Correction for quadrature errors
DEFF Research Database (Denmark)
Netterstrøm, A.; Christensen, Erik Lintz
1994-01-01
In high bandwidth radar systems it is necessary to use quadrature devices to convert the signal to/from baseband. Practical problems make it difficult to implement a perfect quadrature system. Channel imbalance and quadrature phase errors in the transmitter and the receiver result in error signal...
Chebfun and numerical quadrature
Hale, Nicholas
2012-07-24
Chebfun is a Matlab-based software system that overloads Matlab\\'s discrete operations for vectors and matrices to analogous continuous operations for functions and operators. We begin by describing Chebfun\\'s fast capabilities for Clenshaw-Curtis and also Gauss-Legendre, -Jacobi, -Hermite, and -Laguerre quadrature, based on algorithms of Waldvogel and Glaser, Liu and Rokhlin. Then we consider how such methods can be applied to quadrature problems including 2D integrals over rectangles, fractional derivatives and integrals, functions defined on unbounded intervals, and the fast computation of weights for barycentric interpolation. © 2012 Science China Press and Springer-Verlag Berlin Heidelberg.
Advanced differential quadrature methods
Zong, Zhi
2009-01-01
Modern Tools to Perform Numerical DifferentiationThe original direct differential quadrature (DQ) method has been known to fail for problems with strong nonlinearity and material discontinuity as well as for problems involving singularity, irregularity, and multiple scales. But now researchers in applied mathematics, computational mechanics, and engineering have developed a range of innovative DQ-based methods to overcome these shortcomings. Advanced Differential Quadrature Methods explores new DQ methods and uses these methods to solve problems beyond the capabilities of the direct DQ method.After a basic introduction to the direct DQ method, the book presents a number of DQ methods, including complex DQ, triangular DQ, multi-scale DQ, variable order DQ, multi-domain DQ, and localized DQ. It also provides a mathematical compendium that summarizes Gauss elimination, the Runge-Kutta method, complex analysis, and more. The final chapter contains three codes written in the FORTRAN language, enabling readers to q...
Digital quadrature phase detection
Smith, J.A.; Johnson, J.A.
1992-05-26
A system for detecting the phase of a frequency or phase modulated signal that includes digital quadrature sampling of the frequency or phase modulated signal at two times that are one quarter of a cycle of a reference signal apart, determination of the arctangent of the ratio of a first sampling of the frequency or phase modulated signal to the second sampling of the frequency or phase modulated signal, and a determination of quadrant in which the phase determination is increased by 2[pi] when the quadrant changes from the first quadrant to the fourth quadrant and decreased by 2[pi] when the quadrant changes from the fourth quadrant to the first quadrant whereby the absolute phase of the frequency or phase modulated signal can be determined using an arbitrary reference convention. 6 figs.
LC Quadrature Generation in Integrated Circuits
DEFF Research Database (Denmark)
Christensen, Kåre Tais
2001-01-01
Today quadrature signals for IQ demodulation are provided through RC polyphase networks, quadrature oscillators or double frequency VCOs. This paper presents a new method for generating quadrature signals in integrated circuits using only inductors and capacitors. This LC quadrature generation me...
Refinements of some new efficient quadrature rules
Qayyum, A.; Shoaib, M.; Faye, I.; Kashif, A. R.
2016-11-01
In the field of Engineering and Applied Mathematical Sciences, minimizing approximation error is very important task and therefore quadrature rules are investigated regularly. In this paper, using some standard results of theoretical inequalities, e.g. Ostrowski type inequality, some new efficient quadrature rules are introduced for n-times differentiable mappings. These quadrature rules are expected to give better results comparing to the conventional quadrature rules.
AN EXTREMAL APPROACH TO BIRKHOFF QUADRATURE FORMULAS
Institute of Scientific and Technical Information of China (English)
Ying-guang Shi
2001-01-01
As we know, a solution of an extremal problem with Hermite interpolation constraints is a system of nodes of corresponding Gaussian Hermite quadrature formula (the so-called Jacobi approach). But this conclusion is violated for a Birkhoff quadrature formula. In this paper an extremal problem with Birkhoff interpolation constraints is discussed, from which a large class of Birkhoff quadrature formulas may be derived.
Length Scales in Bayesian Automatic Adaptive Quadrature
Directory of Open Access Journals (Sweden)
Adam Gh.
2016-01-01
Full Text Available Two conceptual developments in the Bayesian automatic adaptive quadrature approach to the numerical solution of one-dimensional Riemann integrals [Gh. Adam, S. Adam, Springer LNCS 7125, 1–16 (2012] are reported. First, it is shown that the numerical quadrature which avoids the overcomputing and minimizes the hidden floating point loss of precision asks for the consideration of three classes of integration domain lengths endowed with specific quadrature sums: microscopic (trapezoidal rule, mesoscopic (Simpson rule, and macroscopic (quadrature sums of high algebraic degrees of precision. Second, sensitive diagnostic tools for the Bayesian inference on macroscopic ranges, coming from the use of Clenshaw-Curtis quadrature, are derived.
Quadrature formulas for Fourier coefficients
Bojanov, Borislav
2009-09-01
We consider quadrature formulas of high degree of precision for the computation of the Fourier coefficients in expansions of functions with respect to a system of orthogonal polynomials. In particular, we show the uniqueness of a multiple node formula for the Fourier-Tchebycheff coefficients given by Micchelli and Sharma and construct new Gaussian formulas for the Fourier coefficients of a function, based on the values of the function and its derivatives. © 2009 Elsevier B.V. All rights reserved.
Error Analysis of Quadrature Rules. Classroom Notes
Glaister, P.
2004-01-01
Approaches to the determination of the error in numerical quadrature rules are discussed and compared. This article considers the problem of the determination of errors in numerical quadrature rules, taking Simpson's rule as the principal example. It suggests an approach based on truncation error analysis of numerical schemes for differential…
Automatic quadrature control and measuring system
Hamlet, J. F.
1973-01-01
Quadrature is separated from amplified signal by use of phase detector, with phase shifter providing appropriate reference. Output of phase detector is further amplified and filtered by dc amplifier. Output of dc amplifier provides signal to neutralize quadrature component of transducer signal.
Numerical Quadrature of Periodic Singular Integral Equations
DEFF Research Database (Denmark)
Krenk, Steen
1978-01-01
This paper presents quadrature formulae for the numerical integration of a singular integral equation with Hilbert kernel. The formulae are based on trigonometric interpolation. By integration a quadrature formula for an integral with a logarithmic singularity is obtained. Finally...... it is demonstrated how a singular integral equation with infinite support can be solved by use of the preceding formulae....
Quadrature frequency generation for wideband wireless applications
Elbadry, Mohammad
2015-01-01
This book describes design techniques for wideband quadrature LO generation for software defined radio transceivers, with frequencies spanning 4GHz to around 80GHz. The authors discuss several techniques that can be used to reduce the cost and/or power consumption of one of the key components of the RF front-end, the quadrature local oscillator. The discussion includes simple and useful insights into quadrature VCOs, along with numerous examples of practical techniques. · Provides a thorough survey of quadrature LO generation; · Offers an intuitive explanation of the different quadrature VCO architectures, and categorization of these architectures based on the intuitive explanations; · Describes a new technique for simultaneous quadrature LO generation for channelized receivers; · Includes simple and detailed explanation of two new quadrature VCO techniques that improve phase-noise performance of QVCOs, while providing a large tuning rang...
Angular quadratures for improved transport computations
Energy Technology Data Exchange (ETDEWEB)
Abu-Shumays, I.K.
1999-07-22
This paper introduces new octant-range, composite-type Gauss and mid-point rule angular quadrature formulas for neutron and photon transport computations. A generalization to octant-range quadratures is also introduced in order to allow for discontinuities at material interfaces for two- and three-dimensional transport problems which can be modeled with 60-degree triangular or hexagonal mesh subdivisions in the x-y plane.
Theory of the quadrature elliptic birdcage coil.
Leifer, M C
1997-11-01
This paper presents the theory of the quadrature birdcage coil wound on an elliptic cylindrical former. A conformal transformation of the ellipse to a circular geometry is used to derive the optimal sampling of the continuous surface current distribution to produce uniform magnetic fields within an elliptic cylinder. The analysis is rigorous for ellipses of any aspect ratio and shows how to produce quadrature operation of the elliptic birdcage with a conventional hybrid combiner. Insight gained from the transformation is also used to analyze field homogeneity, find the optimal RF shield shape, and specify component values to produce the correct current distribution in practice. Measurements and images from a 16-leg elliptic birdcage coil at both low and high frequencies show good quadrature performance, homogeneity, and sensitivity.
Summation Paths in Clenshaw-Curtis Quadrature
Directory of Open Access Journals (Sweden)
Adam S.
2016-01-01
Full Text Available Two topics concerning the use of Clenshaw-Curtis quadrature within the Bayesian automatic adaptive quadrature approach to the numerical solution of Riemann integrals are considered. First, it is found that the efficient floating point computation of the coefficients of the Chebyshev series expansion of the integrand is to be done within a mathematical structure consisting of the union of coefficient families ordered into complete binary trees. Second, the scrutiny of the decay rates of the involved even and odd rank Chebyshev expansion coefficients with the increase of their rank labels enables the definition of Bayesian decision paths for the advancement to the numerical output.
Numerical Quadratures for Hadamard Hypersingular Integrals
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
In this paper, we develop Gaussian quadrature formulas for the Hadamard finite part integrals. In our formulas, the classical orthogonal polynomials such as Legendre and Chebyshev polynomials are used to approximate the density function f(x) so that the Gaussian quadrature formulas have degree n - 1. The error estimates of the formulas are obtained. It is found from the numerical examples that the convergence rate and the accuracy of the approximation results are satisfactory. Moreover, the rate and the accuracy can be improved by choosing appropriate weight functions.
Composite Gauss-Legendre Quadrature with Error Control
Prentice, J. S. C.
2011-01-01
We describe composite Gauss-Legendre quadrature for determining definite integrals, including a means of controlling the approximation error. We compare the form and performance of the algorithm with standard Newton-Cotes quadrature. (Contains 1 table.)
Composite Gauss-Legendre Quadrature with Error Control
Prentice, J. S. C.
2011-01-01
We describe composite Gauss-Legendre quadrature for determining definite integrals, including a means of controlling the approximation error. We compare the form and performance of the algorithm with standard Newton-Cotes quadrature. (Contains 1 table.)
ON QUADRATURE FORMULAE FOR SINGULAR INTEGRALS OF ARBITRARY ORDER
Institute of Scientific and Technical Information of China (English)
杜金元
2004-01-01
Some quadrature formulae for the numerical evaluation of singular integrals of arbitrary order are established and both the estimate of remainder and the convergence of each quadrature formula derived here are also given.
Quadrature representation of finite element variational forms
DEFF Research Database (Denmark)
Ølgaard, Kristian Breum; Wells, Garth N.
2012-01-01
This chapter addresses the conventional run-time quadrature approach for the numerical integration of local element tensors associated with finite element variational forms, and in particular automated optimizations that can be performed to reduce the number of floating point operations...
Integrated source of broadband quadrature squeezed light
DEFF Research Database (Denmark)
Hoff, Ulrich Busk; Nielsen, Bo Melholt; Andersen, Ulrik Lund
2015-01-01
An integrated silicon nitride resonator is proposed as an ultracompact source of bright single-mode quadrature squeezed light at 850 nm. Optical properties of the device are investigated and tailored through numerical simulations, with particular attention paid to loss associated with interfacing...
Asymptotic Properties of Unbounded Quadrature Domains in the Plane
Karp, Lavi
2013-01-01
We prove that if $\\Omega$ is a simply connected quadrature domain for a distribution with compact support and the infinity point belongs the boundary, then the boundary has an asymptotic curve that is either a straight line or a parabola or an infinite ray. In other words, unbounded quadrature domains in the plane are perturbations of null quadrature domains.
Radial Basis Function Based Quadrature over Smooth Surfaces
2016-03-24
Function Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3 Weight calculations...methods: product Gaussian quadrature and finite element integration. The product Gaussian quadrature uses Gauss-Legendre nodes and quadrature weights ...with Gaussian Radial Basis Functions ,” SIAM J. Sci. Comput., vol. 33, pp. 869–892, 2011. 10. B. Fornberg and J. Zuev, “The Runge Phenomenon and
Automatic quadrature control and measuring system. [using optical coupling circuitry
Hamlet, J. F. (Inventor)
1974-01-01
A quadrature component cancellation and measuring system comprising a detection system for detecting the quadrature component from a primary signal, including reference circuitry to define the phase of the quadrature component for detection is described. A Raysistor optical coupling control device connects an output from the detection system to a circuit driven by a signal based upon the primary signal. Combining circuitry connects the primary signal and the circuit controlled by the Raysistor device to subtract quadrature components. A known current through the optically sensitive element produces a signal defining the magnitude of the quadrature component.
Twelfth degree spline with application to quadrature.
Mohammed, P O; Hamasalh, F K
2016-01-01
In this paper existence and uniqueness of twelfth degree spline is proved with application to quadrature. This formula is in the class of splines of degree 12 and continuity order [Formula: see text] that matches the derivatives up to order 6 at the knots of a uniform partition. Some mistakes in the literature are pointed out and corrected. Numerical examples are given to illustrate the applicability and efficiency of the new method.
Efficient Quadrature Operator Using Dual-Perspectives-Fusion Probabilistic Weights
Directory of Open Access Journals (Sweden)
Ashok Sahai
2009-08-01
Full Text Available A new quadrature formula has been proposed which uses weight functions derived using a probabilistic approach, and a rather-ingenious 'Fusion' of two dual perspectives. Unlike the complicatedly structured quadrature formulae of Gauss,Hermite and others of similar type, the proposed quadrature formula only needs the values of integrand at user-defined equidistant points in the interval of integration. The weights are functions of the impugned variable in the integrand, and are not mere constants. The quadrature formula has been compared empirically with the simple classical method of numerical integration using the well-known "Bernstein Operator". The percentage absolute relative errors for the proposed quadrature formula and that with the "Bernstein Operator" have been computed for certain selected functions and with different number of node points in the interval of integration. It has been observed that the proposed quadrature formula produces significantly better results.
GALERKIN MESHLESS METHODS BASED ON PARTITION OF UNITY QUADRATURE
Institute of Scientific and Technical Information of China (English)
ZENG Qing-hong; LU De-tang
2005-01-01
Numerical quadrature is an important ingredient of Galerkin meshless methods. A new numerical quadrature technique, partition of unity quadrature (PUQ),for Galerkin meshless methods was presented. The technique is based on finite covering and partition of unity. There is no need to decompose the physical domain into small cell. It possesses remarkable integration accuracy. Using Element-free Galerkin methods as example, Galerkin meshless methods based on PUQ were studied in detail. Meshing is always not required in the procedure of constitution of approximate function or numerical quadrature, so Galerkin meshless methods based on PUQ are "truly"meshless methods.
Integrated source of broadband quadrature squeezed light
DEFF Research Database (Denmark)
Hoff, Ulrich Busk; Nielsen, Bo Melholt; Andersen, Ulrik Lund
2015-01-01
An integrated silicon nitride resonator is proposed as an ultracompact source of bright single-mode quadrature squeezed light at 850 nm. Optical properties of the device are investigated and tailored through numerical simulations, with particular attention paid to loss associated with interfacing...... squeezing spectrum for intra-cavity pump self-phase modulation. Subject to standard material loss and detection efficiencies, we find that the device holds promises for generating substantial quantum noise squeezing over a bandwidth exceeding 1 GHz. In the low-propagation loss regime, approximately -6 d...
Nonlinear analysis of a cross-coupled quadrature harmonic oscillator
DEFF Research Database (Denmark)
Djurhuus, Torsten; Krozer, Viktor; Vidkjær, Jens;
2005-01-01
The dynamic equations governing the cross-coupled quadrature harmonic oscillator are derived assuming quasi-sinusoidal operation. This allows for an investigation of the previously reported tradeoff between close-to-carrier phase noise and quadrature precision. The results explain how nonlinearit...
Quadrature Formula of Singular Integral Based on Rational Interpolation
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
We construct a quadrature formula of the singular integral with the Chebyshev weight of the second kind by using Lagrange interpolation based on the rational system {1/(x-a1),1/(x-a2),...}, and both the remainder and convergence of the quadrature formula established here are discussed. Our results extend some classical ones.
Single-quadrature continuous-variable quantum key distribution
DEFF Research Database (Denmark)
Gehring, Tobias; Jacobsen, Christian Scheffmann; Andersen, Ulrik Lund
2016-01-01
Most continuous-variable quantum key distribution schemes are based on the Gaussian modulation of coherent states followed by continuous quadrature detection using homodyne detectors. In all previous schemes, the Gaussian modulation has been carried out in conjugate quadratures thus requiring two...... commercialization of continuous-variable quantum key distribution, provided that the low noise requirement can be achieved....
Quadrature measurements of a bright squeezed state via sideband swapping
DEFF Research Database (Denmark)
Schneider, J.; Glockl, O.; Leuchs, G.
2009-01-01
The measurement of an arbitrary quadrature of a bright quantum state of light is a commonly requested action in many quantum information protocols, but it is experimentally challenging with previously proposed schemes. We suggest that the quadrature be measured at a specific sideband frequency...
Quadrature rules and distribution of points on manifolds
Brandolini, Luca; Colzani, Leonardo; Gigante, Giacomo; Seri, Raffaello; Travaglini, Giancarlo
2010-01-01
We study the error in quadrature rules on a compact manifold. As in the Koksma-Hlawka inequality, we consider a discrepancy of the sampling points and a generalized variation of the function. In particular, we give sharp quantitative estimates for quadrature rules of functions in Sobolev classes.
Nonlinear Analysis of a Cross-Coupled Quadrature Harmonic Oscillator
DEFF Research Database (Denmark)
Djurhuus, Torsten; Krozer, Viktor; Vidkjær, Jens;
2004-01-01
We derive the dynamic equations governing the cross-coupled quadrature oscillator leading to an expression for the trade-off between signal quadrature and close-in phase noise. The theory shows that nonlinearity in the coupling transconductance results in AM-PM noise close to the carrier, which...
Power flow control using quadrature boosters
Sadanandan, Sandeep N.
A power system that can be controlled within security constraints would be an advantage to power planners and real-time operators. Controlling flows can lessen reliability issues such as thermal limit violations, power stability problems, and/or voltage stability conditions. Control of flows can also mitigate market issues by reducing congestion on some lines and rerouting power to less loaded lines or onto preferable paths. In the traditional control of power flows, phase shifters are often used. More advanced methods include using Flexible AC Transmission System (FACTS) Controllers. Some examples include Thyristor Controlled Series Capacitors, Synchronous Series Static Compensators, and Unified Power Flow Controllers. Quadrature Boosters (QBs) have similar structures to phase-shifters, but allow for higher voltage magnitude during real power flow control. In comparison with other FACTS controllers QBs are not as complex and not as expensive. The present study proposes to use QBs to control power flows on a power system. With the inclusion of QBs, real power flows can be controlled to desired scheduled values. In this thesis, the linearized power flow equations used for power flow analysis were modified for the control problem. This included modifying the Jacobian matrix, the power error vector, and calculating the voltage injected by the quadrature booster for the scheduled real power flow. Two scenarios were examined using the proposed power flow control method. First, the power flow in a line in a 5-bus system was modified with a QB using the method developed in this thesis. Simulation was carried out using Matlab. Second, the method was applied to a 30-bus system and then to a 118-bus system using several QBs. In all the cases, the calculated values of the QB voltages led to desired power flows in the designated line.
Multilevel quadrature of elliptic PDEs with log-normal diffusion
Harbrecht, Helmut
2015-01-07
We apply multilevel quadrature methods for the moment computation of the solution of elliptic PDEs with lognormally distributed diffusion coefficients. The computation of the moments is a difficult task since they appear as high dimensional Bochner integrals over an unbounded domain. Each function evaluation corresponds to a deterministic elliptic boundary value problem which can be solved by finite elements on an appropriate level of refinement. The complexity is thus given by the number of quadrature points times the complexity for a single elliptic PDE solve. The multilevel idea is to reduce this complexity by combining quadrature methods with different accuracies with several spatial discretization levels in a sparse grid like fashion.
Researching on quadrature conversion structures for an UWB demonstrative receiver
Institute of Scientific and Technical Information of China (English)
Zhu Canyan; Wang Yiming; Yang Huibao; Liu Jiasheng
2006-01-01
Some structures of digital quadrature AD conversion for software-defined radio (SDR) systems are studied. Their performances and affections on the SDR systems are also analyzed. Two generalized quadrature AD schemes are proposed. In one of them, the AD sampling speed can be reduced by 2 times; and in the other both the output data rate of every channel and AD sampling speed can be lowered by paralleling the digital quadrature filtering structure. These structures can be also easily implemented into modules, and the polyphase filters can be flexibly realized by VHDL language based one chip of FPGA. To assess the proposed schemes, their applications to a particular ultra wideband (UWB) demonstrative receiver system are introduced. Some experimental results are also given. It is shown that the generalized quadrature AD structures are reliable and feasible for its module design, and performances are improved obviously for its better performance to price ratio.
Two integrator loop quadrature oscillators: A review
Soliman, Ahmed M.
2012-01-01
A review of the two integrator loop oscillator circuits providing two quadrature sinusoidal output voltages is given. All the circuits considered employ the minimum number of capacitors namely two except one circuit which uses three capacitors. The circuits considered are classified to four different classes. The first class includes floating capacitors and floating resistors and the active building blocks realizing these circuits are the Op Amp or the OTRA. The second class employs grounded capacitors and includes floating resistors and the active building blocks realizing these circuits are the DCVC or the unity gain cells or the CFOA. The third class employs grounded capacitors and grounded resistors and the active building blocks realizing these circuits are the CCII. The fourth class employs grounded capacitors and no resistors and the active building blocks realizing these circuits are the TA. Transformation methods showing the generation of different classes from each other is given in details and this is one of the main objectives of this paper. PMID:25685396
Two integrator loop quadrature oscillators: A review
Directory of Open Access Journals (Sweden)
Ahmed M. Soliman
2013-01-01
Full Text Available A review of the two integrator loop oscillator circuits providing two quadrature sinusoidal output voltages is given. All the circuits considered employ the minimum number of capacitors namely two except one circuit which uses three capacitors. The circuits considered are classified to four different classes. The first class includes floating capacitors and floating resistors and the active building blocks realizing these circuits are the Op Amp or the OTRA. The second class employs grounded capacitors and includes floating resistors and the active building blocks realizing these circuits are the DCVC or the unity gain cells or the CFOA. The third class employs grounded capacitors and grounded resistors and the active building blocks realizing these circuits are the CCII. The fourth class employs grounded capacitors and no resistors and the active building blocks realizing these circuits are the TA. Transformation methods showing the generation of different classes from each other is given in details and this is one of the main objectives of this paper.
Electronically Tunable Quadrature Oscillator Using Translinear Conveyors and Grounded Capacitors
Sudhanshu Maheshwari
2003-01-01
A new electronically tunable current-mode sinusoidal oscillator with three quadrature outputs is presented. The proposed circuit employs three translinear conveyors and two grounded capacitors to realize three quadrature outputs with independent frequency control. The circuit requires no resistors and the frequency of the oscillator can be varied over a wide range by external current control. RSPICE simulation results using the bipolar implementation of translinear conveyors are given to s...
Density Tracking by Quadrature for Stochastic Differential Equations
Bhat, Harish S.; Madushani, R. W. M. A.
2016-01-01
We develop and analyze a method, density tracking by quadrature (DTQ), to compute the probability density function of the solution of a stochastic differential equation. The derivation of the method begins with the discretization in time of the stochastic differential equation, resulting in a discrete-time Markov chain with continuous state space. At each time step, the DTQ method applies quadrature to solve the Chapman-Kolmogorov equation for this Markov chain. In this paper, we focus on a p...
Exact and Approximate Quadratures for Curvature Tensor Estimation
Langer, Torsten; Belyaev, Alexander; Seidel, Hans-Peter; Greiner, Günther; Hornegger, Joachim; Niemann, Heinrich; Stamminger, Marc
2005-01-01
Accurate estimations of geometric properties of a surface from its discrete approximation are important for many computer graphics and geometric modeling applications. In this paper, we derive exact quadrature formulae for mean curvature, Gaussian curvature, and the Taubin integral representation of the curvature tensor. The exact quadratures are then used to obtain reliable estimates of the curvature tensor of a smooth surface approximated by a dense triangle me...
A COMPACT QUADRATURE FEEDING CIRCUIT FOR CIRCULARLY POLARIZED ANTENNA
Institute of Scientific and Technical Information of China (English)
Dong Yuliang; Tian Buning; Tang Song
2002-01-01
A novel compact quadrature feeding circuit for a circularly polarized antenna is described. The equivalent circuit method in microwave network theory is used and the conventional directional coupler is converted to a new quadrature feeding circuit. This feeding circuit has the same characteristics as the conventional directional coupler but its size is only about one fourth of that of the latter. The formulas for designing the feeding circuit are given. The optimized results obtained by using the software ENSEMBLE are also reported.
Noncritical quadrature squeezing through spontaneous polarization symmetry breaking
Garcia-Ferrer, Ferran V; de Valcárcel, Germán J; Roldán, Eugenio
2010-01-01
We discuss the possibility of generating noncritical quadrature squeezing by spontaneous polarization symmetry breaking. We consider first type-II frequency-degenerate optical parametric oscillators, but discard them for a number of reasons. Then we propose a four-wave mixing cavity in which the polarization of the output mode is always linear but has an arbitrary orientation. We show that in such a cavity complete noise suppression in a quadrature of the output field occurs, irrespective of the parameter values.
Quadrature mixture LO suppression via DSW DAC noise dither
Dubbert, Dale F.; Dudley, Peter A.
2007-08-21
A Quadrature Error Corrected Digital Waveform Synthesizer (QECDWS) employs frequency dependent phase error corrections to, in effect, pre-distort the phase characteristic of the chirp to compensate for the frequency dependent phase nonlinearity of the RF and microwave subsystem. In addition, the QECDWS can employ frequency dependent correction vectors to the quadrature amplitude and phase of the synthesized output. The quadrature corrections cancel the radars' quadrature upconverter (mixer) errors to null the unwanted spectral image. A result is the direct generation of an RF waveform, which has a theoretical chirp bandwidth equal to the QECDWS clock frequency (1 to 1.2 GHz) with the high Spurious Free Dynamic Range (SFDR) necessary for high dynamic range radar systems such as SAR. To correct for the problematic upconverter local oscillator (LO) leakage, precision DC offsets can be applied over the chirped pulse using a pseudo-random noise dither. The present dither technique can effectively produce a quadrature DC bias which has the precision required to adequately suppress the LO leakage. A calibration technique can be employed to calculate both the quadrature correction vectors and the LO-nulling DC offsets using the radar built-in test capability.
ADAPTIVE CALIBRATION OF I AND Q MISMATCH IN QUADRATURE RECEIVER
Institute of Scientific and Technical Information of China (English)
Yang Xuexian; Hou Zifeng; Zhang Qunying; Ning Yanqing
2002-01-01
The mismatch of in-phase and quadrature channels in quadrature receiver affects and constrains radar detection performance in coherent radar. It is necessary to keep the in-phase and quadrature branches symmetrical. In this letter, an adaptive method to detect imbalance parameters is derived by means of evaluating channel errors from the received signal sequences.No matter how the bias degree of the gain and phase errors in I/Q channels are, the proposed adaptive scheme can obtain good calibration results. And the required calculations are only a few multiplications and additions. No need of a special test signal, the introduced method is simple to implement and easy to operate.
Fast algorithms for Quadrature by Expansion I: Globally valid expansions
Rachh, Manas; Klöckner, Andreas; O'Neil, Michael
2017-09-01
The use of integral equation methods for the efficient numerical solution of PDE boundary value problems requires two main tools: quadrature rules for the evaluation of layer potential integral operators with singular kernels, and fast algorithms for solving the resulting dense linear systems. Classically, these tools were developed separately. In this work, we present a unified numerical scheme based on coupling Quadrature by Expansion, a recent quadrature method, to a customized Fast Multipole Method (FMM) for the Helmholtz equation in two dimensions. The method allows the evaluation of layer potentials in linear-time complexity, anywhere in space, with a uniform, user-chosen level of accuracy as a black-box computational method. Providing this capability requires geometric and algorithmic considerations beyond the needs of standard FMMs as well as careful consideration of the accuracy of multipole translations. We illustrate the speed and accuracy of our method with various numerical examples.
Energy Technology Data Exchange (ETDEWEB)
McGraw, R [Environmental Sciences Department, Atmospheric Sciences Division, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Leng, L; Zhu, W [Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794-3600 (United States); Riemer, N [Atmospheric Sciences Department, University of Illinois at Urbana-Champaign, Urbana, IL 61801-3070 (United States); West, M [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801-3070 (United States)], E-mail: rlm@bnl.gov
2008-07-15
The method of moments (MOM) is a statistically based alternative to sectional and modal methods for aerosol simulation. The MOM is highly efficient as the aerosol distribution is represented by its lower-order moments and only these, not the full distribution itself, are tracked during simulation. Quadrature is introduced to close the moment equations under very general growth laws and to compute aerosol physical and optical properties directly from moments. In this paper the quadrature method of moments (QMOM) is used in a bivariate test tracking of aerosol mixing state. Two aerosol populations, one enriched in soot and the other in sulfate, are allowed to interact through coagulation to form a generally-mixed third particle population. Quadratures of varying complexity (including two candidate schemes for use in climate models) are described and compared with benchmark results obtained by using particle-resolved simulation. Low-order quadratures are found to be highly accurate, and Gauss and Gauss-Radau quadratures appear to give nested lower and upper bounds, respectively, to aerosol mixing rate. These results suggest that the QMOM makes it feasible to represent the generallymixed states of aerosols and track their evolution in climate models.
Bell's inequality for systems with quadrature phase coherence
Tan, S. M.; Holland, M. J.; Walls, D. F.
1990-07-01
We show that a violation of Bell's inequalities by quadrature phase measurements is not due to the interference of the two photons in a photon pair state. Rather the violation predicted by Grangier et al. for a parametric down-converter is due to the interference of the photon pair state with the vacuum. We propose new sources which violate the quadrature phase Bell's inequalities, including one which employs squeezed light and another which demonstrates the non-local properties of a single photon state.
Analytical Formulae for Two of A. H. Stroud's Quadrature Rules
Peterson, J W
2009-01-01
Analytical formulae for the points and weights of two fifth-order quadrature rules for C_3, the 3-cube, are given. The rules, originally formulated by A. H. Stroud in 1967, are discussed in greater detail in terms of both the setup of the basic equations and the method of obtaining their solutions analytically. The primary purpose of this paper is to better document what we feel is a particularly practical quadrature rule (e.g. in finite element calculations) and one for which we felt comprehensive information was scarce.
16-QAM Field-Quadrature Decomposition using Polarization-Assisted Phase Sensitive Amplification
DEFF Research Database (Denmark)
Kjøller, Niels-Kristian; Piels, Molly; Da Ros, Francesco
2016-01-01
Simultaneous I and Q extraction for 16-QAM is experimentally demonstrated through field-quadrature decomposition using a polarization-assisted phase sensitive amplifier. The quadrature components are successfully received and performance is evaluated through bit-error-ratio testing.......Simultaneous I and Q extraction for 16-QAM is experimentally demonstrated through field-quadrature decomposition using a polarization-assisted phase sensitive amplifier. The quadrature components are successfully received and performance is evaluated through bit-error-ratio testing....
From Lobatto Quadrature to the Euler Constant "e"
Khattri, Sanjay Kumar
2010-01-01
Based on the Lobatto quadrature, we develop several new closed form approximations to the mathematical constant "e." For validating effectiveness of our approximations, a comparison of our results to the existing approximations is also presented. Another objective of our work is to inspire students to formulate other better approximations by using…
Archimedes Quadrature of the Parabola: A Mechanical View
Oster, Thomas J.
2006-01-01
In his famous quadrature of the parabola, Archimedes found the area of the region bounded by a parabola and a chord. His method was to fill the region with infinitely many triangles each of whose area he could calculate. In his solution, he stated, without proof, three preliminary propositions about parabolas that were known in his time, but are…
Archimedes Quadrature of the Parabola: A Mechanical View
Oster, Thomas J.
2006-01-01
In his famous quadrature of the parabola, Archimedes found the area of the region bounded by a parabola and a chord. His method was to fill the region with infinitely many triangles each of whose area he could calculate. In his solution, he stated, without proof, three preliminary propositions about parabolas that were known in his time, but are…
Self-calibrating quadrature mixing front-end for SDR
CSIR Research Space (South Africa)
De Witt, JJ
2008-01-01
Full Text Available A quadrature mixing front-end is well-suited toward software define radio (SDR) applications, due to its low complexity and the inherent flexibility that it affords the radio front-end. Its performance is, however, severely affected by gain...
Entropy of phase measurement quantum phase via quadrature measurement
My, R; My, Robert; Uni, Palacky
1995-01-01
The content of phase information of an arbitrary phase--sensitive measurement is evaluated using the maximum likelihood estimation. The phase distribution is characterized by the relative entropy--a nonlinear functional of input quantum state. As an explicit example the multiple measurement of quadrature operator is interpreted as quantum phase detection achieving the ultimate resolution predicted by the Fisher information.
Quantum correlations induced by multiple scattering of quadrature squeezed light
DEFF Research Database (Denmark)
Lodahl, Peter
2006-01-01
Propagating quadrature squeezed light through a multiple scattering random medium is found to induce pronounced spatial quantum correlations that have no classical analogue. The correlations are revealed in the number of photons transported through the sample that can be measured from the intensity...
Quadrature-based Lattice Boltzmann Model for Relativistic Flows
Blaga, Robert
2016-01-01
A quadrature-based finite-difference lattice Boltzmann model is developed that is suitable for simulating relativistic flows of massless particles. We briefly review the relativistc Boltzmann equation and present our model. The quadrature is constructed such that the stress-energy tensor is obtained as a second order moment of the distribution function. The results obtained with our model are presented for a particular instance of the Riemann problem (the Sod shock tube). We show that the model is able to accurately capture the behavior across the whole domain of relaxation times, from the hydrodynamic to the ballistic regime. The property of the model of being extendable to arbitrarily high orders is shown to be paramount for the recovery of the analytical result in the ballistic regime.
Orthogonal functions, discrete variable representation, and generalized gauss quadratures
DEFF Research Database (Denmark)
Schneider, B. I.; Nygaard, Nicolai
2002-01-01
The numerical solution of most problems in theoretical chemistry involve either the use of a basis set expansion (spectral method) or a numerical grid. For many basis sets, there is an intimate connection between the spectral form and numerical quadrature. When this connection exists, the distinc......The numerical solution of most problems in theoretical chemistry involve either the use of a basis set expansion (spectral method) or a numerical grid. For many basis sets, there is an intimate connection between the spectral form and numerical quadrature. When this connection exists...... in the original representation. This has been exploited in bound-state, scattering, and time-dependent problems using the so-called, discrete variable representation (DVR). At the core of this approach is the mathematical three-term recursion relationship satisfied by the classical orthogonal functions...
Observation of Localized Multi-Spatial-Mode Quadrature Squeezing
Directory of Open Access Journals (Sweden)
C. S. Embrey
2015-07-01
Full Text Available Quantum states of light can improve imaging whenever the image quality and resolution are limited by the quantum noise of the illumination. In the case of a bright illumination, quantum enhancement is obtained for a light field composed of many squeezed transverse modes. A possible realization of such a multi-spatial-mode squeezed state is a field which contains a transverse plane in which the local electric field displays reduced quantum fluctuations at all locations, on any one quadrature. Using a traveling-wave amplifier, we have generated a multi-spatial-mode squeezed state and showed that it exhibits localized quadrature squeezing at any point of its transverse profile, in regions much smaller than its size. We observe 75 independently squeezed regions. The amplification relies on nondegenerate four-wave mixing in a hot vapor and produces a bichromatic squeezed state. The result confirms the potential of this technique for producing illumination suitable for practical quantum imaging.
Structural dynamic responses analysis applying differential quadrature method
Institute of Scientific and Technical Information of China (English)
PU Jun-ping; ZHENG Jian-jun
2006-01-01
Unconditionally stable higher-order accurate time step integration algorithms based on the differential quadrature method (DQM) for second-order initial value problems were applied and the quadrature rules of DQM, computing of the weighting coefficients and choices of sampling grid points were discussed. Some numerical examples dealing with the heat transfer problem, the second-order differential equation of imposed vibration of linear single-degree-of-freedom systems and double-degree-of-freedom systems, the nonlinear move differential equation and a beam forced by a changing load were computed,respectively. The results indicated that the algorithm can produce highly accurate solutions with minimal time consumption, and that the system total energy can remain conservative in the numerical computation.
Quadrature-dependent Bogoliubov transformations and multiphoton squeezed states
De Siena, S; Illuminati, F; Siena, Silvio De; Lisi, Antonio Di; Illuminati, Fabrizio
2001-01-01
We introduce a linear, canonical transformation of the fundamental single--mode field operators $a$ and $a^{\\dagger}$ that generalizes the linear Bogoliubov transformation familiar in the construction of the harmonic oscillator squeezed states. This generalization is obtained by adding to the linear transformation a nonlinear function of any of the fundamental quadrature operators $X_{1}$ and $X_{2}$, making the original Bogoliubov transformation quadrature--dependent. Remarkably, the conditions of canonicity do not impose any constraint on the form of the nonlinear function, and lead to a set of nontrivial algebraic relations between the $c$--number coefficients of the transformation. We examine in detail the structure and the properties of the new quantum states defined as eigenvectors of the transformed annihilation operator $b$. These eigenvectors define a class of multiphoton squeezed states. The structure of the uncertainty products and of the quasiprobability distributions in phase space shows that bes...
Orthogonal functions, discrete variable representation, and generalized gauss quadratures
DEFF Research Database (Denmark)
Schneider, B. I.; Nygaard, Nicolai
2002-01-01
, the basis of the generalized weight functions. We review these ideas below and apply then to the generation of the points and weights of the Rys polynomials which have proven useful in the evaluation of multicenter integrals, using Gaussian basis sets in quantum chemistry. In contrast to some approaches....... This three-term recursion can be used to generate the orthogonal functions as well as to generate the points and weights of Gauss quadratures on the basis of these functions. For the classical orthogonal functions, the terms in the three-term recursion are known analytically. For more general weight...... functions, this is not the case. However, they may be computed in a stable numerical fashion, via the recursion. In essence, this is an application of the well-known Lanczos recursion approach. Once the recursion coefficients are known, it is possible to compute the points and weights of quadratures on...
DDCC-Based Quadrature Oscillator with Grounded Capacitors and Resistors
Directory of Open Access Journals (Sweden)
Montree Kumngern
2009-01-01
Full Text Available A new voltage-mode quadrature oscillator using two differential difference current conveyors (DDCCs, two grounded capacitors, and three grounded resistors is presented. The proposed oscillator provides the following advantages: the oscillation condition and oscillation frequency are orthogonally controlled; the oscillation frequency is controlled through a single grounded resistor; the use of only grounded capacitors and resistors makes the proposed circuit ideal for IC implementation; low passive and active sensitivities. Simulation results verifying the theoretical analysis are also included.
Quadrature Uncertainty and Information Entropy of Quantum Elliptical Vortex States
Banerji, Anindya; Panigrahi, Prasanta. K.; Singh, Ravindra Pratap; Chowdhury, Saurav; Bandyopadhyay, Abir
2012-01-01
We study the quadrature uncertainty of the quantum elliptical vortex state using the associated Wigner function. Deviations from the minimum uncertainty states were observed due to the absence of the Gaussian nature. In our study of the entropy, we noticed that with increasing vorticity, entropy increases for both the modes. We further observed that, there exists an optimum value of ellipticity which gives rise to maximum entanglement of the two modes of the quantum elliptical vortex states. ...
Electronically Tunable Current-Mode Quadrature Oscillator Using Single MCDTA
Directory of Open Access Journals (Sweden)
Y. Li
2010-12-01
Full Text Available This paper presents a modified current differencing transconductance amlpifier (MCDTA and the MCDTA based quadrature oscillator. The oscillator is current-mode and provides current output from high output impedance terminals. The circuit uses only one MCDTA and two grounded capacitors, and is easy to be integrated. Its oscillation frequency can be tuned electronically by tuning bias currents of MCDTA. Finally, frequency error is analyzed. The results of circuit simulations are in agreement with theory.
A Simple Current-Mode Quadrature Oscillator Using Single CDTA
Directory of Open Access Journals (Sweden)
D. Biolek
2008-12-01
Full Text Available This article presents a simple current-mode quadrature oscillator using a single Current Differencing Transconductance Amplifier (CDTA as the active element. The oscillation condition and oscillation frequency can be electronically controlled. The circuit structure is very simple, consisting of merely one CDTA, one resistor and two capacitors. The proposed circuit is suitable for IC architecture. The PSpice simulation and experimental results are shown, and the results agree well with the theoretical assumptions.
Quadrature two-dimensional correlation spectroscopy (Q-2DCOS)
Noda, Isao
2016-11-01
Quadrature 2D correlation spectroscopy (Q-2DCOS) is introduced. The technique incorporates the effect of the perturbation into the traditional 2DCOS analysis by building a multivariate model, merging the information of the perturbation variable and spectral responses. By employing factors which are 90° out of phase with each other, pertinent coincidental and sequential spectral intensity variations are adequately captured for the subsequent 2D correlation analysis. Almost complete replication of the original 2DCOS results based on such a simple rank 2 model of experimental spectra suggests that only the dominant spectral intensity variation patterns in combination with its quadrature counterpart seems to be utilized in 2DCOS analysis. Using the linear perturbation variable itself as the basis for generating the primary score vector is equivalent to the least squares fitting of a quadratic polynomial with spectral intensity variations. Q-2DCOS analysis may be displayed in terms of a graphical plot on a phase plane in the vector space, so that coincidental and sequential matching of the patterns of spectral intensity variations is represented simply by the phase angle difference between two vectors. Q-2DCOS analysis is closely related to other established ideas and practices in the 2D correlation spectroscopy field, such as dynamic 2D IR dichroism, PCA 2D, quadrature orthogonal signal correction (Q-OSC), and perturbation correlation moving window (PCMW) analyses.
Beyond pressureless gas dynamics : Quadrature-based velocity moment models
Chalons, Christophe; Massot, Marc
2010-01-01
Following the seminal work of F. Bouchut on zero pressure gas dynamics which has been extensively used for gas particle-flows, the present contribution investigates quadrature-based velocity moments models for kinetic equations in the framework of the infinite Knudsen number limit, that is, for dilute clouds of small particles where the collision or coalescence probability asymptotically approaches zero. Such models define a hierarchy based on the number of moments and associated quadrature nodes, the first level of which leads to pressureless gas dynamics. We focus in particular on the four moment model where the flux closure is provided by a two-node quadrature in the velocity phase space and provide the right framework for studying both smooth and singular solutions. The link with both the kinetic underlying equation as well as with zero pressure gas dynamics is provided and we define the notion of measure solutions as well as the mathematical structure of the resulting system of four PDEs. We exhibit a fa...
Testing the Empirical Shock Arrival Model using Quadrature Observations
Gopalswamy, N; Xie, H; Yashiro, S
2013-01-01
The empirical shock arrival (ESA) model was developed based on quadrature data from Helios (in-situ) and P-78 (remote-sensing) to predict the Sun-Earth travel time of coronal mass ejections (CMEs) [Gopalswamy et al. 2005a]. The ESA model requires earthward CME speed as input, which is not directly measurable from coronagraphs along the Sun-Earth line. The Solar Terrestrial Relations Observatory (STEREO) and the Solar and Heliospheric Observatory (SOHO) were in quadrature during 2010 - 2012, so the speeds of Earth-directed CMEs were observed with minimal projection effects. We identified a set of 20 full halo CMEs in the field of view of SOHO that were also observed in quadrature by STEREO. We used the earthward speed from STEREO measurements as input to the ESA model and compared the resulting travel times with the observed ones from L1 monitors. We find that the model predicts the CME travel time within about 7.3 hours, which is similar to the predictions by the ENLIL model. We also find that CME-CME and CME...
Differential quadrature time element method for structural dynamics
Institute of Scientific and Technical Information of China (English)
Yu-Feng Xing; Jing Guo
2012-01-01
An accurate and efficient differential quadrature time element method (DQTEM) is proposed for solving ordinary differential equations (ODEs),the numerical dissipation and dispersion of DQTEM is much smaller than that of the direct integration method of single/multi steps.Two methods of imposing initial conditions are given,which avoids the tediousness when derivative initial conditions are imposed,and the numerical comparisons indicate that the first method,in which the analog equations of initial displacements and velocities are used to directly replace the differential quadrature (DQ) analog equations of ODEs at the first and the last sampling points,respectively,is much more accurate than the second method,in which the DQ analog equations of initial conditions are used to directly replace the DQ analog equations of ODEs at the first two sampling points.On the contrary to the conventional step-by-step direct integration schemes,the solutions at all sampling points can be obtained simultaneously by DQTEM,and generally,one differential quadrature time element may be enough for the whole time domain.Extensive numerical comparisons validate the efficiency and accuracy of the proposed method.
Statistical Quadrature Evolution for Continuous-Variable Quantum Key Distribution
Gyongyosi, Laszlo; Imre, Sandor
2016-05-01
We propose a statistical quadrature evolution (SQE) method for multicarrier continuous-variable quantum key distribution (CVQKD). A multicarrier CVQKD protocol utilizes Gaussian subcarrier quantum continuous variables (CV) for information transmission. The SQE framework provides a minimal error estimate of the quadratures of the CV quantum states from the discrete, measured noisy subcarrier variables. We define a method for the statistical modeling and processing of noisy Gaussian subcarrier quadratures. We introduce the terms statistical secret key rate and statistical private classical information, which quantities are derived purely by the statistical functions of our method. We prove the secret key rate formulas for a multiple access multicarrier CVQKD. The framework can be established in an arbitrary CVQKD protocol and measurement setting, and are implementable by standard low-complexity statistical functions, which is particularly convenient for an experimental CVQKD scenario. This work was partially supported by the GOP-1.1.1-11-2012-0092 project sponsored by the EU and European Structural Fund, by the Hungarian Scientific Research Fund - OTKA K-112125, and by the COST Action MP1006.
Explicit Gaussian quadrature rules for C^1 cubic splines with symmetrically stretched knot sequence
Ait-Haddou, Rachid
2015-06-19
We provide explicit expressions for quadrature rules on the space of C^1 cubic splines with non-uniform, symmetrically stretched knot sequences. The quadrature nodes and weights are derived via an explicit recursion that avoids an intervention of any numerical solver and the rule is optimal, that is, it requires minimal number of nodes. Numerical experiments validating the theoretical results and the error estimates of the quadrature rules are also presented.
