WorldWideScience

Sample records for quadratized power flow

  1. Determining the Optimal Solution for Quadratically Constrained Quadratic Programming (QCQP) on Energy-Saving Generation Dispatch Problem

    Science.gov (United States)

    Lesmana, E.; Chaerani, D.; Khansa, H. N.

    2018-03-01

    Energy-Saving Generation Dispatch (ESGD) is a scheme made by Chinese Government in attempt to minimize CO2 emission produced by power plant. This scheme is made related to global warming which is primarily caused by too much CO2 in earth’s atmosphere, and while the need of electricity is something absolute, the power plants producing it are mostly thermal-power plant which produced many CO2. Many approach to fulfill this scheme has been made, one of them came through Minimum Cost Flow in which resulted in a Quadratically Constrained Quadratic Programming (QCQP) form. In this paper, ESGD problem with Minimum Cost Flow in QCQP form will be solved using Lagrange’s Multiplier Method

  2. Optimal Water-Power Flow Problem: Formulation and Distributed Optimal Solution

    Energy Technology Data Exchange (ETDEWEB)

    Dall-Anese, Emiliano [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhao, Changhong [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zamzam, Admed S. [University of Minnesota; Sidiropoulos, Nicholas D. [University of Minnesota; Taylor, Josh A. [University of Toronto

    2018-01-12

    This paper formalizes an optimal water-power flow (OWPF) problem to optimize the use of controllable assets across power and water systems while accounting for the couplings between the two infrastructures. Tanks and pumps are optimally managed to satisfy water demand while improving power grid operations; {for the power network, an AC optimal power flow formulation is augmented to accommodate the controllability of water pumps.} Unfortunately, the physics governing the operation of the two infrastructures and coupling constraints lead to a nonconvex (and, in fact, NP-hard) problem; however, after reformulating OWPF as a nonconvex, quadratically-constrained quadratic problem, a feasible point pursuit-successive convex approximation approach is used to identify feasible and optimal solutions. In addition, a distributed solver based on the alternating direction method of multipliers enables water and power operators to pursue individual objectives while respecting the couplings between the two networks. The merits of the proposed approach are demonstrated for the case of a distribution feeder coupled with a municipal water distribution network.

  3. Decentralized linear quadratic power system stabilizers for multi ...

    Indian Academy of Sciences (India)

    Linear quadratic stabilizers are well-known for their superior control capabilities when compared to the conventional lead–lag power system stabilizers. However, they have not seen much of practical importance as the state variables are generally not measurable; especially the generator rotor angle measurement is not ...

  4. Diagonalizing quadratic bosonic operators by non-autonomous flow equations

    CERN Document Server

    Bach, Volker

    2016-01-01

    The authors study a non-autonomous, non-linear evolution equation on the space of operators on a complex Hilbert space. They specify assumptions that ensure the global existence of its solutions and allow them to derive its asymptotics at temporal infinity. They demonstrate that these assumptions are optimal in a suitable sense and more general than those used before. The evolution equation derives from the Brocketâe"Wegner flow that was proposed to diagonalize matrices and operators by a strongly continuous unitary flow. In fact, the solution of the non-linear flow equation leads to a diagonalization of Hamiltonian operators in boson quantum field theory which are quadratic in the field.

  5. Cascaded quadratic soliton compression of high-power femtosecond fiber lasers in Lithium Niobate crystals

    DEFF Research Database (Denmark)

    Bache, Morten; Moses, Jeffrey; Wise, Frank W.

    2008-01-01

    The output of a high-power femtosecond fiber laser is typically 300 fs with a wavelength around $\\lambda=1030-1060$ nm. Our numerical simulations show that cascaded quadratic soliton compression in bulk LiNbO$_3$ can compress such pulses to below 100 fs.......The output of a high-power femtosecond fiber laser is typically 300 fs with a wavelength around $\\lambda=1030-1060$ nm. Our numerical simulations show that cascaded quadratic soliton compression in bulk LiNbO$_3$ can compress such pulses to below 100 fs....

  6. Low-power implementation of polyphase filters in Quadratic Residue Number System

    DEFF Research Database (Denmark)

    Cardarilli, Gian Carlo; Re, Andrea Del; Nannarelli, Alberto

    2004-01-01

    The aim of this work is the reduction of the power dissipated in digital filters, while maintaining the timing unchanged. A polyphase filter bank in the Quadratic Residue Number System (QRNS) has been implemented and then compared, in terms of performance, area, and power dissipation...... to the implementation of a polyphase filter bank in the traditional two's complement system (TCS). The resulting implementations, designed to have the same clock rates, show that the QRNS filter is smaller and consumes less power than the TCS one....

  7. A nonlinear model for fluid flow in a multiple-zone composite reservoir including the quadratic gradient term

    International Nuclear Information System (INIS)

    Wang, Xiao-Lu; Fan, Xiang-Yu; Nie, Ren-Shi; Huang, Quan-Hua; He, Yong-Ming

    2013-01-01

    Based on material balance and Darcy's law, the governing equation with the quadratic pressure gradient term was deduced. Then the nonlinear model for fluid flow in a multiple-zone composite reservoir including the quadratic gradient term was established and solved using a Laplace transform. A series of standard log–log type curves of 1-zone (homogeneous), 2-zone and 3-zone reservoirs were plotted and nonlinear flow characteristics were analysed. The type curves governed by the coefficient of the quadratic gradient term (β) gradually deviate from those of a linear model with time elapsing. Qualitative and quantitative analyses were implemented to compare the solutions of the linear and nonlinear models. The results showed that differences of pressure transients between the linear and nonlinear models increase with elapsed time and β. At the end, a successful application of the theoretical model data against the field data shows that the nonlinear model will be a good tool to evaluate formation parameters more accurately. (paper)

  8. Comparing heat flow models for interpretation of precast quadratic pile heat exchanger thermal response tests

    DEFF Research Database (Denmark)

    Alberdi Pagola, Maria; Poulsen, Søren Erbs; Loveridge, Fleur

    2018-01-01

    This paper investigates the applicability of currently available analytical, empirical and numerical heat flow models for interpreting thermal response tests (TRT) of quadratic cross section precast pile heat exchangers. A 3D finite element model (FEM) is utilised for interpreting five TRTs by in...

  9. Wind turbine power tracking using an improved multimodel quadratic approach.

    Science.gov (United States)

    Khezami, Nadhira; Benhadj Braiek, Naceur; Guillaud, Xavier

    2010-07-01

    In this paper, an improved multimodel optimal quadratic control structure for variable speed, pitch regulated wind turbines (operating at high wind speeds) is proposed in order to integrate high levels of wind power to actively provide a primary reserve for frequency control. On the basis of the nonlinear model of the studied plant, and taking into account the wind speed fluctuations, and the electrical power variation, a multimodel linear description is derived for the wind turbine, and is used for the synthesis of an optimal control law involving a state feedback, an integral action and an output reference model. This new control structure allows a rapid transition of the wind turbine generated power between different desired set values. This electrical power tracking is ensured with a high-performance behavior for all other state variables: turbine and generator rotational speeds and mechanical shaft torque; and smooth and adequate evolution of the control variables. 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Optimal Operation of Distribution Electronic Power Transformer Using Linear Quadratic Regulator Method

    Directory of Open Access Journals (Sweden)

    Mohammad Hosein Rezaei

    2011-10-01

    Full Text Available Transformers perform many functions such as voltage transformation, isolation and noise decoupling. They are indispensable components in electric power distribution system. However, at low frequencies (50 Hz, they are one of the heaviest and the most expensive equipment in an electrical distribution system. Nowadays, electronic power transformers are used instead of conventional power transformers that do voltage transformation and power delivery in power system by power electronic converter. In this paper, the structure of distribution electronic power transformer (DEPT are analized and then paid attention on the design of a linear-quadratic-regulator (LQR with integral action to improve dynamic performance of DEPT with voltage unbalance, voltage sags, voltage harmonics and voltage flicker. The presentation control strategy is simulated by MATLAB/SIMULINK. In addition, the results that are in terms of dc-link reference voltage, input and output voltages clearly show that a better dynamic performance can be achieved by using the LQR method when compared to other techniques.

  11. Evaluation of a photovoltaic energy mechatronics system with a built-in quadratic maximum power point tracking algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Chao, R.M.; Ko, S.H.; Lin, I.H. [Department of Systems and Naval Mechatronics Engineering, National Cheng Kung University, Tainan, Taiwan 701 (China); Pai, F.S. [Department of Electronic Engineering, National University of Tainan (China); Chang, C.C. [Department of Environment and Energy, National University of Tainan (China)

    2009-12-15

    The historically high cost of crude oil price is stimulating research into solar (green) energy as an alternative energy source. In general, applications with large solar energy output require a maximum power point tracking (MPPT) algorithm to optimize the power generated by the photovoltaic effect. This work aims to provide a stand-alone solution for solar energy applications by integrating a DC/DC buck converter to a newly developed quadratic MPPT algorithm along with its appropriate software and hardware. The quadratic MPPT method utilizes three previously used duty cycles with their corresponding power outputs. It approaches the maximum value by using a second order polynomial formula, which converges faster than the existing MPPT algorithm. The hardware implementation takes advantage of the real-time controller system from National Instruments, USA. Experimental results have shown that the proposed solar mechatronics system can correctly and effectively track the maximum power point without any difficulties. (author)

  12. Energy management of a power-split plug-in hybrid electric vehicle based on genetic algorithm and quadratic programming

    Science.gov (United States)

    Chen, Zheng; Mi, Chris Chunting; Xiong, Rui; Xu, Jun; You, Chenwen

    2014-02-01

    This paper introduces an online and intelligent energy management controller to improve the fuel economy of a power-split plug-in hybrid electric vehicle (PHEV). Based on analytic analysis between fuel-rate and battery current at different driveline power and vehicle speed, quadratic equations are applied to simulate the relationship between battery current and vehicle fuel-rate. The power threshold at which engine is turned on is optimized by genetic algorithm (GA) based on vehicle fuel-rate, battery state of charge (SOC) and driveline power demand. The optimal battery current when the engine is on is calculated using quadratic programming (QP) method. The proposed algorithm can control the battery current effectively, which makes the engine work more efficiently and thus reduce the fuel-consumption. Moreover, the controller is still applicable when the battery is unhealthy. Numerical simulations validated the feasibility of the proposed controller.

  13. Optimal Power Flow Control by Rotary Power Flow Controller

    Directory of Open Access Journals (Sweden)

    KAZEMI, A.

    2011-05-01

    Full Text Available This paper presents a new power flow model for rotary power flow controller (RPFC. RPFC injects a series voltage into the transmission line and provides series compensation and phase shifting simultaneously. Therefore, it is able to control the transmission line impedance and the active power flow through it. An RPFC is composed mainly of two rotary phase shifting transformers (RPST and two conventional (series and shunt transformers. Structurally, an RPST consists of two windings (stator and rotor windings. The rotor windings of the two RPSTs are connected in parallel and their stator windings are in series. The injected voltage is proportional to the vector sum of the stator voltages and so its amplitude and angle are affected by the rotor position of the two RPSTs. This paper, describes the steady state operation and single-phase equivalent circuit of the RPFC. Also in this paper, a new power flow model, based on power injection model of flexible ac transmission system (FACTS controllers, suitable for the power flow analysis is introduced. Proposed model is used to solve optimal power flow (OPF problem in IEEE standard test systems incorporating RPFC and the optimal settings and location of the RPFC is determined.

  14. Reusing balanced power flow object components for developing harmonic power flow

    Energy Technology Data Exchange (ETDEWEB)

    Nadarajah, S. [Peninsular Malaysia Electric Utility Co., Kuala Lumpur (Malaysia). Tenaga Nasional Berhad; Nor, K.M.; Abdel-Akher, M. [Malaysia Univ., Kuala Lumpur (Malaysia). Dept. of Electrical Engineering

    2005-07-01

    Harmonic power flows are used to examine the effects of nonlinear loads on power systems. In this paper, component technology was re-used for the development of a harmonic power flow. The object-oriented power system model (OO-PSM) was developed separately from a solution algorithm. Nodes, lines, and transformers were modelled as entity objects by classes. Power flow solution algorithms were modelled as control objects and encapsulated inside independent software components within the power system component software architecture (PS-COM). Both the OO-PSM and the PS-COM of the balanced power flow were re-used for developing the proposed harmonic power flow. A no-interaction hypothesis was used to consider both fundamental voltages and nonlinear device data dependence. A direct solution voltage node method was also used. The accuracy of the method was demonstrated using IEEE 14 bus and 30 bus test systems. It was concluded that component technology can be used to develop harmonic power flow programs. 7 refs., 2 tabs., 9 figs.

  15. Sinusoidal Parameter Estimation Using Quadratic Interpolation around Power-Scaled Magnitude Spectrum Peaks

    Directory of Open Access Journals (Sweden)

    Kurt James Werner

    2016-10-01

    Full Text Available The magnitude of the Discrete Fourier Transform (DFT of a discrete-time signal has a limited frequency definition. Quadratic interpolation over the three DFT samples surrounding magnitude peaks improves the estimation of parameters (frequency and amplitude of resolved sinusoids beyond that limit. Interpolating on a rescaled magnitude spectrum using a logarithmic scale has been shown to improve those estimates. In this article, we show how to heuristically tune a power scaling parameter to outperform linear and logarithmic scaling at an equivalent computational cost. Although this power scaling factor is computed heuristically rather than analytically, it is shown to depend in a structured way on window parameters. Invariance properties of this family of estimators are studied and the existence of a bias due to noise is shown. Comparing to two state-of-the-art estimators, we show that an optimized power scaling has a lower systematic bias and lower mean-squared-error in noisy conditions for ten out of twelve common windowing functions.

  16. Control of Vibratory Energy Harvesters in the Presence of Nonlinearities and Power-Flow Constraints

    Science.gov (United States)

    Cassidy, Ian L.

    Over the past decade, a significant amount of research activity has been devoted to developing electromechanical systems that can convert ambient mechanical vibrations into usable electric power. Such systems, referred to as vibratory energy harvesters, have a number of useful of applications, ranging in scale from self-powered wireless sensors for structural health monitoring in bridges and buildings to energy harvesting from ocean waves. One of the most challenging aspects of this technology concerns the efficient extraction and transmission of power from transducer to storage. Maximizing the rate of power extraction from vibratory energy harvesters is further complicated by the stochastic nature of the disturbance. The primary purpose of this dissertation is to develop feedback control algorithms which optimize the average power generated from stochastically-excited vibratory energy harvesters. This dissertation will illustrate the performance of various controllers using two vibratory energy harvesting systems: an electromagnetic transducer embedded within a flexible structure, and a piezoelectric bimorph cantilever beam. Compared with piezoelectric systems, large-scale electromagnetic systems have received much less attention in the literature despite their ability to generate power at the watt--kilowatt scale. Motivated by this observation, the first part of this dissertation focuses on developing an experimentally validated predictive model of an actively controlled electromagnetic transducer. Following this experimental analysis, linear-quadratic-Gaussian control theory is used to compute unconstrained state feedback controllers for two ideal vibratory energy harvesting systems. This theory is then augmented to account for competing objectives, nonlinearities in the harvester dynamics, and non-quadratic transmission loss models in the electronics. In many vibratory energy harvesting applications, employing a bi-directional power electronic drive to actively

  17. Quadratic Diophantine equations

    CERN Document Server

    Andreescu, Titu

    2015-01-01

    This monograph treats the classical theory of quadratic Diophantine equations and guides the reader through the last two decades of computational techniques and progress in the area. These new techniques combined with the latest increases in computational power shed new light on important open problems. The authors motivate the study of quadratic Diophantine equations with excellent examples, open problems, and applications. Moreover, the exposition aptly demonstrates many applications of results and techniques from the study of Pell-type equations to other problems in number theory. The book is intended for advanced undergraduate and graduate students as well as researchers. It challenges the reader to apply not only specific techniques and strategies, but also to employ methods and tools from other areas of mathematics, such as algebra and analysis.

  18. Modeling of a District Heating System and Optimal Heat-Power Flow

    Directory of Open Access Journals (Sweden)

    Wentao Yang

    2018-04-01

    Full Text Available With ever-growing interconnections of various kinds of energy sources, the coupling between a power distribution system (PDS and a district heating system (DHS has been progressively intensified. Thus, it is becoming more and more important to take the PDS and the DHS as a whole in energy flow analysis. Given this background, a steady state model of DHS is first presented with hydraulic and thermal sub-models included. Structurally, the presented DHS model is composed of three major parts, i.e., the straight pipe, four kinds of local pipes, and the radiator. The impacts of pipeline parameters and the environment temperature on heat losses and pressure losses are then examined. The term “heat-power flow” is next defined, and the optimal heat-power flow (OHPF model formulated as a quadratic planning problem, in which the objective is to minimize energy losses, including the heat losses and active power losses, and both the operational constraints of PDS and DHS are respected. The developed OHPF model is solved by the well-established IPOPT (Interior Point OPTimizer commercial solver, which is based on the YALMIP/MATLAB toolbox. Finally, two sample systems are served for demonstrating the characteristics of the proposed models.

