main loop average resistivity of is > 14 MΩ-cm. The QMCS was found to be operating in a similar regime, with a slightly alkaline pH of 7.5 , low dissolved oxygen in the area of < 45 ppb, and main loop resistivity of 10 to 15 MΩ-cm. During data reading, operational corrections were done on the polishing loops to improve the water chemistry regime. Therefore some trends changed over time.It is recommended that the cooling loops operate in a regime in which the water has a resistivity that is as high as achievable, a dissolved oxygen concentration that is as low as achievable, and a neutral or slightly alkaline pH.

  13. Single Particle Studies of Heterogeneous Atmospheric Chemistry on Aluminum Oxide Particles in a Quadrupole Trap

    National Research Council Canada - National Science Library

    Hunter, A

    2000-01-01

    ... on upper atmospheric chemical cycles and ozone. The experimental investigation employs a laboratory quadrupole trap electrodynamic levitation apparatus to study heterogeneous processes on single aluminum oxide particles representative...

  14. Busbar studies for the LHC interaction region quadrupoles

    CERN Document Server

    Bauer, P; Fehér, S; Kerby, J S; Lamm, M J; Orris, D; Sylvester, C D; Tompkins, J C; Zlobin, A V

    2001-01-01

    Fermilab (FNAL) and the Japanese high energy physics lab (KEK) are developing the superconducting quadrupole magnets for the interaction regions (IR) of the Large Hadron Collider (LHC). These magnets have a nominal field gradient of 215 T/m in a 70 mm bore and operate in superfluid helium at 1.9 K. The IR magnets are electrically interconnected with superconducting busbars, which need to be protected in the event of a quench. Experiments to determine the most suitable busbar design for the LHC IR magnets and the analysis of the data are presented. The main purpose of the study was to find a design that allows the inclusion of the superconducting busbars in the magnet quench protection scheme, thus avoiding additional quench protection circuitry. A proposed busbar design that was tested in these experiments consists of a superconducting cable, which is normally used for the inner layer of the Fermilab IR quadrupoles, soldered to similar Rutherford type cables as a stabilizer. A series of prototypes with varyin...

  15. Study of Nb3Sn cables for superconducting quadrupoles

    International Nuclear Information System (INIS)

    Otmani, R.

    1999-10-01

    In particle physics, the quest for higher energies may be satisfied by the use of niobium-tin superconducting magnets. Such magnets are made of Rutherford type cables which are wound from superconducting strands. The strands are made by the 'internal tin' method. The aim of this study is to determine the main parameters for the fabrication of a quadrupole. The two main requirements the cable must fulfill are high critical current and low losses. The main parameters were determined from different measurements and models. Thus, the key parameters for the current transport capacity are the number and the diameter of the filaments, the number of sub-elements, the surface of superconductor and the copper-to-non-copper ratio. For the hysteresis losses, the main parameters appear to be the effective filament diameter and the spacing of the filaments. For intra-strand losses, the main parameters appear to be the filaments' diameter, the filament spacing, the nature of the diffusion barrier and the Residual Resistivity Ratio (RRR) of the copper. The interstrand resistances for the cable are the key parameters for the losses. Thus, the nature of the strands coating or the presence of a stainless steel core can strongly diminish the cable losses. Finally, a design, for the strands and the cables for the fabrication of a quadrupole is proposed. (author)

  16. Radio-frequency interference suppression for the quadrupole-resonance confirming sensor

    Science.gov (United States)

    Liu, Guoqing; Jiang, Yi; Li, Jian; Barrall, Geoffrey A.

    2004-09-01

    The quadrupole resonance (QR) technology can be used as a confirming sensor for buried plastic landmine detection by detecting the explosives (e.g., TNT and RDX) within the mine. We focus herein on the detection of TNT via the QR sensor. Since the frequency of the QR signal is located within the AM radio frequency band, the QR signal can be corrupted by strong radio frequency interferences (RFIs). Hence to detect the very weak QR signal, RFI mitigation is essential. Reference antennas, which receive RFIs only, can be used together with the main antenna, which receives both the QR signal and the RFIs, for RFI mitigation. By taking advantage of the spatial correlation of the RFIs received by the antenna array, the RFIs can be reduced significantly. However, the RFIs are usually colored both spatially and temporally and hence exploiting only the spatial diversity of the antenna array may not give the best performance. We exploit herein both the spatial and temporal correlation of the RFIs to improve the TNT detection performance. First, we consider exploiting the spatial correlation of the RFIs only and propose a maximum likelihood (ML) estimator for parameter estimation and a constant false alarm rate (CFAR) detector for TNT detection. Second, we adopt a multichannel autoregressive model to take into account the temporal correlation of the RFIs and devise a detector based on the model. Third, we take advantage of the temporal correlation by using a two-dimensional robust Capon beamformer (RCB) with the ML estimator for improved RFI mitigation. Finally, we combine the merits of all of the three aforementioned approaches for TNT detection. The effectiveness of the combined method is demonstrated using the experimental data collected by Quantum Magnetics, Inc.

  17. Wavelet signatures of K-splitting of the Isoscalar Giant Quadrupole Resonance in deformed nuclei from high-resolution (p,p‧) scattering off 146, 148, 150Nd

    Science.gov (United States)

    Kureba, C. O.; Buthelezi, Z.; Carter, J.; Cooper, G. R. J.; Fearick, R. W.; Förtsch, S. V.; Jingo, M.; Kleinig, W.; Krugmann, A.; Krumbolz, A. M.; Kvasil, J.; Mabiala, J.; Mira, J. P.; Nesterenko, V. O.; von Neumann-Cosel, P.; Neveling, R.; Papka, P.; Reinhard, P.-G.; Richter, A.; Sideras-Haddad, E.; Smit, F. D.; Steyn, G. F.; Swartz, J. A.; Tamii, A.; Usman, I. T.

    2018-04-01

    The phenomenon of fine structure of the Isoscalar Giant Quadrupole Resonance (ISGQR) has been studied with high energy-resolution proton inelastic scattering at iThemba LABS in the chain of stable even-mass Nd isotopes covering the transition from spherical to deformed ground states. A wavelet analysis of the background-subtracted spectra in the deformed 146, 148, 150Nd isotopes reveals characteristic scales in correspondence with scales obtained from a Skyrme RPA calculation using the SVmas10 parameterization. A semblance analysis shows that these scales arise from the energy shift between the main fragments of the K = 0 , 1 and K = 2 components.

  18. Degradation studies of Fermilab low beta quadrupole cable

    International Nuclear Information System (INIS)

    Gourlay, S.A.; Garber, M.; Royet, J.; Scanlon, R.M.

    1990-10-01

    The production of high gradient superconducting quadrupoles for the Tevatron D0/B0 Low Beta insertion is currently underway at Fermilab. The two-shell design utilizes a 36-strand Rutherford style cable produced by Lawrence Berkeley Laboratory. A measure of cable quality is usually given by a comparison of the critical current of the cable with the sum of the critical currents of the strand. A recent study involving variations in the cabling conditions and dimensional parameters has resulted in a significant decrease in degradation. Over the period of cable production degradation has been reduced from an average of 12% to less than 4%. Some cable samples measured by Brookhaven National Laboratory exhibit Jc's in excess of 3100 A/mm 2 at sign 5T. The adjustments to the cabling procedure which are believed to be responsible for the reduction in Jc degradation will be discussed. 14 refs., 3 figs

  19. Performance study of quadrupole with broken line profile pole tip

    International Nuclear Information System (INIS)

    Fan Mingwu; Zhang Tianjue; Chu Chengjie

    1997-01-01

    Most of quadrupole used for beam focusing possess hyperbola profile tip. To simplify machining processes and ensure the assembling accuracy, a broken line profile pole tip is adapted instead of hyperbola. The results of the magnetic field simulation codes and the tests show the good quality field generated by such configuration: not only more uniform field gradient, but also field more concentrated at useful area. These types of quadrupole are used at CYCIAE-30 cyclotron and HI-13 tandem transportation lines

  20. 1s2p resonant inelastic X-ray scattering combined dipole and quadrupole analysis method

    DEFF Research Database (Denmark)

    Bagger, Alexander; Haarman, Ties; Molina, Anna Puig

    2017-01-01

    , it is shown that only in the case of quadrupole excitations being present is additional information gained by RIXS compared with XAS. Combining this knowledge with methods to calculate the dipole contribution in XAS measurements gives scientists the opportunity to plan more effective experiments....

  1. New Method for Double-Resonance Spectroscopy in a Cold Quadrupole Ion Trap and Its Application to UV-UV Hole-Burning Spectroscopy of Protonated Adenine Dimer.

    Science.gov (United States)

    Kang, Hyuk; Féraud, Géraldine; Dedonder-Lardeux, Claude; Jouvet, Christophe

    2014-08-07

    A novel method for double-resonance spectroscopy in a cold quadrupole ion trap is presented, which utilizes dipolar resonant excitation of fragment ions in the quadrupole ion trap. Photofragments by a burn laser are removed by applying an auxiliary RF to the trap, and a probe laser detects the depletion of photofragments by the burn laser. By scanning the wavelength of the burn laser, conformation-specific UV spectrum of a cold ion is obtained. This simple and powerful method is applicable to any type of double-resonance spectroscopy in a cold quadrupole ion trap and was applied to UV-UV hole-burning spectroscopy of protonated adenine dimer. It was found that protonated adenine dimer has multiple conformers/tautomers, each with multiple excited states with drastically different excited state dynamics.

  2. Electron scattering studies of selected electric and magnetic dipole and quadrupole transitions in light and heavy nuclei, the new multipole giant resonances and atomic transitions - recent results from the DALINAC

    International Nuclear Information System (INIS)

    Richter, A.

    1977-01-01

    Recent experimental work from the Darmstadt electron linear accelerator (DALINAC) is briefly summarized. Particular emphasis is given to the following topics: high resolution inelastic electron scattering (ΔE approximately 30 keV FWHM) has been used to study the radiative width and magnetization density of the 2 + , T = 1 state at 16.11 MeV in 12 C, E2 strength distribution in 28 Si below an excitation energy of 13 MeV and the isospin forbidden E1 electroexcitation of the 1 - , T = 0 state at 6.95 MeV in 40 Ca. High resolution inelastic electron scattering was also employed to determine certain M1 transitions in 14 N, 28 Si, 39 K, 58 Ni, 90 Zr and 208 Pb and the M2 strength distribution in the two heaviest nuclei. At medium energy resolution (ΔE approximately 200 keV FWHM) spectra at various angles and bombarding energies have been measured from (4-31) MeV for 208 Pb. They are being analyzed in order to determine E0, E1, E2, E3 and M1 giant resonance strength in the continuum. The Z and E dependence and the scaling behaviour of the atomic inner shell ionization cross section at relativistic electron impact is studied on gaseous and solid targets. (orig./BJ) [de

  3. Design Studies for the Low-beta Quadrupoles for the LHC Luminosity Upgrade

    CERN Document Server

    Todesco, E; Ambrosio, G; Borgnolutti, F; Cerutti, F; Dietderich, D; Esposito, L; Felice, H; Ferracin, P; Sabbi, G; Wanderer, P; Van Weelderen, R

    2013-01-01

    In this paper we outline the present status of the design studies for the high luminosity LHC, focusing on the choice of the aperture of the inner triplet quadrupoles. After reviewing some critical aspects of the design as energy deposition, shielding, heat load and protection, we present the main tentative parameters for building a 150 mm aperture Nb3Sn quadrupole, based on the experience gathered by the LARP program in the past several years.

  4. Nuclear quadrupole resonance in CuCl2.2H2O

    International Nuclear Information System (INIS)

    Liu, Y.S.; Peixoto, L.T.

    1975-01-01

    The electric field gradient (EFG) at the Cl - site of CuCl 2 .2H 2 O has been calculated on the basis of a point charge model plus the contribution of the covalent bond between nearest copper and chlorine ions. In the calculations of the EFG at Cu ++ site, it has been included the contribution of the 3d 9 electrons in the valence shell of copper and neglected the effect of chemical bonding. After comparison with experimental NQR results, it has been discussed the shielding effect of the core electrons of both ions and established values for the so called Sternheimer factors. It has been presented a value for the ionicity of chlorine in the crystal and calculated the temperature dependence of the quadrupole splitting of the copper nucleus [pt

  5. DC SQUID Spectrometers for Nuclear Quadrupole and Low-Field Nuclear Magnetic Resonance Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    TonThat, Dinh M. [Univ. of California, Berkeley, CA (United States)

    1998-04-01

    The dc Superconducting Quantum Interference Device (SQUJD) is a very sensitive detector of magnetic flux, with a typical flux noise of the order of 1 μΦ0Hz-1/2 at liquid helium temperature (Φ0=h/2e). This inherent flux sensitivity of the SQUID is used in a spectrometer for the detection of nuclear magnetic resonance (NMR.)and nuclear quadruple resonance (NQR). The processing magnetic field from the nuclear spins is coupled to the SQUID by mean of a flux transformer. The SQUID NMR spectrometer is used to measure the longitudinal relaxation time T1 of solid 129Xe at 4.2 K down to 0.1 mT.

  6. 14N Nuclear Quadrupole Resonance Signals in Paranitrotoluene and Trinitrotoluene. Spin-Lock Spin-Echo Off-Resonance Effects

    Science.gov (United States)

    Gregorovič, Alan; Apih, Tomaž; Lužnik, Janko; Pirnat, Janez; Trontelj, Zvone

    A simple, yet effective technique to enhance the 14N NQR trinitrotoluene notoriously low sensitivity is the use of multipulse sequences. Here we investigate the off-resonance effects of the Spin-Lock Spin-Echo multipulse sequence, a predecessor of many advanced pulse sequences used for the same enhancement. Two samples have been used: paranitrotoluene, with a single 14N site as a model compound for trinitrotoluene, and trinitrotoluene itself, with six 14N sites. Our main focus has been the irradiation frequency dependence of the NQR signal, which is important when 14N NQR is used for remote detection of explosives. The two related principal issues are: the target temperature uncertainty and the existence of multiplets with several closely spaced resonance frequencies. The first applies to any explosive, since in remote detection the temperature is only approximately known, whereas the second applies mainly to trinitrotoluene, with 12 resonance frequencies between 837 and 871 kHz. Our frequency dependent investigation shows that the signal intensity as well as the effective spinspin relaxation time varies substantially with irradiation frequency in both samples. We provide a theoretical explanation of this variation which describes very well the observations and can be useful for increasing the reliability of remote detection signal processing.

  7. Study on the electrostatic prismatic spectrometer with quadrupole lenses

    International Nuclear Information System (INIS)

    Petrov, I.A.

    1975-01-01

    The mosk-up structure of electrostatic prismatic spectrometer with quadrupole lenses is described and its parameters are investigated. The gap between the electrodes of the prism is chosen to be 20 mm to ensure greater transmission. The relative angular dispersion of the prism is 4.69. The spectrometer consists of the main vacuum chamber, source chamber, and detector chamber. All parts of the spectrometer have been made from non-magnetic materials. A permalloy magnetostatic screen 1.5 mm thick serves to protect the instrument from disturbing fields, above all, the geomagnetic field. Using a three-electrode electron gun with a V-shaped tungsten cathode, which serves as an imitator for the adjustment of the spectrometer and for the determination of its parameters, have been measured the solid angle of particle acceptance by the instrument and the height of the source slit. The dependence of the spectrometer transmission on the height of the entrance slit and on the half-angle of the electron beam from the source has been obtained. An analysis of the experiments carried out indicates that the height of the source slit providing the maximum contribution to the line intensity is about 4 mm and the spectrometer transmission is close to unity at half-angle values of about 1 deg 30'. The experimental value of the instrument luminosity obtained for the source slit height and the electron divergence angle ensuring the main contribution to the line intesity is L=0.04x1x4=0.16% mm 2 with a resolving power of 1.000

  8. Quadrupole moments measured by nuclear orientation

    International Nuclear Information System (INIS)

    Bouchta, H.

    1985-01-01

    Quadrupole interactions between the nuclei and solids have been studied with the low temperature nuclear orientation technique. The first series of measurements have been effected on the orientation of 195H g m and 197 Hg m , long lived daughter states in the 195 Au and 197 Au decay. The lifetimes of these states are of the same order as the spin-lattice relaxation time. The reorientation of the intermediate states has been taken into account extending the dipole relaxation mechanism to non-equidistant relaxing substates. The experimental nuclear quadrupole moments, thus deduced are slightly different from theoretical estimations. A new high precision method accessible to levels with 100 ns to 1 m lifetimes, the level mixing resonance on oriented nuclei (LMR/ON) has been elaborated in collaboration with LEUVEN university (Belgium). In this technique the nucleus is subject to a non colinear electric plus magnetic combined interaction. The quadrupole interaction of Ag[7/2, = 40 s] isomer with the electric field gradient in zinc has been established to better than 1% observing its level mixing resonances; and also the ratio of electric field gradients of silver in zinc to cadmium. The electric quadrupole moments of 106 Ag m , 107 Ag m and 109 Ag m have been established combining the level mixing resonances with classical low temperature quadrupole alignment measurements. The experimental values are in good agreement with theoretical calculations based on a semi-microscopical model using Yukawa potential [fr

  9. {sup 57}Fe quadrupole splitting and isomer shift in various oxyhemoglobins: study using Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Oshtrakh, M. I., E-mail: oshtrakh@mail.utnet.ru [Ural Federal University (The former Ural State Technical University-UPI), Faculty of Physical Techniques and Devices for Quality Control (Russian Federation); Berkovsky, A. L. [Hematological Scientific Center of the Russian Academy of Sciences (Russian Federation); Kumar, A.; Kundu, S., E-mail: sumankundu@south.du.ac.in [University of Delhi South Campus, Department of Biochemistry (India); Vinogradov, A. V.; Konstantinova, T. S. [Ural State Medical Academy, Faculty of Internal Diseases Propedeutics (Russian Federation); Semionkin, V. A. [Ural Federal University (The former Ural State Technical University-UPI), Faculty of Physical Techniques and Devices for Quality Control (Russian Federation)

    2010-04-15

    A comparative study of normal human, rabbit and pig oxyhemoglobins and oxyhemoglobin from patients with chronic myeloleukemia and multiple myeloma using Moessbauer spectroscopy with a high velocity resolution demonstrated small variations of the {sup 57}Fe quadrupole splitting and isomer shift. These variations may be a result of small structural differences in the heme iron stereochemistry of various hemoglobins.

  10. Devise for measuring the nuclear quadrupole resonance weak signal relaxation at the ISSh-1-12 spectrometer with the SIGMA digital storage

    International Nuclear Information System (INIS)

    Chernyavskij, V.N.; Konstantinov, G.I.

    1984-01-01

    The device, consisting of an analog memory device and the Karr-Parsell pulse programming device (radio frequency pulse train is 90 deg - tau - 180 deg - 2 tau - 180 deg - 2 tau ..., where tau is the interval between 90 deg - and 180 deg - pulses), is described. The device is destined for measurement of the time T 2 of nuclear quadrupole resonance spin-spin relaxation weak signal with signal-to-noise ratio 0 - 10 4 ), pulse numbers in series are 2-1024, start output signal amplitude >= 22 V, duration is 1 μs. The device may be also used in pulsed nuclear magnetic and electron paramagnetic resonance spectroscopy

  11. Nonperturbative study of the damping of giant resonances in hot nuclei

    International Nuclear Information System (INIS)

    De Blasio, F.V.; Cassing, W.; Tohyama, M.; Bortignon, P.F.; Broglia, R.A.

    1992-01-01

    The damping of dipole and quadrupole motion in 16 O and 40 Ca at zero and finite temperature is studied including particle-particle and particle-hole interactions to all orders of perturbation. We find that the dipole dynamics in these light nuclei is well described in terms of mean-field theory (time-dependent Hartree-Fock), while the quadrupole motion is strongly damped through the coupling to more complicated configurations. Both the centroid and the damping width of the quadrupole and dipole giant resonances show a clear stability with temperature as a consequence of the weakening of the interaction, which contrasts with the increase of the phase space

  12. Status of a study of stabilization and fine positioning of CLIC quadrupoles to the nanometre level

    CERN Document Server

    Artoos, K; Esposito, M; Fernandez Carmona, P; Guinchard, M; Hauviller, C; Janssens, S; Kuzmin, A; Leuxe, R; Moron Ballester, R

    2011-01-01

    Mechanical stability to the nanometre and below is required for the Compact Linear Collider (CLIC) quadrupoles to frequencies as low as 1 Hz. An active stabilization and positioning system based on very stiff piezo electric actuators and inertial reference masses is under study for the Main Beam Quadrupoles (MBQ). The stiff support was selected for robustness against direct forces and for the option of incrementally repositioning the magnet with nanometre resolution. The technical feasibility was demonstrated by a representative test mass being stabilized and repositioned to the required level in the vertical and lateral direction. Technical issues were identified and the development programme of the support, sensors, and controller was continued to increase the performance, integrate the system in the overall controller, adapt to the accelerator environment, and reduce costs. The improvements are implemented in models, test benches, and design of the first stabilized prototype CLIC magnet. The characterizati...

  13. Design Studies of Nb3Sn High-Gradient Quadrupole Models for LARP

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, Nikolai; Caspi, Shlomo; Dietderich, Daniel; Ferracin, Paolo; Ghosh, Arup; Kashikhin, Vadim; Lietzke, Al; Novitski, Igor; Zlobin, Alexander; McInturff, Alfred; Sabbi, GianLuca

    2007-06-01

    Insertion quadrupoles with large aperture and high gradient are required to achieve the luminosity upgrade goal of 10{sup 35} cm{sup -2} s{sup -1} at the Large Hadron Collider (LHC). In 2004, the US Department of Energy established the LHC Accelerator Research Program (LARP) to develop a technology base for the upgrade. Nb{sub 3}Sn conductor is required in order to operate at high field and with sufficient temperature margin. We report here on the conceptual design studies of a series of 1 m long 'High-gradient Quadrupoles' (HQ) that will explore the magnet performance limits in terms of peak fields, forces and stresses. The HQ design is expected to provide coil peak fields of more than 15 T, corresponding to gradients above 300 T/m in a 90 mm bore. Conductor requirements, magnetic, mechanical and quench protection issues for candidate HQ designs will be presented and discussed.

  14. Thermal studies of a high gradient quadrupole magnet cooled with pressurized, stagnant superfluid

    CERN Document Server

    Chiesa, L; Kerby, J S; Lamm, M J; Novitski, I; Orris, D; Ozelis, J P; Peterson, Thomas J; Tartaglia, M; Zlobin, A V

    2001-01-01

    A 2-m long superconducting model of an LHC Interaction Region quadrupole magnet was wound with stabrite coated cable. The resulting low interstrand resistance and high AC losses presented the opportunity to measure magnet quench performance in superfluid as a function of helium temperature and heat deposition in the coil. Our motivation was to duplicate the high radiation heat loads predicted for the inner triplet quadrupoles at LHC and study the coil cooling conditions in the magnet. At the Magnet Test Facility in Fermilab's Technical Division, the magnet quench performance was tested as a function of bulk helium temperature and current ramp rate near the planned high luminosity interaction region field gradient of 205 T/m. AC loss measurements provided a correlation between current ramp rate and heat deposition in the coil. Analysis indicates that the results are consistent with there being little participation of superfluid helium in the small channels inside the inner layer in the heat removal from the co...

  15. The Study of Single Nb3Sn Quadrupole Coils Using a Magnetic Mirror Structure

    Energy Technology Data Exchange (ETDEWEB)

    Chlachidze, G.; Andreev, N.; Barzi, E.; Bossert, R.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, N.; Novitski, I.; Orris, D.; Tartaglia, M.

    2010-07-30

    Several 90-mm quadrupole coils made of 0.7-mm Nb{sub 3}Sn strand based on the 'Restack Rod Process' (RRP) of 108/127 design, with cored and non-cored cables and different cable insulation, were fabricated and individually tested at Fermilab using a test structure designed to provide a quadrupole magnetic field environment. The coils were instrumented with voltage taps and strain gauges to study quench performance and mechanical properties. The Nb{sub 3}Sn strand and cable parameters, the coil fabrication details, the mirror model assembly procedure and test results at temperatures of 4.5 K and 1.9 K are reported and discussed.

  16. NMR study of electric quadrupole interactions in GdCo2

    International Nuclear Information System (INIS)

    Barata, A.C.; Guimaraes, A.P.

    1984-01-01

    Quadrupole oscillations have been observed with 59 Co pulsed NMR in the intermetallic compound GdCo 2 . From theses oscillations the nuclear electric quadrupoles interaction (EQI) has been studied as a function of temperature in the range 4K-312K. The value measured at 4K, ν sub(Q)=672 +-3 KHz, is the largest so far reported for the cobalt EQI in the RCo 2 intermetallics. The EQI decreases with increasing temperature, reaching 432 +- 10 KHz at 312K. The amplitude of the oscillations tends to decrease with temperature, being also dependent on the easy direction of magnetization of the compound. Thus, above 200K, as the direction of magnetization changes, large oscillations are again visible in the satellite line; the main line shows no oscillations in this range. The observed temperature dependence of the EQI is roughly linear, as found in other transition metal systems. (Author) [pt

  17. Neutron-proton ratios of collective quadrupole matrix elements in even Fe and Cr isotopes

    International Nuclear Information System (INIS)

    Antalik, R.

    1989-01-01

    M n /M p ratios are investigated within the QRPA framework for the low-lying quadrupole states and for isoscalar giant quadrupole resonances in 54,56,58 Fe and 50,52,54 Cr. Theoretical results for 2 l ? + states are in good agreement with empirical ones obtained from recent proton and pion inelastic scattering studies. 16 refs.; 3 tabs

  18. ASACUSA's radio-frequency quadrupole decelerator, open to show the four-rod structure along the centre, which crosses 35 resonator chambers formed by the vertical partitions.

    CERN Multimedia

    Laurent Guiraud

    2000-01-01

    The Radio-Frequency Quadrupole, RFQD, which further decelerates antiprotons ejected from the Antiproton Decelerator (AD). Starting from a momentum of 100 MeV/c (kinetic energy 5.3 MeV), the RFQD delivers very-low-energy antiprotons, adjustable between 10 and 110 keV, to the experiment ASACUSA. In picture _02, the view from the upstream end shows its 4-rod structure, traversing 35 resonator chambers formed by the vertical partitions. The tank has an inner diameter of 390 mm and is pumped to a vacuum of a few E-8 Torr.

  19. Conceptual design study of normal conducting quadrupoles for the CERN PS2

    CERN Document Server

    Borgnolutti, F

    2010-01-01

    One option in the scenario of upgrades of the LHC accelerator complex is to replace the existing CERN Proton Synchrotron (PS) by a new and larger synchrotron (PS2). Since the launch of the PS2 study project in 2003, specifications on the magnet lattice have continuously evolved. We propose here, according to the latest lattice configuration, a conceptual design for the four types of normal-conducting and iron-dominated main quadrupoles for the PS2. Three of them have the same cross-section but differ in magnetic length. The method we used to search for optimal designs is also presented.

  20. Study of giant resonances in heavy nuclei

    International Nuclear Information System (INIS)

    Cataldi, M.I.C.

    1986-01-01

    The electrodisintegration cross section for 181 Ta, 208 Pb and 209 Bi was measured by counting the emitted neutrons, with incident electrons in the energy range 8-22 MeV. The data was analysed using the virtual photon method, in order to obtain a multipole decomposition and the intensities of Magnetic Dipole and Electric Quadrupole, isoscalar and isovector, in the Giant Resonance. The results obtained for the isovector Giant Quadrupole Resonance are compared with the measured photodisintegration cross section, using data from Saclay and Livermore. This comparision indicates that the photodisintegration data can be well explained assuming an isovector E2 Resonance located between 120 and 130 A -1/3 MeV, with an intensity of one isovector E2 sum. (author) [pt

  1. Study of giant multipole resonances in 40Ca

    International Nuclear Information System (INIS)

    Rost, H.

    1979-01-01

    In the present thesis giant resonance states in 40 Ca were studied by scattering of 104 MeV a particles on 40 Ca and by the reactions 39 K(p vector,p') 39 K and 39 K(p,α) 36 Ar. The scattered α-particles were measured at extreme forward angles (THETAsub(L) = 4 0 -16 0 C), because at forward angles the cross sections for the excitation of states with spin 0 and 1 strongly differ from those with higher spin. The aim of this experiment was first of all the study of the giant resonance region in 40 Ca on the contribution to 0 + or 1 - states. Beside the known electric giant quadrupole resonances at Esub(x) approx. equal to 18.5 MeV (25% EWSR) contributions of EO-strength at Esub(x) approx. equal to 21 MeV (6% EWSR) and indications to a (isoscalar) E1-strength at Esub(x) approx. equal to 14 MeV and Esub(x) approx. equal to 16 MeV were found. At the reactions 39 K(p vector,p') 39 K and 39 K(p,α) 36 Ar in the channels (p,p 0 ),(p,p 4 ), (p,αsub(o)), and (p,α 1 ) at incident energies at about 10 MeV (Esub(x)( 40 Ca) approx. equal to 18 MeV) resonant structures were observed. A scattering phase analysis performed for the elastic proton scattering didn't however yield quantitative results about the resonance parameter. An expansion of the cross sections by Legendre polynomials for the remaining reaction channel didn't allow a conclusion about the dominance of a certain L-value. The only indication to the connection of the observed resonant structures with the giant quadrupole resonance in 40 Ca is therefore the energetic position at about Esub(x) approx. equal to 18 MeV. Altogether the observed structures however were not very pronounced, so it can be concluded, that the excitation of the giant quadrupole resonance in 40 Ca by protons via the ground state of 39 K occurs not very strongly. (orig./HSI) [de

  2. Operational studies and expected performance of superconducting quadrupole magnets in the first stages of secondary beams

    International Nuclear Information System (INIS)

    Garbincius, P.H.; Mazur, P.O.; Stanek, R.P.

    1983-08-01

    A low current, large bore, epoxy impregnated superconducting quadrupole magnet was constructed at Argonne National Laboratory as a possible prototype for secondary beam use. The quadrupole magnet was placed in the Fermilab P-West High Intensity Area beam for beam quenching tests. Tests were performed by targetting a primary proton beam directly onto the quadrupole coil and by using the quadrupole in its anticipated role as part of the first stage flux collection triplet for a zero degree anti-proton secondary beam formed from the decays of neutral Lambda particles. Comparing the results with similar tests performed using forced flow Energy Saver dipoles shows that the epoxy impregnated quadrupoles have a much greater sensitivity to beam induced quenching at a similar fraction of the conductor short sample limit. Using the CASIM program, calculations indicate that such eopxy impregnated coils would not be viable as first stage flux collection elements without appreciable collimation and subsequent loss of secondary beam acceptance. Quadrupoles based on Energy Saver technology appear capable of tolerating acceptable primary beam intensities. The momentum dispersing bends will require even larger aperture superconducting dipoles or neutral beam dump within the bend string

  3. CLIC Quadrupole Module final report

    CERN Document Server

    Artoos, K; Mainaud-Durand, H

    2013-01-01

    Future Linear colliders will need particle beam sizes in the nanometre range. The beam also needs to be stable all along the beam line. The CLIC Main Beam Quadrupole (MBQ) module has been defined and studied. It is meant as a test stand for stabilisation and pre-alignment with a MB Quadrupole. The main topic that has been tackled concerns the Quadrupole magnet stabilisation to 1nm at 1Hz. This is needed to obtain the desired CLIC luminosity of 2.1034 cm-2m-1. The deliverable was demonstrated by procuring a MBQ and by stabilising a powered and cooled CLIC MBQ quadrupole. In addition, the stabilisation system has to be compatible with the pre-alignment procedures. Pre-alignment movement resolution has been demonstrated to 1m. The last step is the combined test of stability with a quadrupole on a CLIC Module with the pre-alignment.

  4. Proton beam studies with a 1.25 MeV, cw radio frequency quadrupole linac

    Energy Technology Data Exchange (ETDEWEB)

    Bolme, G.O.; Hardek, T.W.; Hansborough, L.D. [and others

    1998-12-31

    A high-current, cw linear accelerator has been proposed as a spallation neutron source driver for tritium production. Key features of this accelerator are high current (100 mA), low emittance-growth beam propagation, cw operation, high efficiency, and minimal maintenance downtime. A 268 MHz, cw radio frequency quadrupole (RFQ) LINAC section and klystrode based rf system were obtained from the Chalk River Laboratories and were previously installed at LANL to support systems development and advanced studies in support of cw, proton accelerators. A variation of the Low Energy Demonstration Accelerator (LEDA) proton injector, modified to operate at 50 keV, was mated to the RFQ and was operated to support advance developments for the Accelerator Production of Tritium (APT) program. High current, proton beam studies were completed which focused on the details of injector-RFQ integration, development of beam diagnostics, development of operations procedures, and personnel and equipment safety systems integration. This development led to acceleration of up to 100 mA proton beam.

  5. Proton beam studies with a 1.25 MeV, cw radio frequency quadrupole linac

    International Nuclear Information System (INIS)

    Bolme, G.O.; Hardek, T.W.; Hansborough, L.D.

    1998-01-01

    A high-current, cw linear accelerator has been proposed as a spallation neutron source driver for tritium production. Key features of this accelerator are high current (100 mA), low emittance-growth beam propagation, cw operation, high efficiency, and minimal maintenance downtime. A 268 MHz, cw radio frequency quadrupole (RFQ) LINAC section and klystrode based rf system were obtained from the Chalk River Laboratories and were previously installed at LANL to support systems development and advanced studies in support of cw, proton accelerators. A variation of the Low Energy Demonstration Accelerator (LEDA) proton injector, modified to operate at 50 keV, was mated to the RFQ and was operated to support advance developments for the Accelerator Production of Tritium (APT) program. High current, proton beam studies were completed which focused on the details of injector-RFQ integration, development of beam diagnostics, development of operations procedures, and personnel and equipment safety systems integration. This development led to acceleration of up to 100 mA proton beam

  6. The Quadrupole Resonator, Design Considerations and Layout of a New Instrument for the RF Characterization of Superconducting Surface Samples

    CERN Document Server

    Brigant, E; Mahner, E

    1998-01-01

    A disk-shaped superconducting sample is welded onto an Nb support cylinder and exposed to the magnetic RF field of a four-wire transmission line resonator. The fields on the cylinder wall decay in a c ut-off like fashion in such a way that they perturb the measurement very little. RF dissipation of the disk is determined by substitution with a d.c. heater on the back of the sample which is made to produce the same temperature rise, controlled by thermometers.

  7. A theoretical study on directivity control of multiple-loudspeaker system with a quadrupole radiation pattern in low frequency range

    Science.gov (United States)

    Irwansyah, Kuse, Naoyuki; Usagawa, Tsuyoshi

    2017-08-01

    Directivity pattern of an ordinary loudspeaker becomes more directive at higher frequencies. However, because a single loudspeaker tends to radiate uniformly in all directions at low frequencies, reverberation from surrounding building walls may affect speech intelligibility when installing a multiple-loudspeaker system at crossroads. As an alternative, a sharply directive sound source is recommended to be used, but in many cases the directivity of an ordinary loudspeaker is less sharp at lower frequencies. Therefore, in order to overcome such a limitation, this paper discusses the possibility of using four loudspeakers under active control to realize a quadrupole radiation pattern in low frequency range. In this study, the radiation pattern of a primary loudspeaker and three secondary loudspeakers has been modelled. By placing the loudspeakers close together in the direction of 0°, 90°, 180°, and 270°, it was theoretically demonstrated that a quadrupole radiation pattern can be shaped in the target frequency range up to 600 Hz by simply controlling the directivity in three of four directions which are 45°, 135°, 225°, and 315°. Although, the radiation pattern model is far from realistic configurations and conditions, it is possible to realize a quadrupole radiation pattern in the low frequency range.

  8. Applications of the fractional calculus to study the physical theory of ion motion in a quadrupole ion trap.

    Science.gov (United States)

    Chaharborj, Sarkhosh S; Moameni, Abbas

    2017-10-01

    In this article, fractional calculus has been applied to study the motion of ions in a three-dimensional radio frequency quadrupole ion trap; we have called this arrangement a fractional quadrupole ion trap. The main purpose of the article is to show that by controlling the fractional parameter of a trapped ion, one can gain a more efficient mass separation. In what follows, we will see that with decreasing the fractional parameter, we can achieve a smaller first stability region. Note that a small stability diagram will result in a good and acceptable mass separation. Various methods can be proposed to obtain a desired ion acceleration with a sufficient accuracy for good mass separation, which is similar to the one obtained by a fractional ion trap. Some of these methods are using the effects of a damping force, a magnetic field or both on the confinement of particles in the quadrupole ion trap. The first stability regions are plotted for all of the aforementioned methods, and simulation results are provided to compare them with those for the fractional case.

  9. Nuclear quadrupole-quadrupole interaction in the inelastic scattering of aligned deuterons from deformed nuclei

    International Nuclear Information System (INIS)

    Clement, H.; Frick, R.; Graw, G.; Schiemenz, P.; Seichert, N.

    1983-01-01

    The 2 1 + -excitation of deformed nuclei by tensor polarized deuterons provides an alignment of both nuclei and thus a means to study specifically the quadrupole-quadrupole interaction between both nuclei. The tensor analyzing power Asub(xz)(theta) has been measured for the elastic and inelastic scattering on 24 Mg and 28 Si. The coupled channel analysis including a deformed tensor potential reveals a clear signature of the quadrupole-quadrupole part of the nuclear projectile-target interaction. (orig.)

  10. Oligonucleotide gas-phase hydrogen/deuterium exchange with D2S in the collision cell of a quadrupole-Fourier transform ion cyclotron resonance mass spectrometer.

    Science.gov (United States)

    Mo, Jingjie; Håkansson, Kristina

    2007-10-15

    We have implemented gas-phase hydrogen/deuterium exchange (HDX) experiments in the external collision cell of a hybrid quadrupole-Fourier transform ion cyclotron resonance mass spectrometer. In this configuration, multiply charged oligonucleotide anions undergo significant exchange with D(2)S at reaction intervals ranging from 0.11 to 60.1 s. For DNA homohexamers, relative exchange rates were dC(6) approximately dA(6) > dG(6) > dT(6), correlating with the gas-phase acidities of nucleobases (C > A > T > G), except for guanine. Our results are consistent with a relay mechanism in which D(2)S interacts with both a backbone phosphate group and a neutral nucleobase through hydrogen bonding. We propose that the faster exchange of polyguanosine compared to polythymidine is due to the larger size of guanine and the orientation of its labile hydrogens, which may result in gas-phase conformations more favorable for forming complexes with D(2)S. Similar trends were observed for RNA homohexamers, although their HDX rates were faster than for DNA, suggesting they can also exchange via another relay process involving the 2'-hydroxyl group. HDX of DNA duplexes further supports the involvement of nucleobase hydrogens because duplexes exchanged slower than their corresponding single strands, presumably due to the intermolecular hydrogen bonds between nucleobases. This work constitutes the first investigation of the mechanisms of oligonucleotide gas-phase HDX. Our results on duplexes show promise for application of this strategy to the characterization of structured nucleic acids.

  11. Quadrupole collectivity with isospin

    Energy Technology Data Exchange (ETDEWEB)

    Ginocchio, J.N.; Leviatan, A. (Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States) Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel))

    1994-10-03

    We study intrinsic aspects of quadrupole collectivity with conserved isospin in the framework of the interacting boson model (IBM-3) of nuclei. A geometric visualization is achieved by means of a novel type of intrinsic states which are deformed in angular momentum yet have well defined isospin. The energy surface of the general IBM-3 Hamiltonian is derived and normal modes are identified for prolate deformations.

  12. Quadrupole collectivity with isospin

    International Nuclear Information System (INIS)

    Ginocchio, J.N.; Leviatan, A.

    1994-01-01

    We study intrinsic aspects of quadrupole collectivity with conserved isospin in the framework of the interacting boson model (IBM-3) of nuclei. A geometric visualization is achieved by means of a novel type of intrinsic states which are deformed in angular momentum yet have well defined isospin. The energy surface of the general IBM-3 Hamiltonian is derived and normal modes are identified for prolate deformations

  13. LEMS: application of the method to study the static quadrupole moment of the K=35/2 isomer in 179W

    International Nuclear Information System (INIS)

    Neyens, G.; Vyvey, K.; Byrne, A.P.; Dracoulis, G.D.; Blaha, P.

    1997-01-01

    The method of the level mixing spectroscopy (LEMS) was applied for the first time for the study of the static quadrupole moments of high-K isomers in the A∼180 mass region. Results from a preliminary experiment for the static quadrupole moment of the 35/2 - (750 ns) isomer in 179 W give a limit for its upper value Q 2 <0.343. (orig.). With 1 fig

  14. Multistage Fragmentation of Ion Trap Mass Spectrometry System and Pseudo-MS3 of Triple Quadrupole Mass Spectrometry Characterize Certain (E-3-(Dimethylamino-1-arylprop-2-en-1-ones: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Ali S. Abdelhameed

    2014-01-01

    Full Text Available A new approach was recently introduced to improve the structure elucidation power of tandem mass spectrometry simulating the MS3 of ion trap mass spectrometry system overcoming the different drawbacks of the latter. The fact that collision induced dissociation in the triple quadrupole mass spectrometer system provides richer fragment ions compared to those achieved in the ion trap mass spectrometer system utilizing resonance excitation. Moreover, extracting comprehensive spectra in the ion trap needs multistage fragmentation, whereas similar fragment ions may be acquired from one stage product ion scan using the triple quadrupole mass spectrometer. The new strategy was proven to enhance the qualitative performance of tandem mass spectrometry for structural elucidation of different chemical entities. In the current study we are endeavoring to prove our hypothesis of the efficiency of the new pseudo-MS3 technique via its comparison with the MS3 mode of ion trap mass spectrometry system. Ten pharmacologically and synthetically important (E-3-(dimethylamino-1-arylprop-2-en-1-ones (enaminones 4a–j were chosen as model compounds for this study. This strategy permitted rigorous identification of all fragment ions using triple quadrupole mass spectrometer with sufficient specificity. It can be used to elucidate structures of different unknown components. The data presented in this paper provide clear evidence that our new pseudo-MS3 may simulate the MS3 of ion trap spectrometry system.

  15. Nuclear electric quadrupole moment of 9Li using zero-field β-detected NQR

    Science.gov (United States)

    Voss, A.; Pearson, M. R.; Billowes, J.; Buchinger, F.; Chow, K. H.; Crawford, J. E.; Hossein, M. D.; Kiefl, R. F.; Levy, C. D. P.; MacFarlane, W. A.; Mané, E.; Morris, G. D.; Parolin, T. J.; Saadaoui, H.; Salman, Z.; Smadella, M.; Song, Q.; Wang, D.

    2011-07-01

    A β-detected nuclear quadrupole resonance (NQR) spectrometer becomes a powerful tool to study changes in nuclear ground-state properties along isotopic chains when coupled to a laser excitation beamline to polarize the nuclei of interest. Recently, the β-NQR technique in a zero magnetic field has been applied for the first time to measure the ratio of static nuclear quadrupole moments of 8, 9Li, Q9/Q8 = 0.966 75(9) denoted by Q8 for 8Li and Q9 for 9Li, respectively. This shows agreement with present literature values but with significantly improved precision. Based on the literature, the quadrupole moment for 8Li has been re-evaluated to be |Q8| = 32.6(5) mb. From this, the quadrupole moment for 9Li is calculated as |Q9| = 31.5(5) mb with the error being dominated by the error of Q8.

  16. Molecular near-field antenna effect in resonance hyper-Raman scattering: Intermolecular vibronic intensity borrowing of solvent from solute through dipole-dipole and dipole-quadrupole interactions

    International Nuclear Information System (INIS)

    Shimada, Rintaro; Hamaguchi, Hiro-o

    2014-01-01

    We quantitatively interpret the recently discovered intriguing phenomenon related to resonance Hyper-Raman (HR) scattering. In resonance HR spectra of all-trans-β-carotene (β-carotene) in solution, vibrations of proximate solvent molecules are observed concomitantly with the solute β-carotene HR bands. It has been shown that these solvent bands are subject to marked intensity enhancements by more than 5 orders of magnitude under the presence of β-carotene. We have called this phenomenon the molecular-near field effect. Resonance HR spectra of β-carotene in benzene, deuterated benzene, cyclohexane, and deuterated cyclohexane have been measured precisely for a quantitative analysis of this effect. The assignments of the observed peaks are made by referring to the infrared, Raman, and HR spectra of neat solvents. It has been revealed that infrared active and some Raman active vibrations are active in the HR molecular near-field effect. The observed spectra in the form of difference spectra (between benzene/deuterated benzene and cyclohexane/deuterated cyclohexane) are quantitatively analyzed on the basis of the extended vibronic theory of resonance HR scattering. The theory incorporates the coupling of excited electronic states of β-carotene with the vibrations of a proximate solvent molecule through solute–solvent dipole–dipole and dipole–quadrupole interactions. It is shown that the infrared active modes arise from the dipole–dipole interaction, whereas Raman active modes from the dipole–quadrupole interaction. It is also shown that vibrations that give strongly polarized Raman bands are weak in the HR molecular near-field effect. The observed solvent HR spectra are simulated with the help of quantum chemical calculations for various orientations and distances of a solvent molecule with respect to the solute. The observed spectra are best simulated with random orientations of the solvent molecule at an intermolecular distance of 10 Å

  17. Molecular near-field antenna effect in resonance hyper-Raman scattering: Intermolecular vibronic intensity borrowing of solvent from solute through dipole-dipole and dipole-quadrupole interactions

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Rintaro; Hamaguchi, Hiro-o, E-mail: hhama@nctu.edu.tw [Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan (China)

    2014-05-28

    We quantitatively interpret the recently discovered intriguing phenomenon related to resonance Hyper-Raman (HR) scattering. In resonance HR spectra of all-trans-β-carotene (β-carotene) in solution, vibrations of proximate solvent molecules are observed concomitantly with the solute β-carotene HR bands. It has been shown that these solvent bands are subject to marked intensity enhancements by more than 5 orders of magnitude under the presence of β-carotene. We have called this phenomenon the molecular-near field effect. Resonance HR spectra of β-carotene in benzene, deuterated benzene, cyclohexane, and deuterated cyclohexane have been measured precisely for a quantitative analysis of this effect. The assignments of the observed peaks are made by referring to the infrared, Raman, and HR spectra of neat solvents. It has been revealed that infrared active and some Raman active vibrations are active in the HR molecular near-field effect. The observed spectra in the form of difference spectra (between benzene/deuterated benzene and cyclohexane/deuterated cyclohexane) are quantitatively analyzed on the basis of the extended vibronic theory of resonance HR scattering. The theory incorporates the coupling of excited electronic states of β-carotene with the vibrations of a proximate solvent molecule through solute–solvent dipole–dipole and dipole–quadrupole interactions. It is shown that the infrared active modes arise from the dipole–dipole interaction, whereas Raman active modes from the dipole–quadrupole interaction. It is also shown that vibrations that give strongly polarized Raman bands are weak in the HR molecular near-field effect. The observed solvent HR spectra are simulated with the help of quantum chemical calculations for various orientations and distances of a solvent molecule with respect to the solute. The observed spectra are best simulated with random orientations of the solvent molecule at an intermolecular distance of 10 Å.

  18. Design study of a radio-frequency quadrupole for high-intensity beams

    Science.gov (United States)

    Bahng, Jungbae; Kim, Eun-San; Choi, Bong-Hyuk

    2017-07-01

    The Rare isotope Accelerator Of Newness (RAON) heavy-ion accelerator has been designed for the Rare Isotope Science Project (RISP) in Korea. The RAON will produce heavy-ion beams from 660-MeV-proton to 200-MeV/u-uranium with continuous wave (CW) power of 400 kW to support research in various scientific fields. Its system consists of an ECR ion source, LEBTs with 10 keV/u, CW RFQ accelerator with 81.25 MHz and 500 keV/u, a MEBT system, and a SC linac. In detail, the driver linac system consists of a Quarter Wave Resonator (QWR) section with 81.25 MHz and a Half Wave Resonator (HWR) section with 162.5 MHz, Linac-1, and a Spoke Cavity section with 325 MHz, Linac-2. These linacs have been designed to optimize the beam parameters to meet the required design goals. At the same time, a light-heavy ion accelerator with high-intensity beam, such as proton, deuteron, and helium beams, is required for experiments. In this paper, we present the design study of the high intensity RFQ for a deuteron beam with energies from 30 keV/u to 1.5 MeV/u and currents in the mA range. This system is composed of an Penning Ionization Gauge ion source, short LEBT with a RF deflector, and shared SC Linac. In order to increase acceleration efficiency in a short length with low cost, the 2nd harmonic of 162.5 MHz is applied as the operation frequency in the D+ RFQ design. The D+ RFQ is designed with 4.97 m, 1.52 bravery factor. Since it operates with 2nd harmonic frequency, the beam should be 50% of the duty factor while the cavity should be operated in CW mode, to protect the downstream linac system. We focus on avoiding emittance growth by the space-charge effect and optimizing the RFQ to achieve a high transmission and low emittance growth. Both the RFQ beam dynamics study and RFQ cavity design study for two and three dimensions will be discussed. Supported by Korea University Future Research Grant

  19. Analytical study of the equation for the longitudinal motion of particles in a radio-frequency-quadrupole accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Leo, M.; Leo, R.A.; Soliani, G.; Puglisi, M.; Rossi, C.; Torelli, G.

    1987-01-01

    We develop a procedure based on the averaging method of Bogoliubov, Krylov, and Mitropolsky to obtain analytical approximate solutions of the equation for the longitudinal motion of a particle in a radio-frequency-quadrupole (RFQ) accelerator under the Kapchinskii-Teplyakov assumption. Our analytical results, which fairly agree (within a few per thousand) with those coming from the numerical integration of the equation under consideration, are exploited in the case of an RFQ device with N = 150 cells in which the accelerated particles are protons and for values of the efficiency A from 0.05 to 0.5. Starting from an injection energy of 10 keV, a final energy of about 1.5 MeV is achieved. Our procedure may be applied to other fundamental problems arising in the project of an RFQ accelerator, such as the study of the equation for transversal oscillations.

  20. Centering of quadrupole family

    International Nuclear Information System (INIS)

    Pinayev, Igor

    2007-01-01

    A procedure for finding the individual centers for a family of quadrupoles fed with a single power supply is described. The method is generalized for using the correctors adjacent to the quadrupoles. Theoretical background is presented as well as experimental data for the NSLS rings. The method accuracy is also discussed

  1. Design studies of an electrostatic quadrupole channel for transport of a high-brightness H- beam and comparison with gas focusing

    International Nuclear Information System (INIS)

    Chang, C.R.; Horowitz, E.; Reiser, M.

    1989-01-01

    Transport of low-energy, high-brightness H - beams from the ion source to the radio-frequency quadrupole (RFQ) accelerator requires the solution of several physics and engineering problems to avoid particle losses and emittance growth. The authors developed a conceptual design of an electrostatic quadrupole channel for transport of a 120 keV, 120 mA, H - beam into a 425 MHz RFQ with low emittance growth and high transmission efficiency. This design satisfies several constraints imposed by voltage breakdown and beam optics considerations. The system will consist entirely of electrostatic lenses which prevent plasma build-up and eliminate possible emittance growth from plasma fluctuations. Pertinent design features a worst case non-linear analysis for the electrostatic quadrupole channel, and first results of a particle simulation code used to study beam loss and emittance growth are reported. As an alternative to the electrostatic quadrupole concept, gas focusing is being investigated for transporting low-energy H - beams. Recent results from the numerical simulations of such a gas focussing channel are presented

  2. Superconducting magnetic quadrupole

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.W.; Shepard, K.W.; Nolen, J.A.

    1995-08-01

    A design was developed for a 350 T/m, 2.6-cm clear aperture superconducting quadrupole focussing element for use in a very low q/m superconducting linac as discussed below. The quadrupole incorporates holmium pole tips, and a rectangular-section winding using standard commercially-available Nb-Ti wire. The magnet was modeled numerically using both 2D and 3D codes, as a basis for numerical ray tracing using the quadrupole as a linac element. Components for a prototype singlet are being procured during FY 1995.

  3. Solid state NMR, basic theory and recent progress for quadrupole nuclei with half-integer spin

    International Nuclear Information System (INIS)

    Dieter, F.

    1998-01-01

    This review describes the basic theory and some recently developed techniques for the study of quadrupole nuclei with half integer spins in powder materials. The latter is connected to the introduction of the double rotation (DOR) by A. Samoson et al. (1) and to the introduction of the multiple quantum magic-angle spinning (MQ MAS) technique by L. Frydman et. al. (2). For integer spins, especially the solid-state deuterium magnetic resonance, we refer to the review of G.L. Hoatson and R.L. Vold: '' 2 H-NMR Spectroscopy of Solids and Liquid Crystals'' (3). For single crystals we refer to O. Kanert and M. Mehring: ''Static quadrupole effects in disordered cubic solids''(4) and we would like also to mention the ''classic'' review of M.H. Cohen and F. Reif: ''Quadrupole effects in NMR studies of solids'' (5). Some more recent reviews in the field under study are D. Freude and J. Haase ''Quadrupole effects in solid-state NMR'' (6). Ch. Jager: ''Satellite Transition Spectroscopy of Quadrupolar Nuclei'' (7) and B.F. Chmelka and J.W. Zwanziger: ''Solid State NMR Line Narrowing Methods for Quadrupolar Nuclei - Double Rotation and Dynamic-Angle Spinning'' (8). A survey of nuclear quadrupole frequency data published before the end of 1982 is given by H. Chihara and N. Nakamura in Landolt-Bornstein, Vol. 20 (9). Values of the chemical shift of quadrupole nuclei in solids can be found in books such as ''Multinuclear NMR'' edited by J. Mason (10). In section 9 of ref (6) some electric field gradient and chemical shift data published from 1983 to 1992 for the most studied quadrupole nuclei sup 27 Al, sup 23 Na, and sup 17 O are given

  4. Analysis of S-adenosylmethionine and related sulfur metabolites in bacterial isolates of Pseudomonas aeruginosa (BAA-47) by liquid chromatography/electrospray ionization coupled to a hybrid linear quadrupole ion trap and Fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Cataldi, Tommaso R I; Bianco, Giuliana; Abate, Salvatore; Mattia, Daniela

    2009-11-01

    A comprehensive and highly selective method for detecting in bacterial supernatants a modified sulfur nucleoside, S-adenosyl-L-methionine (SAM), and its metabolites, i.e., S-adenosylhomocysteine (SAH), adenosine (Ado), 5'-deoxy-5'-methylthioadenosine (MTA), adenine (Ade), S-adenosyl-methioninamine (dcSAM), homocysteine (Hcy) and methionine (Met), was developed. The method is based on reversed-phase liquid chromatography with positive electrospray ionization (ESI+) coupled to a hybrid linear quadrupole ion trap (LTQ) and 7-T Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS). A gradient elution was employed with a binary solvent of 0.05 M ammonium formate at pH 4 and acetonitrile. The assay involves a simultaneous cleanup of cell-free bacterial broths by solid-phase extraction and trace enrichment of metabolites with a 50-fold concentration factor by using immobilized phenylboronic and anion-exchange cartridges. While the quantitative determination of SAM was performed using stable-isotope-labeled SAM-d3 as an internal standard, in the case of Met and Ade, Met-13C and Ade-15N2 were employed as isotope-labeled internal standards, respectively. This method enabled the identification of SAM and its metabolites in cell-free culture of Pseudomonas aeruginosa grown in Davis minimal broth (formulation without sulphur organic compounds), with routine sub-ppm mass accuracies (-0.27 +/- 0.68 ppm). The resulting contents of S(C)S(S)-SAM, S(S)-dcSAM, MTA, Ado and Met in the free-cell supernatant of P. aeruginosa was 56.4 +/- 2.1 nM, 32.2 +/- 2.2 nM, 0.91 +/- 0.10 nM, 19.6 +/- 1.2 nM and 1.93 +/- 0.02 microM (mean +/- SD, n = 4 extractions), respectively. We report also the baseline separation (Rs > or = 1.5) of both diastereoisomeric forms of SAM (S(C)S(S) and S(C)R(S)) and dcSAM (S(S) and R(S)), which can be very useful to establish the relationship between the biologically active versus the inactive species, S(C)S(S)/S(C)R(S) and S(S)/R(S) of SAM and dc

  5. Sb,123121 nuclear quadrupole resonance as a microscopic probe in the Te-doped correlated semimetal FeSb2: Emergence of electronic Griffith phase, magnetism, and metallic behavior

    Science.gov (United States)

    Gippius, A. A.; Zhurenko, S. V.; Hu, R.; Petrovic, C.; Baenitz, M.

    2018-02-01

    Sb,123121 nuclear quadrupole resonance (NQR) was applied to Fe(Sb1-xTex)2 in the low doping regime (x =0 , 0.01, and 0.05) as a microscopic zero field probe to study the evolution of 3 d magnetism and the emergence of metallic behavior. Whereas the NQR spectra itself reflects the degree of local disorder via the width of the individual NQR lines, the spin lattice relaxation rate (SLRR) 1 /T1(T ) probes the fluctuations at the Sb site. The fluctuations originate either from conduction electrons or from magnetic moments. In contrast to the semimetal FeSb2 with a clear signature of the charge and spin gap formation in 1 /T1(T ) T [˜exp/(Δ kBT ) ] , the 1% Te-doped system exhibits almost metallic conductivity and the SLRR nicely confirms that the gap is almost filled. A weak divergence of the SLRR coefficient 1 /T1(T ) T ˜T-n˜T-0.2 points towards the presence of electronic correlations towards low temperatures. This is supported by the electronic specific heat coefficient γ =(Cel/T ) showing a power-law divergence γ (T ) ˜T-m˜(1/T1T ) 1 /2˜T-n /2˜Cel/T which is expected in the renormalized Landau Fermi liquid theory for correlated electrons. In contrast to that the 5% Te-doped sample exhibits a much larger divergence in the SLRR coefficient showing 1 /T1(T ) T ˜T-0.72 . According to the specific heat divergence a power law with n =2 m =0.56 is expected for the SLRR. This dissimilarity originates from admixed critical magnetic fluctuations in the vicinity of antiferromagnetic long range order with 1 /T1(T ) T ˜T-3 /4 behavior. Furthermore Te-doped FeSb2 as a disordered paramagnetic metal might be a platform for the electronic Griffith phase scenario. NQR evidences a substantial asymmetric broadening of the Sb,123121 NQR spectrum for the 5% sample. This has a predominant electronic origin in agreement with the electronic Griffith phase and stems probably from an enhanced Sb-Te bond polarization and electronic density shift towards the Te atom inside Sb

  6. SPS Quadrupole Magnets

    CERN Multimedia

    1974-01-01

    A stack of SPS Quadrupole Magnets ready for installation in the tunnel. The SPS uses a total of 216 laminated normal conducting lattice quadrupoles with a length of 3.13 m for the core, 3.3 m overall. The F and D quads. have identical characteristics: inscribed circle radius 44 mm, core height and width 800 mm, maximum gradient 20 Tesla/m.

  7. Quadrupole moments of hadrons

    International Nuclear Information System (INIS)

    Krivoruchenko, M.I.

    1985-01-01

    In chiral bag model an expression is obtained for the quark wave functions with account of color and pion interaction of quarks. The quadrupole moments of nonstrange hadrons are calculated. Quadrupole moment of nucleon isobar is found to be Q(Δ)=-6.3x10 -28 esub(Δ)(cm)sup(2). Fredictions of the chiral bag model are in strong disagreement with the non-relativistic quark model

  8. A Correlation Study between Geometry of Collared Coils and Normal Quadrupole Multipole in the Main LHC Dipoles

    CERN Document Server

    Bertinelli, F; Berthollon-Vitte, S; Glaude, D; Vanenkov, I

    2006-01-01

    The quality control implemented at all LHC dipole assemblers includes precise mechanical measurements of the geometry of collared coils. A cross-analysis performed between mechanical and magnetic measurements data shows a correlation between collared coils outer dimensions and the normal quadrupole multipole (b2) for one dipole assembler. The profile geometry of the single collars - as determined from 3D measurements at the collar suppliers and CERN - could not account alone for the significant left – right aperture asymmetry observed. This triggered a deeper investigation on different elements of the geometry of single collars. The results of this work show that the relative positioning of the collaring holes, allowing a small bending deformation of collars under the effect of coil pre-stress, is an important effect that generates a b2 multipole at the limit of specification. The study has deepened the understanding of the factors affecting collared coil geometry and field quality. The precision of 3D m...

  9. Dynamic aperture studies and field quality specifications for the triplet quadrupoles of the LHC phase 1 upgrade

    CERN Document Server

    Holzer, B

    2010-01-01

    The layout of the interaction region for the LHC upgrade project is based on a number of new magnets that will provide the required strengths to focus the colliding beams as well as to separate them after the collision. As in the nominal LHC, a triplet of quadrupole magnets is foreseen for the upgrade optics and in addition a separation dipole to limit the parasitic bunch crossings of the two counter-rotating bunch trains. Due to the smaller beta function at the IP however, the requirements for the free aperture of these IR magnets are more demanding and the effect of the higher order multipoles is more severe than under the nominal LHC conditions. Using tracking simulations to study these effects, target values for the multipole coefficients of the new magnets have been defined as well as a multipole correction scheme that will be used to compensate those field errors which cannot be avoided due to design and construction tolerances. Based on these considerations, specifications are defined for the multipole...

  10. Preliminaries toward studying resonant extraction from the Debuncher

    Energy Technology Data Exchange (ETDEWEB)

    Michelotti, Leo; Johnstone, John; /Fermilab

    2009-06-01

    A recent proposal to detect {mu} {yields} e direct conversion at Fermilab asks for slow extraction of protons from the antiproton source, specifically from the Debuncher. [1] A third-integer resonance originally was considered for this, partly because of the Debuncher's three-fold symmetry and partly because its operational horizontal tune, {nu}{sub x} {approx} 9.765, is already within 0.1 of {nu}{sub x} = 29/3. Using a half integer resonance, {nu}{sub x} = 19/2, though not part of the original proposal, has been suggested more recently because (a) Fermilab has had a good deal of experience with half-integer extraction from the Tevatron, the Main Injector and the erstwhile Main Ring, and (b) for reasons we shall examine later, it depopulates the entire bunch without an abort at the end. This memo presents considerations preliminary to studying both possibilities. It is meant only as a starting point for investigations to be carried out in the future. The working constraints and assumptions have oscillated between two extremes: (1) making minimal changes in the antiproton source to minimize cost and (2) building another machine in the same tunnel. In this memo we adopt an attitude aligned more toward the first. The assumed parameters are listed in Table 1. A few are not (easily) subject to change, such as those related to the beam's momentum and revolution frequency and the acceptance of the debuncher. Two resonance exemplars are presented in the next section, with an explanation of the analytic and semi-analytic calculations that can be done for each. Section 3 contains preliminary numerical work that was done to validate the exemplars within the context of extraction from the Debuncher. A final section contains a summary. Following the bibliography, appendices contain (a) a qualitative, conceptual discussion of extraction for the novice, (b) a telegraphic review of the perturbative incantations used to filter the exemplars as principal resonances of

  11. Preliminaries toward studying resonant extraction from the Debuncher

    International Nuclear Information System (INIS)

    Michelotti, Leo; Johnstone, John

    2009-01-01

    A recent proposal to detect μ → e direct conversion at Fermilab asks for slow extraction of protons from the antiproton source, specifically from the Debuncher. (1) A third-integer resonance originally was considered for this, partly because of the Debuncher's three-fold symmetry and partly because its operational horizontal tune, ν x ∼ 9.765, is already within 0.1 of ν x = 29/3. Using a half integer resonance, ν x = 19/2, though not part of the original proposal, has been suggested more recently because (a) Fermilab has had a good deal of experience with half-integer extraction from the Tevatron, the Main Injector and the erstwhile Main Ring, and (b) for reasons we shall examine later, it depopulates the entire bunch without an abort at the end. This memo presents considerations preliminary to studying both possibilities. It is meant only as a starting point for investigations to be carried out in the future. The working constraints and assumptions have oscillated between two extremes: (1) making minimal changes in the antiproton source to minimize cost and (2) building another machine in the same tunnel. In this memo we adopt an attitude aligned more toward the first. The assumed parameters are listed in Table 1. A few are not (easily) subject to change, such as those related to the beam's momentum and revolution frequency and the acceptance of the debuncher. Two resonance exemplars are presented in the next section, with an explanation of the analytic and semi-analytic calculations that can be done for each. Section 3 contains preliminary numerical work that was done to validate the exemplars within the context of extraction from the Debuncher. A final section contains a summary. Following the bibliography, appendices contain (a) a qualitative, conceptual discussion of extraction for the novice, (b) a telegraphic review of the perturbative incantations used to filter the exemplars as principal resonances of quadrupole, sextupole and octupole

  12. Harmonic analysis and field quality improvement of an HTS quadrupole magnet for a heavy ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhan; Wei, Shaoqing; Lee, Sang Jin [Uiduk University, Gyeongju (Korea, Republic of); Jo, Hyun Chul; Kim, Do Gyun; Kim, Jong Won [Rare Isotope Science Project, Institute for Basic Science, Daejeon (Korea, Republic of)

    2016-06-15

    In recent years, the iron-dominated high-temperature superconductor (HTS) quadrupole magnets are being developed for heavy ion accelerators. Field analyses for iron-dominated quadrupole magnets were based on the normal-conducting (NC) quadrupole magnet early in the development for accelerators. Some conclusions are still in use today. However, the magnetic field of iron-dominated HTS quadrupole magnets cannot fully follow these conclusions. This study established an HTS quadrupole magnet model and an NC quadrupole magnet model, respectively. The harmonic characteristics of two magnets were analyzed and compared. According to the comparison, the conventional iron-dominated quadrupole magnets can be designed for maximum field gradient; the HTS quadrupole magnet, however, should be considered with varying field gradient. Finally, the HTS quadrupole magnet was designed for the changing field gradient. The field quality of the design was improved comparing with the result of the previous study. The new design for the HTS quadrupole magnet has been suggested.

  13. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole

    Science.gov (United States)

    Rodrigues, G.; Becker, R.; Hamm, R. W.; Baskaran, R.; Kanjilal, D.; Roy, A.

    2014-02-01

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged 238U40+ (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.

  14. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole.

    Science.gov (United States)

    Rodrigues, G; Becker, R; Hamm, R W; Baskaran, R; Kanjilal, D; Roy, A

    2014-02-01

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged (238)U(40+) (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.

  15. Studies of the giant resonances in heavy nuclei

    International Nuclear Information System (INIS)

    Cataldi, M.I.C.

    1986-01-01

    Experimental measurements of the eletrodisintegration cross section in 181 Ta, 208 Pb and 209 Bi nuclei are made in the Linear Accelerator of the IFUSP-Brazil. The cross section is obtained by the direct counting of the emitted neutrons, in an electron excitation energy range between 8 to 22 MeV. The experimental data are analysed throught the virtual photon method, with the aim of obtaining the isoscalar and isovectorial electric quadrupole giant resonance (E2GR) intensities, as well as the magnetic dipole intensity. For each studied nucleus the results obtained for the E2GR, isoscalar and isovectorial, are compared with the photodisintegration cross section measured by the Saclay and Livermore laboratories. From this comparison, it is observed that the photodisintegration cross sections are compatibles with the existence of an isovector E2GR, located between 120 to 130 A -1/3 Mev and which exhaust around 100% of the Energy-Weighted Sum rules (EWSR). (L.C.) [pt

  16. Chemical material basis study of Xuefu Zhuyu decoction by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2015-12-01

    Full Text Available Xuefu Zhuyu decoction, a classic prescription in traditional Chinese medicine, has been widely used in the clinical treatment of cardiovascular and cerebrovascular diseases. In order to profile the chemical material basis of this formula, an ultra-performance liquid chromatography (UPLC coupled with quadrupole time-of-flight mass spectrometry (Q/TOF MS method has been established for rapid separation and structural characterization of compounds in the decoction. As a result, 103 compounds including phenolic acids, spermidines, C-glycosyl quinochalcones, terpenoids, flavonoids, saponins, and others were detected; 35 of them were unambiguously identified, and 68 were tentatively characterized by comparing the retention time, MS data, characteristic MS fragmentation pattern and retrieving the literature. In conclusion, the UPLC coupled with quadrupole time-of-flight mass spectrometry method developed in this work is an efficient approach to perform chemical material basis studies of traditional Chinese medicine formulae.

  17. A theoretical study of 17O, 14N and 2H nuclear quadrupole coupling tensors in the real crystalline structure of acetaminophen

    Science.gov (United States)

    Behzadi, Hadi; Esrafili, Mehdi D.; Hadipour, Nasser L.

    2007-03-01

    A systematic computational investigation was carried out to characterize the 17O, 14N and 2H electric field gradient, EFG, tensors in the acetaminophen real crystalline structure. To include the hydrogen bonding effects in the calculations, the most probable interacting molecules with the target molecule in the crystalline phase were considered through the various molecular clusters. The calculations were performed with the B3LYP method and 6-311++G ∗∗ and 6-311+G ∗ standard basis sets using the Gaussian 98 suite of programs. Calculated EFG tensors were used to evaluate the 17O, 14N, and 2H nuclear quadrupole resonance, NQR, parameters in acetaminophen crystalline structure, which are in good agreement with the available experimental data. The difference between the calculated NQR parameters of the monomer and molecular clusters shows how much hydrogen bonding interactions affect the EFG tensors of each nucleus. These results indicate that both O-H⋯O and N-H⋯O hydrogen bonding have major influence on the NQR parameters. Moreover, the quantum chemical calculation indicated that the intermolecular hydrogen bonding interactions play an essential role in determining the relative orientation of quadrupole coupling principal components in the molecular frame axes.

  18. The radio-frequency quadrupole

    CERN Document Server

    Vretenar, Maurizio

    2013-01-01

    Radio-frequency quadrupole (RFQ) linear accelerators appeared on the accelerator scene in the late 1970s and have since revolutionized the domain of low-energy proton and ion acceleration. The RFQ makes the reliable production of unprecedented ion beam intensities possible within a compact radio-frequency (RF) resonator which concentrates the three main functions of the low-energy linac section: focusing, bunching and accelerating. Its sophisticated electrode structure and strict beam dynamics and RF requirements, however, impose severe constraints on the mechanical and RF layout, making the construction of RFQs particularly challenging. This lecture will introduce the main beam optics, RF and mechanical features of a RFQ emphasizing how these three aspects are interrelated and how they contribute to the final performance of the RFQ.

  19. High gradient superconducting quadrupoles

    International Nuclear Information System (INIS)

    Lundy, R.A.; Brown, B.C.; Carson, J.A.; Fisk, H.E.; Hanft, R.H.; Mantsch, P.M.; McInturff, A.D.; Remsbottom, R.H.

    1987-07-01

    Prototype superconducting quadrupoles with a 5 cm aperture and gradient of 16 kG/cm have been built and tested as candidate magnets for the final focus at SLC. The magnets are made from NbTi Tevatron style cable with 10 inner and 14 outer turns per quadrant. Quench performance and multipole data are presented. Design and data for a low current, high gradient quadrupole, similar in cross section but wound with a cable consisting of five insulated conductors are also discussed

  20. SS-HORSE method for studying resonances

    Energy Technology Data Exchange (ETDEWEB)

    Blokhintsev, L. D. [Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation); Mazur, A. I.; Mazur, I. A., E-mail: 008043@pnu.edu.ru [Pacific National University (Russian Federation); Savin, D. A.; Shirokov, A. M. [Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation)

    2017-03-15

    A new method for analyzing resonance states based on the Harmonic-Oscillator Representation of Scattering Equations (HORSE) formalism and analytic properties of partial-wave scattering amplitudes is proposed. The method is tested by applying it to the model problem of neutral-particle scattering and can be used to study resonance states on the basis of microscopic calculations performed within various versions of the shell model.

  1. SS-HORSE method for studying resonances

    International Nuclear Information System (INIS)

    Blokhintsev, L. D.; Mazur, A. I.; Mazur, I. A.; Savin, D. A.; Shirokov, A. M.

    2017-01-01

    A new method for analyzing resonance states based on the Harmonic-Oscillator Representation of Scattering Equations (HORSE) formalism and analytic properties of partial-wave scattering amplitudes is proposed. The method is tested by applying it to the model problem of neutral-particle scattering and can be used to study resonance states on the basis of microscopic calculations performed within various versions of the shell model.

  2. Analytical study of envelope modes for a fully depressed beam in solenoidal and quadrupole periodic transport channels

    International Nuclear Information System (INIS)

    Bukh, Boris; Lund, Steven M.

    2003-01-01

    We present an analysis of envelope perturbations evolving in the limit of a fully space-charge depressed (zero emittance) beam in periodic, thin-lens focusing channels. Both periodic solenoidal and FODO quadrupole focusing channels are analyzed. The phase advance and growth rate of normal mode perturbations are analytically calculated as a function of the undepressed particle phase advance to characterize the evolution of envelope perturbations

  3. ISR "Terwilliger" Quadrupole

    CERN Multimedia

    1983-01-01

    There were 48 of these Quadrupoles in the ISR. They were distributed around the rings according to the so-called Terwilliger scheme. Their aperture was 184 mm, their core length 300 mm, their gradient 5 T/m. Due to their small length as compared to the aperture, the end fringe field errors had to be compensated by suitably shaping the poles.

  4. ISR Superconducting Quadrupoles

    CERN Multimedia

    1977-01-01

    Michel Bouvier is preparing for curing the 6-pole superconducting windings inbedded in the cylindrical wall separating liquid helium from vacuum in the quadrupole aperture. The heat for curing the epoxy glue was provided by a ramp of infrared lamps which can be seen above the slowly rotating cylinder. See also 7703512X, 7702690X.

  5. SUPERCONDUCTING QUADRUPOLE ARRAYS FOR MULTIPLE BEAM TRANSPORT

    Energy Technology Data Exchange (ETDEWEB)

    Rainer Meinke

    2003-10-01

    The goal of this research was to develop concepts for affordable, fully functional arrays of superconducting quadrupoles for multi-beam transport and focusing in heavy ion fusion (HIF)accelerators. Previous studies by the Virtual National Laboratory (VNL) collaboration have shown that the multi-beam transport system (consisting of alternating gradient quadrupole magnets, a beam vacuum system, and the beam monitor and control system) will likely be one of the most expensive and critical parts of such an accelerator. This statement is true for near-term fusion research accelerators as well as accelerators for the ultimate goal of power production via inertial fusion. For this reason, research on superconducting quadrupole arrays is both timely and important for the inertial fusion energy (IFE) research program. This research will also benefit near-term heavy ion fusion facilities such as the Integrated Research Experiment (IRE)and/or the Integrated Beam Experiment (IBX). We considered a 2-prong approach that addresses the needs of both the nearer and longer term requirements of the inertial fusion program. First, we studied the flat coil quadrupole design that was developed by LLNL; this magnet is 150 mm long with a 50 mm aperture and thus is suitable for near term experiments that require magnets of a small length to aperture ratio. Secondly, we studied the novel double-helix quadrupole (DHQ) design in a small (3 x 3) array configuration; this design can provide an important step to the longer term solution of low-cost, easy to manufacture array constructions. Our Phase I studies were performed using the AMPERES magnetostatic analysis software. Consideration of these results led to plans for future magnet R&D construction projects. The first objective of Phase I was to develop the concept of a superconducting focusing array that meets the specific requirements of a heavy ion fusion accelerator. Detailed parameter studies for such quadrupole arrays were performed

  6. Magnetic mirror structure for testing shell-type quadrupole coils

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, N.; Barzi, E.; Bossert, R.; Chlachidze, G.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.; Tartaglia, N.; Turrioni, D.; /Fermilab

    2009-10-01

    This paper presents magnetic and mechanical designs and analyses of the quadrupole mirror structure to test single shell-type quadrupole coils. Several quadrupole coils made of different Nb{sub 3}Sn strands, cable insulation and pole materials were tested using this structure at 4.5 and 1.9 K. The coils were instrumented with voltage taps, spot heaters, temperature sensors and strain gauges to study their mechanical and thermal properties and quench performance. The results of the quadrupole mirror model assembly and test are reported and discussed.

  7. Study of the hybrid controller electronics for the nano-stabilization of mechanical vibrations of CLIC quadrupoles

    CERN Document Server

    Fernandez Carmona, P; Collette, C; Esposito, M; Guinchard, M; Janssens, S; Kuzmin, A; Moron Ballester, R

    2011-01-01

    In order to achieve the required levels of luminosity in the CLIC linear collider, mechanical stabilization of quadrupoles to the nanometre level is required. The paper describes a design of hybrid electronics combining an analogue controller and digital communication with the main machine controller. The choice of local analogue control ensures the required low latency while still keeping sufficiently low noise level. Furthermore, it reduces the power consumption, rack space and cost. Sensitivity to radiation single events upsets is reduced compared to a digital controller. The digital part is required for fine tuning and real time monitoring via digitization of critical parameters.

  8. Superconducting Panofsky quadrupoles

    International Nuclear Information System (INIS)

    Harwood, L.H.

    1981-01-01

    A design for a rectangular aperture quadrupole magnet without pole-tips was introduced by Hand and Panofsky in 1959. This design was quite radical but simple to construct. Few magnets of this design were ever built because of the large power needed. With the advent of superconducting coils there has been a renewed interest in them. The mathematical basis, field characteristics, and present and future construction of these magnets are described

  9. Permanent quadrupole magnets

    International Nuclear Information System (INIS)

    Bush, E.D. Jr.

    1976-01-01

    A family of quadrupole magnets using a soft iron return yoke and circular cross-section permanent magnet poles were fabricated to investigate the feasibility for use in ion or electron beam focusing applications in accelerators and transport lines. Magnetic field measurements yielded promising results. In fixed-field applications, permanent magnets with sufficient gradients would be a low cost substitute for conventional electromagnets, eliminating the need for power supplies, associated wiring, and cooling. (author)

  10. Study of nonlinear resonance effect in Paul trap.

    Science.gov (United States)

    Zhou, Xiaoyu; Xiong, Caiqiao; Zhang, Shuo; Zhang, Ning; Nie, Zongxiu

    2013-05-01

    In this article, we investigated the nonlinear resonance effect in the Paul trap with a superimposed hexapole field, which was assumed as a perturbation to the quadrupole field. On the basis of the Poincare-Lighthill-Kuo (PLK) perturbation method, ion motional equation, known as nonlinear Mathieu equation (NME) was expressed as the addition of approximation equations in terms of perturbation order. We discussed the frequency characteristics of ion axial-radial (z-r) coupled motion in the nonlinear field, derived the expressions of ion trajectories and nonlinear resonance conditions, and found that the mechanism of nonlinear resonance is similar to the normal resonance. The frequency spectrum of ion motion in nonlinear field includes not only the natural frequency series but also nonlinear introduced frequency series, which provide the driving force for the nonlinear resonance. The nonlinear field and the nonlinear effects are inevitable in practical ion trap experiments. Our method provides better understanding of these nonlinear effects and would be helpful for the instrumentation for ion trap mass spectrometers.

  11. A Resonant Damping Study Using Piezoelectric Materials

    Science.gov (United States)

    Min, J. B.; Duffy, K. P.; Choi, B. B.; Morrison, C. R.; Jansen, R. H.; Provenza, A. J.

    2008-01-01

    Excessive vibration of turbomachinery blades causes high cycle fatigue (HCF) problems requiring damping treatments to mitigate vibration levels. Based on the technical challenges and requirements learned from previous turbomachinery blade research, a feasibility study of resonant damping control using shunted piezoelectric patches with passive and active control techniques has been conducted on cantilever beam specimens. Test results for the passive damping circuit show that the optimum resistive shunt circuit reduces the third bending resonant vibration by almost 50%, and the optimum inductive circuit reduces the vibration by 90%. In a separate test, active control reduced vibration by approximately 98%.

  12. Quadrupolar asymmetry in shifted-stem vane-shaped-rod radio frequency quadrupole accelerator

    Science.gov (United States)

    Mehrotra, Nitin

    2018-04-01

    Quadrupolar Asymmetry (QA), which has been a rampant problem for rod-type Radio Frequency Quadrupole (RFQ) Linacs, arises due to the geometry of resonant structure. A systematic parametric simulation study has been performed to unravel their effect on Figure of Merit (FoM) quantities namely Quality Factor (Q), Shunt Impedance (Rsh) and Quadrupolar Asymmetry (QA). A novel stem and cavity shape is proposed, which caters to the profile of electromagnetic fields of the resonant structure. A design methodology is formulated, which demonstrates that Quadrupolar Asymmetry can be annihilated, and a symmetric electric field can be produced in all four quadrants of rod-type RFQ accelerator.

  13. {sup 23}Na nuclear magnetic resonance study of the structure and dynamic of natrolite

    Energy Technology Data Exchange (ETDEWEB)

    Paczwa, Mateusz; Olszewski, Marcin; Sergeev, Nikolaj [Szczecin Univ. (Poland). Inst. of Physics; Sapiga, Aleksej A.; Sapiga, Aleksej V. [Taurida National V.I. Vernadsky Univ., Simferopol, Crimea (Ukraine)

    2015-07-01

    The temperature dependences of nuclear magnetic resonance (NMR) and magic angle spinning (MAS) NMR spectra of {sup 23}Na nuclei in natrolite (Na{sub 2}Al{sub 2}Si{sub 3}O{sub 10} . 2H{sub 2}O) have been studied. The temperature dependences of the spin-lattice relaxation times T{sub 1} in natrolite have also been studied. It has been shown that the spin-lattice relaxation of the {sup 23}Na is governed by the electric quadrupole interaction with the crystal electric field gradients modulated by translational motion of H{sub 2}O molecules in the natrolite pores. The dipolar interactions with paramagnetic impurities become significant as a relaxation mechanism of the {sup 23}Na nuclei only at low temperature (<270 K).

  14. SKEW QUADRUPOLE FOCUSING LATTICES AND APPLICATIONS

    International Nuclear Information System (INIS)

    Parker, B.

    2001-01-01

    In this paper we revisit using skew quadrupole fields in place of traditional normal upright quadrupole fields to make beam focusing structures. We illustrate by example skew lattice decoupling, dispersion suppression and chromatic correction using the neutrino factory Study-II muon storage ring design. Ongoing BNL investigation of flat coil magnet structures that allow building a very compact muon storage ring arc and other flat coil configurations that might bring significant magnet cost reduction to a VLHC motivate our study of skew focusing

  15. The first LHC insertion quadrupole

    CERN Document Server

    2004-01-01

    An important milestone was reached in December 2003 at the CERN Magnet Assembly Facility. The team from the Accelerator Technology - Magnet and Electrical Systems group, AT-MEL, completed the first special superconducting quadrupole for the LHC insertions which house the experiments and major collider systems. The magnet is 8 metres long and contains two matching quadrupole magnets and an orbit corrector, a dipole magnet, used to correct errors in quadrupole alignment. All were tested in liquid helium and reached the ultimate performance criteria required for the LHC. After insertion in the cryostat, the superconducting magnet will be installed as the Q9 quadrupole in sector 7-8, the first sector of the LHC to be put in place in 2004. Members of the quadrupole team, from the AT-MEL group, gathered around the Q9 quadrupole at its inauguration on 12 December 2003 in building 181.

  16. MQXFS1 Quadrupole Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio, Giorgio [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); et al.

    2016-04-14

    This report presents the reference design of MQXFS1, the first 1.5 m prototype of the low-beta quadrupoles (MQXF) for the LHC High Luminosity Upgrade. The MQXF quadrupoles have 150 mm aperture, coil peak field of about 12 T, and use $Nb_{3}Sn$ conductor. The design is based on the LARP HQ quadrupoles, which had 120 mm aperture. MQXFS1 has 1st generation cable cross-section and magnetic design.

  17. Ion trajectories quadrupole mass filters

    International Nuclear Information System (INIS)

    Ursu, D.; Lupsa, N.; Muntean, F.

    1994-01-01

    The present paper aims at bringing some contributions to the understanding of ion motion in quadrupole mass filters. The theoretical treatment of quadrupole mass filter is intended to be a concise derivation of the important physical relationships using Mathieu functions. A simple iterative method of numerical computation has been used to simulate ion trajectories in an ideal quadrupole field. Finally, some examples of calculation are presented with the aid of computer graphics. (Author) 14 Figs., 1 Tab., 20 Refs

  18. Nuclear structure studies of rare francium isotopes using Collinear Resonance Ionization Spectroscopy (CRIS)

    CERN Document Server

    AUTHOR|(CDS)2084441

    It was known for many years that nuclei possessing certain numbers of protons (Z) and neutrons (N), called the magic numbers (8,20,28,50,82,126...), exhibit characteristic behavior and are in general more stable than their neighboring isotopes. As the capabilities of producing isotopes with more extreme values of Z and N increased, it was realized that those spherical nuclei only represent a small fraction of the total number of isotopes and that most isotopes are deformed. In order to study exotic isotopes and their deformation, it was necessary to develop new experimental techniques that would be powerful enough to be able to cope with very small production yields, but precise enough to measure the nuclear properties (such as radii and moments) with relatively small uncertainties. One technique that can measure nuclear properties of scarcely produced isotopes is in-source resonant ionization, but this technique does not allow for sufficient precision to deduce nuclear quadrupole moments. Furthermore, this t...

  19. Study of Nb{sub 3}Sn cables for superconducting quadrupoles; Etude de cables Nb{sub 3}Sn pour quadripoles supraconducteurs

    Energy Technology Data Exchange (ETDEWEB)

    Otmani, R

    1999-10-01

    In particle physics, the quest for higher energies may be satisfied by the use of niobium-tin superconducting magnets. Such magnets are made of Rutherford type cables which are wound from superconducting strands. The strands are made by the 'internal tin' method. The aim of this study is to determine the main parameters for the fabrication of a quadrupole. The two main requirements the cable must fulfill are high critical current and low losses. The main parameters were determined from different measurements and models. Thus, the key parameters for the current transport capacity are the number and the diameter of the filaments, the number of sub-elements, the surface of superconductor and the copper-to-non-copper ratio. For the hysteresis losses, the main parameters appear to be the effective filament diameter and the spacing of the filaments. For intra-strand losses, the main parameters appear to be the filaments' diameter, the filament spacing, the nature of the diffusion barrier and the Residual Resistivity Ratio (RRR) of the copper. The interstrand resistances for the cable are the key parameters for the losses. Thus, the nature of the strands coating or the presence of a stainless steel core can strongly diminish the cable losses. Finally, a design, for the strands and the cables for the fabrication of a quadrupole is proposed. (author)

  20. Study of Quench Protection for the Nb$_3$Sn Low-β Quadrupole for the LHC Luminosity Upgrade (HiLumi-LHC)

    CERN Document Server

    Todesco, E; Bellomo, G; Sorbi, M; Ambrosio, G; Chlachidze, G; Felice, H; Marchevsky, M; Salmi, T

    2015-01-01

    The HiLumi program is aiming to develop and build new Nb3Sn, high-field (12 T) and large aperture (150 mm) superconducting quadrupoles, which will be inserted in the LHC interaction regions and will provide the final focusing of the beam, in the program of the luminosity upgrade. The quench protection of these magnets is one of the most challenging aspects, mainly because of the large value of the magnet inductance (160 mH for the configuration with two 8 m long magnets in series), of the large value of the stored magnetic energy density in the coils (0.12 J/mm3, a factor 2 larger than in the conventional NbTi quadrupoles) and of the use of Nb3Sn as conductor, which has never been used for large accelerator magnets. Previous works have demonstrated that a “standard” conservative analysis, assuming quench heaters only on the coils outer layer, gives high hot spot temperature, close to the design limit (350 K). In this paper, a new study of quench protection is presented. The benefic effects of large dI/dt ...

  1. Study of the electronics architecture for the mechanical stabilisation of the quadrupoles of the CLIC linear accelerator

    CERN Document Server

    Artoos, K; Fernandez Carmona, P; Guinchard, M; Hauviller, C; Janssens, S; Kuzmin, A; Slaathaug, A

    2010-01-01

    To reach a sufficient luminosity, the transverse beam sizes and emittances in future linear particle accelerators should be reduced to the nanometer level. Mechanical stabilisation of the quadrupole magnets is of the utmost importance for this. The piezo actuators used for this purpose can also be used to make fast incremental orientation adjustments with a nanometer resolution. The main requirements for the CLIC stabilisation electronics is a robust, low noise, low delay, high accuracy and resolution, low band and radiation resistant feedback control loop. Due to the high number of controllers (about 4000) a cost optimization should also be made. Different architectures are evaluated for a magnet stabilisation prototype, including the sensors type and configuration, partition between software and hardware for control algorithms, and optimization of the ADC/DAC converters. The controllers will be distributed along the 50 km long accelerator and a communication bus should allow external control. Furthermore, o...

  2. Nanodiamond graphitization: a magnetic resonance study

    International Nuclear Information System (INIS)

    Panich, A M; Shames, A I; Sergeev, N A; Olszewski, M; McDonough, J K; Mochalin, V N; Gogotsi, Y

    2013-01-01

    We report on the first nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) study of the high-temperature nanodiamond-to-onion transformation. 1 H, 13 C NMR and EPR spectra of the initial nanodiamond samples and those annealed at 600, 700, 800 and 1800 ° C were measured. For the samples annealed at 600 to 800 ° C, our NMR data reveal the early stages of the surface modification, as well as a progressive increase in sp 2 carbon content with increased annealing temperature. Such quantitative experimental data were recorded for the first time. These findings correlate with EPR data on the sensitivity of the dangling bond EPR line width to air content, progressing with rising annealing temperature, that evidences consequent graphitization of the external layers of the diamond core. The sample annealed at 1800 ° C shows complete conversion of nanodiamond particles into carbon onions. (paper)

  3. Electron spin resonance studies of radiation effects. Final report, 1964-1979 (including annual progress reports for 1978 and 1979)

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, M.T.

    1979-07-01

    The discovery of new free radicals, largely in irradiated single crystals of nonmetallic solids, and the determination of the molecular and electronic structures of these paramagnetic species by electron spin resonance (ESR) spectroscopy, have been carried out using a wide variety of organic and inorganic materials. The mechanisms of production of radicals in solids, their motions, and their reactions have been investigated and some applicable general principles deduced. Emphasis has been on aliphatic free radicals from irradiated carboxylic acids and amides and their halogen-substituted derivatives, organometallic radicals and substituted cyclic hydrocarbon radicals; inorganic radicals studied include V centers, hypervalent radicals and electron adducts. Extensive investigations of paramagnetic transition metal complexes, particularly cyanides and fluorides, have been made. In all cases quantum mechanical calculations have been employed as far as possible in interpreting the data. An improved method for analyzing experimental ESR spectra of single crystals has been developed and a number of crystal structures have been determined to supplement the ESR studies. Applications of nuclear quadrupole resonance spectroscopy to the study of structure and bonding in inorganic solids have been made and a method for using nuclear magnetic relaxation data for estimating quadrupole coupling constants in liquids has been developed.

  4. Magnetic quadrupole and solenoidal spectrometers

    International Nuclear Information System (INIS)

    Laurent, H.; Schapira, J.P.

    1979-01-01

    General optical properties of magnetic quadrupole spectrometers are reviewed, together with experimental purposes for nuclear physics: background reduction, magnetic rigidity filtering for extreme forward angles measurements, light charged particle discrimination, ionic charge state separation, time of flight mass spectrometry and fast collection of radioactive nuclear reaction products. Possibility of alternative devices such as superconducting quadrupoles or solenoid spectrometers are discussed. (Auth.)

  5. Liquid chromatography quadrupole time-of-flight mass spectrometry determination of six pharmaceuticals in vegetal biota. Uptake study in Lavandula dentata.

    Science.gov (United States)

    Barreales-Suárez, Sofía; Callejón-Mochón, Manuel; Azoulay, Stéphane; Bello-López, Miguel Ángel; Fernández-Torres, Rut

    2018-05-01

    A procedure based on microwave assisted extraction for the determination of 6 pharmaceuticals in samples of Lavandula dentata, Salicornia ramosissima and Juncus sp. by liquid chromatography-quadrupole time of flight mass spectrometry (LC-QTOF/MS) was optimized and validated. Best results were obtained using microwave assisted extraction of 1.0g of homogeneous lyophilized samples and 5mL of a mixture ACN:H 2 O (1:1 v/v) as extracting solvent. Analytical recoveries ranged from 60 to 107% with relative standard deviation (RSD) lower than 15%. Limits of quantitation (LOQ) for the 6 pharmaceuticals flumequine (FLM), carbamazepine (CBZ), ciprofloxacin (CPR), enrofloxacin (ENR), diclofenac (DCL), and ibuprofen (IBU) were in the range 20.8-125ngg -1 . The method was satisfactory applied for an uptake study in Lavandula dentata samples finding quantifying concentrations of FLM and CBZ in roots, leaf and stem. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Numerical studies of triplet and Russian quadruplet quadrupole lens systems with the given spot size on the target, for use in a microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Brazhnik, V.A.; Lebed, S.A.; Ponomarev, A.G.; Storizhko, V.E. [Ukrainian Academy of Sciences, Sumy (Ukraine). Applied Physics Institute; Dymnikov, A.D. [University of St Petersburg, Stary (Russian Federation). Institute of Computational Mathematics and Control Processes; Jamieson, D.N.; Legge, S.A. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1993-12-31

    In a nuclear microprobe the focusing system is an essential component which determines the beam spot size, i.e. the microprobe resolution. A small beam cross section at the target is the most important of the many conflicting requirements imposed on the beam The second most important factor is the current of the beam which at the given brightness is proportional to the phase volume (or emittance) of the beam. Existing microprobes frequently use a triplet or a Russian quadruplet as the focusing systems. This paper describes the numerical studies of some optimal quadrupole lens systems consisting of three or four lenses suitable for use in a nuclear microprobe taking into account geometrical aberrations of third order. The maximum emittance of changed particle beams for these systems has been found. It is shown how the maximum emittance depends on the spot size. 2 refs., 2 figs.

  7. Numerical studies of triplet and Russian quadruplet quadrupole lens systems with the given spot size on the target, for use in a microprobe

    International Nuclear Information System (INIS)

    Brazhnik, V.A.; Lebed, S.A.; Ponomarev, A.G.; Storizhko, V.E.; Dymnikov, A.D.; Jamieson, D.N.; Legge, S.A.

    1993-01-01

    In a nuclear microprobe the focusing system is an essential component which determines the beam spot size, i.e. the microprobe resolution. A small beam cross section at the target is the most important of the many conflicting requirements imposed on the beam The second most important factor is the current of the beam which at the given brightness is proportional to the phase volume (or emittance) of the beam. Existing microprobes frequently use a triplet or a Russian quadruplet as the focusing systems. This paper describes the numerical studies of some optimal quadrupole lens systems consisting of three or four lenses suitable for use in a nuclear microprobe taking into account geometrical aberrations of third order. The maximum emittance of changed particle beams for these systems has been found. It is shown how the maximum emittance depends on the spot size. 2 refs., 2 figs

  8. Quadrupole moment of the 7/21- isomer state in 43S. Shell model study of sulfur isotopes around N=28

    International Nuclear Information System (INIS)

    Chevrier, Raphael

    2013-01-01

    The goal of this work consists in providing new insights in the shape coexistence expected in neutron-rich nuclei around the N=28 shell closure. In 43 S, recent experimental data as well as their interpretation in the shell model framework were used to predict the coexistence between a J π =3/2 1 - prolate deformed ground state and a 7/2 1 - rather spherical isomer state. We report on the quadrupole moment measurement Q s of the 7/2 1 - isomer state [E*=320.5(5) keV, T 1/2 =415(3) ns] in 43 S. The TDPAD method was applied on 43 S nuclei produced by the fragmentation of a 48 Ca primary beam at 345 A.MeV, and selected in-flight through the BigRIPS spectrometer at RIKEN (Japan). The measured value, |Q s |=23(3) efm 2 , is in remarkable agreement with that calculated in the shell model framework, although it is significantly larger than that expected for a single-particle state. In order to understand the nature of the correlations responsible for the departure of the isomer state from a pure spherical shape, we report on the results of a shell model study using the modern SDPF-U interaction of the neighbors sulfur isotopes 42,44,46 S. Those calculations allowed to identify a slight triaxial degree of freedom in the structure of these nuclei, although the latter happens to be highly hindered at N=28 in 44 S. Spectroscopic factor calculations show that this slight triaxial degree of freedom also impacts the low-lying structure in 43 S. It allows to better understand the deviation of the spectroscopic quadrupole moment value of the isomer state from the limit case of a pure spherical state. (author) [fr

  9. Permanent-Magnet Quadrupoles for Neutrino Factories

    CERN Document Server

    Keil, Eberhard

    2000-01-01

    Using permanent-magnet quadrupoles for the long straight sections of the recirculating linear accelerators and in the muon storage ring proper of a neutrino factory is proposed. The parameters needed for such quadrupoles are compared to the parameters of the permanent-magnet quadrupoles that are used in the Recycler Ring at Fermilab. Using such quadrupoles for ELFE at CERN is also considered.

  10. [Gastric magnetic resonance study (methods, semiotics)].

    Science.gov (United States)

    Stashuk, G A

    2003-01-01

    The paper shows the potentialities of gastric study by magnetic resonance imaging (MRI). The methodic aspects of gastric study have been worked out. The MRI-semiotics of the unchanged and tumor-affected wall of the stomach and techniques in examining patients with gastric cancer of various sites are described. Using the developed procedure, MRI was performed in 199 patients, including 154 patients with gastric pathology and 45 control individuals who had no altered gastric wall. Great emphasis is placed on the role of MRI in the diagnosis of endophytic (diffuse) gastric cancer that is of priority value in its morphological structure. MRI was found to play a role in the diagnosis of the spread of a tumorous process both along the walls of the stomach and to its adjacent anatomic structures.

  11. Quadrupole magnetic lens

    International Nuclear Information System (INIS)

    Piskunov, V.A.

    1981-01-01

    The following connection of windings of electromagnet is suggested for simplification of the design of qUadrupole magnetic lens intended for use in radiotechnical and electron-optical devices. The mentioned windings are connected with each other by a bridge scheme and the variable resistors are switched in its diagonals in the lens containing four electromagnet with windings connected with two variable resistors the mobile contacts of which are connected with a direct current source. Current redistribution between left windings and right windings takes place at shift of mobile contact of variable resistor, and current redistribution between upper and low coils of electromagnets takes place at shifting mobile contact of the other variable resistor. In this case smooth and independent electron-optical misalignment of lens by two mutually perpendicular directions proceeds. Use of the given design of the lens in the oscillograph permits to use printing assembly for alignment plate and to reduce the number of connections at the expense of decreasing the number of resistors

  12. Systematic study on nuclear resonant scattering

    International Nuclear Information System (INIS)

    Suarez, A.A.; Freitas, M.L.

    1974-01-01

    New resonant scattering effect of thermal neutron capture gamma rays from Ti and Fe on Sb, Cu, Se and Ce target were observed. These results together with those published by other authors are summarized and discussed in terms of a possible systematic search for new resonant scattering effects

  13. Hemifacial spasm. Study by magnetic resonance angiography

    International Nuclear Information System (INIS)

    Bittar, Miriam Salvadori; Staut, Claudio Cesar Vilela; Barbosa, Egberto Reis; Bacheschi, Luiz Alberto; Magalhaes, Alvaro Cebrian de Almeida

    1995-01-01

    Nine patients with idiopathic hemifacial spasm were evaluated with cranial magnetic resonance imaging and angiography. Alterations of the posterior fossa vasculature, possibly related to the facial nerve irritation, were found in 8 patients (88%). Magnetic resonance angiography is a noninvasive procedure and appears to be a sensitive method to evaluate hemifacial spasm etiology. (author)

  14. Study of spin resonances in the accelerators with snakes

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1989-01-01

    Spin resonances in the circular accelerators with snakes are studied to understand the nature of snake resonances. We analyze the effect of snake configuration, and the snake superperiod on the resonance. Defining the critical resonance strength ε c as the maximum tolerable resonance strength without losing the beam polarization after passing through the resonance, we found that ε c is a sensitive function of the snake configuration, the snake superperiod at the first order snake resonance, the higher order snake resonance conditions and the spin matching condition. Under properly designed snake configuration, the critical resonance strength ε c is found to vary linearly with N S as left-angle ε c right-angle=(1/π)sin -1 (cos πν z | 1/2 )N S , where ν| z and N S are the betatron tune and the number of snakes respectively. We also study the effect of overlapping intrinsic and imperfection resonances. The imperfection resonance should be corrected to a magnitude of insignificance (e.g., ε≤0.1 for two snakes case) to maintain proper polarization

  15. Study of spin resonances in the accelerators with snakes

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1988-01-01

    Spin resonances in the circular accelerators with snakes are studied to understand the nature of snake resonances. We analyze the effect of snake configuration, and the snake superperiod on the resonance. Defining the critical resonance strength ε/sub c/ as the maximum tolerable resonance strength without losing the beam polarization after passing through the resonance, we found that ε/sub c/ is a sensitive function of the snake configuration, the snake superperiod at the first order snake resonance, the higher order snake resonance conditions and the spin matching condition. Under properly designed snake configuration, the critical resonance strength ε/sub c/ is found to vary linearly with N/sub S/ as = (1/π)sin/sup /minus/1/(cos πν/sub z//sup /1/2//)N/sub S/, where ν/sub z/ and N/sub S/ are the betatron tune and the number of snakes respectively. We also study the effect of overlapping intrinsic and imperfection resonances. The imperfection resonance should be corrected to a magnitude of insignificance (e.g., ε≤0.1 for two snakes case) to maintain proper polarization. 23 refs., 25 figs

  16. Resonance

    DEFF Research Database (Denmark)

    Petersen, Nils Holger

    2014-01-01

    A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice.......A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice....

  17. Design of the CLIC Quadrupole Vacuum Chambers

    CERN Document Server

    Garion, C

    2010-01-01

    The Compact Linear Collider, under study, requires vacuum chambers with a very small aperture, of the order of 8 mm in diameter, and with a length up to around 2 m for the main beam quadrupoles. To keep the very tight geometrical tolerances on the quadrupoles, no bake out is allowed. The main issue is to reach UHV conditions (typically 10-9 mbar static pressure) in a system where the vacuum performance is driven by water outgassing. For this application, a thinwalled stainless steel vacuum chamber with two ante chambers equipped with NEG strips, is proposed. The mechanical design, especially the stability analysis, is shown. The key technologies of the prototype fabrication are given. Vacuum tests are carried out on the prototypes. The test set-up as well as the pumping system conditions are presented.

  18. Laser Desorption Ionization of As2Ch3 (Ch = S, Se, and Te) Chalcogenides Using Quadrupole Ion Trap Time-of-Flight Mass Spectrometry: A Comparative Study

    Science.gov (United States)

    Mawale, Ravi Madhukar; Ausekar, Mayuri Vilas; Prokeš, Lubomír; Nazabal, Virginie; Baudet, Emeline; Halenkovič, Tomáš; Bouška, Marek; Alberti, Milan; Němec, Petr; Havel, Josef

    2017-12-01

    Laser desorption ionization using time-of-flight mass spectrometer afforded with quadrupole ion trap was used to study As2Ch3 (Ch = S, Se, and Te) bulk chalcogenide materials. The main goal of the study is the identification of species present in the plasma originating from the interaction of laser pulses with solid state material. The generated clusters in both positive and negative ion mode are identified as 10 unary (S p +/- and As m +/- ) and 34 binary (As m S p +/- ) species for As2S3 glass, 2 unary (Se q +/- ) and 26 binary (As m Se q +/- ) species for As2Se3 glass, 7 unary (Te r +/- ) and 23 binary (As m Te r +/- ) species for As2Te3 material. The fragmentation of chalcogenide materials was diminished using some polymers and in this way 45 new, higher mass clusters have been detected. This novel approach opens a new possibility for laser desorption ionization mass spectrometry analysis of chalcogenides as well as other materials. [Figure not available: see fulltext.

  19. Resonances

    DEFF Research Database (Denmark)

    an impetus or drive to that account: change, innovation, rupture, or discontinuity. Resonances: Historical Essays on Continuity and Change explores the historiographical question of the modes of interrelation between these motifs in historical narratives. The essays in the collection attempt to realize...... theoretical consciousness through historical narrative ‘in practice’, by discussing selected historical topics from Western cultural history, within the disciplines of history, literature, visual arts, musicology, archaeology, philosophy, and theology. The title Resonances indicates the overall perspective...... of the book: how connotations of past meanings may resonate through time, in new contexts, assuming new meanings without surrendering the old....

  20. Eigenvalue study of a chaotic resonator

    Energy Technology Data Exchange (ETDEWEB)

    Banova, Todorka [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder (TEMF), Schlossgartenstrasse 8, D-64289 Darmstadt (Germany); Technische Universitaet Darmstadt, Graduate School of Computational Engineering, Dolivostrasse 15, D-64293 Darmstadt (Germany); Ackermann, Wolfgang; Weiland, Thomas [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder (TEMF), Schlossgartenstrasse 8, D-64289 Darmstadt (Germany)

    2013-07-01

    The field of quantum chaos comprises the study of the manifestations of classical chaos in the properties of the corresponding quantum systems. Within this work, we compute the eigenfrequencies that are needed for the level spacing analysis of a microwave resonator with chaotic characteristics. The major challenges posed by our work are: first, the ability of the approaches to tackle the large scale eigenvalue problem and second, the capability to extract many, i.e. order of thousands, eigenfrequencies for the considered cavity. The first proposed approach for an accurate eigenfrequency extraction takes into consideration the evaluated electric field computations in time domain of a superconducting cavity and by means of signal-processing techniques extracts the eigenfrequencies. The second approach is based on the finite element method with curvilinear elements, which transforms the continuous eigenvalue problem to a discrete generalized eigenvalue problem. Afterwards, the Lanczos algorithm is used for the solution of the generalized eigenvalue problem. In the poster, a summary of the applied algorithms, as well as, critical implementation details together with the simulation results are provided.

  1. Nuclear magnetic resonance studies of metabolic regulation

    International Nuclear Information System (INIS)

    Sillerud, L.O.; Han, C.H.; Whaley, T.W.

    1983-01-01

    Nuclear magnetic resonance (NMR) techniques for the detection of the metabolic transformations of biological compounds labeled with stable isotopes, particularly carbon-13 have been explored. We have studied adipose tissue in the intact rat, the exteriorized epididymal fat pad, and the isolated adipocyte. Triacylglycerol metabolism in adipose tissue is regulated by lipogenic factors (insulin, corticosterone, thyroxine, and growth hormone) and lipolytic factors (glucagon and catecholamines). The synthesis of triglyceride from 5.5 mM glucose was stimulated by about 4-fold by 10 nM insulin. Triglyceride synthesis from glucose in the presence of insulin occurred at a rate of 330 nmol/hr/10 6 cells. Since the NMR signals from free and esterified fatty acids and glycerol are distinct, we could directly measure the rate of hormone-stimulated lipolysis. Epinephrine (10 μM) gave a lipolytic rate of 0.30 μmol/hr/10 6 cells as monitored by free-glycerol appearance in the medium. 13 C NMR provides a superior method for the measurement of triglyceride metabolism since it directly measures the changes in the substrates and products in situ

  2. A Liquid Chromatography-Quadrupole-Time of Flight Mass Spectrometry (LC-Q-TOF MS) Study for Analyzing 35 Corticosteroid Compounds: Elucidation of MS/MS Fragmentation Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Eunyoung; Yoon, Chang-Yong; Lee, Ji Hyun; Baek, Sun-Young; Do, Jung-Ah [Ministry of Food and Drug Safety, Cheongju (Korea, Republic of); Lee, Jung-min; Oh, Han Bin [Sogang University, Seoul (Korea, Republic of)

    2016-07-15

    Corticosteroids have been often found to be added to a dietary supplement for the purpose of illegally improving the effect of their products. Thus, it is imperative to develop or improve a method that enables one to rapidly and reliably analyze corticosteroids in health or dietary supplements, for the safety management purpose. In the present study, results from liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS) experiments for the selected 35 corticosteroid compounds are presented, which can be useful for the qualitative screening of corticosteroids in health or dietary supplements. Specifically, retention times, accurate mass data of the protonated steroids, m/z values of major fragment ions are given for the 35 corticosteroids. Further, fragmentation pathways for the selected steroids are also suggested. Based on the suggested fragmentation pathways, it was shown that an unknown steroid compound can be readily identified using the knowledge of a group of unique and specific common skeletal fragments. The high selectivity and sensitivity of the LC-Q-TOF-MS/MS results combined with the knowledge of the fragmentation pathways can offer a new opportunity for rapid and accurate screening of corticosteroids, thus preventing health-related incidents involving adulterated products and clamping down on illegally circulated health products.

  3. Ferromagnetic resonance study of Fe50Ag50 granular film

    International Nuclear Information System (INIS)

    Sarmiento, G.; Fdez-Gubieda, M.L.; Siruguri, V.; Lezama, L.; Orue, I.

    2007-01-01

    Fe 50 Ag 50 granular film, produced by the pulsed laser deposition technique, has been studied using ferromagnetic resonance (FMR) at temperatures ranging from 4 to 300K. Three different resonance modes are well observed in the whole temperature range. We have also studied the angular evolution of the resonance peaks at three different temperatures T=150, 250, 300K. The thermal and the angular evolution of the three resonance fields has been interpreted on the basis of the existence of different magnetic coupling between the Fe nanoparticles and a weakly magnetized interface

  4. CLIC quadrupole stabilization and nano-positioning

    CERN Document Server

    Collette, C; Artoos, K; Fernandez Carmona, P; Guinchard, M; Hauviller, C

    2010-01-01

    In the Compact LInear Collider (CLIC) currently under study, electrons and positrons will be accelerated in two linear accelerators to collide at the interaction point with an energy of 0.5- 3 TeV. This machine is constituted of a succession of accelerating structures, used to accelerate the beams of particles, and electromagnets (quadrupoles) used to focus the beams. In order to ensure good performances, the quadrupoles have to be extremely stable. Additionally, they should also have the capability to move by steps of some tens of nanometers every 20 ms with a precision of +/- 1nm. This paper proposes a holistic approach to fulfill alternatively both requirements using the same device. The concept is based on piezoelectric hard mounts to isolate the quadrupoles from the ground vibrations in the sensitive range between 1 and 20 Hz, and to provide nano-positioning capabilities. It is also shown that this strategy ensures robustness to external forces (acoustic noise, water flow for the cooling, air flow for th...

  5. Simulation study of resonant reflector for S-band BWO

    International Nuclear Information System (INIS)

    Choyal, Y; Parmar, Nidhi; Saini, Ajay Kumar; Chhotray, S K; Bhat, K S; Kumar, Lalit

    2012-01-01

    This paper presents the result of simulation studies of resonant reflector used for reflection of backward wave in relativistic BWO. The resonant reflector is modelled and analyzed by CST MWS for TM 01 . A TM 01 mode is fed at the output end of the BWO and signal is observed at the cathode end. Results show that 90 percent of the backward TM 01 wave is get reflected back by the locked TM 02 mode in the resonant reflector.

  6. A surface-electrode quadrupole guide for electrons

    Energy Technology Data Exchange (ETDEWEB)

    Hoffrogge, Johannes Philipp

    2012-12-19

    This thesis reports on the design and first experimental realization of a surface-electrode quadrupole guide for free electrons. The guide is based on a miniaturized, planar electrode layout and is driven at microwave frequencies. It confines electrons in the near-field of the microwave excitation, where strong electric field gradients can be generated without resorting to resonating structures or exceptionally high drive powers. The use of chip-based electrode geometries allows the realization of versatile, microstructured potentials with the perspective of novel quantum experiments with guided electrons. I present the design, construction and operation of an experiment that demonstrates electron confinement in a planar quadrupole guide for the first time. To this end, electrons with kinetic energies from one to ten electron-volts are guided along a curved electrode geometry. The stability of electron guiding as a function of drive parameters and electron energy has been studied. A comparison with numerical particle tracking simulations yields good qualitative agreement and provides a deeper understanding of the electron dynamics in the guiding potential. Furthermore, this thesis gives a detailed description of the design of the surface-electrode layout. This includes the development of an optimized coupling structure to inject electrons into the guide with minimum transverse excitation. I also discuss the extension of the current setup to longitudinal guide dimensions that are comparable to or larger than the wavelength of the drive signal. This is possible with a modified electrode layout featuring elevated signal conductors. Electron guiding in the field of a planar, microfabricated electrode layout allows the generation of versatile and finely structured guiding potentials. One example would be the realization of junctions that split and recombine a guided electron beam. Furthermore, it should be possible to prepare electrons in low-lying quantum mechanical

  7. A surface-electrode quadrupole guide for electrons

    International Nuclear Information System (INIS)

    Hoffrogge, Johannes Philipp

    2012-01-01

    This thesis reports on the design and first experimental realization of a surface-electrode quadrupole guide for free electrons. The guide is based on a miniaturized, planar electrode layout and is driven at microwave frequencies. It confines electrons in the near-field of the microwave excitation, where strong electric field gradients can be generated without resorting to resonating structures or exceptionally high drive powers. The use of chip-based electrode geometries allows the realization of versatile, microstructured potentials with the perspective of novel quantum experiments with guided electrons. I present the design, construction and operation of an experiment that demonstrates electron confinement in a planar quadrupole guide for the first time. To this end, electrons with kinetic energies from one to ten electron-volts are guided along a curved electrode geometry. The stability of electron guiding as a function of drive parameters and electron energy has been studied. A comparison with numerical particle tracking simulations yields good qualitative agreement and provides a deeper understanding of the electron dynamics in the guiding potential. Furthermore, this thesis gives a detailed description of the design of the surface-electrode layout. This includes the development of an optimized coupling structure to inject electrons into the guide with minimum transverse excitation. I also discuss the extension of the current setup to longitudinal guide dimensions that are comparable to or larger than the wavelength of the drive signal. This is possible with a modified electrode layout featuring elevated signal conductors. Electron guiding in the field of a planar, microfabricated electrode layout allows the generation of versatile and finely structured guiding potentials. One example would be the realization of junctions that split and recombine a guided electron beam. Furthermore, it should be possible to prepare electrons in low-lying quantum mechanical

  8. The monopole and quadrupole vibrations of a hot nucleus

    International Nuclear Information System (INIS)

    Okolowicz, J.; Drozdz, S.; Ploszajczak, M.; Caurier, E.

    1989-03-01

    An extended time-dependent Hartree-Fock approach has been applied to a description of the isoscalar giant monopole and quadrupole vibration modes in the excited nuclear system at finite temperature. The temperature dependence of the resonance characteristics is established for both modes. In anticipation of some anharmonic effects the principle of regularity and single-valuedness has been used to extract the energies of the collective modes. (orig.)

  9. Resonant Auger studies of metallic systems

    International Nuclear Information System (INIS)

    Coulthard, I.; Antel, W. J. Jr.; Frigo, S. P.; Freeland, J. W.; Moore, J.; Calaway, W. S.; Pellin, M. J.; Mendelsohn, M.; Sham, T. K.; Naftel, S. J.

    2000-01-01

    Results of resonant Auger spectroscopy experimental are presented for Cu, Co, and oxidized Al. Sublifetime narrowing of Auger spectra and generation of sublifetime narrowed absorption spectra constructed from Auger yield measurements were observed. Resonant Auger yields are used to identify three chemical states of oxidized Al. Partial absorption yield spectra were derived giving detailed electronic information and thickness information for the various chemical states of the bulk metal, the passivating aluminum oxide layer, and the metal-oxide interface region. In addition, the total absorption yield spectrum for the oxidized Al sample was constructed from the partial yield data, supporting the consistency of our method. (c) 2000 American Vacuum Society

  10. DNMR theory for ND+4ion. Pt. 1. Tunneling effects and first order approximations in quadrupole interaction

    International Nuclear Information System (INIS)

    Blicharski, J.S.; Lalowicz, Z.T.; Sobol, W.

    1978-01-01

    This work presents results of the calculations of shape of deuteron nuclear magnetic resonance for ND + 4 ion. Tunneling effect and quadrupole interaction influence considerably the line shape. (S.B.)

  11. Study of giant resonances with pions

    International Nuclear Information System (INIS)

    Baer, H.W.

    1984-01-01

    Recent results on giant resonances obtained with pion-inelastic scattering and with single- and double-charge-exchange scattering are reviewed. The states discussed are isobaric analog states, double-isobaric analog states, and isovector L = 0, 1, and 2 collective states. 36 references

  12. Theoretical study of the electron paramagnetic resonance ...

    Indian Academy of Sciences (India)

    Abstract. The electron paramagnetic resonance (EPR) parameters (the g factors, hy- perfine structure constants and the superhyperfine parameters) for the tetragonal Ir2+ centre in NaCl are theoretically investigated from the perturbation formulas of these parameters for a 5d7 ion in tetragonally elongated octahedra.

  13. Theoretical study of the electron paramagnetic resonance ...

    Indian Academy of Sciences (India)

    conveniently investigated by means of electron paramagnetic resonance (EPR). In ... ion Ir2+ can experience the Jahn–Teller effect by means of vibration interaction, ... Similarly, k. (and k ) are the orbital reduction factors arising from the anisotropic interactions of the orbital angular momentum operator. From the cluster ...

  14. Resonance raman studies of phenylcyclopropane radical cations

    NARCIS (Netherlands)

    Godbout, J.T.; Zuilhof, H.; Heim, G.; Gould, I.R.; Goodman, J.L.; Dinnocenzo, J.P.; Myers Kelley, A.

    2000-01-01

    Resonance Raman spectra of the radical cations of phenylcyclopropane and trans-1-phenyl-2-methylcyclopropane are reported. A near-UV pump pulse excites a photosensitizer which oxidizes the species of interest, and a visible probe pulse delayed by 35 ns obtains the spectrum of the radical ion. The

  15. Resonance Raman study of benzyl radical

    DEFF Research Database (Denmark)

    Langkilde, F.W.; Bajdor, K.; Wilbrandt, R.

    1992-01-01

    symmetric a1 modes. The remaining observed bands are tentatively assigned to fundamental modes of b1, a2, and b2 symmetry, and to overtones and combinations. The resonance Raman spectra are found to be quite different from previous fluorescence spectra of benzyl, and the origins of these differences...

  16. A Study on Measurement Variations in Resonant Characteristics of Electrostatically Actuated MEMS Resonators

    Directory of Open Access Journals (Sweden)

    Faisal Iqbal

    2018-04-01

    Full Text Available Microelectromechanical systems (MEMS resonators require fast, accurate, and cost-effective testing for mass production. Among the different test methods, frequency domain analysis is one of the easiest and fastest. This paper presents the measurement uncertainties in electrostatically actuated MEMS resonators, using frequency domain analysis. The influence of the applied driving force was studied to evaluate the measurement variations in resonant characteristics, such as the natural frequency and the quality factor of the resonator. To quantify the measurement results, measurement system analysis (MSA was performed using the analysis of variance (ANOVA method. The results demonstrate that the resonant frequency ( f r is mostly affected by systematic error. However, the quality (Q factor strongly depends on the applied driving force. To reduce the measurement variations in Q factor, experiments were carried out to study the influence of DC and/or AC driving voltages on the resonator. The results reveal that measurement uncertainties in the quality factor were high for a small electrostatic force.

  17. Obesity-Related Metabolomic Analysis of Human Subjects in Black Soybean Peptide Intervention Study by Ultraperformance Liquid Chromatography and Quadrupole-Time-of-Flight Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Min Jung Kim

    2013-01-01

    Full Text Available The present study aimed to identify key metabolites related to weight reduction in humans by studying the metabolic profiles of sera obtained from 34 participants who underwent dietary intervention with black soybean peptides (BSP for 12 weeks. This research is a sequel to our previous work in which the effects of BSP on BMI and blood composition of lipid were investigated. Sera of the study were subjected to ultra performance liquid chromatography and quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS, and the data were analyzed using partial least-squares discriminate analysis (PLS-DA score plots. Body mass index and percent body fat of the test group were reduced. Levels of betaine, benzoic acid, pyroglutamic acid, pipecolic acid, N-phenylacetamide, uric acid, l-aspartyl-l-phenylalanine, and lysophosphatidyl cholines (lysoPCs (C18:1, C18:2, C20:1, and C20:4 showed significant increases. Levels of l-proline, valine, l-leucine/isoleucine, hypoxanthine, glutamine, l-methionine, phenylpyruvic acid, several carnitine derivatives, and lysoPCs (C14:0, PC16:0, C15:0, C16:0, C17:1, C18:0, and C22:0 were significantly decreased. In particular, lysoPC 16:0 with a VIP value of 12.02 is esteemed to be the most important metabolite for evaluating the differences between the 2 serum samples. Our result confirmed weight-lowering effects of BSP, accompanied by favorable changes in metabolites in the subjects’ blood. Therefore, this research enables us to better understand obesity and increases the predictability of the obesity-related risk by studying metabolites present in the blood.

  18. Resonance magnetic x-ray scattering study of erbium

    DEFF Research Database (Denmark)

    Sanyal, M.K.; Gibbs, D.; Bohr, J.

    1994-01-01

    The magnetic phases of erbium have been studied by resonance x-ray-scattering techniques. When the incident x-ray energy is tuned near the L(III) absorption edge, large resonant enhancements of the magnetic scattering are observed above 18 K. We have measured the energy and polarization dependence...

  19. Ab-initio study of pure sup 7 sup 7 Se and sup 1 sup 2 sup 5 Te systems and of the sup 7 sup 7 Se nuclear quadrupole interaction in tellurium

    CERN Document Server

    Oh, Y K; Cho, H S

    1999-01-01

    Using the Hartree-Fock cluster procedure, we have studied the electric-field gradient tensors at the nuclear sites of sup 7 sup 7 Se and sup 1 sup 2 sup 5 Te in pure sup 1 sup 2 sup 5 Te systems and in tellurium crystalline system's with a sup 7 sup 7 Se impurity. From the results for the pure systems, sup 7 sup 7 Se in selenium and sup 1 sup 2 sup 5 Te in tellurium, using the observed quadrupole moments: Q( sup 7 sup 7 Se) 0.75 +- 0.07 barns and Q( sup 1 sup 2 sup 5 Te) = 0.35 +- 0.04 barns. Comparison is made with earlier values obtained by different methods. Using our calculated values of Q and the results of a study of the field-gradient tensors for sup 7 sup 7 Se in tellurium, the theoretical values of the quadrupole coupling constants are found to agree, within about 7 percent, with experiment. The calculated asymmetry parameters are also found to be in reasonable agreement with the experiment values, although the agreement not as close as in the case of the quadrupole -coupling constants. Directions fo...

  20. Contribution to the study of electron paramagnetic resonance and relaxation

    International Nuclear Information System (INIS)

    Theobald, Jean-Gerard

    1962-01-01

    This research thesis reports an experimental work which comprises the development of a very practical and very sensitive electron paramagnetic resonance spectrometer, and the use of this equipment for the study of irradiated substances and carbons. By studying electronic resonance signals by fast modulation of the magnetic field, the author studied phenomena of quick passage in electronic resonance, and showed that the study of these phenomena requires observation systems with a particularly large bandwidth. He reports the measurement of the line width of packs of spins of inhomogeneous lines by two different methods [fr

  1. Dielectric studies of fluids with reentrant resonators

    International Nuclear Information System (INIS)

    Goodwin, A.R.H.; Moldover, M.R.

    1993-01-01

    The authors have used a reentrant radio-frequency (rf) cavity as a resonator operating near 375 MHz to measure changes in the dielectric constant of fluids within it. The utility of these measurements was demonstrated by determining the dipole moment of 1,1,1,2,3,3-hexafluoropropane, a candidate replacement refrigerant (denoted R236ea) and by detecting the phase boundaries in the mixture [(1-x)C 2 H 6 + xCO 2 ], for the mole fraction x = 0.492. The densities of the coexisting phases of the mixture were determined using the Clausius-Mossotti relation which has errors on the order of 0.5% in this application. To test the accuracy of the present techniques, the rf resonator was calibrated with helium and then used to redetermine the molar polarizability A e of argon. The results were in excellent agreement with published values. The design of the reentrant resonator makes it suitable for use with corrosive fluids at temperature up to 400 degrees C

  2. RESONANCE

    Indian Academy of Sciences (India)

    maceutical, paper, food, dyes, petrochemi- cals, pigments, etc., to identify molecules, to monitor reaction products and so on. One of the most spectacular contributions of NMR has been in the development of magnetic resonance imaging (MRI), a method that has today revolutionized diagnosis and treatment of diseases in ...

  3. Compound-specific chlorine isotope analysis: a comparison of gas chromatography/isotope ratio mass spectrometry and gas chromatography/quadrupole mass spectrometry methods in an interlaboratory study.

    Science.gov (United States)

    Bernstein, Anat; Shouakar-Stash, Orfan; Ebert, Karin; Laskov, Christine; Hunkeler, Daniel; Jeannottat, Simon; Sakaguchi-Söder, Kaori; Laaks, Jens; Jochmann, Maik A; Cretnik, Stefan; Jager, Johannes; Haderlein, Stefan B; Schmidt, Torsten C; Aravena, Ramon; Elsner, Martin

    2011-10-15

    Chlorine isotope analysis of chlorinated hydrocarbons like trichloroethylene (TCE) is of emerging demand because these species are important environmental pollutants. Continuous flow analysis of noncombusted TCE molecules, either by gas chromatography/isotope ratio mass spectrometry (GC/IRMS) or by GC/quadrupole mass spectrometry (GC/qMS), was recently brought forward as innovative analytical solution. Despite early implementations, a benchmark for routine applications has been missing. This study systematically compared the performance of GC/qMS versus GC/IRMS in six laboratories involving eight different instruments (GC/IRMS, Isoprime and Thermo MAT-253; GC/qMS, Agilent 5973N, two Agilent 5975C, two Thermo DSQII, and one Thermo DSQI). Calibrations of (37)Cl/(35)Cl instrument data against the international SMOC scale (Standard Mean Ocean Chloride) deviated between instruments and over time. Therefore, at least two calibration standards are required to obtain true differences between samples. Amount dependency of δ(37)Cl was pronounced for some instruments, but could be eliminated by corrections, or by adjusting amplitudes of standards and samples. Precision decreased in the order GC/IRMS (1σ ≈ 0.1‰), to GC/qMS (1σ ≈ 0.2-0.5‰ for Agilent GC/qMS and 1σ ≈ 0.2-0.9‰ for Thermo GC/qMS). Nonetheless, δ(37)Cl values between laboratories showed good agreement when the same external standards were used. These results lend confidence to the methods and may serve as a benchmark for future applications. © 2011 American Chemical Society

  4. Cerebral fat embolism: magnetic resonance study

    International Nuclear Information System (INIS)

    Guedea, A.; Barrena, R.; Guelbenzu, S.; Tejada, A.

    1998-01-01

    We report the case of 26-year-old man who presented clinical evidence of fat embolism following a traffic accident. Although computed tomography (CT) of the brain showed no abnormalities, magnetic resonance imaging (MRI) disclosed several scattered points of high intensity on T2-weighted and proton density (PD) images, with complete resolution of the lesions on follow-up scan. MRI is considered more sensitive than computed tomography in detecting these lesions, and may be useful for their diagnosis, correlating well with the clinical course. (Author) 10 refs

  5. Role of chelates in magnetic resonance imaging studies

    Directory of Open Access Journals (Sweden)

    Tripathi Laxmi

    2009-01-01

    Full Text Available Imaging studies are tests performed with a variety of techniques that produce pictures of the inside of a patient′s body. Magnetic resonance imaging (MRI is an imaging technique based on the principles of nuclear magnetic resonance. MRI uses a powerful magnetic field, radio waves, and a computer to produce detailed pictures of organs, soft tissues, bone, and virtually all other internal body structures. Chelates have a wide application in such imaging techniques. Chelates in imaging studies are used alone as radioactive agents or conjugated to monoclonal antibodies or to DNA as radioactive agents. Technetium chelates and gadolinium chelates are being widely used as magnetic resonance contrast media.

  6. Ab initio determination of the nuclear quadrupole moments of 114In, 115In, and 117In

    International Nuclear Information System (INIS)

    Errico, Leonardo A.; Renteria, Mario

    2006-01-01

    We present here ab initio determinations of the nuclear-quadrupole moment Q of hyperfine-probe-nuclear states of three different In isotopes: the 5 + 192 keV excited state of 114 In (probe for nuclear quadrupole alignment spectroscopy), the 9/2 + ground state of 115 In (nuclear magnetic and nuclear quadrupole resonance probe), and the 3/2 + 659 keV excited state of 117 In (perturbed angular correlations probe). These nuclear-quadrupole moments were determined by comparing experimental nuclear-quadrupole frequencies to the electric field gradient tensor calculated with high accuracy at In sites in metallic indium within the density functional theory. These ab initio calculations were performed with the full-potential linearized augmented plane wave method. The results obtained for the quadrupole moments of 114 In [Q( 114 In)=-0.14(1) b] are in clear discrepancy with those reported in the literature [Q( 114 In)=+0.16(6) b and +0.739(12) b]. For 115 In and 117 In our results are in excellent agreement with the literature and in the last case Q( 117 In) is determined with more precision. In the case of Q( 117 In), its sign cannot be determined because standard γ-γ perturbed angular correlations experiments are not sensitive to the sign of the nuclear-quadrupole frequency

  7. Ferromagnetic resonance studies of granular materials (abstract)

    Science.gov (United States)

    Rubinstein, Mark; Das, Badri; Chrisey, D. B.; Horwitz, J.; Koon, N. C.

    1994-05-01

    We have investigated the ferromagnetic resonance (FMR) spectra of several granular alloys displaying giant magnetoresistance (GMR). For this task, we have produced melt-spun ribbons of Fe5Co15Cu80 and Co20Cu80 by rapid quenching and thin films of Co80Cu20 by pulsed laser deposition. The salient feature of the FMR spectra is the increase of the resonance linewidth as a function of increasing annealing temperature. We have deconvoluted the FMR spectra to a single-domain powder pattern and a multidomain powder pattern. As a function of annealing temperature, the GMR of these samples attains a maximum value. Near the peak of the GMR curve, the FMR spectrum reveals that the ferromagnetic particles are half mono- and half multidomain. Since the maximum size of a single-domain particle is known, this enables us to estimate the spin diffusion length of the Cu conduction electrons. We have also demonstrated, theoretically and experimentally, that the appropriate demagnetizing field to apply to the ensemble of spherical magnetic particles that comprise our granular thin film is simply the field corresponding to the average magnetization.

  8. Multiple-quantum nuclear magnetic resonance studies of sodium-23 in model and biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Pekar, J.J.

    1988-01-01

    Time-domain multiple-quantum nuclear magnetic resonance spectroscopy is applied to sodium-23 in gels, liquid crystals, cell suspensions, and intact human limbs. In many biological systems, interactions between the nuclear electric quadrupole moment and fluctuating electric field gradients cause the outer transitions, which contribute 60% of the nuclear magnetic resonance signal from the spin-3/2 nuclei, to relax faster than the central transition, which contributes the remains in 40% of the signal. New multiple-quantum experiments, designed specifically for quadrupolar spin-3/2 nuclei, reveal much information not usually available from conventional nuclear magnetic resonance spectroscopy, because they allow indirect measurement of the rapid relaxation rate of the outer transitions, and may highlight the distribution of sodium ions among microscopic physiological compartments such as intracellular space, the interstitium, and the vasculature. The use of venous occlusion plethysmography to alter this distribution is discussed.

  9. High-Resolution Resonance Photoemission Study of CeNi

    International Nuclear Information System (INIS)

    Sekiyama, A.; Kadono, K.; Iwasaki, T.; Imada, S.; Kasai, S.; Suga, S.; Araki, S.; Onuki, Y.

    2003-01-01

    We have performed the high-resolution Ce 3d - 4f resonance photoemission study of a considerably hybridized CeNi with the Kondo temperature of ∼ 150 K. The tail of the Kondo-resonance peak is predominantly observed in the bulk Ce 4f photoemission spectra, where its spin-orbit partner is suppressed compared with the so far reported surface-sensitive Ce 4d-4f resonance spectrum. Our results show that the bulk 4f electronic states are essentially understood by the single impurity Anderson model. (author)

  10. Three-dimensional multi-physics analysis and commissioning frequency tuning strategy of a radio-frequency quadrupole accelerator

    Science.gov (United States)

    Ma, Wei; Lu, Liang; Liu, Ting; Xu, Xianbo; Sun, Liepeng; Li, Chenxing; Shi, Longbo; Wang, Wenbin; He, Yuan; Zhao, Hongwei

    2017-09-01

    The resonant frequency stability of the radio frequency quadrupole (RFQ) is an important concern during commissioning. The power dissipated on the RFQ internal surface will heat the cavity and lead to a temperature rise and a structural deformation, especially in the continuous wave (CW) RFQs, which will cause the resonant frequency shifts. It is important to simulate the temperature rise, the deformation and the frequency shift of the RFQ cavity. The cooling water takes away the power to maintain the frequency stability. Meanwhile, the RFQ resonant frequency can be tuned by adjusting the water temperature. In this paper, a detailed three-dimensional multi-physics analysis of the Low Energy Accelerator Facility (LEAF) RFQ will be presented and a commissioning frequency tuning strategy will be studied.

  11. Nuclear quadrupole moment of the 99Tc ground state

    International Nuclear Information System (INIS)

    Errico, Leonardo; Darriba, German; Renteria, Mario; Tang Zhengning; Emmerich, Heike; Cottenier, Stefaan

    2008-01-01

    By combining first-principles calculations and existing nuclear magnetic resonance (NMR) experiments, we determine the quadrupole moment of the 9/2 + ground state of 99 Tc to be (-)0.14(3)b. This confirms the value of -0.129(20)b, which is currently believed to be the most reliable experimental determination, and disagrees with two earlier experimental values. We supply ab initio calculated electric-field gradients for Tc in YTc 2 and ZrTc 2 . If this calculated information would be combined with yet to be performed Tc-NMR experiments in these compounds, the error bar on the 99 Tc ground state quadrupole moment could be further reduced

  12. Higher Order Parametric Excitation Modes for Spaceborne Quadrupole Mass Spectrometers

    Science.gov (United States)

    Gershman, D. J.; Block, B. P.; Rubin, M.; Benna, M.; Mahaffy, P. R.; Zurbuchen, T. H.

    2011-01-01

    This paper describes a technique to significantly improve upon the mass peak shape and mass resolution of spaceborne quadrupole mass spectrometers (QMSs) through higher order auxiliary excitation of the quadrupole field. Using a novel multiresonant tank circuit, additional frequency components can be used to drive modulating voltages on the quadrupole rods in a practical manner, suitable for both improved commercial applications and spaceflight instruments. Auxiliary excitation at frequencies near twice that of the fundamental quadrupole RF frequency provides the advantages of previously studied parametric excitation techniques, but with the added benefit of increased sensed excitation amplitude dynamic range and the ability to operate voltage scan lines through the center of upper stability islands. Using a field programmable gate array, the amplitudes and frequencies of all QMS signals are digitally generated and managed, providing a robust and stable voltage control system. These techniques are experimentally verified through an interface with a commercial Pfeiffer QMG422 quadrupole rod system.When operating through the center of a stability island formed from higher order auxiliary excitation, approximately 50% and 400% improvements in 1% mass resolution and peak stability were measured, respectively, when compared with traditional QMS operation. Although tested with a circular rod system, the presented techniques have the potential to improve the performance of both circular and hyperbolic rod geometry QMS sensors.

  13. Mechanical Design of a Second Generation LHC IR Quadrupole

    International Nuclear Information System (INIS)

    Caspi, S.; Bartlett, S.E.; Dietderich, D.R.; Ferracin, P.; Gourlay, S.A.; Hafalia, R.R.; Hannaford, C.R.; Lietzke, A.F.; McInturff, A.D.; Sabbi, G.; Scanlan, R.M.

    2003-01-01

    One of the proposed options to increase the LHC luminosity is the replacement of the existing inner triplets at the Interaction Regions with new low-beta larger aperture quadrupoles operating at the same gradient. Lawrence Berkeley National Laboratory (LBNL) is carrying out preliminary studies of a large-bore Nb 3 Sn quadrupole. The mechanical design presents a support structure based on the use of keys and bladders without self-supporting collars. This technology has been proven effective in several successful common coil Nb 3 Sn dipoles built at LBNL, and it is for the first time applied to a cos(2(var t heta)) design. In this paper we present a detailed analysis of the quadrupole mechanical behavior, demonstrating the possibility of delivering, through this method, well-controlled coil precompression during assembly, cool-down and excitation. The study has been performed with the finite element program ANSYS

  14. Measurement of global betatron coupling with skew quadrupole modulation

    Directory of Open Access Journals (Sweden)

    Y. Luo

    2005-01-01

    Full Text Available Measurement of the residual betatron coupling with skew quadrupole modulation is a new diagnostics technique. It was developed and tested at the Relativistic Heavy Ion Collider (RHIC as a promising method for measuring coupling on the ramp. By modulating the strengths of skew quadrupole families, the two tunes' responses are precisely measured with the phase lock loop system. The projection ratio of the residual coupling coefficient onto the coupling modulation direction can be determined. In this article, the analytical solution to the skew quadrupole modulation is given. Dedicated beam studies were carried out in RHIC Run'04 and the results are presented. The ability to measure coupling on the ramp opens the possibility of continuously correcting coupling during acceleration.

  15. Stability of an aqueous quadrupole micro-trap

    International Nuclear Information System (INIS)

    Park, Jae Hyun; Krstić, Predrag S

    2012-01-01

    The recently demonstrated functionality of an aqueous quadrupole micro- or nano-trap opens a new avenue for applications of Paul traps, like confinement of a charged biomolecule which requires a water environment for its chemical stability. Besides the strong viscosity forces, the motion of a charged particle in the aqueous trap is subject to dielectrophoretic and electrophoretic forces. In this study, we describe the general conditions for stability of a charged particle in an aqueous quadrupole trap. We find that for typical micro-trap parameters, the effects of both dielectrophoresis and electrophoresis significantly influence the trap stability. In particular, an aqueous quadrupole trap could play the role of a synthetic virtual nanopore for the third generation of DNA sequencing technology. (paper)

  16. Design of an electrostatic magnetic quadrupole accelerator

    International Nuclear Information System (INIS)

    Mizuno, M.; Ohara, Y.

    1993-01-01

    A new type of electrostatic acceleration system, electrostatic magnetic quadrupole (ESMQ) acceleration system, is proposed for efficient acceleration of negative ion beams. In this system, permanent magnets are buried in the acceleration electrodes so as to produce a quadrupole magnetic field in the electrode aperture region. Envelope simulation indicates that the quadrupole field can deflect electrons stripped from the negative ions. Beam envelope simulations for deuterium ions and electrons have been carried out using the beam envelope code TRACE. Electrons are largely divergent and most appear likely to hit downstream electrodes. Furthermore, maximum beam divergence of the deuterium ions is reduced to the focusing effect of the quadrupole magnetic field

  17. Magnetic Resonance Imaging Studies of Postpartum Depression: An Overview

    Directory of Open Access Journals (Sweden)

    Marco Fiorelli

    2015-01-01

    Full Text Available Postpartum depression is a frequent and disabling condition whose pathophysiology is still unclear. In recent years, the study of the neural correlates of mental disorders has been increasingly approached using magnetic resonance techniques. In this review we synthesize the results from studies on postpartum depression in the context of structural, functional, and spectroscopic magnetic resonance studies of major depression as a whole. Compared to the relative wealth of data available for major depression, magnetic resonance studies of postpartum depression are limited in number and design. A systematic literature search yielded only eleven studies conducted on about one hundred mothers with postpartum depression overall. Brain magnetic resonance findings in postpartum depression appear to replicate those obtained in major depression, with minor deviations that are not sufficient to delineate a distinct neurobiological profile for this condition, due to the small samples used and the lack of direct comparisons with subjects with major depression. However, it seems reasonable to expect that studies conducted in larger populations, and using a larger variety of brain magnetic resonance techniques than has been done so far, might allow for the identification of neuroimaging signatures for postpartum depression.

  18. Resonant and Ground Experimental Study on the Microwave Plasma Thruster

    Science.gov (United States)

    Yang, Juan; He, Hongqing; Mao, Genwang; Qu, Kun; Tang, Jinlan; Han, Xianwei

    2002-01-01

    resonator, which reduces the energy loss arising from the heat conducting, the wall temperature almost have no limitation. The cavity is partitioned in two halves separated by a dialectic quartz plate. The propellant is swirl-injected tangentially in the nozzle side of the cavity (plasma chamber), which extends lifetime and working reliability of MPT. Compared, coaxial resonator has the characteristic of smaller structure, lighter weight, wider bandwidth of resonating frequency and more stable resonate state. microwave energy can heat propellant gas to produce thrust efficiently. According to the test method on the return loss of passive parts of microwave apparatus, this paper also makes experimental study on the resonating state of MPT cavity with scalar network analyzer operating under low signal. Purpose is to analyze its energy absorbing efficiency and resonant frequency band, research the matching of the cavity dimension, microwave coupling probe position and the isolate plate material within the cavity. The conclusion is helpful for the thruster design and improving the system efficiency. different propellant gases (Ar and He) have been fulfilled. The power, resonant pressure and mass flow rate have been measured and analyzed. Experiments show that MPT can start up reliably and work steadily. Keywords: microwave plasma thrustermicrowaveplasmaresonatorreturn loss

  19. Magnetic measurements on the ISR superconducting quadrupoles

    International Nuclear Information System (INIS)

    Walckiers, L.

    1981-01-01

    The eight superconducting quadrupoles of the ISR high luminosity insertion were measured by the rotating coil method. This method allows an analysis of all harmonic components of the field. In order to achieve magnetic measurements precise enough to check the quality of the magnet, a study of the errors inherent in such a measuring system was made. This paper described how the measurement of the different harmonics of the field is affected by imperfections of the mechanical or electronic components of the measuring system. The relative errors of the gradient are measured within 0.2 10/sup -3/ in the useful aperture, the absolute value of the quadrupole term is known within 0.5 10/sup -3/ as a function of current, and the magnetic axis is determined within 20 microns. By using the dodecapole correction winding, the relative error of the gradient integrated along the axis can be kept within the tolerance of 1% in the useful aperture of the magnets. 2 refs

  20. MQXFS1 Quadrupole Fabrication Report

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio, G. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Anerella, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Bossert, R. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Cavanna, E. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Cheng, D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chlachidize, G. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Cooley, L. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Dietderich, D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Felice, H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ferracin, P. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Ghosh, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hafalia, R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Holik, E. F. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Bermudez, S. Izquierdo [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Juchno, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Krave, S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Marchevsky, M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Muratore, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Nobrega, F. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Pan, H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Perez, J. C. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Pong, I. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Prestemon, S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ravaioli, E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sabbi, G. L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Santini, C. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Schmalzle, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stoynev, S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Strauss, T. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Vallone, G. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Wanderer, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wang, X. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yu, M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2017-07-16

    This report presents the fabrication and QC data of MQXFS1, the first short model of the low-beta quadrupoles (MQXF) for the LHC High Luminosity Upgrade. It describes the conductor, the coils, and the structure that make the MQXFS1 magnet. Qualification tests and non-conformities are also presented and discussed. The fabrication of MQXFS1 was started before the finalization of conductor and coil design for MQXF magnets. Two strand design were used (RRP 108/127 and RRP 132/169). Cable and coil cross-sections were “first generation”.

  1. MQXFS1 Quadrupole Fabrication Report

    International Nuclear Information System (INIS)

    Ambrosio, G.; Anerella, M.; Bossert, R.; Cavanna, E.; Cheng, D.; Chlachidize, G.; Cooley, L.; Dietderich, D.; Felice, H.; Ferracin, P.; Ghosh, A.; Hafalia, R.; Holik, E. F.; Bermudez, S. Izquierdo; Juchno, M.; Krave, S.; Marchevsky, M.; Muratore, J.; Nobrega, F.; Pan, H.; Perez, J. C.; Pong, I.; Prestemon, S.; Ravaioli, E.; Sabbi, G. L.; Santini, C.; Schmalzle, J.; Stoynev, S.; Strauss, T.; Vallone, G.; Wanderer, P.; Wang, X.; Yu, M.

    2017-01-01

    This report presents the fabrication and QC data of MQXFS1, the first short model of the low-beta quadrupoles (MQXF) for the LHC High Luminosity Upgrade. It describes the conductor, the coils, and the structure that make the MQXFS1 magnet. Qualification tests and non-conformities are also presented and discussed. The fabrication of MQXFS1 was started before the finalization of conductor and coil design for MQXF magnets. Two strand design were used (RRP 108/127 and RRP 132/169). Cable and coil cross-sections were “first generation”.

  2. A Vibrating Wire System For Quadrupole Fiducialization

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Zachary

    2010-12-13

    A vibrating wire system is being developed to fiducialize the quadrupoles between undulator segments in the LCLS. This note provides a detailed analysis of the system. The LCLS will have quadrupoles between the undulator segments to keep the electron beam focused. If the quadrupoles are not centered on the beam axis, the beam will receive transverse kicks, causing it to deviate from the undulator axis. Beam based alignment will be used to move the quadrupoles onto a straight line, but an initial, conventional alignment must place the quadrupole centers on a straight line to 100 {micro}m. In the fiducialization step of the initial alignment, the position of the center of the quadrupole is measured relative to tooling balls on the outside of the quadrupole. The alignment crews then use the tooling balls to place the magnet in the tunnel. The required error on the location of the quadrupole center relative to the tooling balls must be less than 25 {micro}m. In this note, we analyze a system under construction for the quadrupole fiducialization. The system uses the vibrating wire technique to position a wire onto the quadrupole magnetic axis. The wire position is then related to tooling balls using wire position detectors. The tooling balls on the wire position detectors are finally related to tooling balls on the quadrupole to perform the fiducialization. The total 25 {micro}m fiducialization error must be divided between these three steps. The wire must be positioned onto the quadrupole magnetic axis to within 10 {micro}m, the wire position must be measured relative to tooling balls on the wire position detectors to within 15 {micro}m, and tooling balls on the wire position detectors must be related to tooling balls on the quadrupole to within 10 {micro}m. The techniques used in these three steps will be discussed. The note begins by discussing various quadrupole fiducialization techniques used in the past and discusses why the vibrating wire technique is our method

  3. Studies of magnetic resonance in anemia of hematies falciformes

    International Nuclear Information System (INIS)

    Lores Guevara, Manuel Arsenio; Balcom, Bruce John; Cabal Mirabal, Carlos

    2012-01-01

    Magnetic Resonance applications to the study of Sickle Cell Disease are analyzed using classical procedures and Unilateral Magnetic Resonance. Hemoglobin and whole blood samples were obtained from healthy individual and patients with Sickle Cell Anemia to be used as samples. Classical pulse sequence as spin echo and inversion recovery were used in the experimental studies, the STEPR method was used for EPR spectrometric determinations. The results show the possibility of NMR methods to follow the molecular process causing the disease and allows to present quantitative procedures to estimate the clinical state of the patients and the results of clinical options. We present the Unilateral Magnetic Resonance as a new method to study Sickle Cell disease considering its portability and new possibilities as new image method

  4. Double giant resonances in time-dependent relativistic mean-field theory

    International Nuclear Information System (INIS)

    Ring, P.; Podobnik, B.

    1996-01-01

    Collective vibrations in spherical nuclei are described in the framework of time-dependent relativistic mean-field theory (RMFT). Isoscalar quadrupole and isovector dipole oscillations that correspond to giant resonances are studied, and possible excitations of higher modes are investigated. We find evidence for modes which can be interpreted as double resonances. In a quantized RMFT they correspond to two-phonon states. (orig.)

  5. Excitation and photon decay of giant multipole resonances - the role and future of medium-energy heavy ions

    International Nuclear Information System (INIS)

    Bertrand, F.E.; Beene, J.R.; Horen, D.J.

    1988-01-01

    Inelastic scattering of medium energy heavy ions provides very large cross sections and peak-to-continuum ratios for excitation of giant resonances. For energies above about 50 MeV/nucleon, giant resonances are excited primarily through Coulomb excitation, which is indifferent to isospin, thus providing a good probe for the study of isovector giant resonances. The extremely large cross sections available from heavy ion excitation permit the study of rare decay modes of the photon decay of giant resonances following excitation by 22 and 84 MeV/nucleon 17 O projectiles. The singles results at 84 MeV/nucleon yield peak cross sections for the isoscalar giant quadrupole resonance and the isovector giant dipole resonance of approximately 0.8 and 3 barns/sr, respectively. Data on the ground state decay of the isoscalar giant quadrupole and isovector giant dipole resonances are presented and compared with calculations. Decays to low-lying excited states are also discussed. Preliminary results from an experiment to isolate the 208 Pb isovector quadrupole resonance using its gamma decay are presented

  6. A strong focussing cylindrical electrostatic quadrupole

    International Nuclear Information System (INIS)

    Sheng Yaochang

    1986-01-01

    The construction and performance of small cylindrical electrostatic quadrupole, which is installed in JM-400 pulse electrostatic accelerator, are described. This electrostatic quadrupole is not only used in neutron generator, but also suitable for ion injector as well as for low energy electron accelerator

  7. Excitation of giant resonances through inelastic scattering

    International Nuclear Information System (INIS)

    Kailas, S.

    1981-01-01

    In the last few years, exciting developments have taken place in the study of giant resonances (GR). In addition to the already well known gjant dipole resonance (GDR), the presence of at least two more new GRs viz. giant quadrupole resonance (GQR) and giant monopole resonance (GMR) has been experimentally established. The systematics covering these GRs is found to be consistent with the theoretical expectation. Though the existence of higher multipoles has been predjcted by theory, so far only some of these have been found to be excited experimentally. Various probe particles - electrons, protons (polarized and unpolarized), light and heavy ions and pions - at different bombarding energies have been used to excite the GR region, primarily through the inelastic scattering process. Detailed experiments, looking at the decay modes of GR region, have also been performed. These studies have contributed significantly to a better understanding of the phenomenon of nuclear collective excitation. In this report, the current status of 'GR' research is reviewed. (author)

  8. Study of isovector resonances with pion charge exchange

    International Nuclear Information System (INIS)

    Baer, H.W.; Bolton, R.; Bowman, J.D.

    1982-01-01

    Studies with the pion charge exchange reactions (π/sup +-/,π 0 ) at 164 MeV using the LAMPF π 0 spectrometer are yielding new results on the existence and systematic features of isovector resonances in nuclei. These experiments possess an unusually high signal/background ratio for isovector resonances of low-multipolarity. Results obtained to date are: (1) observation and angular disribution measurement of the giant dipole resonance in nuclei 12 C, 40 Ca, 90 Zr, and 120 Sn; and (2) observation and angular distribution measurements in the (π - ,π 0 ) reaction on 90 Zr and 120 Sn of large signals possessing the expected angular distribution shapes and magnitudes for the isovector monopole resonance. Excitation energies are near the hydrodynamical model values 170 A - /sup 1/3/ MeV. Differential cross sections are approximately 0.7 J 1 2 (qR) mb/sr. An overview of this experimental program, with emphasis on new results and how they correlate with existing knowledge on the isovector resonances, is presented

  9. Resonance and nuclear relaxation in GdCo2

    International Nuclear Information System (INIS)

    Barata, A.C.

    1988-04-01

    A study of the 59 Co nuclear magnetic resonance and relaxation was made on the intermetallic compound GdCo 2 from 4,2 k to 330 k using the spin echo technique. An oscillatory behaviour of the primary echo was observed in the whole range of temperatures studied. This is due to the electronic quadrupole interaction of the 59 Co nuclei. (A.C.A.S.) [pt

  10. Magnetic resonance spectroscopy and imaging for the study of fossils.

    Science.gov (United States)

    Giovannetti, Giulio; Guerrini, Andrea; Salvadori, Piero A

    2016-07-01

    Computed tomography (CT) has long been used for investigating palaeontological specimens, as it is a nondestructive technique which avoids the need to dissolve or ionize the fossil sample. However, magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) have recently gained ground as analytical tools for examination of palaeontological samples, by nondestructively providing information about the structure and composition of fossils. While MRI techniques are able to reveal the three-dimensional geometry of the trace fossil, MRS can provide information on the chemical composition of the samples. The multidimensional nature of MR (magnetic resonance) signals has potential to provide rich three-dimensional data on the palaeontological specimens and also to help in elucidating paleopathological and paleoecological questions. In this work the verified applications and the emerging uses of MRI and MRS in paleontology are reviewed, with particular attention to fossil spores, fossil plants, ambers, fossil invertebrates, and fossil vertebrate studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Magnetic resonance imaging study of corpus callosum

    African Journals Online (AJOL)

    2014-11-02

    Nov 2, 2014 ... depression,[4] antisocial personality disorder,[5] post-traumatic stress disorder,[6] autism[7] and attention deficit hyperactivity disorder.[8]. Rosenthal and Bigelow[9] first drew attention to an increased thickness of the CC in postmortem brains of schizophrenia patients. Later, in neuroimaging studies, CC size ...

  12. The use of enzyme-coupled magnetic nanoparticles for studying the spectra of unusual substrates of mushroom tyrosinase by direct surface-assisted laser desorption/ionisation and high-resolution electrospray ionisation quadrupole-quadrupole-time-of-flight mass spectrometry.

    Science.gov (United States)

    Salwiński, Aleksander; Da Silva, David; Delépée, Raphaël; Maunit, Benoît

    2014-09-30

    Tyrosinase-coupled magnetic particles (EMPs) were used to demonstrate that resorcinol-containing tyrosinase inhibitors are oxidised by tyrosinase only in the presence of the enzyme's classic substrate. This shows the potential for the application of EMPs as a non-organic matrix for monitoring enzymatic conversion of a novel substrate family directly on-the-spot, principally due to minimal enzyme requirement per analysis. Tyrosinase was covalently coupled to core-shell-type silica-coated iron oxide magnetic nanoparticles (EMPs) that were applied as non-organic SALDI matrix suitable for studying low-mass compounds using a classic matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometer. Because of the dual function of the EMPs - enzyme host and non-organic matrix - we describe this ionisation method as Enzyme-coupled Nanoparticles-Assisted LDI-MS (ENALDI-MS). Supplementary studies of the enzymatic conversion of glabridin and 3-(2,4-dihydroxyphenyl)propionic acid (DHPA) were conducted by high-resolution electrospray ionisation quadrupole-quadrupole-time-of-flight mass spectrometry (ESI-QqTOF-MS). The initial experiment involving EMPs as non-organic matrix (ENALDI-MS) showed enzymatic conversion of glabridin, a strong tyrosinase inhibitor, only in the presence of L-Tyr, the classic tyrosinase substrate. These findings were evaluated by ESI-QqTOF-MS proving that glabridin and DHPA are converted into the corresponding quinones by tyrosinase only in the presence of the auxiliary monophenol or o-diphenol substrates (L-Tyr and catechin, respectively) capable of regenerating the active site of tyrosinase. EMPs were shown to be useful as a non-organic matrix to monitor enzymatic conversion of the novel tyrosinase substrate family directly on-the-spot with a minimal enzyme consumption (6.5 pmol/spot). Results obtained by ENALDI-MS were fully confirmed by ESI-QqTOF-MS demonstrating that resorcinol-containing tyrosinase inhibitors may be oxidised

  13. Anatomical and magnetic resonance imaging study of the medial ...

    African Journals Online (AJOL)

    Sally Mahmood Mohamed Hussin Omar

    2015-07-10

    Jul 10, 2015 ... Anatomical and magnetic resonance imaging study of the medial collateral ligament of the ankle joint. Sally Mahmood Mohamed Hussin Omar a. , Fardos Ahmed El-Kalaa a. ,. El Sebai Farag Ali b. , Ali Ali Abd El-Karim c. , Nancy Mohamed El Sekily d,. * a Department of Anatomy and Embryology, Faculty of ...

  14. Resonant inelastic x-ray scattering studies of elementary excitations

    NARCIS (Netherlands)

    Ament, Lucas Johannes Peter (Luuk)

    2010-01-01

    Resonant Inelastic X-ray Scattering (RIXS) is an X-ray in, X-ray out technique that enables one to study the dispersion of excitations in solids. In this thesis, we investigated how various elementary excitations of transition metal oxides show up in RIXS spectra.

  15. Electron cyclotron resonance breakdown studies in a linear plasma ...

    Indian Academy of Sciences (India)

    Abstract. Electron cyclotron resonance (ECR) plasma breakdown is studied in a small linear cylindrical system with four different gases – hydrogen, helium, argon and nitrogen. Microwave power in the experimental system is delivered by a magnetron at 2.45 ± 0.02. GHz in TE10 mode and launched radially to have ...

  16. System control for the CLIC main beam quadrupole stabilization and nano-positioning

    CERN Document Server

    Janssens, S; Collette, E; Esposito, M; Fernandez Carmona, P; Guinchard, M; Hauviller, C; Kuzmin, A; Leuxe, R; Pfingstner, J; Schulte, D; Snuverink, J

    2011-01-01

    The conceptual design of the active stabilization and nano-positioning of the CLIC main beam quadrupoles was validated in models and experimentally demonstrated on test benches. Although the mechanical vibrations were reduced to within the specification of 1.5 nm at 1 Hz, additional input for the stabilization system control was received fromintegrated luminosity simulations that included the measured stabilization transfer functions. Studies are ongoing to obtain a transfer function which is more compatible with beam based orbit feedback; it concerns the controller layout, new sensors and their combination. In addition, the gain margin must be increased in order to reach the requirements froma higher vibration background. For this purpose, the mechanical support is adapted to raise the frequency of some resonances in the system and the implementation of force sensors is considered. Furthermore, this will increase the speed of repositioning the magnets between beam pulses. This paper describes the improvement...

  17. Nuclear magnetic resonance studies of biological systems

    International Nuclear Information System (INIS)

    Antypas, W.G. Jr.

    1988-01-01

    The difference between intracellular and extracellular proton relaxation rates provides the basis for the determination of the mean hemoglobin concentration (MHC) in red blood cells. The observed water T 1 relaxation data from red blood cell samples under various conditions were fit to the complete equation for the time-dependent decay of magnetization for a two-compartment system including chemical exchange. The MHC for each sample was calculated from the hematocrit and the intracellular water fraction as determined by NMR. The binding of the phosphorylcholine (PC) analogue, 2-(trimethylphosphonio)-ethylphosphate (phosphoryl-phosphocholine, PPC) to the PC binding myeloma proteins TEPC-15, McPC 603, and MOPC 167 was studied by 31 P NMR

  18. Quadrupole magnet for a rapid cycling synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Witte, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Berg, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    Rapid Cycling Synchrotrons (RCS) feature interleaved warm and cold dipole magnets; the field of the warm magnets is used to modulate the average bending field depending on the particle energy. It has been shown that RCS can be an attractive option for fast acceleration of particles, for example, muons, which decay quickly. In previous studies it was demonstrated that in principle warm dipole magnets can be designed which can provide the required ramp rates, which are equivalent to frequencies of about 1 kHz. To reduce the losses it is beneficial to employ two separate materials for the yoke; it was also shown that by employing an optimized excitation coil geometry the eddy current losses are acceptable. In this paper we show that the same principles can be applied to quadrupole magnets targeting 30 T/m with a repetition rate of 1kHz and good field quality.

  19. RESONANCE

    Indian Academy of Sciences (India)

    rest of his career, except for the war years 1940-46 spent at the Institute for Advanced Study at Princeton. The 1945 Physics Nobel Prize was awarded to Pauli 'for the ... tribute, no less a person than Niels Bohr wrote: "At the same time as the anecdotes about his personality grew into a veritable legend, he more and more ...

  20. RESONANCE

    Indian Academy of Sciences (India)

    The wasp in question is Nasonia vitripennis and the study under consider- ation is by Dobson and Tanouye of the University of California at Berkeley. Nasonia vitripennis is a parasitoid wasp that is distributed throughout the world. Female wasps lay eggs in the pupae of flies that breed in carcasses and in bird nests. Like all.

  1. Targeted Proteomic Quantification on Quadrupole-Orbitrap Mass Spectrometer*

    Science.gov (United States)

    Gallien, Sebastien; Duriez, Elodie; Crone, Catharina; Kellmann, Markus; Moehring, Thomas; Domon, Bruno

    2012-01-01

    There is an immediate need for improved methods to systematically and precisely quantify large sets of peptides in complex biological samples. To date protein quantification in biological samples has been routinely performed on triple quadrupole instruments operated in selected reaction monitoring mode (SRM), and two major challenges remain. Firstly, the number of peptides to be included in one survey experiment needs to be increased to routinely reach several hundreds, and secondly, the degree of selectivity should be improved so as to reliably discriminate the targeted analytes from background interferences. High resolution and accurate mass (HR/AM) analysis on the recently developed Q-Exactive mass spectrometer can potentially address these issues. This instrument presents a unique configuration: it is constituted of an orbitrap mass analyzer equipped with a quadrupole mass filter as the front-end for precursor ion mass selection. This configuration enables new quantitative methods based on HR/AM measurements, including targeted analysis in MS mode (single ion monitoring) and in MS/MS mode (parallel reaction monitoring). The ability of the quadrupole to select a restricted m/z range allows one to overcome the dynamic range limitations associated with trapping devices, and the MS/MS mode provides an additional stage of selectivity. When applied to targeted protein quantification in urine samples and benchmarked with the reference SRM technique, the quadrupole-orbitrap instrument exhibits similar or better performance in terms of selectivity, dynamic range, and sensitivity. This high performance is further enhanced by leveraging the multiplexing capability of the instrument to design novel acquisition methods and apply them to large targeted proteomic studies for the first time, as demonstrated on 770 tryptic yeast peptides analyzed in one 60-min experiment. The increased quality of quadrupole-orbitrap data has the potential to improve existing protein

  2. Isotopic effect giant resonances

    International Nuclear Information System (INIS)

    Buenerd, M.; Lebrun, D.; Martin, P.; Perrin, G.; Saintignon, P. de; Chauvin, J.; Duhamel, G.

    1981-10-01

    The systematics of the excitation energy of the giant dipole, monopole, and quadrupole resonances are shown to exhibit an isotopic effect. For a given element, the excitation energy of the transition decreases faster with the increasing neutron number than the empirical laws fitting the overall data. This effect is discussed in terms of the available models

  3. QUADRUPOLE BEAM-BASED ALIGNMENT AT RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    NIEDZIELA, J.; MONTAG, C.; SATOGATA, T.

    2005-05-16

    Successful implementation of a beam-based alignment algorithm, tailored to different types of quadrupoles at RHIC, provides significant benefits to machine operations for heavy ions and polarized protons. This algorithm was used to calibrate beam position monitor centers relative to interaction region quadrupoles to maximize aperture. This approach was also used to determine the optimal orbit through transition jump quadrupoles to minimize orbit changes during the transition jump for heavy ion acceleration. This paper provides background discussion and results from first measurements during the RHIC 2005 run.

  4. Eight piece quadrupole magnet, method for aligning quadrupole magent pole tips

    Energy Technology Data Exchange (ETDEWEB)

    Jaski, Mark S.; Liu, Jie; Donnelly, Aric T.; Downey, Joshua S.; Nudell, Jeremy J.; Jain, Animesh

    2018-01-30

    The invention provides an alternative to the standard 2-piece or 4-piece quadrupole. For example, an 8-piece and a 10-piece quadrupole are provided whereby the tips of each pole may be adjustable. Also provided is a method for producing a quadrupole using standard machining techniques but which results in a final tolerance accuracy of the resulting construct which is better than that obtained using standard machining techniques.

  5. AA, shims and washers on quadrupole ends

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    Due to the fact that much of the field of the quadrupoles was outside the iron (in particular with the wide quadrupoles) and that thus the fields of quadrupoles and bending magnets interacted, the lattice properties of the AA could not be predicted with the required accuracy. After a first running period in 1980, during which detailed measurements were made with proton test beams, corrections to the quadrupoles were made in 1981, in the form of laminated shims at the ends of the poles, and with steel washers. With the latter ones, further refinements were made in an iterative procedure with measurements on the circulating beam. This eventually resulted, amongst other things, in a very low chromaticity, with the Q-values being constant to within +- 0.001 over the total momentum range of 6 %. Here we see the shims and washers on a narrow qudrupole (QFN, QDN). See also 8103203, 8103204, 8103205, 8103206.

  6. Experimental study of resonance fiber optic gyroscope employing a dual-ring resonator

    Science.gov (United States)

    Fan, Yue; Wang, Wei

    2016-09-01

    A dual-ring resonator which is available to alter the full width at half maximum (FWHM) without altering the free spectrum range (FSR) for practice applications is analyzed theoretically and set up in practice. The parameters of the dual-ring resonator have been optimized in simulation, the resonance depth and the dynamic range are enhanced. The prototype is set up with single mode fiber of 8 meter and two 95 : 5 couplers for open loop experiment. The FWHM of the dual-ring resonator is demonstrated less than 1.5MHz and the fineness is calculated to be 37 during the frequency sweeping experiment. The frequency locking experiment with demodulation curve method has been accomplished, and the locking time achieves less than 40ms. All these provide a basic reference for optimizing the resonance fiber optic gyro based on dual-ring resonator.

  7. Temperature and angular momentum dependence of the quadrupole deformation in sd-shell

    Science.gov (United States)

    Ganai, P. A.; Sheikh, J. A.; Maqbool, I.; Singh, R. P.

    2009-12-01

    Temperature and angular momentum dependence of the quadrupole deformation is studied in the middle of the sd-shell for 28Si and 27Si isotopes using the spherical shell model approach. The shell model calculations have been performed using the standard USD interaction and the canonical partition function constructed from the calculated eigen-solutions. It is shown that the extracted average quadrupole moments show a transitional behavior as a function of temperature and the inferred transitional temperature is shown to vary with angular-momentum. The quadrupole deformation of the individual eigen-states is also analyzed.

  8. AA, wide quadrupole on measurement stand

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    Please look up 8101024 first. Shims and washers on the wide quadrupoles (QFW, QDW; located in the lattice where dispersion was large) served mostly for corrections of those lattice parameters which were a function of momentum. After mounting shims and washers, the quadrupoles were measured to determine their magnetic centre and to catalogue the effect of washer constellations. Raymond Brown is busy measuring a wide quad.

  9. Nuclei quadrupole coupling constants in diatomic molecule

    International Nuclear Information System (INIS)

    Ivanov, A.I.; Rebane, T.K.

    1993-01-01

    An approximate relationship between the constants of quadrupole interaction of nuclei in a two-atom molecule is found. It enabled to establish proportionality of oscillatory-rotation corrections to these constants for both nuclei in the molecule. Similar results were obtained for the factors of electrical dipole-quadrupole screening of nuclei. Applicability of these relationships is proven by the example of lithium deuteride molecule. 4 refs., 1 tab

  10. Electron paramagnetic resonance study on irradiated green coffee

    International Nuclear Information System (INIS)

    Brasoveanu, Mirela; Nemtanu, Monica R.; Grecu, Maria Nicoleta

    2006-01-01

    Electron paramagnetic resonance (EPR) is a well-known method for its sensitivity and accuracy in irradiated food detection. Our goal is to analyse the irradiated green coffee by EPR. Arabica beans and grounded coffee was electron beam irradiated up to 40 kGy. The EPR spectra and time dependence of signals were studied. Results were analysed with respect to find a possibility to identify irradiated green coffee. (authors)

  11. Familial Essential Tremor Studied With Functional Magnetic Resonance Imaging

    Science.gov (United States)

    Hernandez, A.; Salgado, P.; Gil, A.; Barrios, F. A.

    2003-09-01

    Functional Magnetic Resonance Imaging has become an important analytical tool to study neurodegenerative diseases. We applied the EPI-BOLD functional Magnetic Resonance Imaging technique to acquire functional images of patients with familial essential tremor (FET) disorder and healthy control volunteers, during a motor task activity. Functional and anatomic images were used to produce the brain activation maps of the patients and volunteers. These functional maps of the primary somatosensorial and motor cortexes of patients and control subjects were compared for functional differences per subject. The averaged functional brain images of eight of each case were acquired were, it can be clearly observed the differences in active zones. The results presented in this work show that there are differences in the functional maps during motor task activation between control subjects and FET patients suggesting a cerebral functional reorganization that can be mapped with BOLD-fMRI.

  12. A study of spinal cord tumors by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Gushiken, Isao; Nishihira, Takeshi; Nakasone, Tomohiro; Takara, Hiroaki; Oshiro, Yutaka; Oshiro, Takashi; Isa, Makoto; Kinjo, Yukio; Ibaraki, Kunio.

    1989-01-01

    We studied 17 cases of spinal cord tumors using magnetic resonance imaging. According to the intensity of image and histological feature of spinal cord tumors, we identified two groups in T2 weighted imaging. One was a hypointensity group showing cystic or vascular tumors, and the other was hyperintensity group of solid tumors. Preoperative images of swelling, narrowing, deviation of the spinal cord were remained after the operations. Grafted free fatty tissue for the prevention of adhesion was recognized well also after the operation. Postoperative imagings sometime showed pseudo-deviation of the spinal cord which was easy to be mistaken as the remains of tumors and narrowing of the spinal cord. In conclusion, the magnetic resonance imaging makes very early detection of spinal cord tumors possible, and it is valuable for a diagnosis of the spinal cord tumor associated with brain tumor. (author)

  13. Nuclear magnetic resonance study of pure and Ni/Co doped LiFeAs

    Energy Technology Data Exchange (ETDEWEB)

    Grafe, Hans-Joachim; Baek, Seung-Ho; Hammerath, Franziska; Graefe, Uwe; Utz, Yannic; Harnagea, L.; Nacke, Claudia; Aswartham, Saicharan; Wurmehl, Sabine; Buechner, Bernd [Leibniz-Institut fuer Festkoerper- und Werkstoffforschung, Dresden (Germany)

    2011-07-01

    We present Nuclear Magnetic and Nuclear Quadrupole Resonance (NMR/NQR) measurements on pure, Ni and Co doped LiFeAs single crystals. The parent compound LiFeAs exhibits unconventional superconductivity with a transition temperature of about 17 K. Unlike other Fe based superconductors, where superconductivity is induced or stabilized by Co or Ni doping, replacement of Fe by these elements leads to a suppression of the superconducting transition temperature in LiFeAs. In case of Ni doping, a bulk magnetic order is induced below about 160 K. In contrast, for Co doping, the superconducting transition temperature is only reduced, but no magnetic order is observed. We discuss the nature and the origin of this magnetic order and its relation to unconventional superconductivity in pure LiFeAs.

  14. Magnetic resonance of phase transitions

    CERN Document Server

    Owens, Frank J; Farach, Horacio A

    1979-01-01

    Magnetic Resonance of Phase Transitions shows how the effects of phase transitions are manifested in the magnetic resonance data. The book discusses the basic concepts of structural phase and magnetic resonance; various types of magnetic resonances and their underlying principles; and the radiofrequency methods of nuclear magnetic resonance. The text also describes quadrupole methods; the microwave technique of electron spin resonance; and the Mössbauer effect. Phase transitions in various systems such as fluids, liquid crystals, and crystals, including paramagnets and ferroelectrics, are also

  15. Synergistic use of Knudsen effusion quadrupole mass spectrometry, solid-state galvanic cell and differential scanning calorimetry for thermodynamic studies on lithium aluminates

    Science.gov (United States)

    Rakshit, S. K.; Naik, Y. P.; Parida, S. C.; Dash, Smruti; Singh, Ziley; Sen, B. K.; Venugopal, V.

    2008-06-01

    Three ternary oxides LiAl 5O 8(s), LiAlO 2(s) and Li 5AlO 4(s) in the system Li-Al-O were prepared by solid-state reaction route and characterized by X-ray powder diffraction method. Equilibrium partial pressure of CO 2(g) over the three-phase mixtures {LiAl 5O 8(s)+Li 2CO 3(s)+5Al 2O 3(s)}, {LiAl 5O 8(s)+5LiAlO 2(s)+2Li 2CO 3(s)} and {LiAlO 2(s)+Li 5AlO 4(s)+2Li 2CO 3(s)} were measured using Knudsen effusion quadrupole mass spectrometry (KEQMS). Solid-state galvanic cell technique based on calcium fluoride electrolyte was used to determine the standard molar Gibbs energies of formations of these aluminates. The standard molar Gibbs energies of formation of these three aluminates calculated from KEQMS and galvanic cell measurements were in good agreement. Heat capacities of individual ternary oxides were measured from 127 to 868 K using differential scanning calorimetry. Thermodynamic tables representing the values of Δ fH0(298.15 K), S0(298.15 K) S0( T), Cp0( T), H0( T), { H0( T)- H0(298.15 K)}, G0( T), Δ fH0( T), Δ fG 0( T) and free energy function (fef) were constructed using second law analysis and FACTSAGE thermo-chemical database software.

  16. Longitudinal capture in the radio-frequency-quadrupole structure

    International Nuclear Information System (INIS)

    Inagaki, S.

    1980-03-01

    The radio-frequency-quadrupole (RFQ) linac structure not only can attain easily transverse focusing in the low-beta region, but also can obtain very high capture efficiency because of its low beta-lambda and low-particle rigidity. An optimization study of the zero space-charge longitudinal capture in an RFQ linac that yields configurations with large capture efficiency is described

  17. Kinetic equilibrium of space charge dominated beams in a misaligned quadrupole focusing channel

    International Nuclear Information System (INIS)

    Goswami, A.; Sing Babu, P.; Pandit, V. S.

    2013-01-01

    The dynamics of intense beam propagation through the misaligned quadrupole focusing channel has been studied in a self-consistent manner using nonlinear Vlasov-Maxwell equations. The equations of motion of the beam centroid have been developed and found to be independent of any specific beam distribution. A Vlasov equilibrium distribution and beam envelope equations have been obtained, which provide us a theoretical tool to investigate the dynamics of intense beam propagating in a misaligned quadrupole focusing channel. It is shown that the displaced quadrupoles only cause the centroid of the beam to wander off axis. The beam envelope around the centroid obeys the familiar Kapchinskij-Vladimirskij envelope equation that is independent of the centroid motion. However, the rotation of the quadrupole about its optical axis affects the beam envelope and causes an increase in the projected emittances in the two transverse planes due to the inter-plane coupling

  18. Low-frequency quadrupole impedance of undulators and wigglers

    Directory of Open Access Journals (Sweden)

    A. Blednykh

    2016-10-01

    Full Text Available An analytical expression of the low-frequency quadrupole impedance for undulators and wigglers is derived and benchmarked against beam-based impedance measurements done at the 3 GeV NSLS-II storage ring. The adopted theoretical model, valid for an arbitrary number of electromagnetic layers with parallel geometry, allows to calculate the quadrupole impedance for arbitrary values of the magnetic permeability μ_{r}. In the comparison of the analytical results with the measurements for variable magnet gaps, two limit cases of the permeability have been studied: the case of perfect magnets (μ_{r}→∞, and the case in which the magnets are fully saturated (μ_{r}=1.

  19. Prototype of Superconducting Quadrupole for ISR Low-Beta Insertion

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    In colliders, smaller beam cross-section means higher luminosity. Beam-size being proportional to the square-root of the "beta function" value, a small beta means small beam size, hence high luminosity. The first p-p collision in the ISR occurred in January 1971 and in 1973 a study was launched on low-beta insertions, which focus beams to even smaller sizes at the beam crossing points. In 1976 the first prototype of a superconducting quadrupole was tested. Here we see Theodor Tortschanoff with a prototype of 1.25 m magnetic length. Manufacture of 8 quadrupoles (4 of L=1.15 m, 4 of L=0.65 m) began at Alsthom in 1978. They were installed at point 8 of the ISR, enhancing luminosity there until final low-beta operation in December 1983. For details see "Yellow Report" CERN 76-16.

  20. The development of compact magnetic quadrupoles for ILSE

    International Nuclear Information System (INIS)

    Faltens, A.; Mukherjee, S.; Brady, V.

    1990-08-01

    Magnetic focussing is selected for the 4 MeV to 10 MeV section of the Induction Linac Systems Experiments (ILSE) to study the transport of magnetically focussed spacecharge-dominated beams and to explore the engineering problems in accurate positioning of the magnetic fields in an array of quadrupoles. A prototype development program for such magnets is currently under way. A compact design was selected to decrease the overall accelerator diameter and its cost. The design evolved from a cosine 2θ current distribution, corrected for end effects. Current-dominated magnets are used in a pulsed mode to allow higher current densities compared to standard dc water-cooled conductors. The POISSON and MAFCO codes were used in the design of the magnets. The construction of the quadrupoles is aimed at achieving location accuracy of the magnetic center to within 1 mil (2.54 x 10 -5 m) of the mechanical center

  1. Focusing properties of discrete RF quadrupoles

    Science.gov (United States)

    Li, Zhi-Hui; Wang, Zhi-Jun

    2017-08-01

    The particle motion equation for a Radio Frequency (RF) quadrupole is derived. The motion equation shows that the general transform matrix of a RF quadrupole with length less than or equal to 0.5βλ (β is the relativistic velocity of particles and λ is wavelength of radio frequency electromagnetic field) can describe the particle motion in an arbitrarily long RF quadrupole. By iterative integration, the general transform matrix of a discrete RF quadrupole is derived from the motion equation. The transform matrix is in form of a power series of focusing parameter B. It shows that for length less than βλ, the series up to the 2nd order of B agrees well with the direct integration results for B up to 30, while for length less than 0.5βλ, the series up to 1st order is already a good approximation of the real solution for B less than 30. The formula of the transform matrix can be integrated into linac or beam line design code to deal with the focusing of discrete RF quadrupoles. Supported by National Natural Science Foundation of China (11375122, 11511140277) and Strategic Priority Research Program of the Chinese Academy of Sciences (XDA03020705)

  2. A Tandem-electrostatic-quadrupole for accelerator-based BNCT

    International Nuclear Information System (INIS)

    Kreiner, A.J.; Kwan, J.W.; Burlon, A.A.; Di Paolo, H.; Henestroza, E.; Minsky, D.M.; Valda, A.A.; Debray, M.E.; Somacal, H.

    2007-01-01

    A project to develop a Tandem-electrostatic-quadrupole (TESQ) accelerator for accelerator-based boron neutron capture therapy (AB-BNCT) is described. A folded Tandem, with 1.25 MV terminal voltage, combined with an electrostatic quadrupole (ESQ) chain is being proposed. The project goal is a machine capable of delivering 30 mA of 2.5 MeV protons to be used in conjunction with a neutron production target based on the 7 Li(p, n) 7 Be reaction slightly beyond its resonance at 2.25 MeV. This machine is conceptually shown to be capable of accelerating a 30 mA proton beam to 2.5 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the 7 Li(p, n) 7 Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. This electrostatic machine is the technologically simplest and cheapest solution for optimized AB-BNCT

  3. Study of the maguemite-hematite transformation by magnetic resonance

    International Nuclear Information System (INIS)

    Portella, P.D.

    1979-08-01

    The conversion of γ-Fe 2 O 3 powders to α-Fe 2 O 3 has been studied with the magnetic resonance technique. The residual fraction of γ-Fe 2 O 3 was measured for several times and temperatures of isothermal treatments, in the range 450 0 C - 550 0 C. The transformation can be described by a first order Kinetic equation and the apparent activation energy is about 200 kJ/mol (48 kcal/mol). This value is independent of temperature and particle size. The experimental data suggest that the reaction is growth-controlled and nucleation occurs preferably at the particle surface. (Author) [pt

  4. Effect of dipole-quadrupole Robinson mode coupling upon the beam response to radio-frequency phase noise

    Directory of Open Access Journals (Sweden)

    R. A. Bosch

    2006-09-01

    Full Text Available In an electron storage ring, coupling between dipole and quadrupole Robinson oscillations modifies the spectrum of longitudinal beam oscillations driven by radio-frequency (rf generator phase noise. In addition to the main peak at the resonant frequency of the coupled dipole Robinson mode, another peak occurs at the resonant frequency of the coupled quadrupole mode. To describe these peaks analytically for a quadratic synchrotron potential, we include the dipole and quadrupole modes when calculating the beam response to generator noise. We thereby obtain the transfer function from generator-noise phase modulation to beam phase modulation with and without phase feedback. For Robinson-stable bunches confined in a synchrotron potential with a single minimum, the calculated transfer function agrees with measurements at the Aladdin 800-MeV electron storage ring. The transfer function is useful in evaluating phase feedback that suppresses Robinson oscillations in order to obtain quiet operation of an infrared beam line.

  5. Studies of nucleon resonance structure in exclusive meson electroproduction

    International Nuclear Information System (INIS)

    Aznauryan, I.G.; Bashir, A.; Braun, V.M.

    2013-01-01

    Studies of the structure of excited baryons are key factors to the N* program at Jefferson Lab (JLab). Within the first year of data taking with the Hall B CLAS12 detector following the 12 GeV upgrade, a dedicated experiment will aim to extract the N* electrocouplings at high photon virtualities Q 2 . This experiment will allow exploration of the structure of N* resonances at the highest photon virtualities ever achieved, with a kinematic reach up to Q 2 = 12 GeV 2 . This high-Q 2 reach will make it possible to probe the excited nucleon structures at distance scales ranging from where effective degrees of freedom, such as constituent quarks, are dominant through the transition to where nearly massless bare-quark degrees of freedom are relevant. In this document, we present a detailed description of the physics that can be addressed through N* structure studies in exclusive meson electroproduction. The discussion includes recent advances in reaction theory for extracting N* electrocouplings from meson electroproduction off protons, along with Quantum Chromodynamics (QCD)-based approaches to the theoretical interpretation of these fundamental quantities. This program will afford access to the dynamics of the nonperturbative strong interaction responsible for resonance formation, and will be crucial in understanding the nature of confinement and dynamical chiral symmetry breaking in baryons, and how excited nucleons emerge from QCD. (author)

  6. Simple expressions of the nuclear relaxation rate enhancement due to quadrupole nuclei in slowly tumbling molecules

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Pascal H., E-mail: pascal-h.fries@cea.fr [Université Grenoble Alpes, INAC-SCIB, RICC, F-38000 Grenoble (France); CEA, INAC-SCIB, RICC, F-38000 Grenoble (France); Belorizky, Elie [Université Grenoble Alpes, LIPHY, F-38000 Grenoble (France); CEA, Leti-Clinatec, F-38000 Grenoble (France)

    2015-07-28

    For slowly tumbling entities or quasi-rigid lattices, we derive very simple analytical expressions of the quadrupole relaxation enhancement (QRE) of the longitudinal relaxation rate R{sub 1} of nuclear spins I due to their intramolecular magnetic dipolar coupling with quadrupole nuclei of arbitrary spins S ≥ 1. These expressions are obtained by using the adiabatic approximation for evaluating the time evolution operator of the quantum states of the quadrupole nuclei S. They are valid when the gyromagnetic ratio of the spin S is much smaller than that of the spin I. The theory predicts quadrupole resonant peaks in the dispersion curve of R{sub 1} vs magnetic field. The number, positions, relative intensities, Lorentzian shapes, and widths of these peaks are explained in terms of the following properties: the magnitude of the quadrupole Hamiltonian and the asymmetry parameter of the electric field gradient (EFG) acting on the spin S, the S-I inter-spin orientation with respect to the EFG principal axes, the rotational correlation time of the entity carrying the S–I pair, and/or the proper relaxation time of the spin S. The theory is first applied to protein amide protons undergoing dipolar coupling with fast-relaxing quadrupole {sup 14}N nuclei and mediating the QRE to the observed bulk water protons. The theoretical QRE agrees well with its experimental counterpart for various systems such as bovine pancreatic trypsin inhibitor and cartilages. The anomalous behaviour of the relaxation rate of protons in synthetic aluminium silicate imogolite nano-tubes due to the QRE of {sup 27}Al (S = 5/2) nuclei is also explained.

  7. Tunable high-gradient permanent magnet quadrupoles

    CERN Document Server

    Shepherd, B J A; Marks, N; Collomb, N A; Stokes, D G; Modena, M; Struik, M; Bartalesi, A

    2014-01-01

    A novel type of highly tunable permanent magnet (PM) based quadrupole has been designed by the ZEPTO collaboration. A prototype of the design (ZEPTO-Q1), intended to match the specification for the CLIC Drive Beam Decelerator, was built and magnetically measured at Daresbury Laboratory and CERN. The prototype utilises two pairs of PMs which move in opposite directions along a single vertical axis to produce a quadrupole gradient variable between 15 and 60 T/m. The prototype meets CLIC's challenging specification in terms of the strength and tunability of the magnet.

  8. Initial value gravitational quadrupole radiation theorem

    International Nuclear Information System (INIS)

    Winicour, J.

    1987-01-01

    A rigorous version of the quadrupole radiation formula is derived using the characteristic initial value formulation of a general relativistic fluid space-time. Starting from initial data for a Newtonian fluid, an algorithm is presented that determines characteristic initial data for a one-parameter family of general relativistic fluid space-times. At the initial time, a one-parameter family of space-times with this initial data osculates the evolution of the Newtonian fluid and has leading order news function equal to the third time derivative of the transverse Newtonian quadrupole moment

  9. Review: Magnetic Resonance Spectroscopy Studies of Pediatric Major Depressive Disorder

    Directory of Open Access Journals (Sweden)

    Douglas G. Kondo

    2011-01-01

    Full Text Available Introduction. This paper focuses on the application of Magnetic Resonance Spectroscopy (MRS to the study of Major Depressive Disorder (MDD in children and adolescents. Method. A literature search using the National Institutes of Health's PubMed database was conducted to identify indexed peer-reviewed MRS studies in pediatric patients with MDD. Results. The literature search yielded 18 articles reporting original MRS data in pediatric MDD. Neurochemical alterations in Choline, Glutamate, and N-Acetyl Aspartate are associated with pediatric MDD, suggesting pathophysiologic continuity with adult MDD. Conclusions. The MRS literature in pediatric MDD is modest but growing. In studies that are methodologically comparable, the results have been consistent. Because it offers a noninvasive and repeatable measurement of relevant in vivo brain chemistry, MRS has the potential to provide insights into the pathophysiology of MDD as well as the mediators and moderators of treatment response.

  10. Partial volume effects in dynamic contrast magnetic resonance renal studies

    International Nuclear Information System (INIS)

    Gutierrez, D. Rodriguez; Wells, K.; Diaz Montesdeoca, O.; Moran Santana, A.; Mendichovszky, I.A.; Gordon, I.

    2010-01-01

    This is the first study of partial volume effect in quantifying renal function on dynamic contrast enhanced magnetic resonance imaging. Dynamic image data were acquired for a cohort of 10 healthy volunteers. Following respiratory motion correction, each voxel location was assigned a mixing vector representing the 'overspilling' contributions of each tissue due to the convolution action of the imaging system's point spread function. This was used to recover the true intensities associated with each constituent tissue. Thus, non-renal contributions from liver, spleen and other surrounding tissues could be eliminated from the observed time-intensity curves derived from a typical renal cortical region of interest. This analysis produced a change in the early slope of the renal curve, which subsequently resulted in an enhanced glomerular filtration rate estimate. This effect was consistently observed in a Rutland-Patlak analysis of the time-intensity data: the volunteer cohort produced a partial volume effect corrected mean enhancement of 36% in relative glomerular filtration rate with a mean improvement of 7% in r 2 fitting of the Rutland-Patlak model compared to the same analysis undertaken without partial volume effect correction. This analysis strongly supports the notion that dynamic contrast enhanced magnetic resonance imaging of kidneys is substantially affected by the partial volume effect, and that this is a significant obfuscating factor in subsequent glomerular filtration rate estimation.

  11. Partial volume effects in dynamic contrast magnetic resonance renal studies

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, D. Rodriguez, E-mail: drodriguez@biotronics3d.co [CVSSP, Faculty of Engineering and Physical Sciences, University of Surrey (United Kingdom); Wells, K., E-mail: k.wells@surrey.ac.u [CVSSP, Faculty of Engineering and Physical Sciences, University of Surrey (United Kingdom); Diaz Montesdeoca, O., E-mail: o.diaz.montesdeoca@gmail.co [EUITT, Universidad de Las Palmas de Gran Canaria (Spain); Moran Santana, A. [EUITT, Universidad de Las Palmas de Gran Canaria (Spain); Mendichovszky, I.A., E-mail: iosifm@hotmail.co [Radiology and Physics Unit, UCL Institute of Child Health, London WC1N 1EH (United Kingdom); Gordon, I., E-mail: i.gordon@ich.ucl.ac.u [Radiology and Physics Unit, UCL Institute of Child Health, London WC1N 1EH (United Kingdom)

    2010-08-15

    This is the first study of partial volume effect in quantifying renal function on dynamic contrast enhanced magnetic resonance imaging. Dynamic image data were acquired for a cohort of 10 healthy volunteers. Following respiratory motion correction, each voxel location was assigned a mixing vector representing the 'overspilling' contributions of each tissue due to the convolution action of the imaging system's point spread function. This was used to recover the true intensities associated with each constituent tissue. Thus, non-renal contributions from liver, spleen and other surrounding tissues could be eliminated from the observed time-intensity curves derived from a typical renal cortical region of interest. This analysis produced a change in the early slope of the renal curve, which subsequently resulted in an enhanced glomerular filtration rate estimate. This effect was consistently observed in a Rutland-Patlak analysis of the time-intensity data: the volunteer cohort produced a partial volume effect corrected mean enhancement of 36% in relative glomerular filtration rate with a mean improvement of 7% in r{sup 2} fitting of the Rutland-Patlak model compared to the same analysis undertaken without partial volume effect correction. This analysis strongly supports the notion that dynamic contrast enhanced magnetic resonance imaging of kidneys is substantially affected by the partial volume effect, and that this is a significant obfuscating factor in subsequent glomerular filtration rate estimation.

  12. Combining Fourier transform nuclear quadrupole resonance (FT-NQR) spectroscopy and mass spectrometry (MS) to study the electronic structure of titanocene dichlorides

    Czech Academy of Sciences Publication Activity Database

    Kubišta, Jiří; Civiš, Martin; Španěl, Patrik; Civiš, Svatopluk

    2012-01-01

    Roč. 137, č. 6 (2012), s. 1338-1342 ISSN 0003-2654 R&D Projects: GA ČR GP203/09/P276; GA MPO FR-TI1/130 Institutional support: RVO:61388955 Keywords : terminal alkynes * complexes * titanium Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.969, year: 2012

  13. Development of an Eccentric CAM Based Active Pre-Alignment System for the CLIC Main Beam Quadrupole Magnet

    CERN Document Server

    Lackner, F; Collette, C; Mainaud Durand, H; Hauviller, C; Kemppinen, J; Leuxe, R

    2010-01-01

    CLIC (Compact Linear Collider) is a study for a future electron-positron collider that would allow physicists to explore a new energy region beyond the capabilities of today's particle accelerators. The demanding transverse and vertical beam sizes and emittance specifications are resulting in stringent alignment and a nanometre stability requirement. In the current feasibility study, the main beam quadrupole magnets have to be actively pre-aligned with a precision of 1 µm in 5 degrees of freedom (d.o.f.) before being mechanically stabilized to the nm scale above 1 Hz. This contribution describes the approach of performing this active pre-alignment based on an eccentric cam system. In order to limit the amplification of the vibration sources at resonant frequencies a sufficiently high Eigenfrequency is required. Therefore the contact region between cam and support was optimized for adequate stiffness based on the Hertzian theory. Furthermore, practical tests performed on a single degree of freedom mock-up wil...

  14. Nuclear magnetic resonance studies of macroscopic morphology and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Barrall, Geoffrey Alden [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1995-09-01

    Nuclear magnetic resonance techniques are traditionally used to study molecular level structure and dynamics with a noted exception in medically applied NMR imaging (MRI). In this work, new experimental methods and theory are presented relevant to the study of macroscopic morphology and dynamics using NMR field gradient techniques and solid state two-dimensional exchange NMR. The goal in this work is not to take some particular system and study it in great detail, rather it is to show the utility of a number of new and novel techniques using ideal systems primarily as a proof of principle. By taking advantage of the analogy between NMR imaging and diffraction, one may simplify the experiments necessary for characterizing the statistical properties of the sample morphology. For a sample composed of many small features, e.g. a porous medium, the NMR diffraction techniques take advantage of both the narrow spatial range and spatial isotropy of the sample`s density autocorrelation function to obtain high resolution structural information in considerably less time than that required by conventional NMR imaging approaches. The time savings of the technique indicates that NMR diffraction is capable of finer spatial resolution than conventional NMR imaging techniques. Radio frequency NMR imaging with a coaxial resonator represents the first use of cylindrically symmetric field gradients in imaging. The apparatus as built has achieved resolution at the micron level for water samples, and has the potential to be very useful in the imaging of circularly symmetric systems. The study of displacement probability densities in flow through a random porous medium has revealed the presence of features related to the interconnectedness of the void volumes. The pulsed gradient techniques used have proven successful at measuring flow properties for time and length scales considerably shorter than those studied by more conventional techniques.

  15. Electron spin resonance intercomparison studies on irradiated foodstuffs

    International Nuclear Information System (INIS)

    Raffi, J.

    1992-01-01

    The results of intercomparison studies organized by the Community Bureau of Reference on the use of electron spin resonance spectroscopy for the identification of irradiated food are presented. A qualitative intercomparison was carried out using beef and trout bones, sardine scales, pistachio nut shells, dried grapes and papaya. A quantitative intercomparison involving the use of poultry bones was also organized. There was no difficulty in identifying meat bones, dried grapes and papaya. In the case of fish bones there is a need for further kinetic studies using different fish species. The identification of pistachio nut shells is more complicated and further research is needed prior to the organization of a further intercomparison. Laboratories were able to distinguish between chicken bones irradiated in the range 1 to 3 KGy or 7 to 10 KGy although there was a partial overlap between the results from different laboratories

  16. Nuclear Magnetic Resonance Study of Nanoscale Ionic Materials

    KAUST Repository

    Oommen, Joanna Mary

    2010-08-13

    Nanoscale ionic materials (NIMs) are a new class of nanomaterials that exhibit interesting properties including negligible vapor pressures and tunable physical states, among others. In this study, we analyzed the temperature-wise performance of NIMs using nuclear magnetic resonance (NMR) spectroscopy. NIMs are relatively stable over a temperature range from 300 to 383 K, rendering them usable in high temperature applications. We confirmed the presence of covalent bonds between the SiO2 core and the sulfonate group and determined relative concentrations of aromatic and aliphatic hydrocarbons. These findings serve as first hand proof-of-concept for the usefulness of NMR analyses in further studies on the diffusive properties of NIMs. © 2010 The Electrochemical Society.

  17. All systems go for LHC quadrupoles

    CERN Multimedia

    2003-01-01

    The series fabrication of the Main Quadrupole cold masses for the LHC has begun with the delivery of the first unit on February 12th. The superconducting dipole magnets required to bend the proton beams around the LHC are often in the news. Less famous, perhaps, but equally important are the 360 main quadrupole (MQ) magnets, which will perform the principal focusing around the 27 km ring. CERN and CEA-Saclay began collaborating on the development and prototyping of these magnets in 1989. This resulted in five highly successful quadrupole units - also known as short straight sections - one of which was integrated for testing in String 1, and two others of the final design in String 2. Once the tests had confirmed the validity of the design and realization, the fabrication of the 360 cold masses had to be transferred to industry. After highly competitive tendering, the German firm ACCEL Instruments was entrusted both with the construction of the quadrupole magnets themselves, and with their assembly into the co...

  18. Model of an LHC superconducting quadrupole magnet

    CERN Multimedia

    Laurent Guiraud

    2000-01-01

    Model of a superconducting quadrupole magnet for the LHC project. These magnets are used to focus the beam by squeezing it into a smaller cross-section, a similar effect to a lens focusing light. However, each magnet only focuses the beam in one direction so alternating magnet arrangements are required to produce a fully focused beam.

  19. AA, wide quadrupole on measurement stand

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    Please look up 8101024 and 8103203 first. Wide quadrupole (QFW, QDW) with end-shims and shimming washers on the measurement stand. With the measurement coil one measured the harmonics of the magnetic field, determined the magnetic centre, and catalogued the effect of washer constellations.

  20. General quadrupole nuclear shapes. An algebraic perspective

    Energy Technology Data Exchange (ETDEWEB)

    Leviatan, A. (Los Alamos National Lab. (LANL), NM (USA). Theoretical Div.); Shao Bin (Yale Univ., New Haven, CT (USA). Sloane Physics Lab.)

    1990-07-05

    Spherical, axial and non-axial quadrupole shapes are investigated within the algebraic interacting boson model. For each shape the hamiltonian is resolved into intrinsic and collective parts, normal modes are identified and intrinsic states are constructed. Special emphasis is paid to new features (e.g. rigid triaxiality and coexisting deformed shapes) that emerge in the presence of three-body interactions. (orig.).

  1. General quadrupole nuclear shapes. An algebraic perspective

    International Nuclear Information System (INIS)

    Leviatan, A.; Shao Bin

    1990-01-01

    Spherical, axial and non-axial quadrupole shapes are investigated within the algebraic interacting boson model. For each shape the hamiltonian is resolved into intrinsic and collective parts, normal modes are identified and intrinsic states are constructed. Special emphasis is paid to new features (e.g. rigid triaxiality and coexisting deformed shapes) that emerge in the presence of three-body interactions. (orig.)

  2. Working Point and Resonance Studies at the CERN PS

    CERN Document Server

    Huschauer, A; Damerau, H; Freyermuth, P; Gilardoni, S S; Steerenberg, R; Vandorpe, B

    2013-01-01

    The increase of luminosity demanded by the High Luminosity LHC (HL-LHC) requires an increase of beam intensity, which might result in instabilities appearing at injection energy in the CERN PS. Transverse head-tail instabilities have already been observed on operational LHC beams and a stabilizing mechanism as an alternative to linear coupling is currently being studied. It consists of reducing the mode number of the transverse oscillation by changing linear chromaticity and in succession completely suppressing the instability by a transverse damper system with appropriate bandwidth. Therefore, a chromaticity correction scheme at low energy exploiting the intrinsic possibilities offered by special circuits mounted on top of the main magnet poles, the Pole Face Windings (PFW), has been examined. The presence of destructive betatron resonances, which restrict the choice of the injection working point and the maximum acceptable tune spread, forms an additional limitation for high-brightness and high-intensity be...

  3. Grey matter abnormalities in trichotillomania: morphometric magnetic resonance imaging study.

    Science.gov (United States)

    Chamberlain, Samuel R; Menzies, Lara A; Fineberg, Naomi A; Del Campo, Natalia; Suckling, John; Craig, Kevin; Müller, Ulrich; Robbins, Trevor W; Bullmore, Edward T; Sahakian, Barbara J

    2008-09-01

    Trichotillomania (repetitive hair-pulling) is an Axis I psychiatric disorder whose neurobiological basis is incompletely understood. Whole-brain trichotillomania neuroimaging studies are lacking. To investigate grey and white matter abnormalities over the whole brain in patients with trichotillomania. Eighteen patients with DSM-IV trichotillomania and 19 healthy controls undertook structural magnetic resonance imaging after providing written informed consent. Differences in grey and white matter were investigated using computational morphometry. Patients with trichotillomania showed increased grey matter densities in the left striatum, left amygdalo-hippocampal formation, and multiple (including cingulate, supplementary motor, and frontal) cortical regions bilaterally. Trichotillomania was associated with structural grey matter changes in neural circuitry implicated in habit learning, cognition and affect regulation. These findings inform animal models of the disorder and highlight key regions of interest for future translational research.

  4. Cavum septum pellucidum in schizophrenia. A magnetic resonance imaging study

    International Nuclear Information System (INIS)

    Fukuzako, Tsuyoshi; Fukuzako, Hiroshi; Kodama, Satoshi; Hashiguchi, Tomo; Takigawa, Morikuni

    1996-01-01

    In order to determine if cavum septum pellucidum (CSP) is more prevalent in schizophrenic patients, we studied 72 Japanese patients who fulfilled the DSM-III-R criteria for schizophrenia and 41 normal controls. Sagittal, 1 mm thick magnetic resonance imaging slices of the entire cranium were obtained using a gradient-echo pulse sequence, and coronal and axial images were reconstructed for assessment. A CSP was observed in 34 patients (47.2%) and in 16 controls (38.0%). Although the CSP appeared to be more prevalent in schizophrenic patients, this difference was not statistically significant. However, schizophrenic patients with a history of long-term institutionalization had a higher incidence of CSP compared with patients who had not been admitted to hospital for more than 3 years (68.2 vs 38.0%). These results suggest that the CSP may be a pathophysiology that characterizes schizophrenic patients with poor prognoses. (author)

  5. Magnetic resonance imaging in schizophrenia: a morphometric study

    International Nuclear Information System (INIS)

    Castro, Claudio Campi de

    2001-01-01

    Thirty-three patients with chronic schizophrenia and 21 normal subjects were submitted to magnetic resonance imaging studies using a 1.5 T scanner. Axial and coronal T 2-weighted images were obtained. The volumes of the brain, intracranial, supratentorial, infratentorial and the total, ventricular and subarachnoid cerebrospinal fluid volumes were measured using semi-automated morphometric methods. The volumes of the amygdala-hippocampus complex, para hippocampal gyrus cortex, putamen, globus pallidus, temporal lobe, gray and white matter of temporal lobe were also measured. These volumes were normalized using the intracranial volume as reference. The most relevant findings observed were reduced brain volume and increased total, ventricular and subarachnoid cerebrospinal fluid volumes in patients with schizophrenia when compared to the controls. Patients with schizophrenia had also smaller amygdala-hippocampus complexes, temporal lobes and temporal lobe white matter than the controls, as well as increased putamen volumes. (author)

  6. Structural and conformational study of polysaccharides by nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Bossennec, Veronique

    1989-01-01

    As some natural polysaccharides are involved in important biological processes, the use of nuclear magnetic resonance appears to be an adapted mean to determine their structure-activity relationship and is therefore the object of this research thesis. By using bi-dimensional proton-based NMR techniques, it is possible to identify minority saccharide units, to determine their conformation, and to identify units which they are bound to. The author reports the application of these methods to swine mucosa heparin, and to heparins displaying a high and low anticoagulant activity. The dermatan sulphate has also been studied, and the NMR analysis allowed some polymer structure irregularities to be identified. A molecular modelling of dermatan sulphate has been performed [fr

  7. Magnetic resonance studies of atomic hydrogen gas at low temperatures

    International Nuclear Information System (INIS)

    Hardy, W.N.; Morrow, M.; Jochemsen, R.; Statt, B.W.; Kubik, P.R.; Marsolais, R.M.; Berlinsky, A.J.; Landesman, A.

    1980-01-01

    Using a pulsed low temperature discharge in a closed cell containing H 2 and 4 He, we have been able to store a low density (approximately 10 12 atoms/cc) gas of atomic hydrogen for periods of order one hour in zero magnetic field and T=1 K. Pulsed magnetic resonance at the 1420 MHz hyperfine transition has been used to study a number of the properties of the gas, including the recombination rate H + H + 4 He→H 2 + 4 He, the hydrogen spin-exchange relaxation rates, the diffusion coefficient of H in 4 He gas and the pressure shift of the hyperfine frequency due to the 4 He buffer gas. Here we discuss the application of hyperfine frequency shifts as a probe of the H-He potential, and as a means for determining the binding energy of H on liquid helium

  8. The role of the Mg 2+ cation in ATPsynthase studied by electron paramagnetic resonance using VO 2+ and Mn 2+ paramagnetic probes

    Science.gov (United States)

    Zimmermann, Jean-Luc; Schneider, Benoı̂t; Morlet, Sylvain; Amano, Toyoki; Sigalat, Claude

    2000-02-01

    The electron paramagnetic resonance (EPR), electron spin echo envelope modulation (ESEEM) and hyperfine sublevel correlation (HYSCORE) spectra of Mg 2+-depleted chloroplast F1-ATPase substituted with stoichiometric VO 2+ are reported. The ESEEM and HYSCORE spectra of the complex are dominated by the hyperfine and quadrupole interactions between the VO 2+ paramagnet and two different nitrogen ligands with isotropic hyperfine couplings | A1|=4.11 MHz and | A2|=6.46 MHz and nuclear quadrupole couplings e2q Q1≈3.89-4.49 MHz and e2q Q2≈1.91-2.20 MHz, respectively. Aminoacid functional groups compatible with these magnetic couplings include a histidine imidazole, the ɛ-NH 2 of a lysine residue, and the guanidinium group of an arginine. Consistent with this interpretation, very characteristic correlations are detected in the HYSCORE spectra between the 14N Δ MI=2 transitions in the negative quadrant, and also between some of the Δ MI=1 transitions in the positive quadrant. The interaction of the substrate and product ADP and ATP nucleotides with the enzyme has been studied in protein complexes where Mg 2+ is substituted for Mn 2+. Stoichiometric complexes of Mn·ADP and Mn·ATP with the whole enzyme show distinct and specific hyperfine couplings with the 31P atoms of the bonding phosphates in the HYSCORE (ADP, A( 31P β)=5.20 MHz; ATP, A( 31P β)=4.60 MHz and A( 31P γ)=5.90 MHz) demonstrating the role of the enzyme active site in positioning the di- or triphosphate chain of the nucleotide for efficient catalysis. When the complexes are formed with the isolated α or β subunits of the enzyme, the HYSCORE spectra are substantially modified, suggesting that in these cases the nucleotide binding site is only partially structured.

  9. Lithium adduct as precursor ion for sensitive and rapid quantification of 20 (S)-protopanaxadiol in rat plasma by liquid chromatography/quadrupole linear ion trap mass spectrometry and application to rat pharmacokinetic study.

    Science.gov (United States)

    Bao, Yuanwu; Wang, Quanying; Tang, Pingming

    2013-03-01

    A novel, rapid and sensitive liquid chromatography/quadrupole linear ion trap mass spectrometry [LC-ESI-(QqLIT)MS/MS] method was developed and validated for the quantification of protopanaxadiol (PPD) in rat plasma. Oleanolic acid (OA) was used as internal standard (IS). A simple protein precipitation based on acetonitrile (ACN) was employed. Chromatographic separation was performed on a Sepax GP-C18 column (50 × 2.1 mm, 5 μM) with a mobile phase consisting of ACN-water and 1.5 μM formic acid and 25 mM lithium acetate (90 : 10, v/v) at a flow rate of 0.4 ml/min for 3.0 min. Multiple-reaction-monitoring mode was performed using lithium adduct ion as precursor ion of m/z 467.5/449.4 and 455.6/407.4 for the drug and IS, respectively. Calibration curve was recovered over a concentration range of 0.5-100 ng/ml with a correlation coefficient >0.99. The limit of detection was 0.2 ng/ml in rat plasma for PPD. The results of the intraday and interday precision and accuracy studies were well within the acceptable limits. The validated method was successfully applied to investigate the pharmacokinetic study of PPD after intravenous and gavage administration to rat. Copyright © 2013 John Wiley & Sons, Ltd.

  10. Determination of the sign of the deuteron quadrupole coupling constant in the high temperature limit

    Science.gov (United States)

    Gosling, P.; Brett, C. R.; Rabbani, S. R.

    1987-05-01

    Normally it is impossible to determine the sign of the quadrupole coupling constant in the high temperature limit. However if two nuclei are coupled via the magnetic dipole interaction the characteristic spectra may be modified in such a way that the sign can be determined. This paper discusses the circumstances which are needed to be satisfied by the Hamiltonian describing the form of the interaction between two deuterons and proceeds to describe the features of the deuteron nuclear quadrupole double resonance (NQDR) spectrum which enable the sign to be determined. Comparison with experimental spectra from the crystal hydrates BeSO 4·4H 2O, CH 3COOLi·2H 2O, LiI·3H 2O, LiBr·2H 2O and AlCl 3·6H 2O and the amine groups in adenosine reveals the sign of the quadrupole coupling constant for the first time in the solid state. It is found that the quadrupole coupling constant may be positive or negative depending on the environment of the deuteron sites.

  11. Near-Surface Structural Phase Transition of SrTiO3 Studied with Zero-Field β-Detected Nuclear Spin Relaxation and Resonance

    Science.gov (United States)

    Salman, Z.; Kiefl, R. F.; Chow, K. H.; Hossain, M. D.; Keeler, T. A.; Kreitzman, S. R.; Levy, C. D. P.; Miller, R. I.; Parolin, T. J.; Pearson, M. R.; Saadaoui, H.; Schultz, J. D.; Smadella, M.; Wang, D.; Macfarlane, W. A.

    2006-04-01

    We demonstrate that zero-field β-detected nuclear quadrupole resonance and spin relaxation of low energy Li8 can be used as a sensitive local probe of structural phase transitions near a surface. We find that the transition near the surface of a SrTiO3 single crystal occurs at Tc˜150K, i.e., ˜45K higher than Tcbulk, and that the tetragonal domains formed below Tc are randomly oriented.

  12. A semiclassical study of optical potentials - potential resonances -

    International Nuclear Information System (INIS)

    Lee, S.Y.; Takigawa, N.; Marty, C.

    1977-01-01

    A semiclassical method is used to analyze resonances produced by complex potentials. The absorption plays a central role: when it is not too great, resonances manifest themselves by enhancement of cross sections near π. The reverse is not necessarily true, for instance the anomalous large angle scattering for α-Ca is due to a coherent superposition of many partial waves

  13. Chemical analysis of surfaces by resonance ionization mass spectroscopy associated to ionic pulverization

    International Nuclear Information System (INIS)

    Kern, P.

    1995-01-01

    This work shows that if resonance ionization mass spectroscopy was first applied in isotopic separation, it's also an analyzing method adapted to the study of semi-conductor materials and thin foils. We have improved this technic: a neodymium laser coupled with a dye laser, a new argon ions gun, a gallium ions gun and a new collection optic for the secondary ions quadrupole spectrometer to allow quantitative and selective measurements. (S.G.). 84 refs

  14. Synchro-betatron resonance excitation in LEP

    International Nuclear Information System (INIS)

    Myers, S.

    1987-01-01

    The excitation of synchrotro-betatron resonances due to spurious dispersion and induced transverse deflecting fields at the RF cavities has been simulated for the LEP storage ring. These simulations have been performed for various possible modes of operation. In particular, a scenario has been studied in which LEP is operated at the maximum possible value of the synchrotron tune throughout the acceleration cycle, in an attempt to maximise the threshold intensity at which the Transverse Mode Coupling Instability (TMCI) occurs. This mode of operation necessitates the crossing of synchro-betatron resonances at some points in the acceleration cycle if low order non-linear machine resonances are to be avoided. Simulations have been performed in which the machine tune is swept across these synchro-betratron resonances at a rate given by the bandwidth of the magnet plus power supply circuits of the main quadrupole chain. The effect of longitudinal and transverse wake-fields on the excitation of these resonances has been investigated. These studies indicate that the distortion of the RF potential well caused by the longitudinal wake fields increases the non-linear content of the synchrotron motion and consequently increases significantly the excitation of the higher order synchro-betatron resonances

  15. Study of lone working magnetic resonance technologists in Western Australia

    Directory of Open Access Journals (Sweden)

    Tracy Anne Dewland

    2013-12-01

    Full Text Available Objectives: It is recommended that magnetic resonance (MR technologists should not work alone due to potential occupational health risks although lone working is legally acceptable. The objective of this study was to investigate the current situation of lone working MR technologists in Western Australia (WA and any issue against the regulations. Materials and Methods: A questionnaire regarding the issues of occupational health of lone working MR technologists was developed based on relevant literature and distributed to WA MR technologists. Descriptive (percentage of frequency, mean and standard deviation and inferential statistics (Fisher's exact, Chi2 and t tests, and analysis of variance were used to analyze the responses of the yes/no, multiple choice and 5 pt scale questions from the returned questionnaires. Results: The questionnaire response rate was 65.6% (59/90. It was found that about half of the MR technologists (45.8%, 27/59 experienced lone working. The private magnetic resonance imaging (MRI centers were more likely to arrange technologists to work alone (p < 0.05. The respondents expressed positive views on issues of adequacy of training and arrangement, confidence and comfort towards lone working except immediate assistance for emergency (mean: 3. Factors of existence of MRI safety officer (p < 0.05 and nature of lone working (p < 0.001-0.05 affected MR technologists' concerns. Conclusions: Lone working of MR technologists is common in WA especially in private centers. The training and arrangement provided seem to be adequate for meeting the legal requirements. However, several areas should be improved by the workplaces including enhancement on immediate emergency assistance and concern relief.

  16. Brain Magnetic Resonance Elastography on Healthy Volunteers: A Safety Study

    International Nuclear Information System (INIS)

    Guang-Rui Liu; Pei-Yi Gao; Yan Lin; Jing Xue; Xiao-Chun Wang; Bin-Bin Sui; Li Ma; Zhi-Nong Xi; Qin Bai; Hao Shen

    2009-01-01

    Background: Magnetic resonance elastography (MRE) is a recently developed imaging technique that can directly visualize and quantitatively measure tissue elasticity. Purpose: To evaluate the safety of brain MRE on human subjects. Material and Methods: The study included 20 healthy volunteers. MRE sequence scan (drive signal not applied to external force actuator) and MRE study were separately performed on each volunteer at an interval of more than 24 hours. The heart rate and blood pressure of each volunteer were measured immediately before and after MRE sequence scan and MRE study. Electroencephalography (EEG) was also performed within 2 hours after each scan. The volunteers were asked about their experience of the two scans. Randomized-block analysis of variance (ANOVA) was used to analyze the data of blood pressure and heart rate. Paired t test was used to analyze the data of the two EEG examinations. The volunteers were followed up 1 week after the examination. Results: All procedures were performed on each volunteer, and no one complained of obvious discomfort. No related adverse events were reported during follow-up. There was no statistically significant difference in heart rate or blood pressure. There was a statistically significant difference (P<0.05) in EEG results in the right temporoparietal region. Increased power was found in the theta, delta, alpha, and beta2 bands. No brain injury was detected by the EEG examinations. Conclusion: Based on the study results, brain MRE examinations are safe to perform on human subjects

  17. Metal and Metal Alloy Hydride Nuclear Acoustic Resonance and Nuclear Magnetic Resonance.

    Science.gov (United States)

    Hudson, Rebecca Scholz

    Effects of interstitial hydrogen on the quadrupole coupled nuclear acoustic resonance (NAR) and the (skin depth) nuclear magnetic resonance (NMR) line shapes and magnetic field positions of ('51)V and ('93)Nb were studied at 300K and 1 tesla in annealed single crystals of the transition metal alloys Nb(,.96)V(,.04)H(,x) (x (LESSTHEQ) .07), V(,.96)Nb(,.04)H(,x) (x (LESSTHEQ) .04), Ta(,.96)Nb(,.07)H(,x) (x (LESSTHEQ) .20) and Ta(,.68)Nb.04H(,x) (x (LESSTHEQ) .23), with the hydrogen in the gaseous (alpha) phase. This work was undertaken to further the understanding of the role of hydrogen in alloys. Static quadrupole effects dominate the line widths, with the ('51)V NMR in the NbV alloys exhibiting first order broadening, the ('93)Nb NMR line width broadened in second order in Nb(,.96)V(,.04),Ta(,.68)Nb(,.32) and Ta(,.93)Nb(,.07), and the ('93)Nb NAR in Nb(,.96)V(,.04) broadened more than an order of magnitude over the pure niobium NAR. No ('181)Ta NAR was observed, due to severe quadrupole effects coupled with its large quadrupole moment. As hydrogen is absorbed by Nb(,.96)V(,.04), the ('93)Nb NMR and NAR line widths narrow and the ('51)V Knight shift increases, in accord with a previous study which proposes the vanadium atoms trap hydrogen in their nearest neighboring tetrahedral sites. This is compatible with the increase seen in the ('51)V line width, thought to arise from the sharing of trapped hydrogen by neighboring vanadium atoms. The absorption of hydrogen by V(,.96)Nb(,.04) initially relieves the quadrupole broadening of ('51)V NMR but finally broadens the line width, while causing the ('51)V Knight shift to increase. This is consistent with a model in which hydrogen avoids sites near the Nb atoms. The absorption of hydrogen narrows the ('93)Nb line width in Ta(,93)Nb(,.07) but appears to have no effect on it in Ta(,.68)Nb(,.32), while the ('93)Nb Knight shift is increased slightly in both alloys. Also, the first measurement of the dipole coupled NAR of ('25

  18. Multiple sclerosis and anterograde axonal degeneration study by magnetic resonance

    International Nuclear Information System (INIS)

    Martinez Pardo, P.; Capdevila Cirera, A.; Sanz Marin, P.M.; Gili Planas, J.

    1993-01-01

    Multiple sclerosis (MS) is a disease of the central nervous system that affects specifically the myelin. Its diagnosis by imaging techniques is, since the development of magnetic resonance (MR), relatively simple, and its occasional association with anterograde axonal degeneration (WD) has been reported. In both disorders, there is a lengthening of the T1 and T2 relaxation times. In the present report, 76 patients with MS with less than 4 plaques in the typical periventricular position were studied retrospectively, resulting in a rate of association with anterograde axonal degeneration of 8%. We consider that in spite of their same behavior in MR,MS and WD, with moreover represent completely different pathologies, are perfectly differential by MR. The S-E images with longer repetition and echo times in the axial and coronal planes have proved to be those most sensitive for this differentiation. Given that MS is specific pathology of then myelin, the axonal damages in delayed until several plaques adjacent to an axon affect it. We consider that this, added to the restriction of our study group (less than 4 plaques), is the cause of the pow percentage of the MS-WD association in our study. (Author)

  19. Friction of polymer hydrogels studied by resonance shear measurements.

    Science.gov (United States)

    Ren, Huai-Yin; Mizukami, Masashi; Tanabe, Tadao; Furukawa, Hidemitsu; Kurihara, Kazue

    2015-08-21

    The friction between an elastomer and a hard surface typically has two contributors, i.e., the interfacial and deformation components. The friction of viscoelastic hydrogel materials has been extensively studied between planar gel and planar substrate surfaces from the viewpoint of an interfacial interaction. However, the geometry of the contact in practical applications is much more complex. The contribution of geometric and elastic deformation terms of a gel to friction could not be neglected. In this study, we used resonance shear measurements (RSMs) for characterizing the shear response of a glass sphere on a flat polymer hydrogel, a double network (DN) gel of 2-acrylamide-2-methylpropanesulfonic acid and N,N-dimethylacrylamide. The contact mechanics conformed to the Johnson-Kendall-Roberts theory. The observed resonance curves exhibited rather sharp peaks when the DN gel and the silica sphere were brought into contact, and their intensity and frequency increased with the increase in the normal load. We proposed a simple physical model of the shearing system, and the elastic (k2) and viscous (b2) parameters of the interface between a silica sphere and a flat DN gel were obtained. The friction force from elastic deformation and viscous dissipation terms was then estimated using the obtained parameters. It was revealed that the elastic parameter (k2) increased up to 1780 N m(-1) at a normal load of 524 mN, while the viscous parameter (b2) was zero or quite low (friction force between a flat DN gel and a silica sphere in air was dominated by the elastic term due to the local deformation by contact with the silica sphere. By adding water, the elastic parameter (k2) remained the same, while the viscous parameter (b2) slightly increased. However, the viscous term fviscous was still much smaller than felastic. To the best of our knowledge, this study was the first quantitative estimation of the contribution of the elastic deformation term to the friction in the case

  20. Electron paramagnetic resonance study of ternary Cu compounds ...

    Indian Academy of Sciences (India)

    , Argentina e-mail: santana@ufg.br. MS received 14 August 2013; revised 31 October 2013; accepted 5 November 2013. Abstract. We report here electron paramagnetic resonance (EPR) measurements at 9 and 34 GHz, and room temperature ...

  1. Magnetic Resonance Studies of Photosensitizers and Their Effect in Tumors

    Science.gov (United States)

    2003-08-01

    used increasingly to monitor metabolism and disease states in humans. Both magnetic resonance imaging and spectroscopy have evolved into sophisticated... disease states in humans. Both magnetic resonance imaging and spectroscopy have evolved into sophisticated diagnostic techniques. In addition to the...Antispermatogenic effect and chemical R.S.Gupta Pharmaceutical Biol. 2002 investigation of Opuntia dillenii A.Sharma 40,411-415 M.P. Dobhal 42 A

  2. Preliminary proposal of a Nb{sub 3}Sn quadrupole model for the low {beta} insertions of the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio, G.; Ametrano, F.; Bellomo, G.; Broggi, F.; Rossi, L.; Volpini, G. [Milan Univ. (Italy). Dip. di Fisica]|[INFN, Sezione di Milano (Italy). Laboratorio Acceleratori e Superconduttivita` Applicata

    1995-09-01

    In recent years Nb{sub 3}Sn based conductors have shown wide applicability for superconducting magnets in many research areas like high field solenoids for laboratory experiment, for NMR spectroscopy and high field magnets for fusion. Nb{sub 3}Sn technology is progressing fast, increasing both technical reliability and availability. The Nb{sub 3}Sn technology, which has a higher critical field than NbTi, seems attractive for IR (Insertion Region) quadrupoles of large colliders . In this paper it is proposed the construction of a superconducting quadrupole wound with Nb{sub 3}Sn cable for a second generation IR inner triplet low {beta} quadrupoles, for the Large Hadron Collider at CERN. The low {beta} quadrupoles, control the beam focusing at collision points, therefore a gain in term of focus strength and/or coil aperture can increase significantly machine performance. Two are the main steps for the whole project: (1) design and construction of a 1 metre long quadrupole to demonstrate the actual feasibility, which is the subject of this proposal; (2) study for integration of the quadrupole in the machine and final design of 5 m long quadrupoles finalized to the LHC.

  3. Preliminary proposal of a Nb3Sn quadrupole model for the low β insertions of the LHC

    International Nuclear Information System (INIS)

    Ambrosio, G.; Ametrano, F.; Bellomo, G.; Broggi, F.; Rossi, L.; Volpini, G.

    1995-09-01

    In recent years Nb 3 Sn based conductors have shown wide applicability for superconducting magnets in many research areas like high field solenoids for laboratory experiment, for NMR spectroscopy and high field magnets for fusion. Nb 3 Sn technology is progressing fast, increasing both technical reliability and availability. The Nb 3 Sn technology, which has a higher critical field than NbTi, seems attractive for IR (Insertion Region) quadrupoles of large colliders . In this paper it is proposed the construction of a superconducting quadrupole wound with Nb 3 Sn cable for a second generation IR inner triplet low β quadrupoles, for the Large Hadron Collider at CERN. The low β quadrupoles, control the beam focusing at collision points, therefore a gain in term of focus strength and/or coil aperture can increase significantly machine performance. Two are the main steps for the whole project: 1) design and construction of a 1 metre long quadrupole to demonstrate the actual feasibility, which is the subject of this proposal; 2) study for integration of the quadrupole in the machine and final design of 5 m long quadrupoles finalized to the LHC

  4. Electron spin resonance study of radicals in irradiated polyethylene

    International Nuclear Information System (INIS)

    Fujimura, Takashi

    1979-02-01

    In order to elucidate radiation effect in polyethylene, the nature and behavior of radicals produced in polyethylene and the model compound of polyethylene irradiated at 77 0 K were studied by using electron spin resonance. The structure of radical pairs, which are composed of two radicals produced very closely each other, was investigated in drawn polyethylene and the single crystal of n-eicosane. The radical pairs of intrachain type and interchain type were found in polyethylene and n-eicosane respectively. It was suggested that these two types of radical pairs are the precursors of double bonds and crosslinks respectively. The thermal decay reactions of radicals themselves produced in irradiated polyethylene were investigated. It was made clear that the short range distances between two radicals play an important role in the decay reaction of alkyl radicals at low temperatures. The trapping regions of radicals were studied and it was clarified that allyl radicals, which are produced by the reaction of alkyl radicals with double bonds, are trapped both in the crystalline and non-crystalline regions. (author)

  5. The amygdala in schizophrenia: a trimodal magnetic resonance imaging study.

    Science.gov (United States)

    Kalus, Peter; Slotboom, Johannes; Gallinat, Jürgen; Wiest, Roland; Ozdoba, Christoph; Federspiel, Andrea; Strik, Werner K; Buri, Caroline; Schroth, Gerhard; Kiefer, Claus

    2005-03-03

    In schizophrenic psychoses, structural and functional alterations of the amygdala have been demonstrated by several neuroimaging studies. However, postmortem examinations on the brains of schizophrenics did not confirm the volume changes reported by volumetric magnetic resonance imaging (MRI) studies. In order to address these contradictory findings and to further elucidate the possibly underlying pathophysiological process of the amygdala, we employed a trimodal MRI design including high-resolution volumetry, diffusion tensor imaging (DTI), and quantitative magnetization transfer imaging (qMTI) in a sample of 14 schizophrenic patients and 14 matched controls. Three-dimensional MRI volumetry revealed a significant reduction of amygdala raw volumes in the patient group, while amygdala volumes normalized for intracranial volume did not differ between the two groups. The regional diffusional anisotropy of the amygdala, expressed as inter-voxel coherence (COH), showed a marked and significant reduction in schizophrenics. Assessment of qMTI parameters yielded significant group differences for the T2 time of the bound proton pool and the T1 time of the free proton pool, while the semi-quantitative magnetization transfer ratio (MTR) did not differ between the groups. The application of multimodal MRI protocols is diagnostically relevant for the differentiation between schizophrenic patients and controls and provides a new strategy for the detection and characterization of subtle structural alterations in defined regions of the living brain.

  6. Study of a possible S=+1 dynamically generated baryonic resonance

    International Nuclear Information System (INIS)

    Sarkar, S.; Oset, E.; Vaca, M.J.V.

    2005-01-01

    Starting from the lowest-order chiral Lagrangian for the interaction of the baryon decuplet with the octet of pseudoscalar mesons we find an attractive interaction in the ΔK channel with L=0 and I=1, while the interaction is repulsive for I=2. The attractive interaction leads to a pole in the second Riemann sheet of the complex plane and manifests itself in a large strength of the K scattering amplitude close to the ΔK threshold, which is not the case for I=2. However, we also make a study of uncertainties in the model and conclude that the existence of this pole depends sensitively upon the input used and can disappear within reasonable variations of the input parameters. We take advantage to study the stability of the other poles obtained for the 3/2 - dynamically generated resonances of the model and conclude that they are stable and not contingent to reasonable changes in the input of the theory

  7. First national meeting of magnetic resonance and hyperfine interactions

    International Nuclear Information System (INIS)

    1985-07-01

    Works performed at CNEA's: Magnetic Resonance Division; Moessbauer Spectroscopy; Solid State Physics Division; Nuclear magnetic Resonance Laboratory and Theoretical Physics Group; Mossbauer Spectroscopy Group; Nuclear Quadrupole Resonance; Physics and Materials Group; Perturbed Angular Correlation and Moessbauer Spectroscopy and Physics Department. (M.E.L.) [es

  8. Hydrogen isotope analysis by quadrupole mass spectrometry

    International Nuclear Information System (INIS)

    Ellefson, R.E.; Moddeman, W.E.; Dylla, H.F.

    1981-03-01

    The analysis of isotopes of hydrogen (H, D, T) and helium ( 3 He, 4 He) and selected impurities using a quadrupole mass spectrometer (QMS) has been investigated as a method of measuring the purity of tritium gas for injection into the Tokamak Fusion Test Reactor (TFTR). A QMS was used at low resolution, m/Δm 3 He, and 4 He in HT/D 2

  9. Superconducting quadrupoles for the SLC final focus

    International Nuclear Information System (INIS)

    Erickson, R.; Fieguth, T.; Murray, J.J.

    1987-01-01

    The final focus system of the SLC will be upgraded by replacing the final quadrupoles with higher gradient superconducting magnets positioned closer to the interaction point. The parameters of the new system have been chosen to be compatible with the experimental detectors with a minimum of changes to other final focus components. These parameter choices are discussed along with the expected improvement in SLC performance

  10. A Study of Standing Pressure Waves Within Open and Closed Acoustic Resonators

    Science.gov (United States)

    Daniels, C.; Steinetz, B.; Finkbeiner, J.; Raman, G.; Li, X.

    2002-01-01

    The first section of the results presented herein was conducted on an axisymmetric resonator configured with open ventilation ports on either end of the resonator, but otherwise closed and free from obstruction. The remaining section presents the results of a similar resonator shape that was closed, but contained an axisymmetric blockage centrally located through the axis of the resonator. Ambient air was used as the working fluid. In each of the studies, the resonator was oscillated at the resonant frequency of the fluid contained within the cavity while the dynamic pressure, static pressure, and temperature of the fluid were recorded at both ends of the resonator. The baseline results showed a marked reduction in the amplitude of the dynamic pressure waveforms over previous studies due to the use of air instead of refrigerant as the working fluid. A sharp reduction in the amplitude of the acoustic pressure waves was expected and recorded when the configuration of the resonators was modified from closed to open. A change in the resonant frequency was recorded when blockages of differing geometries were used in the closed resonator, while acoustic pressure amplitudes varied little from baseline measurements.

  11. Optimized Superconducting Quadrupole Arrays for Multiple Beam Transport

    Energy Technology Data Exchange (ETDEWEB)

    Meinke, Rainer B. [Advanced Magnet Lab, Inc., Melbourne, FL (United States); Goodzeit, Carl L. [Advanced Magnet Lab, Inc., Melbourne, FL (United States); Ball, Millicent J. [Advanced Magnet Lab, Inc., Melbourne, FL (United States)

    2005-09-20

    This research project advanced the development of reliable, cost-effective arrays of superconducting quadrupole magnets for use in multi-beam inertial fusion accelerators. The field in each array cell must be identical and meet stringent requirements for field quality and strength. An optimized compact array design using flat double-layer pancake coils was developed. Analytical studies of edge termination methods showed that it is feasible to meet the requirements for field uniformity in all cells and elimination of stray external field in several ways: active methods that involve placement of field compensating coils on the periphery of the array or a passive method that involves use of iron shielding.

  12. Novel nuclear magnetic resonance techniques for studying biological molecules

    International Nuclear Information System (INIS)

    Laws, David D.

    2000-01-01

    Over the fifty-five year history of Nuclear Magnetic Resonance (NMR), considerable progress has been made in the development of techniques for studying the structure, function, and dynamics of biological molecules. The majority of this research has involved the development of multi-dimensional NMR experiments for studying molecules in solution, although in recent years a number of groups have begun to explore NMR methods for studying biological systems in the solid-state. Despite this new effort, a need still exists for the development of techniques that improve sensitivity, maximize information, and take advantage of all the NMR interactions available in biological molecules. In this dissertation, a variety of novel NMR techniques for studying biomolecules are discussed. A method for determining backbone (φ/ψ) dihedral angles by comparing experimentally determined 13 C a , chemical-shift anisotropies with theoretical calculations is presented, along with a brief description of the theory behind chemical-shift computation in proteins and peptides. The utility of the Spin-Polarization Induced Nuclear Overhauser Effect (SPINOE) to selectively enhance NMR signals in solution is examined in a variety of systems, as are methods for extracting structural information from cross-relaxation rates that can be measured in SPINOE experiments. Techniques for the production of supercritical and liquid laser-polarized xenon are discussed, as well as the prospects for using optically pumped xenon as a polarizing solvent. In addition, a detailed study of the structure of PrP 89-143 is presented. PrP 89-143 is a 54 residue fragment of the prion proteins which, upon mutation and aggregation, can induce prion diseases in transgenic mice. Whereas the structure of the wild-type PrP 89-143 is a generally unstructured mixture of α-helical and β-sheet conformers in the solid state, the aggregates formed from the PrP 89-143 mutants appear to be mostly β-sheet.

  13. Observation of a phononic quadrupole topological insulator

    Science.gov (United States)

    Serra-Garcia, Marc; Peri, Valerio; Süsstrunk, Roman; Bilal, Osama R.; Larsen, Tom; Villanueva, Luis Guillermo; Huber, Sebastian D.

    2018-03-01

    The modern theory of charge polarization in solids is based on a generalization of Berry’s phase. The possibility of the quantization of this phase arising from parallel transport in momentum space is essential to our understanding of systems with topological band structures. Although based on the concept of charge polarization, this same theory can also be used to characterize the Bloch bands of neutral bosonic systems such as photonic or phononic crystals. The theory of this quantized polarization has recently been extended from the dipole moment to higher multipole moments. In particular, a two-dimensional quantized quadrupole insulator is predicted to have gapped yet topological one-dimensional edge modes, which stabilize zero-dimensional in-gap corner states. However, such a state of matter has not previously been observed experimentally. Here we report measurements of a phononic quadrupole topological insulator. We experimentally characterize the bulk, edge and corner physics of a mechanical metamaterial (a material with tailored mechanical properties) and find the predicted gapped edge and in-gap corner states. We corroborate our findings by comparing the mechanical properties of a topologically non-trivial system to samples in other phases that are predicted by the quadrupole theory. These topological corner states are an important stepping stone to the experimental realization of topologically protected wave guides in higher dimensions, and thereby open up a new path for the design of metamaterials.

  14. Ion guide quadrupole mass spectrometer at Jyvaeskylae

    International Nuclear Information System (INIS)

    Iivonen, A.; Saintola, R.; Valli, K.; Morita, K.; Yoshida, A.

    1991-01-01

    A new mass analyzing device consisting of an ion guide connected to a commercial quadrupole mass spectrometer is being developed at the Department of Physics, University of Jyvaeskylae. The new spectrometer is expected to have the similar properties to the present ion guide isotope separator on-line (IGISOL): excellent stability, similar separation efficiency for all chemical elements and short separation time. This ion guide mass spectrometer (IGQMS) is schematically shown. The IGQMS differs from the IGISOL in four essential ways: a squeezer ion guide, a differential pumping section, a transport section in which an electrostatic lens system brings ions into high vacuum, and a commercial quadrupole spectrometer used in place of a magnetic separator. The entire spectrometer became operational in the summer of 1990. The tests have been done with the alpha-active Po-215 ions released from an Ac-227 source in the target chamber. The squeezer, differential pumping section, transport section and quadrupole mass spectrometer of the IGQMS are described. The results of the measured transmission yield and the total yield of Po-215 and some merits of the IGQMS are reported. (K.I.)

  15. Electron Paramagnetic Resonance studies of x-ray irradiated Nafion

    Science.gov (United States)

    Fragoso, Juan; Usher, Timothy

    2007-03-01

    Fuel cells promise a bright future as power sources for a variety of electronic equipment as well as more power demanding elements. Nafion (DuPont's trademark of a sulfonated tetrafluorethylene polymer modified from Teflon) is the heart of Proton Exchange Membrane Fuel Cells (PEMFCs) as well as Direct Methanol Fuel Cells (DMFCs). Fuel cells are used to power electronic equipment on spacecraft, satellites and unpiloted high altitude aircraft, where ionizing radiation can be a concern. Electron Paramagnetic Resonance (EPR) is a spectroscopic technique that is very sensitive to free radicals such as those produced by ionizing radiation therefore EPR can give us a window into the degradation of the Nafion membranes due to the ionizing radiation. Nafion samples were irradiated using a x-ray diffractometer with a copper target operating at 40kV and 55mA for at least 3hrs. X-Band EPR spectroscopy of the irradiated nafion reveals a peak at 3400G with a width of 10G, which decays over time, completely diminishing in a couple of weeks. Preliminary results from the polarization studies on the effects of ionizing radiation will also be presented.

  16. A magnetic resonance imaging study of double elevator palsy.

    Science.gov (United States)

    Cadera, W; Bloom, J N; Karlik, S; Viirre, E

    1997-06-01

    The pathophysiology of double elevator palsy is poorly understood. We assessed two patients with this condition using magnetic resonance imaging (MRI) to evaluate the appearance of the extraocular muscles. Cross-sectional study. Radiology department of a university-affiliated hospital in London, Ont. Two patients from a private ophthalmology practice who had undergone complete transpositions of the horizontal rectus muscles to treat hypotropia associated with double elevator palsy. MRI. A volume scanning technique was used to obtain maximum information about the muscles. Appearance of the extraocular muscles. In both patients MRI showed decreased volume of the superior rectus muscle on the affected side. The other rectus muscles were normal. This suggested either congenital hypoplasia or paresis of the involved superior rectus muscle. In addition, the full tendon transpositions of the medial and lateral recti did not appreciably change the middle and deep orbital pathways of the transposed horizontal rectus muscles. MRI may be a useful adjunct to saccadic velocity assessments in differentiating between primary inferior rectus restriction, primary superior rectus paresis and congenital supranuclear elevator deficiency.

  17. [Diagnosis. Radiological study. Ultrasound, computed tomography and magnetic resonance imaging].

    Science.gov (United States)

    Gallo Vallejo, Francisco Javier; Giner Ruiz, Vicente

    2014-01-01

    Because of its low cost, availability in primary care and ease of interpretation, simple X-ray should be the first-line imaging technique used by family physicians for the diagnosis and/or follow-up of patients with osteoarthritis. Nevertheless, this technique should only be used if there are sound indications and if the results will influence decision-making. Despite the increase of indications in patients with rheumatological disease, the role of ultrasound in patients with osteoarthritis continues to be limited. Computed tomography (CT) is of some -although limited- use in osteoarthritis, especially in the study of complex joints (such as the sacroiliac joint and facet joints). Magnetic resonance imaging (MRI) has represented a major advance in the evaluation of joint cartilage and subchondral bone in patients with osteoarthritis but, because of its high cost and diagnostic-prognostic yield, this technique should only be used in highly selected patients. The indications for ultrasound, CT and MRI in patients with osteoarthritis continue to be limited in primary care and often coincide with situations in which the patient may require hospital referral. Patient safety should be bourne in mind. Patients should be protected from excessive ionizing radiation due to unnecessary repeat X-rays or inadequate views or to requests for tests such as CT, when not indicated. Copyright © 2014 Elsevier España, S.L. All rights reserved.

  18. Practical design approach for trapezoidal modulation of a radio-frequency quadrupole

    Science.gov (United States)

    Plastun, A. S.; Ostroumov, P. N.

    2018-03-01

    Trapezoidal modulation of quadrupole electrodes offers additional benefits to the concept of a radio-frequency quadrupole (RFQ). Because of the significant increase of the effective shunt impedance, RFQs with trapezoidal modulation have a reduced interelectrode voltage or resonator length as compared to conventional RFQs with sinusoidal modulation. This feature is especially valuable for RFQs operating in cw mode, since it reduces the required rf power. We develop a detailed procedure for the design of RFQ electrodes with trapezoidal modulation. With our design procedure and by properly choosing the trapezoidal cell parameters, we can easily control the peak surface fields in the RFQ to the same level as for sinusoidal cell modulation. The procedure is applied to the design of the electrodes for the ReA3 RFQ at Michigan State University.

  19. Practical design approach for trapezoidal modulation of a radio-frequency quadrupole

    Directory of Open Access Journals (Sweden)

    A. S. Plastun

    2018-03-01

    Full Text Available Trapezoidal modulation of quadrupole electrodes offers additional benefits to the concept of a radio-frequency quadrupole (RFQ. Because of the significant increase of the effective shunt impedance, RFQs with trapezoidal modulation have a reduced interelectrode voltage or resonator length as compared to conventional RFQs with sinusoidal modulation. This feature is especially valuable for RFQs operating in cw mode, since it reduces the required rf power. We develop a detailed procedure for the design of RFQ electrodes with trapezoidal modulation. With our design procedure and by properly choosing the trapezoidal cell parameters, we can easily control the peak surface fields in the RFQ to the same level as for sinusoidal cell modulation. The procedure is applied to the design of the electrodes for the ReA3 RFQ at Michigan State University.

  20. Resolution limit of probe-forming systems with magnetic quadrupole lens triplets and quadruplets

    International Nuclear Information System (INIS)

    Ponomarev, A.G.; Melnik, K.I.; Miroshnichenko, V.I.; Storizhko, V.E.; Sulkio-Cleff, B.

    2003-01-01

    Over the past decade, in MeV ion beam microanalysis efforts to achieve a spatial resolution better than 0.1 μm with a beam current of ∼100 pA have been connected with microprobes of new generation where the probe is formed by means of separated magnetic quadrupole lens structures . However, as was pointed out in , no dramatic improvements in spatial resolution have been produced so far. For better understanding of the situation the authors carried out theoretical studies of multiparameter sets of probe-forming systems based on separated triplets and quadruplets of magnetic quadrupole lenses. Comparisons were made between the highest current values attained at different systems for a given beam spot size. The maximum parasitic sextupole and octupole field components were found whose contributions to spot broadening are tolerable. It is shown that the use of modern electrostatic accelerators and precision magnetic quadrupole lenses makes it possible to eliminate the effect of chromatic aberrations and second- and third-order parasitic aberrations resulting from distortions of the quadrupole lens symmetry. Therefore probe-forming systems with triplets and quadruplets of magnetic quadrupole lenses have a lower theoretical spatial resolution limit which is restricted mainly by intrinsic spherical third-order aberrations in state-of-the-art microprobes

  1. Proton nuclear magnetic resonance studies on the variant-3 neurotoxin from Centruroides sculpturatus Ewing: Sequential assignment of resonances

    International Nuclear Information System (INIS)

    Nettesheim, D.G.; Klevit, R.E.; Drobny, G.; Watt, D.D.; Krishna, N.R.

    1989-01-01

    The authors report the sequential assignment of resonances to specific residues in the proton nuclear magnetic resonance spectrum of the variant-3 neurotoxin from the scorpion Centruroides sculpturatus Ewing (range southwestern U.S.A.). A combination of two-dimensional NMR experiments such as 2D-COSY, 2D-NOESY, and single- and double-RELAY coherence transfer spectroscopy has been employed on samples of the protein dissolved in D 2 O and in H 2 O for assignment purposes. These studies provide a basis for the determination of the solution-phase conformation of this protein and for undertaking detailed structure-function studies of these neurotoxins that modulate the flow of sodium current by binding to the sodium channels of excitable membranes

  2. Some double resonance and multiple quantum NMR studies in solids

    Energy Technology Data Exchange (ETDEWEB)

    Wemmer, D.E.

    1978-08-01

    The first section of this work presents the theory and experimental applications to analysis of molecular motion of chemical shielding lineshapes obtained with high resolution double resonance NMR techniques. Analysis of /sup 13/C powder lineshapes in hexamethylbenzene (HMB) and decamethylferrocene (DMFe) show that these molecules reorient in a jumping manner about the symmetry axis. Analysis of proton chemical shielding lineshapes of residual protons in heavy ice (D/sub 2/O) show that protons are exchanged among the tetrahedral positions of neighboring oxygen atoms, consistent with motion expected from defect migration. The second section describes the application of Fourier Transform Double Quantum NMR to measurement of chemical shielding of deuterium in powder samples. Studies of partially deuterated benzene and ferrocene give equal shielding anisotropies, ..delta..sigma = -6.5 ppM. Theoretical predictions and experimental measurements of dipolar couplings between deuterons using FTDQ NMR are presented. Crystals of BaClO/sub 3/.D/sub 2/O, ..cap alpha..,..beta.. d-2 HMB and ..cap alpha..,..beta..,..gamma.. d-3 HMB were studied, as were powders of d-2 HMB and anisic acid. The third section discusses general multiple quantum spectroscopy in dipolar coupled spin systems. Theoretical description is made for creation and detection of coherences between states without quantum number selection rules ..delta..m = +-1. Descriptions of techniques for partial selectivity of order in preparation and detection of multiple quantum coherences are made. The effects on selectivity and resolution of echo pulses during multiple quantum experiments are discussed. Experimental observation of coherences up to order 6 have been made in a sample of benzene dissolved in a liquid crystal. Experimental verifications of order selection and echo generation have been made.

  3. Some double resonance and multiple quantum NMR studies in solids

    International Nuclear Information System (INIS)

    Wemmer, D.E.

    1978-08-01

    The first section of this work presents the theory and experimental applications to analysis of molecular motion of chemical shielding lineshapes obtained with high resolution double resonance NMR techniques. Analysis of 13 C powder lineshapes in hexamethylbenzene (HMB) and decamethylferrocene (DMFe) show that these molecules reorient in a jumping manner about the symmetry axis. Analysis of proton chemical shielding lineshapes of residual protons in heavy ice (D 2 O) show that protons are exchanged among the tetrahedral positions of neighboring oxygen atoms, consistent with motion expected from defect migration. The second section describes the application of Fourier Transform Double Quantum NMR to measurement of chemical shielding of deuterium in powder samples. Studies of partially deuterated benzene and ferrocene give equal shielding anisotropies, Δsigma = -6.5 ppM. Theoretical predictions and experimental measurements of dipolar couplings between deuterons using FTDQ NMR are presented. Crystals of BaClO 3 .D 2 O, α,β d-2 HMB and α,β,γ d-3 HMB were studied, as were powders of d-2 HMB and anisic acid. The third section discusses general multiple quantum spectroscopy in dipolar coupled spin systems. Theoretical description is made for creation and detection of coherences between states without quantum number selection rules Δm = +-1. Descriptions of techniques for partial selectivity of order in preparation and detection of multiple quantum coherences are made. The effects on selectivity and resolution of echo pulses during multiple quantum experiments are discussed. Experimental observation of coherences up to order 6 have been made in a sample of benzene dissolved in a liquid crystal. Experimental verifications of order selection and echo generation have been made

  4. Unicuspid aortic valve disease: a magnetic resonance imaging study

    Energy Technology Data Exchange (ETDEWEB)

    Debl, K.; Buchner, S.; Heinicke, N.; Riegger, G.; Luchner, A. [Klinik und Poliklinik fuer Innere Medizin II, Universitaetsklinikum Regensburg (Germany); Djavidani, B.; Poschenrieder, F.; Feuerbach, S. [Inst. fuer Roentgendiagnostik, Universitaetsklinikum Regensburg (Germany); Schmid, C.; Kobuch, R. [Klinik und Poliklinik fuer Herz-, Thorax- und herznahe Gefaesschirurgie, Universitaetsklinikum Regensburg (Germany)

    2008-11-15

    Purpose: congenitally malformed aortic valves are a common finding in adults with aortic valve disease. Most of these patients have bicuspid aortic valve disease. Unicuspid aortic valve disease (UAV) is rare. The aim of our study was to describe valve morphology and the dimensions of the proximal aorta in a cohort of 12 patients with UAV in comparison to tricuspid aortic valve disease (TAV) using magnetic resonance imaging (MRI). Materials and methods/results: MRI studies were performed on a 1.5 T scanner in a total of 288 consecutive patients with aortic valve disease. 12 aortic valves were retrospectively classified as UAV. Annulus areas and dimensions of the thoracic aorta were retrospectively compared to a cohort of 103 patients with TAV. In UAV, valve morphology was unicuspid unicommissural with a posterior commissure in all patients. Mean annulus areas and mean diameters of the ascending aorta were significantly greater in UAV compared to TAV (12.6 {+-} 4.7 cm{sup 2} vs. 8.7 {+-} 2.3 cm{sup 2}, p < 0.01 and 4.6 {+-} 0.7 cm vs. 3.6 {+-} 0.5 cm, p < 0.0001, respectively), while no differences were observed in the mean diameters of the aortic arch (2.3 {+-} 0.6 cm vs. 2.3 {+-} 0.4 cm, p = 0.69). The diameters of the descending aorta were slightly smaller in UAV compared to TAV (2.2 {+-} 0.5 cm vs. 2.6 {+-} 0.3 cm, p < 0.05). (orig.)

  5. Light-free magnetic resonance force microscopy for studies of electron spin polarized systems

    International Nuclear Information System (INIS)

    Pelekhov, Denis V.; Selcu, Camelia; Banerjee, Palash; Chung Fong, Kin; Chris Hammel, P.; Bhaskaran, Harish; Schwab, Keith

    2005-01-01

    Magnetic resonance force microscopy is a scanned probe technique capable of three-dimensional magnetic resonance imaging. Its excellent sensitivity opens the possibility for magnetic resonance studies of spin accumulation resulting from the injection of spin polarized currents into a para-magnetic collector. The method is based on mechanical detection of magnetic resonance which requires low noise detection of cantilever displacement; so far, this has been accomplished using optical interferometry. This is undesirable for experiments on doped silicon, where the presence of light is known to enhance spin relaxation rates. We report a non-optical displacement detection scheme based on sensitive microwave capacitive readout

  6. Quadrupole time-of-flight mass spectometry : a method to study the actual expression of allergen isoforms identified by PCR cloning

    NARCIS (Netherlands)

    Helsper, J.P.F.G.; Gilissen, L.J.W.J.; Ree, van R.; America, A.H.P.; Cordewener, J.H.G.; Bosch, D.

    2002-01-01

    Background: Over the past 2 decades, molecular biology has shown that most major allergens exist in multiple isoforms. Very little is known about the relevance of allergen isoforms at the level of expressed protein (ie, actual allergen exposure). Objective: The aim of this study was to evaluate the

  7. Quadrupole time-of-flight mass spectrometry: a method to study the actual expression of allergen isoforms identified by PCR cloning

    NARCIS (Netherlands)

    Helsper, Johannes P. F. G.; Gilissen, Luud J. W. J.; van Ree, Ronald; America, Antoine H. P.; Cordewener, Jan H. G.; Bosch, Dirk

    2002-01-01

    BACKGROUND: Over the past 2 decades, molecular biology has shown that most major allergens exist in multiple isoforms. Very little is known about the relevance of allergen isoforms at the level of expressed protein (ie, actual allergen exposure). OBJECTIVE: The aim of this study was to evaluate the

  8. A study of nasal cavity volume by magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tosa, Yasuyoshi (Showa Univ., Tokyo (Japan). School of Medicine)

    1992-04-01

    The nasal cavity volume in 69 healthy volunteers from 8 to 23 years old (17 males and 52 females) was studied using magnetic resonance imaging (MRI). Merits of MRI such as no radiation exposure, less artifact due to bone and air and measurement of intravascular blood flow; and demerits such as contraindication in users of heart pace-makers or magnetic clips, contraindication in people with claustrophobia and influence of environmental magnetic fields must be considered. A Magunetom M10 (Siemens), a superconduction device with 1.0 Tesla magnetic flux density was used. Enhanced patterns of T[sub 1], and pulse lines were photographed at 600 msec TR (repetition time) and 19 msec TE (echo time) using SE (spin echo) and short SE (spin echo), and 3 or 4 mm slices. Photographs were made of the piriform aperture, choana, superior-middle-inferior concha including the nasal meatus, the frontal sinus, maxillary sinus, cribriform plate, and upper surface of the palate. The line connecting the maximum depression point in the nasal root and the pontomedullary junction was selected by sagittal median section, because this corresponds well with the CM (canthomeatal) line which is useful in CT (computed tomography). The transverse section of the nasal cavity volume was traced by display console with an accessory MRI device and calculated by integration of the slice width. The increase of height and body weight neared a plateau at almost 16 years, whereas increase of nasal cavity volume continued until about 20 years. Pearson's coefficient of correlation and regression line were significant. There were no significant differences in these parameters between male and female groups. Comparatively strong correlation between nasal cavity volume, and age, height and body weight was statistically evident. (author).

  9. Basic studies on the human uterus by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Yasuzawa, Michio

    1990-01-01

    This study was designed to analyze characteristic features of the human uterus by using a 0.5 Tesla super-conducting magnet. Relative square ratios of the endometrium and the junctional zone to the uterine body were measured during menstrual cycle with a computed image analyser. Nine healthy volunteers aged 21 to 30 years underwent magnetic resonance imaging (MRI) in the proliferative, secretory, and menstrual phases. Relaxation times of the endometrium, junctional zone, and myometrium were determined. The relative ratio of the endometrium to the uterine body was 13.8% in the proliferative phase, 17.9% in the secretory phase, and 8.0% in the menstrual phase. The ratio of the junctional zone decreased from 26.6% in the proliferative phase to 23.4% in the secretory phase, and increased to 35.0% in the menstrual phase. Relaxation times of the endometrium and junctional zone were the shortest in the menstrual phase. For the myometrium, T 1 values showed the same tendency. T 2 values were the shortest in the proliferative phase. MRI was also performed in 39 patients with hydatidiform (one), myoma uteri (11), adenomyosis uteri (one), carcinoma of the uterine body (3), and carcinoma of the uterine cervix (23). Myoma nodule without degeneration appeared at low intensity, and had the shortest T 1 and T 2 values. Myoma uteri with degeneration had an increased intensity and larger T 1 and T 2 values. Adenomyosis uteri showed a diffuse low intensity with high intensity spots. Malignant lesions of both the uterine body and cervix showed a high intensity on T 2 -weighted image and similar T 1 and T 2 values. These T 1 and T 2 values were, however, shorter than tissue of unmarried normal women. MRI was considered useful for the observation of menstrual cyclic and quantitative change in the human physiologic uterus, as well as for the differentiation of malignant from benign uterine diseases. (N.K.)

  10. Bilingual brain organization: a functional magnetic resonance adaptation study.

    Science.gov (United States)

    Klein, Denise; Zatorre, Robert J; Chen, Jen-Kai; Milner, Brenda; Crane, Joelle; Belin, Pascal; Bouffard, Marc

    2006-05-15

    We used functional magnetic resonance adaptation (fMRA) to examine whether intra-voxel functional specificity may be present for first (L1)- and second (L2)-language processing. We examined within- and across-language adaptation for spoken words in English-French bilinguals who had acquired their L2 after the age of 4 years. Subjects listened to words presented binaurally through earphones. In two control conditions (one for each language), six identical words were presented to obtain maximal adaptation. The remaining six conditions each consisted of five words that were identical followed by a sixth word that differed. There were thus a total of eight experimental conditions: no-change (sixth word identical to first five); a change in meaning (different final word in L1); a change in language (final item translated into L2); a change in meaning and language (different final word in L2). The same four conditions were presented in L2. The study also included a silent baseline. At the neural level, within- and across-language word changes resulted in release from adaptation. This was true for separate analyses of L1 and L2. We saw no evidence for greater recovery from adaptation in across-language relative to within-language conditions. While many brain regions were common to L1 and L2, we did observe differences in adaptation for forward translation (L1 to L2) as compared to backward translation (L2 to L1). The results support the idea that, at the lexical level, the neural substrates for L1 and L2 in bilinguals are shared, but with some populations of neurons within these shared regions showing language-specific responses.

  11. RESPECT: Neutron resonance spin-echo spectrometer for extreme studies

    Energy Technology Data Exchange (ETDEWEB)

    Georgii, R., E-mail: Robert.Georgii@frm2.tum.de [Physik-Department, Technische Universität München, James-Franck-Str. 1, D-85748 Garching (Germany); Heinz Maier-Leibnitz Zentrum, Technische Universität München, Lichtenbergstr. 1, D-85748 Garching (Germany); Kindervater, J. [Physik-Department, Technische Universität München, James-Franck-Str. 1, D-85748 Garching (Germany); Institute for Quantum Matter and Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street Baltimore, MD 21218 (United States); Pfleiderer, C.; Böni, P. [Physik-Department, Technische Universität München, James-Franck-Str. 1, D-85748 Garching (Germany)

    2016-11-21

    We propose the design of a REsonance SPin-echo spECtrometer for exTreme studies, RESPECT, that is ideally suited for the exploration of non-dispersive processes such as diffusion, crystallization, slow dynamics, tunneling processes, crystal electric field excitations, and spin fluctuations. It is a variant of the conventional neutron spin-echo technique (NSE) by (i) replacing the long precession coils by pairs of longitudinal neutron spin-echo coils combined with RF-spin flippers and (ii) by stabilizing the neutron polarization with small longitudinal guide fields that can in addition be used as field subtraction coils thus allowing to adjust the field integrals over a range of 8 orders of magnitude. Therefore, the dynamic range of RESPECT can in principle be varied over 8 orders of magnitude in time, if neutrons with the required energy are made available. Similarly as for existing NSE-spectrometers, spin echo times of up to approximately 1 μs can be reached if the divergence and the correction elements are properly adjusted. Thanks to the optional use of neutron guides and the fact that the currents for the correction coils are much smaller than in standard NSE, intensity gains of at least one order of magnitude are expected, making the concept of RESPECT also competitive for operation at medium flux neutron sources. RESPECT can also be operated in a MIEZE configuration allowing the investigation of relaxation processes in depolarizing environments as they occur when magnetic fields are applied at the sample position, i.e. for the investigation of the dynamics of flux lines in superconductors, magnetic fluctuations in ferromagnetic materials, and samples containing hydrogen.

  12. Magnetic resonance elastography in normal human brain: preliminary study

    International Nuclear Information System (INIS)

    Xu Lei; Gao Peiyi; Lin Yan; Han Jiancheng; Xi Zhinong; Shen Hao

    2007-01-01

    Objective: To study the application of magnetic resonance elastography (MRE) in the human brain. Methods: An external force actuator was developed. The actuator was fixed to the head coil. During MRE scan, one side of the actuator was attached to the volunteers' head. Low frequency oscillation was produced by the actuator and generated shear waves propagating into brain tissue. The pulse sequence of MRE was designed. A modified gradient echo sequence was developed with motion sensitizing gradient (MSG) imposed along X, Y or Z direction. Cyclic displacement within brain tissue induced by shear waves caused a measurable phase shift in the received MR signal. From the measured phase shift, the displacement at each voxel could be calculated, and the shear waves within the brain were directly imaged. By adjusting the phase offset, the dynamic propagation of shear waves in a wave cycle was obtained. Phase images were processed with local frequency estimation (LFE) technique to obtain the elasticity images. Shear waves at 100 Hz, 150 Hz, and 200 Hz were applied. Results: The phase images of MRE directly imaged the propagating shear waves within the brain. The direction of the propagation was from surface of the brain to the center. The wavelength of shear waves varied with the change of actuating frequency. The change of wavelength of shear waves in gray and white matter of the brain was identified. The wavelength of shear waves in gray matter was shorter than that in white matter. The elasticity image of the brain revealed that the shear modulus of the white matter was higher than that of gray matter. Conclusion: The phase images of MRE can directly visualize the propagation of shear waves in the brain tissue. The elasticity image of the brain can demonstrate the change of elasticity between gray and white matter. (authors)

  13. Novel nuclear magnetic resonance techniques for studying biological molecules

    Energy Technology Data Exchange (ETDEWEB)

    Laws, David Douglas [Univ. of California, Berkeley, CA (United States)

    2000-06-01

    Over the fifty-five year history of Nuclear Magnetic Resonance (NMR), considerable progress has been made in the development of techniques for studying the structure, function, and dynamics of biological molecules. The majority of this research has involved the development of multi-dimensional NMR experiments for studying molecules in solution, although in recent years a number of groups have begun to explore NMR methods for studying biological systems in the solid-state. Despite this new effort, a need still exists for the development of techniques that improve sensitivity, maximize information, and take advantage of all the NMR interactions available in biological molecules. In this dissertation, a variety of novel NMR techniques for studying biomolecules are discussed. A method for determining backbone (Φ/Ψ) dihedral angles by comparing experimentally determined 13Ca, chemical-shift anisotropies with theoretical calculations is presented, along with a brief description of the theory behind chemical-shift computation in proteins and peptides. The utility of the Spin-Polarization Induced Nuclear Overhauser Effect (SPINOE) to selectively enhance NMR signals in solution is examined in a variety of systems, as are methods for extracting structural information from cross-relaxation rates that can be measured in SPINOE experiments. Techniques for the production of supercritical and liquid laser-polarized xenon are discussed, as well as the prospects for using optically pumped xenon as a polarizing solvent. In addition, a detailed study of the structure of PrP 89-143 is presented. PrP 89-143 is a 54 residue fragment of the prion proteins which, upon mutation and aggregation, can induce prion diseases in transgenic mice. Whereas the structure of the wild-type PrP 89-143 is a generally unstructured mixture of α-helical and β-sheet conformers in the solid state, the aggregates formed from the PrP 89-143 mutants appear to be mostly β-sheet.

  14. Study of the geometrical resonances of superconducting tunnel junctions

    DEFF Research Database (Denmark)

    Sørensen, O. Hoffmann; Finnegan, T.F.; Pedersen, Niels Falsig

    1973-01-01

    The resonant cavity structure of superconducting Sn-Sn-oxide-Sn tunnel junctions has been investigated via photon-assisted quasiparticle tunneling. We find that the temperature-dependent losses at 35 GHz are determined by the surface resistance of the Sn films for reduced temperatures between 0.5...

  15. Resonance Raman and optical dephasing study of tricarbocyanine dyes

    NARCIS (Netherlands)

    Ashworth, SH; Kummrow, A; Lenz, K

    Fluorescence lineshape analysis based on resonance Raman spectra of the dye HITCI was used to determine the details and magnitude of the vibrational part of the line broadening function, Forced light scattering (FLS) was applied to measure optical dephasing of HITCI in ethylene glycol, pumping at

  16. Metabolism studies of diclofenac and clofibric acid in activated sludge bioreactors using liquid chromatography with quadrupole - time-of-flight mass spectrometry

    Science.gov (United States)

    Kosjek, Tina; Heath, Ester; Pérez, Sandra; Petrović, Mira; Barceló, Damia

    2009-06-01

    SummaryTwo environmentally relevant pharmaceuticals, the non-steroidal antiinflammatory drug, diclofenac and the pharmacologically active metabolite of several serum triglyceride-lowering pharmaceuticals, clofibric acid, were subjected to microbiological transformation in activated sludge bioreactors, and the production of breakdown products was studied. For separation, detection and identification of diclofenac's metabolites a UPLC-(+)ESI-QqToF-MS was employed, which enabled the detection of seven transformation products of diclofenac, all including the diagnostic fragment ion at m/z 214. The chemical structure of one metabolite was proposed, which was produced by dehydratation and lactame formation. Further investigations revealed additional two metabolites, which were isomeric structures with an elemental composition C 13H 10NCl 2; however, their chemical structures were not completely resolved. In addition, another biodegradation product showed an abundant fragment ion at m/z 295, the elemental composition of which was confirmed with a high degree of certainty as C 14H 11NO 2Cl 2. The biodegradation of clofibric acid revealed one metabolite in the (-)ESI-QqToF chromatogram, 4-chlorophenol, which is known to exhibit a higher toxicity than the parent compound. This study confirms that further research is needed on the formation of stable metabolites both during wastewater treatment and in the environment. It also highlights the need for parallel toxicity testing. In addition, this study suggests that more needs to be known about the environmental fate of pharmaceuticals so that we are able to provide a comprehensive risk assessment.

  17. Test Results of the LARP Nb$_3$Sn Quadrupole HQ03a

    CERN Document Server

    DiMarco, J; Anerella, M; Bajas, H; Chlachidze, G; Borgnolutti, F; Bossert, R; Cheng, D W; Dietderich, D; Felice, H; Pan, H; Ferracin, P; Ghosh, A; Godeke, A; Hafalia, A R; Marchevsky, M; Orris, D; Ravaioli, E; Sabbi, G; Salmi, T; Schmalzle, J; Stoynev, S; Strauss, T; Sylvester, C; Tartaglia, M; Todesco, E; Wanderer, P; Wang, X R; Yu, M

    2016-01-01

    The US LHC Accelerator Research Program (LARP) has been developing $Nb_3Sn$ quadrupoles of progressively increasing performance for the high luminosity upgrade of the Large Hadron Collider. The 120 mm aperture High-field Quadrupole (HQ) models are the last step in the R&D; phase supporting the development of the new IR Quadrupoles (MQXF). Three series of HQ coils were fabricated and assembled in a shell-based support structure, progressively optimizing the design and fabrication process. The final set of coils consistently applied the optimized design solutions, and was assembled in the HQ03a model. This paper reports a summary of the HQ03a test results, including training, mechanical performance, field quality and quench studies.

  18. Studies of electron cyclotron resonance ion source plasma physics

    International Nuclear Information System (INIS)

    Tarvainen, O.

    2005-01-01

    This thesis consists of an introduction to the plasma physics of electron cyclotron resonance ion sources (ECRIS) and a review of the results obtained by the author and co-workers including discussion of related work by others. The thesis begins with a theoretical discussion dealing with plasma physics relevant for the production of highly charged ions in ECR ion source plasmas. This is followed by an overview of different techniques, such as gas mixing and double frequency heating, that can be used to improve the performance of this type of ion source. The experimental part of the work consists of studies related to ECRIS plasma physics. The effect of the gas mixing technique on the production efficiency of different ion beams was studied with both gaseous and solid materials. It was observed that gas mixing improves the confinement of the heavier element while the confinement of the lighter element is reduced. When the effect of gas mixing on MIVOC-plasmas was studied with several mixing gases it was observed that applying this technique can reduce the inevitable carbon contamination by a significant factor. In order to understand the different plasma processes taking place in ECRIS plasmas, a series of plasma potential and emittance measurements was carried out. An instrument, which can be used to measure the plasma potential in a single measurement without disturbing the plasma, was developed for this work. Studying the plasma potential of ECR ion sources is important not only because it helps to understand different plasma processes, but also because the information can be used as an input parameter for beam transport simulations and ion source extraction design. The experiments performed have revealed clear dependencies of the plasma potential on certain source parameters such as the amount of carbon contamination accumulated on the walls of the plasma chamber during a MIVOC-run. It was also observed that gas mixing affects not only the production efficiency

  19. The direct neutron decay of giant resonances in 208Pb

    International Nuclear Information System (INIS)

    Bracco, A.

    1988-01-01

    The neutron decay of the giant multipole resonance region from 9 to 15 MeV of excitation energy in 208 Pb has been studied. Neutron branching ratios for the decay to the ground state and to the low-lying excited states of 207 Pb were measured as a function of the excitation energy of 208 Pb and compared to Hauser-Feshbach calculations. While the neutron branching ratios from the energy region of the isoscalar giant quadrupole resonance are reproduced by the calculations, the ratios from the energy region of the isoscalar giant monopole resonance show a conspicuous excess with respect to the statistical model predictions. The neutron yield from this energy region was analysed in terms of a multistep model of the compound nucleus which includes collective doorway channels. The total direct escape width as well as the associated direct partial escape widths to the lowest five valence hole states of 207 Pb were determined. (orig.)

  20. Power supplies for the injector synchrotron quadrupoles and sextupoles

    International Nuclear Information System (INIS)

    Fathizadeh, M.

    1995-01-01

    This light source note will describe the power supplies for the injector synchrotron quadrupole and sextupole magnets. The injector synchrotron has two families of quadrupole magnets. Each family consists of 40 quadrupole magnets connected in series. These magnets are energized by two phase-controlled, 12-pulse power supplies. Therefore, each power supply will be rated to deliver the necessary power to only 40 quadrupole magnets. The two families of sextupole magnets in the injector synchrotron each consists of 32 sextupole magnets connected in series, powered by a phase-controlled power supply. Thus, each power supply shall be capable of delivering power to only 32 sextupole magnets

  1. Nuclear magnetic resonance. Present results and its application to renal pathology. Experimental study of hydronephrosis

    International Nuclear Information System (INIS)

    Bertrand, P.

    1987-01-01

    Results of proton nuclear magnetic resonance imaging and relaxation time measurement of experimental hydronephrosis in mice are presented. The study is preceded by a description of the physical principles underlying the phenomenon of nuclear magnetic resonance and of its biomedical applications and with a review of the clinical use of NMR imaging in renal pathology [fr

  2. Overtones of isoscalar giant resonances studied in direct particle decay measurements

    NARCIS (Netherlands)

    Hunyadi, M; van den Berg, AM; Csatlos, M; Csige, L; Davids, B; Garg, U; Gulyas, J; Harakeh, MN; de Huu, MA; Krasznahorkay, A; Sohler, D; Wortche, HJ

    The isoscalar giant dipole resonance (ISGDR), which is the lowest-energy overtone mode of the isoscalar giant resonances, has been studied in some medium-heavy and heavy nuclei in coincidence measurements. The observation of the direct nucleon decay channels significantly helped to enhance giant

  3. Study of $^{13}$Be through isobaric analog resonances in the Maya active target

    CERN Multimedia

    Riisager, K; Orr, N A; Jonson, B N G; Raabe, R; Fynbo, H O U; Nilsson, T

    We propose to perform an experiment with a $^{12}$Be beam and the Maya active target. We intend to study the ground state of $^{13}$Be through the population of its isobaric analog resonance in $^{13}$B. The resonance will be identified detecting its proton- and neutron-decay channels.

  4. Use of a radio-frequency resonance circuit in studies of alkali ionization in flames

    International Nuclear Information System (INIS)

    Borgers, A.J.

    1978-01-01

    The construction of a radio-frequency resonance system and its use in the study of alkali metal ionization in flames is described. The author re-determines the values of the alkali ionization rate constants for a CO flame with N 2 as diluent gas of known temperature using the RF resonance method. (Auth.)

  5. Snake resonances

    International Nuclear Information System (INIS)

    Tepikian, S.

    1989-01-01

    Siberian Snakes provide a practical means of obtaining polarized proton beams in large accelerators. The effect of snakes can be understood by studying the dynamics of spin precession in an accelerator with snakes and a single spin resonance. This leads to a new class of energy independent spin depolarizing resonances, called snake resonances. In designing a large accelerator with snakes to preserve the spin polarization, there is an added constraint on the choice of the vertical betatron tune due to the snake resonances

  6. Penning-trap mass measurements of exotic rubidium and gold isotopes for a mean-field study of pairing and quadrupole correlations

    CERN Document Server

    Manea, Vladimir

    2015-09-14

    The most complex nuclei are situated between the magic and the mid-shell ones, in regions known for sudden changes of the trends of nuclear observables. These are the so-called shape-transition regions, where the nuclear paradigm changes from the vibrational liquid drop to the static rotor. With few exceptions, nuclei in these regions are radioactive, with half-lives dropping into the millisecond range. Complementing the information obtained from the low-lying excitation spectrum, nuclear binding energies and mean-square charge radii are among the observables most sensitive to these changes of nuclear structure. In the present work, a study of the shape- transition phenomenon is performed by measurements of radioactive nuclides produced by the ISOLDE facility at CERN. The masses of the neutron-rich rubidium isotopes $^{98-100}$Rb and of the neutron-deficient gold isotopes $^{180, 185, 188, 190, 191}$Au are determined using the Penning-trap mass spectrometer ISOLTRAP. The mass of $^{100}$Rb is determined for t...

  7. Application of FT-ICR MS Equipped with Quadrupole Detection for Analysis of Crude Oil.

    Science.gov (United States)

    Cho, Eunji; Witt, Matthias; Hur, Manhoi; Jung, Maeng-Joon; Kim, Sunghwan

    2017-11-21

    Resolving power is a critical factor determining the quality of ultrahigh-resolving power mass spectra of crude oil. In this study, 7T Fourier-transform ion cyclotron mass spectrometry (FT-ICR MS), equipped with quadrupole detection, was applied and evaluated for crude oil analysis for the first time. Four spectra were obtained from two oil samples using two ionization methods. Resolving power of 1500000 was observed at m/z 400 with 4 s transient signal. Comparison with literature reports revealed that the achieved resolving power was comparable with or superior to those obtained from instruments using higher magnetic fields but without quadrupole detection. A total of 6000-10000 peaks with an S/N ratio of 3 or higher were observed from the obtained spectra and over 97% of the peaks could be assigned to appropriate chemical formulas with an error within 1 ppm. Double bond equivalents vs carbon number plots generated from the obtained data agreed well with those previously reported without quadrupole detection. Mass accuracy values of the assigned elemental formulas were examined and the average root-mean-square error was calculated to be only 160 ppb. Low unassignment rate of the observed peaks and strong agreement with previously reported results suggests that unwanted harmonics of reduced frequency are not significant for the data obtained with quadrupole detection. Overall, the data presented in this study show that FT-ICR MS equipped with quadrupole detection can be a powerful tool to examine complex mixtures like crude oil. To the best of our knowledge, this is the first paper reporting application of FT-ICR MS equipped with quadrupole detection for the oil analysis.

  8. Fringe fields modeling for the high luminosity LHC large aperture quadrupoles

    CERN Document Server

    Dalena, B; Payet, J; Chancé, A; Brett, D R; Appleby, R B; De Maria, R; Giovannozzi, M

    2014-01-01

    The HL-LHC Upgrade project relies on large aperture magnets (mainly the inner Triplet and the separation dipole D1). The beam is much more sensitive to non-linear perturbations in this region, such as those induced by the fringe fields of the low-beta quadrupoles. Different tracking models are compared in order to provide a numerical estimate of the impact of fringe fields for the actual design of the inner triplet quadrupoles. The implementation of the fringe fields in SixTrack, to be used for dynamic apertures studies, is also discussed.

  9. Electric quadrupole moments of {beta}-emitter {sup 21}F and {sup 23}Mg

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Takashi; Matsuta, Kensaku; Fukuda, Mitsunori [Osaka Univ., Toyonaka (Japan). Faculty of Science] [and others

    1997-03-01

    For the systematic study of nuclear electromagnetic moments, electric quadrupole moments Q of {beta}-emitting nuclei {sup 21}F and {sup 23}Mg have been measured for the first time through combined technique of the polarized nuclear beams and {beta}-NMR technique. From the quadrupole coupling constants of {sup 21}F and {sup 23}Mg in MgF{sub 2} single crystal, the ratios of the Q`s with the known Q were determined as |Q({sup 21}F)|/|Q({sup 19}F{sup *})|=1.001{+-}0.034 and |Q({sup 23}Mg)|/|Q({sup 25}Mg)|=0.571{+-}0.017. (author)

  10. Design and Manufacture of a Main Beam Quadrupole Model for CLIC

    CERN Document Server

    Modena, Michele

    2012-01-01

    The Main Beam Quadrupole (MBQ) magnets represent one of the most populated families of Compact Linear Collider (CLIC) magnets. In total more than 4000 units of 4 different types with the same bore radius of 5 mm and field gradient of 200 T/m but with different magnetic length are needed. An extremely high precision and mechanical stability are necessary in order to fulfill the magnetic and stabilization requirements as defined in the beam optics studies. A magnet design has been proposed and several quadrupole prototypes of different length have been produced targeting a high mechanical precision. Magnetic calculation, constructional design and the first test results are presented.

  11. About the perturbation factor for static and distributed quadrupole interaction in PAC spectroscopy

    International Nuclear Information System (INIS)

    Ayala, A.P.; Lopez-Garcia, A.

    1999-01-01

    The traditional analysis of electric quadrupole interaction in disordered materials can give hyperfine parameters that would mask the actual values. As the relative distribution width δ increases, the correlation of this parameter with the rest produces strong shifts in all of them. Motivated by the values δ ≥ 0.4 fitted in BaTi 1-x Hf x O 3 for 0 ≤ x ≤ 0.2 and other perovskites we extend previous calculations for Gaussian distribution function to the interval 0.3 ≤ δ ≤ 1. We also include the study of correlation between quadrupole parameters for Lorentzian distribution function in the 0 ≤ δ ≤ 1 interval

  12. Performance of the first short model 150 mm aperture Nb$_3$Sn Quadrupole MQXFS for the High- Luminosity LHC upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Chlachidze, G.; et al.

    2016-08-30

    The US LHC Accelerator Research Program (LARP) and CERN combined their efforts in developing Nb3Sn magnets for the High-Luminosity LHC upgrade. The ultimate goal of this collaboration is to fabricate large aperture Nb3Sn quadrupoles for the LHC interaction regions (IR). These magnets will replace the present 70 mm aperture NbTi quadrupole triplets for expected increase of the LHC peak luminosity by a factor of 5. Over the past decade LARP successfully fabricated and tested short and long models of 90 mm and 120 mm aperture Nb3Sn quadrupoles. Recently the first short model of 150 mm diameter quadrupole MQXFS was built with coils fabricated both by the LARP and CERN. The magnet performance was tested at Fermilab’s vertical magnet test facility. This paper reports the test results, including the quench training at 1.9 K, ramp rate and temperature dependence studies.

  13. Chaotic motion in axially symmetric potentials with oblate quadrupole deformation

    Energy Technology Data Exchange (ETDEWEB)

    Letelier, Patricio S. [Departamento de Matematica Aplicada, IMECC, Universidade Estadual de Campinas, 13083-859, Campinas, SP (Brazil); Ramos-Caro, Javier, E-mail: javier@ime.unicamp.br [Departamento de Matematica Aplicada, IMECC, Universidade Estadual de Campinas, 13083-859, Campinas, SP (Brazil); Lopez-Suspes, Framsol, E-mail: framsol@gmail.com [Facultad de Telecomunicaciones, Universidad Santo Tomas and Escuela de Fisica, Universidad Industrial de Santander, Bucaramanga (Colombia)

    2011-10-03

    By computing the Poincare's surfaces of section and Lyapunov exponents, we study the effect of introducing an oblate quadrupole in the dynamics associated with two generic spherical potentials of physical interest: the central monopole and the isotropic harmonic oscillator. In the former case we find saddle points in the effective potential, in contrast to the statements presented by Gueron and Letelier in [E. Gueron, P.S. Letelier, Phys. Rev. E 63 (2001) 035201]. The results we show in the second case have application in nuclear or atomic physics. In particular, we find values of oblate deformation leading to a disappearance of shell structure in the single-particle spectrum. -- Highlights: → We find chaotic motion around a monopole with oblate quadrupole deformation. → This corrects the statements introduced in [E. Gueron, P.S. Letelier, Phys. Rev. E 63 (2001) 035201]. → We present an alternative model for the potential due to an oblate deformed nuclei. → This leads to stochastic regions in the phase space of classical orbits. → It suggests that the shell structure of single-particle spectrum tends to disappear.

  14. Precise calculations of the deuteron quadrupole moment

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Franz L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-06-01

    Recently, two calculations of the deuteron quadrupole moment have have given predictions that agree with the measured value to within 1%, resolving a long-standing discrepancy. One of these uses the covariant spectator theory (CST) and the other chiral effective field theory (cEFT). In this talk I will first briefly review the foundations and history of the CST, and then compare these two calculations with emphasis on how the same physical processes are being described using very different language. The comparison of the two methods gives new insights into the dynamics of the low energy NN interaction.

  15. Electron spin resonance studies of gamma irradiated saccharides. Etudes par resonance paramagnetique electronique de saccharides soumis a un rayonnement gamma

    Energy Technology Data Exchange (ETDEWEB)

    Raffi, J.; Thiery, C.; Battesti, C.; Agnel, J.P.; Triolet, J.; Vincent, P. (CEA Centre d' Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Physiologie Vegetale et Ecosystemes)

    1993-04-01

    The radiolysis mechanism of several saccharides was studied in order to understand the radiolysis mechanism of starches. Electron Spin Resonance first performed in powder state did not allow determination of the chemical structure of the induced radicals. The spin-trapping method combined with HPLC however, followed by ESR spectra analysis with the 'Voyons' simulation program was applied to the study of glucose, glucose oligomers and disaccharides. We were thus able to further our understanding of the radiolysis mechanism of starches. 2 tabs., 4 figs.

  16. Brain Biochemistry and Personality: A Magnetic Resonance Spectroscopy Study

    OpenAIRE

    Ryman, Sephira G.; Gasparovic, Chuck; Bedrick, Edward J.; Flores, Ranee A.; Marshall, Alison N.; Jung, Rex E.

    2011-01-01

    To investigate the biochemical correlates of normal personality we utilized proton magnetic resonance spectroscopy ((1)H-MRS). Our sample consisted of 60 subjects ranging in age from 18 to 32 (27 females). Personality was assessed with the NEO Five-Factor Inventory (NEO-FFI). We measured brain biochemistry within the precuneus, the cingulate cortex, and underlying white matter. We hypothesized that brain biochemistry within these regions would predict individual differences across major domai...

  17. Quick and dirty methods for studying black-hole resonances

    OpenAIRE

    Glampedakis, K.; Andersson, N.

    2003-01-01

    We discuss simple integration methods for the calculation of rotating black hole scattering resonances both in the complex frequency plane (quasinormal modes) and the complex angular momentum plane (Regge poles). Our numerical schemes are based on variations of "phase-amplitude" methods. In particular, we discuss the Pruefer transformation, where the original (frequency domain) Teukolsky wave equation is replaced by a pair of first-order non-linear equations governing the introduced phase fun...

  18. 'Quick and dirty' methods for studying black-hole resonances

    International Nuclear Information System (INIS)

    Glampedakis, Kostas; Andersson, Nils

    2003-01-01

    We discuss simple integration methods for the calculation of black-hole scattering resonances both in the complex frequency plane (quasinormal modes) and the complex angular momentum plane (Regge poles). Our numerical schemes are based on variations of 'phase-amplitude' methods. In particular, we discuss the Pruefer transformation, where the original (frequency domain) Teukolsky wave equation is replaced by a pair of first-order nonlinear equations governing the introduced phase functions. Numerical integration of these equations, performed along the real r * axis (where r * denotes the usual tortoise radial coordinate), or along rotated contours in the complex r * -plane, provides the required S-matrix element (the ratio of amplitudes of the outgoing and ingoing waves at infinity). Mueller's algorithm is then employed to conduct searches in the complex plane for the poles of this quantity (which are, by definition, the desired resonances). We have tested this method by verifying known results for Schwarzschild quasinormal modes and Regge poles, and provide new results for the Kerr black-hole problem. Results produced by our scheme prove to be accurate as long as the imaginary part of the resonance is not much larger than the real part. We also describe a new method for estimating the 'excitation coefficients' for quasinormal modes. The method is applied to scalar waves moving in the Kerr geometry, and the obtained results shed light on the long-lived quasinormal modes that exist for black holes rotating near the extreme Kerr limit

  19. Study of the nonlinearities in micromechanical clamped–clamped beam resonators using stroboscopic SEM

    International Nuclear Information System (INIS)

    Shao, L C; Wong, C L; Palaniapan, M

    2008-01-01

    This paper presents a comprehensive study of the nonlinearities in micromechanical clamped–clamped beam resonators using a stroboscopic scanning electron microscopy (SEM) technique. Stroboscopic SEM allows direct imaging and measurement of the resonator's momentary displacement, hence eliminating the uncertainties associated with the conventional characterization methods. Five different silicon-on-insulator (SOI) comb-drive clamped–clamped beam resonators with resonant frequencies ranging from 113 kHz to 239 kHz were designed, fabricated and tested to investigate how their nonlinearities are related to the device dimensions. Both the theoretical analysis and experimental results conclusively show that the critical vibration amplitude of the resonator is around 1% of the beam width in a vacuum and is relatively independent of the beam length. Furthermore, it is found that the maximum storable energy of the resonator can be significantly increased by increasing the beam width and/or reducing the beam length if there are no restrictions on these dimensions. On the other hand, if a specific resonant frequency needs to be maintained, the maximum storable energy can be improved by increasing both the beam width and length by the same factor. Such a study not only helps to reveal the intrinsic nonlinear properties of the micromechanical clamped–clamped beam resonators, but also provides useful design guidelines for engineers to optimize the overall device performance

  20. Pulsed power supply system for the fast quadrupoles in the AGS

    International Nuclear Information System (INIS)

    Nawrocky, R.J.; Lambiase, R.F.

    1983-01-01

    In the acceleration of polarized protons in the AGS, a number of depolarizing resonances will be encountered. Depolarization due to the so-called intrinsic resonances will be minimized by crossing each resonance in less than one beam revolution period (approx. 2 μs). This will be accomplished with a set of twelve fast tune-shifting quadrupoles distributed symmetrically around the ring. During a typical acceleration cycle, the fast quads will be energized with a burst of alternating polarity, fast rise/slow fall triangular current pulses. The amplitude of these pulses will vary from 160 A to about 2700 A peak. This paper describes the development of the pulsed power supply for the fast quads, the construction of a prototype modulator, and some of the initial test results obtained with the prototype

  1. Theory of enhanced second-harmonic generation by the quadrupole-dipole hybrid exciton

    International Nuclear Information System (INIS)

    Roslyak, Oleksiy; Birman, Joseph L

    2008-01-01

    We report calculated substantial enhancement of the second-harmonic generation (SHG) in cuprous oxide crystals, resonantly hybridized with an appropriate organic material (DCM2:CA:PS 'solid state solvent'). The quadrupole origin of the inorganic part of the quadrupole-dipole hybrid provides inversion symmetry breaking and the organic part contributes to the oscillator strength of the hybrid. We show that the enhancement of the SHG, compared to the bulk cuprous oxide crystal, is proportional to the ratio of the DCM2 dipole moment and the effective dipole moment of the quadrupole transitions in the cuprous oxide. It is also inversely proportional to the line-width of the hybrid and bulk excitons. The enhancement may be regulated by adjusting the organic blend (mutual concentration of the DCM2 and CA part of the solvent) and pumping conditions (varying the angle of incidence in the case of optical pumping or populating the minimum of the lower branch of the hybrid in the case of electrical pumping)

  2. Micro - ring resonator with variety of gap width for acid rain sensing application: preliminary study

    Science.gov (United States)

    Mulyanti, B.; Ramza, H.; Pawinanto, R. E.; Rahman, J. A.; Ab-Rahman, M. S.; Putro, W. S.; Hasanah, L.; Pantjawati, A. B.

    2017-05-01

    The acid rain is an environmental disaster that it will be intimidates human life. The development micro-ring resonator sensor created from SOI (Silicon on insulator) and it used to detect acid rain index. In this study, the LUMERICAL software was used to simulate SOI material micro-ring resonator. The result shows the optimum values of fixed parameters from ring resonator have dependent variable in gap width. The layers under ring resonator with silicone (Si) and wafer layer of silicone material (Si) were added to seen three conditions of capability model. Model - 3 is an additional of bottom layer that gives the significant effect on the factor of quality. The optimum value is a peak value that given by the FSR calculation. FSR = 0, it means that is not shows the light propagation in the ring resonator and none of the light coming out on the bus - line.

  3. Progresses in the studies of adiabatic splitting of charged particle beams by crossing nonlinear resonances

    Directory of Open Access Journals (Sweden)

    A. Franchi

    2009-01-01

    Full Text Available The multiturn extraction from a circular particle accelerator is performed by trapping the beam inside stable islands of the horizontal phase space. In general, by crossing a resonance of order n, n+1 beamlets are created whenever the resonance is stable, whereas if the resonance is unstable the beam is split in n parts. Islands are generated by nonlinear magnetic fields, whereas the trapping is realized by means of a given tune variation so to cross adiabatically a resonance. Experiments at the CERN Proton Synchrotron carried out in 2007 gave the evidence of protons trapped in stable islands while crossing the one-third and one-fifth resonances. Dedicated experiments were also carried out to study the trapping process and its reversibility properties. The results of these measurement campaigns are presented and discussed in this paper.

  4. GEANT4 simulation study of a gamma-ray detector for neutron resonance densitometry

    International Nuclear Information System (INIS)

    Tsuchiya, Harufumi; Harada, Hideo; Koizumi, Mitsuo; Kitatani, Fumito; Takamine, Jun; Kureta, Masatoshi; Iimura, Hideki

    2013-01-01

    A design study of a gamma-ray detector for neutron resonance densitometry was made with GEANT4. The neutron resonance densitometry, combining neutron resonance transmission analysis and neutron resonance capture analysis, is a non-destructive technique to measure amounts of nuclear materials in melted fuels of the Fukushima Daiichi nuclear power plants. In order to effectively quantify impurities in the melted fuels via prompt gamma-ray measurements, a gamma-ray detector for the neutron resonance densitometry consists of cylindrical and well type LaBr 3 scintillators. The present simulation showed that the proposed gamma-ray detector suffices to clearly detect the gamma rays emitted by 10 B(n, αγ) reaction in a high environmental background due to 137 Cs radioactivity with its Compton edge suppressed at a considerably small level. (author)

  5. Study of lateral mode SOI-MEMS resonators for reduced anchor loss

    International Nuclear Information System (INIS)

    Lee, Joshua E-Y; Yan, Jize; Seshia, Ashwin A

    2011-01-01

    MEMS resonators fabricated in silicon-on-insulator (SOI) technology must be clamped to the substrate via anchoring stems connected either from within the resonator or through the sides, with the side-clamped solution often employed due to manufacturing constraints. This paper examines the effect of two types of commonly used side-clamped, anchoring-stem geometries on the quality factor of three different laterally-driven resonator topologies. This study employs an analytical framework which considers the relative distribution of strain energies between the resonating body and clamping stems. The ratios of the strain energies are computed using ANSYS FEA and used to provide an indicator of the expected anchor-limited quality factors. Three MEMS resonator topologies have been fabricated and characterized in moderate vacuum. The associated measured quality factors are compared against the computed strain energy ratios, and the trends are shown to agree well with the experimental data.

  6. Numerical study of heterogeneous mean temperature and shock wave in a resonator

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Takeru [Department of Mechanical Engineering, Osaka University, Suita 565-0871 (Japan)

    2015-10-28

    When a frequency of gas oscillation in an acoustic resonator is sufficiently close to one of resonant frequencies of the resonator, the amplitude of gas oscillation becomes large and hence the nonlinear effect manifests itself. Then, if the dissipation effects due to viscosity and thermal conductivity of the gas are sufficiently small, the gas oscillation may evolve into the acoustic shock wave, in the so-called consonant resonators. At the shock front, the kinetic energy of gas oscillation is converted into heat by the dissipation process inside the shock layer, and therefore the temperature of the gas in the resonator rises. Since the acoustic shock wave travels in the resonator repeatedly over and over again, the temperature rise becomes noticeable in due course of time even if the shock wave is weak. We numerically study the gas oscillation with shock wave in a resonator of square cross section by solving the initial and boundary value problem of the system of three-dimensional Navier-Stokes equations with a finite difference method. In this case, the heat conduction across the boundary layer on the wall of resonator causes a spatially heterogeneous distribution of mean (time-averaged) gas temperature.

  7. Enhancement of the quadrupole interaction of an atom with the guided light of an ultrathin optical fiber

    Science.gov (United States)

    Le Kien, Fam; Ray, Tridib; Nieddu, Thomas; Busch, Thomas; Nic Chormaic, Síle

    2018-01-01

    We investigate the electric quadrupole interaction of an alkali-metal atom with guided light in the fundamental and higher-order modes of a vacuum-clad ultrathin optical fiber. We calculate the quadrupole Rabi frequency, the quadrupole oscillator strength, and their enhancement factors. In the example of a 87Rb atom, we study the dependencies of the quadrupole Rabi frequency on the quantum numbers of the transition, the mode type, the phase circulation direction, the propagation direction, the orientation of the quantization axis, the position of the atom, and the fiber radius. We find that the root-mean-square (rms) quadrupole Rabi frequency reduces quickly but the quadrupole oscillator strength varies slowly with increasing radial distance. We show that the enhancement factors of the rms Rabi frequency and the oscillator strength do not depend on any characteristics of the internal atomic states except for the atomic transition frequency. The enhancement factor of the oscillator strength can be significant even when the atom is far away from the fiber. We show that, in the case where the atom is positioned on the fiber surface, the oscillator strength for the quasicircularly polarized fundamental mode HE11 has a local minimum at the fiber radius a ≃107 nm, and is larger than that for quasicircularly polarized higher-order hybrid modes, transverse electric modes, and transverse magnetic modes in the region a <498.2 nm.

  8. Stabilized operation of the Spallation Neutron Source radio-frequency quadrupole

    Directory of Open Access Journals (Sweden)

    Sang-ho Kim

    2010-07-01

    Full Text Available The Spallation Neutron Source (SNS radio-frequency quadrupole (RFQ had resonance control instabilities at duty factors higher than approximately 4%. Systematic investigations have been carried out to understand the cause of the instability and to ensure the operational stability of the RFQ. The most critical source of the instability is revealed to be an interaction between hydrogen released by beam bombardments and the RFQ rf field resulting in a discharge, which consumes additional rf power and could cause the RFQ to operate in an unstable region. This paper reports improvement of the SNS RFQ operational stability based on the findings during the SNS operation.

  9. Differentially pumped dual linear quadrupole ion trap mass spectrometer

    Science.gov (United States)

    Owen, Benjamin C.; Kenttamaa, Hilkka I.

    2015-10-20

    The present disclosure provides a new tandem mass spectrometer and methods of using the same for analyzing charged particles. The differentially pumped dual linear quadrupole ion trap mass spectrometer of the present disclose includes a combination of two linear quadrupole (LQIT) mass spectrometers with differentially pumped vacuum chambers.

  10. The design of a radio frequency quadrupole LINAC for the RIB ...

    Indian Academy of Sciences (India)

    Logo of the Indian Academy of Sciences. Indian Academy of Sciences ... Physics; Volume 59; Issue 6. The design of a radio frequency quadrupole LINAC for the RIB project at VECC Kolkata ... rf structure design study. The beam dynamics and rf-structure design along with the results of the cold model tests will be presented.

  11. The design of a radio frequency quadrupole LINAC for the RIB ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 59; Issue 6. The design of a radio frequency quadrupole LINAC for the RIB project at VECC Kolkata. V Banerjee Alok Chakrabarti ... for rf structure design study. The beam dynamics and rf-structure design along with the results of the cold model tests will be presented.

  12. Double-photoionization of helium including quadrupole radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    Colgan, James [Los Alamos National Laboratory; Ludlow, J A [AUBURN UNIV; Lee, Teck - Ghee [AUBURN UNIV; Pindzola, M S [AUBURN UNIV; Robicheaux, F [AUBURN UNIV

    2009-01-01

    Non-perturbative time-dependent close-coupling calculations are carried out for the double photoionization of helium including both dipole and quadrupole radiation effects. At a photon energy of 800 eV, accessible at CUlTent synchrotron light sources, the quadrupole interaction contributes around 6% to the total integral double photoionization cross section. The pure quadrupole single energy differential cross section shows a local maxima at equal energy sharing, as opposed to the minimum found in the pure dipole single energy differential cross section. The sum of the pure dipole and pure quadrupole single energy differentials is insensitive to non-dipole effects at 800 eV. However, the triple differential cross section at equal energy sharing of the two ejected electrons shows strong non-dipole effects due to the quadrupole interaction that may be experimentally observable.

  13. Design and construction of superconducting quadrupole magnets at Karlsruhe

    CERN Document Server

    Arendt, F; Turowski, P

    1977-01-01

    Two types of superconducting quadrupole magnets have been developed: 6 extremely short doublets with a quadrupole length of nearly 11 cm as beam focusing elements in the Karlsruhe superconducting proton linac; 2 quadrupoles of about 1 m length for use in the hyperon experiments at the CERN SPS. The concept for these quadrupoles is a one current block winding per pole, calculated with respect to minimum field errors. Special mechanical and winding techniques have been developed to get the high geometric accuracy required for such air coils. The short doublets must be operated in persistent current mode with a thermal superconducting switch and a required time constant of tau >10 /sup 4/ hours. The hyperon beam quadrupoles must operate reliably for a long time in an inaccessible concrete shielding. (2 refs).

  14. Bioceramic Resonance Effect on Meridian Channels: A Pilot Study.

    Science.gov (United States)

    Leung, Ting-Kai; Chan, Wing P; Tai, Chen-Jei; Cho, Ting-Pin; Yang, Jen-Chang; Lee, Po-Tsung

    2015-01-01

    Bioceramic is a kind of material which emits nonionizing radiation and luminescence, induced by visible light. Bioceramic also facilitates the breakup of large clusters of water molecules by weakening hydrogen bonds. Hydrogen bond weakening, which allows water molecules to act in diverse ways under different conditions, is one of the key mechanisms underlying the effects of Bioceramic on biophysical and physical-chemical processes. Herein, we used sound to amplify the effect of Bioceramic and further developed an experimental device for use in humans. Thirteen patients who suffered from various chronic and acute illnesses that severely affected their sleep patterns and life quality were enrolled in a trial of Bioceramic resonance (i.e., rhythmic 100-dB sound waves with frequency set at 10 Hz) applied to the skin surface of the anterior chest. According to preliminary data, a "Propagated Sensation along Meridians" (PSM) was experienced in all Bioceramic resonance-treated patients but not in any of the nine control patients. The device was believed to enhance microcirculation through a series of biomolecular and physiological processes and to subject the specific meridian channels of Traditional Chinese Medicine (TCM) to coherent vibration. This noninvasive technique may offer an alternative to needle acupuncture and other traditional medical practices with clinical benefits.

  15. Bioceramic Resonance Effect on Meridian Channels: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Ting-Kai Leung

    2015-01-01

    Full Text Available Bioceramic is a kind of material which emits nonionizing radiation and luminescence, induced by visible light. Bioceramic also facilitates the breakup of large clusters of water molecules by weakening hydrogen bonds. Hydrogen bond weakening, which allows water molecules to act in diverse ways under different conditions, is one of the key mechanisms underlying the effects of Bioceramic on biophysical and physical-chemical processes. Herein, we used sound to amplify the effect of Bioceramic and further developed an experimental device for use in humans. Thirteen patients who suffered from various chronic and acute illnesses that severely affected their sleep patterns and life quality were enrolled in a trial of Bioceramic resonance (i.e., rhythmic 100-dB sound waves with frequency set at 10 Hz applied to the skin surface of the anterior chest. According to preliminary data, a “Propagated Sensation along Meridians” (PSM was experienced in all Bioceramic resonance-treated patients but not in any of the nine control patients. The device was believed to enhance microcirculation through a series of biomolecular and physiological processes and to subject the specific meridian channels of Traditional Chinese Medicine (TCM to coherent vibration. This noninvasive technique may offer an alternative to needle acupuncture and other traditional medical practices with clinical benefits.

  16. Electric quadrupole interaction in cubic BCC α-Fe

    Energy Technology Data Exchange (ETDEWEB)

    Błachowski, A.; Komędera, K. [Mössbauer Spectroscopy Division, Institute of Physics, Pedagogical University, ul. Podchorążych 2, PL-30-084 Kraków (Poland); Ruebenbauer, K., E-mail: sfrueben@cyf-kr.edu.pl [Mössbauer Spectroscopy Division, Institute of Physics, Pedagogical University, ul. Podchorążych 2, PL-30-084 Kraków (Poland); Cios, G.; Żukrowski, J. [AGH University of Science and Technology, Academic Center for Materials and Nanotechnology, Av. A. Mickiewicza 30, PL-30-059 Kraków (Poland); Górnicki, R. [RENON, ul. Gliniana 15/15, PL-30-732 Kraków (Poland)

    2016-07-15

    Mössbauer transmission spectra for the 14.41-keV resonant line in {sup 57}Fe have been collected at room temperature by using {sup 57}Co(Rh) commercial source and α-Fe strain-free single crystal as an absorber. The absorber was magnetized to saturation in the absorber plane perpendicular to the γ-ray beam axis applying small external magnetic field. Spectra were collected for various orientations of the magnetizing field, the latter lying close to the [110] crystal plane. A positive electric quadrupole coupling constant was found practically independent on the field orientation. One obtains the following value V{sub zz} = +1.61(4) × 10{sup 19} Vm{sup −2} for the (average) principal component of the electric field gradient (EFG) tensor under assumption that the EFG tensor is axially symmetric and the principal axis is aligned with the magnetic hyperfine field acting on the {sup 57}Fe nucleus. The nuclear spectroscopic electric quadrupole moment for the first excited state of the {sup 57}Fe nucleus was adopted as +0.17 b. Similar measurement was performed at room temperature using as-rolled polycrystalline α-Fe foil of high purity in the zero external field. Corresponding value for the principal component of the EFG was found as V{sub zz} = +1.92(4) × 10{sup 19} Vm{sup −2}. Hence, it seems that the origin of the EFG is primarily due to the local (atomic) electronic wave function distortion caused by the spin–orbit interaction between effective electronic spin S and incompletely quenched electronic angular momentum L. It seems as well that the lowest order term proportional to the product L·λ·S dominates, as no direction dependence of the EFG principal component is seen. The lowest order term is isotropic for a cubic symmetry as one has λ=λ 1 for cubic systems with the symbol 1 denoting unit operator and λ being the coupling parameter. - Highlights: • Precision of MS the same as MAPON • Real scans versus magnetization direction • A challenge

  17. A nuclear magnetic resonance and electron spin resonance study on the dynamics of pentacoordinated organophosphorus compounds

    International Nuclear Information System (INIS)

    Keijzer, A.E.H. de.

    1988-01-01

    In this thesis the role of the steric and electronic effects on the fundamental dynamic behaviour of pentacoordinated phosporus compounds is further elaborated. In chapter 2 a variable temperature 13 C NMR study, performed on a series of monocyclic oxyphosphoranes, is presented. The investigations were carried out to determine the influence of the conformational transmission effect on the barriers to pseudorotation in pentacoordinated phosphorus compounds. Chapter 3 also comprises a variable temperature 13 C NMR study on pentacoordinated phosphorus compounds. In this chapter, however, an additional high-resolution 1 H NMR study on the conformational equilibria around the P-O-C-C-O fragments is included. These studies were performed in order to determine whether the enhancement of the reorganization rates around phosphorus is brought about by accelerated pseudorotation or by the involvement of hexacoordinated zwitterionic phosphorus intermediates. In chapter 4, a 31 P NMR study on the solvolysis rate of several phosphinate esters is described. This study was performed in order to determine the influence of the conformational transmission effect on the solvolysis rate of phosphate esters. A number of phosphates is examined in which, during the course of the solvolysis reaction, the conformational transmission effect is bound to be present or absent respectively. Moreover, it is discussed in which way the concept of conformational transmission induced differences in solvolysis rates can be used as a probe to examine the reactions of biologically important phosphate esters. In chapters 5 and 6 ESR studies on the influence of steric and electronic factors on phosphoranyl formation in solution, and on the intramolecular electron transfer in phosphoranyl radicals are presented. (author). 121 refs.; 33 figs.; 17 figs

  18. Rescuing the nonjet (NJ azimuth quadrupole from the flow narrative

    Directory of Open Access Journals (Sweden)

    Trainor Thomas A.

    2017-01-01

    Full Text Available According to the flow narrative commonly applied to high-energy nuclear collisions a cylindrical-quadrupole component of 1D azimuth angular correlations is conventionally denoted by quantity υ2 and interpreted to represent elliptic flow. Jet angular correlations may also contribute to υ2 data “nonflow” depending on the method used to calculate υ2, but 2D graphical methods are available to insure accurate separation. The nonjet (NJ quadrupole has various properties inconsistent with a flow interpretation, including the observation that NJ quadrupole centrality variation in A-A collisions has no relation to strongly-varying jet modication (“jet quenching” in those collisions commonly attributed to jet interaction with a flowing dense medium. In this presentation I describe isolation of quadrupole spectra from pt-differential υ2(pt data from the RHIC and LHC. I demonstrate that quadrupole spectra have characteristics very different from the single-particle spectra for most hadrons, that quadrupole spectra indicate a common boosted hadron source for a small minority of hadrons that “carry” the NJ quadrupole structure, that the narrow source-boost distribution is characteristic of an expanding thin cylindrical shell (strongly contradicting hydro descriptions, and that in the boost frame a single universal quadrupole spectrum (Lévy distribution on transverse mass mt accurately describes data for several hadron species scaled according to their statistical-model abundances. The quadrupole spectrum shape changes very little from RHIC to LHC energies. Taken in combination those characteristics strongly suggest a unique nonflow (and nonjet QCD mechanism for the NJ quadrupole conventionally represented by υ2.

  19. Rescuing the nonjet (NJ) azimuth quadrupole from the flow narrative

    Science.gov (United States)

    Trainor, Thomas A.

    2017-04-01

    According to the flow narrative commonly applied to high-energy nuclear collisions a cylindrical-quadrupole component of 1D azimuth angular correlations is conventionally denoted by quantity υ2 and interpreted to represent elliptic flow. Jet angular correlations may also contribute to υ2 data "nonflow" depending on the method used to calculate υ2, but 2D graphical methods are available to insure accurate separation. The nonjet (NJ) quadrupole has various properties inconsistent with a flow interpretation, including the observation that NJ quadrupole centrality variation in A-A collisions has no relation to strongly-varying jet modication ("jet quenching") in those collisions commonly attributed to jet interaction with a flowing dense medium. In this presentation I describe isolation of quadrupole spectra from pt-differential υ2(pt) data from the RHIC and LHC. I demonstrate that quadrupole spectra have characteristics very different from the single-particle spectra for most hadrons, that quadrupole spectra indicate a common boosted hadron source for a small minority of hadrons that "carry" the NJ quadrupole structure, that the narrow source-boost distribution is characteristic of an expanding thin cylindrical shell (strongly contradicting hydro descriptions), and that in the boost frame a single universal quadrupole spectrum (Lévy distribution) on transverse mass mt accurately describes data for several hadron species scaled according to their statistical-model abundances. The quadrupole spectrum shape changes very little from RHIC to LHC energies. Taken in combination those characteristics strongly suggest a unique nonflow (and nonjet) QCD mechanism for the NJ quadrupole conventionally represented by υ2.

  20. Study of resonance production as a probe of heavy-ion collisions with the ALICE detector

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Hadronic resonances provide a rich set of measurements that can be used to study the properties of ultra-relativistic heavy-ion collisions. Measurements of resonances and long-lived particles provide information about the properties of the late hadronic phase due to the presence of scattering effects that can modify resonance yields. Resonances can also be used along with long-lived hadrons to study the various mechanisms that shape particle pT spectra, including in-medium energy loss, radial flow, and recombination. Measurements of resonances in pp and p-Pb collisions serve as baselines for measurements in heavy-ion collisions, provide input for tuning QCD-inspired event generators, and aid searches for collective behavior in small systems. I will present measurements of a wide variety of hadronic resonances, including some of the most recent results presented at the Quark Matter conference. By comparing measurements of resonances with different masses, lifetimes, and quark contents in pp, p-Pb, and Pb-Pb co...

  1. Computer simulation of magnetic resonance spectra employing homotopy.

    Science.gov (United States)

    Gates, K E; Griffin, M; Hanson, G R; Burrage, K

    1998-11-01

    Multidimensional homotopy provides an efficient method for accurately tracing energy levels and hence transitions in the presence of energy level anticrossings and looping transitions. Herein we describe the application and implementation of homotopy to the analysis of continuous wave electron paramagnetic resonance spectra. The method can also be applied to electron nuclear double resonance, electron spin echo envelope modulation, solid-state nuclear magnetic resonance, and nuclear quadrupole resonance spectra. Copyright 1998 Academic Press.

  2. Surface plasmon enhanced interfacial electron transfer and resonance Raman, surface-enhanced resonance Raman studies of cytochrome C mutants

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Junwei [Iowa State Univ., Ames, IA (United States)

    1999-11-08

    Surface plasmon resonance was utilized to enhance the electron transfer at silver/solution interfaces. Photoelectrochemical reductions of nitrite, nitrate, and CO2 were studied on electrochemically roughened silver electrode surfaces. The dependence of the photocurrent on photon energy, applied potential and concentration of nitrite demonstrates that the photoelectrochemical reduction proceeds via photoemission process followed by the capture of hydrated electrons. The excitation of plasmon resonances in nanosized metal structures resulted in the enhancement of the photoemission process. In the case of photoelectrocatalytic reduction of CO2, large photoelectrocatalytic effect for the reduction of CO2 was observed in the presence of surface adsorbed methylviologen, which functions as a mediator for the photoexcited electron transfer from silver metal to CO2 in solution. Photoinduced reduction of microperoxidase-11 adsorbed on roughened silver electrode was also observed and attributed to the direct photoejection of free electrons of silver metal. Surface plasmon assisted electron transfer at nanostructured silver particle surfaces was further determined by EPR method.

  3. Study of 234U(n,f) Resonances Measured at the CERN n_TOF Facility

    CERN Document Server

    Leal-Cidoncha, E; Paradela, C; Tarrío, D; Leong, L S; Audouin, L; Tassan-Got, L; Praena, J; Berthier, B; Ferrant, L; Isaev, S; Le Naour, C; Stephan, C; Trubert, D; Abbondanno, U; Aerts, G; Álvarez, H; Álvarez-Velarde, F; Andriamonje, S; Andrzejewski, J; Badurek, G; Baumann, P; Bečvář, F; Berthoumieux, E; Calviño, F; Calviani, M; Cano-Ott, D; Capote, R; Carrapiço, C; Cennini, P.; Chepel, V; Chiaveri, E.; Colonna, N; Cortes, G; Couture, A; Cox, J; Dahlfors, M; David, S.; Dillmann, I; Domingo-Pardo, C; Dridi, W; Eleftheriadis, C; Embid-Segura, M; Ferrari, A.; Ferreira-Marques, R; Fujii, K; Furman, W; Gonçalves, I; González-Romero, E; Gramegna, F; Guerrero, C; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martinez, A.; Igashira, M; Jericha, E; Kadi, Y.; Käppeler, F; Karadimos, D; Kerveno, M; Koehler, P; Kossionides, E; Krtička, M; Lampoudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marrone, S; Martínez, T; Massimi, C; Mastinu, P; Mengoni, A; Milazzo, P M; Moreau, C; Mosconi, M; Neves, F; Oberhummer, H; O'Brien, S; Oshima, M; Pancin, J; Papadopoulos, C; Pavlik, A; Pavlopoulos, P.; Perrot, L; Pigni, M T; Plag, R; Plompen, A; Plukis, A; Poch, A; Pretel, C; Quesada, J; Rauscher, T.; Reifarth, R; Rubbia, C.; Rudolf, G; Rullhusen, P; Salgado, J; Santos, C; Sarchiapone, L.; Savvidis, I; Tagliente, G; Tain, J L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A.; Villamarin, D; Vincente, M C; Vlachoudis, V.; Vlastou, R; Voss, F; Walter, S; Wiescher, M; Wisshak, K

    2014-01-01

    We present the analysis of the resolved resonance region for the U-234(n,f) cross section data measured at the CERN n\\_TOF facility. The resonance parameters in the energy range from 1 eV to 1500 eV have been obtained with the SAMMY code by using as initial parameters for the fit the resonance parameters of the JENDL-3.3 evaluation. In addition, the statistical analysis has been accomplished, partly with the SAMDIST code, in order to study the level spacing and the Mehta-Dyson correlation.

  4. Electron cloud generation and trapping in a quadrupole magnet at the Los Alamos proton storage ring

    Directory of Open Access Journals (Sweden)

    Robert J. Macek

    2008-01-01

    Full Text Available Recent beam physics studies on the two-stream e-p instability at the LANL proton storage ring (PSR have focused on the role of the electron cloud generated in quadrupole magnets where primary electrons, which seed beam-induced multipacting, are expected to be largest due to grazing angle losses from the beam halo. A new diagnostic to measure electron cloud formation and trapping in a quadrupole magnet has been developed, installed, and successfully tested at PSR. Beam studies using this diagnostic show that the “prompt” electron flux striking the wall in a quadrupole is comparable to the prompt signal in the adjacent drift space. In addition, the “swept” electron signal, obtained using the sweeping feature of the diagnostic after the beam was extracted from the ring, was larger than expected and decayed slowly with an exponential time constant of 50 to 100  μs. Other measurements include the cumulative energy spectra of prompt electrons and the variation of both prompt and swept electron signals with beam intensity. Experimental results were also obtained which suggest that a good fraction of the electrons observed in the adjacent drift space for the typical beam conditions in the 2006 run cycle were seeded by electrons ejected from the quadrupole.

  5. Electron Cloud Generation and Trapping in a Quadrupole Magnet at the Los Alamos Proton Storage Ring

    Energy Technology Data Exchange (ETDEWEB)

    Macek, Robert J.; Browman, Andrew A.; Ledford, John E.; /TechSource, Santa Fe /Los Alamos; Borden, Michael J.; O' Hara, James F.; McCrady, Rodney C.; Rybarcyk, Lawrence J.; Spickermann, Thomas; Zaugg, Thomas J.; /Los Alamos; Pivi, Mauro T.F.; /SLAC

    2008-03-17

    Recent beam physics studies on the two-stream e-p instability at the LANL proton storage ring (PSR) have focused on the role of the electron cloud generated in quadrupole magnets where primary electrons, which seed beam-induced multipacting, are expected to be largest due to grazing angle losses from the beam halo. A new diagnostic to measure electron cloud formation and trapping in a quadrupole magnet has been developed, installed, and successfully tested at PSR. Beam studies using this diagnostic show that the 'prompt' electron flux striking the wall in a quadrupole is comparable to the prompt signal in the adjacent drift space. In addition, the 'swept' electron signal, obtained using the sweeping feature of the diagnostic after the beam was extracted from the ring, was larger than expected and decayed slowly with an exponential time constant of 50 to 100 {micro}s. Other measurements include the cumulative energy spectra of prompt electrons and the variation of both prompt and swept electron signals with beam intensity. Experimental results were also obtained which suggest that a good fraction of the electrons observed in the adjacent drift space for the typical beam conditions in the 2006 run cycle were seeded by electrons ejected from the quadrupole.

  6. The effect and correction of coupling generated by the RHIC triplet quadrupoles

    Science.gov (United States)

    Pilat, F.; Peggs, S.; Tepikian, S.; Trbojevic, D.; Wei, J.

    This study explores the possibility of operating the nominal RHIC coupling correction system in local decoupling mode, where a subset of skew quadrupoles are independently set by minimizing the coupling as locally measured by beam position monitors. The goal is to establish a correction procedure for the skew quadrupole errors in the interaction region triplets that does not rely on a priori knowledge of the individual errors. After a description of the present coupling correction scheme envisioned for RHIC, the basics of the local decoupling method will be briefly recalled in the context of its implementation in the TEAPOT simulation code as well as operationally. The method is then applied to the RHIC lattice: a series of simple tests establish that single triplet skew quadrupole errors can be corrected by local decoupling. More realistic correction schemes are then studied in order to correct distributed sources of skew quadrupole errors: the machine can be decoupled either by pure local decoupling or by a combination of global (minimum tune separation) and local decoupling. The different correction schemes are successively validated and evaluated by standard RHIC simulation runs with the complete set of errors and corrections. The different solutions and results are finally discussed together with their implications for the hardware.

  7. Brain biochemistry and personality: a magnetic resonance spectroscopy study.

    Science.gov (United States)

    Ryman, Sephira G; Gasparovic, Chuck; Bedrick, Edward J; Flores, Ranee A; Marshall, Alison N; Jung, Rex E

    2011-01-01

    To investigate the biochemical correlates of normal personality we utilized proton magnetic resonance spectroscopy ((1)H-MRS). Our sample consisted of 60 subjects ranging in age from 18 to 32 (27 females). Personality was assessed with the NEO Five-Factor Inventory (NEO-FFI). We measured brain biochemistry within the precuneus, the cingulate cortex, and underlying white matter. We hypothesized that brain biochemistry within these regions would predict individual differences across major domains of personality functioning. Biochemical models were fit for all personality domains including Neuroticism, Extraversion, Openness, Agreeableness, and Conscientiousness. Our findings involved differing concentrations of Choline (Cho), Creatine (Cre), and N-acetylaspartate (NAA) in regions both within (i.e., posterior cingulate cortex) and white matter underlying (i.e., precuneus) the Default Mode Network (DMN). These results add to an emerging literature regarding personality neuroscience, and implicate biochemical integrity within the default mode network as constraining major personality domains within normal human subjects.

  8. Brain biochemistry and personality: a magnetic resonance spectroscopy study.

    Directory of Open Access Journals (Sweden)

    Sephira G Ryman

    Full Text Available To investigate the biochemical correlates of normal personality we utilized proton magnetic resonance spectroscopy ((1H-MRS. Our sample consisted of 60 subjects ranging in age from 18 to 32 (27 females. Personality was assessed with the NEO Five-Factor Inventory (NEO-FFI. We measured brain biochemistry within the precuneus, the cingulate cortex, and underlying white matter. We hypothesized that brain biochemistry within these regions would predict individual differences across major domains of personality functioning. Biochemical models were fit for all personality domains including Neuroticism, Extraversion, Openness, Agreeableness, and Conscientiousness. Our findings involved differing concentrations of Choline (Cho, Creatine (Cre, and N-acetylaspartate (NAA in regions both within (i.e., posterior cingulate cortex and white matter underlying (i.e., precuneus the Default Mode Network (DMN. These results add to an emerging literature regarding personality neuroscience, and implicate biochemical integrity within the default mode network as constraining major personality domains within normal human subjects.

  9. Intramedullary cavernous hemangiomas, magnetic resonance studies in four patients

    International Nuclear Information System (INIS)

    Barrena, M.R.; Guelbenzu, S.; Garcia, S.; Bertrol, V.

    1998-01-01

    Intramedullary cavernous hemangiomas are vascular malformations that can be located throughout the entire central nervous system. They are more frequently found in brain than in spinal cord, where it is only possible to diagnose them by magnetic resonance (RM): We present four cases of intramedullary spinal cord cavernoma, three of which were located in the thoracic spine and one in cervical spine. Computed tomography was ineffective in their diagnosis. However, MR disclosed there presence of well-defined tumors producing a thickening of the spinal cord. The signal was heterogeneous in both T1 and T2-weighted images. There were low signal areas due to the presence of calcium and hemosiderin and high intensity signals provoked by methemoglobin within the lesions, which were scarcely enhanced by intravenous gadolinium administration. One of the lesions presented in the form of a large intramedullary hematoma. (Author) 8 refs

  10. Radio-frequency quadrupole linear accelerator

    International Nuclear Information System (INIS)

    Wangler, T.P.; Stokes, R.H.

    1980-01-01

    The radio-frequency quadrupole (RFQ) is a new linear accelerator concept in which rf electric fields are used to focus, bunch, and accelerate the beam. Because the RFQ can provide strong focusing at low velocities, it can capture a high-current dc ion beam from a low-voltage source and accelerate it to an energy of 1 MeV/nucleon within a distance of a few meters. A recent experimental test at the Los Alamos Scientific Laboratory (LASL) has confirmed the expected performance of this structure and has stimulated interest in a wide variety of applications. The general properties of the RFQ are reviewed and examples of applications of this new accelerator are presented

  11. Experimental investigation of quadrupole virtual photon spectrum

    International Nuclear Information System (INIS)

    Gouffon, P.

    1986-01-01

    To test experimentally the quadrupole virtual photon spectrum calculation, the (e,α) excitation function of an isolated 2 + level at 20.14 MeV in 24 Mg was measured. The most recent calculations in DWBA, including nuclear size effects, are compared to this experimental curve. The differential cross section d 2 σ/dΩdE was measured 48 0 , 90 0 , 132 0 in the laboratory system, for total electron energies of 20.0, 20.8, 21.5, 24.0, 26.0, 28.0, 30.0, 32.0, 36.0, and 40.0 MeV. The reduced matrix element B(E2) of the 20,14 MeV level is extracted as a secondary product of this work. (author) [pt

  12. Atomic Quadrupole Moment Measurement Using Dynamic Decoupling.

    Science.gov (United States)

    Shaniv, R; Akerman, N; Ozeri, R

    2016-04-08

    We present a method that uses dynamic decoupling of a multilevel quantum probe to distinguish small frequency shifts that depend on m_{j}^{2}, where m_{j}^{2} is the angular momentum of level |j⟩ along the quantization axis, from large noisy shifts that are linear in m_{j}, such as those due to magnetic field noise. Using this method we measured the electric-quadrupole moment of the 4D_{5/2} level in ^{88}Sr^{+} to be 2.973_{-0.033}^{+0.026}ea_{0}^{2}. Our measurement improves the uncertainty of this value by an order of magnitude and thus helps mitigate an important systematic uncertainty in ^{88}Sr^{+} based optical atomic clocks and verifies complicated many-body quantum calculations.

  13. The modulation of motor control by imitating non-biological motions: a study about motor resonance.

    Science.gov (United States)

    Miyawaki, Yu; Yamamoto, Taisei

    2018-01-01

    [Purpose] Sensorimotor experience modulates motor resonance, such as motor interference, which occurs when observing others' movements; however, it is unclear how motor resonance is modulated by intentionally imitating others' movements. This study examined the effects of imitation experience on subsequent motor resonance. [Subjects and Methods] Twenty-seven healthy participants performed horizontal arm movements while observing non-biological, incongruent (vertical) movements of a visual stimulus (triangle object) in pre- and post-test procedures. Thirteen participants in the imitation group imitated vertical movements (non-biological motion) of the triangle object between pre- and post-test procedures and fourteen participants in the non-imitation group observed that. [Results] Variance in the executed movements was measured as an index of motor resonance. Although there was no significant difference in the non-imitation group, there was a significantly smaller variance for post-test compared to pre-test in the imitation group. [Conclusion] Motor resonance was inhibited by intentionally imitating non-biological motions. Imitating movements different from one's own motor property might inhibit subsequent motor resonance. This finding might be applied to selectively using motor resonance as a form of rehabilitation.

  14. Theoretical study of platonic crystals with periodically structured N-beam resonators

    Science.gov (United States)

    Gao, Penglin; Climente, Alfonso; Sánchez-Dehesa, José; Wu, Linzhi

    2018-03-01

    A multiple scattering theory is applied to study the properties of flexural waves propagating in a plate with periodically structured N-beam resonators. Each resonator consists of a circular hole containing an inner disk connected to background plate with N rectangular beams. The Bloch theorem is employed to obtain the band structure of a two-dimensional lattice containing a single resonator per unit cell. Also, a numerical algorithm has been developed to get the transmittance through resonator slabs infinitely long in the direction perpendicular to the incident wave. For the numerical validation, a square lattice of 2-beam resonators has been comprehensively analyzed. Its band structure exhibits several flat bands, indicating the existence of local resonances embedded in the structure. Particularly, the one featured as the fundamental mode of the inner disk opens a bandgap at low frequencies. This mode has been fully described in terms of a simple spring-mass model. As a practical application of the results obtained, a homogenization approach has been employed to design a focusing lens for flexural waves, where the index gradient is obtained by adjusting the orientation of the resonators beams. Numerical experiments performed within the framework of a three-dimensional finite element method have been employed to discuss the accuracy of the models described here.

  15. Near-surface structural phase transition of SrTiO3 studied with zero-field beta-detected nuclear spin relaxation and resonance.

    Science.gov (United States)

    Salman, Z; Kiefl, R F; Chow, K H; Hossain, M D; Keeler, T A; Kreitzman, S R; Levy, C D P; Miller, R I; Parolin, T J; Pearson, M R; Saadaoui, H; Schultz, J D; Smadella, M; Wang, D; MacFarlane, W A

    2006-04-14

    We demonstrate that zero-field beta-detected nuclear quadrupole resonance and spin relaxation of low energy (8)Li can be used as a sensitive local probe of structural phase transitions near a surface. We find that the transition near the surface of a SrTiO(3) single crystal occurs at T(c) approximately 150K, i.e., approximately 45K higher than T(c)bulk, and that the tetragonal domains formed below T(c) are randomly oriented.

  16. Chemical analysis of surfaces by resonance ionization mass spectroscopy associated to ionic pulverization; Analyse chimique de surfaces par spectrometrie d`ionisation resonante associee a la pulverisation ionique

    Energy Technology Data Exchange (ETDEWEB)

    Kern, P.

    1995-12-19

    This work shows that if resonance ionization mass spectroscopy was first applied in isotopic separation, it`s also an analyzing method adapted to the study of semi-conductor materials and thin foils. We have improved this technic: a neodymium laser coupled with a dye laser, a new argon ions gun, a gallium ions gun and a new collection optic for the secondary ions quadrupole spectrometer to allow quantitative and selective measurements. (S.G.). 84 refs.

  17. High gradient quadrupoles for low emittance storage rings

    Directory of Open Access Journals (Sweden)

    G. Le Bec

    2016-05-01

    Full Text Available High gradient quadrupoles are key components for the coming generation of storage ring based light sources. The typical specifications of these magnets are: almost 100  T/m gradient, half a meter long, and a vertical aperture for the extraction of the x-ray beam. This paper presents the preparation work done at the European Synchrotron Radiation Facility, from the design to the manufacture and measurements of a prototype. It demonstrates the feasibility of such magnets. Different aspects of magnet engineering are discussed, including the study of the main scale factors and the preliminary design, the pole shaping, the impact of mechanical errors, and the magnetic measurements of a prototype with a stretched-wire system.

  18. Manufacturing experience for the LHC inner triplet quadrupole cables

    International Nuclear Information System (INIS)

    Scanlan, R.M.; Higley, H.C.; Bossert, R.; Kerby, J.; Gosh, A.K.; Boivin, M.; Roy, T.

    2001-01-01

    The design for the U.S. LHC Inner Triplet Quadrupole magnet requires a 37 strand (inner layer) and a 46 strand (outer layer) cable. This represents the largest number of strands attempted to date for a production quantity of Rutherford-type cable. The cable parameters were optimized during the production of a series of short prototype magnets produced at FNAL. These optimization studies focused on critical current degradation, dimensional control, coil winding, and interstrand resistance. After the R and D phase was complete, the technology was transferred to NEEW and a new cabling machine was installed to produce these cables. At present, about 60 unit lengths, out of 90 required for the entire production series of magnets, have been completed for each type of cable. The manufacturing experience with these challenging cables will be reported. Finally, the implications for even larger cables, with more strands, will be discussed

  19. Study of the fluctuations of the partial and total radiative widths by neutron capture resonance method

    International Nuclear Information System (INIS)

    Huynh, V.D.

    1965-06-01

    Radiative capture experiments by neutron time-of-flight methods have been made for following studies: distribution of partial radiative widths, effects of correlation between different radiative transitions, fluctuations of total radiative widths Γ γ from resonance to resonance, variation of Γ γ with number of mass and the search for the existence of potential capture. Also, some other experiments with the use of neutron capture gamma-rays spectra have been investigated. (author) [fr

  20. Infrared Surface-Plasmon-Resonance -- a novel biophysical tool for studying living cell

    OpenAIRE

    Golosovsky, M.; Lirtsman, V.; Yashunsky, V.; Davidov, D.; Aroeti, B.

    2009-01-01

    We discuss the Surface-Plasmon-Resonance (SPR) technique based on Fourier -Transform - InfraRed (FTIR) spectrometry. We explore the potential of the infrared surface plasmon resonance technique for biological studies in aqueous solutions and compare it to the conventional surface plasmon technique operating in the visible range. We demonstrate that the sensitivity of the SPR technique in the infrared range is not lower and in fact is even higher. We show several examples of applying FTIR-SPR ...

  1. Tuning and optimization of the field distribution for 4-rod Radio Frequency Quadrupole linacs

    International Nuclear Information System (INIS)

    Schmidt, Janet Susan

    2014-01-01

    In this thesis, the tuning process of the 4-rod Radio Frequency Quadrupole has been analyzed and a theory for the prediction of the tuning plate's influence on the longitudinal voltage distribution was developed together with RF design options for the optimization of the fringe fields. The basic principles of the RFQ's particle dynamics and resonant behavior are introduced in the theory part of this thesis. All studies that are presented are based on the work on four RFQs of recent linac projects. These RFQs are described in one chapter. Here, the projects are introduced together with details about the RFQ parameters and performance. In the meantime two of these RFQs are in full operation at NSCL at MSU and FNAL. One is operating in the test phase of the MedAustron Cancer Therapy Center and the fourth one for LANL is about to be built. The longitudinal voltage distribution has been studied in detail with a focus on the influence of the RF design with tuning elements and parameters like the electrodes overlap or the distance between stems. The theory for simulation methods for the field flatness that were developed as part of this thesis, as well as its simulation with CST MWS have been analyzed and compared to measurements. The lumped circuit model has proven to predict results with an accuracy that can be used in the tuning process of 4-rod RFQs. Together with results from the tuning studies, the studies on the fringe fields of the 4-rod structure lead to a proposal for a 4-rod RFQ model with an improved field distribution in the transverse and longitudinal electric field.

  2. Ferromagnetic-resonance studies of granular giant-magnetoresistive materials

    Science.gov (United States)

    Rubinstein, M.; Das, B. N.; Koon, N. C.; Chrisey, D. B.; Horwitz, J.

    1994-07-01

    Ferromagnetic resonance (FMR) can reveal important information on the size and shape of the ferromagnetic particles which are dispersed in granular giant magnetoresistive (GMR) materials. We have investigated the FMR spectra of three different types of granular GMR material, each with different properties: (1) melt-spun ribbons of Fe5Co15Cu80 and Co20Cu80, (2) thin films of Co20Cu80 produced by pulsed laser deposition, and (3) a granular multilayer film of [Cu(50 Å)/Fe(10 Å)]×50. We interpret the linewidth of these materials in as simple a manner as possible, as a ``powder pattern'' of noninteracting ferromagnetic particles. The linewidth of the melt-spun ribbons is caused by a completely random distribution of crystalline anisotropy axes. The linewidth of these samples is strongly dependent upon the annealing temperature: the linewidth of the as-spun sample is 2.5 kOe (appropriate for single-domain particles) while the linewidth of a melt-spun sample annealed at 900 °C for 15 min is 4.5 kOe (appropriate for larger, multidomain particles). The linewidth of the granular multilayer is attributed to a restricted distribution of shape anisotropies, as expected from a discontinuous multilayer, and is only 0.98 kOe when the applied magnetic field is in the plane of the film.

  3. Study of skin markers for magnetic resonance imaging examinations

    International Nuclear Information System (INIS)

    Takatsu, Yasuo; Umezaki, Yoshie; Miyati, Tosiaki; Yamamura, Kenichirou

    2013-01-01

    In magnetic resonance imaging (MRI), skin markers are used as a landmark in order to make plans for examinations. However, there isn't a lot of research about the material and shape of skin markers. The skin marker's essential elements are safety, good cost performance, high signal intensity for T 1 weighted image (T 1 WI) and T 2 weighted image (T 2 WI), and durable. In order to get a high signal-to-noise ratio (SNR) of T 1 WI and T 2 WI, baby oil, salad oil and olive oil were chosen, because these materials were easy to obtain and safe for the skin. The SNR of baby oil was the best. Baby oil was injected into the infusion tube, and the tube was solvent welded and cut by a heat sealer. In order to make ring shaped skin markers, both ends of the tube were stuck with adhesive tape. Three different diameters of markers were made (3, 5, 10 cmφ). Ring shaped skin markers were put on to surround the examination area, therefore, the edge of the examination area could be seen at every cross section. Using baby oil in the ring shaped infusion tube is simple, easy, and a highly useful skin marker. (author)

  4. Electron spin resonance studies of carbonates and phosphates

    International Nuclear Information System (INIS)

    Seletchi, Emilia Dana

    2005-01-01

    Electron Spin Resonance (ESR) is an absolute dating technique suitable for the Quaternary, which can be applied to a wide range of archaeological and geological materials. This method is mostly used to date such things as calcium carbonate in limestone, stalactites, stalagmites, mollusk shells, and corals. The results show that and are the most commonly present radiation-induced defects in bicarbonates. A new methodology for the provenance of ancient monuments and artifacts was developed by using a large number of marble spectrum parameters. The sextet, dominant in the spectra, other peaks due to lattice defects, and organic radicals have been used in the persistent effort to characterize marble quarries. In ESR dating and dosimetry we can measure the intensity of an ESR signal and its enhancement by artificial irradiation with the absorbed dose. ESR retrospective dosimetry has proven to be a very useful technique for dose assessment in past radiation accidents. Human exposure can be determined directly from the ESR signal of tooth enamel. The majority of radiation-induced radicals in tooth enamel are carbonate derived: CO 2 - ; CO 3 - ; CO - ; CO 3 3- , but radicals derived from phosphate and oxygen were also identified. (author)

  5. Low-beta Quadrupole Designs for the LHC Luminosity Upgrade

    CERN Document Server

    Ostojic, Ranko; Kirby, Glyn; Russenschuck, Stephan

    2005-01-01

    Several scenarios are considered for the upgrade of the LHC insertions in view of increasing the luminosity beyond 1034 cm-2s-1. In the case of “quadrupole first” option, superconducting low-b quadrupoles with apertures in the range of 90-110 mm are required in view of increased heat loads and beam crossing angles. We present possible low-b quadrupole designs based on existing Nb3Sn and LHC NbTi superconductors, present scaling laws for the magnet parameters and discuss relative advantages of the underlying triplet layouts.

  6. Development of Superconducting Focusing Quadrupoles for Heavy Ion Drivers

    Energy Technology Data Exchange (ETDEWEB)

    Martovetsky, N; Manahan, R; Lietzke, A F

    2001-09-10

    Heavy Ion Fusion (HIF) is exploring a promising path to a practical inertial-confinement fusion reactor. The associated heavy ion driver will require a large number of focusing quadrupole magnets. A concept for a superconducting quadrupole array, using many simple racetrack coils, was developed at LLNL. Two, single-bore quadrupole prototypes of the same design, with distinctly different conductor, were designed, built, and tested. Both prototypes reached their short sample currents with little or no training. Magnet design, and test results, are presented and discussed.

  7. Suppression of quadrupole polariton generation due to large &(3)circ; effect in Cu2O

    Science.gov (United States)

    Mani, Shahin; Jang, Joon; Ketterson, John

    2010-03-01

    Cuprous oxide (Cu2O) is a dipole-forbidden semiconductor exhibiting a vanishing second-order nonlinear susceptibility and a large third-order nonlinear response.^1 We employ resonant two-photon excitation to create quadrupole polaritons in this semiconductor aiming at the Bose-Einstein condensation of polaritons. Generally, to observe this quantum phase transition, high optical excitations at low temperature is essential. Using a Z-scan setup, we explore the resonant two- photon generation of polaritons in Cu2O at 2K. Our results suggest that the third-harmonic generation of the incident light severely limits the polariton density at high excitation levels. Based on the measured nonlinear optical parameters, the experimentally achievable polariton density is estimated. [1] S. Mani, J. I. Jang, and J. B. Ketterson, Opt. Lett. 34, 2817 (2009).

  8. Conceptual design of a compact high gradient quadrupole magnet of varying strength using permanent magnets

    Directory of Open Access Journals (Sweden)

    Gautam Sinha

    2018-02-01

    Full Text Available A concept is presented to design magnets using cylindrical-shaped permanent-magnet blocks, where various types of magnetic fields can be produced by either rotating or varying the size of the magnetic blocks within a given mechanical structure. A general method is introduced to calculate the 3D magnetic field produced by a set of permanent magnets. An analytical expression of the 2D field and the condition to generate various magnetic fields like dipole, quadrupole, and sextupole are derived. Using the 2D result as a starting point, a computer code is developed to get the optimum orientation of the magnets to obtain the user-specific target field profile over a given volume in 3D. Designs of two quadrupole magnets are presented, one using 12 and the other using 24 permanent-magnet blocks. Variation of the quadrupole strength is achieved using tuning coils of a suitable current density and specially designed end tubes. A new concept is introduced to reduce the integrated quadrupole field strength by inserting two hollow cylindrical tubes made of iron, one at each end. This will not affect the field gradient at the center but reduce the integrated field strength by shielding the magnetic field near the ends where the tubes are inserted. The advantages of this scheme are that it is easy to implement, the magnetic axis will not shift, and it will prevent interference with nearby devices. Around 40% integrated field variation is achieved using this method in the present example. To get a realistic estimation of the field quality, a complete 3D model using a nonlinear B-H curve is also studied using a finite-element-based computer code. An example to generate around an 80  T/m quadrupole field gradient is also presented.

  9. Conceptual design of a compact high gradient quadrupole magnet of varying strength using permanent magnets

    Science.gov (United States)

    Sinha, Gautam

    2018-02-01

    A concept is presented to design magnets using cylindrical-shaped permanent-magnet blocks, where various types of magnetic fields can be produced by either rotating or varying the size of the magnetic blocks within a given mechanical structure. A general method is introduced to calculate the 3D magnetic field produced by a set of permanent magnets. An analytical expression of the 2D field and the condition to generate various magnetic fields like dipole, quadrupole, and sextupole are derived. Using the 2D result as a starting point, a computer code is developed to get the optimum orientation of the magnets to obtain the user-specific target field profile over a given volume in 3D. Designs of two quadrupole magnets are presented, one using 12 and the other using 24 permanent-magnet blocks. Variation of the quadrupole strength is achieved using tuning coils of a suitable current density and specially designed end tubes. A new concept is introduced to reduce the integrated quadrupole field strength by inserting two hollow cylindrical tubes made of iron, one at each end. This will not affect the field gradient at the center but reduce the integrated field strength by shielding the magnetic field near the ends where the tubes are inserted. The advantages of this scheme are that it is easy to implement, the magnetic axis will not shift, and it will prevent interference with nearby devices. Around 40% integrated field variation is achieved using this method in the present example. To get a realistic estimation of the field quality, a complete 3D model using a nonlinear B -H curve is also studied using a finite-element-based computer code. An example to generate around an 80 T /m quadrupole field gradient is also presented.

  10. Resonant behavior of dielectric objects (electrostatic resonances).

    Science.gov (United States)

    Fredkin, D R; Mayergoyz, I D

    2003-12-19

    Resonant behavior of dielectric objects occurs at certain frequencies for which the object permittivity is negative and the free-space wavelength is large in comparison with the object dimensions. Unique physical features of these resonances are studied and a novel technique for the calculation of resonance values of permittivity, and hence resonance frequencies, is proposed. Scale invariance of resonance frequencies, unusually strong orthogonality properties of resonance modes, and a two-dimensional phenomenon of "twin" spectra are reported. The paper concludes with brief discussions of optical controllability of these resonances in semiconductor nanoparticles and a plausible, electrostatic resonance based, mechanism for nucleation and formation of ball lightning.

  11. Resonance frequency of microbubbles in small blood vessels: a numerical study

    International Nuclear Information System (INIS)

    Sassaroli, E; Hynynen, K

    2005-01-01

    Microbubbles are currently used as ultrasound contrast agents. Their potential therapeutic applications are also under investigation. This work is designed to provide some insight into the mechanisms of energy absorption and deposition by a preformed gas bubble in the microvasculature to optimize its efficacy. In the linear regime, the most favourable condition for the transfer of energy from an ultrasonic field to a gas bubble occurs when the centre frequency of the ultrasonic field equals the resonance frequency of the bubble. The resonance frequency of gas microbubbles has been investigated up to now mainly in unbounded liquids; however when bubbles are confined in small regions, their resonance frequency is strongly affected by the surrounding boundaries. A parametric study on how the resonance frequency of microbubbles in blood vessels is affected by the bubble radius, vessel radius and the bubble position in the vessel is presented. The resonance frequency decreases below its free value with decreasing vessel radius for vessels smaller than 200-300 μm depending on the bubble size. This model suggests the possibility of using ultrasound in a range of frequencies that are, in general, lower than the ones used now for therapeutic and diagnostic applications of ultrasound (a few MHz). When microbubbles oscillate at their resonance frequency they absorb and therefore emit more energy. This energy may allow specific blood vessels to be targeted for both diagnostic and therapeutic applications of ultrasound

  12. Clinical study and the diagnosis in magnetic resonance imaging of renal scarring

    Energy Technology Data Exchange (ETDEWEB)

    Tsugaya, Masayuki; Hirao, Noriaki; Ohtaguro, Kazuo; Kato, Jiro.

    1989-04-01

    Twenty-nine kidneys of seventeen patients (nine boys and eight girls) with vesicoureteral reflux and repeated urinary tract infection were studied by magnetic resonance imaging for diagnosis of renal scarring and correlation between clinical data and the degree renal scarring. Renal scarring is classified into three types according to findings in magnetic resonance imaging. The degree of renal scarring are classified into five grades according to traditional grading of intravenous pyelogram. If a fine deformity of calyx is shown on intravenous pyelogram, magnetic resonance imaging demonstrates renal scarring. Magnetic resonance imaging without irradiation is exceedingly valuable for the diagnosis of renal scarring. The appearances of magnetic resonance imaging were supported by X-ray computed tomography. There is a substantial correlation between serum creatinine and the grades of renal scarring by magnetic resonance imaging. There is a substantial correlation between fever attacks and the grade of renal scarring, and there is a significant reverse correlation between the age of the onset of upper urinary tract infection and the grade of renal scarring. It is suggested that upper urinary tract infection is the most significant factor in scar formation. (author).

  13. Dynamic study of pelvic floor in patients with constipation: dynamic magnetic resonance vs defecography

    International Nuclear Information System (INIS)

    Gonzalez Vasquez, Carlos Mario; Pulgarin, Ricardo Luis German; Melo Arango, Catalina; Delgado de Bedout, Jorge Andres; Llano Serna, Juan Fernando; Restrepo Restrepo, Jose Ignacio

    2007-01-01

    Purpose: to compare the concordance between defecography and magnetic resonance in patients with constipation. Materials and methods: we did a prospective and descriptive assay to determine the concordance of a diagnostic test with 17 patients. The evaluation of the studies was double blind. Results: the 17 patients were females, age range 31 - 77 year the symptoms were present between 3 to 120 months. Anterior rectocele was the most common diagnosis (11 patients) and magnetic resonance had sensibility 100%, specificity 50%, positive predictive value 78, 57% and negative predictive value 100%. 7 patients had pelvic floor descent and magnetic resonance had sensibility 71.4%, specificity 20% positive predictive value 38.46% and negative predictive value 50%. Defecography found patients with enterocele and magnetic resonance had sensibility 0% and specificity 100 anismus was present in 2 patients and magnetic resonance didn't find them. Conclusion defecography is still the gold standard for patients with eonstipation. Magnetic resonance are a promise for those patients but has to improve

  14. A clinical study and the diagnosis in magnetic resonance imaging of renal scarring

    International Nuclear Information System (INIS)

    Tsugaya, Masayuki; Hirao, Noriaki; Ohtaguro, Kazuo; Kato, Jiro.

    1989-01-01

    Twenty-nine kidneys of seventeen patients (nine boys and eight girls) with vesicoureteral reflux and repeated urinary tract infection were studied by magnetic resonance imaging for diagnosis of renal scarring and correlation between clinical data and the degree renal scarring. Renal scarring is classified into three types according to findings in magnetic resonance imaging. The degree of renal scarring are classified into five grades according to traditional grading of intravenous pyelogram. If a fine deformity of calyx is shown on intravenous pyelogram, magnetic resonance imaging demonstrates renal scarring. Magnetic resonance imaging without irradiation is exceedingly valuable for the diagnosis of renal scarring. The appearances of magnetic resonance imaging were supported by X-ray computed tomography. There is a substantial correlation between serum creatinine and the grades of renal scarring by magnetic resonance imaging. There is a substantial correlation between fever attacks and the grade of renal scarring, and there is a significant reverse correlation between the age of the onset of upper urinary tract infection and the grade of renal scarring. It is suggested that upper urinary tract infection is the most significant factor in scar formation. (author)

  15. Snake resonances

    International Nuclear Information System (INIS)

    Tepikian, S.

    1988-01-01

    Siberian Snakes provide a practical means of obtaining polarized proton beams in large accelerators. The effect of snakes can be understood by studying the dynamics of spin precession in an accelerator with snakes and a single spin resonance. This leads to a new class of energy independent spin depolarizing resonances, called snake resonances. In designing a large accelerator with snakes to preserve the spin polarization, there is an added constraint on the choice of the vertical betatron tune due to the snake resonances. 11 refs., 4 figs

  16. The Features of Moessbauer Spectra of Hemoglobins: Approximation by Superposition of Quadrupole Doublets or by Quadrupole Splitting Distribution?

    International Nuclear Information System (INIS)

    Oshtrakh, M. I.; Semionkin, V. A.

    2004-01-01

    Moessbauer spectra of hemoglobins have some features in the range of liquid nitrogen temperature: a non-Lorentzian asymmetric line shape for oxyhemoglobins and symmetric Lorentzian line shape for deoxyhemoglobins. A comparison of the approximation of the hemoglobin Moessbauer spectra by a superposition of two quadrupole doublets and by a distribution of the quadrupole splitting demonstrates that a superposition of two quadrupole doublets is more reliable and may reflect the non-equivalent iron electronic structure and the stereochemistry in the α- and β-subunits of hemoglobin tetramers.

  17. Paramagnetic resonance study of nickel ions in hexagonal barium titanate

    Science.gov (United States)

    Böttcher, R.; Langhammer, H. T.; Müller, T.

    2011-03-01

    X-ray diffraction patterns and electron paramagnetic resonance (EPR) powder spectra (9 and 34 GHz) of BaTiO3 + 0.04 BaO + xNiO (0.001 Ni ions and their valence states as well as the development of the hexagonal phase (6H modification) of Ni-doped material with respect to doping level x and sintering temperature Ts. The 6H modification begins to occur at a nominal Ni concentration of between x = 0.005 and 0.01 and its percentage increases with increasing sintering temperature. Ni-doped BaTiO3 with x = 0.02 sintered at Ts = 1400 °C is completely hexagonal. In the 3C modification, present in as-sintered ceramics with low nominal Ni concentrations, only one type of Ni EPR spectrum was observed. By comparing its principal values of the g tensor with data of single-crystal measurements the clear assignment of this spectrum to Ni + ions is possible. Two different EPR spectra with orthorhombic g tensors are observed in the as-sintered samples with hexagonal crystal structure. These spectra were assigned to Ni3 + ions with the electron spin S = 1/2 (electron configuration 3d7, strong crystal field) substituted at Ti lattice sites corresponding to the different distorted octahedra of the hexagonal modification. Measurements of the concentration reveal that only 5% of the doping material is in the state Ni3 + . No EPR spectra of Ni2 + ions have been detected in either 3C or 6H modification in as-sintered ceramics. Therefore, we suppose that the main part of nickel is substituted as Ni4 + ions on Ti4 + lattice sites. After heat treatment of the samples in H2/Ar atmosphere a single-line spectrum with g = 2.21 ± 0.01 at room temperature has been observed which is assigned to metallic Ni or antiferromagnetically coupled Ni2 + ions in secondary phases segregated at grain boundaries or triple points.

  18. PRINCIPLE OF SKEW QUADRUPOLE MODULATION TO MEASURE BETATRON COUPLING

    International Nuclear Information System (INIS)

    LUO, Y.; PILAT, F.; ROSER, T.

    2004-01-01

    The measurement of the residual betatron coupling via skew quadrupole modulation is a new diagnostics technique that has been developed and tested at the Relativistic Heavy Ion Collider (RHIC) as a very promising method for the linear decoupling on the ramp. By modulating the strengths of different skew quadrupole families the two eigentunes are precisely measured with the phase lock loop system. The projections of the residual coupling coefficient onto the skew quadrupole coupling modulation directions are determined. The residual linear coupling could be corrected according to the measurement. An analytical solution for skew quadrupole modulation based on Hamiltonian perturbation approximation is given, and simulation code using smooth accelerator model is also developed. Some issues concerning the practical applications of this technique are discussed

  19. End view of ISR Superconducting Quadrupole in its cryostat

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    This view shows the cold mass of the prototype ISR Superconducting Quadrupole suspended to the outer vacuum tank by means of titanium alloy rods.The heat shield wrapped with superinsulation can also be seen. See also photo 7702690X.

  20. Quadrupole electromagnetic radiation of an oscillating charged droplet

    Science.gov (United States)

    Grigor'ev, A. I.; Kolbneva, N. Yu.; Shiryaeva, S. O.

    2017-06-01

    Analytical calculations using the first order of smallness with respect to dimensionless amplitude of oscillations show that the intensity of electromagnetic radiation of a charged droplet is determined by time-dependent quadrupole moment.

  1. PRINCIPLE OF SKEW QUADRUPOLE MODULATION TO MEASURE BETATRON COUPLING.

    Energy Technology Data Exchange (ETDEWEB)

    LUO.Y.PILAT,F.ROSER,T.ET AL.

    2004-07-05

    The measurement of the residual betatron coupling via skew quadrupole modulation is a new diagnostics technique that has been developed and tested at the Relativistic Heavy Ion Collider (RHIC) as a very promising method for the linear decoupling on the ramp. By modulating the strengths of different skew quadrupole families the two eigentunes are precisely measured with the phase lock loop system. The projections of the residual coupling coefficient onto the skew quadrupole coupling modulation directions are determined. The residual linear coupling could be corrected according to the measurement. An analytical solution for skew quadrupole modulation based on Hamiltonian perturbation approximation is given, and simulation code using smooth accelerator model is also developed. Some issues concerning the practical applications of this technique are discussed.

  2. Determination of the 14N quadrupole coupling constant of nitroxide spin probes by W-band ELDOR-detected NMR

    Science.gov (United States)

    Florent, Marc; Kaminker, Ilia; Nagarajan, Vijayasarathi; Goldfarb, Daniella

    2011-06-01

    Nitroxide spin probe electron paramagnetic resonance (EPR) has proven to be a very successful method to probe local polarity and solvent hydrogen bonding properties at the molecular level. The g xx and the 14N hyperfine A zz principal values are the EPR parameters of the nitroxide spin probe that are sensitive to these properties and are therefore monitored experimentally. Recently, the 14N quadrupole interaction of nitroxides has been shown to be also highly sensitive to polarity and H-bonding (A. Savitsky et al., J. Phys. Chem. B 112 (2008) 9079). High-field electron spin echo envelope modulation (ESEEM) was used successfully to determine the P xx and P yy principal components of the 14N quadrupole tensor. The P zz value was calculated from the traceless character of the quadrupole tensor. We introduce here high-field (W-band, 95 GHz, 3.5 T) electron-electron double resonance (ELDOR)-detected NMR as a method to obtain the 14N P zz value directly, together with A zz. This is complemented by W-band hyperfine sublevel correlation (HYSCORE) measurements carried out along the g xx direction to determine the principal P xx and P yy components. Through measurements of TEMPOL dissolved in solvents of different polarities, we show that A zz increases, while | P zz| decreases with polarity, as predicted by Savitsky et al.

  3. Application of laser resonance scattering to the study of high-temperature plasma-wall interaction

    International Nuclear Information System (INIS)

    Maeda, Mitsuo; Muraoka, Katsunori; Hamamoto, Makoto; Akazaki, Masanori; Miyazoe, Yasushi

    1981-01-01

    Studies on laser resonance scattering and its application to the study of high-temperature plasma-wall interaction are reviewed. The application of dye laser beam to resonant scattering method has been developed. This method is able to detect low density atoms. The fluorescent photon counts can be estimated for a two-level system and a three-level system. The S/N ratio, Which is in close connection with the detection limit, has been estimated. The doppler effect due to the thermal motion of atoms is taken into consideration. The calibration of the absolute number of atoms is necessary. Tunable coherent light is used as the light source for resonance scattering method. This is able to excite atoms strongly and to increase the detection efficiency. As dye lasers, a N 2 laser, a YAG laser, and a KrF excimer laser have been studied. In VUV region, rare gas or rare gas halide lasers can be used. The strong output power can be expected when the resonance lines of atoms meet the synchronizing region of the excimer laser. The resonance scattering method is applied to the detection of impurity metal atoms in plasma. The studies of laser systems for the detection of hydrogen atoms are also in progress. (Kato, T.)

  4. Waferscale Electrostatic Quadrupole Array for Multiple Ion Beam Manipulation

    OpenAIRE

    Vinayakumar, K. B.; Persaud, A.; Seidl, P. A.; Ji, Q.; Waldron, W. L.; Schenkel, T.; Ardanuc, S.; Lal, A.

    2018-01-01

    We report on the first through-wafer silicon-based Electrostatic Quadrupole Array (ESQA) to focus high energy ion beams. This device is a key enabler for a wafer based accelerator architecture that lends itself to orders-of-magnitude reduction in cost, volume and weight of charged particle accelerators. ESQs are a key building block in developing compact Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) [1]. In a MEQALAC electrostatic forces are used to focus ions, and elec...

  5. Collision-induced dissociation pathways of yeast sphingolipids and their molecular profiling in total lipid extracts: a study by quadrupole TOF and linear ion trap-orbitrap mass spectrometry

    DEFF Research Database (Denmark)

    Ejsing, Christer S.; Moehring, Thomas; Bahr, Ute

    2006-01-01

    The yeast Saccharomyces cerevisiae synthesizes three classes of sphingolipids: inositolphosphoceramides (IPCs), mannosyl-inositolphosphoceramides (MIPCs), and mannosyl-diinositolphosphoceramides (M(IP)2C). Tandem mass spectrometry of their molecular anions on a hybrid quadrupole time-of-flight (Qq......TOF) instrument produced fragments of inositol-containing head groups, which were specific for each lipid class. MS(n) analysis performed on a hybrid linear ion trap-orbitrap (LTQ Orbitrap) mass spectrometer with better than 3 ppm mass accuracy identified fragment ions specific for the amide-linked fatty acid...... and the long chain base moieties in individual molecular species. By selecting m/z of class-specific fragment ions for multiple precursor ion scanning, we profiled yeast sphingolipids in total lipid extracts on a QqTOF mass spectrometer. Thus, a combination of QqTOF and LTQ Orbitrap mass spectrometry lends...

  6. Coupled resonances allow studying the aging of adhesive contacts between a QCM surface and single, micrometer-sized particles.

    Science.gov (United States)

    Peschel, Astrid; Langhoff, Arne; Johannsmann, Diethelm

    2015-12-04

    Interparticle contacts and contacts between particles and surfaces are known to change over time. The contact area, the contact stiffness, and the contact strength usually increase as the contact ages. Contact aging is mostly driven by capillary forces, but also by plastic deformation. Making use of acoustic resonators, we have studied the stiffness of contacts between the surface of a quartz crystal microbalance (QCM) and individual, micrometer-sized particles adsorbed to the resonator surface. Studying single particles avoids ensemble-averaging. Central to the analysis is the coupled resonance, occurring when a surface-attached particle together with the link forms a resonator of its own. If the frequency of this second resonator comes close to one of the crystal's overtones, plots of shifts in resonance bandwidth versus overtone order display a resonance curve. This secondary resonance is caused by the coupling between the particle's resonance and the main resonance. One can read the frequency of the coupled resonance from this plot. Similarly, resonance curves are observed in plots of frequency and bandwidth versus time, if the contact stiffness varies smoothly with time. Because the coupled resonance is a characteristic feature, it is easily identified even in cases where frequency shifts of some other origin are superimposed onto the data. For the cases studied here, the links stiffened while they dried. Interestingly, the efficiency of coupling between the particle resonance and the main resonance decreased at the same time. This can be explained with an increase in the link's bending stiffness. The analysis highlights that a QCM experiment amounts to vibrational spectroscopy on surface-attached particles. Among the application examples is the adsorption and drying of a lycopodium spore. Clearly, the technique is also applicable to problems of bioadhesion.

  7. Nonlinear Ion Harmonics in the Paul Trap with Added Octopole Field: Theoretical Characterization and New Insight into Nonlinear Resonance Effect

    Science.gov (United States)

    Xiong, Caiqiao; Zhou, Xiaoyu; Zhang, Ning; Zhan, Lingpeng; Chen, Yongtai; Nie, Zongxiu

    2016-02-01

    The nonlinear harmonics within the ion motion are the fingerprint of the nonlinear fields. They are exclusively introduced by these nonlinear fields and are responsible to some specific nonlinear effects such as nonlinear resonance effect. In this article, the ion motion in the quadrupole field with a weak superimposed octopole component, described by the nonlinear Mathieu equation (NME), was studied by using the analytical harmonic balance (HB) method. Good accuracy of the HB method, which was comparable with that of the numerical fourth-order Runge-Kutta (4th RK), was achieved in the entire first stability region, except for the points at the stability boundary (i.e., β = 1) and at the nonlinear resonance condition (i.e., β = 0.5). Using the HB method, the nonlinear 3β harmonic series introduced by the octopole component and the resultant nonlinear resonance effect were characterized. At nonlinear resonance, obvious resonant peaks were observed in the nonlinear 3β series of ion motion, but were not found in the natural harmonics. In addition, both resonant excitation and absorption peaks could be observed, simultaneously. These are two unique features of the nonlinear resonance, distinguishing it from the normal resonance. Finally, an approximation equation was given to describe the corresponding working parameter, q nr , at nonlinear resonance. This equation can help avoid the sensitivity degradation due to the operation of ion traps at the nonlinear resonance condition.

  8. Nonlinear Ion Harmonics in the Paul Trap with Added Octopole Field: Theoretical Characterization and New Insight into Nonlinear Resonance Effect.

    Science.gov (United States)

    Xiong, Caiqiao; Zhou, Xiaoyu; Zhang, Ning; Zhan, Lingpeng; Chen, Yongtai; Nie, Zongxiu

    2016-02-01

    The nonlinear harmonics within the ion motion are the fingerprint of the nonlinear fields. They are exclusively introduced by these nonlinear fields and are responsible to some specific nonlinear effects such as nonlinear resonance effect. In this article, the ion motion in the quadrupole field with a weak superimposed octopole component, described by the nonlinear Mathieu equation (NME), was studied by using the analytical harmonic balance (HB) method. Good accuracy of the HB method, which was comparable with that of the numerical fourth-order Runge-Kutta (4th RK), was achieved in the entire first stability region, except for the points at the stability boundary (i.e., β = 1) and at the nonlinear resonance condition (i.e., β = 0.5). Using the HB method, the nonlinear 3β harmonic series introduced by the octopole component and the resultant nonlinear resonance effect were characterized. At nonlinear resonance, obvious resonant peaks were observed in the nonlinear 3β series of ion motion, but were not found in the natural harmonics. In addition, both resonant excitation and absorption peaks could be observed, simultaneously. These are two unique features of the nonlinear resonance, distinguishing it from the normal resonance. Finally, an approximation equation was given to describe the corresponding working parameter, q nr , at nonlinear resonance. This equation can help avoid the sensitivity degradation due to the operation of ion traps at the nonlinear resonance condition.

  9. Quadrupole collectivity in {sup 128}Cd

    Energy Technology Data Exchange (ETDEWEB)

    Boenig, Esther Sabine

    2014-07-07

    The regions around shell closures, especially around doubly magic nuclei, are of major interest in nuclear structure physics, as they provide a perfect test for nuclear structure theory. The neutron-rich Cd isotopes in the region of {sup 132}Sn are only two protons away from the shell closure at Z=50 and in close proximity to the N=82 magic number. Nevertheless they show an irregular behaviour regarding the excitation energy of the first excited 2{sup +} state. This is not reproduced by shell model calculations, which is astonishing due to the proximity of the shell closures. In order to shed light on the much discussed region around doubly magic {sup 132}Sn, a Coulomb excitation experiment of {sup 128}Cd has been performed at REX-ISOLDE, CERN. The reduced transition strength B(E2;0{sup +}{sub gs} → 2{sup +}{sub 1}), which is a measure of collectivity, and the spectroscopic quadrupole moment Q{sub s}(2{sup +}{sub 1}) as a measure of deformation could be determined for the first time. The results are shown as the continuation of already measured neutron-rich Cd isotopes and are compared to both beyond mean field and shell model calculations, which give different predictions for these observables.

  10. Adjustable rare earth quadrupole drift tube magnets

    International Nuclear Information System (INIS)

    Feinberg, B.; Tanabe, J.; Halbach, K.; Koehler, G.; Green, M.I.

    1987-03-01

    A prototype permanent-magnet drift tube quadrupole with adjustable field strength has been constructed and tested. The magnet uses iron pole pieces to provide the required field shape along with rare earth permanent-magnet material (samarium cobalt) to energize the magnet. A unique feature of the configuration is the adjustability of the field, accomplished by rotating the outer rings consisting of permanent magnets and iron. In contrast with a previous prototype magnet, this new design uses ball bearings in place of slide bearings to eliminate potential failures. The rotation is now achieved with a bevel gear mechanism. The prototype design also incorporates a new drift tube shell vacuum seal to allow easy disassembly. Tests were made of the magnetic properties and the mechanical performance of this magnet. Field errors are extremely small, and the magnet passed an accelerated ten year lifetime test. It is planned to use this type of magnet to replace 24 of the SuperHILAC prestripper drift tubes

  11. New structural studies of liquid crystal by reflectivity and resonant X-ray diffraction

    International Nuclear Information System (INIS)

    Fernandes, P.

    2007-04-01

    This memory presents three structural studies of smectic Liquid Crystals by reflectivity and resonant diffraction of X-rays. It is divided in five chapters. In the first a short introduction to Liquid Crystals is given. In particular, the smectic phases that are the object of this study are presented. The second chapter is consecrated to the X-ray experimental techniques that were used in this work. The three last chapters present the works on which this thesis can be divided. Chapter three demonstrates on free-standing films of MHPOBC (historic liquid crystal that possesses the antiferroelectric sub-phases) the possibility to extend the technique of resonant X-ray diffraction to liquid crystals without resonant element. In the fourth chapter the structure of the B 2 liquid crystal phase of bent-core molecules (or banana molecules) is elucidated by using resonant X-ray diffraction combined with polarization analysis of the diffracted beam. A model of the polarization of the resonant beam diffracted by four different structures proposed for the B 2 phase is developed in this chapter. In the fifth chapter a smectic binary mixture presenting a very original critical point of phase separation is studied by X-ray reflectivity and optical microscopy. A concentration gradient in the direction perpendicular to the plane of the film seems to be induced by the free-standing film geometry. The results of a simplified model of the system are compatible with this interpretation

  12. Neutron diffraction and NQR study of the intermediate turn angle phase formed during AFI to AFII recording in YBa2Cu3-xAlxO6+#delta#

    DEFF Research Database (Denmark)

    Brecht, E.; Schmahl, W.W.; Fuess, H.

    1997-01-01

    The reordering mechanism from the antiferromagnetic phase AFI to the antiferromagnetic phase AFII in an oxygen-deficient YBa2Cu2.94Al0.06O6+delta single crystal with an oxygen content delta=0.18 in the Cu(1) layer has been studied by neutron diffraction and nuclear quadrupole resonance (NQR...

  13. Study of Intrinsic Dissipation Due to Thermoelastic Coupling in Gyroscope Resonators.

    Science.gov (United States)

    Li, Changlong; Gao, Shiqiao; Niu, Shaohua; Liu, Haipeng

    2016-09-07

    This paper presents analytical models, as well as numerical and experimental verification of intrinsic dissipation due to thermoelastic loss in tuning-fork resonator. The thermoelastic analytical governing equations are created for resonator vibrating at drive-mode and sense-mode, and thermoelastic vibration field quantities are deduced. Moreover, the theoretical values are verified that coincided well with finite element analysis (FEM) simulation results. Also, the comparison of vibration field quantities is made to investigate the effect of different conditions on resonator thermoelastic vibration behavior. The significant parameters of thermoelastic damping and quality factor are subsequently deduced to analyze the energy dissipation situation in the vibration process. Meanwhile, the corresponding conclusions from other studies are used to verify our theoretical model and numerical results. By comparing with the experimental quality factor, the numerical values are validated. The combination of the theoretical expressions, numerical results and experimental data leads to an important insight into the achievable quality factor value of tuning-fork resonator, namely, that the thermoelastic damping is the main loss mechanism in the micro-comb finger structure and the quality factor varies under different vibration modes. The results demonstrate that the critical geometry dimensions of tuning-fork resonator can be well designed with the assistance of this study.

  14. Study of Intrinsic Dissipation Due to Thermoelastic Coupling in Gyroscope Resonators

    Directory of Open Access Journals (Sweden)

    Changlong Li

    2016-09-01

    Full Text Available This paper presents analytical models, as well as numerical and experimental verification of intrinsic dissipation due to thermoelastic loss in tuning-fork resonator. The thermoelastic analytical governing equations are created for resonator vibrating at drive-mode and sense-mode, and thermoelastic vibration field quantities are deduced. Moreover, the theoretical values are verified that coincided well with finite element analysis (FEM simulation results. Also, the comparison of vibration field quantities is made to investigate the effect of different conditions on resonator thermoelastic vibration behavior. The significant parameters of thermoelastic damping and quality factor are subsequently deduced to analyze the energy dissipation situation in the vibration process. Meanwhile, the corresponding conclusions from other studies are used to verify our theoretical model and numerical results. By comparing with the experimental quality factor, the numerical values are validated. The combination of the theoretical expressions, numerical results and experimental data leads to an important insight into the achievable quality factor value of tuning-fork resonator, namely, that the thermoelastic damping is the main loss mechanism in the micro-comb finger structure and the quality factor varies under different vibration modes. The results demonstrate that the critical geometry dimensions of tuning-fork resonator can be well designed with the assistance of this study.

  15. Study of resonant processes in plasmonic nanostructures for sensor applications (Conference Presentation)

    Science.gov (United States)

    Pirunčík, Jiří; Kwiecien, Pavel; Fiala, Jan; Richter, Ivan

    2017-05-01

    This contribution is focused on the numerical studies of resonant processes in individual plasmonic nanostructures, with the attention particularly given to rectangular nanoparticles and concominant localized surface plasmon resonance processes. Relevant models for the description and anylysis of localized surface plasmon resonance are introduced, in particular: quasistatic approximation, Mie theory and in particular, a generalized (quasi)analytical approach for treating rectangularly shaped nanostructures. The parameters influencing resonant behavior of nanoparticles are analyzed with special interest in morphology and sensor applications. Results acquired with Lumerical FDTD Solutions software, using finite-difference time-domain simulation method, are shown and discussed. Simulations were mostly performed for selected nanostructures composed of finite rectangular nanowires with square cross-sections. Systematic analysis is made for single nanowires with varying length, parallel couple of nanowires with varying gap (cut -wires) and selected dolmen structures with varying gap between one nanowire transversely located with respect to parallel couple of nanowires (in both in-plane and -out-of-plane arrangements). The dependence of resonant peaks of cross-section spectral behavior (absorption, scattering, extinction) and their tunability via suitable structuring and morphology changes are primarily researched. These studies are then followed with an analysis of the effect of periodic arrangements. The results can be usable with respect to possible sensor applications.

  16. Study on frequency characteristics of wireless power transmission system based on magnetic coupling resonance

    Science.gov (United States)

    Liang, L. H.; Liu, Z. Z.; Hou, Y. J.; Zeng, H.; Yue, Z. K.; Cui, S.

    2017-11-01

    In order to study the frequency characteristics of the wireless energy transmission system based on the magnetic coupling resonance, a circuit model based on the magnetic coupling resonant wireless energy transmission system is established. The influence of the load on the frequency characteristics of the wireless power transmission system is analysed. The circuit coupling theory is used to derive the minimum load required to suppress frequency splitting. Simulation and experimental results verify that when the load size is lower than a certain value, the system will appear frequency splitting, increasing the load size can effectively suppress the frequency splitting phenomenon. The power regulation scheme of the wireless charging system based on magnetic coupling resonance is given. This study provides a theoretical basis for load selection and power regulation of wireless power transmission systems.

  17. Switching of transmission resonances in a two-channels coupler: A Boundary Wall Method scattering study

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, A. [Instituto de Física, Universidade Federal de Alagoas, 57072-970, Maceió-AL (Brazil); Zanetti, F.M. [Departamento de Física, Universidade Federal do Paraná, 81531-990, Curitiba-PR (Brazil); Lyra, M.L., E-mail: marcelo@fis.ufal.br [Instituto de Física, Universidade Federal de Alagoas, 57072-970, Maceió-AL (Brazil)

    2016-10-15

    In this work, we study the transmission characteristics of a two-channels coupler model system using the Boundary Wall Method (BWM) to determine the solution of the corresponding scattering problem of an incident plane wave. We show that the BWM provides detailed information regarding the transmission resonances. In particular, we focus on the case of single channel input aiming to explore the energy switching performance of the coupler. We show that the coupler geometry can be tailored to allow for the first transmission resonances to be predominantly transmitted on specific output channels, an important characteristic for the realization of logical operations. - Highlights: • The switching performance of a coupled waveguide device is studied via the boundary wall method. • The method efficiently identifies all resonant transmission modes. • Energy switching is controlled and optimized as a function of the device geometry.

  18. Transmission-line resonators for the study of individual two-level tunneling systems

    Science.gov (United States)

    Brehm, Jan David; Bilmes, Alexander; Weiss, Georg; Ustinov, Alexey V.; Lisenfeld, Jürgen

    2017-09-01

    Parasitic two-level tunneling systems (TLS) emerge in amorphous dielectrics and constitute a serious nuisance for various microfabricated devices, where they act as a source of noise and decoherence. Here, we demonstrate a new test bed for the study of TLS in various materials which provides access to properties of individual TLS as well as their ensemble response. We terminate a superconducting transmission-line resonator with a capacitor that hosts TLS in its dielectric. By tuning TLS via applied mechanical strain, we observe the signatures of individual TLS strongly coupled to the resonator in its transmission characteristics and extract the coupling components of their dipole moments and energy relaxation rates. The strong and well-defined coupling to the TLS bath results in pronounced resonator frequency fluctuations and excess phase noise, through which we can study TLS ensemble effects such as spectral diffusion, and probe theoretical models of TLS interactions.

  19. A magnetic resonance study of 3d transition metals and thermal donors in silicon

    International Nuclear Information System (INIS)

    Wezep, D.A. van.

    1986-01-01

    This thesis describes a study of 3d-transition metal impurities in silicon (titanium and iron in particular) and a study of oxygen-related heat-treatment centers in silicon, both carried out mainly by magnetic resonances techniques like EPR and ENDOR. 119 refs.; 31 figs.; 14 tabs

  20. Microwave dynamics of high aspect ratio superconducting nanowires studied using self-resonance

    Science.gov (United States)

    Santavicca, Daniel F.; Adams, Jesse K.; Grant, Lierd E.; McCaughan, Adam N.; Berggren, Karl K.

    2016-06-01

    We study the microwave impedance of extremely high aspect ratio (length/width ≈ 5000) superconducting niobium nitride nanowires. The nanowires are fabricated in a compact meander geometry that is in series with the center conductor of a 50 Ω coplanar waveguide transmission line. The transmission coefficient of the sample is measured up to 20 GHz. At high frequency, a peak in the transmission coefficient is seen. Numerical simulations show that this is a half-wave resonance along the length of the nanowire, where the nanowire acts as a high impedance, slow wave transmission line. This resonance sets the upper frequency limit for these nanowires as inductive elements. Fitting simulations to the measured resonance enables a precise determination of the nanowire's complex sheet impedance at the resonance frequency. The real part is a measure of dissipation, while the imaginary part is dominated by kinetic inductance. We characterize the dependence of the sheet resistance and sheet inductance on both temperature and current and compare the results to recent theoretical predictions for disordered superconductors. These results can aid in the understanding of high frequency devices based on superconducting nanowires. They may also lead to the development of novel superconducting devices such as ultra-compact resonators and slow-wave structures.

  1. Psychosis and autism: magnetic resonance imaging study of brain anatomy.

    LENUS (Irish Health Repository)

    Toal, Fiona

    2009-05-01

    Autism-spectrum disorder is increasingly recognised, with recent studies estimating that 1% of children in South London are affected. However, the biology of comorbid mental health problems in people with autism-spectrum disorder is poorly understood.

  2. Organic Pollutants in Soils, as Studied by Nuclear Magnetic Resonance

    Science.gov (United States)

    1998-05-15

    fundamental behaviors of certain organic pollutants (e.g., benzene, CC1, trichloroethylene, ethylene glycol) when adsorbed in typical soils , as...represented in most of this study by the ’ following major soil components: humics (humic acid, fulvic acid, humin ), clays (montmorillonite, kaolinite...239.18 Designed using Perform Pro, WHS/DIOR, Oct 94 • • 2 2 NAY m^ FINAL TECHNICAL REPORT ORGANIC POLLUTANTS IN SOILS , AS STUDIED BY NUCLEAR

  3. Deuterium and phosphorus-31 nuclear magnetic resonance study of the interaction of melittin with dimyristoylphosphatidylcholine bilayers and the effects of contaminating phospholipase A2

    International Nuclear Information System (INIS)

    Dempsey, C.E.; Watts, A.

    1987-01-01

    The interaction of bee venom melittin with dimyristoylphosphatidylcholine (DMPC) selectively deuteriated in the choline head group has been studied by deuterium and phosphorus-31 nuclear magnetic resonance (NMR) spectroscopy. The action of residual phospholipase A 2 in melittin samples resulted in mixtures of DMPC and its hydrolytic products that underwent reversible transitions at temperatures between 30 and 35 0 C from extended bilayers to micellar particles which gave narrow single-line deuterium and phosphorus-31 NMR spectra. Similar transitions were observed in DMPC-myristoyllysophosphatidylcholine (lysoPC)-myristic acid mixtures containing melittin but not in melittin-free mixtures, indicating that melittin is able to stabilize extended bilayers containing DMPC and its hydrolytic products in the liquid-crystalline phase. Melittin, free of phospholipase A 2 activity, and at 3-5 mol % relative to DMPC, induced reversible transitions between extended bilayers and micellar particles on passing through the liquid-crystalline to gel phase transition temperature of the lipid, effects similar to those observed in melittin-acyl chain deuteriated dipalmitoylphosphatidylcholine (DPPC) mixtures. LysoPC at concentrations of 20 mol % or greater relative to DMPC induced transitions between extended bilayers and micellar particles with characteristics similar to those induced by melittin. It is proposed that these melittin- and lysoPC-induced transitions share similar mechanisms. The effects of melittin on the quadrupole splittings and T 1 relaxation times of head-group-deuteriated DMPC in the liquid-crystalline phase share features similar to the effects of metal ions on DPPC head groups, indicating that the conformational properties of the choline head group in PC bilayers may be affected by melittin and by metal ions in a similar manner

  4. Deuterium and phosphorus-31 nuclear magnetic resonance study of the interaction of melittin with dimyristoylphosphatidylcholine bilayers and the effects of contaminating phospholipase A/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Dempsey, C.E.; Watts, A.

    1987-09-08

    The interaction of bee venom melittin with dimyristoylphosphatidylcholine (DMPC) selectively deuteriated in the choline head group has been studied by deuterium and phosphorus-31 nuclear magnetic resonance (NMR) spectroscopy. The action of residual phospholipase A/sub 2/ in melittin samples resulted in mixtures of DMPC and its hydrolytic products that underwent reversible transitions at temperatures between 30 and 35/sup 0/C from extended bilayers to micellar particles which gave narrow single-line deuterium and phosphorus-31 NMR spectra. Similar transitions were observed in DMPC-myristoyllysophosphatidylcholine (lysoPC)-myristic acid mixtures containing melittin but not in melittin-free mixtures, indicating that melittin is able to stabilize extended bilayers containing DMPC and its hydrolytic products in the liquid-crystalline phase. Melittin, free of phospholipase A/sub 2/ activity, and at 3-5 mol % relative to DMPC, induced reversible transitions between extended bilayers and micellar particles on passing through the liquid-crystalline to gel phase transition temperature of the lipid, effects similar to those observed in melittin-acyl chain deuteriated dipalmitoylphosphatidylcholine (DPPC) mixtures. LysoPC at concentrations of 20 mol % or greater relative to DMPC induced transitions between extended bilayers and micellar particles with characteristics similar to those induced by melittin. It is proposed that these melittin- and lysoPC-induced transitions share similar mechanisms. The effects of melittin on the quadrupole splittings and T/sub 1/ relaxation times of head-group-deuteriated DMPC in the liquid-crystalline phase share features similar to the effects of metal ions on DPPC head groups, indicating that the conformational properties of the choline head group in PC bilayers may be affected by melittin and by metal ions in a similar manner.

  5. Two-phonon giant resonances in 136Xe, 208Pb, and 238U

    International Nuclear Information System (INIS)

    Boretzky, K.; Gruenschloss, A.; Ilievski, S.; Adrich, P.; Aumann, T.; Bertulani, C.A.; Cub, J.; Dostal, W.; Eberlein, B.; Elze, T.W.; Emling, H.; Fallot, M.; Holeczek, J.; Holzmann, R.; Kozhuharov, C.; Kratz, J.V.; Kulessa, R.; Leifels, Y.; Leistenschneider, A.; Lubkiewicz, E.; Mordechai, S.; Ohtsuki, T.; Reiter, P.; Simon, H.; Stelzer, K.; Stroth, J.; Suemmerer, K.; Surowiec, A.; Wajda, E.; Walus, W.

    2003-07-01

    The excitation of the double-phonon giant dipole resonance was observed in heavy projectile nuclei impinging on targets of high nuclear charge with energies of 500-700 MeV/nucleon. New experimental data are presented for 136 Xe and 238 U together with further analysis of earlier data on 208 Pb. Differential cross sections dσ/dE * and dσ/dθ for electromagnetic excitations were deduced. Depending on the isotope, cross sections appear to be enhanced in comparison to those expected from a purely harmonic nuclear dipole response. The cumulative effect of excitations of two-phonon states composed of one dipole and one quadrupole phonon, of predicted anharmoniticies in the double-phonon dipole response, and of damping of the dipole resonance during the collision may account for the discrepancy. In addition, decay properties of two-phonon resonances were studied and compared to that of a statistical decay. (orig.)

  6. Experimental Study on LTCC Glass-Ceramic Based Dual Segment Cylindrical Dielectric Resonator Antenna

    Directory of Open Access Journals (Sweden)

    Ravi Kumar Gangwar

    2013-01-01

    Full Text Available The measured characteristics in C/X bands, including material properties of a dual segment cylindrical dielectric resonator antenna (CDRA fabricated from glass-ceramic material based on B2O3–La2O3–MgO glass and La(Mg0.5Ti0.5O3 ceramic, are reported. The sintering characteristic of the ceramic in presence of glass is determined from contact angle measurement and DTA. The return loss and input impedance versus frequency characteristics and radiation patterns of CDRA at its resonant frequency of 6.31 GHz are studied. The measured results for resonant frequency and return loss bandwidth of the CDRA are also compared with corresponding theoretical ones.

  7. NATO Advanced Study Institute on Giant Resonances in Atoms, Molecules, and Solids

    CERN Document Server

    Esteva, J; Karnatak, R

    1987-01-01

    Often, a new area of science grows at the confines between recognised subject divisions, drawing upon techniques and intellectual perspectives from a diversity of fields. Such growth can remain unnoticed at first, until a characteristic fami ly of effects, described by appropriate key words, has developed, at which point a distinct subject is born. Such is very much the case with atomic 'giant resonances'. For a start, their name itself was borrowed from the field of nuclear collective resonances. The energy range in which they occur, at the juncture of the extreme UV and the soft X-rays, remains to this day a meeting point of two different experimental techniques: the grating and the crystal spectrometer. The impetus of synchrotron spectroscopy also played a large part in developing novel methods, described by many acronyms, which are used to study 'giant resonances' today. Finally, although we have described them as 'atomic' to differentiate them from their counterparts in Nuclear Physics, their occurrence ...

  8. Quadrature Slotted Surface Coil Pair for Magnetic Resonance Imaging at 4 Tesla: Phantom Study

    Directory of Open Access Journals (Sweden)

    Solis S.E.

    2012-01-01

    Full Text Available A coil array was composed of two slotted surface coils forming a structure with two plates at 900, each one having 6 circular slots and is introduced in this paper. Numerical simulations of the magnetic field of this coil array were performed at 170 MHz using the finite element method to study its behaviour. This coil array was developed for brain magnetic resonance imaging to be operated at the resonant frequency of 170 MHz in the transceiver mode and quadrature driven. Numerical simulations demonstrated that electromagnetic interaction between the coil elements is negligible, and that the magnetic field showed a good uniformity. Phantom images were acquired with our coil array and standard pulse sequences on a research-dedicated 4 Tesla scanner. In vitro images showed the feasibility of this coil array for standard pulses and high field magnetic resonance imaging.

  9. Studies of weak capture-gamma-ray resonances via coincidence techniques

    CERN Document Server

    Rowland, C; Champagne, A E; Dummer, A K; Fitzgerald, R; Harley, E C T; Mosher, J; Runkle, R

    2002-01-01

    A method for measuring weak capture-gamma-ray resonances via gamma gamma-coincidence counting techniques is described. The coincidence apparatus consisted of a large-volume germanium detector and an annular NaI(Tl) crystal. The setup was tested by measuring the weak E sub R =227 keV resonance in sup 2 sup 6 Mg(p,gamma) sup 2 sup 7 Al. Absolute germanium and NaI(Tl) counting efficiencies for a range of gamma-ray energies and for different detector-target geometries are presented. Studies of the gamma-ray background in our spectra are described. Compared to previous work, our method improves the detection sensitivity for weak capture-gamma-ray resonances by a factor of approx 100. The usefulness of the present technique for investigations of interest to nuclear astrophysics is discussed.

  10. Experimental and analytical study of highly tunable electrostatically actuated resonant beams

    KAUST Repository

    Hajjaj, Amal Z.

    2015-11-03

    We demonstrate theoretically and experimentally highly tunable clamped–clamped microbeam resonators actuated with electrostatic forces. Theoretically, the Galerkin procedure is used to solve for static deflection as well as the eigenvalue problem as a function of the dc voltage for different values of the ratio between the air gap and the thickness of the microbeam. We demonstrate theoretically and experimentally that the natural frequency of the microbeam can increase or decrease with the increase of the dc polarization voltage depending on the ratio between the air gap and the thickness. Hence, we show that unlike the classical softening effect of the dc voltage, by careful designs of the microbeams, the dc bias can be used to effectively increase the resonance frequencies by several factors. Experimental data are presented for two case studies of silicon beams showing the effective increase of their fundamental resonance frequencies by more than 50–80%. Excellent agreement is reported among the theoretical and experimental results.

  11. Nuclear gamma-resonance study of Co-Gd amorphous films

    International Nuclear Information System (INIS)

    Ivanov, O.A.; Kumejshin, V.F.; Vas'kovskij, V.O.; Laletin, E.V.

    1982-01-01

    The gamma-resonance method has been used to study X ray Co-Gd amorphous films of 18 at.% Cd, 76% Co, 6% Fe enriched with 57 Fe up to 4% obtained by cathode high-frequency sputtering. Spectra processing has been computerized by three different programs. Effective field distributions Hsub(eff) at 57 Fe nuclei are obtained. It is shown that at annealings up to 670 K gradual crystallization occurs under conservation of ''chemical disorder''. The Hsub(eff) temperature dependence at resonance nuclei as well as angles between the magnetization vector and a normal to the film after various thermal treatments are determined [ru

  12. A study of the optimum draft of multiple resonance power buoys for maximizing electric power production

    Directory of Open Access Journals (Sweden)

    Hyuck-Min Kweon

    2014-12-01

    Full Text Available To maximize electric power production using wave energy extractions from resonance power buoys, the maximum motion displacement spectra of the buoys can primarily be obtained under a given wave condition. In this study, wave spectra observed in shoaling water were formulated. Target resonance frequencies were established from the arithmetic means of modal frequency bands and the peak frequencies. The motion characteristics of the circular cylindrical power buoys with corresponding drafts were then calculated using numerical models without considering PTO damping force. Results showed that the heave motions of the power buoys in shoaling waters with insufficient drafts produced greater amplification effects than those in deep seas with sufficient drafts.

  13. Nonlinear resonances

    CERN Document Server

    Rajasekar, Shanmuganathan

    2016-01-01

    This introductory text presents the basic aspects and most important features of various types of resonances and anti-resonances in dynamical systems. In particular, for each resonance, it covers the theoretical concepts, illustrates them with case studies, and reviews the available information on mechanisms, characterization, numerical simulations, experimental realizations, possible quantum analogues, applications and significant advances made over the years. Resonances are one of the most fundamental phenomena exhibited by nonlinear systems and refer to specific realizations of maximum response of a system due to the ability of that system to store and transfer energy received from an external forcing source. Resonances are of particular importance in physical, engineering and biological systems - they can prove to be advantageous in many applications, while leading to instability and even disasters in others. The book is self-contained, providing the details of mathematical derivations and techniques invo...

  14. Study of microwave components for an electron cyclotron resonance ...

    Indian Academy of Sciences (India)

    Instrum. 68: 4424–4426. Celona L, Ciavola G and Gammino S 1998 Study of microwave coupling ECR ion sources and microwave ion sources. Rev. Sci. Instrum. 69: 1113–1115. Celona L, Gammino S, Ciavola G, Chines F, Marletta S and Messina E 2000 Ionization of efficiency measurements with the microwave discharge ...

  15. Psychosis and autism: magnetic resonance imaging study of brain anatomy

    NARCIS (Netherlands)

    Toal, Fiona; Bloemen, Oswald J. N.; Deeley, Quinton; Tunstall, Nigel; Daly, Eileen M.; Page, Lisa; Brammer, Michael J.; Murphy, Kieran C.; Murphy, Declan G. M.

    2009-01-01

    BACKGROUND: Autism-spectrum disorder is increasingly recognised, with recent studies estimating that 1% of children in South London are affected. However, the biology of comorbid mental health problems in people with autism-spectrum disorder is poorly understood. AIMS: To investigate the brain

  16. Mass peak shape improvement of a quadrupole mass filter when operating with a rectangular wave power supply.

    Science.gov (United States)

    Luo, Chan; Jiang, Dan; Ding, Chuan-Fan; Konenkov, Nikolai V

    2009-09-01

    Numeric experiments were performed to study the first and second stability regions and find the optimal configurations of a quadrupole mass filter constructed of circular quadrupole rods with a rectangular wave power supply. The ion transmission contours were calculated using ion trajectory simulations. For the first stability region, the optimal rod set configuration and the ratio r/r(0) is 1.110-1.115; for the second stability region, it is 1.128-1.130. Low-frequency direct current (DC) modulation with the parameters of m = 0.04-0.16 and nu = omega/Omega = 1/8-1/14 improves the mass peak shape of the circular rod quadrupole mass filter at the optimal r/r(0) ratio of 1.130. The amplitude modulation does not improve mass peak shape. Copyright (c) 2009 John Wiley & Sons, Ltd.

  17. On the small-x evolution of the color quadrupole and the Weizsaecker-Williams gluon distribution

    International Nuclear Information System (INIS)

    Dominguez, Fabio; Mueller, A.H.; Munier, Stephane; Xiao Bowen

    2011-01-01

    Color quadrupoles have been found to be important in the proper description of observables sensitive to the small-x regime in nuclei as well as in the operator definition of the Weizsaecker-Williams gluon distribution. In this Letter, we derive the small-x evolution equation of the quadrupole and the Weizsaecker-Williams gluon distribution without taking the large N c limit and study the properties of the equation in both dilute and saturation regime. We find that the quadrupole evolution follows the BFKL evolution in the dilute regime and then saturates in the dense region due to nonlinear terms. This leads us to conclude that the Weizsaecker-Williams gluon distribution should obey the same geometrical behavior as the dipole gluon distribution as found in the inclusive DIS measurement.

  18. Resonance Raman study on distorted symmetry of porphyrin in ...

    Indian Academy of Sciences (India)

    plants [32]. They form important chromphores in haeme protein, chlorophylls, cytochrome oxidase etc. Nickel ocatethyl porphyrin, Ni(OEP), plays a central role in studies of the molec- ular properties of porphyrins ..... may attain any one of these, viz., D4, D2d, C4h, C4h, D2h, C4, S4, D2, C2v, C2h,. C2, Cs, Ci and C1 distorted ...

  19. Electron spin resonance studies of some irradiated pharmaceuticals

    International Nuclear Information System (INIS)

    Gibella, M.; Crucq, A-S.; Tilquin, B.; Stocker, P.; Lesgards, G.; Raffi, J.

    2000-01-01

    Five antibiotics belonging to the cephalosporins and penicillins groups have been irradiated: anhydrous ampicilline acid, amoxicilline acid trihydrate, cefuroxime sodium salt, cloxacilline sodium salt monohydrate and ceftazidime pentahydrate. ESR studies have been carried out, showing the influence of irradiation and storage parameters on the nature and concentration of the free radicals trapped. These results may be used to detect an irradiation treatment on such pharmaceuticals. (author)

  20. Evidence for resonant bonding in phase-change materials studied by IR spectroscopy

    Directory of Open Access Journals (Sweden)

    K. Shportko

    2017-04-01

    Full Text Available Phase-change materials (PCM attract attention due to their unique properties. This remarkable portfolio also makes them promising for applications in novel data storage devices. In this study, we discuss differences in the optical properties of PCM and non-PCM in the IR caused by presence or absence of resonant bonding.

  1. End organ damage in the metabolic syndrome and diabetes mellitus : biochemical and magnetic resonance imaging studies

    NARCIS (Netherlands)

    Tjeerdema, Nathanja

    2015-01-01

    The focus of this thesis was to evaluate biomarkers of cardiovascular end organ damage in the metabolic syndrome and diabetes mellitus. We performed cross-sectional studies with biochemical and magnetic resonance imaging (MRI) techniques. We have demonstrated that insulin resistance is a strong

  2. Defect-related internal dissipation in mechanical resonators and the study of coupled mechanical systems.

    Energy Technology Data Exchange (ETDEWEB)

    Friedmann, Thomas Aquinas; Czaplewski, David A.; Sullivan, John Patrick; Modine, Normand Arthur; Wendt, Joel Robert; Aslam, Dean (Michigan State University, Lansing, MI); Sepulveda-Alancastro, Nelson (University of Puerto Rico, Mayaguez, PR)

    2007-01-01

    Understanding internal dissipation in resonant mechanical systems at the micro- and nanoscale is of great technological and fundamental interest. Resonant mechanical systems are central to many sensor technologies, and microscale resonators form the basis of a variety of scanning probe microscopies. Furthermore, coupled resonant mechanical systems are of great utility for the study of complex dynamics in systems ranging from biology to electronics to photonics. In this work, we report the detailed experimental study of internal dissipation in micro- and nanomechanical oscillators fabricated from amorphous and crystalline diamond materials, atomistic modeling of dissipation in amorphous, defect-free, and defect-containing crystalline silicon, and experimental work on the properties of one-dimensional and two-dimensional coupled mechanical oscillator arrays. We have identified that internal dissipation in most micro- and nanoscale oscillators is limited by defect relaxation processes, with large differences in the nature of the defects as the local order of the material ranges from amorphous to crystalline. Atomistic simulations also showed a dominant role of defect relaxation processes in controlling internal dissipation. Our studies of one-dimensional and two-dimensional coupled oscillator arrays revealed that it is possible to create mechanical systems that should be ideal for the study of non-linear dynamics and localization.

  3. The Fontan circulation and the liver : A magnetic resonance diffusion-weighted imaging study

    NARCIS (Netherlands)

    Wolff, Djoeke; van Melle, Joost P.; Dijkstra, Hildebrand; Bartelds, Beatrijs; Willems, Tineke P.; Hillege, Hans; van den Berg, Aad P.; Ebels, Tjark; Sijens, Paul E.; Berger, Rolf M. F.

    2016-01-01

    Background: Patients with a Fontan circulation tend to develop liver fibrosis, liver cirrhosis and even hepatocellular carcinoma. The aim of this study is to use the magnetic resonance technique diffusing-weighted imaging (DWI) for detecting liver fibrosis/cirrhosis in Fontan patients and to

  4. Study of the arrangement of crystallites in γ-irradiated human enamel by electron paramagnetic resonance

    International Nuclear Information System (INIS)

    Cevc, P.; Schara, M.; Ravnik, C.; Skaleric, U.

    1976-01-01

    The arrangement of tooth enamel microcrystals has been studied on CO 3 3- bound electrons by paramagnetic resonance. It was found that noncarious human maxillary central incisors have a greater degree of alignment of tooth enamel microcrystals than the carious ones. The outermost surface layer of enamel showed a greater crystallite degree of alignment than other parts

  5. The magnetic-resonance properties study of nanostructures for spintronics by FMR

    International Nuclear Information System (INIS)

    Kupriyanova, G; Zyubin, A; Astashonok, A; Orlova, A; Prokhorenko, E

    2011-01-01

    In this work we report the study of the magnetic-resonance properties such as magnetic anisotropy, magnetic damping, and interlayer exchange coupling between ferromagnetic layers separated by a nonmagnetic spacer by FMR to assess their applicability in a functional magnetic tunnel junction.

  6. Evaluation of relaxation time measurements by magnetic resonance imaging. A phantom study

    DEFF Research Database (Denmark)

    Kjaer, L; Thomsen, C; Henriksen, O

    1987-01-01

    Several circumstances may explain the great variation in reported proton T1 and T2 relaxation times usually seen. This study was designed to evaluate the accuracy of relaxation time measurements by magnetic resonance imaging (MRI) operating at 1.5 tesla. Using a phantom of nine boxes with different...

  7. Resonance Raman and quantum chemical studies of short polyene radical cations

    DEFF Research Database (Denmark)

    Keszthelyi, T.; Wilbrandt, R.; Bally, T.

    1997-01-01

    ,3,5-hexatriene have been studied. The radical cations were generated radiolytically in a glassy Freon matrix and investigated by optical absorption and resonance Raman spectroscopy. Ab initio and density functional molecular-orbital calculations have been carried out to predict equilibrium structures...

  8. [Abbreviations of special terms for presentation/paper titles in magnetic resonance study].

    Science.gov (United States)

    Komi, Masanori; Shiraishi, Junji

    2013-08-01

    A large number of abbreviations have been created for various special terms, and used in magnetic resonance (MR) study. However, the use of these abbreviations in the paper title has been restricted by the majority of societies and journals. In this study, we investigated the use of various abbreviations for special terms in MR study in order to clarify which abbreviation could be used in the paper title without spelling. We used two journals, Magnetic Resonance in Medicine (MRM) and Journal of Magnetic Resonance Imaging (JMRI) published by the International Society for Magnetic Resonance in Medicine (ISMRM), which has been considered to be the most advanced society for MR study in the world, as the reference standard for use of the abbreviations. Except for some basic abbreviations and specific abbreviations that were used on a long-term basis, the majority of abbreviations were used in the paper title with its full spelling in order to ensure generality. It is preferable that abbreviations not be used in the title of the or title of the paper.

  9. Quantitative and qualitative assessment of structural magnetic resonance imaging data in a two-center study

    NARCIS (Netherlands)

    Chalavi, Sima; Simmons, Andrew; Dijkstra, Hildebrand; Barker, Gareth J.; Reinders, A. A. T. Simone

    2012-01-01

    Background: Multi-center magnetic resonance imaging (MRI) studies present an opportunity to advance research by pooling data. However, brain measurements derived from MR-images are susceptible to differences in MR-sequence parameters. It is therefore necessary to determine whether there is an

  10. Glutamatergic Effects of Divalproex in Adolescents with Mania: A Proton Magnetic Resonance Spectroscopy Study

    Science.gov (United States)

    Strawn, Jeffrey R.; Patel, Nick C.; Chu, Wen-Jang; Lee, Jing-Huei; Adler, Caleb M.; Kim, Mi Jung; Bryan, Holly S.; Alfieri, David C.; Welge, Jeffrey A.; Blom, Thomas J.; Nandagopal, Jayasree J.; Strakowski, Stephen M.; DelBello, Melissa P.

    2012-01-01

    Objectives: This study used proton magnetic resonance spectroscopy ([superscript 1]H MRS) to evaluate the in vivo effects of extended-release divalproex sodium on the glutamatergic system in adolescents with bipolar disorder, and to identify baseline neurochemical predictors of clinical remission. Method: Adolescents with bipolar disorder who were…

  11. Nature of the pygmy dipole resonance in Ce-140 studied in (alpha, alpha 'gamma) experiments

    NARCIS (Netherlands)

    Savran, D.; Babilon, M.; van den Berg, A.M.; Harakeh, M.N.; Hasper, J.; Matic, A.; Wörtche, H.J.; Zilges, A.

    2006-01-01

    A concentration of electric-dipole excitations below the particle threshold, which is frequently denoted as the pygmy dipole resonance, has been studied in the semimagic nucleus Ce-140 in (alpha, alpha(')gamma) experiments at E-alpha=136 MeV. The technique of alpha-gamma coincidence experiments

  12. Interaction between adrenaline and dibenzo-18-crown-6: Electrochemical, nuclear magnetic resonance, and theoretical study

    Science.gov (United States)

    Yu, Zhang-Yu; Liu, Tao; Wang, Xue-Liang

    2014-12-01

    The interaction between adrenaline (Ad) and dibenzo-18-crown-6 (DB18C6) was studied by cyclic voltammetry, nuclear magnetic resonance spectroscopy, and the theoretical calculations, respectively. The results show that DB18C6 will affect the electron transfer properties of Ad. DB18C6 can form stable supramolecular complexes with Ad through ion-dipole and hydrogen bond interactions.

  13. Finite Element Model of Training in the superconducting quadrupole magnet SQ02

    Energy Technology Data Exchange (ETDEWEB)

    Caspi, Shlomo; Ferracin, Paolo

    2007-11-01

    This paper describes the use of 3D finite element models to study training in superconducting magnets. The simulations are used to examine coil displacements when the electromagnetic forces are cycled, and compute the frictional energy released during conductor motion with the resulting temperature rise. A computed training curve is then presented and discussed. The results from the numerical computations are compared with test results of the Nb{sub 3}Sn racetrack quadrupole magnet SQ02.

  14. Nuclear quadrupole deformations and anisotropic angular correlations between K x rays and gamma rays

    International Nuclear Information System (INIS)

    Khalil, A.E.

    1983-01-01

    Anisotropic angular correlation between gamma rays and the K x rays following the K conversion from nuclei with large static deformations has been studied. A complete theoretical expression for 181 Ta, the second known case of this phenomenon, is presented. This case involves several mixed nuclear transitions which result in 62% of the x rays arising from magnetic dipole internal-conversion processes and 38% arising from electric-quadrupole internal-conversion processes

  15. High-throughput shotgun lipidomics by quadrupole time-of-flight mass spectrometry

    DEFF Research Database (Denmark)

    Ståhlman, Marcus; Ejsing, Christer S.; Tarasov, Kirill

    2009-01-01

    the absolute quantification of hundreds of molecular glycerophospholipid species, glycerolipid species, sphingolipid species and sterol lipids. Future applications in clinical cohort studies demand detailed lipid molecule information and the application of high-throughput lipidomics platforms. In this review...... we describe a novel high-throughput shotgun lipidomic platform based on 96-well robot-assisted lipid extraction, automated sample infusion by mircofluidic-based nanoelectrospray ionization, and quantitative multiple precursor ion scanning analysis on a quadrupole time-of-flight mass spectrometer...

  16. Analytical calculation of spin tunneling effect in single molecule magnet Fe8 with considering quadrupole excitation

    OpenAIRE

    Y Yousefi; H Fakhari; K Muminov; M R Benam

    2018-01-01

    Spin tunneling effect in Single Molecule Magnet Fe8 is studied by instanton calculation technique using SU(3) generalized spin coherent state in real parameter as a trial function. For this SMM, tunnel splitting arises due to the presence of a Berry like phase in action, which causes interference between tunneling trajectories (instantons). For this SMM, it is established that the use of quadrupole excitation (g dependence) changes not only the location of the quenching points, but also the n...

  17. Chaos-driven decay of nuclear giant resonances: Quantum route to self-organization

    International Nuclear Information System (INIS)

    Drozdz, S.; Nishizaki, S.; Wambach, J.

    1994-01-01

    The influence of background states with increasing level of complexity on the strength distribution of the isoscalar and isovector giant quadrupole resonance in 40 Ca is studied. It is found that the background characteristics, typical for chaotic systems, strongly affect the fluctuation properties of the strength distribution. In particular, the small components of the wave function obey a scaling law analogous to self-organized systems at the critical state. This appears to be consistent with the Porter-Thomas distribution of the transition strength

  18. Charge Dependence and Electric Quadrupole Effects on Single-Nucleon Removal in Relativistic and Intermediate Energy Nuclear Collisions

    Science.gov (United States)

    Norbury, John W.

    1992-01-01

    Single nucleon removal in relativistic and intermediate energy nucleus-nucleus collisions is studied using a generalization of Weizsacker-Williams theory that treats each electromagnetic multipole separately. Calculations are presented for electric dipole and quadrupole excitations and incorporate a realistic minimum impact parameter, Coulomb recoil corrections, and the uncertainties in the input photonuclear data. Discrepancies are discussed. The maximum quadrupole effect to be observed in future experiments is estimated and also an analysis of the charge dependence of the electromagnetic cross sections down to energies as low as 100 MeV/nucleon is made.

  19. Performance of the first short model 150 mm aperture Nb$_3$Sn Quadrupole MQXFS for the High-Luminosity LHC upgrade

    CERN Document Server

    Chlachidze, G; Anerella, M; Bossert, R; Cavanna, E; Cheng, D; Dietderich, D; DiMarco, J; Felice, H; Ferracin, P; Ghosh, A; Grosclaude, P; Guinchard, M; Hafalia, A R; Holik, E; Izquierdo Bermudez, S; Krave, S; Marchevsky, M; Nobrega, F; Orris, D; Pan, H; Perez, J C; Prestemon, S; Ravaioli, E; Sabbi, G L; Salmi, T; Schmalzle, J; Stoynev, S; Strauss, T; Sylvester, C; Tartaglia, M; Todesco, E; Vallone, G; Velev, G; Wanderer, P; Wang, X; Yu, M

    2016-01-01

    The US LHC Accelerator Research Program (LARP) and CERN combined their efforts in developing Nb3Sn magnets for the High-Luminosity LHC upgrade. The ultimate goal of this collaboration is to fabricate large aperture Nb3Sn quadrupoles for the LHC interaction regions (IR). These magnets will replace the present 70 mm aperture NbTi quadrupole triplets for expected increase of the LHC peak luminosity by a factor of 5. Over the past decade LARP successfully fabricated and tested short and long models of 90 mm and 120 mm aperture Nb3Sn quadrupoles. Recently the first short model of 150 mm diameter quadrupole MQXFS was built with coils fabricated both by the LARP and CERN. The magnet performance was tested at Fermilab’s vertical magnet test facility. This paper reports the test results, including the quench training at 1.9 K, ramp rate and temperature dependence studies.

  20. Computed tomography and magnetic resonance imaging study of uveal melanoma

    International Nuclear Information System (INIS)

    Xian Junfang; Wang Zhenchang; Yan Fei

    1998-01-01

    Purpose: To study CT and MRI findings of uveal melanoma and detect the most appropriate MRI scanning sequences. Materials and methods: A series of MRI scanning sequences were performed in 15 cases, and CT was performed in 11 cases. MRI and CT findings were compared with pathologic, operative and clinical findings. Results: Of 11 cases receiving CT scanning, 9 displayed iso-density masses with respect to extraocular muscles. The other two tumors were too small to be demonstrated. Fourteen cases of melanoma showed characteristic MR appearances with hyperintense signal with respect to the vitreous on T 1 -weighted images and hypointense with respect to the vitreous on T 2 -weighted images. One case of iris melanoma only 3 mm in height was not demonstrated on T 1 -weighted images, but was displayed hypointense signal on T 2 -weighted images. Eleven cases associated with retinal detachment showed high intensity signal on T 1 - and T 2 -weighted images and could not be distinguished from melanoma. Postcontrast T 1 -weighted images with fat suppression technique were found to be the most helpful in detecting and delineating small melanomas less than 5 mm as well as distinguishing them from retinal detachment. Conclusion: MRI was superior to ultrasound or CT. Collaborative diagnosis including clinical, ultrasonographic, CT and MRI examinations is the best for ocular melanoma

  1. Fourier transform nuclear magnetic resonance studies of 199Hg

    International Nuclear Information System (INIS)

    Krueger, H.; Lutz, O.; Nolle, A.; Schwenk, A.

    1975-01-01

    199 Hg Fourier Transform NMR studies of various solutions of diverse mercury salts in H 2 O and D 2 O or in the appropriate protonated and deuterated acids are reported for both Hg 2 ++ and Hg ++ . In the different solutions investigated the 199 Hg line positions depend on the concentration of the solution, on the solvents and their isotopic composition and on the temperature of the sample. A ratio of the Larmor frequency of 199 Hg and of 2 H in a Hg(NO 3 ) 2 solution in dilute DNO 3 is given. Using this ratio and the measured chemical shifts, a ratio of the Larmor frequencies of 199 Hg for infinite dilution relative to 2 H in pure D 2 O is given. From this a g 1 -factor for 199 Hg is derived and compared with the g 1 -factor of an optical pumping experiment. The resulting shielding constant is sigma (hydrated 199 Hg ++ versus 199 Hg atom) = -24.32(5) x 10 -4 . This yields an atomic reference scale for all measured NMR line shifts of mercury. (orig.) [de

  2. Localized surface plasmon resonance (LSPR) study of DNA hybridization at single nanoparticle transducers

    International Nuclear Information System (INIS)

    Schneider, T.; Jahr, N.; Jatschka, J.; Csaki, A.; Stranik, O.; Fritzsche, W.

    2013-01-01

    The effect of DNA–DNA interaction on the localized surface plasmon resonance of single 80 nm gold nanoparticles is studied. Therefore, both the attachment of the capture DNA strands at the particle surface and the sequence-specific DNA binding (hybridization) of analyte DNA to the immobilized capture DNA is subject of investigations. The influence of substrate attachment chemistry, the packing density of DNA as controlled by an assisting layer of smaller molecules, and the distance as increased by a linker on the LSPR efficiency is investigated. The resulting changes in signal can be related to a higher hybridization efficiency of the analyte DNA to the immobilized capture DNA. The subsequent attachment of additional DNA strands to this system is studied, which allows for a multiple step detection of binding and an elucidation of the resulting resonance shifts. The detection limit was determined for the utilized DNA system by incubation with various concentration of analyte DNA. Although the method allows for a marker-free detection, we show that additional markers such as 20 nm gold particle labels increase the signal and thereby the sensitivity significantly. The study of resonance shift for various DNA lengths revealed that the resonance shift per base is stronger for shorter DNA molecules (20 bases) as compared to longer ones (46 bases).

  3. A sensitiviy analysis for the stabilization of the CLIC main beam quadrupoles

    CERN Document Server

    Janssens, S; Artoos, K; Fernandez Carmona, P; Hauviller, C

    2010-01-01

    In particle colliders (like the LHC), particles are highly accelerated in a circular beam pipe before the collision. However, due to the curved trajectory of the particles, they are also loosing energy because of the so-called Bremsstrahlung. In order to bypass this fundamental limitation imposed by circular beams, the next generation of particle colliders will accelerate two straight beams of particles before the collision. One of them, the Compact Linear Collider, is currently under study at CERN. The machine is constituted of a huge number of accelerating structures (used to accelerate the particles) and quadrupoles (electromagnets used to focus the particles). The latter ones are required to be stable at the nanometer level. This extreme stability has to be guaranteed by active vibration isolation from all types of disturbances like ground vibrations, ventilation, cooling system, or acoustic noise. Because of the huge number of quadrupoles (about 4000), it is critical that the strategy adopted for the act...

  4. Design and Manufacture of a Hybrid Final Focus Quadrupole Model for CLIC

    CERN Document Server

    Modena, Michele; Vorozhtsov, Alexey

    2012-01-01

    A tunable hybrid quadrupole magnet design has been proposed for the final focus in the Compact Linear Collider (CLIC) that is currently under study. The proposed design is a combination of an iron dominated electromagnetic quadrupole with a bore diameter of 8.25 mm with permanent magnet blocks placed between the poles made of soft magnetic CoFe alloy "Permendur". The possibility of using Sm2Co17 and Nd2Fe14B as material for the permanent magnet blocks has been investigated. It is shown that a very high field gradient of 530 T/m (Sm2Co17) and 590 T/m (Nd2Fe14B) can be achieved.

  5. Analytical calculation of spin tunneling effect in single molecule magnet Fe8 with considering quadrupole excitation

    Directory of Open Access Journals (Sweden)

    Y Yousefi

    2018-02-01

    Full Text Available Spin tunneling effect in Single Molecule Magnet Fe8 is studied by instanton calculation technique using SU(3 generalized spin coherent state in real parameter as a trial function. For this SMM, tunnel splitting arises due to the presence of a Berry like phase in action, which causes interference between tunneling trajectories (instantons. For this SMM, it is established that the use of quadrupole excitation (g dependence changes not only the location of the quenching points, but also the number of these points. Also, these quenching points are the steps in hysteresis loops of this SMM. If dipole and quadrupole excitations in classical energy considered, the number of these steps equals to the number that obtained from experimental data.

  6. Experimental determination of linear optics including quadrupole rotations

    International Nuclear Information System (INIS)

    Safranek, J.

    1995-01-01

    The measured response matrix giving the change in orbit at beam position monitors (BPMs) with changes in steering magnet excitation can be used to accurately determine many important parameters in a storage ring. Using the NSLS X-Ray Ring measured response matrix we have determined the gradients in all 56 quadrupole magnets; the calibration of the steering magnets and BPMs; the rotational mis-alignments of the quadrupoles, steering magnets, and BPMs about the electron beam direction; the longitudinal magnetic centers of the orbit steering magnets; and the transverse mis-alignments of the sextupoles. Random orbit measurement error of the BPMs propagated to give 0.04% rms error in determination of individual quadrupole gradients and 0.4 mrad rms error in the determination of quadrupole rotational alignment. Small variations of a few parts in a thousand in the quadrupole gradients within an individual family were resolved. The improved understanding of the X-Ray Ring has enabled us to better control the electron beam size

  7. Structural implications of nuclear electric quadrupole splittings in high-T/sub c/ superconductors

    International Nuclear Information System (INIS)

    The electric field gradients and nuclear quadrupole coupling constants are calculated for La in La 2 CuO 4 , Eu in EuBa 2 Cu 3 O 7 , and Cu and Fe (as a replacement for Cu in YBa 2 Cu 3 O 7 . We use an ionic model which regards the high-T/sub c/ superconductors as primarily ionic crystals modified by the introduction of a relatively small number of charge carriers via doping in La 2 CuO 4 and nonstoichiometry in YBa 2 Cu 3 O/sub 7-//sub δ/ for δ 7 F 0 state by the ionic crystal field playing an important role. Comparison of theory and experiment for the Cu and Fe cases suggests Cu is present largely as Cu/sup 2+/ and supports the assignment of the low- and high-frequency nuclear quadrupole resonance lines to the chain and plane sites of YBa 2 Cu 3 O 7 , respectively, while Fe is present as a mixture of Fe/sup 2+/ (ca. 25% to 50%) and Fe/sup 3+/

  8. Magnetic Resonance Studies of Proton Loss from Carotenoid Radical Cations

    Energy Technology Data Exchange (ETDEWEB)

    Kispert, Lowell D [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Focsan, A Ligia [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Konovalova, Tatyana A [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lawrence, Jesse [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bowman, Michael K [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dixon, David A [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Molnar, Peter [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Deli, Jozsef [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2007-06-11

    Carotenoids, intrinsic components of reaction centers and pigment-protein complexes in photosynthetic membranes, play a photoprotective role and serve as a secondary electron donor. Before optimum use of carotenoids can be made in artificial photosynthetic systems, their robust nature in living materials requires extensive characterization of their electron transfer, radical trapping ability, stability, structure in and on various hosts, and photochemical behavior. Pulsed ENDOR and 2D-HYSCORE studies combined with DFT calculations reveal that photo-oxidation of natural zeaxanthin (I) and violaxanthin (II) on silica-alumina produces not only the carotenoid radical cations (Car•+) but also neutral radicals (#Car•) by proton loss from the methyl groups at positions 5 or 5', and possibly 9 or 9' and 13 or 13'. Notably, the proton loss favored in I at the 5 position by DFT calculations, is unfavorable in II due to the epoxide at the 5, 6 position. DFT calculations predict the isotropic methyl proton couplings of 8-10 MHz for Car•+ which agree with the ENDOR for carotenoid α-conjugated radical cations. Large α-proton hyperfine coupling constants (>10 MHz) determined from HYSCORE are assigned from the DFT calculations to neutral carotenoid radicals. Proton loss upon photolysis was also examined as a function of carotenoid polarity [Lycopene (III) versus 8'-apo-β-caroten-8'-al (IV)]; hydrogen bonding [Lutein (V) versus III]; host [silica-alumina versus MCM-41 molecular sieve]; and substituted metal in MCM-41. Loss of H+ from the 5(5'), 9(9') or 13(13') methyl positions has importance in photoprotection. Photoprotection involves nonphotochemical quenching (NPQ) in which 1Ch1* decays via energy transfer to the carotenoid which returns to the ground state by thermal dissipation; or via electron transfer to form a charge transfer state (I •+…Chl•-), lower in energy than 1Chl*. Formation of I •+ results in bond

  9. Magnetic Resonance Studies of Proton Loss from Carotenoid Radical Cations

    International Nuclear Information System (INIS)

    Kispert, Lowell D.; Focsan, A. Ligia; Konovalova, Tatyana A.; Lawrence, Jesse; Bowman, Michael K.; Dixon, David A.; Molnar, Peter; Deli, Jozsef

    2007-01-01

    Carotenoids, intrinsic components of reaction centers and pigment-protein complexes in photosynthetic membranes, play a photoprotective role and serve as a secondary electron donor. Before optimum use of carotenoids can be made in artificial photosynthetic systems, their robust nature in living materials requires extensive characterization of their electron transfer, radical trapping ability, stability, structure in and on various hosts, and photochemical behavior. Pulsed ENDOR and 2D-HYSCORE studies combined with DFT calculations reveal that photo-oxidation of natural zeaxanthin (I) and violaxanthin (II) on silica-alumina produces not only the carotenoid radical cations (Car ·+ ) but also neutral radicals ((number s ign)Car · ) by proton loss from the methyl groups at positions 5 or 5(prime), and possibly 9 or 9(prime) and 13 or 13(prime). Notably, the proton loss favored in I at the 5 position by DFT calculations, is unfavorable in II due to the epoxide at the 5, 6 position. DFT calculations predict the isotropic methyl proton couplings of 8-10 MHz for Car # center d ot# + which agree with the ENDOR for carotenoid π-conjugated radical cations. Large α-proton hyperfine coupling constants (>10 MHz) determined from HYSCORE are assigned from the DFT calculations to neutral carotenoid radicals. Proton loss upon photolysis was also examined as a function of carotenoid polarity (Lycopene (III) versus 8(prime)-apo-β-caroten-8(prime)-al (IV)); hydrogen bonding (Lutein (V) versus III); host (silica-alumina versus MCM-41 molecular sieve); and substituted metal in MCM-41. Loss of H + from the 5(5(prime)), 9(9(prime)) or 13(13(prime)) methyl positions has importance in photoprotection. Photoprotection involves nonphotochemical quenching (NPQ) in which 1 Ch1* decays via energy transfer to the carotenoid which returns to the ground state by thermal dissipation; or via electron transfer to form a charge transfer state (I # center d ot# + ...Chl # center d ot# - ), lower in

  10. Optically Detected Magnetic Resonance Studies on π-conjugated semiconductor systems

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    Optically Detected Magnetic Resonance (ODMR) techniques were used to investigate the dynamics of excitons and charge carriers in π-conjugated organic semiconductors. Degradation behavior of the negative spin-1/2 electroluminescence-detected magnetic resonance (ELDMR) was observed in Alq3 devices. The increase in the resonance amplitude implies an increasing bipolaron formation during degradation, which might be the result of growth of charge traps in the device. The same behavior of the negative spin-1/2 ELDMR was observed in 2wt% Rubrene doped Tris(8-hydroxyquinolinato)aluminium (Alq3) devices. However, with increasing injection current, a positive spin-1/2 ELDMR, together with positive spin 1 triplet powder patterns at ΔmS=±1 and ΔmS=±2, emerges. Due to the similarities in the frequency dependences of single and double modulated ELDMR and the photoluminescence-detected magnetic resonance (PLDMR) results in poly[2-methoxy-5-(2 -ethyl-hexyloxy)-1,4-phenyl ene vinylene] (MEH-PPV) films, the mechanism for this positive spin-1/2 ELDMR was assigned to enhanced triplet-polaron quenching under resonance conditions. The ELDMR in rubrene doped Alq3 devices provides a path to investigate charge distribution in the device under operational conditions. Combining the results of several devices with different carrier blocking properties and the results from transient EL, it was concluded trions not only exist near buffer layer but also exist in the electron transport layer. This TPQ model can also be used to explain the positive spin-1/2 PLDMR in poly(3-hexylthiophene) (P3HT) films at low temperature and in MEH-PPV films at various temperatures up to room temperature. Through quantitative analysis, TE-polaron quenching (TPQ) model is shown having the ability to explain most behaviors of the positive spin-1/2 resonance. Photocurrent detected magnetic resonance (PCDMR) studies on MEH-PPV devices revealed a novel transient resonance signal. The signal

  11. MEQALAC: (multiple electrostatic quadrupole linac): a new approach to low beta rf acceleration

    International Nuclear Information System (INIS)

    Mobley, R.M.; Brodowski, J.J.; Gammel, G.M.; Keane, J.T.; Maschka, A.W.; Sanders, R.T.

    1980-01-01

    MEQALAC is an acronym for a multiple-beam electrostatic-quadrupole array linear accelerator. The principle of operation is very simple. It makes use of the fact that electrostatic quadrupoles focus more effectively at low velocities than conventional magnetic quadrupoles. Moreover, the pole-tip field of an electrostatic quadrupole is limited by field emission of electrons, and is not a function of the size of the quadrupole. Conventional magnetic quadrupoles, on the other hand, require increasingly high current densities if one attempts to scale to smaller size

  12. Electron Spin Resonance and optical absorption spectroscopic studies of manganese centers in aluminium lead borate glasses.

    Science.gov (United States)

    SivaRamaiah, G; LakshmanaRao, J

    2012-12-01

    Electron Spin Resonance (ESR) and optical absorption studies of 5Al(2)O(3)+75H(3)BO(3)+(20-x)PbO+xMnSO(4) (where x=0.5, 1,1.5 and 2 mol% of MnSO(4)) glasses at room temperature have been studied. The ESR spectrum of all the glasses exhibits resonance signals with effective isotropic g values at ≈2.0, 3.3 and 4.3. The ESR resonance signal at isotropic g≈2.0 has been attributed to Mn(2+) centers in an octahedral symmetry. The ESR resonance signals at isotropic g≈3.3 and 4.3 have been attributed to the rhombic symmetry of the Mn(2+) ions. The zero-field splitting parameter (zfs) has been calculated from the intensities of the allowed hyperfine lines. The optical absorption spectrum exhibits an intense band in the visible region and it has been attributed to (5)E(g)→(5)T(2g) transition of Mn(3+)centers in an octahedral environment. The optical band gap and the Urbach energies have been calculated from the ultraviolet absorption edges. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Development of a radio-frequency quadrupole cooler for high beam currents

    Science.gov (United States)

    Boussaid, Ramzi; Ban, G.; Quéméner, G.; Merrer, Y.; Lorry, J.

    2017-12-01

    The SHIRaC prototype is a recently developed radio-frequency quadrupole (RFQ) beam cooler with an improved optics design to deliver the required beam quality to a high resolution separator (HRS). For an isobaric separation of isotopes, the HRS demands beams with emittance not exceeding 3 π mm mrad and longitudinal energy spread ˜1 eV . Simulation studies showed a significant contribution of the buffer gas diffusion, space charge effect and mainly the rf fringe field to degrade the achieved beam quality at the RFQ exit. A miniature rf quadrupole (μ RFQ ) has been implemented at that exit to remove the degrading effects and provide beams with 1 eV of energy spread and around 1.75 π mm mrad of emittance for 4 Pa gas pressure. This solution enables also to transmit more than 60% of the incoming ions for currents up to 1 μ A . Detailed studies of this development are presented and discussed in this paper. Transport of beams from SHIRaC towards the HRS has been done with an electrostatic quadrupole triplet. Simulations and first experimental tests showed that more than 95% of ions can reach the HRS. Because SPIRAL-2 beams are of high current and very radioactive, the buffer gas will be highly contaminated. Safe maintenance of the SHIRaC beam line needs exceptional treatment of radioactive contaminants. For that, special vinyl sleep should be mounted on elements to be maintained. A detailed maintenance process will be presented.

  14. Tolerance analyses of a quadrupole magnet for advanced photon source upgrade

    International Nuclear Information System (INIS)

    Liu, J.; Jaski, M.; Borland, M.; Jain, A.

    2016-01-01

    Given physics requirements, the mechanical fabrication and assembly tolerances for storage ring magnets can be calculated using analytical methods [1, 2]. However, this method is not easy for complicated magnet designs [1]. In this paper, a novel method is proposed to determine fabrication and assembly tolerances consistent with physics requirements, through a combination of magnetic and mechanical tolerance analyses. In this study, finite element analysis using OPERA is conducted to estimate the effect of fabrication and assembly errors on the magnetic field of a quadrupole magnet and to determine the allowable tolerances to achieve the specified magnetic performances. Based on the study, allowable fabrication and assembly tolerances for the quadrupole assembly are specified for the mechanical design of the quadrupole magnet. Next, to achieve the required assembly level tolerances, mechanical tolerance stackup analyses using a 3D tolerance analysis package are carried out to determine the part and subassembly level fabrication tolerances. This method can be used to determine the tolerances for design of other individual magnets and of magnet strings.

  15. Thermally stimulated luminescence and electron paramagnetic resonance studies on uranium doped calcium phosphate

    CERN Document Server

    Natarajan, V; Veeraraghavan, R; Sastry, M D

    2003-01-01

    Thermally stimulated luminescence (TSL) and electron paramagnetic resonance (EPR) studies on uranium doped calcium phosphate yielded mechanistic information on the observed glow peaks at 365, 410 and 450 K. TSL spectral studies of the glow peaks showed that UO sub 2 sup 2 sup + acts as the luminescent center. Electron paramagnetic resonance studies on gamma-irradiated samples revealed that the predominant radiation induced centers are H sup 0 , PO sub 4 sup 2 sup - , PO sub 3 sup 2 sup - and O sup - ion. Studies on the temperature dependence studies of the EPR spectra of samples annealed to different temperatures indicate the role of H sup 0 and PO sub 4 sup 2 sup - ions in the main glow peak at 410 K.

  16. Real time hybridization studies by resonant waveguide gratings using nanopattern imaging for Single Nucleotide Polymorphism detection

    KAUST Repository

    Bougot-Robin, Kristelle

    2013-12-20

    2D imaging of biochips is particularly interesting for multiplex biosensing. Resonant properties allow label-free detection using the change of refractive index at the chip surface. We demonstrate a new principle of Scanning Of Resonance on Chip by Imaging (SORCI) based on spatial profiles of nanopatterns of resonant waveguide gratings (RWGs) and its embodiment in a fluidic chip for real-time biological studies. This scheme allows multiplexing of the resonance itself by providing nanopattern sensing areas in a bioarray format. Through several chip designs we discuss resonance spatial profiles, dispersion and electric field distribution for optimal light-matter interaction with biological species of different sizes. Fluidic integration is carried out with a black anodized aluminum chamber, advantageous in term of mechanical stability, multiple uses of the chip, temperature control and low optical background. Real-time hybridization experiments are illustrated by SNP (Single Nucleotide Polymorphism) detection in gyrase A of E. coli K12, observed in evolution studies of resistance to the antibiotic ciprofloxacin. We choose a 100 base pairs (bp) DNA target (∼30 kDa) including the codon of interest and demonstrate the high specificity of our technique for probes and targets with close affinity constants. This work validates the safe applicability of our unique combination of RWGs and simple instrumentation for real-time biosensing with sensitivity in buffer solution of ∼10 pg/mm2. Paralleling the success of RWGs sensing for cells sensing, our work opens new avenues for a large number of biological studies. © 2013 Springer Science+Business Media.

  17. Cryogen free superconducting splittable quadrupole magnet for linear accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Kashikhin, V.S.; Andreev, N.; Kerby, J.; Orlov, Y.; Solyak, N.; Tartaglia, M.; Velev, G.; /Fermilab

    2011-09-01

    A new superconducting quadrupole magnet for linear accelerators was fabricated at Fermilab. The magnet is designed to work inside a cryomodule in the space between SCRF cavities. SCRF cavities must be installed inside a very clean room adding issues to the magnet design, and fabrication. The designed magnet has a splittable along the vertical plane configuration and could be installed outside of the clean room around the beam pipe previously connected to neighboring cavities. For more convenient assembly and replacement a 'superferric' magnet configuration with four racetrack type coils was chosen. The magnet does not have a helium vessel and is conductively cooled from the cryomodule LHe supply pipe and a helium gas return pipe. The quadrupole generates 36 T integrated magnetic field gradient, has 600 mm effective length, and the peak gradient is 54 T/m. In this paper the quadrupole magnetic, mechanical, and thermal designs are presented, along with the magnet fabrication overview and first test results.

  18. Effects of the source gap on transmission efficiency of a quadrupole mass spectrometer.

    Science.gov (United States)

    Antony Joseph, Mariya J; McIntosh, David; Gibson, Ray; Taylor, Stephen

    2018-02-28

    Recent trends towards miniature and portable quadrupole mass spectrometry (QMS) entail challenges in instrumental sensitivity, which is influenced by 3D fringe field effects on ion transmission in the Quadrupole Mass Filter (QMF). The relationship of these effects with the gap from the ion source to the QMF entrance (source gap) is significant and little explored. We examine transmission characteristics experimentally and use the results to test the predictive accuracy of a recently-developed 3D QMF simulation model. The model is then applied to directly investigate optimal transmission m/z ranges across multiple source gaps. Experimental: A portable single filter quadrupole mass spectrometer is used to analyse transmission characteristics across a range of common gases. We use an experimental approach originally proposed by Ehlert, enhanced with a novel method for absolute calibration of the transmission curve. Simulation: Custom QMF simulation software employs the boundary element method (BEM) to compute accurate 3D electric fields. This is used to study the effects of the source gap on transmission efficiency. Experimental findings confirm a centrally peaked transmission curve; simulations correctly predict the optimal transmission location (in m/z) and percentage, and extend the experimental trend. We compare several methods for determining fringe field length, demonstrating how the size of the physical source gap influences both the length and the intensity of the fringe field at the QMF entrance. A complex relationship with ion transmission is revealed in which different source gaps promote optimal transmission at differing m/z ranges. The presented results map the relationship between the source gap and transmission efficiency for the given instrument, using a simulation method transferrable to other setups. This is of importance to miniature and portable quadrupole mass spectrometers designed for specific applications, for the first time enabling the source

  19. Time-resolved resonance fluorescence spectroscopy for study of chemical reactions in laser-induced plasmas.

    Science.gov (United States)

    Liu, Lei; Deng, Leimin; Fan, Lisha; Huang, Xi; Lu, Yao; Shen, Xiaokang; Jiang, Lan; Silvain, Jean-François; Lu, Yongfeng

    2017-10-30

    Identification of chemical intermediates and study of chemical reaction pathways and mechanisms in laser-induced plasmas are important for laser-ablated applications. Laser-induced breakdown spectroscopy (LIBS), as a promising spectroscopic technique, is efficient for elemental analyses but can only provide limited information about chemical products in laser-induced plasmas. In this work, time-resolved resonance fluorescence spectroscopy was studied as a promising tool for the study of chemical reactions in laser-induced plasmas. Resonance fluorescence excitation of diatomic aluminum monoxide (AlO) and triatomic dialuminum monoxide (Al 2 O) was used to identify these chemical intermediates. Time-resolved fluorescence spectra of AlO and Al 2 O were used to observe the temporal evolution in laser-induced Al plasmas and to study their formation in the Al-O 2 chemistry in air.

  20. A combined post-mortem magnetic resonance imaging and quantitative histological study of multiple sclerosis pathology

    Science.gov (United States)

    Kolasinski, James; Chance, Steven A.; DeLuca, Gabriele C.; Esiri, Margaret M.; Chang, Eun-Hyuk; Palace, Jacqueline A.; McNab, Jennifer A.; Jenkinson, Mark; Miller, Karla L.; Johansen-Berg, Heidi

    2012-01-01

    Multiple sclerosis is a chronic inflammatory neurological condition characterized by focal and diffuse neurodegeneration and demyelination throughout the central nervous system. Factors influencing the progression of pathology are poorly understood. One hypothesis is that anatomical connectivity influences the spread of neurodegeneration. This predicts that measures of neurodegeneration will correlate most strongly between interconnected structures. However, such patterns have been difficult to quantify through post-mortem neuropathology or in vivo scanning alone. In this study, we used the complementary approaches of whole brain post-mortem magnetic resonance imaging and quantitative histology to assess patterns of multiple sclerosis pathology. Two thalamo-cortical projection systems were considered based on their distinct neuroanatomy and their documented involvement in multiple sclerosis: lateral geniculate nucleus to primary visual cortex and mediodorsal nucleus of the thalamus to prefrontal cortex. Within the anatomically distinct thalamo-cortical projection systems, magnetic resonance imaging derived cortical thickness was correlated significantly with both a measure of myelination in the connected tract and a measure of connected thalamic nucleus cell density. Such correlations did not exist between these markers of neurodegeneration across different thalamo-cortical systems. Magnetic resonance imaging lesion analysis depicted clearly demarcated subcortical lesions impinging on the white matter tracts of interest; however, quantitation of the extent of lesion-tract overlap failed to demonstrate any appreciable association with the severity of markers of diffuse pathology within each thalamo-cortical projection system. Diffusion-weighted magnetic resonance imaging metrics in both white matter tracts were correlated significantly with a histologically derived measure of tract myelination. These data demonstrate for the first time the relevance of functional

  1. Collinear resonant ionization spectroscopy for neutron rich copper isotopes

    CERN Multimedia

    This proposal aims to study the spins, magnetic moments and quadrupole moments of copper isotopes A=76-78. The information obtained from this experiment will provide an independent and more precise measurement of the magnetic moment of $^{77}$Cu and values for the spins and magnetic moments of $^{76,78}$Cu as well as the quadrupole moments of $^{76-78}$Cu.

  2. Nuclear quadrupole interaction measurements of 19F* and 22Na* on Graphite

    International Nuclear Information System (INIS)

    Djoko-Surono, Th; Martin, Peter W

    1996-01-01

    Time differential perturbed angular distribution (TDPAD) technique has been used to investigate nuclear quadrupole interactions of 19 F * and 22 Na * in graphite. We concentrated the measurements on pseudo single crystal graphite called Highly Oriented Pyrolytic Graphite for it has an ordered structure in which the c-axes of the microcrystals aligned in a certain direction with the mosaic spread less than 1 o , while the a- and b-axes randomly oriented on a plane perpendicular to the c-axes. Interactions between quadrupole moment of 19 F * and 22 Na * with its surroundings electric field gradient were studied by detecting the γ-rays distribution, W(Θ,t). For 1 9F * we found one static interaction. The corresponding electric field gradient was V zz =3.24(19)x10 22 V/m 2 . In the case of 22 Na * we found no evidence of nuclear quadrupole interaction, however, we were able to conclude that |QV 22 | 19 bV/m 2 . Using theoretical calculation Q=0.06 barn, we find that |V zz | 20 V/m 2 . These results indicate that the value efg depend on two factors, the host crystal and the core electrons. The core electrons contribution to the total efg is considerably large

  3. A Nb-Ti 90 mm Double-Aperture Quadrupole for the High Luminosity LHC Upgrade

    CERN Document Server

    Segreti, M; Todesco, E

    2015-01-01

    The luminosity upgrade of the LHC requires replacing the magnets around the ATLAS and CMS experiments with larger aperture dipoles, quadrupoles and correctors. The goal is to have a magnetic lattice that can allow to halve the beam size in the collision points with respect to present baseline. Within the framework of HiLumi LHC, CEA-Saclay studied the replacement of the 70-mm double aperture quadrupole Q4, with a 90-mm magnet based on Nb-Ti technology. The main challenges are due to the distance between the beams of 194 mm, giving a non-negligible magnetic coupling between the two apertures. The coil chosen to be the baseline is a single layer with 15-mm-width cable of the LHC MQ quadrupole. The mechanical structure is based on stainless steel collars to withstand the Lorentz forces. The iron yoke has a magnetic function, and guarantees the alignment of the two apertures. Electromagnetic and mechanical aspects and effects of unbalanced regimes on the field quality have been analyzed. A 3-D design of the coil ...

  4. Communication: General variational approach to nuclear-quadrupole coupling in rovibrational spectra of polyatomic molecules

    Science.gov (United States)

    Yachmenev, Andrey; Küpper, Jochen

    2017-10-01

    A general algorithm for computing the quadrupole-hyperfine effects in the rovibrational spectra of polyatomic molecules is presented for the case of ammonia (NH3). The method extends the general variational approach TROVE [J. Mol. Spectrosc. 245, 126-140 (2007)] by adding the extra term in the Hamiltonian that describes the nuclear quadrupole coupling, with no inherent limitation on the number of quadrupolar nuclei in a molecule. We applied the new approach to compute the nitrogen-nuclear-quadrupole hyperfine structure in the rovibrational spectrum of NH143. These results agree very well with recent experimental spectroscopic data for the pure rotational transitions in the ground vibrational and ν2 states and the rovibrational transitions in the ν1, ν3, 2ν4, and ν1 + ν3 bands. The computed hyperfine-resolved rovibrational spectrum of ammonia will be beneficial for the assignment of experimental rovibrational spectra, further detection of ammonia in interstellar space, and studies of the proton-to-electron mass variation.

  5. Resolution limit of probe-forming systems with magnetic quadrupole lens triplets and quadruplets

    CERN Document Server

    Ponomarev, A G; Miroshnichenko, V I; Storizhko, V E; Sulkio-Cleff, B

    2003-01-01

    Over the past decade, in MeV ion beam microanalysis efforts to achieve a spatial resolution better than 0.1 mu m with a beam current of approx 100 pA have been connected with microprobes of new generation where the probe is formed by means of separated magnetic quadrupole lens structures . However, as was pointed out in , no dramatic improvements in spatial resolution have been produced so far. For better understanding of the situation the authors carried out theoretical studies of multiparameter sets of probe-forming systems based on separated triplets and quadruplets of magnetic quadrupole lenses. Comparisons were made between the highest current values attained at different systems for a given beam spot size. The maximum parasitic sextupole and octupole field components were found whose contributions to spot broadening are tolerable. It is shown that the use of modern electrostatic accelerators and precision magnetic quadrupole lenses makes it possible to eliminate the effect of chromatic aberrations and s...

  6. Effect of a serrated trailing edge on sound radiation from nearby quadrupoles.

    Science.gov (United States)

    Karimi, Mahmoud; Croaker, Paul; Kinns, Roger; Kessissoglou, Nicole

    2017-05-01

    A periodic boundary element technique is implemented to study the noise reduction capability of a plate with a serrated trailing edge under quadrupole excitation. It is assumed for this purpose that the quadrupole source tensor is independent of the trailing edge configuration and that the effect of the trailing edge shape is to modify sound radiation from prescribed boundary layer sources. The flat plate is modelled as a continuous structure with a finite repetition of small spanwise segments. The matrix equation formulated by the periodic boundary element method for this 3D acoustic scattering problem is represented as a block Toeplitz matrix. The discrete Fourier transform is employed in an iterative algorithm to solve the block Toeplitz system. The noise reduction mechanism for a serrated trailing edge in the near field is investigated by comparing contour plots obtained from each component of the quadrupole for unserrated and serrated trailing edge plate models. The noise reduction due to the serrated trailing edge is also examined as a function of the source location.

  7. Quadrupole beam-based alignment in the RHIC interaction regions

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, J.; Satogata, T.

    2011-03-28

    Continued beam-based alignment (BBA) efforts have provided significant benefit to both heavy ion and polarized proton operations at RHIC. Recent studies demonstrated previously unknown systematic beam position monitor (BPM) offset errors and produced accurate measurements of individual BPM offsets in the experiment interaction regions. Here we describe the algorithm used to collect and analyze data during the 2010 and early 2011 RHIC runs and the results of these measurements. BBA data has been collected over the past two runs for all three of the active experimental IRs at RHIC, updating results from the 2005 run which were taken with incorrectly installed offsets. The technique was successfully applied to expose a systematic misuse of the BPM survey offsets in the control system. This is likely to benefit polarized proton operations as polarization transmission through acceleration ramps depends on RMS orbit control in the arcs, but a quantitative understanding of its impact is still under active investigation. Data taking is ongoing as are refinements to the BBA technique aimed at reducing systematic errors and properly accounting for dispersive effects. Further development may focus on non-triplet BPMs such as those located near snakes, or arc quadrupoles that do not have individually shunted power supplies (a prerequisite for the current method) and as such, will require a modified procedure.

  8. On the formation of the South Pacific quadrupole mode

    Science.gov (United States)

    Zheng, Jian; Wang, Faming

    2017-10-01

    The formation process of the South Pacific (SP) quadrupole (SPQ) mode was investigated in this study based on observations and reanalysis data. The SPQ is the dominant mode of the sea surface temperature (SST)-surface wind covariability in the SP after removing the ENSO-related signals. The positive phase of the SPQ is characterized by a warm SST anomaly (SSTA) west of the South American coast, a cool SSTA in its southwest, a positive SSTA southeast of New Zealand, and a negative SSTA off the southeast coast of Australia, overlain by cyclonic wind anomalies. The anomalous cyclonic winds weaken the mean southeast trade winds in the southeast SP and the westerlies in the high latitudes of the SP, increasing the SSTAs at the two positive poles through decreased evaporation and latent heat flux (LHF) loss. The southeast wind anomalies advect dry and cold air to the negative pole in the central SP, which reduces the SSTA there by increasing the LHF loss. Off the southeast coast of Australia, the southwest wind anomalies induce equatorward Ekman currents and advect cold water. The resulting oceanic horizontal advection is the main contributor to the negative SSTAs there. In addition to the above processes, cloud cover change can enhance the initial SSTAs in the southeast SP by affecting shortwave radiation. The decay of the SPQ is mainly due to LHF changes.

  9. Optimization of dose and technique for magnetic resonance studies with an oral contrast agent

    International Nuclear Information System (INIS)

    Broglia, L.; Tortora, A.; Maccioni, F.; Arpesani, R.; Marcelli, G.; Ascarelli, A.; Rossi, P.

    1999-01-01

    The aim of the study was to optimize the dose, scan delay and sequences for use in magnetic resonance (MR) studies with an oral contrast agent (FerriSeltz, Bracco Spa, Milan, Italy) to obtain positive or negative contrast enhancement in the bowel lumen. Ferric ammonium citrate, being positive or negative contrast agent according to its dilution, permits to tailor the dose to optimize bowel lumen opacification [it

  10. Resonant X-ray Raman scattering on molecules: A benchmark study on HCl

    International Nuclear Information System (INIS)

    Carniato, Stephane; Taieb, Richard; Journel, Loic; Guillemin, Renaud; Stolte, Wayne C.; Lindle, Dennis W.; Gel'mukhanov, Faris; Simon, Marc

    2010-01-01

    Resonant X-ray Raman scattering is a powerful tool to study molecular dynamics and subtle chemical effects like the molecular field beyond vibrational and lifetime limitations. Using this technique in the tender X-ray region, gas phase HCl is studied as a benchmark molecule for other compounds like freons, which play an important role in physical-chemical properties of the ozone layer of atmosphere.

  11. Resonant X-ray Raman scattering on molecules: A benchmark study on HCl

    Energy Technology Data Exchange (ETDEWEB)

    Carniato, Stephane [UPMC Univ Paris 06, UMR 7614, Laboratoire de Chimie Physique Matiere et Rayonnement, F-75005 Paris (France); CNRS, UMR 7614, Laboratoire de Chimie Physique Matiere et Rayonnement, F-75005 Paris (France); Taieb, Richard, E-mail: richard.taieb@upmc.f [UPMC Univ Paris 06, UMR 7614, Laboratoire de Chimie Physique Matiere et Rayonnement, F-75005 Paris (France); CNRS, UMR 7614, Laboratoire de Chimie Physique Matiere et Rayonnement, F-75005 Paris (France); Journel, Loic; Guillemin, Renaud [UPMC Univ Paris 06, UMR 7614, Laboratoire de Chimie Physique Matiere et Rayonnement, F-75005 Paris (France); CNRS, UMR 7614, Laboratoire de Chimie Physique Matiere et Rayonnement, F-75005 Paris (France); Stolte, Wayne C.; Lindle, Dennis W. [Department of Chemistry, University of Nevada, Las Vegas, NV 89154-4003 (United States); Gel' mukhanov, Faris [Theoretical Chemistry, Roslagstullsbacken 15, Royal Institute of Technology, S-106 91 Stockholm (Sweden); Simon, Marc [UPMC Univ Paris 06, UMR 7614, Laboratoire de Chimie Physique Matiere et Rayonnement, F-75005 Paris (France); CNRS, UMR 7614, Laboratoire de Chimie Physique Matiere et Rayonnement, F-75005 Paris (France)

    2010-08-15

    Resonant X-ray Raman scattering is a powerful tool to study molecular dynamics and subtle chemical effects like the molecular field beyond vibrational and lifetime limitations. Using this technique in the tender X-ray region, gas phase HCl is studied as a benchmark molecule for other compounds like freons, which play an important role in physical-chemical properties of the ozone layer of atmosphere.

  12. Preoperative Magnetic Resonance Imaging in Patients With Stage I Invasive Ductal Breast Cancer: A Prospective Randomized Study.

    Science.gov (United States)

    Brück, N; Koskivuo, I; Boström, P; Saunavaara, J; Aaltonen, R; Parkkola, R

    2018-03-01

    Preoperative magnetic resonance imaging has become an important complementary imaging technique in patients with breast cancer, providing additional information for preoperative local staging. Magnetic resonance imaging is recommended selectively in lobular breast cancer and in patients with dense breast tissue in the case when mammography and ultrasound fail to fully evaluate the lesion, but the routine use of magnetic resonance imaging in all patients with invasive ductal carcinoma is controversial. The purpose of this randomized study was to investigate the diagnostic value of preoperative magnetic resonance imaging and its impact on short-term surgical outcome in newly diagnosed unifocal stage I invasive ductal carcinoma. A total of 100 patients were randomized to either receive preoperative breast magnetic resonance imaging or to be scheduled directly to operation without magnetic resonance imaging on a 1:1 basis. There were 50 patients in both study arms. In 14 patients (28%), breast magnetic resonance imaging detected an additional finding and seven of them were found to be malignant. Six additional cancer foci were found in the ipsilateral breast and one in the contralateral breast. Magnetic resonance imaging findings caused a change in planned surgical management in 10 patients (20%). Mastectomy was performed in six patients (12%) in the magnetic resonance imaging group and in two patients (4%) in the control group ( p = 0.140). The breast reoperation rate was 14% in the magnetic resonance imaging group and 24% in the control group ( p = 0.202). The mean interval between referral and first surgical procedure was 34 days in the magnetic resonance imaging group and 21 days in the control group ( p magnetic resonance imaging may be beneficial for some patients with early-stage invasive ductal carcinoma, but its routine use is not recommended without specific indications.

  13. High and ulta-high gradient quadrupole magnets

    International Nuclear Information System (INIS)

    Brunk, W.O.; Walz, D.R.

    1985-05-01

    Small bore conventional dc quadrupoles with apertures from 1 to 2.578cm were designed and prototypes built and measured. New fabrication techniques including the use of wire electric discharge milling (EDM) to economically generate the pole tip contours and aperture tolerances are described. Magnetic measurement data from a prototype of a 1cm aperture quadrupole with possible use in future e + /e - super colliders are presented. At a current of 400A, the lens achieved a gradient of 2.475 T/cm, and had an efficiency of 76.6%

  14. Conceptual design of a quadrupole magnet for eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Witte, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Berg, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    eRHIC is a proposed upgrade to the existing Relativistic Heavy Ion Collider (RHIC) hadron facility at Brookhaven National Laboratory, which would allow collisions of up to 21 GeV polarized electrons with a variety of species from the existing RHIC accelerator. eRHIC employs an Energy Recovery Linac (ERL) and an FFAG lattice for the arcs. The arcs require open-midplane quadrupole magnets of up to 30 T/m gradient of good field quality. In this paper we explore initial quadrupole magnet design concepts based on permanent magnetic material which allow to modify the gradient during operation.

  15. Characterization and tuning of ultrahigh gradient permanent magnet quadrupoles

    Directory of Open Access Journals (Sweden)

    S. Becker

    2009-10-01

    Full Text Available The application of quadrupole devices with high field gradients and small apertures requires precise control over higher order multipole field components. We present a new scheme for performance control and tuning, which allows the illumination of most of the quadrupole device aperture because of the reduction of higher order field components. Consequently, the size of the aperture can be minimized to match the beam size achieving field gradients of up to 500  T m^{-1} at good imaging quality. The characterization method based on a Hall probe measurement and a Fourier analysis was confirmed using the high quality electron beam at the Mainz Microtron MAMI.

  16. A NEW TOOL FOR THE STUDY OF RESONANCE IN CHEMICAL EDUCATION

    Directory of Open Access Journals (Sweden)

    Francisco Torrens

    2014-03-01

    Full Text Available The objective of this study is to present a computer-based project, for which our program POLAR and our version of PAPID were written for the study of the subject of resonance in chemistry. Both algorithms allow a better didactic strategy and methodological adaptation for the study of molecular properties in chemical education. Teachers will find the options of POLAR and PAPID useful for demonstrations. It is still to be explored the methodological application of these computational programs enriching the present teaching techniques. Implementing new algorithms in learning situations is technically simple, but checking their usefulness in teaching practice is extraordinarily complex and requires a research that has hardly begun. The topic of resonance in chemistry represents an opportunity for the integration of teaching and research into the European Space for Higher Education.

  17. Optically Detected Magnetic Resonance and Thermal Activation Spectroscopy Study of Organic Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang-Hwan [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    Organic electronic materials are a new class of emerging materials. Organic light emitting devices (OLEDs) are the most promising candidates for future flat panel display technologies. The photophysical characterization is the basic research step one must follow to understand this new class of materials and devices. The light emission properties are closely related to the transport properties of these materials. The objective of this dissertation is to probe the relation between transport and photophysical properties of organic semiconductors. The transport characteristics were evaluated by using thermally stimulated current and thermally stimulated luminescence techniques. The photoluminescence detected magnetic resonance and photoluminescence quantum yield studies provide valuable photophysical information on this class of materials. OLEDs are already in the market. However, detailed studies on the degradation mechanisms are still lacking. Since both optically detected magnetic resonance and thermal activation spectroscopy probe long-lived defect-related states in organic semiconductors, the combined study generates new insight on the OLED operation and degradation mechanisms.

  18. Optically Detected Magnetic Resonance and Thermal Activation Spectroscopy Study of Organic Semiconductors

    International Nuclear Information System (INIS)

    Chang-Hwan Kim

    2003-01-01

    Organic electronic materials are a new class of emerging materials. Organic light emitting devices (OLEDs) are the most promising candidates for future flat panel display technologies. The photophysical characterization is the basic research step one must follow to understand this new class of materials and devices. The light emission properties are closely related to the transport properties of these materials. The objective of this dissertation is to probe the relation between transport and photophysical properties of organic semiconductors. The transport characteristics were evaluated by using thermally stimulated current and thermally stimulated luminescence techniques. The photoluminescence detected magnetic resonance and photoluminescence quantum yield studies provide valuable photophysical information on this class of materials. OLEDs are already in the market. However, detailed studies on the degradation mechanisms are still lacking. Since both optically detected magnetic resonance and thermal activation spectroscopy probe long-lived defect-related states in organic semiconductors, the combined study generates new insight on the OLED operation and degradation mechanisms

  19. Electron spin resonance studies on reduction process of nitroxyl spin radicals used in molecular imaging

    Energy Technology Data Exchange (ETDEWEB)

    Dhas, M. Kumara; Benial, A. Milton Franklin, E-mail: miltonfranklin@yahoo.com [Department of Physics, NMSSVN College, Nagamalai, Madurai-625019, Tamilnadu (India); Jawahar, A. [Department of Chemistry, NMSSVN College, Nagamalai, Madurai-625019, Tamilnadu (India)

    2014-04-24

    The Electron spin resonance studies on the reduction process of nitroxyl spin probes were carried out for 1mM {sup 14}N labeled nitroxyl radicals in pure water and 1 mM concentration of ascorbic acid as a function of time. The electron spin resonance parameters such as signal intensity ratio, line width, g-value, hyperfine coupling constant and rotational correlation time were determined. The half life time was estimated for 1mM {sup 14}N labeled nitroxyl radicals in 1 mM concentration of ascorbic acid. The ESR study reveals that the TEMPONE has narrowest line width and fast tumbling motion compared with TEMPO and TEMPOL. From the results, TEMPONE has long half life time and high stability compared with TEMPO and TEMPOL radical. Therefore, this study reveals that the TEMPONE radical can act as a good redox sensitive spin probe for molecular imaging.

  20. Electron spin resonance studies on reduction process of nitroxyl spin radicals used in molecular imaging

    Science.gov (United States)

    Dhas, M. Kumara; Jawahar, A.; Benial, A. Milton Franklin

    2014-04-01

    The Electron spin resonance studies on the reduction process of nitroxyl spin probes were carried out for 1mM 14N labeled nitroxyl radicals in pure water and 1 mM concentration of ascorbic acid as a function of time. The electron spin resonance parameters such as signal intensity ratio, line width, g-value, hyperfine coupling constant and rotational correlation time were determined. The half life time was estimated for 1mM 14N labeled nitroxyl radicals in 1 mM concentration of ascorbic acid. The ESR study reveals that the TEMPONE has narrowest line width and fast tumbling motion compared with TEMPO and TEMPOL. From the results, TEMPONE has long half life time and high stability compared with TEMPO and TEMPOL radical. Therefore, this study reveals that the TEMPONE radical can act as a good redox sensitive spin probe for molecular imaging.