On some quadrature rules with Gregory end corrections
Directory of Open Access Journals (Sweden)
Bogusław Bożek
2009-01-01
Full Text Available How can one compute the sum of an infinite series \\(s := a_1 + a_2 + \\ldots\\? If the series converges fast, i.e., if the term \\(a_n\\ tends to \\(0\\ fast, then we can use the known bounds on this convergence to estimate the desired sum by a finite sum \\(a_1 + a_2 + \\ldots + a_n\\. However, the series often converges slowly. This is the case, e.g., for the series \\(a_n = n^{-t}\\ that defines the Riemann zeta-function. In such cases, to compute \\(s\\ with a reasonable accuracy, we need unrealistically large values \\(n\\, and thus, a large amount of computation. Usually, the \\(n\\-th term of the series can be obtained by applying a smooth function \\(f(x\\ to the value \\(n\\: \\(a_n = f(n\\. In such situations, we can get more accurate estimates if instead of using the upper bounds on the remainder infinite sum \\(R = f(n + 1 + f(n + 2 + \\ldots\\, we approximate this remainder by the corresponding integral \\(I\\ of \\(f(x\\ (from \\(x = n + 1\\ to infinity, and find good bounds on the difference \\(I - R\\. First, we derive sixth order quadrature formulas for functions whose 6th derivative is either always positive or always negative and then we use these quadrature formulas to get good bounds on \\(I - R\\, and thus good approximations for the sum \\(s\\ of the infinite series. Several examples (including the Riemann zeta-function show the efficiency of this new method. This paper continues the results from [W. Solak, Z. Szydełko, Quadrature rules with Gregory-Laplace end corrections, Journal of Computational and Applied Mathematics 36 (1991, 251–253] and [W. Solak, A remark on power series estimation via boundary corrections with parameter, Opuscula Mathematica 19 (1999, 75–80].
Triangular Differential Quadrature for Bending Analysis of Reissner Plates with Curved Boundaries
Institute of Scientific and Technical Information of China (English)
华永霞; 钟宏志
2003-01-01
The recently proposed concept of the triangular differential quadrature method (TDQM) is applied to the bending analysis of Reissner plates with various curvilinear geometries subjected to various combinations of boundary conditions. A unit isosceles right triangle is used as the standard triangle for all the derivatives expressed using the triangular differential quadrature rule. Geometric transformations are introduced using basis functions to determine the weighting coefficients for the triangular differential quadrature to map an arbitrary curvilinear triangle into the standard triangle. The triangular differential quadrature method provides good accuracy and rapid convergence relative to other available exact and numerical results.
Null quadrature domains and a free boundary problem for the Laplacian
Karp, Lavi
2010-01-01
Null quadrature domains are unbounded domains in $\\R^n$ ($n \\geq 2$) with external gravitational force zero in some generalized sense. In this paper we prove a quadratic growth estimate of the Schwarz potential of a null quadrature domain and conclude by a theorem of Caffarelli, Karp and Shahgolian that any null quadrature domain is the complement of a convex set with analytic boundary. Using this result we prove that a null quadrature domain with a non-zero upper Lebesgue density at infinity is half-space.
The best quadrature formula based on Hermite information for the class KW2[a,b
Institute of Scientific and Technical Information of China (English)
WANG; Xinghua; MI; Xiangjiang
2005-01-01
The best quadrature formula has been found in the following sense: for a function whose norm of the second derivative is bounded by a given constant and the best quadrature formula for the approximate evaluation of integration of that function can minimize the worst possible error if the values of the function and its derivative at certain nodes are known.The best interpolation formula used to get the quadrature formula above is also found.Moreover,we compare the best quadrature formula with the open compound corrected trapezoidal formula by theoretical analysis and stochastic experiments.
Gaussian quadrature rules for C 1 quintic splines with uniform knot vectors
Bartoň, Michael
2017-03-21
We provide explicit quadrature rules for spaces of C1C1 quintic splines with uniform knot sequences over finite domains. The quadrature nodes and weights are derived via an explicit recursion that avoids numerical solvers. Each rule is optimal, that is, requires the minimal number of nodes, for a given function space. For each of nn subintervals, generically, only two nodes are required which reduces the evaluation cost by 2/32/3 when compared to the classical Gaussian quadrature for polynomials over each knot span. Numerical experiments show fast convergence, as nn grows, to the “two-third” quadrature rule of Hughes et al. (2010) for infinite domains.
Planar quadrature coil design using shielded-loop resonators
DEFF Research Database (Denmark)
Stensgaard, A
1997-01-01
The shielded-loop resonator is known to have a low capacitive sample loss due to a perfect balancing. In this paper, it is demonstrated that shielded-loop technology also can be used to improve design of planar quadrature coils. Both a dual-loop circuit and especially a dual-mode circuit may...... benefit from use of shielded-loop resonators. Observations in measurements agree with theory for both a dual-loop coil and a dual-mode coil. The coils were designed for use as transmit/receive coil for 1H imaging and spectroscopy at 4.7 T in rat brain....
An automatically controlled predistorter for multilevel quadrature amplitude modulation
Namiki, J.
1983-05-01
In digital microwave transmission, the nonlinear characteristics in a high power amplifier, such as a TWT (traveling-wave tube), inhibit efficient output use. This note introduces a new predistorter control technique, and assesses the nonlinear compensation capability of a third-order predistorter incorporating this technique. Concerning 16-QAM (quadrature amplitude modulation), a 10 dB reduction in out-of-band emission and larger than 8 dB C/N improvement with respect to symbol error rate can be achieved at 3 dB TWT average output power backoff.
Photoacoustic Tomography using a Michelson Interferometer with Quadrature Phase Detection
Speirs, Rory W
2013-01-01
We present a pressure sensor based on a Michelson interferometer, for use in photoacoustic tomography. Quadrature phase detection is employed allowing measurement at any point on the mirror surface without having to retune the interferometer, as is typically required by Fabry-Perot type detectors. This opens the door to rapid full surface detection, which is necessary for clinical applications. Theory relating acoustic pressure to detected acoustic particle displacements is used to calculate the detector sensitivity, which is validated with measurement. Proof-of-concept tomographic images of blood vessel phantoms have been taken with sub-millimeter resolution at depths of several millimeters.
Principles and improvements of quadrature-based QKD
Hu, Wenhao; Shu, Di; Wang, Daqing; Liu, Yu
2010-11-01
An overview of quadrature-based quantum key distribution is provided. Beginning from the comparison between single-photon schema and continuous variable schema, the article focuses on the classical and state-of-art protocols. Protocols' main procedures and security analysis are introduced, which includes the methods under individual attack and collective attack. Then recent development of unconditional security proof is introduced including the optimality of Gaussian attack and de Finetti theorem. Introduction towards discrete modulated schemas' security proof is also made. At last, the article discusses experimental realization of various protocols and the main trend in this field.
In-phase and quadrature imbalance modeling, estimation, and compensation
Li, Yabo
2013-01-01
This book provides a unified IQ imbalance model and systematically reviews the existing estimation and compensation schemes. It covers the different assumptions and approaches that lead to many models of IQ imbalance. In wireless communication systems, the In-phase and Quadrature (IQ) modulator and demodulator are usually used as transmitter (TX) and receiver (RX), respectively. For Digital-to-Analog Converter (DAC) and Analog-to-Digital Converter (ADC) limited systems, such as multi-giga-hertz bandwidth millimeter-wave systems, using analog modulator and demodulator is still a low power and l
Solvability of a Lie algebra of vector fields implies their integrability by quadratures
Cariñena, J. F.; Falceto, F.; Grabowski, J.
2016-10-01
We present a substantial generalisation of a classical result by Lie on integrability by quadratures. Namely, we prove that all vector fields in a finite-dimensional transitive and solvable Lie algebra of vector fields on a manifold can be integrated by quadratures.
The Nature of the Nodes, Weights and Degree of Precision in Gaussian Quadrature Rules
Prentice, J. S. C.
2011-01-01
We present a comprehensive proof of the theorem that relates the weights and nodes of a Gaussian quadrature rule to its degree of precision. This level of detail is often absent in modern texts on numerical analysis. We show that the degree of precision is maximal, and that the approximation error in Gaussian quadrature is minimal, in a…
Quadrature formulas for classes of functions with bounded mixed derivative or difference
Institute of Scientific and Technical Information of China (English)
汪和平
1997-01-01
Quadrature formulas are considered for classes of smooth functions Wpr, Bpr,(?) with bounded mixed derivative or difference. For the classes of functions indicated above, the result that quadrature formulas constructed with the help of number-theoretic methods are optimal (in the sense of order) is proved, and the optimal order of the error estimates is obtained.
Novel IQ imbalance and offset compensation techniques for quadrature mixing radio transceivers
CSIR Research Space (South Africa)
De Witt, JJ
2006-09-01
Full Text Available Despite the advantages that quadrature mixing offers to radio front-ends, its practical use has been limited due to its sensitivity towards gain and phase mismatches between its in-phase and quadrature channels. DC offsets are also a problem when a...
Agachev, J. R.; Galimyanov, A. F.
2016-11-01
In this paper the method of mechanical quadrature solutions fractional integral equation. Computational scheme quadrature method is based on the quadrature formula of rectangles with equidistant nodes, which is the formula of the highest trigonometric degree of accuracy, using a regularizing parameter. This decision is taken for the approximate trigonometric interpolation polynomial constructed from the values that make up the solution of the quadrature method. The substantiation of the method in Holder spaces.
Multipole-preserving quadratures for discretization of functions
Genovese, Luigi
2015-01-01
Discretizing an analytic function on a uniform real-space grid is often done via a straightforward collocation method. This is ubiquitous in all areas of computational physics and quantum chemistry. An example in Density Functional Theory is given by the local external potential describing the interaction between ions and electrons. Also notable examples are given by the analytic functions defining compensation charges for range-separated electrostatic treatments. The accuracy of the collocation method used is therefore very important for the reliability of subsequent treatments like self-consistent field solutions of the electronic structure problems. When the real-space grid is too coarse, the collocation method introduces numerical artifacts typical of real-space treatments, like the so-called egg-box error, that may spoil the numerical stability of the description. We present in this paper a new quadrature scheme that is able to exactly preserve the multipoles of a given analytic function for a wide range...
Design of an MRI quadrature-data acquisition card
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
A design of a quadrature-data acquisition card based on peripheral component interconnect (PCI) bus for mini-type magnetic resonance imaging (MRI) system is reported. It uses two high speed analog-to-digital converters (ADCs) to sample the MRI signals and two static random access memories (SRAMs) to store the data which will be read to the computer by PCI bus after sampling. All the logic control signals on the card are generated by the field programmable gate array (FPGA). The software Foundation3.1 is used to design the FPGA and achieve useful result after simulating and implementing. The card has some merits that normal commercial cards do not have. For example, the sampling parameters can be varied according to different pulse sequences.
Increasing the Reliability of Adaptive Quadrature Using Explicit Interpolants
Gonnet, Pedro
2010-01-01
We present two new adaptive quadrature routines. Both routines differ from previously published algorithms in many aspects, most significantly in how they represent the integrand, how they treat non-numerical values of the integrand, how they deal with improper divergent integrals and how they estimate the integration error. The main focus of these improvements is to increase the reliability of the algorithms without significantly impacting their efficiency. Both algorithms are implemented in Matlab and tested using both the ``families'' suggested by Lyness and Kaganove and the battery test used by Gander and Gautschi and Kahaner. They are shown to be more reliable, albeit in some cases less efficient, than other commonly-used adaptive integrators.
Two-step greedy algorithm for reduced order quadratures
Antil, Harbir; Herrmann, Frank; Nochetto, Ricardo H; Tiglio, Manuel
2012-01-01
We present an algorithm to generate application-specific, global reduced order quadratures (ROQ) for multiple fast evaluations of weighted inner products between parameterized functions. If a reduced basis (RB) or any other projection-based model reduction technique is applied, the dimensionality of integrands is reduced dramatically; however, the cost of evaluating the reduced integrals still scales as the size of the original problem. In contrast, using discrete empirical interpolation (DEIM) points as ROQ nodes leads to a computational cost which depends linearly on the dimension of the reduced space. Generation of a reduced basis via a greedy procedure requires a training set, which for products of functions can be very large. Since this direct approach can be impractical in many applications, we propose instead a two-step greedy targeted towards approximation of such products. We present numerical experiments demonstrating the accuracy and the efficiency of the two-step approach. The presented ROQ are ex...
Single mode quadrature entangled light from room temperature atomic vapour
Wasilewski, W; Jensen, K; Madsen, L S; Krauter, H; Polzik, E S
2009-01-01
We analyse a novel squeezing and entangling mechanism which is due to correlated Stokes and anti-Stokes photon forward scattering in a multi-level atom vapour. Following the proposal we present an experimental demonstration of 3.5 dB pulsed frequency nondegenerate squeezed (quadrature entangled) state of light using room temperature caesium vapour. The source is very robust and requires only a few milliwatts of laser power. The squeezed state is generated in the same spatial mode as the local oscillator and in a single temporal mode. The two entangled modes are separated by twice the Zeeman frequency of the vapour which can be widely tuned. The narrow-band squeezed light generated near an atomic resonance can be directly used for atom-based quantum information protocols. Its single temporal mode characteristics make it a promising resource for quantum information processing.
Quadrature Uncertainty and Information Entropy of Quantum Elliptical Vortex States
Banerji, Anindya; Singh, Ravindra Pratap; Chowdhury, Saurav; Bandyopadhyay, Abir
2013-01-01
We study the quadrature uncertainty of the quantum elliptical vortex state using the associated Wigner function. Deviations from the minimum uncertainty states were observed due to the absence of the Gaussian nature. In our study of the entropy, we noticed that with increasing vorticity, entropy increases for both the modes. We further observed that, there exists an optimum value of ellipticity which gives rise to maximum entanglement of the two modes of the quantum elliptical vortex states. A further increase in ellipticity reduces the entropy thereby resulting in a loss of information carrying capacity. We check the validity of the entropic inequality relations, namely the subaddivity and the Araki-Lieb inequality. The later was satisfied only for a very small range of the ellipticity of the vortex while the former seemed to be valid at all values.
Log-Domain Current-mode Quadrature Sinusoidal Oscillator
Directory of Open Access Journals (Sweden)
P. Prommee
2011-09-01
Full Text Available A log-domain current-mode quadrature sinusoidal oscillator based on lossless integrators is presented. The circuit is a direct realization of a first-order differential equation for obtaining the lossy and lossless integrators. Each of the log-domain lossless integrators is realized by using only NPN transistors and a grounded capacitor for achieving low-power and fast response. The proposed oscillator uses two-lossless integrator loop which can be electronically tuned through bias currents. A validated BJT model which is used in SPICE simulation operated from a single power supply as low as 2.5V. The oscillation frequency is controlled over four decades of frequency. The total harmonic distortions for two-phases QSO (12MHz is obtained around 0.93% which enables fully integrated in telecommunication systems. The proposed circuit is also suitable for high-frequency applications. Nonideality studies are included and PSpice simulation results confirm the theoretical results.
Quadrature phase interferometer for high resolution force spectroscopy
Paolino, Pierdomenico; Bellon, Ludovic
2013-01-01
In this article, we present a deflection measurement setup for Atomic Force Microscopy (AFM). It is based on a quadrature phase differential interferometer: we measure the optical path difference between a laser beam reflecting above the cantilever tip and a reference beam reflecting on the static base of the sensor. A design with very low environmental susceptibility and another allowing calibrated measurements on a wide spectral range are described. Both enable a very high resolution (down to $2.5E-15 m/sqrt{Hz}$), illustrated by a thermal noise measurement on an AFM cantilever. A quick review shows that our precision is equaling or outperforming the best results reported in the literature, but for a much larger deflection range, up to a few microns.
Investigation of turbulent plane mixing layer using generalized differential quadrature
Energy Technology Data Exchange (ETDEWEB)
Basirat Tabrizi, H.; Rezaei Niya, S.M.; Fariborz, S.J. [Amirkabir Univ. of Tech., Mechanical Engineering Dept., Tehran (Iran, Islamic Republic of)]. E-mail: hbasirat@aut.ac.ir; H.Basirat@dal.ca
2004-07-01
There is considerable interest in two-dimensional turbulent mixing layer, to name a few e.g. nature, combustion chamber, premixers of gas turbine combustor and many other technological applications. There features are the presence of large vortical structure, free turbulent characteristics, asymptotic behavior, faster growth rate. Some of the parameters that are known to affect the mixing layer behavior are investigated through the numerical models and experimental analysis during these past decades. A suitable solution for turbulent plane mixing layer requires the use of variable mesh size and an appropriate discretization scheme. The Generalized Differential Quadrature (GDQ) method is utilized to solve the problem. It can be a tool for evaluating the equations obtained for plane mixing layer. The present approach works well by refining mesh size, simplifying the calculation algorithms and less time for calculation anticipated. The numerical simulation is compared with the reported numerical and experimental results of others. (author)
An integrated source of broadband quadrature squeezed light
Hoff, Ulrich B; Andersen, Ulrik L
2015-01-01
An integrated silicon nitride resonator is proposed as an ultra-compact source of bright single-mode quadrature squeezed light at 850 nm. Optical properties of the device are investigated and tailored through numerical simulations, with particular attention paid to loss associated with interfacing the device. An asymmetric double layer stack waveguide geometry with inverse vertical tapers is proposed for efficient and robust fibre-chip coupling, yielding a simulated total loss of -0.75 dB/facet. We assess the feasibility of the device through a full quantum noise analysis and derive the output squeezing spectrum for intra-cavity pump self-phase modulation. Subject to standard material loss and detection efficiencies, we find that the device holds promises for generating substantial quantum noise squeezing over a bandwidth exceeding 1 GHz. In the low-propagation loss regime, approximately -7 dB squeezing is predicted for a pump power of only 50 mW.
Induced polarization of volcanic rocks. 1Surface versus quadrature conductivity
Revil, A.; Breton, M. Le; Niu, Q.; Wallin, E.; Haskins, E.; Thomas, D. M.
2016-11-01
We performed complex conductivity measurements on 28 core samples from the hole drilled for the Humu´ula Groundwater Research Project (Hawai´i Island, HI, USA). The complex conductivity measurements were performed at 4 different pore water conductivities (0.07, 0.5, 1.0 or 2.0, and 10 S m-1 prepared with NaCl) over the frequency range 1 mHz to 45 kHz at 22 ± 1°C. The in-phase conductivity data are plotted against the pore water conductivity to determine, sample by sample, the intrinsic formation factor and the surface conductivity. The intrinsic formation factor is related to porosity by Archie's law with an average value of the cementation exponent m of 2.45, indicating that only a small fraction of the connected pore space controls the transport properties. Both the surface and quadrature conductivities are found to be linearly related to the cation exchange capacity of the material, which was measured with the cobalt hexamine chloride method. Surface and quadrature conductivities are found to be proportional to each other like for sedimentary siliclastic rocks. A Stern layer polarization model is used to explain these experimental results. Despite the fact that the samples contain some magnetite (up to 5% wt.), we were not able to identify the effect of this mineral on the complex conductivity spectra. These results are very encouraging in showing that galvanometric induced polarization measurements can be used in volcanic areas to separate the bulk from the surface conductivity and therefore to define some alteration attributes. Such a goal cannot be achieved with resistivity alone.
Induced polarization of volcanic rocks - 1. Surface versus quadrature conductivity
Revil, A.; Le Breton, M.; Niu, Q.; Wallin, E.; Haskins, E.; Thomas, D. M.
2017-02-01
We performed complex conductivity measurements on 28 core samples from the hole drilled for the Humu'ula Groundwater Research Project (Hawai'i Island, HI, USA). The complex conductivity measurements were performed at 4 different pore water conductivities (0.07, 0.5, 1.0 or 2.0, and 10 S m-1 prepared with NaCl) over the frequency range 1 mHz to 45 kHz at 22 ± 1 °C. The in-phase conductivity data are plotted against the pore water conductivity to determine, sample by sample, the intrinsic formation factor and the surface conductivity. The intrinsic formation factor is related to porosity by Archie's law with an average value of the cementation exponent m of 2.45, indicating that only a small fraction of the connected pore space controls the transport properties. Both the surface and quadrature conductivities are found to be linearly related to the cation exchange capacity of the material, which was measured with the cobalt hexamine chloride method. Surface and quadrature conductivities are found to be proportional to each other like for sedimentary siliclastic rocks. A Stern layer polarization model is used to explain these experimental results. Despite the fact that the samples contain some magnetite (up to 5 per cent wt.), we were not able to identify the effect of this mineral on the complex conductivity spectra. These results are very encouraging in showing that galvanometric induced polarization measurements can be used in volcanic areas to separate the bulk from the surface conductivity and therefore to define some alteration attributes. Such a goal cannot be achieved with resistivity alone.
Gaussian quadrature for splines via homotopy continuation: Rules for C2 cubic splines
Barton, Michael
2015-10-24
We introduce a new concept for generating optimal quadrature rules for splines. To generate an optimal quadrature rule in a given (target) spline space, we build an associated source space with known optimal quadrature and transfer the rule from the source space to the target one, while preserving the number of quadrature points and therefore optimality. The quadrature nodes and weights are, considered as a higher-dimensional point, a zero of a particular system of polynomial equations. As the space is continuously deformed by changing the source knot vector, the quadrature rule gets updated using polynomial homotopy continuation. For example, starting with C1C1 cubic splines with uniform knot sequences, we demonstrate the methodology by deriving the optimal rules for uniform C2C2 cubic spline spaces where the rule was only conjectured to date. We validate our algorithm by showing that the resulting quadrature rule is independent of the path chosen between the target and the source knot vectors as well as the source rule chosen.
Adaptive quadrature-polybinary detection in super-Nyquist WDM systems.
Chen, Sai; Xie, Chongjin; Zhang, Jie
2015-03-23
We propose an adaptive detection technique in super-Nyquist wavelength-division-multiplexed (WDM) polarization-division-multiplexed quadrature-phase-shift-keying (PDM-QPSK) systems, where a QPSK signal is digitally converted to a quadrature n-level polybinary signal followed by a MLSE detector at the receiver, and study the performance of quadrature-duobinary and quadrature four-level polybinary signals using this detection technique. We change the level of the quadrature-polybinary modulation at the coherent receiver according to the channel spacing of a super-Nyquist system. Numerical studies show that the best performance can be achieved by choosing different modulation levels at the receiver in adaption to the channel spacing. In the experiment, we demonstrate the transmission of 3-channel 112-Gbit/s PDM-QPSK signals at a 20-GHz channel spacing, which is detected as a quadrature four-level polybinary signal, with performance comparable to PDM 16-ary quadrature-amplitude modulation (16QAM) at the same bit rate.
Quadrature phase-shift error analysis using a homodyne laser interferometer.
Gregorcic, Peter; Pozar, Tomaz; Mozina, Janez
2009-08-31
The influence of quadrature phase shift on the measured displacement error was experimentally investigated using a two-detector polarizing homodyne laser interferometer with a quadrature detection system. Common nonlinearities, including the phase-shift error, were determined and effectively corrected by a robust data-processing algorithm. The measured phase-shift error perfectly agrees with the theoretically determined phase-shift error region. This error is systematic, periodic and severely asymmetrical around the nominal displacement value. The main results presented in this paper can also be used to assess and correct the detector errors of other interferometric and non-interferometric displacement-measuring devices based on phase-quadrature detection.
Uncontracted Rys Quadrature Implementation of up to G Functions on Graphical Processing Units.
Asadchev, Andrey; Allada, Veerendra; Felder, Jacob; Bode, Brett M; Gordon, Mark S; Windus, Theresa L
2010-03-09
An implementation is presented of an uncontracted Rys quadrature algorithm for electron repulsion integrals, including up to g functions on graphical processing units (GPUs). The general GPU programming model, the challenges associated with implementing the Rys quadrature on these highly parallel emerging architectures, and a new approach to implementing the quadrature are outlined. The performance of the implementation is evaluated for single and double precision on two different types of GPU devices. The performance obtained is on par with the matrix-vector routine from the CUDA basic linear algebra subroutines (CUBLAS) library.
Optimal displacement in apparent motion and quadrature models of motion sensing
Watson, Andrew B.
1990-01-01
A grating appears to move if it is displaced by some amount between two brief presentations, or between multiple successive presentations. A number of recent experiments have examined the influence of displacement size upon either the sensitivity to motion, or upon the induced motion aftereffect. Several recent motion models are based upon quadrature filters that respond in opposite quadrants in the spatiotemporal frequency plane. Predictions of the quadrature model are derived for both two-frame and multiframe displays. Quadrature models generally predict an optimal displacement of 1/4 cycle for two-frame displays, but in the multiframe case the prediction depends entirely on the frame rate.
Simon, M. K.; Li, L.
2003-08-01
We show that MIL-STD shaped offset quadrature phase-shift keying (SOQPSK), a highly bandwidth-efficient constant-envelope modulation, can be represented in the form of a cross-correlated trellis-coded quadrature modulation, a generic structure containing both memory and cross-correlation between the in-phase and quadrature-phase channels. Such a representation allows identification of the optimum form of receiver for MIL-STD SOQPSK and at the same time, through modification of the equivalent I and Q encoders to recursive types, allows for it to be embedded as the inner code of a serial or parallel (turbo-like) concatenated coding structure together with iterative decoding.
Effect of Correlated Non-Gaussian Quadratures on the Performance of Binary Modulations
Directory of Open Access Journals (Sweden)
Valentine A. Aalo
2011-01-01
Full Text Available The received signal in many wireless communication systems comprises of the sum of waves with random amplitudes and random phases. In general, the composite signal consists of correlated nonidentical Gaussian quadrature components due to the central limit theorem (CLT. However, in the presence of a small number of random waves, the CLT may not always hold and the quadrature components may not be Gaussian distributed. In this paper, we assume that the fading environment is such that the quadrature components follow a correlated bivariate Student-t joint distribution. Then, we derive the envelope distribution of the received signal and obtain new expressions for the exact and high signal-to-noise (SNR approximate average BER for binary modulations. It also turns out that the derived envelope pdf approaches the Rayleigh and Hoyt distributions as limiting cases. Using the derived envelope pdf, we investigate the effect of correlated nonidentical quadratures on the error rate performance of digital communication systems.
Relation between the field quadratures and the characteristic function of a mirror
Energy Technology Data Exchange (ETDEWEB)
Rodriguez L, B.M.; Moya C, H. [INAOE, Coordinacion de Optica, A.P. 51 y 216, 72000 Puebla (Mexico)
2004-07-01
We analyse the possibility of measuring the state of a movable mirror by using its interaction with a quantum field. We show that measuring the field quadratures allows us to reconstruct the characteristic function corresponding to the mirror state. (Author)
Cui, Junning; He, Zhangqiang; Jiu, Yuanwei; Tan, Jiubin; Sun, Tao
2016-09-01
The demand for minimal cyclic nonlinearity error in laser interferometry is increasing as a result of advanced scientific research projects. Research shows that the quadrature phase error is the main effect that introduces cyclic nonlinearity error, and polarization-mixing cross talk during beam splitting is the main error source that causes the quadrature phase error. In this paper, a new homodyne quadrature laser interferometer configuration based on nonpolarization beam splitting and balanced interference between two circularly polarized laser beams is proposed. Theoretical modeling indicates that the polarization-mixing cross talk is elaborately avoided through nonpolarizing and Wollaston beam splitting, with a minimum number of quadrature phase error sources involved. Experimental results show that the cyclic nonlinearity error of the interferometer is up to 0.6 nm (peak-to-valley value) without any correction and can be further suppressed to 0.2 nm with a simple gain and offset correction method.
Analysis of thin plates by the weak form quadrature element method
Institute of Scientific and Technical Information of China (English)
ZHONG HongZhi; YUE ZhiGuang
2012-01-01
The recently proposed weak form quadrature element method (QEM) is applied to flexural and vibrational analysis of thin plates.The integrals involved in the variational description of a thin plate are evaluated by an efficient numerical scheme and the partial derivatives at the integration sampling points are then approximated using differential quadrature analogs.Neither the grid pattern nor the number of nodes is fixed,being adjustable according to convergence need.The C1 continuity conditions characterizing the thin plate theory are discussed and the robustness of the weak form quadrature element for thin plates against shape distortion is examined.Examples are presented and comparisons with analytical solutions and the results of the finite element method are made to demonstrate the convergence and computational efficiency of the weak form quadrature element method.It is shown that the present formulation is applicable to thin plates with varying thickness as well as uniform plates.
Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light.
Dwyer, S; Barsotti, L; Chua, S S Y; Evans, M; Factourovich, M; Gustafson, D; Isogai, T; Kawabe, K; Khalaidovski, A; Lam, P K; Landry, M; Mavalvala, N; McClelland, D E; Meadors, G D; Mow-Lowry, C M; Schnabel, R; Schofield, R M S; Smith-Lefebvre, N; Stefszky, M; Vorvick, C; Sigg, D
2013-08-12
Squeezed states of light are an important tool for optical measurements below the shot noise limit and for optical realizations of quantum information systems. Recently, squeezed vacuum states were deployed to enhance the shot noise limited performance of gravitational wave detectors. In most practical implementations of squeezing enhancement, relative fluctuations between the squeezed quadrature angle and the measured quadrature (sometimes called squeezing angle jitter or phase noise) are one limit to the noise reduction that can be achieved. We present calculations of several effects that lead to quadrature fluctuations, and use these estimates to account for the observed quadrature fluctuations in a LIGO gravitational wave detector. We discuss the implications of this work for quantum enhanced advanced detectors and even more sensitive third generation detectors.
Relation between the field quadratures and the characteristic function of a mirror
Rodríguez, B M
2002-01-01
We analyze the possibility of measuring the state of a movable mirror by using its interaction with a quantum field. We show that measuring the field quadratures allows to reconstruct the characteristic function corresponding to the mirror state.
Velocity envelope of vector flow estimation with spatial quadrature
Kerr, Richard F.; Anderson, Martin E.
2003-05-01
We present the results of two studies investigating the optimal aperture configuration for maximized lateral blood flow velocity estimation using Heterodyned Spatial Quadrature. Our objective was to determine the maximum velocities that can be estimated at Doppler angles of 90 degrees and 60 degrees with a bias of less than 5% for both uniform scatterer motion in a tissue-mimicking phantom and blood-mimicking fluid circulated through a wall-less vessel flow phantom. Constant flow rates ranging from 3.0 to 18.0 ml/sec were applied in the flow phantom, producing expected peak velocities of 15.0 to 89.8 cm/sec under laminar flow conditions. Velocity estimates were obtained at each flow rate using 256 trials, with each trial consisting of an ensemble of 32 vectors. For an f/1 receive geometry with bi-lobed Hamming apodization, all peak flow velocities tested were estimated to within 5% of their expected values for both 90 degree and 60 degree Doppler angles. An f/2 receive geometry featuring bi-lobed Blackman apodization generally provided accurate lateral velocity estimates up to 71.9 cm/sec for a Doppler angle of 90 degrees, and accurate lateral component estimates up to 50.1 cm/sec for a 60 degree Doppler angle. The implications of these findings will be discussed.
Sparse aerosol models beyond the quadrature method of moments
McGraw, Robert
2013-05-01
This study examines a class of sparse aerosol models derived from linear programming (LP). The widely used quadrature method of moments (QMOM) is shown to fall into this class. Here it is shown how other sparse aerosol models can be constructed, which are not based on moments of the particle size distribution. The new methods enable one to bound atmospheric aerosol physical and optical properties using arbitrary combinations of model parameters and measurements. Rigorous upper and lower bounds, e.g. on the number of aerosol particles that can activate to form cloud droplets, can be obtained this way from measurement constraints that may include total particle number concentration and size distribution moments. The new LP-based methods allow a much wider range of aerosol properties, such as light backscatter or extinction coefficient, which are not easily connected to particle size moments, to also be assimilated into a list of constraints. Finally, it is shown that many of these more general aerosol properties can be tracked directly in an aerosol dynamics simulation, using SAMs, in much the same way that moments are tracked directly in the QMOM.
Hollow vortices, capillary water waves and double quadrature domains
Energy Technology Data Exchange (ETDEWEB)
Crowdy, Darren G [Department of Mathematics, Imperial College London, 180 Queen' s Gate, London SW7 2AZ (United Kingdom); Roenby, Johan, E-mail: d.crowdy@imperial.ac.uk, E-mail: johan.roenby@gmail.com [DHI, Agern Allé 5, 2970 Hørsholm (Denmark)
2014-06-01
Two new classes of analytical solutions for hollow vortex equilibria are presented. One class involves a central hollow vortex, comprising a constant pressure region having non-zero circulation, surrounded by an n-polygonal array of point vortices with n⩾2. The solutions generalize the non-rotating polygonal point vortex configurations of Morikawa and Swenson (1971 Phys. Fluids 14 1058–73) to the case where the point vortex at the centre of the polygon is replaced by a hollow vortex. The results of Morikawa and Swenson would suggest that all equilibria for n≠3 will be linearly unstable to point vortex mode instabilities. However even the n = 3 case turns out to be unstable to a recently discovered displacement instability deriving from a resonance between the natural modes of an isolated circular hollow vortex. A second class of analytical solutions for periodic water waves co-travelling with a submerged point vortex row is also described. The analysis gives rise to new theoretical connections with free surface Euler flows with surface tension and, in particular, with Crapper's classical solutions for capillary water waves. It is pointed out that the equilibrium fluid regions found here have a mathematical interpretation as an abstract class of planar domains known as double quadrature domains. (ss 1)
Axisymmetric Consolidation of Unsaturated Soils by Differential Quadrature Method
Directory of Open Access Journals (Sweden)
Wan-Huan Zhou
2013-01-01
Full Text Available Axisymmetric consolidation in a sand drain foundation is a common problem in foundation engineering. In unsaturated soils, the excess pore-water and pore-air pressures simultaneously change during the consolidation procedure; and the solutions are not easy to obtain. The present paper uses the differential quadrature method (DQM for axisymmetric consolidation of unsaturated soils in a sand drain foundation. The radial seepage of sand drain foundation is considered based on the framework of Fredlund’s one-dimensional consolidation theory in unsaturated soils. With the use of Darcy’s law and Fick’s law, the polar governing equations of excess pore-air and pore-water pressures of axisymmetric consolidation are derived. By using DQM, the two governing equations are transformed into two sets of ordinary differential equations. Then the solutions of excess pore-water and pore-air pressures can be obtained by Rong-Kutta method. The DQM solution can be used to deal with the case of nonuniform initial pore-air and pore-water distributions. Finally, case studies are presented to investigate the behavior of axisymmetric consolidation of unsaturated soils. The convergence analysis and average degree of consolidation, the settlements in radial and vertical direction, and the effects of different initial excess pore pressure distributions are presented, and discussed in this paper.
Numerical Evaluation of CPV Boundary Integrals with Symmetrical Quadrature Schemes
Institute of Scientific and Technical Information of China (English)
马杭; 徐凯宇
2003-01-01
Stemming from the definition of the Cauchy principal values (CPV) integrals, a newly developed symmetrical quadrature scheme was proposed in the paper for the accurate numerical evaluation of the singular boundary integrals in the sense of CPV encountered in the boundary element method. In the case of inner-element singularities, the CPV integrals could be evaluated in a straightforward way by dividing the element into the symmetrical part and the remainder(s). And in the case of end-singularities, the CPV integrals could be evaluated simply by taking a tangential distance transformation of the integrand after cutting out a symmetrical tiny zone around the singular point. In both cases, the operations are no longer necessary before the numerical implementation, which involves the dull routine work to separate out singularities from the integral kernels. Numerical examples were presented for both the two-and the three-dimensional boundary integrals in elasticity. Comparing the numerical results with those by other approaches demonstrates the feasibility and the effectiveness of the proposed scheme.
Information entropy of Gegenbauer polynomials and Gaussian quadrature
Sánchez-Ruiz, J
2003-01-01
In a recent paper (Buyarov V S, Lopez-Artes P, Martinez-Finkelshtein A and Van Assche W 2000 J. Phys. A: Math. Gen. 33 6549-60), an efficient method was provided for evaluating in closed form the information entropy of the Gegenbauer polynomials C sup ( suplambda sup ) sub n (x) in the case when lambda = l element of N. For given values of n and l, this method requires the computation by means of recurrence relations of two auxiliary polynomials, P(x) and H(x), of degrees 2l - 2 and 2l - 4, respectively. Here it is shown that P(x) is related to the coefficients of the Gaussian quadrature formula for the Gegenbauer weights w sub l (x) = (1 - x sup 2) sup l sup - sup 1 sup / sup 2 , and this fact is used to obtain the explicit expression of P(x). From this result, an explicit formula is also given for the polynomial S(x) = lim sub n sub-> subinfinity P(1 - x/(2n sup 2)), which is relevant to the study of the asymptotic (n -> infinity with l fixed) behaviour of the entropy.
Optimization and Experimentation of Dual-Mass MEMS Gyroscope Quadrature Error Correction Methods
Directory of Open Access Journals (Sweden)
Huiliang Cao
2016-01-01
Full Text Available This paper focuses on an optimal quadrature error correction method for the dual-mass MEMS gyroscope, in order to reduce the long term bias drift. It is known that the coupling stiffness and demodulation error are important elements causing bias drift. The coupling stiffness in dual-mass structures is analyzed. The experiment proves that the left and right masses’ quadrature errors are different, and the quadrature correction system should be arranged independently. The process leading to quadrature error is proposed, and the Charge Injecting Correction (CIC, Quadrature Force Correction (QFC and Coupling Stiffness Correction (CSC methods are introduced. The correction objects of these three methods are the quadrature error signal, force and the coupling stiffness, respectively. The three methods are investigated through control theory analysis, model simulation and circuit experiments, and the results support the theoretical analysis. The bias stability results based on CIC, QFC and CSC are 48 °/h, 9.9 °/h and 3.7 °/h, respectively, and this value is 38 °/h before quadrature error correction. The CSC method is proved to be the better method for quadrature correction, and it improves the Angle Random Walking (ARW value, increasing it from 0.66 °/√h to 0.21 °/√h. The CSC system general test results show that it works well across the full temperature range, and the bias stabilities of the six groups’ output data are 3.8 °/h, 3.6 °/h, 3.4 °/h, 3.1 °/h, 3.0 °/h and 4.2 °/h, respectively, which proves the system has excellent repeatability.
Optimization and Experimentation of Dual-Mass MEMS Gyroscope Quadrature Error Correction Methods.
Cao, Huiliang; Li, Hongsheng; Kou, Zhiwei; Shi, Yunbo; Tang, Jun; Ma, Zongmin; Shen, Chong; Liu, Jun
2016-01-07
This paper focuses on an optimal quadrature error correction method for the dual-mass MEMS gyroscope, in order to reduce the long term bias drift. It is known that the coupling stiffness and demodulation error are important elements causing bias drift. The coupling stiffness in dual-mass structures is analyzed. The experiment proves that the left and right masses' quadrature errors are different, and the quadrature correction system should be arranged independently. The process leading to quadrature error is proposed, and the Charge Injecting Correction (CIC), Quadrature Force Correction (QFC) and Coupling Stiffness Correction (CSC) methods are introduced. The correction objects of these three methods are the quadrature error signal, force and the coupling stiffness, respectively. The three methods are investigated through control theory analysis, model simulation and circuit experiments, and the results support the theoretical analysis. The bias stability results based on CIC, QFC and CSC are 48 °/h, 9.9 °/h and 3.7 °/h, respectively, and this value is 38 °/h before quadrature error correction. The CSC method is proved to be the better method for quadrature correction, and it improves the Angle Random Walking (ARW) value, increasing it from 0.66 °/√h to 0.21 °/√h. The CSC system general test results show that it works well across the full temperature range, and the bias stabilities of the six groups' output data are 3.8 °/h, 3.6 °/h, 3.4 °/h, 3.1 °/h, 3.0 °/h and 4.2 °/h, respectively, which proves the system has excellent repeatability.
High-Order Quadratures for the Solution of Scattering Problems in Two Dimensions
2008-04-22
combination of high-order quadrature formulae, fast application of integral operators in Lippmann- Schwinger equations, and the stabilized biconjugate...functions in two and three dimensions; these are used to obtain rapidly convergent discretizations of Lippmann- Schwinger equations. The performance of the...Lippmann- Schwinger , High-Order, Quadratures, Singu- lar, Hankel 2 1 Introduction Forward scattering has been an active field of research in science
Free Vibration Analysis of Laminated Composite Beams Using Differential Quadrature Method
Institute of Scientific and Technical Information of China (English)
冯丽娟; 钟宏志; 郝照平; 吴德隆
2002-01-01
A higher-order theory for laminated composite beams is used to study the free vibration of laminated composite beams, and the differential quadrature method is employed to obtain the numerical solution of the governing differential equations. Free vibration analysis of beams with rectangular cross-section for various combinations of end conditions is studied. The results show that the differential quadrature method is reliable and accurate compared with other available results.
Fast and Accurate Computation of Gauss--Legendre and Gauss--Jacobi Quadrature Nodes and Weights
Hale, Nicholas
2013-03-06
An efficient algorithm for the accurate computation of Gauss-Legendre and Gauss-Jacobi quadrature nodes and weights is presented. The algorithm is based on Newton\\'s root-finding method with initial guesses and function evaluations computed via asymptotic formulae. The n-point quadrature rule is computed in O(n) operations to an accuracy of essentially double precision for any n ≥ 100. © 2013 Society for Industrial and Applied Mathematics.
Design and Application of Quadrature Compensation Patterns in Bulk Silicon Micro-Gyroscopes
Directory of Open Access Journals (Sweden)
Yunfang Ni
2014-10-01
Full Text Available This paper focuses on the detailed design issues of a peculiar quadrature reduction method named system stiffness matrix diagonalization, whose key technology is the design and application of quadrature compensation patterns. For bulk silicon micro-gyroscopes, a complete design and application case was presented. The compensation principle was described first. In the mechanical design, four types of basic structure units were presented to obtain the basic compensation function. A novel layout design was proposed to eliminate the additional disturbing static forces and torques. Parameter optimization was carried out to maximize the available compensation capability in a limited layout area. Two types of voltage loading methods were presented. Their influences on the sense mode dynamics were analyzed. The proposed design was applied on a dual-mass silicon micro-gyroscope developed in our laboratory. The theoretical compensation capability of a quadrature equivalent angular rate no more than 412 °/s was designed. In experiments, an actual quadrature equivalent angular rate of 357 °/s was compensated successfully. The actual compensation voltages were a little larger than the theoretical ones. The correctness of the design and the theoretical analyses was verified. They can be commonly used in planar linear vibratory silicon micro-gyroscopes for quadrature compensation purpose.
Schuyler, Adam D; Maciejewski, Mark W; Stern, Alan S; Hoch, Jeffrey C
2015-01-01
Nonuniform sampling (NUS) in multidimensional NMR permits the exploration of higher dimensional experiments and longer evolution times than the Nyquist Theorem practically allows for uniformly sampled experiments. However, the spectra of NUS data include sampling-induced artifacts and may be subject to distortions imposed by sparse data reconstruction techniques, issues not encountered with the discrete Fourier transform (DFT) applied to uniformly sampled data. The characterization of these NUS-induced artifacts allows for more informed sample schedule design and improved spectral quality. The DFT–Convolution Theorem, via the point-spread function (PSF) for a given sampling scheme, provides a useful framework for exploring the nature of NUS sampling artifacts. In this work, we analyze the PSFs for a set of specially constructed NUS schemes to quantify the interplay between randomization and dimensionality for reducing artifacts relative to uniformly undersampled controls. In particular, we find a synergistic relationship between the indirect time dimensions and the “quadrature phase dimension” (i.e. the hypercomplex components collected for quadrature detection). The quadrature phase dimension provides additional degrees of freedom that enable partial-component NUS (collecting a subset of quadrature components) to further reduce sampling-induced aliases relative to traditional full-component NUS (collecting all quadrature components). The efficacy of artifact reduction is exponentially related to the dimensionality of the sample space. Our results quantify the utility of partial-component NUS as an additional means for introducing decoherence into sampling schemes and reducing sampling artifacts in high dimensional experiments. PMID:25899289
Design of a quadrature surface coil for hyperpolarized 13C MRS cardiac metabolism studies in pigs
DEFF Research Database (Denmark)
Giovannetti, G.; Frijia, F.; Hartwig, V.;
2013-01-01
This work describes the design of a quadrature surface coil constituted by a circular loop and a butterfly coil, employed in transmit/receive (TX/RX) mode for hyperpolarized 13C studies of pig heart with a clinical 3T scanner. The coil characterization is performed by developing an SNR model...... for coil performance evaluation in terms of coil resistance, sample-induced resistance and magnetic field pattern. Experimental SNR-vs.-depth profiles, extracted from the [1-13C]acetate phantom chemical shift image (CSI), showed good agreement with the theoretical SNR-vs.-depth profiles. Moreover......, the performance of the quadrature coil was compared with the single TX/RX circular and TX/RX butterfly coil, in order to verify the advantage of the proposed configuration over the single coils throughout the volume of interest for cardiac imaging in pig. Finally, the quadrature surface coil was tested...
Parrish, Robert M; Hohenstein, Edward G; Martínez, Todd J; Sherrill, C David
2013-05-21
We investigate the application of molecular quadratures obtained from either standard Becke-type grids or discrete variable representation (DVR) techniques to the recently developed least-squares tensor hypercontraction (LS-THC) representation of the electron repulsion integral (ERI) tensor. LS-THC uses least-squares fitting to renormalize a two-sided pseudospectral decomposition of the ERI, over a physical-space quadrature grid. While this procedure is technically applicable with any choice of grid, the best efficiency is obtained when the quadrature is tuned to accurately reproduce the overlap metric for quadratic products of the primary orbital basis. Properly selected Becke DFT grids can roughly attain this property. Additionally, we provide algorithms for adopting the DVR techniques of the dynamics community to produce two different classes of grids which approximately attain this property. The simplest algorithm is radial discrete variable representation (R-DVR), which diagonalizes the finite auxiliary-basis representation of the radial coordinate for each atom, and then combines Lebedev-Laikov spherical quadratures and Becke atomic partitioning to produce the full molecular quadrature grid. The other algorithm is full discrete variable representation (F-DVR), which uses approximate simultaneous diagonalization of the finite auxiliary-basis representation of the full position operator to produce non-direct-product quadrature grids. The qualitative features of all three grid classes are discussed, and then the relative efficiencies of these grids are compared in the context of LS-THC-DF-MP2. Coarse Becke grids are found to give essentially the same accuracy and efficiency as R-DVR grids; however, the latter are built from explicit knowledge of the basis set and may guide future development of atom-centered grids. F-DVR is found to provide reasonable accuracy with markedly fewer points than either Becke or R-DVR schemes.
Suzuki, Meisaku; Kanno, Atsushi; Yamamoto, Naokatsu; Sotobayashi, Hideyuki
2016-02-01
The effects of in-phase/quadrature-phase (IQ) imbalances are evaluated with a direct IQ down-converter in the W-band (75-110 GHz). The IQ imbalance of the converter is measured within a range of +/-10 degrees in an intermediate frequency of DC-26.5 GHz. 1-8-G-baud quadrature phase-shift keying (QPSK) signals are transmitted successfully with observed bit error rates within a forward error correction limit of 2×10-3 using radio over fiber (RoF) techniques. The direct down-conversion technique is applicable to next-generation high-speed wireless access communication systems in the millimeter-wave band.
On quadrature formulas for singular integral equations of the first and the second kind
DEFF Research Database (Denmark)
Krenk, Steen
1975-01-01
It is shown that by proper choice of the collocation points singular integral equations of the first and the second kind can be integrated by use of the usual Gauss-Jacobi quadrature formula. Detailed formulas are given for various values of the index.......It is shown that by proper choice of the collocation points singular integral equations of the first and the second kind can be integrated by use of the usual Gauss-Jacobi quadrature formula. Detailed formulas are given for various values of the index....