  19. Binary classification posed as a quadratically constrained quadratic ...

    Indian Academy of Sciences (India)

    Binary classification is posed as a quadratically constrained quadratic problem and solved using the proposed method. Each class in the binary classification problem is modeled as a multidimensional ellipsoid to forma quadratic constraint in the problem. Particle swarms help in determining the optimal hyperplane or ...

  20. Power Management Strategy of Hybrid Electric Vehicles Based on Quadratic Performance Index

    Directory of Open Access Journals (Sweden)

    Chaoying Xia

    2015-11-01

    Full Text Available An energy management strategy (EMS considering both optimality and real-time performance has become a challenge for the development of hybrid electric vehicles (HEVs in recent years. Previous EMSes based on the optimal control theory minimize the fuel consumption, but cannot be directly implemented in real-time because of the requirement for a prior knowledge of the entire driving cycle. This paper presents an innovative design concept and method to obtain a power management strategy for HEVs, which is independent of future driving conditions. A quadratic performance index is designed to ensure the vehicle drivability, maintain the battery energy sustainability and average and smooth the engine power and motor power to indirectly reduce fuel consumption. To further improve the fuel economy, two rules are adopted to avoid the inefficient engine operation by switching control modes between the electric and hybrid modes according to the required driving power. The derived power of the engine and motor are related to current vehicle velocity and battery residual energy, as well as their desired values. The simulation results over different driving cycles in Advanced Vehicle Simulator (ADVISOR show that the proposed strategy can significantly improve the fuel economy, which is very close to the optimal strategy based on Pontryagin’s minimum principle.

  1. Permutation flow-shop scheduling problem to optimize a quadratic objective function

    Science.gov (United States)

    Ren, Tao; Zhao, Peng; Zhang, Da; Liu, Bingqian; Yuan, Huawei; Bai, Danyu

    2017-09-01

    A flow-shop scheduling model enables appropriate sequencing for each job and for processing on a set of machines in compliance with identical processing orders. The objective is to achieve a feasible schedule for optimizing a given criterion. Permutation is a special setting of the model in which the processing order of the jobs on the machines is identical for each subsequent step of processing. This article addresses the permutation flow-shop scheduling problem to minimize the criterion of total weighted quadratic completion time. With a probability hypothesis, the asymptotic optimality of the weighted shortest processing time schedule under a consistency condition (WSPT-CC) is proven for sufficiently large-scale problems. However, the worst case performance ratio of the WSPT-CC schedule is the square of the number of machines in certain situations. A discrete differential evolution algorithm, where a new crossover method with multiple-point insertion is used to improve the final outcome, is presented to obtain high-quality solutions for moderate-scale problems. A sequence-independent lower bound is designed for pruning in a branch-and-bound algorithm for small-scale problems. A set of random experiments demonstrates the performance of the lower bound and the effectiveness of the proposed algorithms.

  2. Usefulness of DC power flow for active power flow analysis with flow controlling devices

    NARCIS (Netherlands)

    Van Hertem, D.; Verboomen, J.; Purchala, K.; Belmans, R.; Kling, W.L.

    2006-01-01

    DC power flow is a commonly used tool for contingency analysis. Recently, due to its simplicity and robustness, it also becomes increasingly used for the real-time dispatch and techno-economic analysis of power systems. It is a simplification of a full power flow looking only at active power.

  3. Photon–phonon parametric oscillation induced by quadratic coupling in an optomechanical resonator

    International Nuclear Information System (INIS)

    Zhang, Lin; Ji, Fengzhou; Zhang, Xu; Zhang, Weiping

    2017-01-01

    A direct photon–phonon parametric effect of quadratic coupling on the mean-field dynamics of an optomechanical resonator in the large-scale-movement regime is found and investigated. Under a weak pumping power, the mechanical resonator damps to a steady state with a nonlinear static response sensitively modified by the quadratic coupling. When the driving power increases beyond the static energy balance, the steady states lose their stabilities via Hopf bifurcations, and the resonator produces stable self-sustained oscillation (limit-circle behavior) of discrete energies with step-like amplitudes due to the parametric effect of quadratic coupling, which can be understood roughly by the power balance between gain and loss on the resonator. A further increase in the pumping power can induce a chaotic dynamic of the resonator via a typical routine of period-doubling bifurcation, but which can be stabilized by the parametric effect through an inversion-bifurcation process back to the limit-circle states. The bifurcation-to-inverse-bifurcation transitions are numerically verified by the maximal Lyapunov exponents of the dynamics, which indicate an efficient way of suppressing the chaotic behavior of the optomechanical resonator by quadratic coupling. Furthermore, the parametric effect of quadratic coupling on the dynamic transitions of an optomechanical resonator can be conveniently detected or traced by the output power spectrum of the cavity field. (paper)

  4. Distributed Power Flow Controller

    NARCIS (Netherlands)

    Yuan, Z.

    2010-01-01

    In modern power systems, there is a great demand to control the power flow actively. Power flow controlling devices (PFCDs) are required for such purpose, because the power flow over the lines is the nature result of the impedance of each line. Due to the control capabilities of different types of

  5. Lambda-Lifting in Quadratic Time

    DEFF Research Database (Denmark)

    Danvy, Olivier; Schultz, Ulrik Pagh

    2002-01-01

    Lambda-lifting is a program transformation that is used in compilers, partial evaluators, and program transformers. In this article, we show how to reduce its complexity from cubic time to quadratic time, and we present a flow-sensitive lambda-lifter that also works in quadratic time. Lambda-lifting...... that yields the cubic factor in the traditional formulation of lambda-lifting, which is due to Johnsson. This search is carried out by computing a transitive closure. To reduce the complexity of lambda-lifting, we partition the call graph of the source program into strongly connected components, based...... of lambda-lifting from O(n^3) to O(n^2) . where n is the size of the program. Since a lambda-lifter can output programs of size O(n^2), our algorithm is asympotically optimal....

  6. Lambda-Lifting in Quadratic Time

    DEFF Research Database (Denmark)

    Danvy, Olivier; Schultz, Ulrik Pagh

    2003-01-01

    Lambda-lifting is a program transformation that is used in compilers, partial evaluators, and program transformers. In this article, we show how to reduce its complexity from cubic time to quadratic time, and we present a flow-sensitive lambda-lifter that also works in quadratic time. Lambda-lifting...... that yields the cubic factor in the traditional formulation of lambda-lifting, which is due to Johnsson. This search is carried out by computing a transitive closure. To reduce the complexity of lambda-lifting, we partition the call graph of the source program into strongly connected components, based...... of lambda-lifting from O(n^3) to O(n^2) . where n is the size of the program. Since a lambda-lifter can output programs of size O(n^2), our algorithm is asympotically optimal....

  7. Lambda-Lifting in Quadratic Time

    DEFF Research Database (Denmark)

    Danvy, Olivier; Schultz, Ulrik Pagh

    2004-01-01

    Lambda-lifting is a program transformation that is used in compilers, partial evaluators, and program transformers. In this article, we show how to reduce its complexity from cubic time to quadratic time, and we present a flow-sensitive lambda-lifter that also works in quadratic time. Lambda-lifting...... that yields the cubic factor in the traditional formulation of lambda-lifting, which is due to Johnsson. This search is carried out by computing a transitive closure. To reduce the complexity of lambda-lifting, we partition the call graph of the source program into strongly connected components, based...... of lambda-lifting from O(n^3) to O(n^2) . where n is the size of the program. Since a lambda-lifter can output programs of size O(n^2), our algorithm is asympotically optimal....

  8. A perturbative solution for gravitational waves in quadratic gravity

    International Nuclear Information System (INIS)

    Neto, Edgard C de Rey; Aguiar, Odylio D; Araujo, Jose C N de

    2003-01-01

    We find a gravitational wave solution to the linearized version of quadratic gravity by adding successive perturbations to Einstein's linearized field equations. We show that only the Ricci-squared quadratic invariant contributes to give a different solution to those found in Einstein's general relativity. The perturbative solution is written as a power series in the β parameter, the coefficient of the Ricci-squared term in the quadratic gravitational action. We also show that, for monochromatic waves of a given angular frequency ω, the perturbative solution can be summed out to give an exact solution to the linearized version of quadratic gravity, for 0 1/2 . This result may lead to implications for the predictions for gravitational wave backgrounds of cosmological origin

  9. Hidden conic quadratic representation of some nonconvex quadratic optimization problems

    NARCIS (Netherlands)

    Ben-Tal, A.; den Hertog, D.

    The problem of minimizing a quadratic objective function subject to one or two quadratic constraints is known to have a hidden convexity property, even when the quadratic forms are indefinite. The equivalent convex problem is a semidefinite one, and the equivalence is based on the celebrated

  10. Lambda-lifting in Quadratic Time

    DEFF Research Database (Denmark)

    Danvy, O.; Schultz, U.P.

    2004-01-01

    -lifting transforms a block-structured program into a set of recursive equations, one for each local function in the source program. Each equation carries extra parameters to account for the free variables of the corresponding local function and of all its callees. It is the search for these extra parameters......Lambda-lifting is a program transformation that is used in compilers, partial evaluators, and program transformers. In this article, we show how to reduce its complexity from cubic time to quadratic time, and we present a flow-sensitive lambda-lifter that also works in quadratic time. Lambda...... that yields the cubic factor in the traditional formulation of lambda-lifting, which is due to Johnsson. This search is carried out by computing a transitive closure. To reduce the complexity of lambda-lifting, we partition the call graph of the source program into strongly connected components, based...

  11. Power flow control using quadrature boosters

    Science.gov (United States)

    Sadanandan, Sandeep N.

    A power system that can be controlled within security constraints would be an advantage to power planners and real-time operators. Controlling flows can lessen reliability issues such as thermal limit violations, power stability problems, and/or voltage stability conditions. Control of flows can also mitigate market issues by reducing congestion on some lines and rerouting power to less loaded lines or onto preferable paths. In the traditional control of power flows, phase shifters are often used. More advanced methods include using Flexible AC Transmission System (FACTS) Controllers. Some examples include Thyristor Controlled Series Capacitors, Synchronous Series Static Compensators, and Unified Power Flow Controllers. Quadrature Boosters (QBs) have similar structures to phase-shifters, but allow for higher voltage magnitude during real power flow control. In comparison with other FACTS controllers QBs are not as complex and not as expensive. The present study proposes to use QBs to control power flows on a power system. With the inclusion of QBs, real power flows can be controlled to desired scheduled values. In this thesis, the linearized power flow equations used for power flow analysis were modified for the control problem. This included modifying the Jacobian matrix, the power error vector, and calculating the voltage injected by the quadrature booster for the scheduled real power flow. Two scenarios were examined using the proposed power flow control method. First, the power flow in a line in a 5-bus system was modified with a QB using the method developed in this thesis. Simulation was carried out using Matlab. Second, the method was applied to a 30-bus system and then to a 118-bus system using several QBs. In all the cases, the calculated values of the QB voltages led to desired power flows in the designated line.

  12. Self-Replicating Quadratics

    Science.gov (United States)

    Withers, Christopher S.; Nadarajah, Saralees

    2012-01-01

    We show that there are exactly four quadratic polynomials, Q(x) = x [superscript 2] + ax + b, such that (x[superscript 2] + ax + b) (x[superscript 2] - ax + b) = (x[superscript 4] + ax[superscript 2] + b). For n = 1, 2, ..., these quadratic polynomials can be written as the product of N = 2[superscript n] quadratic polynomials in x[superscript…

  13. Linear and Quadratic Interpolators Using Truncated-Matrix Multipliers and Squarers

    Directory of Open Access Journals (Sweden)

    E. George Walters III

    2015-11-01

    Full Text Available This paper presents a technique for designing linear and quadratic interpolators for function approximation using truncated multipliers and squarers. Initial coefficient values are found using a Chebyshev-series approximation and then adjusted through exhaustive simulation to minimize the maximum absolute error of the interpolator output. This technique is suitable for any function and any precision up to 24 bits (IEEE single precision. Designs for linear and quadratic interpolators that implement the 1/x, 1/ √ x, log2(1+2x, log2(x and 2x functions are presented and analyzed as examples. Results show that a proposed 24-bit interpolator computing 1/x with a design specification of ±1 unit in the last place of the product (ulp error uses 16.4% less area and 15.3% less power than a comparable standard interpolator with the same error specification. Sixteen-bit linear interpolators for other functions are shown to use up to 17.3% less area and 12.1% less power, and 16-bit quadratic interpolators are shown to use up to 25.8% less area and 24.7% less power.

  14. A Sequential Quadratically Constrained Quadratic Programming Method of Feasible Directions

    International Nuclear Information System (INIS)

    Jian Jinbao; Hu Qingjie; Tang Chunming; Zheng Haiyan

    2007-01-01

    In this paper, a sequential quadratically constrained quadratic programming method of feasible directions is proposed for the optimization problems with nonlinear inequality constraints. At each iteration of the proposed algorithm, a feasible direction of descent is obtained by solving only one subproblem which consist of a convex quadratic objective function and simple quadratic inequality constraints without the second derivatives of the functions of the discussed problems, and such a subproblem can be formulated as a second-order cone programming which can be solved by interior point methods. To overcome the Maratos effect, an efficient higher-order correction direction is obtained by only one explicit computation formula. The algorithm is proved to be globally convergent and superlinearly convergent under some mild conditions without the strict complementarity. Finally, some preliminary numerical results are reported

  15. Quadratic Damping

    Science.gov (United States)

    Fay, Temple H.

    2012-01-01

    Quadratic friction involves a discontinuous damping term in equations of motion in order that the frictional force always opposes the direction of the motion. Perhaps for this reason this topic is usually omitted from beginning texts in differential equations and physics. However, quadratic damping is more realistic than viscous damping in many…

  16. Quadratic soliton self-reflection at a quadratically nonlinear interface

    Science.gov (United States)

    Jankovic, Ladislav; Kim, Hongki; Stegeman, George; Carrasco, Silvia; Torner, Lluis; Katz, Mordechai

    2003-11-01

    The reflection of bulk quadratic solutions incident onto a quadratically nonlinear interface in periodically poled potassium titanyl phosphate was observed. The interface consisted of the boundary between two quasi-phase-matched regions displaced from each other by a half-period. At high intensities and small angles of incidence the soliton is reflected.

  17. Thermal response test data of five quadratic cross section precast pile heat exchangers.

    Science.gov (United States)

    Alberdi-Pagola, Maria

    2018-06-01

    This data article comprises records from five Thermal Response Tests (TRT) of quadratic cross section pile heat exchangers. Pile heat exchangers, typically referred to as energy piles, consist of traditional foundation piles with embedded heat exchanger pipes. The data presented in this article are related to the research article entitled "Comparing heat flow models for interpretation of precast quadratic pile heat exchanger thermal response tests" (Alberdi-Pagola et al., 2018) [1]. The TRT data consists of measured inlet and outlet temperatures, fluid flow and injected heat rate recorded every 10 min. The field dataset is made available to enable model verification studies.

  18. Optimal Quadratic Programming Algorithms

    CERN Document Server

    Dostal, Zdenek

    2009-01-01

    Quadratic programming (QP) is one technique that allows for the optimization of a quadratic function in several variables in the presence of linear constraints. This title presents various algorithms for solving large QP problems. It is suitable as an introductory text on quadratic programming for graduate students and researchers

  19. Linear-quadratic control and quadratic differential forms for multidimensional behaviors

    NARCIS (Netherlands)

    Napp, D.; Trentelman, H.L.

    2011-01-01

    This paper deals with systems described by constant coefficient linear partial differential equations (nD-systems) from a behavioral point of view. In this context we treat the linear-quadratic control problem where the performance functional is the integral of a quadratic differential form. We look

  20. Rescuing Quadratic Inflation

    CERN Document Server

    Ellis, John; Sueiro, Maria

    2014-01-01

    Inflationary models based on a single scalar field $\\phi$ with a quadratic potential $V = \\frac{1}{2} m^2 \\phi^2$ are disfavoured by the recent Planck constraints on the scalar index, $n_s$, and the tensor-to-scalar ratio for cosmological density perturbations, $r_T$. In this paper we study how such a quadratic inflationary model can be rescued by postulating additional fields with quadratic potentials, such as might occur in sneutrino models, which might serve as either curvatons or supplementary inflatons. Introducing a second scalar field reduces but does not remove the pressure on quadratic inflation, but we find a sample of three-field models that are highly compatible with the Planck data on $n_s$ and $r_T$. We exhibit a specific three-sneutrino example that is also compatible with the data on neutrino mass difference and mixing angles.

  1. Thermal response test data of five quadratic cross section precast pile heat exchangers

    Directory of Open Access Journals (Sweden)

    Maria Alberdi-Pagola

    2018-06-01

    Full Text Available This data article comprises records from five Thermal Response Tests (TRT of quadratic cross section pile heat exchangers. Pile heat exchangers, typically referred to as energy piles, consist of traditional foundation piles with embedded heat exchanger pipes. The data presented in this article are related to the research article entitled “Comparing heat flow models for interpretation of precast quadratic pile heat exchanger thermal response tests” (Alberdi-Pagola et al., 2018 [1]. The TRT data consists of measured inlet and outlet temperatures, fluid flow and injected heat rate recorded every 10 min. The field dataset is made available to enable model verification studies.

  2. Quadratic algebras

    CERN Document Server

    Polishchuk, Alexander

    2005-01-01

    Quadratic algebras, i.e., algebras defined by quadratic relations, often occur in various areas of mathematics. One of the main problems in the study of these (and similarly defined) algebras is how to control their size. A central notion in solving this problem is the notion of a Koszul algebra, which was introduced in 1970 by S. Priddy and then appeared in many areas of mathematics, such as algebraic geometry, representation theory, noncommutative geometry, K-theory, number theory, and noncommutative linear algebra. The book offers a coherent exposition of the theory of quadratic and Koszul algebras, including various definitions of Koszulness, duality theory, Poincar�-Birkhoff-Witt-type theorems for Koszul algebras, and the Koszul deformation principle. In the concluding chapter of the book, they explain a surprising connection between Koszul algebras and one-dependent discrete-time stochastic processes.

  3. Faithfully quadratic rings

    CERN Document Server

    Dickmann, M

    2015-01-01

    In this monograph the authors extend the classical algebraic theory of quadratic forms over fields to diagonal quadratic forms with invertible entries over broad classes of commutative, unitary rings where -1 is not a sum of squares and 2 is invertible. They accomplish this by: (1) Extending the classical notion of matrix isometry of forms to a suitable notion of T-isometry, where T is a preorder of the given ring, A, or T = A^2. (2) Introducing in this context three axioms expressing simple properties of (value) representation of elements of the ring by quadratic forms, well-known to hold in

  4. Quadratic contributions of softly broken supersymmetry in the light of loop regularization

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Dong [Chinese Academy of Sciences, Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Beijing (China); University of Chinese Academy of Sciences, School of Physical Sciences, Beijing (China); Wu, Yue-Liang [Chinese Academy of Sciences, Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Beijing (China); International Centre for Theoretical Physics Asia-Pacific (ICTP-AP), Beijing (China); University of Chinese Academy of Sciences, School of Physical Sciences, Beijing (China)

    2017-09-15

    Loop regularization (LORE) is a novel regularization scheme in modern quantum field theories. It makes no change to the spacetime structure and respects both gauge symmetries and supersymmetry. As a result, LORE should be useful in calculating loop corrections in supersymmetry phenomenology. To further demonstrate its power, in this article we revisit in the light of LORE the old issue of the absence of quadratic contributions (quadratic divergences) in softly broken supersymmetric field theories. It is shown explicitly by Feynman diagrammatic calculations that up to two loops the Wess-Zumino model with soft supersymmetry breaking terms (WZ' model), one of the simplest models with the explicit supersymmetry breaking, is free of quadratic contributions. All the quadratic contributions cancel with each other perfectly, which is consistent with results dictated by the supergraph techniques. (orig.)

  5. Load flow optimization and optimal power flow

    CERN Document Server

    Das, J C

    2017-01-01

    This book discusses the major aspects of load flow, optimization, optimal load flow, and culminates in modern heuristic optimization techniques and evolutionary programming. In the deregulated environment, the economic provision of electrical power to consumers requires knowledge of maintaining a certain power quality and load flow. Many case studies and practical examples are included to emphasize real-world applications. The problems at the end of each chapter can be solved by hand calculations without having to use computer software. The appendices are devoted to calculations of line and cable constants, and solutions to the problems are included throughout the book.

  6. Gravitation and quadratic forms

    International Nuclear Information System (INIS)

    Ananth, Sudarshan; Brink, Lars; Majumdar, Sucheta; Mali, Mahendra; Shah, Nabha

    2017-01-01

    The light-cone Hamiltonians describing both pure (N=0) Yang-Mills and N=4 super Yang-Mills may be expressed as quadratic forms. Here, we show that this feature extends to theories of gravity. We demonstrate how the Hamiltonians of both pure gravity and N=8 supergravity, in four dimensions, may be written as quadratic forms. We examine the effect of residual reparametrizations on the Hamiltonian and the resulting quadratic form.

  7. Gravitation and quadratic forms

    Energy Technology Data Exchange (ETDEWEB)

    Ananth, Sudarshan [Indian Institute of Science Education and Research,Pune 411008 (India); Brink, Lars [Department of Physics, Chalmers University of Technology,S-41296 Göteborg (Sweden); Institute of Advanced Studies and Department of Physics & Applied Physics,Nanyang Technological University,Singapore 637371 (Singapore); Majumdar, Sucheta [Indian Institute of Science Education and Research,Pune 411008 (India); Mali, Mahendra [School of Physics, Indian Institute of Science Education and Research,Thiruvananthapuram, Trivandrum 695016 (India); Shah, Nabha [Indian Institute of Science Education and Research,Pune 411008 (India)

    2017-03-31

    The light-cone Hamiltonians describing both pure (N=0) Yang-Mills and N=4 super Yang-Mills may be expressed as quadratic forms. Here, we show that this feature extends to theories of gravity. We demonstrate how the Hamiltonians of both pure gravity and N=8 supergravity, in four dimensions, may be written as quadratic forms. We examine the effect of residual reparametrizations on the Hamiltonian and the resulting quadratic form.

  8. The application of LQR synthesis techniques to the turboshaft engine control problem. [Linear Quadratic Regulator

    Science.gov (United States)

    Pfeil, W. H.; De Los Reyes, G.; Bobula, G. A.

    1985-01-01

    A power turbine governor was designed for a recent-technology turboshaft engine coupled to a modern, articulated rotor system using Linear Quadratic Regulator (LQR) and Kalman Filter (KF) techniques. A linear, state-space model of the engine and rotor system was derived for six engine power settings from flight idle to maximum continuous. An integrator was appended to the fuel flow input to reduce the steady-state governor error to zero. Feedback gains were calculated for the system states at each power setting using the LQR technique. The main rotor tip speed state is not measurable, so a Kalman Filter of the rotor was used to estimate this state. The crossover of the system was increased to 10 rad/s compared to 2 rad/sec for a current governor. Initial computer simulations with a nonlinear engine model indicate a significant decrease in power turbine speed variation with the LQR governor compared to a conventional governor.

  9. Separable quadratic stochastic operators

    International Nuclear Information System (INIS)

    Rozikov, U.A.; Nazir, S.

    2009-04-01

    We consider quadratic stochastic operators, which are separable as a product of two linear operators. Depending on properties of these linear operators we classify the set of the separable quadratic stochastic operators: first class of constant operators, second class of linear and third class of nonlinear (separable) quadratic stochastic operators. Since the properties of operators from the first and second classes are well known, we mainly study the properties of the operators of the third class. We describe some Lyapunov functions of the operators and apply them to study ω-limit sets of the trajectories generated by the operators. We also compare our results with known results of the theory of quadratic operators and give some open problems. (author)

  10. Neural Network Based Maximum Power Point Tracking Control with Quadratic Boost Converter for PMSG—Wind Energy Conversion System

    Directory of Open Access Journals (Sweden)

    Ramji Tiwari

    2018-02-01

    Full Text Available This paper proposes an artificial neural network (ANN based maximum power point tracking (MPPT control strategy for wind energy conversion system (WECS implemented with a DC/DC converter. The proposed topology utilizes a radial basis function network (RBFN based neural network control strategy to extract the maximum available power from the wind velocity. The results are compared with a classical Perturb and Observe (P&O method and Back propagation network (BPN method. In order to achieve a high voltage rating, the system is implemented with a quadratic boost converter and the performance of the converter is validated with a boost and single ended primary inductance converter (SEPIC. The performance of the MPPT technique along with a DC/DC converter is demonstrated using MATLAB/Simulink.

  11. ON WEIGHTED GENERALIZED FUNCTIONS ASSOCIATED WITH QUADRATIC FORMS

    Directory of Open Access Journals (Sweden)

    E. L. Shishkina

    2016-12-01

    Full Text Available In this article we consider certain types of weighted generalized functions associated with nondegenerate quadratic forms. Such functions and their derivatives are used for constructing fundamental solutions of iterated ultra-hyperbolic equations with the Bessel operator and for constructing negative real powers of ultra-hyperbolic operators with the Bessel operator.

  12. Optimal Power Flow Pursuit

    Energy Technology Data Exchange (ETDEWEB)

    Dall' Anese, Emiliano; Simonetto, Andrea

    2018-03-01

    This paper considers distribution networks featuring inverter-interfaced distributed energy resources, and develops distributed feedback controllers that continuously drive the inverter output powers to solutions of AC optimal power flow (OPF) problems. Particularly, the controllers update the power setpoints based on voltage measurements as well as given (time-varying) OPF targets, and entail elementary operations implementable onto low-cost microcontrollers that accompany power-electronics interfaces of gateways and inverters. The design of the control framework is based on suitable linear approximations of the AC power-flow equations as well as Lagrangian regularization methods. Convergence and OPF-target tracking capabilities of the controllers are analytically established. Overall, the proposed method allows to bypass traditional hierarchical setups where feedback control and optimization operate at distinct time scales, and to enable real-time optimization of distribution systems.

  13. The Entropy Solutions for the Lighthill-Whitham-Richards Traffic Flow Model with a Discontinuous Flow-Density Relationship

    National Research Council Canada - National Science Library

    Lu, Yadong; Wong, S. C; Zhang, Mengping; Shu, Chi-Wang

    2007-01-01

    ...) traffic flow model with a flow-density relationship which is piecewise quadratic, concave, but not continuous at the junction points where two quadratic polynomials meet, and with piecewise linear...

  14. Design of variable-weight quadratic congruence code for optical CDMA

    Science.gov (United States)

    Feng, Gang; Cheng, Wen-Qing; Chen, Fu-Jun

    2015-09-01

    A variable-weight code family referred to as variable-weight quadratic congruence code (VWQCC) is constructed by algebraic transformation for incoherent synchronous optical code division multiple access (OCDMA) systems. Compared with quadratic congruence code (QCC), VWQCC doubles the code cardinality and provides the multiple code-sets with variable code-weight. Moreover, the bit-error rate (BER) performance of VWQCC is superior to those of conventional variable-weight codes by removing or padding pulses under the same chip power assumption. The experiment results show that VWQCC can be well applied to the OCDMA with quality of service (QoS) requirements.

  15. Geometry of power flows and convex-relaxed power flows in distribution networks with high penetration of renewables

    DEFF Research Database (Denmark)

    Huang, Shaojun; Wu, Qiuwei; Zhao, Haoran

    2016-01-01

    Renewable energies are increasingly integrated in electric distribution networks and will cause severe overvoltage issues. Smart grid technologies make it possible to use coordinated control to mitigate the overvoltage issues and the optimal power flow (OPF) method is proven to be efficient...... in the applications such as curtailment management and reactive power control. Nonconvex nature of the OPF makes it difficult to solve and convex relaxation is a promising method to solve the OPF very efficiently. This paper investigates the geometry of the power flows and the convex-relaxed power flows when high...

  16. Structural power flow measurement

    Energy Technology Data Exchange (ETDEWEB)

    Falter, K.J.; Keltie, R.F.

    1988-12-01

    Previous investigations of structural power flow through beam-like structures resulted in some unexplained anomalies in the calculated data. In order to develop structural power flow measurement as a viable technique for machine tool design, the causes of these anomalies needed to be found. Once found, techniques for eliminating the errors could be developed. Error sources were found in the experimental apparatus itself as well as in the instrumentation. Although flexural waves are the carriers of power in the experimental apparatus, at some frequencies longitudinal waves were excited which were picked up by the accelerometers and altered power measurements. Errors were found in the phase and gain response of the sensors and amplifiers used for measurement. A transfer function correction technique was employed to compensate for these instrumentation errors.

  17. Routing power flows in distribution networks using locally controlled power electronics

    NARCIS (Netherlands)

    Hamelink, J.; Nguyen, P.H.; Kling, W.L.; Ribeiro, P.F.; Groot, de R.J.W.

    2012-01-01

    The power grid has gradually changed its operation during the recent decades. These developments have encouraged a shift from centralized to decentralized power flow control. A research has been carried out to investigate the possibilities to control power flows using the Smart Power Router (SPR) in

  18. Aspects of Quadratic Gravity

    CERN Document Server

    Alvarez-Gaume, Luis; Kounnas, Costas; Lust, Dieter; Riotto, Antonio

    2016-01-01

    We discuss quadratic gravity where terms quadratic in the curvature tensor are included in the action. After reviewing the corresponding field equations, we analyze in detail the physical propagating modes in some specific backgrounds. First we confirm that the pure $R^2$ theory is indeed ghost free. Then we point out that for flat backgrounds the pure $R^2$ theory propagates only a scalar massless mode and no spin-two tensor mode. However, the latter emerges either by expanding the theory around curved backgrounds like de Sitter or anti-de Sitter, or by changing the long-distance dynamics by introducing the standard Einstein term. In both cases, the theory is modified in the infrared and a propagating graviton is recovered. Hence we recognize a subtle interplay between the UV and IR properties of higher order gravity. We also calculate the corresponding Newton's law for general quadratic curvature theories. Finally, we discuss how quadratic actions may be obtained from a fundamental theory like string- or M-...

  19. The Type-2 Fuzzy Logic Controller-Based Maximum Power Point Tracking Algorithm and the Quadratic Boost Converter for Pv System

    Science.gov (United States)

    Altin, Necmi

    2018-05-01

    An interval type-2 fuzzy logic controller-based maximum power point tracking algorithm and direct current-direct current (DC-DC) converter topology are proposed for photovoltaic (PV) systems. The proposed maximum power point tracking algorithm is designed based on an interval type-2 fuzzy logic controller that has an ability to handle uncertainties. The change in PV power and the change in PV voltage are determined as inputs of the proposed controller, while the change in duty cycle is determined as the output of the controller. Seven interval type-2 fuzzy sets are determined and used as membership functions for input and output variables. The quadratic boost converter provides high voltage step-up ability without any reduction in performance and stability of the system. The performance of the proposed system is validated through MATLAB/Simulink simulations. It is seen that the proposed system provides high maximum power point tracking speed and accuracy even for fast changing atmospheric conditions and high voltage step-up requirements.

  20. Modelling of electrical power systems for power flow analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cogo, Joao Roberto [Escola Federal de Engenharia de Itajuba, MG (Brazil)

    1994-12-31

    The industry systems in Brazil are responsible for a consumption of over 50% (fifty per cent) of the total electrical power generated: therefore, they are import loads in power flow studies, and their modeling should be as much the best. Usually, in power flow studies, the industry systems are modeled by taking the influence of the power (active and reactive) and of the current on the voltage into account. Since the inducting motors, within the industry systems, represent at least 50% (fifty per cent) of the power consumption, and a large part of them is oversize, it is proposed to represent the industry systems as a function of the characteristic of power on shaft versus voltage into account. Since the induction motors, within the industry systems, represent at least 50% (fifty per cent) of the power consumption, and a large part of them is oversized, it is proposed to represent the industry systems as a function of the characteristics of power on shaft versus voltage for the analysis of power systems, aiming a load flow study. Thereafter, a model of an equivalent motor which has a basis the typical performance curve of an induction motor is present. This model is obtained from empirical parameters, surveyed from a population of over 1000 motors. (author) 3 refs., 1 fig., 4 tabs.

  1. On Characterization of Quadratic Splines

    DEFF Research Database (Denmark)

    Chen, B. T.; Madsen, Kaj; Zhang, Shuzhong

    2005-01-01

    that the representation can be refined in a neighborhood of a non-degenerate point and a set of non-degenerate minimizers. Based on these characterizations, many existing algorithms for specific convex quadratic splines are also finite convergent for a general convex quadratic spline. Finally, we study the relationship...... between the convexity of a quadratic spline function and the monotonicity of the corresponding LCP problem. It is shown that, although both conditions lead to easy solvability of the problem, they are different in general....

  2. On Variable Reverse Power Flow-Part I: Active-Reactive Optimal Power Flow with Reactive Power of Wind Stations

    Directory of Open Access Journals (Sweden)

    Aouss Gabash

    2016-02-01

    Full Text Available It has recently been shown that using battery storage systems (BSSs to provide reactive power provision in a medium-voltage (MV active distribution network (ADN with embedded wind stations (WSs can lead to a huge amount of reverse power to an upstream transmission network (TN. However, unity power factors (PFs of WSs were assumed in those studies to analyze the potential of BSSs. Therefore, in this paper (Part-I, we aim to further explore the pure reactive power potential of WSs (i.e., without BSSs by investigating the issue of variable reverse power flow under different limits on PFs in an electricity market model. The main contributions of this work are summarized as follows: (1 Introducing the reactive power capability of WSs in the optimization model of the active-reactive optimal power flow (A-R-OPF and highlighting the benefits/impacts under different limits on PFs. (2 Investigating the impacts of different agreements for variable reverse power flow on the operation of an ADN under different demand scenarios. (3 Derivation of the function of reactive energy losses in the grid with an equivalent-π circuit and comparing its value with active energy losses. (4 Balancing the energy curtailment of wind generation, active-reactive energy losses in the grid and active-reactive energy import-export by a meter-based method. In Part-II, the potential of the developed model is studied through analyzing an electricity market model and a 41-bus network with different locations of WSs.

  3. Modular load flow for restructured power systems

    CERN Document Server

    Hariharan, M V; Gupta, Pragati P

    2016-01-01

    In the subject of power systems, authors felt that a re-look is necessary at some conventional methods of analysis. In this book, the authors have subjected the time-honoured load flow to a close scrutiny. Authors have discovered and discussed a new load flow procedure – Modular Load Flow. Modular Load Flow explores use of power – a scalar – as source for electrical circuits which are conventionally analysed by means of phasors – the ac voltages or currents. The method embeds Kirchhoff’s circuit laws as topological property into its scalar equations and results in a unique wonderland where phase angles do not exist! Generators are shown to have their own worlds which can be superimposed to obtain the state of the composite power system. The treatment is useful in restructured power systems where stakeholders and the system operators may desire to know individual generator contributions in line flows and line losses for commercial reasons. Solution in Modular Load Flow consists of explicit expression...

  4. Quadratic third-order tensor optimization problem with quadratic constraints

    Directory of Open Access Journals (Sweden)

    Lixing Yang

    2014-05-01

    Full Text Available Quadratically constrained quadratic programs (QQPs problems play an important modeling role for many diverse problems. These problems are in general NP hard and numerically intractable. Semidenite programming (SDP relaxations often provide good approximate solutions to these hard problems. For several special cases of QQP, e.g., convex programs and trust region subproblems, SDP relaxation provides the exact optimal value, i.e., there is a zero duality gap. However, this is not true for the general QQP, or even the QQP with two convex constraints, but a nonconvex objective.In this paper, we consider a certain QQP where the variable is neither vector nor matrix but a third-order tensor. This problem can be viewed as a generalization of the ordinary QQP with vector or matrix as it's variant. Under some mild conditions, we rst show that SDP relaxation provides exact optimal solutions for the original problem. Then we focus on two classes of homogeneous quadratic tensor programming problems which have no requirements on the constraints number. For one, we provide an easily implemental polynomial time algorithm to approximately solve the problem and discuss the approximation ratio. For the other, we show there is no gap between the SDP relaxation and itself.

  5. Optimized Large-scale CMB Likelihood and Quadratic Maximum Likelihood Power Spectrum Estimation

    Science.gov (United States)

    Gjerløw, E.; Colombo, L. P. L.; Eriksen, H. K.; Górski, K. M.; Gruppuso, A.; Jewell, J. B.; Plaszczynski, S.; Wehus, I. K.

    2015-11-01

    We revisit the problem of exact cosmic microwave background (CMB) likelihood and power spectrum estimation with the goal of minimizing computational costs through linear compression. This idea was originally proposed for CMB purposes by Tegmark et al., and here we develop it into a fully functioning computational framework for large-scale polarization analysis, adopting WMAP as a working example. We compare five different linear bases (pixel space, harmonic space, noise covariance eigenvectors, signal-to-noise covariance eigenvectors, and signal-plus-noise covariance eigenvectors) in terms of compression efficiency, and find that the computationally most efficient basis is the signal-to-noise eigenvector basis, which is closely related to the Karhunen-Loeve and Principal Component transforms, in agreement with previous suggestions. For this basis, the information in 6836 unmasked WMAP sky map pixels can be compressed into a smaller set of 3102 modes, with a maximum error increase of any single multipole of 3.8% at ℓ ≤ 32 and a maximum shift in the mean values of a joint distribution of an amplitude-tilt model of 0.006σ. This compression reduces the computational cost of a single likelihood evaluation by a factor of 5, from 38 to 7.5 CPU seconds, and it also results in a more robust likelihood by implicitly regularizing nearly degenerate modes. Finally, we use the same compression framework to formulate a numerically stable and computationally efficient variation of the Quadratic Maximum Likelihood implementation, which requires less than 3 GB of memory and 2 CPU minutes per iteration for ℓ ≤ 32, rendering low-ℓ QML CMB power spectrum analysis fully tractable on a standard laptop.

  6. Unified solution of a non-convex SCUC problem using combination of modified Branch-and-Bound method with Quadratic Programming

    International Nuclear Information System (INIS)

    Shafie-khah, M.; Parsa Moghaddam, M.; Sheikh-El-Eslami, M.K.

    2011-01-01

    Highlights: → A hybrid SCUC solution is developed to deal with large-scale, real-time and long-term problems. → New formulations are proposed for considering valve point effect and warmth-dependent start-up cost. → A new algorithm is developed for modeling the AC power flow in SCUC problems. → Using the power flow algorithm both steps in traditional SCUC is done simultaneously. → The proposed method provides better solutions than previous ones with a fast speed. - Abstract: In this paper, a new practical method is presented for solving the non-convex security constraint unit commitment (SCUC) problem in power systems. The accuracy of the proposed method is desirable while the shorter computation time makes it useful for SCUC solution of large-scale power systems, real-time market operation and long-term SCUC problems. The proposed framework allows inclusion of the valve point effects, warmth-dependent start-up costs, ramp rates, minimum up/down time constraints, multiple fuels costs, emission costs, prohibited operating zones and AC power flow limits in normal and contingency conditions. To solve the non-convex problem, combination of a modified Branch-and-Bound method with the Quadratic Programming is used as an optimization tool and a developed AC power flow algorithm is applied for considering the security and contingency concerns using the nonlinear/linear AC model. These modifications improve the convergence speed and solution precision of SCUC problem. In the proposed method, in contrast with traditional SCUC algorithms, unit commitment solution, checking and satisfying the security constraints are managed simultaneously. The obtained results are compared with other reported methods for investigating the effectiveness of the proposed method. Also, the proposed method is applied to an Iranian power system including 493 thermal units.

  7. Application of Linear Quadratic Gaussian and Coefficient Diagram Techniques to Distributed Load Frequency Control of Power Systems

    Directory of Open Access Journals (Sweden)

    Tarek Hassan Mohamed

    2015-12-01

    Full Text Available This paper presented both the linear quadratic Gaussian technique (LQG and the coefficient diagram method (CDM as load frequency controllers in a multi-area power system to deal with the problem of variations in system parameters and load demand change. The full states of the system including the area frequency deviation have been estimated using the Kalman filter technique. The efficiency of the proposed control method has been checked using a digital simulation. Simulation results indicated that, with the proposed CDM + LQG technique, the system is robust in the face of parameter uncertainties and load disturbances. A comparison between the proposed technique and other schemes is carried out, confirming the superiority of the proposed CDM + LQG technique.

  8. Extending the Scope of Robust Quadratic Optimization

    NARCIS (Netherlands)

    Marandi, Ahmadreza; Ben-Tal, A.; den Hertog, Dick; Melenberg, Bertrand

    In this paper, we derive tractable reformulations of the robust counterparts of convex quadratic and conic quadratic constraints with concave uncertainties for a broad range of uncertainty sets. For quadratic constraints with convex uncertainty, it is well-known that the robust counterpart is, in

  9. Robustness analysis of the Zhang neural network for online time-varying quadratic optimization

    International Nuclear Information System (INIS)

    Zhang Yunong; Ruan Gongqin; Li Kene; Yang Yiwen

    2010-01-01

    A general type of recurrent neural network (termed as Zhang neural network, ZNN) has recently been proposed by Zhang et al for the online solution of time-varying quadratic-minimization (QM) and quadratic-programming (QP) problems. Global exponential convergence of the ZNN could be achieved theoretically in an ideal error-free situation. In this paper, with the normal differentiation and dynamics-implementation errors considered, the robustness properties of the ZNN model are investigated for solving these time-varying problems. In addition, linear activation functions and power-sigmoid activation functions could be applied to such a perturbed ZNN model. Both theoretical-analysis and computer-simulation results demonstrate the good ZNN robustness and superior performance for online time-varying QM and QP problem solving, especially when using power-sigmoid activation functions.

  10. Quadratic residues and non-residues selected topics

    CERN Document Server

    Wright, Steve

    2016-01-01

    This book offers an account of the classical theory of quadratic residues and non-residues with the goal of using that theory as a lens through which to view the development of some of the fundamental methods employed in modern elementary, algebraic, and analytic number theory. The first three chapters present some basic facts and the history of quadratic residues and non-residues and discuss various proofs of the Law of Quadratic Reciprosity in depth, with an emphasis on the six proofs that Gauss published. The remaining seven chapters explore some interesting applications of the Law of Quadratic Reciprocity, prove some results concerning the distribution and arithmetic structure of quadratic residues and non-residues, provide a detailed proof of Dirichlet’s Class-Number Formula, and discuss the question of whether quadratic residues are randomly distributed. The text is a valuable resource for graduate and advanced undergraduate students as well as for mathematicians interested in number theory.

  11. Quadratic Hamiltonians on non-symmetric Poisson structures

    International Nuclear Information System (INIS)

    Arribas, M.; Blesa, F.; Elipe, A.

    2007-01-01

    Many dynamical systems may be represented in a set of non-canonical coordinates that generate an su(2) algebraic structure. The topology of the phase space is the one of the S 2 sphere, the Poisson structure is the one of the rigid body, and the Hamiltonian is a parametric quadratic form in these 'spherical' coordinates. However, there are other problems in which the Poisson structure losses its symmetry. In this paper we analyze this case and, we show how the loss of the spherical symmetry affects the phase flow and parametric bifurcations for the bi-parametric cases

  12. Students' Understanding of Quadratic Equations

    Science.gov (United States)

    López, Jonathan; Robles, Izraim; Martínez-Planell, Rafael

    2016-01-01

    Action-Process-Object-Schema theory (APOS) was applied to study student understanding of quadratic equations in one variable. This required proposing a detailed conjecture (called a genetic decomposition) of mental constructions students may do to understand quadratic equations. The genetic decomposition which was proposed can contribute to help…

  13. On bent and semi-bent quadratic Boolean functions

    DEFF Research Database (Denmark)

    Charpin, P.; Pasalic, Enes; Tavernier, C.

    2005-01-01

    correlation and high nonlinearity. We say that such a sequence is generated by a semi-bent function. Some new families of such function, represented by f(x) = Sigma(i=1)(n-1/2) c(i)Tr(x(2t+1)), n odd and c(i) is an element of F-2, have recently (2002) been introduced by Khoo et al. We first generalize......The maximum-length sequences, also called m-sequences, have received a lot of attention since the late 1960s. In terms of linear-feedback shift register (LFSR) synthesis they are usually generated by certain power polynomials over a finite field and in addition are characterized by a low cross...... their results to even n. We further investigate the conditions on the choice of ci for explicit definitions of new infinite families having three and four trace terms. Also, a class of nonpermutation polynomials whose composition with a quadratic function yields again a quadratic semi-bent function is specified...

  14. Application of Newton's optimal power flow in voltage/reactive power control

    Energy Technology Data Exchange (ETDEWEB)

    Bjelogrlic, M.; Babic, B.S. (Electric Power Board of Serbia, Belgrade (YU)); Calovic, M.S. (Dept. of Electrical Engineering, University of Belgrade, Belgrade (YU)); Ristanovic, P. (Institute Nikola Tesla, Belgrade (YU))

    1990-11-01

    This paper considers an application of Newton's optimal power flow to the solution of the secondary voltage/reactive power control in transmission networks. An efficient computer program based on the latest achievements in the sparse matrix/vector techniques has been developed for this purpose. It is characterized by good robustness, accuracy and speed. A combined objective function appropriate for various system load levels with suitable constraints, for treatment of the power system security and economy is also proposed. For the real-time voltage/reactive power control, a suboptimal power flow procedure has been derived by using the reduced set of control variables. This procedure is based on the sensitivity theory applied to the determination of zones for the secondary voltage/reactive power control and corresponding reduced set of regulating sources, whose reactive outputs represent control variables in the optimal power flow program. As a result, the optimal power flow program output becomes a schedule to be used by operators in the process of the real-time voltage/reactive power control in both normal and emergency operating states.

  15. A decoupled power flow algorithm using particle swarm optimization technique

    International Nuclear Information System (INIS)

    Acharjee, P.; Goswami, S.K.

    2009-01-01

    A robust, nondivergent power flow method has been developed using the particle swarm optimization (PSO) technique. The decoupling properties between the power system quantities have been exploited in developing the power flow algorithm. The speed of the power flow algorithm has been improved using a simple perturbation technique. The basic power flow algorithm and the improvement scheme have been designed to retain the simplicity of the evolutionary approach. The power flow is rugged, can determine the critical loading conditions and also can handle the flexible alternating current transmission system (FACTS) devices efficiently. Test results on standard test systems show that the proposed method can find the solution when the standard power flows fail.

  16. Dynamical invariants for variable quadratic Hamiltonians

    International Nuclear Information System (INIS)

    Suslov, Sergei K

    2010-01-01

    We consider linear and quadratic integrals of motion for general variable quadratic Hamiltonians. Fundamental relations between the eigenvalue problem for linear dynamical invariants and solutions of the corresponding Cauchy initial value problem for the time-dependent Schroedinger equation are emphasized. An eigenfunction expansion of the solution of the initial value problem is also found. A nonlinear superposition principle for generalized Ermakov systems is established as a result of decomposition of the general quadratic invariant in terms of the linear ones.

  17. AC power flow importance measures considering multi-element failures

    International Nuclear Information System (INIS)

    Li, Jian; Dueñas-Osorio, Leonardo; Chen, Changkun; Shi, Congling

    2017-01-01

    Quantifying the criticality of individual components of power systems is essential for overall reliability and management. This paper proposes an AC-based power flow element importance measure, while considering multi-element failures. The measure relies on a proposed AC-based cascading failure model, which captures branch overflow, bus load shedding, and branch failures, via AC power flow and optimal power flow analyses. Taking the IEEE 30, 57 and 118-bus power systems as case studies, we find that N-3 analyses are sufficient to measure the importance of a bus or branch. It is observed that for a substation bus, its importance is statistically proportional to its power demand, but this trend is not observed for power plant buses. While comparing with other reliability, functionality, and topology-based importance measures popular today, we find that a DC power flow model, although better correlated with the benchmark AC model as a whole, still fails to locate some critical elements. This is due to the focus of DC-based models on real power that ignores reactive power. The proposed importance measure is aimed to inform decision makers about key components in complex systems, while improving cascading failure prevention, system backup setting, and overall resilience. - Highlights: • We propose a novel importance measure based on joint failures and AC power flow. • A cascading failure model considers both AC power flow and optimal power flow. • We find that N-3 analyses are sufficient to measure the importance of an element. • Power demand impacts the importance of substations but less so that of generators. • DC models fail to identify some key elements, despite correlating with AC models.

  18. Orthogonality preserving infinite dimensional quadratic stochastic operators

    International Nuclear Information System (INIS)

    Akın, Hasan; Mukhamedov, Farrukh

    2015-01-01

    In the present paper, we consider a notion of orthogonal preserving nonlinear operators. We introduce π-Volterra quadratic operators finite and infinite dimensional settings. It is proved that any orthogonal preserving quadratic operator on finite dimensional simplex is π-Volterra quadratic operator. In infinite dimensional setting, we describe all π-Volterra operators in terms orthogonal preserving operators

  19. Polyhedral combinatorics of the cardinality constrained quadratic knapsack problem and the quadratic selective travelling salesman problem

    DEFF Research Database (Denmark)

    Mak, Vicky; Thomadsen, Tommy

    2006-01-01

    This paper considers the cardinality constrained quadratic knapsack problem (QKP) and the quadratic selective travelling salesman problem (QSTSP). The QKP is a generalization of the knapsack problem and the QSTSP is a generalization of the travelling salesman problem. Thus, both problems are NP...

  20. Quadratically convergent MCSCF scheme using Fock operators

    International Nuclear Information System (INIS)

    Das, G.

    1981-01-01

    A quadratically convergent formulation of the MCSCF method using Fock operators is presented. Among its advantages the present formulation is quadratically convergent unlike the earlier ones based on Fock operators. In contrast to other quadratically convergent schemes as well as the one based on generalized Brillouin's theorem, this method leads easily to a hybrid scheme where the weakly coupled orbitals (such as the core) are handled purely by Fock equations, while the rest of the orbitals are treated by a quadratically convergent approach with a truncated virtual space obtained by the use of the corresponding Fock equations

  1. Quadratic brackets from symplectic forms

    International Nuclear Information System (INIS)

    Alekseev, Anton Yu.; Todorov, Ivan T.

    1994-01-01

    We give a physicist oriented survey of Poisson-Lie symmetries of classical systems. We consider finite-dimensional geometric actions and the chiral WZNW model as examples for the general construction. An essential point is the appearance of quadratic Poisson brackets for group-like variables. It is believed that upon quantization they lead to quadratic exchange algebras. ((orig.))

  2. Finite element method with quadratic quadrilateral unit for solving two dimensional incompressible N-S equation

    International Nuclear Information System (INIS)

    Tao Ganqiang; Yu Qing; Xiao Xiao

    2011-01-01

    Viscous and incompressible fluid flow is important for numerous engineering mechanics problems. Because of high non linear and incompressibility for Navier-Stokes equation, it is very difficult to solve Navier-Stokes equation by numerical method. According to its characters of Navier-Stokes equation, quartic derivation controlling equation of the two dimensional incompressible Navier-Stokes equation is set up firstly. The method solves the problem for dealing with vorticity boundary and automatically meets incompressibility condition. Then Finite Element equation for Navier-Stokes equation is proposed by using quadratic quadrilateral unit with 8 nodes in which the unit function is quadratic and non linear.-Based on it, the Finite Element program of quadratic quadrilateral unit with 8 nodes is developed. Lastly, numerical experiment proves the accuracy and dependability of the method and also shows the method has good application prospect in computational fluid mechanics. (authors)

  3. Transmission tariffs based on optimal power flow

    International Nuclear Information System (INIS)

    Wangensteen, Ivar; Gjelsvik, Anders

    1998-01-01

    This report discusses transmission pricing as a means of obtaining optimal scheduling and dispatch in a power system. This optimality includes consumption as well as generation. The report concentrates on how prices can be used as signals towards operational decisions of market participants (generators, consumers). The main focus is on deregulated systems with open access to the network. The optimal power flow theory, with demand side modelling included, is briefly reviewed. It turns out that the marginal costs obtained from the optimal power flow gives the optimal transmission tariff for the particular load flow in case. There is also a correspondence between losses and optimal prices. Emphasis is on simple examples that demonstrate the connection between optimal power flow results and tariffs. Various cases, such as open access and single owner are discussed. A key result is that the location of the ''marketplace'' in the open access case does not influence the net economical result for any of the parties involved (generators, network owner, consumer). The optimal power flow is instantaneous, and in its standard form cannot deal with energy constrained systems that are coupled in time, such as hydropower systems with reservoirs. A simplified example of how the theory can be extended to such a system is discussed. An example of the influence of security constraints on prices is also given. 4 refs., 24 figs., 7 tabs

  4. A revisit to quadratic programming with fuzzy parameters

    International Nuclear Information System (INIS)

    Liu, S.-T.

    2009-01-01

    Quadratic programming has been widely applied to solving real-world problems. Recently, Liu describes a solution method for solving a class of fuzzy quadratic programming problems, where the cost coefficients of the linear terms in objective function, constraint coefficients, and right-hand sides are fuzzy numbers [Liu ST. Quadratic programming with fuzzy parameters: a membership function approach. Chaos, Solitons and Fractals 2009;40:237-45]. In this paper, we generalize Liu's method to a more general fuzzy quadratic programming problem, where the cost coefficients in objective function, constraint coefficients, and right-hand sides are all fuzzy numbers. A pair of two-level mathematical programs is formulated to calculate the upper bound and lower bound of the objective values of the fuzzy quadratic program. Based on the duality theorem and by applying the variable transformation technique, the pair of two-level mathematical programs is transformed into a family of conventional one-level quadratic programs. Solving the pair of quadratic programs produces the fuzzy objective values of the problem. With the ability of calculating the fuzzy objective value developed in this paper, it might help initiate wider applications.

  5. SELECTIVE MODAL ANALYSIS OF POWER FLOW OSCILLATION IN LARGE SCALE LONGITUDINAL POWER SYSTEMS

    Directory of Open Access Journals (Sweden)

    Wirindi -

    2009-06-01

    Full Text Available Novel selective modal analysis for the determination of low frequency power flow oscillation behaviour based on eigenvalues with corresponding damping ratio, cumulative damping index, and participation factors is proposed. The power system being investigated consists of three large longitudinally interconnected areas with some weak tie lines. Different modes, such as exciter modes, inter area modes, and local modes of the dominant poles are fully studied to find out the significant level of system damping and other factors producing power flow instability. The nature of the energy exchange between area is determined and strategic power flow stability improvement is developed and tested.

  6. Quadratic Boost A-Source Impedance Network

    DEFF Research Database (Denmark)

    Siwakoti, Yam Prasad; Blaabjerg, Frede; Chub, Andrii

    2016-01-01

    A novel quadratic boost A-source impedance network is proposed to realize converters that demand very high voltage gain. To satisfy the requirement, the network uses an autotransformer where the obtained gain is quadratically dependent on the duty ratio and is unmatched by any existing impedance...

  7. MVA power flow and loss analysis for electricity market

    International Nuclear Information System (INIS)

    Wu, Z.Q.; Chen, G.Z.

    2001-01-01

    MVA power-flow and loss analysis is the basis for allocating the fixed costs and power losses under electricity-market deregulation. It is pointed out that the decomposition allocation of active and reactive power losses is not reasonable. The theory of active and reactive loss allocation and branch-power-flow decomposition has been proposed. Various contributory factors have been deduced. These contributory factors include the contribution factors of the active and reactive generation power, load-power-to-branch flows, the contribution factors of active and reactive generation power to active and reactive load power, the contribution factors of active and reactive load power to generation power, and the contribution factors of active and reactive load power and active and reactive generation power to line power losses. The detailed calculation results are presented and analysed, demonstrating that the theory presented provides a good charging algorithm for all the market participants. (Author)

  8. Agent-based reactive power management of power distribution networks with distributed energy generation

    International Nuclear Information System (INIS)

    Rahman, M.S.; Mahmud, M.A.; Oo, A.M.T.; Pota, H.R.; Hossain, M.J.

    2016-01-01

    Highlights: • A coordinated multi-agent system is proposed for reactive power management. • A linear quadratic regulator with a proportional integral controller is designed. • Proposed multi-agent scheme provides accurate estimation and control of the system. • Voltage stability is improved with proper power management for different scenarios. • Results obtained from the proposed scheme is compared to the traditional approach. - Abstract: In this paper, a new agent-based distributed reactive power management scheme is proposed to improve the voltage stability of energy distribution systems with distributed generation units. Three types of agents – distribution system agent, estimator agent, and control agent are developed within the multi-agent framework. The agents simultaneously coordinated their activities through the online information and energy flow. The overall achievement of the proposed scheme depends on the coordination between two tasks – (i) estimation of reactive power using voltage variation formula and (ii) necessary control actions to provide the estimated reactive power to the distribution networks through the distributed static synchronous compensators. A linear quadratic regulator with a proportional integrator is designed for the control agent in order to control the reactive component of the current and the DC voltage of the compensators. The performance of the proposed scheme is tested on a 10-bus power distribution network under various scenarios. The effectiveness is validated by comparing the proposed approach to the conventional proportional integral control approach. It is found that, the agent-based scheme provides excellent robust performance under various operating conditions of the power distribution network.

  9. Flow-through shares for power development

    International Nuclear Information System (INIS)

    Howie, K.D.

    1999-01-01

    Financial advantages will occur to power producers in Ontario provided that they are innovative in raising capital needed to take advantage of opportunities offered by the Energy Competition Act of 1998. In the new electricity regime, the availability of long term non-recourse debt financing supported by long term power purchasing from Ontario Hydro will probably decrease. The issuance of flow-through shares is a form of financing that could by available to them for certain projects, and there is the probability that greater equity financing will be needed. These flow-through shares can give investors immediate tax savings, a potential favorable return on their equity investment, and a means of financing certain kinds of power projects

  10. Type-I cascaded quadratic soliton compression in lithium niobate: Compressing femtosecond pulses from high-power fiber lasers

    DEFF Research Database (Denmark)

    Bache, Morten; Wise, Frank W.

    2010-01-01

    The output pulses of a commercial high-power femtosecond fiber laser or amplifier are typically around 300–500 fs with wavelengths of approximately 1030 nm and tens of microjoules of pulse energy. Here, we present a numerical study of cascaded quadratic soliton compression of such pulses in LiNbO3....... However, the strong group-velocity dispersion implies that the pulses can achieve moderate compression to durations of less than 130 fs in available crystal lengths. Most of the pulse energy is conserved because the compression is moderate. The effects of diffraction and spatial walk-off are addressed......, and in particular the latter could become an issue when compressing such long crystals (around 10 cm long). We finally show that the second harmonic contains a short pulse locked to the pump and a long multi-picosecond red-shifted detrimental component. The latter is caused by the nonlocal effects...

  11. Partial discharge localization in power transformers based on the sequential quadratic programming-genetic algorithm adopting acoustic emission techniques

    Science.gov (United States)

    Liu, Hua-Long; Liu, Hua-Dong

    2014-10-01

    Partial discharge (PD) in power transformers is one of the prime reasons resulting in insulation degradation and power faults. Hence, it is of great importance to study the techniques of the detection and localization of PD in theory and practice. The detection and localization of PD employing acoustic emission (AE) techniques, as a kind of non-destructive testing, plus due to the advantages of powerful capability of locating and high precision, have been paid more and more attention. The localization algorithm is the key factor to decide the localization accuracy in AE localization of PD. Many kinds of localization algorithms exist for the PD source localization adopting AE techniques including intelligent and non-intelligent algorithms. However, the existed algorithms possess some defects such as the premature convergence phenomenon, poor local optimization ability and unsuitability for the field applications. To overcome the poor local optimization ability and easily caused premature convergence phenomenon of the fundamental genetic algorithm (GA), a new kind of improved GA is proposed, namely the sequence quadratic programming-genetic algorithm (SQP-GA). For the hybrid optimization algorithm, SQP-GA, the sequence quadratic programming (SQP) algorithm which is used as a basic operator is integrated into the fundamental GA, so the local searching ability of the fundamental GA is improved effectively and the premature convergence phenomenon is overcome. Experimental results of the numerical simulations of benchmark functions show that the hybrid optimization algorithm, SQP-GA, is better than the fundamental GA in the convergence speed and optimization precision, and the proposed algorithm in this paper has outstanding optimization effect. At the same time, the presented SQP-GA in the paper is applied to solve the ultrasonic localization problem of PD in transformers, then the ultrasonic localization method of PD in transformers based on the SQP-GA is proposed. And

  12. Operating modes and practical power flow analysis of bidirectional isolated power interface for distributed power systems

    International Nuclear Information System (INIS)

    Wen, Huiqing; Su, Bin

    2016-01-01

    Highlights: • Four operating modes of Dual-Phase-Shift control for Dual Active Bridge converter are presented. • Effects of “minor parameters” such as the deadtime and power device voltage drops are analyzed. • Accurate power flow models with Dual-Phase-Shift control are developed and verified with experimental results. • Optimal operating mode is determined with respect to the efficiency improvement. • Measured efficiency of the Dual Active Bridge converter is improved up to 14%. - Abstract: Due to the intermittent nature of the renewable energy sources including photovoltaic and wind energy, the energy storage systems are essential to stabilize dc bus voltage. Considering the discharge depth of super-capacitors and energy-storage batteries, the bidirectional isolated power interface will operate for a wide range of voltage and power. This study focuses on in-depth analysis of the dual-active-bridge dc–dc converter that is controlled by the dual-phase-shift scheme to improve the conversion efficiency in distributed power system. The power flow of each operating mode with dual-phase-shift control is characterized based on a detailed analysis of the effects of “minor parameters”, including the deadtime and power device voltage drops. The complete output power plane of the dual-active-bridge converter with dual-phase-shift control is obtained and compared with experimental results. The optimal operating mode is determined according to the practical output power range and the power flow characteristics. Experimental evaluation shows the effectiveness of the proposed power flow model with dual-phase-shift control and significant efficiency improvement using the optimal mode of dual-phase-shift compared with the conventional phase shift control.

  13. Method for controlling power flow between an electrochemical cell and a power grid

    International Nuclear Information System (INIS)

    Coleman, A. K.

    1981-01-01

    A method is disclosed for controlling a force-commutated inverter coupled between an electrochemical cell and a power grid for adjusting the magnitude and direction of the electrical energy flowing therebetween. Both the real power component and the reactive power component of ac electrical energy flow can be independently VARied through the switching waveform presented to the intermediately coupled inverter. A VAR error signal is derived from a comparison of a var command signal with a signal proportional to the actual reactive power circulating between the inverter and the power grid. This signal is presented to a voltage controller which essentially varies only the effective magnitude of the fundamental voltage waveform out of the inverter , thereby leaving the real power component substantially unaffected. In a similar manner, a power error signal is derived by a comparison of a power command signal with a signal proportional to the actual real power flowing between the electrochemical cell and the power grid. This signal is presented to a phase controller which varies only the phase of the fundamental component of the voltage waveform out of the inverter relative to that of the power grid and changes only the real power in proportion thereto, thus leaving the reactive power component substantially unaffected

  14. Topologically protected loop flows in high voltage AC power grids

    International Nuclear Information System (INIS)

    Coletta, T; Delabays, R; Jacquod, Ph; Adagideli, I

    2016-01-01

    Geographical features such as mountain ranges or big lakes and inland seas often result in large closed loops in high voltage AC power grids. Sizable circulating power flows have been recorded around such loops, which take up transmission line capacity and dissipate but do not deliver electric power. Power flows in high voltage AC transmission grids are dominantly governed by voltage angle differences between connected buses, much in the same way as Josephson currents depend on phase differences between tunnel-coupled superconductors. From this previously overlooked similarity we argue here that circulating power flows in AC power grids are analogous to supercurrents flowing in superconducting rings and in rings of Josephson junctions. We investigate how circulating power flows can be created and how they behave in the presence of ohmic dissipation. We show how changing operating conditions may generate them, how significantly more power is ohmically dissipated in their presence and how they are topologically protected, even in the presence of dissipation, so that they persist when operating conditions are returned to their original values. We identify three mechanisms for creating circulating power flows, (i) by loss of stability of the equilibrium state carrying no circulating loop flow, (ii) by tripping of a line traversing a large loop in the network and (iii) by reclosing a loop that tripped or was open earlier. Because voltages are uniquely defined, circulating power flows can take on only discrete values, much in the same way as circulation around vortices is quantized in superfluids. (paper)

  15. Statistical Analysis of the Impact of Wind Power on Market Quantities and Power Flows

    DEFF Research Database (Denmark)

    Pinson, Pierre; Jónsson, Tryggvi; Zugno, Marco

    2012-01-01

    In view of the increasing penetration of wind power in a number of power systems and markets worldwide, we discuss some of the impacts that wind energy may have on market quantities and cross-border power flows. These impacts are uncovered through statistical analyses of actual market and flow data...... of load and wind power forecasts on Danish and German electricity markets....

  16. Power laws and fragility in flow networks.

    Science.gov (United States)

    Shore, Jesse; Chu, Catherine J; Bianchi, Matt T

    2013-01-01

    What makes economic and ecological networks so unlike other highly skewed networks in their tendency toward turbulence and collapse? Here, we explore the consequences of a defining feature of these networks: their nodes are tied together by flow. We show that flow networks tend to the power law degree distribution (PLDD) due to a self-reinforcing process involving position within the global network structure, and thus present the first random graph model for PLDDs that does not depend on a rich-get-richer function of nodal degree. We also show that in contrast to non-flow networks, PLDD flow networks are dramatically more vulnerable to catastrophic failure than non-PLDD flow networks, a finding with potential explanatory power in our age of resource- and financial-interdependence and turbulence.

  17. Modeling particle emission and power flow in pulsed-power driven, nonuniform transmission lines

    Directory of Open Access Journals (Sweden)

    Nichelle Bruner

    2008-04-01

    Full Text Available Pulsed-power driven x-ray radiographic systems are being developed to operate at higher power in an effort to increase source brightness and penetration power. Essential to the design of these systems is a thorough understanding of electron power flow in the transmission line that couples the pulsed-power driver to the load. In this paper, analytic theory and fully relativistic particle-in-cell simulations are used to model power flow in several experimental transmission-line geometries fielded on Sandia National Laboratories’ upgraded Radiographic Integrated Test Stand [IEEE Trans. Plasma Sci. 28, 1653 (2000ITPSBD0093-381310.1109/27.901250]. Good agreement with measured electrical currents is demonstrated on a shot-by-shot basis for simulations which include detailed models accounting for space-charge-limited electron emission, surface heating, and stimulated particle emission. Resonant cavity modes related to the transmission-line impedance transitions are also shown to be excited by electron power flow. These modes can drive oscillations in the output power of the system, degrading radiographic resolution.

  18. Sub-quadratic decoding of one-point hermitian codes

    DEFF Research Database (Denmark)

    Nielsen, Johan Sebastian Rosenkilde; Beelen, Peter

    2015-01-01

    We present the first two sub-quadratic complexity decoding algorithms for one-point Hermitian codes. The first is based on a fast realization of the Guruswami-Sudan algorithm using state-of-the-art algorithms from computer algebra for polynomial-ring matrix minimization. The second is a power...... decoding algorithm: an extension of classical key equation decoding which gives a probabilistic decoding algorithm up to the Sudan radius. We show how the resulting key equations can be solved by the matrix minimization algorithms from computer algebra, yielding similar asymptotic complexities....

  19. Three-phase model and power-flow analysis of microgrids and virtual power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kamh, M.Z.; Iravani, R. [Toronto Univ., ON (Canada). Dept. of Electrical and Computer Engineering, Energy Systems Group

    2009-07-01

    A distributed energy resources (DER) unit can be a distributed generation unit, a distributed storage unit, or a hybrid of the two. It can be dispatchable, non-dispatchable or pseudo-dispatchable. A DER unit is connected to the hosting utility directly or via an electronic converter. A three-phase model and power-flow analysis of microgrids and virtual power plants was presented. The presentation discussed DER classification; microgrids and virtual power plants; motivations and goals; and a proposed DER model and power flow approach. Validation and results were also offered. The developed algorithm was implemented in the sequence-component frame using the MATLAB platform. Case studies were offered in order to verify the accuracy of the DER model and the power-flow program. It was concluded that the developed software accommodates different DER configurations and accurately reflects their control strategies. figs.

  20. Optimality Conditions for Fuzzy Number Quadratic Programming with Fuzzy Coefficients

    Directory of Open Access Journals (Sweden)

    Xue-Gang Zhou

    2014-01-01

    Full Text Available The purpose of the present paper is to investigate optimality conditions and duality theory in fuzzy number quadratic programming (FNQP in which the objective function is fuzzy quadratic function with fuzzy number coefficients and the constraint set is fuzzy linear functions with fuzzy number coefficients. Firstly, the equivalent quadratic programming of FNQP is presented by utilizing a linear ranking function and the dual of fuzzy number quadratic programming primal problems is introduced. Secondly, we present optimality conditions for fuzzy number quadratic programming. We then prove several duality results for fuzzy number quadratic programming problems with fuzzy coefficients.

  1. Design of power controller in CDMA system with power and SIR error minimization

    Institute of Scientific and Technical Information of China (English)

    Shulan KONG; Huanshui ZHANG; Zhaosheng ZHANG; Hongxia WANG

    2007-01-01

    In this paper, an uplink power control problem is considered for code division multiple access (CDMA) systems. A distributed algorithm is proposed based on linear quadratic optimal control theory. The proposed scheme minimizes the sum of the power and the error of signal-to-interference ratio (SIR). A power controller is designed by constructing an optimization problem of a stochastic linear quadratic type in Krein space and solving a Kalman filter problem.

  2. Hybrid wind power balance control strategy using thermal power, hydro power and flow batteries

    OpenAIRE

    Gelažanskas, Linas; Baranauskas, Audrius; Gamage, Kelum A.A.; Ažubalis, Mindaugas

    2016-01-01

    The increased number of renewable power plants pose threat to power system balance. Their intermittent nature makes it very difficult to predict power output, thus either additional reserve power plants or new storage and control technologies are required. Traditional spinning reserve cannot fully compensate sudden changes in renewable energy power generation. Using new storage technologies such as flow batteries, it is feasible to balance the variations in power and voltage within very short...

  3. Probabilistic Power Flow Method Considering Continuous and Discrete Variables

    Directory of Open Access Journals (Sweden)

    Xuexia Zhang

    2017-04-01

    Full Text Available This paper proposes a probabilistic power flow (PPF method considering continuous and discrete variables (continuous and discrete power flow, CDPF for power systems. The proposed method—based on the cumulant method (CM and multiple deterministic power flow (MDPF calculations—can deal with continuous variables such as wind power generation (WPG and loads, and discrete variables such as fuel cell generation (FCG. In this paper, continuous variables follow a normal distribution (loads or a non-normal distribution (WPG, and discrete variables follow a binomial distribution (FCG. Through testing on IEEE 14-bus and IEEE 118-bus power systems, the proposed method (CDPF has better accuracy compared with the CM, and higher efficiency compared with the Monte Carlo simulation method (MCSM.

  4. Fitting timeseries by continuous-time Markov chains: A quadratic programming approach

    International Nuclear Information System (INIS)

    Crommelin, D.T.; Vanden-Eijnden, E.

    2006-01-01

    Construction of stochastic models that describe the effective dynamics of observables of interest is an useful instrument in various fields of application, such as physics, climate science, and finance. We present a new technique for the construction of such models. From the timeseries of an observable, we construct a discrete-in-time Markov chain and calculate the eigenspectrum of its transition probability (or stochastic) matrix. As a next step we aim to find the generator of a continuous-time Markov chain whose eigenspectrum resembles the observed eigenspectrum as closely as possible, using an appropriate norm. The generator is found by solving a minimization problem: the norm is chosen such that the object function is quadratic and convex, so that the minimization problem can be solved using quadratic programming techniques. The technique is illustrated on various toy problems as well as on datasets stemming from simulations of molecular dynamics and of atmospheric flows

  5. On load flow control in electric power systems

    Energy Technology Data Exchange (ETDEWEB)

    Herbig, Arnim

    2000-01-01

    This dissertation deals with the control of active power flow, or load flow in electric power systems. During the last few years, interest in the possibilities to control the active power flows in transmission systems has increased significantly. There is a number of reasons for this, coming both from the application side - that is, from power system operations - and from the technological side. where advances in power electronics and related technologies have made new system components available. Load flow control is by nature a multi-input multi-output problem, since any change of load flow in one line will be complemented by changes in other lines. Strong cross-coupling between controllable components is to be expected, and the possibility of adverse interactions between these components cannot be rejected straightaway. Interactions with dynamic phenomena in the power system are also a source of concern. Three controllable components are investigated in this thesis, namely the controlled series capacitor (CSC), the phase angle regulator (PAR), and the unified power flow controller (UPFC). Properties and characteristics of these devices axe investigated and discussed. A simple control strategy is proposed. This strategy is then analyzed extensively. Mathematical methods and physical knowledge about the pertinent phenomena are combined, and it is shown that this control strategy can be used for a fairly general class of devices. Computer simulations of the controlled system provide insight into the system behavior in a system of reasonable size. The robustness and stability of the control system are discussed as are its limits. Further, the behavior of the control strategy in a system where the modeling allows for dynamic phenomena are investigated with computer simulations. It is discussed under which circumstances the control action has beneficial or detrimental effect on the system dynamics. Finally, a graphical approach for analyzing the effect of controllers

  6. A Finite Continuation Algorithm for Bound Constrained Quadratic Programming

    DEFF Research Database (Denmark)

    Madsen, Kaj; Nielsen, Hans Bruun; Pinar, Mustafa C.

    1999-01-01

    The dual of the strictly convex quadratic programming problem with unit bounds is posed as a linear $\\ell_1$ minimization problem with quadratic terms. A smooth approximation to the linear $\\ell_1$ function is used to obtain a parametric family of piecewise-quadratic approximation problems...

  7. Quadratic programming with fuzzy parameters: A membership function approach

    International Nuclear Information System (INIS)

    Liu, S.-T.

    2009-01-01

    Quadratic programming has been widely applied to solving real world problems. The conventional quadratic programming model requires the parameters to be known constants. In the real world, however, the parameters are seldom known exactly and have to be estimated. This paper discusses the fuzzy quadratic programming problems where the cost coefficients, constraint coefficients, and right-hand sides are represented by convex fuzzy numbers. Since the parameters in the program are fuzzy numbers, the derived objective value is a fuzzy number as well. Using Zadeh's extension principle, a pair of two-level mathematical programs is formulated to calculate the upper bound and lower bound of the objective values of the fuzzy quadratic program. Based on the duality theorem and by applying the variable transformation technique, the pair of two-level mathematical programs is transformed into a family of conventional one-level quadratic programs. Solving the pair of quadratic programs produces the fuzzy objective values of the problem. An example illustrates method proposed in this paper.

  8. Pumping power of nanofluids in a flowing system

    International Nuclear Information System (INIS)

    Routbort, Jules L.; Singh, Dileep; Timofeeva, Elena V.; Yu, Wenhua; France, David M.

    2011-01-01

    Nanofluids have the potential to increase thermal conductivities and heat transfer coefficients compared to their base fluids. However, the addition of nanoparticles to a fluid also increases the viscosity and therefore increases the power required to pump the fluid through the system. When the benefit of the increased heat transfer is larger than the penalty of the increased pumping power, the nanofluid has the potential for commercial viability. The pumping power for nanofluids has been considered previously for flow in straight tubes. In this study, the pumping power was measured for nanofluids flowing in a complete system including straight tubing, elbows, and expansions. The objective was to determine the significance of two-phase flow effects on system performance. Two types of nanofluids were used in this study: a water-based nanofluid containing 2.0–8.0 vol% of 40-nm alumina nanoparticles, and a 50/50 ethylene glycol/water mixture-based nanofluid containing 2.2 vol% of 29-nm SiC nanoparticles. All experiments were performed in the turbulent flow region in the entire test system simulating features typically found in heat exchanger systems. Experimental results were compared to the pumping power calculated from a mathematical model of the system to evaluate the system effects. The pumping power results were also combined with the heat transfer enhancement to evaluate the viability of the two nanofluids.

  9. Stability in quadratic torsion theories

    Energy Technology Data Exchange (ETDEWEB)

    Vasilev, Teodor Borislavov; Cembranos, Jose A.R.; Gigante Valcarcel, Jorge; Martin-Moruno, Prado [Universidad Complutense de Madrid, Departamento de Fisica Teorica I, Madrid (Spain)

    2017-11-15

    We revisit the definition and some of the characteristics of quadratic theories of gravity with torsion. We start from a Lagrangian density quadratic in the curvature and torsion tensors. By assuming that General Relativity should be recovered when the torsion vanishes and investigating the behaviour of the vector and pseudo-vector torsion fields in the weak-gravity regime, we present a set of necessary conditions for the stability of these theories. Moreover, we explicitly obtain the gravitational field equations using the Palatini variational principle with the metricity condition implemented via a Lagrange multiplier. (orig.)

  10. Stability in quadratic torsion theories

    International Nuclear Information System (INIS)

    Vasilev, Teodor Borislavov; Cembranos, Jose A.R.; Gigante Valcarcel, Jorge; Martin-Moruno, Prado

    2017-01-01

    We revisit the definition and some of the characteristics of quadratic theories of gravity with torsion. We start from a Lagrangian density quadratic in the curvature and torsion tensors. By assuming that General Relativity should be recovered when the torsion vanishes and investigating the behaviour of the vector and pseudo-vector torsion fields in the weak-gravity regime, we present a set of necessary conditions for the stability of these theories. Moreover, we explicitly obtain the gravitational field equations using the Palatini variational principle with the metricity condition implemented via a Lagrange multiplier. (orig.)

  11. Unified Power Flow Controller Placement to Improve Damping of Power Oscillations

    OpenAIRE

    M. Salehi; A. A. Motie Birjandi; F. Namdari

    2015-01-01

    Weak damping of low frequency oscillations is a frequent phenomenon in electrical power systems. These frequencies can be damped by power system stabilizers. Unified power flow controller (UPFC), as one of the most important FACTS devices, can be applied to increase the damping of power system oscillations and the more effect of this controller on increasing the damping of oscillations depends on its proper placement in power systems. In this paper, a technique based on controllability is pro...

  12. Stable one-dimensional periodic waves in Kerr-type saturable and quadratic nonlinear media

    International Nuclear Information System (INIS)

    Kartashov, Yaroslav V; Egorov, Alexey A; Vysloukh, Victor A; Torner, Lluis

    2004-01-01

    We review the latest progress and properties of the families of bright and dark one-dimensional periodic waves propagating in saturable Kerr-type and quadratic nonlinear media. We show how saturation of the nonlinear response results in the appearance of stability (instability) bands in a focusing (defocusing) medium, which is in sharp contrast with the properties of periodic waves in Kerr media. One of the key results discovered is the stabilization of multicolour periodic waves in quadratic media. In particular, dark-type waves are shown to be metastable, while bright-type waves are completely stable in a broad range of energy flows and material parameters. This yields the first known example of completely stable periodic wave patterns propagating in conservative uniform media supporting bright solitons. Such results open the way to the experimental observation of the corresponding self-sustained periodic wave patterns

  13. An example in linear quadratic optimal control

    NARCIS (Netherlands)

    Weiss, George; Zwart, Heiko J.

    1998-01-01

    We construct a simple example of a quadratic optimal control problem for an infinite-dimensional linear system based on a shift semigroup. This system has an unbounded control operator. The cost is quadratic in the input and the state, and the weighting operators are bounded. Despite its extreme

  14. Power flow controller with a fractionally rated back-to-back converter

    Science.gov (United States)

    Divan, Deepakraj M.; Kandula, Rajendra Prasad; Prasai, Anish

    2016-03-08

    A power flow controller with a fractionally rated back-to-back (BTB) converter is provided. The power flow controller provide dynamic control of both active and reactive power of a power system. The power flow controller inserts a voltage with controllable magnitude and phase between two AC sources at the same frequency; thereby effecting control of active and reactive power flows between the two AC sources. A transformer may be augmented with a fractionally rated bi-directional Back to Back (BTB) converter. The fractionally rated BTB converter comprises a transformer side converter (TSC), a direct-current (DC) link, and a line side converter (LSC). By controlling the switches of the BTB converter, the effective phase angle between the two AC source voltages may be regulated, and the amplitude of the voltage inserted by the power flow controller may be adjusted with respect to the AC source voltages.

  15. Radiotherapy treatment planning linear-quadratic radiobiology

    CERN Document Server

    Chapman, J Donald

    2015-01-01

    Understand Quantitative Radiobiology from a Radiation Biophysics PerspectiveIn the field of radiobiology, the linear-quadratic (LQ) equation has become the standard for defining radiation-induced cell killing. Radiotherapy Treatment Planning: Linear-Quadratic Radiobiology describes tumor cell inactivation from a radiation physics perspective and offers appropriate LQ parameters for modeling tumor and normal tissue responses.Explore the Latest Cell Killing Numbers for Defining Iso-Effective Cancer TreatmentsThe book compil

  16. Flow reversal power limit for the HFBR

    International Nuclear Information System (INIS)

    Cheng, L.Y.; Tichler, P.R.

    1997-01-01

    The High Flux Beam Reactor (HFBR) is a pressurized heavy water moderated and cooled research reactor that began operation at 40 MW. The reactor was subsequently upgraded to 60 MW and operated at that level for several years. The reactor undergoes a buoyancy-driven reversal of flow in the reactor core following certain postulated accidents. Questions which were raised about the afterheat removal capability during the flow reversal transition led to a reactor shutdown and subsequent resumption of operation at a reduced power of 30 MW. An experimental and analytical program to address these questions is described in this report. The experiments were single channel flow reversal tests under a range of conditions. The analytical phase involved simulations of the tests to benchmark the physical models and development of a criterion for dryout. The criterion is then used in simulations of reactor accidents to determine a safe operating power level. It is concluded that the limit on the HFBR operating power with respect to the issue of flow reversal is in excess of 60 MW. Direct use of the experimental results and an understanding of the governing phenomenology supports this conclusion

  17. Comparisons of power transfer functions and flow transfer functions

    International Nuclear Information System (INIS)

    Grimm, K.N.; Meneghetti, D.

    1987-01-01

    Transfer functions may be used to calculate component feedbacks or temperature increments by convolution of the transfer function with the appropriate fractional change in system-quantity. Power-change transfer functions have been reported. The corresponding flow transfer functions for this case, and comparison with the power transfer functions, are reported here. Results of feedback simulation of ramped flow transients using flow transfer functions are also described

  18. Non normal and non quadratic anisotropic plasticity coupled with ductile damage in sheet metal forming: Application to the hydro bulging test

    International Nuclear Information System (INIS)

    Badreddine, Houssem; Saanouni, Khemaies; Dogui, Abdelwaheb

    2007-01-01

    In this work an improved material model is proposed that shows good agreement with experimental data for both hardening curves and plastic strain ratios in uniaxial and equibiaxial proportional loading paths for steel metal until the final fracture. This model is based on non associative and non normal flow rule using two different orthotropic equivalent stresses in both yield criterion and plastic potential functions. For the plastic potential the classical Hill 1948 quadratic equivalent stress is considered while for the yield criterion the Karafillis and Boyce 1993 non quadratic equivalent stress is used taking into account the non linear mixed (kinematic and isotropic) hardening. Applications are made to hydro bulging tests using both circular and elliptical dies. The results obtained with different particular cases of the model such as the normal quadratic and the non normal non quadratic cases are compared and discussed with respect to the experimental results

  19. Preventive Security-Constrained Optimal Power Flow Considering UPFC Control Modes

    Directory of Open Access Journals (Sweden)

    Xi Wu

    2017-08-01

    Full Text Available The successful application of the unified power flow controller (UPFC provides a new control method for the secure and economic operation of power system. In order to make the full use of UPFC and improve the economic efficiency and static security of a power system, a preventive security-constrained power flow optimization method considering UPFC control modes is proposed in this paper. Firstly, an iterative method considering UPFC control modes is deduced for power flow calculation. Taking into account the influence of different UPFC control modes on the distribution of power flow after N-1 contingency, the optimization model is then constructed by setting a minimal system operation cost and a maximum static security margin as the objective. Based on this model, the particle swarm optimization (PSO algorithm is utilized to optimize power system operating parameters and UPFC control modes simultaneously. Finally, a standard IEEE 30-bus system is utilized to demonstrate that the proposed method fully exploits the potential of static control of UPFC and significantly increases the economic efficiency and static security of the power system.

  20. Calculation of Wind Power Limit adjusting the Continuation Power Flow

    International Nuclear Information System (INIS)

    Santos Fuentefria, Ariel; Castro Fernández, Miguel; Martínez García, Antonio

    2012-01-01

    The wind power insertion in the power system is an important issue and can create some instability problems in voltage and system frequency due to stochastic origin of wind. Know the Wind Power Limit is a very important matter. Existing in bibliography a few methods for calculation of wind power limit. The calculation is based in static constrains, dynamic constraints or both. In this paper is developed a method for the calculation of wind power limit using some adjust in the continuation power flow, and having into account the static constrains. The method is complemented with Minimal Power Production Criterion. The method is proved in the Isla de la Juventud Electric System. The software used in the simulations was the Power System Analysis Toolbox (PSAT). (author)

  1. A congestion line flow control in deregulated power system

    Directory of Open Access Journals (Sweden)

    Venkatarajan Shanmuga Sundaram

    2011-01-01

    Full Text Available Under open access, market-driven transactions have become the new independent decision variables defining the behavior of the power system. The possibility of transmission lines getting over-loaded is relatively more under deregulated operation because different parts of the system are owned by separate companies and in part operated under varying service charges. This paper discusses a two-tier algorithm for correcting the lone overloads in conjunction with the conventional power-flow methods. The method uses line flow sensitivities, which are computed by the East Decoupled Power-flow algorithm and can be adapted for on-line implementation.

  2. Quadratic independence of coordinate functions of certain ...

    Indian Academy of Sciences (India)

    ... are `quadratically independent' in the sense that they do not satisfy any nontrivial homogeneous quadratic relations among them. Using this, it is proved that there is no genuine compact quantum group which can act faithfully on C ( M ) such that the action leaves invariant the linear span of the above coordinate functions.

  3. Numerical optimization for separation power of gas centrifuge

    International Nuclear Information System (INIS)

    Jiang Dongjun; Zeng Shi; Liu Bing

    2012-01-01

    In order to obtain higher separation power of the gas centrifuge, the code was developed to solve the flow-field of the counter-current to acquire the separation power, which was integrated with the iSight software, so a numerical optimization model for separation power was presented, in which the driver conditions and the geometry parameters of the waste baffle were optimized to get the maximum separation power using the sequential quadratic programming arithmetic, and the 12% higher results was acquired, which shows the feasibility of this method. The results also note that the separation power of gas centrifuge is sensitive to the driver conditions and the structure parameters of the waste baffle, so it is necessary to perform the optimization calculation for the certain gas centrifuge model. (authors)

  4. Research on stochastic power-flow study methods. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Heydt, G. T. [ed.

    1981-01-01

    A general algorithm to determine the effects of uncertainty in bus load and generation on the output of conventional power flow analysis is presented. The use of statistical moments is presented and developed as a means for representing the stochastic process. Statistical moments are used to describe the uncertainties, and facilitate the calculations of single and multivarlate probability density functions of input and output variables. The transformation of the uncertainty through the power flow equations is made by the expansion of the node equations in a multivariate Taylor series about an expected operating point. The series is truncated after the second order terms. Since the power flow equations are nonlinear, the expected values of output quantities is in general not the solution to the conventional load flow problem using expected values of input quantities. The second order transformation offers a correction vector and allows the consideration of larger uncertainties which have caused significant error in the current linear transformation algorithms. Voltage controlled busses are included with consideration of upper and lower limits. The finite reactive power available at generation sites, and fixed ranges of transformer tap movement may have a significant effect on voltage and line power flow statistics. A method is given which considers limitation constraints in the evaluation of all output quantities. The bus voltages, line power flows, transformer taps, and generator reactive power requirements are described by their statistical moments. Their values are expressed in terms of the probability that they are above or below specified limits, and their expected values given that they do fall outside the limits. Thus the algorithm supplies information about severity of overload as well as probability of occurrence. An example is given for an eleven bus system, evaluating each quantity separately. The results are compared with Monte Carlo simulation.

  5. Impact of Wind Power Generation on European Cross-Border Power Flows

    DEFF Research Database (Denmark)

    Zugno, Marco; Pinson, Pierre; Madsen, Henrik

    2013-01-01

    analysis is employed in order to reduce the problem dimension. Then, nonlinear relationships between forecast wind power production as well as spot price in Germany, by far the largest wind power producer in Europe, and power flows are modeled using local polynomial regression. We find that both forecast...... wind power production and spot price in Germany have substantial nonlinear effects on power transmission on a European scale.......A statistical analysis is performed in order to investigate the relationship between wind power production and cross-border power transmission in Europe. A dataset including physical hourly cross-border power exchanges between European countries as dependent variables is used. Principal component...

  6. APPLICATION OF MODIFIED POWER FLOW TRACING METHOD FOR REACTIVE POWER PRICING IN PRACTICAL UTILITY SYSTEM

    Directory of Open Access Journals (Sweden)

    M. SUSITHRA

    2017-01-01

    Full Text Available Competitive trend towards restructuring and unbundling of transmission services has resulted in the need to discover the impact of a particular generator to load. This paper initially presents the analysis of three different reactive power valuation methods namely, Modified Ybus , Virtual flow approach and modified power flow tracing to compute the reactive power output from a particular generator to particular load. Among these methods, the modified power flow electricity tracing method is identified as the best method to trace the reactive power contribution from various reactive power sources to loads, transmission line, etc. Also this proposed method breakdown the total reactive power loss in a transmission line into components to be allocated to individual loads. Secondly, based on this Method a novel allocation method for reactive power service for practical system is proposed. Hence, this method can be useful in providing additional insight into power system operation and can be used to modify existing tariffs of charging for reactive power transmission loss and reactive power transmission services. Simulation and comparison results are shown by taking WSCC 9 and IEEE 30 bus system as test system.

  7. Physical properties corresponding to vortical flow geometry

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, K, E-mail: nakayama@aitech.ac.jp [Department of Mechanical Engineering, Aichi Institute of Technology, Toyota, Aichi 470-0392 (Japan)

    2014-10-01

    We examine a vortical flow geometry specified by the velocity gradient tensor ∇v, and derive properties representing the symmetry (axisymmetry or skewness) of the vortical flow in the swirl plane and a property specifying inflowing (outflowing) motion in all directions around the point. We focus on the radial and azimuthal velocities in a plane nonparallel to the eigenvector corresponding to the real eigenvalue of ∇v and show that these components are expressed as specific quadratic forms. The real and imaginary parts of the complex eigenvalues of ∇v represent averages of these eigenvalues of the quadratic forms, and are inadequate to specify the detailed flow geometry uniquely. The new properties complement specifying the precise flow geometry of the vortical flow.

  8. Laminar flow of a shear-thickening fluid in a 90∘ pipe bend

    Science.gov (United States)

    Marn, Jure; Ternik, Primož

    2006-05-01

    The non-Newtonian fluid flow in a sharp 90∘ curved pipe is studied numerically to obtain the pressure loss coefficient prompted by disagreement between the existing empirical correlations and results obtained by computer codes. This disagreement results from presumption of fully developed flow throughout the curvature (correlations) while the actual flow is partially developed for the Newtonian and sharp 90∘ curved bend non-Newtonian flows, and fully developed for slightly bent 90∘ curvature non-Newtonian flow. The Quadratic model is employed to accommodate the shear-thickening behavior of an electrostatic ash and water mixture. Numerical results are obtained for different values of Reynolds number. Finally, results for local pressure loss coefficient are compared with values obtained for the Power law rheological model.

  9. Exact cancellation of quadratic divergences in top condensation models

    International Nuclear Information System (INIS)

    Blumhofer, A.

    1995-01-01

    We discuss the hierarchy problem and the corresponding quadratic divergences in the top mode Standard Model. Quadratic divergences appear at each order 1/N c since fermionic and bosonic contributions are of different order 1/N c . It is shown that the full dynamical system to all orders in 1/N c admits a solution, where the sum of all quadratic divergent contributions disappears. ((orig.))

  10. Sibling curves of quadratic polynomials | Wiggins | Quaestiones ...

    African Journals Online (AJOL)

    Sibling curves were demonstrated in [1, 2] as a novel way to visualize the zeroes of real valued functions. In [3] it was shown that a polynomial of degree n has n sibling curves. This paper focuses on the algebraic and geometric properites of the sibling curves of real and complex quadratic polynomials. Key words: Quadratic ...

  11. ac power control in the Core Flow Test Loop

    International Nuclear Information System (INIS)

    McDonald, D.W.

    1980-01-01

    This work represents a status report on a development effort to design an ac power controller for the Core Flow Test Loop. The Core Flow Test Loop will be an engineering test facility which will simulate the thermal environment of a gas-cooled fast-breeder reactor. The problems and limitations of using sinusoidal ac power to simulate the power generated within a nuclear reactor are addressed. The transformer-thyristor configuration chosen for the Core Flow Test Loop power supply is presented. The initial considerations, design, and analysis of a closed-loop controller prototype are detailed. The design is then analyzed for improved performance possibilities and failure modes are investigated at length. A summary of the work completed to date and a proposed outline for continued development completes the report

  12. An estimation of reactor thermal power uncertainty using UFM-based feedwater flow rate in nuclear power plants

    International Nuclear Information System (INIS)

    Byung Ryul Jung; Ho Cheol Jang; Byung Jin Lee; Se Jin Baik; Woo Hyun Jang

    2005-01-01

    Most of Pressurized Water Reactors (PWRs) utilize the venturi meters (VMs) to measure the feedwater (FW) flow rate to the steam generator in the calorimetric measurement, which is used in the reactor thermal power (RTP) estimation. However, measurement drifts have been experienced due to some anomalies on the venturi meter (generally called the venturi meter fouling). The VM's fouling tends to increase the measured pressure drop across the meter, which results in indication of increased feedwater flow rate. Finally, the reactor thermal power is overestimated and the actual reactor power is to be reduced to remain within the regulatory limits. To overcome this VM's fouling problem, the Ultrasonic Flow Meter (UFM) has recently been gaining attention in the measurement of the feedwater flow rate. This paper presents the applicability of a UFM based feedwater flow rate in the estimation of reactor thermal power uncertainty. The FW and RTP uncertainties are compared in terms of sensitivities between the VM- and UFM-based feedwater flow rates. Data from typical Optimized Power Reactor 1000 (OPR1000) plants are used to estimate the uncertainty. (authors)

  13. Solitons in quadratic nonlinear photonic crystals

    DEFF Research Database (Denmark)

    Corney, Joel Frederick; Bang, Ole

    2001-01-01

    We study solitons in one-dimensional quadratic nonlinear photonic crystals with modulation of both the linear and nonlinear susceptibilities. We derive averaged equations that include induced cubic nonlinearities, which can be defocusing, and we numerically find previously unknown soliton families....... Because of these induced cubic terms, solitons still exist even when the effective quadratic nonlinearity vanishes and conventional theory predicts that there can be no soliton. We demonstrate that both bright and dark forms of these solitons can propagate stably....

  14. Application of the load flow and random flow models for the analysis of power transmission networks

    International Nuclear Information System (INIS)

    Zio, Enrico; Piccinelli, Roberta; Delfanti, Maurizio; Olivieri, Valeria; Pozzi, Mauro

    2012-01-01

    In this paper, the classical load flow model and the random flow model are considered for analyzing the performance of power transmission networks. The analysis concerns both the system performance and the importance of the different system elements; this latter is computed by power flow and random walk betweenness centrality measures. A network system from the literature is analyzed, representing a simple electrical power transmission network. The results obtained highlight the differences between the LF “global approach” to flow dispatch and the RF local approach of randomized node-to-node load transfer. Furthermore, computationally the LF model is less consuming than the RF model but problems of convergence may arise in the LF calculation.

  15. Quadratic tracer dynamical models tobacco growth

    International Nuclear Information System (INIS)

    Qiang Jiyi; Hua Cuncai; Wang Shaohua

    2011-01-01

    In order to study the non-uniformly transferring process of some tracer dosages, we assume that the absorption of some tracer by tobacco is a quadratic function of the tracer quantity of the tracer in the case of fast absorption, whereas the exclusion of the tracer from tobacco is a linear function of the tracer quantity in the case of slow exclusion, after the tracer is introduced into tobacco once at zero time. A single-compartment quadratic dynamical model of Logistic type is established for the leaves of tobacco. Then, a two-compartment quadratic dynamical model is established for leaves and calms of the tobacco. Qualitative analysis of the models shows that the tracer applied to the leaves of the tobacco is excluded finally; however, the tracer stays at the tobacco for finite time. Two methods are also given for computing the parameters in the models. Finally, the results of the models are verified by the 32 P experiment for the absorption of tobacco. (authors)

  16. A non-self-adjoint quadratic eigenvalue problem describing a fluid-solid interaction Part II : analysis of convergence

    NARCIS (Netherlands)

    Bourne, D.P.; Elman, H.; Osborn, J.E.

    2009-01-01

    This paper is the second part of a two-part paper treating a non-self-adjoint quadratic eigenvalue problem for the linear stability of solutions to the Taylor-Couette problem for flow of a viscous liquid in a deformable cylinder, with the cylinder modelled as a membrane. The first part formulated

  17. Novel simplified hourly energy flow models for photovoltaic power systems

    International Nuclear Information System (INIS)

    Khatib, Tamer; Elmenreich, Wilfried

    2014-01-01

    Highlights: • We developed an energy flow model for standalone PV system using MATLAB line code. • We developed an energy flow model for hybrid PV/wind system using MATLAB line code. • We developed an energy flow model for hybrid PV/diesel system using MATLAB line code. - Abstract: This paper presents simplified energy flow models for photovoltaic (PV) power systems using MATLAB. Three types of PV power system are taken into consideration namely standalone PV systems, hybrid PV/wind systems and hybrid PV/diesel systems. The logic of the energy flow for each PV power system is discussed first and then the MATLAB line codes for these models are provided and explained. The results prove the accuracy of the proposed models. Such models help modeling and sizing PV systems

  18. Graphical Solution of the Monic Quadratic Equation with Complex Coefficients

    Science.gov (United States)

    Laine, A. D.

    2015-01-01

    There are many geometrical approaches to the solution of the quadratic equation with real coefficients. In this article it is shown that the monic quadratic equation with complex coefficients can also be solved graphically, by the intersection of two hyperbolas; one hyperbola being derived from the real part of the quadratic equation and one from…

  19. An Optimal Power Flow (OPF) Method with Improved Power System Stability

    DEFF Research Database (Denmark)

    Su, Chi; Chen, Zhe

    2010-01-01

    This paper proposes an optimal power flow (OPF) method taking into account small signal stability as additional constraints. Particle swarm optimization (PSO) algorithm is adopted to realize the OPF process. The method is programmed in MATLAB and implemented to a nine-bus test power system which...... has large-scale wind power integration. The results show the ability of the proposed method to find optimal (or near-optimal) operating points in different cases. Based on these results, the analysis of the impacts of wind power integration on the system small signal stability has been conducted....

  20. Multi-Time Scale Coordinated Scheduling Strategy with Distributed Power Flow Controllers for Minimizing Wind Power Spillage

    Directory of Open Access Journals (Sweden)

    Yi Tang

    2017-11-01

    Full Text Available The inherent variability and randomness of large-scale wind power integration have brought great challenges to power flow control and dispatch. The distributed power flow controller (DPFC has the higher flexibility and capacity in power flow control in the system with wind generation. This paper proposes a multi-time scale coordinated scheduling model with DPFC to minimize wind power spillage. Configuration of DPFCs is initially determined by stochastic method. Afterward, two sequential procedures containing day-head and real-time scales are applied for determining maximum schedulable wind sources, optimal outputs of generating units and operation setting of DPFCs. The generating plan is obtained initially in day-ahead scheduling stage and modified in real-time scheduling model, while considering the uncertainty of wind power and fast operation of DPFC. Numerical simulation results in IEEE-RTS79 system illustrate that wind power is maximum scheduled with the optimal deployment and operation of DPFC, which confirms the applicability and effectiveness of the proposed method.

  1. Solutions of the Schrödinger equation with inversely quadratic Hellmann plus inversely quadratic potential using Nikiforov-Uvarov method

    International Nuclear Information System (INIS)

    Ita, B. I.; Ehi-Eromosele, C. O.; Edobor-Osoh, A.; Ikeuba, A. I.

    2014-01-01

    By using the Nikiforov-Uvarov (NU) method, the Schrödinger equation has been solved for the interaction of inversely quadratic Hellmann (IQHP) and inversely quadratic potential (IQP) for any angular momentum quantum number, l. The energy eigenvalues and their corresponding eigenfunctions have been obtained in terms of Laguerre polynomials. Special cases of the sum of these potentials have been considered and their energy eigenvalues also obtained

  2. Bound constrained quadratic programming via piecewise

    DEFF Research Database (Denmark)

    Madsen, Kaj; Nielsen, Hans Bruun; Pinar, M. C.

    1999-01-01

    of a symmetric, positive definite matrix, and is solved by Newton iteration with line search. The paper describes the algorithm and its implementation including estimation of lambda/sub 1/ , how to get a good starting point for the iteration, and up- and downdating of Cholesky factorization. Results of extensive......We consider the strictly convex quadratic programming problem with bounded variables. A dual problem is derived using Lagrange duality. The dual problem is the minimization of an unconstrained, piecewise quadratic function. It involves a lower bound of lambda/sub 1/ , the smallest eigenvalue...

  3. An Integrated Design approach to Power Systems: from Power Flows to Electricity Markets

    Science.gov (United States)

    Bose, Subhonmesh

    Power system is at the brink of change. Engineering needs, economic forces and environmental factors are the main drivers of this change. The vision is to build a smart electrical grid and a smarter market mechanism around it to fulfill mandates on clean energy. Looking at engineering and economic issues in isolation is no longer an option today; it needs an integrated design approach. In this thesis, I shall revisit some of the classical questions on the engineering operation of power systems that deals with the nonconvexity of power flow equations. Then I shall explore some issues of the interaction of these power flow equations on the electricity markets to address the fundamental issue of market power in a deregulated market environment. Finally, motivated by the emergence of new storage technologies, I present an interesting result on the investment decision problem of placing storage over a power network. The goal of this study is to demonstrate that modern optimization and game theory can provide unique insights into this complex system. Some of the ideas carry over to applications beyond power systems.

  4. AUTOJOM, Quadratic Equation Coefficient for Conic Volume, Parallelepipeds, Wedges, Pyramids. JOMREAD, Check of 3-D Geometry Structure from Quadratic Surfaces

    International Nuclear Information System (INIS)

    2005-01-01

    Nature of physical problem solved: AUTOJOM is a computer program that will generate the coefficients of any quadratic equation used to define conic volumes and also the coefficients of the planes needed to define parallelepipeds, wedges, and pyramids. JOMREAD is a computer code to check any 3D geometry composed of and constructed with quadratic surfaces

  5. Power and power-to-flow reactivity transfer functions in EBR-II [Experimental Breeder Reactor II] fuel

    International Nuclear Information System (INIS)

    Grimm, K.N.; Meneghetti, D.

    1989-01-01

    Reactivity transfer functions are important in determining the reactivity history during a power transient. Overall nodal transfer functions have been calculated for different subassembly types in the Experimental Breeder Reactor II (EBR-II). Steady-state calculations for temperature changes and, hence, reactivities for power changes have been separated into power and power-to-flow-dependent terms. Axial nodal transfer functions separated into power and power-to-flow-dependent components are reported in this paper for a typical EBR-II fuel pin. This provides an improved understanding of the time dependence of these components in transient situations

  6. The stability of quadratic-reciprocal functional equation

    Science.gov (United States)

    Song, Aimin; Song, Minwei

    2018-04-01

    A new quadratic-reciprocal functional equation f ((k +1 )x +k y )+f ((k +1 )x -k y )=2/f (x )f (y )[(k+1 ) 2f (y )+k2f (x )] [(k+1)2f (y )-k2f (x )] 2 is introduced. The Hyers-Ulam stability for the quadratic-reciprocal functional equations is proved in Banach spaces using the direct method and the fixed point method, respectively.

  7. A Lyapunov theory based UPFC controller for power flow control

    Energy Technology Data Exchange (ETDEWEB)

    Zangeneh, Ali; Kazemi, Ahad; Hajatipour, Majid; Jadid, Shahram [Center of Excellence for Power Systems Automation and Operation, Iran University of Science and Technology, Tehran (Iran)

    2009-09-15

    Unified power flow controller (UPFC) is the most comprehensive multivariable device among the FACTS controllers. Capability of power flow control is the most important responsibility of UPFC. According to high importance of power flow control in transmission lines, the proper controller should be robust against uncertainty and disturbance and also have suitable settling time. For this purpose, a new controller is designed based on the Lyapunov theory and its stability is also evaluated. The Main goal of this paper is to design a controller which enables a power system to track reference signals precisely and to be robust in the presence of uncertainty of system parameters and disturbances. The performance of the proposed controller is simulated on a two bus test system and compared with a conventional PI controller. The simulation results show the power and accuracy of the proposed controller. (author)

  8. Distribution-Agnostic Stochastic Optimal Power Flow for Distribution Grids: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Kyri; Dall' Anese, Emiliano; Summers, Tyler

    2016-09-01

    This paper outlines a data-driven, distributionally robust approach to solve chance-constrained AC optimal power flow problems in distribution networks. Uncertain forecasts for loads and power generated by photovoltaic (PV) systems are considered, with the goal of minimizing PV curtailment while meeting power flow and voltage regulation constraints. A data- driven approach is utilized to develop a distributionally robust conservative convex approximation of the chance-constraints; particularly, the mean and covariance matrix of the forecast errors are updated online, and leveraged to enforce voltage regulation with predetermined probability via Chebyshev-based bounds. By combining an accurate linear approximation of the AC power flow equations with the distributionally robust chance constraint reformulation, the resulting optimization problem becomes convex and computationally tractable.

  9. Power flow analysis for DC voltage droop controlled DC microgrids

    DEFF Research Database (Denmark)

    Li, Chendan; Chaudhary, Sanjay; Dragicevic, Tomislav

    2014-01-01

    This paper proposes a new algorithm for power flow analysis in droop controlled DC microgrids. By considering the droop control in the power flow analysis for the DC microgrid, when compared with traditional methods, more accurate analysis results can be obtained. The algorithm verification is ca...

  10. Probabilistic Power Flow Simulation allowing Temporary Current Overloading

    NARCIS (Netherlands)

    W.S. Wadman (Wander); G. Bloemhof; D.T. Crommelin (Daan); J.E. Frank (Jason)

    2012-01-01

    htmlabstractThis paper presents a probabilistic power flow model subject to connection temperature constraints. Renewable power generation is included and modelled stochastically in order to reflect its intermittent nature. In contrast to conventional models that enforce connection current

  11. Probablistic Power Flow Simulations Allowing Temporary Current Overloading

    NARCIS (Netherlands)

    Wadman, W.; Bloemhof, G.; Crommelin, D.; Frank, J.; Ozdemir, A.

    2013-01-01

    This paper presents a probabilistic power flow model subject to connection temperature constraints. Renewable power generation is included and modelled stochastically in order to reflect its intermittent nature. In contrast to conventional models that enforce connection current constraints,

  12. Simulation Results of Closed Loop Controlled Interline Power Flow Controller System

    Directory of Open Access Journals (Sweden)

    P. USHA RANI

    2016-01-01

    Full Text Available The Interline Power Flow Controller (IPFC is the latest generation of Flexible AC Transmission Systems (FACTS devices which can be used to control power flows of multiple transmission lines. A dispatch strategy is proposed for an IPFC operating at rated capacity, in which the power circulation between the two series converters is used as the parameter to optimize the voltage profile and power transfer. Voltage stability curves for test system are shown to illustrate the effectiveness of this proposed strategy. In this paper, a circuit model for IPFC is developed and simulation of interline power flow controller is done using the proposed circuit model. Simulation is done using MATLAB simulink and the results are presented.

  13. Orthogonal and Scaling Transformations of Quadratic Functions with ...

    African Journals Online (AJOL)

    In this paper we present a non-singular transformation that can reduce a given quadratic function defined on Rn to another simpler quadratic function and study the impact of the transformation in relation to the problem of minimization of the function. In particular, we construct a non-singular transformation that can reduce a ...

  14. Quadratic Frequency Modulation Signals Parameter Estimation Based on Two-Dimensional Product Modified Parameterized Chirp Rate-Quadratic Chirp Rate Distribution.

    Science.gov (United States)

    Qu, Zhiyu; Qu, Fuxin; Hou, Changbo; Jing, Fulong

    2018-05-19

    In an inverse synthetic aperture radar (ISAR) imaging system for targets with complex motion, the azimuth echo signals of the target are always modeled as multicomponent quadratic frequency modulation (QFM) signals. The chirp rate (CR) and quadratic chirp rate (QCR) estimation of QFM signals is very important to solve the ISAR image defocus problem. For multicomponent QFM (multi-QFM) signals, the conventional QR and QCR estimation algorithms suffer from the cross-term and poor anti-noise ability. This paper proposes a novel estimation algorithm called a two-dimensional product modified parameterized chirp rate-quadratic chirp rate distribution (2D-PMPCRD) for QFM signals parameter estimation. The 2D-PMPCRD employs a multi-scale parametric symmetric self-correlation function and modified nonuniform fast Fourier transform-Fast Fourier transform to transform the signals into the chirp rate-quadratic chirp rate (CR-QCR) domains. It can greatly suppress the cross-terms while strengthening the auto-terms by multiplying different CR-QCR domains with different scale factors. Compared with high order ambiguity function-integrated cubic phase function and modified Lv's distribution, the simulation results verify that the 2D-PMPCRD acquires higher anti-noise performance and obtains better cross-terms suppression performance for multi-QFM signals with reasonable computation cost.

  15. A Quadratic Spring Equation

    Science.gov (United States)

    Fay, Temple H.

    2010-01-01

    Through numerical investigations, we study examples of the forced quadratic spring equation [image omitted]. By performing trial-and-error numerical experiments, we demonstrate the existence of stability boundaries in the phase plane indicating initial conditions yielding bounded solutions, investigate the resonance boundary in the [omega]…

  16. Effects of quadratic and cubic nonlinearities on a perfectly tuned parametric amplifier

    DEFF Research Database (Denmark)

    Neumeyer, Stefan; Sorokin, Vladislav; Thomsen, Jon Juel

    2016-01-01

    We consider the performance of a parametric amplifier with perfect tuning (two-to-one ratio between the parametric and direct excitation frequencies) and quadratic and cubic nonlinearities. A forced Duffing–Mathieu equation with appended quadratic nonlinearity is considered as the model system......, and approximate analytical steady-state solutions and corresponding stabilities are obtained by the method of varying amplitudes. Some general effects of pure quadratic, and mixed quadratic and cubic nonlinearities on parametric amplification are shown. In particular, the effects of mixed quadratic and cubic...... nonlinearities may generate additional amplitude–frequency solutions. In this case an increased response and a more phase sensitive amplitude (phase between excitation frequencies) is obtained, as compared to the case with either pure quadratic or cubic nonlinearity. Furthermore, jumps and bi...

  17. Indirect quantum tomography of quadratic Hamiltonians

    Energy Technology Data Exchange (ETDEWEB)

    Burgarth, Daniel [Institute for Mathematical Sciences, Imperial College London, London SW7 2PG (United Kingdom); Maruyama, Koji; Nori, Franco, E-mail: daniel@burgarth.de, E-mail: kmaruyama@riken.jp [Advanced Science Institute, RIKEN, Wako-shi, Saitama 351-0198 (Japan)

    2011-01-15

    A number of many-body problems can be formulated using Hamiltonians that are quadratic in the creation and annihilation operators. Here, we show how such quadratic Hamiltonians can be efficiently estimated indirectly, employing very few resources. We found that almost all the properties of the Hamiltonian are determined by its surface and that these properties can be measured even if the system can only be initialized to a mixed state. Therefore, our method can be applied to various physical models, with important examples including coupled nano-mechanical oscillators, hopping fermions in optical lattices and transverse Ising chains.

  18. Nonlinear dynamics of quadratically cubic systems

    International Nuclear Information System (INIS)

    Rudenko, O V

    2013-01-01

    We propose a modified form of the well-known nonlinear dynamic equations with quadratic relations used to model a cubic nonlinearity. We show that such quadratically cubic equations sometimes allow exact solutions and sometimes make the original problem easier to analyze qualitatively. Occasionally, exact solutions provide a useful tool for studying new phenomena. Examples considered include nonlinear ordinary differential equations and Hopf, Burgers, Korteweg–de Vries, and nonlinear Schrödinger partial differential equations. Some problems are solved exactly in the space–time and spectral representations. Unsolved problems potentially solvable by the proposed approach are listed. (methodological notes)

  19. On orthogonality preserving quadratic stochastic operators

    Energy Technology Data Exchange (ETDEWEB)

    Mukhamedov, Farrukh; Taha, Muhammad Hafizuddin Mohd [Department of Computational and Theoretical Sciences, Faculty of Science International Islamic University Malaysia, P.O. Box 141, 25710 Kuantan, Pahang Malaysia (Malaysia)

    2015-05-15

    A quadratic stochastic operator (in short QSO) is usually used to present the time evolution of differing species in biology. Some quadratic stochastic operators have been studied by Lotka and Volterra. In the present paper, we first give a simple characterization of Volterra QSO in terms of absolutely continuity of discrete measures. Further, we introduce a notion of orthogonal preserving QSO, and describe such kind of operators defined on two dimensional simplex. It turns out that orthogonal preserving QSOs are permutations of Volterra QSO. The associativity of genetic algebras generated by orthogonal preserving QSO is studied too.

  20. On orthogonality preserving quadratic stochastic operators

    International Nuclear Information System (INIS)

    Mukhamedov, Farrukh; Taha, Muhammad Hafizuddin Mohd

    2015-01-01

    A quadratic stochastic operator (in short QSO) is usually used to present the time evolution of differing species in biology. Some quadratic stochastic operators have been studied by Lotka and Volterra. In the present paper, we first give a simple characterization of Volterra QSO in terms of absolutely continuity of discrete measures. Further, we introduce a notion of orthogonal preserving QSO, and describe such kind of operators defined on two dimensional simplex. It turns out that orthogonal preserving QSOs are permutations of Volterra QSO. The associativity of genetic algebras generated by orthogonal preserving QSO is studied too

  1. Active Power Flow Optimization of Industrial Power Supply with Regard to the Transmission Line Conductor Heating

    Directory of Open Access Journals (Sweden)

    Leyzgold D.Yu.

    2015-04-01

    Full Text Available This article studies the problem of the transmission line conductor heating effect on the active power flows optimization in the local segment of industrial power supply. The purpose is to determine the optimal generation rating of the distributed power sources, in which the power flow values will correspond to the minimum active power losses in the power supply. The timeliness is the need to define the most appropriate rated power values of distributed sources which will be connected to current industrial power supply. Basing on the model of active power flow optimization, authors formulate the description of the nonlinear transportation problem considering the active power losses depending on the transmission line conductor heating. Authors proposed a new approach to the heating model parameters definition based on allowable current loads and nominal parameters of conductors as part of the optimization problem. Analysis of study results showed that, despite the relatively small active power losses reduction to the tune 0,45% due to accounting of the conductors heating effect for the present configuration of power supply, there are significant fluctuations in the required generation rating in nodes of the network to 9,32% within seasonal changes in the outer air temperature. This fact should be taken into account when selecting the optimum power of distributed generation systems, as exemplified by an arbitrary network configuration.

  2. Deformation of a Capsule in a Power-Law Shear Flow

    Directory of Open Access Journals (Sweden)

    Fang-Bao Tian

    2016-01-01

    Full Text Available An immersed boundary-lattice Boltzmann method is developed for fluid-structure interactions involving non-Newtonian fluids (e.g., power-law fluid. In this method, the flexible structure (e.g., capsule dynamics and the fluid dynamics are coupled by using the immersed boundary method. The incompressible viscous power-law fluid motion is obtained by solving the lattice Boltzmann equation. The non-Newtonian rheology is achieved by using a shear rate-dependant relaxation time in the lattice Boltzmann method. The non-Newtonian flow solver is then validated by considering a power-law flow in a straight channel which is one of the benchmark problems to validate an in-house solver. The numerical results present a good agreement with the analytical solutions for various values of power-law index. Finally, we apply this method to study the deformation of a capsule in a power-law shear flow by varying the Reynolds number from 0.025 to 0.1, dimensionless shear rate from 0.004 to 0.1, and power-law index from 0.2 to 1.8. It is found that the deformation of the capsule increases with the power-law index for different Reynolds numbers and nondimensional shear rates. In addition, the Reynolds number does not have significant effect on the capsule deformation in the flow regime considered. Moreover, the power-law index effect is stronger for larger dimensionless shear rate compared to smaller values.

  3. Quadratic Twists of Rigid Calabi–Yau Threefolds Over

    DEFF Research Database (Denmark)

    Gouvêa, Fernando Q.; Kiming, Ian; Yui, Noriko

    2013-01-01

    of weight 4 on some Γ 0(N). We show that quadratic twisting of a threefold corresponds to twisting the attached newform by quadratic characters and illustrate with a number of obvious and not so obvious examples. The question is motivated by the deeper question of which newforms of weight 4 on some Γ 0(N...

  4. Load Flow Analysis of Hybrid AC-DC Power System with Offshore Wind Power

    DEFF Research Database (Denmark)

    Dhua, Debasish; Huang, Shaojun; Wu, Qiuwei

    2017-01-01

    The offshore wind power has received immense attention because of higher wind speed and lower opposition for construction. A wide range of combinations of high-voltage ACDC transmission have been proposed for integrating offshore wind farms and long-distance power transmission. This paper...... is to model such hybrid AC-DC systems including the interfacing converters, which have several control parameters that can change the load flow of the hybrid systems. Then, the paper proposes a Load Flow algorithm based on the Newton-Raphson method, which covers three different section types...

  5. An iterative method for controlling reactive power flow in boundary transformers

    Energy Technology Data Exchange (ETDEWEB)

    Trigo, Angel L.; Martinez, Jose L.; Riquelme, Jesus; Romero, Esther [Department of Electrical Engineering, University of Seville (Spain)

    2011-02-15

    This paper presents an operational tool designed to help the system operator to control the reactive power flow in transmission-subtransmission boundary transformers. The main objective is to determine the minimum number of control actions necessary to ensure that reactive power flows in transmission/subtransmission transformers remain within limits. The proposed iterative procedure combines the use of a linear programming problem and a load flow tool. The linear programming assumes a linear behaviour between dependent and control variables around an operating point, modelled with sensitivities. Experimental results regarding IEEE systems are provided comparing the performance of the proposed approach with that of a conventional optimal power flow. (author)

  6. Adjustment of the thermohydraulic NUCIRC 2.0 code to the present aging conditions of the Embalse nuclear power plant

    International Nuclear Information System (INIS)

    Rabiti, Arnaldo; