#### Sample records for quadrilateral mesh elements

1. ZONE, Finite Elements Method Quadrilateral and Triangular Mesh Generator for 2-D Axisymmetric Geometry

International Nuclear Information System (INIS)

Burger, M. J.

1981-01-01

1 - Description of problem or function: The ZONE program is a finite element mesh generator which produces the nodes and element description of any two-dimensional geometry. The geometry is divided into a mesh of quadrilateral and triangular zones defined by node points taken in a counter-clockwise sequence. The zones are arranged sequentially in an ordered march through the geometry. The order can be chosen so that the minimum bandwidth is obtained. The mesh that is generated can be used as input to any two-dimensional as well as any axisymmetrical structure program. 2 - Method of solution: The basic concept used is the definition of a two-dimensional structure by the intersection of two sets of lines which describe the geometric and material boundaries. A set of lines called meridians define the geometric and material boundaries and generally run in the same direction. Another set of linear line segments called rays which intersect the meridians are also defined at the material and geometric boundaries. The section of the structure between successive rays is called a region. The ray segment between any two consecutive ray-meridian intersections or void area in the structure is called a layer and is described as passing through, or bounding a material. The boundaries can be directly defined as a sequence of straight line segments or can be computed in terms of elliptic segments or circular arcs. A meridian or ray can also be made to follow a previously-defined meridian or ray at a fixed distance by invoking an offset option. 3 - Restrictions on the complexity of the problem: The following are limited only by a DIMENSION statement. The code currently has a maxima of: 100 coordinate points defining a meridian or ray, 40 meridians, 40 layers. There are no limits on the number of zones or nodes for any problems

2. Connectivity editing for quadrilateral meshes

KAUST Repository

Peng, Chihan; Zhang, Eugene; Kobayashi, Yoshihiro; Wonka, Peter

2011-01-01

We propose new connectivity editing operations for quadrilateral meshes with the unique ability to explicitly control the location, orientation, type, and number of the irregular vertices (valence not equal to four) in the mesh while preserving sharp edges. We provide theoretical analysis on what editing operations are possible and impossible and introduce three fundamental operations to move and re-orient a pair of irregular vertices. We argue that our editing operations are fundamental, because they only change the quad mesh in the smallest possible region and involve the fewest irregular vertices (i.e., two). The irregular vertex movement operations are supplemented by operations for the splitting, merging, canceling, and aligning of irregular vertices. We explain how the proposed highlevel operations are realized through graph-level editing operations such as quad collapses, edge flips, and edge splits. The utility of these mesh editing operations are demonstrated by improving the connectivity of quad meshes generated from state-of-art quadrangulation techniques. © 2011 ACM.

3. Connectivity editing for quadrilateral meshes

KAUST Repository

Peng, Chihan

2011-12-12

We propose new connectivity editing operations for quadrilateral meshes with the unique ability to explicitly control the location, orientation, type, and number of the irregular vertices (valence not equal to four) in the mesh while preserving sharp edges. We provide theoretical analysis on what editing operations are possible and impossible and introduce three fundamental operations to move and re-orient a pair of irregular vertices. We argue that our editing operations are fundamental, because they only change the quad mesh in the smallest possible region and involve the fewest irregular vertices (i.e., two). The irregular vertex movement operations are supplemented by operations for the splitting, merging, canceling, and aligning of irregular vertices. We explain how the proposed highlevel operations are realized through graph-level editing operations such as quad collapses, edge flips, and edge splits. The utility of these mesh editing operations are demonstrated by improving the connectivity of quad meshes generated from state-of-art quadrangulation techniques. © 2011 ACM.

4. Discontinuous finite element solution of the radiation diffusion equation on arbitrary polygonal meshes and locally adapted quadrilateral grids

International Nuclear Information System (INIS)

Ragusa, Jean C.

2015-01-01

In this paper, we propose a piece-wise linear discontinuous (PWLD) finite element discretization of the diffusion equation for arbitrary polygonal meshes. It is based on the standard diffusion form and uses the symmetric interior penalty technique, which yields a symmetric positive definite linear system matrix. A preconditioned conjugate gradient algorithm is employed to solve the linear system. Piece-wise linear approximations also allow a straightforward implementation of local mesh adaptation by allowing unrefined cells to be interpreted as polygons with an increased number of vertices. Several test cases, taken from the literature on the discretization of the radiation diffusion equation, are presented: random, sinusoidal, Shestakov, and Z meshes are used. The last numerical example demonstrates the application of the PWLD discretization to adaptive mesh refinement

5. Automated quadrilateral mesh generation for digital image structures

Institute of Scientific and Technical Information of China (English)

2011-01-01

With the development of advanced imaging technology, digital images are widely used. This paper proposes an automatic quadrilateral mesh generation algorithm for multi-colour imaged structures. It takes an original arbitrary digital image as an input for automatic quadrilateral mesh generation, this includes removing the noise, extracting and smoothing the boundary geometries between different colours, and automatic all-quad mesh generation with the above boundaries as constraints. An application example is...

6. Smooth Bézier surfaces over unstructured quadrilateral meshes

CERN Document Server

Bercovier, Michel

2017-01-01

Using an elegant mixture of geometry, graph theory and linear analysis, this monograph completely solves a problem lying at the interface of Isogeometric Analysis (IgA) and Finite Element Methods (FEM). The recent explosion of IgA, strongly tying Computer Aided Geometry Design to Analysis, does not easily apply to the rich variety of complex shapes that engineers have to design and analyse. Therefore new developments have studied the extension of IgA to unstructured unions of meshes, similar to those one can find in FEM. The following problem arises: given an unstructured planar quadrilateral mesh, construct a C1-surface, by piecewise Bézier or B-Spline patches defined over this mesh. This problem is solved for C1-surfaces defined over plane bilinear Bézier patches, the corresponding results for B-Splines then being simple consequences. The method can be extended to higher-order quadrilaterals and even to three dimensions, and the most recent developments in this direction are also mentioned here.

7. Development of quadrilateral spline thin plate elements using the B-net method

Science.gov (United States)

Chen, Juan; Li, Chong-Jun

2013-08-01

The quadrilateral discrete Kirchhoff thin plate bending element DKQ is based on the isoparametric element Q8, however, the accuracy of the isoparametric quadrilateral elements will drop significantly due to mesh distortions. In a previouswork, we constructed an 8-node quadrilateral spline element L8 using the triangular area coordinates and the B-net method, which can be insensitive to mesh distortions and possess the second order completeness in the Cartesian coordinates. In this paper, a thin plate spline element is developed based on the spline element L8 and the refined technique. Numerical examples show that the present element indeed possesses higher accuracy than the DKQ element for distorted meshes.

8. Two New Quadrilateral Elements Based on Strain States

Directory of Open Access Journals (Sweden)

2015-06-01

Full Text Available In this paper, two new quadrilateral elements are formulated to solve plane problems. Low sensitivity to geometric distortion, no parasitic shear error, rotational invariance, and satisfying the Felippa pure bending test are characteristics of these suggested elements. One proposed element is formulated by establishing equilibrium equations for the second-order strain field. The other suggested element is obtained by establishing equilibrium equations only for the linear part of the strain field. The number of the strain states decreases when the conditions among strain states are satisfied. Several numerical tests are used to demonstrate the performance of the proposed elements. Famous elements, which were suggested by other researchers, are used as a means of comparison. It is shown that these novel elements pass the strong patch tests, even for extremely poor meshes, and one of them has an excellent accuracy and fast convergence in other complicated problems.

9. Parallel paving: An algorithm for generating distributed, adaptive, all-quadrilateral meshes on parallel computers

Energy Technology Data Exchange (ETDEWEB)

Lober, R.R.; Tautges, T.J.; Vaughan, C.T.

1997-03-01

Paving is an automated mesh generation algorithm which produces all-quadrilateral elements. It can additionally generate these elements in varying sizes such that the resulting mesh adapts to a function distribution, such as an error function. While powerful, conventional paving is a very serial algorithm in its operation. Parallel paving is the extension of serial paving into parallel environments to perform the same meshing functions as conventional paving only on distributed, discretized models. This extension allows large, adaptive, parallel finite element simulations to take advantage of pavings meshing capabilities for h-remap remeshing. A significantly modified version of the CUBIT mesh generation code has been developed to host the parallel paving algorithm and demonstrate its capabilities on both two dimensional and three dimensional surface geometries and compare the resulting parallel produced meshes to conventionally paved meshes for mesh quality and algorithm performance. Sandias {open_quotes}tiling{close_quotes} dynamic load balancing code has also been extended to work with the paving algorithm to retain parallel efficiency as subdomains undergo iterative mesh refinement.

10. Parametric Quadrilateral Meshes for the Design and Optimization of Superconducting Magnets

CERN Document Server

Aleksa, Martin; Völlinger, Christine

2002-01-01

The program package ROXIE has been developed at CERN for the design and optimization of accelerator magnets. The necessity of extremely uniform fields in the superconducting accelerator magnets for LHC requires very accurate methods of field computation. For this purpose the coupled boundary-element / finite-element technique (BEM-FEM) is used. Quadrilateral higher order finite-element meshes are generated for the discretization of the iron domain (yoke) and stainless steel collars. A new mesh generator using geometrically optimized domain decomposition which was developed at the University of Stuttgart, Germany has been implemented into the ROXIE program providing fully automatic and user friendly mesh generation. The structure of the magnet cross-section can be modeled using parametric objects such as holes of different forms, elliptic, parabolic or hyperbolic arcs, notches, slots, .... For sensitivity analysis and parametric studies, point based morphing algorithms are applied to guarantee smooth adaptatio...

11. Parametric Quadrilateral Meshes for the Design and Optimization of Superconducting Magnets

CERN Document Server

Aleksa, Martin; Völlinger, Christine

2000-01-01

The program package ROXIE [1] has been developed at CERN for the design and optimization of the superconducting magnets for the LHC.The necessity of extremely uniform (coil dominated) fields in accelerator magnets requires very accurate methods of .eld computation. For this purpose a coupled boundary-element/ finite-element technique (BEM-FEM) is used [2]. Quadrilateral higher order finite-elements are used for the discretization of the iron domain.This is necessary for the accurate modeling of the iron contours and is favorable for 3D meshes. A new quadrilateral mesh generator using geometrically optimized domain decomposition which was developed at the University of Stuttgart, Germany [3] has been implemented into the ROXIE program providing fully automatic and user friendly mesh generation.The frequent application of mathematical optimization techniques requires parametric models which are set-up using a feature-based approach.The structure of the magnet cross-section can be modeled using parametric object...

12. Effectiveness of Rotation-free Triangular and Quadrilateral Shell Elements in Sheet-metal Forming Simulations

International Nuclear Information System (INIS)

Brunet, M.; Sabourin, F.

2005-01-01

This paper is concerned with the effectiveness of triangular 3-node shell element without rotational d.o.f. and the extension to a new 4-node quadrilateral shell element called S4 with only 3 translational degrees of freedom per node and one-point integration. The curvatures are computed resorting to the surrounding elements. Extension from rotation-free triangular element to a quadrilateral element requires internal curvatures in order to avoid singular bending stiffness. Two numerical examples with regular and irregular meshes are performed to show the convergence and accuracy. Deep-drawing of a box, spring-back analysis of a U-shape strip sheet and the crash simulation of a beam-box complete the demonstration of the bending capabilities of the proposed rotation-free triangular and quadrilateral elements

13. Comparative study on triangular and quadrilateral meshes by a finite-volume method with a central difference scheme

KAUST Repository

Yu, Guojun

2012-10-01

In this article, comparative studies on computational accuracies and convergence rates of triangular and quadrilateral meshes are carried out in the frame work of the finite-volume method. By theoretical analysis, we conclude that the number of triangular cells needs to be 4/3 times that of quadrilateral cells to obtain similar accuracy. The conclusion is verified by a number of numerical examples. In addition, the convergence rates of the triangular meshes are found to be slower than those of the quadrilateral meshes when the same accuracy is obtained with these two mesh types. © 2012 Taylor and Francis Group, LLC.

14. Comparative study on triangular and quadrilateral meshes by a finite-volume method with a central difference scheme

KAUST Repository

Yu, Guojun; Yu, Bo; Sun, Shuyu; Tao, Wenquan

2012-01-01

In this article, comparative studies on computational accuracies and convergence rates of triangular and quadrilateral meshes are carried out in the frame work of the finite-volume method. By theoretical analysis, we conclude that the number of triangular cells needs to be 4/3 times that of quadrilateral cells to obtain similar accuracy. The conclusion is verified by a number of numerical examples. In addition, the convergence rates of the triangular meshes are found to be slower than those of the quadrilateral meshes when the same accuracy is obtained with these two mesh types. © 2012 Taylor and Francis Group, LLC.

15. ZONE: a finite element mesh generator

International Nuclear Information System (INIS)

Burger, M.J.

1976-05-01

The ZONE computer program is a finite-element mesh generator which produces the nodes and element description of any two-dimensional geometry. The geometry is subdivided into a mesh of quadrilateral and triangular zones arranged sequentially in an ordered march through the geometry. The order of march can be chosen so that the minimum bandwidth is obtained. The node points are defined in terms of the x and y coordinates in a global rectangular coordinate system. The zones generated are quadrilaterals or triangles defined by four node points in a counterclockwise sequence. Node points defining the outside boundary are generated to describe pressure boundary conditions. The mesh that is generated can be used as input to any two-dimensional as well as any axisymmetrical structure program. The output from ZONE is essentially the input file to NAOS, HONDO, and other axisymmetric finite element programs. 14 figures

16. Finite element transport using Wachspress rational basis functions on quadrilaterals in diffusive regions

International Nuclear Information System (INIS)

Davidson, G.; Palmer, T.S.

2005-01-01

In 1975, Wachspress developed basis functions that can be constructed upon very general zone shapes, including convex polygons and polyhedra, as well as certain zone shapes with curved sides and faces. Additionally, Adams has recently shown that weight functions with certain properties will produce solutions with full-resolution. Wachspress rational functions possess those necessary properties. Here we present methods to construct and integrate Wachspress rational functions on quadrilaterals. We also present an asymptotic analysis of a discontinuous finite element discretization on quadrilaterals, and we present 3 numerical results that confirm the predictions of our analysis. In the first test problem, we showed that Wachspress rational functions could give robust solutions for a strongly heterogeneous problem with both orthogonal and skewed meshes. This strongly heterogenous problem contained thick, diffusive regions, and the discretization provided full-resolution solutions. In the second test problem, we confirmed our asymptotic analysis by demonstrating that the transport solution will converge to the diffusion solution as the problem is made increasingly thick and diffusive. In the third test problem, we demonstrated that bilinear discontinuous based transport and Wachspress rational function based transport converge in the one-mesh limit

17. Quadrilateral mesh fitting that preserves sharp features based on multi-normals for Laplacian energy

Directory of Open Access Journals (Sweden)

Yusuke Imai

2014-04-01

Full Text Available Because the cost of performance testing using actual products is expensive, manufacturers use lower-cost computer-aided design simulations for this function. In this paper, we propose using hexahedral meshes, which are more accurate than tetrahedral meshes, for finite element analysis. We propose automatic hexahedral mesh generation with sharp features to precisely represent the corresponding features of a target shape. Our hexahedral mesh is generated using a voxel-based algorithm. In our previous works, we fit the surface of the voxels to the target surface using Laplacian energy minimization. We used normal vectors in the fitting to preserve sharp features. However, this method could not represent concave sharp features precisely. In this proposal, we improve our previous Laplacian energy minimization by adding a term that depends on multi-normal vectors instead of using normal vectors. Furthermore, we accentuate a convex/concave surface subset to represent concave sharp features.

18. A multipoint flux mixed finite element method on distorted quadrilaterals and hexahedra

KAUST Repository

Wheeler, Mary

2011-11-06

In this paper, we develop a new mixed finite element method for elliptic problems on general quadrilateral and hexahedral grids that reduces to a cell-centered finite difference scheme. A special non-symmetric quadrature rule is employed that yields a positive definite cell-centered system for the pressure by eliminating local velocities. The method is shown to be accurate on highly distorted rough quadrilateral and hexahedral grids, including hexahedra with non-planar faces. Theoretical and numerical results indicate first-order convergence for the pressure and face fluxes. © 2011 Springer-Verlag.

19. A multipoint flux mixed finite element method on distorted quadrilaterals and hexahedra

KAUST Repository

Wheeler, Mary; Xue, Guangri; Yotov, Ivan

2011-01-01

In this paper, we develop a new mixed finite element method for elliptic problems on general quadrilateral and hexahedral grids that reduces to a cell-centered finite difference scheme. A special non-symmetric quadrature rule is employed that yields

20. Finite element method with quadratic quadrilateral unit for solving two dimensional incompressible N-S equation

International Nuclear Information System (INIS)

Tao Ganqiang; Yu Qing; Xiao Xiao

2011-01-01

Viscous and incompressible fluid flow is important for numerous engineering mechanics problems. Because of high non linear and incompressibility for Navier-Stokes equation, it is very difficult to solve Navier-Stokes equation by numerical method. According to its characters of Navier-Stokes equation, quartic derivation controlling equation of the two dimensional incompressible Navier-Stokes equation is set up firstly. The method solves the problem for dealing with vorticity boundary and automatically meets incompressibility condition. Then Finite Element equation for Navier-Stokes equation is proposed by using quadratic quadrilateral unit with 8 nodes in which the unit function is quadratic and non linear.-Based on it, the Finite Element program of quadratic quadrilateral unit with 8 nodes is developed. Lastly, numerical experiment proves the accuracy and dependability of the method and also shows the method has good application prospect in computational fluid mechanics. (authors)

1. An object-oriented and quadrilateral-mesh based solution adaptive algorithm for compressible multi-fluid flows

Science.gov (United States)

Zheng, H. W.; Shu, C.; Chew, Y. T.

2008-07-01

In this paper, an object-oriented and quadrilateral-mesh based solution adaptive algorithm for the simulation of compressible multi-fluid flows is presented. The HLLC scheme (Harten, Lax and van Leer approximate Riemann solver with the Contact wave restored) is extended to adaptively solve the compressible multi-fluid flows under complex geometry on unstructured mesh. It is also extended to the second-order of accuracy by using MUSCL extrapolation. The node, edge and cell are arranged in such an object-oriented manner that each of them inherits from a basic object. A home-made double link list is designed to manage these objects so that the inserting of new objects and removing of the existing objects (nodes, edges and cells) are independent of the number of objects and only of the complexity of O( 1). In addition, the cells with different levels are further stored in different lists. This avoids the recursive calculation of solution of mother (non-leaf) cells. Thus, high efficiency is obtained due to these features. Besides, as compared to other cell-edge adaptive methods, the separation of nodes would reduce the memory requirement of redundant nodes, especially in the cases where the level number is large or the space dimension is three. Five two-dimensional examples are used to examine its performance. These examples include vortex evolution problem, interface only problem under structured mesh and unstructured mesh, bubble explosion under the water, bubble-shock interaction, and shock-interface interaction inside the cylindrical vessel. Numerical results indicate that there is no oscillation of pressure and velocity across the interface and it is feasible to apply it to solve compressible multi-fluid flows with large density ratio (1000) and strong shock wave (the pressure ratio is 10,000) interaction with the interface.

2. ZONE: a finite element mesh generator. [In FORTRAN IV for CDC 7600

Energy Technology Data Exchange (ETDEWEB)

Burger, M. J.

1976-05-01

The ZONE computer program is a finite-element mesh generator which produces the nodes and element description of any two-dimensional geometry. The geometry is subdivided into a mesh of quadrilateral and triangular zones arranged sequentially in an ordered march through the geometry. The order of march can be chosen so that the minimum bandwidth is obtained. The node points are defined in terms of the x and y coordinates in a global rectangular coordinate system. The zones generated are quadrilaterals or triangles defined by four node points in a counterclockwise sequence. Node points defining the outside boundary are generated to describe pressure boundary conditions. The mesh that is generated can be used as input to any two-dimensional as well as any axisymmetrical structure program. The output from ZONE is essentially the input file to NAOS, HONDO, and other axisymmetric finite element programs. 14 figures. (RWR)

3. Novel quadrilateral elements based on explicit Hermite polynomials for bending of Kirchhoff-Love plates

Science.gov (United States)

Beheshti, Alireza

2018-03-01

The contribution addresses the finite element analysis of bending of plates given the Kirchhoff-Love model. To analyze the static deformation of plates with different loadings and geometries, the principle of virtual work is used to extract the weak form. Following deriving the strain field, stresses and resultants may be obtained. For constructing four-node quadrilateral plate elements, the Hermite polynomials defined with respect to the variables in the parent space are applied explicitly. Based on the approximated field of displacement, the stiffness matrix and the load vector in the finite element method are obtained. To demonstrate the performance of the subparametric 4-node plate elements, some known, classical examples in structural mechanics are solved and there are comparisons with the analytical solutions available in the literature.

4. Some efficient Lagrangian mesh finite elements encoded in ZEPHYR for two dimensional transport calculations

International Nuclear Information System (INIS)

Mordant, Maurice.

1981-04-01

To solve a multigroup stationary neutron transport equation in two-dimensional geometries (X-Y), (R-O) or (R-Z) generally on uses discrete ordinates and rectangular meshes. The way to do it is then well known, well documented and somewhat obvious. If one needs to treat awkward geometries or distorted meshes, things are not so easy and the way to do it is no longer straightforward. We have studied this problem at Limeil Nuclear Center and as an alternative to Monte Carlo methods and code we have implemented in ZEPHYR code at least two efficient finite element solutions for Lagrangian meshes involving any kind of triangles and quadrilaterals

5. MESHREF, Finite Elements Mesh Combination with Renumbering

International Nuclear Information System (INIS)

1973-01-01

1 - Nature of physical problem solved: The program can assemble different meshes stored on tape or cards. Renumbering is performed in order to keep band width low. Voids and/ or local refinement are possible. 2 - Method of solution: Topology and geometry are read according to input specifications. Abundant nodes and elements are eliminated. The new topology and geometry are stored on tape. 3 - Restrictions on the complexity of the problem: Maximum number of nodes = 2000. Maximum number of elements = 1500

6. A finite element method with overlapping meshes for free-boundary axisymmetric plasma equilibria in realistic geometries

Science.gov (United States)

Heumann, Holger; Rapetti, Francesca

2017-04-01

Existing finite element implementations for the computation of free-boundary axisymmetric plasma equilibria approximate the unknown poloidal flux function by standard lowest order continuous finite elements with discontinuous gradients. As a consequence, the location of critical points of the poloidal flux, that are of paramount importance in tokamak engineering, is constrained to nodes of the mesh leading to undesired jumps in transient problems. Moreover, recent numerical results for the self-consistent coupling of equilibrium with resistive diffusion and transport suggest the necessity of higher regularity when approximating the flux map. In this work we propose a mortar element method that employs two overlapping meshes. One mesh with Cartesian quadrilaterals covers the vacuum chamber domain accessible by the plasma and one mesh with triangles discretizes the region outside. The two meshes overlap in a narrow region. This approach gives the flexibility to achieve easily and at low cost higher order regularity for the approximation of the flux function in the domain covered by the plasma, while preserving accurate meshing of the geometric details outside this region. The continuity of the numerical solution in the region of overlap is weakly enforced by a mortar-like mapping.

7. On the optimal design of glass grid shells with planar quadrilateral elements

DEFF Research Database (Denmark)

Sassone, Mario; Pugnale, Alberto

2010-01-01

specific geometric rules in the grid generation phase but, when the architectural shape is already defined at the conceptual stage, an optimization procedure can yield to suitable configurations. A Relaxation method based on nodal planarity errors and an evolutionary population based Genetic Algorithm have...... been applied to set of benchmarks, in order to tune parameters and to obtain general information about the solution. the problem and their efficiency compared. The Relaxation method in general shows better efficiency in reaching optimal solutions, as an effect of the regularity of the target function......This paper presents an optimization procedure for the solution of the planarity problem, a requirement of grid shells with four or more sides faces that need of having four adjacent nodes laying on a plane in order to use plane glass slabs as cladding elements. It can be satisfied by applying...

8. QMESH RENUM QPLOT, Mesh Generator on 2-D Bodies for Finite Element Method Analysis, with Plot Utility

International Nuclear Information System (INIS)

Jones, R.E.; Schkade, A.F.; Eyberger, L.R.

1991-01-01

1 - Description of problem or function: A set of five programs which make up a self-organising mesh generation package. QMESH generates meshes having quadrilateral elements on arbitrarily-shaped, two-dimensional (planar or axisymmetric) bodies. It is designed for use with two-dimensional finite element analysis applications. A flexible hierarchical input scheme is used to describe bodies to QMESH as collections of regions. A mesh for each region is developed independently, with the final assembly and bandwidth minimization performed by the independent program, RENUM or RENUM8. RENUM is applied when four-node elements are desired. Eight-node elements (with mid-side nodes) may be obtained with RENUM8., QPLOT and QPLOT8 are plot programs for meshes generated by the QMESH/RENUM and QMESH/RENUM8 program pairs, respectively. QPLOT and QPLOT8 automatically section the mesh into appropriately-sized sections for legible display of node and element numbers. An overall plot showing the position of the selected plot areas is produced. 2 - Method of solution: The mesh generating process for each individual region begins with the installation of an initial mesh which is a transformation of a regular grid on the unit square. The dimensions and orientation of the initial mesh may be defined by the user or, optionally, may be chosen by QMESH. Various smoothing algorithms may be applied to the initial mesh. Then, the mesh may be 'restructured' using an iterative scheme involving 'element pair restructuring', 'acute element deletion', and smoothing. In element pair restructuring, the interface side between two elements is removed and placed between two different nodes belonging to the pair of elements, provided that the change produces an overall improvement in the shapes of the two elements. In acute element deletion, an element having one diagonal much shorter than the other is deleted by collapsing the short diagonal to zero length The exact order in which restructuring, element

9. Extension of the mixed dual finite element method to the solution of the SPN transport equation in 2D unstructured geometries composed by arbitrary quadrilaterals

International Nuclear Information System (INIS)

Lautard, J.J.; Flumiani, T.

2003-01-01

The mixed dual finite element method is usually used for the resolution of the SPN transport equations (simplified PN equations) in 3D homogenized geometries (composed by homogenized rectangles or hexagons). This method produces fast results with little memory requirements. We have extended the previous method to the treatment of unstructured geometries composed by quadrilaterals (for the moment limited to 2D), allowing us to treat geometries where fuel pins are exactly represented. The iterative resolution of the resulting matrix system is a generalization of the one already developed for the cartesian and the hexagonal geometries. In order to illustrate and to show the efficiency of this method, results on the NEA-C5G7-MOX benchmark are given. The previous benchmark has been extended for the hexagonal geometry and we provide here some results. This method is a first step towards the treatment of pin by pin core calculations without homogenization. The present solver is a prototype. It shows the efficiency of the method and it has to be extended to 3D calculations as well as to exact transport calculations. We also intend to extend the method to the treatment of unstructured geometries composed by quadrilaterals with curved edges (sectors of a circle).The iterative algorithm has yet to be accelerated using multigrid techniques through a coupling with the present homogenized solver (MINOS). In the future, it will be included in the next generation neutronic toolbox DESCARTES currently under development

10. Two-dimensional isostatic meshes in the finite element method

OpenAIRE

Martínez Marín, Rubén; Samartín, Avelino

2002-01-01

In a Finite Element (FE) analysis of elastic solids several items are usually considered, namely, type and shape of the elements, number of nodes per element, node positions, FE mesh, total number of degrees of freedom (dot) among others. In this paper a method to improve a given FE mesh used for a particular analysis is described. For the improvement criterion different objective functions have been chosen (Total potential energy and Average quadratic error) and the number of nodes and dof's...

11. Finite element simulation of impact response of wire mesh screens

Directory of Open Access Journals (Sweden)

Wang Caizheng

2015-01-01

Full Text Available In this paper, the response of wire mesh screens to low velocity impact with blunt objects is investigated using finite element (FE simulation. The woven wire mesh is modelled with homogeneous shell elements with equivalent smeared mechanical properties. The mechanical behaviour of the woven wire mesh was determined experimentally with tensile tests on steel wire mesh coupons to generate the data for the smeared shell material used in the FE. The effects of impacts with a low mass (4 kg and a large mass (40 kg providing the same impact energy are studied. The joint between the wire mesh screen and the aluminium frame surrounding it is modelled using contact elements with friction between the corresponding elements. Damage to the screen of different types compromising its structural integrity, such as mesh separation and pulling out from the surrounding frame is modelled. The FE simulation is validated with results of impact tests conducted on woven steel wire screen meshes.

12. r-Adaptive mesh generation for shell finite element analysis

International Nuclear Information System (INIS)

Cho, Maenghyo; Jun, Seongki

2004-01-01

An r-adaptive method or moving grid technique relocates a grid so that it becomes concentrated in the desired region. This concentration improves the accuracy and efficiency of finite element solutions. We apply the r-adaptive method to computational mesh of shell surfaces, which is initially regular and uniform. The r-adaptive method, given by Liao and Anderson [Appl. Anal. 44 (1992) 285], aggregate the grid in the region with a relatively high weight function without any grid-tangling. The stress error estimator is calculated in the initial uniform mesh for a weight function. However, since the r-adaptive method is a method that moves the grid, shell surface geometry error such as curvature error and mesh distortion error will increase. Therefore, to represent the exact geometry of a shell surface and to prevent surface geometric errors, we use the Naghdi's shell theory and express the shell surface by a B-spline patch. In addition, using a nine-node element, which is relatively less sensitive to mesh distortion, we try to diminish mesh distortion error in the application of an r-adaptive method. In the numerical examples, it is shown that the values of the error estimator for a cylinder, hemisphere, and torus in the overall domain can be reduced effectively by using the mesh generated by the r-adaptive method. Also, the reductions of the estimated relative errors are demonstrated in the numerical examples. In particular, a new functional is proposed to construct an adjusted mesh configuration by considering a mesh distortion measure as well as the stress error function. The proposed weight function provides a reliable mesh adaptation method after a parameter value in the weight function is properly chosen

13. Finite element meshing approached as a global minimization process

Energy Technology Data Exchange (ETDEWEB)

WITKOWSKI,WALTER R.; JUNG,JOSEPH; DOHRMANN,CLARK R.; LEUNG,VITUS J.

2000-03-01

The ability to generate a suitable finite element mesh in an automatic fashion is becoming the key to being able to automate the entire engineering analysis process. However, placing an all-hexahedron mesh in a general three-dimensional body continues to be an elusive goal. The approach investigated in this research is fundamentally different from any other that is known of by the authors. A physical analogy viewpoint is used to formulate the actual meshing problem which constructs a global mathematical description of the problem. The analogy used was that of minimizing the electrical potential of a system charged particles within a charged domain. The particles in the presented analogy represent duals to mesh elements (i.e., quads or hexes). Particle movement is governed by a mathematical functional which accounts for inter-particles repulsive, attractive and alignment forces. This functional is minimized to find the optimal location and orientation of each particle. After the particles are connected a mesh can be easily resolved. The mathematical description for this problem is as easy to formulate in three-dimensions as it is in two- or one-dimensions. The meshing algorithm was developed within CoMeT. It can solve the two-dimensional meshing problem for convex and concave geometries in a purely automated fashion. Investigation of the robustness of the technique has shown a success rate of approximately 99% for the two-dimensional geometries tested. Run times to mesh a 100 element complex geometry were typically in the 10 minute range. Efficiency of the technique is still an issue that needs to be addressed. Performance is an issue that is critical for most engineers generating meshes. It was not for this project. The primary focus of this work was to investigate and evaluate a meshing algorithm/philosophy with efficiency issues being secondary. The algorithm was also extended to mesh three-dimensional geometries. Unfortunately, only simple geometries were tested

14. GOMESH, Finite Elements Structure Plot with Triangular Mesh

International Nuclear Information System (INIS)

Draper, J.

1977-01-01

1 - Nature of the physical problem solved: Graphical representation of calculations on structures with finite subdivision. 2 - Method of solution: GOMESH treats meshes with triangular basic elements. The program uses the same punched cards as those required for the input to the 'STAG' series of stress analysis codes and can prepare three basic mesh diagrams which differ in their mode of numbering. One objective of using these diagrams is to show up errors in the card deck by making them visually recognisable. Furthermore, digital tests are made within the program to check that certain requirements have been observed in the production of the lattice. The program 'GOMESH', can provide, superimposed in the graphical representation, stress and temperature values in numerical form, can represent the displacement of the mesh before and after a specified irradiation time, and give the directions and sense of the principal stresses occurring in the individual elements, in the form of arrows of varying length

15. C1-continuous Virtual Element Method for Poisson-Kirchhoff plate problem

Energy Technology Data Exchange (ETDEWEB)

Gyrya, Vitaliy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mourad, Hashem Mohamed [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

2016-09-20

We present a family of C1-continuous high-order Virtual Element Methods for Poisson-Kirchho plate bending problem. The convergence of the methods is tested on a variety of meshes including rectangular, quadrilateral, and meshes obtained by edge removal (i.e. highly irregular meshes). The convergence rates are presented for all of these tests.

16. Aranha: a 2D mesh generator for triangular finite elements

International Nuclear Information System (INIS)

Fancello, E.A.; Salgado, A.C.; Feijoo, R.A.

1990-01-01

A method for generating unstructured meshes for linear and quadratic triangular finite elements is described in this paper. Some topics on the C language data structure used in the development of the program Aranha are also presented. The applicability for adaptive remeshing is shown and finally several examples are included to illustrate the performance of the method in irregular connected planar domains. (author)

17. A Novel Mesh Quality Improvement Method for Boundary Elements

Directory of Open Access Journals (Sweden)

Hou-lin Liu

2012-01-01

Full Text Available In order to improve the boundary mesh quality while maintaining the essential characteristics of discrete surfaces, a new approach combining optimization-based smoothing and topology optimization is developed. The smoothing objective function is modified, in which two functions denoting boundary and interior quality, respectively, and a weight coefficient controlling boundary quality are taken into account. In addition, the existing smoothing algorithm can improve the mesh quality only by repositioning vertices of the interior mesh. Without destroying boundary conformity, bad elements with all their vertices on the boundary cannot be eliminated. Then, topology optimization is employed, and those elements are converted into other types of elements whose quality can be improved by smoothing. The practical application shows that the worst elements can be eliminated and, with the increase of weight coefficient, the average quality of boundary mesh can also be improved. Results obtained with the combined approach are compared with some common approach. It is clearly shown that it performs better than the existing approach.

18. Parallel 3D Mortar Element Method for Adaptive Nonconforming Meshes

Science.gov (United States)

Feng, Huiyu; Mavriplis, Catherine; VanderWijngaart, Rob; Biswas, Rupak

2004-01-01

High order methods are frequently used in computational simulation for their high accuracy. An efficient way to avoid unnecessary computation in smooth regions of the solution is to use adaptive meshes which employ fine grids only in areas where they are needed. Nonconforming spectral elements allow the grid to be flexibly adjusted to satisfy the computational accuracy requirements. The method is suitable for computational simulations of unsteady problems with very disparate length scales or unsteady moving features, such as heat transfer, fluid dynamics or flame combustion. In this work, we select the Mark Element Method (MEM) to handle the non-conforming interfaces between elements. A new technique is introduced to efficiently implement MEM in 3-D nonconforming meshes. By introducing an "intermediate mortar", the proposed method decomposes the projection between 3-D elements and mortars into two steps. In each step, projection matrices derived in 2-D are used. The two-step method avoids explicitly forming/deriving large projection matrices for 3-D meshes, and also helps to simplify the implementation. This new technique can be used for both h- and p-type adaptation. This method is applied to an unsteady 3-D moving heat source problem. With our new MEM implementation, mesh adaptation is able to efficiently refine the grid near the heat source and coarsen the grid once the heat source passes. The savings in computational work resulting from the dynamic mesh adaptation is demonstrated by the reduction of the the number of elements used and CPU time spent. MEM and mesh adaptation, respectively, bring irregularity and dynamics to the computer memory access pattern. Hence, they provide a good way to gauge the performance of computer systems when running scientific applications whose memory access patterns are irregular and unpredictable. We select a 3-D moving heat source problem as the Unstructured Adaptive (UA) grid benchmark, a new component of the NAS Parallel

19. Fracture and Fragmentation of Simplicial Finite Elements Meshes using Graphs

Energy Technology Data Exchange (ETDEWEB)

Mota, A; Knap, J; Ortiz, M

2006-10-18

An approach for the topological representation of simplicial finite element meshes as graphs is presented. It is shown that by using a graph, the topological changes induced by fracture reduce to a few, local kernel operations. The performance of the graph representation is demonstrated and analyzed, using as reference the 3D fracture algorithm by Pandolfi and Ortiz [22]. It is shown that the graph representation initializes in O(N{sub E}{sup 1.1}) time and fractures in O(N{sub I}{sup 1.0}) time, while the reference implementation requires O(N{sub E}{sup 2.1}) time to initialize and O(N{sub I}{sup 1.9}) time to fracture, where NE is the number of elements in the mesh and N{sub I} is the number of interfaces to fracture.

20. H-Morph: An indirect approach to advancing front hex meshing

Energy Technology Data Exchange (ETDEWEB)

OWEN,STEVEN J.; SAIGAL,SUNIL

2000-05-30

H-Morph is a new automatic algorithm for the generation of a hexahedral-dominant finite element mesh for arbitrary volumes. The H-Morph method starts with an initial tetrahedral mesh and systematically transforms and combines tetrahedral into hexahedra. It uses an advancing front technique where the initial front consists of a set of prescribed quadrilateral surface facets. Fronts are individually processed by recovering each of the six quadrilateral faces of a hexahedron from the tetrahedral mesh. Recovery techniques similar to those used in boundary constrained Delaunay mesh generation are used. Tetrahedral internal to the six hexahedral faces are then removed and a hexahedron is formed. At any time during the H-Morph procedure a valid mixed hexahedral-tetrahedral mesh is in existence within the volume. The procedure continues until no tetrahedral remain within the volume, or tetrahedral remain which cannot be transformed or combined into valid hexahedral elements. Any remaining tetrahedral are typically towards the interior of the volume, generally a less critical region for analysis. Transition from tetrahedral to hexahedra in the final mesh is accomplished through pyramid shaped elements. Advantages of the proposed method include its ability to conform to an existing quadrilateral surface mesh, its ability to mesh without the need to decompose or recognize special classes of geometry, and its characteristic well-aligned layers of elements parallel to the boundary. Example test cases are presented on a variety of models.

1. Bessel smoothing filter for spectral-element mesh

Science.gov (United States)

Trinh, P. T.; Brossier, R.; Métivier, L.; Virieux, J.; Wellington, P.

2017-06-01

Smoothing filters are extremely important tools in seismic imaging and inversion, such as for traveltime tomography, migration and waveform inversion. For efficiency, and as they can be used a number of times during inversion, it is important that these filters can easily incorporate prior information on the geological structure of the investigated medium, through variable coherent lengths and orientation. In this study, we promote the use of the Bessel filter to achieve these purposes. Instead of considering the direct application of the filter, we demonstrate that we can rely on the equation associated with its inverse filter, which amounts to the solution of an elliptic partial differential equation. This enhances the efficiency of the filter application, and also its flexibility. We apply this strategy within a spectral-element-based elastic full waveform inversion framework. Taking advantage of this formulation, we apply the Bessel filter by solving the associated partial differential equation directly on the spectral-element mesh through the standard weak formulation. This avoids cumbersome projection operators between the spectral-element mesh and a regular Cartesian grid, or expensive explicit windowed convolution on the finite-element mesh, which is often used for applying smoothing operators. The associated linear system is solved efficiently through a parallel conjugate gradient algorithm, in which the matrix vector product is factorized and highly optimized with vectorized computation. Significant scaling behaviour is obtained when comparing this strategy with the explicit convolution method. The theoretical numerical complexity of this approach increases linearly with the coherent length, whereas a sublinear relationship is observed practically. Numerical illustrations are provided here for schematic examples, and for a more realistic elastic full waveform inversion gradient smoothing on the SEAM II benchmark model. These examples illustrate well the

2. 3D unstructured mesh discontinuous finite element hydro

International Nuclear Information System (INIS)

Prasad, M.K.; Kershaw, D.S.; Shaw, M.J.

1995-01-01

The authors present detailed features of the ICF3D hydrodynamics code used for inertial fusion simulations. This code is intended to be a state-of-the-art upgrade of the well-known fluid code, LASNEX. ICF3D employs discontinuous finite elements on a discrete unstructured mesh consisting of a variety of 3D polyhedra including tetrahedra, prisms, and hexahedra. The authors discussed details of how the ROE-averaged second-order convection was applied on the discrete elements, and how the C++ coding interface has helped to simplify implementing the many physics and numerics modules within the code package. The author emphasized the virtues of object-oriented design in large scale projects such as ICF3D

3. MESH-TO-BIM: FROM SEGMENTED MESH ELEMENTS TO BIM MODEL WITH LIMITED PARAMETERS

Directory of Open Access Journals (Sweden)

X. Yang

2018-05-01

Full Text Available Building Information Modelling (BIM technique has been widely utilized in heritage documentation and comes to a general term Historical/Heritage BIM (HBIM. The current HBIM project mostly employs the scan-to-BIM process to manually create the geometric model from the point cloud. This paper explains how it is possible to shape from the mesh geometry with reduced human involvement during the modelling process. Aiming at unbuilt heritage, two case studies are handled in this study, including a ruined Roman stone architectural and a severely damaged abbey. The pipeline consists of solid element modelling based on documentation data using Autodesk Revit, a common BIM platform, and the successive modelling from these geometric primitives using Autodesk Dynamo, a visual programming built-in plugin tool in Revit. The BIM-based reconstruction enriches the classic visual model from computer graphics approaches with measurement, semantic and additional information. Dynamo is used to develop a semi-automated function to reduce the manual process, which builds the final BIM model from segmented parametric elements directly. The level of detail (LoD of the final models is dramatically relevant with the manual involvement in the element creation. The proposed outline also presents two potential issues in the ongoing work: combining the ontology semantics with the parametric BIM model, and introducing the proposed pipeline into the as-built HBIM process.

4. QUADRATIC SERENDIPITY FINITE ELEMENTS ON POLYGONS USING GENERALIZED BARYCENTRIC COORDINATES.

Science.gov (United States)

Rand, Alexander; Gillette, Andrew; Bajaj, Chandrajit

2014-01-01

We introduce a finite element construction for use on the class of convex, planar polygons and show it obtains a quadratic error convergence estimate. On a convex n -gon, our construction produces 2 n basis functions, associated in a Lagrange-like fashion to each vertex and each edge midpoint, by transforming and combining a set of n ( n + 1)/2 basis functions known to obtain quadratic convergence. The technique broadens the scope of the so-called 'serendipity' elements, previously studied only for quadrilateral and regular hexahedral meshes, by employing the theory of generalized barycentric coordinates. Uniform a priori error estimates are established over the class of convex quadrilaterals with bounded aspect ratio as well as over the class of convex planar polygons satisfying additional shape regularity conditions to exclude large interior angles and short edges. Numerical evidence is provided on a trapezoidal quadrilateral mesh, previously not amenable to serendipity constructions, and applications to adaptive meshing are discussed.

5. Stress distributions in finite element analysis of concrete gravity dam ...

African Journals Online (AJOL)

Gravity dams are solid structures built of mass concrete material; they maintain their stability against the design loads from the geometric shape, the mass, and the strength of the concrete. The model was meshed with an 8-node biquadratic plane strain quadrilateral (CPE8R) elements, using ABAQUS, a finite element ...

diagonals and areas can be reduced to solving certain diophantine ... these problems into questions on the existence of infinitely many rational solutions on ... reduced the problem of finding rational quadrilaterals to the problem of finding ... Besicovitch [4] answered this question for the special cases of right-angled triangles.

7. EURCYL. A program to generate finite element meshes for pressure vessel nozzles

International Nuclear Information System (INIS)

De Windt, P.; Reynen, J.

1974-12-01

EURCYL is a program dealing with the automatic generation of finite element meshes for pressure vessel nozzles, using isoparametric elements with 8, 20 or 32 nodes. Options exist to generate BWR nozzles as well as PWR nozzles

8. Convergence study of global meshing on enamel-cement-bracket finite element model

Science.gov (United States)

Samshuri, S. F.; Daud, R.; Rojan, M. A.; Basaruddin, K. S.; Abdullah, A. B.; Ariffin, A. K.

2017-09-01

This paper presents on meshing convergence analysis of finite element (FE) model to simulate enamel-cement-bracket fracture. Three different materials used in this study involving interface fracture are concerned. Complex behavior ofinterface fracture due to stress concentration is the reason to have a well-constructed meshing strategy. In FE analysis, meshing size is a critical factor that influenced the accuracy and computational time of analysis. The convergence study meshing scheme involving critical area (CA) and non-critical area (NCA) to ensure an optimum meshing sizes are acquired for this FE model. For NCA meshing, the area of interest are at the back of enamel, bracket ligature groove and bracket wing. For CA meshing, area of interest are enamel area close to cement layer, the cement layer and bracket base. The value of constant NCA meshing tested are meshing size 1 and 0.4. The value constant CA meshing tested are 0.4 and 0.1. Manipulative variables are randomly selected and must abide the rule of NCA must be higher than CA. This study employed first principle stresses due to brittle failure nature of the materials used. Best meshing size are selected according to convergence error analysis. Results show that, constant CA are more stable compare to constant NCA meshing. Then, 0.05 constant CA meshing are tested to test the accuracy of smaller meshing. However, unpromising result obtained as the errors are increasing. Thus, constant CA 0.1 with NCA mesh of 0.15 until 0.3 are the most stable meshing as the error in this region are lowest. Convergence test was conducted on three selected coarse, medium and fine meshes at the range of NCA mesh of 0.15 until 3 and CA mesh area stay constant at 0.1. The result shows that, at coarse mesh 0.3, the error are 0.0003% compare to 3% acceptable error. Hence, the global meshing are converge as the meshing size at CA 0.1 and NCA 0.15 for this model.

9. A novel hybrid stress-function finite element method immune to severe mesh distortion

International Nuclear Information System (INIS)

Cen Song; Zhou Mingjue; Fu Xiangrong

2010-01-01

This paper introduces a hybrid stress-function finite element method proposed recently for developing 2D finite element models immune to element shapes. Deferent from the first version of the hybrid-stress element constructed by Pian, the stress function φ of 2D elastic or fracture problem is regarded as the functional variable of the complementary energy functional. Then, the basic analytical solutions of φ are taken as the trial functions for finite element models, and meanwhile, the corresponding unknown stress-function constants are introduced. By using the principle of minimum complementary energy, these unknown stress-function constants can be expressed in terms of the displacements along element edges. Finally, the complementary energy functional can be rewritten in terms of element nodal displacement vector, and thus, the element stiffness matrix of such hybrid-function element can be obtained. As examples, two (8- and 12-node) quadrilateral plane elements and an arbitrary polygonal crack element are constructed by employing different basic analytical solutions of different stress functions. Numerical results show that, the 8- and 12-node plane models can produce the exact solutions for pure bending and linear bending problems, respectively, even the element shape degenerates into triangle and concave quadrangle; and the crack element can also predict accurate results with very low computational cost in analysis of stress-singularity problems.

10. 6th International Meshing Roundtable '97

Energy Technology Data Exchange (ETDEWEB)

White, D.

1997-09-01

The goal of the 6th International Meshing Roundtable is to bring together researchers and developers from industry, academia, and government labs in a stimulating, open environment for the exchange of technical information related to the meshing process. In the pas~ the Roundtable has enjoyed significant participation born each of these groups from a wide variety of countries. The Roundtable will consist of technical presentations from contributed papers and abstracts, two invited speakers, and two invited panels of experts discussing topics related to the development and use of automatic mesh generation tools. In addition, this year we will feature a "Bring Your Best Mesh" competition and poster session to encourage discussion and participation from a wide variety of mesh generation tool users. The schedule and evening social events are designed to provide numerous opportunities for informal dialog. A proceedings will be published by Sandia National Laboratories and distributed at the Roundtable. In addition, papers of exceptionally high quaIity will be submitted to a special issue of the International Journal of Computational Geometry and Applications. Papers and one page abstracts were sought that present original results on the meshing process. Potential topics include but are got limited to: Unstructured triangular and tetrahedral mesh generation Unstructured quadrilateral and hexahedral mesh generation Automated blocking and structured mesh generation Mixed element meshing Surface mesh generation Geometry decomposition and clean-up techniques Geometry modification techniques related to meshing Adaptive mesh refinement and mesh quality control Mesh visualization Special purpose meshing algorithms for particular applications Theoretical or novel ideas with practical potential Technical presentations from industrial researchers.

11. Reactor calculation in coarse mesh by finite element method applied to matrix response method

International Nuclear Information System (INIS)

Nakata, H.

1982-01-01

The finite element method is applied to the solution of the modified formulation of the matrix-response method aiming to do reactor calculations in coarse mesh. Good results are obtained with a short running time. The method is applicable to problems where the heterogeneity is predominant and to problems of evolution in coarse meshes where the burnup is variable in one same coarse mesh, making the cross section vary spatially with the evolution. (E.G.) [pt

12. Finite Element in Angle Unit Sphere Meshing for Charged Particle Transport.

Energy Technology Data Exchange (ETDEWEB)

Ortega, Mario Ivan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Drumm, Clifton R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

2017-10-01

Finite element in angle formulations of the charged particle transport equation require the discretization of the unit sphere. In Sceptre, a three-dimensional surface mesh of a sphere is transformed into a two-dimensional mesh. Projection of a sphere onto a two-dimensional surface is well studied with map makers spending the last few centuries attempting to create maps that preserve proportion and area. Using these techniques, various meshing schemes for the unit sphere were investigated.

13. Finite element method for solving Kohn-Sham equations based on self-adaptive tetrahedral mesh

International Nuclear Information System (INIS)

Zhang Dier; Shen Lihua; Zhou Aihui; Gong Xingao

2008-01-01

A finite element (FE) method with self-adaptive mesh-refinement technique is developed for solving the density functional Kohn-Sham equations. The FE method adopts local piecewise polynomials basis functions, which produces sparsely structured matrices of Hamiltonian. The method is well suitable for parallel implementation without using Fourier transform. In addition, the self-adaptive mesh-refinement technique can control the computational accuracy and efficiency with optimal mesh density in different regions

14. Mechanical behaviour of synthetic surgical meshes: finite element simulation of the herniated abdominal wall.

Science.gov (United States)

Hernández-Gascón, B; Peña, E; Melero, H; Pascual, G; Doblaré, M; Ginebra, M P; Bellón, J M; Calvo, B

2011-11-01

The material properties of meshes used in hernia surgery contribute to the overall mechanical behaviour of the repaired abdominal wall. The mechanical response of a surgical mesh has to be defined since the haphazard orientation of an anisotropic mesh can lead to inconsistent surgical outcomes. This study was designed to characterize the mechanical behaviour of three surgical meshes (Surgipro®, Optilene® and Infinit®) and to describe a mechanical constitutive law that accurately reproduces the experimental results. Finally, through finite element simulation, the behaviour of the abdominal wall was modelled before and after surgical mesh implant. Uniaxial loading of mesh samples in two perpendicular directions revealed the isotropic response of Surgipro® and the anisotropic behaviour of Optilene® and Infinit®. A phenomenological constitutive law was used to reproduce the measured experimental curves. To analyze the mechanical effect of the meshes once implanted in the abdomen, finite element simulation of the healthy and partially herniated repaired rabbit abdominal wall served to reproduce wall behaviour before and after mesh implant. In all cases, maximal displacements were lower and maximal principal stresses higher in the implanted abdomen than the intact wall model. Despite the fact that no mesh showed a behaviour that perfectly matched that of abdominal muscle, the Infinit® mesh was able to best comply with the biomechanics of the abdominal wall. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

15. Construction of hexahedral elements mesh capturing realistic geometries of Bayou Choctaw SPR site

Energy Technology Data Exchange (ETDEWEB)

Park, Byoung Yoon [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Barry L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

2015-09-01

The three-dimensional finite element mesh capturing realistic geometries of Bayou Choctaw site has been constructed using the sonar and seismic survey data obtained from the field. The mesh is consisting of hexahedral elements because the salt constitutive model is coded using hexahedral elements. Various ideas and techniques to construct finite element mesh capturing artificially and naturally formed geometries are provided. The techniques to reduce the number of elements as much as possible to save on computer run time with maintaining the computational accuracy is also introduced. The steps and methodologies could be applied to construct the meshes of Big Hill, Bryan Mound, and West Hackberry strategic petroleum reserve sites. The methodology could be applied to the complicated shape masses for not only various civil and geological structures but also biological applications such as artificial limbs.

16. LOOM-P: a finite element mesh generation program with on-line graphic display

International Nuclear Information System (INIS)

Ise, Takeharu; Yamazaki, Toshio.

1977-06-01

A description of the two-dimensional mesh generation program, LOOM-P, is given in detail. The program is developed newly to produce a mesh network for a reactor core geometry with the help of an automatic mesh generation routine built in it, under the control of the refresh-type graphic display. It is therefore similar to the edit program of the self-organizing mesh generator, QMESH-RENUM. Additional techniques are incorporated to improve the pattern of mesh elements by means of on-line conversational mode. The obtained mesh network is edited out as input data to the three-dimensional neutron diffusion theory code, FEM-BABEL. (auth.)

17. A simple nodal force distribution method in refined finite element meshes

Energy Technology Data Exchange (ETDEWEB)

Park, Jai Hak [Chungbuk National University, Chungju (Korea, Republic of); Shin, Kyu In [Gentec Co., Daejeon (Korea, Republic of); Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

2017-05-15

In finite element analyses, mesh refinement is frequently performed to obtain accurate stress or strain values or to accurately define the geometry. After mesh refinement, equivalent nodal forces should be calculated at the nodes in the refined mesh. If field variables and material properties are available at the integration points in each element, then the accurate equivalent nodal forces can be calculated using an adequate numerical integration. However, in certain circumstances, equivalent nodal forces cannot be calculated because field variable data are not available. In this study, a very simple nodal force distribution method was proposed. Nodal forces of the original finite element mesh are distributed to the nodes of refined meshes to satisfy the equilibrium conditions. The effect of element size should also be considered in determining the magnitude of the distributing nodal forces. A program was developed based on the proposed method, and several example problems were solved to verify the accuracy and effectiveness of the proposed method. From the results, accurate stress field can be recognized to be obtained from refined meshes using the proposed nodal force distribution method. In example problems, the difference between the obtained maximum stress and target stress value was less than 6 % in models with 8-node hexahedral elements and less than 1 % in models with 20-node hexahedral elements or 10-node tetrahedral elements.

18. INGEN: a general-purpose mesh generator for finite element codes

International Nuclear Information System (INIS)

Cook, W.A.

1979-05-01

INGEN is a general-purpose mesh generator for two- and three-dimensional finite element codes. The basic parts of the code are surface and three-dimensional region generators that use linear-blending interpolation formulas. These generators are based on an i, j, k index scheme that is used to number nodal points, construct elements, and develop displacement and traction boundary conditions. This code can generate truss elements (2 modal points); plane stress, plane strain, and axisymmetry two-dimensional continuum elements (4 to 8 nodal points); plate elements (4 to 8 nodal points); and three-dimensional continuum elements (8 to 21 nodal points). The traction loads generated are consistent with the element generated. The expansion--contraction option is of special interest. This option makes it possible to change an existing mesh such that some regions are refined and others are made coarser than the original mesh. 9 figures

19. Finite Macro-Element Mesh Deformation in a Structured Multi-Block Navier-Stokes Code

Science.gov (United States)

Bartels, Robert E.

2005-01-01

A mesh deformation scheme is developed for a structured multi-block Navier-Stokes code consisting of two steps. The first step is a finite element solution of either user defined or automatically generated macro-elements. Macro-elements are hexagonal finite elements created from a subset of points from the full mesh. When assembled, the finite element system spans the complete flow domain. Macro-element moduli vary according to the distance to the nearest surface, resulting in extremely stiff elements near a moving surface and very pliable elements away from boundaries. Solution of the finite element system for the imposed boundary deflections generally produces smoothly varying nodal deflections. The manner in which distance to the nearest surface has been found to critically influence the quality of the element deformation. The second step is a transfinite interpolation which distributes the macro-element nodal deflections to the remaining fluid mesh points. The scheme is demonstrated for several two-dimensional applications.

20. Charged particle tracking through electrostatic wire meshes using the finite element method

Energy Technology Data Exchange (ETDEWEB)

Devlin, L. J.; Karamyshev, O.; Welsch, C. P., E-mail: carsten.welsch@cockcroft.ac.uk [The Cockcroft Institute, Daresbury Laboratory, Warrington (United Kingdom); Department of Physics, University of Liverpool, Liverpool (United Kingdom)

2016-06-15

Wire meshes are used across many disciplines to accelerate and focus charged particles, however, analytical solutions are non-exact and few codes exist which simulate the exact fields around a mesh with physical sizes. A tracking code based in Matlab-Simulink using field maps generated using finite element software has been developed which tracks electrons or ions through electrostatic wire meshes. The fields around such a geometry are presented as an analytical expression using several basic assumptions, however, it is apparent that computational calculations are required to obtain realistic values of electric potential and fields, particularly when multiple wire meshes are deployed. The tracking code is flexible in that any quantitatively describable particle distribution can be used for both electrons and ions as well as other benefits such as ease of export to other programs for analysis. The code is made freely available and physical examples are highlighted where this code could be beneficial for different applications.

1. Manual for automatic generation of finite element models of spiral bevel gears in mesh

Science.gov (United States)

Bibel, G. D.; Reddy, S.; Kumar, A.

1994-01-01

The goal of this research is to develop computer programs that generate finite element models suitable for doing 3D contact analysis of faced milled spiral bevel gears in mesh. A pinion tooth and a gear tooth are created and put in mesh. There are two programs: Points.f and Pat.f to perform the analysis. Points.f is based on the equation of meshing for spiral bevel gears. It uses machine tool settings to solve for an N x M mesh of points on the four surfaces, pinion concave and convex, and gear concave and convex. Points.f creates the file POINTS.OUT, an ASCI file containing N x M points for each surface. (N is the number of node points along the length of the tooth, and M is nodes along the height.) Pat.f reads POINTS.OUT and creates the file tl.out. Tl.out is a series of PATRAN input commands. In addition to the mesh density on the tooth face, additional user specified variables are the number of finite elements through the thickness, and the number of finite elements along the tooth full fillet. A full fillet is assumed to exist for both the pinion and gear.

2. Nonconforming axisymmetric elements for the analysis of containment structures

International Nuclear Information System (INIS)

Choi, C.K.; Kim, S.Y.

1989-01-01

In this study, the behaviors of the conforming isoparametric quadrilateral 4-node and triangular 3-nod axisymmetric solid elements are improved by adding nonconforming displacement modes. The convergence tests and the irregular mesh tests have been established through the analyses of a primary shield wall typed structure. For example study, a containment wall with internal pressure of 60 ksi has been analyzed. It shows that the nonconforming elements behave better than the conforming elements, especially, in the structurally discontinuous regions

3. Mesh Partitioning Algorithm Based on Parallel Finite Element Analysis and Its Actualization

Directory of Open Access Journals (Sweden)

Lei Zhang

2013-01-01

Full Text Available In parallel computing based on finite element analysis, domain decomposition is a key technique for its preprocessing. Generally, a domain decomposition of a mesh can be realized through partitioning of a graph which is converted from a finite element mesh. This paper discusses the method for graph partitioning and the way to actualize mesh partitioning. Relevant softwares are introduced, and the data structure and key functions of Metis and ParMetis are introduced. The writing, compiling, and testing of the mesh partitioning interface program based on these key functions are performed. The results indicate some objective law and characteristics to guide the users who use the graph partitioning algorithm and software to write PFEM program, and ideal partitioning effects can be achieved by actualizing mesh partitioning through the program. The interface program can also be used directly by the engineering researchers as a module of the PFEM software. So that it can reduce the application of the threshold of graph partitioning algorithm, improve the calculation efficiency, and promote the application of graph theory and parallel computing.

4. Anisotropic mesh adaptation for solution of finite element problems using hierarchical edge-based error estimates

Energy Technology Data Exchange (ETDEWEB)

Lipnikov, Konstantin [Los Alamos National Laboratory; Agouzal, Abdellatif [UNIV DE LYON; Vassilevski, Yuri [Los Alamos National Laboratory

2009-01-01

We present a new technology for generating meshes minimizing the interpolation and discretization errors or their gradients. The key element of this methodology is construction of a space metric from edge-based error estimates. For a mesh with N{sub h} triangles, the error is proportional to N{sub h}{sup -1} and the gradient of error is proportional to N{sub h}{sup -1/2} which are optimal asymptotics. The methodology is verified with numerical experiments.

5. A finite element formulation of the Darwin electromagnetic PIC model for unstructured meshes of triangles

International Nuclear Information System (INIS)

Sonnendrucker, E.; Ambrosiano, J.; Brandon, S.

1993-01-01

The Darwin model for electromagnetic simulation is a reduced form of the Maxwell-Vlasov system that retains all essential physical processes except the propagation of light waves. It is useful in modeling systems for which the light-transit timescales are less important than Alfven wave propagation, or quasistatic effects. The Darwin model is elliptic rather than hyperbolic as are the full set of Maxwell's equations. Appropriate boundary conditions must be chosen for the problems to be well-posed. Using finite element techniques to apply this method for unstructured triangular meshes, a mesh made up of unstructured triangles allows realistic device geometries to be modeled without the necessity of using a large number of mesh points. Analyzing the dispersion relation allows us to validate the code as well as the Darwin approximation

6. Atlas-Based Automatic Generation of Subject-Specific Finite Element Tongue Meshes.

Science.gov (United States)

Bijar, Ahmad; Rohan, Pierre-Yves; Perrier, Pascal; Payan, Yohan

2016-01-01

Generation of subject-specific 3D finite element (FE) models requires the processing of numerous medical images in order to precisely extract geometrical information about subject-specific anatomy. This processing remains extremely challenging. To overcome this difficulty, we present an automatic atlas-based method that generates subject-specific FE meshes via a 3D registration guided by Magnetic Resonance images. The method extracts a 3D transformation by registering the atlas' volume image to the subject's one, and establishes a one-to-one correspondence between the two volumes. The 3D transformation field deforms the atlas' mesh to generate the subject-specific FE mesh. To preserve the quality of the subject-specific mesh, a diffeomorphic non-rigid registration based on B-spline free-form deformations is used, which guarantees a non-folding and one-to-one transformation. Two evaluations of the method are provided. First, a publicly available CT-database is used to assess the capability to accurately capture the complexity of each subject-specific Lung's geometry. Second, FE tongue meshes are generated for two healthy volunteers and two patients suffering from tongue cancer using MR images. It is shown that the method generates an appropriate representation of the subject-specific geometry while preserving the quality of the FE meshes for subsequent FE analysis. To demonstrate the importance of our method in a clinical context, a subject-specific mesh is used to simulate tongue's biomechanical response to the activation of an important tongue muscle, before and after cancer surgery.

7. SLIC: an interactive mesh generator for finite element and finite difference application programs

International Nuclear Information System (INIS)

Gerhard, M.A.; Greenlaw, R.C.

1979-01-01

Computers with extended memory, such as the CDC STAR 100 and the CRAY 1 with mega-word capacities, are greatly enlarging the size of finite element problems which can be solved. The cost of developing and testing large meshes can be prohibitive unless one uses a computer program for mesh generation and plotting. SLIC is an interactive mesh program which builds and plots 2- and 3-D continuum meshes from interactive terminal or disc input. The user inputs coordinates for certain key points and enters commands which complete the description of the geometry. Entire surfaces and volumes are then generated from the geometric skeleton. SLIC allows the user to correct input errors and saves the corrected command list for later reuse. The mesh can be plotted on a video display at any stage of development to evaluate the work in progress. Output is in the form of an input file to a user-selected computer code. Among the available output types are ADINA, SAP4, and NIKE2D. 11 figures

8. Mesh-morphing algorithms for specimen-specific finite element modeling.

Science.gov (United States)

Sigal, Ian A; Hardisty, Michael R; Whyne, Cari M

2008-01-01

Despite recent advances in software for meshing specimen-specific geometries, considerable effort is still often required to produce and analyze specimen-specific models suitable for biomechanical analysis through finite element modeling. We hypothesize that it is possible to obtain accurate models by adapting a pre-existing geometry to represent a target specimen using morphing techniques. Here we present two algorithms for morphing, automated wrapping (AW) and manual landmarks (ML), and demonstrate their use to prepare specimen-specific models of caudal rat vertebrae. We evaluate the algorithms by measuring the distance between target and morphed geometries and by comparing response to axial loading simulated with finite element (FE) methods. First a traditional reconstruction process based on microCT was used to obtain two natural specimen-specific FE models. Next, the two morphing algorithms were used to compute mappings from the surface of one model, the source, to the other, the target, and to use this mapping to morph the source mesh to produce a target mesh. The microCT images were then used to assign element-specific material properties. In AW the mappings were obtained by wrapping the source and target surfaces with an auxiliary triangulated surface. In ML, landmarks were manually placed on corresponding locations on the surfaces of both source and target. Both morphing algorithms were successful in reproducing the shape of the target vertebra with a median distance between natural and morphed models of 18.8 and 32.2 microm, respectively, for AW and ML. Whereas AW-morphing produced a surface more closely resembling that of the target, ML guaranteed correspondence of the landmark locations between source and target. Morphing preserved the quality of the mesh producing models suitable for FE simulation. Moreover, there were only minor differences between natural and morphed models in predictions of deformation, strain and stress. We therefore conclude that

9. Unstructured Finite Elements and Dynamic Meshing for Explicit Phase Tracking in Multiphase Problems

Science.gov (United States)

Chandra, Anirban; Yang, Fan; Zhang, Yu; Shams, Ehsan; Sahni, Onkar; Oberai, Assad; Shephard, Mark

2017-11-01

Multi-phase processes involving phase change at interfaces, such as evaporation of a liquid or combustion of a solid, represent an interesting class of problems with varied applications. Large density ratio across phases, discontinuous fields at the interface and rapidly evolving geometries are some of the inherent challenges which influence the numerical modeling of multi-phase phase change problems. In this work, a mathematically consistent and robust computational approach to address these issues is presented. We use stabilized finite element methods on mixed topology unstructured grids for solving the compressible Navier-Stokes equations. Appropriate jump conditions derived from conservations laws across the interface are handled by using discontinuous interpolations, while the continuity of temperature and tangential velocity is enforced using a penalty parameter. The arbitrary Lagrangian-Eulerian (ALE) technique is utilized to explicitly track the interface motion. Mesh at the interface is constrained to move with the interface while elsewhere it is moved using the linear elasticity analogy. Repositioning is applied to the layered mesh that maintains its structure and normal resolution. In addition, mesh modification is used to preserve the quality of the volumetric mesh. This work is supported by the U.S. Army Grants W911NF1410301 and W911NF16C0117.

10. A Novel Virtual Node Hexahedral Element with Exact Integration and Octree Meshing

Directory of Open Access Journals (Sweden)

Logah Perumal

2016-01-01

Full Text Available The method presented in this work is a 3-dimensional polyhedral finite element (3D PFEM based on virtual node method. Novel virtual node polyhedral elements (termed as VPHE are developed here, particularly virtual node hexahedral element (termed as VHE. Stiffness matrices of these polyhedral elements consist of simple polynomials. Thus, a new algorithm is introduced in this paper, which enables exact integration of monomials without a need for high number of integration points and weights. The number of nodes for VHE elements is not restricted, as opposed to the conventional hexahedral elements. This feature enables formulation of transition elements (termed as T-VHE which are useful to adaptive computation. Performances of the new VHE elements in solid mechanics and conductive heat transfer phenomena are examined through numerical simulations. The new T-VHE elements are utilized in octree mesh. The VHE elements are found to produce good results and T-VHE elements help to reduce number of global nodes for the analysis.

11. 3D visualization and finite element mesh formation from wood anatomy samples, Part I – Theoretical approach

Directory of Open Access Journals (Sweden)

Petr Koňas

2009-01-01

Full Text Available The work summarizes created algorithms for formation of finite element (FE mesh which is derived from bitmap pattern. Process of registration, segmentation and meshing is described in detail. C++ library of STL from Insight Toolkit (ITK Project together with Visualization Toolkit (VTK were used for base processing of images. Several methods for appropriate mesh output are discussed. Multiplatform application WOOD3D for the task under GNU GPL license was assembled. Several methods of segmentation and mainly different ways of contouring were included. Tetrahedral and rectilinear types of mesh were programmed. Improving of mesh quality in some simple ways is mentioned. Testing and verification of final program on wood anatomy samples of spruce and walnut was realized. Methods of microscopic anatomy samples preparation are depicted. Final utilization of formed mesh in the simple structural analysis was performed.The article discusses main problems in image analysis due to incompatible colour spaces, samples preparation, thresholding and final conversion into finite element mesh. Assembling of mentioned tasks together and evaluation of the application are main original results of the presented work. In presented program two thresholding filters were used. By utilization of ITK two following filters were included. Otsu filter based and binary filter based were used. The most problematic task occurred in a production of wood anatomy samples in the unique light conditions with minimal or zero co­lour space shift and the following appropriate definition of thresholds (corresponding thresholding parameters and connected methods (prefiltering + registration which influence the continuity and mainly separation of wood anatomy structure. Solution in samples staining is suggested with the following quick image analysis realization. Next original result of the work is complex fully automated application which offers three types of finite element mesh

12. A local level set method based on a finite element method for unstructured meshes

International Nuclear Information System (INIS)

Ngo, Long Cu; Choi, Hyoung Gwon

2016-01-01

A local level set method for unstructured meshes has been implemented by using a finite element method. A least-square weighted residual method was employed for implicit discretization to solve the level set advection equation. By contrast, a direct re-initialization method, which is directly applicable to the local level set method for unstructured meshes, was adopted to re-correct the level set function to become a signed distance function after advection. The proposed algorithm was constructed such that the advection and direct reinitialization steps were conducted only for nodes inside the narrow band around the interface. Therefore, in the advection step, the Gauss–Seidel method was used to update the level set function using a node-by-node solution method. Some benchmark problems were solved by using the present local level set method. Numerical results have shown that the proposed algorithm is accurate and efficient in terms of computational time

13. A local level set method based on a finite element method for unstructured meshes

Energy Technology Data Exchange (ETDEWEB)

Ngo, Long Cu; Choi, Hyoung Gwon [School of Mechanical Engineering, Seoul National University of Science and Technology, Seoul (Korea, Republic of)

2016-12-15

A local level set method for unstructured meshes has been implemented by using a finite element method. A least-square weighted residual method was employed for implicit discretization to solve the level set advection equation. By contrast, a direct re-initialization method, which is directly applicable to the local level set method for unstructured meshes, was adopted to re-correct the level set function to become a signed distance function after advection. The proposed algorithm was constructed such that the advection and direct reinitialization steps were conducted only for nodes inside the narrow band around the interface. Therefore, in the advection step, the Gauss–Seidel method was used to update the level set function using a node-by-node solution method. Some benchmark problems were solved by using the present local level set method. Numerical results have shown that the proposed algorithm is accurate and efficient in terms of computational time.

14. Coarse mesh finite element method for boiling water reactor physics analysis

International Nuclear Information System (INIS)

Ellison, P.G.

1983-01-01

A coarse mesh method is formulated for the solution of Boiling Water Reactor physics problems using two group diffusion theory. No fuel assembly cross-section homogenization is required; water gaps, control blades and fuel pins of varying enrichments are treated explicitly. The method combines constrained finite element discretization with infinite lattice super cell trial functions to obtain coarse mesh solutions for which the only approximations are along the boundaries between fuel assemblies. The method is applied to bench mark Boiling Water Reactor problems to obtain both the eigenvalue and detailed flux distributions. The solutions to these problems indicate the method is useful in predicting detailed power distributions and eigenvalues for Boiling Water Reactor physics problems

15. Automatic mesh generation for finite element calculations in the case of thermal loads

International Nuclear Information System (INIS)

Cords, H.; Zimmermann, R.

1975-01-01

The presentation describes a method to generate finite element nodal point networks on the basis of isothermals and flux lines. Such a mesh provides a relatively fine partitioning at regions where pronounced temperature variations exist. In case of entirely thermal loads a net of this kind is advantageous since the refinement is provided at exactly those locations where high stress levels are expected. In the present contribution the method was employed to analyze the structural behavior of a nuclear fuel element under operating conditions. The graphite block fuel elements for high temperature reactors are of prismatic shape with a large number of parallel bores in the axial direction. Some of these bores are open at both ends and cooling is effected by helium flowing through. Blind holes contain the fuel as compacts or cartridges. The basic temperature distribution in a horizontal section of the block was obtained by the boundary point least squares method which yields analytical expressions for both temperature and thermal flux. The corresponding computer code was presented at an earlier SMiRT conference. The method is particularly useful for regular arrays of heat sources and sinks as encountered in heat exchanger problems. The generated mesh matches the requirements of a subsequent structural analysis with finite elements provided there are no other than thermal loads

16. 3D visualization and finite element mesh formation from wood anatomy samples, Part II – Algorithm approach

Directory of Open Access Journals (Sweden)

Petr Koňas

2009-01-01

Full Text Available Paper presents new original application WOOD3D in form of program code assembling. The work extends the previous article “Part I – Theoretical approach” in detail description of implemented C++ classes of utilized projects Visualization Toolkit (VTK, Insight Toolkit (ITK and MIMX. Code is written in CMake style and it is available as multiplatform application. Currently GNU Linux (32/64b and MS Windows (32/64b platforms were released. Article discusses various filter classes for image filtering. Mainly Otsu and Binary threshold filters are classified for anatomy wood samples thresholding. Registration of images series is emphasized for difference of colour spaces compensation is included. Resulted work flow of image analysis is new methodological approach for images processing through the composition, visualization, filtering, registration and finite element mesh formation. Application generates script in ANSYS parametric design language (APDL which is fully compatible with ANSYS finite element solver and designer environment. The script includes the whole definition of unstructured finite element mesh formed by individual elements and nodes. Due to simple notation, the same script can be used for generation of geometrical entities in element positions. Such formed volumetric entities are prepared for further geometry approximation (e.g. by boolean or more advanced methods. Hexahedral and tetrahedral types of mesh elements are formed on user request with specified mesh options. Hexahedral meshes are formed both with uniform element size and with anisotropic character. Modified octree method for hexahedral mesh with anisotropic character was declared in application. Multicore CPUs in the application are supported for fast image analysis realization. Visualization of image series and consequent 3D image are realized in VTK format sufficiently known and public format, visualized in GPL application Paraview. Future work based on mesh

17. A New High-Order Spectral Difference Method for Simulating Viscous Flows on Unstructured Grids with Mixed Elements

Energy Technology Data Exchange (ETDEWEB)

Li, Mao; Qiu, Zihua; Liang, Chunlei; Sprague, Michael; Xu, Min

2017-01-13

In the present study, a new spectral difference (SD) method is developed for viscous flows on meshes with a mixture of triangular and quadrilateral elements. The standard SD method for triangular elements, which employs Lagrangian interpolating functions for fluxes, is not stable when the designed accuracy of spatial discretization is third-order or higher. Unlike the standard SD method, the method examined here uses vector interpolating functions in the Raviart-Thomas (RT) spaces to construct continuous flux functions on reference elements. Studies have been performed for 2D wave equation and Euler equa- tions. Our present results demonstrated that the SDRT method is stable and high-order accurate for a number of test problems by using triangular-, quadrilateral-, and mixed- element meshes.

18. Mesh-size errors in diffusion-theory calculations using finite-difference and finite-element methods

International Nuclear Information System (INIS)

Baker, A.R.

1982-07-01

A study has been performed of mesh-size errors in diffusion-theory calculations using finite-difference and finite-element methods. As the objective was to illuminate the issues, the study was performed for a 1D slab model of a reactor with one neutron-energy group for which analytical solutions were possible. A computer code SLAB was specially written to perform the finite-difference and finite-element calculations and also to obtain the analytical solutions. The standard finite-difference equations were obtained by starting with an expansion of the neutron current in powers of the mesh size, h, and keeping terms as far as h 2 . It was confirmed that these equations led to the well-known result that the criticality parameter varied with the square of the mesh size. An improved form of the finite-difference equations was obtained by continuing the expansion for the neutron current as far as the term in h 4 . In this case, the critical parameter varied as the fourth power of the mesh size. The finite-element solutions for 2 and 3 nodes per element revealed that the criticality parameter varied as the square and fourth power of the mesh size, respectively. Numerical results are presented for a bare reactive core of uniform composition with 2 zones of different uniform mesh and for a reactive core with an absorptive reflector. (author)

19. Minimizing EIT image artefacts from mesh variability in finite element models.

Science.gov (United States)

Adler, Andy; Lionheart, William R B

2011-07-01

Electrical impedance tomography (EIT) solves an inverse problem to estimate the conductivity distribution within a body from electrical simulation and measurements at the body surface, where the inverse problem is based on a solution of Laplace's equation in the body. Most commonly, a finite element model (FEM) is used, largely because of its ability to describe irregular body shapes. In this paper, we show that simulated variations in the positions of internal nodes within a FEM can result in serious image artefacts in the reconstructed images. Such variations occur when designing FEM meshes to conform to conductivity targets, but the effects may also be seen in other applications of absolute and difference EIT. We explore the hypothesis that these artefacts result from changes in the projection of the anisotropic conductivity tensor onto the FEM system matrix, which introduces anisotropic components into the simulated voltages, which cannot be reconstructed onto an isotropic image, and appear as artefacts. The magnitude of the anisotropic effect is analysed for a small regular FEM, and shown to be proportional to the relative node movement as a fraction of element size. In order to address this problem, we show that it is possible to incorporate a FEM node movement component into the formulation of the inverse problem. These results suggest that it is important to consider artefacts due to FEM mesh geometry in EIT image reconstruction.

20. Optical breast shape capture and finite-element mesh generation for electrical impedance tomography

International Nuclear Information System (INIS)

Forsyth, J; Borsic, A; Halter, R J; Hartov, A; Paulsen, K D

2011-01-01

X-ray mammography is the standard for breast cancer screening. The development of alternative imaging modalities is desirable because mammograms expose patients to ionizing radiation. Electrical impedance tomography (EIT) may be used to determine tissue conductivity, a property which is an indicator of cancer presence. EIT is also a low-cost imaging solution and does not involve ionizing radiation. In breast EIT, impedance measurements are made using electrodes placed on the surface of the patient's breast. The complex conductivity of the volume of the breast is estimated by a reconstruction algorithm. EIT reconstruction is a severely ill-posed inverse problem. As a result, noisy instrumentation and incorrect modelling of the electrodes and domain shape produce significant image artefacts. In this paper, we propose a method that has the potential to reduce these errors by accurately modelling the patient breast shape. A 3D hand-held optical scanner is used to acquire the breast geometry and electrode positions. We develop methods for processing the data from the scanner and producing volume meshes accurately matching the breast surface and electrode locations, which can be used for image reconstruction. We demonstrate this method for a plaster breast phantom and a human subject. Using this approach will allow patient-specific finite-element meshes to be generated which has the potential to improve the clinical value of EIT for breast cancer diagnosis

1. A higher-order conservation element solution element method for solving hyperbolic differential equations on unstructured meshes

Science.gov (United States)

Bilyeu, David

This dissertation presents an extension of the Conservation Element Solution Element (CESE) method from second- to higher-order accuracy. The new method retains the favorable characteristics of the original second-order CESE scheme, including (i) the use of the space-time integral equation for conservation laws, (ii) a compact mesh stencil, (iii) the scheme will remain stable up to a CFL number of unity, (iv) a fully explicit, time-marching integration scheme, (v) true multidimensionality without using directional splitting, and (vi) the ability to handle two- and three-dimensional geometries by using unstructured meshes. This algorithm has been thoroughly tested in one, two and three spatial dimensions and has been shown to obtain the desired order of accuracy for solving both linear and non-linear hyperbolic partial differential equations. The scheme has also shown its ability to accurately resolve discontinuities in the solutions. Higher order unstructured methods such as the Discontinuous Galerkin (DG) method and the Spectral Volume (SV) methods have been developed for one-, two- and three-dimensional application. Although these schemes have seen extensive development and use, certain drawbacks of these methods have been well documented. For example, the explicit versions of these two methods have very stringent stability criteria. This stability criteria requires that the time step be reduced as the order of the solver increases, for a given simulation on a given mesh. The research presented in this dissertation builds upon the work of Chang, who developed a fourth-order CESE scheme to solve a scalar one-dimensional hyperbolic partial differential equation. The completed research has resulted in two key deliverables. The first is a detailed derivation of a high-order CESE methods on unstructured meshes for solving the conservation laws in two- and three-dimensional spaces. The second is the code implementation of these numerical methods in a computer code. For

2. Modeling of engine hydrodynamics equations on hybrid unstructured meshes; Modelisation des equations de lhydrodynamique moteur sur maillage non structure hybride

Energy Technology Data Exchange (ETDEWEB)

Durand, A

1996-10-10

In this thesis, we are interested in the modeling of the compressible Navier-Stokes equations in 2-D moving domains with hybrid meshes. This work, far from being restricted to these equations, could be generalized to any other convection-diffusion system written in conservative vector form. After having described the mathematical equations and elaborated on finite volume (FV) methods, numerical schemes and various meshes, we have selected the Galerkin FV method. This method consists in locating the unknowns at the mesh nodes, then in solving the convective terms by means of VF method - quasi 1-D by edge approximation - and the diffusive terms by means of the finite element (FE) method - P{sub 1} for the triangular and Q{sub 1} for the quadrilateral. The equivalence between the Galerkin FV method and a mass-lumped FE method for temporal terms allows the construction of a new control volume constructed by means of medians. Then, show its interest in comparison to the classical control volume constructed by means of medians. Then first-order in comparison to the classical control volume constructed bu means of medians. Then, the first-order Roe scheme and its extension to second-order by the MUSCL method are detailed Emphasis is laid on two calculations oF the Gradient integral. Numerous numerical tests as well as the comparison with another code validate the approach. In particular, we show that triangular meshes lead to less precise results compared to quadrilateral meshes in certain cases. Afterward, we switch to the dimensionless Navier-Stokes equations and we describe a simplified (Bubnov)-Galerkin FE method in the case of the quadrilaterals. The newly deduced computer code is validated bu the means of a vortex convection-diffusion for different Reynolds numbers. This test shows that only highly viscous flows give rise to equivalent solutions for both meshes. (author)

3. Finite element formulation of fluctuating hydrodynamics for fluids filled with rigid particles using boundary fitted meshes

Energy Technology Data Exchange (ETDEWEB)

De Corato, M., E-mail: marco.decorato@unina.it [Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli (Italy); Slot, J.J.M., E-mail: j.j.m.slot@tue.nl [Department of Mathematics and Computer Science, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Hütter, M., E-mail: m.huetter@tue.nl [Department of Mechanical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); D' Avino, G., E-mail: gadavino@unina.it [Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli (Italy); Maffettone, P.L., E-mail: pierluca.maffettone@unina.it [Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli (Italy); Hulsen, M.A., E-mail: m.a.hulsen@tue.nl [Department of Mechanical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands)

2016-07-01

In this paper, we present a finite element implementation of fluctuating hydrodynamics with a moving boundary fitted mesh for treating the suspended particles. The thermal fluctuations are incorporated into the continuum equations using the Landau and Lifshitz approach [1]. The proposed implementation fulfills the fluctuation–dissipation theorem exactly at the discrete level. Since we restrict the equations to the creeping flow case, this takes the form of a relation between the diffusion coefficient matrix and friction matrix both at the particle and nodal level of the finite elements. Brownian motion of arbitrarily shaped particles in complex confinements can be considered within the present formulation. A multi-step time integration scheme is developed to correctly capture the drift term required in the stochastic differential equation (SDE) describing the evolution of the positions of the particles. The proposed approach is validated by simulating the Brownian motion of a sphere between two parallel plates and the motion of a spherical particle in a cylindrical cavity. The time integration algorithm and the fluctuating hydrodynamics implementation are then applied to study the diffusion and the equilibrium probability distribution of a confined circle under an external harmonic potential.

4. Final Report of the Project "From the finite element method to the virtual element method"

Energy Technology Data Exchange (ETDEWEB)

Manzini, Gianmarco [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gyrya, Vitaliy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

2017-12-20

The Finite Element Method (FEM) is a powerful numerical tool that is being used in a large number of engineering applications. The FEM is constructed on triangular/tetrahedral and quadrilateral/hexahedral meshes. Extending the FEM to general polygonal/polyhedral meshes in straightforward way turns out to be extremely difficult and leads to very complex and computationally expensive schemes. The reason for this failure is that the construction of the basis functions on elements with a very general shape is a non-trivial and complex task. In this project we developed a new family of numerical methods, dubbed the Virtual Element Method (VEM) for the numerical approximation of partial differential equations (PDE) of elliptic type suitable to polygonal and polyhedral unstructured meshes. We successfully formulated, implemented and tested these methods and studied both theoretically and numerically their stability, robustness and accuracy for diffusion problems, convection-reaction-diffusion problems, the Stokes equations and the biharmonic equations.

5. Moving mesh finite element method for finite time extinction of distributed parameter systems with positive exponential feedback

International Nuclear Information System (INIS)

1997-01-01

In the distributed parameter systems with exponential feedback, non-global existence of solution is not always exist. For some positive initial values, there exist finite time T such that the solution goes to infinity, i.e. finite time extinction or blow-up. Here is present a numerical solution using Moving Mesh Finite Element to solve the distributed parameter systems with exponential feedback close to blow-up time. The numerical behavior of the mesh close to the time of extinction is the prime interest in this study

6. Behavior of thin rectangular ANCF shell elements in various mesh configurations

DEFF Research Database (Denmark)

Hyldahl, Per; Mikkola, Aki M.; Balling, Ole

2014-01-01

a thorough review of three available formulations, they are used in three different convergence studies. Initially a reference study is conducted to determine how the ANCF performs in an uniform and rectangular mesh. Subsequently, the ANCF methods sensitivity to irregular mesh is investigated and finally...

7. Mesh distortion immunity of finite elements and the best-fit paradigm

relatively (and, sometimes, dramatically) poor results. ... why the unsymmetric parametric-metric formulation is effective is because the stress repre- .... competing requirements of managing continuity and equilibrium under mesh distortion to.

8. A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields. I - An extended DKT element for thick-plate bending analysis. II - An extended DKQ element for thick-plate bending analysis

Science.gov (United States)

Katili, Irwan

1993-06-01

A new three-node nine-degree-of-freedom triangular plate bending element is proposed which is valid for the analysis of both thick and thin plates. The element, called the discrete Kirchhoff-Mindlin triangle (DKMT), has a proper rank, passes the patch test for thin and thick plates in an arbitrary mesh, and is free of shear locking. As an extension of the DKMT element, a four-node element with 3 degrees of freedom per node is developed. The element, referred to as DKMQ (discrete Kirchhoff-Mindlin quadrilateral) is found to provide good results for both thin and thick plates without any compatibility problems.

9. Coupling of smooth particle hydrodynamics with the finite element method

International Nuclear Information System (INIS)

Attaway, S.W.; Heinstein, M.W.; Swegle, J.W.

1994-01-01

A gridless technique called smooth particle hydrodynamics (SPH) has been coupled with the transient dynamics finite element code ppercase[pronto]. In this paper, a new weighted residual derivation for the SPH method will be presented, and the methods used to embed SPH within ppercase[pronto] will be outlined. Example SPH ppercase[pronto] calculations will also be presented. One major difficulty associated with the Lagrangian finite element method is modeling materials with no shear strength; for example, gases, fluids and explosive biproducts. Typically, these materials can be modeled for only a short time with a Lagrangian finite element code. Large distortions cause tangling of the mesh, which will eventually lead to numerical difficulties, such as negative element area or ''bow tie'' elements. Remeshing will allow the problem to continue for a short while, but the large distortions can prevent a complete analysis. SPH is a gridless Lagrangian technique. Requiring no mesh, SPH has the potential to model material fracture, large shear flows and penetration. SPH computes the strain rate and the stress divergence based on the nearest neighbors of a particle, which are determined using an efficient particle-sorting technique. Embedding the SPH method within ppercase[pronto] allows part of the problem to be modeled with quadrilateral finite elements, while other parts are modeled with the gridless SPH method. SPH elements are coupled to the quadrilateral elements through a contact-like algorithm. ((orig.))

10. Methods for high-resolution anisotropic finite element modeling of the human head: automatic MR white matter anisotropy-adaptive mesh generation.

Science.gov (United States)

Lee, Won Hee; Kim, Tae-Seong

2012-01-01

This study proposes an advanced finite element (FE) head modeling technique through which high-resolution FE meshes adaptive to the degree of tissue anisotropy can be generated. Our adaptive meshing scheme (called wMesh) uses MRI structural information and fractional anisotropy maps derived from diffusion tensors in the FE mesh generation process, optimally reflecting electrical properties of the human brain. We examined the characteristics of the wMeshes through various qualitative and quantitative comparisons to the conventional FE regular-sized meshes that are non-adaptive to the degree of white matter anisotropy. We investigated numerical differences in the FE forward solutions that include the electrical potential and current density generated by current sources in the brain. The quantitative difference was calculated by two statistical measures of relative difference measure (RDM) and magnification factor (MAG). The results show that the wMeshes are adaptive to the anisotropic density of the WM anisotropy, and they better reflect the density and directionality of tissue conductivity anisotropy. Our comparison results between various anisotropic regular mesh and wMesh models show that there are substantial differences in the EEG forward solutions in the brain (up to RDM=0.48 and MAG=0.63 in the electrical potential, and RDM=0.65 and MAG=0.52 in the current density). Our analysis results indicate that the wMeshes produce different forward solutions that are different from the conventional regular meshes. We present some results that the wMesh head modeling approach enhances the sensitivity and accuracy of the FE solutions at the interfaces or in the regions where the anisotropic conductivities change sharply or their directional changes are complex. The fully automatic wMesh generation technique should be useful for modeling an individual-specific and high-resolution anisotropic FE head model incorporating realistic anisotropic conductivity distributions

11. Element Partition Trees For H-Refined Meshes to Optimize Direct Solver Performance. Part I: Dynamic Programming

KAUST Repository

AbouEisha, Hassan M.

2017-07-13

We consider a class of two-and three-dimensional h-refined meshes generated by an adaptive finite element method. We introduce an element partition tree, which controls the execution of the multi-frontal solver algorithm over these refined grids. We propose and study algorithms with polynomial computational cost for the optimization of these element partition trees. The trees provide an ordering for the elimination of unknowns. The algorithms automatically optimize the element partition trees using extensions of dynamic programming. The construction of the trees by the dynamic programming approach is expensive. These generated trees cannot be used in practice, but rather utilized as a learning tool to propose fast heuristic algorithms. In this first part of our paper we focus on the dynamic programming approach, and draw a sketch of the heuristic algorithm. The second part will be devoted to a more detailed analysis of the heuristic algorithm extended for the case of hp-adaptive

12. Element Partition Trees For H-Refined Meshes to Optimize Direct Solver Performance. Part I: Dynamic Programming

KAUST Repository

AbouEisha, Hassan M.; Calo, Victor Manuel; Jopek, Konrad; Moshkov, Mikhail; Paszyńka, Anna; Paszyński, Maciej; Skotniczny, Marcin

2017-01-01

We consider a class of two-and three-dimensional h-refined meshes generated by an adaptive finite element method. We introduce an element partition tree, which controls the execution of the multi-frontal solver algorithm over these refined grids. We propose and study algorithms with polynomial computational cost for the optimization of these element partition trees. The trees provide an ordering for the elimination of unknowns. The algorithms automatically optimize the element partition trees using extensions of dynamic programming. The construction of the trees by the dynamic programming approach is expensive. These generated trees cannot be used in practice, but rather utilized as a learning tool to propose fast heuristic algorithms. In this first part of our paper we focus on the dynamic programming approach, and draw a sketch of the heuristic algorithm. The second part will be devoted to a more detailed analysis of the heuristic algorithm extended for the case of hp-adaptive

13. Mapping method for generating three-dimensional meshes: past and present

International Nuclear Information System (INIS)

Cook, W.A.; Oakes, W.R.

1982-01-01

Two transformations are derived in this paper. One is a mapping of a unit square onto a surve and the other is a mapping of a unit cube onto a three-dimensional region. Two meshing computer programs are then discussed that use these mappings. The first is INGEN, which has been used to calculate three-dimensional meshes for approximately 15 years. This meshing program uses an index scheme to number boundaries, surfaces, and regions. With such an index scheme, it is possible to control nodal points, elements, and boundary conditions. The second is ESCHER, a meshing program now being developed. Two primary considerations governing development of ESCHER are that meshes graded using quadrilaterals are required and that edge-line geometry defined by Computer-Aided Design/Computer-Aided Manufacturing (CAD/CAM) systems will be a major source of geometry definition. This program separates the processes of nodal-point connectivity generation, computation of nodal-point mapping space coordinates, and mapping of nodal points into model space

14. Adaptation of an unstructured-mesh, finite-element ocean model to the simulation of ocean circulation beneath ice shelves

Science.gov (United States)

Kimura, Satoshi; Candy, Adam S.; Holland, Paul R.; Piggott, Matthew D.; Jenkins, Adrian

2013-07-01

Several different classes of ocean model are capable of representing floating glacial ice shelves. We describe the incorporation of ice shelves into Fluidity-ICOM, a nonhydrostatic finite-element ocean model with the capacity to utilize meshes that are unstructured and adaptive in three dimensions. This geometric flexibility offers several advantages over previous approaches. The model represents melting and freezing on all ice-shelf surfaces including vertical faces, treats the ice shelf topography as continuous rather than stepped, and does not require any smoothing of the ice topography or any of the additional parameterisations of the ocean mixed layer used in isopycnal or z-coordinate models. The model can also represent a water column that decreases to zero thickness at the 'grounding line', where the floating ice shelf is joined to its tributary ice streams. The model is applied to idealised ice-shelf geometries in order to demonstrate these capabilities. In these simple experiments, arbitrarily coarsening the mesh outside the ice-shelf cavity has little effect on the ice-shelf melt rate, while the mesh resolution within the cavity is found to be highly influential. Smoothing the vertical ice front results in faster flow along the smoothed ice front, allowing greater exchange with the ocean than in simulations with a realistic ice front. A vanishing water-column thickness at the grounding line has little effect in the simulations studied. We also investigate the response of ice shelf basal melting to variations in deep water temperature in the presence of salt stratification.

15. The quasidiffusion method for transport problems on unstructured meshes

Science.gov (United States)

Wieselquist, William A.

2009-06-01

In this work, we develop a quasidiffusion (QD) method for solving radiation transport problems on unstructured quadrilateral meshes in 2D Cartesian geometry, for example hanging-node meshes from adaptive mesh refinement (AMR) applications or skewed quadrilateral meshes from radiation hydrodynamics with Lagrangian meshing. The main result of the work is a new low-order quasidiffusion (LOQD) discretization on arbitrary quadrilaterals and a strategy for the efficient iterative solution which uses Krylov methods and incomplete LU factorization (ILU) preconditioning. The LOQD equations are a non-symmetric set of first-order PDEs that in second-order form resembles convection- diffusion with a diffusion tensor, with the difference that the LOQD equations contain extra cross-derivative terms. Our finite volume (FV) discretization of the LOQD equations is compared with three LOQD discretizations from literature. We then present a conservative, short characteristics discretization based on subcell balances (SCSB) that uses polynomial exponential moments to achieve robust behavior in various limits (e.g. small cells and voids) and is second- order accurate in space. A linear representation of the isotropic component of the scattering source based on face-average and cell-average scalar fluxes is also proposed and shown to be effective in some problems. In numerical tests, our QD method with linear scattering source representation shows some advantages compared to other transport methods. We conclude with avenues for future research and note that this QD method may easily be extended to arbitrary meshes in 3D Cartesian geometry.

16. FEATURE MATCHING OF HISTORICAL IMAGES BASED ON GEOMETRY OF QUADRILATERALS

Directory of Open Access Journals (Sweden)

F. Maiwald

2018-05-01

Full Text Available This contribution shows an approach to match historical images from the photo library of the Saxon State and University Library Dresden (SLUB in the context of a historical three-dimensional city model of Dresden. In comparison to recent images, historical photography provides diverse factors which make an automatical image analysis (feature detection, feature matching and relative orientation of images difficult. Due to e.g. film grain, dust particles or the digitalization process, historical images are often covered by noise interfering with the image signal needed for a robust feature matching. The presented approach uses quadrilaterals in image space as these are commonly available in man-made structures and façade images (windows, stones, claddings. It is explained how to generally detect quadrilaterals in images. Consequently, the properties of the quadrilaterals as well as the relationship to neighbouring quadrilaterals are used for the description and matching of feature points. The results show that most of the matches are robust and correct but still small in numbers.

17. Exploring Turkish Mathematics Teachers' Content Knowledge of Quadrilaterals

Science.gov (United States)

Butuner, Suphi Onder; Filiz, Mehmet

2017-01-01

The aim of this research was to examine mathematics teachers' performances in defining special types of quadrilaterals, identifying their family and hierarchically classifying them. In this vein, 33 of 58 primary school mathematics teachers working in the province of Yozgat, Turkey were voluntarily recruited for this survey, and they were asked to…

18. Modeling deformation and chaining of flexible shells in a nematic solvent with finite elements on an adaptive moving mesh

Science.gov (United States)

DeBenedictis, Andrew; Atherton, Timothy J.; Rodarte, Andrea L.; Hirst, Linda S.

2018-03-01

A micrometer-scale elastic shell immersed in a nematic liquid crystal may be deformed by the host if the cost of deformation is comparable to the cost of elastic deformation of the nematic. Moreover, such inclusions interact and form chains due to quadrupolar distortions induced in the host. A continuum theory model using finite elements is developed for this system, using mesh regularization and dynamic refinement to ensure quality of the numerical representation even for large deformations. From this model, we determine the influence of the shell elasticity, nematic elasticity, and anchoring condition on the shape of the shell and hence extract parameter values from an experimental realization. Extending the model to multibody interactions, we predict the alignment angle of the chain with respect to the host nematic as a function of aspect ratio, which is found to be in excellent agreement with experiments.

19. The transmission of stress to grafted bone inside a titanium mesh cage used in anterior column reconstruction after total spondylectomy: a finite-element analysis.

Science.gov (United States)

Akamaru, Tomoyuki; Kawahara, Norio; Sakamoto, Jiro; Yoshida, Akira; Murakami, Hideki; Hato, Taizo; Awamori, Serina; Oda, Juhachi; Tomita, Katsuro

2005-12-15

A finite-element study of posterior alone or anterior/posterior combined instrumentation following total spondylectomy and replacement with a titanium mesh cage used as an anterior strut. To compare the effect of posterior instrumentation versus anterior/posterior instrumentation on transmission of the stress to grafted bone inside a titanium mesh cage following total spondylectomy. The most recent reconstruction techniques following total spondylectomy for malignant spinal tumor include a titanium mesh cage filled with autologous bone as an anterior strut. The need for additional anterior instrumentation with posterior pedicle screws and rods is controversial. Transmission of the mechanical stress to grafted bone inside a titanium mesh cage is important for fusion and remodeling. To our knowledge, there are no published reports comparing the load-sharing properties of the different reconstruction methods following total spondylectomy. A 3-dimensional finite-element model of the reconstructed spine (T10-L4) following total spondylectomy at T12 was constructed. A Harms titanium mesh cage (DePuy Spine, Raynham, MA) was positioned as an anterior replacement, and 3 types of the reconstruction methods were compared: (1) multilevel posterior instrumentation (MPI) (i.e., posterior pedicle screws and rods at T10-L2 without anterior instrumentation); (2) MPI with anterior instrumentation (MPAI) (i.e., MPAI [Kaneda SR; DePuy Spine] at T11-L1); and (3) short posterior and anterior instrumentation (SPAI) (i.e., posterior pedicle screws and rods with anterior instrumentation at T11-L1). The mechanical energy stress distribution exerted inside the titanium mesh cage was evaluated and compared by finite-element analysis for the 3 different reconstruction methods. Simulated forces were applied to give axial compression, flexion, extension, and lateral bending. In flexion mode, the energy stress distribution in MPI was higher than 3.0 x 10 MPa in 73.0% of the total volume inside

20. Finite element analysis of trabecular bone structures : a comparison of image-based meshing techniques

NARCIS (Netherlands)

Ulrich, D.; Rietbergen, van B.; Weinans, H.; Rüegsegger, P.

1998-01-01

In this study, we investigate if finite element (FE) analyses of human trabecular bone architecture based on 168 microm images can provide relevant information about the bone mechanical characteristics. Three human trabecular bone samples, one taken from the femoral head, one from the iliac crest,

1. Finite element modeling of the human kidney for probabilistic occupant models: Statistical shape analysis and mesh morphing.

Science.gov (United States)

Yates, Keegan M; Untaroiu, Costin D

2018-04-16

Statistical shape analysis was conducted on 15 pairs (left and right) of human kidneys. It was shown that the left and right kidney were significantly different in size and shape. In addition, several common modes of kidney variation were identified using statistical shape analysis. Semi-automatic mesh morphing techniques have been developed to efficiently create subject specific meshes from a template mesh with a similar geometry. Subject specific meshes as well as probabilistic kidney meshes were created from a template mesh. Mesh quality remained about the same as the template mesh while only taking a fraction of the time to create the mesh from scratch or morph with manually identified landmarks. This technique can help enhance the quality of information gathered from experimental testing with subject specific meshes as well as help to more efficiently predict injury by creating models with the mean shape as well as models at the extremes for each principal component. Copyright © 2018 Elsevier Ltd. All rights reserved.

2. Opfront: mesh

DEFF Research Database (Denmark)

2015-01-01

Mesh generation and visualization software based on the CGAL library. Folder content: drawmesh Visualize slices of the mesh (surface/volumetric) as wireframe on top of an image (3D). drawsurf Visualize surfaces of the mesh (surface/volumetric). img2mesh Convert isosurface in image to volumetric m...... mesh (medit format). img2off Convert isosurface in image to surface mesh (off format). off2mesh Convert surface mesh (off format) to volumetric mesh (medit format). reduce Crop and resize 3D and stacks of images. data Example data to test the library on...

3. Influence of mesh density, cortical thickness and material properties on human rib fracture prediction.

Science.gov (United States)

Li, Zuoping; Kindig, Matthew W; Subit, Damien; Kent, Richard W

2010-11-01

The purpose of this paper was to investigate the sensitivity of the structural responses and bone fractures of the ribs to mesh density, cortical thickness, and material properties so as to provide guidelines for the development of finite element (FE) thorax models used in impact biomechanics. Subject-specific FE models of the second, fourth, sixth and tenth ribs were developed to reproduce dynamic failure experiments. Sensitivity studies were then conducted to quantify the effects of variations in mesh density, cortical thickness, and material parameters on the model-predicted reaction force-displacement relationship, cortical strains, and bone fracture locations for all four ribs. Overall, it was demonstrated that rib FE models consisting of 2000-3000 trabecular hexahedral elements (weighted element length 2-3mm) and associated quadrilateral cortical shell elements with variable thickness more closely predicted the rib structural responses and bone fracture force-failure displacement relationships observed in the experiments (except the fracture locations), compared to models with constant cortical thickness. Further increases in mesh density increased computational cost but did not markedly improve model predictions. A ±30% change in the major material parameters of cortical bone lead to a -16.7 to 33.3% change in fracture displacement and -22.5 to +19.1% change in the fracture force. The results in this study suggest that human rib structural responses can be modeled in an accurate and computationally efficient way using (a) a coarse mesh of 2000-3000 solid elements, (b) cortical shells elements with variable thickness distribution and (c) a rate-dependent elastic-plastic material model. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

4. Isometric deformations of planar quadrilaterals with constant index

International Nuclear Information System (INIS)

Zaputryaeva, E S

2014-01-01

We consider isometric deformations (motions) of polygons (so-called carpenter's rule problem) in the case of self-intersecting polygons with the additional condition that the index of the polygon is preserved by the motion. We provide general information about isometric deformations of planar polygons and give a complete solution of the carpenter's problem for quadrilaterals. Bibliography: 17 titles

5. Arbitrary order 2D virtual elements for polygonal meshes: part II, inelastic problem

Science.gov (United States)

Artioli, E.; Beirão da Veiga, L.; Lovadina, C.; Sacco, E.

2017-10-01

The present paper is the second part of a twofold work, whose first part is reported in Artioli et al. (Comput Mech, 2017. doi: 10.1007/s00466-017-1404-5), concerning a newly developed Virtual element method (VEM) for 2D continuum problems. The first part of the work proposed a study for linear elastic problem. The aim of this part is to explore the features of the VEM formulation when material nonlinearity is considered, showing that the accuracy and easiness of implementation discovered in the analysis inherent to the first part of the work are still retained. Three different nonlinear constitutive laws are considered in the VEM formulation. In particular, the generalized viscoelastic model, the classical Mises plasticity with isotropic/kinematic hardening and a shape memory alloy constitutive law are implemented. The versatility with respect to all the considered nonlinear material constitutive laws is demonstrated through several numerical examples, also remarking that the proposed 2D VEM formulation can be straightforwardly implemented as in a standard nonlinear structural finite element method framework.

6. Moving mesh finite element method for finite time extinction of distributed parameter systems with positive exponential feedback; Lokakarya Komputasi dalam Sains dan Teknologi Nuklir VI

Energy Technology Data Exchange (ETDEWEB)

Garnadi, A D [Department of Matematics, Bogor Institute of Agriculture, Bogor (Indonesia)

1997-07-01

In the distributed parameter systems with exponential feedback, non-global existence of solution is not always exist. For some positive initial values, there exist finite time T such that the solution goes to infinity, i.e. finite time extinction or blow-up. Here is present a numerical solution using Moving Mesh Finite Element to solve the distributed parameter systems with exponential feedback close to blow-up time. The numerical behavior of the mesh close to the time of extinction is the prime interest in this study.

7. A unified monolithic approach for multi-fluid flows and fluid-structure interaction using the Particle Finite Element Method with fixed mesh

Science.gov (United States)

Becker, P.; Idelsohn, S. R.; Oñate, E.

2015-06-01

This paper describes a strategy to solve multi-fluid and fluid-structure interaction (FSI) problems using Lagrangian particles combined with a fixed finite element (FE) mesh. Our approach is an extension of the fluid-only PFEM-2 (Idelsohn et al., Eng Comput 30(2):2-2, 2013; Idelsohn et al., J Numer Methods Fluids, 2014) which uses explicit integration over the streamlines to improve accuracy. As a result, the convective term does not appear in the set of equations solved on the fixed mesh. Enrichments in the pressure field are used to improve the description of the interface between phases.

8. Finite-element solution to multidimensional multisource electromagnetic problems in the frequency domain using non-conforming meshes

Science.gov (United States)

Soloveichik, Yury G.; Persova, Marina G.; Domnikov, Petr A.; Koshkina, Yulia I.; Vagin, Denis V.

2018-03-01

We propose an approach to solving multisource induction logging problems in multidimensional media. According to the type of induction logging tools, the measurements are performed in the frequency range of 10 kHz to 14 MHz, transmitter-receiver offsets vary in the range of 0.5-8 m or more, and the trajectory length is up to 1 km. For calculating the total field, the primary-secondary field approach is used. The secondary field is calculated with the use of the finite-element method (FEM), irregular non-conforming meshes with local refinements and a direct solver. The approach to constructing basis functions with the continuous tangential components (from Hcurl(Ω)) on the non-conforming meshes from the standard shape vector functions is developed. On the basis of this method, the algorithm of generating global matrices and a vector of the finite-element equation system is proposed. We also propose the method of grouping the logging tool positions, which makes it possible to significantly increase the computational effectiveness. This is achieved due to the compromise between the possibility of using the 1-D background medium, which is very similar to the investigated multidimensional medium for a small group, and the decrease in the number of the finite-element matrix factorizations with the increasing number of tool positions in one group. For calculating the primary field, we propose the method based on the use of FEM. This method is highly effective when the 1-D field is required to be calculated at a great number of points. The use of this method significantly increases the effectiveness of the primary-secondary field approach. The proposed approach makes it possible to perform modelling both in the 2.5-D case (i.e. without taking into account a borehole and/or invasion zone effect) and the 3-D case (i.e. for models with a borehole and invasion zone). The accuracy of numerical results obtained with the use of the proposed approach is compared with the one

9. Spectral-element simulation of two-dimensional elastic wave propagation in fully heterogeneous media on a GPU cluster

Science.gov (United States)

Rudianto, Indra; Sudarmaji

2018-04-01

We present an implementation of the spectral-element method for simulation of two-dimensional elastic wave propagation in fully heterogeneous media. We have incorporated most of realistic geological features in the model, including surface topography, curved layer interfaces, and 2-D wave-speed heterogeneity. To accommodate such complexity, we use an unstructured quadrilateral meshing technique. Simulation was performed on a GPU cluster, which consists of 24 core processors Intel Xeon CPU and 4 NVIDIA Quadro graphics cards using CUDA and MPI implementation. We speed up the computation by a factor of about 5 compared to MPI only, and by a factor of about 40 compared to Serial implementation.

10. A Novel Shape-Free Plane Quadratic Polygonal Hybrid Stress-Function Element

Directory of Open Access Journals (Sweden)

Pei-Lei Zhou

2015-01-01

Full Text Available A novel plane quadratic shape-free hybrid stress-function (HS-F polygonal element is developed by employing the principle of minimum complementary energy and the fundamental analytical solutions of the Airy stress function. Without construction of displacement interpolation function, the formulations of the new model are much simpler than those of the displacement-based polygonal elements and can be degenerated into triangular or quadrilateral elements directly. In particular, it is quite insensitive to various mesh distortions and even can keep precision when element shape is concave. Furthermore, the element does not show any spurious zero energy modes. Numerical examples show the excellent performance of the new element, denoted by HSF-AP-19β, in both displacement and stress solutions.

11. Analysis of the Misconceptions of 7th Grade Students on Polygons and Specific Quadrilaterals

Science.gov (United States)

Ozkan, Mustafa; Bal, Ayten Pinar

2017-01-01

Purpose: This study will find out student misconceptions about geometrical figures, particularly polygons and quadrilaterals. Thus, it will offer insights into teaching these concepts. The objective of this study, the question of "What are the misconceptions of seventh grade students on polygons and quadrilaterals?" constitutes the…

12. GENERALIZATION OF RAYLEIGH MAXIMUM LIKELIHOOD DESPECKLING FILTER USING QUADRILATERAL KERNELS

Directory of Open Access Journals (Sweden)

S. Sridevi

2013-02-01

Full Text Available Speckle noise is the most prevalent noise in clinical ultrasound images. It visibly looks like light and dark spots and deduce the pixel intensity as murkiest. Gazing at fetal ultrasound images, the impact of edge and local fine details are more palpable for obstetricians and gynecologists to carry out prenatal diagnosis of congenital heart disease. A robust despeckling filter has to be contrived to proficiently suppress speckle noise and simultaneously preserve the features. The proposed filter is the generalization of Rayleigh maximum likelihood filter by the exploitation of statistical tools as tuning parameters and use different shapes of quadrilateral kernels to estimate the noise free pixel from neighborhood. The performance of various filters namely Median, Kuwahura, Frost, Homogenous mask filter and Rayleigh maximum likelihood filter are compared with the proposed filter in terms PSNR and image profile. Comparatively the proposed filters surpass the conventional filters.

13. Solid Modeling and Finite Element Analysis of an Overhead Crane Bridge

Directory of Open Access Journals (Sweden)

C. Alkin

2005-01-01

Full Text Available The design of an overhead crane bridge with a double box girder has been investigated and a case study of a crane with 35 ton capacity and 13 m span length has been conducted. In the initial phase of the case study, conventional design calculations proposed by F. E. M. Rules and DIN standards were performed to verify the stress and deflection levels. The crane design was modeled using both solids and surfaces. Finite element meshes with 4-node tetrahedral and 4-node quadrilateral shell elements were generated from the solid and shell models, respectively. After a comparison of the finite element analyses, the conventional calculations and performance of the existing crane, the analysis with quadratic shell elements was found to give the most realistic results. As a result of this study, a design optimization method for an overhead crane is proposed.

14. Unstructured grids and an element based conservative approach for a black-oil reservoir simulation

Energy Technology Data Exchange (ETDEWEB)

Nogueira, Regis Lopes; Fernandes, Bruno Ramon Batista [Federal University of Ceara, Fortaleza, CE (Brazil). Dept. of Chemical Engineering; Araujo, Andre Luiz de Souza [Federal Institution of Education, Science and Technology of Ceara - IFCE, Fortaleza (Brazil). Industry Department], e-mail: andre@ifce.edu.br; Marcondes, Francisco [Federal University of Ceara, Fortaleza, CE (Brazil). Dept. of Metallurgical Engineering and Material Science], e-mail: marcondes@ufc.br

2010-07-01

Unstructured meshes presented one upgrade in modeling the main important features of the reservoir such as discrete fractures, faults, and irregular boundaries. From several methodologies available, the Element based Finite Volume Method (EbFVM), in conjunction with unstructured meshes, is one methodology that deserves large attention. In this approach, the reservoir, for 2D domains, is discretized using a mixed two-dimensional mesh using quadrilateral and triangle elements. After the initial step of discretization, each element is divided into sub-elements and the mass balance for each component is developed for each sub-element. The equations for each control-volume using a cell vertex construction are formulated through the contribution of different neighboured elements. This paper presents an investigation of an element-based approach using the black-oil model based on pressure and global mass fractions. In this approach, even when all gas phase is dissolved in oil phase the global mass fraction of gas will be different from zero. Therefore, no additional numerical procedure is necessary in order to treat the gas phase appear/disappearance. In this paper the above mentioned approach is applied to multiphase flows involving oil, gas, and water. The mass balance equations in terms of global mass fraction of oil, gas and water are discretized through the EbFVM and linearized by the Newton's method. The results are presented in terms of volumetric rates of oil, gas, and water and phase saturations. (author)

15. A Finite Element Analysis of Optimal Variable Thickness Sheets

DEFF Research Database (Denmark)

1996-01-01

A quasimixed Finite Element (FE) method for maximum stiffness of variablethickness sheets is analysed. The displacement is approximated with ninenode Lagrange quadrilateral elements and the thickness is approximated aselementwise constant. One is guaranteed that the FE displacement solutionswill ...

16. Adaptive and dynamic meshing methods for numerical simulations

Science.gov (United States)

Acikgoz, Nazmiye

-hoc application of the simulated annealing technique, which improves the likelihood of removing poor elements from the grid. Moreover, a local implementation of the simulated annealing is proposed to reduce the computational cost. Many challenging multi-physics and multi-field problems that are unsteady in nature are characterized by moving boundaries and/or interfaces. When the boundary displacements are large, which typically occurs when implicit time marching procedures are used, degenerate elements are easily formed in the grid such that frequent remeshing is required. To deal with this problem, in the second part of this work, we propose a new r-adaptation methodology. The new technique is valid for both simplicial (e.g., triangular, tet) and non-simplicial (e.g., quadrilateral, hex) deforming grids that undergo large imposed displacements at their boundaries. A two- or three-dimensional grid is deformed using a network of linear springs composed of edge springs and a set of virtual springs. The virtual springs are constructed in such a way as to oppose element collapsing. This is accomplished by confining each vertex to its ball through springs that are attached to the vertex and its projection on the ball entities. The resulting linear problem is solved using a preconditioned conjugate gradient method. The new method is compared with the classical spring analogy technique in two- and three-dimensional examples, highlighting the performance improvements achieved by the new method. Meshes are an important part of numerical simulations. Depending on the geometry and flow conditions, the most suitable mesh for each particular problem is different. Meshes are usually generated by either using a suitable software package or solving a PDE. In both cases, engineering intuition plays a significant role in deciding where clusterings should take place. In addition, for unsteady problems, the gradients vary for each time step, which requires frequent remeshing during simulations

17. MPFA algorithm for solving stokes-brinkman equations on quadrilateral grids

KAUST Repository

Iliev, Oleg; Kirsch, Ralf; Lakdawala, Zahra; Printsypar, Galina

2014-01-01

This work is concerned with the development of a robust and accurate numerical method for solving the Stokes-Brinkman system of equations, which describes a free fluid flow coupled with a flow in porous media. Quadrilateral boundary fitted grid

18. Characterization of Structures and Compositions of Quadrilateral Pyroxenes by Raman Spectroscopy - Implications for Future Planetary Exploration

Science.gov (United States)

2000-01-01

Raman spectral data are used to distinguish the major structure types and to calculate the major compositional parameters (Mg' and Wo) of quadrilateral pyroxenes. The discrepancies between calculated and measured values are within +/-0.1 cation unit.

19. Resurvey of site stability quadrilaterals, Otay Mountain and Quincy, California. [San Andreas fault experiment

Science.gov (United States)

Scholz, C. H.

1977-01-01

Trilateration quadrilaterals established across two faults near the San Andreas Fault Experiment laser/satellite ranging sites were resurveyed after four years. No evidence of significant tectonic motion was found.

20. Three dimensional stress analysis of nozzle-to-shell intersections by the finite element method and a auto-mesh generation program

International Nuclear Information System (INIS)

Fujihara, Hirohiko; Ueda, Masahiro

1975-01-01

In the design of chemical reactors or nuclear pressure vessels it is often important to evaluate the stress distribution in nozzle-to-shell intersections. The finite element method is a powerful tool for stress analysis, but it has a defects to require troublesome work in preparing input data. Specially, the mesh data of oblique nozzles and tangential nozzles, in which stress concentration is very high, are very difficult to be prepared. The authors made a mesh generation program which can be used to any nozzle-to-shell intersections, and combining this program with a three dimensional stress analysis program by the finite element method they made the stress analysis of nozzle-to-shell intersections under internal pressure. Consequently, stresses, strains and deformations of nozzles nonsymmetrical to spherical shells and nozzles tangential to cylindrical shells were made clear and it was shown that the curvature of the inner surface of the nozzle corner was a controlling factor in reducing stress concentration. (auth.)

1. Toward An Unstructured Mesh Database

Science.gov (United States)

Rezaei Mahdiraji, Alireza; Baumann, Peter Peter

2014-05-01

Unstructured meshes are used in several application domains such as earth sciences (e.g., seismology), medicine, oceanography, cli- mate modeling, GIS as approximate representations of physical objects. Meshes subdivide a domain into smaller geometric elements (called cells) which are glued together by incidence relationships. The subdivision of a domain allows computational manipulation of complicated physical structures. For instance, seismologists model earthquakes using elastic wave propagation solvers on hexahedral meshes. The hexahedral con- tains several hundred millions of grid points and millions of hexahedral cells. Each vertex node in the hexahedrals stores a multitude of data fields. To run simulation on such meshes, one needs to iterate over all the cells, iterate over incident cells to a given cell, retrieve coordinates of cells, assign data values to cells, etc. Although meshes are used in many application domains, to the best of our knowledge there is no database vendor that support unstructured mesh features. Currently, the main tool for querying and manipulating unstructured meshes are mesh libraries, e.g., CGAL and GRAL. Mesh li- braries are dedicated libraries which includes mesh algorithms and can be run on mesh representations. The libraries do not scale with dataset size, do not have declarative query language, and need deep C++ knowledge for query implementations. Furthermore, due to high coupling between the implementations and input file structure, the implementations are less reusable and costly to maintain. A dedicated mesh database offers the following advantages: 1) declarative querying, 2) ease of maintenance, 3) hiding mesh storage structure from applications, and 4) transparent query optimization. To design a mesh database, the first challenge is to define a suitable generic data model for unstructured meshes. We proposed ImG-Complexes data model as a generic topological mesh data model which extends incidence graph model to multi

2. Process for measuring the force of a pressure spring which is situated at the side of a mesh of a grid spacer for a nuclear reactor fuel element and measuring plug gauge for carrying out this process

International Nuclear Information System (INIS)

Bezold, H.; Block, B.

1984-01-01

A measuring plug gauge is inserted into the mesh, which has a measuring element on the outside of its jacket, until a stop on the outside of the measuring plug gauge is adjacent to the spacer and the spring is adjacent to the measuring element; in order to measure the spring force, the stop lifted from the spacer. (orig./HP) [de

3. Study on the Influence of the Refinement of a 3-D Finite Element Mesh in Springback Evaluation of Plane-Strain Channel Sections

International Nuclear Information System (INIS)

Padmanabhan, R.; Oliveira, M. C.; Baptista, A. J.; Menezes, L. F.; Alves, J. L.

2007-01-01

Springback phenomenon associated with the elastic properties of sheet metals makes the design of forming dies a complex task. Thus, to develop consistent algorithms for springback compensation an accurate prediction of the amount of springback is mandatory. The numerical simulation using the finite element method is consensually the only feasible method to predict springback. However, springback prediction is a very complicated task and highly sensitive to various numerical parameters of finite elements (FE), such as: type, order, integration scheme, shape and size, as well the time integration formulae and the unloading strategy. All these numerical parameters make numerical simulation of springback more sensitive to numerical tolerances than the forming operation. In case of an unconstrained cylindrical bending, the in-plane to thickness FE size ratio is more relevant than the number of FE layers through-thickness, for the numerical prediction of final stress and strain states, variables of paramount importance for an accurate springback prediction. The aim of the present work is to evaluate the influence of the refinement of a 3-D FE mesh, namely the in-plane mesh refinement and the number of through-thickness FE layers, in springback prediction. The selected example corresponds to the first stage of the 'Numisheet'05 Benchmark no. 3', which consists basically in the sheet forming of a channel section in an industrial-scale channel draw die. The physical drawbeads are accurately taken into account in the numerical model in order to accurately reproduce its influence during the forming process simulation. FEM simulations were carried out with the in-house code DD3IMP. Solid finite elements were used. They are recommended for accuracy in FE springback simulation when the ratio between the tool radius and blank thickness is lower than 5-6. In the selected example the drawbead radius is 4.0 mm. The influence of the FE mesh refinement in springback prediction is

4. Discontinuous diffusion synthetic acceleration for Sn transport on 2D arbitrary polygonal meshes

International Nuclear Information System (INIS)

Turcksin, Bruno; Ragusa, Jean C.

2014-01-01

In this paper, a Diffusion Synthetic Acceleration (DSA) technique applied to the S n radiation transport equation is developed using Piece-Wise Linear Discontinuous (PWLD) finite elements on arbitrary polygonal grids. The discretization of the DSA equations employs an Interior Penalty technique, as is classically done for the stabilization of the diffusion equation using discontinuous finite element approximations. The penalty method yields a system of linear equations that is Symmetric Positive Definite (SPD). Thus, solution techniques such as Preconditioned Conjugate Gradient (PCG) can be effectively employed. Algebraic MultiGrid (AMG) and Symmetric Gauss–Seidel (SGS) are employed as conjugate gradient preconditioners for the DSA system. AMG is shown to be significantly more efficient than SGS. Fourier analyses are carried out and we show that this discontinuous finite element DSA scheme is always stable and effective at reducing the spectral radius for iterative transport solves, even for grids with high-aspect ratio cells. Numerical results are presented for different grid types: quadrilateral, hexagonal, and polygonal grids as well as grids with local mesh adaptivity

5. Comparison of computed tomography based parametric and patient-specific finite element models of the healthy and metastatic spine using a mesh-morphing algorithm.

Science.gov (United States)

O'Reilly, Meaghan Anne; Whyne, Cari Marisa

2008-08-01

A comparative analysis of parametric and patient-specific finite element (FE) modeling of spinal motion segments. To develop patient-specific FE models of spinal motion segments using mesh-morphing methods applied to a parametric FE model. To compare strain and displacement patterns in parametric and morphed models for both healthy and metastatically involved vertebrae. Parametric FE models may be limited in their ability to fully represent patient-specific geometries and material property distributions. Generation of multiple patient-specific FE models has been limited because of computational expense. Morphing methods have been successfully used to generate multiple specimen-specific FE models of caudal rat vertebrae. FE models of a healthy and a metastatic T6-T8 spinal motion segment were analyzed with and without patient-specific material properties. Parametric and morphed models were compared using a landmark-based morphing algorithm. Morphing of the parametric FE model and including patient-specific material properties both had a strong impact on magnitudes and patterns of vertebral strain and displacement. Small but important geometric differences can be represented through morphing of parametric FE models. The mesh-morphing algorithm developed provides a rapid method for generating patient-specific FE models of spinal motion segments.

6. Space and Time Adaptive Two-Mesh hp-Finite Element Method for Transient Microwave Heating Problems

Czech Academy of Sciences Publication Activity Database

Dubcová, Lenka; Šolín, Pavel; Červený, Jakub; Kůs, Pavel

1-2, č. 30 (2010), s. 23-40 ISSN 0272-6343 R&D Projects: GA ČR(CZ) GA102/07/0496; GA AV ČR IAA100760702 Institutional research plan: CEZ:AV0Z20570509 Keywords : hp-finite element method * microwave heating * edge elements Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.844, year: 2010

7. A piecewise bi-linear discontinuous finite element spatial discretization of the Sn transport equation

International Nuclear Information System (INIS)

Bailey, Teresa S.; Warsa, James S.; Chang, Jae H.; Adams, Marvin L.

2011-01-01

We present a new spatial discretization of the discrete-ordinates transport equation in two dimensional Cartesian (X-Y) geometry for arbitrary polygonal meshes. The discretization is a discontinuous finite element method (DFEM) that utilizes piecewise bi-linear (PWBL) basis functions, which are formally introduced in this paper. We also present a series of numerical results on quadrilateral and polygonal grids and compare these results to a variety of other spatial discretization that have been shown to be successful on these grid types. Finally, we note that the properties of the PWBL basis functions are such that the leading-order piecewise bi-linear discontinuous finite element (PWBLD) solution will satisfy a reasonably accurate diffusion discretization in the thick diffusion limit, making the PWBLD method a viable candidate for many different classes of transport problems. (author)

8. A Piecewise Bi-Linear Discontinuous Finite Element Spatial Discretization of the Sn Transport Equation

International Nuclear Information System (INIS)

Bailey, T.S.; Chang, J.H.; Warsa, J.S.; Adams, M.L.

2010-01-01

We present a new spatial discretization of the discrete-ordinates transport equation in two-dimensional Cartesian (X-Y) geometry for arbitrary polygonal meshes. The discretization is a discontinuous finite element method (DFEM) that utilizes piecewise bi-linear (PWBL) basis functions, which are formally introduced in this paper. We also present a series of numerical results on quadrilateral and polygonal grids and compare these results to a variety of other spatial discretizations that have been shown to be successful on these grid types. Finally, we note that the properties of the PWBL basis functions are such that the leading-order piecewise bi-linear discontinuous finite element (PWBLD) solution will satisfy a reasonably accurate diffusion discretization in the thick diffusion limit, making the PWBLD method a viable candidate for many different classes of transport problems.

9. Finite element modelling of ionized field quantities around a monopolar HVDC transmission line

International Nuclear Information System (INIS)

Jaiswal, Vinay; Thomas, M Joy

2003-01-01

In this paper, the Poisson's equation describing the ionized field around an HVDC line is solved using an improved finite element based technique. First order isoparametric quadrilateral elements, together with a modified updating criterion for the space charge distribution, are implemented in the iterative procedure. A novel technique is presented for mesh generation in the presence of space charges. Electric field lines and equipotential lines have been computed using the proposed technique. Total corona current at different applied voltages above corona onset voltage, electric field at the ground plane with and without the presence of space charges and current density at the ground plane have also been computed. The results are in agreement with the experimental values available in the published literature

10. A Piecewise Bi-Linear Discontinuous Finite Element Spatial Discretization of the Sn Transport Equation

Energy Technology Data Exchange (ETDEWEB)

Bailey, T S; Chang, J H; Warsa, J S; Adams, M L

2010-12-22

We present a new spatial discretization of the discrete-ordinates transport equation in two-dimensional Cartesian (X-Y) geometry for arbitrary polygonal meshes. The discretization is a discontinuous finite element method (DFEM) that utilizes piecewise bi-linear (PWBL) basis functions, which are formally introduced in this paper. We also present a series of numerical results on quadrilateral and polygonal grids and compare these results to a variety of other spatial discretizations that have been shown to be successful on these grid types. Finally, we note that the properties of the PWBL basis functions are such that the leading-order piecewise bi-linear discontinuous finite element (PWBLD) solution will satisfy a reasonably accurate diffusion discretization in the thick diffusion limit, making the PWBLD method a viable candidate for many different classes of transport problems.

11. Coarse mesh code development

Energy Technology Data Exchange (ETDEWEB)

Lieberoth, J.

1975-06-15

The numerical solution of the neutron diffusion equation plays a very important role in the analysis of nuclear reactors. A wide variety of numerical procedures has been proposed, at which most of the frequently used numerical methods are fundamentally based on the finite- difference approximation where the partial derivatives are approximated by the finite difference. For complex geometries, typical of the practical reactor problems, the computational accuracy of the finite-difference method is seriously affected by the size of the mesh width relative to the neutron diffusion length and by the heterogeneity of the medium. Thus, a very large number of mesh points are generally required to obtain a reasonably accurate approximate solution of the multi-dimensional diffusion equation. Since the computation time is approximately proportional to the number of mesh points, a detailed multidimensional analysis, based on the conventional finite-difference method, is still expensive even with modern large-scale computers. Accordingly, there is a strong incentive to develop alternatives that can reduce the number of mesh-points and still retain accuracy. One of the promising alternatives is the finite element method, which consists of the expansion of the neutron flux by piecewise polynomials. One of the advantages of this procedure is its flexibility in selecting the locations of the mesh points and the degree of the expansion polynomial. The small number of mesh points of the coarse grid enables to store the results of several of the least outer iterations and to calculate well extrapolated values of them by comfortable formalisms. This holds especially if only one energy distribution of fission neutrons is assumed for all fission processes in the reactor, because the whole information of an outer iteration is contained in a field of fission rates which has the size of all mesh points of the coarse grid.

12. Urogynecologic Surgical Mesh Implants

Science.gov (United States)

... procedures performed to treat pelvic floor disorders with surgical mesh: Transvaginal mesh to treat POP Transabdominal mesh to treat ... address safety risks Final Order for Reclassification of Surgical Mesh for Transvaginal Pelvic Organ Prolapse Repair Final Order for Effective ...

13. A mixed nonoverlapping covolume method on quadrilateral grids for elliptic problems

NARCIS (Netherlands)

Zhao, X.; Chen, Y.; Lv, J.

2016-01-01

A covolume method is proposed for the mixed formulation of second-order elliptic problems. The solution domain is divided by a quadrilateral grid, corresponding to which a nonoverlapping dual grid is constructed. The velocity and pressure are approximated by the lowest-order Raviart–Thomas space on

14. Investigation of Prospective Primary Mathematics Teachers' Perceptions and Images for Quadrilaterals

Science.gov (United States)

Turnuklu, Elif; Gundogdu Alayli, Funda; Akkas, Elif Nur

2013-01-01

The object of this study was to show how prospective elementary mathematics teachers define and classify the quadrilaterals and to find out their images. This research was a qualitative study. It was conducted with 36 prospective elementary mathematics teachers studying at 3rd and 4th years in an educational faculty. The data were collected by…

15. A posteriori estimator and adaptive mesh refinement for finite volume finite element method for monophasic flow and solute transport in porous media

International Nuclear Information System (INIS)

Amor, H.; Bourgeois, M.

2012-01-01

Document available in extended abstract form only. The disposal of high level, long lived waste in deep underground clay formations is investigated by several countries including France. In the safety assessment of such geological repositories, a thoughtful consideration must be given to the mechanisms and possible pathways of migration of radionuclides released from waste packages. However, when modelling the transfer of radionuclides throughout the disposal facilities and geological formations, the numerical simulations must take into consideration, in addition to long durations of concern, the variety in the properties as well as in geometrical scales of the different components of the overall disposal, including the host formation. This task presents significant computational challenges. Numerical methods used in the MELODIE software The MELODIE software is developed by IRSN, and constantly upgraded, with the aim to assess the long-term containment capabilities of underground and surface radioactive waste repositories. The MELODIE software models water flow and the phenomena involved in the transport of radionuclides in saturated and unsaturated porous media in 2 and 3 dimensions; chemical processes are represented by a retardation factor and a solubility limit, for sorption and solubility respectively, integrated in the computational equations. These equations are discretized using a so-called Finite Volume Finite Element method (FVFE), which is based on a Galerkin method to discretize time and variables, together with a Finite Volume method using the Godunov scheme for the convection term. The FVFE method is used to convert partial differential equations into a finite number of algebraic equations that match the number of nodes in the mesh used to model the considered domain. It is also used to stabilise the numerical scheme. In order to manage the variety in properties and geometrical scales of underground disposal components, an a posteriori error estimator

16. Fire performance of basalt FRP mesh reinforced HPC thin plates

DEFF Research Database (Denmark)

Hulin, Thomas; Hodicky, Kamil; Schmidt, Jacob Wittrup

2013-01-01

An experimental program was carried out to investigate the influence of basalt FRP (BFRP) reinforcing mesh on the fire behaviour of thin high performance concrete (HPC) plates applied to sandwich elements. Samples with BFRP mesh were compared to samples with no mesh, samples with steel mesh...

17. User Manual for the PROTEUS Mesh Tools

Energy Technology Data Exchange (ETDEWEB)

Smith, Micheal A. [Argonne National Lab. (ANL), Argonne, IL (United States); Shemon, Emily R [Argonne National Lab. (ANL), Argonne, IL (United States)

2016-09-19

PROTEUS is built around a finite element representation of the geometry for visualization. In addition, the PROTEUS-SN solver was built to solve the even-parity transport equation on a finite element mesh provided as input. Similarly, PROTEUS-MOC and PROTEUS-NEMO were built to apply the method of characteristics on unstructured finite element meshes. Given the complexity of real world problems, experience has shown that using commercial mesh generator to create rather simple input geometries is overly complex and slow. As a consequence, significant effort has been put into place to create multiple codes that help assist in the mesh generation and manipulation. There are three input means to create a mesh in PROTEUS: UFMESH, GRID, and NEMESH. At present, the UFMESH is a simple way to generate two-dimensional Cartesian and hexagonal fuel assembly geometries. The UFmesh input allows for simple assembly mesh generation while the GRID input allows the generation of Cartesian, hexagonal, and regular triangular structured grid geometry options. The NEMESH is a way for the user to create their own mesh or convert another mesh file format into a PROTEUS input format. Given that one has an input mesh format acceptable for PROTEUS, we have constructed several tools which allow further mesh and geometry construction (i.e. mesh extrusion and merging). This report describes the various mesh tools that are provided with the PROTEUS code giving both descriptions of the input and output. In many cases the examples are provided with a regression test of the mesh tools. The most important mesh tools for any user to consider using are the MT_MeshToMesh.x and the MT_RadialLattice.x codes. The former allows the conversion between most mesh types handled by PROTEUS while the second allows the merging of multiple (assembly) meshes into a radial structured grid. Note that the mesh generation process is recursive in nature and that each input specific for a given mesh tool (such as .axial

18. Unstructured Mesh Movement and Viscous Mesh Generation for CFD-Based Design Optimization, Phase II

Data.gov (United States)

National Aeronautics and Space Administration — The innovations proposed are twofold: 1) a robust unstructured mesh movement method able to handle isotropic (Euler), anisotropic (viscous), mixed element (hybrid)...

19. Virtual gap element approach for the treatment of non-matching interface using three-dimensional solid elements

Science.gov (United States)

Song, Yeo-Ul; Youn, Sung-Kie; Park, K. C.

2017-10-01

A method for three-dimensional non-matching interface treatment with a virtual gap element is developed. When partitioned structures contain curved interfaces and have different brick meshes, the discretized models have gaps along the interfaces. As these gaps bring unexpected errors, special treatments are required to handle the gaps. In the present work, a virtual gap element is introduced to link the frame and surface domain nodes in the frame work of the mortar method. Since the surface of the hexahedron element is quadrilateral, the gap element is pyramidal. The pyramidal gap element consists of four domain nodes and one frame node. Zero-strain condition in the gap element is utilized for the interpolation of frame nodes in terms of the domain nodes. This approach is taken to satisfy the momentum and energy conservation. The present method is applicable not only to curved interfaces with gaps, but also to flat interfaces in three dimensions. Several numerical examples are given to describe the effectiveness and accuracy of the proposed method.

20. A robust and efficient finite volume scheme for the discretization of diffusive flux on extremely skewed meshes in complex geometries

Science.gov (United States)

Traoré, Philippe; Ahipo, Yves Marcel; Louste, Christophe

2009-08-01

In this paper an improved finite volume scheme to discretize diffusive flux on a non-orthogonal mesh is proposed. This approach, based on an iterative technique initially suggested by Khosla [P.K. Khosla, S.G. Rubin, A diagonally dominant second-order accurate implicit scheme, Computers and Fluids 2 (1974) 207-209] and known as deferred correction, has been intensively utilized by Muzaferija [S. Muzaferija, Adaptative finite volume method for flow prediction using unstructured meshes and multigrid approach, Ph.D. Thesis, Imperial College, 1994] and later Fergizer and Peric [J.H. Fergizer, M. Peric, Computational Methods for Fluid Dynamics, Springer, 2002] to deal with the non-orthogonality of the control volumes. Using a more suitable decomposition of the normal gradient, our scheme gives accurate solutions in geometries where the basic idea of Muzaferija fails. First the performances of both schemes are compared for a Poisson problem solved in quadrangular domains where control volumes are increasingly skewed in order to test their robustness and efficiency. It is shown that convergence properties and the accuracy order of the solution are not degraded even on extremely skewed mesh. Next, the very stable behavior of the method is successfully demonstrated on a randomly distorted grid as well as on an anisotropically distorted one. Finally we compare the solution obtained for quadrilateral control volumes to the ones obtained with a finite element code and with an unstructured version of our finite volume code for triangular control volumes. No differences can be observed between the different solutions, which demonstrates the effectiveness of our approach.

1. Study and obtention of exact, and approximation, algorithms and heuristics for a mesh partitioning problem under memory constraints

International Nuclear Information System (INIS)

Morais, Sebastien

2016-01-01

In many scientific areas, the size and the complexity of numerical simulations lead to make intensive use of massively parallel runs on High Performance Computing (HPC) architectures. Such computers consist in a set of processing units (PU) where memory is distributed. Distribution of simulation data is therefore crucial: it has to minimize the computation time of the simulation while ensuring that the data allocated to every PU can be locally stored in memory. For most of the numerical simulations, the physical and numerical data are based on a mesh. The computations are then performed at the cell level (for example within triangles and quadrilaterals in 2D, or within tetrahedrons and hexahedrons in 3D). More specifically, computing and memory cost can be associated to each cell. In our context, where the mathematical methods used are finite elements or finite volumes, the realization of the computations associated with a cell may require information carried by neighboring cells. The standard implementation relies to locally store useful data of this neighborhood on the PU, even if cells of this neighborhood are not locally computed. Such non computed but stored cells are called ghost cells, and can have a significant impact on the memory consumption of a PU. The problem to solve is thus not only to partition a mesh on several parts by affecting each cell to one and only one part while minimizing the computational load assigned to each part. It is also necessary to keep into account that the memory load of both the cells where the computations are performed and their neighbors has to fit into PU memory. This leads to partition the computations while the mesh is distributed with overlaps. Explicitly taking these data overlaps into account is the problem that we propose to study. (author) [fr

2. A Family of Multipoint Flux Mixed Finite Element Methods for Elliptic Problems on General Grids

KAUST Repository

Wheeler, Mary F.; Xue, Guangri; Yotov, Ivan

2011-01-01

In this paper, we discuss a family of multipoint flux mixed finite element (MFMFE) methods on simplicial, quadrilateral, hexahedral, and triangular-prismatic grids. The MFMFE methods are locally conservative with continuous normal fluxes, since

3. Feature-Sensitive Tetrahedral Mesh Generation with Guaranteed Quality

OpenAIRE

Wang, Jun; Yu, Zeyun

2012-01-01

Tetrahedral meshes are being extensively used in finite element methods (FEM). This paper proposes an algorithm to generate feature-sensitive and high-quality tetrahedral meshes from an arbitrary surface mesh model. A top-down octree subdivision is conducted on the surface mesh and a set of tetrahedra are constructed using adaptive body-centered cubic (BCC) lattices. Special treatments are given to the tetrahedra near the surface such that the quality of the resulting tetrahedral mesh is prov...

4. VARIABLE MESH STIFFNESS OF SPUR GEAR TEETH USING ...

African Journals Online (AJOL)

gear engagement. A gear mesh kinematic simulation ... model is appropnate for VMS of a spur gear tooth. The assumptions for ... This process has been continued until one complete tooth meshing cycle is ..... Element Method. Using MATLAB,.

5. Multigrid for refined triangle meshes

Energy Technology Data Exchange (ETDEWEB)

Shapira, Yair

1997-02-01

A two-level preconditioning method for the solution of (locally) refined finite element schemes using triangle meshes is introduced. In the isotropic SPD case, it is shown that the condition number of the preconditioned stiffness matrix is bounded uniformly for all sufficiently regular triangulations. This is also verified numerically for an isotropic diffusion problem with highly discontinuous coefficients.

6. Monte Carlo study of the influence of energy spectra, mesh size, high Z element on dose and PVDR based on 1-D and 3-D heterogeneous mouse head phantom for Microbeam Radiation Therapy.

Science.gov (United States)

Lin, Hui; Jing, Jia; Xu, Liangfeng; Mao, Xiaoli

2017-12-01

To evaluate the influence of energy spectra, mesh sizes, high Z element on dose and PVDR in Microbeam Radiation Therapy (MRT) based on 1-D analogy-mouse-head-model (1-D MHM) and 3-D voxel-mouse-head-phantom (3-D VMHP) by Monte Carlo simulation. A Microbeam-Array-Source-Model was implemented into EGSnrc/DOSXYZnrc. The microbeam size is assumed to be 25μm, 50μm or 75μm in thickness and fixed 1mm in height with 200μmc-t-c. The influence of the energy spectra of ID17@ESRF and BMIT@CLS were investigated. The mesh size was optimized. PVDR in 1-D MHM and 3-D VMHP was compared with the homogeneous water phantom. The arc influence of 3-D VMHP filled with water (3-D VMHWP) was compared with the rectangle phantom. PVDR of the lower BMIT@CLS spectrum is 2.4times that of ID17@ESRF for lower valley dose. The optimized mesh is 5µm for 25µm, and 10µm for 50µm and 75µm microbeams with 200µmc-t-c. A 500μm skull layer could make PVDR difference up to 62.5% for 1-D MHM. However this influence is limited (influence is limited for the more depth (influence of 3-D heterogeneous media. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

7. An element-based finite-volume method approach for naturally fractured compositional reservoir simulation

Energy Technology Data Exchange (ETDEWEB)

Marcondes, Francisco [Federal University of Ceara, Fortaleza (Brazil). Dept. of Metallurgical Engineering and Material Science], e-mail: marcondes@ufc.br; Varavei, Abdoljalil; Sepehrnoori, Kamy [The University of Texas at Austin (United States). Petroleum and Geosystems Engineering Dept.], e-mails: varavei@mail.utexas.edu, kamys@mail.utexas.edu

2010-07-01

An element-based finite-volume approach in conjunction with unstructured grids for naturally fractured compositional reservoir simulation is presented. In this approach, both the discrete fracture and the matrix mass balances are taken into account without any additional models to couple the matrix and discrete fractures. The mesh, for two dimensional domains, can be built of triangles, quadrilaterals, or a mix of these elements. However, due to the available mesh generator to handle both matrix and discrete fractures, only results using triangular elements will be presented. The discrete fractures are located along the edges of each element. To obtain the approximated matrix equation, each element is divided into three sub-elements and then the mass balance equations for each component are integrated along each interface of the sub-elements. The finite-volume conservation equations are assembled from the contribution of all the elements that share a vertex, creating a cell vertex approach. The discrete fracture equations are discretized only along the edges of each element and then summed up with the matrix equations in order to obtain a conservative equation for both matrix and discrete fractures. In order to mimic real field simulations, the capillary pressure is included in both matrix and discrete fracture media. In the implemented model, the saturation field in the matrix and discrete fractures can be different, but the potential of each phase in the matrix and discrete fracture interface needs to be the same. The results for several naturally fractured reservoirs are presented to demonstrate the applicability of the method. (author)

8. MPFA algorithm for solving stokes-brinkman equations on quadrilateral grids

KAUST Repository

Iliev, Oleg

2014-01-01

This work is concerned with the development of a robust and accurate numerical method for solving the Stokes-Brinkman system of equations, which describes a free fluid flow coupled with a flow in porous media. Quadrilateral boundary fitted grid with a sophisticated finite volume method, namely MPFA O-method, is used to discretize the system of equations. Numerical results for two examples are presented, namely, channel flow and flow in a ring with a rolled porous medium. © Springer International Publishing Switzerland 2014.

9. TSAAS: finite-element thermal and stress analysis of plane and axisymmetric solids with orthotropic temperature-dependent material properties

Energy Technology Data Exchange (ETDEWEB)

Browning, R.V.; Anderson, C.A.

1982-02-01

The finite element method is used to determine the temperatures, displacements, stresses, and strains in axisymmetric solids with orthotropic, temperature-dependent material properties under axisymmetric thermal and mechanical loads. The mechanical loads can be surface pressures, surface shears, and nodal point forces as well as an axial or centripetal acceleration. The continuous solid is replaced by a system of ring elements with triangular or quadrilateral cross sections. Accordingly, the method is valid for solids that are composed of many different materials and that have complex geometry. Nonlinear mechanical behavior as typified by plastic, locking, or creeping materials can be approximated. Two dimensional mesh generation, plotting, and editing features allow the computer program to be readily used. In addition to a stress analysis program that is based on a modified version of the SAAS code, TSAAS can carry out a transient thermal analysis with the finite element mesh used in stress analysis. An implicit time differencing scheme allows the use of arbitrary time steps with consequent fast running times. At specified times, the program will return to SAAS for thermal stress analysis. Nonlinear thermal properties and Arrhenius reaction kinetics are also incorporated into TSAAS. Several versions of TSAAS are in use at Los Alamos, running on CDC-7600, CRAY-1 and VAX 11/780 computers. This report describes the nominal TSAAS; other versions may have some unique features.

10. Approximating second-order vector differential operators on distorted meshes in two space dimensions

International Nuclear Information System (INIS)

Hermeline, F.

2008-01-01

A new finite volume method is presented for approximating second-order vector differential operators in two space dimensions. This method allows distorted triangle or quadrilateral meshes to be used without the numerical results being too much altered. The matrices that need to be inverted are symmetric positive definite therefore, the most powerful linear solvers can be applied. The method has been tested on a few second-order vector partial differential equations coming from elasticity and fluids mechanics areas. These numerical experiments show that it is second-order accurate and locking-free. (authors)

11. Unstructured mesh adaptivity for urban flooding modelling

Science.gov (United States)

Hu, R.; Fang, F.; Salinas, P.; Pain, C. C.

2018-05-01

Over the past few decades, urban floods have been gaining more attention due to their increase in frequency. To provide reliable flooding predictions in urban areas, various numerical models have been developed to perform high-resolution flood simulations. However, the use of high-resolution meshes across the whole computational domain causes a high computational burden. In this paper, a 2D control-volume and finite-element flood model using adaptive unstructured mesh technology has been developed. This adaptive unstructured mesh technique enables meshes to be adapted optimally in time and space in response to the evolving flow features, thus providing sufficient mesh resolution where and when it is required. It has the advantage of capturing the details of local flows and wetting and drying front while reducing the computational cost. Complex topographic features are represented accurately during the flooding process. For example, the high-resolution meshes around the buildings and steep regions are placed when the flooding water reaches these regions. In this work a flooding event that happened in 2002 in Glasgow, Scotland, United Kingdom has been simulated to demonstrate the capability of the adaptive unstructured mesh flooding model. The simulations have been performed using both fixed and adaptive unstructured meshes, and then results have been compared with those published 2D and 3D results. The presented method shows that the 2D adaptive mesh model provides accurate results while having a low computational cost.

12. Adaptive hybrid mesh refinement for multiphysics applications

International Nuclear Information System (INIS)

Khamayseh, Ahmed; Almeida, Valmor de

2007-01-01

The accuracy and convergence of computational solutions of mesh-based methods is strongly dependent on the quality of the mesh used. We have developed methods for optimizing meshes that are comprised of elements of arbitrary polygonal and polyhedral type. We present in this research the development of r-h hybrid adaptive meshing technology tailored to application areas relevant to multi-physics modeling and simulation. Solution-based adaptation methods are used to reposition mesh nodes (r-adaptation) or to refine the mesh cells (h-adaptation) to minimize solution error. The numerical methods perform either the r-adaptive mesh optimization or the h-adaptive mesh refinement method on the initial isotropic or anisotropic meshes to equidistribute weighted geometric and/or solution error function. We have successfully introduced r-h adaptivity to a least-squares method with spherical harmonics basis functions for the solution of the spherical shallow atmosphere model used in climate modeling. In addition, application of this technology also covers a wide range of disciplines in computational sciences, most notably, time-dependent multi-physics, multi-scale modeling and simulation

13. An automatic granular structure generation and finite element analysis of heterogeneous semi-solid materials

International Nuclear Information System (INIS)

Sharifi, Hamid; Larouche, Daniel

2015-01-01

The quality of cast metal products depends on the capacity of the semi-solid metal to sustain the stresses generated during the casting. Predicting the evolution of these stresses with accuracy in the solidification interval should be highly helpful to avoid the formation of defects like hot tearing. This task is however very difficult because of the heterogeneous nature of the material. In this paper, we propose to evaluate the mechanical behaviour of a metal during solidification using a mesh generation technique of the heterogeneous semi-solid material for a finite element analysis at the microscopic level. This task is done on a two-dimensional (2D) domain in which the granular structure of the solid phase is generated surrounded by an intergranular and interdendritc liquid phase. Some basic solid grains are first constructed and projected in the 2D domain with random orientations and scale factors. Depending on their orientation, the basic grains are combined to produce larger grains or separated by a liquid film. Different basic grain shapes can produce different granular structures of the mushy zone. As a result, using this automatic grain generation procedure, we can investigate the effect of grain shapes and sizes on the thermo-mechanical behaviour of the semi-solid material. The granular models are automatically converted to the finite element meshes. The solid grains and the liquid phase are meshed properly using quadrilateral elements. This method has been used to simulate the microstructure of a binary aluminium–copper alloy (Al–5.8 wt% Cu) when the fraction solid is 0.92. Using the finite element method and the Mie–Grüneisen equation of state for the liquid phase, the transient mechanical behaviour of the mushy zone under tensile loading has been investigated. The stress distribution and the bridges, which are formed during the tensile loading, have been detected. (paper)

14. Students’ Relational Understanding in Quadrilateral Problem Solving Based on Adversity Quotient

Science.gov (United States)

Safitri, A. N.; Juniati, D.; Masriyah

2018-01-01

The type of research is qualitative approach which aims to describe how students’ relational understanding of solving mathematic problem that was seen from Adversity Quotient aspect. Research subjects were three 7th grade students of Junior High School. They were taken by category of Adversity Quotient (AQ) such quitter, camper, and climber. Data collected based on problem solving and interview. The research result showed that (1) at the stage of understanding the problem, the subjects were able to state and write down what is known and asked, and able to mention the concepts associated with the quadrilateral problem. (2) The three subjects devise a plan by linking concepts relating to quadrilateral problems. (3) The three subjects were able to solve the problem. (4) The three subjects were able to look back the answers. The three subjects were able to understand the problem, devise a plan, carry out the plan and look back. However, the quitter and camper subjects have not been able to give a reason for the steps they have taken.

15. Mesh Excision: Is Total Mesh Excision Necessary?

Science.gov (United States)

Wolff, Gillian F; Winters, J Christian; Krlin, Ryan M

2016-04-01

Nearly 29% of women will undergo a secondary, repeat operation for pelvic organ prolapse (POP) symptom recurrence following a primary repair, as reported by Abbott et al. (Am J Obstet Gynecol 210:163.e1-163.e1, 2014). In efforts to decrease the rates of failure, graft materials have been utilized to augment transvaginal repairs. Following the success of using polypropylene mesh (PPM) for stress urinary incontinence (SUI), the use of PPM in the transvaginal repair of POP increased. However, in recent years, significant concerns have been raised about the safety of PPM mesh. Complications, some specific to mesh, such as exposures, erosion, dyspareunia, and pelvic pain, have been reported with increased frequency. In the current literature, there is not substantive evidence to suggest that PPM has intrinsic properties that warrant total mesh removal in the absence of complications. There are a number of complications that can occur after transvaginal mesh placement that do warrant surgical intervention after failure of conservative therapy. In aggregate, there are no high-quality controlled studies that clearly demonstrate that total mesh removal is consistently more likely to achieve pain reduction. In the cases of obstruction and erosion, it seems clear that definitive removal of the offending mesh is associated with resolution of symptoms in the majority of cases and reasonable practice. There are a number of complications that can occur with removal of mesh, and patients should be informed of this as they formulate a choice of treatment. We will review these considerations as we examine the clinical question of whether total versus partial removal of mesh is necessary for the resolution of complications following transvaginal mesh placement.

16. Automatic mesh generation with QMESH program

International Nuclear Information System (INIS)

Ise, Takeharu; Tsutsui, Tsuneo

1977-05-01

Usage of the two-dimensional self-organizing mesh generation program, QMESH, is presented together with the descriptions and the experience, as it has recently been converted and reconstructed from the NEACPL version to the FACOM. The program package consists of the QMESH code to generate quadrilaterial meshes with smoothing techniques, the QPLOT code to plot the data obtained from the QMESH on the graphic COM, and the RENUM code to renumber the meshes by using a bandwidth minimization procedure. The technique of mesh reconstructuring coupled with smoothing techniques is especially useful when one generates the meshes for computer codes based on the finite element method. Several typical examples are given for easy access to the QMESH program, which is registered in the R.B-disks of JAERI for users. (auth.)

17. Conforming to interface structured adaptive mesh refinement: 3D algorithm and implementation

Science.gov (United States)

Nagarajan, Anand; Soghrati, Soheil

2018-03-01

A new non-iterative mesh generation algorithm named conforming to interface structured adaptive mesh refinement (CISAMR) is introduced for creating 3D finite element models of problems with complex geometries. CISAMR transforms a structured mesh composed of tetrahedral elements into a conforming mesh with low element aspect ratios. The construction of the mesh begins with the structured adaptive mesh refinement of elements in the vicinity of material interfaces. An r-adaptivity algorithm is then employed to relocate selected nodes of nonconforming elements, followed by face-swapping a small fraction of them to eliminate tetrahedrons with high aspect ratios. The final conforming mesh is constructed by sub-tetrahedralizing remaining nonconforming elements, as well as tetrahedrons with hanging nodes. In addition to studying the convergence and analyzing element-wise errors in meshes generated using CISAMR, several example problems are presented to show the ability of this method for modeling 3D problems with intricate morphologies.

18. Effects of finite element formulation on optimal plate and shell structural topologies

CSIR Research Space (South Africa)

Long, CS

2009-09-01

Full Text Available , and the other is a 4-node element accounting for in-plane (drilling) rotations. Plate elements selected for evaluation include the discrete Kirchhoff quadrilateral (DKQ) element and two Mindlin–Reissner-based elements, one employing selective reduced integration...

19. Z3 -vertex magic total labeling and Z3 -edge magic total labelingfor the extended duplicate graph of quadrilateral snake

Science.gov (United States)

Indira, P.; Selvam, B.; Thirusangu, K.

2018-04-01

Based on the works of Kotzig, Rosa and MacDougall et.al., we present algorithms and prove the existence of Z3-vertex magic total labeling and Z3-edge magic total labeling for the extended duplicate graph of quadrilateral snake.

20. A finite element thermohydrodynamic analyis of profile bore bearing

International Nuclear Information System (INIS)

Shah Nor bin Basri

1994-01-01

A finite element-based method is presented for analysing the thermohydrodynamic (THD) behaviour of profile bore bearing. A variational statement for the governing equation is derived and used to formulate a non-linear quadrilateral finite element of serendipity family. The predicted behaviour is compared with experimental evidence where possible and favorable correlation is obtained

1. An entropy stable nodal discontinuous Galerkin method for the two dimensional shallow water equations on unstructured curvilinear meshes with discontinuous bathymetry

Energy Technology Data Exchange (ETDEWEB)

Wintermeyer, Niklas [Mathematisches Institut, Universität zu Köln, Weyertal 86-90, 50931 Köln (Germany); Winters, Andrew R., E-mail: awinters@math.uni-koeln.de [Mathematisches Institut, Universität zu Köln, Weyertal 86-90, 50931 Köln (Germany); Gassner, Gregor J. [Mathematisches Institut, Universität zu Köln, Weyertal 86-90, 50931 Köln (Germany); Kopriva, David A. [Department of Mathematics, The Florida State University, Tallahassee, FL 32306 (United States)

2017-07-01

We design an arbitrary high-order accurate nodal discontinuous Galerkin spectral element approximation for the non-linear two dimensional shallow water equations with non-constant, possibly discontinuous, bathymetry on unstructured, possibly curved, quadrilateral meshes. The scheme is derived from an equivalent flux differencing formulation of the split form of the equations. We prove that this discretization exactly preserves the local mass and momentum. Furthermore, combined with a special numerical interface flux function, the method exactly preserves the mathematical entropy, which is the total energy for the shallow water equations. By adding a specific form of interface dissipation to the baseline entropy conserving scheme we create a provably entropy stable scheme. That is, the numerical scheme discretely satisfies the second law of thermodynamics. Finally, with a particular discretization of the bathymetry source term we prove that the numerical approximation is well-balanced. We provide numerical examples that verify the theoretical findings and furthermore provide an application of the scheme for a partial break of a curved dam test problem.

2. MHD simulations on an unstructured mesh

International Nuclear Information System (INIS)

Strauss, H.R.; Park, W.; Belova, E.; Fu, G.Y.; Sugiyama, L.E.

1998-01-01

Two reasons for using an unstructured computational mesh are adaptivity, and alignment with arbitrarily shaped boundaries. Two codes which use finite element discretization on an unstructured mesh are described. FEM3D solves 2D and 3D RMHD using an adaptive grid. MH3D++, which incorporates methods of FEM3D into the MH3D generalized MHD code, can be used with shaped boundaries, which might be 3D

Science.gov (United States)

Biswas, Rupak; Feng, Hui-Yu; VanderWijngaart, Rob

2003-01-01

This viewgraph presentation explores the need for a NASA Advanced Supercomputing (NAS) parallel benchmark for problems with irregular dynamical memory access. This benchmark is important and necessary because: 1) Problems with localized error source benefit from adaptive nonuniform meshes; 2) Certain machines perform poorly on such problems; 3) Parallel implementation may provide further performance improvement but is difficult. Some examples of problems which use irregular dynamical memory access include: 1) Heat transfer problem; 2) Heat source term; 3) Spectral element method; 4) Base functions; 5) Elemental discrete equations; 6) Global discrete equations. Nonconforming Mesh and Mortar Element Method are covered in greater detail in this presentation.

4. MHD simulations on an unstructured mesh

International Nuclear Information System (INIS)

Strauss, H.R.; Park, W.

1996-01-01

We describe work on a full MHD code using an unstructured mesh. MH3D++ is an extension of the PPPL MH3D resistive full MHD code. MH3D++ replaces the structured mesh and finite difference / fourier discretization of MH3D with an unstructured mesh and finite element / fourier discretization. Low level routines which perform differential operations, solution of PDEs such as Poisson's equation, and graphics, are encapsulated in C++ objects to isolate the finite element operations from the higher level code. The high level code is the same, whether it is run in structured or unstructured mesh versions. This allows the unstructured mesh version to be benchmarked against the structured mesh version. As a preliminary example, disruptions in DIIID reverse shear equilibria are studied numerically with the MH3D++ code. Numerical equilibria were first produced starting with an EQDSK file containing equilibrium data of a DIII-D L-mode negative central shear discharge. Using these equilibria, the linearized equations are time advanced to get the toroidal mode number n = 1 linear growth rate and eigenmode, which is resistively unstable. The equilibrium and linear mode are used to initialize 3D nonlinear runs. An example shows poloidal slices of 3D pressure surfaces: initially, on the left, and at an intermediate time, on the right

5. Obtuse triangle suppression in anisotropic meshes

KAUST Repository

Sun, Feng; Choi, Yi King; Wang, Wen Ping; Yan, Dongming; Liu, Yang; Lé vy, Bruno L.

2011-01-01

Anisotropic triangle meshes are used for efficient approximation of surfaces and flow data in finite element analysis, and in these applications it is desirable to have as few obtuse triangles as possible to reduce the discretization error. We present a variational approach to suppressing obtuse triangles in anisotropic meshes. Specifically, we introduce a hexagonal Minkowski metric, which is sensitive to triangle orientation, to give a new formulation of the centroidal Voronoi tessellation (CVT) method. Furthermore, we prove several relevant properties of the CVT method with the newly introduced metric. Experiments show that our algorithm produces anisotropic meshes with much fewer obtuse triangles than using existing methods while maintaining mesh anisotropy. © 2011 Elsevier B.V. All rights reserved.

6. Obtuse triangle suppression in anisotropic meshes

KAUST Repository

Sun, Feng

2011-12-01

Anisotropic triangle meshes are used for efficient approximation of surfaces and flow data in finite element analysis, and in these applications it is desirable to have as few obtuse triangles as possible to reduce the discretization error. We present a variational approach to suppressing obtuse triangles in anisotropic meshes. Specifically, we introduce a hexagonal Minkowski metric, which is sensitive to triangle orientation, to give a new formulation of the centroidal Voronoi tessellation (CVT) method. Furthermore, we prove several relevant properties of the CVT method with the newly introduced metric. Experiments show that our algorithm produces anisotropic meshes with much fewer obtuse triangles than using existing methods while maintaining mesh anisotropy. © 2011 Elsevier B.V. All rights reserved.

7. Hernia Surgical Mesh Implants

Science.gov (United States)

... knitted mesh or non-knitted sheet forms. The synthetic materials used can be absorbable, non-absorbable or a combination of absorbable and non-absorbable materials. Animal-derived mesh are made of animal tissue, such as intestine or skin, that has been processed and disinfected to be ...

8. Image-Based Geometric Modeling and Mesh Generation

CERN Document Server

2013-01-01

As a new interdisciplinary research area, “image-based geometric modeling and mesh generation” integrates image processing, geometric modeling and mesh generation with finite element method (FEM) to solve problems in computational biomedicine, materials sciences and engineering. It is well known that FEM is currently well-developed and efficient, but mesh generation for complex geometries (e.g., the human body) still takes about 80% of the total analysis time and is the major obstacle to reduce the total computation time. It is mainly because none of the traditional approaches is sufficient to effectively construct finite element meshes for arbitrarily complicated domains, and generally a great deal of manual interaction is involved in mesh generation. This contributed volume, the first for such an interdisciplinary topic, collects the latest research by experts in this area. These papers cover a broad range of topics, including medical imaging, image alignment and segmentation, image-to-mesh conversion,...

9. Educational Software for the Teaching and Learning of Quadrilaterals Generated from a Programming Language and the Dabeja Method (Invited Paper

Directory of Open Access Journals (Sweden)

Daniel Bejarano Segura

2016-06-01

Full Text Available The teaching of math is a process that starts from an early age especially the teaching of geometry through which different representations, constructions, axioms, and theorems among others helps develop the formal thoughts of individuals. This requires not only graphical but demonstrative processes that mentally schemes chords to generate levels of rational thought. Quadrilaterals are part of the components of geometry in the two-dimensional and three-dimensional fields. They possess properties, definitions, classifications, and studies through postulations of parallelism and perpendicularity. Using dynamic strategies and formal processes of knowledge as the Dabeja method to strengthen the teaching of geometry of quadrilaterals through the construction of dynamic courseware, is one of the questions that reveals problems in thought formation. This is an investigation of a parametric quantitative approach with an experimental design of research aimed at the techno de facto and their relationship with the individual development of a formal thinking. An educational software was developed using the Java programming language to construct quadrilaterals, demonstrate their properties and relationships through the Dabeja method.

10. Refficientlib: an efficient load-rebalanced adaptive mesh refinement algorithm for high-performance computational physics meshes

OpenAIRE

Baiges Aznar, Joan; Bayona Roa, Camilo Andrés

2017-01-01

No separate or additional fees are collected for access to or distribution of the work. In this paper we present a novel algorithm for adaptive mesh refinement in computational physics meshes in a distributed memory parallel setting. The proposed method is developed for nodally based parallel domain partitions where the nodes of the mesh belong to a single processor, whereas the elements can belong to multiple processors. Some of the main features of the algorithm presented in this paper a...

11. Quadrilateral Micro-Hole Array Machining on Invar Thin Film: Wet Etching and Electrochemical Fusion Machining

Directory of Open Access Journals (Sweden)

Woong-Kirl Choi

2018-01-01

Full Text Available Ultra-precision products which contain a micro-hole array have recently shown remarkable demand growth in many fields, especially in the semiconductor and display industries. Photoresist etching and electrochemical machining are widely known as precision methods for machining micro-holes with no residual stress and lower surface roughness on the fabricated products. The Invar shadow masks used for organic light-emitting diodes (OLEDs contain numerous micro-holes and are currently machined by a photoresist etching method. However, this method has several problems, such as uncontrollable hole machining accuracy, non-etched areas, and overcutting. To solve these problems, a machining method that combines photoresist etching and electrochemical machining can be applied. In this study, negative photoresist with a quadrilateral hole array pattern was dry coated onto 30-µm-thick Invar thin film, and then exposure and development were carried out. After that, photoresist single-side wet etching and a fusion method of wet etching-electrochemical machining were used to machine micro-holes on the Invar. The hole machining geometry, surface quality, and overcutting characteristics of the methods were studied. Wet etching and electrochemical fusion machining can improve the accuracy and surface quality. The overcutting phenomenon can also be controlled by the fusion machining. Experimental results show that the proposed method is promising for the fabrication of Invar film shadow masks.

12. Lagrangian and Eulerian finite element techniques for transient fluid-structure interaction problems

International Nuclear Information System (INIS)

Donea, J.; Fasoli-Stella, P.; Giuliani, S.

1977-01-01

The basic finite element equations for transient compressible fluid flow are presented in a form that allows the elements to be moved with the fluid in normal Lagrangian fashion, to be held fixed in a Eulerian manner, or to be moved in some arbitrarily specified way. The co-existence of Lagrangian and Eulerian regions within the finite element mesh will permit to handle greater distortions in the fluid motion than would be allowed by a purely Lagrangian method, with more resolution than is afforded by a purely Eulerian method. To achieve a mixed formulation, the conservation statements of mass, momentum and energy are expressed in integral form over a reference volume whose surface may be moving with an arbitrarily prescribed velocity. Direct use can be made of the integral forms of the mass and energy equations to adjust the element density and specific internal energy. The Galerkin process is employed to formulate a variational statement associated with the momentum equation. The difficulties associated with the presence of convective terms in the conservation equations are handled by expressing transports of mass, momentum and energy terms of intermediate velocities derived at each cycle from the previous cycle velocities and accelerations. The hydrodynamic elements presented are triangles, quadrilaterals with constant pressure and density. The finite element equations associated with these elements are described in the necessary detail. Numerical results are presented based on purely Lagrangian, purely Eulerian and mixed formulations. Simple problems with analytic solution are solved first to show the validity and accuracy of the proposed mixed finite element formulation. Then, practical problems are illustrated in the field of fast reactor safety analysis

13. Geometrically Consistent Mesh Modification

KAUST Repository

Bonito, A.

2010-01-01

A new paradigm of adaptivity is to execute refinement, coarsening, and smoothing of meshes on manifolds with incomplete information about their geometry and yet preserve position and curvature accuracy. We refer to this collectively as geometrically consistent (GC) mesh modification. We discuss the concept of discrete GC, show the failure of naive approaches, and propose and analyze a simple algorithm that is GC and accuracy preserving. © 2010 Society for Industrial and Applied Mathematics.

14. An Approach to Quad Meshing Based On Cross Valued Maps and the Ginzburg-Landau Theory

Energy Technology Data Exchange (ETDEWEB)

Viertel, Ryan [Univ. of Utah, Salt Lake City, UT (United States). Dept. of Mathematics; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Osting, Braxton [Univ. of Utah, Salt Lake City, UT (United States). Dept. of Mathematics

2017-08-01

A generalization of vector fields, referred to as N-direction fields or cross fields when N=4, has been recently introduced and studied for geometry processing, with applications in quadrilateral (quad) meshing, texture mapping, and parameterization. We make the observation that cross field design for two-dimensional quad meshing is related to the well-known Ginzburg-Landau problem from mathematical physics. This identification yields a variety of theoretical tools for efficiently computing boundary-aligned quad meshes, with provable guarantees on the resulting mesh, for example, the number of mesh defects and bounds on the defect locations. The procedure for generating the quad mesh is to (i) find a complex-valued "representation" field that minimizes the Dirichlet energy subject to a boundary constraint, (ii) convert the representation field into a boundary-aligned, smooth cross field, (iii) use separatrices of the cross field to partition the domain into four sided regions, and (iv) mesh each of these four-sided regions using standard techniques. Under certain assumptions on the geometry of the domain, we prove that this procedure can be used to produce a cross field whose separatrices partition the domain into four sided regions. To solve the energy minimization problem for the representation field, we use an extension of the Merriman-Bence-Osher (MBO) threshold dynamics method, originally conceived as an algorithm to simulate motion by mean curvature, to minimize the Ginzburg-Landau energy for the optimal representation field. Lastly, we demonstrate the method on a variety of test domains.

15. Riding Bare-Back on unstructured meshes for 21. century criticality calculations - 244

International Nuclear Information System (INIS)

Kelley, K.C.; Martz, R.L.; Crane, D.L.

2010-01-01

MCNP has a new capability that permits tracking of neutrons and photons on an unstructured mesh which is embedded as a mesh universe within its legacy geometry capability. The mesh geometry is created through Abaqus/CAE using its solid modeling capabilities. Transport results are calculated for mesh elements through a path length estimator while element to element tracking is performed on the mesh. The results from MCNP can be exported to Abaqus/CAE for visualization or other-physics analysis. The simple Godiva criticality benchmark problem was tested with this new mesh capability. Computer run time is proportional to the number of mesh elements used. Both first and second order polyhedrons are used. Models that used second order polyhedrons produced slightly better results without significantly increasing computer run time. Models that used first order hexahedrons had shorter runtimes than models that used first order tetrahedrons. (authors)

16. Isotropic 2D quadrangle meshing with size and orientation control

KAUST Repository

Pellenard, Bertrand; Alliez, Pierre; Morvan, Jean-Marie

2011-01-01

We propose an approach for automatically generating isotropic 2D quadrangle meshes from arbitrary domains with a fine control over sizing and orientation of the elements. At the heart of our algorithm is an optimization procedure that, from a coarse

17. Documentation for MeshKit - Reactor Geometry (&mesh) Generator

Energy Technology Data Exchange (ETDEWEB)

Jain, Rajeev [Argonne National Lab. (ANL), Argonne, IL (United States); Mahadevan, Vijay [Argonne National Lab. (ANL), Argonne, IL (United States)

2015-09-30

This report gives documentation for using MeshKit’s Reactor Geometry (and mesh) Generator (RGG) GUI and also briefly documents other algorithms and tools available in MeshKit. RGG is a program designed to aid in modeling and meshing of complex/large hexagonal and rectilinear reactor cores. RGG uses Argonne’s SIGMA interfaces, Qt and VTK to produce an intuitive user interface. By integrating a 3D view of the reactor with the meshing tools and combining them into one user interface, RGG streamlines the task of preparing a simulation mesh and enables real-time feedback that reduces accidental scripting mistakes that could waste hours of meshing. RGG interfaces with MeshKit tools to consolidate the meshing process, meaning that going from model to mesh is as easy as a button click. This report is designed to explain RGG v 2.0 interface and provide users with the knowledge and skills to pilot RGG successfully. Brief documentation of MeshKit source code, tools and other algorithms available are also presented for developers to extend and add new algorithms to MeshKit. RGG tools work in serial and parallel and have been used to model complex reactor core models consisting of conical pins, load pads, several thousands of axially varying material properties of instrumentation pins and other interstices meshes.

18. Crack growth simulation for plural crack using hexahedral mesh generation technique

International Nuclear Information System (INIS)

Orita, Y; Wada, Y; Kikuchi, M

2010-01-01

This paper describes a surface crack growth simulation using a new mesh generation technique. The generated mesh is constituted of all hexahedral elements. Hexahedral elements are suitable for an analysis of fracture mechanics parameters, i.e. stress intensity factor. The advantage of a hexahedral mesh is good accuracy of an analysis and less number of degrees of freedoms than a tetrahedral mesh. In this study, a plural crack growth simulation is computed using the hexahedral mesh and its distribution of stress intensity factor is investigated.

19. Mixed dual finite element methods for the numerical treatment of the diffusion equation in hexagonal geometry

International Nuclear Information System (INIS)

Schneider, D.

2001-01-01

The nodal method Minos has been developed to offer a powerful method for the calculation of nuclear reactor cores in rectangular geometry. This method solves the mixed dual form of the diffusion equation and, also of the simplified P N approximation. The discretization is based on Raviart-Thomas' mixed dual finite elements and the iterative algorithm is an alternating direction method, which uses the current as unknown. The subject of this work is to adapt this method to hexagonal geometry. The guiding idea is to construct and test different methods based on the division of a hexagon into trapeze or rhombi with appropriate mapping of these quadrilaterals onto squares in order to take into advantage what is already available in the Minos solver. The document begins with a review of the neutron diffusion equation. Then we discuss its mixed dual variational formulation from a functional as well as from a numerical point of view. We study conformal and bilinear mappings for the two possible meshing of the hexagon. Thus, four different methods are proposed and are completely described in this work. Because of theoretical and numerical difficulties, a particular treatment has been necessary for methods based on the conformal mapping. Finally, numerical results are presented for a hexagonal benchmark to validate and compare the four methods with respect to pre-defined criteria. (authors)

20. Cell-centered particle weighting algorithm for PIC simulations in a non-uniform 2D axisymmetric mesh

Science.gov (United States)

Araki, Samuel J.; Wirz, Richard E.

2014-09-01

Standard area weighting methods for particle-in-cell simulations result in systematic errors on particle densities for a non-uniform mesh in cylindrical coordinates. These errors can be significantly reduced by using weighted cell volumes for density calculations. A detailed description on the corrected volume calculations and cell-centered weighting algorithm in a non-uniform mesh is provided. The simple formulas for the corrected volume can be used for any type of quadrilateral and/or triangular mesh in cylindrical coordinates. Density errors arising from the cell-centered weighting algorithm are computed for radial density profiles of uniform, linearly decreasing, and Bessel function in an adaptive Cartesian mesh and an unstructured mesh. For all the density profiles, it is shown that the weighting algorithm provides a significant improvement for density calculations. However, relatively large density errors may persist at outermost cells for monotonically decreasing density profiles. A further analysis has been performed to investigate the effect of the density errors in potential calculations, and it is shown that the error at the outermost cell does not propagate into the potential solution for the density profiles investigated.

1. Multi-phase Volume Segmentation with Tetrahedral Mesh

DEFF Research Database (Denmark)

Nguyen Trung, Tuan; Dahl, Vedrana Andersen; Bærentzen, Jakob Andreas

Volume segmentation is efficient for reconstructing material structure, which is important for several analyses, e.g. simulation with finite element method, measurement of quantitative information like surface area, surface curvature, volume, etc. We are concerned about the representations of the 3......D volumes, which can be categorized into two groups: fixed voxel grids [1] and unstructured meshes [2]. Among these two representations, the voxel grids are more popular since manipulating a fixed grid is easier than an unstructured mesh, but they are less efficient for quantitative measurements....... In many cases, the voxel grids are converted to explicit meshes, however the conversion may reduce the accuracy of the segmentations, and the effort for meshing is also not trivial. On the other side, methods using unstructured meshes have difficulty in handling topology changes. To reduce the complexity...

2. SUPERIMPOSED MESH PLOTTING IN MCNP

Energy Technology Data Exchange (ETDEWEB)

J. HENDRICKS

2001-02-01

The capability to plot superimposed meshes has been added to MCNP{trademark}. MCNP4C featured a superimposed mesh weight window generator which enabled users to set up geometries without having to subdivide geometric cells for variance reduction. The variance reduction was performed with weight windows on a rectangular or cylindrical mesh superimposed over the physical geometry. Experience with the new capability was favorable but also indicated that a number of enhancements would be very beneficial, particularly a means of visualizing the mesh and its values. The mathematics for plotting the mesh and its values is described here along with a description of other upgrades.

3. Wireless mesh networks.

Science.gov (United States)

Wang, Xinheng

2008-01-01

Wireless telemedicine using GSM and GPRS technologies can only provide low bandwidth connections, which makes it difficult to transmit images and video. Satellite or 3G wireless transmission provides greater bandwidth, but the running costs are high. Wireless networks (WLANs) appear promising, since they can supply high bandwidth at low cost. However, the WLAN technology has limitations, such as coverage. A new wireless networking technology named the wireless mesh network (WMN) overcomes some of the limitations of the WLAN. A WMN combines the characteristics of both a WLAN and ad hoc networks, thus forming an intelligent, large scale and broadband wireless network. These features are attractive for telemedicine and telecare because of the ability to provide data, voice and video communications over a large area. One successful wireless telemedicine project which uses wireless mesh technology is the Emergency Room Link (ER-LINK) in Tucson, Arizona, USA. There are three key characteristics of a WMN: self-organization, including self-management and self-healing; dynamic changes in network topology; and scalability. What we may now see is a shift from mobile communication and satellite systems for wireless telemedicine to the use of wireless networks based on mesh technology, since the latter are very attractive in terms of cost, reliability and speed.

4. Isotropic 2D quadrangle meshing with size and orientation control

KAUST Repository

Pellenard, Bertrand

2011-12-01

We propose an approach for automatically generating isotropic 2D quadrangle meshes from arbitrary domains with a fine control over sizing and orientation of the elements. At the heart of our algorithm is an optimization procedure that, from a coarse initial tiling of the 2D domain, enforces each of the desirable mesh quality criteria (size, shape, orientation, degree, regularity) one at a time, in an order designed not to undo previous enhancements. Our experiments demonstrate how well our resulting quadrangle meshes conform to a wide range of input sizing and orientation fields.

5. Mixed dual finite element methods for the numerical treatment of the diffusion equation in hexagonal geometry; Elements finis mixtes duaux pour la resolution numerique de l'equation de la diffusion neutronique en geometrie hexagonale

Energy Technology Data Exchange (ETDEWEB)

Schneider, D

2001-07-01

The nodal method Minos has been developed to offer a powerful method for the calculation of nuclear reactor cores in rectangular geometry. This method solves the mixed dual form of the diffusion equation and, also of the simplified P{sub N} approximation. The discretization is based on Raviart-Thomas' mixed dual finite elements and the iterative algorithm is an alternating direction method, which uses the current as unknown. The subject of this work is to adapt this method to hexagonal geometry. The guiding idea is to construct and test different methods based on the division of a hexagon into trapeze or rhombi with appropriate mapping of these quadrilaterals onto squares in order to take into advantage what is already available in the Minos solver. The document begins with a review of the neutron diffusion equation. Then we discuss its mixed dual variational formulation from a functional as well as from a numerical point of view. We study conformal and bilinear mappings for the two possible meshing of the hexagon. Thus, four different methods are proposed and are completely described in this work. Because of theoretical and numerical difficulties, a particular treatment has been necessary for methods based on the conformal mapping. Finally, numerical results are presented for a hexagonal benchmark to validate and compare the four methods with respect to pre-defined criteria. (authors)

6. Mixed dual finite element methods for the numerical treatment of the diffusion equation in hexagonal geometry; Elements finis mixtes duaux pour la resolution numerique de l'equation de la diffusion neutronique en geometrie hexagonale

Energy Technology Data Exchange (ETDEWEB)

Schneider, D

2001-07-01

The nodal method Minos has been developed to offer a powerful method for the calculation of nuclear reactor cores in rectangular geometry. This method solves the mixed dual form of the diffusion equation and, also of the simplified P{sub N} approximation. The discretization is based on Raviart-Thomas' mixed dual finite elements and the iterative algorithm is an alternating direction method, which uses the current as unknown. The subject of this work is to adapt this method to hexagonal geometry. The guiding idea is to construct and test different methods based on the division of a hexagon into trapeze or rhombi with appropriate mapping of these quadrilaterals onto squares in order to take into advantage what is already available in the Minos solver. The document begins with a review of the neutron diffusion equation. Then we discuss its mixed dual variational formulation from a functional as well as from a numerical point of view. We study conformal and bilinear mappings for the two possible meshing of the hexagon. Thus, four different methods are proposed and are completely described in this work. Because of theoretical and numerical difficulties, a particular treatment has been necessary for methods based on the conformal mapping. Finally, numerical results are presented for a hexagonal benchmark to validate and compare the four methods with respect to pre-defined criteria. (authors)

7. Mesh erosion after abdominal sacrocolpopexy.

Science.gov (United States)

Kohli, N; Walsh, P M; Roat, T W; Karram, M M

1998-12-01

To report our experience with erosion of permanent suture or mesh material after abdominal sacrocolpopexy. A retrospective chart review was performed to identify patients who underwent sacrocolpopexy by the same surgeon over 8 years. Demographic data, operative notes, hospital records, and office charts were reviewed after sacrocolpopexy. Patients with erosion of either suture or mesh were treated initially with conservative therapy followed by surgical intervention as required. Fifty-seven patients underwent sacrocolpopexy using synthetic mesh during the study period. The mean (range) postoperative follow-up was 19.9 (1.3-50) months. Seven patients (12%) had erosions after abdominal sacrocolpopexy with two suture erosions and five mesh erosions. Patients with suture erosion were asymptomatic compared with patients with mesh erosion, who presented with vaginal bleeding or discharge. The mean (+/-standard deviation) time to erosion was 14.0+/-7.7 (range 4-24) months. Both patients with suture erosion were treated conservatively with estrogen cream. All five patients with mesh erosion required transvaginal removal of the mesh. Mesh erosion can follow abdominal sacrocolpopexy over a long time, and usually presents as vaginal bleeding or discharge. Although patients with suture erosion can be managed successfully with conservative treatment, patients with mesh erosion require surgical intervention. Transvaginal removal of the mesh with vaginal advancement appears to be an effective treatment in patients failing conservative management.

8. Notes on the Mesh Handler and Mesh Data Conversion

International Nuclear Information System (INIS)

Lee, Sang Yong; Park, Chan Eok

2009-01-01

At the outset of the development of the thermal-hydraulic code (THC), efforts have been made to utilize the recent technology of the computational fluid dynamics. Among many of them, the unstructured mesh approach was adopted to alleviate the restriction of the grid handling system. As a natural consequence, a mesh handler (MH) has been developed to manipulate the complex mesh data from the mesh generator. The mesh generator, Gambit, was chosen at the beginning of the development of the code. But a new mesh generator, Pointwise, was introduced to get more flexible mesh generation capability. An open source code, Paraview, was chosen as a post processor, which can handle unstructured as well as structured mesh data. Overall data processing system for THC is shown in Figure-1. There are various file formats to save the mesh data in the permanent storage media. A couple of dozen of file formats are found even in the above mentioned programs. A competent mesh handler should have the capability to import or export mesh data as many as possible formats. But, in reality, there are two aspects that make it difficult to achieve the competence. The first aspect to consider is the time and efforts to program the interface code. And the second aspect, which is even more difficult one, is the fact that many mesh data file formats are proprietary information. In this paper, some experience of the development of the format conversion programs will be presented. File formats involved are Gambit neutral format, Ansys-CFX grid file format, VTK legacy file format, Nastran format and CGNS

9. Parallel adaptation of general three-dimensional hybrid meshes

International Nuclear Information System (INIS)

Kavouklis, Christos; Kallinderis, Yannis

2010-01-01

A new parallel dynamic mesh adaptation and load balancing algorithm for general hybrid grids has been developed. The meshes considered in this work are composed of four kinds of elements; tetrahedra, prisms, hexahedra and pyramids, which poses a challenge to parallel mesh adaptation. Additional complexity imposed by the presence of multiple types of elements affects especially data migration, updates of local data structures and interpartition data structures. Efficient partition of hybrid meshes has been accomplished by transforming them to suitable graphs and using serial graph partitioning algorithms. Communication among processors is based on the faces of the interpartition boundary and the termination detection algorithm of Dijkstra is employed to ensure proper flagging of edges for refinement. An inexpensive dynamic load balancing strategy is introduced to redistribute work load among processors after adaptation. In particular, only the initial coarse mesh, with proper weighting, is balanced which yields savings in computation time and relatively simple implementation of mesh quality preservation rules, while facilitating coarsening of refined elements. Special algorithms are employed for (i) data migration and dynamic updates of the local data structures, (ii) determination of the resulting interpartition boundary and (iii) identification of the communication pattern of processors. Several representative applications are included to evaluate the method.

10. An optimization-based framework for anisotropic simplex mesh adaptation

Science.gov (United States)

Yano, Masayuki; Darmofal, David L.

2012-09-01

We present a general framework for anisotropic h-adaptation of simplex meshes. Given a discretization and any element-wise, localizable error estimate, our adaptive method iterates toward a mesh that minimizes error for a given degrees of freedom. Utilizing mesh-metric duality, we consider a continuous optimization problem of the Riemannian metric tensor field that provides an anisotropic description of element sizes. First, our method performs a series of local solves to survey the behavior of the local error function. This information is then synthesized using an affine-invariant tensor manipulation framework to reconstruct an approximate gradient of the error function with respect to the metric tensor field. Finally, we perform gradient descent in the metric space to drive the mesh toward optimality. The method is first demonstrated to produce optimal anisotropic meshes minimizing the L2 projection error for a pair of canonical problems containing a singularity and a singular perturbation. The effectiveness of the framework is then demonstrated in the context of output-based adaptation for the advection-diffusion equation using a high-order discontinuous Galerkin discretization and the dual-weighted residual (DWR) error estimate. The method presented provides a unified framework for optimizing both the element size and anisotropy distribution using an a posteriori error estimate and enables efficient adaptation of anisotropic simplex meshes for high-order discretizations.

11. A Linear-Elasticity Solver for Higher-Order Space-Time Mesh Deformation

Science.gov (United States)

Diosady, Laslo T.; Murman, Scott M.

2018-01-01

A linear-elasticity approach is presented for the generation of meshes appropriate for a higher-order space-time discontinuous finite-element method. The equations of linear-elasticity are discretized using a higher-order, spatially-continuous, finite-element method. Given an initial finite-element mesh, and a specified boundary displacement, we solve for the mesh displacements to obtain a higher-order curvilinear mesh. Alternatively, for moving-domain problems we use the linear-elasticity approach to solve for a temporally discontinuous mesh velocity on each time-slab and recover a continuous mesh deformation by integrating the velocity. The applicability of this methodology is presented for several benchmark test cases.

12. Performance of FACTS equipment in Meshed systems

Energy Technology Data Exchange (ETDEWEB)

Lerch, E; Povh, D [Siemens AG, Berlin (Germany)

1994-12-31

Modern power electronic devices such as thyristors and GTOs have made it possible to design controllable network elements, which will play a considerable role in ensuring reliable economic operation of transmission systems as a result of their capability to rapidly change active and reactive power. A number of FACTS elements for high-speed active and reactive power control will be described. Control of power system fluctuations in meshed systems by modulation of active and reactive power will be demonstrated using a number of examples. (author) 7 refs., 11 figs.

13. On mesh refinement and accuracy of numerical solutions

NARCIS (Netherlands)

Zhou, Hong; Peters, Maria; van Oosterom, Adriaan

1993-01-01

This paper investigates mesh refinement and its relation with the accuracy of the boundary element method (BEM) and the finite element method (FEM). TO this end an isotropic homogeneous spherical volume conductor, for which the analytical solution is available, wag used. The numerical results

14. Streaming simplification of tetrahedral meshes.

Science.gov (United States)

Vo, Huy T; Callahan, Steven P; Lindstrom, Peter; Pascucci, Valerio; Silva, Cláudio T

2007-01-01

Unstructured tetrahedral meshes are commonly used in scientific computing to represent scalar, vector, and tensor fields in three dimensions. Visualization of these meshes can be difficult to perform interactively due to their size and complexity. By reducing the size of the data, we can accomplish real-time visualization necessary for scientific analysis. We propose a two-step approach for streaming simplification of large tetrahedral meshes. Our algorithm arranges the data on disk in a streaming, I/O-efficient format that allows coherent access to the tetrahedral cells. A quadric-based simplification is sequentially performed on small portions of the mesh in-core. Our output is a coherent streaming mesh which facilitates future processing. Our technique is fast, produces high quality approximations, and operates out-of-core to process meshes too large for main memory.

15. Numerical Investigation of Corrugated Wire Mesh Laminate

Directory of Open Access Journals (Sweden)

Jeongho Choi

2013-01-01

Full Text Available The aim of this work is to develop a numerical model of Corrugated Wire Mesh Laminate (CWML capturing all its complexities such as nonlinear material properties, nonlinear geometry and large deformation behaviour, and frictional behaviour. Development of such a model will facilitate numerical simulation of the mechanical behaviour of the wire mesh structure under various types of loading as well as the variation of the CWML configuration parameters to tailor its mechanical properties to suit the intended application. Starting with a single strand truss model consisting of four waves with a bilinear stress-strain model to represent the plastic behaviour of stainless steel, the finite element model is gradually built up to study single-layer structures with 18 strands of corrugated wire meshes consistency and double- and quadruple-layered laminates with alternating crossply orientations. The compressive behaviour of the CWML model is simulated using contact elements to model friction and is compared to the load-deflection behaviour determined experimentally in uniaxial compression tests. The numerical model of the CWML is then employed to conduct the aim of establishing the upper and lower bounds of stiffness and load capacity achievable by such structures.

16. Surface meshing with curvature convergence

KAUST Repository

Li, Huibin; Zeng, Wei; Morvan, Jean-Marie; Chen, Liming; Gu, Xianfengdavid

2014-01-01

Surface meshing plays a fundamental role in graphics and visualization. Many geometric processing tasks involve solving geometric PDEs on meshes. The numerical stability, convergence rates and approximation errors are largely determined by the mesh qualities. In practice, Delaunay refinement algorithms offer satisfactory solutions to high quality mesh generations. The theoretical proofs for volume based and surface based Delaunay refinement algorithms have been established, but those for conformal parameterization based ones remain wide open. This work focuses on the curvature measure convergence for the conformal parameterization based Delaunay refinement algorithms. Given a metric surface, the proposed approach triangulates its conformal uniformization domain by the planar Delaunay refinement algorithms, and produces a high quality mesh. We give explicit estimates for the Hausdorff distance, the normal deviation, and the differences in curvature measures between the surface and the mesh. In contrast to the conventional results based on volumetric Delaunay refinement, our stronger estimates are independent of the mesh structure and directly guarantee the convergence of curvature measures. Meanwhile, our result on Gaussian curvature measure is intrinsic to the Riemannian metric and independent of the embedding. In practice, our meshing algorithm is much easier to implement and much more efficient. The experimental results verified our theoretical results and demonstrated the efficiency of the meshing algorithm. © 2014 IEEE.

17. Surface meshing with curvature convergence

KAUST Repository

Li, Huibin

2014-06-01

Surface meshing plays a fundamental role in graphics and visualization. Many geometric processing tasks involve solving geometric PDEs on meshes. The numerical stability, convergence rates and approximation errors are largely determined by the mesh qualities. In practice, Delaunay refinement algorithms offer satisfactory solutions to high quality mesh generations. The theoretical proofs for volume based and surface based Delaunay refinement algorithms have been established, but those for conformal parameterization based ones remain wide open. This work focuses on the curvature measure convergence for the conformal parameterization based Delaunay refinement algorithms. Given a metric surface, the proposed approach triangulates its conformal uniformization domain by the planar Delaunay refinement algorithms, and produces a high quality mesh. We give explicit estimates for the Hausdorff distance, the normal deviation, and the differences in curvature measures between the surface and the mesh. In contrast to the conventional results based on volumetric Delaunay refinement, our stronger estimates are independent of the mesh structure and directly guarantee the convergence of curvature measures. Meanwhile, our result on Gaussian curvature measure is intrinsic to the Riemannian metric and independent of the embedding. In practice, our meshing algorithm is much easier to implement and much more efficient. The experimental results verified our theoretical results and demonstrated the efficiency of the meshing algorithm. © 2014 IEEE.

18. Introducing a distributed unstructured mesh into gyrokinetic particle-in-cell code, XGC

Science.gov (United States)

Yoon, Eisung; Shephard, Mark; Seol, E. Seegyoung; Kalyanaraman, Kaushik

2017-10-01

XGC has shown good scalability for large leadership supercomputers. The current production version uses a copy of the entire unstructured finite element mesh on every MPI rank. Although an obvious scalability issue if the mesh sizes are to be dramatically increased, the current approach is also not optimal with respect to data locality of particles and mesh information. To address these issues we have initiated the development of a distributed mesh PIC method. This approach directly addresses the base scalability issue with respect to mesh size and, through the use of a mesh entity centric view of the particle mesh relationship, provides opportunities to address data locality needs of many core and GPU supported heterogeneous systems. The parallel mesh PIC capabilities are being built on the Parallel Unstructured Mesh Infrastructure (PUMI). The presentation will first overview the form of mesh distribution used and indicate the structures and functions used to support the mesh, the particles and their interaction. Attention will then focus on the node-level optimizations being carried out to ensure performant operation of all PIC operations on the distributed mesh. Partnership for Edge Physics Simulation (EPSI) Grant No. DE-SC0008449 and Center for Extended Magnetohydrodynamic Modeling (CEMM) Grant No. DE-SC0006618.

Science.gov (United States)

Stapleton, Scott; Gries, Thomas; Waas, Anthony M.; Pineda, Evan J.

2014-01-01

Enhanced finite elements are elements with an embedded analytical solution that can capture detailed local fields, enabling more efficient, mesh independent finite element analysis. The shape functions are determined based on the analytical model rather than prescribed. This method was applied to adhesively bonded joints to model joint behavior with one element through the thickness. This study demonstrates two methods of maintaining the fidelity of such elements during adhesive non-linearity and cracking without increasing the mesh needed for an accurate solution. The first method uses adaptive shape functions, where the shape functions are recalculated at each load step based on the softening of the adhesive. The second method is internal mesh adaption, where cracking of the adhesive within an element is captured by further discretizing the element internally to represent the partially cracked geometry. By keeping mesh adaptations within an element, a finer mesh can be used during the analysis without affecting the global finite element model mesh. Examples are shown which highlight when each method is most effective in reducing the number of elements needed to capture adhesive nonlinearity and cracking. These methods are validated against analogous finite element models utilizing cohesive zone elements.

Science.gov (United States)

Asano, Shoji; He, Jianmei

2017-11-01

In recent years, utilization of medical stents is one of effective treatments for stenosis and occlusion occurring in a living body’s lumen indispensable for maintenance of human life such as superficial femoral artery (SFA) occlusion. However, there are concerns about the occurrence of fatigue fractures caused by stress concentrations, neointimal hyperplasia and the like due to the shape structure and the manufacturing method in the conventional stents, and a stent having high strength and high flexibility is required. Therefore, in this research, applicable mesh structures for medical stents based on the design concepts of high strength, high flexibility are interested to solve various problem of conventional stent. According to the shape and dimensions of SFA occlusion therapy stent and indwelling delivery catheter, shape design of the meshed stent are performed using 3-dimensional CAD software Solid Works first. Then analytical examination on storage characteristics and compression characteristics of such mesh structure applied stent models were carried out through finite element analysis software ANSYS Workbench. Meshed stent models with higher strength and higher flexibility with integral molding are investigated analytically. It was found that the storage characteristics and compression characteristics of meshed stent modles are highly dependent on the basic mesh shapes with same surface void ratio. Trade-off relationship between flexibility and storage characteristics is found exited, it is required to provide appropriate curvatures during basic mesh shape design.

1. CALCULATION ALGORITHM FOR STUDYING EFFORTS IN THE 4R SPHERICAL QUADRILATERAL MECHANISMS BECAUSE OF TECHNICAL DEVIATIONS

Directory of Open Access Journals (Sweden)

Ion BULAC

2013-05-01

Full Text Available Due to technical deviations, in the elements of the 4R spatial spherical mechanism appear efforts thatadditionally loads the mechanism, efforts that can be determined with the calculation algorithm that will bepresented in this paper

2. A novel three-dimensional mesh deformation method based on sphere relaxation

International Nuclear Information System (INIS)

Zhou, Xuan; Li, Shuixiang

2015-01-01

In our previous work (2013) [19], we developed a disk relaxation based mesh deformation method for two-dimensional mesh deformation. In this paper, the idea of the disk relaxation is extended to the sphere relaxation for three-dimensional meshes with large deformations. We develop a node based pre-displacement procedure to apply initial movements on nodes according to their layer indices. Afterwards, the nodes are moved locally by the improved sphere relaxation algorithm to transfer boundary deformations and increase the mesh quality. A three-dimensional mesh smoothing method is also adopted to prevent the occurrence of the negative volume of elements, and further improve the mesh quality. Numerical applications in three-dimension including the wing rotation, bending beam and morphing aircraft are carried out. The results demonstrate that the sphere relaxation based approach generates the deformed mesh with high quality, especially regarding complex boundaries and large deformations

3. A novel three-dimensional mesh deformation method based on sphere relaxation

Energy Technology Data Exchange (ETDEWEB)

Zhou, Xuan [Department of Mechanics & Engineering Science, College of Engineering, Peking University, Beijing, 100871 (China); Institute of Applied Physics and Computational Mathematics, Beijing, 100094 (China); Li, Shuixiang, E-mail: lsx@pku.edu.cn [Department of Mechanics & Engineering Science, College of Engineering, Peking University, Beijing, 100871 (China)

2015-10-01

In our previous work (2013) [19], we developed a disk relaxation based mesh deformation method for two-dimensional mesh deformation. In this paper, the idea of the disk relaxation is extended to the sphere relaxation for three-dimensional meshes with large deformations. We develop a node based pre-displacement procedure to apply initial movements on nodes according to their layer indices. Afterwards, the nodes are moved locally by the improved sphere relaxation algorithm to transfer boundary deformations and increase the mesh quality. A three-dimensional mesh smoothing method is also adopted to prevent the occurrence of the negative volume of elements, and further improve the mesh quality. Numerical applications in three-dimension including the wing rotation, bending beam and morphing aircraft are carried out. The results demonstrate that the sphere relaxation based approach generates the deformed mesh with high quality, especially regarding complex boundaries and large deformations.

4. Users manual for Opt-MS : local methods for simplicial mesh smoothing and untangling.

Energy Technology Data Exchange (ETDEWEB)

Freitag, L.

1999-07-20

Creating meshes containing good-quality elements is a challenging, yet critical, problem facing computational scientists today. Several researchers have shown that the size of the mesh, the shape of the elements within that mesh, and their relationship to the physical application of interest can profoundly affect the efficiency and accuracy of many numerical approximation techniques. If the application contains anisotropic physics, the mesh can be improved by considering both local characteristics of the approximate application solution and the geometry of the computational domain. If the application is isotropic, regularly shaped elements in the mesh reduce the discretization error, and the mesh can be improved a priori by considering geometric criteria only. The Opt-MS package provides several local node point smoothing techniques that improve elements in the mesh by adjusting grid point location using geometric, criteria. The package is easy to use; only three subroutine calls are required for the user to begin using the software. The package is also flexible; the user may change the technique, function, or dimension of the problem at any time during the mesh smoothing process. Opt-MS is designed to interface with C and C++ codes, ad examples for both two-and three-dimensional meshes are provided.

5. Finite element approximation to a model problem of transonic flow

International Nuclear Information System (INIS)

Tangmanee, S.

1986-12-01

A model problem of transonic flow ''the Tricomi equation'' in Ω is contained in IR 2 bounded by the rectangular-curve boundary is posed in the form of symmetric positive differential equations. The finite element method is then applied. When the triangulation of Ω-bar is made of quadrilaterals and the approximation space is the Lagrange polynomial, we get the error estimates. 14 refs, 1 fig

6. Polyhedral meshing in numerical analysis of conjugate heat transfer

Science.gov (United States)

Sosnowski, Marcin; Krzywanski, Jaroslaw; Grabowska, Karolina; Gnatowska, Renata

2018-06-01

Computational methods have been widely applied in conjugate heat transfer analysis. The very first and crucial step in such research is the meshing process which consists in dividing the analysed geometry into numerous small control volumes (cells). In Computational Fluid Dynamics (CFD) applications it is desirable to use the hexahedral cells as the resulting mesh is characterized by low numerical diffusion. Unfortunately generating such mesh can be a very time-consuming task and in case of complicated geometry - it may not be possible to generate cells of good quality. Therefore tetrahedral cells have been implemented into commercial pre-processors. Their advantage is the ease of its generation even in case of very complex geometry. On the other hand tetrahedrons cannot be stretched excessively without decreasing the mesh quality factor, so significantly larger number of cells has to be used in comparison to hexahedral mesh in order to achieve a reasonable accuracy. Moreover the numerical diffusion of tetrahedral elements is significantly higher. Therefore the polyhedral cells are proposed within the paper in order to combine the advantages of hexahedrons (low numerical diffusion resulting in accurate solution) and tetrahedrons (rapid semi-automatic generation) as well as to overcome the disadvantages of both the above mentioned mesh types. The major benefit of polyhedral mesh is that each individual cell has many neighbours, so gradients can be well approximated. Polyhedrons are also less sensitive to stretching than tetrahedrons which results in better mesh quality leading to improved numerical stability of the model. In addition, numerical diffusion is reduced due to mass exchange over numerous faces. This leads to a more accurate solution achieved with a lower cell count. Therefore detailed comparison of numerical modelling results concerning conjugate heat transfer using tetrahedral and polyhedral meshes is presented in the paper.

7. Leveraging the power of mesh

Energy Technology Data Exchange (ETDEWEB)

Glass, H. [Cellnet, Alpharetta, GA (United States)

2006-07-01

Mesh network applications are used by utilities for metering, demand response, and mobile workforce management. This presentation provided an overview of a multi-dimensional mesh application designed to offer improved scalability and higher throughput in advanced metering infrastructure (AMI) systems. Mesh applications can be used in AMI for load balancing and forecasting, as well as for distribution and transmission planning. New revenue opportunities can be realized through the application's ability to improve notification and monitoring services, and customer service communications. Mesh network security features include data encryption, data fragmentation and the automatic re-routing of data. In order to use mesh network applications, networks must have sufficient bandwidth and provide flexibility at the endpoint layer to support multiple devices from multiple vendors, as well as support multiple protocols. It was concluded that smart meters will not enable energy response solutions without an underlying AMI that is reliable, scalable and self-healing. .refs., tabs., figs.

8. An Angular Method with Position Control for Block Mesh Squareness Improvement

Energy Technology Data Exchange (ETDEWEB)

Yao, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Stillman, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

2017-09-19

We optimize a target function de ned by angular properties with a position control term for a basic stencil with a block-structured mesh, to improve element squareness in 2D and 3D. Comparison with the condition number method shows that besides a similar mesh quality regarding orthogonality can be achieved as the former does, the new method converges faster and provides a more uniform global mesh spacing in our numerical tests.

9. Influence of mesh non-orthogonality on numerical simulation of buoyant jet flows

International Nuclear Information System (INIS)

Ishigaki, Masahiro; Abe, Satoshi; Sibamoto, Yasuteru; Yonomoto, Taisuke

2017-01-01

Highlights: • Influence of mesh non-orthogonality on numerical solution of buoyant jet flows. • Buoyant jet flows are simulated with hexahedral and prismatic meshes. • Jet instability with prismatic meshes may be overestimated compared to that with hexahedral meshes. • Modified solvers that can reduce the influence of mesh non-orthogonality and reduce computation time are proposed. - Abstract: In the present research, we discuss the influence of mesh non-orthogonality on numerical solution of a type of buoyant flow. Buoyant jet flows are simulated numerically with hexahedral and prismatic mesh elements in an open source Computational Fluid Dynamics (CFD) code called “OpenFOAM”. Buoyant jet instability obtained with the prismatic meshes may be overestimated compared to that obtained with the hexahedral meshes when non-orthogonal correction is not applied in the code. Although the non-orthogonal correction method can improve the instability generated by mesh non-orthogonality, it may increase computation time required to reach a convergent solution. Thus, we propose modified solvers that can reduce the influence of mesh non-orthogonality and reduce the computation time compared to the existing solvers in OpenFOAM. It is demonstrated that calculations for a buoyant jet with a large temperature difference are performed faster by the modified solver.

10. Influence of mesh non-orthogonality on numerical simulation of buoyant jet flows

Energy Technology Data Exchange (ETDEWEB)

Ishigaki, Masahiro, E-mail: ishigaki.masahiro@jaea.go.jp; Abe, Satoshi; Sibamoto, Yasuteru; Yonomoto, Taisuke

2017-04-01

Highlights: • Influence of mesh non-orthogonality on numerical solution of buoyant jet flows. • Buoyant jet flows are simulated with hexahedral and prismatic meshes. • Jet instability with prismatic meshes may be overestimated compared to that with hexahedral meshes. • Modified solvers that can reduce the influence of mesh non-orthogonality and reduce computation time are proposed. - Abstract: In the present research, we discuss the influence of mesh non-orthogonality on numerical solution of a type of buoyant flow. Buoyant jet flows are simulated numerically with hexahedral and prismatic mesh elements in an open source Computational Fluid Dynamics (CFD) code called “OpenFOAM”. Buoyant jet instability obtained with the prismatic meshes may be overestimated compared to that obtained with the hexahedral meshes when non-orthogonal correction is not applied in the code. Although the non-orthogonal correction method can improve the instability generated by mesh non-orthogonality, it may increase computation time required to reach a convergent solution. Thus, we propose modified solvers that can reduce the influence of mesh non-orthogonality and reduce the computation time compared to the existing solvers in OpenFOAM. It is demonstrated that calculations for a buoyant jet with a large temperature difference are performed faster by the modified solver.

11. Topological patterns of mesh textures in serpentinites

Science.gov (United States)

Miyazawa, M.; Suzuki, A.; Shimizu, H.; Okamoto, A.; Hiraoka, Y.; Obayashi, I.; Tsuji, T.; Ito, T.

2017-12-01

Serpentinization is a hydration process that forms serpentine minerals and magnetite within the oceanic lithosphere. Microfractures crosscut these minerals during the reactions, and the structures look like mesh textures. It has been known that the patterns of microfractures and the system evolutions are affected by the hydration reaction and fluid transport in fractures and within matrices. This study aims at quantifying the topological patterns of the mesh textures and understanding possible conditions of fluid transport and reaction during serpentinization in the oceanic lithosphere. Two-dimensional simulation by the distinct element method (DEM) generates fracture patterns due to serpentinization. The microfracture patterns are evaluated by persistent homology, which measures features of connected components of a topological space and encodes multi-scale topological features in the persistence diagrams. The persistence diagrams of the different mesh textures are evaluated by principal component analysis to bring out the strong patterns of persistence diagrams. This approach help extract feature values of fracture patterns from high-dimensional and complex datasets.

12. Parallel unstructured mesh optimisation for 3D radiation transport and fluids modelling

International Nuclear Information System (INIS)

Gorman, G.J.; Pain, Ch. C.; Oliveira, C.R.E. de; Umpleby, A.P.; Goddard, A.J.H.

2003-01-01

In this paper we describe the theory and application of a parallel mesh optimisation procedure to obtain self-adapting finite element solutions on unstructured tetrahedral grids. The optimisation procedure adapts the tetrahedral mesh to the solution of a radiation transport or fluid flow problem without sacrificing the integrity of the boundary (geometry), or internal boundaries (regions) of the domain. The objective is to obtain a mesh which has both a uniform interpolation error in any direction and the element shapes are of good quality. This is accomplished with use of a non-Euclidean (anisotropic) metric which is related to the Hessian of the solution field. Appropriate scaling of the metric enables the resolution of multi-scale phenomena as encountered in transient incompressible fluids and multigroup transport calculations. The resulting metric is used to calculate element size and shape quality. The mesh optimisation method is based on a series of mesh connectivity and node position searches of the landscape defining mesh quality which is gauged by a functional. The mesh modification thus fits the solution field(s) in an optimal manner. The parallel mesh optimisation/adaptivity procedure presented in this paper is of general applicability. We illustrate this by applying it to a transient CFD (computational fluid dynamics) problem. Incompressible flow past a cylinder at moderate Reynolds numbers is modelled to demonstrate that the mesh can follow transient flow features. (authors)

13. Streaming Compression of Hexahedral Meshes

Energy Technology Data Exchange (ETDEWEB)

Isenburg, M; Courbet, C

2010-02-03

We describe a method for streaming compression of hexahedral meshes. Given an interleaved stream of vertices and hexahedral our coder incrementally compresses the mesh in the presented order. Our coder is extremely memory efficient when the input stream documents when vertices are referenced for the last time (i.e. when it contains topological finalization tags). Our coder then continuously releases and reuses data structures that no longer contribute to compressing the remainder of the stream. This means in practice that our coder has only a small fraction of the whole mesh in memory at any time. We can therefore compress very large meshes - even meshes that do not file in memory. Compared to traditional, non-streaming approaches that load the entire mesh and globally reorder it during compression, our algorithm trades a less compact compressed representation for significant gains in speed, memory, and I/O efficiency. For example, on the 456k hexahedra 'blade' mesh, our coder is twice as fast and uses 88 times less memory (only 3.1 MB) with the compressed file increasing about 3% in size. We also present the first scheme for predictive compression of properties associated with hexahedral cells.

14. Symbolic Block Decomposition In Hexahedral Mesh Generation

Directory of Open Access Journals (Sweden)

2005-01-01

Full Text Available Hexahedral mesh generation for three-dimensional solid objects is often done in stages. Usually an object is ﬁrst subdivided into simple-shaped subregions, which then are ﬁlled withhexahedral ﬁnite elements. This article presents an automatic subdividing method of polyhedron with planar faces. The subdivision is based on medial surface, axes and nodes of a solid.The main emphasis is put on creating a topology of subregions. Obtaining such a topologyinvolves deﬁning a graph structure OMG which contains necessary information about medialsurface topology and object topology, followed by simple symbolic processing on it.

15. Mesh Adaptation and Shape Optimization on Unstructured Meshes, Phase I

Data.gov (United States)

National Aeronautics and Space Administration — In this SBIR CRM proposes to implement the entropy adjoint method for solution adaptive mesh refinement into the Loci/CHEM unstructured flow solver. The scheme will...

16. Validation of the coupling of mesh models to GEANT4 Monte Carlo code for simulation of internal sources of photons

International Nuclear Information System (INIS)

Caribe, Paulo Rauli Rafeson Vasconcelos; Cassola, Vagner Ferreira; Kramer, Richard; Khoury, Helen Jamil

2013-01-01

The use of three-dimensional models described by polygonal meshes in numerical dosimetry enables more accurate modeling of complex objects than the use of simple solid. The objectives of this work were validate the coupling of mesh models to the Monte Carlo code GEANT4 and evaluate the influence of the number of vertices in the simulations to obtain absorbed fractions of energy (AFEs). Validation of the coupling was performed to internal sources of photons with energies between 10 keV and 1 MeV for spherical geometries described by the GEANT4 and three-dimensional models with different number of vertices and triangular or quadrilateral faces modeled using Blender program. As a result it was found that there were no significant differences between AFEs for objects described by mesh models and objects described using solid volumes of GEANT4. Since that maintained the shape and the volume the decrease in the number of vertices to describe an object does not influence so meant dosimetric data, but significantly decreases the time required to achieve the dosimetric calculations, especially for energies less than 100 keV

17. High-Order Curvilinear Finite Element Methods for Lagrangian Hydrodynamics [High Order Curvilinear Finite Elements for Lagrangian Hydrodynamics

Energy Technology Data Exchange (ETDEWEB)

Dobrev, Veselin A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kolev, Tzanio V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rieben, Robert N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

2012-09-20

The numerical approximation of the Euler equations of gas dynamics in a movingLagrangian frame is at the heart of many multiphysics simulation algorithms. Here, we present a general framework for high-order Lagrangian discretization of these compressible shock hydrodynamics equations using curvilinear finite elements. This method is an extension of the approach outlined in [Dobrev et al., Internat. J. Numer. Methods Fluids, 65 (2010), pp. 1295--1310] and can be formulated for any finite dimensional approximation of the kinematic and thermodynamic fields, including generic finite elements on two- and three-dimensional meshes with triangular, quadrilateral, tetrahedral, or hexahedral zones. We discretize the kinematic variables of position and velocity using a continuous high-order basis function expansion of arbitrary polynomial degree which is obtained via a corresponding high-order parametric mapping from a standard reference element. This enables the use of curvilinear zone geometry, higher-order approximations for fields within a zone, and a pointwise definition of mass conservation which we refer to as strong mass conservation. Moreover, we discretize the internal energy using a piecewise discontinuous high-order basis function expansion which is also of arbitrary polynomial degree. This facilitates multimaterial hydrodynamics by treating material properties, such as equations of state and constitutive models, as piecewise discontinuous functions which vary within a zone. To satisfy the Rankine--Hugoniot jump conditions at a shock boundary and generate the appropriate entropy, we introduce a general tensor artificial viscosity which takes advantage of the high-order kinematic and thermodynamic information available in each zone. Finally, we apply a generic high-order time discretization process to the semidiscrete equations to develop the fully discrete numerical algorithm. Our method can be viewed as the high-order generalization of the so-called staggered

18. Enriching Triangle Mesh Animations with Physically Based Simulation.

Science.gov (United States)

Li, Yijing; Xu, Hongyi; Barbic, Jernej

2017-10-01

We present a system to combine arbitrary triangle mesh animations with physically based Finite Element Method (FEM) simulation, enabling control over the combination both in space and time. The input is a triangle mesh animation obtained using any method, such as keyframed animation, character rigging, 3D scanning, or geometric shape modeling. The input may be non-physical, crude or even incomplete. The user provides weights, specified using a minimal user interface, for how much physically based simulation should be allowed to modify the animation in any region of the model, and in time. Our system then computes a physically-based animation that is constrained to the input animation to the amount prescribed by these weights. This permits smoothly turning physics on and off over space and time, making it possible for the output to strictly follow the input, to evolve purely based on physically based simulation, and anything in between. Achieving such results requires a careful combination of several system components. We propose and analyze these components, including proper automatic creation of simulation meshes (even for non-manifold and self-colliding undeformed triangle meshes), converting triangle mesh animations into animations of the simulation mesh, and resolving collisions and self-collisions while following the input.

19. Mesh Association by Projection along Smoothed-Normal-Vector Fields : Association of Closed Manifolds

NARCIS (Netherlands)

Van Brummelen, E.H.

2006-01-01

The necessity to associate two geometrically distinct meshes arises in many engineering applications. Current mesh-association algorithms are generally unsuitable for the high-order geometry representations associated with high-order finite-element discretizations. In the present work we therefore

20. Mersiline mesh in premaxillary augmentation.

Science.gov (United States)

Foda, Hossam M T

2005-01-01

Premaxillary retrusion may distort the aesthetic appearance of the columella, lip, and nasal tip. This defect is characteristically seen in, but not limited to, patients with cleft lip nasal deformity. This study investigated 60 patients presenting with premaxillary deficiencies in which Mersiline mesh was used to augment the premaxilla. All the cases had surgery using the external rhinoplasty technique. Two methods of augmentation with Mersiline mesh were used: the Mersiline roll technique, for the cases with central symmetric deficiencies, and the Mersiline packing technique, for the cases with asymmetric deficiencies. Premaxillary augmentation with Mersiline mesh proved to be simple technically, easy to perform, and not associated with any complications. Periodic follow-up evaluation for a mean period of 32 months (range, 12-98 months) showed that an adequate degree of premaxillary augmentation was maintained with no clinically detectable resorption of the mesh implant.

1. GENERATION OF IRREGULAR HEXAGONAL MESHES

Directory of Open Access Journals (Sweden)

Vlasov Aleksandr Nikolaevich

2012-07-01

Decomposition is performed in a constructive way and, as option, it involves meshless representation. Further, this mapping method is used to generate the calculation mesh. In this paper, the authors analyze different cases of mapping onto simply connected and bi-connected canonical domains. They represent forward and backward mapping techniques. Their potential application for generation of nonuniform meshes within the framework of the asymptotic homogenization theory is also performed to assess and project effective characteristics of heterogeneous materials (composites.

2. Field-aligned mesh joinery

OpenAIRE

Cignoni, Paolo; Pietroni, Nico; Malomo, Luigi

2014-01-01

Mesh joinery is an innovative method to produce illustrative shape approximations suitable for fabrication. Mesh joinery is capable of producing complex fabricable structures in an efficient and visually pleasing manner. We represent an input geometry as a set of planar pieces arranged to compose a rigid structure, by exploiting an efficient slit mechanism. Since slices are planar, to fabricate them a standard 2D cutting system is enough. We automatically arrange slices according to a smooth ...

3. Anisotropic mesh adaptation for marine ice-sheet modelling

Science.gov (United States)

Gillet-Chaulet, Fabien; Tavard, Laure; Merino, Nacho; Peyaud, Vincent; Brondex, Julien; Durand, Gael; Gagliardini, Olivier

2017-04-01

Improving forecasts of ice-sheets contribution to sea-level rise requires, amongst others, to correctly model the dynamics of the grounding line (GL), i.e. the line where the ice detaches from its underlying bed and goes afloat on the ocean. Many numerical studies, including the intercomparison exercises MISMIP and MISMIP3D, have shown that grid refinement in the GL vicinity is a key component to obtain reliable results. Improving model accuracy while maintaining the computational cost affordable has then been an important target for the development of marine icesheet models. Adaptive mesh refinement (AMR) is a method where the accuracy of the solution is controlled by spatially adapting the mesh size. It has become popular in models using the finite element method as they naturally deal with unstructured meshes, but block-structured AMR has also been successfully applied to model GL dynamics. The main difficulty with AMR is to find efficient and reliable estimators of the numerical error to control the mesh size. Here, we use the estimator proposed by Frey and Alauzet (2015). Based on the interpolation error, it has been found effective in practice to control the numerical error, and has some flexibility, such as its ability to combine metrics for different variables, that makes it attractive. Routines to compute the anisotropic metric defining the mesh size have been implemented in the finite element ice flow model Elmer/Ice (Gagliardini et al., 2013). The mesh adaptation is performed using the freely available library MMG (Dapogny et al., 2014) called from Elmer/Ice. Using a setup based on the inter-comparison exercise MISMIP+ (Asay-Davis et al., 2016), we study the accuracy of the solution when the mesh is adapted using various variables (ice thickness, velocity, basal drag, …). We show that combining these variables allows to reduce the number of mesh nodes by more than one order of magnitude, for the same numerical accuracy, when compared to uniform mesh

4. Method and system for mesh network embedded devices

Science.gov (United States)

Wang, Ray (Inventor)

2009-01-01

A method and system for managing mesh network devices. A mesh network device with integrated features creates an N-way mesh network with a full mesh network topology or a partial mesh network topology.

5. Mesh versus non-mesh repair of ventral abdominal hernias

International Nuclear Information System (INIS)

Jawaid, M.A.; Talpur, A.H.

2008-01-01

To investigate the relative effectiveness of mesh and suture repair of ventral abdominal hernias in terms of clinical outcome, quality of life and rate of recurrence in both the techniques. This is a retrospective descriptive analysis of 236 patients with mesh and non-mesh repair of primary ventral hernias performed between January 2000 to December 2004 at Surgery Department, Liaquat University of Medical and Health Sciences, Jamshoro. The record sheets of the patients were analyzed and data retrieved to compare the results of both techniques for short-term and long-term results. The data retrieved is statistically analyzed on SPSS version 11. There were 43 (18.22%) males and 193 (81.77%) females with a mean age of 51.79 years and a range of 59 (81-22). Para-umbilical hernia was the commonest of ventral hernia and accounted for 49.8% (n=118) of the total study population followed by incisional hernia comprising 24% (n=57) of the total number. There was a significant difference in the recurrent rate at 3 years interval with 23/101 (22.77%) recurrences in suture-repaired subjects compared to 10/135 (7.40%) in mesh repair group. Chronic pain lasting up to 1-2 years was noted in 14 patients with suture repair. Wound infection is comparatively more common (8.14%) in mesh group. The other variables such as operative and postoperative complications, total hospital stay and quality of life is also discussed. Mesh repair of ventral hernia is much superior to non-mesh suture repair in terms of recurrence and overall outcome. (author)

6. Influence of Basalt FRP Mesh Reinforcement on High-Performance Concrete Thin Plates at High Temperatures

DEFF Research Database (Denmark)

Hulin, Thomas; Lauridsen, Dan H.; Hodicky, Kamil

2015-01-01

A basalt fiber–reinforced polymer (BFRP) mesh was introduced as reinforcement in high-performance concrete (HPC) thin plates (20–30 mm) for implementation in precast sandwich panels. An experimental program studied the BFRP mesh influence on HPC exposed to high temperature. A set of standard...... furnace tests compared performances of HPC with and without BFRP mesh, assessing material behavior; another set including polypropylene (PP) fibers to avoid spalling compared the performance of BFRP mesh reinforcement to that of regular steel reinforcement, assessing mechanical properties......, requiring the use of steel. Microscope observations highlighted degradation of the HPC-BFRP mesh interface with temperature due to the melting polymer matrix of the mesh. These observations call for caution when using fiber-reinforced polymer (FRP) reinforcement in elements exposed to fire hazard....

7. User Manual for the PROTEUS Mesh Tools

Energy Technology Data Exchange (ETDEWEB)

Smith, Micheal A. [Argonne National Lab. (ANL), Argonne, IL (United States); Shemon, Emily R. [Argonne National Lab. (ANL), Argonne, IL (United States)

2015-06-01

This report describes the various mesh tools that are provided with the PROTEUS code giving both descriptions of the input and output. In many cases the examples are provided with a regression test of the mesh tools. The most important mesh tools for any user to consider using are the MT_MeshToMesh.x and the MT_RadialLattice.x codes. The former allows the conversion between most mesh types handled by PROTEUS while the second allows the merging of multiple (assembly) meshes into a radial structured grid. Note that the mesh generation process is recursive in nature and that each input specific for a given mesh tool (such as .axial or .merge) can be used as “mesh” input for any of the mesh tools discussed in this manual.

8. User Manual for the PROTEUS Mesh Tools

International Nuclear Information System (INIS)

Smith, Micheal A.; Shemon, Emily R.

2015-01-01

This report describes the various mesh tools that are provided with the PROTEUS code giving both descriptions of the input and output. In many cases the examples are provided with a regression test of the mesh tools. The most important mesh tools for any user to consider using are the MT M eshToMesh.x and the MT R adialLattice.x codes. The former allows the conversion between most mesh types handled by PROTEUS while the second allows the merging of multiple (assembly) meshes into a radial structured grid. Note that the mesh generation process is recursive in nature and that each input specific for a given mesh tool (such as .axial or .merge) can be used as ''mesh'' input for any of the mesh tools discussed in this manual.

9. Thermal-chemical Mantle Convection Models With Adaptive Mesh Refinement

Science.gov (United States)

Leng, W.; Zhong, S.

2008-12-01

In numerical modeling of mantle convection, resolution is often crucial for resolving small-scale features. New techniques, adaptive mesh refinement (AMR), allow local mesh refinement wherever high resolution is needed, while leaving other regions with relatively low resolution. Both computational efficiency for large- scale simulation and accuracy for small-scale features can thus be achieved with AMR. Based on the octree data structure [Tu et al. 2005], we implement the AMR techniques into the 2-D mantle convection models. For pure thermal convection models, benchmark tests show that our code can achieve high accuracy with relatively small number of elements both for isoviscous cases (i.e. 7492 AMR elements v.s. 65536 uniform elements) and for temperature-dependent viscosity cases (i.e. 14620 AMR elements v.s. 65536 uniform elements). We further implement tracer-method into the models for simulating thermal-chemical convection. By appropriately adding and removing tracers according to the refinement of the meshes, our code successfully reproduces the benchmark results in van Keken et al. [1997] with much fewer elements and tracers compared with uniform-mesh models (i.e. 7552 AMR elements v.s. 16384 uniform elements, and ~83000 tracers v.s. ~410000 tracers). The boundaries of the chemical piles in our AMR code can be easily refined to the scales of a few kilometers for the Earth's mantle and the tracers are concentrated near the chemical boundaries to precisely trace the evolvement of the boundaries. It is thus very suitable for our AMR code to study the thermal-chemical convection problems which need high resolution to resolve the evolvement of chemical boundaries, such as the entrainment problems [Sleep, 1988].

10. Value for money in particle-mesh plasma simulations

International Nuclear Information System (INIS)

Eastwood, J.W.

1976-01-01

The established particle-mesh method of simulating a collisionless plasma is discussed. Problems are outlined, and it is stated that given constraints on mesh size and particle number, the only way to adjust the compromise between dispersive forces, collision time and heating time is by altering the force calculating cycle. In 'value for money', schemes, matching of parts of the force calculation cycle is optimized. Interparticle forces are considered. Optimized combinations of elements of the force calculation cycle are compared. Following sections cover the dispersion relation, and comparisons with other schemes. (U.K.)

11. Implementation of LDG method for 3D unstructured meshes

Directory of Open Access Journals (Sweden)

Filander A. Sequeira Chavarría

2012-07-01

Full Text Available This paper describes an implementation of the Local Discontinuous Galerkin method (LDG applied to elliptic problems in 3D. The implementation of the major operators is discussed. In particular the use of higher-order approximations and unstructured meshes. Efficient data structures that allow fast assembly of the linear system in the mixed formulation are described in detail. Keywords: Discontinuous finite element methods, high-order approximations, unstructured meshes, object-oriented programming. Mathematics Subject Classification: 65K05, 65N30, 65N55.

12. Analysis of dynamic meshing characteristic of planetary gear transmission in wind power increasing gearbox

Directory of Open Access Journals (Sweden)

Wang Jungang

2017-01-01

Full Text Available Dynamic behavior of planetary gear’s tooth contact surface in the different location can better conform operation condition comparing to the general gear pair. Nonlinear finite element algorithm was derived according to the basic control equation of contact dynamics. A finite element model of planetary gear transmission in wind power increasing gearbox was proposed considering different meshing locations based on nonlinear finite element solution. The characteristics of stress distribution at different meshing positions were analyzed. A simulation of the meshing process was conducted using finite element analysis. It was shown that node stresses of external meshing planetary gear varied significantly at different position. The analysis provides some useful insights into the performance of planetary gear’s tooth contact surface.

13. Cache-Oblivious Mesh Layouts

International Nuclear Information System (INIS)

Yoon, S; Lindstrom, P; Pascucci, V; Manocha, D

2005-01-01

We present a novel method for computing cache-oblivious layouts of large meshes that improve the performance of interactive visualization and geometric processing algorithms. Given that the mesh is accessed in a reasonably coherent manner, we assume no particular data access patterns or cache parameters of the memory hierarchy involved in the computation. Furthermore, our formulation extends directly to computing layouts of multi-resolution and bounding volume hierarchies of large meshes. We develop a simple and practical cache-oblivious metric for estimating cache misses. Computing a coherent mesh layout is reduced to a combinatorial optimization problem. We designed and implemented an out-of-core multilevel minimization algorithm and tested its performance on unstructured meshes composed of tens to hundreds of millions of triangles. Our layouts can significantly reduce the number of cache misses. We have observed 2-20 times speedups in view-dependent rendering, collision detection, and isocontour extraction without any modification of the algorithms or runtime applications

14. Some considerations on displacement assumed finite elements with the reduced numerical integration technique

International Nuclear Information System (INIS)

Takeda, H.; Isha, H.

1981-01-01

The paper is concerned with the displacement-assumed-finite elements by applying the reduced numerical integration technique in structural problems. The first part is a general consideration on the technique. Its purpose is to examine a variational interpretation of the finite element displacement formulation with the reduced integration technique in structural problems. The formulation is critically studied from a standpoint of the natural stiffness approach. It is shown that these types of elements are equivalent to a certain type of displacement and stress assumed mixed elements. The rank deficiency of the stiffness matrix of these elements is interpreted as a problem in the transformation from the natural system to a Cartesian system. It will be shown that a variational basis of the equivalent mixed formulation is closely related to the Hellinger-Reissner's functional. It is presented that for simple elements, e.g. bilinear quadrilateral plane stress and plate bending there are corresponding mixed elements from the functional. For relatively complex types of these elements, it is shown that they are equivalent to localized mixed elements from the Hellinger-Reissner's functional. In the second part, typical finite elements with the reduced integration technique are studied to demonstrate this equivalence. A bilinear displacement and rotation assumed shear beam element, a bilinear displacement assumed quadrilateral plane stress element and a bilinear deflection and rotation assumed quadrilateral plate bending element are examined to present equivalent mixed elements. Not only the theoretical consideration is presented but numerical studies are shown to demonstrate the effectiveness of these elements in practical analysis. (orig.)

15. Model of Random Polygon Particles for Concrete and Mesh Automatic Subdivision

Institute of Scientific and Technical Information of China (English)

2001-01-01

In order to study the constitutive behavior of concrete in mesoscopic level, a new method is proposed in this paper. This method uses random polygon particles to simulate full grading broken aggregates of concrete. Based on computational geometry, we carry out the automatic generation of the triangle finite element mesh for the model of random polygon particles of concrete. The finite element mesh generated in this paper is also applicable to many other numerical methods.

16. A coarse-mesh nodal method-diffusive-mesh finite difference method

International Nuclear Information System (INIS)

Joo, H.; Nichols, W.R.

1994-01-01

Modern nodal methods have been successfully used for conventional light water reactor core analyses where the homogenized, node average cross sections (XSs) and the flux discontinuity factors (DFs) based on equivalence theory can reliably predict core behavior. For other types of cores and other geometries characterized by tightly-coupled, heterogeneous core configurations, the intranodal flux shapes obtained from a homogenized nodal problem may not accurately portray steep flux gradients near fuel assembly interfaces or various reactivity control elements. This may require extreme values of DFs (either very large, very small, or even negative) to achieve a desired solution accuracy. Extreme values of DFs, however, can disrupt the convergence of the iterative methods used to solve for the node average fluxes, and can lead to a difficulty in interpolating adjacent DF values. Several attempts to remedy the problem have been made, but nothing has been satisfactory. A new coarse-mesh nodal scheme called the Diffusive-Mesh Finite Difference (DMFD) technique, as contrasted with the coarse-mesh finite difference (CMFD) technique, has been developed to resolve this problem. This new technique and the development of a few-group, multidimensional kinetics computer program are described in this paper

17. Deploy production sliding mesh capability with linear solver benchmarking.

Energy Technology Data Exchange (ETDEWEB)

Domino, Stefan P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Thomas, Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Barone, Matthew F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Williams, Alan B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ananthan, Shreyas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knaus, Robert C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Overfelt, James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sprague, Mike [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rood, Jon [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

2018-02-01

Wind applications require the ability to simulate rotating blades. To support this use-case, a novel design-order sliding mesh algorithm has been developed and deployed. The hybrid method combines the control volume finite element methodology (CVFEM) with concepts found within a discontinuous Galerkin (DG) finite element method (FEM) to manage a sliding mesh. The method has been demonstrated to be design-order for the tested polynomial basis (P=1 and P=2) and has been deployed to provide production simulation capability for a Vestas V27 (225 kW) wind turbine. Other stationary and canonical rotating ow simulations are also presented. As the majority of wind-energy applications are driving extensive usage of hybrid meshes, a foundational study that outlines near-wall numerical behavior for a variety of element topologies is presented. Results indicate that the proposed nonlinear stabilization operator (NSO) is an effective stabilization methodology to control Gibbs phenomena at large cell Peclet numbers. The study also provides practical mesh resolution guidelines for future analysis efforts. Application-driven performance and algorithmic improvements have been carried out to increase robustness of the scheme on hybrid production wind energy meshes. Specifically, the Kokkos-based Nalu Kernel construct outlined in the FY17/Q4 ExaWind milestone has been transitioned to the hybrid mesh regime. This code base is exercised within a full V27 production run. Simulation timings for parallel search and custom ghosting are presented. As the low-Mach application space requires implicit matrix solves, the cost of matrix reinitialization has been evaluated on a variety of production meshes. Results indicate that at low element counts, i.e., fewer than 100 million elements, matrix graph initialization and preconditioner setup times are small. However, as mesh sizes increase, e.g., 500 million elements, simulation time associated with \\setup-up" costs can increase to nearly 50% of

18. COMPUTER EXPERIMENTS WITH FINITE ELEMENTS OF HIGHER ORDER

Directory of Open Access Journals (Sweden)

Khomchenko A.

2017-12-01

Full Text Available The paper deals with the problem of constructing the basic functions of a quadrilateral finite element of the fifth order by the means of the computer algebra system Maple. The Lagrangian approximation of such a finite element contains 36 nodes: 20 nodes perimeter and 16 internal nodes. Alternative models with reduced number of internal nodes are considered. Graphs of basic functions and cognitive portraits of lines of zero level are presented. The work is aimed at studying the possibilities of using modern information technologies in the teaching of individual mathematical disciplines.

19. Rapid Separation of Disconnected Triangle Meshes Based on Graph Traversal

International Nuclear Information System (INIS)

Ji, S J; Wang, Y

2006-01-01

In recent year, The STL file become a de facto standard on the file presentation in CAD/CAM, computer graph and reverse engineering. When point cloud which is obtained by scanning object body using optical instrument is used to reconstruct an original model, the points cloud is presented by the STL file. Usually, datum of several separated and relative objects are stored in a single STL file, when such a file is operated by a computer, the datum in the file is firstly separated and then each element of every triangle pitch on the triangle mesh is traversed and visited and is calculated. The problem is analyzed and studied by many experts, but there is still a lack of a simple and quick algorithm. An algorithm which uses graph traversal to traverse each element of the triangle meshes and separate several disconnected triangle meshes is presented by the paper, the searching and calculating speed of the data on the triangle meshes is enhanced, memory size of the computer is reduced, complexity of the data structure is simplified and powerful guarantee is made for the next process by using this algorithm

20. Loft: An Automated Mesh Generator for Stiffened Shell Aerospace Vehicles

Science.gov (United States)

Eldred, Lloyd B.

2011-01-01

Loft is an automated mesh generation code that is designed for aerospace vehicle structures. From user input, Loft generates meshes for wings, noses, tanks, fuselage sections, thrust structures, and so on. As a mesh is generated, each element is assigned properties to mark the part of the vehicle with which it is associated. This property assignment is an extremely powerful feature that enables detailed analysis tasks, such as load application and structural sizing. This report is presented in two parts. The first part is an overview of the code and its applications. The modeling approach that was used to create the finite element meshes is described. Several applications of the code are demonstrated, including a Next Generation Launch Technology (NGLT) wing-sizing study, a lunar lander stage study, a launch vehicle shroud shape study, and a two-stage-to-orbit (TSTO) orbiter. Part two of the report is the program user manual. The manual includes in-depth tutorials and a complete command reference.

1. Resterilized Polypropylene Mesh for Inguinal Hernia Repair

African Journals Online (AJOL)

2018-04-19

Apr 19, 2018 ... Conclusion: The use of sterilized polypropylene mesh for the repair of inguinal ... and nonabsorbable materials to reduce the tissue–mesh. INTRODUCTION ... which we have been practicing in our center since we introduced ...

2. Management of complications of mesh surgery.

Science.gov (United States)

Lee, Dominic; Zimmern, Philippe E

2015-07-01

Transvaginal placements of synthetic mid-urethral slings and vaginal meshes have largely superseded traditional tissue repairs in the current era because of presumed efficacy and ease of implant with device 'kits'. The use of synthetic material has generated novel complications including mesh extrusion, pelvic and vaginal pain and mesh contraction. In this review, our aim is to discuss the management, surgical techniques and outcomes associated with mesh removal. Recent publications have seen an increase in presentation of these mesh-related complications, and reports from multiple tertiary centers have suggested that not all patients benefit from surgical intervention. Although the true incidence of mesh complications is unknown, recent publications can serve to guide physicians and inform patients of the surgical outcomes from mesh-related complications. In addition, the literature highlights the growing need for a registry to account for a more accurate reporting of these events and to counsel patients on the risk and benefits before proceeding with mesh surgeries.

Science.gov (United States)

McGraw, Rebecca

2017-01-01

The task shared in this article provides geometry students with opportunities to recall and use basic geometry vocabulary, extend their knowledge of area relationships, and create area formulas. It is characterized by reasoning and sense making (NCTM 2009) and the "Construct viable arguments and critique the reasoning of others"…

4. THM-GTRF: New Spider meshes, New Hydra-TH runs

Energy Technology Data Exchange (ETDEWEB)

Bakosi, Jozsef [Los Alamos National Laboratory; Christon, Mark A. [Los Alamos National Laboratory; Francois, Marianne M. [Los Alamos National Laboratory; Lowrie, Robert B. [Los Alamos National Laboratory; Nourgaliev, Robert [Los Alamos National Laboratory

2012-06-20

Progress is reported on computational capabilities for the grid-to-rod-fretting (GTRF) problem of pressurized water reactors. Numeca's Hexpress/Hybrid mesh generator is demonstrated as an excellent alternative to generating computational meshes for complex flow geometries, such as in GTRF. Mesh assessment is carried out using standard industrial computational fluid dynamics practices. Hydra-TH, a simulation code developed at LANL for reactor thermal-hydraulics, is demonstrated on hybrid meshes, containing different element types. A series of new Hydra-TH calculations has been carried out collecting turbulence statistics. Preliminary results on the newly generated meshes are discussed; full analysis will be documented in the L3 milestone, THM.CFD.P5.05, Sept. 2012.

5. Transmission probability method based on triangle meshes for solving unstructured geometry neutron transport problem

Energy Technology Data Exchange (ETDEWEB)

Wu Hongchun [Nuclear Engineering Department, Xi' an Jiaotong University, Xi' an 710049, Shaanxi (China)]. E-mail: hongchun@mail.xjtu.edu.cn; Liu Pingping [Nuclear Engineering Department, Xi' an Jiaotong University, Xi' an 710049, Shaanxi (China); Zhou Yongqiang [Nuclear Engineering Department, Xi' an Jiaotong University, Xi' an 710049, Shaanxi (China); Cao Liangzhi [Nuclear Engineering Department, Xi' an Jiaotong University, Xi' an 710049, Shaanxi (China)

2007-01-15

In the advanced reactor, the fuel assembly or core with unstructured geometry is frequently used and for calculating its fuel assembly, the transmission probability method (TPM) has been used widely. However, the rectangle or hexagon meshes are mainly used in the TPM codes for the normal core structure. The triangle meshes are most useful for expressing the complicated unstructured geometry. Even though finite element method and Monte Carlo method is very good at solving unstructured geometry problem, they are very time consuming. So we developed the TPM code based on the triangle meshes. The TPM code based on the triangle meshes was applied to the hybrid fuel geometry, and compared with the results of the MCNP code and other codes. The results of comparison were consistent with each other. The TPM with triangle meshes would thus be expected to be able to apply to the two-dimensional arbitrary fuel assembly.

6. Fitting polynomial surfaces to triangular meshes with Voronoi squared distance minimization

KAUST Repository

Nivoliers, Vincent

2012-11-06

This paper introduces Voronoi squared distance minimization (VSDM), an algorithm that fits a surface to an input mesh. VSDM minimizes an objective function that corresponds to a Voronoi-based approximation of the overall squared distance function between the surface and the input mesh (SDM). This objective function is a generalization of the one minimized by centroidal Voronoi tessellation, and can be minimized by a quasi-Newton solver. VSDM naturally adapts the orientation of the mesh elements to best approximate the input, without estimating any differential quantities. Therefore, it can be applied to triangle soups or surfaces with degenerate triangles, topological noise and sharp features. Applications of fitting quad meshes and polynomial surfaces to input triangular meshes are demonstrated. © 2012 Springer-Verlag London.

7. A mesh density study for application to large deformation rolling process evaluation

International Nuclear Information System (INIS)

Martin, J.A.

1997-12-01

When addressing large deformation through an elastic-plastic analysis the mesh density is paramount in determining the accuracy of the solution. However, given the nonlinear nature of the problem, a highly-refined mesh will generally require a prohibitive amount of computer resources. This paper addresses finite element mesh optimization studies considering accuracy of results and computer resource needs as applied to large deformation rolling processes. In particular, the simulation of the thread rolling manufacturing process is considered using the MARC software package and a Cray C90 supercomputer. Both mesh density and adaptive meshing on final results for both indentation of a rigid body to a specified depth and contact rolling along a predetermined length are evaluated

8. hp-version discontinuous Galerkin methods on polygonal and polyhedral meshes

CERN Document Server

Cangiani, Andrea; Georgoulis, Emmanuil H; Houston, Paul

2017-01-01

Over the last few decades discontinuous Galerkin finite element methods (DGFEMs) have been witnessed tremendous interest as a computational framework for the numerical solution of partial differential equations. Their success is due to their extreme versatility in the design of the underlying meshes and local basis functions, while retaining key features of both (classical) finite element and finite volume methods. Somewhat surprisingly, DGFEMs on general tessellations consisting of polygonal (in 2D) or polyhedral (in 3D) element shapes have received little attention within the literature, despite the potential computational advantages. This volume introduces the basic principles of hp-version (i.e., locally varying mesh-size and polynomial order) DGFEMs over meshes consisting of polygonal or polyhedral element shapes, presents their error analysis, and includes an extensive collection of numerical experiments. The extreme flexibility provided by the locally variable elemen t-shapes, element-sizes, and elemen...

9. Voltammetry at micro-mesh electrodes

Directory of Open Access Journals (Sweden)

2003-01-01

Full Text Available The voltammetry at three micro-mesh electrodes is explored. It is found that at sufficiently short experimental durations, the micro-mesh working electrode first behaves as an ensemble of microband electrodes, then follows the behaviour anticipated for an array of diffusion-independent micro-ring electrodes of the same perimeter as individual grid-squares within the mesh. During prolonged electrolysis, the micro-mesh electrode follows that behaviour anticipated theoretically for a cubically-packed partially-blocked electrode. Application of the micro-mesh electrode for the electrochemical determination of carbon dioxide in DMSO electrolyte solutions is further illustrated.

10. 22nd International Meshing Roundtable

CERN Document Server

Staten, Matthew

2014-01-01

This volume contains the articles presented at the 22nd International Meshing Roundtable (IMR) organized, in part, by Sandia National Laboratories and was held on Oct 13-16, 2013 in Orlando, Florida, USA.  The first IMR was held in 1992, and the conference series has been held annually since.  Each year the IMR brings together researchers, developers, and application experts in a variety of disciplines, from all over the world, to present and discuss ideas on mesh generation and related topics.  The technical papers in this volume present theoretical and novel ideas and algorithms with practical potential, as well as technical applications in science and engineering, geometric modeling, computer graphics and visualization.

11. 21st International Meshing Roundtable

CERN Document Server

Weill, Jean-Christophe

2013-01-01

This volume contains the articles presented at the 21st International Meshing Roundtable (IMR) organized, in part, by Sandia National Laboratories and was held on October 7–10, 2012 in San Jose, CA, USA. The first IMR was held in 1992, and the conference series has been held annually since. Each year the IMR brings together researchers, developers, and application experts in a variety of disciplines, from all over the world, to present and discuss ideas on mesh generation and related topics. The technical papers in this volume present theoretical and novel ideas and algorithms with practical potential, as well as technical applications in science and engineering, geometric modeling, computer graphics, and visualization.

12. Boundary element method for modelling creep behaviour

International Nuclear Information System (INIS)

Zarina Masood; Shah Nor Basri; Abdel Majid Hamouda; Prithvi Raj Arora

2002-01-01

A two dimensional initial strain direct boundary element method is proposed to numerically model the creep behaviour. The boundary of the body is discretized into quadratic element and the domain into quadratic quadrilaterals. The variables are also assumed to have a quadratic variation over the elements. The boundary integral equation is solved for each boundary node and assembled into a matrix. This matrix is solved by Gauss elimination with partial pivoting to obtain the variables on the boundary and in the interior. Due to the time-dependent nature of creep, the solution has to be derived over increments of time. Automatic time incrementation technique and backward Euler method for updating the variables are implemented to assure stability and accuracy of results. A flowchart of the solution strategy is also presented. (Author)

13. Adaptive Mesh Refinement in CTH

International Nuclear Information System (INIS)

Crawford, David

1999-01-01

This paper reports progress on implementing a new capability of adaptive mesh refinement into the Eulerian multimaterial shock- physics code CTH. The adaptivity is block-based with refinement and unrefinement occurring in an isotropic 2:1 manner. The code is designed to run on serial, multiprocessor and massive parallel platforms. An approximate factor of three in memory and performance improvements over comparable resolution non-adaptive calculations has-been demonstrated for a number of problems

14. A software platform for continuum modeling of ion channels based on unstructured mesh

International Nuclear Information System (INIS)

Tu, B; Bai, S Y; Xie, Y; Zhang, L B; Lu, B Z; Chen, M X

2014-01-01

Most traditional continuum molecular modeling adopted finite difference or finite volume methods which were based on a structured mesh (grid). Unstructured meshes were only occasionally used, but an increased number of applications emerge in molecular simulations. To facilitate the continuum modeling of biomolecular systems based on unstructured meshes, we are developing a software platform with tools which are particularly beneficial to those approaches. This work describes the software system specifically for the simulation of a typical, complex molecular procedure: ion transport through a three-dimensional channel system that consists of a protein and a membrane. The platform contains three parts: a meshing tool chain for ion channel systems, a parallel finite element solver for the Poisson–Nernst–Planck equations describing the electrodiffusion process of ion transport, and a visualization program for continuum molecular modeling. The meshing tool chain in the platform, which consists of a set of mesh generation tools, is able to generate high-quality surface and volume meshes for ion channel systems. The parallel finite element solver in our platform is based on the parallel adaptive finite element package PHG which wass developed by one of the authors [1]. As a featured component of the platform, a new visualization program, VCMM, has specifically been developed for continuum molecular modeling with an emphasis on providing useful facilities for unstructured mesh-based methods and for their output analysis and visualization. VCMM provides a graphic user interface and consists of three modules: a molecular module, a meshing module and a numerical module. A demonstration of the platform is provided with a study of two real proteins, the connexin 26 and hemolysin ion channels. (paper)

15. Evaluation of the generality and accuracy of a new mesh morphing procedure for the human femur.

Science.gov (United States)

Grassi, Lorenzo; Hraiech, Najah; Schileo, Enrico; Ansaloni, Mauro; Rochette, Michel; Viceconti, Marco

2011-01-01

Various papers described mesh morphing techniques for computational biomechanics, but none of them provided a quantitative assessment of generality, robustness, automation, and accuracy in predicting strains. This study aims to quantitatively evaluate the performance of a novel mesh-morphing algorithm. A mesh-morphing algorithm based on radial-basis functions and on manual selection of corresponding landmarks on template and target was developed. The periosteal geometries of 100 femurs were derived from a computed tomography scan database and used to test the algorithm generality in producing finite element (FE) morphed meshes. A published benchmark, consisting of eight femurs for which in vitro strain measurements and standard FE model strain prediction accuracy were available, was used to assess the accuracy of morphed FE models in predicting strains. Relevant parameters were identified to test the algorithm robustness to operative conditions. Time and effort needed were evaluated to define the algorithm degree of automation. Morphing was successful for 95% of the specimens, with mesh quality indicators comparable to those of standard FE meshes. Accuracy of the morphed meshes in predicting strains was good (R(2)>0.9, RMSE%0.05) and partially to the number of landmark used. Producing a morphed mesh starting from the triangularized geometry of the specimen requires on average 10 min. The proposed method is general, robust, automated, and accurate enough to be used in bone FE modelling from diagnostic data, and prospectively in applications such as statistical shape modelling. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

16. Energy dependent mesh adaptivity of discontinuous isogeometric discrete ordinate methods with dual weighted residual error estimators

Science.gov (United States)

Owens, A. R.; Kópházi, J.; Welch, J. A.; Eaton, M. D.

2017-04-01

In this paper a hanging-node, discontinuous Galerkin, isogeometric discretisation of the multigroup, discrete ordinates (SN) equations is presented in which each energy group has its own mesh. The equations are discretised using Non-Uniform Rational B-Splines (NURBS), which allows the coarsest mesh to exactly represent the geometry for a wide range of engineering problems of interest; this would not be the case using straight-sided finite elements. Information is transferred between meshes via the construction of a supermesh. This is a non-trivial task for two arbitrary meshes, but is significantly simplified here by deriving every mesh from a common coarsest initial mesh. In order to take full advantage of this flexible discretisation, goal-based error estimators are derived for the multigroup, discrete ordinates equations with both fixed (extraneous) and fission sources, and these estimators are used to drive an adaptive mesh refinement (AMR) procedure. The method is applied to a variety of test cases for both fixed and fission source problems. The error estimators are found to be extremely accurate for linear NURBS discretisations, with degraded performance for quadratic discretisations owing to a reduction in relative accuracy of the "exact" adjoint solution required to calculate the estimators. Nevertheless, the method seems to produce optimal meshes in the AMR process for both linear and quadratic discretisations, and is ≈×100 more accurate than uniform refinement for the same amount of computational effort for a 67 group deep penetration shielding problem.

17. Metallogeny of the Gold Quadrilateral: style and characteristics of epithermal - subvolcanic mineralized structures, South Apuseni Mts., Romania

Directory of Open Access Journals (Sweden)

2004-04-01

Full Text Available The Romanian territory contains numerous ore deposits mined since pre-Roman times. An assessment of historical gold production of the Gold Quadri-lateral (GQ yielded a total estimate of 55.7 Moz of gold throughout an area of 2400 km2. Interpreted in terms of mineralization density this is 23,208 oz of gold/ km2. The geological setting of the GQ is represented mainly by Tertiary (14.7 My to 7.4 My calc-alkaline volcano-plutonic complexes of intermediate character in sedimentary basins of molasse type. These basins are tectonically controlled by NW-SE lineation across early Alpine magmatic products, i.e. subduction related Jurassic-Lower Cretaceous igneous association (island arc ophiolites and granitoids and Upper Cretaceous igneous association (banatites. The Tertiary magmatism is associated with extensional tectonics caused by NE escape of the Pannonian region during Upper Oligocene-Lower Miocene times. As a result of tectono-magmatic and mineralization-alteration characteristics, two metallogenetical types were separated in the GQ, i.e. calc-alkaline andesitic (CAM and sub-alkaline rhyodacitic (SRM. Both develop almost entirely low-sulfidation type of Au epithermal mineralization. However, two subtypes, -rich in sulfide (2-7% and -poor in sulfide (7-20% were delineated and correlated with CAM type and SRM type respectively. Furthermore, CAM is connected at deeper levels with Cu-Au+/-Mo porphyry systems in contrast with SRM, which is a non-porphyry environment. The Brad-Săcărâmb district contains mainly CAM type andesitic structures. It is a porphyry environment with epithermal low-sulfidation-rich sulfide vein halo (Barza, Troiţa-Bolcana deposits. However, a few SRM type patterns, such as Măgura Ţebii, Băiţa-Crăciuneşti and Săcărâmb, deposits exhibit Au-Ag-Te low-sulfidation-poor sulfide epithermal vein halo. The Zlatna-Stănija district exhibits similar characteristics, with Au-Ag+/-Pb, Zn veins in Cu-Au subvolcanic

18. Computational performance of Free Mesh Method applied to continuum mechanics problems

Science.gov (United States)

YAGAWA, Genki

2011-01-01

The free mesh method (FMM) is a kind of the meshless methods intended for particle-like finite element analysis of problems that are difficult to handle using global mesh generation, or a node-based finite element method that employs a local mesh generation technique and a node-by-node algorithm. The aim of the present paper is to review some unique numerical solutions of fluid and solid mechanics by employing FMM as well as the Enriched Free Mesh Method (EFMM), which is a new version of FMM, including compressible flow and sounding mechanism in air-reed instruments as applications to fluid mechanics, and automatic remeshing for slow crack growth, dynamic behavior of solid as well as large-scale Eigen-frequency of engine block as applications to solid mechanics. PMID:21558753

19. Mesh Nanoelectronics: Seamless Integration of Electronics with Tissues.

Science.gov (United States)

Dai, Xiaochuan; Hong, Guosong; Gao, Teng; Lieber, Charles M

2018-02-20

Nanobioelectronics represents a rapidly developing field with broad-ranging opportunities in fundamental biological sciences, biotechnology, and medicine. Despite this potential, seamless integration of electronics has been difficult due to fundamental mismatches, including size and mechanical properties, between the elements of the electronic and living biological systems. In this Account, we discuss the concept, development, key demonstrations, and future opportunities of mesh nanoelectronics as a general paradigm for seamless integration of electronics within synthetic tissues and live animals. We first describe the design and realization of hybrid synthetic tissues that are innervated in three dimensions (3D) with mesh nanoelectronics where the mesh serves as both as a tissue scaffold and as a platform of addressable electronic devices for monitoring and manipulating tissue behavior. Specific examples of tissue/nanoelectronic mesh hybrids highlighted include 3D neural tissue, cardiac patches, and vascular constructs, where the nanoelectronic devices have been used to carry out real-time 3D recording of electrophysiological and chemical signals in the tissues. This novel platform was also exploited for time-dependent 3D spatiotemporal mapping of cardiac tissue action potentials during cell culture and tissue maturation as well as in response to injection of pharmacological agents. The extension to simultaneous real-time monitoring and active control of tissue behavior is further discussed for multifunctional mesh nanoelectronics incorporating both recording and stimulation devices, providing the unique capability of bidirectional interfaces to cardiac tissue. In the case of live animals, new challenges must be addressed, including minimally invasive implantation, absence of deleterious chronic tissue response, and long-term capability for monitoring and modulating tissue activity. We discuss each of these topics in the context of implantation of mesh

20. A Nonlinear Dynamic Model and Free Vibration Analysis of Deployable Mesh Reflectors

Science.gov (United States)

Shi, H.; Yang, B.; Thomson, M.; Fang, H.

2011-01-01

This paper presents a dynamic model of deployable mesh reflectors, in which geometric and material nonlinearities of such a space structure are fully described. Then, by linearization around an equilibrium configuration of the reflector structure, a linearized model is obtained. With this linearized model, the natural frequencies and mode shapes of a reflector can be computed. The nonlinear dynamic model of deployable mesh reflectors is verified by using commercial finite element software in numerical simulation. As shall be seen, the proposed nonlinear model is useful for shape (surface) control of deployable mesh reflectors under thermal loads.

1. Solution of 2D and 3D hexagonal geometry benchmark problems by using the finite element diffusion code DIFGEN

International Nuclear Information System (INIS)

1986-02-01

The four group, 2D and 3D hexagonal geometry HTGR benchmark problems and a 2D hexagonal geometry PWR (WWER) benchmark problem have been solved by using the finite element diffusion code DIFGEN. The hexagons (or hexagonal prisms) were subdivided into first order or second order triangles or quadrilaterals (or triangular or quadrilateral prisms). In the 2D HTGR case of the number of the inserted absorber rods was also varied (7, 6, 0 or 37 rods). The calculational results are in a good agreement with the results of other calculations. The larger systematic series of DIFGEN calculations have given a quantitative picture on the convergence properties of various finite element modellings of hexagonal grids in DIFGEN. (orig.)

2. Parallel Performance Optimizations on Unstructured Mesh-based Simulations

Energy Technology Data Exchange (ETDEWEB)

Sarje, Abhinav; Song, Sukhyun; Jacobsen, Douglas; Huck, Kevin; Hollingsworth, Jeffrey; Malony, Allen; Williams, Samuel; Oliker, Leonid

2015-01-01

© The Authors. Published by Elsevier B.V. This paper addresses two key parallelization challenges the unstructured mesh-based ocean modeling code, MPAS-Ocean, which uses a mesh based on Voronoi tessellations: (1) load imbalance across processes, and (2) unstructured data access patterns, that inhibit intra- and inter-node performance. Our work analyzes the load imbalance due to naive partitioning of the mesh, and develops methods to generate mesh partitioning with better load balance and reduced communication. Furthermore, we present methods that minimize both inter- and intranode data movement and maximize data reuse. Our techniques include predictive ordering of data elements for higher cache efficiency, as well as communication reduction approaches. We present detailed performance data when running on thousands of cores using the Cray XC30 supercomputer and show that our optimization strategies can exceed the original performance by over 2×. Additionally, many of these solutions can be broadly applied to a wide variety of unstructured grid-based computations.

3. Automated hexahedral mesh generation from biomedical image data: applications in limb prosthetics.

Science.gov (United States)

Zachariah, S G; Sanders, J E; Turkiyyah, G M

1996-06-01

A general method to generate hexahedral meshes for finite element analysis of residual limbs and similar biomedical geometries is presented. The method utilizes skeleton-based subdivision of cross-sectional domains to produce simple subdomains in which structured meshes are easily generated. Application to a below-knee residual limb and external prosthetic socket is described. The residual limb was modeled as consisting of bones, soft tissue, and skin. The prosthetic socket model comprised a socket wall with an inner liner. The geometries of these structures were defined using axial cross-sectional contour data from X-ray computed tomography, optical scanning, and mechanical surface digitization. A tubular surface representation, using B-splines to define the directrix and generator, is shown to be convenient for definition of the structure geometries. Conversion of cross-sectional data to the compact tubular surface representation is direct, and the analytical representation simplifies geometric querying and numerical optimization within the mesh generation algorithms. The element meshes remain geometrically accurate since boundary nodes are constrained to lie on the tubular surfaces. Several element meshes of increasing mesh density were generated for two residual limbs and prosthetic sockets. Convergence testing demonstrated that approximately 19 elements are required along a circumference of the residual limb surface for a simple linear elastic model. A model with the fibula absent compared with the same geometry with the fibula present showed differences suggesting higher distal stresses in the absence of the fibula. Automated hexahedral mesh generation algorithms for sliced data represent an advancement in prosthetic stress analysis since they allow rapid modeling of any given residual limb and optimization of mesh parameters.

4. Soil-Framed Structure Interaction Analysis - A New Interface Element

Directory of Open Access Journals (Sweden)

M. Dalili Shoaei

Full Text Available AbstractInterfacial behavior between soil and shallow foundation has been found so influential to combined soil-footing performance and redistribution of forces in the superstructure. This study introduces a new thin-layer interface element formulated within the context of finite element method to idealize interfacial behavior of soil-framed structure interaction with new combination of degrees of freedom at top and bottom sides of the interface element, compatible with both isoparametric beam and quadrilateral element. This research also tends to conduct a parametric study on respective parameters of the new joint element. Presence of interface element showed considerable changes in the performance of the framed structure under quasi-static loading.

5. Finite element application to global reactor analysis

International Nuclear Information System (INIS)

Schmidt, F.A.R.

1981-01-01

The Finite Element Method is described as a Coarse Mesh Method with general basis and trial functions. Various consequences concerning programming and application of Finite Element Methods in reactor physics are drawn. One of the conclusions is that the Finite Element Method is a valuable tool in solving global reactor analysis problems. However, problems which can be described by rectangular boxes still can be solved with special coarse mesh programs more efficiently. (orig.) [de

6. Open reduction and internal fixation of osteoporotic acetabular fractures through the ilio-inguinal approach: use of buttress plates to control medial displacement of the quadrilateral surface.

Science.gov (United States)

Peter, Robin E

2015-01-01

The number of acetabular fractures in the geriatric population requiring open reduction and internal fixation is increasing. Fractures with medial or anterior displacement are the most frequent types, and via the ilio-inguinal approach buttress plates have proved helpful to maintain the quadrilateral surface or medial acetabular wall. Seven to ten hole 3.5 mm reconstruction plates may be used as buttress plates, placed underneath the usual pelvic brim plate. This retrospective study presents our results with this technique in 13 patients at a minimum follow-up of 12 months (average, 31 months). 85% of the patients had a good result. The early onset of post-traumatic osteoarthritis necessitated total hip arthroplasty in two patients (15%) at 12 and 18 months follow-up, respectively. This treatment option should be considered in the surgeon's armamentarium when fixing these challenging cases. Copyright © 2015 Elsevier Ltd. All rights reserved.

7. Laparoscopic appendicectomy for suspected mesh-induced appendicitis after laparoscopic transabdominal preperitoneal polypropylene mesh inguinal herniorraphy

Directory of Open Access Journals (Sweden)

Jennings Jason

2010-01-01

Full Text Available Laparoscopic inguinal herniorraphy via a transabdominal preperitoneal (TAPP approach using Polypropylene Mesh (Mesh and staples is an accepted technique. Mesh induces a localised inflammatory response that may extend to, and involve, adjacent abdominal and pelvic viscera such as the appendix. We present an interesting case of suspected Mesh-induced appendicitis treated successfully with laparoscopic appendicectomy, without Mesh removal, in an elderly gentleman who presented with symptoms and signs of acute appendicitis 18 months after laparoscopic inguinal hernia repair. Possible mechanisms for Mesh-induced appendicitis are briefly discussed.

8. A constrained Delaunay discretization method for adaptively meshing highly discontinuous geological media

Science.gov (United States)

Wang, Yang; Ma, Guowei; Ren, Feng; Li, Tuo

2017-12-01

A constrained Delaunay discretization method is developed to generate high-quality doubly adaptive meshes of highly discontinuous geological media. Complex features such as three-dimensional discrete fracture networks (DFNs), tunnels, shafts, slopes, boreholes, water curtains, and drainage systems are taken into account in the mesh generation. The constrained Delaunay triangulation method is used to create adaptive triangular elements on planar fractures. Persson's algorithm (Persson, 2005), based on an analogy between triangular elements and spring networks, is enriched to automatically discretize a planar fracture into mesh points with varying density and smooth-quality gradient. The triangulated planar fractures are treated as planar straight-line graphs (PSLGs) to construct piecewise-linear complex (PLC) for constrained Delaunay tetrahedralization. This guarantees the doubly adaptive characteristic of the resulted mesh: the mesh is adaptive not only along fractures but also in space. The quality of elements is compared with the results from an existing method. It is verified that the present method can generate smoother elements and a better distribution of element aspect ratios. Two numerical simulations are implemented to demonstrate that the present method can be applied to various simulations of complex geological media that contain a large number of discontinuities.

International Nuclear Information System (INIS)

Ibrahim, A. M.; Peplow, D. E.; Mosher, S. W.; Wagner, J. C.; Evans, T. M.; Wilson, P. P.; Sawan, M. E.

2013-01-01

The CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques dramatically increase the efficiency of neutronics modeling, but their use in the accurate design analysis of very large and geometrically complex nuclear systems has been limited by the large number of processors and memory requirements for their preliminary deterministic calculations and final Monte Carlo calculation. Three mesh adaptivity algorithms were developed to reduce the memory requirements of CADIS and FW-CADIS without sacrificing their efficiency improvement. First, a macro-material approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as much geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm de-couples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility. Using these algorithms resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation and, additionally, increased the efficiency of the Monte Carlo simulation by a factor of at least 3.4. The three algorithms enabled this difficult calculation to be accurately solved using an FW-CADIS simulation on a regular computer cluster, obviating the need for a world-class super computer. (authors)

10. Automatic mesh adaptivity for hybrid Monte Carlo/deterministic neutronics modeling of difficult shielding problems

International Nuclear Information System (INIS)

Ibrahim, Ahmad M.; Wilson, Paul P.H.; Sawan, Mohamed E.; Mosher, Scott W.; Peplow, Douglas E.; Wagner, John C.; Evans, Thomas M.; Grove, Robert E.

2015-01-01

The CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques dramatically increase the efficiency of neutronics modeling, but their use in the accurate design analysis of very large and geometrically complex nuclear systems has been limited by the large number of processors and memory requirements for their preliminary deterministic calculations and final Monte Carlo calculation. Three mesh adaptivity algorithms were developed to reduce the memory requirements of CADIS and FW-CADIS without sacrificing their efficiency improvement. First, a macromaterial approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as much geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm decouples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility. Using these algorithms resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation and, additionally, increased the efficiency of the Monte Carlo simulation by a factor of at least 3.4. The three algorithms enabled this difficult calculation to be accurately solved using an FW-CADIS simulation on a regular computer cluster, eliminating the need for a world-class super computer

11. Sierra toolkit computational mesh conceptual model

International Nuclear Information System (INIS)

Baur, David G.; Edwards, Harold Carter; Cochran, William K.; Williams, Alan B.; Sjaardema, Gregory D.

2010-01-01

The Sierra Toolkit computational mesh is a software library intended to support massively parallel multi-physics computations on dynamically changing unstructured meshes. This domain of intended use is inherently complex due to distributed memory parallelism, parallel scalability, heterogeneity of physics, heterogeneous discretization of an unstructured mesh, and runtime adaptation of the mesh. Management of this inherent complexity begins with a conceptual analysis and modeling of this domain of intended use; i.e., development of a domain model. The Sierra Toolkit computational mesh software library is designed and implemented based upon this domain model. Software developers using, maintaining, or extending the Sierra Toolkit computational mesh library must be familiar with the concepts/domain model presented in this report.

12. Anisotropic evaluation of synthetic surgical meshes.

Science.gov (United States)

Saberski, E R; Orenstein, S B; Novitsky, Y W

2011-02-01

The material properties of meshes used in hernia repair contribute to the overall mechanical behavior of the repair. The anisotropic potential of synthetic meshes, representing a difference in material properties (e.g., elasticity) in different material axes, is not well defined to date. Haphazard orientation of anisotropic mesh material can contribute to inconsistent surgical outcomes. We aimed to characterize and compare anisotropic properties of commonly used synthetic meshes. Six different polypropylene (Trelex(®), ProLite™, Ultrapro™), polyester (Parietex™), and PTFE-based (Dualmesh(®), Infinit) synthetic meshes were selected. Longitudinal and transverse axes were defined for each mesh, and samples were cut in each axis orientation. Samples underwent uniaxial tensile testing, from which the elastic modulus (E) in each axis was determined. The degree of anisotropy (λ) was calculated as a logarithmic expression of the ratio between the elastic modulus in each axis. Five of six meshes displayed significant anisotropic behavior. Ultrapro™ and Infinit exhibited approximately 12- and 20-fold differences between perpendicular axes, respectively. Trelex(®), ProLite™, and Parietex™ were 2.3-2.4 times. Dualmesh(®) was the least anisotropic mesh, without marked difference between the axes. Anisotropy of synthetic meshes has been underappreciated. In this study, we found striking differences between elastic properties of perpendicular axes for most commonly used synthetic meshes. Indiscriminate orientation of anisotropic mesh may adversely affect hernia repairs. Proper labeling of all implants by manufacturers should be mandatory. Understanding the specific anisotropic behavior of synthetic meshes should allow surgeons to employ rational implant orientation to maximize outcomes of hernia repair.

13. A weak Galerkin least-squares finite element method for div-curl systems

Science.gov (United States)

Li, Jichun; Ye, Xiu; Zhang, Shangyou

2018-06-01

In this paper, we introduce a weak Galerkin least-squares method for solving div-curl problem. This finite element method leads to a symmetric positive definite system and has the flexibility to work with general meshes such as hybrid mesh, polytopal mesh and mesh with hanging nodes. Error estimates of the finite element solution are derived. The numerical examples demonstrate the robustness and flexibility of the proposed method.

14. Meshes optimized for discrete exterior calculus (DEC).

Energy Technology Data Exchange (ETDEWEB)

Mousley, Sarah C. [Univ. of Illinois, Urbana-Champaign, IL (United States); Deakin, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knupp, Patrick [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, Scott A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

2017-12-01

We study the optimization of an energy function used by the meshing community to measure and improve mesh quality. This energy is non-traditional because it is dependent on both the primal triangulation and its dual Voronoi (power) diagram. The energy is a measure of the mesh's quality for usage in Discrete Exterior Calculus (DEC), a method for numerically solving PDEs. In DEC, the PDE domain is triangulated and this mesh is used to obtain discrete approximations of the continuous operators in the PDE. The energy of a mesh gives an upper bound on the error of the discrete diagonal approximation of the Hodge star operator. In practice, one begins with an initial mesh and then makes adjustments to produce a mesh of lower energy. However, we have discovered several shortcomings in directly optimizing this energy, e.g. its non-convexity, and we show that the search for an optimized mesh may lead to mesh inversion (malformed triangles). We propose a new energy function to address some of these issues.

15. Transrectal Mesh Erosion Requiring Bowel Resection.

Science.gov (United States)

Kemp, Marta Maria; Slim, Karem; Rabischong, Benoît; Bourdel, Nicolas; Canis, Michel; Botchorishvili, Revaz

To report a case of a transrectal mesh erosion as complication of laparoscopic promontofixation with mesh repair, necessitating bowel resection and subsequent surgical interventions. Sacrocolpopexy has become a standard procedure for vaginal vault prolapse [1], and the laparoscopic approach has gained popularity owing to more rapid recovery and less morbidity [2,3]. Mesh erosion is a well-known complication of surgical treatment for prolapse as reported in several negative evaluations, including a report from the US Food and Drug Administration in 2011 [4]. Mesh complications are more common after surgeries via the vaginal approach [5]; nonetheless, the incidence of vaginal mesh erosion after laparoscopic procedures is as high as 9% [6]. The incidence of transrectal mesh exposure after laparoscopic ventral rectopexy is roughly 1% [7]. The diagnosis may be delayed because of its rarity and variable presentation. In addition, polyester meshes, such as the mesh used in this case, carry a higher risk of exposure [8]. A 57-year-old woman experiencing genital prolapse, with the cervix classified as +3 according to the Pelvic Organ Prolapse Quantification system, underwent laparoscopic standard sacrocolpopexy using polyester mesh. Subtotal hysterectomy and bilateral adnexectomy were performed concomitantly. A 3-year follow-up consultation demonstrated no signs or symptoms of erosion of any type. At 7 years after the surgery, however, the patient presented with rectal discharge, diagnosed as infectious rectocolitis with the isolation of Clostridium difficile. She underwent a total of 5 repair surgeries in a period of 4 months, including transrectal resection of exposed mesh, laparoscopic ablation of mesh with digestive resection, exploratory laparoscopy with abscess drainage, and exploratory laparoscopy with ablation of residual mesh and transverse colostomy. She recovered well after the last intervention, exhibiting no signs of vaginal or rectal fistula and no recurrence

16. RGG: Reactor geometry (and mesh) generator

International Nuclear Information System (INIS)

Jain, R.; Tautges, T.

2012-01-01

The reactor geometry (and mesh) generator RGG takes advantage of information about repeated structures in both assembly and core lattices to simplify the creation of geometry and mesh. It is released as open source software as a part of the MeshKit mesh generation library. The methodology operates in three stages. First, assembly geometry models of various types are generated by a tool called AssyGen. Next, the assembly model or models are meshed by using MeshKit tools or the CUBIT mesh generation tool-kit, optionally based on a journal file output by AssyGen. After one or more assembly model meshes have been constructed, a tool called CoreGen uses a copy/move/merge process to arrange the model meshes into a core model. In this paper, we present the current state of tools and new features in RGG. We also discuss the parallel-enabled CoreGen, which in several cases achieves super-linear speedups since the problems fit in available RAM at higher processor counts. Several RGG applications - 1/6 VHTR model, 1/4 PWR reactor core, and a full-core model for Monju - are reported. (authors)

17. Parallel adaptive simulations on unstructured meshes

International Nuclear Information System (INIS)

Shephard, M S; Jansen, K E; Sahni, O; Diachin, L A

2007-01-01

This paper discusses methods being developed by the ITAPS center to support the execution of parallel adaptive simulations on unstructured meshes. The paper first outlines the ITAPS approach to the development of interoperable mesh, geometry and field services to support the needs of SciDAC application in these areas. The paper then demonstrates the ability of unstructured adaptive meshing methods built on such interoperable services to effectively solve important physics problems. Attention is then focused on ITAPs' developing ability to solve adaptive unstructured mesh problems on massively parallel computers

18. Numerical homogenization of concrete microstructures without explicit meshes

International Nuclear Information System (INIS)

Sanahuja, Julien; Toulemonde, Charles

2011-01-01

Life management of electric hydro or nuclear power plants requires to estimate long-term concrete properties on facilities, for obvious safety and serviceability reasons. Decades-old structures are foreseen to be operational for several more decades. As a large number of different concrete formulations are found in EDF facilities, empirical models based on many experiments cannot be an option for a large fleet of power plant buildings. To build predictive models, homogenization techniques offer an appealing alternative. To properly upscale creep, especially at long term, a rather precise description of the microstructure is required. However, the complexity of the morphology of concrete poses several challenges. In particular, concrete is formulated to maximize the packing density of the granular skeleton, leading to aggregates spanning several length scales with small inter particle spacings. Thus, explicit meshing of realistic concrete microstructures is either out of reach of current meshing algorithms or would produce a number of degrees of freedom far higher than the current generic FEM codes capabilities. This paper proposes a method to deal with complex matrix-inclusions microstructures such as the ones encountered at the mortar or concrete scales, without explicitly meshing them. The microstructure is superimposed to an independent mesh, which is a regular Cartesian grid. This inevitably yields so called 'gray elements', spanning across multiple phases. As the reliability of the estimate of the effective properties highly depends on the behavior affected to these gray elements, special attention is paid to them. As far as the question of the solvers is concerned, generic FEM codes are found to lack efficiency: they cannot reach high enough levels of discretization with classical free meshes, and they do not take advantage of the regular structure of the mesh. Thus, a specific finite differences/finite volumes solver has been developed. At first, generic off

19. Three new models for evaluation of standard involute spur gear mesh stiffness

Science.gov (United States)

Liang, Xihui; Zhang, Hongsheng; Zuo, Ming J.; Qin, Yong

2018-02-01

Time-varying mesh stiffness is one of the main internal excitation sources of gear dynamics. Accurate evaluation of gear mesh stiffness is crucial for gear dynamic analysis. This study is devoted to developing new models for spur gear mesh stiffness evaluation. Three models are proposed. The proposed model 1 can give very accurate mesh stiffness result but the gear bore surface must be assumed to be rigid. Enlighted by the proposed model 1, our research discovers that the angular deflection pattern of the gear bore surface of a pair of meshing gears under a constant torque basically follows a cosine curve. Based on this finding, two other models are proposed. The proposed model 2 evaluates gear mesh stiffness by using angular deflections at different circumferential angles of an end surface circle of the gear bore. The proposed model 3 requires using only the angular deflection at an arbitrary circumferential angle of an end surface circle of the gear bore but this model can only be used for a gear with the same tooth profile among all teeth. The proposed models are accurate in gear mesh stiffness evaluation and easy to use. Finite element analysis is used to validate the accuracy of the proposed models.

20. On symmetric pyramidal finite elements

Czech Academy of Sciences Publication Activity Database

Liu, L.; Davies, K. B.; Yuan, K.; Křížek, Michal

2004-01-01

Roč. 11, 1-2 (2004), s. 213-227 ISSN 1492-8760 R&D Projects: GA AV ČR IAA1019201 Institutional research plan: CEZ:AV0Z1019905 Keywords : mesh generation * finite element method * composite elements Subject RIV: BA - General Mathematics Impact factor: 0.108, year: 2004

1. Tensile Behaviour of Welded Wire Mesh and Hexagonal Metal Mesh for Ferrocement Application

Science.gov (United States)

Tanawade, A. G.; Modhera, C. D.

2017-08-01

Tension tests were conducted on welded mesh and hexagonal Metal mesh. Welded Mesh is available in the market in different sizes. The two types are analysed viz. Ø 2.3 mm and Ø 2.7 mm welded mesh, having opening size 31.75 mm × 31.75 mm and 25.4 mm × 25.4 mm respectively. Tensile strength test was performed on samples of welded mesh in three different orientations namely 0°, 30° and 45° degrees with the loading axis and hexagonal Metal mesh of Ø 0.7 mm, having opening 19.05 × 19.05 mm. Experimental tests were conducted on samples of these meshes. The objective of this study was to investigate the behaviour of the welded mesh and hexagonal Metal mesh. The result shows that the tension load carrying capacity of welded mesh of Ø 2.7 mm of 0° orientation is good as compared to Ø2.3 mm mesh and ductility of hexagonal Metal mesh is good in behaviour.

2. Mesh optimization for microbial fuel cell cathodes constructed around stainless steel mesh current collectors

KAUST Repository

Zhang, Fang; Merrill, Matthew D.; Tokash, Justin C.; Saito, Tomonori; Cheng, Shaoan; Hickner, Michael A.; Logan, Bruce E.

2011-01-01

that the mesh properties of these cathodes can significantly affect performance. Cathodes made from the coarsest mesh (30-mesh) achieved the highest maximum power of 1616 ± 25 mW m-2 (normalized to cathode projected surface area; 47.1 ± 0.7 W m-3 based on liquid

3. Intravesical midurethral sling mesh erosion secondary to transvaginal mesh reconstructive surgery

Directory of Open Access Journals (Sweden)

Sukanda Bin Jaili

2015-05-01

Conclusion: Repeated vaginal reconstructive surgery may jeopardize a primary mesh or sling, and pose a high risk of mesh erosion, which may be delayed for several years. Removal of the mesh erosion and bladder repair are feasible pervaginally with good outcome.

4. NeuroTessMesh: A Tool for the Generation and Visualization of Neuron Meshes and Adaptive On-the-Fly Refinement

Directory of Open Access Journals (Sweden)

Juan J. Garcia-Cantero

2017-06-01

Full Text Available Gaining a better understanding of the human brain continues to be one of the greatest challenges for science, largely because of the overwhelming complexity of the brain and the difficulty of analyzing the features and behavior of dense neural networks. Regarding analysis, 3D visualization has proven to be a useful tool for the evaluation of complex systems. However, the large number of neurons in non-trivial circuits, together with their intricate geometry, makes the visualization of a neuronal scenario an extremely challenging computational problem. Previous work in this area dealt with the generation of 3D polygonal meshes that approximated the cells’ overall anatomy but did not attempt to deal with the extremely high storage and computational cost required to manage a complex scene. This paper presents NeuroTessMesh, a tool specifically designed to cope with many of the problems associated with the visualization of neural circuits that are comprised of large numbers of cells. In addition, this method facilitates the recovery and visualization of the 3D geometry of cells included in databases, such as NeuroMorpho, and provides the tools needed to approximate missing information such as the soma’s morphology. This method takes as its only input the available compact, yet incomplete, morphological tracings of the cells as acquired by neuroscientists. It uses a multiresolution approach that combines an initial, coarse mesh generation with subsequent on-the-fly adaptive mesh refinement stages using tessellation shaders. For the coarse mesh generation, a novel approach, based on the Finite Element Method, allows approximation of the 3D shape of the soma from its incomplete description. Subsequently, the adaptive refinement process performed in the graphic card generates meshes that provide good visual quality geometries at a reasonable computational cost, both in terms of memory and rendering time. All the described techniques have been

5. Strain-based finite elements for the analysis of cylinders with holes and normally intersecting cylinders

International Nuclear Information System (INIS)

Sabir, A.B.

1983-01-01

A finite element solution to the problems of stress distribution for cylindrical shells with circular and elliptical holes and also for normally intersecting thin elastic cylindrical shells is given. Quadrilateral and triangular curved finite elements are used in the analysis. The elements are of a new class, based on simple independent generalised strain functions insofar as this is allowed by the compatibility equations. The elements also satisfy exactly the requirements of strain-free-rigid body displacements and uses only the external 'geometrical' nodal degrees of freedom to avoid the difficulties associated with unnecessary internal degrees of freedom. We first develop strain based quadrilateral and triangular elements and apply them to the solution of the problem of stress concentrations in the neighbourhood of small and large circular and elliptical holes when the cylinders are subjected to a uniform axial tension. These results are compared with analytical solutions based on shallow shell approximations and show that the use of these strain based elements obviates the need for using an inordinately large number of elements. Normally intersecting cylinders are common configurations in structural components for nuclear reactor systems and design information for such configurations are generally lacking. The opportunity is taken in the present paper to provide a finite element solution to this problem. A method of substructing will be introduced to enable a solution to the large number of non banded set of simultaneous equations encountered. (orig./HP)

6. Coarse-mesh method for multidimensional, mixed-lattice diffusion calculations

International Nuclear Information System (INIS)

Dodds, H.L. Jr.; Honeck, H.C.; Hostetler, D.E.

1977-01-01

A coarse-mesh finite difference method has been developed for multidimensional, mixed-lattice reactor diffusion calculations, both statics and kinetics, in hexagonal geometry. Results obtained with the coarse-mesh (CM) method have been compared with a conventional mesh-centered finite difference method and with experiment. The results of this comparison indicate that the accuracy of the CM method for highly heterogeneous (mixed) lattices using one point per hexagonal mesh element (''hex'') is about the same as the conventional method with six points per hex. Furthermore, the computing costs (i.e., central processor unit time and core storage requirements) of the CM method with one point per hex are about the same as the conventional method with one point per hex

7. New software developments for quality mesh generation and optimization from biomedical imaging data.

Science.gov (United States)

Yu, Zeyun; Wang, Jun; Gao, Zhanheng; Xu, Ming; Hoshijima, Masahiko

2014-01-01

In this paper we present a new software toolkit for generating and optimizing surface and volumetric meshes from three-dimensional (3D) biomedical imaging data, targeted at image-based finite element analysis of some biomedical activities in a single material domain. Our toolkit includes a series of geometric processing algorithms including surface re-meshing and quality-guaranteed tetrahedral mesh generation and optimization. All methods described have been encapsulated into a user-friendly graphical interface for easy manipulation and informative visualization of biomedical images and mesh models. Numerous examples are presented to demonstrate the effectiveness and efficiency of the described methods and toolkit. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

8. Laparoscopic Pelvic Floor Repair Using Polypropylene Mesh

Directory of Open Access Journals (Sweden)

Shih-Shien Weng

2008-09-01

Conclusion: Laparoscopic pelvic floor repair using a single piece of polypropylene mesh combined with uterosacral ligament suspension appears to be a feasible procedure for the treatment of advanced vaginal vault prolapse and enterocele. Fewer mesh erosions and postoperative pain syndromes were seen in patients who had no previous pelvic floor reconstructive surgery.

9. Robust diamond meshes with unique wettability properties.

Science.gov (United States)

Yang, Yizhou; Li, Hongdong; Cheng, Shaoheng; Zou, Guangtian; Wang, Chuanxi; Lin, Quan

2014-03-18

Robust diamond meshes with excellent superhydrophobic and superoleophilic properties have been fabricated. Superhydrophobicity is observed for water with varying pH from 1 to 14 with good recyclability. Reversible superhydrophobicity and hydrophilicity can be easily controlled. The diamond meshes show highly efficient water-oil separation and water pH droplet transference.

10. Mesh-graft urethroplasty: a case report

OpenAIRE

田中, 敏博; 滝川, 浩; 香川, 征; 長江, 浩朗

1987-01-01

We used a meshed free-foreskin transplant in a two-stage procedure for reconstruction of the extended stricture of urethra after direct vision urethrotomy. The results were excellent. Mesh-graft urethroplasty is a useful method for patients with extended strictures of the urethra or recurrent strictures after several operations.

11. 7th International Meshing Roundtable '98

Energy Technology Data Exchange (ETDEWEB)

Eldred, T.J.

1998-10-01

The goal of the 7th International Meshing Roundtable is to bring together researchers and developers from industry, academia, and government labs in a stimulating, open environment for the exchange of technical information related to the meshing process. In the past, the Roundtable has enjoyed significant participation from each of these groups from a wide variety of countries.

12. Postoperative pain outcomes after transvaginal mesh revision.

Science.gov (United States)

Danford, Jill M; Osborn, David J; Reynolds, W Stuart; Biller, Daniel H; Dmochowski, Roger R

2015-01-01

Although the current literature discusses mesh complications including pain, as well as suggesting different techniques for removing mesh, there is little literature regarding pain outcomes after surgical removal or revision. The purpose of this study is to determine if surgical removal or revision of vaginal mesh improves patient's subjective complaints of pelvic pain associated with original placement of mesh. After obtaining approval from the Vanderbilt University Medical Center Institutional Review Board, a retrospective review of female patients with pain secondary to previous mesh placement who underwent excision or revision of vaginal mesh from January 2000 to August 2012 was performed. Patient age, relevant medical history including menopause status, previous hysterectomy, smoking status, and presence of diabetes, fibromyalgia, interstitial cystitis, and chronic pelvic pain, was obtained. Patients' postoperative pain complaints were assessed. Of the 481 patients who underwent surgery for mesh revision, removal or urethrolysis, 233 patients met our inclusion criteria. One hundred and sixty-nine patients (73 %) reported that their pain improved, 19 (8 %) reported that their pain worsened, and 45 (19 %) reported that their pain remained unchanged after surgery. Prior history of chronic pelvic pain was associated with increased risk of failure of the procedure to relieve pain (OR 0.28, 95 % CI 0.12-0.64, p = 0.003). Excision or revision of vaginal mesh appears to be effective in improving patients' pain symptoms most of the time. Patients with a history of chronic pelvic pain are at an increased risk of no improvement or of worsening pain.

13. Converting skeletal structures to quad dominant meshes

DEFF Research Database (Denmark)

Bærentzen, Jakob Andreas; Misztal, Marek Krzysztof; Welnicka, Katarzyna

2012-01-01

We propose the Skeleton to Quad-dominant polygonal Mesh algorithm (SQM), which converts skeletal structures to meshes composed entirely of polar and annular regions. Both types of regions have a regular structure where all faces are quads except for a single ring of triangles at the center of each...

14. Adaptive mesh refinement in titanium

Energy Technology Data Exchange (ETDEWEB)

Colella, Phillip; Wen, Tong

2005-01-21

In this paper, we evaluate Titanium's usability as a high-level parallel programming language through a case study, where we implement a subset of Chombo's functionality in Titanium. Chombo is a software package applying the Adaptive Mesh Refinement methodology to numerical Partial Differential Equations at the production level. In Chombo, the library approach is used to parallel programming (C++ and Fortran, with MPI), whereas Titanium is a Java dialect designed for high-performance scientific computing. The performance of our implementation is studied and compared with that of Chombo in solving Poisson's equation based on two grid configurations from a real application. Also provided are the counts of lines of code from both sides.

15. Fog water collection effectiveness: Mesh intercomparisons

Science.gov (United States)

Fernandez, Daniel; Torregrosa, Alicia; Weiss-Penzias, Peter; Zhang, Bong June; Sorensen, Deckard; Cohen, Robert; McKinley, Gareth; Kleingartner, Justin; Oliphant, Andrew; Bowman, Matthew

2018-01-01

To explore fog water harvesting potential in California, we conducted long-term measurements involving three types of mesh using standard fog collectors (SFC). Volumetric fog water measurements from SFCs and wind data were collected and recorded in 15-minute intervals over three summertime fog seasons (2014–2016) at four California sites. SFCs were deployed with: standard 1.00 m2 double-layer 35% shade coefficient Raschel; stainless steel mesh coated with the MIT-14 hydrophobic formulation; and FogHa-Tin, a German manufactured, 3-dimensional spacer fabric deployed in two orientations. Analysis of 3419 volumetric samples from all sites showed strong relationships between mesh efficiency and wind speed. Raschel mesh collected 160% more fog water than FogHa-Tin at wind speeds less than 1 m s–1 and 45% less for wind speeds greater than 5 m s–1. MIT-14 coated stainless-steel mesh collected more fog water than Raschel mesh at all wind speeds. At low wind speeds of steel mesh collected 3% more and at wind speeds of 4–5 m s–1, it collected 41% more. FogHa-Tin collected 5% more fog water when the warp of the weave was oriented vertically, per manufacturer specification, than when the warp of the weave was oriented horizontally. Time series measurements of three distinct mesh across similar wind regimes revealed inconsistent lags in fog water collection and inconsistent performance. Since such differences occurred under similar wind-speed regimes, we conclude that other factors play important roles in mesh performance, including in-situ fog event and aerosol dynamics that affect droplet-size spectra and droplet-to-mesh surface interactions.

16. ORMGEN3D, 3-D Crack Geometry FEM Mesh Generator

International Nuclear Information System (INIS)

Bass, B.R.; Bryson, J.W.

1994-01-01

1 - Description of program or function: ORMGEN3D is a finite element mesh generator for computational fracture mechanics analysis. The program automatically generates a three-dimensional finite element model for six different crack geometries. These geometries include flat plates with straight or curved surface cracks and cylinders with part-through cracks on the outer or inner surface. Mathematical or user-defined crack shapes may be considered. The curved cracks may be semicircular, semi-elliptical, or user-defined. A cladding option is available that allows for either an embedded or penetrating crack in the clad material. 2 - Method of solution: In general, one eighth or one-quarter of the structure is modelled depending on the configuration or option selected. The program generates a core of special wedge or collapsed prism elements at the crack front to introduce the appropriate stress singularity at the crack tip. The remainder of the structure is modelled with conventional 20-node iso-parametric brick elements. Element group I of the finite element model consists of an inner core of special crack tip elements surrounding the crack front enclosed by a single layer of conventional brick elements. Eight element divisions are used in a plane orthogonal to the crack front, while the number of element divisions along the arc length of the crack front is user-specified. The remaining conventional brick elements of the model constitute element group II. 3 - Restrictions on the complexity of the problem: Maxima of 5,500 nodes, 4 layers of clad elements

17. A novel partitioning method for block-structured adaptive meshes

Science.gov (United States)

Fu, Lin; Litvinov, Sergej; Hu, Xiangyu Y.; Adams, Nikolaus A.

2017-07-01

We propose a novel partitioning method for block-structured adaptive meshes utilizing the meshless Lagrangian particle concept. With the observation that an optimum partitioning has high analogy to the relaxation of a multi-phase fluid to steady state, physically motivated model equations are developed to characterize the background mesh topology and are solved by multi-phase smoothed-particle hydrodynamics. In contrast to well established partitioning approaches, all optimization objectives are implicitly incorporated and achieved during the particle relaxation to stationary state. Distinct partitioning sub-domains are represented by colored particles and separated by a sharp interface with a surface tension model. In order to obtain the particle relaxation, special viscous and skin friction models, coupled with a tailored time integration algorithm are proposed. Numerical experiments show that the present method has several important properties: generation of approximately equal-sized partitions without dependence on the mesh-element type, optimized interface communication between distinct partitioning sub-domains, continuous domain decomposition which is physically localized and implicitly incremental. Therefore it is particularly suitable for load-balancing of high-performance CFD simulations.

18. A novel partitioning method for block-structured adaptive meshes

Energy Technology Data Exchange (ETDEWEB)

Fu, Lin, E-mail: lin.fu@tum.de; Litvinov, Sergej, E-mail: sergej.litvinov@aer.mw.tum.de; Hu, Xiangyu Y., E-mail: xiangyu.hu@tum.de; Adams, Nikolaus A., E-mail: nikolaus.adams@tum.de

2017-07-15

We propose a novel partitioning method for block-structured adaptive meshes utilizing the meshless Lagrangian particle concept. With the observation that an optimum partitioning has high analogy to the relaxation of a multi-phase fluid to steady state, physically motivated model equations are developed to characterize the background mesh topology and are solved by multi-phase smoothed-particle hydrodynamics. In contrast to well established partitioning approaches, all optimization objectives are implicitly incorporated and achieved during the particle relaxation to stationary state. Distinct partitioning sub-domains are represented by colored particles and separated by a sharp interface with a surface tension model. In order to obtain the particle relaxation, special viscous and skin friction models, coupled with a tailored time integration algorithm are proposed. Numerical experiments show that the present method has several important properties: generation of approximately equal-sized partitions without dependence on the mesh-element type, optimized interface communication between distinct partitioning sub-domains, continuous domain decomposition which is physically localized and implicitly incremental. Therefore it is particularly suitable for load-balancing of high-performance CFD simulations.

19. [CLINICAL EVALUATION OF THE NEW ANTISEPTIC MESHES].

Science.gov (United States)

2016-12-01

Improving the results of hernia treatment and prevention of complications became a goal of our research which included two parts - experimental and clinical. Histomorphological and bacteriological researches showed that the best result out of the 3 control groups was received in case of covering implant "Coladerm"+ with chlorhexidine. Based on the experiment results working process continued in clinics in order to test and introduce new "coladerm"+ chlorhexidine covered poliprophilene meshes into practice. For clinical illustration there were 60 patients introduced to the research who had hernioplasty procedures by different nets: I group - standard meshes+"coladerm"+chlorhexidine, 35 patients; II group - standard meshes +"coladerm", 15 patients; III group - standard meshes, 10 patients. Assessment of the wound and echo-control was done post-surgery on the 8th, 30th and 90th days. This clinical research based on the experimental results once again showed the best anti-microbe features of new antiseptic polymeric biocomposite meshes (standard meshes+"coladerm"+chlorhexidine); timely termination of regeneration and reparation processes without any post-surgery suppurative complications. We hope that new antiseptic polymeric biocomposite meshes presented by us will be successfully used in surgical practice of hernia treatment based on and supported by expermental-clinical research.

20. Mesh Denoising based on Normal Voting Tensor and Binary Optimization.

Science.gov (United States)

2017-08-17

This paper presents a two-stage mesh denoising algorithm. Unlike other traditional averaging approaches, our approach uses an element-based normal voting tensor to compute smooth surfaces. By introducing a binary optimization on the proposed tensor together with a local binary neighborhood concept, our algorithm better retains sharp features and produces smoother umbilical regions than previous approaches. On top of that, we provide a stochastic analysis on the different kinds of noise based on the average edge length. The quantitative results demonstrate that the performance of our method is better compared to state-of-the-art smoothing approaches.

1. Fog water collection effectiveness: Mesh intercomparisons

Science.gov (United States)

Fernandez, Daniel; Torregrosa, Alicia; Weiss-Penzias, Peter; Zhang, Bong June; Sorensen, Deckard; Cohen, Robert; McKinley, Gareth; Kleingartner, Justin; Oliphant, Andrew; Bowman, Matthew

2018-01-01

To explore fog water harvesting potential in California, we conducted long-term measurements involving three types of mesh using standard fog collectors (SFC). Volumetric fog water measurements from SFCs and wind data were collected and recorded in 15-minute intervals over three summertime fog seasons (2014–2016) at four California sites. SFCs were deployed with: standard 1.00 m2 double-layer 35% shade coefficient Raschel; stainless steel mesh coated with the MIT-14 hydrophobic formulation; and FogHa-Tin, a German manufactured, 3-dimensional spacer fabric deployed in two orientations. Analysis of 3419 volumetric samples from all sites showed strong relationships between mesh efficiency and wind speed. Raschel mesh collected 160% more fog water than FogHa-Tin at wind speeds less than 1 m s–1 and 45% less for wind speeds greater than 5 m s–1. MIT-14 coated stainless-steel mesh collected more fog water than Raschel mesh at all wind speeds. At low wind speeds of wind speeds of 4–5 m s–1, it collected 41% more. FogHa-Tin collected 5% more fog water when the warp of the weave was oriented vertically, per manufacturer specification, than when the warp of the weave was oriented horizontally. Time series measurements of three distinct mesh across similar wind regimes revealed inconsistent lags in fog water collection and inconsistent performance. Since such differences occurred under similar wind-speed regimes, we conclude that other factors play important roles in mesh performance, including in-situ fog event and aerosol dynamics that affect droplet-size spectra and droplet-to-mesh surface interactions.

2. Transvaginal mesh procedures for pelvic organ prolapse.

Science.gov (United States)

Walter, Jens-Erik

2011-02-01

To provide an update on transvaginal mesh procedures, newly available minimally invasive surgical techniques for pelvic floor repair. The discussion is limited to minimally invasive transvaginal mesh procedures. PubMed and Medline were searched for articles published in English, using the key words "pelvic organ prolapse," transvaginal mesh," and "minimally invasive surgery." Results were restricted to systematic reviews, randomized control trials/controlled clinical trials, and observational studies. Searches were updated on a regular basis, and articles were incorporated in the guideline to May 2010. Grey (unpublished) literature was identified through searching the websites of health technology assessment and health technology assessment-related agencies, clinical practice guideline collections, clinical trial registries, and national and international medical specialty societies. The quality of evidence was rated using the criteria described in the Report of the Canadian Task Force on the Preventive Health Care. Recommendations for practice were ranked according to the method described in that report (Table 1). Counselling for the surgical treatment of pelvic organ prolapse should consider all benefits, harms, and costs of the surgical procedure, with particular emphasis on the use of mesh. 1. Patients should be counselled that transvaginal mesh procedures are considered novel techniques for pelvic floor repair that demonstrate high rates of anatomical cure in uncontrolled short-term case series. (II-2B) 2. Patients should be informed of the range of success rates until stronger evidence of superiority is published. (II-2B) 3. Training specific to transvaginal mesh procedures should be undertaken before procedures are performed. (III-C) 4. Patients should undergo thorough preoperative counselling regarding (a) the potential serious adverse sequelae of transvaginal mesh repairs, including mesh exposure, pain, and dyspareunia; and (b) the limited data available

3. Mesh optimization for microbial fuel cell cathodes constructed around stainless steel mesh current collectors

KAUST Repository

Zhang, Fang

2011-02-01

Mesh current collectors made of stainless steel (SS) can be integrated into microbial fuel cell (MFC) cathodes constructed of a reactive carbon black and Pt catalyst mixture and a poly(dimethylsiloxane) (PDMS) diffusion layer. It is shown here that the mesh properties of these cathodes can significantly affect performance. Cathodes made from the coarsest mesh (30-mesh) achieved the highest maximum power of 1616 ± 25 mW m-2 (normalized to cathode projected surface area; 47.1 ± 0.7 W m-3 based on liquid volume), while the finest mesh (120-mesh) had the lowest power density (599 ± 57 mW m-2). Electrochemical impedance spectroscopy showed that charge transfer and diffusion resistances decreased with increasing mesh opening size. In MFC tests, the cathode performance was primarily limited by reaction kinetics, and not mass transfer. Oxygen permeability increased with mesh opening size, accounting for the decreased diffusion resistance. At higher current densities, diffusion became a limiting factor, especially for fine mesh with low oxygen transfer coefficients. These results demonstrate the critical nature of the mesh size used for constructing MFC cathodes. © 2010 Elsevier B.V. All rights reserved.

4. Polygonal Prism Mesh in the Viscous Layers for the Polyhedral Mesh Generator, PolyGen

International Nuclear Information System (INIS)

Lee, Sang Yong; Park, Chan Eok; Kim, Shin Whan

2015-01-01

Polyhedral mesh has been known to have some benefits over the tetrahedral mesh. Efforts have been made to set up a polyhedral mesh generation system with open source programs SALOME and TetGen. The evaluation has shown that the polyhedral mesh generation system is promising. But it is necessary to extend the capability of the system to handle the viscous layers to be a generalized mesh generator. A brief review to the previous works on the mesh generation for the viscous layers will be made in section 2. Several challenging issues for the polygonal prism mesh generation will be discussed as well. The procedure to generate a polygonal prism mesh will be discussed in detail in section 3. Conclusion will be followed in section 4. A procedure to generate meshes in the viscous layers with PolyGen has been successfully designed. But more efforts have to be exercised to find the best way for the generating meshes for viscous layers. Using the extrusion direction of the STL data will the first of the trials in the near future

5. Mesh Optimization for Ground Vehicle Aerodynamics

OpenAIRE

2010-01-01

Mesh optimization strategy for estimating accurate drag of a ground vehicle is proposed based on examining the effect of different mesh parameters.  The optimized mesh parameters were selected using design of experiment (DOE) method to be able to work in a...

6. Engagement of Metal Debris into Gear Mesh

Science.gov (United States)

handschuh, Robert F.; Krantz, Timothy L.

2010-01-01

A series of bench-top experiments was conducted to determine the effects of metallic debris being dragged through meshing gear teeth. A test rig that is typically used to conduct contact fatigue experiments was used for these tests. Several sizes of drill material, shim stock and pieces of gear teeth were introduced and then driven through the meshing region. The level of torque required to drive the "chip" through the gear mesh was measured. From the data gathered, chip size sufficient to jam the mechanism can be determined.

7. Mesh requirements for neutron transport calculations

International Nuclear Information System (INIS)

1967-07-01

Fine-structure calculations are reported for a cylindrical natural uranium-graphite cell using different solution methods (discrete ordinate and collision probability codes) and varying the spatial mesh. It is suggested that of formulations assuming the source constant in a mesh interval the differential approach is generally to be preferred. Due to cancellation between approximations made in the derivation of the finite difference equations and the errors in neglecting source variation, the discrete ordinate code gave a more accurate estimate of fine structure for a given mesh even for unusually coarse representations. (author)

8. Higher-order meshing of implicit geometries, Part II: Approximations on manifolds

Science.gov (United States)

Fries, T. P.; Schöllhammer, D.

2017-11-01

A new concept for the higher-order accurate approximation of partial differential equations on manifolds is proposed where a surface mesh composed by higher-order elements is automatically generated based on level-set data. Thereby, it enables a completely automatic workflow from the geometric description to the numerical analysis without any user-intervention. A master level-set function defines the shape of the manifold through its zero-isosurface which is then restricted to a finite domain by additional level-set functions. It is ensured that the surface elements are sufficiently continuous and shape regular which is achieved by manipulating the background mesh. The numerical results show that optimal convergence rates are obtained with a moderate increase in the condition number compared to handcrafted surface meshes.

9. Assessment of fusion facility dose rate map using mesh adaptivity enhancements of hybrid Monte Carlo/deterministic techniques

International Nuclear Information System (INIS)

Ibrahim, Ahmad M.; Wilson, Paul P.; Sawan, Mohamed E.; Mosher, Scott W.; Peplow, Douglas E.; Grove, Robert E.

2014-01-01

Highlights: •Calculate the prompt dose rate everywhere throughout the entire fusion energy facility. •Utilize FW-CADIS to accurately perform difficult neutronics calculations for fusion energy systems. •Develop three mesh adaptivity algorithms to enhance FW-CADIS efficiency in fusion-neutronics calculations. -- Abstract: Three mesh adaptivity algorithms were developed to facilitate and expedite the use of the CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques in accurate full-scale neutronics simulations of fusion energy systems with immense sizes and complicated geometries. First, a macromaterial approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as much geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm decouples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility and resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation. Additionally, because of the significant increase in the efficiency of FW-CADIS simulations, the three algorithms enabled this difficult calculation to be accurately solved on a regular computer cluster, eliminating the need for a world-class super computer

10. A Numerical Study of Mesh Adaptivity in Multiphase Flows with Non-Newtonian Fluids

Science.gov (United States)

Percival, James; Pavlidis, Dimitrios; Xie, Zhihua; Alberini, Federico; Simmons, Mark; Pain, Christopher; Matar, Omar

2014-11-01

We present an investigation into the computational efficiency benefits of dynamic mesh adaptivity in the numerical simulation of transient multiphase fluid flow problems involving Non-Newtonian fluids. Such fluids appear in a range of industrial applications, from printing inks to toothpastes and introduce new challenges for mesh adaptivity due to the additional memory'' of viscoelastic fluids. Nevertheless, the multiscale nature of these flows implies huge potential benefits for a successful implementation. The study is performed using the open source package Fluidity, which couples an unstructured mesh control volume finite element solver for the multiphase Navier-Stokes equations to a dynamic anisotropic mesh adaptivity algorithm, based on estimated solution interpolation error criteria, and conservative mesh-to-mesh interpolation routine. The code is applied to problems involving rheologies ranging from simple Newtonian to shear-thinning to viscoelastic materials and verified against experimental data for various industrial and microfluidic flows. This work was undertaken as part of the EPSRC MEMPHIS programme grant EP/K003976/1.

11. A novel method of the image processing on irregular triangular meshes

Science.gov (United States)

Vishnyakov, Sergey; Pekhterev, Vitaliy; Sokolova, Elizaveta

2018-04-01

The paper describes a novel method of the image processing based on irregular triangular meshes implementation. The triangular mesh is adaptive to the image content, least mean square linear approximation is proposed for the basic interpolation within the triangle. It is proposed to use triangular numbers to simplify using of the local (barycentric) coordinates for the further analysis - triangular element of the initial irregular mesh is to be represented through the set of the four equilateral triangles. This allows to use fast and simple pixels indexing in local coordinates, e.g. "for" or "while" loops for access to the pixels. Moreover, representation proposed allows to use discrete cosine transform of the simple "rectangular" symmetric form without additional pixels reordering (as it is used for shape-adaptive DCT forms). Furthermore, this approach leads to the simple form of the wavelet transform on triangular mesh. The results of the method application are presented. It is shown that advantage of the method proposed is a combination of the flexibility of the image-adaptive irregular meshes with the simple form of the pixel indexing in local triangular coordinates and the using of the common forms of the discrete transforms for triangular meshes. Method described is proposed for the image compression, pattern recognition, image quality improvement, image search and indexing. It also may be used as a part of video coding (intra-frame or inter-frame coding, motion detection).

12. An eFTD-VP framework for efficiently generating patient-specific anatomically detailed facial soft tissue FE mesh for craniomaxillofacial surgery simulation.

Science.gov (United States)

Zhang, Xiaoyan; Kim, Daeseung; Shen, Shunyao; Yuan, Peng; Liu, Siting; Tang, Zhen; Zhang, Guangming; Zhou, Xiaobo; Gateno, Jaime; Liebschner, Michael A K; Xia, James J

2018-04-01

Accurate surgical planning and prediction of craniomaxillofacial surgery outcome requires simulation of soft tissue changes following osteotomy. This can only be achieved by using an anatomically detailed facial soft tissue model. The current state-of-the-art of model generation is not appropriate to clinical applications due to the time-intensive nature of manual segmentation and volumetric mesh generation. The conventional patient-specific finite element (FE) mesh generation methods are to deform a template FE mesh to match the shape of a patient based on registration. However, these methods commonly produce element distortion. Additionally, the mesh density for patients depends on that of the template model. It could not be adjusted to conduct mesh density sensitivity analysis. In this study, we propose a new framework of patient-specific facial soft tissue FE mesh generation. The goal of the developed method is to efficiently generate a high-quality patient-specific hexahedral FE mesh with adjustable mesh density while preserving the accuracy in anatomical structure correspondence. Our FE mesh is generated by eFace template deformation followed by volumetric parametrization. First, the patient-specific anatomically detailed facial soft tissue model (including skin, mucosa, and muscles) is generated by deforming an eFace template model. The adaptation of the eFace template model is achieved by using a hybrid landmark-based morphing and dense surface fitting approach followed by a thin-plate spline interpolation. Then, high-quality hexahedral mesh is constructed by using volumetric parameterization. The user can control the resolution of hexahedron mesh to best reflect clinicians' need. Our approach was validated using 30 patient models and 4 visible human datasets. The generated patient-specific FE mesh showed high surface matching accuracy, element quality, and internal structure matching accuracy. They can be directly and effectively used for clinical

13. Connectivity editing for quad-dominant meshes

KAUST Repository

Peng, Chihan; Wonka, Peter

2013-01-01

and illustrate the advantages and disadvantages of different strategies for quad-dominant mesh design. © 2013 The Author(s) Computer Graphics Forum © 2013 The Eurographics Association and John Wiley & Sons Ltd.

14. Grid adaptation using chimera composite overlapping meshes

Science.gov (United States)

Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen

1994-01-01

The objective of this paper is to perform grid adaptation using composite overlapping meshes in regions of large gradient to accurately capture the salient features during computation. The chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using trilinear interpolation. Application to the Euler equations for shock reflections and to shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well-resolved.

15. Grid adaption using Chimera composite overlapping meshes

Science.gov (United States)

Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen

1993-01-01

The objective of this paper is to perform grid adaptation using composite over-lapping meshes in regions of large gradient to capture the salient features accurately during computation. The Chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using tri-linear interpolation. Applications to the Euler equations for shock reflections and to a shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well resolved.

16. Shape space exploration of constrained meshes

KAUST Repository

Yang, Yongliang

2011-12-12

We present a general computational framework to locally characterize any shape space of meshes implicitly prescribed by a collection of non-linear constraints. We computationally access such manifolds, typically of high dimension and co-dimension, through first and second order approximants, namely tangent spaces and quadratically parameterized osculant surfaces. Exploration and navigation of desirable subspaces of the shape space with regard to application specific quality measures are enabled using approximants that are intrinsic to the underlying manifold and directly computable in the parameter space of the osculant surface. We demonstrate our framework on shape spaces of planar quad (PQ) meshes, where each mesh face is constrained to be (nearly) planar, and circular meshes, where each face has a circumcircle. We evaluate our framework for navigation and design exploration on a variety of inputs, while keeping context specific properties such as fairness, proximity to a reference surface, etc. © 2011 ACM.

17. Shape space exploration of constrained meshes

KAUST Repository

Yang, Yongliang; Yang, Yijun; Pottmann, Helmut; Mitra, Niloy J.

2011-01-01

We present a general computational framework to locally characterize any shape space of meshes implicitly prescribed by a collection of non-linear constraints. We computationally access such manifolds, typically of high dimension and co-dimension, through first and second order approximants, namely tangent spaces and quadratically parameterized osculant surfaces. Exploration and navigation of desirable subspaces of the shape space with regard to application specific quality measures are enabled using approximants that are intrinsic to the underlying manifold and directly computable in the parameter space of the osculant surface. We demonstrate our framework on shape spaces of planar quad (PQ) meshes, where each mesh face is constrained to be (nearly) planar, and circular meshes, where each face has a circumcircle. We evaluate our framework for navigation and design exploration on a variety of inputs, while keeping context specific properties such as fairness, proximity to a reference surface, etc. © 2011 ACM.

18. Mesh Processing in Medical Image Analysis

DEFF Research Database (Denmark)

The following topics are dealt with: mesh processing; medical image analysis; interactive freeform modeling; statistical shape analysis; clinical CT images; statistical surface recovery; automated segmentation; cerebral aneurysms; and real-time particle-based representation....

19. Capacity Analysis of Wireless Mesh Networks

Directory of Open Access Journals (Sweden)

M. I. Gumel

2012-06-01

Full Text Available The next generation wireless networks experienced a great development with emergence of wireless mesh networks (WMNs, which can be regarded as a realistic solution that provides wireless broadband access. The limited available bandwidth makes capacity analysis of the network very essential. While the network offers broadband wireless access to community and enterprise users, the problems that limit the network capacity must be addressed to exploit the optimum network performance. The wireless mesh network capacity analysis shows that the throughput of each mesh node degrades in order of l/n with increasing number of nodes (n in a linear topology. The degradation is found to be higher in a fully mesh network as a result of increase in interference and MAC layer contention in the network.

20. Energy-efficient wireless mesh networks

CSIR Research Space (South Africa)

Ntlatlapa, N

2007-06-01

Full Text Available This paper outlines the objectives of a recently formed research group at Meraka Institute. The authors consider application of wireless mesh networks in rural infrastructure deficient parts of the African continent where nodes operate on batteries...

1. LR: Compact connectivity representation for triangle meshes

Energy Technology Data Exchange (ETDEWEB)

Gurung, T; Luffel, M; Lindstrom, P; Rossignac, J

2011-01-28

We propose LR (Laced Ring) - a simple data structure for representing the connectivity of manifold triangle meshes. LR provides the option to store on average either 1.08 references per triangle or 26.2 bits per triangle. Its construction, from an input mesh that supports constant-time adjacency queries, has linear space and time complexity, and involves ordering most vertices along a nearly-Hamiltonian cycle. LR is best suited for applications that process meshes with fixed connectivity, as any changes to the connectivity require the data structure to be rebuilt. We provide an implementation of the set of standard random-access, constant-time operators for traversing a mesh, and show that LR often saves both space and traversal time over competing representations.

2. Seeking new surgical predictors of mesh exposure after transvaginal mesh repair.

Science.gov (United States)

Wu, Pei-Ying; Chang, Chih-Hung; Shen, Meng-Ru; Chou, Cheng-Yang; Yang, Yi-Ching; Huang, Yu-Fang

2016-10-01

The purpose of this study was to explore new preventable risk factors for mesh exposure. A retrospective review of 92 consecutive patients treated with transvaginal mesh (TVM) in the urogynecological unit of our university hospital. An analysis of perioperative predictors was conducted in patients after vaginal repairs using a type 1 mesh. Mesh complications were recorded according to International Urogynecological Association (IUGA) definitions. Mesh-exposure-free durations were calculated by using the Kaplan-Meier method and compared between different closure techniques using log-rank test. Hazard ratios (HR) of predictors for mesh exposure were estimated by univariate and multivariate analyses using Cox proportional hazards regression models. The median surveillance interval was 24.1 months. Two late occurrences were found beyond 1 year post operation. No statistically significant correlation was observed between mesh exposure and concomitant hysterectomy. Exposure risks were significantly higher in patients with interrupted whole-layer closure in univariate analysis. In the multivariate analysis, hematoma [HR 5.42, 95 % confidence interval (CI) 1.26-23.35, P = 0.024), Prolift mesh (HR 5.52, 95 % CI 1.15-26.53, P = 0.033), and interrupted whole-layer closure (HR 7.02, 95 % CI 1.62-30.53, P = 0.009) were the strongest predictors of mesh exposure. Findings indicate the risks of mesh exposure and reoperation may be prevented by avoiding hematoma, large amount of mesh, or interrupted whole-layer closure in TVM surgeries. If these risk factors are prevented, hysterectomy may not be a relative contraindication for TVM use. We also provide evidence regarding mesh exposure and the necessity for more than 1 year of follow-up and preoperative counselling.

3. Towards Blockchain-enabled Wireless Mesh Networks

OpenAIRE

Selimi, Mennan; Kabbinale, Aniruddh Rao; Ali, Anwaar; Navarro, Leandro; Sathiaseelan, Arjuna

2018-01-01

Recently, mesh networking and blockchain are two of the hottest technologies in the telecommunications industry. Combining both can reformulate internet access and make connecting to the Internet not only easy, but affordable too. Hyperledger Fabric (HLF) is a blockchain framework implementation and one of the Hyperledger projects hosted by The Linux Foundation. We evaluate HLF in a real production mesh network and in the laboratory, quantify its performance, bottlenecks and limitations of th...

4. Evaluation of mesh morphing and mapping techniques in patient specific modeling of the human pelvis.

Science.gov (United States)

Salo, Zoryana; Beek, Maarten; Whyne, Cari Marisa

2013-01-01

Robust generation of pelvic finite element models is necessary to understand the variation in mechanical behaviour resulting from differences in gender, aging, disease and injury. The objective of this study was to apply and evaluate mesh morphing and mapping techniques to facilitate the creation and structural analysis of specimen-specific finite element (FE) models of the pelvis. A specimen-specific pelvic FE model (source mesh) was generated following a traditional user-intensive meshing scheme. The source mesh was morphed onto a computed tomography scan generated target surface of a second pelvis using a landmarked-based approach, in which exterior source nodes were shifted to target surface vertices, while constrained along a normal. A second copy of the morphed model was further refined through mesh mapping, in which surface nodes of the initial morphed model were selected in patches and remapped onto the surfaces of the target model. Computed tomography intensity based material properties were assigned to each model. The source, target, morphed and mapped models were analyzed under axial compression using linear static FE analysis and their strain distributions evaluated. Morphing and mapping techniques were effectively applied to generate good quality geometrically complex specimen-specific pelvic FE models. Mapping significantly improved strain concurrence with the target pelvis FE model. Copyright © 2012 John Wiley & Sons, Ltd.

5. Evaluation of mesh morphing and mapping techniques in patient specific modelling of the human pelvis.

Science.gov (United States)

Salo, Zoryana; Beek, Maarten; Whyne, Cari Marisa

2012-08-01

Robust generation of pelvic finite element models is necessary to understand variation in mechanical behaviour resulting from differences in gender, aging, disease and injury. The objective of this study was to apply and evaluate mesh morphing and mapping techniques to facilitate the creation and structural analysis of specimen-specific finite element (FE) models of the pelvis. A specimen-specific pelvic FE model (source mesh) was generated following a traditional user-intensive meshing scheme. The source mesh was morphed onto a computed tomography scan generated target surface of a second pelvis using a landmarked-based approach, in which exterior source nodes were shifted to target surface vertices, while constrained along a normal. A second copy of the morphed model was further refined through mesh mapping, in which surface nodes of the initial morphed model were selected in patches and remapped onto the surfaces of the target model. Computed tomography intensity-based material properties were assigned to each model. The source, target, morphed and mapped models were analyzed under axial compression using linear static FE analysis, and their strain distributions were evaluated. Morphing and mapping techniques were effectively applied to generate good quality and geometrically complex specimen-specific pelvic FE models. Mapping significantly improved strain concurrence with the target pelvis FE model. Copyright © 2012 John Wiley & Sons, Ltd.

6. Network topology exploration of mesh-based coarse-grain reconfigurable architectures

NARCIS (Netherlands)

Bansal, N.; Gupta, S.; Dutt, N.D.; Nicolau, A.; Gupta, R.

2004-01-01

Several coarse-grain reconfigurable architectures proposed recently consist of a large number of processing elements (PEs) connected in a mesh-like network topology. We study the effects of three aspects of network topology exploration on the performance of applications on these architectures: (a)

7. How to model wireless mesh networks topology

International Nuclear Information System (INIS)

Sanni, M L; Hashim, A A; Anwar, F; Ali, S; Ahmed, G S M

2013-01-01

The specification of network connectivity model or topology is the beginning of design and analysis in Computer Network researches. Wireless Mesh Networks is an autonomic network that is dynamically self-organised, self-configured while the mesh nodes establish automatic connectivity with the adjacent nodes in the relay network of wireless backbone routers. Researches in Wireless Mesh Networks range from node deployment to internetworking issues with sensor, Internet and cellular networks. These researches require modelling of relationships and interactions among nodes including technical characteristics of the links while satisfying the architectural requirements of the physical network. However, the existing topology generators model geographic topologies which constitute different architectures, thus may not be suitable in Wireless Mesh Networks scenarios. The existing methods of topology generation are explored, analysed and parameters for their characterisation are identified. Furthermore, an algorithm for the design of Wireless Mesh Networks topology based on square grid model is proposed in this paper. The performance of the topology generated is also evaluated. This research is particularly important in the generation of a close-to-real topology for ensuring relevance of design to the intended network and validity of results obtained in Wireless Mesh Networks researches

8. [Implants for genital prolapse : Contra mesh surgery].

Science.gov (United States)

Hampel, C

2017-12-01

Alloplastic transvaginal meshes have become very popular in the surgery of pelvic organ prolapse (POP) as did alloplastic suburethral slings in female stress incontinence surgery, but without adequate supporting data. The simplicity of the mesh procedure facilitates its propagation with acceptance of higher revision and complication rates. Since attending physicians do more and more prolapse surgeries without practicing or teaching alternative techniques, expertise in these alternatives, which might be very useful in cases of recurrence, persistence or complications, is permanently lost. It is doubtful that proper and detailed information about alternatives, risks, and benefits of transvaginal alloplastic meshes is provided to every single prolapse patient according to the recommendations of the German POP guidelines, since the number of implanted meshes exceeds the number of properly indicated mesh candidates by far. Although there is no dissent internationally about the available mesh data, thousands of lawsuits in the USA, insolvency of companies due to claims for compensation and unambiguous warnings from foreign urological societies leave German urogynecologists still unimpressed. The existing literature in pelvic organ prolapse exclusively focusses on POP stage and improvement of that stage with surgical therapy. Instead, typical prolapse symptoms should trigger therapy and improvement of these symptoms should be the utmost treatment goal. It is strongly recommended for liability reasons to obtain specific written informed consent.

9. The application of finite volume methods for modelling three-dimensional incompressible flow on an unstructured mesh

Science.gov (United States)

Lonsdale, R. D.; Webster, R.

This paper demonstrates the application of a simple finite volume approach to a finite element mesh, combining the economy of the former with the geometrical flexibility of the latter. The procedure is used to model a three-dimensional flow on a mesh of linear eight-node brick (hexahedra). Simulations are performed for a wide range of flow problems, some in excess of 94,000 nodes. The resulting computer code ASTEC that incorporates these procedures is described.

10. The Space-Time Conservative Schemes for Large-Scale, Time-Accurate Flow Simulations with Tetrahedral Meshes

Science.gov (United States)

Venkatachari, Balaji Shankar; Streett, Craig L.; Chang, Chau-Lyan; Friedlander, David J.; Wang, Xiao-Yen; Chang, Sin-Chung

2016-01-01

Despite decades of development of unstructured mesh methods, high-fidelity time-accurate simulations are still predominantly carried out on structured, or unstructured hexahedral meshes by using high-order finite-difference, weighted essentially non-oscillatory (WENO), or hybrid schemes formed by their combinations. In this work, the space-time conservation element solution element (CESE) method is used to simulate several flow problems including supersonic jet/shock interaction and its impact on launch vehicle acoustics, and direct numerical simulations of turbulent flows using tetrahedral meshes. This paper provides a status report for the continuing development of the space-time conservation element solution element (CESE) numerical and software framework under the Revolutionary Computational Aerosciences (RCA) project. Solution accuracy and large-scale parallel performance of the numerical framework is assessed with the goal of providing a viable paradigm for future high-fidelity flow physics simulations.

11. Mesh refinement for uncertainty quantification through model reduction

International Nuclear Information System (INIS)

Li, Jing; Stinis, Panos

2015-01-01

We present a novel way of deciding when and where to refine a mesh in probability space in order to facilitate uncertainty quantification in the presence of discontinuities in random space. A discontinuity in random space makes the application of generalized polynomial chaos expansion techniques prohibitively expensive. The reason is that for discontinuous problems, the expansion converges very slowly. An alternative to using higher terms in the expansion is to divide the random space in smaller elements where a lower degree polynomial is adequate to describe the randomness. In general, the partition of the random space is a dynamic process since some areas of the random space, particularly around the discontinuity, need more refinement than others as time evolves. In the current work we propose a way to decide when and where to refine the random space mesh based on the use of a reduced model. The idea is that a good reduced model can monitor accurately, within a random space element, the cascade of activity to higher degree terms in the chaos expansion. In turn, this facilitates the efficient allocation of computational sources to the areas of random space where they are more needed. For the Kraichnan–Orszag system, the prototypical system to study discontinuities in random space, we present theoretical results which show why the proposed method is sound and numerical results which corroborate the theory

12. Prolapse Recurrence after Transvaginal Mesh Removal.

Science.gov (United States)

Rawlings, Tanner; Lavelle, Rebecca S; Coskun, Burhan; Alhalabi, Feras; Zimmern, Philippe E

2015-11-01

We determined the rate of pelvic organ prolapse recurrence after transvaginal mesh removal. Following institutional review board approval a longitudinally collected database of women undergoing transvaginal mesh removal for complications after transvaginal mesh placement with at least 1 year minimum followup was queried for pelvic organ prolapse recurrence. Recurrent prolapse was defined as greater than stage 1 on examination or the need for reoperation at the site of transvaginal mesh removal. Outcome measures were based on POP-Q (Pelvic Organ Prolapse Quantification System) at the last visit. Patients were grouped into 3 groups, including group 1--recurrent prolapse in the same compartment as transvaginal mesh removal, 2--persistent prolapse and 3--prolapse in a compartment different than transvaginal mesh removal. Of 73 women 52 met study inclusion criteria from 2007 to 2013, including 73% who presented with multiple indications for transvaginal mesh removal. The mean interval between insertion and removal was 45 months (range 10 to 165). Overall mean followup after transvaginal mesh removal was 30 months (range 12 to 84). In group 1 (recurrent prolapse) the rate was 15% (6 of 40 patients). Four women underwent surgery for recurrent prolapse at a mean 7 of months (range 5 to 10). Two patients elected observation. The rate of persistent prolapse (group 2) was 23% (12 of 52 patients). Three women underwent prolapse reoperation at a mean of 10 months (range 8 to 12). In group 3 (de novo/different compartment prolapse) the rate was 6% (3 of 52 patients). One woman underwent surgical repair at 52 months. At a mean 2.5-year followup 62% of patients (32 of 52) did not have recurrent or persistent prolapse after transvaginal mesh removal and 85% (44 of 52) did not undergo any further procedure for prolapse. Specifically for pelvic organ prolapse in the same compartment as transvaginal mesh removal 12% of patients had recurrence, of whom 8% underwent prolapse repair

13. Laparoscopic mesh explantation and drainage of sacral abscess remote from transvaginal excision of exposed sacral colpopexy mesh.

Science.gov (United States)

Roth, Ted M; Reight, Ian

2012-07-01

Sacral colpopexy may be complicated by mesh exposure, and the surgical treatment of mesh exposure typically results in minor postoperative morbidity and few delayed complications. A 75-year-old woman presented 7 years after a laparoscopic sacral colpopexy, with Mersilene mesh, with an apical mesh exposure. She underwent an uncomplicated transvaginal excision and was asymptomatic until 8 months later when she presented with vaginal drainage and a sacral abscess. This was successfully treated with laparoscopic enterolysis, drainage of the abscess, and explantation of the remaining mesh. Incomplete excision of exposed colpopexy mesh can lead to ascending infection and sacral abscess. Laparoscopic drainage and mesh removal may be considered in these patients.

14. Early experience with mesh excision for adverse outcomes after transvaginal mesh placement using prolapse kits.

Science.gov (United States)

Ridgeway, Beri; Walters, Mark D; Paraiso, Marie Fidela R; Barber, Matthew D; McAchran, Sarah E; Goldman, Howard B; Jelovsek, J Eric

2008-12-01

The purpose of this study was to determine the complications, treatments, and outcomes in patients choosing to undergo removal of mesh previously placed with a mesh procedural kit. This was a retrospective review of all patients who underwent surgical removal of transvaginal mesh for mesh-related complications during a 3-year period at Cleveland Clinic. At last follow-up, patients reported degree of pain, level of improvement, sexual activity, and continued symptoms. Nineteen patients underwent removal of mesh during the study period. Indications for removal included chronic pain (6/19), dyspareunia (6/19), recurrent pelvic organ prolapse (8/19), mesh erosion (12/19), and vesicovaginal fistula (3/19), with most patients (16/19) citing more than 1 reason. There were few complications related to the mesh removal. Most patients reported significant relief of symptoms. Mesh removal can be technically difficult but appears to be safe with few complications and high relief of symptoms, although some symptoms can persist.

15. Mimetic finite difference method for the stokes problem on polygonal meshes

Energy Technology Data Exchange (ETDEWEB)

Lipnikov, K [Los Alamos National Laboratory; Beirao Da Veiga, L [DIPARTIMENTO DI MATE; Gyrya, V [PENNSYLVANIA STATE UNIV; Manzini, G [ISTIUTO DI MATEMATICA

2009-01-01

Various approaches to extend the finite element methods to non-traditional elements (pyramids, polyhedra, etc.) have been developed over the last decade. Building of basis functions for such elements is a challenging task and may require extensive geometry analysis. The mimetic finite difference (MFD) method has many similarities with low-order finite element methods. Both methods try to preserve fundamental properties of physical and mathematical models. The essential difference is that the MFD method uses only the surface representation of discrete unknowns to build stiffness and mass matrices. Since no extension inside the mesh element is required, practical implementation of the MFD method is simple for polygonal meshes that may include degenerate and non-convex elements. In this article, we develop a MFD method for the Stokes problem on arbitrary polygonal meshes. The method is constructed for tensor coefficients, which will allow to apply it to the linear elasticity problem. The numerical experiments show the second-order convergence for the velocity variable and the first-order for the pressure.

16. Cartesian anisotropic mesh adaptation for compressible flow

International Nuclear Information System (INIS)

Keats, W.A.; Lien, F.-S.

2004-01-01

Simulating transient compressible flows involving shock waves presents challenges to the CFD practitioner in terms of the mesh quality required to resolve discontinuities and prevent smearing. This paper discusses a novel two-dimensional Cartesian anisotropic mesh adaptation technique implemented for compressible flow. This technique, developed for laminar flow by Ham, Lien and Strong, is efficient because it refines and coarsens cells using criteria that consider the solution in each of the cardinal directions separately. In this paper the method will be applied to compressible flow. The procedure shows promise in its ability to deliver good quality solutions while achieving computational savings. The convection scheme used is the Advective Upstream Splitting Method (Plus), and the refinement/ coarsening criteria are based on work done by Ham et al. Transient shock wave diffraction over a backward step and shock reflection over a forward step are considered as test cases because they demonstrate that the quality of the solution can be maintained as the mesh is refined and coarsened in time. The data structure is explained in relation to the computational mesh, and the object-oriented design and implementation of the code is presented. Refinement and coarsening algorithms are outlined. Computational savings over uniform and isotropic mesh approaches are shown to be significant. (author)

17. Mesh networks: an optimum solution for AMR

Energy Technology Data Exchange (ETDEWEB)

Mimno, G.

2003-12-01

18. The Role of Chronic Mesh Infection in Delayed-Onset Vaginal Mesh Complications or Recurrent Urinary Tract Infections: Results From Explanted Mesh Cultures.

Science.gov (United States)

Mellano, Erin M; Nakamura, Leah Y; Choi, Judy M; Kang, Diana C; Grisales, Tamara; Raz, Shlomo; Rodriguez, Larissa V

2016-01-01

Vaginal mesh complications necessitating excision are increasingly prevalent. We aim to study whether subclinical chronically infected mesh contributes to the development of delayed-onset mesh complications or recurrent urinary tract infections (UTIs). Women undergoing mesh removal from August 2013 through May 2014 were identified by surgical code for vaginal mesh removal. Only women undergoing removal of anti-incontinence mesh were included. Exclusion criteria included any women undergoing simultaneous prolapse mesh removal. We abstracted preoperative and postoperative information from the medical record and compared mesh culture results from patients with and without mesh extrusion, de novo recurrent UTIs, and delayed-onset pain. One hundred seven women with only anti-incontinence mesh removed were included in the analysis. Onset of complications after mesh placement was within the first 6 months in 70 (65%) of 107 and delayed (≥6 months) in 37 (35%) of 107. A positive culture from the explanted mesh was obtained from 82 (77%) of 107 patients, and 40 (37%) of 107 were positive with potential pathogens. There were no significant differences in culture results when comparing patients with delayed-onset versus immediate pain, extrusion with no extrusion, and de novo recurrent UTIs with no infections. In this large cohort of patients with mesh removed for a diverse array of complications, cultures of the explanted vaginal mesh demonstrate frequent low-density bacterial colonization. We found no differences in culture results from women with delayed-onset pain versus acute pain, vaginal mesh extrusions versus no extrusions, or recurrent UTIs using standard culture methods. Chronic prosthetic infections in other areas of medicine are associated with bacterial biofilms, which are resistant to typical culture techniques. Further studies using culture-independent methods are needed to investigate the potential role of chronic bacterial infections in delayed vaginal mesh

19. A Moving Discontinuous Galerkin Finite Element Method for Flows with Interfaces

Science.gov (United States)

2017-12-07

compressible (Euler) flow , both in steady and spacetime form. The Euler flow state variable is given by y = (r,rv1, . . . ,rvn,rE) 2 Rm, (18) where m = n+2...analogous flow was computed using a larger spatial velocity vx = 32 using MDG-ICE(p = 0), as shown in Figure 3. In this case, the upstream state ...spacetime domainW= (0,1)⇥ 0, 12 with six quadrilateral cells is shown in Figure 4. The flow state variable y was discretized using Q2 elements, while the

20. Tetrahedral-Mesh Simulation of Turbulent Flows with the Space-Time Conservative Schemes

Science.gov (United States)

Chang, Chau-Lyan; Venkatachari, Balaji; Cheng, Gary C.

2015-01-01

Direct numerical simulations of turbulent flows are predominantly carried out using structured, hexahedral meshes despite decades of development in unstructured mesh methods. Tetrahedral meshes offer ease of mesh generation around complex geometries and the potential of an orientation free grid that would provide un-biased small-scale dissipation and more accurate intermediate scale solutions. However, due to the lack of consistent multi-dimensional numerical formulations in conventional schemes for triangular and tetrahedral meshes at the cell interfaces, numerical issues exist when flow discontinuities or stagnation regions are present. The space-time conservative conservation element solution element (CESE) method - due to its Riemann-solver-free shock capturing capabilities, non-dissipative baseline schemes, and flux conservation in time as well as space - has the potential to more accurately simulate turbulent flows using unstructured tetrahedral meshes. To pave the way towards accurate simulation of shock/turbulent boundary-layer interaction, a series of wave and shock interaction benchmark problems that increase in complexity, are computed in this paper with triangular/tetrahedral meshes. Preliminary computations for the normal shock/turbulence interactions are carried out with a relatively coarse mesh, by direct numerical simulations standards, in order to assess other effects such as boundary conditions and the necessity of a buffer domain. The results indicate that qualitative agreement with previous studies can be obtained for flows where, strong shocks co-exist along with unsteady waves that display a broad range of scales, with a relatively compact computational domain and less stringent requirements for grid clustering near the shock. With the space-time conservation properties, stable solutions without any spurious wave reflections can be obtained without a need for buffer domains near the outflow/farfield boundaries. Computational results for the

1. Cavitation inception in nozzle-plate and wire mesh pressure droppers in water and sodium

International Nuclear Information System (INIS)

Collinson, A.E.

1976-01-01

Cavitation tests on multi-hole nozzle plates and wire meshes approximately 100mm diameter in water at 20 deg C and sodium at 300 deg C are described. These pressure dropping elements were mounted in recirculating loops where cavitation was induced by gradually lowering the back-ground pressure at constant flow. Cavitation was detected acoustically using wall mounted piezoelectric microphones, the signal being displayed on a ratemeter recording individual cavitation events. For nozzle plates, cavitation started intermittently as the pressure was lowered, the noise level suddenly increasing at a critical cavitation number sigma. For meshes the intermittent region was absent. Values of sigma for nozzles and meshes were similar in water and sodium for the conditions prevailing during the tests. It was apparent that cavitation took place on the axes of vortices both in the free stream and close to nozzle curved surfaces

2. A new anisotropic mesh adaptation method based upon hierarchical a posteriori error estimates

Science.gov (United States)

Huang, Weizhang; Kamenski, Lennard; Lang, Jens

2010-03-01

A new anisotropic mesh adaptation strategy for finite element solution of elliptic differential equations is presented. It generates anisotropic adaptive meshes as quasi-uniform ones in some metric space, with the metric tensor being computed based on hierarchical a posteriori error estimates. A global hierarchical error estimate is employed in this study to obtain reliable directional information of the solution. Instead of solving the global error problem exactly, which is costly in general, we solve it iteratively using the symmetric Gauß-Seidel method. Numerical results show that a few GS iterations are sufficient for obtaining a reasonably good approximation to the error for use in anisotropic mesh adaptation. The new method is compared with several strategies using local error estimators or recovered Hessians. Numerical results are presented for a selection of test examples and a mathematical model for heat conduction in a thermal battery with large orthotropic jumps in the material coefficients.

3. Development of polygon elements based on the scaled boundary finite element method

International Nuclear Information System (INIS)

Chiong, Irene; Song Chongmin

2010-01-01

We aim to extend the scaled boundary finite element method to construct conforming polygon elements. The development of the polygonal finite element is highly anticipated in computational mechanics as greater flexibility and accuracy can be achieved using these elements. The scaled boundary polygonal finite element will enable new developments in mesh generation, better accuracy from a higher order approximation and better transition elements in finite element meshes. Polygon elements of arbitrary number of edges and order have been developed successfully. The edges of an element are discretised with line elements. The displacement solution of the scaled boundary finite element method is used in the development of shape functions. They are shown to be smooth and continuous within the element, and satisfy compatibility and completeness requirements. Furthermore, eigenvalue decomposition has been used to depict element modes and outcomes indicate the ability of the scaled boundary polygonal element to express rigid body and constant strain modes. Numerical tests are presented; the patch test is passed and constant strain modes verified. Accuracy and convergence of the method are also presented and the performance of the scaled boundary polygonal finite element is verified on Cook's swept panel problem. Results show that the scaled boundary polygonal finite element method outperforms a traditional mesh and accuracy and convergence are achieved from fewer nodes. The proposed method is also shown to be truly flexible, and applies to arbitrary n-gons formed of irregular and non-convex polygons.

4. Connectivity editing for quad-dominant meshes

KAUST Repository

Peng, Chihan

2013-08-01

We propose a connectivity editing framework for quad-dominant meshes. In our framework, the user can edit the mesh connectivity to control the location, type, and number of irregular vertices (with more or fewer than four neighbors) and irregular faces (non-quads). We provide a theoretical analysis of the problem, discuss what edits are possible and impossible, and describe how to implement an editing framework that realizes all possible editing operations. In the results, we show example edits and illustrate the advantages and disadvantages of different strategies for quad-dominant mesh design. © 2013 The Author(s) Computer Graphics Forum © 2013 The Eurographics Association and John Wiley & Sons Ltd.

5. Open preperitoneal groin hernia repair with mesh

DEFF Research Database (Denmark)

Andresen, Kristoffer; Rosenberg, Jacob

2017-01-01

Background For the repair of inguinal hernias, several surgical methods have been presented where the purpose is to place a mesh in the preperitoneal plane through an open access. The aim of this systematic review was to describe preperitoneal repairs with emphasis on the technique. Data sources...... A systematic review was conducted and reported according to the PRISMA statement. PubMed, Cochrane library and Embase were searched systematically. Studies were included if they provided clinical data with more than 30 days follow up following repair of an inguinal hernia with an open preperitoneal mesh......-analysis. Open preperitoneal techniques with placement of a mesh through an open approach seem promising compared with the standard anterior techniques. This systematic review provides an overview of these techniques together with a description of surgical methods and clinical outcomes....

6. Open preperitoneal groin hernia repair with mesh

DEFF Research Database (Denmark)

Andresen, Kristoffer; Rosenberg, Jacob

2017-01-01

BACKGROUND: For the repair of inguinal hernias, several surgical methods have been presented where the purpose is to place a mesh in the preperitoneal plane through an open access. The aim of this systematic review was to describe preperitoneal repairs with emphasis on the technique. DATA SOURCES......: A systematic review was conducted and reported according to the PRISMA statement. PubMed, Cochrane library and Embase were searched systematically. Studies were included if they provided clinical data with more than 30 days follow up following repair of an inguinal hernia with an open preperitoneal mesh......-analysis. Open preperitoneal techniques with placement of a mesh through an open approach seem promising compared with the standard anterior techniques. This systematic review provides an overview of these techniques together with a description of surgical methods and clinical outcomes....

7. hp Spectral element methods for three dimensional elliptic problems

This is the first of a series of papers devoted to the study of h-p spec- .... element functions defined on mesh elements in the new system of variables with a uni- ... the spectral element functions on these elements and give construction of the stability .... By Hm( ), we denote the usual Sobolev space of integer order m ≥ 0 ...

8. Compatible discrete operator schemes on polyhedral meshes for elliptic and Stokes equations

International Nuclear Information System (INIS)

Bonelle, Jerome

2014-01-01

This thesis presents a new class of spatial discretization schemes on polyhedral meshes, called Compatible Discrete Operator (CDO) schemes and their application to elliptic and Stokes equations In CDO schemes, preserving the structural properties of the continuous equations is the leading principle to design the discrete operators. De Rham maps define the degrees of freedom according to the physical nature of fields to discretize. CDO schemes operate a clear separation between topological relations (balance equations) and constitutive relations (closure laws). Topological relations are related to discrete differential operators, and constitutive relations to discrete Hodge operators. A feature of CDO schemes is the explicit use of a second mesh, called dual mesh, to build the discrete Hodge operator. Two families of CDO schemes are considered: vertex-based schemes where the potential is located at (primal) mesh vertices, and cell-based schemes where the potential is located at dual mesh vertices (dual vertices being in one-to-one correspondence with primal cells). The CDO schemes related to these two families are presented and their convergence is analyzed. A first analysis hinges on an algebraic definition of the discrete Hodge operator and allows one to identify three key properties: symmetry, stability, and P0-consistency. A second analysis hinges on a definition of the discrete Hodge operator using reconstruction operators, and the requirements on these reconstruction operators are identified. In addition, CDO schemes provide a unified vision on a broad class of schemes proposed in the literature (finite element, finite element, mimetic schemes... ). Finally, the reliability and the efficiency of CDO schemes are assessed on various test cases and several polyhedral meshes. (author)

9. Local adaptive mesh refinement for shock hydrodynamics

International Nuclear Information System (INIS)

Berger, M.J.; Colella, P.; Lawrence Livermore Laboratory, Livermore, 94550 California)

1989-01-01

The aim of this work is the development of an automatic, adaptive mesh refinement strategy for solving hyperbolic conservation laws in two dimensions. There are two main difficulties in doing this. The first problem is due to the presence of discontinuities in the solution and the effect on them of discontinuities in the mesh. The second problem is how to organize the algorithm to minimize memory and CPU overhead. This is an important consideration and will continue to be important as more sophisticated algorithms that use data structures other than arrays are developed for use on vector and parallel computers. copyright 1989 Academic Press, Inc

10. Adaptive mesh refinement for storm surge

KAUST Repository

Mandli, Kyle T.; Dawson, Clint N.

2014-01-01

An approach to utilizing adaptive mesh refinement algorithms for storm surge modeling is proposed. Currently numerical models exist that can resolve the details of coastal regions but are often too costly to be run in an ensemble forecasting framework without significant computing resources. The application of adaptive mesh refinement algorithms substantially lowers the computational cost of a storm surge model run while retaining much of the desired coastal resolution. The approach presented is implemented in the GeoClaw framework and compared to ADCIRC for Hurricane Ike along with observed tide gauge data and the computational cost of each model run. © 2014 Elsevier Ltd.

11. MUSIC: a mesh-unrestricted simulation code

International Nuclear Information System (INIS)

Bonalumi, R.A.; Rouben, B.; Dastur, A.R.; Dondale, C.S.; Li, H.Y.H.

1978-01-01

A general formalism to solve the G-group neutron diffusion equation is described. The G-group flux is represented by complementing an ''asymptotic'' mode with (G-1) ''transient'' modes. A particular reduction-to-one-group technique gives a high computational efficiency. MUSIC, a 2-group code using the above formalism, is presented. MUSIC is demonstrated on a fine-mesh calculation and on 2 coarse-mesh core calculations: a heavy-water reactor (HWR) problem and the 2-D lightwater reactor (LWR) IAEA benchmark. Comparison is made to finite-difference results

12. Adaptive mesh refinement for storm surge

KAUST Repository

Mandli, Kyle T.

2014-03-01

An approach to utilizing adaptive mesh refinement algorithms for storm surge modeling is proposed. Currently numerical models exist that can resolve the details of coastal regions but are often too costly to be run in an ensemble forecasting framework without significant computing resources. The application of adaptive mesh refinement algorithms substantially lowers the computational cost of a storm surge model run while retaining much of the desired coastal resolution. The approach presented is implemented in the GeoClaw framework and compared to ADCIRC for Hurricane Ike along with observed tide gauge data and the computational cost of each model run. © 2014 Elsevier Ltd.

13. Meshing Force of Misaligned Spline Coupling and the Influence on Rotor System

Directory of Open Access Journals (Sweden)

Guang Zhao

2008-01-01

Full Text Available Meshing force of misaligned spline coupling is derived, dynamic equation of rotor-spline coupling system is established based on finite element analysis, the influence of meshing force on rotor-spline coupling system is simulated by numerical integral method. According to the theoretical analysis, meshing force of spline coupling is related to coupling parameters, misalignment, transmitting torque, static misalignment, dynamic vibration displacement, and so on. The meshing force increases nonlinearly with increasing the spline thickness and static misalignment or decreasing alignment meshing distance (AMD. Stiffness of coupling relates to dynamic vibration displacement, and static misalignment is not a constant. Dynamic behaviors of rotor-spline coupling system reveal the following: 1X-rotating speed is the main response frequency of system when there is no misalignment; while 2X-rotating speed appears when misalignment is present. Moreover, when misalignment increases, vibration of the system gets intricate; shaft orbit departs from origin, and magnitudes of all frequencies increase. Research results can provide important criterions on both optimization design of spline coupling and trouble shooting of rotor systems.

14. Meshed doped silicon photonic crystals for manipulating near-field thermal radiation

Science.gov (United States)

Elzouka, Mahmoud; Ndao, Sidy

2018-01-01

The ability to control and manipulate heat flow is of great interest to thermal management and thermal logic and memory devices. Particularly, near-field thermal radiation presents a unique opportunity to enhance heat transfer while being able to tailor its characteristics (e.g., spectral selectivity). However, achieving nanometric gaps, necessary for near-field, has been and remains a formidable challenge. Here, we demonstrate significant enhancement of the near-field heat transfer through meshed photonic crystals with separation gaps above 0.5 μm. Using a first-principle method, we investigate the meshed photonic structures numerically via finite-difference time-domain technique (FDTD) along with the Langevin approach. Results for doped-silicon meshed structures show significant enhancement in heat transfer; 26 times over the non-meshed corrugated structures. This is especially important for thermal management and thermal rectification applications. The results also support the premise that thermal radiation at micro scale is a bulk (rather than a surface) phenomenon; the increase in heat transfer between two meshed-corrugated surfaces compared to the flat surface (8.2) wasn't proportional to the increase in the surface area due to the corrugations (9). Results were further validated through good agreements between the resonant modes predicted from the dispersion relation (calculated using a finite-element method), and transmission factors (calculated from FDTD).

15. Software tools for manipulating fe mesh, virtual surgery and post-processing

Directory of Open Access Journals (Sweden)

Milašinović Danko Z.

2009-01-01

Full Text Available This paper describes a set of software tools which we developed for the calculation of fluid flow through cardiovascular organs. Our tools work with medical data from a CT scanner, but could be used with any other 3D input data. For meshing we used a Tetgen tetrahedral mesh generator, as well as a mesh re-generator that we have developed for conversion of tetrahedral elements into bricks. After adequate meshing we used our PAKF solver for calculation of fluid flow. For human-friendly presentation of results we developed a set of post-processing software tools. With modification of 2D mesh (boundary of cardiovascular organ it is possible to do virtual surgery, so in a case of an aorta with aneurism, which we had received from University Clinical center in Heidelberg from a multi-slice 64-CT scanner, we removed the aneurism and ran calculations on both geometrical models afterwards. The main idea of this methodology is creating a system that could be used in clinics.

16. Improvement of neutronic calculations on a Masurca core using adaptive mesh refinement capabilities

International Nuclear Information System (INIS)

Fournier, D.; Archier, P.; Le Tellier, R.; Suteau, C.

2011-01-01

The simulation of 3D cores with homogenized assemblies in transport theory remains time and memory consuming for production calculations. With a multigroup discretization for the energy variable and a discrete ordinate method for the angle, a system of about 10"4 coupled hyperbolic transport equations has to be solved. For these equations, we intend to optimize the spatial discretization. In the framework of the SNATCH solver used in this study, the spatial problem is dealt with by using a structured hexahedral mesh and applying a Discontinuous Galerkin Finite Element Method (DGFEM). This paper shows the improvements due to the development of Adaptive Mesh Refinement (AMR) methods. As the SNATCH solver uses a hierarchical polynomial basis, p−refinement is possible but also h−refinement thanks to non conforming capabilities. Besides, as the flux spatial behavior is highly dependent on the energy, we propose to adapt differently the spatial discretization according to the energy group. To avoid dealing with too many meshes, some energy groups are joined and share the same mesh. The different energy-dependent AMR strategies are compared to each other but also with the classical approach of a conforming and highly refined spatial mesh. This comparison is carried out on different quantities such as the multiplication factor, the flux or the current. The gain in time and memory is shown for 2D and 3D benchmarks coming from the ZONA2B experimental core configuration of the MASURCA mock-up at CEA Cadarache. (author)

17. High-order discrete ordinate transport in non-conforming 2D Cartesian meshes

International Nuclear Information System (INIS)

Gastaldo, L.; Le Tellier, R.; Suteau, C.; Fournier, D.; Ruggieri, J. M.

2009-01-01

We present in this paper a numerical scheme for solving the time-independent first-order form of the Boltzmann equation in non-conforming 2D Cartesian meshes. The flux solution technique used here is the discrete ordinate method and the spatial discretization is based on discontinuous finite elements. In order to have p-refinement capability, we have chosen a hierarchical polynomial basis based on Legendre polynomials. The h-refinement capability is also available and the element interface treatment has been simplified by the use of special functions decomposed over the mesh entities of an element. The comparison to a classical S N method using the Diamond Differencing scheme as spatial approximation confirms the good behaviour of the method. (authors)

18. Spacer grid for fuel elements

International Nuclear Information System (INIS)

Hensolt, T.; Huenner, M.; Rau, P.; Veca, A.

1978-01-01

The spacer grid for fuel elements of a gas-cooled fast breeder reactor (but also for PWRs and BWRs) consists of a lattice field with dodecagonal meshes. These meshes are formed by three each adjacent hexagons grouped arround a central axis. The pairs of legs extending into the dodecagon and being staggered by 120 0 are designed as knubs with inclined abutting surfaces for the fuel rods. By this means there is formed a three-point bearing for centering the fuel rods. The spacer grid mentioned above is rough-worked from a single disc- resp. plate-shaped body (unfinished piece). (DG) [de

19. Spacer grid for fuel elements

International Nuclear Information System (INIS)

Hensolt, T.; Huenner, M.; Rau, P.; Veca, A.

1980-01-01

The spacer grid for fuel elements of a gas-cooled fast breeder reactor (but also for PWRs and BWRs) consists of a lattice field with dodecagonal meshes. These meshes are formed by three each adjacent hexagons grouped arround a central axis. The pairs of legs extending into the dodecagon and being staggered by 120 are designed as knubs with inclined abutting surfaces for the fuel rods. By this means there is formed a three-point bearing for centering the fuel rods. The spacer grid mentioned above is rough-worked from a single disc- resp. plate-shaped body (unfinished piece). (orig.)

20. Mesh removal following transvaginal mesh placement: a case series of 104 operations.

Science.gov (United States)

Marcus-Braun, Naama; von Theobald, Peter

2010-04-01

The objective of the study was to reveal the way we treat vaginal mesh complications in a trained referral center. This is a retrospective review of all patients who underwent surgical removal of transvaginal mesh for mesh-related complications during a 5-year period. Eighty-three patients underwent 104 operations including 61 complete mesh removal, 14 partial excision, 15 section of sub-urethral sling, and five laparoscopies. Main indications were erosion, infection, granuloma, incomplete voiding, and pain. Fifty-eight removals occurred more than 2 years after the primary mesh placement. Mean operation time was 21 min, and there were two intraoperative and ten minor postoperative complications. Stress urinary incontinence (SUI) recurred in 38% and cystocele in 19% of patients. In a trained center, mesh removal was found to be a quick and safe procedure. Mesh-related complications may frequently occur more than 2 years after the primary operation. Recurrence was mostly associated with SUI and less with genital prolapse.

1. Pure transvaginal excision of mesh erosion involving the bladder.

Science.gov (United States)

Firoozi, Farzeen; Goldman, Howard B

2013-06-01

We present a pure transvaginal approach to the removal of eroded mesh involving the bladder secondary to placement of transvaginal mesh for management of pelvic organ prolapse (POP) using a mesh kit. Although technically challenging, we demonstrate the feasibility of a purely transvaginal approach, avoiding a potentially more morbid transabdominal approach. The video presents the surgical technique of pure transvaginal excision of mesh erosion involving the bladder after mesh placement using a prolapse kit was performed. This video shows that purely transvaginal removal of mesh erosion involving the bladder can be done safely and is feasible.

2. Mesh size in Lichtenstein repair: a systematic review and meta-analysis to determine the importance of mesh size.

Science.gov (United States)

Seker, D; Oztuna, D; Kulacoglu, H; Genc, Y; Akcil, M

2013-04-01

Small mesh size has been recognized as one of the factors responsible for recurrence after Lichtenstein hernia repair due to insufficient coverage or mesh shrinkage. The Lichtenstein Hernia Institute recommends a 7 × 15 cm mesh that can be trimmed up to 2 cm from the lateral side. We performed a systematic review to determine surgeons' mesh size preference for the Lichtenstein hernia repair and made a meta-analysis to determine the effect of mesh size, mesh type, and length of follow-up time on recurrence. Two medical databases, PubMed and ISI Web of Science, were systematically searched using the key word "Lichtenstein repair." All full text papers were selected. Publications mentioning mesh size were brought for further analysis. A mesh surface area of 90 cm(2) was accepted as the threshold for defining the mesh as small or large. Also, a subgroup analysis for recurrence pooled proportion according to the mesh size, mesh type, and follow-up period was done. In total, 514 papers were obtained. There were no prospective or retrospective clinical studies comparing mesh size and clinical outcome. A total of 141 papers were duplicated in both databases. As a result, 373 papers were obtained. The full text was available in over 95 % of papers. Only 41 (11.2 %) papers discussed mesh size. In 29 studies, a mesh larger than 90 cm(2) was used. The most frequently preferred commercial mesh size was 7.5 × 15 cm. No papers mentioned the size of the mesh after trimming. There was no information about the relationship between mesh size and patient BMI. The pooled proportion in recurrence for small meshes was 0.0019 (95 % confidence interval: 0.007-0.0036), favoring large meshes to decrease the chance of recurrence. Recurrence becomes more marked when follow-up period is longer than 1 year (p < 0.001). Heavy meshes also decreased recurrence (p = 0.015). This systematic review demonstrates that the size of the mesh used in Lichtenstein hernia repair is rarely

3. Properties of meshes used in hernia repair: a comprehensive review of synthetic and biologic meshes.

Science.gov (United States)

Ibrahim, Ahmed M S; Vargas, Christina R; Colakoglu, Salih; Nguyen, John T; Lin, Samuel J; Lee, Bernard T

2015-02-01

Data on the mechanical properties of the adult human abdominal wall have been difficult to obtain rendering manufacture of the ideal mesh for ventral hernia repair a challenge. An ideal mesh would need to exhibit greater biomechanical strength and elasticity than that of the abdominal wall. The aim of this study is to quantitatively compare the biomechanical properties of the most commonly used synthetic and biologic meshes in ventral hernia repair and presents a comprehensive literature review. A narrative review of the literature was performed using the PubMed database spanning articles from 1982 to 2012 including a review of company Web sites to identify all available information relating to the biomechanical properties of various synthetic and biologic meshes used in ventral hernia repair. There exist differences in the mechanical properties and the chemical nature of different meshes. In general, most synthetic materials have greater stiffness and elasticity than what is required for abdominal wall reconstruction; however, each exhibits unique properties that may be beneficial for clinical use. On the contrary, biologic meshes are more elastic but less stiff and with a lower tensile strength than their synthetic counterparts. The current standard of practice for the treatment of ventral hernias is the use of permanent synthetic mesh material. Recently, biologic meshes have become more frequently used. Most meshes exhibit biomechanical properties over the known abdominal wall thresholds. Augmenting strength requires increasing amounts of material contributing to more stiffness and foreign body reaction, which is not necessarily an advantage. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

4. Optimization of the spatial mesh for numerical solution of the neutron transport equation in a cluster-type lattice cell

International Nuclear Information System (INIS)

Davis, R.S.

2012-01-01

For programs that solve the neutron transport equation with an approximation that the neutron flux is constant in each space in a user-defined mesh, optimization of that mesh yields benefits in computing time and attainable precision. The previous best practice does not optimize the mesh thoroughly, because a large number of test runs of the solving software would be necessary. The method presented here optimizes the mesh for a flux that is based on conventional approximations but is more informative, so that a minimal number of parameters, one per type of material, must be adjusted by test runs to achieve thorough optimization. For a 37 element, natural-uranium, CANDU lattice cell, the present optimization yields 7 to 12 times (depending on the criterion) better precision than the previous best practice in 37% less computing time. (author)

5. Implicit Geometry Meshing for the simulation of Rotary Friction Welding

Science.gov (United States)

Schmicker, D.; Persson, P.-O.; Strackeljan, J.

2014-08-01

The simulation of Rotary Friction Welding (RFW) is a challenging task, since it states a coupled problem of phenomena like large plastic deformations, heat flux, contact and friction. In particular the mesh generation and its restoration when using a Lagrangian description of motion is of significant severity. In this regard Implicit Geometry Meshing (IGM) algorithms are promising alternatives to the more conventional explicit methods. Because of the implicit description of the geometry during remeshing, the IGM procedure turns out to be highly robust and generates spatial discretizations of high quality regardless of the complexity of the flash shape and its inclusions. A model for efficient RFW simulation is presented, which is based on a Carreau fluid law, an Augmented Lagrange approach in mapping the incompressible deformations, a penalty contact approach, a fully regularized Coulomb-/fluid friction law and a hybrid time integration strategy. The implementation of the IGM algorithm using 6-node triangular finite elements is described in detail. The techniques are demonstrated on a fairly complex friction welding problem, demonstrating the performance and the potentials of the proposed method. The techniques are general and straight-forward to implement, and offer the potential of successful adoption to a wide range of other engineering problems.

6. Highly Symmetric and Congruently Tiled Meshes for Shells and Domes

Science.gov (United States)

Rasheed, Muhibur; Bajaj, Chandrajit

2016-01-01

We describe the generation of all possible shell and dome shapes that can be uniquely meshed (tiled) using a single type of mesh face (tile), and following a single meshing (tiling) rule that governs the mesh (tile) arrangement with maximal vertex, edge and face symmetries. Such tiling arrangements or congruently tiled meshed shapes, are frequently found in chemical forms (fullerenes or Bucky balls, crystals, quasi-crystals, virus nano shells or capsids), and synthetic shapes (cages, sports domes, modern architectural facades). Congruently tiled meshes are both aesthetic and complete, as they support maximal mesh symmetries with minimal complexity and possess simple generation rules. Here, we generate congruent tilings and meshed shape layouts that satisfy these optimality conditions. Further, the congruent meshes are uniquely mappable to an almost regular 3D polyhedron (or its dual polyhedron) and which exhibits face-transitive (and edge-transitive) congruency with at most two types of vertices (each type transitive to the other). The family of all such congruently meshed polyhedra create a new class of meshed shapes, beyond the well-studied regular, semi-regular and quasi-regular classes, and their duals (platonic, Catalan and Johnson). While our new mesh class is infinite, we prove that there exists a unique mesh parametrization, where each member of the class can be represented by two integer lattice variables, and moreover efficiently constructable. PMID:27563368

7. On Using Particle Finite Element for Hydrodynamics Problems Solving

Directory of Open Access Journals (Sweden)

E. V. Davidova

2015-01-01

Full Text Available The aim of the present research is to develop software for the Particle Finite Element Method (PFEM and its verification on the model problem of viscous incompressible flow simulation in a square cavity. The Lagrangian description of the medium motion is used: the nodes of the finite element mesh move together with the fluid that allows to consider them as particles of the medium. Mesh cells deform when in time-stepping procedure, so it is necessary to reconstruct the mesh to provide stability of the finite element numerical procedure.Meshing algorithm allows us to obtain the mesh, which satisfies the Delaunay criteria: it is called \\the possible triangles method". This algorithm is based on the well-known Fortune method of Voronoi diagram constructing for a certain set of points in the plane. The graphical representation of the possible triangles method is shown. It is suitable to use generalization of Delaunay triangulation in order to construct meshes with polygonal cells in case of multiple nodes close to be lying on the same circle.The viscous incompressible fluid flow is described by the Navier | Stokes equations and the mass conservation equation with certain initial and boundary conditions. A fractional steps method, which allows us to avoid non-physical oscillations of the pressure, provides the timestepping procedure. Using the finite element discretization and the Bubnov | Galerkin method allows us to carry out spatial discretization.For form functions calculation of finite element mesh with polygonal cells, \

8. Markov Random Fields on Triangle Meshes

DEFF Research Database (Denmark)

Andersen, Vedrana; Aanæs, Henrik; Bærentzen, Jakob Andreas

2010-01-01

In this paper we propose a novel anisotropic smoothing scheme based on Markov Random Fields (MRF). Our scheme is formulated as two coupled processes. A vertex process is used to smooth the mesh by displacing the vertices according to a MRF smoothness prior, while an independent edge process label...

9. Performance Evaluation of Coded Meshed Networks

DEFF Research Database (Denmark)

Krigslund, Jeppe; Hansen, Jonas; Pedersen, Morten Videbæk

2013-01-01

of the former to enhance the gains of the latter. We first motivate our work through measurements in WiFi mesh networks. Later, we compare state-of-the-art approaches, e.g., COPE, RLNC, to CORE. Our measurements show the higher reliability and throughput of CORE over other schemes, especially, for asymmetric...

10. Solid Mesh Registration for Radiotherapy Treatment Planning

DEFF Research Database (Denmark)

Noe, Karsten Østergaard; Sørensen, Thomas Sangild

2010-01-01

We present an algorithm for solid organ registration of pre-segmented data represented as tetrahedral meshes. Registration of the organ surface is driven by force terms based on a distance field representation of the source and reference shapes. Registration of internal morphology is achieved usi...

11. A Novel Haptic Interactive Approach to Simulation of Surgery Cutting Based on Mesh and Meshless Models

Science.gov (United States)

Liu, Peter X.; Lai, Pinhua; Xu, Shaoping; Zou, Yanni

2018-01-01

In the present work, the majority of implemented virtual surgery simulation systems have been based on either a mesh or meshless strategy with regard to soft tissue modelling. To take full advantage of the mesh and meshless models, a novel coupled soft tissue cutting model is proposed. Specifically, the reconstructed virtual soft tissue consists of two essential components. One is associated with surface mesh that is convenient for surface rendering and the other with internal meshless point elements that is used to calculate the force feedback during cutting. To combine two components in a seamless way, virtual points are introduced. During the simulation of cutting, the Bezier curve is used to characterize smooth and vivid incision on the surface mesh. At the same time, the deformation of internal soft tissue caused by cutting operation can be treated as displacements of the internal point elements. Furthermore, we discussed and proved the stability and convergence of the proposed approach theoretically. The real biomechanical tests verified the validity of the introduced model. And the simulation experiments show that the proposed approach offers high computational efficiency and good visual effect, enabling cutting of soft tissue with high stability. PMID:29850006

Interestingly, this enables us to deduce that parallelograms with rational sides and area are dense in the class of all parallelograms. We also give a criterion for density of certain sets in topological spaces using local product structure and prove the density Theorem 6 in the appendix section. An application of this proves the ...

13. Vertex Normals and Face Curvatures of Triangle Meshes

KAUST Repository

Sun, Xiang; Jiang, Caigui; Wallner, Johannes; Pottmann, Helmut

2016-01-01

This study contributes to the discrete differential geometry of triangle meshes, in combination with discrete line congruences associated with such meshes. In particular we discuss when a congruence defined by linear interpolation of vertex normals

14. Recurrence and Pain after Mesh Repair of Inguinal Hernias

African Journals Online (AJOL)

Abstract. Background: Surgery for inguinal hernias has ... repair. Methods: The study was conducted on all inguinal hernia patients operated between 1st. October ... bilateral (1.6%). Only 101 .... Open Mesh Versus Laparoscopic Mesh. Repair ...

15. Surgical Management of Pelvic floor Prolapse in women using Mesh

African Journals Online (AJOL)

RAH

polytetrafluoroethylene) . This article reviews our experience with polypropylene mesh in pelvic floor repair at the. Southern General Hospital Glasgow. The objective was to determine the safety and effectiveness of the prolene mesh in the repair ...

16. Electromagnetic forward modelling for realistic Earth models using unstructured tetrahedral meshes and a meshfree approach

Science.gov (United States)

Farquharson, C.; Long, J.; Lu, X.; Lelievre, P. G.

2017-12-01

Real-life geology is complex, and so, even when allowing for the diffusive, low resolution nature of geophysical electromagnetic methods, we need Earth models that can accurately represent this complexity when modelling and inverting electromagnetic data. This is particularly the case for the scales, detail and conductivity contrasts involved in mineral and hydrocarbon exploration and development, but also for the larger scale of lithospheric studies. Unstructured tetrahedral meshes provide a flexible means of discretizing a general, arbitrary Earth model. This is important when wanting to integrate a geophysical Earth model with a geological Earth model parameterized in terms of surfaces. Finite-element and finite-volume methods can be derived for computing the electric and magnetic fields in a model parameterized using an unstructured tetrahedral mesh. A number of such variants have been proposed and have proven successful. However, the efficiency and accuracy of these methods can be affected by the "quality" of the tetrahedral discretization, that is, how many of the tetrahedral cells in the mesh are long, narrow and pointy. This is particularly the case if one wants to use an iterative technique to solve the resulting linear system of equations. One approach to deal with this issue is to develop sophisticated model and mesh building and manipulation capabilities in order to ensure that any mesh built from geological information is of sufficient quality for the electromagnetic modelling. Another approach is to investigate other methods of synthesizing the electromagnetic fields. One such example is a "meshfree" approach in which the electromagnetic fields are synthesized using a mesh that is distinct from the mesh used to parameterized the Earth model. There are then two meshes, one describing the Earth model and one used for the numerical mathematics of computing the fields. This means that there are no longer any quality requirements on the model mesh, which

17. TET_2MCNP: A conversion program to implement tetrahearal-mesh models in MCNP

International Nuclear Information System (INIS)

Han, Min Cheol; Yeom, Yeon Soo; Nguyen, Thng Tat; Choi, Chan Soo; Lee, Hyun Su; Kim, Chan Hyeong

2016-01-01

Tetrahedral-mesh geometries can be used in the MCNP code, but the MCNP code accepts only the geometry in the Abaqus input file format; hence, the existing tetrahedral-mesh models first need to be converted to the Abacus input file format to be used in the MCNP code. In the present study, we developed a simple but useful computer program, TET_2MCNP, for converting TetGen-generated tetrahedral-mesh models to the Abacus input file format. TET_2MCNP is written in C++ and contains two components: one for converting a TetGen output file to the Abacus input file and the other for the reverse conversion process. The TET_2MCP program also produces an MCNP input file. Further, the program provides some MCNP-specific functions: the maximum number of elements (i.e., tetrahedrons) per part can be limited, and the material density of each element can be transferred to the MCNP input file. To test the developed program, two tetrahedral-mesh models were generated using TetGen and converted to the Abaqus input file format using TET_2MCNP. Subsequently, the converted files were used in the MCNP code to calculate the object- and organ-averaged absorbed dose in the sphere and phantom, respectively. The results show that the converted models provide, within statistical uncertainties, identical dose values to those obtained using the PHITS code, which uses the original tetrahedral-mesh models produced by the TetGen program. The results show that the developed program can successfully convert TetGen tetrahedral-mesh models to Abacus input files. In the present study, we have developed a computer program, TET_2MCNP, which can be used to convert TetGen-generated tetrahedral-mesh models to the Abaqus input file format for use in the MCNP code. We believe this program will be used by many MCNP users for implementing complex tetrahedral-mesh models, including computational human phantoms, in the MCNP code

18. TET{sub 2}MCNP: A conversion program to implement tetrahearal-mesh models in MCNP

Energy Technology Data Exchange (ETDEWEB)

Han, Min Cheol; Yeom, Yeon Soo; Nguyen, Thng Tat; Choi, Chan Soo; Lee, Hyun Su; Kim, Chan Hyeong [Dept. of Nuclear Engineering, Hanyang University, Seoul (Korea, Republic of)

2016-12-15

Tetrahedral-mesh geometries can be used in the MCNP code, but the MCNP code accepts only the geometry in the Abaqus input file format; hence, the existing tetrahedral-mesh models first need to be converted to the Abacus input file format to be used in the MCNP code. In the present study, we developed a simple but useful computer program, TET{sub 2}MCNP, for converting TetGen-generated tetrahedral-mesh models to the Abacus input file format. TET{sub 2}MCNP is written in C++ and contains two components: one for converting a TetGen output file to the Abacus input file and the other for the reverse conversion process. The TET{sub 2}MCP program also produces an MCNP input file. Further, the program provides some MCNP-specific functions: the maximum number of elements (i.e., tetrahedrons) per part can be limited, and the material density of each element can be transferred to the MCNP input file. To test the developed program, two tetrahedral-mesh models were generated using TetGen and converted to the Abaqus input file format using TET{sub 2}MCNP. Subsequently, the converted files were used in the MCNP code to calculate the object- and organ-averaged absorbed dose in the sphere and phantom, respectively. The results show that the converted models provide, within statistical uncertainties, identical dose values to those obtained using the PHITS code, which uses the original tetrahedral-mesh models produced by the TetGen program. The results show that the developed program can successfully convert TetGen tetrahedral-mesh models to Abacus input files. In the present study, we have developed a computer program, TET{sub 2}MCNP, which can be used to convert TetGen-generated tetrahedral-mesh models to the Abaqus input file format for use in the MCNP code. We believe this program will be used by many MCNP users for implementing complex tetrahedral-mesh models, including computational human phantoms, in the MCNP code.

19. To mesh or not to mesh: a review of pelvic organ reconstructive surgery

Science.gov (United States)

Dällenbach, Patrick

2015-01-01

Pelvic organ prolapse (POP) is a major health issue with a lifetime risk of undergoing at least one surgical intervention estimated at close to 10%. In the 1990s, the risk of reoperation after primary standard vaginal procedure was estimated to be as high as 30% to 50%. In order to reduce the risk of relapse, gynecological surgeons started to use mesh implants in pelvic organ reconstructive surgery with the emergence of new complications. Recent studies have nevertheless shown that the risk of POP recurrence requiring reoperation is lower than previously estimated, being closer to 10% rather than 30%. The development of mesh surgery – actively promoted by the marketing industry – was tremendous during the past decade, and preceded any studies supporting its benefit for our patients. Randomized trials comparing the use of mesh to native tissue repair in POP surgery have now shown better anatomical but similar functional outcomes, and meshes are associated with more complications, in particular for transvaginal mesh implants. POP is not a life-threatening condition, but a functional problem that impairs quality of life for women. The old adage “primum non nocere” is particularly appropriate when dealing with this condition which requires no treatment when asymptomatic. It is currently admitted that a certain degree of POP is physiological with aging when situated above the landmark of the hymen. Treatment should be individualized and the use of mesh needs to be selective and appropriate. Mesh implants are probably an important tool in pelvic reconstructive surgery, but the ideal implant has yet to be found. The indications for its use still require caution and discernment. This review explores the reasons behind the introduction of mesh augmentation in POP surgery, and aims to clarify the risks, benefits, and the recognized indications for its use. PMID:25848324

20. Outcomes of Autologous Fascia Pubovaginal Sling for Patients with Transvaginal Mesh Related Complications Requiring Mesh Removal.

Science.gov (United States)

McCoy, Olugbemisola; Vaughan, Taylor; Nickles, S Walker; Ashley, Matt; MacLachlan, Lara S; Ginsberg, David; Rovner, Eric

2016-08-01

1. Persistent pelvic pain following transvaginal mesh surgery: a cause for mesh removal.

Science.gov (United States)

Marcus-Braun, Naama; Bourret, Antoine; von Theobald, Peter

2012-06-01

Persistent pelvic pain after vaginal mesh surgery is an uncommon but serious complication that greatly affects women's quality of life. Our aim was to evaluate various procedures for mesh removal performed at a tertiary referral center in cases of persistent pelvic pain, and to evaluate the ensuing complications and outcomes. A retrospective study was conducted at the University Hospital of Caen, France, including all patients treated for removal or section of vaginal mesh due to pelvic pain as a primary cause, between January 2004 and September 2009. Ten patients met the inclusion criteria. Patients were diagnosed between 10 months and 3 years after their primary operation. Eight cases followed suburethral sling procedures and two followed mesh surgery for pelvic organ prolapse. Patients presented with obturator neuralgia (6), pudendal neuralgia (2), dyspareunia (1), and non-specific pain (1). The surgical treatment to release the mesh included: three cases of extra-peritoneal laparoscopy, four cases of complete vaginal mesh removal, one case of partial mesh removal and two cases of section of the suburethral sling. In all patients with obturator neuralgia, symptoms were resolved or improved, whereas in both cases of pudendal neuralgia the symptoms continued. There were no intra-operative complications. Post-operative Retzius hematoma was observed in one patient after laparoscopy. Mesh removal in a tertiary center is a safe procedure, necessary in some cases of persistent pelvic pain. Obturator neuralgia seems to be easier to treat than pudendal neuralgia. Early diagnosis is the key to success in prevention of chronic disease. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

2. Nested dissection on a mesh-connected processor array

International Nuclear Information System (INIS)

Worley, P.H.; Schreiber, R.

1986-01-01

The authors present a parallel implementation of Gaussian elimination without pivoting using the nested dissection ordering for solving Ax=b where A is an N x N symmetric positive definite matrix. If the graph of A is a √N x √N finite element mesh then a parallel complexity of O(√N) can be achieved for Gaussian elimination with the nested dissection ordering. The authors' implementation achieves this parallel complexity on a two dimensional MIMD processor array with N processors and nearest neighbors interconnections. Thus nested dissection is a near optimal algorithm for this problem on this interconnection topology. The parallel implementation on this architecture requires 158√N + O(log/sub 2/(√N)) parallel floating point multiplications. It is faster than a Kung-Leiserson systolic array for banded matrices for N≥961, and faster than a serial implementation for N as small as 9

3. Laparoscopic removal of mesh used in pelvic floor surgery.

Science.gov (United States)

Khong, Su-Yen; Lam, Alan

2009-01-01

Various meshes are being used widely in clinical practice for pelvic reconstructive surgery despite the lack of evidence of their long-term safety and efficacy. Management of complications such as mesh erosion and dyspareunia can be challenging. Most mesh-related complications can probably be managed successfully via the transvaginal route; however, this may be impossible if surgical access is poor. This case report demonstrates the successful laparoscopic removal of mesh after several failed attempts via the vaginal route.

4. The influences of mesh subdivision on nonlinear fracture analysis for surface cracked structures

International Nuclear Information System (INIS)

Shimakawa, T.

1991-01-01

The leak-before-break (LBB) concept can be expected to be applied not only to safety assessment, but also to the rationalization of nuclear power plants. The development of a method to evaluate fracture characteristics is required to establish this concept. The finite element method (FEM) is one of the most useful tools for this evaluation. However, the influence of various factors on the solution is not well understood and the reliability has not been fully verified. In this study, elastic-plastic 3D analyses are performed for two kinds of surface cracked structure, and the influence of mesh design is discussed. The first problem is surface crack growth in a carbon steel plate subjected to tension loading. A crack extension analysis is performed under a generation phase simulation using the crack release technique. Numerical instability of the J-integral solution is observed when the number of elements in the thickness direction of the ligament is reduced to three. The influence of mesh design in the ligament on the solution is discussed. The second problem is a circumferential part-through crack in a carbon steel pipe subjected to a bending moment. Two kinds of mesh design are employed, and a comparison between two sets of results shows that the number of elements on the crack surface also affects the solution as well as the number of elements in the ligament. (author)

5. On Reducing Delay in Mesh-Based P2P Streaming: A Mesh-Push Approach

Science.gov (United States)

Liu, Zheng; Xue, Kaiping; Hong, Peilin

The peer-assisted streaming paradigm has been widely employed to distribute live video data on the internet recently. In general, the mesh-based pull approach is more robust and efficient than the tree-based push approach. However, pull protocol brings about longer streaming delay, which is caused by the handshaking process of advertising buffer map message, sending request message and scheduling of the data block. In this paper, we propose a new approach, mesh-push, to address this issue. Different from the traditional pull approach, mesh-push implements block scheduling algorithm at sender side, where the block transmission is initiated by the sender rather than by the receiver. We first formulate the optimal upload bandwidth utilization problem, then present the mesh-push approach, in which a token protocol is designed to avoid block redundancy; a min-cost flow model is employed to derive the optimal scheduling for the push peer; and a push peer selection algorithm is introduced to reduce control overhead. Finally, we evaluate mesh-push through simulation, the results of which show mesh-push outperforms the pull scheduling in streaming delay, and achieves comparable delivery ratio at the same time.

6. Surgical management of lower urinary mesh perforation after mid-urethral polypropylene mesh sling: mesh excision, urinary tract reconstruction and concomitant pubovaginal sling with autologous rectus fascia.

Science.gov (United States)

Shah, Ketul; Nikolavsky, Dmitriy; Gilsdorf, Daniel; Flynn, Brian J

2013-12-01

We present our management of lower urinary tract (LUT) mesh perforation after mid-urethral polypropylene mesh sling using a novel combination of surgical techniques including total or near total mesh excision, urinary tract reconstruction, and concomitant pubovaginal sling with autologous rectus fascia in a single operation. We retrospectively reviewed the medical records of 189 patients undergoing transvaginal removal of polypropylene mesh from the lower urinary tract or vagina. The focus of this study is 21 patients with LUT mesh perforation after mid-urethral polypropylene mesh sling. We excluded patients with LUT mesh perforation from prolapse kits (n = 4) or sutures (n = 11), or mesh that was removed because of isolated vaginal wall exposure without concomitant LUT perforation (n = 164). Twenty-one patients underwent surgical removal of mesh through a transvaginal approach or combined transvaginal/abdominal approaches. The location of the perforation was the urethra in 14 and the bladder in 7. The mean follow-up was 22 months. There were no major intraoperative complications. All patients had complete resolution of the mesh complication and the primary symptom. Of the patients with urethral perforation, continence was achieved in 10 out of 14 (71.5 %). Of the patients with bladder perforation, continence was achieved in all 7. Total or near total removal of lower urinary tract (LUT) mesh perforation after mid-urethral polypropylene mesh sling can completely resolve LUT mesh perforation in a single operation. A concomitant pubovaginal sling can be safely performed in efforts to treat existing SUI or avoid future surgery for SUI.

7. 21 CFR 870.3650 - Pacemaker polymeric mesh bag.

Science.gov (United States)

2010-04-01

... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pacemaker polymeric mesh bag. 870.3650 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3650 Pacemaker polymeric mesh bag. (a) Identification. A pacemaker polymeric mesh bag is an implanted device used to hold a...

8. Multiphase flow of immiscible fluids on unstructured moving meshes

DEFF Research Database (Denmark)

Misztal, Marek Krzysztof; Erleben, Kenny; Bargteil, Adam

2012-01-01

In this paper, we present a method for animating multiphase flow of immiscible fluids using unstructured moving meshes. Our underlying discretization is an unstructured tetrahedral mesh, the deformable simplicial complex (DSC), that moves with the flow in a Lagrangian manner. Mesh optimization op...

9. Multiphase Flow of Immiscible Fluids on Unstructured Moving Meshes

DEFF Research Database (Denmark)

Misztal, Marek Krzysztof; Erleben, Kenny; Bargteil, Adam

2013-01-01

In this paper, we present a method for animating multiphase flow of immiscible fluids using unstructured moving meshes. Our underlying discretization is an unstructured tetrahedral mesh, the deformable simplicial complex (DSC), that moves with the flow in a Lagrangian manner. Mesh optimization op...

10. Finite element implementation and numerical issues of strain gradient plasticity with application to metal matrix composites

DEFF Research Database (Denmark)

Frederiksson, Per; Gudmundson, Peter; Mikkelsen, Lars Pilgaard

2009-01-01

A framework of finite element equations for strain gradient plasticity is presented. The theoretical framework requires plastic strain degrees of freedom in addition to displacements and a plane strain version is implemented into a commercial finite element code. A couple of different elements...... of quadrilateral type are examined and a few numerical issues are addressed related to these elements as well as to strain gradient plasticity theories in general. Numerical results are presented for an idealized cell model of a metal matrix composite under shear loading. It is shown that strengthening due...... to fiber size is captured but strengthening due to fiber shape is not. A few modelling aspects of this problem are discussed as well. An analytic solution is also presented which illustrates similarities to other theories....

11. Prosthetic Mesh Repair for Incarcerated Inguinal Hernia

Directory of Open Access Journals (Sweden)

2016-08-01

Full Text Available Background: Incarcerated inguinal hernia is a commonly encountered urgent surgical condition, and tension-free repair is a well-established method for the treatment of noncomplicated cases. However, due to the risk of prosthetic material-related infections, the use of mesh in the repair of strangulated or incarcerated hernia has often been subject to debate. Recent studies have demonstrated that biomaterials represent suitable materials for performing urgent hernia repair. Certain studies recommend mesh repair only for cases where no bowel resection is required; other studies, however, recommend mesh repair for patients requiring bowel resection as well. Aim: The aim of this study was to compare the outcomes of different surgical techniques performed for strangulated hernia, and to evaluate the effect of mesh use on postoperative complications. Study Design: Retrospective cross-sectional study. Methods: This retrospective study was performed with 151 patients who had been admitted to our hospital’s emergency department to undergo surgery for a diagnosis of incarcerated inguinal hernia. The patients were divided into two groups based on the applied surgical technique. Group 1 consisted of 112 patients treated with mesh-based repair techniques, while Group 2 consisted of 39 patients treated with tissue repair techniques. Patients in Group 1 were further divided into two sub-groups: one consisting of patients undergoing bowel resection (Group 3, and the other consisting of patients not undergoing bowel resection (Group 4. Results: In Group 1, it was observed that eight (7.14% of the patients had wound infections, while two (1.78% had hematomas, four (3.57% had seromas, and one (0.89% had relapse. In Group 2, one (2.56% of the patients had a wound infection, while three (7.69% had hematomas, one (2.56% had seroma, and none had relapses. There were no statistically significant differences between the two groups with respect to wound infection

Science.gov (United States)

Loseille, A.; Dervieux, A.; Alauzet, F.

2010-04-01

This paper studies the coupling between anisotropic mesh adaptation and goal-oriented error estimate. The former is very well suited to the control of the interpolation error. It is generally interpreted as a local geometric error estimate. On the contrary, the latter is preferred when studying approximation errors for PDEs. It generally involves non local error contributions. Consequently, a full and strong coupling between both is hard to achieve due to this apparent incompatibility. This paper shows how to achieve this coupling in three steps. First, a new a priori error estimate is proved in a formal framework adapted to goal-oriented mesh adaptation for output functionals. This estimate is based on a careful analysis of the contributions of the implicit error and of the interpolation error. Second, the error estimate is applied to the set of steady compressible Euler equations which are solved by a stabilized Galerkin finite element discretization. A goal-oriented error estimation is derived. It involves the interpolation error of the Euler fluxes weighted by the gradient of the adjoint state associated with the observed functional. Third, rewritten in the continuous mesh framework, the previous estimate is minimized on the set of continuous meshes thanks to a calculus of variations. The optimal continuous mesh is then derived analytically. Thus, it can be used as a metric tensor field to drive the mesh adaptation. From a numerical point of view, this method is completely automatic, intrinsically anisotropic, and does not depend on any a priori choice of variables to perform the adaptation. 3D examples of steady flows around supersonic and transsonic jets are presented to validate the current approach and to demonstrate its efficiency.

13. Combining 3d Volume and Mesh Models for Representing Complicated Heritage Buildings

Science.gov (United States)

Tsai, F.; Chang, H.; Lin, Y.-W.

2017-08-01

This study developed a simple but effective strategy to combine 3D volume and mesh models for representing complicated heritage buildings and structures. The idea is to seamlessly integrate 3D parametric or polyhedral models and mesh-based digital surfaces to generate a hybrid 3D model that can take advantages of both modeling methods. The proposed hybrid model generation framework is separated into three phases. Firstly, after acquiring or generating 3D point clouds of the target, these 3D points are partitioned into different groups. Secondly, a parametric or polyhedral model of each group is generated based on plane and surface fitting algorithms to represent the basic structure of that region. A "bare-bones" model of the target can subsequently be constructed by connecting all 3D volume element models. In the third phase, the constructed bare-bones model is used as a mask to remove points enclosed by the bare-bones model from the original point clouds. The remaining points are then connected to form 3D surface mesh patches. The boundary points of each surface patch are identified and these boundary points are projected onto the surfaces of the bare-bones model. Finally, new meshes are created to connect the projected points and original mesh boundaries to integrate the mesh surfaces with the 3D volume model. The proposed method was applied to an open-source point cloud data set and point clouds of a local historical structure. Preliminary results indicated that the reconstructed hybrid models using the proposed method can retain both fundamental 3D volume characteristics and accurate geometric appearance with fine details. The reconstructed hybrid models can also be used to represent targets in different levels of detail according to user and system requirements in different applications.

14. To mesh or not to mesh: a review of pelvic organ reconstructive surgery

Directory of Open Access Journals (Sweden)

Dällenbach P

2015-04-01

Full Text Available Patrick Dällenbach Department of Gynecology and Obstetrics, Division of Gynecology, Urogynecology Unit, Geneva University Hospitals, Geneva, Switzerland Abstract: Pelvic organ prolapse (POP is a major health issue with a lifetime risk of undergoing at least one surgical intervention estimated at close to 10%. In the 1990s, the risk of reoperation after primary standard vaginal procedure was estimated to be as high as 30% to 50%. In order to reduce the risk of relapse, gynecological surgeons started to use mesh implants in pelvic organ reconstructive surgery with the emergence of new complications. Recent studies have nevertheless shown that the risk of POP recurrence requiring reoperation is lower than previously estimated, being closer to 10% rather than 30%. The development of mesh surgery – actively promoted by the marketing industry – was tremendous during the past decade, and preceded any studies supporting its benefit for our patients. Randomized trials comparing the use of mesh to native tissue repair in POP surgery have now shown better anatomical but similar functional outcomes, and meshes are associated with more complications, in particular for transvaginal mesh implants. POP is not a life-threatening condition, but a functional problem that impairs quality of life for women. The old adage “primum non nocere” is particularly appropriate when dealing with this condition which requires no treatment when asymptomatic. It is currently admitted that a certain degree of POP is physiological with aging when situated above the landmark of the hymen. Treatment should be individualized and the use of mesh needs to be selective and appropriate. Mesh implants are probably an important tool in pelvic reconstructive surgery, but the ideal implant has yet to be found. The indications for its use still require caution and discernment. This review explores the reasons behind the introduction of mesh augmentation in POP surgery, and aims to

15. Variationally derived coarse mesh methods using an alternative flux representation

International Nuclear Information System (INIS)

Wojtowicz, G.; Holloway, J.P.

1995-01-01

Investigation of a previously reported variational technique for the solution of the 1-D, 1-group neutron transport equation in reactor lattices has inspired the development of a finite element formulation of the method. Compared to conventional homogenization methods in which node homogenized cross sections are used, the coefficients describing this system take on greater spatial dependence. However, the methods employ an alternative flux representation which allows the transport equation to be cast into a form whose solution has only a slow spatial variation and, hence, requires relatively few variables to describe. This alternative flux representation and the stationary property of a variational principle define a class of coarse mesh discretizations of transport theory capable of achieving order of magnitude reductions of eigenvalue and pointwise scalar flux errors as compared with diffusion theory while retaining diffusion theory's relatively low cost. Initial results of a 1-D spectral element approach are reviewed and used to motivate the finite element implementation which is more efficient and almost as accurate; one and two group results of this method are described

16. Finite element modelling to assess the effect of surface mounted piezoelectric patch size on vibration response of a hybrid beam

Science.gov (United States)

Rahman, N.; Alam, M. N.

2018-02-01

Vibration response analysis of a hybrid beam with surface mounted patch piezoelectric layer is presented in this work. A one dimensional finite element (1D-FE) model based on efficient layerwise (zigzag) theory is used for the analysis. The beam element has eight mechanical and a variable number of electrical degrees of freedom. The beams are also modelled in 2D-FE (ABAQUS) using a plane stress piezoelectric quadrilateral element for piezo layers and a plane stress quadrilateral element for the elastic layers of hybrid beams. Results are presented to assess the effect of size of piezoelectric patch layer on the free and forced vibration responses of thin and moderately thick beams under clamped-free and clamped-clamped configurations. The beams are subjected to unit step loading and harmonic loading to obtain the forced vibration responses. The vibration control using in phase actuation potential on piezoelectric patches is also studied. The 1D-FE results are compared with the 2D-FE results.

17. Partitioning of unstructured meshes for load balancing

International Nuclear Information System (INIS)

Martin, O.C.; Otto, S.W.

1994-01-01

Many large-scale engineering and scientific calculations involve repeated updating of variables on an unstructured mesh. To do these types of computations on distributed memory parallel computers, it is necessary to partition the mesh among the processors so that the load balance is maximized and inter-processor communication time is minimized. This can be approximated by the problem, of partitioning a graph so as to obtain a minimum cut, a well-studied combinatorial optimization problem. Graph partitioning algorithms are discussed that give good but not necessarily optimum solutions. These algorithms include local search methods recursive spectral bisection, and more general purpose methods such as simulated annealing. It is shown that a general procedure enables to combine simulated annealing with Kernighan-Lin. The resulting algorithm is both very fast and extremely effective. (authors) 23 refs., 3 figs., 1 tab

18. Adaptive upscaling with the dual mesh method

Energy Technology Data Exchange (ETDEWEB)

Guerillot, D.; Verdiere, S.

1997-08-01

The objective of this paper is to demonstrate that upscaling should be calculated during the flow simulation instead of trying to enhance the a priori upscaling methods. Hence, counter-examples are given to motivate our approach, the so-called Dual Mesh Method. The main steps of this numerical algorithm are recalled. Applications illustrate the necessity to consider different average relative permeability values depending on the direction in space. Moreover, these values could be different for the same average saturation. This proves that an a priori upscaling cannot be the answer even in homogeneous cases because of the {open_quotes}dynamical heterogeneity{close_quotes} created by the saturation profile. Other examples show the efficiency of the Dual Mesh Method applied to heterogeneous medium and to an actual field case in South America.

19. Variational mesh segmentation via quadric surface fitting

KAUST Repository

Yan, Dongming

2012-11-01

We present a new variational method for mesh segmentation by fitting quadric surfaces. Each component of the resulting segmentation is represented by a general quadric surface (including plane as a special case). A novel energy function is defined to evaluate the quality of the segmentation, which combines both L2 and L2 ,1 metrics from a triangle to a quadric surface. The Lloyd iteration is used to minimize the energy function, which repeatedly interleaves between mesh partition and quadric surface fitting. We also integrate feature-based and simplification-based techniques in the segmentation framework, which greatly improve the performance. The advantages of our algorithm are demonstrated by comparing with the state-of-the-art methods. © 2012 Elsevier Ltd. All rights reserved.

20. Variational mesh segmentation via quadric surface fitting

KAUST Repository

Yan, Dongming; Wang, Wen Ping; Liu, Yang; Yang, Zhouwang

2012-01-01

We present a new variational method for mesh segmentation by fitting quadric surfaces. Each component of the resulting segmentation is represented by a general quadric surface (including plane as a special case). A novel energy function is defined to evaluate the quality of the segmentation, which combines both L2 and L2 ,1 metrics from a triangle to a quadric surface. The Lloyd iteration is used to minimize the energy function, which repeatedly interleaves between mesh partition and quadric surface fitting. We also integrate feature-based and simplification-based techniques in the segmentation framework, which greatly improve the performance. The advantages of our algorithm are demonstrated by comparing with the state-of-the-art methods. © 2012 Elsevier Ltd. All rights reserved.

1. Meshed split skin graft for extensive vitiligo

Directory of Open Access Journals (Sweden)

Srinivas C

2004-05-01

Full Text Available A 30 year old female presented with generalized stable vitiligo involving large areas of the body. Since large areas were to be treated it was decided to do meshed split skin graft. A phototoxic blister over recipient site was induced by applying 8 MOP solution followed by exposure to UVA. The split skin graft was harvested from donor area by Padgett dermatome which was meshed by an ampligreffe to increase the size of the graft by 4 times. Significant pigmentation of the depigmented skin was seen after 5 months. This procedure helps to cover large recipient areas, when pigmented donor skin is limited with minimal risk of scarring. Phototoxic blister enables easy separation of epidermis thus saving time required for dermabrasion from recipient site.

2. Energy-efficient wireless mesh infrastructures

OpenAIRE

Al-Hazmi, Y.; de Meer, Hermann; Hummel, Karin Anna; Meyer, Harald; Meo, Michela; Remondo Bueno, David

2011-01-01

The Internet comprises access segments with wired and wireless technologies. In the future, we can expect wireless mesh infrastructures (WMIs) to proliferate in this context. Due to the relatively low energy efficiency of wireless transmission, as compared to wired transmission, energy consumption of WMIs can represent a significant part of the energy consumption of the Internet as a whole. We explore different approaches to reduce energy consumption in WMIs, taking into accoun...

3. Symmetries and the coarse-mesh method

International Nuclear Information System (INIS)

Makai, M.

1980-10-01

This report approaches the basic problem of the coarse-mesh method from a new side. Group theory is used for the determination of the space dependency of the flux. The result is a method called ANANAS after the analytic-analytic solution. This method was tested on two benchmark problems: one given by Melice and the IAEA benchmark. The ANANAS program is an experimental one. The method was intended for use in hexagonal geometry. (Auth.)

4. Wireless experiments on a Motorola mesh testbed.

Energy Technology Data Exchange (ETDEWEB)

Riblett, Loren E., Jr.; Wiseman, James M.; Witzke, Edward L.

2010-06-01

Motomesh is a Motorola product that performs mesh networking at both the client and access point levels and allows broadband mobile data connections with or between clients moving at vehicular speeds. Sandia National aboratories has extensive experience with this product and its predecessors in infrastructure-less mobile environments. This report documents experiments, which characterize certain aspects of how the Motomesh network performs when obile units are added to a fixed network infrastructure.

5. Current situation of transvaginal mesh repair for pelvic organ prolapse.

Science.gov (United States)

Zhu, Lan; Zhang, Lei

2014-09-01

Surgical mesh is a metallic or polymeric screen intended to be implanted to reinforce soft tissue or bone where weakness exists. Surgical mesh has been used since the 1950s to repair abdominal hernias. In the 1970s, gynecologists began using surgical mesh products to indicate the repair of pelvic organ prolapse (POP), and in the 1990s, gynecologists began using surgical mesh for POP. Then the U.S. Food and Drug Administration (FDA) approved the first surgical mesh product specifically for use in POP. Surgical mesh materials can be divided into several categories. Most surgical mesh devices cleared for POP procedures are composed of non-absorbable synthetic polypropylene. Mesh can be placed in the anterior vaginal wall to aid in the correction of cystocele (anterior repair), in the posterior vaginal wall to aid in correction of rectocele (posterior repair), or attached to the top of the vagina to correct uterine prolapse or vaginal apical prolapse (apical repair). Over the past decades, surgical mesh products for transvaginal POP repair became incorporated into "kits" that included tools to aid in the delivery and insertion of the mesh. Surgical mesh kits continue to evolve, adding new insertion tools, tissue fixation anchors, surgical techniques, and ab- sorbable and biological materials. This procedure has been performed popularly. It was also performed increased in China. But this new technique met some trouble recently and let shake in urogynecology.

6. Predicting mesh density for adaptive modelling of the global atmosphere.

Science.gov (United States)

Weller, Hilary

2009-11-28

7. Improved Mesh_Based Image Morphing ‎

Directory of Open Access Journals (Sweden)

Mohammed Abdullah Taha

2017-11-01

Full Text Available Image morphing is a multi-step process that generates a sequence of transitions between two images. The thought is to get a ₔgrouping of middle pictures which, when ₔassembled with the first pictures would represent the change from one picture to the other.  The process of morphing requires time and attention to detail in order to get good results. Morphing image requires at least two processes warping and cross dissolve. Warping is the process of geometric transformation of images. The cross dissolve is the process interpolation of color of eachₔ pixel from the first image value to theₔ corresponding second imageₔ value over the time. Image morphing techniques differ from in the approach of image warping procedure. This work presents a survey of different techniques to construct morphing images by review the different warping techniques. One of the predominant approaches of warping process is mesh warping which suffers from some problems including ghosting. This work proposed and implements an improved mesh warping technique to construct morphing images. The results show that the proposed approach can overcome the problems of the traditional mesh technique

8. Cu mesh for flexible transparent conductive electrodes.

Science.gov (United States)

Kim, Won-Kyung; Lee, Seunghun; Hee Lee, Duck; Hee Park, In; Seong Bae, Jong; Woo Lee, Tae; Kim, Ji-Young; Hun Park, Ji; Chan Cho, Yong; Ryong Cho, Chae; Jeong, Se-Young

2015-06-03

Copper electrodes with a micromesh/nanomesh structure were fabricated on a polyimide substrate using UV lithography and wet etching to produce flexible transparent conducting electrodes (TCEs). Well-defined mesh electrodes were realized through the use of high-quality Cu thin films. The films were fabricated using radio-frequency (RF) sputtering with a single-crystal Cu target--a simple but innovative approach that overcame the low oxidation resistance of ordinary Cu. Hybrid Cu mesh electrodes were fabricated by adding a capping layer of either ZnO or Al-doped ZnO. The sheet resistance and the transmittance of the electrode with an Al-doped ZnO capping layer were 6.197 ohm/sq and 90.657%, respectively, and the figure of merit was 60.502 × 10(-3)/ohm, which remained relatively unchanged after thermal annealing at 200 °C and 1,000 cycles of bending. This fabrication technique enables the mass production of large-area flexible TCEs, and the stability and high performance of Cu mesh hybrid electrodes in harsh environments suggests they have strong potential for application in smart displays and solar cells.

9. MeSH Now: automatic MeSH indexing at PubMed scale via learning to rank.

Science.gov (United States)

Mao, Yuqing; Lu, Zhiyong

2017-04-17

MeSH indexing is the task of assigning relevant MeSH terms based on a manual reading of scholarly publications by human indexers. The task is highly important for improving literature retrieval and many other scientific investigations in biomedical research. Unfortunately, given its manual nature, the process of MeSH indexing is both time-consuming (new articles are not immediately indexed until 2 or 3 months later) and costly (approximately ten dollars per article). In response, automatic indexing by computers has been previously proposed and attempted but remains challenging. In order to advance the state of the art in automatic MeSH indexing, a community-wide shared task called BioASQ was recently organized. We propose MeSH Now, an integrated approach that first uses multiple strategies to generate a combined list of candidate MeSH terms for a target article. Through a novel learning-to-rank framework, MeSH Now then ranks the list of candidate terms based on their relevance to the target article. Finally, MeSH Now selects the highest-ranked MeSH terms via a post-processing module. We assessed MeSH Now on two separate benchmarking datasets using traditional precision, recall and F 1 -score metrics. In both evaluations, MeSH Now consistently achieved over 0.60 in F-score, ranging from 0.610 to 0.612. Furthermore, additional experiments show that MeSH Now can be optimized by parallel computing in order to process MEDLINE documents on a large scale. We conclude that MeSH Now is a robust approach with state-of-the-art performance for automatic MeSH indexing and that MeSH Now is capable of processing PubMed scale documents within a reasonable time frame. http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/MeSHNow/ .

10. Data-Parallel Mesh Connected Components Labeling and Analysis

Energy Technology Data Exchange (ETDEWEB)

Harrison, Cyrus; Childs, Hank; Gaither, Kelly

2011-04-10

We present a data-parallel algorithm for identifying and labeling the connected sub-meshes within a domain-decomposed 3D mesh. The identification task is challenging in a distributed-memory parallel setting because connectivity is transitive and the cells composing each sub-mesh may span many or all processors. Our algorithm employs a multi-stage application of the Union-find algorithm and a spatial partitioning scheme to efficiently merge information across processors and produce a global labeling of connected sub-meshes. Marking each vertex with its corresponding sub-mesh label allows us to isolate mesh features based on topology, enabling new analysis capabilities. We briefly discuss two specific applications of the algorithm and present results from a weak scaling study. We demonstrate the algorithm at concurrency levels up to 2197 cores and analyze meshes containing up to 68 billion cells.

11. Oral, intestinal, and skin bacteria in ventral hernia mesh implants

Directory of Open Access Journals (Sweden)

Odd Langbach

2016-07-01

Full Text Available Background: In ventral hernia surgery, mesh implants are used to reduce recurrence. Infection after mesh implantation can be a problem and rates around 6–10% have been reported. Bacterial colonization of mesh implants in patients without clinical signs of infection has not been thoroughly investigated. Molecular techniques have proven effective in demonstrating bacterial diversity in various environments and are able to identify bacteria on a gene-specific level. Objective: The purpose of this study was to detect bacterial biofilm in mesh implants, analyze its bacterial diversity, and look for possible resemblance with bacterial biofilm from the periodontal pocket. Methods: Thirty patients referred to our hospital for recurrence after former ventral hernia mesh repair, were examined for periodontitis in advance of new surgical hernia repair. Oral examination included periapical radiographs, periodontal probing, and subgingival plaque collection. A piece of mesh (1×1 cm from the abdominal wall was harvested during the new surgical hernia repair and analyzed for bacteria by PCR and 16S rRNA gene sequencing. From patients with positive PCR mesh samples, subgingival plaque samples were analyzed with the same techniques. Results: A great variety of taxa were detected in 20 (66.7% mesh samples, including typical oral commensals and periodontopathogens, enterics, and skin bacteria. Mesh and periodontal bacteria were further analyzed for similarity in 16S rRNA gene sequences. In 17 sequences, the level of resemblance between mesh and subgingival bacterial colonization was 98–100% suggesting, but not proving, a transfer of oral bacteria to the mesh. Conclusion: The results show great bacterial diversity on mesh implants from the anterior abdominal wall including oral commensals and periodontopathogens. Mesh can be reached by bacteria in several ways including hematogenous spread from an oral site. However, other sites such as gut and skin may also

12. Simulation of geothermal water extraction in heterogeneous reservoirs using dynamic unstructured mesh optimisation

Science.gov (United States)

Salinas, P.; Pavlidis, D.; Jacquemyn, C.; Lei, Q.; Xie, Z.; Pain, C.; Jackson, M.

2017-12-01

It is well known that the pressure gradient into a production well increases with decreasing distance to the well. To properly capture the local pressure drawdown into the well a high grid or mesh resolution is required; moreover, the location of the well must be captured accurately. In conventional simulation models, the user must interact with the model to modify grid resolution around wells of interest, and the well location is approximated on a grid defined early in the modelling process.We report a new approach for improved simulation of near wellbore flow in reservoir scale models through the use of dynamic mesh optimisation and the recently presented double control volume finite element method. Time is discretized using an adaptive, implicit approach. Heterogeneous geologic features are represented as volumes bounded by surfaces. Within these volumes, termed geologic domains, the material properties are constant. Up-, cross- or down-scaling of material properties during dynamic mesh optimization is not required, as the properties are uniform within each geologic domain. A given model typically contains numerous such geologic domains. Wells are implicitly coupled with the domain, and the fluid flows is modelled inside the wells. The method is novel for two reasons. First, a fully unstructured tetrahedral mesh is used to discretize space, and the spatial location of the well is specified via a line vector, ensuring its location even if the mesh is modified during the simulation. The well location is therefore accurately captured, the approach allows complex well trajectories and wells with many laterals to be modelled. Second, computational efficiency is increased by use of dynamic mesh optimization, in which an unstructured mesh adapts in space and time to key solution fields (preserving the geometry of the geologic domains), such as pressure, velocity or temperature, this also increases the quality of the solutions by placing higher resolution where required

13. Complex finite element sensitivity method for creep analysis

International Nuclear Information System (INIS)

Gomez-Farias, Armando; Montoya, Arturo; Millwater, Harry

2015-01-01

The complex finite element method (ZFEM) has been extended to perform sensitivity analysis for mechanical and structural systems undergoing creep deformation. ZFEM uses a complex finite element formulation to provide shape, material, and loading derivatives of the system response, providing an insight into the essential factors which control the behavior of the system as a function of time. A complex variable-based quadrilateral user element (UEL) subroutine implementing the power law creep constitutive formulation was incorporated within the Abaqus commercial finite element software. The results of the complex finite element computations were verified by comparing them to the reference solution for the steady-state creep problem of a thick-walled cylinder in the power law creep range. A practical application of the ZFEM implementation to creep deformation analysis is the calculation of the skeletal point of a notched bar test from a single ZFEM run. In contrast, the standard finite element procedure requires multiple runs. The value of the skeletal point is that it identifies the location where the stress state is accurate, regardless of the certainty of the creep material properties. - Highlights: • A novel finite element sensitivity method (ZFEM) for creep was introduced. • ZFEM has the capability to calculate accurate partial derivatives. • ZFEM can be used for identification of the skeletal point of creep structures. • ZFEM can be easily implemented in a commercial software, e.g. Abaqus. • ZFEM results were shown to be in excellent agreement with analytical solutions

14. Parallel octree-based hexahedral mesh generation for eulerian to lagrangian conversion.

Energy Technology Data Exchange (ETDEWEB)

Staten, Matthew L.; Owen, Steven James

2010-09-01

Computational simulation must often be performed on domains where materials are represented as scalar quantities or volume fractions at cell centers of an octree-based grid. Common examples include bio-medical, geotechnical or shock physics calculations where interface boundaries are represented only as discrete statistical approximations. In this work, we introduce new methods for generating Lagrangian computational meshes from Eulerian-based data. We focus specifically on shock physics problems that are relevant to ASC codes such as CTH and Alegra. New procedures for generating all-hexahedral finite element meshes from volume fraction data are introduced. A new primal-contouring approach is introduced for defining a geometric domain. New methods for refinement, node smoothing, resolving non-manifold conditions and defining geometry are also introduced as well as an extension of the algorithm to handle tetrahedral meshes. We also describe new scalable MPI-based implementations of these procedures. We describe a new software module, Sculptor, which has been developed for use as an embedded component of CTH. We also describe its interface and its use within the mesh generation code, CUBIT. Several examples are shown to illustrate the capabilities of Sculptor.

15. Sensitivity analysis of the Galerkin finite element method neutron diffusion solver to the shape of the elements

Energy Technology Data Exchange (ETDEWEB)

Hosseini, Seyed Abolfaz [Dept. of Energy Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

2017-02-15

The purpose of the present study is the presentation of the appropriate element and shape function in the solution of the neutron diffusion equation in two-dimensional (2D) geometries. To this end, the multigroup neutron diffusion equation is solved using the Galerkin finite element method in both rectangular and hexagonal reactor cores. The spatial discretization of the equation is performed using unstructured triangular and quadrilateral finite elements. Calculations are performed using both linear and quadratic approximations of shape function in the Galerkin finite element method, based on which results are compared. Using the power iteration method, the neutron flux distributions with the corresponding eigenvalue are obtained. The results are then validated against the valid results for IAEA-2D and BIBLIS-2D benchmark problems. To investigate the dependency of the results to the type and number of the elements, and shape function order, a sensitivity analysis of the calculations to the mentioned parameters is performed. It is shown that the triangular elements and second order of the shape function in each element give the best results in comparison to the other states.

16. A THREE-YEAR EXPERIENCE WITH ANTERIOR TRANSOBTURATOR MESH (ATOM AND POSTERIOR ISCHIORECTAL MESH (PIRM

Directory of Open Access Journals (Sweden)

Marijan Lužnik

2018-02-01

Full Text Available Background. Use of alloplastic mesh implantates allow a new urogynecologycal surgical techniques achieve a marked improvement in pelvic organ static and pelvic floor function with minimally invasive needle transvaginal intervention like an anterior transobturator mesh (ATOM and a posterior ischiorectal mesh (PIRM procedures. Methods. In three years, between April 2006 and May 2009, we performed one hundred and eightyfour operative corrections of female pelvic organ prolapse (POP and pelvic floor dysfunction (PFD with mesh implantates. The eighty-three patients with surgical procedure TVT-O or Monarc as solo intervention indicated by stress urinary incontinence without POP, are not included in this number. In 97 % of mesh operations, Gynemesh 10 × 15 cm was used. For correction of anterior vaginal prolapse with ATOM procedure, Gynemesh was individually trimmed in mesh with 6 free arms for tension-free transobturator application and tension-free apical collar. IVS (Intravaginal sling 04 Tunneller (Tyco needle system was used for transobturator application of 6 arms through 4 dermal incisions (2 on right and 2 on left. Minimal anterior median colpotomy was made in two separate parts. For correction of posterior vaginal prolapse with PIRM procedure Gynemesh was trimmed in mesh with 4 free arms and tension-free collar. Two ischiorectal long arms for tension-free application through fossa ischiorectale – right and left, and two short arms for perineal body also on both sides. IVS 02 Tunneller (Tyco needle system was used for tension-free application of 4 arms through 4 dermal incisions (2 on right and 2 on left in PIRM. Results. All 184 procedures were performed relatively safely. In 9 cases of ATOM we had perforation of bladder, in 5 by application of anterior needle, in 3 by application of posterior needle and in one case with pincette when collar was inserted in lateral vesico – vaginal space. In 2 cases of PIRM we had perforation of rectum

17. Texturing of continuous LOD meshes with the hierarchical texture atlas

Science.gov (United States)

Birkholz, Hermann

2006-02-01

For the rendering of detailed virtual environments, trade-offs have to be made between image quality and rendering time. An immersive experience of virtual reality always demands high frame-rates with the best reachable image qual-ity. Continuous Level of Detail (cLoD) triangle-meshes provide an continuous spectrum of detail for a triangle mesh that can be used to create view-dependent approximations of the environment in real-time. This enables the rendering with a constant number of triangles and thus with constant frame-rates. Normally the construction of such cLoD mesh representations leads to the loss of all texture information of the original mesh. To overcome this problem, a parameter domain can be created, in order to map the surface properties (colour, texture, normal) to it. This parameter domain can be used to map the surface properties back to arbitrary approximations of the original mesh. The parameter domain is often a simplified version of the mesh to be parameterised. This limits the reachable simplification to the domain mesh which has to map the surface of the original mesh with the least possible stretch. In this paper, a hierarchical domain mesh is presented, that scales between very coarse domain meshes and good property-mapping.

18. CHILES, Singularity Strength of Linear Elastic Bodies by Finite Elements Method

International Nuclear Information System (INIS)

Benzley, S.E.; Beisinger, Z.E.

1981-01-01

1 - Description of problem or function: CHILES is a finite element computer program that calculates the strength of singularities in linear elastic bodies. Plane stress, plane strain, and axisymmetric conditions are treated. Crack tip singularity problems are solved by this version of the code, but any type of integrable singularity may be properly modeled by modifying selected subroutines in the program. 2 - Method of solution: A generalized, quadrilateral finite element that includes a singular point at a corner node is incorporated in the code. The displacement formulation is used and inter-element compatibility is maintained so that monotone convergence is preserved. 3 - Restrictions on the complexity of the problem: CHILES allows three singular points to be modeled in the body being analyzed and each singular point may have coupled Mode I and II deformations. 1000 nodal points may be used

19. Nonlinear finite element analysis of nuclear reinforced prestressed concrete containments up to ultimate load capacity

International Nuclear Information System (INIS)

Gupta, A.; Singh, R.K.; Kushwaha, H.S.; Mahajan, S.C.; Kakodkar, A.

1996-01-01

For safety evaluation of nuclear structures a finite element code ULCA (Ultimate Load Capacity Assessment) has been developed. Eight/nine noded isoparametric quadrilateral plate/shell element with reinforcement as a through thickness discrete but integral smeared layer of the element is presented to analyze reinforced and prestressed concrete structures. Various constitutive models such as crushing, cracking in tension, tension stiffening and rebar yielding are studied and effect of these parameters on the reserve strength of structures is brought out through a number of benchmark tests. A global model is used to analyze the prestressed concrete containment wall of a typical 220 MWe Pressurized Heavy Water Reactor (PHWR) up to its ultimate capacity. This demonstrates the adequacy of Indian PHWR containment design to withstand severe accident loads

20. Finite element speaker-specific face model generation for the study of speech production.

Science.gov (United States)

Bucki, Marek; Nazari, Mohammad Ali; Payan, Yohan

2010-08-01

In situations where automatic mesh generation is unsuitable, the finite element (FE) mesh registration technique known as mesh-match-and-repair (MMRep) is an interesting option for quickly creating a subject-specific FE model by fitting a predefined template mesh onto the target organ. The irregular or poor quality elements produced by the elastic deformation are corrected by a 'mesh reparation' procedure ensuring that the desired regularity and quality standards are met. Here, we further extend the MMRep capabilities and demonstrate the possibility of taking into account additional relevant anatomical features. We illustrate this approach with an example of biomechanical model generation of a speaker's face comprising face muscle insertions. While taking advantage of the a priori knowledge about tissues conveyed by the template model, this novel, fast and automatic mesh registration technique makes it possible to achieve greater modelling realism by accurately representing the organ surface as well as inner anatomical or functional structures of interest.

1. Performance of the hybrid wireless mesh protocol for wireless mesh networks

DEFF Research Database (Denmark)

Boye, Magnus; Staalhagen, Lars

2010-01-01

Wireless mesh networks offer a new way of providing end-user access and deploying network infrastructure. Though mesh networks offer a price competitive solution to wired networks, they also come with a set of new challenges such as optimal path selection, channel utilization, and load balancing....... and proactive. Two scenarios of different node density are considered for both path selection modes. The results presented in this paper are based on a simulation model of the HWMP specification in the IEEE 802.11s draft 4.0 implemented in OPNET Modeler....

International Nuclear Information System (INIS)

Baker, C.M.J.; Buchan, A.G.; Pain, C.C.; Tollit, B.S.; Goffin, M.A.; Merton, S.R.; Warner, P.

2013-01-01

Highlights: ► Derives an anisotropic goal based error measure for shielding problems. ► Reduces the error in the detector response by optimizing the finite element mesh. ► Anisotropic adaptivity captures material interfaces using fewer elements than AMR. ► A new residual based on the numerical scheme chosen forms the error measure. ► The error measure also combines the forward and adjoint metrics in a novel way. - Abstract: In this paper, the application of goal based error measures for anisotropic adaptivity applied to shielding problems in which a detector is present is explored. Goal based adaptivity is important when the response of a detector is required to ensure that dose limits are adhered to. To achieve this, a dual (adjoint) problem is solved which solves the neutron transport equation in terms of the response variables, in this case the detector response. The methods presented can be applied to general finite element solvers, however, the derivation of the residuals are dependent on the underlying finite element scheme which is also discussed in this paper. Once error metrics for the forward and adjoint solutions have been formed they are combined using a novel approach. The two metrics are combined by forming the minimum ellipsoid that covers both the error metrics rather than taking the maximum ellipsoid that is contained within the metrics. Another novel approach used within this paper is the construction of the residual. The residual, used to form the goal based error metrics, is calculated from the subgrid scale correction which is inherent in the underlying spatial discretisation employed

3. Unbiased Sampling and Meshing of Isosurfaces

KAUST Repository

Yan, Dongming

2014-05-07

In this paper, we present a new technique to generate unbiased samples on isosurfaces. An isosurface, F(x,y,z) = c , of a function, F , is implicitly defined by trilinear interpolation of background grid points. The key idea of our approach is that of treating the isosurface within a grid cell as a graph (height) function in one of the three coordinate axis directions, restricted to where the slope is not too high, and integrating / sampling from each of these three. We use this unbiased sampling algorithm for applications in Monte Carlo integration, Poisson-disk sampling, and isosurface meshing.

4. Shadowfax: Moving mesh hydrodynamical integration code

Science.gov (United States)

Vandenbroucke, Bert

2016-05-01

Shadowfax simulates galaxy evolution. Written in object-oriented modular C++, it evolves a mixture of gas, subject to the laws of hydrodynamics and gravity, and any collisionless fluid only subject to gravity, such as cold dark matter or stars. For the hydrodynamical integration, it makes use of a (co-) moving Lagrangian mesh. The code has a 2D and 3D version, contains utility programs to generate initial conditions and visualize simulation snapshots, and its input/output is compatible with a number of other simulation codes, e.g. Gadget2 (ascl:0003.001) and GIZMO (ascl:1410.003).

5. Unbiased Sampling and Meshing of Isosurfaces

KAUST Repository

Yan, Dongming; Wallner, Johannes; Wonka, Peter

2014-01-01

In this paper, we present a new technique to generate unbiased samples on isosurfaces. An isosurface, F(x,y,z) = c , of a function, F , is implicitly defined by trilinear interpolation of background grid points. The key idea of our approach is that of treating the isosurface within a grid cell as a graph (height) function in one of the three coordinate axis directions, restricted to where the slope is not too high, and integrating / sampling from each of these three. We use this unbiased sampling algorithm for applications in Monte Carlo integration, Poisson-disk sampling, and isosurface meshing.

6. Moving mesh generation with a sequential approach for solving PDEs

DEFF Research Database (Denmark)

In moving mesh methods, physical PDEs and a mesh equation derived from equidistribution of an error metrics (so-called the monitor function) are simultaneously solved and meshes are dynamically concentrated on steep regions (Lim et al., 2001). However, the simultaneous solution procedure...... a simple and robust moving mesh algorithm in one or multidimension. In this study, we propose a sequential solution procedure including two separate parts: prediction step to obtain an approximate solution to a next time level (integration of physical PDEs) and regriding step at the next time level (mesh...... generation and solution interpolation). Convection terms, which appear in physical PDEs and a mesh equation, are discretized by a WENO (Weighted Essentially Non-Oscillatory) scheme under the consrvative form. This sequential approach is to keep the advantages of robustness and simplicity for the static...

7. Improved mesh generator for the POISSON Group Codes

International Nuclear Information System (INIS)

Gupta, R.C.

1987-01-01

This paper describes the improved mesh generator of the POISSON Group Codes. These improvements enable one to have full control over the way the mesh is generated and in particular the way the mesh density is distributed throughout this model. A higher mesh density in certain regions coupled with a successively lower mesh density in others keeps the accuracy of the field computation high and the requirements on the computer time and computer memory low. The mesh is generated with the help of codes AUTOMESH and LATTICE; both have gone through a major upgrade. Modifications have also been made in the POISSON part of these codes. We shall present an example of a superconducting dipole magnet to explain how to use this code. The results of field computations are found to be reliable within a few parts in a hundred thousand even in such complex geometries

8. HypGrid2D. A 2-d mesh generator

Energy Technology Data Exchange (ETDEWEB)

Soerensen, N N

1998-03-01

The implementation of a hyperbolic mesh generation procedure, based on an equation for orthogonality and an equation for the cell face area is described. The method is fast, robust and gives meshes with good smoothness and orthogonality. The procedure is implemented in a program called HypGrid2D. The HypGrid2D program is capable of generating C-, O- and H-meshes for use in connection with the EllipSys2D Navier-Stokes solver. To illustrate the capabilities of the program, some test examples are shown. First a series of C-meshes are generated around a NACA-0012 airfoil. Secondly a series of O-meshes are generated around a NACA-65-418 airfoil. Finally H-meshes are generated over a Gaussian hill and a linear escarpment. (au)

9. Dynamic Mesh Adaptation for Front Evolution Using Discontinuous Galerkin Based Weighted Condition Number Mesh Relaxation

Energy Technology Data Exchange (ETDEWEB)

Greene, Patrick T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schofield, Samuel P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nourgaliev, Robert [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

2016-06-21

A new mesh smoothing method designed to cluster mesh cells near a dynamically evolving interface is presented. The method is based on weighted condition number mesh relaxation with the weight function being computed from a level set representation of the interface. The weight function is expressed as a Taylor series based discontinuous Galerkin projection, which makes the computation of the derivatives of the weight function needed during the condition number optimization process a trivial matter. For cases when a level set is not available, a fast method for generating a low-order level set from discrete cell-centered elds, such as a volume fraction or index function, is provided. Results show that the low-order level set works equally well for the weight function as the actual level set. Meshes generated for a number of interface geometries are presented, including cases with multiple level sets. Dynamic cases for moving interfaces are presented to demonstrate the method's potential usefulness to arbitrary Lagrangian Eulerian (ALE) methods.

10. AUTOMATIC MESH GENERATION OF 3-D GEOMETRIC MODELS

Institute of Scientific and Technical Information of China (English)

刘剑飞

2003-01-01

In this paper the presentation of the ball-packing method is reviewed,and a scheme to generate mesh for complex 3-D geometric models is given,which consists of 4 steps:(1)create nodes in 3-D models by ball-packing method,(2)connect nodes to generate mesh by 3-D Delaunay triangulation,(3)retrieve the boundary of the model after Delaunay triangulation,(4)improve the mesh.

11. A moving mesh method with variable relaxation time

OpenAIRE

Soheili, Ali Reza; Stockie, John M.

2006-01-01

We propose a moving mesh adaptive approach for solving time-dependent partial differential equations. The motion of spatial grid points is governed by a moving mesh PDE (MMPDE) in which a mesh relaxation time \\tau is employed as a regularization parameter. Previously reported results on MMPDEs have invariably employed a constant value of the parameter \\tau. We extend this standard approach by incorporating a variable relaxation time that is calculated adaptively alongside the solution in orde...

12. Bilateral Laparoscopic Totally Extraperitoneal Repair Without Mesh Fixation

OpenAIRE

Dehal, Ahmed; Woodward, Brandon; Johna, Samir; Yamanishi, Frank

2014-01-01

Background and Objectives: Mesh fixation during laparoscopic totally extraperitoneal repair is thought to be necessary to prevent recurrence. However, mesh fixation may increase postoperative chronic pain. This study aimed to describe the experience of a single surgeon at our institution performing this operation. Methods: We performed a retrospective review of the medical records of all patients who underwent bilateral laparoscopic totally extraperitoneal repair without mesh fixation for ing...

13. An Agent Based Collaborative Simplification of 3D Mesh Model

Science.gov (United States)

Wang, Li-Rong; Yu, Bo; Hagiwara, Ichiro

Large-volume mesh model faces the challenge in fast rendering and transmission by Internet. The current mesh models obtained by using three-dimensional (3D) scanning technology are usually very large in data volume. This paper develops a mobile agent based collaborative environment on the development platform of mobile-C. Communication among distributed agents includes grasping image of visualized mesh model, annotation to grasped image and instant message. Remote and collaborative simplification can be efficiently conducted by Internet.

14. Robotic removal of eroded vaginal mesh into the bladder.

Science.gov (United States)

Macedo, Francisco Igor B; O'Connor, Jeffrey; Mittal, Vijay K; Hurley, Patrick

2013-11-01

Vaginal mesh erosion into the bladder after midurethral sling procedure or cystocele repair is uncommon, with only a few cases having been reported in the literature. The ideal surgical management is still controversial. Current options for removal of eroded mesh include: endoscopic, transvaginal or abdominal (either open or laparoscopic) approaches. We, herein, present the first case of robotic removal of a large eroded vaginal mesh into the bladder and discuss potential benefits and limitations of the technique. © 2013 The Japanese Urological Association.

15. Adaptive-mesh zoning by the equipotential method

Energy Technology Data Exchange (ETDEWEB)

Winslow, A.M.

1981-04-01

An adaptive mesh method is proposed for the numerical solution of differential equations which causes the mesh lines to move closer together in regions where higher resolution in some physical quantity T is desired. A coefficient D > 0 is introduced into the equipotential zoning equations, where D depends on the gradient of T . The equations are inverted, leading to nonlinear elliptic equations for the mesh coordinates with source terms which depend on the gradient of D. A functional form of D is proposed.

16. Mesh construction for the 2-dimensional computational fracture mechanics using the I-DEAS

International Nuclear Information System (INIS)

Kim, Jong Wook; Kim, Tae Wan; Park, Keun Bae

2000-09-01

Recently research activities have been reported regarding the generation of the input data for the crack problems at a minimum of effort utilizing the general characteristics of the finite element modeling technique. Several automatic FE mesh generation methods for the cracked structure of particular geometries and boundary conditions have been proposed by using commercial codes or developing in-house programs. In general, development of software to deal with special crack problem can maximize the efficiency and accuracy for a specific environment. However, applicable range of such scheme is usually very restricted and new program should be formed in each case. On the other hand, commercial codes can be used for the automatic mesh generation of variety of geometries, but with an additional effort to accomodate the singular element for the cracked-body analysis. In the present study, a procedure for the generation of input data for the optimized computational fracture mechanics is developed as a series of effort to establish the structural integrity evaluation procedure of SMART reactor vessel assembly. Input data for the finite element analysis are prepared using the commercial code I-DEAS. The midpoint nodes near the crack front are shifted at the quarter-points. The complete finite element model generated is given to another commercial finite element code ABAQUS for the stress analysis. The stress intensity factors are calculated using the J-integral method. To demonstrate the validation of the present procedure, double-edge crack in a plate subjected to uniform tension is solved, and the effects of mesh construction are discussed in detail. The structural integrity evaluation procedure through the 2-D crack modeling is then established

17. Strategies in edge plasma simulation using adaptive dynamic nodalization techniques

International Nuclear Information System (INIS)

Kainz, A.; Weimann, G.; Kamelander, G.

2003-01-01

A wide span of steady-state and transient edge plasma processes simulation problems require accurate discretization techniques and can then be treated with Finite Element (FE) and Finite Volume (FV) methods. The software used here to meet these meshing requirements is a 2D finite element grid generator. It allows to produce adaptive unstructured grids taking into consideration the flux surface characteristics. To comply with the common mesh handling features of FE/FV packages, some options have been added to the basic generation tool. These enhancements include quadrilateral meshes without non-regular transition elements obtained by substituting them by transition constructions consisting of regular quadrilateral elements. Furthermore triangular grids can be created with one edge parallel to the magnetic field and modified by the basic adaptation/realignment techniques. Enhanced code operation properties and processing capabilities are expected. (author)

18. Monitoring and evaluation of wire mesh forming life

Science.gov (United States)

Enemuoh, Emmanuel U.; Zhao, Ping; Kadlec, Alec

2018-03-01

Forming tables are used with stainless steel wire mesh conveyor belts to produce variety of products. The forming tables will typically run continuously for several days, with some hours of scheduled downtime for maintenance, cleaning and part replacement after several weeks of operation. The wire mesh conveyor belts show large variation in their remaining life due to associated variations in their nominal thicknesses. Currently the industry is dependent on seasoned operators to determine the replacement time for the wire mesh formers. The drawback of this approach is inconsistency in judgements made by different operators and lack of data knowledge that can be used to develop decision making system that will be more consistent with wire mesh life prediction and replacement time. In this study, diagnostic measurements about the health of wire mesh former is investigated and developed. The wire mesh quality characteristics considered are thermal measurement, tension property, gage thickness, and wire mesh wear. The results show that real time thermal sensor and wear measurements would provide suitable data for the estimation of wire mesh failure, therefore, can be used as a diagnostic parameter for developing structural health monitoring (SHM) system for stainless steel wire mesh formers.

19. SALOME PLATFORM and TetGen for Polyhedral Mesh Generation

Energy Technology Data Exchange (ETDEWEB)

Lee, Sang Yong; Park, Chan Eok; Kim, Shin Whan [KEPCO E and C Company, Inc., Daejeon (Korea, Republic of)

2014-05-15

SPACE and CUPID use the unstructured mesh and they also require reliable mesh generation system. The combination of CAD system and mesh generation system is necessary to cope with a large number of cells and the complex fluid system with structural materials inside. In the past, a CAD system Pro/Engineer and mesh generator Pointwise were evaluated for this application. But, the cost of those commercial CAD and mesh generator is sometimes a great burden. Therefore, efforts have been made to set up a mesh generation system with open source programs. The evaluation of the TetGen has been made in focusing the application for the polyhedral mesh generation. In this paper, SALOME will be evaluated for the efforts in conjunction with TetGen. In section 2, review will be made on the CAD and mesh generation capability of SALOME. SALOME and TetGen codes are being integrated to construct robust polyhedral mesh generator. Edge removal on the flat surface and vertex reattachment to the solid are two challenging tasks. It is worthwhile to point out that the Python script capability of the SALOME should be fully utilized for the future investigation.

20. An Algorithm for Parallel Sn Sweeps on Unstructured Meshes

International Nuclear Information System (INIS)

Pautz, Shawn D.

2002-01-01

A new algorithm for performing parallel S n sweeps on unstructured meshes is developed. The algorithm uses a low-complexity list ordering heuristic to determine a sweep ordering on any partitioned mesh. For typical problems and with 'normal' mesh partitionings, nearly linear speedups on up to 126 processors are observed. This is an important and desirable result, since although analyses of structured meshes indicate that parallel sweeps will not scale with normal partitioning approaches, no severe asymptotic degradation in the parallel efficiency is observed with modest (≤100) levels of parallelism. This result is a fundamental step in the development of efficient parallel S n methods

1. Reconfigurable lattice mesh designs for programmable photonic processors.

Science.gov (United States)

Pérez, Daniel; Gasulla, Ivana; Capmany, José; Soref, Richard A

2016-05-30

We propose and analyse two novel mesh design geometries for the implementation of tunable optical cores in programmable photonic processors. These geometries are the hexagonal and the triangular lattice. They are compared here to a previously proposed square mesh topology in terms of a series of figures of merit that account for metrics that are relevant to on-chip integration of the mesh. We find that that the hexagonal mesh is the most suitable option of the three considered for the implementation of the reconfigurable optical core in the programmable processor.

2. Symptom resolution after operative management of complications from transvaginal mesh.

Science.gov (United States)

Crosby, Erin C; Abernethy, Melinda; Berger, Mitchell B; DeLancey, John O; Fenner, Dee E; Morgan, Daniel M

2014-01-01

Complications from transvaginal mesh placed for prolapse often require operative management. The aim of this study is to describe the outcomes of vaginal mesh removal. A retrospective review of all patients having surgery by the urogynecology group in the department of obstetrics and gynecology at our institution for a complication of transvaginal mesh placed for prolapse was performed. Demographics, presenting symptoms, surgical procedures, and postoperative symptoms were abstracted. Comparative statistics were performed using the χ or Fisher's exact test with significance at Pmesh and 84 had follow-up data. The most common presenting signs and symptoms were: mesh exposure, 62% (n=56); pain, 64% (n=58); and dyspareunia, 48% (n=43). During operative management, mesh erosion was encountered unexpectedly in a second area of the vagina in 5% (n=4), in the bladder in 1% (n=1), and in the bowel in 2% (n=2). After vaginal mesh removal, 51% (n=43) had resolution of all presenting symptoms. Mesh exposure was treated successfully in 95% of patients, whereas pain was only successfully treated in 51% of patients. Removal of vaginal mesh is helpful in relieving symptoms of presentation. Patients can be reassured that exposed mesh can almost always be successfully managed surgically, but pain and dyspareunia are only resolved completely in half of patients. III.

3. The mesh controversy [version 1; referees: 2 approved

Directory of Open Access Journals (Sweden)

Joshua A. Cohn

2016-09-01

Full Text Available Pelvic organ prolapse and stress urinary incontinence are common conditions for which approximately 11% of women will undergo surgical intervention in their lifetime. The use of vaginal mesh for pelvic organ prolapse and stress urinary incontinence rose rapidly in the early 2000s as over 100 mesh products were introduced into the clinical armamentarium with little regulatory oversight for their use. US Food and Drug Administration Public Health Notifications in 2008 and 2011, as well as reclassification of transvaginal mesh for prolapse to class III in early 2016, were a response to debilitating complications associated with transvaginal mesh placement in many women. The midurethral sling has not been subject to the same reclassification and continues to be endorsed as the “gold standard” for surgical management of stress urinary incontinence by subspecialty societies. However, litigators have not differentiated between mesh for prolapse and mesh for incontinence. As such, all mesh, including that placed for stress urinary incontinence, faces continued controversy amidst an uncertain future. In this article, we review the background of the mesh controversy, recent developments, and the anticipated role of mesh in surgery for prolapse and stress urinary incontinence going forward.

4. A Reconfigurable Mesh-Ring Topology for Bluetooth Sensor Networks

Directory of Open Access Journals (Sweden)

Ben-Yi Wang

2018-05-01

Full Text Available In this paper, a Reconfigurable Mesh-Ring (RMR algorithm is proposed for Bluetooth sensor networks. The algorithm is designed in three stages to determine the optimal configuration of the mesh-ring network. Firstly, a designated root advertises and discovers its neighboring nodes. Secondly, a scatternet criterion is built to compute the minimum number of piconets and distributes the connection information for piconet and scatternet. Finally, a peak-search method is designed to determine the optimal mesh-ring configuration for various sizes of networks. To maximize the network capacity, the research problem is formulated by determining the best connectivity of available mesh links. During the formation and maintenance phases, three possible configurations (including piconet, scatternet, and hybrid are examined to determine the optimal placement of mesh links. The peak-search method is a systematic approach, and is implemented by three functional blocks: the topology formation block generates the mesh-ring topology, the routing efficiency block computes the routing performance, and the optimum decision block introduces a decision-making criterion to determine the optimum number of mesh links. Simulation results demonstrate that the optimal mesh-ring configuration can be determined and that the scatternet case achieves better overall performance than the other two configurations. The RMR topology also outperforms the conventional ring-based and cluster-based mesh methods in terms of throughput performance for Bluetooth configurable networks.

5. Mesh-based parallel code coupling interface

Energy Technology Data Exchange (ETDEWEB)

Wolf, K.; Steckel, B. (eds.) [GMD - Forschungszentrum Informationstechnik GmbH, St. Augustin (DE). Inst. fuer Algorithmen und Wissenschaftliches Rechnen (SCAI)

2001-04-01

MpCCI (mesh-based parallel code coupling interface) is an interface for multidisciplinary simulations. It provides industrial end-users as well as commercial code-owners with the facility to combine different simulation tools in one environment. Thereby new solutions for multidisciplinary problems will be created. This opens new application dimensions for existent simulation tools. This Book of Abstracts gives a short overview about ongoing activities in industry and research - all presented at the 2{sup nd} MpCCI User Forum in February 2001 at GMD Sankt Augustin. (orig.) [German] MpCCI (mesh-based parallel code coupling interface) definiert eine Schnittstelle fuer multidisziplinaere Simulationsanwendungen. Sowohl industriellen Anwender als auch kommerziellen Softwarehersteller wird mit MpCCI die Moeglichkeit gegeben, Simulationswerkzeuge unterschiedlicher Disziplinen miteinander zu koppeln. Dadurch entstehen neue Loesungen fuer multidisziplinaere Problemstellungen und fuer etablierte Simulationswerkzeuge ergeben sich neue Anwendungsfelder. Dieses Book of Abstracts bietet einen Ueberblick ueber zur Zeit laufende Arbeiten in der Industrie und in der Forschung, praesentiert auf dem 2{sup nd} MpCCI User Forum im Februar 2001 an der GMD Sankt Augustin. (orig.)

6. Basic Algorithms for the Asynchronous Reconfigurable Mesh

Directory of Open Access Journals (Sweden)

Yosi Ben-Asher

2002-01-01

Full Text Available Many constant time algorithms for various problems have been developed for the reconfigurable mesh (RM in the past decade. All these algorithms are designed to work with synchronous execution, with no regard for the fact that large size RMs will probably be asynchronous. A similar observation about the PRAM model motivated many researchers to develop algorithms and complexity measures for the asynchronous PRAM (APRAM. In this work, we show how to define the asynchronous reconfigurable mesh (ARM and how to measure the complexity of asynchronous algorithms executed on it. We show that connecting all processors in a row of an n×n ARM (the analog of barrier synchronization in the APRAM model can be solved with complexity Θ(nlog⁡n. Intuitively, this is average work time for solving such a problem. Next, we describe general a technique for simulating T -step synchronous RM algorithms on the ARM with complexity of Θ(T⋅n2log⁡n. Finally, we consider the simulation of the classical synchronous algorithm for counting the number of non-zero bits in an n bits vector using (k

7. Massively Parallel Finite Element Programming

KAUST Repository

Heister, Timo

2010-01-01

Today\\'s large finite element simulations require parallel algorithms to scale on clusters with thousands or tens of thousands of processor cores. We present data structures and algorithms to take advantage of the power of high performance computers in generic finite element codes. Existing generic finite element libraries often restrict the parallelization to parallel linear algebra routines. This is a limiting factor when solving on more than a few hundreds of cores. We describe routines for distributed storage of all major components coupled with efficient, scalable algorithms. We give an overview of our effort to enable the modern and generic finite element library deal.II to take advantage of the power of large clusters. In particular, we describe the construction of a distributed mesh and develop algorithms to fully parallelize the finite element calculation. Numerical results demonstrate good scalability. © 2010 Springer-Verlag.

8. Massively Parallel Finite Element Programming

KAUST Repository

Heister, Timo; Kronbichler, Martin; Bangerth, Wolfgang

2010-01-01

Today's large finite element simulations require parallel algorithms to scale on clusters with thousands or tens of thousands of processor cores. We present data structures and algorithms to take advantage of the power of high performance computers in generic finite element codes. Existing generic finite element libraries often restrict the parallelization to parallel linear algebra routines. This is a limiting factor when solving on more than a few hundreds of cores. We describe routines for distributed storage of all major components coupled with efficient, scalable algorithms. We give an overview of our effort to enable the modern and generic finite element library deal.II to take advantage of the power of large clusters. In particular, we describe the construction of a distributed mesh and develop algorithms to fully parallelize the finite element calculation. Numerical results demonstrate good scalability. © 2010 Springer-Verlag.

9. Recent advances in boundary element methods

CERN Document Server

Manolis, GD

2009-01-01

Addresses the needs of the computational mechanics research community in terms of information on boundary integral equation-based methods and techniques applied to a variety of fields. This book collects both original and review articles on contemporary Boundary Element Methods (BEM) as well as on the Mesh Reduction Methods (MRM).

10. A probability distribution model of tooth pits for evaluating time-varying mesh stiffness of pitting gears

Science.gov (United States)

Lei, Yaguo; Liu, Zongyao; Wang, Delong; Yang, Xiao; Liu, Huan; Lin, Jing

2018-06-01

Tooth damage often causes a reduction in gear mesh stiffness. Thus time-varying mesh stiffness (TVMS) can be treated as an indication of gear health conditions. This study is devoted to investigating the mesh stiffness variations of a pair of external spur gears with tooth pitting, and proposes a new model for describing tooth pitting based on probability distribution. In the model, considering the appearance and development process of tooth pitting, we model the pitting on the surface of spur gear teeth as a series of pits with a uniform distribution in the direction of tooth width and a normal distribution in the direction of tooth height, respectively. In addition, four pitting degrees, from no pitting to severe pitting, are modeled. Finally, influences of tooth pitting on TVMS are analyzed in details and the proposed model is validated by comparing with a finite element model. The comparison results show that the proposed model is effective for the TVMS evaluations of pitting gears.

11. PowderSim: Lagrangian Discrete and Mesh-Free Continuum Simulation Code for Cohesive Soils

Science.gov (United States)

Johnson, Scott; Walton, Otis; Settgast, Randolph

2013-01-01

PowderSim is a calculation tool that combines a discrete-element method (DEM) module, including calibrated interparticle-interaction relationships, with a mesh-free, continuum, SPH (smoothed-particle hydrodynamics) based module that utilizes enhanced, calibrated, constitutive models capable of mimicking both large deformations and the flow behavior of regolith simulants and lunar regolith under conditions anticipated during in situ resource utilization (ISRU) operations. The major innovation introduced in PowderSim is to use a mesh-free method (SPH-based) with a calibrated and slightly modified critical-state soil mechanics constitutive model to extend the ability of the simulation tool to also address full-scale engineering systems in the continuum sense. The PowderSim software maintains the ability to address particle-scale problems, like size segregation, in selected regions with a traditional DEM module, which has improved contact physics and electrostatic interaction models.

12. Error estimation for goal-oriented spatial adaptivity for the SN equations on triangular meshes

International Nuclear Information System (INIS)

Lathouwers, D.

2011-01-01

In this paper we investigate different error estimation procedures for use within a goal oriented adaptive algorithm for the S N equations on unstructured meshes. The method is based on a dual-weighted residual approach where an appropriate adjoint problem is formulated and solved in order to obtain the importance of residual errors in the forward problem on the specific goal of interest. The forward residuals and the adjoint function are combined to obtain both economical finite element meshes tailored to the solution of the target functional as well as providing error estimates. Various approximations made to make the calculation of the adjoint angular flux more economically attractive are evaluated by comparing the performance of the resulting adaptive algorithm and the quality of the error estimators when applied to two shielding-type test problems. (author)

13. Influence of the Mesh Geometry Evolution on Gearbox Dynamics during Its Maintenance

Science.gov (United States)

Dąbrowski, Z.; Dziurdź, J.; Klekot, G.

2017-12-01

Toothed gears constitute the necessary elements of power transmission systems. They are applied as stationary devices in drive systems of road vehicles, ships and crafts as well as airplanes and helicopters. One of the problems related to the toothed gears usage is the determination of their technical state or its evolutions. Assuming that the gear slippage velocity is attributed to vibrations and noises generated by cooperating toothed wheels, the application of a simple cooperation model of rolled wheels of skew teeth is proposed for the analysis of the mesh evolution influence on the gear dynamics. In addition, an example of utilising an ordinary coherence function for investigating evolutionary mesh changes related to the effects impossible to be described by means of the simple kinematic model is presented.

14. Simulation of transients with space-dependent feedback by coarse mesh flux expansion method

International Nuclear Information System (INIS)

Langenbuch, S.; Maurer, W.; Werner, W.

1975-01-01

For the simulation of the time-dependent behaviour of large LWR-cores, even the most efficient Finite-Difference (FD) methods require a prohibitive amount of computing time in order to achieve results of acceptable accuracy. Static CM-solutions computed with a mesh-size corresponding to the fuel element structure (about 20 cm) are at least as accurate as FD-solutions computed with about 5 cm mesh-size. For 3d-calculations this results in a reduction of storage requirements by a factor 60 and of computing costs by a factor 40, relative to FD-methods. These results have been obtained for pure neutronic calculations, where feedback is not taken into account. In this paper it is demonstrated that the method retains its accuracy also in kinetic calculations, even in the presence of strong space dependent feedback. (orig./RW) [de

15. Electrostatic X-ray image recording device with mesh-base photocathode photoelectron discriminator means

International Nuclear Information System (INIS)

1977-01-01

An electrostatic X-ray image recording device having a pair of spaced electrodes with a gas-filled gap therebetween, and including discrimination means, having a conductive mesh supporting a photocathodic material, positioned in the gas-filled gap between a first electrode having a layer of ultraviolet-emitting fluorescent material and a second electrode having a plastic sheet adjacent thereto for receiving photoelectrons emitted by the photocathodic material and accelerated to the second electrode by an applied field. The photoconductor-mesh element discriminates against fast electrons, produced by direct impingement of X-rays upon the photocathode to substantially reduce secondary electron production and amplification, thereby increasing both the signal-to-noise and contrast ratios. The electrostatic image formed on the plastic sheet is developed by zerographic techniques after exposure. (Auth.)

16. Three- and four-noded planar elements using absolute nodal coordinate formulation

International Nuclear Information System (INIS)

Olshevskiy, Alexander; Dmitrochenko, Oleg; Kim, Changwan

2013-01-01

This paper investigates two new types of planar finite elements containing three and four nodes. These elements are the reduced forms of the spatial plate elements employing the absolute nodal coordinate approach. Elements of the first type use translations of nodes and global slopes as nodal coordinates and have 18 and 24 degrees of freedom. The slopes facilitate the prevention of the shear locking effect in bending problems. Furthermore, the slopes accurately describe the deformed shape of the elements. Triangular and quadrilateral elements of the second type use translational degrees of freedom only and, therefore, can be utilized successfully in problems without bending. These simple elements with 6 and 8 degrees of freedom are identical to the elements used in conventional formulation of the finite element method from the kinematical point of view. Similarly to the famous problem called “flying spaghetti” which is used often as a benchmark for beam elements, a kind of “flying lasagna” is simulated for the planar elements. Numerical results of simulations are presented.

17. MeshVoro: A Three-Dimensional Voronoi Mesh Building Tool for the TOUGH Family of Codes

Energy Technology Data Exchange (ETDEWEB)

Freeman, C. M.; Boyle, K. L.; Reagan, M.; Johnson, J.; Rycroft, C.; Moridis, G. J.

2013-09-30

Few tools exist for creating and visualizing complex three-dimensional simulation meshes, and these have limitations that restrict their application to particular geometries and circumstances. Mesh generation needs to trend toward ever more general applications. To that end, we have developed MeshVoro, a tool that is based on the Voro (Rycroft 2009) library and is capable of generating complex threedimensional Voronoi tessellation-based (unstructured) meshes for the solution of problems of flow and transport in subsurface geologic media that are addressed by the TOUGH (Pruess et al. 1999) family of codes. MeshVoro, which includes built-in data visualization routines, is a particularly useful tool because it extends the applicability of the TOUGH family of codes by enabling the scientifically robust and relatively easy discretization of systems with challenging 3D geometries. We describe several applications of MeshVoro. We illustrate the ability of the tool to straightforwardly transform a complex geological grid into a simulation mesh that conforms to the specifications of the TOUGH family of codes. We demonstrate how MeshVoro can describe complex system geometries with a relatively small number of grid blocks, and we construct meshes for geometries that would have been practically intractable with a standard Cartesian grid approach. We also discuss the limitations and appropriate applications of this new technology.

18. A parallel direct solver for the self-adaptive hp Finite Element Method

KAUST Repository

Paszyński, Maciej R.; Pardo, David; Torres-Verdí n, Carlos; Demkowicz, Leszek F.; Calo, Victor M.

2010-01-01

measurement simulations problems. We measure the execution time and memory usage of the solver over a large regular mesh with 1.5 million degrees of freedom as well as on the highly non-regular mesh, generated by the self-adaptive h p-FEM, with finite elements

19. A Family of Multipoint Flux Mixed Finite Element Methods for Elliptic Problems on General Grids

KAUST Repository

Wheeler, Mary F.

2011-01-01

In this paper, we discuss a family of multipoint flux mixed finite element (MFMFE) methods on simplicial, quadrilateral, hexahedral, and triangular-prismatic grids. The MFMFE methods are locally conservative with continuous normal fluxes, since they are developed within a variational framework as mixed finite element methods with special approximating spaces and quadrature rules. The latter allows for local flux elimination giving a cell-centered system for the scalar variable. We study two versions of the method: with a symmetric quadrature rule on smooth grids and a non-symmetric quadrature rule on rough grids. Theoretical and numerical results demonstrate first order convergence for problems with full-tensor coefficients. Second order superconvergence is observed on smooth grids. © 2011 Published by Elsevier Ltd.

20. Element Verification and Comparison in Sierra/Solid Mechanics Problems

Energy Technology Data Exchange (ETDEWEB)

Ohashi, Yuki; Roth, William

2016-05-01

The goal of this project was to study the effects of element selection on the Sierra/SM solutions to five common solid mechanics problems. A total of nine element formulations were used for each problem. The models were run multiple times with varying spatial and temporal discretization in order to ensure convergence. The first four problems have been compared to analytical solutions, and all numerical results were found to be sufficiently accurate. The penetration problem was found to have a high mesh dependence in terms of element type, mesh discretization, and meshing scheme. Also, the time to solution is shown for each problem in order to facilitate element selection when computer resources are limited.

1. The application of TINA in the MESH project

NARCIS (Netherlands)

van Sinderen, Marten J.; Ferreira Pires, Luis; Pires, L.F.; Plagemann, Thomas; Goebel, Vera

1998-01-01

This paper discusses the application of TINA concepts, architectures and related design paradigms in the MESH project. MESH adopted TINA as a means to facilitate the design and implementation of a flexible platform for developing and providing interactive multimedia services. This paper reports on

2. Capacity analysis of wireless mesh networks | Gumel | Nigerian ...

African Journals Online (AJOL)

... number of nodes (n) in a linear topology. The degradation is found to be higher in a fully mesh network as a result of increase in interference and MAC layer contention in the network. Key words: Wireless mesh network (WMN), Adhoc network, Network capacity analysis, Bottleneck collision domain, Medium access control ...

3. Volume Decomposition and Feature Recognition for Hexahedral Mesh Generation

Energy Technology Data Exchange (ETDEWEB)

1999-09-27

Considerable progress has been made on automatic hexahedral mesh generation in recent years. Several automatic meshing algorithms have proven to be very reliable on certain classes of geometry. While it is always worth pursuing general algorithms viable on more general geometry, a combination of the well-established algorithms is ready to take on classes of complicated geometry. By partitioning the entire geometry into meshable pieces matched with appropriate meshing algorithm the original geometry becomes meshable and may achieve better mesh quality. Each meshable portion is recognized as a meshing feature. This paper, which is a part of the feature based meshing methodology, presents the work on shape recognition and volume decomposition to automatically decompose a CAD model into meshable volumes. There are four phases in this approach: (1) Feature Determination to extinct decomposition features, (2) Cutting Surfaces Generation to form the ''tailored'' cutting surfaces, (3) Body Decomposition to get the imprinted volumes; and (4) Meshing Algorithm Assignment to match volumes decomposed with appropriate meshing algorithms. The feature determination procedure is based on the CLoop feature recognition algorithm that is extended to be more general. Results are demonstrated over several parts with complicated topology and geometry.

4. Micro-mesh fabric pollination bags for switchgrass

Science.gov (United States)

Pollination bags for making controlled crosses between switchgrass plants were made from a polyester micro-mesh fabric with a mesh size of 41 µm which is smaller than the mean reported 43 µm diameter of switchgrass pollen. When used in paired plant crosses between switchgrass plants, the mean amoun...

5. Lagrangian fluid dynamics using the Voronoi-Delauanay mesh

International Nuclear Information System (INIS)

Dukowicz, J.K.

1981-01-01

A Lagrangian technique for numerical fluid dynamics is described. This technique makes use of the Voronoi mesh to efficiently locate new neighbors, and it uses the dual (Delaunay) triangulation to define computational cells. This removes all topological restrictions and facilitates the solution of problems containing interfaces and multiple materials. To improve computational accuracy a mesh smoothing procedure is employed

6. CAPAClTYANALYSIS OF WIRELESS MESH NET\\VORKS

African Journals Online (AJOL)

The limited available bandwidth makes capacity analysis of the network very essential. ... Wireless mesh networks can also be employed for wide variety ofapplications such ... wireless mesh networks using OPNET (Optimized Network Engineering Tool) Modeller 1-J..5. The .... /bps using I I Mbps data rate and 12000 bits.

7. Sending policies in dynamic wireless mesh using network coding

DEFF Research Database (Denmark)

Pandi, Sreekrishna; Fitzek, Frank; Pihl, Jeppe

2015-01-01

This paper demonstrates the quick prototyping capabilities of the Python-Kodo library for network coding based performance evaluation and investigates the problem of data redundancy in a network coded wireless mesh with opportunistic overhearing. By means of several wireless meshed architectures ...

8. Plated nickel wire mesh makes superior catalyst bed

Science.gov (United States)

Sill, M.

1965-01-01

Porous nickel mesh screen catalyst bed produces gas evolution in hydrogen peroxide thrust chambers used for attitude control of space vehicles. The nickel wire mesh disks in the catalyst bed are plated in rugose form with a silver-gold coating.

9. Mesh Processing in Medical-Image Analysis-a Tutorial

DEFF Research Database (Denmark)

Levine, Joshua A.; Paulsen, Rasmus Reinhold; Zhang, Yongjie

2012-01-01

Medical-image analysis requires an understanding of sophisticated scanning modalities, constructing geometric models, building meshes to represent domains, and downstream biological applications. These four steps form an image-to-mesh pipeline. For research in this field to progress, the imaging...

10. Scalable Video Streaming in Wireless Mesh Networks for Education

Science.gov (United States)

Liu, Yan; Wang, Xinheng; Zhao, Liqiang

2011-01-01

In this paper, a video streaming system for education based on a wireless mesh network is proposed. A wireless mesh network is a self-organizing, self-managing and reliable intelligent network, which allows educators to deploy a network quickly. Video streaming plays an important role in this system for multimedia data transmission. This new…

11. Staged Closure of Giant Omphalocele using Synthetic Mesh

OpenAIRE

Parida, Lalit; Pal, Kamalesh; Al Buainain, Hussah; Elshafei, Hossam

2014-01-01

Giant omphalocele is difficult to manage and is associated with a poor outcome. A male newborn presented to our hospital with a giant omphalocele. We performed a staged closure of giant omphalocele using synthetic mesh to construct a silo and then mesh abdominoplasty in the neonatal period that led to a successful outcome within a reasonable period of hospital stay.

12. Adaptive mesh generation for image registration and segmentation

DEFF Research Database (Denmark)

2013-01-01

measure. The method was tested on a T1 weighted MR volume of an adult brain and showed a 66% reduction in the number of mesh vertices compared to a red-subdivision strategy. The deformation capability of the mesh was tested by registration to five additional T1-weighted MR volumes....

13. Laparoscopic sacrocolpopexy versus transvaginal mesh for recurrent pelvic organ prolapse.

Science.gov (United States)

Iglesia, Cheryl B; Hale, Douglass S; Lucente, Vincent R

2013-03-01

Both expert surgeons agree with the following: (1) Surgical mesh, whether placed laparoscopically or transvaginally, is indicated for pelvic floor reconstruction in cases involving recurrent advanced pelvic organ prolapse. (2) Procedural expertise and experience gained from performing a high volume of cases is fundamentally necessary. Knowledge of outcomes and complications from an individual surgeon's audit of cases is also needed when discussing the risks and benefits of procedures and alternatives. Yet controversy still exists on how best to teach new surgical techniques and optimal ways to efficiently track outcomes, including subjective and objective cure of prolapse as well as perioperative complications. A mesh registry will be useful in providing data needed for surgeons. Cost factors are also a consideration since laparoscopic and especially robotic surgical mesh procedures are generally more costly than transvaginal mesh kits when operative time, extra instrumentation and length of stay are included. Long-term outcomes, particularly for transvaginal mesh procedures, are lacking. In conclusion, all surgery poses risks; however, patients should be made aware of the pros and cons of various routes of surgery as well as the potential risks and benefits of using mesh. Surgeons should provide patients with honest information about their own experience implanting mesh and also their experience dealing with mesh-related complications.

14. Energy mesh optimization for multi-level calculation schemes

International Nuclear Information System (INIS)

Mosca, P.; Taofiki, A.; Bellier, P.; Prevost, A.

2011-01-01

The industrial calculations of third generation nuclear reactors are based on sophisticated strategies of homogenization and collapsing at different spatial and energetic levels. An important issue to ensure the quality of these calculation models is the choice of the collapsing energy mesh. In this work, we show a new approach to generate optimized energy meshes starting from the SHEM 281-group library. The optimization model is applied on 1D cylindrical cells and consists of finding an energy mesh which minimizes the errors between two successive collision probability calculations. The former is realized over the fine SHEM mesh with Livolant-Jeanpierre self-shielded cross sections and the latter is performed with collapsed cross sections over the energy mesh being optimized. The optimization is done by the particle swarm algorithm implemented in the code AEMC and multigroup flux solutions are obtained from standard APOLLO2 solvers. By this new approach, a set of new optimized meshes which encompass from 10 to 50 groups has been defined for PWR and BWR calculations. This set will allow users to adapt the energy detail of the solution to the complexity of the calculation (assembly, multi-assembly, two-dimensional whole core). Some preliminary verifications, in which the accuracy of the new meshes is measured compared to a direct 281-group calculation, show that the 30-group optimized mesh offers a good compromise between simulation time and accuracy for a standard 17 x 17 UO 2 assembly with and without control rods. (author)

15. Water Penetration through a Superhydrophobic Mesh During a Drop Impact

Science.gov (United States)

Ryu, Seunggeol; Sen, Prosenjit; Nam, Youngsuk; Lee, Choongyeop

2017-01-01

When a water drop impacts a mesh having submillimeter pores, a part of the drop penetrates through the mesh if the impact velocity is sufficiently large. Here we show that different surface wettability, i.e., hydrophobicity and superhydrophobicity, leads to different water penetration dynamics on a mesh during drop impact. We show, despite the water repellence of a superhydrophobic surface, that water can penetrate a superhydrophobic mesh more easily (i.e., at a lower impact velocity) over a hydrophobic mesh via a penetration mechanism unique to a superhydrophobic mesh. On a superhydrophobic mesh, the water penetration can occur during the drop recoil stage, which appears at a lower impact velocity than the critical impact velocity for water penetration right upon impact. We propose that this unique water penetration on a superhydrophobic mesh can be attributed to the combination of the hydrodynamic focusing and the momentum transfer from the water drop when it is about to bounce off the surface, at which point the water drop retrieves most of its kinetic energy due to the negligible friction on superhydrophobic surfaces.

16. COSMOLOGICAL ADAPTIVE MESH REFINEMENT MAGNETOHYDRODYNAMICS WITH ENZO

International Nuclear Information System (INIS)

Collins, David C.; Xu Hao; Norman, Michael L.; Li Hui; Li Shengtai

2010-01-01

In this work, we present EnzoMHD, the extension of the cosmological code Enzo to include the effects of magnetic fields through the ideal magnetohydrodynamics approximation. We use a higher order Godunov method for the computation of interface fluxes. We use two constrained transport methods to compute the electric field from those interface fluxes, which simultaneously advances the induction equation and maintains the divergence of the magnetic field. A second-order divergence-free reconstruction technique is used to interpolate the magnetic fields in the block-structured adaptive mesh refinement framework already extant in Enzo. This reconstruction also preserves the divergence of the magnetic field to machine precision. We use operator splitting to include gravity and cosmological expansion. We then present a series of cosmological and non-cosmological test problems to demonstrate the quality of solution resulting from this combination of solvers.

17. Parallel-In-Time For Moving Meshes

Energy Technology Data Exchange (ETDEWEB)

Falgout, R. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Manteuffel, T. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Southworth, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schroder, J. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

2016-02-04

With steadily growing computational resources available, scientists must develop e ective ways to utilize the increased resources. High performance, highly parallel software has be- come a standard. However until recent years parallelism has focused primarily on the spatial domain. When solving a space-time partial di erential equation (PDE), this leads to a sequential bottleneck in the temporal dimension, particularly when taking a large number of time steps. The XBraid parallel-in-time library was developed as a practical way to add temporal parallelism to existing se- quential codes with only minor modi cations. In this work, a rezoning-type moving mesh is applied to a di usion problem and formulated in a parallel-in-time framework. Tests and scaling studies are run using XBraid and demonstrate excellent results for the simple model problem considered herein.

18. A finite element conjugate gradient FFT method for scattering

Science.gov (United States)

Collins, Jeffery D.; Ross, Dan; Jin, J.-M.; Chatterjee, A.; Volakis, John L.

1991-01-01

Validated results are presented for the new 3D body of revolution finite element boundary integral code. A Fourier series expansion of the vector electric and mangnetic fields is employed to reduce the dimensionality of the system, and the exact boundary condition is employed to terminate the finite element mesh. The mesh termination boundary is chosen such that is leads to convolutional boundary operatores of low O(n) memory demand. Improvements of this code are discussed along with the proposed formulation for a full 3D implementation of the finite element boundary integral method in conjunction with a conjugate gradiant fast Fourier transformation (CGFFT) solution.

19. Interaction of weak shock waves with rectangular meshes in plate

Directory of Open Access Journals (Sweden)

O.A. Mikulich

2016-09-01

Full Text Available In mechanical engineering, building and other industries a significant part of the process includes the presence of various dynamic loads due to technological and mechanical impacts. Consideration of such load effects allows more accurate assessment of the structural elements strength or machine parts. Aim: The aim is to develop an algorithm for calculating of dynamic stress state of plates with meshes for pulse loading in the form of a weak shock wave. Materials and Methods: An integral and discrete Fourier transform were used to solve the problem. An application of Fourier transform by time allowed reducing the dynamic problem of flat deformation to the solution of a finite number of problems for the established oscillations at fixed cyclic frequency values. In the area of Fourier-images the method of boundary integral equations and the apparatus of a complex variable function theory are used to study the dynamic stress concentration. Results: Based on the developed methodology the distribution change of the dynamic circle stress over time on the edge of a rectangular hole is studied. The time sections of stress distribution fields under the influence of pulse dynamic load is constructed.

20. Numerical study of Taylor bubbles with adaptive unstructured meshes

Science.gov (United States)

Xie, Zhihua; Pavlidis, Dimitrios; Percival, James; Pain, Chris; Matar, Omar; Hasan, Abbas; Azzopardi, Barry

2014-11-01

The Taylor bubble is a single long bubble which nearly fills the entire cross section of a liquid-filled circular tube. This type of bubble flow regime often occurs in gas-liquid slug flows in many industrial applications, including oil-and-gas production, chemical and nuclear reactors, and heat exchangers. The objective of this study is to investigate the fluid dynamics of Taylor bubbles rising in a vertical pipe filled with oils of extremely high viscosity (mimicking the heavy oils'' found in the oil-and-gas industry). A modelling and simulation framework is presented here which can modify and adapt anisotropic unstructured meshes to better represent the underlying physics of bubble rise and reduce the computational effort without sacrificing accuracy. The numerical framework consists of a mixed control-volume and finite-element formulation, a volume of fluid''-type method for the interface capturing based on a compressive control volume advection method, and a force-balanced algorithm for the surface tension implementation. Numerical examples of some benchmark tests and the dynamics of Taylor bubbles are presented to show the capability of this method. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

1. Challenges in Second-Generation Wireless Mesh Networks

Directory of Open Access Journals (Sweden)

Pescapé Antonio

2008-01-01

Full Text Available Wireless mesh networks have the potential to provide ubiquitous high-speed Internet access at low costs. The good news is that initial deployments of WiFi meshes show the feasibility of providing ubiquitous Internet connectivity. However, their performance is far below the necessary and achievable limit. Moreover, users' subscription in the existing meshes is dismal even though the technical challenges to get connectivity are low. This paper provides an overview of the current status of mesh networks' deployment, and highlights the technical, economical, and social challenges that need to be addressed in the next years. As a proof-of-principle study, we discuss the above-mentioned challenges with reference to three real networks: (i MagNets, an operator-driven planned two-tier mesh network; (ii Berlin Freifunk network as a pure community-driven single-tier network; (iii Weimar Freifunk network, also a community-driven but two-tier network.

2. Current role of mesh in vaginal prolapse surgery.

Science.gov (United States)

Richter, Lee A; Carter, Charelle; Gutman, Robert E

2014-10-01

This report summarizes the latest literature on transvaginal mesh (TVM) for the treatment of pelvic organ prolapse, with a focus on indications for use and management of complications. We describe trends in TVM by reviewing the recent literature and summarizing national meeting presentations. Vaginal mesh complications are most often managed surgically, and the majority of patients experiencing mesh-related pain have symptom improvement after intervention. New efforts will focus on identifying variables associated with success after intervention for mesh-related complications, to aid reconstructive pelvic surgeons in outcome prediction and patient counselling. Although the use of TVM has plateaued in recent years, we are seeing an exponential rise in synthetic mesh implant removal. Reconstructive pelvic surgeons advising patients with TVM complications should report that surgical intervention is often necessary, improvement rates of pain-related symptoms after surgery are high, and up to a third may require multiple interventions.

3. Evidence to justify retention of transvaginal mesh: comparison between laparoscopic sacral colpopexy and transvaginal Elevate™ mesh.

Science.gov (United States)

To, Valérie; Hengrasmee, Pattaya; Lam, Alan; Luscombe, Georgina; Lawless, Anna; Lam, Justin

2017-12-01

To determine if laparoscopic sacral colpopexy (LSC) offers better apical support with a lower exposure rate than transvaginal mesh surgery with Elevate™. This was a retrospective cohort study comparing patients with apical prolapse (POP-Q point C ≥ -1) who underwent Elevate™ mesh repair (n = 146) with patients who underwent laparoscopic sacral colpopexy (n = 267). The sacral colpopexy group had a mean age of 59 years and a BMI of 25.7. Patients in the Elevate™ group were older, with a mean age of 63 and a BMI of 26.3. Most of the patients of both groups presented with pelvic organ prolapse stage III (LSC 73.8% and Elevate™ 87.0%) and their mean POP-Q point C were not significantly different (LSC 1.4 vs Elevate™ 1.2 cm). Operative time was longer in the LSC group (113 vs 91 min, p < 0.001), but estimated blood loss was lower (75 cm 3 vs 137 cm 3 , p < 0.001). No difference in mesh exposure rate could be found between the two groups at one year (Elevate™ 0.7% vs LSC 2.6%, OR 0.26, 95% CI 0.03 to 2.10, p = 0.21). One-year objective cure rate, defined as no descent beyond the hymen, was 97.0% in the LSC group and 96.6% in the Elevate™ group (p = .81). The overall recurrence (objective, subjective recurrence or reoperation) was also not different between the groups (LSC 4.5% vs Elevate 4.8%, p = 0.89). Transvaginal Elevate™ mesh delivers comparable apical support with a low exposure rate similar to that of laparoscopic sacral colpopexy.

4. Robust, multidimensional mesh motion based on Monge-Kantorovich equidistribution

Energy Technology Data Exchange (ETDEWEB)

Delzanno, G L [Los Alamos National Laboratory; Finn, J M [Los Alamos National Laboratory

2009-01-01

Mesh-motion (r-refinement) grid adaptivity schemes are attractive due to their potential to minimize the numerical error for a prescribed number of degrees of freedom. However, a key roadblock to a widespread deployment of the technique has been the formulation of robust, reliable mesh motion governing principles, which (1) guarantee a solution in multiple dimensions (2D and 3D), (2) avoid grid tangling (or folding of the mesh, whereby edges of a grid cell cross somewhere in the domain), and (3) can be solved effectively and efficiently. In this study, we formulate such a mesh-motion governing principle, based on volume equidistribution via Monge-Kantorovich optimization (MK). In earlier publications [1, 2], the advantages of this approach in regards to these points have been demonstrated for the time-independent case. In this study, demonstrate that Monge-Kantorovich equidistribution can in fact be used effectively in a time stepping context, and delivers an elegant solution to the otherwise pervasive problem of grid tangling in mesh motion approaches, without resorting to ad-hoc time-dependent terms (as in moving-mesh PDEs, or MMPDEs [3, 4]). We explore two distinct r-refinement implementations of MK: direct, where the current mesh relates to an initial, unchanging mesh, and sequential, where the current mesh is related to the previous one in time. We demonstrate that the direct approach is superior in regards to mesh distortion and robustness. The properties of the approach are illustrated with a paradigmatic hyperbolic PDE, the advection of a passive scalar. Imposed velocity flow fields or varying vorticity levels and flow shears are considered.

5. Obturator foramen dissection for excision of symptomatic transobturator mesh.

Science.gov (United States)

Reynolds, W Stuart; Kit, Laura Chang; Kaufman, Melissa R; Karram, Mickey; Bales, Gregory T; Dmochowski, Roger R

2012-05-01

6. A geometric toolbox for tetrahedral finite element partitions

NARCIS (Netherlands)

Brandts, J.; Korotov, S.; Křížek, M.; Axelsson, O.; Karátson, J.

2011-01-01

In this work we present a survey of some geometric results on tetrahedral partitions and their refinements in a unified manner. They can be used for mesh generation and adaptivity in practical calculations by the finite element method (FEM), and also in theoretical finite element (FE) analysis.

7. Stability estimates for hp spectral element methods for general ...

We establish basic stability estimates for a non-conforming ℎ- spectral element method which allows for simultaneous mesh refinement and variable polynomial degree. The spectral element functions are non-conforming if the boundary conditions are Dirichlet. For problems with mixed boundary conditions they are ...

8. A Note on Symplectic, Multisymplectic Scheme in Finite Element Method

Institute of Scientific and Technical Information of China (English)

GUO Han-Ying; JI Xiao-Mei; LI Yu-Qi; WU Ke

2001-01-01

We find that with uniform mesh, the numerical schemes derived from finite element method can keep a preserved symplectic structure in one-dimensional case and a preserved multisymplectic structure in two-dimensional case respectively. These results are in fact the intrinsic reason why the numerical experiments show that such finite element algorithms are accurate in practice.`

9. Standard elements; Elements standards

Energy Technology Data Exchange (ETDEWEB)

Blanc, B [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

1958-07-01

Following his own experience the author recalls the various advantages, especially in the laboratory, of having pre-fabricated vacuum-line components at his disposal. (author) [French] A la suite de sa propre experience, l'auteur veut rappeler les divers avantages que presente, tout particulierement en laboratoire, le fait d'avoir a sa disposition des elements pre-fabriques de canalisations a vide. (auteur)

10. In-vitro examination of the biocompatibility of fibroblast cell lines on alloplastic meshes and sterilized polyester mosquito mesh.

Science.gov (United States)

Wiessner, R; Kleber, T; Ekwelle, N; Ludwig, K; Richter, D-U

2017-06-01

The use of alloplastic implants for tissue strengthening when treating hernias is an established therapy worldwide. Despite the high incidence of hernias in Africa and Asia, the implantation of costly mesh netting is not financially feasible. Because of that various investigative groups have examined the use of sterilized mosquito netting. The animal experiments as well as the clinical trials have both shown equivalent short- and long-term results. The goal of this paper is the comparison of biocompatibility of human fibroblasts on the established commercially available nets and on sterilized polyester mosquito mesh over a period of 12 weeks. Three commercially available plastic mesh types and a gas-sterilized mosquito polyethylenterephtalate (polyester) mesh were examined. Human fibroblasts from subcutaneous healthy tissue were used. Various tests for evaluating the growth behavior and the cell morphology of human fibroblasts were conducted. The semi-quantitative (light microscopy) and qualitative (scanning electron microscopy) analyses were performed after 1 week and then again after 12 weeks. The cell proliferation and cytotoxicity of the implants were investigated with the help of the 5'-bromo-2'-deoxyuridine (BrdU)-cell proliferation test and the LDH-cytotoxicity test. The number of live cells per ml was determined with the Bürker counting chamber. In addition, analyses were made of the cell metabolism (oxidative stress) by measuring the pH value, hydrogen peroxide, and glycolysis. After 12 weeks, a proliferation of fibroblasts on all mesh is documented. No mesh showed a complete apoptosis of the cells. This qualitative observation could be confirmed quantitatively in a biochemical assay by marking the proliferating cells with BrdU. The biochemical analysis brought the proof that the materials used, including the polyester of the mosquito mesh, are not cytotoxic for the fibroblasts. The vitality of the cells was between 94 and 98%. The glucose metabolism

11. SANTOS - a two-dimensional finite element program for the quasistatic, large deformation, inelastic response of solids

Energy Technology Data Exchange (ETDEWEB)

Stone, C.M.

1997-07-01

SANTOS is a finite element program designed to compute the quasistatic, large deformation, inelastic response of two-dimensional planar or axisymmetric solids. The code is derived from the transient dynamic code PRONTO 2D. The solution strategy used to compute the equilibrium states is based on a self-adaptive dynamic relaxation solution scheme, which is based on explicit central difference pseudo-time integration and artificial mass proportional damping. The element used in SANTOS is a uniform strain 4-node quadrilateral element with an hourglass control scheme to control the spurious deformation modes. Finite strain constitutive models for many common engineering materials are included. A robust master-slave contact algorithm for modeling sliding contact is implemented. An interface for coupling to an external code is also provided. 43 refs., 22 figs.

12. Hip Joint Replacement Using Monofilament Polypropylene Surgical Mesh: An Animal Model

Directory of Open Access Journals (Sweden)

Jacek Białecki

2014-01-01

Full Text Available Hip joint dysplasia is a deformation of the articular elements (pelvic acetabulum, head of the femur, and/or ligament of the head of the femur leading to laxity of the hip components and dislocation of the femoral head from the pelvic acetabulum. Diagnosis is based on symptoms observed during clinical and radiological examinations. There are two treatment options: conservative and surgical. The classic surgical procedures are juvenile pubic symphysiodesis (JPS, triple pelvic osteotomy (TPO, total hip replacement (THR, and femoral head and neck resection (FHNE. The aim of this experiment was to present an original technique of filling the acetabulum with a polypropylene implant, resting the femoral neck directly on the mesh. The experiment was performed on eight sheep. The clinical value of the new surgical technique was evaluated using clinical, radiological, and histological methods. This technique helps decrease the loss of limb length by supporting the femoral neck on the mesh equivalent to the femoral head. It also reduces joint pain and leads to the formation of stable and mobile pseudarthrosis. The mesh manifested osteoprotective properties and enabled the formation of a stiff-elastic connection within the hip joint. The method is very cost-effective and the technique itself is simple to perform.

13. Low modulus and bioactive Ti/α-TCP/Ti-mesh composite prepared by spark plasma sintering.

Science.gov (United States)

Guo, Yu; Tan, Yanni; Liu, Yong; Liu, Shifeng; Zhou, Rui; Tang, Hanchun

2017-11-01

A titanium mesh scaffold composite filled with Ti/α-TCP particles was prepared by spark plasma sintering (SPS). The microstructures and interfacial reactions of the composites were investigated by scanning electron microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and X-ray diffraction (XRD) analyses. The compressive strength and elastic modulus were also measured. In vitro bioactivity and biocompatibility was evaluated by using simulated body fluid and cells culture, respectively. After high temperature sintering, Ti oxides, Ti x P y and CaTiO 3 were formed. The formation of Ti oxides and Ti x P y were resulted from the diffusion of O and P elements from α-TCP to Ti. CaTiO 3 was the reaction product of Ti and α-TCP. The composite of 70Ti/α-TCP incorporated with Ti mesh showed a high compressive strength of 589MPa and a low compressive modulus of 30GPa. The bioactivity test showed the formation of a thick apatite layer on the composite and well-spread cells attachment. A good combination of mechanical properties and bioactivity indicated a high potential application of Ti/α-TCP/Ti-mesh composite for orthopedic implants. Copyright © 2017. Published by Elsevier B.V.

14. An Experimental Study on Strengthening of Reinforced Concrete Flexural Members using Steel Wire Mesh

Directory of Open Access Journals (Sweden)

2017-01-01

Full Text Available One of the major challenges and contemporary research in the field of structural engineering is strengthening of existing structural elements using readily available materials in the market. Several investigations were conducted on strengthening of various structural components using traditional and advanced materials. Many researchers tried to enhance the reinforced concrete (RC beams strength using steel plate, Glass and Carbon Fibre Reinforced Polymers (GFRP & CFRP. For the reason that high weight to the strength ratio and compatibility in strength between FRP composites and steel bars, steel plates and GFRP and CFRP composites are not used for strengthening works practically. Hence, in this present work the suitability of using wire mesh for the purpose of strengthening the RC flexural members is studied by conducting experimental works. New technique of strengthening system using wire mesh with a view to improve sectional properties and subsequently flexural strength of RC beams is adopted in this work. The results for experimental and theoretical analysis were compared and found that good correlation exists between them. The experimental results indicate that RC beams strengthened with steel wire mesh are easy technique for strengthening of existing flexural members.

15. Finite Element Method Application in Areal Rainfall Estimation Case Study; Mashhad Plain Basin

Directory of Open Access Journals (Sweden)

M. Irani

2016-10-01

7.08 software environment. The finite element method is a numerical procedure for obtaining solutions to many of the problems encountered in engineering analysis. First, it utilizes discrete elements to obtain the joint displacements and member forces of a structural framework and estimate areal precipitation. Second, it uses the continuum elements to obtain approximate solutions to heat transfer, fluid mechanics, and solid mechanics problems. Galerkin’s method is used to develop the finite element equations for the field problems. It uses the same functions for Ni(x that was used in the approximating equations. This approach is the basis of finite element method for problems involving first-derivative terms. This method yields the same result as the variational method when applied to differential equations that are self-adjoints. Galerkin’s method is almost simple and eliminates bias by representing the relief by suitable mathematical model and incorporating this into the integration. In this paper, two powerful techniques were introduced which was applied in Galerkin’s method: The use of interpolation functions to transform the shape of the element to a perfect square. The use of Gaussian quadrature to calculate rainfall depth numerically . In this study, Mashhad plain is divided to 40 elements which are quadrilateral. In each element, the rain gauge was situated on the node of the stations. The coordinates are given according to UTM, where x and y are the horizontal and z, the vertical (altitude coordinate. It was necessary at the outset to number the corner nodes in a set manner and for the purpose of this paper, an anticlockwise convention was adopted. Results and Discussion: This paper represented the estimation of mean precipitation (daily, monthly and annual in Mashhad plain by Galerkin’s method which was compared with arithmetic mean, Thiessen, kriging and IDW. The values of Galerkin’s method by Matlab7.08 software and Thiessen, kriging and IDW by

16. Development of efficient finite elements for structural integrity analysis of solid rocket motor propellant grains

International Nuclear Information System (INIS)

Marimuthu, R.; Nageswara Rao, B.

2013-01-01

Solid propellant rocket motors (SRM) are regularly used in the satellite launch vehicles which consist of mainly three different structural materials viz., solid propellant, liner, and casing materials. It is essential to assess the structural integrity of solid propellant grains under the specified gravity, thermal and pressure loading conditions. For this purpose finite elements developed following the Herrmann formulation are: twenty node brick element (BH20), eight node quadrilateral plane strain element (PH8) and, eight node axi-symmetric solid of revolution element (AH8). The time-dependent nature of the solid propellant grains is taken into account utilizing the direct inverse method of Schepary to specify the effective Young's modulus and Poisson's ratio. The developed elements are tested considering various problems prior to implementation in the in-house software package (viz., Finite Element Analysis of STructures, FEAST). Several SRM configurations are analyzed to assess the structural integrity under different loading conditions. Finite element analysis results are found to be in good agreement with those obtained earlier from MARC software. -- Highlights: • Developed efficient Herrmann elements. • Accuracy of finite elements demonstrated solving several known solution problems. • Time dependent structural response obtained using the direct inverse method of Schepary. • Performed structural analysis of grains under gravity, thermal and pressure loads

17. Male infertility after mesh hernia repair: A prospective study.

Science.gov (United States)

Hallén, Magnus; Sandblom, Gabriel; Nordin, Pär; Gunnarsson, Ulf; Kvist, Ulrik; Westerdahl, Johan

2011-02-01

18. Does Attorney Advertising Influence Patient Perceptions of Pelvic Mesh?

Science.gov (United States)

Tippett, Elizabeth; King, Jesse; Lucent, Vincent; Ephraim, Sonya; Murphy, Miles; Taff, Eileen

2018-01-01

19. Selective laser vaporization of polypropylene sutures and mesh

Science.gov (United States)

Burks, David; Rosenbury, Sarah B.; Kennelly, Michael J.; Fried, Nathaniel M.

2012-02-01

Complications from polypropylene mesh after surgery for female stress urinary incontinence (SUI) may require tedious surgical revision and removal of mesh materials with risk of damage to healthy adjacent tissue. This study explores selective laser vaporization of polypropylene suture/mesh materials commonly used in SUI. A compact, 7 Watt, 647-nm, red diode laser was operated with a radiant exposure of 81 J/cm2, pulse duration of 100 ms, and 1.0-mm-diameter laser spot. The 647-nm wavelength was selected because its absorption by water, hemoglobin, and other major tissue chromophores is low, while polypropylene absorption is high. Laser vaporization of ~200-μm-diameter polypropylene suture/mesh strands, in contact with fresh urinary tissue samples, ex vivo, was performed. Non-contact temperature mapping of the suture/mesh samples with a thermal camera was also conducted. Photoselective vaporization of polypropylene suture and mesh using a single laser pulse was achieved with peak temperatures of 180 and 232 °C, respectively. In control (safety) studies, direct laser irradiation of tissue alone resulted in only a 1 °C temperature increase. Selective laser vaporization of polypropylene suture/mesh materials is feasible without significant thermal damage to tissue. This technique may be useful for SUI procedures requiring surgical revision.

20. A Survey of Solver-Related Geometry and Meshing Issues

Science.gov (United States)

Masters, James; Daniel, Derick; Gudenkauf, Jared; Hine, David; Sideroff, Chris

2016-01-01

There is a concern in the computational fluid dynamics community that mesh generation is a significant bottleneck in the CFD workflow. This is one of several papers that will help set the stage for a moderated panel discussion addressing this issue. Although certain general "rules of thumb" and a priori mesh metrics can be used to ensure that some base level of mesh quality is achieved, inadequate consideration is often given to the type of solver or particular flow regime on which the mesh will be utilized. This paper explores how an analyst may want to think differently about a mesh based on considerations such as if a flow is compressible vs. incompressible or hypersonic vs. subsonic or if the solver is node-centered vs. cell-centered. This paper is a high-level investigation intended to provide general insight into how considering the nature of the solver or flow when performing mesh generation has the potential to increase the accuracy and/or robustness of the solution and drive the mesh generation process to a state where it is no longer a hindrance to the analysis process.