Lobatto and Radau positive quadrature formulas for linear combinations of Jacobi polynomials
Bustamante, Jorge; Martíez-Cruz, Reinaldo
2012-01-01
For a given $\\theta\\in (-1,1)$, we find out all parameters $\\alpha,\\beta\\in \\{0,1\\}$ such that, there exists a linear combination of Jacobi polynomials $J_{n+1}^{(\\alpha,\\beta)}(x)-C J_{n}^{(\\alpha,\\beta)}(x)$ which generates a Lobatto (Radau) positive quadrature formula of degree of exactness \\textcolor{red}{$2n+2$ ($2n+1$)} and contains the point $\\theta$ as a node. These positive quadratures are very useful in studying problems in one-sided polynomial $L_1$ approximation.
Spectral/quadrature duality: Picard-Vessiot theory and finite-gap potentials
Brezhnev, Yurii V
2010-01-01
In the framework of differential Galois theory we treat classical spectral problem $\\Psi''-u(x)\\Psi=\\lambda\\Psi$ and its finite-gap potentials as exactly solvable in quadratures by Picard-Vessiot without involving special functions (the ideology goes back to works by J. Drach 1919). From this standpoint we inspect known facts and obtain new ones: an important formula for Psi-function, differential properties of Jacobian theta-functions, and Theta-function extension of Picard-Vessiot fields. We show that duality between spectral and quadrature approaches is realized through the Weierstrass permutation theorem for a logarithmic Abelian integral.
Directory of Open Access Journals (Sweden)
S. M. Sadatrasoul
2014-01-01
Full Text Available We introduce some generalized quadrature rules to approximate two-dimensional, Henstock integral of fuzzy-number-valued functions. We also give error bounds for mappings of bounded variation in terms of uniform modulus of continuity. Moreover, we propose an iterative procedure based on quadrature formula to solve two-dimensional linear fuzzy Fredholm integral equations of the second kind (2DFFLIE2, and we present the error estimation of the proposed method. Finally, some numerical experiments confirm the theoretical results and illustrate the accuracy of the method.
Quadrature effects on the accuracy of flux calculations in realistic atmospheres.
Box, M. A.; Trautmann, T.; Loughlin, P. E.
1993-12-01
The authors have investigated the accuracy of five different quadrature methods - equal steps in θ, equal steps in cos θ, Gaussian, double Gaussian and Gauss-Lobatto - on the accuracy of fluxes in realistic aerosol atmospheres, using the Gauss-Seidel method. In addition, a range of Gaussian quadrature stream numbers from two to 32 were compared. The atmospheric models considered are those recently presented by Lenoble, with the exception that the authors have used Henyey-Greenstein phase functions in place of Mie. The results should be easily reproduceable by any other workers interested in similar realistic atmospheres. A table of Gauss-Lobatto weights and points is provided as an appendix.
Some Numerical Quadrature Schemes of a Non-conforming Quadrilateral Finite Element
Institute of Scientific and Technical Information of China (English)
Xiao-fei GUAN; Ming-xia LI; Shao-chun CHEN
2012-01-01
Numerical quadrature schemes of a non-conforming finite element method for general second order elliptic problems in two dimensional (2-D) and three dimensional (3-D) space are discussed in this paper.We present and analyze some optimal numerical quadrature schemes. One of the schemes contains only three sampling points,which greatly improves the efficiency of numerical computations.The optimal error estimates are derived by using some traditional approaches and techniques.Lastly,some numerical results are provided to verify our theoretical analysis.
Numerical quadrature and operator splitting in finite element methods for cardiac electrophysiology.
Krishnamoorthi, Shankarjee; Sarkar, Mainak; Klug, William S
2013-11-01
We study the numerical accuracy and computational efficiency of alternative formulations of the finite element solution procedure for the monodomain equations of cardiac electrophysiology, focusing on the interaction of spatial quadrature implementations with operator splitting and examining both nodal and Gauss quadrature methods and implementations that mix nodal storage of state variables with Gauss quadrature. We evaluate the performance of all possible combinations of 'lumped' approximations of consistent capacitance and mass matrices. Most generally, we find that quadrature schemes and lumped approximations that produce decoupled nodal ionic equations allow for the greatest computational efficiency, this being afforded through the use of asynchronous adaptive time-stepping of the ionic state variable ODEs. We identify two lumped approximation schemes that exhibit superior accuracy, rivaling that of the most expensive variationally consistent implementations. Finally, we illustrate some of the physiological consequences of discretization error in electrophysiological simulation relevant to cardiac arrhythmia and fibrillation. These results suggest caution with the use of semi-automated free-form tetrahedral and hexahedral meshing algorithms available in most commercially available meshing software, which produce nonuniform meshes having a large distribution of element sizes.
On the amplitude and phase errors of quadrature LC-tank CMOS oscillators
DEFF Research Database (Denmark)
Mazzanti, Andrea; Svelto, Francesco; Andreani, Pietro
2006-01-01
An analytic approach for the estimation of the phase and amplitude imbalances caused by component mismatches and parasitic magnetic fields in two popular quadrature LC oscillators is presented. Very simple and closed-form equations are derived, proving that, although the two topologies share...
Serbes, Gorkem; Aydin, Nizamettin
2014-01-01
Quadrature signals are dual-channel signals obtained from the systems employing quadrature demodulation. Embolic Doppler ultrasound signals obtained from stroke-prone patients by using Doppler ultrasound systems are quadrature signals caused by emboli, which are particles bigger than red blood cells within circulatory system. Detection of emboli is an important step in diagnosing stroke. Most widely used parameter in detection of emboli is embolic signal-to-background signal ratio. Therefore, in order to increase this ratio, denoising techniques are employed in detection systems. Discrete wavelet transform has been used for denoising of embolic signals, but it lacks shift invariance property. Instead, dual-tree complex wavelet transform having near-shift invariance property can be used. However, it is computationally expensive as two wavelet trees are required. Recently proposed modified dual-tree complex wavelet transform, which reduces the computational complexity, can also be used. In this study, the denoising performance of this method is extensively evaluated and compared with the others by using simulated and real quadrature signals. The quantitative results demonstrated that the modified dual-tree-complex-wavelet-transform-based denoising outperforms the conventional discrete wavelet transform with the same level of computational complexity and exhibits almost equal performance to the dual-tree complex wavelet transform with almost half computational cost.
A Quantized Analog Delay for an ir-UWB Quadrature Downconversion Autocorrelation Receiver
Bagga, S.; Zhang, L.; Serdijn, W.A.; Long, J.R.; Busking, E.B.
2005-01-01
A quantized analog delay is designed as a requirement for the autocorrelation function in the quadrature downconversion autocorrelation receiver (QDAR). The quantized analog delay is comprised of a quantizer, multiple binary delay lines and an adder circuit. Being the foremost element, the quantizer
Directory of Open Access Journals (Sweden)
V. M. Stechenko
1982-12-01
Full Text Available The results of the study of quadrature bridge device to a range of 10 to 100 MHz and 30-300 MHz. The apparatus consists of two adders for magnetically lines and a constant phase shift of the phase shifter.
Analysis and Design of a 1.8-GHz CMOS LC Quadrature VCO
DEFF Research Database (Denmark)
Andreani, Pietro; Bonfanti, A.; Romanò, L.
2002-01-01
This paper presents a quadrature voltage-controlled oscillator (QVCO) based on the coupling of two LC-tank VCOs. A simplified theoretical analysis for the oscillation frequency and phase noise displayed by the QVCO in the 1/f3 region is developed, and good agreement is found between theory...
Single-Stage Low-Power Quadrature RF Receiver Front-End: The LMV Cell
DEFF Research Database (Denmark)
Liscidini, Antonio; Mazzanti, Andrea; Tonietto, Riccardo;
2006-01-01
This paper presents the first quadrature RF receiver front-end where, in a single stage, low-noise amplifier (LNA), mixer and voltage-controlled oscillator (VCO) share the same bias current. The new structure exploits the intrinsic mixing functionality of a classical LC-tank oscillator providing...
47.8 GHz InPHBT quadrature VCO with 22% tuning range
DEFF Research Database (Denmark)
Hadziabdic, Dzenan; Johansen, Tom Keinicke; Krozer, Viktor;
2007-01-01
A 38-47.8 GHz quadrature voltage controlled oscillator (QVCO) in InP HBT technology is presented. The measured output power is - 15 dBm. The simulated phase noise ranges from -84 to -86 dBc/Hz at 1 MHz offset. It is believed that this is the first millimetre-wavc QVCO implemented in InP HBT techn...
17th century arguments for the impossibility of the indefinite and the definite circle quadrature
DEFF Research Database (Denmark)
Lützen, Jesper
2014-01-01
The classical problem of the quadrature (or equivalently the rectification) of the circle enjoyed a renaissance in the second half of the 17th century. The new analytic methods provided the means for the discovery of infinite expressions of and for the first attempts to prove impossibility statem...
Håvie, T.
1970-01-01
Some quadrature formulae using the derivatives of the integrand are discussed. As special cases are obtained generalizations of both the ordinary and the modified Romberg algorithms. In all cases the error terms are expressed in terms of Bernoulli polynomials and functions.
An unified framework for the computation of polynomial quadrature weights and errors
Graça, Mário M
2012-01-01
For the class of polynomial quadrature rules we show that conveniently chosen bases allow to compute both the weights and the theoretical error expression of a $n$-point rule via the undetermined coefficients method. As an illustration, the framework is applied to some classical rules such as Newton-Cotes, Adams-Bashforth, Adams-Moulton and Gaussian rules.
AM to PM noise conversion in a cross-coupled quadrature harmonic oscillator
DEFF Research Database (Denmark)
Djurhuus, Torsten; Krozer, Viktor; Vidkjær, Jens
2006-01-01
We derive the dynamic equations governing the cross-coupled quadrature oscillator, perturbed by noise, leading to an expression for the close-in phase noise. The theory shows that a nonlinear coupling transconductance results in AM-PM noise conversion close to the carrier, which increases...
Quadrature phase shift keying coherent state discrimination via a hybrid receiver
DEFF Research Database (Denmark)
Müller, C. R.; Castaneda, Mario A. Usuga; Wittmann, C.;
2012-01-01
We propose and experimentally demonstrate a near-optimal discrimination scheme for the quadrature phase shift keying (QPSK) protocol. We show in theory that the performance of our hybrid scheme is superior to the standard scheme—heterodyne detection—for all signal amplitudes and underpin the pred...
Chen, Tianheng; Shu, Chi-Wang
2017-09-01
It is well known that semi-discrete high order discontinuous Galerkin (DG) methods satisfy cell entropy inequalities for the square entropy for both scalar conservation laws (Jiang and Shu (1994) [39]) and symmetric hyperbolic systems (Hou and Liu (2007) [36]), in any space dimension and for any triangulations. However, this property holds only for the square entropy and the integrations in the DG methods must be exact. It is significantly more difficult to design DG methods to satisfy entropy inequalities for a non-square convex entropy, and/or when the integration is approximated by a numerical quadrature. In this paper, we develop a unified framework for designing high order DG methods which will satisfy entropy inequalities for any given single convex entropy, through suitable numerical quadrature which is specific to this given entropy. Our framework applies from one-dimensional scalar cases all the way to multi-dimensional systems of conservation laws. For the one-dimensional case, our numerical quadrature is based on the methodology established in Carpenter et al. (2014) [5] and Gassner (2013) [19]. The main ingredients are summation-by-parts (SBP) operators derived from Legendre Gauss-Lobatto quadrature, the entropy conservative flux within elements, and the entropy stable flux at element interfaces. We then generalize the scheme to two-dimensional triangular meshes by constructing SBP operators on triangles based on a special quadrature rule. A local discontinuous Galerkin (LDG) type treatment is also incorporated to achieve the generalization to convection-diffusion equations. Extensive numerical experiments are performed to validate the accuracy and shock capturing efficacy of these entropy stable DG methods.
Sidi, A.; Israeli, M.
1986-01-01
High accuracy numerical quadrature methods for integrals of singular periodic functions are proposed. These methods are based on the appropriate Euler-Maclaurin expansions of trapezoidal rule approximations and their extrapolations. They are used to obtain accurate quadrature methods for the solution of singular and weakly singular Fredholm integral equations. Such periodic equations are used in the solution of planar elliptic boundary value problems, elasticity, potential theory, conformal mapping, boundary element methods, free surface flows, etc. The use of the quadrature methods is demonstrated with numerical examples.
Institute of Scientific and Technical Information of China (English)
R.Mokhtari; A.Samadi Toodar; N.G.Chegini
2011-01-01
@@ We the extend application of the generalized differential quadrature method (GDQM) to solve some coupled nonlinear Schr(o)dinger equations.The cosine-based GDQM is employed and the obtained system of ordinary differential equations is solved via the fourth order Runge-Kutta method.The numerical solutions coincide with the exact solutions in desired machine precision and invariant quantities are conserved sensibly.Some comparisons with the methods applied in the literature are carried out.%We the extend application of the generalized differential quadrature method (GDQM) to solve some coupled nonlinear Schrodinger equations. The cosine-based GDQM is employed and the obtained system of ordinary differential equations is solved via the fourth order Runge-Kutta method. The numerical solutions coincide with the exact solutions in desired machine precision and invariant quantities are conserved sensibly. Some comparisons with the methods applied in the literature are carried out.
VDCC Based Dual-Mode Quadrature Sinusoidal Oscillator with Outputs at Appropriate Impedance Levels
Directory of Open Access Journals (Sweden)
Mayank Srivastava
2016-01-01
Full Text Available This article presents a new dual-mode (i.e. both current-mode and voltage-mode quadrature sinusoidal oscillator using two Voltage Differencing Current Conveyors (VDCCs, two resistors and two capacitors. The proposed configuration use only grounded passive elements and enjoys independent resistor/electronic tuning of both Condition of Oscillation (CO as well as Frequency of Oscillation (FO. The quadrature current and voltage mode outputs of this circuit are available at appropriate impedance terminals. The behavior of presented oscillator is also examined under non ideal/parasitic conditions. The validity of the proposed configuration has been confirmed by SPICE simulations with TSMC 0.18μm process parameters.
A fast integral equation method for solid particles in viscous flow using quadrature by expansion
Klinteberg, Ludvig af
2016-01-01
Boundary integral methods are advantageous when simulating viscous flow around rigid particles, due to the reduction in number of unknowns and straightforward handling of the geometry. In this work we present a fast and accurate framework for simulating spheroids in periodic Stokes flow, which is based on the completed double layer boundary integral formulation. The framework implements a new method known as quadrature by expansion (QBX), which uses surrogate local expansions of the layer potential to evaluate it to very high accuracy both on and off the particle surfaces. This quadrature method is accelerated through a newly developed precomputation scheme. The long range interactions are computed using the spectral Ewald (SE) fast summation method, which after integration with QBX allows the resulting system to be solved in M log M time, where M is the number of particles. This framework is suitable for simulations of large particle systems, and can be used for studying e.g. porous media models.
New Adaptive Method for IQ Imbalance Compensation of Quadrature Modulators in Predistortion Systems
Zareian, Hassan; Vakili, Vahid Tabataba
2009-12-01
Imperfections in quadrature modulators (QMs), such as inphase and quadrature (IQ) imbalance, can severely impact the performance of power amplifier (PA) linearization systems, in particular in adaptive digital predistorters (PDs). In this paper, we first analyze the effect of IQ imbalance on the performance of a memory orthogonal polynomials predistorter (MOP PD), and then we propose a new adaptive algorithm to estimate and compensate the unknown IQ imbalance in QM. Unlike previous compensation techniques, the proposed method was capable of online IQ imbalance compensation with faster convergence, and no special calibration or training signals were needed. The effectiveness of the proposed IQ imbalance compensator was validated by simulations. The results clearly show the performance of the MOP PD to be enhanced significantly by adding the proposed IQ imbalance compensator.
Gaussian quadrature and lattice discretization of the Fermi-Dirac distribution for graphene.
Oettinger, D; Mendoza, M; Herrmann, H J
2013-07-01
We construct a lattice kinetic scheme to study electronic flow in graphene. For this purpose, we first derive a basis of orthogonal polynomials, using as the weight function the ultrarelativistic Fermi-Dirac distribution at rest. Later, we use these polynomials to expand the respective distribution in a moving frame, for both cases, undoped and doped graphene. In order to discretize the Boltzmann equation and make feasible the numerical implementation, we reduce the number of discrete points in momentum space to 18 by applying a Gaussian quadrature, finding that the family of representative wave (2+1)-vectors, which satisfies the quadrature, reconstructs a honeycomb lattice. The procedure and discrete model are validated by solving the Riemann problem, finding excellent agreement with other numerical models. In addition, we have extended the Riemann problem to the case of different dopings, finding that by increasing the chemical potential the electronic fluid behaves as if it increases its effective viscosity.
A low reference spur quadrature phase-locked loop for UWB systems
Institute of Scientific and Technical Information of China (English)
Fu Haipeng; Cai Deyun; Ren Junyan; Li Wei; Li Ning
2011-01-01
This paper presents a low phase noise and low reference spur quadrature phase-locked loop (QPLL) circuit that is implemented as a part of a frequency synthesizer for China UWB standard systems.A glitch-suppressed charge pump (CP) is employed for reference spur reduction.By forcing the phase frequency detector and CP to operate in a linear region of its transfer function,the linearity of the QPLL is further improved.With the proposed series-quadrature voltage-controlled oscillator,the phase accuracy of the QPLL is guaranteed.The circuit is fabricated in the TSMC 0.13 μtm CMOS process and operated at 1.2-V supply voltage.The QPLL measures a phase noise of-95 dBc/Hz at 100-kHz offset and a reference spur of-71 dBc.The fully-integrated QPLL dissipates a current of 13 mA.
Time-resolved homodyne characterization of individual quadrature-entangled pulses
Wenger, J; Tualle-Brouri, R; Grangier, P; Wenger, Jerome; Ourjoumtsev, Alexei; Tualle-Brouri, Rosa; Grangier, Philippe
2005-01-01
We describe a simple and efficient setup to generate and characterize femtosecond quadrature-entangled pulses. Quantum correlations equivalent to about 2.5 dB squeezing are efficiently and easily reached using the non-degenerate parametric amplification of femtosecond pulses through a single-pass in a thin (0.1 mm) potassium niobate crystal. The entangled pulses are then individually sampled to characterize the non-separability and the entropy of formation of the states. The complete experiment is analysed in the time-domain, from the pulsed source of quadrature entanglement to the time-resolved homodyne detection. This particularity allows for applications in quantum communication protocols using continuous-variable entanglement.
A New Low-Power CMOS Quadrature VCO with Current Reused Structure
Directory of Open Access Journals (Sweden)
C. Wang
2011-04-01
Full Text Available A new quadrature voltage controlled oscillator (QVCO circuit topology is proposed for low-voltage and low-power applications. In the proposed circuit, two oscillators with current-reused structure are coupled to each other by two P&N-MOS pairs. In this way, low phase noise quadrature signals are generated with low-voltage and low-power. The simulation is made by Cadence in chartered 0.18 μm CMOS process. The simulation result shows that the QVCO phase noise is approximately - 117.1 dBc/Hz at 1MHz offset from 1.8 GHz operation frequency. The QVCO dissipates 1.92 mW with a 1.1 V supply voltage.
A Low Phase Noise CMOS Quadrature Voltage Control Oscillator Using Clock Gated Technique
Directory of Open Access Journals (Sweden)
Jothi Baskar A
2015-06-01
Full Text Available This project presents the low phase noise cmos quadrature voltage control oscillator using clock gating technique. Here the colpitts vco is used to split the capacitance in the Qvco circuit producing quadrature output. The startup condition in the oscillator is improved by using enhancement [12].This QVCO performs the operation anti phase injection locking fordevice reuse [8]. The new clock gating technique is used to reduce the power with thepower supply 1.5v. The QVCO uses a 0.5mwith phase error of 0.4 and exhibits a phase noise of -118dBc/HZ at 1MHZ offset at the centre frequency of 500MHZ. Index terms: current switching, clock gating, phase noise, Qvco
Polyphase Structure Based Eigen Design of Two-Channel Quadrature Mirror Filter Bank
Directory of Open Access Journals (Sweden)
S. K. Agrawal
2014-09-01
Full Text Available This paper presents a method for the design of two-channel quadrature mirror filter (QMF banks with linear phase in frequency domain. Low-pass prototype filter of the QMF bank is implemented using polyphase decomposition. Prototype filter coefficients are optimized to minimize an objective function using eigenvalue-eigenvector approach without matrix inversion. The objective function is formulated as a weighted sum of four terms, pass-band error and stop-band residual energy of low-pass analysis filter, the square error of the overall transfer function at the quadrature frequency and amplitude distortion of the filter bank. The simulation results clearly show that the proposed method requires less computational efforts in comparison to the other state-of-art existing design methods.
Buckling analysis of an orthotropic thin shell of revolution using differential quadrature
Energy Technology Data Exchange (ETDEWEB)
Redekop, D. [Department of Mechanical Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, K1N 6N5 (Canada)]. E-mail: dredekop@tesla.cc.uottawa.ca
2005-08-01
A method is developed to predict the buckling characteristics of an orthotropic shell of revolution of arbitrary meridian subjected to a normal pressure. The solution is given within the context of the linearized Sanders-Budiansky shell buckling theory and makes use of the differential quadrature method. Numerical results for buckling pressures and mode shapes are given for complete toroidal shells. Both completely free shells and shells with circumferential line restraints are covered. The loadings considered consist either of uniform pressure or circumferential bands of constant pressure. It is demonstrated that the differential quadrature method is numerically stable and converges. For isotropic toroidal shells, good agreement is observed with previously published analytical and finite element results. New results for buckling pressures and mode numbers are given for orthotropic shells and for band loaded shells.
Parallel-coupled dual racetrack silicon micro-resonators for quadrature amplitude modulation.
Integlia, Ryan A; Yin, Lianghong; Ding, Duo; Pan, David Z; Gill, Douglas M; Jiang, Wei
2011-08-01
A parallel-coupled dual racetrack silicon micro-resonator structure is proposed and analyzed for M-ary quadrature amplitude modulation. The over-coupled, critically coupled, and under-coupled scenarios are systematically studied. Simulations indicate that only the over-coupled structures can generate arbitrary M-ary quadrature signals. Analytic study shows that the large dynamic range of amplitude and phase of a modulated over-coupled structure stems from the strong cross-coupling between two resonators, which can be understood through a delicate balance between the direct sum and the "interaction" terms. Potential asymmetries in the coupling constants and quality factors of the resonators are systematically studied. Compensations for these asymmetries by phase adjustment are shown feasible.
Directory of Open Access Journals (Sweden)
L. O. Fichte
2006-01-01
Full Text Available Boundary Integral Equation formulations can be used to describe electromagnetic shielding problems. Yet, this approach frequently leads to integrals which contain a singularity and an oscillating part. Those integrals are difficult to handle when integrated naivly using standard integration techniques, and in some cases even a very high number of integration nodes will not lead to precise results. We present a method for the numerical quadrature of an integral with a logarithmic singularity and a cosine oscillator: a modified Filon-Lobatto quadrature for the oscillating parts and an integral transformation based on the error function for the singularity. Since this integral can be solved analytically, we are in a position to verify the results of our investigations, with a focus on precision and computation time.
New Adaptive Method for IQ Imbalance Compensation of Quadrature Modulators in Predistortion Systems
Directory of Open Access Journals (Sweden)
Hassan Zareian
2009-01-01
Full Text Available Imperfections in quadrature modulators (QMs, such as inphase and quadrature (IQ imbalance, can severely impact the performance of power amplifier (PA linearization systems, in particular in adaptive digital predistorters (PDs. In this paper, we first analyze the effect of IQ imbalance on the performance of a memory orthogonal polynomials predistorter (MOP PD, and then we propose a new adaptive algorithm to estimate and compensate the unknown IQ imbalance in QM. Unlike previous compensation techniques, the proposed method was capable of online IQ imbalance compensation with faster convergence, and no special calibration or training signals were needed. The effectiveness of the proposed IQ imbalance compensator was validated by simulations. The results clearly show the performance of the MOP PD to be enhanced significantly by adding the proposed IQ imbalance compensator.
Bruce, Adam L
2015-01-01
We show the traditional rocket problem, where the ejecta velocity is assumed constant, can be reduced to an integral quadrature of which the completely non-relativistic equation of Tsiolkovsky, as well as the fully relativistic equation derived by Ackeret, are limiting cases. By expanding this quadrature in series, it is shown explicitly how relativistic corrections to the mass ratio equation as the rocket transitions from the Newtonian to the relativistic regime can be represented as products of exponential functions of the rocket velocity, ejecta velocity, and the speed of light. We find that even low order correction products approximate the traditional relativistic equation to a high accuracy in flight regimes up to $0.5c$ while retaining a clear distinction between the non-relativistic base-case and relativistic corrections. We furthermore use the results developed to consider the case where the rocket is not moving relativistically but the ejecta stream is, and where the ejecta stream is massless.
Trade-off between phase-noise and signal quadrature in unilaterally coupled oscillators
DEFF Research Database (Denmark)
Djurhuus, Torsten; Krozer, Viktor; Vidkjær, Jens
2005-01-01
We present a comprehensive nonlinear analysis of coupled oscillators and examine the trade-off between phase-noise of the oscillator and the quadrature precision. We show that asymmetry gives rise to amplitude and phase imbalance which are proportional to the inverse and inverse square......, respectively, of the relative coupling strength. It is shown that the level of AM-PM is determined by the nonlinearity of the coupling transconductance. The 3dB noise reduction in close-to-carrier phase-noise in quadrature oscillators due to mutual coupling is lost to the extra AM-PM noise for large coupling...... strengths. The additional contribution of the internal noise sources in the coupling circuit together with the AM-PM noise contribution explains why the 3dB noise reduction is rarely seen in measurements of this particular circuit....
Comparison of Spectral and Differential Quadrature Methods for Solving the Burger-Huxley Equation
Directory of Open Access Journals (Sweden)
Jalal Izadian
2013-06-01
Full Text Available In this paper, the Burger-Huxley equation is solved by two methods: Spectral method and Differential Quadrature Method (DQM. The Chebyshev-Gauss-Lobatto point distribution is utilized in spectral method. The integrity and computational accuracy of the spectral method in solving some test problems are demonstrated through various case studies. The results show that spectral method is more accurate than DQM.
Energy Technology Data Exchange (ETDEWEB)
Pozar, Tomaz; Gregorcic, Peter; Mozina, Janez
2011-03-20
We present the influence of alignment and the real properties of optical components on the performance of a two-detector homodyne displacement-measuring quadrature laser interferometer. An experimental method, based on the optimization of visibility and sensitivity, was established and theoretically described to assess the performance and stability of the interferometer. We show that the optimal performance of such interferometers is achieved with the iterative alignment procedure described.
Variable-length balanced codes for quadrature phase shift keyed systems
Directory of Open Access Journals (Sweden)
Xin Tu
2015-10-01
Full Text Available The authors outline an approach to construct capacity-approaching balanced quadrature phase shift keyed (QPSK codes. These codes ensure an equal number of different symbol values and many symbol transitions in the encoded sequence in order to assist practical demodulators to accurately recover symbol values. Their codes are comprised of instantaneously decodable variable-length codewords that exhibit excellent performance with average code rates higher than previously reported fixed-length balanced QPSK codes.
New uncertainties in QCD-QED rescaling factors using quadrature method
Indian Academy of Sciences (India)
Mahadev Patgiri; N Nimai Singh
2005-12-01
In this paper we briefly outline the quadrature method for estimating uncertainties in a function which depends on several variables, and apply it to estimate the numerical uncertainties in QCD-QED rescaling factors. We employ here the one-loop order in QED and three-loop order in QCD evolution equations of the fermion mass renormalisation. Our present calculation is found to be new and also reliable when compared to the earlier values employed by various authors.
Noiseless phase quadrature amplification via an electro-optic feed-forward technique
Buchler, B C; Ralph, T C; Buchler, Ben C.; Huntington, Elanor H.; Ralph, Timothy C.
1999-01-01
Theoretical results are presented which show that noiseless phase quadrature amplification is possible, and limited experimentally only by the efficiency of the phase detection system. Experimental results obtained using a Nd:YAG laser show a signal gain of 10dB and a signal transfer ratio of T_s=0.9. This result easily exceeds the standard quantum limit for signal transfer. The results also explicitly demonstrate the phase sensitive nature of the amplification process.
Quadrature-free spline method for two-dimensional Navier-Stokes equation
Institute of Scientific and Technical Information of China (English)
HU Xian-liang; HAN Dan-fu
2008-01-01
In this paper,a quadrature-free scheme of spline method for two-dimensional Navier-Stokes equation is derived,which can dramatically improve the efficiency of spline method for fluid problems proposed by Lai and Wenston(2004). Additionally,the explicit formulation for boundary condition with up to second order derivatives is presented. The numerical simulations on several benchmark problems show that the scheme is very efficient.
The best quadrature based on given Hermite information for the Sobolev class KWr[a,b
Institute of Scientific and Technical Information of China (English)
WANG; Xinghua; YANG; Shijun
2006-01-01
As usual, denote by KWr[a,b] the Sobolev class consisting of every function whose (r-1)th derivative is absolutely continuous on the interval [a,b] and rth derivative is bounded by K a.e. In [a,b]. For a function f ∈ KWr[a,b], its values and derivatives up to r-1 order at a set of nodes x are known. These values are said to be the given Hermite information.This work reports the results on the best quadrature based on the given Hermite information for the class KWr[a,b]. Existence and concrete construction issue of the best quadrature are settled down by a perfect spline interpolation. It turns out that the best quadrature depends on a system of algebraic equations satisfied by a set of free nodes of the interpolation perfect spline. From our another new result, it is shown that the system can be converted in a closed form to two single-variable polynomial equations, each being of degree approximately r/2. As a by-product,the best interpolation formula for the class KWr[a,b] is also obtained.
Wang, Dongdong; Li, Xiwei; Pan, Feixu
2016-11-01
A simple and unified finite element formulation is presented for superconvergent eigenvalue computation of wave equations ranging from 1D to 3D. In this framework, a general method based upon the so called α mass matrix formulation is first proposed to effectively construct 1D higher order mass matrices for arbitrary order elements. The finite elements discussed herein refer to the Lagrangian type of Lobatto elements that take the Lobatto points as nodes. Subsequently a set of quadrature rules that exactly integrate the 1D higher order mass matrices are rationally derived, which are termed as the superconvergent quadrature rules. More importantly, in 2D and 3D cases, it is found that the employment of these quadrature rules via tensor product simultaneously for the mass and stiffness matrix integrations of Lobatto elements produces a unified superconvergent formulation for the eigenvalue or frequency computation without wave propagation direction dependence, which usually is a critical issue for the multidimensional higher order mass matrix formulation. Consequently the proposed approach is capable of computing arbitrary frequencies in a superconvergent fashion. Meanwhile, numerical implementation of the proposed method for multidimensional problems is trivial. The effectiveness of the proposed methodology is systematically demonstrated by a series of numerical examples. Numerical results revealed that a superconvergence with 2(p+1)th order of frequency accuracy is achieved by the present unified formulation for the pth order Lobatto element.
Output field-quadrature measurements and squeezing in ultrastrong cavity-QED
Stassi, Roberto; Savasta, Salvatore; Garziano, Luigi; Spagnolo, Bernardo; Nori, Franco
2016-12-01
We study the squeezing of output quadratures of an electro-magnetic field escaping from a resonator coupled to a general quantum system with arbitrary interaction strengths. The generalized theoretical analysis of output squeezing proposed here is valid for all the interaction regimes of cavity-quantum electrodynamics: from the weak to the strong, ultrastrong, and deep coupling regimes. For coupling rates comparable or larger then the cavity resonance frequency, the standard input-output theory for optical cavities fails to calculate the variance of output field-quadratures and predicts a non-negligible amount of output squeezing, even if the system is in its ground state. Here we show that, for arbitrary interaction strength and for general cavity-embedded quantum systems, no squeezing can be found in the output-field quadratures if the system is in its ground state. We also apply the proposed theoretical approach to study the output squeezing produced by: (i) an artificial two-level atom embedded in a coherently-excited cavity; and (ii) a cascade-type three-level system interacting with a cavity field mode. In the latter case the output squeezing arises from the virtual photons of the atom-cavity dressed states. This work extends the possibility of predicting and analyzing the results of continuous-variable optical quantum-state tomography when optical resonators interact very strongly with other quantum systems.
High efficiency second-harmonic generation in multi-pass quadrature arrangement
Energy Technology Data Exchange (ETDEWEB)
Kiriyama, Hiromitsu; Nakano, Fumihiko; Yamakawa, Koichi [Japan Atomic Energy Research Institute, Kansai Research Establishment, Kizu, Kyoto (Japan)
2001-05-01
We report on multi-pass quadrature frequency conversion of high-energy and high-average-power lasers with high conversion efficiency for pumping high peak power, ultrashort pulse Ti:sapphire laser amplifiers. Using a four-pass quadrature second harmonic scheme with KTiOPO{sub 4} (KTP) crystals, we obtained an efficiency from a fundamental laser energy into a total second-harmonic laser energy in excess of 80% of a commercial Q-Switched 1064-nm Nd:YAG laser at a low input fundamental laser intensity of 76 MW/cm{sup 2}. For higher power operation, we employed a two-pass quadrature scheme with CsLiB{sub 6}O{sub 10} (CLBO) crystals. We obtained a total second-harmonic output pulse energy of 2.73 J from an input 1064-nm fundamental pulse energy of 3.27 J of a custom-built Q-switched 1064-nm Nd:YAG laser system at a fundamental laser intensity of 330 MW/cm{sup 2} at 10 Hz, corresponding to energy conversion efficiency of 83%. We discuss the details of the design and performance of this frequency conversion scheme in terms of output energy, conversion efficiency and scalability. (author)
An anti-image interference quadrature IF architecture for satellite receivers
Directory of Open Access Journals (Sweden)
He Weidong
2014-08-01
Full Text Available Since Global Navigation Satellite System (GNSS signals span a wide range of frequency, wireless signals coming from other communication systems may be aliased and appear as image interference. In quadrature intermediate frequency (IF receivers, image aliasing due to in-phase and quadrature (I/Q channel mismatches is always a big problem. I/Q mismatches occur because of gain and phase imbalances between quadrature mixers and capacitor mismatches in analog-to-digital converters (ADC. As a result, the dynamic range and performance of a receiver are severely degraded. In this paper, several popular receiver architectures are summarized and the image aliasing problem is investigated in detail. Based on this analysis, a low-IF architecture is proposed for a single-chip solution and a novel and feasible anti-image algorithm is investigated. With this anti-image digital processing, the image reject ratio (IRR can reach approximately above 50 dB, which relaxes image rejection specific in front-end circuit designs and allows cheap and highly flexible analog front-end solutions. Simulation and experimental data show that the anti-image algorithm can work effectively, robustly, and steadily.
An anti-image interference quadrature IF architecture for satellite receivers
Institute of Scientific and Technical Information of China (English)
He Weidong; Lu Xiaochun; He Chengyan; James Torley
2014-01-01
Since Global Navigation Satellite System (GNSS) signals span a wide range of frequency, wireless signals coming from other communication systems may be aliased and appear as image interference. In quadrature intermediate frequency (IF) receivers, image aliasing due to in-phase and quadrature (I/Q) channel mismatches is always a big problem. I/Q mismatches occur because of gain and phase imbalances between quadrature mixers and capacitor mismatches in ana-log-to-digital converters (ADC). As a result, the dynamic range and performance of a receiver are severely degraded. In this paper, several popular receiver architectures are summarized and the image aliasing problem is investigated in detail. Based on this analysis, a low-IF architecture is pro-posed for a single-chip solution and a novel and feasible anti-image algorithm is investigated. With this anti-image digital processing, the image reject ratio (IRR) can reach approximately above 50 dB, which relaxes image rejection specific in front-end circuit designs and allows cheap and highly flexible analog front-end solutions. Simulation and experimental data show that the anti-image algorithm can work effectively, robustly, and steadily.
2.5-D/3-D resistivity modelling in anisotropic media using Gaussian quadrature grids
Zhou, Bing; Greenhalgh, Mark; Greenhalgh, S. A.
2009-01-01
We present a new numerical scheme for 2.5-D/3-D direct current resistivity modelling in heterogeneous, anisotropic media. This method, named the `Gaussian quadrature grid' (GQG) method, cooperatively combines the solution of the Variational Principle of the partial differential equation, Gaussian quadrature abscissae and local cardinal functions so that it has the main advantages of the spectral element method. The formulation shows that the GQG method is a modification of the spectral element method but does not employ the constant elements or require the mesh generator to match the Earth's surface. This makes it much easier to deal with geological models having a 2-D/3-D complex topography than using traditional numerical methods. The GQG technique can achieve a similar convergence rate to the spectral element method. We show it transforms the 2.5-D/3-D resistivity modelling problem into a sparse and symmetric linear equation system that can be solved by an iterative or matrix inversion method. Comparison with analytic solutions for homogeneous isotropic and anisotropic models shows that the error depends on the Gaussian quadrature order (abscissa number) and the subdomain size. The higher the order or the smaller the subdomain size that is employed, the more accurate are the results obtained. Several other synthetic examples, both homogeneous and inhomogeneous, incorporating sloping, undulating and severe topography, are presented and found to yield results comparable to finite element solutions involving a dense mesh.
One point quadrature shell elements: a study on convergence and patch tests
Cardoso, Rui P. R.; Yoon, Jeong-Whan
2007-10-01
One point quadrature shell elements are being widely used in the numerical simulation of shell structures, including sheet forming, because essentially of their computational efficiency. Nowadays, the purpose of using one point quadrature shell elements is not only related to computational efficiency but also because these elements have shown to be simultaneously robust and accurate in the simulation of complex sheet metal forming processes. The main objective of this work is to study the convergence behavior of different one-point quadrature shell elements and their ability to pass the membrane and bending patch tests. For comparison purposes, two new elements include a new formulation for the membrane strain field in order to further improve the membrane behavior of the element developed in previous work of (in Cardoso et al. Comput Meth Appl Mech Eng 191:5177, 2002). The original convective membrane strains of Cardoso et al. (Comput Meth Appl Mech Eng 191:5177, 2002) (in the stabilization matrices only) are thus replaced by new membrane strains, constructed directly at the co-rotational coordinate system (located at the element’s center). It is thus proved that with this new membrane formulation the elements pass now all the patch tests but, for warped (or curved) element geometries, their accuracy is not as good as the original element of (Cardoso et al. in Comput Meth Appl Mech Eng 191:5177, 2002) based on the convective coordinate system. In the numerical results presented in this paper, comprehensive comparison and discussion of these formulations are made for well known linear benchmark examples.
Directory of Open Access Journals (Sweden)
F. P. Santos
2013-09-01
Full Text Available Direct-quadrature generalized moment based methods were analysed in terms of accuracy, computational cost and robustness for the solution of the population balance problems in the [0,∞ and [0,1] domains. The minimum condition number of the coefficient matrix of their linear system of equations was obtained by global optimization. An heuristic scaling rule from the literature was also evaluated. The results indicate that the methods based on Legendre generalized moments are the most robust for the finite domain problems, while the DQMoM formulation that solves for the abscissas and weights using the heuristic scaling rule is the best for the infinite domain problems.
Directory of Open Access Journals (Sweden)
Thoudam Roshan
2016-10-01
Full Text Available Numerical solutions of the coupled Klein-Gordon-Schrödinger equations is obtained by using differential quadrature methods based on polynomials and quintic B-spline functions for space discretization and Runge-Kutta fourth order for time discretization. Stability of the schemes are studied using matrix stability analysis. The accuracy and efficiency of the methods are shown by conducting some numerical experiments on test problems. The motion of single soliton and interaction of two solitons are simulated by the proposed methods.
Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes
DEFF Research Database (Denmark)
Gabriel, C.; Aiello, A.; Zhong, W.
2011-01-01
for intense beams of light by exploiting the properties of cylindrically polarized modes. We show that already in a classical picture the spatial and polarization field variables of these modes cannot be factorized. Theoretically it is proven that by quadrature squeezing cylindrically polarized modes one...... generates entanglement between these two different degrees of freedom. Experimentally we demonstrate amplitude squeezing of an azimuthally polarized mode by exploiting the nonlinear Kerr effect in a specially tailored photonic crystal fiber. These results display that such novel continuous...
Free Vibration Analysis of Sectorial Plates Using the Triangular Differential Quadrature Method
Institute of Scientific and Technical Information of China (English)
李欣; 钟宏志; 何玉红
2004-01-01
The triangular differential quadrature method was used to analyze the free vibrations of moderately thick sectorial plates. A triangular serendipity transformation was introduced to map the sectorial domain onto a unit isosceles right triangle. The first six non-dimensional frequencies of the sectorial plates were obtained for various combinations of clamped and simply supported boundary conditions. For sectorial plates with simply supported radial edges, the present results agree well with the available exact solutions and finite element solutions, demonstrating the effectiveness of the method.
Optimization of quadrature signal processing for laser interferometers for demanding applications
PodŻorny, Tomasz; Budzyń, Grzegorz; Tkaczyk, Jakub
2016-06-01
Presented paper performs an analysis of quadrature signal processing algorithms for high demanding laser interferometry applications. Careful signal processing is required to minimize nonlinearities which come from optical path and components' imperfections, and reduce overall instrumental error. Paper focuses on algebraic fits, because implementation for real time systems was a main requirement. The most demanding applications are stationary measurements where the position slightly fluctuates in the range below one fringe period. Therefore, analysis was performed for samples that were spread along a few milliradians of a full circle.
Semi-blind Adaptive Beamforming for High-throughput Quadrature Amplitude Modulation Systems
Institute of Scientific and Technical Information of China (English)
Sheng Chen; Wang Yao; Lajos Hanzo
2010-01-01
A semi-blind adaptive beamforming scheme is proposed for wireless systems that employ high-throughput quadrature amplitude modulation signalling. A minimum number of training symbols, equal to the number of receiver antenna array's elements, are first utilised to provide a rough initial least squares estimate of the beamformer's weight vector. A concurrent constant modulus algorithm and soft decision-directed scheme is then applied to adapt the beamformer. This semi-blind adaptive beamforming scheme is capable of converging fast to the minimum mean-square-error beamforming solution, as demonstrated in our simulation study.
A Synthetic Quadrature Phase Detector/Demodulator for Fourier Transform Transform Spectrometers
Campbell, Joel
2008-01-01
A method is developed to demodulate (velocity correct) Fourier transform spectrometer (FTS) data that is taken with an analog to digital converter that digitizes equally spaced in time. This method makes it possible to use simple low cost, high resolution audio digitizers to record high quality data without the need for an event timer or quadrature laser hardware, and makes it possible to use a metrology laser of any wavelength. The reduced parts count and simplicity implementation makes it an attractive alternative in space based applications when compared to previous methods such as the Brault algorithm.
Directory of Open Access Journals (Sweden)
M. Raghunadh Acharya
2009-12-01
Full Text Available A new quadrature formula has been proposed which uses modified weight functions derived from those of ‘Bernstein Polynomial’ using a ‘Two-Phase Modification’ therein. The quadrature formula has been compared empirically with the simple method of numerical integration using the well-known “Bernstein Operator”. The percentage absolute relative errors for the proposed quadrature formula and that with the “Bernstein Operator” have been computed for certain selected functions, with different number of usual equidistant node-points in the interval of integration~ [0, 1]. It has been observed that both of the proposed modified quadrature formulae, respectively after the ‘Phase-I’ and after the ‘Phases-I & II’ of these modifications, produce significantly better results than that using, simply, the “Bernstein Operator”. Inasmuch as the proposed “Two-Phase Improvement” is available iteratively again-and-again at the end of the current iteration, the proposed improvement algorithm, which is ‘Computerizable’, is an “Iterative-Algorithm”, leading to more-and-more efficient “Quadrature-Operator”, till we are pleased!
Cui, Junning; He, Zhangqiang; Tan, Jiubin; Sun, Tao
2016-10-03
The deviation of wave plates' optical axes from their intended angles, which may result from either instability or assembly error, is the main cause of quadrature phase error in homodyne quadrature laser interferometers (HQLIs). The quadrature phase error sensitivity to wave plate angle deviations, which is an effective measure of HQLI robustness, is further amplified by beam splitter imperfections. In this paper, a new HQLI design involving non-polarization beam splitting is presented, and a method of making this HQLI robust by yawing the wave plates in the measurement and reference arms is proposed. The theoretical analysis results indicate that ultra-low quadrature phase error sensitivities to wave plate angle deviations can be realized and that non-polarizing beam splitter imperfections can be adequately compensated for. The experimental results demonstrate that the proposed method can reduce the quadrature phase error sensitivity by more than 1 order of magnitude, from a theoretical value of 1.4°/1° to 0.05°/1°.
Goldstein, M; Haussmann, W; Hayman, W; Rogge, L
1992-01-01
This volume consists of the proceedings of the NATO Advanced Research Workshop on Approximation by Solutions of Partial Differential Equations, Quadrature Formulae, and Related Topics, which was held at Hanstholm, Denmark. These proceedings include the main invited talks and contributed papers given during the workshop. The aim of these lectures was to present a selection of results of the latest research in the field. In addition to covering topics in approximation by solutions of partial differential equations and quadrature formulae, this volume is also concerned with related areas, such as Gaussian quadratures, the Pompelu problem, rational approximation to the Fresnel integral, boundary correspondence of univalent harmonic mappings, the application of the Hilbert transform in two dimensional aerodynamics, finely open sets in the limit set of a finitely generated Kleinian group, scattering theory, harmonic and maximal measures for rational functions and the solution of the classical Dirichlet problem. In ...
Coherent Detection of Optical Quadrature Phase-Shift Keying Signals With Carrier Phase Estimation
Ly-Gagnon, Dany-Sebastien; Tsukamoto, Satoshi; Katoh, Kazuhiro; Kikuchi, Kazuro
2006-01-01
This paper describes a coherent optical receiver for demodulating optical quadrature phase-shift keying (QPSK) signals. At the receiver, a phase-diversity homodyne detection scheme is employed without locking the phase of the local oscillator (LO). To handle the carrier phase drift, the carrier phase is estimated with digital signal processing (DSP) on the homodyne-detected signal. Such a scheme presents the following major advantages over the conventional optical differential detection. First, its bit error rate (BER) performance is better than that of differential detection. This higher sensitivity can extend the reach of unrepeated transmission systems and reduce crosstalk between multiwavelength channels. Second, the optoelectronic conversion process is linear, so that the whole optical signal information can be postprocessed in the electrical domain. Third, this scheme is applicable to multilevel modulation formats such as M-array PSK and quadrature amplitude modulation (QAM). The performance of the receiver is evaluated through various simulations and experiments. As a result, an unrepeated transmission over 210 km with a 20-Gb/s optical QPSK signal is achieved. Moreover, in wavelength-division multiplexing (WDM) environment, coherent detection allows the filtering of a desired wavelength channel to reside entirely in the electrical domain, taking advantage of the sharp cutoff characteristics of electrical filters. The experiments show the feasibility to transmit polarization-multiplexed 40-Gb/s QPSK signals over 200 km with channel spacing of 16 GHz, leading to a spectral efficiency as high as 2.5 b/s/Hz.
Directory of Open Access Journals (Sweden)
Den Satipar
2017-01-01
Full Text Available A new configuration of voltage-mode quadrature sinusoidal oscillator is proposed. The proposed oscillator employs two voltage differencing current conveyors (VDCCs, two resistors, and two grounded capacitors. In this design, the use of multiple/dual output terminal active building block is not required. The tuning of frequency of oscillation (FO can be done electronically by adjusting the bias current of active device without affecting condition of oscillation (CO. The electronic tuning can be done by controlling the bias current using a digital circuit. The amplitude of two sinusoidal outputs is equal when the frequency of oscillation is tuned. This makes the sinusoidal output voltages meet good total harmonic distortions (THD. Moreover, the proposed circuit can provide the sinusoidal output current with high impedance which is connected to external load or to another circuit without the use of buffer device. To confirm that the oscillator can generate the quadrature sinusoidal output signal, the experimental results using VDCC constructed from commercially available ICs are also included. The experimental results agree well with theoretical anticipation.
Directory of Open Access Journals (Sweden)
Nicola Ponara
2012-11-01
Full Text Available Regularized Heaviside and Dirac delta function are used in several fields of computational physics and mechanics. Hence the issue of the quadrature of integrals of discontinuous and singular functions arises. In order to avoid ad-hoc quadrature procedures, regularization of the discontinuous and the singular fields is often carried out. In particular, weight functions of the signed distance with respect to the discontinuity interface are exploited. Tornberg and Engquist (Journal of Scientific Computing, 2003, 19: 527–552 proved that the use of compact support weight function is not suitable because it leads to errors that do not vanish for decreasing mesh size. They proposed the adoption of non-compact support weight functions. In the present contribution, the relationship between the Fourier transform of the weight functions and the accuracy of the regularization procedure is exploited. The proposed regularized approach was implemented in the eXtended Finite Element Method. As a three-dimensional example, we study a slender solid characterized by an inclined interface across which the displacement is discontinuous. The accuracy is evaluated for varying position of the discontinuity interfaces with respect to the underlying mesh. A procedure for the choice of the regularization parameters is proposed.
A dual-band quadrature VCO with gain proportional to oscillation frequency
Wenrui, Zhu; Haigang, Yang; Tongqiang, Gao; Hui, Zhang
2013-08-01
This paper presents a novel dual-band quadrature voltage controlled oscillator (VCO) with the gain proportional to the oscillation frequency. Frequency synthesizers with this VCO can reduce the bandwidth fluctuation over all the frequency ranges without compensation or calibration. Besides the original switched capacitor array, an extra switched varactor array is adopted for the implementation of the proposed VCO. The tuning technique of changing the values of the capacitor and varactor at the same ratio is also derived. For verification purposes, a 2.5 G/3.5 G dual-band quadrature VCO is fabricated in a 0.13 μm CMOS process for WiMAX applications. Measurement results show that the VCO gain is closely proportional to the oscillation frequency with ±16% variation over the entire frequency range. The phase noise is -138.15 dBc/Hz at 10 MHz from the 2.5 GHz carrier and -137.44 dBc/Hz at 10 MHz from the 3.5 GHz carrier.
Directory of Open Access Journals (Sweden)
B. Kuldeep
2015-06-01
Full Text Available Fractional calculus has recently been identified as a very important mathematical tool in the field of signal processing. Digital filters designed by fractional derivatives give more accurate frequency response in the prescribed frequency region. Digital filters are most important part of multi-rate filter bank systems. In this paper, an improved method based on fractional derivative constraints is presented for the design of two-channel quadrature mirror filter (QMF bank. The design problem is formulated as minimization of L2 error of filter bank transfer function in passband, stopband interval and at quadrature frequency, and then Lagrange multiplier method with fractional derivative constraints is applied to solve it. The proposed method is then successfully applied for the design of two-channel QMF bank with higher order filter taps. Performance of the QMF bank design is then examined through study of various parameters such as passband error, stopband error, transition band error, peak reconstruction error (PRE, stopband attenuation (As. It is found that, the good design can be obtained with the change of number and value of fractional derivative constraint coefficients.
Shoupeng, Song; Zhou, Jiang
2017-03-01
Converting ultrasonic signal to ultrasonic pulse stream is the key step of finite rate of innovation (FRI) sparse sampling. At present, ultrasonic pulse-stream-forming techniques are mainly based on digital algorithms. No hardware circuit that can achieve it has been reported. This paper proposes a new quadrature demodulation (QD) based circuit implementation method for forming an ultrasonic pulse stream. Elaborating on FRI sparse sampling theory, the process of ultrasonic signal is explained, followed by a discussion and analysis of ultrasonic pulse-stream-forming methods. In contrast to ultrasonic signal envelope extracting techniques, a quadrature demodulation method (QDM) is proposed. Simulation experiments were performed to determine its performance at various signal-to-noise ratios (SNRs). The circuit was then designed, with mixing module, oscillator, low pass filter (LPF), and root of square sum module. Finally, application experiments were carried out on pipeline sample ultrasonic flaw testing. The experimental results indicate that the QDM can accurately convert ultrasonic signal to ultrasonic pulse stream, and reverse the original signal information, such as pulse width, amplitude, and time of arrival. This technique lays the foundation for ultrasonic signal FRI sparse sampling directly with hardware circuitry.
A quadrature based method of moments for nonlinear Fokker-Planck equations
Otten, Dustin L.; Vedula, Prakash
2011-09-01
Fokker-Planck equations which are nonlinear with respect to their probability densities and occur in many nonequilibrium systems relevant to mean field interaction models, plasmas, fermions and bosons can be challenging to solve numerically. To address some underlying challenges, we propose the application of the direct quadrature based method of moments (DQMOM) for efficient and accurate determination of transient (and stationary) solutions of nonlinear Fokker-Planck equations (NLFPEs). In DQMOM, probability density (or other distribution) functions are represented using a finite collection of Dirac delta functions, characterized by quadrature weights and locations (or abscissas) that are determined based on constraints due to evolution of generalized moments. Three particular examples of nonlinear Fokker-Planck equations considered in this paper include descriptions of: (i) the Shimizu-Yamada model, (ii) the Desai-Zwanzig model (both of which have been developed as models of muscular contraction) and (iii) fermions and bosons. Results based on DQMOM, for the transient and stationary solutions of the nonlinear Fokker-Planck equations, have been found to be in good agreement with other available analytical and numerical approaches. It is also shown that approximate reconstruction of the underlying probability density function from moments obtained from DQMOM can be satisfactorily achieved using a maximum entropy method.
Hasegawa, Takemitsu; Hibino, Susumu; Hosoda, Yohsuke; Ninomiya, Ichizo
2007-08-01
An improvement is made to an automatic quadrature due to Ninomiya (J. Inf. Process. 3:162?170, 1980) of adaptive type based on the Newton?Cotes rule by incorporating a doubly-adaptive algorithm due to Favati, Lotti and Romani (ACM Trans. Math. Softw. 17:207?217, 1991; ACM Trans. Math. Softw. 17:218?232, 1991). We compare the present method in performance with some others by using various test problems including Kahaner?s ones (Computation of numerical quadrature formulas. In: Rice, J.R. (ed.) Mathematical Software, 229?259. Academic, Orlando, FL, 1971).
Nguyen, Thach G; Chu, Sai T; Little, Brent E; Morandotti, Roberto; Mitchell, Arnan; Moss, David J
2015-01-01
We demonstrate a photonic RF Hilbert transformer for broadband microwave in-phase and quadrature-phase generation based on an integrated frequency optical comb, generated using a nonlinear microring resonator based on a CMOS compatible, high-index contrast, doped-silica glass platform. The high quality and large frequency spacing of the comb enables filters with up to 20 taps, allowing us to demonstrate a quadrature filter with more than a 5-octave (3 dB) bandwidth and an almost uniform phase response.
A time-variant analysis of the 1/f^(2) phase noise in CMOS parallel LC-Tank quadrature oscillators
DEFF Research Database (Denmark)
Andreani, Pietro
2006-01-01
This paper presents a study of 1/f2 phase noise in quadrature oscillators built by connecting two differential LC-tank oscillators in a parallel fashion. The analysis clearly demonstrates the necessity of adopting a time-variant theory of phase noise, where a more simplistic, time......-invariant approach fails to explain numerical simulation results even at the qualitative level. Two topologies of 5-GHz parallel quadrature oscillators are considered, and compact but nevertheless highly general, closed-form formulas are derived for the phase noise caused by the losses in the LC...
Khaleghi, Salman; Chitgarha, Mohammad Reza; Yilmaz, Omer F; Tur, Moshe; Haney, Michael W; Langrock, Carsten; Fejer, Martin M; Willner, Alan E
2013-05-15
We experimentally demonstrate a reconfigurable optical converter/encoder for quadrature amplitude modulated (QAM) signals. The system utilizes nonlinear wavelength multicasting, conversion-dispersion delays, and simultaneous nonlinear multiplexing and sampling. We show baud rate tunability (31 and 20 Gbaud) and reconfigurable conversions from lower-order QAM signals to higher-order QAM signals (e.g., 64-QAM).
CSIR Research Space (South Africa)
Sokoya, O
2008-05-01
Full Text Available The performance analysis of high rate space–time trellis-coded modulation (HR-STTCM) using the Gauss–Chebyshev quadrature technique is presented. HR-STTCM is an example of space–time codes that combine the idea used in trellis coded modulation (TCM...
Shizgal, Bernie D.
2016-08-01
Nonclassical quadratures based on a new set of half-range polynomials, Tn(x) , orthogonal with respect to w(x) =e - x - b /√{ x } for x ∈ [ 0 , ∞) are employed in the efficient calculation of the nuclear fusion reaction rate coefficients from cross section data. The parameter b = B /√{kB T } in the weight function is temperature dependent and B is the Gamow factor. The polynomials Tn(x) satisfy a three term recurrence relation defined by two sets of recurrence coefficients, αn and βn. These recurrence coefficients define in turn the tridiagonal Jacobi matrix whose eigenvalues are the quadrature points and the weights are calculated from the first components of the eigenfunctions. For nonresonant nuclear reactions for which the astrophysical function can be expressed as a lower order polynomial in the relative energy, the convergence of the thermal average of the reactive cross section with this nonclassical quadrature is extremely rapid requiring in many cases 2-4 quadrature points. The results are compared with other libraries of nuclear reaction rate coefficient data reported in the literature.
DEFF Research Database (Denmark)
Da Ros, Francesco; Marco Calabrese, Pachito; Kang, Ning;
2013-01-01
Phase-sensitive processes exploiting FWM in an HNLF allow simultaneously converting two orthogonal quadratures of an optical signal to different wavelengths. Conversion efficiencies to two 90°-phase-shifted idlers exceeding 10dB of phase-sensitive extinction ratio are obtained experimentally....
Barton, Michael
2016-03-14
We introduce optimal quadrature rules for spline spaces that are frequently used in Galerkin discretizations to build mass and stiffness matrices. Using the homotopy continuation concept (Bartoň and Calo, 2016) that transforms optimal quadrature rules from source spaces to target spaces, we derive optimal rules for splines defined on finite domains. Starting with the classical Gaussian quadrature for polynomials, which is an optimal rule for a discontinuous odd-degree space, we derive rules for target spaces of higher continuity. We further show how the homotopy methodology handles cases where the source and target rules require different numbers of optimal quadrature points. We demonstrate it by deriving optimal rules for various odd-degree spline spaces, particularly with non-uniform knot sequences and non-uniform multiplicities. We also discuss convergence of our rules to their asymptotic counterparts, that is, the analogues of the midpoint rule of Hughes et al. (2010), that are exact and optimal for infinite domains. For spaces of low continuities, we numerically show that the derived rules quickly converge to their asymptotic counterparts as the weights and nodes of a few boundary elements differ from the asymptotic values.
Electrostatic stiffness correction for quadrature error in decoupled dual-mass MEMS gyroscope
Li, Hongsheng; Cao, Huiliang; Ni, Yunfang
2014-07-01
This paper proposes an electrostatic stiffness correction method for the quadrature error (QUER) in a decoupled dual-mass gyroscope structure. The QUER is caused by the imperfections during the structure manufacturing process, and the two masses usually have different QUERs. The harm contribution to the Coriolis signal is analyzed and quantified. The generating forms of QUER motion in both masses are analyzed, the correction electrodes' working principle is introduced, and a single mass individual correction method is proposed. The QUER stiffness correction system is designed based on a PI controller, and the experiments are arranged to verify the theoretical analysis. The bias stability decreases from 2.06 to 0.64 deg/h after the QUER correction, and the parameters of scale factor such as nonlinearly, asymmetry, and repeatability, reduce from 143, 557, and 210 ppm to 84, 242, and 175 ppm, respectively.
Cigeroglu, Ender; Samandari, Hamed
2014-11-01
Nonlinear free vibration analysis of curved double-walled carbon nanotubes (DWNTs) embedded in an elastic medium is studied in this study. Nonlinearities considered are due to large deflection of carbon nanotubes (geometric nonlinearity) and nonlinear interlayer van der Waals forces between inner and outer tubes. The differential quadrature method (DQM) is utilized to discretize the partial differential equations of motion in spatial domain, which resulted in a nonlinear set of algebraic equations of motion. The effect of nonlinearities, different end conditions, initial curvature, and stiffness of the surrounding elastic medium, and vibrational modes on the nonlinear free vibration of DWCNTs is studied. Results show that it is possible to detect different vibration modes occurring at a single vibration frequency when CNTs vibrate in the out-of-phase vibration mode. Moreover, it is observed that boundary conditions have significant effect on the nonlinear natural frequencies of the DWCNT including multiple solutions.
Parallel-quadrature phase-shifting digital holographic microscopy using polarization beam splitter.
Das, Bhargab; Yelleswarapu, Chandra S; Rao, Dvgln
2012-11-01
We present a digital holography microscopy technique based on parallel-quadrature phase-shifting method. Two π/2 phase-shifted holograms are recorded simultaneously using polarization phase-shifting principle, slightly off-axis recording geometry, and two identical CCD sensors. The parallel phase-shifting is realized by combining circularly polarized object beam with a 45° degree polarized reference beam through a polarizing beam splitter. DC term is eliminated by subtracting the two holograms from each other and the object information is reconstructed after selecting the frequency spectrum of the real image. Both amplitude and phase object reconstruction results are presented. Simultaneous recording eliminates phase errors caused by mechanical vibrations and air turbulences. The slightly off-axis recording geometry with phase-shifting allows a much larger dimension of the spatial filter for reconstruction of the object information. This leads to better reconstruction capability than traditional off-axis holography.
Design of Novel Precise Quadrature Oscillators Employing ECCIIs with Electronic Control
Directory of Open Access Journals (Sweden)
SOTNER, R.
2013-05-01
Full Text Available In this paper, an interesting design of precise quadrature oscillator employing electronically controllable current conveyors of the second generation (ECCII is presented. The main purpose of this paper is to show advantages and features of direct electronic control of application by an adjustable current gain where help of signal flow graph approach was used to clearer and visual understanding of the design. The discussed circuit and its presented modification have several favorable features such as grounded capacitors, independent electronic adjusting of oscillation frequency and condition of oscillation by the current gain and easy automatic gain control circuit (AGC implementation (non-ideal effects of tuning process on output amplitudes are suppressed. Oscillator was designed for frequency band of units of MHz and tested with two types of inertial AGCs. Theoretical presumptions were confirmed by laboratory experiments.
Institute of Scientific and Technical Information of China (English)
李晶晶; 程昌钧
2004-01-01
Based on the Reddy' s theory of plates with the effect of higher-order shear deformations, the governing equations for bending of orthotropic plates with finite deformations were established. The differential quadrature ( DQ ) method of nonlinear analysis to the problem was presented. New DQ approach, presented by Wang and Bert (DQWB), is extended to handle the multiple boundary conditions of plates. The techniques were also further extended to simplify nonlinear computations. The numerical convergence and comparison of solutions were studied. The results show that the DQ method presented is very reliable and valid. Moreover, the influences of geometric and material parameters as well as the transverse shear deformations on nonlinear bending were investigated.Numerical results show the influence of the shear deformation on the static bending of orthotropic moderately thick plate is significant.
Quadrature Slotted Surface Coil Pair for Magnetic Resonance Imaging at 4 Tesla: Phantom Study
Directory of Open Access Journals (Sweden)
Solis S.E.
2012-01-01
Full Text Available A coil array was composed of two slotted surface coils forming a structure with two plates at 900, each one having 6 circular slots and is introduced in this paper. Numerical simulations of the magnetic field of this coil array were performed at 170 MHz using the finite element method to study its behaviour. This coil array was developed for brain magnetic resonance imaging to be operated at the resonant frequency of 170 MHz in the transceiver mode and quadrature driven. Numerical simulations demonstrated that electromagnetic interaction between the coil elements is negligible, and that the magnetic field showed a good uniformity. Phantom images were acquired with our coil array and standard pulse sequences on a research-dedicated 4 Tesla scanner. In vitro images showed the feasibility of this coil array for standard pulses and high field magnetic resonance imaging.
Institute of Scientific and Technical Information of China (English)
WangLin; NiQiao; HuangYuying
2003-01-01
This paper proposes a new method for investigating the Hopf bifurcation of a curved pipe conveying fluid with nonlinear spring support. The nonlinear equation of motion is derived by forces equilibrium on microelement of the system under consideration. The spatial coordinate of the system is discretized by the differential quadrature method and then the dynamic equation is solved by the Newton-Raphson method. The numerical solutions show that the inner fluid velocity of the Hopf bifurcation point of the curved pipe varies with different values of the parameter,nonlinear spring stiffness. Based on this, the cycle and divergent motions are both found to exist at specific fluid flow velocities with a given value of the nonlinear spring stiffness. The results are useful for further study of the nonlinear dynamic mechanism of the curved fluid conveying pipe.
Phase quadrature discrimination based on three-pump four-wave mixing in nonlinear optical fibers.
Baillot, Maxime; Gay, Mathilde; Peucheret, Christophe; Michel, Joindot; Chartier, Thierry
2016-11-14
We theoretically and experimentally study the principle of phase-sensitive frequency conversion in a highly-nonlinear fiber using three pump waves. This mechanism, originally demonstrated with four continuous-wave pumps and a signal wave, is based on four-wave mixing and enables to convert the two quadrature components of the signal to different frequencies. In this work, we derive a set of two simple equations to describe this mechanism and find analytic solutions. We show that only three pumps are required, instead of four as originally proposed. We give simple relations to determine the initial conditions for the power levels and the phases of the pumps. To validate this approach, we perform an experimental demonstration of the three-pump scheme and find excellent agreement with the theory.
Rivera-Ortega, Uriel; Meneses-Fabian, Cruz; Rodriguez-Zurita, Gustavo; Robledo-Sanchez, Carlos
2014-04-01
An alternative method for phase retrieval based on spatial and binary non-quadrature amplitude modulation (NQAM) is presented. This proposal is based on the superposition of a probe beam with a reference beam modulated in phase and amplitude (PAM) by NQAM, which is implemented by two neutral density filters (NDF) in a three-beam Mach-Zehnder interferometer (MZI). The principal advantage of this proposal lies in an analytical relationship between the variations of phase and visibility in an interferogram with the variations in the amplitudes of the reference beams used to implement NQAM; thus, the interferograms can be normalized and their introduced phase variations can be known from the measured intensities. Consequently it is possible to successfully retrieve the object phase. It is worthy to note that this method is capable of accepting that the phase and visibility variations in the interferograms could be spatial functions.
Utilizing Gauss-Hermite Quadrature to Evaluate Uncertainty in Dynamic System Response
Energy Technology Data Exchange (ETDEWEB)
Field, R.V.; Paez, T.L.; Red-Horse, J.R.
1998-11-17
Probabilistic uncertainty is a phenomenon that occurs to a certain degree in many engineering!~ applications. The effects that the uncertainty has upon a given system response is a matter of some concern. Techniques which provide insight to these effects will be required as modeling and prediction become a more vital tool in the engineering design process. As might be expected, this is a difficult proposition and the focus of many research efforts. The purpose of this paper is to outline a procedure to evaluate uncertainty in dynamic system response exploiting Gauss-Hermite numerical quadrature. Specifically numerical integration techniques are utilized in conjunction with the Advanced Mean Value method to efficiently and accurately estimate moments of the response process. A numerical example illustrating the use of this analytical tool in a practical framework is presented.
Hadjesfandiari, Ali R
2010-01-01
A boundary element formulation is developed to determine the complex stress intensity factors associated with cracks on the interface between dissimilar materials. This represents an extension of the methodology developed previously by the authors for determination of free-edge generalized stress intensity factors on bi-material interfaces, which employs displacements and weighted tractions as primary variables. However, in the present work, the characteristic oscillating stress singularity is addressed through the introduction of complex weighting functions for both displacements and tractions, along with corresponding non-standard numerical quadrature formulas. As a result, this boundary-only approach provides extremely accurate mesh-independent solutions for a range of two-dimensional interface crack problems. A number of computational examples are considered to assess the performance of the method in comparison with analytical solutions and previous work on the subject. As a final application, the method ...
Utilizing Gauss-Hermite Quadrature to Evaluate Uncertainty in Dynamic System Response
Energy Technology Data Exchange (ETDEWEB)
Field, R.V.; Paez, T.L.; Red-Horse, J.R.
1998-11-17
Probabilistic uncertainty is a phenomenon that occurs to a certain degree in many engineering!~ applications. The effects that the uncertainty has upon a given system response is a matter of some concern. Techniques which provide insight to these effects will be required as modeling and prediction become a more vital tool in the engineering design process. As might be expected, this is a difficult proposition and the focus of many research efforts. The purpose of this paper is to outline a procedure to evaluate uncertainty in dynamic system response exploiting Gauss-Hermite numerical quadrature. Specifically numerical integration techniques are utilized in conjunction with the Advanced Mean Value method to efficiently and accurately estimate moments of the response process. A numerical example illustrating the use of this analytical tool in a practical framework is presented.
Performance of quadrature overlapped raised-cosine modulation over nonlinear satellite channels
Divsalar, D.; Simon, M. K.
1981-01-01
This paper considers the performance evaluation of Staggered Quadrature Overlapped Raised Cosine (SQORC) signal transmission through wideband nonlinear satellite channels in the presence of uplink and downlink additive Gaussian noise. Expressions for the bit error rate are derived for a general transponder model with AM-AM and AM-PM conversion. It is shown that the bit error rate of SQORC is one-half of the sum of the bit error rate of MSK at 2/3 of the uplink signal-to-noise ratio and the bit error rate of Quadriphase Phase-Shift Keying QPSK at 4/3 of the uplink signal-to-noise ratio, whereas the spectrum of SQROC is the product of MSK and QPSK spectra. Numerical results are presented for a transponder which is modelled as a hard limiter.
Security of Quantum-Readout PUFs against Quadrature-Based Challenge-Estimation Attacks
Škorić, Boris; Mosk, Allard P.; Pinkse, Pepijn W. H.
2013-08-01
The concept of quantum-secure readout of Physical Unclonable Functions (PUFs) has recently been realized experimentally in an optical PUF system. We analyze the security of this system under the strongest type of classical attack: the challenge estimation attack. The adversary performs a measurement on the challenge quantum state in order to learn as much about it as he can. Using this knowledge, he then tries to reconstruct the challenge and to emulate the PUF. We consider quadrature measurements, which are the most informative practical measurements known to us. We prove that even under this attack the expected number of photons detected in the verification mechanism is approximately a factor S + 1 too low; here S is the Quantum Security Parameter, defined as the number of modes in the optical system divided by the number of photons in the challenge. The photon count allows for a reliable distinction between an authentic PUF and a challenge estimation attack.
Energy Technology Data Exchange (ETDEWEB)
Sanchez G, J., E-mail: julian.sanchez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)
2015-09-15
The solution of the so-called Canonical problems of neutron transport theory has been given by Case, who developed a method akin to the classical eigenfunction expansion procedure, extended to admit singular eigenfunctions. The solution is given as a set consisting of a Fredholm integral equation coupled with a transcendental equation, which has to be solved for the expansion coefficients by iteration. CASE's method make extensive use of the results of the theory of functions of a complex variable and many successful approaches to solve in an approximate form the above mentioned set have been reported in the literature. We present here an entirely different approach which deals with the canonical problems in a more direct and elementary manner. As far as we know, the original idea for the latter method is due to Carlvik who devised the escape probability approximation to the solution of the neutron transport equation in its integral form. In essence, the procedure consists in assuming a sectionally constant form of the neutron density that in turn yields a set of linear algebraic equations obeyed by the assumed constant values of the density. Very well established techniques of numerical analysis for the solution of integral equations consist in independent approaches that generalize the sectionally constant approach by assuming a sectionally low degree polynomial for the unknown function. This procedure also known as the arbitrary quadratures method is especially suited to deal with cases where the kernel of the integral equation is singular. The author wishes to present the results obtained with the arbitrary quadratures method for the numerical calculation of the monoenergetic neutron density in a critical, homogeneous sphere of finite radius with isotropic scattering. The singular integral equation obeyed by the neutron density in the critical sphere is introduced, an outline of the method's main features is given, and tables and graphs of the density
Ambruş, Victor Eugen; Sofonea, Victor
2014-04-01
The Gauss-Laguerre quadrature method is used on the Cartesian semiaxes in the momentum space to construct a family of lattice Boltzmann models. When all quadrature orders Qx, Qy, Qz equal N+1, the Laguerre lattice Boltzmann model LLB(Qx,Qy,Qz) exactly recovers all moments up to order N of the Maxwell-Boltzmann equilibrium distribution function f(eq), calculated over any Cartesian octant of the three-dimensional momentum space. Results of Couette flow simulations at Kn=0.1, 0.5, 1.0 and in the ballistic regime are reported. Specific microfluidic effects (velocity slip, temperature jump, longitudinal heat flux) are well captured up to Kn=0.5, as demonstrated by comparison to direct simulation Monte Carlo results. Excellent agreement with analytic results is obtained in the ballistic regime.
DEFF Research Database (Denmark)
Golestan, Saeed; Guerrero, Josep M.; Abusorrah, Abdullah
2017-01-01
The quadrature signal generation based phase-locked loops (QSG-PLLs) are highly popular for synchronization purposes in single-phase systems. The main difference among these PLLs often lies in the technique they use for creating the fictitious quadrature component. One of the easiest QSG approaches...... is delaying the original single-phase signal by a quarter of a cycle. The PLL with such QSG technique is often called the transfer delay based PLL (TD-PLL). The TD-PLL benefits from a simple structure, rather fast dynamic response, and a good detection accuracy when the grid frequency is at its nominal value......, but it suffers from a phase offset error and double frequency oscillatory error in the estimated phase and frequency in the presence of frequency drifts. In this paper, a simple yet effective approach to remove the aforementioned errors of the TD-PLL is proposed. The resultant PLL structure is called...
Friedberg, R; Zhao Wei Qin
2000-01-01
We present a new method to derive low-lying N-dimensional quantum wave functions by quadrature along a single trajectory. The N-dimensional Schroedinger equation is cast into a series of readily integrable first order ordinary differential equations. Our approach resembles the familiar W.K.B. approximation in one dimension, but is designed to explore the classically forbidden region and has a much wider applicability than W.K.B.. The method also provides a perturbation series expansion and the Green's functions of the wave equation in N-dimension, all by quadratures along a single trajectory. A number of examples are given for illustration, including a simple algorithm to evaluate the Stark effect in closed form to any finite order of the electric field.
Directory of Open Access Journals (Sweden)
H. S. Shukla
2015-01-01
Full Text Available In this paper, a modified cubic B-spline differential quadrature method (MCB-DQM is employed for the numerical simulation of two-space dimensional nonlinear sine-Gordon equation with appropriate initial and boundary conditions. The modified cubic B-spline works as a basis function in the differential quadrature method to compute the weighting coefficients. Accordingly, two dimensional sine-Gordon equation is transformed into a system of second order ordinary differential equations (ODEs. The resultant system of ODEs is solved by employing an optimal five stage and fourth-order strong stability preserving Runge–Kutta scheme (SSP-RK54. Numerical simulation is discussed for both damped and undamped cases. Computational results are found to be in good agreement with the exact solution and other numerical results available in the literature.
Directory of Open Access Journals (Sweden)
H. S. Shukla
2014-11-01
Full Text Available In this paper, a numerical solution of two dimensional nonlinear coupled viscous Burger equation is discussed with appropriate initial and boundary conditions using the modified cubic B-spline differential quadrature method. In this method, the weighting coefficients are computed using the modified cubic B-spline as a basis function in the differential quadrature method. Thus, the coupled Burger equation is reduced into a system of ordinary differential equations. An optimal five stage and fourth-order strong stability preserving Runge–Kutta scheme is applied for solving the resulting system of ordinary differential equations. The accuracy of the scheme is illustrated by taking two numerical examples. Computed results are compared with the exact solutions and other results available in literature. Obtained numerical result shows that the described method is efficient and reliable scheme for solving two dimensional coupled viscous Burger equation.
Clark, William A. (Inventor); Juneau, Thor N. (Inventor); Lemkin, Mark A. (Inventor); Roessig, Allen W. (Inventor)
2001-01-01
A microfabricated vibratory rate gyroscope to measure rotation includes two proof-masses mounted in a suspension system anchored to a substrate. The suspension has two principal modes of compliance, one of which is driven into oscillation. The driven oscillation combined with rotation of the substrate about an axis perpendicular to the substrate results in Coriolis acceleration along the other mode of compliance, the sense-mode. The sense-mode is designed to respond to Coriolis accelerationwhile suppressing the response to translational acceleration. This is accomplished using one or more rigid levers connecting the two proof-masses. The lever allows the proof-masses to move in opposite directions in response to Coriolis acceleration. The invention includes a means for canceling errors, termed quadrature error, due to imperfections in implementation of the sensor. Quadrature-error cancellation utilizes electrostatic forces to cancel out undesired sense-axis motion in phase with drive-mode position.
Caves, C. M.; Schumaker, B. L.
1985-01-01
A new formalism for analyzing two-photon devices, such as parametric amplifiers and phase-conjugate mirrors, is proposed in part I, focusing on the properties and the significance of the quadrature-phase amplitudes and two-mode squeezed states. Time-stationary quasi-probability noise is also detailed for the case of Gaussian noise, and uncertainty principles for the quadrature-phase amplitudes are outlined, as well as some important properties of the two-mode states. Part II establishes a mathematical foundation for the formalism, with introduction of a vector notation for compact representation of two-mode properties. Fundamental unitary operators and special quantum states are also examined with an emphasis on the two-mode squeezed states. The results are applied to a previously studied degenerate limit (epsilon = 0).
Voss, P L; Kumar, P; Voss, Paul L.; K\\"{o}pr\\"{u}l\\"{u}, Kahraman G.; Kumar, Prem
2004-01-01
We present a quantum theory of nondegenerate phase-sensitive parametric amplification in a $\\chi^{(3)}$ nonlinear medium. The non-zero response time of the Kerr $(\\chi^{(3)})$ nonlinearity determines the quantum-limited noise figure of $\\chi^{(3)}$ parametric amplification, as well as the limit on quadrature squeezing. This non-zero response time of the nonlinearity requires coupling of the parametric process to a molecular-vibration phonon bath, causing the addition of excess noise through spontaneous Raman scattering. We present analytical expressions for the quantum-limited noise figure of frequency non-degenerate and frequency degenerate $\\chi^{(3)}$ parametric amplifiers operated as phase-sensitive amplifiers. We also present results for frequency non-degenerate quadrature squeezing. We show that our non-degenerate squeezing theory agrees with the degenerate squeezing theory of Boivin and Shapiro as degeneracy is approached. We have also included the effect of linear loss on the phase-sensitive process.
A contribution to continuous-time quadrature bandpass sigma-delta modulators for low-IF receivers
Kim, Song-Bok
2009-01-01
This work presents the implementation of the continuous-time quadrature bandpass sigma-delta modulators (CT-QBP SDMs). CT-QBP SDMs is well suited for low-IF receivers due to some significant advantages over other implementations. Firstly, the possible design methodologies have been defined and compared. The proposed inverse method is desirable for the design of CT-QBP SDM. Starting from CT loop filter optimization, the equivalent noise shaping transfer function is finally calculated and its s...
Truszczynski, T
This thesis presents the author’s work during the internship at the European Laboratory for Particle Physics (CERN). The quadrature frequency converter is one of the modules that has been developed to upgrade the Proton Synchrotron RF system. Basic information about accelerators, fundamentals of IQ signal representation, mixing and phase shifting techniques are introduced. The development process of the converter is presented with the design details and measurements of the prototype board.
Spectral Gauss quadrature method with subspace interpolation for Kohn-Sham Density functional theory
Wang, Xin
Algorithms with linear-scaling ( (N)) computational complexity for Kohn-Sham density functional theory (K-S DFT) is crucial for studying molecular systems beyond thousands of atoms. Of the (N) methods that use a polynomial-based approximation of the density matrix, the linear-scaling spectral Gauss quadrature (LSSGQ) method (Suryanarayana et al., JMPS, 2013) has been shown to exhibit the fastest convergence. The LSSGQ method requires a Lanczos procedure at every node in a real-space mesh, leading to a large computational pre-factor. We propose a new interpolation scheme specific to the LSSGQ method that lift the need to perform a Lanczos procedure at every node in the real-mesh. This interpolation will be referred to as subspace interpolation. The key idea behind subspace interpolation is that there is a large overlap in the Krylov-subspaces produced by the Lanczos procedures of nodes that are close in real-space. The subspace interpolation scheme takes advantage of the block-Lanczos procedure to group the Krylov-subspaces from a few representative nodes to approximate the density matrix over a large collection of nodes. Subspace interpolation outperforms cubic-spline interpolation by several orders of magnitude.
Low Voltage Low Power Quadrature LC Oscillator Based on Back-gate Superharmonic Capacitive Coupling
Ma, Minglin; Li, Zhijun
2013-09-01
This work introduces a new low voltage low power superharmonic capacitive coupling quadrature LC oscillator (QLCO) made by coupling two identical cross-connected LC oscillators without tail transistor. In each of the core oscillators, the back-gate nodes of the cross-coupled NMOS pair and PMOS pair, acting as common mode nodes, have been connected directly. Then the core oscillators are coupled together via capacitive coupling of the PMOS common mode node in one of the core oscillators to the NMOS common mode node in the other core oscillator, and vice versa. Only capacitors are used for coupling of the two core oscillators and therefore no extra noise sources are imposed on the circuit. Operation of the proposed QLCO was investigated with simulation using a commercial 0.18 µm RF CMOS technology: it shows a power dissipation of 5.2 mW from a 0.6 V supply voltage. Since the proposed core oscillator has Complementary NMOS and PMOS cross coupled pairs, and capacitive coupling method will not introduce extra phase noise, so this circuit can operate with a low phase noise as low as -126.8 dBc/Hz at 1 MHz offset from center oscillation frequency of 2.4 GHz, as confirmed with simulation.
Bottom-series coupled quadrature VCO using the inductive gate voltage boosting technique
Jang, Sheng-Lyang; Chou, Li-Te
2013-09-01
This article presents a new low-voltage bottom-series coupled quadrature voltage-controlled oscillator (QVCO), which consists of two n-core cross-coupled VCOs with the bottom-series coupling transistors. The low-voltage operation is obtained via an inductive gate voltage boosting technique. The proposed CMOS QVCO has been implemented with the TSMC 0.18 µm CMOS technology and the die area is 0.897 × 0.767 mm2. At the supply voltage of 0.7 V, the total power consumption is 1.5 mW. The free-running frequency of the QVCO is tuneable from 3.77 to 4.12 GHz as the tuning voltage is varied from 0.0 to 0.7 V. The measured phase noise at 1 MHz frequency offset is -123.35 dBc/Hz at the oscillation frequency of 4.12 GHz and the figure of merit of the proposed QVCO is -193.5 dBc/Hz.
A Power-Efficient LC Quadrature VCO for RFID, Zigbee and Bluetooth Standards
Directory of Open Access Journals (Sweden)
TORKZADEH, P.
2009-10-01
Full Text Available A multi-band CMOS LC Quadrature Voltage Control Oscillator (QVCO with minimum power consumption is developed to meet the phase noise and frequency band requirements of RFID, Zigbee and Bluetooth standards. To accomplish the multi-band receiving architecture at low power consumption, current switching technique with optimized cross-coupled transistor sizes has been used. A comprehensive analysis of small signal model for complementary architecture including transistor noise sources and their effects on output phase noise amount has been discussed. Using extracted small signal model, coupled and coupling transistor sizes for minimum power consumption and the least achievable phase noise have been optimized. Designed QVCO has been implemented using TSMC 0.18um CMOS technology operating at 1.8V supply voltage. Proposed QVCO generates two separated frequency bands of 1.65-1.85GHz and 2.4-2.5GHz with phase noise of -125dBc/Hz at frequency offset of 3MHz. The total current drawn by QVCO is 7.5mA which makes the power consumption as low as 13.5mW.
Digital services using quadrature amplitude modulation (QAM) over CATV analog DWDM system
Yeh, JengRong; Selker, Mark D.; Trail, J.; Piehler, David; Levi, Israel
2000-04-01
Dense Wavelength Division Multiplexing (DWDM) has recently gained great popularity as it provides a cost effective way to increase the transmission capacity of the existing fiber cable plant. For a long time, Dense WDM was exclusively used for baseband digital applications, predominantly in terrestrial long haul networks and in some cases in metropolitan and enterprise networks. Recently, the performance of DWDM components and frequency-stabilized lasers has substantially improved while the costs have down significantly. This makes a variety of new optical network architectures economically viable. The first commercial 8- wavelength DWDM system designed for Hybrid Fiber Coax networks was reported in 1998. This type of DWDM system utilizes Sub-Carrier Multiplexing (SCM) of Quadrature Amplitude Modulated (QAM) signals to transport IP data digital video broadcast and Video on Demand on ITU grid lightwave carriers. The ability of DWDM to provide scalable transmission capacity in the optical layer with SCM granularity is now considered by many to be the most promising technology for future transport and distribution of broadband multimedia services.
Recursive, in-place algorithm for the hexagonal orthogonal oriented quadrature image pyramid
Watson, Andrew B.
1989-01-01
Pyramid image transforms have proven useful in image coding and pattern recognition. The hexagonal orthogonal oriented quadrature image pyramid (HOP), transforms an image into a set of orthogonal, oriented, odd and even bandpass subimages. It operates on a hexagonal input lattice and employs seven kernels, each of which occupies a neighborhood consisting of a point and a hexagon of six nearest neighbors. The kernels consist of one lowpass and six bandpass kernels that are orthogonal, self-similar, and localized in space, spatial frequency, orientation, and phase. The kernels are first applied to the image samples to create the first level of the pyramid, then to the lowpass coefficients to create the next level. The resulting pyramid is a compact, efficient image code. Here, a recursive, in-place algorithm for computation of the HOP transform is described. The transform may be regarded as a depth-first traversal of a tree structure. It is shown that the algorithm requires a number of operations that is on the order of the number of pixels.
Niebauer, T M; Constantino, A; Billson, R; Hankla, A; Nelson, P G
2015-06-20
A corner-cube retroreflector has the property that the optical path length for a reflected laser beam is insensitive to rotations about a mathematical point called its optical center (OC). This property is exploited in ballistic absolute gravity meters in which a proof mass containing a corner-cube retroreflector is dropped in a vacuum, and its position is accurately determined with a laser interferometer. In order to avoid vertical position errors when the proof mass rotates during free fall, it is important to collocate its center of mass (COM) with the OC of the retroreflector. This is commonly done using a mechanical scale-based balancing procedure, which has limited accuracy due to the difficulty in finding the exact position of the COM and the OC. This paper describes a novel way to achieve the collocation by incorporating the proof mass into a pendulum and using a quadrature interferometer to interrogate its apparent translation in its twist mode. The mismatch between the COM and OC generates a signal in a quiet part of the spectrum where no mechanical resonance exists. This allows us to tune the position of the COM relative to the OC to an accuracy of about 1 μm in all three axes. This provides a way to directly demonstrate that a rotation of the proof mass by several degrees causes an apparent translation in the direction of the laser beam of less than 1 nm. This technique allows an order of magnitude improvement over traditional methods of balancing.
Directory of Open Access Journals (Sweden)
Xinwei Wang
2016-11-01
Full Text Available Sandwich structures are widely used in practice and thus various engineering theories adopting simplifying assumptions are available. However, most engineering theories of beams, plates and shells cannot recover all stresses accurately through their constitutive equations. Therefore, the soft-core is directly modeled by two-dimensional (2D elasticity theory without any pre-assumption on the displacement field. The top and bottom faces act like the elastic supports on the top and bottom edges of the core. The differential equations of the 2D core are then solved by the harmonic differential quadrature method (HDQM. To circumvent the difficulties in dealing with the locally distributed load by point discrete methods such as the HDQM, a general and rigorous way is proposed to treat the locally distributed load. Detailed formulations are provided. The static behavior of sandwich panels under different locally distributed loads is investigated. For verification, results are compared with data obtained by ABAQUS with very fine meshes. A high degree of accuracy on both displacement and stress has been observed.
Inoshita, Kensuke; Hama, Yoshimitsu; Kishikawa, Hiroki; Goto, Nobuo
2016-12-01
In photonic label routers, various optical signal processing functions are required; these include optical label extraction, recognition of the label, optical switching and buffering controlled by signals based on the label information and network routing tables, and label rewriting. Among these functions, we focus on photonic label recognition. We have proposed two kinds of optical waveguide circuits to recognize 16 quadrature amplitude modulation codes, i.e., recognition from the minimum output port and from the maximum output port. The recognition function was theoretically analyzed and numerically simulated by finite-difference beam-propagation method. We discuss noise tolerance in the circuit and show numerically simulated results to evaluate bit-error-rate (BER) characteristics against optical signal-to-noise ratio (OSNR). The OSNR required to obtain a BER less than 1.0×10-3 for the symbol rate of 2.5 GBaud was 14.5 and 27.0 dB for recognition from the minimum and maximum output, respectively.
Round-robin differential quadrature phase-shift quantum key distribution
Zhou, Chun; Zhang, Ying-Ying; Bao, Wan-Su; Li, Hong-Wei; Wang, Yang; Jiang, Mu-Sheng
2017-02-01
Recently, a round-robin differential phase-shift (RRDPS) protocol was proposed [Nature 509, 475 (2014)], in which the amount of leakage is bounded without monitoring the signal disturbance. Introducing states of the phase-encoded Bennett–Brassard 1984 protocol (PE-BB84) to the RRDPS, this paper presents another quantum key distribution protocol called round-robin differential quadrature phase-shift (RRDQPS) quantum key distribution. Regarding a train of many pulses as a single packet, the sender modulates the phase of each pulse by one of {0, π/2, π, 3π/2}, then the receiver measures each packet with a Mach–Zehnder interferometer having a phase basis of 0 or π/2. The RRDQPS protocol can be implemented with essential similar hardware to the PE-BB84, so it has great compatibility with the current quantum system. Here we analyze the security of the RRDQPS protocol against the intercept-resend attack and the beam-splitting attack. Results show that the proposed protocol inherits the advantages arising from the simplicity of the RRDPS protocol and is more robust against these attacks than the original protocol. Project supported by the National Natural Science Foundation of China (Grant Nos. 61505261 and 11304397) and the National Basic Research Program of China (Grant No. 2013CB338002)
A novel multi-channel quadrature Doppler backward scattering reflectometer on the HL-2A tokamak
Shi, Zhongbing; Zhong, Wulu; Jiang, Min; Yang, Zengchen; Zhang, Boyu; Shi, Peiwan; Chen, Wei; Wen, Jie; Chen, Chengyuan; Fu, Bingzhong; Liu, Zetian; Ding, Xuantong; Yang, Qingwei; Duan, Xuru
2016-11-01
A novel 16-channel fixed frequency Doppler backward scattering (DBS) reflectometer system has been developed on the HL-2A tokamak. This system is based on the filter-based feedback loop microwave source (FFLMS) technique, which has lower phase noise and lower power variation compared with present tunable frequency generation and comb frequency array generation techniques [J. C. Hillesheim et al. Rev. Sci. Instrum. 80, 083507 (2009) and W. A. Peebles et al. Rev. Sci. Instrum. 81, 10D902 (2010)]. The 16-channel DBS system is comprised of four × four-frequency microwave transmitters and direct quadrature demodulation receivers. The working frequencies are 17-24 GHz and 31-38 GHz with the frequency interval of 1 GHz. They are designed to measure the localized intermediate wave-number (k⊥ρ ˜ 1-2, k⊥ ˜ 2-9 cm-1) density fluctuations and the poloidal rotation velocity profile of turbulence. The details of the system design and laboratory tests are presented. Preliminary results of Doppler spectra measured by the multi-channel DBS reflectometer systems are obtained. The plasma rotation and turbulence distribution during supersonic molecular beam injection are analyzed.
Li, L.; Simon, M. K.
2004-02-01
We show that, similar to the trellis-coded modulation representation of MIL-STD shaped offset quadrature phase-shift keying (SOQPSK), offset quadrature phase-shift keying (OQPSK) can be decomposed into a "degraded" trellis encoder and a memoryless mapper. Based on the representations of OQPSK and MIL-STD SOQPSK as trellis-coded modulations, we investigate the potential coding gains achievable from the application of simple outer codes to form a concatenated coding structure with iterative decoding. For MIL-STD SOQPSK, we describe the optimum receiver corresponding to its trellis-coded modulation form and then propose a simplified receiver. The bit-error-rate (BER) performances of both receivers for uncoded and coded MIL-STD SOQPSK are simulated and compared to those of OQPSK and Feher-patented quadrature phase-shift keying (FQPSK). The asymptotic BER performance of MIL-STD SOQPSK also is analyzed and compared to that of OQPSK and FQPSK. Simulation results show that, compared to their uncoded systems, both OQPSK and MIL-STD SOQPSK obtain significant coding gains by applying iterative decoding to either the parallel concatenated coding scheme or the serial one, even when very simple outer codes are used.
Directory of Open Access Journals (Sweden)
Grydeland
2005-01-01
Full Text Available The real and imaginary parts of baseband signals are obtained from a real narrow-band signal by quadrature mixing, i.e. by mixing with cosine and sine signals at the narrow band's selected center frequency. We address the consequences of a delay between the outputs of the quadrature mixer, which arise when digital samples of the quadrature baseband signals are not synchronised, i.e. when the real and imaginary components have been shifted by one or more samples with respect to each other. Through analytical considerations and simulations of such an error on different synthetic signals, we show how this error can be expected to afflict different measurements. In addition, we show the effect of the error on actual incoherent scatter radar data obtained by two different digital receiver systems used in parallel at the EISCAT Svalbard Radar (ESR. The analytical considerations indicate a procedure to correct the error, albeit with some limitations due to a small singular region. We demonstrate the correction procedure on actually afflicted data and compare the results to simultaneously acquired unafflicted data. We also discuss the possible data analysis strategies, including some that avoid dealing directly with the singular region mentioned above.
A 0.18 {mu}m CMOS single-inductor single-stage quadrature frontend for GNSS receiver
Energy Technology Data Exchange (ETDEWEB)
Li Bing; Zhuang Yiqi; Han Yeqi; Xing Xiaoling; Li Zhenrong; Long Qiang, E-mail: waxmax@126.com [Key Laboratory of the Ministry of Education for Wide Bandgap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi' an 710071 (China)
2011-09-15
This paper presents an improved merged architecture for a low-IF GNSS receiver frontend, where the bias current and functions are reused in a stacked quadrature LNA-mixer-VCO. Only a single spiral inductor is implemented for the LC resonator and an extra 1/2 frequency divider is added as the quadrature LO signal generator. The details of the design are presented. The gain plan and noise figure are discussed. The phase noise, quadrature accuracy and power consumption are improved. The test chip is fabricated though a 0.18 {mu}m RF CMOS process. The measured noise figure is 5.4 dB on average, with a gain of 43 dB and a IIP3 of -39 dBm. The measured phase noise is better than -105 dBc/Hz at 1 MHz offset. The total power consumption is 19.8 mW with a 1.8 V supply. The experimental results satisfy the requirements for GNSS applications. (semiconductor integrated circuits)
Barton, Michael
2016-07-21
We introduce Gaussian quadrature rules for spline spaces that are frequently used in Galerkin discretizations to build mass and stiffness matrices. By definition, these spaces are of even degrees. The optimal quadrature rules we recently derived (Bartoň and Calo, 2016) act on spaces of the smallest odd degrees and, therefore, are still slightly sub-optimal. In this work, we derive optimal rules directly for even-degree spaces and therefore further improve our recent result. We use optimal quadrature rules for spaces over two elements as elementary building blocks and use recursively the homotopy continuation concept described in Bartoň and Calo (2016) to derive optimal rules for arbitrary admissible numbers of elements.We demonstrate the proposed methodology on relevant examples, where we derive optimal rules for various even-degree spline spaces. We also discuss convergence of our rules to their asymptotic counterparts, these are the analogues of the midpoint rule of Hughes et al. (2010), that are exact and optimal for infinite domains.
Statistical shape and texture model of quadrature phase information for prostate segmentation.
Ghose, Soumya; Oliver, Arnau; Martí, Robert; Lladó, Xavier; Freixenet, Jordi; Mitra, Jhimli; Vilanova, Joan C; Comet-Batlle, Josep; Meriaudeau, Fabrice
2012-01-01
Prostate volume estimation from segmentation of transrectal ultrasound (TRUS) images aids in diagnosis and treatment of prostate hypertrophy and cancer. Computer-aided accurate and computationally efficient prostate segmentation in TRUS images is a challenging task, owing to low signal-to-noise ratio, speckle noise, calcifications, and heterogeneous intensity distribution in the prostate region. A multi-resolution framework using texture features in a parametric deformable statistical model of shape and appearance was developed to segment the prostate. Local phase information of log-Gabor quadrature filter extracted texture of the prostate region in TRUS images. Large bandwidth of log-Gabor filter ensures easy estimation of local orientations, and zero response for a constant signal provides invariance to gray level shift. This aids in enhanced representation of the underlying texture information of the prostate unaffected by speckle noise and imaging artifacts. The parametric model of the propagating contour is derived from principal component analysis of prior shape and texture information of the prostate from the training data. The parameters were modified using prior knowledge of the optimization space to achieve segmentation. The proposed method achieves a mean Dice similarity coefficient value of 0.95 ± 0.02 and mean absolute distance of 1.26 ± 0.51 millimeter when validated with 24 TRUS images of 6 data sets in a leave-one-patient-out validation framework. The proposed method for prostate TRUS image segmentation is computationally efficient and provides accurate prostate segmentations in the presence of intensity heterogeneities and imaging artifacts.
Serés Roig, Eulalia; Magill, Arthur W; Donati, Guillaume; Meyerspeer, Martin; Xin, Lijing; Ipek, Ozlem; Gruetter, Rolf
2015-02-01
Carbon-13 magnetic resonance spectroscopy ((13) C-MRS) is challenging because of the inherent low sensitivity of (13) C detection and the need for radiofrequency transmission at the (1) H frequency while receiving the (13) C signal, the latter requiring electrical decoupling of the (13) C and (1) H radiofrequency channels. In this study, we added traps to the (13) C coil to construct a quadrature-(13) C/quadrature-(1) H surface coil, with sufficient isolation between channels to allow simultaneous operation at both frequencies without compromise in coil performance. Isolation between channels was evaluated on the bench by measuring all coupling parameters. The quadrature mode of the quadrature-(13) C coil was assessed using in vitro (23) Na gradient echo images. The signal-to-noise ratio (SNR) was measured on the glycogen and glucose resonances by (13) C-MRS in vitro, compared with that obtained with a linear-(13) C/quadrature-(1) H coil, and validated by (13) C-MRS in vivo in the human calf at 7T. Isolation between channels was better than -30 dB. The (23) Na gradient echo images indicate a region where the field is strongly circularly polarized. The quadrature coil provided an SNR enhancement over a linear coil of 1.4, in vitro and in vivo. It is feasible to construct a double-quadrature (13) C-(1) H surface coil for proton decoupled sensitivity enhanced (13) C-NMR spectroscopy in humans at 7T. © 2014 Wiley Periodicals, Inc.
Levesque, Philippe; Sawan, Mohamad
2009-08-01
A fully hardware-based real-time digital wideband quadrature demodulation processor based on the Hilbert transform is proposed to process ultrasound radio frequency signals. The presented architecture combines 2 finite impulse response (FIR) filters to process in-phase and quadrature signals and includes a piecewise linear approximation architecture that performs the required square root operations. The proposed implementation enables flexibility to support different transducers with its ability to load on-the-fly different FIR filter coefficient sets. The complexity and accuracy of the demodulator processor are analyzed with simulated RF data; a normalized residual sum-of-squares cost function is used for comparison with the Matlab Hilbert function. Three implementations are integrated into a hand-held ultrasound system for experimental accuracy and performance evaluation. Real-time images were acquired from a reference phantom, demonstrating the feasibility of using the presented architecture to perform real-time digital quadrature demodulation of ultrasonic signal echoes. Experimental results show that the implementation, using only 2942 slices and 3 dedicated digital multipliers of a low-cost and low-power field-programmable gate array (FPGA) is accurate relative to a comparable software- based system; axial and lateral resolution of 1 mm and 2 mm, respectively, were obtained with a 12-mm piezoelectric transducer without postprocessing. Because the processing and sampling rates are the same, high-frequency ultrasound signals can be processed as well. For a 15-frame-per-second display, the hand-held ultrasonic imaging-processing core (FPGA, memory) requires only 45 mW (dynamic) when using a 5-MHz single-element piezoelectric transducer.
Energy Technology Data Exchange (ETDEWEB)
Woods, M. P. [University College of London, Department of Physics and Astronomy, London WC1E 6BT (United Kingdom); Centre for Quantum Technologies, National University of Singapore (Singapore); QuTech, Delft University of Technology, Lorentzweg 1, 2611 CJ Delft (Netherlands); Plenio, M. B. [Institute für Theoretische Physik, Universität Ulm, D-89069 Ulm (Germany)
2016-02-15
Instances of discrete quantum systems coupled to a continuum of oscillators are ubiquitous in physics. Often the continua are approximated by a discrete set of modes. We derive error bounds on expectation values of system observables that have been time evolved under such discretised Hamiltonians. These bounds take on the form of a function of time and the number of discrete modes, where the discrete modes are chosen according to Gauss quadrature rules. The derivation makes use of tools from the field of Lieb-Robinson bounds and the theory of orthonormal polynomials.
Directory of Open Access Journals (Sweden)
R. Nandi
2009-01-01
Full Text Available A new dual-input differential input active integrator using a current differencing buffered amplifier (CDBA is proposed. A multiplier element is appropriately used in the circuit whose control voltage (Vc tunes the integrator time constant (τ electronically. The design of a voltage controlled quadrature oscillator (VCQO based on the proposed integrator had been satisfactorily implemented. A new type of measurement for the tuning error of the oscillator based on the Nyquist plot is presented that shows an error of only 2% at fo≈ 1 MHz with Total Harmonic Distortion (THD less than 3%.
Large eddy simulations of coal jet flame ignition using the direct quadrature method of moments
Pedel, Julien
The Direct Quadrature Method of Moments (DQMOM) was implemented in the Large Eddy Simulation (LES) tool ARCHES to model coal particles. LES coupled with DQMOM was first applied to nonreacting particle-laden turbulent jets. Simulation results were compared to experimental data and accurately modeled a wide range of particle behaviors, such as particle jet waviness, spreading, break up, particle clustering and segregation, in different configurations. Simulations also accurately predicted the mean axial velocity along the centerline for both the gas phase and the solid phase, thus demonstrating the validity of the approach to model particles in turbulent flows. LES was then applied to the prediction of pulverized coal flame ignition. The stability of an oxy-coal flame as a function of changing primary gas composition (CO2 and O2) was first investigated. Flame stability was measured using optical measurements of the flame standoff distance in a 40 kW pilot facility. Large Eddy Simulations (LES) of the facility provided valuable insight into the experimentally observed data and the importance of factors such as heterogeneous reactions, radiation or wall temperature. The effects of three parameters on the flame stand-off distance were studied and simulation predictions were compared to experimental data using the data collaboration method. An additional validation study of the ARCHES LES tool was then performed on an air-fired pulverized coal jet flame ignited by a preheated gas flow. The simulation results were compared qualitatively and quantitatively to experimental observations for different inlet stoichiometric ratios. LES simulations were able to capture the various combustion regimes observed during flame ignition and to accurately model the flame stand-off distance sensitivity to the stoichiometric ratio. Gas temperature and coal burnout predictions were also examined and showed good agreement with experimental data. Overall, this research shows that high
Xu, Cheng; Gao, Guanjun; Chen, Sai; Zhang, Jie
2016-12-01
In this paper we investigate Faster-than-Nyquist Discrete-Fourier-Transform spread Orthogonal Frequency Division Multiplexing (FTN-DFTs-OFDM) signaling which combines the features of both single carrier FTN and OFDM system. By introducing the quadrature duo-binary (QDB) filtering at the receiver side, the transmitted OFDM signal can be packed in a sub-Nyquist spacing, which improves the spectral efficiency (SE) compared to conventional detection schemes. Maximum a posteriori (MAP) and maximum likelihood sequence estimation (MLSE) criteria have been both used and compared to find an optimal equalization scheme for combating FTN multiplexing at transmitter side and QDB filtering at receiver side. The simulations result show that by applying QDB filtering at the receiver side, the back-to-back (BTB) required optical signal noise ratio (OSNR) at bit error rate (BER) of 1 × 10-2 is reduced by 1.5-dB for 20-GHz spaced 128-Gb/s polarization-division-multiplexed quadrature-phase-shift-keying (PDM-QPSK) signal, achieving a SE of 6.4-b/s/Hz.
Directory of Open Access Journals (Sweden)
Ye Li
Full Text Available The use of quadrature RF magnetic fields has been demonstrated to be an efficient method to reduce transmit power and to increase the signal-to-noise (SNR in magnetic resonance (MR imaging. The goal of this project was to develop a new method using the common-mode and differential-mode (CMDM technique for compact, planar, distributed-element quadrature transmit/receive resonators for MR signal excitation and detection and to investigate its performance for MR imaging, particularly, at ultrahigh magnetic fields. A prototype resonator based on CMDM method implemented by using microstrip transmission line was designed and fabricated for 7T imaging. Both the common mode (CM and the differential mode (DM of the resonator were tuned and matched at 298MHz independently. Numerical electromagnetic simulation was performed to verify the orthogonal B1 field direction of the two modes of the CMDM resonator. Both workbench tests and MR imaging experiments were carried out to evaluate the performance. The intrinsic decoupling between the two modes of the CMDM resonator was demonstrated by the bench test, showing a better than -36 dB transmission coefficient between the two modes at resonance frequency. The MR images acquired by using each mode and the images combined in quadrature showed that the CM and DM of the proposed resonator provided similar B1 coverage and achieved SNR improvement in the entire region of interest. The simulation and experimental results demonstrate that the proposed CMDM method with distributed-element transmission line technique is a feasible and efficient technique for planar quadrature RF coil design at ultrahigh fields, providing intrinsic decoupling between two quadrature channels and high frequency capability. Due to its simple and compact geometry and easy implementation of decoupling methods, the CMDM quadrature resonator can possibly be a good candidate for design blocks in multichannel RF coil arrays.
Li, Ye; Yu, Baiying; Pang, Yong; Vigneron, Daniel B; Zhang, Xiaoliang
2013-01-01
The use of quadrature RF magnetic fields has been demonstrated to be an efficient method to reduce transmit power and to increase the signal-to-noise (SNR) in magnetic resonance (MR) imaging. The goal of this project was to develop a new method using the common-mode and differential-mode (CMDM) technique for compact, planar, distributed-element quadrature transmit/receive resonators for MR signal excitation and detection and to investigate its performance for MR imaging, particularly, at ultrahigh magnetic fields. A prototype resonator based on CMDM method implemented by using microstrip transmission line was designed and fabricated for 7T imaging. Both the common mode (CM) and the differential mode (DM) of the resonator were tuned and matched at 298MHz independently. Numerical electromagnetic simulation was performed to verify the orthogonal B1 field direction of the two modes of the CMDM resonator. Both workbench tests and MR imaging experiments were carried out to evaluate the performance. The intrinsic decoupling between the two modes of the CMDM resonator was demonstrated by the bench test, showing a better than -36 dB transmission coefficient between the two modes at resonance frequency. The MR images acquired by using each mode and the images combined in quadrature showed that the CM and DM of the proposed resonator provided similar B1 coverage and achieved SNR improvement in the entire region of interest. The simulation and experimental results demonstrate that the proposed CMDM method with distributed-element transmission line technique is a feasible and efficient technique for planar quadrature RF coil design at ultrahigh fields, providing intrinsic decoupling between two quadrature channels and high frequency capability. Due to its simple and compact geometry and easy implementation of decoupling methods, the CMDM quadrature resonator can possibly be a good candidate for design blocks in multichannel RF coil arrays.
Institute of Scientific and Technical Information of China (English)
2008-01-01
We designed the experimental generation system of the optical GHZ-like and cluster-like quadripartite entangled states for continuous variables.We theoretically demonstrated that the two different types of quadripartite entangled states can be obtained by the linearly optical transformation of four amplitude-quadrature and phase-quadrature squeezed states produced from a pair of nondegenerate optical parametric amplifiers under appropriate phase relations.The criteria for full inseparability of quadripartite cluster-like state were deduced,and the dependency of the quadripartite entanglement on the initial squeezing degree,the transmission efficiencies of the system and the detection efficiency of homodyne detection were numerically calculated.
A 2GHz, 17% tuning range quadrature CMOS VCO with high figure–of–merit and 0.6° phase error
DEFF Research Database (Denmark)
Andreani, Pietro
2002-01-01
This paper presents a quadrature VCO implemented in a standard 0.35µm CMOS process. The VCO draws 16mA from a 1.3V power supply, can be tuned between 1.91 GHz and 2.27GHz, and displays a phase noise of -140dBc/Hz or less at 3MHz offset frequency from the carrier, for a minimum phase-noise figure......-of-merit of 184 dB. The maximum departure from quadrature between the VCO phases is 0.6°....
Suess, Steven; Corti, G.; Poletto, G.; Sterling, A.; Moore, R.
2006-01-01
At the time of the spring 2003 Ulysses-SOHO-Sun quadrature, Ulysses was off the East limb of the Sun at 14.5 degrees north latitude and 4.91 AU. LASCO/C2 images show small transient events that originated from near the limb on May 25, 26 and 27 in the north-east quadrant, along with a large Coronal Mass Ejection (CME) that originated from an active region near disk center on May 26. Ulysses data bear clear signatures of the large CME, specifically including an enhanced abundance of highly ionized Fe. SOHO/UVCS spectra at 1.75 solar radii, near the radial direction to Ulysses, give no evidence of emission from high temperature lines, even for the large CME: instead, for the small events, occasional transient high emission in cool lines was observed, such as the CIII 977 Angstrom line usually absent at coronal levels. Each of these events lasted ca. 1 hour or less and never affected lines from ions forming above ca. 106K. Compact eruptions in Helium 304 Angstrom EIT images, related to the small UVCS transients, were observed at the limb of the Sun over the same period. At least one of these surge events produced a narrow CME observed in LASCO/C2. Most probably all these events are compact magnetic explosions (surges/jets, from around a small island of included polarity) which ejected cool material from lower levels. Ulysses data have been analyzed to find evidence of the cool, narrow CME events, but none or little was found. This puzzling scenario, where events seen by UVCS have no in situ counterparts and vice versa, can be partially explained once the region where the large CME originated is recognized as being at the center of the solar disk so that the CME material was actually much further from the Sun than the 1.7 Rsun height of the UVCS slit off the limb. Conversely, the narrow events may simply have missed Ulysses or been too brief for reliable signatures in composition and ionization state. A basic feature demonstrated by these observations is that large
Seong, Tae-Je
The similarity of item and ability parameter estimations was investigated using two numerical analysis techniques via marginal maximum likelihood estimation (MMLE) with a large simulated data set (n=1,000 examinees) and changing the number of quadrature points. MMLE estimation uses a numerical analysis technique to integrate examinees' abilities…
de Basabe, Jonás D.
2011-08-01
Zhou & Greenhalgh have recently presented an application of the Gaussian quadrature grid to seismic modelling in which the authors propose a meshing scheme that partitions the domain independently of the discontinuities in the media parameters. This comment aims to clarify the implications that this strategy has on the accuracy.
Sato, Takanori; Kanno, Kazutaka; Bunsen, Masatoshi
2016-09-01
We applied complex linear minimum mean-squared-error equalization to spatially quadrature-amplitude-modulated signals in holographic data storage (HDS). The equalization technique can improve dispersion in constellation outputs due to intersymbol interference. We confirm the effectiveness of the equalization technique in numerical simulations and basic optical experiments. Our numerical results have shown that intersymbol interference of a retrieved signal in a HDS system can be improved by using the equalization technique. In our experiments, a mean squared error (MSE), which indicates the deviation from an ideal signal, has been used for quantitatively evaluating the dispersion of equalized signals. Our equalization technique has been able to improve the MSE. However, symbols in the equalized signal have remained inseparable. To further improve the MSE and make the symbols separable, reducing errors in repeated measurements is our future task.
Smith, A. C.; Yang, H.
1989-01-01
The quadrature phase detection technique was used to simultaneously monitor the phase and amplitude of a toneburst signal normally reflected from an adhesively bonded steel-to-rubber interface. The measured phase was found to show a positive shift for all bonded samples with respect to the disbonded state - the phase shift being larger for samples with weaker bonds, as manifested by smaller values of applied tensile loads at failure. A model calculation, which incorporates the concept of interfacial strength into the usual problem of wave propagation in multilayered media, was used to deduce a bond-quality parameter from an experimentally measured phase shift. This bond-quality parameter was found to be correlated with the tensile strength of the adhesive bonds at failure loads.
Sainath, Kamalesh
2014-01-01
We discuss the application of Complex-Plane Gauss-Laguerre Quadrature (CGLQ) to efficiently evaluate two-dimensional Fourier integrals arising as the solution to electromagnetic fields radiated by elementary dipole antennas embedded within planar-layered media with arbitrary material parameters. More specifically, we apply CGLQ to the long-standing problem of rapidly and efficiently evaluating the semi-infinite length "tails" of the Fourier integral path while simultaneously and robustly guaranteeing absolute, exponential convergence of the field solution despite diversity in the doubly anisotropic layer parameters, source type (i.e., electric or equivalent magnetic dipole), source orientation, observed field type (magnetic or electric), (non-zero) frequency, and (non-zero) source-observer separation geometry. The proposed algorithm exhibits robustness despite unique challenges arising for the fast evaluation of such two-dimensional integrals. Herein, we (1) develop the mathematical treatment to rigorously ev...
Kim, Jong-Ahn; Kang, Chu-Shik; Eom, Tae Bong; Jin, Jonghan; Suh, Ho Suhng; Kim, Jae Wan
2014-07-10
A thickness measurement system is proposed for in-line inspection of thickness variation of flat glass panels. Multi-reflection on the surfaces of glass panel generates an interference signal whose phase is proportional to the thickness of the glass panel. For accurate and stable calculation of the phase value, we obtain quadrature interference signals using a current modulation technique. The proposed system can measure a thickness profile with high speed and nanometric resolution, and obtain higher accuracy through real-time nonlinear error compensation. The thickness profile, measured by a transmissive-type experimental setup, coincided with a comparative result obtained using a contact-type thickness measurement system within the range of ±40 nm. The standard deviations of the measured thickness profiles and their waviness components were less than 3 nm with a scanning speed of 300 mm/s.
Quadrature Rotating-Frame Gradient Fields for Ultra-Low FieldNuclear Magnetic Resonance and Imaging
Energy Technology Data Exchange (ETDEWEB)
Bouchard, Louis-Serge
2005-12-30
Magnetic resonance imaging (MRI) in very low fields isfundamentally limited by untruncated concomitant gradients which causesevere distortions in image acquisition and volume selection if thegradient fields are strong compared to the static field. In this paper,it is shown that gradient fields oscillating in quadrature can be usedfor spatial encoding in low fields and provide substantial improvementsover conventional encoding methods using static gradients. In particular,cases where the gradient field is comparable to or higher than theexternal field, Gmax/B0>1, are examined. It is shown thatundistorted slice selection and image encoding is possible because ofsmaller geometric phase errors introduced during cyclic motions of theHamiltonian. In the low field limit (Gmax/B_0 ->infinity) sliceselection is achieved with a combination of soft pulse segments and acoherent train of hard pulses to average out concomitant fields over thefast scale of the rf Hamiltonian.
Cui, Yue; Zhang, Min; Zhan, Yueying; Wang, Danshi; Huang, Shanguo
2016-08-01
A scheme for optical parallel encryption/decryption of quadrature phase shift keying (QPSK) signals is proposed, in which three QPSK signals at 10 Gb/s are encrypted and decrypted simultaneously in the optical domain through nondegenerate four-wave mixing in a highly nonlinear fiber. The results of theoretical analysis and simulations show that the scheme can perform high-speed wiretapping against the encryption of parallel signals and receiver sensitivities of encrypted signal and the decrypted signal are -25.9 and -23.8 dBm, respectively, at the forward error correction threshold. The results are useful for designing high-speed encryption/decryption of advanced modulated signals and thus enhancing the physical layer security of optical networks.
Sun, Dan; Garmory, Andrew; Page, Gary J.
2017-02-01
For flows where the particle number density is low and the Stokes number is relatively high, as found when sand or ice is ingested into aircraft gas turbine engines, streams of particles can cross each other's path or bounce from a solid surface without being influenced by inter-particle collisions. The aim of this work is to develop an Eulerian method to simulate these types of flow. To this end, a two-node quadrature-based moment method using 13 moments is proposed. In the proposed algorithm thirteen moments of particle velocity, including cross-moments of second order, are used to determine the weights and abscissas of the two nodes and to set up the association between the velocity components in each node. Previous Quadrature Method of Moments (QMOM) algorithms either use more than two nodes, leading to increased computational expense, or are shown here to give incorrect results under some circumstances. This method gives the computational efficiency advantages of only needing two particle phase velocity fields whilst ensuring that a correct combination of weights and abscissas is returned for any arbitrary combination of particle trajectories without the need for any further assumptions. Particle crossing and wall bouncing with arbitrary combinations of angles are demonstrated using the method in a two-dimensional scheme. The ability of the scheme to include the presence of drag from a carrier phase is also demonstrated, as is bouncing off surfaces with inelastic collisions. The method is also applied to the Taylor-Green vortex flow test case and is found to give results superior to the existing two-node QMOM method and is in good agreement with results from Lagrangian modelling of this case.
Institute of Scientific and Technical Information of China (English)
高文华
2015-01-01
The total differential quadrature of function of two variables problem was discussed.Analyzed the selection of the path of integration for total differential quadrature of function of two variables through examples.Then total differential quadrature of function of two variables in complex connected domain was explored,the condition for total differential quadrature of function of two variables was generalized.%探讨了高等数学中二元函数全微分的求积问题。按照循序渐进的方式，举例分析二元函数全微分求积时积分路径的选取问题，探究复连通区域内二元函数全微分求积问题，推广了二元函数全微分求积题目的条件。
Domínguez-Serna, Francisco A.; Mendieta-Jimenez, Francisco J.; Rojas, Fernando
2017-10-01
We study quantum correlations and discord in a bipartite continuous variable hybrid system formed by linear combinations of coherent states \\mathinner {|{α }\\rangle } and single photon-added coherent states of the form \\mathinner {|{ψ }\\rangle }_{ {dp(pa)}}= \\mathcal {N}/√{2} (\\hat{a}^\\dagger \\mathinner {|{α }\\rangle }_a\\mathinner {|{α }\\rangle }_b ± \\hat{b}^\\dagger \\mathinner {|{α }\\rangle }_a\\mathinner {|{α }\\rangle }_b). We stablish a relationship between the quantum discord with a local observable (the quadrature variance for one subsystem) under the influence of scattering and phase fluctuation noise. For the pure states the quantum correlations are characterized by means of measurement induced disturbance (MID) with simultaneous quadrature measurements. In a scenario where homodyne conditional measurements are available we show that the MID provides an easy way to select optimal phases to obtain information of the maximal correlations in the channels. The quantum correlations of these entangled states with channel losses are quantitatively characterized with the quantum discord (QD) with a displaced qubit projector. We observe that as scattering increases, QD decreases monotonically. At the same time for the state \\mathinner {|{ψ }\\rangle }_{ {dp}}, QD is more resistant to high phase fluctuations when the average photon number n_0 is bigger than zero, but if phase fluctuations are low, QD is more resistant if n_0=0. For the dp model with scattering, we obtain an analytical expression of the QD as a function of the observable quadrature variance in a local subsystem. This relation allows us to have a way to obtain the degree of QD in the channel by just measuring a local property observable such as the quadrature variance. For the other model this relation still exists but is explored numerically. This relation is an important result that allows to identify quantum processing capabilities in terms of just local observables.
Institute of Scientific and Technical Information of China (English)
AL-SAIF A.S.J.; ZHU Zheng-you
2005-01-01
The problem of two-dimensional steady flow of an incompressible second-order viscoelastic fluid coupled with heat transfer between parallel plates was considered.A viscous dissipation function was included in the energy equation.When the elastic property of the fluid is weaker, the zeroth-order and first-order approximate governing equations were obtained by means of the perturbation method.To understand the behavior of flow near the tube wall, the half-domain was divided into two sub-domains, in which one is a thin layer near the wall called the inner domain and the remainder is called the outer domain.The governing equations in the inner domain and in the outer domain were discretized respectively by using the Differential Quadrature Method (DQM).The matching conditions at the interface between the inner and outer domains were presented.An iterative method for solving these discretized equations was given in this paper.The numerical results obtained agree with existing results.
0.8-5.2GHz Broad-Band SiGe-MMIC Quadrature Mixer for Software Defined Radio Receiver
Murakami, Keishi; Suematsu, Noriharu; Tsutsumi, Koji; Kanazawa, Gakushi; Sekine, Tomotsugu; Kubo, Hiroshi; Isota, Yoji
For the next generation wireless terminals used in the software defined radio (SDR), multi-band / multi-mode transceivers and their MMIC are required which cover the wide RF frequency range from several hundreds MHz up to several GHz. In this paper, 0.8-5.2GHz broad-band SiGe-MMIC quadrature mixer (Q-MIX) for multi-band / multi-mode direct conversion receiver has been developed. By using a static type frequency divider as a 90 degrees local (LO) power divider, measured error vector magnitude (EVM) of less than 3.1% can be achieved in the cases of 0.8/2.1GHz W-CDMA and 5.2GHz wireless Local Area Network (LAN) (IEEE 802.11a) reception. This Q-MIX also shows broad-band characteristic for base-band signal and is applicable for 4G cellular. By using fabricated Q-MIX, a multi-band / multi-mode (1.9GHz (3rd generation cellular (W-CDMA)) / 5.2GHz (4th generation cellular (Multi-Carrier (MC)-CDMA))) receiver has been developed and it has firstly demonstrated the successful reception of motion picture via W-CDMA and MC-CDMA.
Malekzadeh, P.; Setoodeh, A. R.; Barmshouri, E.
2008-08-01
An accurate and efficient solution procedure based on the two-dimensional elasticity theory for free vibration of arbitrary laminated thick circular deep arches with some combinations of classical boundary conditions is introduced. In order to accurately represent the variation of strain across the thickness, the layerwise theory is used to approximate the displacement components in the radial direction. Employing Hamilton's principle, the discretized form of the equations of motion and the related boundary conditions in the radial direction are obtained. The resulting governing equations are then discretized using the differential quadrature method (DQM). After performing the convergence studies, new results for laminated arches with different set of boundary conditions are developed. Additionally, different values of the arch parameters such as opening angle, thickness-to-length and orthotropy ratios are considered. In all cases, comparisons with the results obtained using the finite element software 'ABAQUS' and also with those of the first- and higher-order shear deformation theories available in the literature are performed. Close agreements, especially with those of ABAQUS, are achieved.
Institute of Scientific and Technical Information of China (English)
LI Yu-hong; ZHOU Zheng
2005-01-01
A rate adaptive multi-band ultra-wideband (UWB) system based on the quadrature fractal modulation (QFM)scheme was proposed. Exploring the use of homogeneous signals as modulating waveforms in UWB system, the signal within each 528MHz sub-band was divided into 8 different frequency bandwidths using wavelets transform and these data sequences to be transmitted were embedded into homogeneous waveforms. It is found that the use of homogeneous signals in such UWB system is quite feasible, leadings to a novel multi-rate diversity strategy. Within each 528MHz sub-band, the UWB-QFM system can provide much higher data rates than that of the UWB orthogonal frequency division multiplexing (OFDM) system. Simulation results also show that the bit error rate (BER) performance of the UWB-QFM system achieves a greatly improvement over existing UWB-OFDM system. Due to the fractal properties of the homogeneous signals, these data sequences to be transmitted can be recovered using arbitrarily short receiver signal.
Sainath, Kamalesh; Teixeira, Fernando L
2014-05-01
We discuss the application of complex-plane Gauss-Laguerre quadrature (CGLQ) to efficiently evaluate two-dimensional Fourier integrals arising as the solution to electromagnetic fields radiated by elementary dipole antennas embedded within planar-layered media exhibiting arbitrary material parameters. More specifically, we apply CGLQ to the long-standing problem of rapidly and efficiently evaluating the semi-infinite length "tails" of the Fourier integral path while simultaneously and robustly guaranteeing absolute, exponential convergence of the field solution despite diversity in the doubly anisotropic layer parameters, source type (i.e., electric or equivalent magnetic dipole), source orientation, observed field type (magnetic or electric), (nonzero) frequency, and (nonzero) source-observer separation geometry. The proposed algorithm exhibits robustness despite unique challenges arising for the fast evaluation of such two-dimensional integrals. Herein we develop the mathematical treatment to rigorously evaluate the tail integrals using CGLQ, as well as discuss and address the specific issues posed to the CGLQ method when anisotropic, layered media are present. To empirically demonstrate the CGLQ algorithm's computational efficiency, versatility, and accuracy, we perform a convergence analysis along with two case studies related to modeling of electromagnetic resistivity tools employed in geophysical prospection of layered, anisotropic Earth media and validating the ability of isoimpedance substrates to enhance the radiation performance of planar antennas placed in close proximity to metallic ground planes.
A low-phase-noise wide-band CMOS quadrature VCO for multi-standard RF front-ends
DEFF Research Database (Denmark)
Fard, Ali; Andreani, Pietro
2005-01-01
A low phase noise CMOS LC quadrature VCO (QVCO) with a wide frequency range of 3.6-5.6 GHz, designed in a standard 0.18 μm process for multi-standard front-ends, is presented. A significant advantage of the topology is the larger oscillation amplitude when compared to other conventional QVCO...... structures. The QVCO is compared to a double cross-coupled LC-tank differential oscillator, both in theory and experiments, for evaluation of its phase noise, providing a good insight into its performance. The measured data displays up to 2 dBc/Hz lower phase noise in the 1/f2 region for the QVCO, when...... consuming twice the current of the differential VCO, based on an identical LC-tank. Experimental results on the QVCO show a phase noise level of -127.5 dBc/Hz at 3 MHz offset from a 5.6 GHz carrier while dissipating 8 mA of current, resulting in a figure of merit of 181.3 dBc/Hz....
Hort, R. D.; Revil, A.; Munakata-Marr, J.; Mao, D.
2015-07-01
Electrical resistivity measurements can potentially be used to remotely monitor fate and transport of ionic oxidants such as permanganate (MnO4-) during in situ chemical oxidation (ISCO) of contaminants like trichloroethene (TCE). Time-lapse two-dimensional bulk conductivity and induced polarization surveys conducted during a sand tank ISCO simulation demonstrated that MnO4- plume movement could be monitored in a qualitative manner using bulk conductivity tomograms, although chargeability was below sensitivity limits. We also examined changes to in-phase and quadrature electrical conductivity resulting from ion injection, MnO2 and Cl- production, and pH change during TCE and humate oxidation by MnO4- in homogeneous aqueous solutions and saturated porous media samples. Data from the homogeneous samples demonstrated that inversion of the sand tank resistivity data using a common Tikhonov regularization approach was insufficient to recover an accurate conductivity distribution within the tank. While changes to in-phase conductivity could be successfully modeled, quadrature conductivity values could not be directly related to TCE oxidation product or MnO4- concentrations at frequencies consistent with field induced polarization surveys, limiting the utility of quadrature conductivity for monitoring ISCO.
Wright, Douglas L.; McGraw, Robert; Rosner, Daniel E.
2001-04-15
We extendthe application of moment methods to multivariate suspended particle population problems-those for which size alone is insufficient to specify the state of a particle in the population. Specifically, a bivariate extension of the quadrature method of moments (QMOM) (R. McGraw, Aerosol Sci. Technol. 27, 255 (1997)) is presented for efficiently modeling the dynamics of a population of inorganic nanoparticles undergoing simultaneous coagulation and particle sintering. Continuum regime calculations are presented for the Koch-Friedlander-Tandon-Rosner model, which includes coagulation by Brownian diffusion (evaluated for particle fractal dimensions, D(f), in the range 1.8-3) and simultaneous sintering of the resulting aggregates (P. Tandon and D. E. Rosner, J. Colloid Interface Sci. 213, 273 (1999)). For evaluation purposes, and to demonstrate the computational efficiency of the bivariate QMOM, benchmark calculations are carried out using a high-resolution discrete method to evolve the particle distribution function n(nu, a) for short to intermediate times (where nu and a are particle volume and surface area, respectively). Time evolution of a selected set of 36 low-order mixed moments is obtained by integration of the full bivariate distribution and compared with the corresponding moments obtained directly using two different extensions of the QMOM. With the more extensive treatment, errors of less than 1% are obtained over substantial aerosol evolution, while requiring only a few minutes (rather than days) of CPU time. Longer time QMOM simulations lend support to the earlier finding of a self-preserving limit for the dimensionless joint (nu, a) particle distribution function under simultaneous coagulation and sintering (Tandon and Rosner, 1999; D. E. Rosner and S. Yu, AIChE J., 47 (2001)). We demonstrate that, even in the bivariate case, it is possible to use the QMOM to rapidly model the approach to asymptotic behavior, allowing an immediate assessment of
Institute of Scientific and Technical Information of China (English)
A.S.J.AL-SAIF; 朱正佑
2003-01-01
The traditional differential quadrature method was improved by using the upwind difference scheme for the convectiveterms to solve the coupled two-dimensional incompressible Navier-stokes equations and heat equation. The new method was comparedwith the conventional differential quadrature method in the aspects of convergence and accuracy. The results show that the newmethod is more accurate, and has better convergence than the conventional differential quadrature method for numerically computingthe steady-state solution.
カレントソースを共有化したCMOS Quadrature-coupled LC-VCOの解析
春岡, 正起; 洞木, 吉博; 松岡, 俊匡; 谷口, 研二; ハルオカ, マサキ; ウツロギ, ヨシヒロ; マツオカ, トシマサ; タニグチ, ケンジ; Haruoka, Masaki; Utsurogi, Yoshihiro; Matsuoka, Toshimasa; Taniguchi, Kenji
2004-01-01
二つのLC-VCOを結合させたQuadrature-coupled LC-VCO(QVCO)のIQ出力の精度についてシミュレーション解析を行った．QVCOを構成する二つのVCOのカレントソース用トランジスタを共有化することにより，精度が向上することを確認した．
Avila, Gustavo; Carrington, Tucker
2011-08-01
In this paper we propose and test a method for computing numerically exact vibrational energy levels of a molecule with six atoms. We use a pruned product basis, a non-product quadrature, the Lanczos algorithm, and the exact normal-coordinate kinetic energy operator (KEO) with the πtμπ term. The Lanczos algorithm is applied to a Hamiltonian with a KEO for which μ is evaluated at equilibrium. Eigenvalues and eigenvectors obtained from this calculation are used as a basis to obtain the final energy levels. The quadrature scheme is designed, so that integrals for the most important terms in the potential will be exact. The procedure is tested on C2H4. All 12 coordinates are treated explicitly. We need only ˜1.52 × 108 quadrature points. A product Gauss grid with which one could calculate the same energy levels has at least 5.67 × 1013 points.
分维自适应稀疏网格积分非线性滤波器%Dimension-wise Adaptive Spare Grid Quadrature Nonlinear Filter
Institute of Scientific and Technical Information of China (English)
徐嵩; 孙秀霞; 刘树光; 刘希; 蔡鸣
2014-01-01
For nonlinear discrete systems with addictive Gaus-sian noises, a new quadrature filter is proposed, which can fix sample points according to each dimension0s nonlinear function, respectively. In order to match higher-order terms of the nonlin-ear function0s Taylor expanding with reusing the sample points matching lower-order ones, an adaptive sampled multi variable quadrature rule is designed based on the embedded Gaussian sampled quadrature and the spare grid quadrature (SGQ) for-mula. A group of effective data structures and traversal algo-rithms are proposed for the sampled quadrature rule to be used for calculating the predict expectations of the states and mea-surements with their covariances. This filter could not only fix sampled points for different dimensions separately, but also reuse these points and their weights completely, thus enhancing the ef-ficiency of the filter. This filter achieves a higher accuracy than the unscented Kalman filter (UKF) , more effciency than the fixed SGQ filter, as well as generalized form of these two filters. The calculating cost of adaptive steps is much less than comput-ing the function sampled values. Simulations also validates the accuracy and effciency of this filter.%针对含加性高斯噪声的非线性离散系统，提出了可分别根据各维状态及量测方程的非线性函数特性来确定采样点及其权重的积分滤波器。设计了基于嵌入式高斯采样积分和稀疏网格法则的自适应多变量采样积分方法，可在匹配函数高阶泰勒展开项时，利用低阶采样点，提出了高效的数据结构和遍历算法，便于采用该积分方法分别估计系统状态/量测的预测均值和协方差矩阵。该滤波器既能根据各维非线性函数的特性确定采样点，又实现了对采样值和权重的完全复用，保证了算法效率。理论分析和仿真表明，该滤波算法中自适应调整的运算量小于计算非线性函数采样值。该滤
Kropf, Pascal; Shmuel, Amir
2016-07-01
Estimation of current source density (CSD) from the low-frequency part of extracellular electric potential recordings is an unstable linear inverse problem. To make the estimation possible in an experimental setting where recordings are contaminated with noise, it is necessary to stabilize the inversion. Here we present a unified framework for zero- and higher-order singular-value-decomposition (SVD)-based spectral regularization of 1D (linear) CSD estimation from local field potentials. The framework is based on two general approaches commonly employed for solving inverse problems: quadrature and basis function expansion. We first show that both inverse CSD (iCSD) and kernel CSD (kCSD) fall into the category of basis function expansion methods. We then use these general categories to introduce two new estimation methods, quadrature CSD (qCSD), based on discretizing the CSD integral equation with a chosen quadrature rule, and representer CSD (rCSD), an even-determined basis function expansion method that uses the problem's data kernels (representers) as basis functions. To determine the best candidate methods to use in the analysis of experimental data, we compared the different methods on simulations under three regularization schemes (Tikhonov, tSVD, and dSVD), three regularization parameter selection methods (NCP, L-curve, and GCV), and seven different a priori spatial smoothness constraints on the CSD distribution. This resulted in a comparison of 531 estimation schemes. We evaluated the estimation schemes according to their source reconstruction accuracy by testing them using different simulated noise levels, lateral source diameters, and CSD depth profiles. We found that ranking schemes according to the average error over all tested conditions results in a reproducible ranking, where the top schemes are found to perform well in the majority of tested conditions. However, there is no single best estimation scheme that outperforms all others under all tested
Institute of Scientific and Technical Information of China (English)
刘小伟; 黄昌伟; 胡佳
2011-01-01
通过介绍有关数值求积公式的定义和变步长复合Simpson求积法的基本原理,给出了实现变步长复合Simpson求积法的MATLAB源文件,并结合几个算例验证了变步长复合Simpson求积法的基本原理,以供相关工程技术人员和科学研究者在利用变步长复合Simpson求积法解决那些用微积分方法所不能求解的积分问题时作参考。%The paper introduces the basic theories about the definition of numerical quadrature formula and variable step size composite Simpson quadrature,and provides the source code file which implements the variable step size composite Simpson quadrature,proves the basic theory of variable step size composite Simpson with some examples.It could be the reference for the relevant engineers,technicians and scientific researchers who couldn＇t solve integral problem with Calculus,and turn to variable step size composite Simpson quadrature.
Jiwari, Ram
2015-08-01
In this article, the author proposed two differential quadrature methods to find the approximate solution of one and two dimensional hyperbolic partial differential equations with Dirichlet and Neumann's boundary conditions. The methods are based on Lagrange interpolation and modified cubic B-splines respectively. The proposed methods reduced the hyperbolic problem into a system of second order ordinary differential equations in time variable. Then, the obtained system is changed into a system of first order ordinary differential equations and finally, SSP-RK3 scheme is used to solve the obtained system. The well known hyperbolic equations such as telegraph, Klein-Gordon, sine-Gordon, Dissipative non-linear wave, and Vander Pol type non-linear wave equations are solved to check the accuracy and efficiency of the proposed methods. The numerical results are shown in L∞ , RMS andL2 errors form.
Golbabai, Ahmad; Nikpour, Ahmad
2016-10-01
In this paper, two-dimensional Schrödinger equations are solved by differential quadrature method. Key point in this method is the determination of the weight coefficients for approximation of spatial derivatives. Multiquadric (MQ) radial basis function is applied as test functions to compute these weight coefficients. Unlike traditional DQ methods, which were originally defined on meshes of node points, the RBFDQ method requires no mesh-connectivity information and allows straightforward implementation in an unstructured nodes. Moreover, the calculation of coefficients using MQ function includes a shape parameter c. A new variable shape parameter is introduced and its effect on the accuracy and stability of the method is studied. We perform an analysis for the dispersion error and different internal parameters of the algorithm are studied in order to examine the behavior of this error. Numerical examples show that MQDQ method can efficiently approximate problems in complexly shaped domains.
Goto, Nobuo; Miyazaki, Yasumitsu
2014-06-01
Optical switching of high-bit-rate quadrature-phase-shift-keying (QPSK) pulse trains using collinear acousto-optic (AO) devices is theoretically discussed. Since the collinear AO devices have wavelength selectivity, the switched optical pulse trains suffer from distortion when the bandwidth of the pulse train is comparable to the pass bandwidth of the AO device. As the AO device, a sidelobe-suppressed device with a tapered surface-acoustic-wave (SAW) waveguide and a Butterworth-type filter device with a lossy SAW directional coupler are considered. Phase distortion of optical pulse trains at 40 to 100 Gsymbols/s in QPSK format is numerically analyzed. Bit-error-rate performance with additive Gaussian noise is also evaluated by the Monte Carlo method.
Directory of Open Access Journals (Sweden)
N. Seman
2015-06-01
Full Text Available The design of the quadrature phase shift keying (QPSK modulator by using a multi-port network is proposed in this article for the use in wireless communication applications. The multi-port network is in the form of multilayer microstrip-slot technology. This multi-port network is composed of three 3-dB rectangular-shaped directional couplers with virtual stubs and an equal power division divider with in-phase characteristic. The design is performed by applying a full-wave electromagnetic simulation software, CST Microwave Studio (CST MWS. Keysight’s Advanced Design System (ADS is applied in analyzing and evaluating the QPSK constellation of the proposed modulator. This comparatively small size of proposed design has been fabricated, and its wideband performance of 2 to 6 GHz is verified.
Directory of Open Access Journals (Sweden)
Sarah Banks
2015-10-01
Full Text Available The Random Forest algorithm was used to classify 86 Wide Fine Quadrature Polarized RADARSAT-2 scenes, five Landsat 5 scenes, and a Digital Elevation Model covering an area approximately 81,000 km2 in size, and representing the entirety of Dease Strait, Coronation Gulf and Bathurst Inlet, Nunavut. The focus of this research was to assess the potential to operationalize shoreline sensitivity mapping to inform oil spill response and contingency planning. The impact of varying the training sample size and reducing model data load were evaluated. Results showed that acceptable accuracies could be achieved with relatively few training samples, but that higher accuracies and greater probabilities of correct class assignment were observed with larger sample sizes. Additionally, the number of inputs to the model could be greatly reduced without impacting overall performance. Optimized models reached independent accuracies of 91% for seven land cover types, and classification probabilities between 0.77 and 0.98 (values for latter represent per-class averages generated from independent validation sites. Mixed results were observed when assessing the potential for remote predictive mapping by simulating transferability of the model to scenes without training data.
Institute of Scientific and Technical Information of China (English)
Lun Zhao; Jianguo Yu
2015-01-01
We propose and experimentally demonstrate a novel scheme to realize electrical/optical (E/O) conversion on the receiver side of a wireless fiber integration system at the W band.At the receiver,a directly modulated laser (DML) is used to realize E/O conversion.The received 85 GHz wireless millimeter-wave (mm-wave) signal is first down-converted into a 10 GHz electrical intermediate-frequency (IF) signal to overcome the insufficient bandwidth of the subsequent DML.Then,two cascaded electrical amplifiers (EAs) are employed to boost the electrical IF signal before it is used to drive a DML.By using this scheme,we transmit a 10 Gb/s 16 quadrature amplitude modulation (16QAM) signal over a 10 m wireless link,and then deliver it over a 2 km single-mode fiber-28 (SMF-28) wire link with a bit error ratio (BER) that is less than the hard-decision forward error correction threshold of 3.8 × 10-3.Our experimental results show that the DML is good device to be used for the E/O conversion of a 16QAM signal.
Qi, Jian
2014-02-13
In this study, dual-hop channel state information-assisted amplify-and-forward (AF) cooperative systems in the presence of in-phase and quadrature-phase (I/Q) imbalance, which refers to the mismatch between components in the I and Q branches, are investigated. First, the authors analyse the performance of the considered AF cooperative protocol without compensation for the I/Q imbalance as the benchmark. Then, a compensation algorithm for the I/Q imbalance is proposed, which makes use of the received signals at the destination, from the source and the relay nodes, together with their conjugations to detect the transmitted signal. Moreover, the authors study the considered AF cooperative system implemented with the opportunistic relay selection and the proposed compensation mechanism for the I/Q imbalance. The performance of the AF cooperative system under study is evaluated in terms of average symbol error probability, which is derived by considering transmission in a Rayleigh fading environment. Numerical results are provided and show that the proposed compensation algorithm can efficiently mitigate the effect of the I/Q imbalance. On the other hand, it is observed that the AF cooperative system with opportunistic relay selection acquires a performance gain beyond that without relay selection.
Directory of Open Access Journals (Sweden)
Francesco Tornabene
2017-01-01
Full Text Available The main aim of the present paper is to solve numerically the free vibration problem of sandwich shell structures with variable thickness and made of Functionally Graded Materials (FGMs. Several Higher-order Shear Deformation Theories (HSDTs, defined by a unified formulation, are employed in the study. The FGM structures are characterized by variable mechanical properties due to the through-the-thickness variation of the volume fraction distribution of the two constituents and the arbitrary thickness profile. A four-parameter power law expression is introduced to describe the FGMs, whereas general relations are used to define the thickness variation, which can affect both the principal coordinates of the shell reference domain. A local scheme of the Generalized Differential Quadrature (GDQ method is employed as numerical tool. The natural frequencies are obtained varying the exponent of the volume fraction distributions using higher-order theories based on a unified formulation. The structural models considered are two-dimensional and require less degrees of freedom when compared to the corresponding three-dimensional finite element (FE models, which require a huge number of elements to describe the same geometries accurately. A comparison of the present results with the FE solutions is carried out for the isotropic cases only, whereas the numerical results available in the literature are used to prove the validity as well as accuracy of the current approach in dealing with FGM structures characterized by a variable thickness profile.
Wang, Zhao; Lee, Hsiang-Chieh; Vermeulen, Diedrik; Chen, Long; Nielsen, Torben; Park, Seo Yeon; Ghaemi, Allan; Swanson, Eric; Doerr, Chris; Fujimoto, James
2015-07-01
Optical coherence tomography (OCT) is a widely used three-dimensional (3D) optical imaging method with many biomedical and non-medical applications. Miniaturization, cost reduction, and increased functionality of OCT systems will be critical for future emerging clinical applications. We present a silicon photonic integrated circuit swept-source OCT (SS-OCT) coherent receiver with dual polarization, dual balanced, in-phase and quadrature (IQ) detection. We demonstrate multiple functional capabilities of IQ polarization resolved detection including: complex-conjugate suppressed full-range OCT, polarization diversity detection, and polarization-sensitive OCT. To our knowledge, this is the first demonstration of a silicon photonic integrated receiver for OCT. The integrated coherent receiver provides a miniaturized, low-cost solution for SS-OCT, and is also a key step towards a fully integrated high speed SS-OCT system with good performance and multi-functional capabilities. With further performance improvement and cost reduction, photonic integrated technology promises to greatly increase penetration of OCT systems in existing applications and enable new applications.
CPV边界积分的对称数值求积法%Numerical Evaluation of CPV Boundary Integrals with Symmetrical Quadrature Schemes
Institute of Scientific and Technical Information of China (English)
马杭; 徐凯宇
2003-01-01
Stemming from the definition of the Cauchy principal values (CPV) integrals, a newly developed symmetrical quadrature scheme was proposed in the paper for the accurate numerical evaluation of the singular boundary integrals in the sense of CPV encountered in the boundary element method. In the case of inner-element singularities, the CPV integrals could be evaluated in a straightforward way by dividing the element into the symmetrical part and the remainder(s). And in the case of end-singularities, the CPV integrals could be evaluated simply by taking a tangential distance transformation of the integrand after cutting out a symmetrical tiny zone around the singular point. In both cases, the operations are no longer necessary before the numerical implementation, which involves the dull routine work to separate out singularities from the integral kernels. Numerical examples were presented for both the two-and the three-dimensional boundary integrals in elasticity. Comparing the numerical results with those by other approaches demonstrates the feasibility and the effectiveness of the proposed scheme.
Crowther, Michael J; Look, Maxime P; Riley, Richard D
2014-09-28
Multilevel mixed effects survival models are used in the analysis of clustered survival data, such as repeated events, multicenter clinical trials, and individual participant data (IPD) meta-analyses, to investigate heterogeneity in baseline risk and covariate effects. In this paper, we extend parametric frailty models including the exponential, Weibull and Gompertz proportional hazards (PH) models and the log logistic, log normal, and generalized gamma accelerated failure time models to allow any number of normally distributed random effects. Furthermore, we extend the flexible parametric survival model of Royston and Parmar, modeled on the log-cumulative hazard scale using restricted cubic splines, to include random effects while also allowing for non-PH (time-dependent effects). Maximum likelihood is used to estimate the models utilizing adaptive or nonadaptive Gauss-Hermite quadrature. The methods are evaluated through simulation studies representing clinically plausible scenarios of a multicenter trial and IPD meta-analysis, showing good performance of the estimation method. The flexible parametric mixed effects model is illustrated using a dataset of patients with kidney disease and repeated times to infection and an IPD meta-analysis of prognostic factor studies in patients with breast cancer. User-friendly Stata software is provided to implement the methods. Copyright © 2014 John Wiley & Sons, Ltd.
An Integrated 5 GHz Wideband Quadrature Modem for OFDM Gbit/s Transmission in SiGe:C BiCMOS
Directory of Open Access Journals (Sweden)
Klaus Schmalz
2007-01-01
Full Text Available This paper presents a 5 GHz wideband I/Q modulator/demodulator for 650 MHz OFDM signal bandwidth, which is integrated with a 5 GHz phase locked loop for I/Q generation. The quadrature signals are derived from a 10 GHz CMOS VCO followed by a bipolar frequency divider. The phase noise at 1 MHz offset is −112 dBc/Hz for the modulator as well as for the demodulator. The chips were produced in a 0.25 μm SiGe BiCMOS technology. The signal-to-noise ratio (SNR of transmitted/received OFDM signal and the corresponding I/Q mismatch versus baseband frequency are given. The modulator achieves an SNR of 22–23 dB, and the demodulator realizes an SNR up to 22 dB. The modulator reaches a data rate of 2.16 Gbit/s using 64 QAM OFDM, and the demodulator realizes 1.92 Gbits/s.
Tsalamengas, John L.
2016-11-01
We present Gauss-Jacobi quadrature rules in terms of hypergeometric functions for the discretization of weakly singular, strongly singular, hypersingular, and nearly singular integrals that arise in integral equation formulations of potential problems for domains with sharp edges and corners. The rules are tailored to weight functions with algebraic endpoint singularities of a fairly general form, thus allowing one to easily incorporate a wide class of domains into the analysis. Numerical examples illustrate the accuracy and stability of the proposed algorithms; it is shown that the same level of high accuracy can be achieved for any choice of the external variable. The usefulness of the method is exemplified by application to the solution of a singular integral equation that arises in time-harmonic electromagnetic scattering by either closed or open perfectly conducting cylindrical objects with edges and corners, such as polygon cylinders and bent strips. Some practical aspects concerning the role of nearby singularities in achieving a highly accurate solution of singular integral equations are, also, discussed.
Institute of Scientific and Technical Information of China (English)
杨乔; 石东洋
2006-01-01
In this paper we mainly discuss the nonconforming finite element method for second order elliptic boundary value problems on anisotropic meshes. By changing the discretization form(i.e., by use of numerical quadrature in the procedure of computing the left load ), we obtain the optimal estimate O(h), which is as same as in the traditional finite element analysis when the load f∈H1(Ω)∩C0(Ω) which is weaker than the previous studies. The results obtained in this paper are also valid to the conforming triangular element and nonconforming Carey's element.
Institute of Scientific and Technical Information of China (English)
岳荣先
2003-01-01
Scrambled quasi-Monte Carlo quadrature is a hybrid of Monte carlo and quasi-Monte Carlo methods, which combines the best of these two methods for integration. This article studies the performance of the scrambled quadrature rules in randomized settings for the tensor product Sobolev and Korobov spaces of integrands. It is shown that the randomized error of the scrambled (λ,t,m,s)-nets is of order n-3/2[logn](s-1)/2 for these two spaces.%攀登伪蒙特卡罗积分法是由伪蒙特卡罗与蒙特卡罗方法混合而成的一种新方法,它体现了两者的优点.本文研究这种积分法在Sobolev空间和Korobov空间中的随机化误差.我们证明攀登(λ,t,m,s)-网积分法在这两个空间中的随机化误差的渐近阶为n-3/2[logn](s-1)/2.
Li, Xinying; Yu, Jianjun
2016-07-01
We propose a novel and simple 2×2 multiple-input multiple-output (MIMO) optical-wireless integration system, in which optical independent-sideband modulation enabled by an in-phase/quadrature (I/Q) modulator, instead of optical polarization multiplexing, is used to assist the simultaneous generation of two wireless millimeter-wave (mm-wave) signals. Software-based digital signal processing is used to generate the driving signal for the I/Q modulator, the output of which is two independent single-sideband optical vector signals located at two sides of a large central optical carrier. Based on our proposed 2×2 MIMO optical-wireless integration system, we experimentally demonstrate the simultaneous generation and 2×2 MIMO wireless delivery of two independent 40-GHz quadrature-phase-shift-keying (QPSK) wireless mm-wave signals. Each 40-GHz QPSK wireless mm-wave signal can carry up to 4-Gbaud transmitter data with a bit-error ratio less than the hard-decision forward-error-correction threshold of 3.8×10-3.
Directory of Open Access Journals (Sweden)
Mahmoud Abdellaoui
2009-01-01
Full Text Available Problem statement: In this study and in consequence of the restricted performance of the multi standard wireless receiver utilizing the classical architectures, we proposed and presented a new architecture of multi band wireless receiver based on an Inverse Sine Phase Detector Phase Locked Loop (ISPDPLL associated with modified multi band LC quadrature Voltage Controlled Oscillator (VCO, supporting GSM/DCS/DECT/Bluetooth/WiMax systems. Approach: To accomplish the multi standard receiving architecture at sufficiently good performance and at a low hardware cost, the proposed circuit, using an ISPDPLL associated with VCO based on switched capacitors utilizing a several numeric controlled capacitive branch and cross-coupled transistors, was implemented in 0.35 µm CMOS technology and designed to yield quadrature output signals (I-Q allowing to eliminate the dephasing block (90° employed in a multi band Zero IF architecture receiver, that make the proposed architecture amenable for monolithic integration and 4G multi standard application. Results: This novel system presented high performance and good potentiality to cover perfectly the wireless multi standard receiving on the large band with the same transmission condition. Conclusion/Recommendations: The performance of this system was analyzed and demonstrated to have a minimum phase noise, a good Factor Of Merit (FOM and wide tuning for these standard applications.
Institute of Scientific and Technical Information of China (English)
宗智; 李章锐; 董婧
2011-01-01
The localized differential quadrature (LDQ) method is a numerical technique with high accuracy for solving most kinds of nonlinear problems in engineering and can overcome the difficulties of other methods (such as difference method) to numerically evaluate the derivatives of the functions. Its high efficiency and accuracy attract many engineers to apply the method to solve most of the numerical problems in engineering.However, difficulties can still be found in some particular problems. In the following study, the LDQ was applied to solve the Sod shock tube problem. This problem is a very particular kind of problem, which challenges many common numerical methods. Three different examples were given for testing the robustness and accuracy of the LDQ. In the first example, in which common initial conditions and solving methods were given, the numerical oscillations could be found dramatically; in the second example, the initial conditions were adjusted appropriately and the numerical oscillations were less dramatic than that in the first example; in the third example, the momentum equation of the Sod shock tube problem was corrected by adding artificial viscosity, causing the numerical oscillations to nearly disappear in the process of calculation. The numerical results presented demonstrate the detailed difficulties encountered in the calculations, which need to be improved in future work. However, in summary, the localized differential quadrature is shown to be a trustworthy method for solving most of the nonlinear problems in engineering.
Flutter analysis of hypersonic airfoil skin by differential quadrature method%基于微分求积法的高超声速机翼蒙皮颤振研究
Institute of Scientific and Technical Information of China (English)
钮耀斌; 王中伟; 毛佳; 张礼学
2012-01-01
机翼蒙皮在高超声速气流中会发生颤振等气动弹性问题,破坏结构.引入微分求积方法,可以有效地分析机翼蒙皮的颤振问题.将机翼蒙皮等效成薄板,基于一阶活塞理论,根据克希霍夫假设及弹性理论建立蒙皮的气动弹性偏微分方程,采用微分求积法将偏微分方程离散为常微分方程,并根据频率重合理论对颤振问题进行求解.得到的颤振速度与有限元方法计算结果进行比较,误差为0 58％,验证了微分求积法在求解颤振偏微分方程时的有效性.分析了蒙皮面积、厚度、纵横比等不同参数对蒙皮颤振速度的影响.结果表明,颤振速度随蒙皮面积的增大而减小,随纵横比、厚度的增大而增大.%Flutter analysis plays a vital role in the design of hypersonic airfoil skin. This research introduces he differential quadrature method into the aeroelastic problem of hypersonic skin. The aeroelastic model was presented based on the elasticity theory, and the hypersonic piston theory was used for the modeling of supersonic aerodynamic loads. The validity of the differential quadrature method was confirmed by comparing the FEM solutions for the natural frequencies and the flutter velocity of the airfoil skin, and the relative error is 0. 58%. A detailed parametric study was carried out to study the influences of the thickness, area and aspect ratio on the hypersonic flutter behavior of airfoil skins. The result shows that, the flutter velocity increases with the aspect ratio and thickness increased, and decreases with the area increased.
Institute of Scientific and Technical Information of China (English)
韩海涛; 张铮; 卢子兴
2010-01-01
基于铁木辛柯(Timoshenko)梁理论,建立了含任意脱层的复合梁模型,并利用微分求积DQ(Differential Quadrature)法,研究了含多处任意脱层层合梁的屈曲问题.该复合梁模型给出的含单脱层层合梁的临界屈曲载荷计算结果与相关文献结果一致.此外,以两端固支,含两个任意长度、任意深度贯穿脱层的层合梁为例,分析了脱层长度、深度以及相对位置对屈曲载荷的影响.为工程结构设计和分析提供了一种简单有效的方法,给出了一些有参考价值的结果.
Institute of Scientific and Technical Information of China (English)
陈继宇; 张涛锋; 孙建安; 石玉仁; 马明义
2011-01-01
采用余弦微分求积法(CDQM)对(1+1)维非线性KdV-Burgers方程进行了数值求解.结果表明,所得数值解与方程的精确解相比具有明显的高精度且稳定性高,相对于其他常用方法,且公式简单,使用方便;计算量小,时间复杂性好.%The cosine expansion based differential quadrature method(CDQM) has been used to obtain numerical solutions to the (1+1)-dimensional nonlinear KdV-Burgers equation. The numerical solutions are compared with the exact solutions, The results show that the numerical solutions are in good agreement with the exact solutions. Compared with some regulate methods, the computation efforts are relatively smaller and the time of computation is shorter, it is also seen that the formulas of the method are very simple and easy to use.
Energy Technology Data Exchange (ETDEWEB)
Chepe P, M. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico); Xolocostli M, J. V.; Gomez T, A. M. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Del Valle G, E., E-mail: liaison.web@gmail.com [IPN, Escuela Superior de Fisica y Matematicas, Av. IPN s/n, Col. Lindavista, 07738 Ciudad de Mexico (Mexico)
2015-09-15
The deterministic transport codes for analysis of nuclear reactors have been used for several years already, these codes have evolved in terms of the methodology used and the degree of accuracy, because at the present time has more computer power. In this paper, the transport code used considers the classical technique of multi-group for discretization energy, for space discretization uses the nodal methods, while for the angular discretization the discrete ordinates method is used; so that presents the development and implementation of a set of numerical quadratures of SQ{sub N} type symmetrical with the same weight for each angular direction and these are compared with the quadratures of EQ{sub N} type. The two sets of numerical quadratures were implemented in the program AZTRAN to a problem with isotropic medium in XYZ geometry, in steady state using the nodal method RTN-0 (Raviart-Thomas-Nedelec). The analyzed results correspond to the effective multiplication factor k{sub eff} and neutron angular flux with approximations from S{sub 4} to S{sub 16}. (Author)
Institute of Scientific and Technical Information of China (English)
曾大奎; 马利红; 刘健; 金伟民
2012-01-01
A novel optical image encryption is proposed based on two-step-only quadrature phase-shifting interferometry. Only two interferograms are needed to reconstruct a zero-order-and twin-image-free hologram in this phase-shifting digital holography interference. Such technique precludes the need from recording either the reference wave or the object wave intensity. The object wavefront propagates with two Fresnel transforms in the light path, combined with the double random phase encoding. The following is that introducing zero and π/2 phase into reference waves respectively and recording two digital holograms as encrypted image. As long as the correct key is given in the decryption, a clear original image can be reconstructed by a simple calculation. The feasibility and its robustness against occlusion and noise attacks are verified by a series of numerical simulations.%提出一种基于两步正交相移干涉的光学图像加密技术.这种相移干涉数字全息只要记录两幅干涉图,不需要记录物光波和参考光波的强度信息,就可以再现没有零级像和共轭像的再现像,物光波对应的光路经过两次菲涅尔变换,并结合双随机相位编码.参考光分别引入0和π/2相位,用数字化记录介质记录两幅数字全息图作为加密图像.解密时只要获得正确的密钥,经过简单的计算就可以重建清晰的原始图像.模拟实验验证了它的可行性和有效性,分析了抗裁剪和噪音的鲁棒性.
RSR II- "The Quadrature of Cern"
Lehmann,P
1984-01-01
Suite à la parution du livre choc, où certaines accusations sont lancées contre le Cern, la Radio Suisse Romande II interroge deux des quatre auteurs de ce livre, les physiciens Pierre Lehmann et André Gsponer qui donneront des détails sur le livre qu'ils sont publié (Editions d'En-Bas)
Videobasierte Unterrichtsbeobachtung: die Quadratur des Zirkels?
Directory of Open Access Journals (Sweden)
Regula Fankhauser
2012-12-01
Full Text Available Seit einigen Jahren wird Unterrichtsforschung vermehrt videobasiert angegangen. Die methodologische Diskussion, die die Weiterentwicklung des Instrumentariums begleitet, kreist dabei zentral um die Frage der Invasivität der Aufzeichnungstechnik und möglicher Kameraeffekte. Je nach methodologischer Ausrichtung wird diesem Problem anders begegnet: So versucht die abbildtheoretische Unterrichtsvideografie, die Invasivität zu kontrollieren. Qualitative Methoden wie die Kameraethnografie dagegen machen mögliche Kameraeffekte wie die Performanz vor der Kamera oder die Blickrichtung, die durch das Kameraauge fixiert wird, zum Ausgangspunkt neuer, ästhetischer Verfahrensweisen. Der vorliegende Artikel geht einen dritten Weg: Anhand eines Rückgriffs auf den Wissenschaftssoziologen LATOUR und anhand der methodologischen Reflexion eines forschungspraktischen Beispiels sollen grundsätzliche Probleme der Unterrichtsforschung herausgearbeitet werden, die sich mit dem Einsatz der Videografie besonders deutlich zeigen und mit der sich die Unterrichtsforschung vermehrt auseinandersetzen müsste. URN: http://nbn-resolving.de/urn:nbn:de:0114-fqs1301241
Videobasierte Unterrichtsbeobachtung: die Quadratur des Zirkels?
Fankhauser, Regula
2012-01-01
Seit einigen Jahren wird Unterrichtsforschung vermehrt videobasiert angegangen. Die methodologische Diskussion, die die Weiterentwicklung des Instrumentariums begleitet, kreist dabei zentral um die Frage der Invasivität der Aufzeichnungstechnik und möglicher Kameraeffekte. Je nach methodologischer Ausrichtung wird diesem Problem anders begegnet: So versucht die abbildtheoretische Unterrichtsvideografie, die Invasivität zu kontrollieren. Qualitative Methoden wie die Kameraethnografie dagegen m...
Radio frequency path characterization for wide band quadrature amplitude modulation
Energy Technology Data Exchange (ETDEWEB)
Bracht, R.
1998-12-31
Remote, high speed, high explosive wave front monitoring requires very high bandwidth telemetry to allow transmission of diagnostic data before the explosion destroys the sensor system itself. The main motivation for this study is that no known existing implementation of this sort has been applied to realistic weapons environments. These facts have prompted the research and gathering of data that can be used to extrapolate towards finding the best modulation method for this application. In addition to research of similar existing analysis and testing operations, data was recently captured from a Joint Test Assembly (JTA) Air Launched Cruise Missile (ALCM) flight.
Prolate Spheroidal Wave Functions, Quadrature, Interpolation, And Asymptotic Formulae
Xiao, H
2001-01-01
Whenever physical signals are measured or generated, the results tend to be band-limited (i.e. to have compactly supported Fourier transforms). Indeed, measurements of electromagnetic and acoustic data are band-limited due to the oscillatory character of the processes that have generated the quantities being measured. When the signals being measured come from heat propagation or diffusion processes, they are (practically speaking) band-limited, since the underlying physical processes operate as low- pass filters. The importance of band-limited functions has been recognized for hundreds of years; classical Fourier analysis can be viewed as an apparatus for dealing with such functions. When band-limited functions are defined on the whole line (or on the circle), classical tools are very satisfactory. However, in many cases, we are confronted with band- limited functions defined on intervals (or, more generally, on compact regions in R n). In this environment, standard tools based on polynomials are often effe...
Local and Dimension Adaptive Sparse Grid Interpolation and Quadrature
Jakeman, John D
2011-01-01
In this paper we present a locally and dimension-adaptive sparse grid method for interpolation and integration of high-dimensional functions with discontinuities. The proposed algorithm combines the strengths of the generalised sparse grid algorithm and hierarchical surplus-guided local adaptivity. A high-degree basis is used to obtain a high-order method which, given sufficient smoothness, performs significantly better than the piecewise-linear basis. The underlying generalised sparse grid algorithm greedily selects the dimensions and variable interactions that contribute most to the variability of a function. The hierarchical surplus of points within the sparse grid is used as an error criterion for local refinement with the aim of concentrating computational effort within rapidly varying or discontinuous regions. This approach limits the number of points that are invested in `unimportant' dimensions and regions within the high-dimensional domain. We show the utility of the proposed method for non-smooth fu...
Realization of Quadrature Signal Generator Using Accurate Magnitude Integrator
DEFF Research Database (Denmark)
Xin, Zhen; Yoon, Changwoo; Zhao, Rende
2016-01-01
-signal parameters, espically when a fast resonse is required for usages such as grid synchronization. As a result, the parameters design of the SOGI-QSG becomes complicated. Theoretical analysis shows that it is caused by the inaccurate magnitude-integration characteristic of the SOGI-QSG. To solve this problem......, an Accurate-Magnitude-Integrator based QSG (AMI-QSG) is proposed. The AMI has an accurate magnitude-integration characteristic for the sinusoidal signal, which makes the AMI-QSG possess an accurate First-Order-System (FOS) characteristic in terms of magnitude than the SOGI-QSG. The parameter design process...
Real-time quadrature lock-in discrimination imaging through scattering media
Sudarsanam, Sriram; Panigrahi, Swapnesh; Fade, Julien; Alouini, Mehdi; Ramachandran, Hema
2015-01-01
Numerous everyday situations like navigation, medical imaging and rescue operations require viewing through optically inhomogeneous media. This is a challenging task as photons, instead of traversing ballistically, propagate predominantly diffusively due to random multiple scattering off the inhomogenieties. Imaging {\\it in real-time} with ballistic light under continuous-wave illumination is even more challenging due to the extremely weak signal, necessitating voluminous data-processing. In this paper, we report imaging through strongly scattering media in real-time and at rates several times the critical flicker frequency of the eye, so that motion is perceived as continuous. Two factors contributed to the speedup of {\\it more than three orders of magnitude} over conventional techniques - the use of a simplified algorithm enabling processing of data on the fly, and the utilisation of task and data parallelization capabilities of typical desktop computers. The extreme simplicity and low cost promises great u...
Demonstration of quadrature-squeezed surface plasmons in a gold waveguide
DEFF Research Database (Denmark)
Huck, Alexander; Smolka, Stephan; Lodahl, Peter;
2009-01-01
We report on the efficient generation, propagation and reemission of squeezed long-range surface-plasmon polaritons in a gold waveguide. Squeezed light is used to excite the nonclassical surface-plasmon polaritons, and the reemitted quantum state is fully characterized by complete quantum...... tomographic reconstruction of the density matrix. We find that the plasmon-assisted transmission of nonclassical light in metallic waveguides can be described by a beam splitter relation. This result is explained theoretically....
2012-01-05
Università degli Studi di Pavia bIstituto di Matematica Applicata e Tecnologie Informatiche “E. Magenes” del CNR, Pavia cDAEIMI, Università degli Studi di...Cassino d Institute for Computational Engineering and Sciences, University of Texas at Austin eDipartimento di Matematica , Università degli Studi di
Arnst, Maarten; Phipps, Eric; Red-Horse, John
2011-01-01
Coupled models with multiple physics, scales and/or domains dominate numerous areas of science and engineering. A key challenge in the formulation and implementation of coupled models is in facilitating the communication of information across physics, scale or domain interfaces. In a probabilistic context, any information that is communicated between model components is described in a statistical manner and requires a probabilistic representation. While the number of sources of uncertainty is often large in many coupled problems, our contention is that exchanged statistical information often resides in a much lower dimensional space. In this work, we thus leverage dimension-reduction techniques to lower the stochastic dimension of uncertainty representations as they are passed from component to component in a stochastic coupled model. The main objective of the paper is to propose measure-transformation techniques that allow for this dimension reduction to be exploited to achieve computational gains. These tec...
1993-06-01
1•) + ) •,(v)(•,L) = ()(Q)+ sEXT (F). (4) The scalar flux, 0, is related to the angular flux, W, by (F)= f (dQ Vh) (5) and the particle current, J...J," v,p’) u +at(U, v) w(u, U, p’)= as(u, v) O(u, v) + SEXT (uv)] (92) 0 Ul,(V) I Assuming the area of the triangle is sufficiently small that cross...M + SEXT () (98) Wvn and WoUT are angular flux averages along the input and output edges, respectively, and are defined by WD Iv = f- ds. V(s.v) (99
Sparse Grid Quadrature in High Dimensions with Applications in Finance and Insurance
Holtz, Markus
2011-01-01
This book deals with the numerical analysis and efficient numerical treatment of high-dimensional integrals using sparse grids and other dimension-wise integration techniques with applications to finance and insurance. The book focuses on providing insights into the interplay between coordinate transformations, effective dimensions and the convergence behaviour of sparse grid methods. The techniques, derivations and algorithms are illustrated by many examples, figures and code segments. Numerical experiments with applications from finance and insurance show that the approaches presented in thi
OFDM-Based Signal Explotation Using Quadrature Mirror Filter Bank (QMFB) Processing
2012-03-01
1 % Return Output to Column Vector SigPsd=SigPsd.’ end delf =Fsamp/(Ncol-1); % Freq Plot Step Size Fscale=0: delf :(Ncol-1)* delf ; % Output...FrqPlot=0: delf :(Ncol-1)* delf ; FrqPlot_dB=10*log10(PsdPlot); plot(FrqPlot, FrqPlot_dB); % FFT Shifted end save
Efficient quadrature rules for illumination integrals from quasi Monte Carlo to Bayesian Monte Carlo
Marques, Ricardo; Santos, Luís Paulo; Bouatouch, Kadi
2015-01-01
Rendering photorealistic images is a costly process which can take up to several days in the case of high quality images. In most cases, the task of sampling the incident radiance function to evaluate the illumination integral is responsible for an important share of the computation time. Therefore, to reach acceptable rendering times, the illumination integral must be evaluated using a limited set of samples. Such a restriction raises the question of how to obtain the most accurate approximation possible with such a limited set of samples. One must thus ensure that sampling produces the highe
Demonstration of quadrature squeezed surface-plasmons in a gold waveguide
DEFF Research Database (Denmark)
Huck, Alexander; Smolka, Stephan; Krivitsky, Leonid
2009-01-01
In this contribution we present an experiment demonstrating the generation of non-classical SPPs by exciting them with a squeezed optical light field generated using a bow-tie shaped optical parametric oscillator operating below threshold. Free space optics and end-fire coupling are used for the ...... for the excitation of long-range SPPs (LR-SPPs) on gold stripes embedded in lossless transparent polymer BCB....
Directory of Open Access Journals (Sweden)
Babette Wagenhaus
Full Text Available Cardiac morphology and function assessment by magnetic resonance imaging is of increasing interest for a variety of mouse models in pre-clinical cardiac research, such as myocardial infarction models or myocardial injury/remodeling in genetically or pharmacologically induced hypertension. Signal-to-noise ratio (SNR constraints, however, limit image quality and blood myocardium delineation, which crucially depend on high spatial resolution. Significant gains in SNR with a cryogenically cooled RF probe have been shown for mouse brain MRI, yet the potential of applying cryogenic RF coils for cardiac MR (CMR in mice is, as of yet, untapped. This study examines the feasibility and potential benefits of CMR in mice employing a 400 MHz cryogenic RF surface coil, compared with a conventional mouse heart coil array operating at room temperature. The cryogenic RF coil affords SNR gains of 3.0 to 5.0 versus the conventional approach and hence enables an enhanced spatial resolution. This markedly improved image quality--by better deliniation of myocardial borders and enhanced depiction of papillary muscles and trabeculae--and facilitated a more accurate cardiac chamber quantification, due to reduced intraobserver variability. In summary the use of a cryogenically cooled RF probe represents a valuable means of enhancing the capabilities of CMR of mice.
Atom-assisted quadrature squeezing of a mechanical oscillator inside a dispersive cavity
Biswas, Asoka; Chauhan, Anil Kumar
2016-05-01
Measurement of position of a mesoscopic harmonic oscillator below standard quantum limit in cavity optomechanics has seen a growing interest in recent times. If the oscillator is suspended inside the cavity (with both the mirrors fixed) at a position where the cavity frequency becomes extremum (a membrane-in-the-middle setup), large squeezing can be achieved by conditional measurement of thermal photons; however the cavity decay degrades such squeezing. Here we propose an atom-cavity-oscillator hybrid scheme, in which the effect of cavity decay is eliminated via dispersive coupling of the cavity mode. The atom in Λ configuration is considered to be trapped on either side of the membrane inside the cavity. We show that a considerable amount of squeezing (far beyond the 3 dB limit) can be achieved that is not affected by spontaneous emission of the atom. The squeezing depends upon the initial preparation of the atomic states. Further, the external classical fields, that drive the atomic transition and the cavity mode, control the degree of squeezing and can also lead to a strong effective atom-oscillator coupling. Effect of thermal phonon bath on squeezing is studied in terms of the squeezing spectrum. The results are supported by the detailed analytical calculations.
Three-bucket quadrature phase stepping in a shearing speckle interferometer
Somers, P.A.A.M.; Bhattacharya, N.
2006-01-01
Phase stepping algorithms are mostly based on three or more interferograms that can either be acquired sequentially, involving some temporal phase stepping mechanism, or in parallel. When a phase step is applied between acquisitions, object phase changes may cause phase errors when calculating
Three-bucket quadrature phase stepping in a shearing speckle interferometer
Somers, P.A.A.M.; Bhattacharya, N.
2006-01-01
Phase stepping algorithms are mostly based on three or more interferograms that can either be acquired sequentially, involving some temporal phase stepping mechanism, or in parallel. When a phase step is applied between acquisitions, object phase changes may cause phase errors when calculating phase
Quadrature amplitude modulation (QAM) using binary-driven coupling-modulated rings
Karimelahi, Samira; Sheikholeslami, Ali
2016-05-01
We propose and fully analyze a compact structure for DAC-free pure optical QAM modulation. The proposed structure is the first ring resonator-based DAC-free QAM modulator reported in the literature, to the best of our knowledge. The device consists of two segmented add-drop Mach Zehnder interferometer-assisted ring modulators (MZIARM) in an IQ configuration. The proposed architecture is investigated based on the parameters from SOI technology where various key design considerations are discussed. We have included the loss in the MZI arms in our analysis of phase and amplitude modulation using MZIARM for the first time and show that the imbalanced loss results in a phase error. The output level linearity is also studied for both QAM-16 and QAM-64 not only based on optimizing RF segment lengths but also by optimizing the number of segments. In QAM-16, linearity among levels is achievable with two segments while in QAM-64 an additional segment may be required.
Security of Quantum-Readout PUFs against quadrature based challenge estimation attacks
Skoric, B.; Mosk, A.P.; Pinkse, P.W.H.
2013-01-01
The concept of quantum-secure readout of Physical Unclonable Functions (PUFs) has recently been realized experimentally in an optical PUF system. We analyze the security of this system under the strongest type of classical attack: the challenge estimation attack. The adversary performs a measurement
Bogdanov, Yu. I.; Katamadze, K. G.; Avosopyants, G. V.; Belinsky, L. V.; Bogdanova, N. A.; Kulik, S. P.; Lukichev, V. F.
2016-12-01
The estimation of high order correlation function values is an important problem in the field of quantum computation. We show that the problem can be reduced to preparation and measurement of optical quantum states resulting after annihilation of a set number of quanta from the original beam. We apply this approach to explore various photon bunching regimes in optical states with gamma-compounded Poisson photon number statistics. We prepare and perform measurement of the thermal quantum state as well as states produced by subtracting one to ten photons from it. Maximum likelihood estimation is employed for parameter estimation. The goal of this research is the development of highly accurate procedures for generation and quality control of optical quantum states.
The s-ordered expansions of the operator function about the combined quadrature μX + νP
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
A general framework applicable to deriving the s-ordered operator expansions is presented in this paper.We firstly deduce the s-ordered operator expansion formula of density operator ρ a?,a and introduce the technique of integration within the sordered product of operators (IWSOP).Based on the deduction and the technique,we derive the s-ordered expansions of operators (μX + νP)n and Hn (μX + νP) (linear combinations of the coordinate operator X and the momentum operator P,Hn (x) is Hermite polynomial),respectively,and discuss some special cases of s=1,0,-1.Some new useful operator identities are obtained as well.
Directory of Open Access Journals (Sweden)
Mohammud Ershadul Haque
2013-01-01
Full Text Available Wireless Sensor Network (WSN is the new invention applying for assessment the damage of the historical or high rise civil building structural health. Technical challenges affecting deployment of wireless sensor network including the range of the transmission problem, low data transmission rate of the existing SHM strategies. The most vital factor of SHM wireless sensor systems is the modulator accuracy and reliability that qualify the wireless communication system to assess large building structure health Information. The objective of this article is to provide solution to measure both reliability and accuracy of the wireless sensor network modulator. we computed M-array QAM modulator BER and compare the simulation result with theoretical to find out optimum modulation technique for transmission System with considering maximum data rate, AWGN channel and also measured modulator accuracy based on ZigBee by computing M-array modulator Error Vector Magnitude (EVM to quantify the transmitter quality.
Energy Technology Data Exchange (ETDEWEB)
Ibragimov, Nail H. [Department of Mathematics and Science, Blekinge Institute of Technology, SE-371 79 Karlskrona (Sweden); Ibragimov, Ranis N., E-mail: Ranis.Ibragimov@utb.edu [Department of Mathematics, College of Science, Mathematics and Technology, University of Texas at Brownsville, TX 78520 (United States)
2011-10-24
We study the nonlinear incompressible non-viscous fluid flows within a thin rotating atmospheric shell that serve as a simple mathematical description of an atmospheric circulation caused by the temperature difference between the equator and the poles. The model is also superimposed by a particular stationary flow which, under the assumption of no friction and a distribution of temperature dependent only upon latitude, models the zonal west-to-east flows in the upper atmosphere between the Ferrel and Polar cells. Owing to the Coriolis effects, the resulting achievable meteorological flows correspond to the asymptotical stable flows that are being translated along the equatorial plane. The exact solutions in terms of elementary functions are found by using Lie group methods. -- Highlights: → This article provides new exact solutions of the Euler and Navier-Stokes equations. → The exact solutions are written in terms of elementary functions. → The exact solutions were obtained by Lie group analysis. → A wider class of exact solutions is contained in the obtained Lie algebra.
Armas-Pérez, Julio C; Hernández-Ortiz, Juan P; de Pablo, Juan J
2015-12-28
A theoretically informed Monte Carlo method is proposed for Monte Carlo simulation of liquid crystals on the basis of theoretical representations in terms of coarse-grained free energy functionals. The free energy functional is described in the framework of the Landau-de Gennes formalism. A piecewise finite element discretization is used to approximate the alignment field, thereby providing an excellent geometrical representation of curved interfaces and accurate integration of the free energy. The method is suitable for situations where the free energy functional includes highly non-linear terms, including chirality or high-order deformation modes. The validity of the method is established by comparing the results of Monte Carlo simulations to traditional Ginzburg-Landau minimizations of the free energy using a finite difference scheme, and its usefulness is demonstrated in the context of simulations of chiral liquid crystal droplets with and without nanoparticle inclusions.
Hasan, Mehedi; Hall, Trevor
2015-11-01
A photonic integrated circuit architecture for implementing frequency upconversion is proposed. The circuit consists of a 1×2 splitter and 2×1 combiner interconnected by two stages of differentially driven phase modulators having 2×2 multimode interference coupler between the stages. A transfer matrix approach is used to model the operation of the architecture. The predictions of the model are validated by simulations performed using an industry standard software tool. The intrinsic conversion efficiency of the proposed design is improved by 6 dB over the alternative functionally equivalent circuit based on dual parallel Mach-Zehnder modulators known in the prior art. A two-tone analysis is presented to study the linearity of the proposed circuit, and a comparison is provided over the alternative. The proposed circuit is suitable for integration in any platform that offers linear electro-optic phase modulation such as LiNbO(3), silicon, III-V, or hybrid technology.
Directory of Open Access Journals (Sweden)
T. Vaupel
2004-01-01
Full Text Available Using integral equation methods for the analysis of complex (MMIC structures, the computation and storage effort for the solution of the linear systems of equations with their fully populated matrices still forms the main bottleneck. In the last years, remarkable improvements could be achieved by means of diakoptic methods and related preconditiners. In this contribution, we present a method based on the optimized decomposition of the system matrix depending on the circuit topology. The system matrix is splitted in a densely populated matrix and a mainly blockdiagonal matrix with overlapping submatrices. The latter matrix is used for the generation of high performance preconditioners within Krylov subspace methods using sparsified matrix storage methods, adaptive Cholesky decompositions and optimized forward/backward substitutions. Furthermore, we present an integration technique using a complete analytical treatment for the strongly oscillating parts of the spectral domain integrands allowing the analysis of very large structures as compared to the wavelength.
PCM/FM Quadrature Demodulation based on Poly-phase Filter%基于多相滤波的PCM/FM正交解调
Institute of Scientific and Technical Information of China (English)
杨小华; 姚远程
2011-01-01
传统的相干正交解调方法,需要提取同频同相的载波,从而增加了解调的难度.根据遥测系统脉冲编码调制/调频(PCM/FM,Pulse Code Modulation-Frequency Modulation)信号的特点,采用基于多相滤波的解调方法.该方法通过多相滤波的方式来实现正交变换,不需要在接收端恢复同频同相的载波,从而降低了传统解调方法中电路实现的难度.通过MATLAB对信号进行调制解调的仿真,比较了不同解调方法对信号的解调效果,并在表格中显示了解调的误码率数据,从而验证了该方法的可行性和优越性.
Directory of Open Access Journals (Sweden)
Fauzia Farneti
2008-12-01
Full Text Available Nei primi decenni del Seicento la pittura decorativa a Firenze risulta ancora legata all'ornamentazione tradizionale tardomanierista attuata nei modi di Alessandro Allori o di Bernardino Barbatelli detto il Poccetti. L'interesse per le novità e per l'aggiornamento dell'ambiente artistico fiorentino portarono il granduca Ferdinando II a chiamare a Firenze tra il 1636 ed il 1637 Pietro da Cortona, Angelo Michele Colonna e Agostino Mitelli. I due bolognesi completarono il ciclo pittorico celebrativo del governo di Ferdinando cui aveva dato inizio Giovanni da San Giovanni, con la decorazione delle tre sale di rappresentanza del quartiere estivo di palazzo Pitti realizzata tra il 1637 ed il 1641. L'intervento, condotto secondo il più moderno linguaggio barocco che vede la perfetta integrazione dell'illusionismo architettonico, che supera i limiti dello spazio reale, con le scene figurative, verrà a costituire nell'ambiente fiorentino un ineludibile modello di riferimento nella decorazione d'interni, soluzioni di grande modernità su cui si formerà Jacopo Chiavistelli e i giovani della sua scuola. Anche Giovan Carlo, fratello del granduca, nel 1637 diede inizio ad una serie di trasformazioni che si protrassero per oltre un ventennio, trasformando gli ambienti a lui assegnati in Pitti in veri e propri luoghi di delizie, decorati dagli artisti più significativi del momento quali ad esempio Angelo Michele Colonna, Agostino Mitelli, Pietro da Cortona, Jacopo Chiavistelli. Fu quest'ultimo frescante che con i suoi 'scolari', fin dagli anni Cinquanta fu attivo in palazzo Pitti, decorando a quadratura gli ambienti dei quartieri dei membri della famiglia granducale, ambienti che in gran parte sono andati perduti in quanto interessati dalle ristrutturazioni lorenesi e sabaude. Con i lavori commissionati dal gran principe Ferdinando si chiude in palazzo Pitti la grande stagione del quadraturismo barocco fiorentino.Nos primeiros decênios do Seiscentos a pintura decorativa em Florença resulta ainda ligada à ornamentação tradicional tardo maneirista operado nos moldes de Alessandro Allori ou nos de Bernadino Barbatelli, chamado de Poccetti. Os interesses pela novidade e pela modernização do ambiente artístico florentino levaram ao grão duque Ferdinando II a chamar para Florença, entre 1636 e 1637, Pietro da Cortona, Angelo Michele Colonna e Agostino Mitelli. Os dois bolonheses completaram o ciclo pictórico comemorativo do governo de Ferdinando, que tinha sido iniciado por Giovanni da San Giovanni na decoração das três salas de representação do apartamento de verão do palácio Pitti, realizada entre 1637 e 1641. A intervenção conduzida segundo a mais moderna linguagem barroca, a partir de uma perfeita integração do ilusionismo arquitetônico supera os limites do espaço real com cenas figurativas. Deste modo, seria constituído no ambiente florentino um ineludível modelo de referência na decoração dos interiores, soluções de grande modernidade nas quais se formará Jacopo Chiavistelli e os jovens da sua escola. Também Giovan Carlo, irmão do grão duque, em 1637 dá início a uma série de transformações que se prolongaram por mais de vinte anos, transformando os ambientes assinados por ele no palácio Pitti em verdadeiros e próprios lugares de deleites, decorados por artistas mais significativos do momento, dos quais, por exemplo, Angelo Michele Colonna, Agostino Mitelli, Pietro da Cortona, Jacopo Chiavistelli. Foi este ultimo pintor de afrescos quem, com os seus "alunos", trabalhou no Palazzo Pitti desde os anos Cinquenta, decorando os ambientes dos apartamentos dos membros da familia dos grão duques com quadraturas. Grande parte desses ambientes desapareceu, pois foram reformados durante o governo dos Lorenas e dos Sabaudas. Com os trabalhos comissionados pelo grão duque príncipe Ferdinando se fecha no palácio Pitti o período do quadraturismo barroco florentino.In the early decades of the 17th century decorative painting in Florence is still tied to traditional ornamentation late-mannerist by Alessandro Allori or Bernardino Barbatelli who is called Poccetti. Between 1636 and 1637, the Grand Duke Ferdinando the 2nd called to Florence Pietro da Cortona, Angelo Michele Colonna e Agostino Mitelli to upgrade the artistic environment. Between 1637 and 1641, with the decoration of three representation rooms, the two bolognese completed the painting cycle who celebrating the Ferdinando's Government, started by Giovanni da San Giovanni in the summer residence of Palazzo Pitti. The intervention, according most modern baroque language, who sees the perfect integration of architectural illusionism and exceeds the limitations of real space with the figurative, will be in Florentine environment inescapable reference model in interior decorating, great modern solutions on which will be formed Jacopo Chiavistelli and his school. Even Giovan Carlo, brother of Grand Duke, in 1637 began a series of transformations that lasted for over twenty years, turning the rooms assigned to him in Pitti in places of delights, decorated by the most significant artists of the moment such as Angelo Michele Colonna, Mitelli Agostino, Pietro da Cortona, Jacopo Chiavistelli. It was the latter frescante , active in Pitti Palace since 1650 ,that with his' pupils' decorated in squaring the neighborhoods of members of the grand ducal family, environments largely lost because of the restructuring of Lorena and Savoy. With the work commissioned by Prince Ferdinando in Pitti Palace they closed the great season of squaring in the Florentine baroque.
Tapanes, Edward
1991-12-01
A Michelson Fiber optic sensor (MFOS) is described for in-situ strain and vibration monitoring as well as acoustic emission detection in composite material structures. The phase sensitive fiber optic sensor is localized, all-fiber, and intrinsic. The MFOS was successfully embedded in Kevlar/epoxy and graphite/epoxy thermosets as well as graphite/PEEK thermoplastic in order to perform local strain and vibration measurements at the lamina level. A technique allowing acoustic emission detection in parallel with strain and vibration monitoring is illustrated.
Energy Technology Data Exchange (ETDEWEB)
Kim, Hae Jin, E-mail: haejin@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Wang, Son Jong; Park, Byoung Ho; Kwak, Jong-Gu [National Fusion Research Institute, Daejeon (Korea, Republic of); Hillairet, Julien [CEA/IRFM, Saint-lez-Durance (France); Choi, Jin Joo [Kwangwoon University, Seoul (Korea, Republic of)
2015-10-15
Highlights: • Amplitude balanced 3 dB coaxial hybrid splitter has been designed and rf tested. • The proposed hybrid is applicable to ITER ICRF transmission line for load resilience. • Two-section, broadband coaxial hybrid can be tunable by changing dielectric insulator. - Abstract: RF design and network analyzer tests of broadband, amplitude-balanced coaxial hybrid junctions are presented. We have designed two 3 dB hybrid splitters with 9 and 12 in. coaxial transmission lines applicable to ITER ICRF for load-resilient operations using ANSYS HFSS. Amplitude-balanced broadband responses were obtained with the combination of impedance reductions of longitudinal and transverse branches in unequal proportion, length change of 50 Ω lines and diameter change of high impedance lines connected transversely to the T-section of the hybrid splitter, respectively. We have fabricated and RF tested the 9 in. coaxial hybrid coupler. We obtained an excellent coupling flatness of −3.2 ± 0.2 dB, phase difference of 4 degrees and return loss of 16 dB in 40–55 MHz. The measured data of 9 in. hybrid splitter is highly consistent with HFSS simulations. We found that the proposed 3 dB hybrid splitter can be tunable with amplitude-balanced, broadband response by changing dielectric insulators to keep the inner and outer conductors of coaxial line apart. The proposed 3 dB hybrid splitter can be utilized for load-resilient operations in a wide range of antenna load variations due to mode transitions or edge localized modes (ELMs) in fusion plasmas.
2017-03-10
Component Analyzer ( LCA ) and is shown in Fig. 3. The transimpedance (RF) of the TIA was swept over the range of possible values, i.e. R! = 400 Ω/N with N...Optical signal to noise ratio VOA variable optical attenuator ASE amplified spontaneous emission LO local oscillator TX transmitter LCA lightwave
Hanzo, Lajos
2004-01-01
"Now fully revised and updated, with more than 300 pages of new material, this new edition presents the wide range of recent developments in the field and places particular emphasis on the family of coded modulation aided OFDM and CDMA schemes. In addition, it also includes a fully revised chapter on adaptive modulation and a new chapter characterizing the design trade-offs of adaptive modulation and space-time coding." "In summary, this volume amalgamates a comprehensive textbook with a deep research monograph on the topic of QAM, ensuring it has a wide-ranging appeal for both senior undergraduate and postgraduate students as well as practicing engineers and researchers."--Jacket.
Hogendijk, J.P.
2010-01-01
In Chapter 21 of Vanden Circkel (On the Circle) [Van Ceulen, 1596], the arithmetic teacher and fencing master Ludolph van Ceulen published his analysis of 16 propositions which had been submitted to him by an anonymous “highly learned man”. In this paper, the author of the propositions will be ident
A 5.4mW GPS CMOS quadrature front-end based on a single-stage LNA-mixer-VCO
DEFF Research Database (Denmark)
Liscidini, Amtonio; Mazzanti, Andrea; Tonietto, Riccardo
2006-01-01
A GPS RF front-end combines the LNA, mixer, and VCO in a single stage and can operate from a 1.2V supply. The chip is implemented in a 0.13um CMOS process and occupies 1.5mm2 active area. It consumes 5.4mW with a 4.8dB NF, 36dB gain, and a P1dB of -31dBm.......A GPS RF front-end combines the LNA, mixer, and VCO in a single stage and can operate from a 1.2V supply. The chip is implemented in a 0.13um CMOS process and occupies 1.5mm2 active area. It consumes 5.4mW with a 4.8dB NF, 36dB gain, and a P1dB of -31dBm....
Quadrature Signal Acquisition System of Encoder Based on LPC2103%基于LPC2103的编码器正交信号采集系统
Institute of Scientific and Technical Information of China (English)
吕慧; 朱翚; 黄鹏举; 徐丽莉
2012-01-01
We adopt LPC2103 as main CPU of the system to collect the signals of incremental rotary encoder and achieve pulse counting and distinguishing direction.Via RS232 communication,we achieve reverse counting and other fuctions.%以LPC2103为控制芯片,对增量型旋转编码器信号进行采集,完成计数和辨向功能,并且通过RS232与上位机通信,通过上位机完成计数器反向计数及其他功能。
Institute of Scientific and Technical Information of China (English)
李荣冰; 黄隽祎; 刘建业; 谢非
2014-01-01
Doppler shift and signal power attenuation in the complex environment both can make damage in the accuracy of carrier tracking. Therefore, the non-linear Kalman filter for carrier tracking is designed, which makes correlated observations in the EKF and UKF model based on the analysis of the structure of BeiDou B1 signal. By using measurements from the estimation of filtering in feedback control of the carrier tracking loop, higher and more stable performance can be given in high dynamic and weak signal environments. Finally, the test results show that the feedback control-based EKF and UKF model can perform precise carrier tracking, and make a good limitation of loop error, both of which lead to realization of high performance of signal tracking.%复杂环境下的多普勒频移变化及信号功率衰减均会对载波准确跟踪造成影响。在研究北斗卫星B1频点信号结构的基础上，建立以环路中相关积分值为观测量的非线性EKF模型和UKF模型，并提出利用滤波估计状态量进行状态反馈控制的方法，从而解决了载波跟踪环路在高动态及弱信号环境中难以高性能工作的问题。实验结果表明，状态反馈控制的EKF模型和UKF滤波模型能准确地跟踪弱信号及高动态下的信号变化，从而有效控制跟踪误差，为实现快速准确的载波跟踪奠定了基础。
Selmi, Mehrez
2011-01-01
During the last years, broadband services and Internet applications have boomed, causing saturation issues in the networks and leading to an increase in bandwidth demand. This pushed carriers to increase the capacity of WDM channels by introducing 100G and beyond systems in core and Metro networks. With the new possibilities offered by the high speed digital circuits, coherent systems have attracted a lot of attention during the last years. Apart from the receiver sensitivity, the interest li...
DEFF Research Database (Denmark)
Hu, Hao; Ye, Feihong; Medhin, Ashenafi Kiros
2014-01-01
We demonstrate 43-Tbit/s transmission over 67.4-km seven-core fiber using a single source. Each of the 6 outer cores carries 6 Nyquist-WDM channels using 320-Gbaud Nyquist- OTDM-PDM-QPSK 330-GHz spaced, and the center core carries 10-GHz clock pulses.......We demonstrate 43-Tbit/s transmission over 67.4-km seven-core fiber using a single source. Each of the 6 outer cores carries 6 Nyquist-WDM channels using 320-Gbaud Nyquist- OTDM-PDM-QPSK 330-GHz spaced, and the center core carries 10-GHz clock pulses....
Directory of Open Access Journals (Sweden)
Jochen Mecke
2016-03-01
Full Text Available Die Internationalisierung ist nicht das Problem, sie ist die Lösung: In einer europäischen Gesellschaft, in der die Dynamik einer neuen Vielfalt derzeit eine der wenigen Konstanten darstellt, die nationenübergreifend Bestand hat und keine Grenzen kennt, brauchen wir eine Lehrerbildung, die strukturell und konzeptionell so gesamteuropäisch angelegt ist wie ihre Herausforderungen. Wir brauchen trotz und wegen verschiedener bildungspolitischer Unterschiede und Hürden neue Ansätze der Kooperation und Vernetzung, deren Chancen und Herausforderungen in der Folge exemplarisch am binationalen Master of Education MEEF / LINT (Lehramt International Deutsch-Französisch skizziert werden sollen.
基于软件无线电的FM正交调制器的实现%Realization of FM Quadrature Modulation Based on Software - Defined - Radio(SDR)
Institute of Scientific and Technical Information of China (English)
胡丽芳
2012-01-01
基于软件无线电(SDR)的思想,介绍了一种新型FM调制方法——正交调制,并利用Xilinx的高级系统级FPGA仿真工具System Generator for DSP对这种正交调制方法进行建模、仿真.实验结果表明,用正交调制的方法可以方便地实现FM调制.用数字方法为实现FM调频广播或超短波FM电台提供新的解决方案.
Solving the Bias Problem in Censored Pharmacokinetic Data
DEFF Research Database (Denmark)
Clausen, Wan Hui Ong; Tabanera, René; Dalgaard, Peter
2005-01-01
Pseudo-residual; Laplacian approximation; Adaptive Gauss-Hermite Quadrature; Nonlinear mixed effects models; Censored normal distribution; Limit of quantification......Pseudo-residual; Laplacian approximation; Adaptive Gauss-Hermite Quadrature; Nonlinear mixed effects models; Censored normal distribution; Limit of quantification...
Some Generalized Error Inequalities and Applications
Directory of Open Access Journals (Sweden)
Mir NazirAhmad
2008-01-01
Full Text Available Abstract We present a family of four-point quadrature rule, a generalization of Gauss-two point, Simpson's , and Lobatto four-point quadrature rule for twice-differentiable mapping. Moreover, it is shown that the corresponding optimal quadrature formula presents better estimate in the context of four-point quadrature formulae of closed type. A unified treatment of error inequalities for different classes of function is also given.
Four-state discrimination scheme beyond the heterodyne limit
DEFF Research Database (Denmark)
Muller, C. R.; Castaneda, Mario A. Usuga; Wittmann, C.
2012-01-01
We propose and experimentally demonstrate a hybrid discrimination scheme for the quadrature phase shift keying protocol, which outperforms heterodyne detection for any signal power. The discrimination is composed of a quadrature measurement, feed forward and photon detection.......We propose and experimentally demonstrate a hybrid discrimination scheme for the quadrature phase shift keying protocol, which outperforms heterodyne detection for any signal power. The discrimination is composed of a quadrature measurement, feed forward and photon detection....
Four-state discrimination scheme beyond the heterodyne limit
DEFF Research Database (Denmark)
Muller, C. R.; Castaneda, Mario A. Usuga; Wittmann, C.
2012-01-01
We propose and experimentally demonstrate a hybrid discrimination scheme for the quadrature phase shift keying protocol, which outperforms heterodyne detection for any signal power. The discrimination is composed of a quadrature measurement, feed forward and photon detection.......We propose and experimentally demonstrate a hybrid discrimination scheme for the quadrature phase shift keying protocol, which outperforms heterodyne detection for any signal power. The discrimination is composed of a quadrature measurement, feed forward and photon detection....
Theoretical numerical analysis
Wendroff, Burton
1966-01-01
Theoretical Numerical Analysis focuses on the presentation of numerical analysis as a legitimate branch of mathematics. The publication first elaborates on interpolation and quadrature and approximation. Discussions focus on the degree of approximation by polynomials, Chebyshev approximation, orthogonal polynomials and Gaussian quadrature, approximation by interpolation, nonanalytic interpolation and associated quadrature, and Hermite interpolation. The text then ponders on ordinary differential equations and solutions of equations. Topics include iterative methods for nonlinear systems, matri
Zhai, Z; Gao, J; Zhai, Zehui; Li, Yongming; Gao, Jiangrui
2004-01-01
Quantum fluctuation and quantum entanglement of the pump field reflected from an optical cavity for type II second harmonic generation are theoretically analyzed. The correlation spectra between the quadratures of the reflected subharmonic fields are interpreted in terms of pump parameter, intracavity losses and normalized frequency. Large correlation degrees of both amplitude and phase quadratures can be accessed in a triple resonant cavity before the pitchfork bifurcation occurs. The two reflected subharmonic fields are in an entangled state with the quantum correlation of phase quadratures and anticorrelation of amplitude quadratures. The proposed system can be exploited to be a new source generating entangled states of continuous variables.
Institute of Scientific and Technical Information of China (English)
康连福; 王燕飞; 胡贞; 田成军
2005-01-01
力矩式自整角机整步绕组交轴短路阻抗实验测试是继"示波器法"后的另一种方法,即"三表法",与参考文献[1]中采用的"示波器法"进行了比铰,并与设计值进行了对比,证实本文给出的方法可行,通过研究力矩式自整角机整步绕组交轴短路阻抗参数的实验测试,相信对力矩式自整角机的研制、阻尼绕组的设计及使用都是有益的.
Institute of Scientific and Technical Information of China (English)
陆必应; 周智敏; 宋千; 梁甸农
2000-01-01
本文首先对影响正交解调结构超宽带接收系统性能的幅相误差作了简要分析,随后提出了用复系数FIR滤波器实现整个系统幅相误差校正的方案,并推导出一种设计幅相校正FIR滤波器的算法,最后给出了一个用此方案实现超宽带系统幅相误差校正的实例.
Energy Technology Data Exchange (ETDEWEB)
Moranchel y Rodriguez, M. [IPN, ESFM, Departamento de Ingenieria Nuclear, 07738 Mexico D.F. (Mexico)]. e-mail: mmoranchel@ipn.mx
2008-07-01
The central problem of the dosimetry of the ionizing radiations is the determination of the dissipated energy by unit of mass of irradiated material. This energy usually is inferred of ionization measures in a small cavity of air housed inside the material medium. The Bragg-Gray cavity theory was the first one in estimating the dissipated energy through the ionizations that the primary electrons cause in the cavity. The primary electrons are generated by photoelectric effect, pair production and by Compton dispersion of the photon beams that initially impact on the material. However, in a more realist approach the existence of secondary electrons due to the electron-electron interaction it will be considered. The Spencer-Attix cavity theory considers to the secondary electrons as responsible part for the energy deposited in the means, for that a total spectral fluence of electrons (primary and secondary) it appears in this theory. Few electrons spectra have been published, mainly, those that include the contribution of secondary electrons ({delta} rays). Leaving of the ideas of Spencer-Attix, in this work an approach method to determine the rate of electron spectral fluences (total regarding primary) for a wide variety of material Z, and energy sources T{sub 0} is presented. The method for materials used by Spencer-Attix is applied, it is proven its reliability and it is applied to the water like absorber medium by its importance in the clinical dosimetry. (Author)
THE COLLOCATION METHODS FOR SINGULAR INTEGRAL EQUATIONS WITH CAUCHY KERNELS
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
This paper applies the singular integral operators,singular quadrature operators and discretization matrices associated withsingular integral equations with Cauchy kernels, which are established in [1],to give a unified framework for various collocation methods of numericalsolutions of singular integral equations with Cauchy kernels. Under theframework, the coincidence of the direct quadrature method and the indirectquadrature method is very simple and obvious.
The Asymptotic Behavior for Numerical Solution of a Volterra Equation
Institute of Scientific and Technical Information of China (English)
Da Xu
2003-01-01
Long-time asymptotic stability and convergence properties for the numerical solution of a Volterra equation of parabolic type are studied. The methods are based on the first-second order backward difference methods. The memory term is approximated by the convolution quadrature and the interpolant quadrature. Discretization of the spatial partial differential operators by the finite element method is also considered.
DEFF Research Database (Denmark)
Jalaal, M.; Soleimani, Soheil; Domairry, G.
2011-01-01
In this paper the meshless Local Multi Quadrics-based Differential Quadrature (MQ-DQ) method is applied to obtain the electric field distribution for different applicable irregular geometries. This method is the combination of Differential Quadrature approximation of derivatives and function...... with FEM and this fact that MQ-DQ method is an accurate and flexible method in solution of electrostatic equations....
Operational formulation of homodyne detection
Tyc, T; Tyc, Tomas; Sanders, Barry C.
2004-01-01
We obtain the standard quadrature-phase positive operator-valued measure (POVM) for homodyne detection directly and rigorously from the POVM for direct photon counting. In addition we obtain correction terms for the quadrature-phase POVM that are applicable for relatively weak local oscillator field strengths and typical signal states.
A Wideband 2x13-bit All-Digital I/Q RF-DAC
Alavi, S.M.; Staszewski, R.B.; De Vreede, L.C.N.; Long, J.R.
2014-01-01
This paper presents a wideband 2 13-bit in-phase/quadrature-phase (I/Q) RF digital-to-analog converter-based all-digital modulator realized in 65-nm CMOS. The isolation between I and Q paths is guaranteed employing 25% duty-cycle differential quadrature clocks. With a 1.3-V supply and an on-chip pow
Institute of Scientific and Technical Information of China (English)
无
2012-01-01
Chebfun and numerical quadrature HALE Nicholas ＆ TREFETHEN Lloyd N Abstract Chebfun is a Matlab-based software system that overloads Matlab＇s discrete operations for vectors and matrices to analogous continuous operations for functions and operators. We begin by describing Chebfun＇s fast capabilities for Clenshaw-Curtis and also Gauss-Legendre, -Jacobi, -Hermite, and -Laguerre quadrature, based on algorithms of Waldvogel and Glaser, Liu and Rokhlin. Then we consider how such methods can be applied to quadrature problems including 2D integrals over rectangles, fractional derivatives and integrals, functions defined on unbounded intervals, and the fast computation of weights for barycentric interpolation.
One-step block method for solving Volterra integro-differential equations
Mohamed, Nurul Atikah binti; Majid, Zanariah Abdul
2015-10-01
One-step block method for solving linear Volterra integro-differential equations (VIDEs) is presented in this paper. In VIDEs, the unknown function appears in the form of derivative and under the integral sign. The popular methods for solving VIDEs are the method of quadrature or quadrature method combined with numerical method. The proposed block method will solve the ordinary differential equations (ODEs) part and Newton-Cotes quadrature rule is applied to calculate the integral part of VIDEs. Numerical problems are presented to illustrate the performance of the proposed method.
DEFF Research Database (Denmark)
Da Ros, Francesco; Dalgaard, Kjeld; Lei, Lei
2013-01-01
A phase-sensitive four-wave mixing (FWM) scheme enabling the simultaneous conversion of the two orthogonal quadratures of an optical signal to different wavelengths is demonstrated for the first time under dynamic operation using a highly nonlinear optical fiber (HNLF) as the nonlinear medium....... The scheme is first optimized with respect to the power levels and phases of the four phase-coherent pumps. The successful modulation and wavelength conversion of the two complex quadratures of a quadrature phase-shift keying (QPSK) signal to two binary phase-shift keying (BPSK) signals is then demonstrated...
Noiseless Quantum Measurement and Squeezing of Microwave Fields Utilizing Mechanical Vibrations.
Ockeloen-Korppi, C F; Damskägg, E; Pirkkalainen, J-M; Heikkilä, T T; Massel, F; Sillanpää, M A
2017-03-10
A process which strongly amplifies both quadrature amplitudes of an oscillatory signal necessarily adds noise. Alternatively, if the information in one quadrature is lost in phase-sensitive amplification, it is possible to completely reconstruct the other quadrature. Here we demonstrate such a nearly perfect phase-sensitive measurement using a cavity optomechanical scheme, characterized by an extremely small noise less than 0.2 quanta. The device also strongly squeezes microwave radiation by 8 dB below vacuum. A source of bright squeezed microwaves opens up applications in manipulations of quantum systems, and noiseless amplification can be used even at modest cryogenic temperatures.
Constellation Shaping for WDM systems using 256QAM/1024QAM with Probabilistic Optimization
DEFF Research Database (Denmark)
Yankov, Metodi Plamenov; Da Ros, Francesco; Porto da Silva, Edson;
2016-01-01
In this paper, probabilistic shaping is numerically and experimentallyinvestigated for increasing the transmission reach of wavelength divisionmultiplexed (WDM) optical communication system employing quadrature amplitudemodulation (QAM). An optimized probability mass function (PMF) of the QAMsymb...
A solution of Problem 26 of P. Turan
Institute of Scientific and Technical Information of China (English)
史应光
1995-01-01
Explicit formulas for Cotes numbers of the Gaussian Hermite quadrature formula based on the zeros of the nth Chebyshev polynomial and their asymptotic behavior as n→∞ are given. This provides a solution of Problem 26 of P. Turan.
improvement of power system quality using vsc-based hvdc ...
African Journals Online (AJOL)
HOD
-frame selected such that the quadrature component will result in the ratio between the ..... needed. Figure 8 (a) and (b) shows the analysis of the Voltage waveform and FFT wave spectrum, the ... (MMC) on electromagnetic transient simulation.
steady – state performance of induction and transfer state ...
African Journals Online (AJOL)
eobe
and in particular, the quadrature axis reactance. Keywords: ... family of rotating electrical machines in 1978 and occupies a very lowly ... magnetic core made up of laminations carrying slot- ... The flux density BB produced in this machine half is.
Increasing Entanglement between Gaussian States by Coherent Photon Subtraction
DEFF Research Database (Denmark)
Ourjoumtsev, Alexei; Dantan, Aurelien Romain; Tualle Brouri, Rosa
2007-01-01
We experimentally demonstrate that the entanglement between Gaussian entangled states can be increased by non-Gaussian operations. Coherent subtraction of single photons from Gaussian quadrature-entangled light pulses, created by a nondegenerate parametric amplifier, produces delocalized states w...
Directory of Open Access Journals (Sweden)
Guoan Huang
2009-01-01
of the price of this option, integral representations of both the optimal stopping and exercise boundaries are derived. A numerical method is used to approximate the optimal stopping and exercise boundaries by quadrature formulas. Numerical results and discussions are provided.
A theoretical introduction to numerical analysis
Ryaben'kii, Victor S
2006-01-01
PREFACE ACKNOWLEDGMENTS INTRODUCTION Discretization Conditioning Error On Methods of Computation INTERPOLATION OF FUNCTIONS. QUADRATURES ALGEBRAIC INTERPOLATION Existence and Uniqueness of Interpolating Polynomial Classical Piecewise Polynomial Interpolation Smooth Piecewise Polynomial Interpolation (Splines) Interpolation of Functions of Two Variables TRIGONOMETRIC INTERPOLATION Interpolation of Periodic Functions Interpolation of Functions on an Interval. Relation between Algebraic and Trigonometric Interpolation COMPUTATION OF DEFINITE INTEGRALS. QUADRATURES Trapezoidal Rule, Simpson's Formula, and the Like Quadrature Formulae with No Saturation. Gaussian Quadratures Improper Integrals. Combination of Numerical and Analytical Methods Multiple Integrals SYSTEMS OF SCALAR EQUATIONS SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS: DIRECT METHODS Different Forms of Consistent Linear Systems Linear Spaces, Norms, and Operators Conditioning of Linear Systems Gaussian Elimination and Its Tri-Diag...
Chand, Naresh; Bakker, Laurens; Veen, van Dora; Yadvish, Robert D.
2001-01-01
Data are presented that show that, for transporting quadrature amplitude modulated (QAM) radiofrequency (RF) subcarriers in suboctave frequency range, electroabsorption modulator integrated distributed feedback lasers (EMLs) can he modulated with significantly higher (2.5 times) modulation index wit
Bastos, Catarina; Bertolami, Orfeu; Dias, Nuno Costa; Prata, João Nuno
2014-01-01
We revisit Ozawa's uncertainty principle (OUP) in the framework of noncommutative (NC) quantum mechanics. We derive a matrix version of OUP accommodating any NC structure in the phase-space, and compute NC corrections to lowest order for two measurement interactions, namely the Backaction Evading Quadrature Amplifier and Noiseless Quadrature Transducers. These NC corrections alter the nature of the measurement interaction, as a noiseless interaction may acquire noise, and an interaction of independent intervention may become dependent of the object system. However the most striking result is that noncommutativity may lead to a violation of the OUP itself. The NC corrections for the Backaction Evading Quadrature Amplifier reveal a new term which may potentially be amplified in such a way that the violation of the OUP becomes experimentally testable. On the other hand, the NC corrections to the Noiseless Quadrature Transducer shows an incompatibility of this model with NC quantum mechanics. We discuss the impli...
Numerical integration of discontinuous functions: moment fitting and smart octree
Hubrich, Simeon; Di Stolfo, Paolo; Kudela, László; Kollmannsberger, Stefan; Rank, Ernst; Schröder, Andreas; Düster, Alexander
2017-07-01
A fast and simple grid generation can be achieved by non-standard discretization methods where the mesh does not conform to the boundary or the internal interfaces of the problem. However, this simplification leads to discontinuous integrands for intersected elements and, therefore, standard quadrature rules do not perform well anymore. Consequently, special methods are required for the numerical integration. To this end, we present two approaches to obtain quadrature rules for arbitrary domains. The first approach is based on an extension of the moment fitting method combined with an optimization strategy for the position and weights of the quadrature points. In the second approach, we apply the smart octree, which generates curved sub-cells for the integration mesh. To demonstrate the performance of the proposed methods, we consider several numerical examples, showing that the methods lead to efficient quadrature rules, resulting in less integration points and in high accuracy.
Quantum frequency up-conversion of continuous variable entangled states
Energy Technology Data Exchange (ETDEWEB)
Liu, Wenyuan; Wang, Ning; Li, Zongyang; Li, Yongmin, E-mail: yongmin@sxu.edu.cn [State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006 (China)
2015-12-07
We demonstrate experimentally quantum frequency up-conversion of a continuous variable entangled optical field via sum-frequency-generation process. The two-color entangled state initially entangled at 806 and 1518 nm with an amplitude quadrature difference squeezing of 3.2 dB and phase quadrature sum squeezing of 3.1 dB is converted to a new entangled state at 530 and 1518 nm with the amplitude quadrature difference squeezing of 1.7 dB and phase quadrature sum squeezing of 1.8 dB. Our implementation enables the observation of entanglement between two light fields spanning approximately 1.5 octaves in optical frequency. The presented scheme is robust to the excess amplitude and phase noises of the pump field, making it a practical building block for quantum information processing and communication networks.
An all-fiber image-reject homodyne coherent Doppler wind lidar
DEFF Research Database (Denmark)
Foroughi Abari, Farzad; Pedersen, Anders Tegtmeier; Mann, Jakob
2014-01-01
In this paper, we present an alternative approach to the down-conversion (translation) of the received optical signals collected by the antenna of an all-fiber coherent Doppler lidar (CDL). The proposed method, widely known as image-reject, quadrature detection, or in-phase/quadrature-phase detec......In this paper, we present an alternative approach to the down-conversion (translation) of the received optical signals collected by the antenna of an all-fiber coherent Doppler lidar (CDL). The proposed method, widely known as image-reject, quadrature detection, or in......-phase/quadrature-phase detection, utilizes the advances in fiber optic communications such that the received signal can be optically down-converted into baseband where not only the radial velocity but also the direction of the movement can be inferred. In addition, we show that by performing a cross-spectral analysis, enabled...
National Research Council Canada - National Science Library
Hsing-Yu Chen; Chien-Hung Yeh; Chi-Wai Chow; Jiun-Yu Sung; Yen-Liang Liu; Jeyhong Chen
2013-01-01
In this paper, we propose and investigate an injection-locked Fabry-Pérot laser diode (FP-LD) with 10% front-facet reflectivity by using orthogonal frequency-division multiplexing-quadrature amplitude modulation...
A Tandem Coupler for Terahertz Integrated Circuits
Reck, Theodore J.; Deal, William; Chattopadhyay, Goutam
2013-01-01
A coplanar waveguide 3 dB quadrature coupler operating from 500 to 700 GHz is designed, fabricated and measured. On-wafer measurements demonstrate an amplitude balance of +/-2 dB and phase balance of +/-20 deg.
Evaluation and Analysis of a Multi-Band Transceiver for Next Generation Telemetry Applications
2014-06-01
Networked Enhanced Telemetry (iNET), Shaped Offset Quadrature Phase Shift Keying (SOQPSK), bit error rate ( BER ), transceiver 16. SECURITY...MBFE) provides tri-band operation, band selection, and channel tuning. The digital radio (DR) implements field-programmable gate array (FPGA...frequency translation architecture generates in- phase (I) and quadrature (Q) spectrum components with phase differences relative to each other. These phase
Digital GPS-Signal Processor With P-Code/No-P-Code Option
Thomas, J. Brooks; Srinivasan, Jeffrey M.
1994-01-01
Size, power, and cost reduced by exploiting commonality. Digital signal processor for Global Positioning System (GPS) receiver set to operate in "code" mode when P code known, or in "codeless" mode when P code not known. In codeless mode, processor performs full-quadrature processing, resulting in signal-to-noise ratio (SNR) 6 dB greater than SNR's of processors not performing at full quadrature.
A DDDAS Framework for Volcanic Ash Propagation and Hazard Analysis
2012-01-01
for by using AGMM (See details below) in the inner loop in lock-step with the bent-puff coupled model. The outer PCQ loop (see Fig. 1) accounts for...assimilation step the input model parameters pdf is updated using the Bayesian framework. Based on the modified pdf a new PCQ based sampling must be...formulation of the NISP idea [38] that we call polynomial chaos quadrature ( PCQ ). PCQ replaces the projection step of NISP with numerical quadrature
Discrete Boltzmann model of shallow water equations with polynomial equilibria
Meng, Jianping; Emerson, David R; Peng, Yong; Zhang, Jianmin
2016-01-01
A hierarchy of discrete Boltzmann model is proposed for simulating shallow water flows. By using the Hermite expansion and Gauss-Hermite quadrature, the conservation laws are automatically satisfied without extra effort. Moreover, the expansion order and quadrature can be chosen flexibly according to the problem for striking the balance of accuracy and efficiency. The models are then tested using the classical one-dimensional dam-breaking problem, and successes are found for both supercritical and subcritical flows.
Entanglement between Two Distant Observables of Quantum Current as the Mechanism of Radiation
Park, Jeong-Wan
2016-01-01
In this paper, it will be demonstrated that entanglement between two distant observables of quantum electron current enables electromagnetic radiation of free-electron lasers even though the amplified quadrature and the radiated quadrature are out of phase. This is supported by the previously observed sub-Poisson photon intensity fluctuations in the coherent spontaneous harmonic radiation generated by an infrared free-electron laser.
Performance of Wireless Networks in Highly Reflective Rooms with Variable Absorption
2014-09-01
quadrature amplitude modulation QPSK quadrature phase-shift keying RF radio frequency SBR shooting and bouncing rays SM spatial multiplexing USB...n nr i This equation is known as Snell’s law. Each of the symbols n1 and n2 is a dimensionless constant , called the index of refraction, and it...used by 802.11n and ac. Considering a scheme of m independent propagation channels, each channel with a probability of a given fading level , q, the
2015-12-24
Quadrature Collocation Method and Sparse Nonlinear Programming,” ACM Transactions on Math. Software , Vol. 39, No. 3, Jul 13. 8Patterson, M. A., R. A. V., GPOPS...careful seeding,” Proceedings of the eighteenth annual ACM -SIAM sympo- sium on Discrete algorithms, Society for Industrial and Applied Mathematics , 2007...Optimal Control Problems Using hp-Adaptive Gaussian Quadrature Collocation Method and Sparse Nonlinear Programming,” ACM Transactions on Math. Software
2011-09-01
transformed into a matrix system with Gauss -Legendre quadrature as the underlying quadrature rule of the LCN method. In the present formulation, the far...1234–1237. 30. Johnson, J. T. A Numerical Study of Low-Grazing Angle Backscatter From Ocean-Like Impedance Surfaces With the Canonical Grid...Using the Physics-Based Two-Grid Method and the Canonical -Grid method,‖ IEEE Trans. Antennas Propagat. April 1999, 47 (4), 752–763. 33. Chan, C. H
Integrable discretization and deformation of the nonholonomic Chaplygin ball
Tsiganov, Andrey V.
2017-07-01
The rolling of a dynamically balanced ball on a horizontal rough table without slipping was described by Chaplygin using Abel quadratures. We discuss integrable discretizations and deformations of this nonholonomic system using the same Abel quadratures. As a by-product one gets a new geodesic flow on the unit two-dimensional sphere whose additional integrals of motion are polynomials in the momenta of fourth order.
Hanyga, Andrzej
2014-01-01
A method of eliminating the memory from the equations of motion of linear viscoelasticity is presented. Replacing the unbounded memory by a quadrature over a finite or semi-finite interval leads to considerable reduction of computational effort and storage. The method applies to viscoelastic media with separable completely monotonic relaxation moduli with an explicitly known retardation spectrum. In the seismological Strick-Mainardi model the quadrature is a Gauss-Jacobi quaddrature. The relation to fractional-order viscoelasticity is shown
Least Squares Polynomial Chaos Expansion: A Review of Sampling Strategies
Hadigol, Mohammad; Doostan, Alireza
2017-01-01
As non-institutive polynomial chaos expansion (PCE) techniques have gained growing popularity among researchers, we here provide a comprehensive review of major sampling strategies for the least squares based PCE. Traditional sampling methods, such as Monte Carlo, Latin hypercube, quasi-Monte Carlo, optimal design of experiments (ODE), Gaussian quadratures, as well as more recent techniques, such as coherence-optimal and randomized quadratures are discussed. We also propose a hybrid sampling ...
Directory of Open Access Journals (Sweden)
L. Jones Tarcius Doss
2012-01-01
Full Text Available A quadrature-based mixed Petrov-Galerkin finite element method is applied to a fourth-order linear ordinary differential equation. After employing a splitting technique, a cubic spline trial space and a piecewise linear test space are considered in the method. The integrals are then replaced by the Gauss quadrature rule in the formulation itself. Optimal order a priori error estimates are obtained without any restriction on the mesh.
Dynamics of a harmonic oscillator in a finite-dimensional Hilbert space
Energy Technology Data Exchange (ETDEWEB)
Kuang Leman (CCAST (World Lab.), Beijing, BJ (China) Dept. of Physics and Inst. of Physics, Hunan Normal Univ. (China)); Wang Fabo (Dept. of Physics, Hunan Normal Univ. (China)); Zhou Yanguo (Dept. of Physics, Hunan Normal Univ. (China))
1993-11-29
Some dynamical properties of a finite-dimensional Hilbert space harmonic oscillator (FDHSHO) are studied. The time evolution of the position and momentum operators and the second-order quadrature squeezing are investigated in detail. It is shown that the coherent states of the FDHSHO are not the minimum uncertainty states of the position and momentum operators of the FDHSHO. It is found that the second-order squeezing of the quadrature operators vanishes and reappears periodically in the time evolution. (orig.)
The power spectral density of digital modulations transmitted over nonlinear channels
Divsalar, D.; Simon, M. K.
1982-01-01
This paper examines by analytical methods the power spectral densities of digital modulations (in particular, staggered and unstaggered quadrature modulations) passed through band-limited nonlinear channels. Previously observed (by computer simulation or hardware measurement) behavior of such spectra with regard to the suppression or restoration of its sidelobes after passing through the nonlinearity is verified analytically. Several examples corresponding to specific quadrature modulations and filter-nonlinearity combinations are presented as illustrations of the general results.
Coherent communication with continuous quantum variables
Wilde, Mark M.; Krovi, Hari; Brun, Todd A.
2007-06-01
The coherent bit (cobit) channel is a resource intermediate between classical and quantum communication. It produces coherent versions of teleportation and superdense coding. We extend the cobit channel to continuous variables by providing a definition of the coherent nat (conat) channel. We construct several coherent protocols that use both a position-quadrature and a momentum-quadrature conat channel with finite squeezing. Finally, we show that the quality of squeezing diminishes through successive compositions of coherent teleportation and superdense coding.
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Accurate prediction of the evolution of particle size distribution is critical to determining the dynamic flow structure of a disperse phase system.A population balance equation(PBE),a non-linear hyperbolic equation of the number density function,is usually employed to describe the micro-behavior(aggregation,breakage,growth,etc.) of a disperse phase and its effect on particle size distribution.Numerical solution is the only choice in most cases.In this paper,three different numerical methods(direct discretization methods,Monte Carlo methods,and moment methods) for the solution of a PBE are evaluated with regard to their ease of implementation,computational load and numerical accuracy.Special attention is paid to the relatively new and superior moment methods including quadrature method of moments(QMOM),direct quadrature method of moments(DQMOM),modified quadrature method of moments(M-QMOM),adaptive direct quadrature method of moments(ADQMOM),fixed pivot quadrature method of moments(FPQMOM),moving particle ensemble method(MPEM) and local fixed pivot quadrature method of moments(LFPQMOM).The prospects of these methods are discussed in the final section,based on their individual merits and current state of development of the field.
Institute of Scientific and Technical Information of China (English)
SU JunWei; GU ZhaoLin; XU X.Yun
2009-01-01
Accurate prediction of the evolution of particle size distribution is critical to determining the dynamic flow structure of a disperse phase system.A population balance equation(PBE),a non-linear hyperbolic equation of the number density function,is usually employed to describe the micro-behavior(aggregation,breakage,growth,etc.)of a disperse phase and its effect on particle size distribution.Numerical solution is the only choice in most cases.In this paper,three different numerical methods(direct discretization methods,Monte Carlo methods,and moment methods)for the solution of a PBE are evaluated with regard to their ease of implementation,computational load and numerical accuracy.Special attention is paid to the relatively new and superior moment methods including quadrature method of moments(QMOM),direct quadrature method of moments(DQMOM),modified quadrature method of moments(M-QMOM),adaptive direct quadrature method of moments(ADOMOM),fixed pivot quadrature method of moments(FPQMOM),moving particle ensemble method(MPEM)and local fixed pivot quadrature method of moments(LFPQMOM).The prospects of these methods ere discussed in the final section,based on their individual merits and current state of development of the field.
Mechanical Coupling Error Suppression Technology for an Improved Decoupled Dual-Mass Micro-Gyroscope
Directory of Open Access Journals (Sweden)
Bo Yang
2016-04-01
Full Text Available This paper presents technology for the suppression of the mechanical coupling errors for an improved decoupled dual-mass micro-gyroscope (DDMG. The improved micro-gyroscope structure decreases the moment arm of the drive decoupled torque, which benefits the suppression of the non-ideal decoupled error. Quadrature correction electrodes are added to eliminate the residual quadrature error. The structure principle and the quadrature error suppression means of the DDMG are described in detail. ANSYS software is used to simulate the micro-gyroscope structure to verify the mechanical coupling error suppression effect. Compared with the former structure, simulation results demonstrate that the rotational displacements of the sense frame in the improved structure are substantially suppressed in the drive mode. The improved DDMG structure chip is fabricated by the deep dry silicon on glass (DDSOG process. The feedback control circuits with quadrature control loops are designed to suppress the residual mechanical coupling error. Finally, the system performance of the DDMG prototype is tested. Compared with the former DDMG, the quadrature error in the improved dual-mass micro-gyroscope is decreased 9.66-fold, and the offset error is decreased 6.36-fold. Compared with the open loop sense, the feedback control circuits with quadrature control loop decrease the bias drift by 20.59-fold and the scale factor non-linearity by 2.81-fold in the ±400°/s range.
Yang, Bo; Wang, Xingjun; Deng, Yunpeng; Hu, Di
2016-01-01
This paper presents technology for the suppression of the mechanical coupling errors for an improved decoupled dual-mass micro-gyroscope (DDMG). The improved micro-gyroscope structure decreases the moment arm of the drive decoupled torque, which benefits the suppression of the non-ideal decoupled error. Quadrature correction electrodes are added to eliminate the residual quadrature error. The structure principle and the quadrature error suppression means of the DDMG are described in detail. ANSYS software is used to simulate the micro-gyroscope structure to verify the mechanical coupling error suppression effect. Compared with the former structure, simulation results demonstrate that the rotational displacements of the sense frame in the improved structure are substantially suppressed in the drive mode. The improved DDMG structure chip is fabricated by the deep dry silicon on glass (DDSOG) process. The feedback control circuits with quadrature control loops are designed to suppress the residual mechanical coupling error. Finally, the system performance of the DDMG prototype is tested. Compared with the former DDMG, the quadrature error in the improved dual-mass micro-gyroscope is decreased 9.66-fold, and the offset error is decreased 6.36-fold. Compared with the open loop sense, the feedback control circuits with quadrature control loop decrease the bias drift by 20.59-fold and the scale factor non-linearity by 2.81-fold in the ±400°/s range.
Directory of Open Access Journals (Sweden)
Ibrahim A.Z. Qatawneh
2005-01-01
Full Text Available Digital communications systems use Multi tone Channel (MC transmission techniques with differentially encoded and differentially coherent demodulation. Today there are two principle MC application, one is for the high speed digital subscriber loop and the other is for the broadcasting of digital audio and video signals. In this study the comparison of multi carriers with OQPSK and Offset 16 QAM for high-bit rate wireless applications are considered. The comparison of Bit Error Rate (BER performance of Multi tone Channel (MC with offset quadrature amplitude modulation (Offset 16 QAM and offset quadrature phase shift keying modulation (OQPSK with guard interval in a fading environment is considered via the use of Monte Carlo simulation methods. BER results are presented for Offset 16 QAM using guard interval to immune the multi path delay for frequency Rayleigh fading channels and for two-path fading channels in the presence of Additive White Gaussian Noise (AWGN. The BER results are presented for Multi tone Channel (MC with differentially Encoded offset 16 Quadrature Amplitude Modulation (offset 16 QAM and MC with differentially Encoded offset quadrature phase shift keying modulation (OQPSK using guard interval for frequency flat Rician channel in the presence of Additive White Gaussian Noise (AWGN. The performance of multitone systems is also compared with equivalent differentially Encoded offset quadrature amplitude modulation (Offset 16 QAM and differentially Encoded offset quadrature phase shift keying modulation (OQPSKwith and without guard interval in the same fading environment.
Flexible digital modulation and coding synthesis for satellite communications
Vanderaar, Mark; Budinger, James; Hoerig, Craig; Tague, John
1991-01-01
An architecture and a hardware prototype of a flexible trellis modem/codec (FTMC) transmitter are presented. The theory of operation is built upon a pragmatic approach to trellis-coded modulation that emphasizes power and spectral efficiency. The system incorporates programmable modulation formats, variations of trellis-coding, digital baseband pulse-shaping, and digital channel precompensation. The modulation formats examined include (uncoded and coded) binary phase shift keying (BPSK), quatenary phase shift keying (QPSK), octal phase shift keying (8PSK), 16-ary quadrature amplitude modulation (16-QAM), and quadrature quadrature phase shift keying (Q squared PSK) at programmable rates up to 20 megabits per second (Mbps). The FTMC is part of the developing test bed to quantify modulation and coding concepts.
Non-classical radiation emission by a coherent conductor
Forgues, Jean-Charles; Gasse, Gabriel; Lupien, Christian; Reulet, Bertrand
2016-08-01
We report experimental evidence that the microwave electromagnetic field generated by a normal conductor, here a tunnel junction placed at ultra-low temperature, can be non-classical. By measuring the quadratures of the electromagnetic field at one or two frequencies in the GHz range, we demonstrate the existence of squeezing as well as entanglement in such radiation. In one experiment, we observe that the variance of one quadrature of the photo-assisted noise generated by the junction goes below its vacuum level. In the second experiment, we demonstrate the existence of correlations between the quadratures taken at two frequencies, which can be stronger than allowed by classical mechanics, proving that the radiation at those two frequencies are entangled. xml:lang="fr"
A CMOS image-rejection mixer with 58-dB IRR for DTV receivers
Institute of Scientific and Technical Information of China (English)
Yuan Shuai; Li Zhiqun; Huang Jing; Wang Zhigong
2009-01-01
The design, implementation, and characterization of an image-rejection double quadrature conversion mixer based on RC asymmetric polyphase filters (PPF) are presented. The mixer consists of three sets of PPFs and a mixer core for quadrature down conversion. Two sets of PPFs are used for the quadrature generation and the other one is used for the IF signal selection to reject the unwanted image band. Realized in 0.18-μm CMOS technology as a part of the DVB-T receiver chip, the mixer exhibits a high image rejection ratio (IRR) of 58 dB, a power consumption of 11 mW, and a 1-dB gain compression point of -15 dBm.
Fourth-Order Method for Numerical Integration of Age- and Size-Structured Population Models
Energy Technology Data Exchange (ETDEWEB)
Iannelli, M; Kostova, T; Milner, F A
2008-01-08
In many applications of age- and size-structured population models, there is an interest in obtaining good approximations of total population numbers rather than of their densities. Therefore, it is reasonable in such cases to solve numerically not the PDE model equations themselves, but rather their integral equivalents. For this purpose quadrature formulae are used in place of the integrals. Because quadratures can be designed with any order of accuracy, one can obtain numerical approximations of the solutions with very fast convergence. In this article, we present a general framework and a specific example of a fourth-order method based on composite Newton-Cotes quadratures for a size-structured population model.
Ghlaifan, Abdulatef; Tounsi, Yassine; Zada, Sara; Muhire, Desire; Nassim, Abdelkrim
2016-12-01
A method for optical phase extraction based on two-dimensional discrete wavelets transform (2-DWT) decomposition is shown. From modulated fringe pattern, phase distribution is extracted by the ratio between detail and approximation. Modulation process is realized digitally by introducing high-frequency spatial carrier, and this process needs two π/2-shifted fringe patterns. We propose to use only single fringe and generate its quadrature by spiral phase transform (SPT). After validation by computer simulation, we apply the 2-DWT algorithm on experimental speckle fringe correlation taken for hard disk surface. The extracted phase using SPT quadrature was compared with that given using this time experimental quadrature, and we show a good performance by multiscale structural similarity metric.
A Family of Multipoint Flux Mixed Finite Element Methods for Elliptic Problems on General Grids
Wheeler, Mary F.
2011-01-01
In this paper, we discuss a family of multipoint flux mixed finite element (MFMFE) methods on simplicial, quadrilateral, hexahedral, and triangular-prismatic grids. The MFMFE methods are locally conservative with continuous normal fluxes, since they are developed within a variational framework as mixed finite element methods with special approximating spaces and quadrature rules. The latter allows for local flux elimination giving a cell-centered system for the scalar variable. We study two versions of the method: with a symmetric quadrature rule on smooth grids and a non-symmetric quadrature rule on rough grids. Theoretical and numerical results demonstrate first order convergence for problems with full-tensor coefficients. Second order superconvergence is observed on smooth grids. © 2011 Published by Elsevier Ltd.
Optimal Signal Filtration in Optical Sensors with Natural Squeezing of Vacuum Noises
Gusev, A. V.; Kulagin, V. V.
1996-01-01
The structure of optimal receiver is discussed for optical sensor measuring a small displacement of probe mass. Due to nonlinear interaction of the field and the mirror, a reflected wave is in squeezed state (natural squeezing), two quadratures of which are correlated and therefore one can increase signal-to-noise ratio and overcome the SQL. A measurement procedure realizing such correlation processing of two quadratures is clarified. The required combination of quadratures can be produced via mixing of pump field reflected from the mirror with local oscillator phase modulated field in duel-detector homodyne scheme. Such measurement procedure could be useful not only for resonant bar gravitational detector but for laser longbase interferometric detectors as well.
A sublinear-scaling approach to density-functional-theory analysis of crystal defects
Ponga, M.; Bhattacharya, K.; Ortiz, M.
2016-10-01
We develop a sublinear-scaling method, referred to as MacroDFT, for the study of crystal defects using ab-initio Density Functional Theory (DFT). The sublinear scaling is achieved using a combination of the Linear Scaling Spectral Gauss Quadrature method (LSSGQ) and a Coarse-Graining approach (CG) based on the quasi-continuum method. LSSGQ reformulates DFT and evaluates the electron density without computing individual orbitals. This direct evaluation is possible by recourse to Gaussian quadrature over the spectrum of the linearized Hamiltonian operator. Furthermore, the nodes and weights of the quadrature can be computed independently for each point in the domain. This property is exploited in CG, where fields of interest are computed at selected nodes and interpolated elsewhere. In this paper, we present the MacroDFT method, its parallel implementation and an assessment of convergence and performance by means of test cases concerned with point defects in magnesium.
A probabilistic phase-insensitive optical squeezer in peaceful coexistence with causality
Gagatsos, C N; Cerf, N J
2012-01-01
A non trace-preserving map describing a probabilistic but heralded noiseless linear amplifier has recently been proposed and experimentally demonstrated. Here, we exhibit another remarkable feature of this peculiar transformation, namely its ability to serve as a universal single-mode squeezer regardless of the quadrature that is initially squeezed. Hence, it acts as an heralded phase-insensitive optical squeezer, conserving the signal-to-noise ratio just as a phase-sensitive optical amplifier but for all quadratures at the same time, which may offer new perspectives in quantum optical communications. Although this ability to squeeze all quadratures seemingly opens a way to instantaneous signaling by circumventing the quantum no-cloning theorem, we explain the subtle mechanism by which the probability for such a causality violation vanishes, even on an heralded basis.
Waveform Synthesizer For Imaging And Ranging Applications
DUDLEY, PETER A.; [et al
2004-11-30
Frequency dependent corrections are provided for quadrature imbalance. An operational procedure filters imbalance effects without prior calibration or equalization. Waveform generation can be adjusted/corrected in a synthetic aperture radar system (SAR), where a rolling phase shift is applied to the SAR's QDWS signal where it is demodulated in a receiver; unwanted energies, such as imbalance energy, are separated from a desired signal in Doppler; the separated energy is filtered from the receiver leaving the desired signal; and the separated energy in the receiver is measured to determine the degree of imbalance that is represented by it. Calibration methods can also be implemented into synthesis. The degree of quadrature imbalance can be used to determine calibration values that can then be provided as compensation for frequency dependent errors in components, such as the QDWS and SSB mixer, affecting quadrature signal quality.
Ka-Band SiGe Receiver Front-End MMIC for Transponder Applications
Venkatesan, Jaikrishna; Mysoor, Narayan R.; Hashemi, Hassein; Aflatouni, Firooz
2010-01-01
A fully integrated, front-end Ka-band monolithic microwave integrated circuit (MMIC) was developed that houses an LNA (low noise amplifier) stage, a down-conversion stage, and output buffer amplifiers. The MMIC design employs a two-step quadrature down-conversion architecture, illustrated in the figure, which results in improved quality of the down-converted IF quadrature signals. This is due to the improved sensitivity of this architecture to amplitude and phase mismatches in the quadrature down-conversion process. Current sharing results in reduced power consumption, while 3D-coupled inductors reduce the chip area. Improved noise figure is expected over previous SiGe-based, frontend designs
Bimodal score distributions and the Myers-Briggs Type Indicator: fact or artifact?
Bess, Tammy L; Harvey, Robert J
2002-02-01
We examined Myers-Briggs Type Indicator (MBTI) score distributions computed using item response theory (IRT) to assess the generalizability of earlier bimodality reports that have been cited in support of the "type" versus "trait" view of personality. Using the BILOG IRT program to score a sample of approximately 12,000 individuals who participated in leadership development programs, theta score distributions for the 4 dimensions of the MBTI computed using 10 (the BILOG default) versus 50 quadrature points were compared. Results indicated that past reports of bimodality were artifacts caused by BILOG's default use of a small number of quadrature points; when larger numbers of points were used, score distributions became strongly center-weighted. Although our findings are not supportive of the "type"-based hypothesis, the extremely high correlations between theta scores (rs > .996) suggest that no practical differences would be expected as a function of the number-of-quadrature-points decision.
Revised Iterative Solution for Groundstate of Schroedinger Equation
Institute of Scientific and Technical Information of China (English)
ZHAOWei-Qin
2004-01-01
A revised iterative method based on Green function defined by quadratures along a single trajectory is proposed to solve the low-lying quantum wave function for Schroedinger equation. Specially a new expression of the perturbed energy is obtained, which is much simpler than the traditional one. The method is applied to solve the unharmonic oscillator potential. The revised iteration procedure gives exactly the same result as those based on the single trajectory quadrature method. A comparison of the revised iteration method to the old one is made using the example of Stark effect. The obtained results are consistent to each other after making power expansion.
Neural network surface acoustic wave RF signal processor for digital modulation recognition.
Kavalov, Dimitar; Kalinin, Victor
2002-09-01
An architecture of a surface acoustic wave (SAW) processor based on an artificial neural network is proposed for an automatic recognition of different types of digital passband modulation. Three feed-forward networks are trained to recognize filtered and unfiltered binary phase shift keying (BPSK) and quadrature phase shift keying (QPSK) signals, as well as unfiltered BPSK, QPSK, and 16 quadrature amplitude (16QAM) signals. Performance of the processor in the presence of additive white Gaussian noise (AWGN) is simulated. The influence of second-order effects in SAW devices, phase, and amplitude errors on the performance of the processor also is studied.
Quantum cryptography with squeezed states
Hillery, M
1999-01-01
A quantum key distribution scheme based on the use of displaced squeezed vacuum states is presented. The states are squeezed in one of two field quadrature components, and the value of the squeezed component is used to encode a character from an alphabet. The uncertainty relation between quadrature components prevents an eavesdropper from determining both with enough precision to determine the character being sent. Losses degrade the performance of this scheme, but it is possible to use phase-sensitive amplifiers to boost the signal and partially compensate for their effect.
A Digital Method for the Detection of Blood Flow Direction in Ultrasonic Doppler Systems
Directory of Open Access Journals (Sweden)
P. Acevedo–Contla.
2010-01-01
Full Text Available Doppler ultrasound systems are widely used to study blood flow and diagnosis of vascular diseases. An important characteristic of these systems is the ability to detect the direction of the blood flow. Most Doppler ultrasound systems apply a quadrature demodulation technique on the ultrasonic transducer output signal. Therefore additional treatment is necessary to separate forward and reverse flow signals. This work presents a digital method to convert signals in quadrature into directional signals using a Fast Fourier Transform (FFT approach. Validation of the method has been achieved using simulated Doppler ultrasound signals.
Adapted wavelet analysis from theory to software
Wickerhauser, Mladen Victor
1994-01-01
This detail-oriented text is intended for engineers and applied mathematicians who must write computer programs to perform wavelet and related analysis on real data. It contains an overview of mathematical prerequisites and proceeds to describe hands-on programming techniques to implement special programs for signal analysis and other applications. From the table of contents: - Mathematical Preliminaries - Programming Techniques - The Discrete Fourier Transform - Local Trigonometric Transforms - Quadrature Filters - The Discrete Wavelet Transform - Wavelet Packets - The Best Basis Algorithm - Multidimensional Library Trees - Time-Frequency Analysis - Some Applications - Solutions to Some of the Exercises - List of Symbols - Quadrature Filter Coefficients
Noncommutative q -photon-added coherent states
Dey, Sanjib; Hussin, Véronique
2016-05-01
We construct the photon-added coherent states of a noncommutative harmonic oscillator associated to a q -deformed oscillator algebra. Various nonclassical properties of the corresponding system are explored, first, by studying two different types of higher-order quadrature squeezing, namely, the Hillery type and the Hong-Mandel type, and second, by testing the sub-Poissonian nature of photon statistics in higher order with the help of the correlation function and the Mandel parameter. Also, we compare the behavior of different types of quadrature and photon number squeezing of our system with those of the ordinary harmonic oscillator by considering the same set of parameters.
The properties of squeezed optical states created in lossy cavities
Seifoory, Hossein; Dignam, Marc M; Sipe, J E
2016-01-01
We investigate theoretically the properties of squeezed states generated using degenerate parametric down conversion in lossy cavities. We show that the Lindblad master equation, which governs the evolution of this system, has as its solution a squeezed thermal state with an effective temperature and squeezing parameter that depends on time. We derive analytical solutions for the time-evolution of quadrature noise, thermal photon number, squeezing parameter, and total photon number under different pumping regimes. We also find the steady state limits of the quadrature noises and discuss the $ g^{(2)} $ factor of the generated light inside the cavity in the steady state.
Residual-based a posteriori error estimation for multipoint flux mixed finite element methods
Du, Shaohong
2015-10-26
A novel residual-type a posteriori error analysis technique is developed for multipoint flux mixed finite element methods for flow in porous media in two or three space dimensions. The derived a posteriori error estimator for the velocity and pressure error in L-norm consists of discretization and quadrature indicators, and is shown to be reliable and efficient. The main tools of analysis are a locally postprocessed approximation to the pressure solution of an auxiliary problem and a quadrature error estimate. Numerical experiments are presented to illustrate the competitive behavior of the estimator.
Single-Bit All Digital Frequency Synthesis Using Homodyne Sigma-Delta Modulation.
Sotiriadis, Paul
2016-10-05
All-digital frequency synthesis using band-pass sigma-delta modulation to achieve spectrally clean single-bit output is presented and mathematically analyzed resulting in a complete model to predict stability and output spectrum. The quadrature homodyne filter architecture is introduced resulting in efficient implementations of carrier-frequency centred bandpass filters for the modulator. A multiplier-less version of the quadrature homodyne filter architecture is also introduced to reduce complexity maintaining clean in-band spectrum. MATLAB and SIMULINK simulation results present the potential capabilities of the synthesizer architectures and validate the accuracy of the developed theoretical framework.
Computation of the Complex Probability Function
Energy Technology Data Exchange (ETDEWEB)
Trainer, Amelia Jo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ledwith, Patrick John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-08-22
The complex probability function is important in many areas of physics and many techniques have been developed in an attempt to compute it for some z quickly and e ciently. Most prominent are the methods that use Gauss-Hermite quadrature, which uses the roots of the n^{th} degree Hermite polynomial and corresponding weights to approximate the complex probability function. This document serves as an overview and discussion of the use, shortcomings, and potential improvements on the Gauss-Hermite quadrature for the complex probability function.
Continuous variable quantum communication with bright entangled optical beams
Institute of Scientific and Technical Information of China (English)
XIE Chang-de; ZHANG Jing; PAN Qing; JIA Xiao-jun; PENG Kun-chi
2006-01-01
In this paper,we briefly introduce the basic concepts and protocols of continuous variable quantum communication,and then summarize the experimental researches accomplished by our group in this field.The main features of quantum communication systems used in our experiments are:(1) The bright entangled optical beams with the anticorrelated amplitude quadratures and the correlated phase quadratures that serve as the entanglement resources and (2) The Bell-state direct detection systems are utilized in the measurements of quantum entanglement and transmitted signals instead of the usually balanced homodyne detectors.
Self-referenced continuous-variable quantum key distribution
Soh, Daniel B. S.; Sarovar, Mohan; Camacho, Ryan
2017-01-24
Various technologies for continuous-variable quantum key distribution without transmitting a transmitter's local oscillator are described herein. A receiver on an optical transmission channel uses an oscillator signal generated by a light source at the receiver's location to perform interferometric detection on received signals. An optical reference pulse is sent by the transmitter on the transmission channel and the receiver computes a phase offset of the transmission based on quadrature measurements of the reference pulse. The receiver can then compensate for the phase offset between the transmitter's reference and the receiver's reference when measuring quadratures of received data pulses.
Self-referenced continuous-variable quantum key distribution
Energy Technology Data Exchange (ETDEWEB)
Soh, Daniel B. S.; Sarovar, Mohan; Camacho, Ryan
2017-01-24
Various technologies for continuous-variable quantum key distribution without transmitting a transmitter's local oscillator are described herein. A receiver on an optical transmission channel uses an oscillator signal generated by a light source at the receiver's location to perform interferometric detection on received signals. An optical reference pulse is sent by the transmitter on the transmission channel and the receiver computes a phase offset of the transmission based on quadrature measurements of the reference pulse. The receiver can then compensate for the phase offset between the transmitter's reference and the receiver's reference when measuring quadratures of received data pulses.
Wavelength Conversion of DP-QPSK Signals in a Silicon Polarization Diversity Circuit
DEFF Research Database (Denmark)
Vukovic, Dragana; Schroeder, Jochen; Ding, Yunhong;
2015-01-01
Multichannel wavelength conversion is experimentally demonstrated for high-speed 128 Gb/s dual-polarization quadrature phase-shift keying signals using four-wave mixing in a polarization diversity circuit with silicon nanowires as nonlinear elements. The wavelength conversion performance is inves......Multichannel wavelength conversion is experimentally demonstrated for high-speed 128 Gb/s dual-polarization quadrature phase-shift keying signals using four-wave mixing in a polarization diversity circuit with silicon nanowires as nonlinear elements. The wavelength conversion performance...
New Multithreaded Hybrid CPU/GPU Approach to Hartree-Fock.
Asadchev, Andrey; Gordon, Mark S
2012-11-13
In this article, a new multithreaded Hartree-Fock CPU/GPU method is presented which utilizes automatically generated code and modern C++ techniques to achieve a significant improvement in memory usage and computer time. In particular, the newly implemented Rys Quadrature and Fock Matrix algorithms, implemented as a stand-alone C++ library, with C and Fortran bindings, provides up to 40% improvement over the traditional Fortran Rys Quadrature. The C++ GPU HF code provides approximately a factor of 17.5 improvement over the corresponding C++ CPU code.
Numerical Solution of Stokes Flow in a Circular Cavity Using Mesh-free Local RBF-DQ
DEFF Research Database (Denmark)
Kutanaai, S Soleimani; Roshan, Naeem; Vosoughi, A;
2012-01-01
This work reports the results of a numerical investigation of Stokes flow problem in a circular cavity as an irregular geometry using mesh-free local radial basis function-based differential quadrature (RBF-DQ) method. This method is the combination of differential quadrature approximation...... is applied on a two-dimensional geometry. The obtained results from the numerical simulations are compared with those gained by previous works. Outcomes prove that the current technique is in very good agreement with previous investigations and this fact that RBF-DQ method is an accurate and flexible method...... in solution of partial differential equations (PDEs)....
Optimization of Mapping Rule of Bit-Interleaved Turbo Coded Modulation with 16QAM
Institute of Scientific and Technical Information of China (English)
FEI Ze-song; YANG Yu; LIU Lin-nan; KUANG Jing-ming
2005-01-01
Optimization of mapping rule of bit-interleaved Turbo coded modulation with 16 quadrature amplitude modulation (QAM) is investigated based on different impacts of various encoded bits sequence on Turbo decoding performance. Furthermore, bit-interleaved in-phase and quadrature phase (I-Q) Turbo coded modulation scheme are designed similarly with I-Q trellis coded modulation (TCM). Through performance evaluation and analysis, it can be seen that the novel mapping rule outperforms traditional one and the I-Q Turbo coded modulation can not achieve good performance as expected. Therefore, there is not obvious advantage in using I-Q method in bit-interleaved Turbo coded modulation.
Quantification of Airfoil Geometry-Induced Aerodynamic Uncertainties---Comparison of Approaches
Liu, Dishi
2015-04-14
Uncertainty quantification in aerodynamic simulations calls for efficient numerical methods to reduce computational cost, especially for uncertainties caused by random geometry variations which involve a large number of variables. This paper compares five methods, including quasi-Monte Carlo quadrature, polynomial chaos with coefficients determined by sparse quadrature and by point collocation, radial basis function and a gradient-enhanced version of kriging, and examines their efficiency in estimating statistics of aerodynamic performance upon random perturbation to the airfoil geometry which is parameterized by independent Gaussian variables. The results show that gradient-enhanced surrogate methods achieve better accuracy than direct integration methods with the same computational cost.
Entanglement in the above-threshold optical parametric oscillator
Villar, A S; Dechoum, K; Khoury, A Z; Martinelli, M; Nussenzveig, P; Cassemiro, Katiuscia N.; Dechoum, Kaled; Khoury, Antonio Z.; Martinelli, Marcelo; Nussenzveig, Paulo; Villar, Alessandro S.
2006-01-01
We investigate entanglement in the above-threshold Optical Parametric Oscillator, both theoretically and experimentally, and discuss its potential applications to quantum information. The fluctuations measured in the subtraction of signal and idler amplitude quadratures are $\\Delta^2 \\hat p_-=0.50(1)$, or $-3.01(9)$ dB, and in the sum of phase quadratures are $\\Delta^2 \\hatq_+=0.73(1)$, or $-1.37(6)$ dB. A detailed experimental study of the noise behavior as a function of pump power is presented, and discrepancies with theory are discussed.
DEFF Research Database (Denmark)
Custódio, J. R.; Bastos, I.; Oliveira, L. B.
2013-01-01
This paper describes a fully-passive discrete-time switched-capacitor RF downconverter with an on-chip oscillator, that combines quadrature mixing and harmonic rejection, designed in a 130 nm digital CMOS technology. By using MOS capacitors (varactors) to perform parametric amplification, it is p......This paper describes a fully-passive discrete-time switched-capacitor RF downconverter with an on-chip oscillator, that combines quadrature mixing and harmonic rejection, designed in a 130 nm digital CMOS technology. By using MOS capacitors (varactors) to perform parametric amplification...
Blind equalization for dual-polarization two-subcarrier coherent QPSK-OFDM signals.
Li, Fan; Zhang, Junwen; Yu, Jianjun; Li, Xinying
2014-01-15
Dual-polarization two-subcarrier coherent optical orthogonal frequency division multiplexing (CO-OFDM) transmission and reception is successfully demonstrated with blind equalization. A two-subcarrier quadrature phase shift keyed OFDM (QPSK-OFDM) signal can be equalized as a 9-ary quadrature amplitude modulation signal in the time domain with the cascaded multimodulus algorithm equalization method. The nonlinear effect resistance and transmission distance can be enhanced compared with the traditional CO-OFDM transmission system based on frequency equalization with training sequence.
Single- and Multiband OFDM Photonic Wireless Links in the 75−110 GHz Band Employing Optical Combs
DEFF Research Database (Denmark)
Beltrán, M.; Deng, Lei; Pang, Xiaodan
2012-01-01
The photonic generation of electrical orthogonal frequency-division multiplexing (OFDM) modulated wireless signals in the 75−110 GHz band is experimentally demonstrated employing in-phase/quadrature electrooptical modulation and optical heterodyn upconversion. The wireless transmission of 16......-quadrature-amplitude-modulation OFDM signals is demonstrated with a bit error rate performance within the forward error correction limits. Signals of 19.1 Gb/s in 6.3-GHz bandwidth are transmitted over up to 1.3-m wireless distance. Optical comb generation is further employed to support different channels...
Noise of quantum solitons and their quasi-coherent states
Institute of Scientific and Technical Information of China (English)
段路明; 郭光灿
1997-01-01
Quantum noise of optical solitons is analysed based on the exact solutions of the quantum nonlinear Schrodmger equation (QNSE) and the construction of the quantum soliton states. The noise limits are obtained for the local photon number and for the local quadrature phase amplitude. They are larger than the vacuum fluctuation. So in the fundamental soliton states the variance of the local photon number and the local quadrature phase amplitude cannot be squeezed The sohton states with the minimum noise are quasi-coherent states, in which the quantum dispersion effects are negligible.
2016-07-04
The three schemes are Quadrature Phase Shift Keying (QPSK), 16-Quadrature Amplitude Modulation (16-QAM), and 64-QAM. ADJACENT CHANNEL (BAND... noise power spectral density ratio (Eb/No). A difference of 1dB of required Eb/No to achieve an error rate of 1x10-5 as the victim is moved closer...distortion, the level of the AMT signal was minimized. The AMT waveform level was set approximately 20dB above where additive system noise was causing
Counteracting 16-QAM Optical Fiber Transmission Impairments With Iterative Turbo Equalization
DEFF Research Database (Denmark)
Arlunno, Valeria; Caballero Jambrina, Antonio; Borkowski, Robert;
2013-01-01
-division-multiplexing 16 quadrature amplitude modulation impairments in dispersion uncompensated coherent transmission links. Gains exceeding one order of magnitude in terms of bit error rate are obtained in experimental validation up to 497 km-standard single mode fiber link transmission....
Revised Iterative Solution of Ground State of Double-Well Potential
Institute of Scientific and Technical Information of China (English)
ZHAO Wei-Qin
2005-01-01
The revised new iterative method for solving the ground state of Schrodinger equation is deduced. Based on Green functions defined by quadratures along a single trajectory this iterative method is applied to solve the ground state of the double-well potential. The result is compared to the one based on the original iterative method. The limitation of the asymptotic expansion is also discussed.
A Simulation Testbed for Adaptive Modulation and Coding in Airborne Telemetry (Brief)
2014-10-01
Quadrature Phase Shift Keying (SOQPSK), Orthogonal Frequency Division Multiplexing (OFDM), Bit Error Rate, ( BER ) 16. SECURITY CLASSIFICATION OF...Example: Link-Dependent Adaptive Radio • Other Applications: • Tradeoffs of Phased Array Antennas • Utility of Multiple access schemes • Performance...GTRI_B-‹#› Simulation Framework Architecture 5 • Object-oriented MATLAB to maximize reusability and flexibility Phase
400-GHz wireless transmission of 60-Gb/s nyquist-QPSK signals using UTC-PD and heterodyne mixer
DEFF Research Database (Denmark)
Yu, Xianbin; Asif, Rameez; Piels, Molly
2016-01-01
We experimentally demonstrate an optical network compatible high-speed optoelectronics THz wireless transmission system operating at 400-GHz band. In the experiment, optical Nyquist quadrature phase-shift keying signals in a 12.5-GHz ultradense wavelength-division multiplexing grid is converted...
Huo, Meiru; Qin, Jiliang; Yan, Zhihui; Jia, Xiaojun; Peng, Kunchi
2016-11-01
As important members of nonclassical states of light, squeezed states and entangled states are basic resources for realizing quantum measurements and constructing quantum information networks. We experimentally demonstrate that the two types of nonclassical optical states can be generated from an optical parametric oscillator (OPO) involving a periodically poled KTiOPO4 crystal with a domain-inversion period of 51.7 μm, by changing the polarization of the pump laser. When a vertically polarized 671 nm laser is used to pump the OPO, the intra-cavity frequency-down-conversion with type-0 quasi-phase matching is realized and the output optical beam is a quadrature amplitude squeezed state of light at the wavelength of 1342 nm with the fluctuation of quadrature component of 3.17 dB below the quantum noise limit (QNL). If the pump laser is horizontally polarized, the condition of the type-II quasi-phase matching is satisfied and the output optical beam becomes Einstein-Podolsky-Rosen entangled state of light with correlation variances of both quadrature amplitude-sum and quadrature phase-difference of 2.2 dB below the corresponding QNL.
Experimental investigation and digital compensation of DGD for 112 Gb/s PDM-QPSK clock recovery
DEFF Research Database (Denmark)
Zibar, Darko; de Olivera, Julio Cesar R. F.; Ribeiro, Vittor Bedotti
2011-01-01
For asynchronous sampled systems such as Polarization Division Multiplexed Quadrature Phase Shift Keying, (PDM-QPSK), phase and frequency of the sampling clock is typically not synchronized to the data symbols. Therefore, timing adjustment, so called clock recovery and interpolation, must be perf...
Institute of Scientific and Technical Information of China (English)
2005-01-01
<正>A blind demodulator for 1024 quadrature amplitudemodulation(QAM)is described.It uses a method thatcombines carrier recovery without decision-directed opera-tion and decision feedback equalization by using a modi-fied constant modulus algorithm(MCMA)to improve e-qualization.
Lm Extremal Polynomials Associated with Generalized Jacobi Weights
Institute of Scientific and Technical Information of China (English)
Ying-guang Shi
2003-01-01
Asymptotic estimations of the Christoffel type functions for Lm extremal polynomials with an even integer m associated with generalized Jacobi weights are established. Also, asymptotic behavior of the zeros of the Lm extremal polynomials and the Cotes numbers of the corresponding Turan quadrature formula is given.
Methods for Estimating Capacities of Gaussian Quantum Channels
Pilyavets, Oleg V; Mancini, Stefano
2009-01-01
We present a perturbative approach to the problem of estimating capacities of Gaussian quantum channels. It relies on the expansion of the von Neumann entropy of Gaussian states as a function of the symplectic eigenvalues of the quadratures covariance matrices. We apply this method to the classical capacity of a lossy bosonic channel for both the memory and memoryless cases.
A program to solve rotating plasma problems
Bakker, M.; Berg, M.S. van den
1980-01-01
It is shown that the solution of a rotating plasma problem minimizes a quitably chosen funtional. This variational problem is solved by the Ritz-Galerkin methud using piecewise bilinear functions and applying some Newton-Côtes-like quadrature. The resulting linear system with a sparse nonegative def
Continuous Variable Entanglement of Orbital Angular Momentum States
DEFF Research Database (Denmark)
Lassen, Mikael Østergaard; Leuchs, G.; Andersen, Ulrik Lund
2009-01-01
We have generated a new quantum state of light composed of quadrature entangled Laguerre-Gaussian (LG) modes. For the generation we used an OPO operating in a new regime where all field parameters are degenerate except for its spatial degree of freedom for which it is two-fold degenerate. The ent...
Walters, William J.; Haghighat, Alireza
2014-06-01
A new collision source method has been developed to solve the Linear Boltzmann Equation (LBE) more efficiently by adaptation of the angular quadrature order. The angular adaptation method is unique in that the flux from each scattering source iteration is obtained separately, with potentially a different quadrature order. This allows for an optimal use of processing power, by using a high order quadrature for the first few iterations that need it, before shifting to lower order quadratures for the remaining iterations. This is essentially an extension of the first collision source method, and we call it the adaptive collision source method (ACS). The ACS methodolog y has been implemented in the TITAN discrete ordinates code, and has shown a speedup of 2-3 on a test problem, with very little loss of accuracy (within a provided adaptive tolerance). Further, the code has been extended to work in parallel environments by angular decomposition. Although the method requires increased parallel communication, tests have shown excellent scalability, with parallel fractions of up to 99%.
Polynomial Approximation Techniques for Differential Equations in Electrochemical Problems
1981-01-15
LEYE L I oFFIPE-W NAVAL RESEARCH ConracEi NP014-8--0107 Task No. NR 359-718 1>. -/ TECHNICAL REP&T O. 4 Polynomial Approximation Techniques for...has been used to simulate O(x) in the interval [xlXn1. Certain of these quadrature formulas lead to the well known Newton -Cotes, trapezoidal, and
Wind Turbine Cross-Sectional Stiffness Analysis Using Internally Layered Solid Elements
DEFF Research Database (Denmark)
Couturier, Philippe; Krenk, Steen
2016-01-01
using a single layer of displacement-based elements whereby the element's stiffness is obtained using Gaussian quadrature through each layer. The interlaminar stresses are recovered at points of interest via a three-dimensional equilibrium-based postprocessing scheme that uses the distribution of in...
Discrete-Time Mixing Receiver Architecture for RF-Sampling Software-Defined Radio
Ru, Z.; Klumperink, Eric A.M.; Nauta, Bram
2010-01-01
Abstract—A discrete-time (DT) mixing architecture for RF-sampling receivers is presented. This architecture makes RF sampling more suitable for software-defined radio (SDR) as it achieves wideband quadrature demodulation and wideband harmonic rejection. The paper consists of two parts. In the first
2014-06-01
elaborated below. • More Complicated Non-convex Optimization Objective: Since source node 1We use “phase” and “slot” interchangeably . 3 can transmits in...amplitude is intro - duced to in phase and quadrature component. We conduct an analysis and tested the results 97 using hardware to show that IQ
Energy Technology Data Exchange (ETDEWEB)
Ben-Aryeh, Y., E-mail: phr65yb@physics.technion.ac.i [Physics Department, Technion - Israel Institute of Technology, Haifa 32000 (Israel)
2011-03-07
The possibility of using squeezed states and balanced homodyne detection of optical signals in a Michelson interferometer is discussed. The present analysis describes photon statistics measurements effects related to quadrature balanced homodyne detection showing the advantage of using this scheme for detecting weak optical signals.
1972-01-01
The effort to analyze and test the Teledyne/Adcom model G-146 demultiplexer to determine the feasibility and optimum method(s) for modifying the unit for broadband operation is described. The desired bandwidths under consideration included 2, 4, and 8 kHz for double sideband and quadrature double sideband, and 4, 8, and 16 kHz for single sideband.
Cai, Li
2013-01-01
Lord and Wingersky's (1984) recursive algorithm for creating summed score based likelihoods and posteriors has a proven track record in unidimensional item response theory (IRT) applications. Extending the recursive algorithm to handle multidimensionality is relatively simple, especially with fixed quadrature because the recursions can be defined…
1989-05-01
Fortran program (by Alfred Odell) that computes the functions for arbitrary values of Z., k and Kaula’s q , by quadrature. We can now use the identity (34...j 19 J.B. Lundberg Recursion formulas of Legendre functions for use with B.E. Schutz nonsingular geopotential models. j. Guidance, 11, 31-38 (1988
Gurkin, N. V.; Mikhailov, V.; Nanii, O. E.; Novikov, A. G.; Treshchikov, V. N.; Ubaydullaev, R. R.
2014-09-01
Nonlinear noise in 100-Gb/s dual-polarization quadrature phase shift keying transmission has been investigated using a straight-line test bed. The optimal signal power and OSNR margin have been measured in up to 4000 km of G.652-fiber. The results have a good agreement with previously reported models.
CSIR Research Space (South Africa)
Veldman, CS
2003-01-01
Full Text Available An implementation of the sine-approximation method of ISO 16063-11 (primary vibration calibration by laser interferometry) is described. The quadrature interference signals are generated using an interferometer as described in method 3 of ISO 16063...
CSIR Research Space (South Africa)
Fedotov, I
2006-07-01
Full Text Available or by means of quadrature formulae. Fourier coefficients of the modified Green functions are calculated using a discrete Fourier transform, in particular case by FFT. Using orthogonality of the sine and cosine functions the original problem is reduced...
TRACTABILITY OF MULTIVARIATE INTEGRATION PROBLEM FOR PERIODIC CONTINUOUS FUNCTIONS
Institute of Scientific and Technical Information of China (English)
Fang Gensun; Long Jingfan
2007-01-01
The authors study the tractability and strong tractability of a multivariate integration problem in the worst case setting for weighted 1-periodic continuous functions spaces of d coordinates with absolutely convergent Fourier series. The authors reduce the initial error by a factor ε for functions from the unit ball of the weighted periodic continuous functions spaces. Tractability is the minimal number of function samples required to solve the problem in polynomial in ε-1 and d, and the strong tractability is the presence of only a polynomial dependence in ε-1. This problem has been recently studied for quasi-Monte Carlo quadrature rules, quadrature rules with non-negative coefficients,and rules for which all quadrature weights are arbitrary for weighted Korobov spaces of smooth periodic functions of d variables. The authors show that the tractability and strong tractability of a multivariate integration problem in worst case setting hold for the weighted periodic continuous functions spaces with absolutely convergent Fourier series under the same assumptions as in Ref. [14] on the weights of the Korobov space for quasi-Monte Carlo rules and rules for which all quadrature weights are non-negative. The arguments are not constructive.
Squeezed State Effects on Continuous Variable Quantum Erasing
Bonanno, Peter; Kasisomayajula, Vijay; Russo, Onofrio
2008-03-01
Experimental verification of complementarity using quantum erasing for the continuous variable (CV) infinite dimensional Hilbert space has been considered. [1] The complemetary pair is that of the canonically conjugate amplitude and phase quadratures of light. The amplitude quadrature is labeled to a squeezed meter signal by quantum nondemolition (QND) [2] entanglement coupling. [3] Knowledge of which eigenstate (WE) can be obtained by measuring this amplitude in the meter state, and can thereafter be `lost' by measuring the quadrature phase of the meter, thus restoring the quadrature phase of the signal beam in a process known as quantum erasure. [4] The coupling, i.e. the labeling of the signal state to the meter state, is implemented with a beam splitter coupled to the squeezed light meter beam. [4] We investigate the effects of using the unitary squeeze operator S(z)=exp.5ex1 -.1em/ -.15em.25ex2 (z*a^2 - za^+2) where z = re^i(squeezing angle) on selected coherent states under certain conditions. [5,6] [1] U. L. Anderson et al., Phys. Rev. Lett. 93, 100403 (2004). [2] V. B. Braginsky et al., Science 209, 547 (1980). [3] R. Bruckmeimer et al., Phys. Rev. Lett. 79, 43 (1997). [4] P. Grangier et al., Nature 396, 537 (1998). [5] C. M. Caves, Phys. Rev. D 23, 1693 (1981). [6] D. Stoler, Phys. Rev. D. 1, 3217 (1970), D. Stoler, Phys. Rev. D. 4, 1925 (1971). .
DEFF Research Database (Denmark)
Zibar, Darko; Winther, Ole; Franceschi, Niccolo
2012-01-01
In this paper, we show numerically and experimentally that expectation maximization (EM) algorithm is a powerful tool in combating system impairments such as fibre nonlinearities, inphase and quadrature (I/Q) modulator imperfections and laser linewidth. The EM algorithm is an iterative algorithm...
Cloud RAN for Mobile Networks - a Technology Overview
DEFF Research Database (Denmark)
Checko, Aleksandra; Christiansen, Henrik Lehrmann; Yan, Ying
2014-01-01
Pool for statistical multiplexing gain, while shifting the burden to the high-speed wireline transmission of In-phase and Quadrature (IQ) data. C-RAN enables energy efficient network operation and possible cost savings on base- band resources. Furthermore, it improves network capacity by performing...
UAV Digital Tracking Array Design, Development and Testing
2009-12-01
Voltage-Controlled Oscillator ( VCO ).................................... 57 b. Low-Power Amplifier (LPA...Receive TWS Track While Scan UAV Unmanned Aerial Vehicle USAF United States Air Force VCO Voltage Controlled Oscillator VI Virtual...Loop (PLL) Quadrature Detector A PLL consists of three main components: phase comparator, low pass filter (LPF) and voltage controlled oscillator ( VCO
InP DHBT MMICs for millimeter-wave front-ends
DEFF Research Database (Denmark)
Johansen, Tom Keinicke; Hadziabdic, Dzenan; Krozer, Viktor
2009-01-01
In this paper, we show advanced MMIC's using InP DHBT technology. In particular, we demonstrate front-end circuits covering a broad frequency range from Q-band to E-band. Realizations of power amplifiers, quadrature VCOs, and sub-harmonic mixers, are presented and experimental results are discussed....
Withagen, Johan C.J.G.; Annema, A.J.; Nauta, B.; Vliet, van F.E.
2016-01-01
An 8-10 GHz X-band upconversion quadrature mixer stage implemented in 250 nm SiGe BiCMOS is presented. Orthogonality of the spurious responses caused by clock feed through, I/Q mismatch and baseband harmonics after self-mixing was exploited to realize a baseband calibration scheme reducing all in-ba
de Boeij, W.P.; Pshenichnikov, M.S; Wiersma, D. A.
1998-01-01
Heterodyne detection of the stimulated photon echo (HSPE) is discussed and applied to explore molecular solvation dynamics. With this technique the in-phase and in-quadrature parts of the induced transient nonlinear polarization can be time-gated. A third-order perturbative description of the HSPE i
A Lagrange-type projector on the real line
Mastroianni, G.; Notarangelo, I.
2010-01-01
We introduce an interpolation process based on some of the zeros of the m th generalized Freud polynomial. Convergence results and error estimates are given. In particular we show that, in some important function spaces, the interpolating polynomial behaves like the best approximation. Moreover the stability and the convergence of some quadrature rules are proved.
Nobile, Fabio
2015-11-26
In this work we compare different families of nested quadrature points, i.e. the classic Clenshaw–Curtis and various kinds of Leja points, in the context of the quasi-optimal sparse grid approximation of random elliptic PDEs. Numerical evidence suggests that both families perform comparably within such framework.
Millimeter-Wave Integrated Circuit Design for Wireless and Radar Applications
DEFF Research Database (Denmark)
Johansen, Tom Keinicke; Krozer, Viktor; Vidkjær, Jens
2006-01-01
This paper describes a quadrature voltage-controlled oscillator (QVCO), frequency doubler, and sub-harmonic mixer (SHM) for a millimeter-wave (mm-wave) front-end implemented in a high-speed InP DHBT technology. The QVCO exhibits large tuning range from 38 to 47.8 GHz with an output power around -...
Nonclassicality in phase-number uncertainty relations
Energy Technology Data Exchange (ETDEWEB)
Matia-Hernando, Paloma; Luis, Alfredo [Departamento de Optica, Facultad de Ciencias Fisicas, Universidad Complutense, 28040 Madrid (Spain)
2011-12-15
We show that there are nonclassical states with lesser joint fluctuations of phase and number than any classical state. This is rather paradoxical since one would expect classical coherent states to be always of minimum uncertainty. The same result is obtained when we replace phase by a phase-dependent field quadrature. Number and phase uncertainties are assessed using variance and Holevo relation.
Modification of the Varian XL-100 NMR spectrometer for submilligram natural abundance C-13 analyses
Wilson, D. M.; Olsen, R. W.; Burlingame, A. L.
1974-01-01
Quadrature detection modifications and a microcell arrangement are described for the Varian XL-100 NMR spectrometer which routinely improve sensitivity in C-13 Fourier transform sample-limited studies by a factor of 4 to 5. The power requirement of the RF pulse amplifier is relaxed by a factor of 4. Previously attainable resolution is not affected.
Toward a reduced-wire readout system for ultrasound imaging.
Lim, Jaemyung; Arkan, Evren F; Degertekin, F Levent; Ghovanloo, Maysam
2014-01-01
We present a system-on-a-chip (SoC) for use in high-frequency capacitive micromachined ultrasonic transducer (CMUT) imaging systems. This SoC consists of trans-impedance amplifiers (TIA), delay locked loop (DLL) based clock multiplier, quadrature sampler, and pulse width modulator (PWM). The SoC down converts RF echo signal to baseband by quadrature sampling which facilitates modulation. To send data through a 1.6 m wire in the catheter which has limited bandwidth and is vulnerable to noise, the SoC creates a pseudo-digital PWM signal which can be used for back telemetry or wireless readout of the RF data. In this implementation, using a 0.35-μm std. CMOS process, the TIA and single-to-differential (STD) converter had 45 MHz bandwidth, the quadrature sampler had 10.1 dB conversion gain, and the PWM had 5-bit ENoB. Preliminary results verified front-end functionality, and the power consumption of a TIA, STD, quadrature sampler, PWM, and clock multiplier was 26 mW from a 3 V supply.
A bridge between the single-photon and squeezed-vacuum states
Jain, Nitin; Huisman, S.R.; Bimbard, Erwan; Lvovsky, A.I.
2010-01-01
The two modes of the Einstein-Podolsky-Rosen quadrature entangled state generated by parametric down-conversion interfere on a beam splitter of variable splitting ratio. Detection of a photon in one of the beam splitter output channels heralds preparation of a signal state in the other, which is
DEFF Research Database (Denmark)
Osadchiy, Alexey Vladimirovich; Prince, Kamau; Tafur Monroy, Idelfonso
2010-01-01
In this paper we present long-reach fiber access links supporting transmission of Worldwide Interoperability for Microwave Access (WiMAX) compliant signals. We present bi-directional full-duplex transmission of 256-state quadrature amplitude modulation (256-QAM) modulated WiMAX-compliant signals ...
Calculation of Moment Matrix Elements for Bilinear Quadrilaterals and Higher-Order Basis Functions
2016-01-06
6], the authors consider quadrilaterals of arbitrary order and present a numerical-integration scheme based on Duffy’s method [7]. The scheme is...34Quadrature over a pyramid or cube of integrands with a singularity at a ver- tex", SIAM J. Numer. Anal., Vol. 19, No. 6, pp. 1260 – 1262, 1982. 8
Zhang, B.; Van der Weide, J.A.M.; Oosterlee, C.W.
2012-01-01
In this article, we propose an efficient pricing method for Asian options with early–exercise features. It is based on a two–dimensional integration and a backward recursion of the Fourier coefficients, in which several numerical techniques, like Fourier cosine expansions, Clenshaw–Curtis quadrature
Analysis of synchronous digital-modulation schemes for satellite communication
Takhar, G. S.; Gupta, S. C.
1975-01-01
The multipath communication channel for space communications is modeled as a multiplicative channel. This paper discusses the effects of multiplicative channel processes on the symbol error rate for quadrature modulation (QM) digital modulation schemes. An expression for the upper bound on the probability of error is derived and numerically evaluated. The results are compared with those obtained for additive channels.
SHANNON SAMPLING AND ESTIMATION OF BAND-LIMITED FUNCTIONS IN THE SEVERAL COMPLEX VARIABLES SETTING
Institute of Scientific and Technical Information of China (English)
Kou Kit-Ian; Qian Tao
2005-01-01
In this work the authors develop the n-dimensional sinc function theory in the several complex variables setting. In terms of the corresponding Paley-Wiener theorem the exact sinc interpolation and quadrature are established. Exponential convergence rate of the error estimates for band-limited functions in n-dimensional strips are obtained.
Bastos, Catarina; Bernardini, Alex E.; Bertolami, Orfeu; Dias, Nuno Costa; Prata, João Nuno
2015-03-01
We revisit Ozawa's uncertainty principle (OUP) in the framework of noncommutative (NC) quantum mechanics. We derive a matrix version of OUP accommodating any NC structure in the phase space, and compute NC corrections to lowest order for two measurement interactions, namely the backaction evading quadrature amplifier and noiseless quadrature transducers. These NC corrections alter the nature of the measurement interaction, as a noiseless interaction may acquire noise, and an interaction of independent intervention may become dependent on the object system. However the most striking result is that noncommutativity may lead to a violation of the OUP itself. The NC corrections for the backaction evading quadrature amplifier reveal a new term which may potentially be amplified in such a way that the violation of the OUP becomes experimentally testable. On the other hand, the NC corrections to the noiseless quadrature transducer shows an incompatibility of this model with NC quantum mechanics. We discuss the implications of this incompatibility for NC quantum mechanics and for Ozawa's uncertainty principle.
Analysis and Design of I/Q Charge-Sharing Band-Pass-Filter for Superheterodyne Receivers
Madadi, I.; Tohidian, M.; Staszewski, R.B.
2015-01-01
A complex quadrature charge-sharing (CS) technique is proposed to implement a discrete-time band-pass filter (BPF) with a programmable bandwidth of 20–100 MHz. The BPF is part of a cellular superheterodyne receiver and completely determines the receiver frequency selectivity. It operates at the full
Educational simulator app and web page for exploring Nuclear and Compass Magnetic Resonance
DEFF Research Database (Denmark)
Hanson, Lars G.
, the Larmor equation, Nuclear MR, resonant excitation (linear and quadrature), and off-resonance effects. Methods and implementation: The simulator is a complete HTML5/JavaScript[1,2] rewrite of the JavaCompass[3] so it now executes in modern browsers with no additional software needed. Spin dynamics...
Demonstration of a Quantum Nondemolition Sum Gate
DEFF Research Database (Denmark)
Yoshikawa, J.; Miwa, Y.; Huck, Alexander;
2008-01-01
The sum gate is the canonical two-mode gate for universal quantum computation based on continuous quantum variables. It represents the natural analogue to a qubit C-NOT gate. In addition, the continuous-variable gate describes a quantum nondemolition (QND) interaction between the quadrature compo...
Squeezing in the interaction of radiation with two-level atoms
Bandyopadhyay, Abir; Rai, Jagdish
1995-01-01
We propose a simple experimental procedure to produce squeezing and other non-classical properties like photon antibunching of radiation, and amplification without population inversion. The method also decreases the uncertainties of the angular-momentum quadratures representing the two-level atomic system in the interaction of the two-level atoms with quantized radiation.
Squeezing-enhanced measurement sensitivity in a cavity optomechanical system
DEFF Research Database (Denmark)
Kerdoncuff, Hugo; Hoff, Ulrich Busk; Harris, Glen I.;
2015-01-01
We determine the theoretical limits to squeezing-enhanced measurement sensitivity of mechanical motion in a cavity optomechanical system. The motion of a mechanical resonator is transduced onto quadrature fluctuations of a cavity optical field and a measurement is performed on the optical field e...
Bakker, M.
1980-01-01
We consider the Galerkin method to solve a parabolic initial boundary value problem in one space variable, using piecewise polynomial functions and give an alternative proof of superconvergence. Then by means of Lobatto quadrature, we obtain purely explicit vector initial value problems without loss
Quantum cryptography without switching.
Weedbrook, Christian; Lance, Andrew M; Bowen, Warwick P; Symul, Thomas; Ralph, Timothy C; Lam, Ping Koy
2004-10-22
We propose a new coherent state quantum key distribution protocol that eliminates the need to randomly switch between measurement bases. This protocol provides significantly higher secret key rates with increased bandwidths than previous schemes that only make single quadrature measurements. It also offers the further advantage of simplicity compared to all previous protocols which, to date, have relied on switching.
DEFF Research Database (Denmark)
Cao, Yongsheng; Osadchiy, Alexey Vladimirovich; Xin, Xiangjun
2011-01-01
shift keying (DPSK), differential quadrature phase shift keying (DQPSK) and 4-channel multi-rate DQPSK payload signals with 2.5, 10, 20 and 80 Gb/s rates for comparison purposes. The label and payload signal performances are assessed by the eye-diagram opening factor (EOF) and bit-error rate (BER...
Zhang, B.; Van der Weide, J.A.M.; Oosterlee, C.W.
2012-01-01
In this article, we propose an efficient pricing method for Asian options with early–exercise features. It is based on a two–dimensional integration and a backward recursion of the Fourier coefficients, in which several numerical techniques, like Fourier cosine expansions, Clenshaw–Curtis quadrature
Energy Technology Data Exchange (ETDEWEB)
Gonzalez T, L.; Beltran L, V
1991-09-15
In this report a FORTRAN source program which simulates the second order powder pattern and spectrum of electron paramagnetic resonance (EPR) in crystal fields with orthorhombic symmetry using Gauss-Legendre quadratures is given. Also the commentaries which describe each step in detail are presented. (Author)
A 24 GHz integrated SiGe BiCMOS vital signs detection radar front-end
DEFF Research Database (Denmark)
Jensen, Brian Sveistrup; Johansen, Tom K.; Zhurbenko, Vitaliy
2013-01-01
In this paper a 24 GHz integrated front-end transceiver for vital signs detection (VSD) radars is described. The heterodyne radar transceiver integrates LO buffering and quadrature splitting circuits, up- and down-conversion SSB mixers and two cascaded receiver LNA's. The chip has been manufactured...
On the numerical calculation of Hadamard finite-part integrals
Directory of Open Access Journals (Sweden)
Ezio Venturino
1998-10-01
Full Text Available In this paper we consider a simple method for calculating integrals possessing strong singularities, to be interpreted in the Hadamard finite-part sense. We partition the original interval of integration and then integrate over the subintervals by using suitably modified low-order Gaussian-type quadratures. Convergence is shown under suitable assumptions and numerical evidence supports the theoretical findings.
Nonlinear fiber gyroscope for quantum metrology
Luis, Alfredo; Rivas, Ángel
2016-01-01
We examine the performance of a nonlinear fiber gyroscope for improved signal detection beating the quantum limits of its linear counterparts. The performance is examined when the nonlinear gyroscope is illuminated by practical field states, such as coherent and quadrature squeezed states. This is compared with the case of more ideal probes such as photon-number states.
Sensitivity-enhanced C-13 MR spectroscopy of the human brain at 3 Tesla
Klomp, D.W.J.; Renema, W.K.J.; Graaf, M. van der; Galan, B.E. de; Kentgens, A.P.M.; Heerschap, A.
2006-01-01
A new coil design for sensitivity-enhanced C-13 MR spectroscopy (MRS) of the human brain is presented. The design includes a quadrature transmit/receive head coil optimized for C-13 MR sensitivity. Loss-less blocking circuits inside the coil conductors allow this coil to be used inside a homogeneous
Sensitivity-enhanced 13C MR spectroscopy of the human brain at 3 Tesla.
Klomp, D.W.J.; Renema, W.K.J.; Graaf, M. van der; Galan, B.E. de; Kentgens, A.P.M.; Heerschap, A.
2006-01-01
A new coil design for sensitivity-enhanced 13C MR spectroscopy (MRS) of the human brain is presented. The design includes a quadrature transmit/receive head coil optimized for 13C MR sensitivity. Loss-less blocking circuits inside the coil conductors allow this coil to be used inside a homogeneous c
Institute of Scientific and Technical Information of China (English)
哲曼
2001-01-01
The effect of numerical integration in finite element methods applied to a class of nonlinear parabolic equations is considered and some sufficient conditions on the quadrature scheme to ensure that the order of convergence is unaltered in the presence of numerical integration are given. Optimal L2 and H1 estimates for the error and its time derivative are established.
THE EFFECT OF NUMERICAL INTEGRATION IN FINITE ELEMENT METHODS FOR NONLINEAR PARABOLIC EQUATIONS
Institute of Scientific and Technical Information of China (English)
N＇guimbi; Germain
2001-01-01
Abstract. The effect of numerical integration in finite element methods applied to a class of nonlinear parabolic equations is considered and some sufficient conditions on the quadrature scheme to ensure that the order of convergence is unaltered in the presence of numerical integration are given. Optimal Lz and H1 estimates for the error and its time derivative are established.
Continuous Variable Entanglement and Squeezing of Orbital Angular Momentum States
DEFF Research Database (Denmark)
Lassen, Mikael Østergaard; Leuchs, Gerd; Andersen, Ulrik Lund
2009-01-01
We report the first experimental characterization of the first-order continuous variable orbital angular momentum states. Using a spatially nondegenerate optical parametric oscillator (OPO) we produce quadrature entanglement between the two first-order Laguerre-Gauss modes. The family of orbital...
Single-phase Phase-locked Loop Based on Derivative Elements
DEFF Research Database (Denmark)
Guan, Qingxin; Zhang, Yu; Kang, Yong;
2017-01-01
High performance phase locked loops (PLLs) are critical for power control in grid-connected systems. This paper presents a new method of designing a PLL for single-phase systems based on derivative elements (DEs). The quadrature signal generator (QSG) is constructed by two DEs with the same main ...
Analysis and comparison of switch-based frequency converters
Soer, M.C.M.
2007-01-01
Among radio amateurs a variation of the sampling mixer with 25% duty cycle is used, which is known under several names: Tayloe Product Detector, van Graas Detector or Quadrature Sampling Detector. Although the circuit has been in use for several years no thorough analysis of its properties has been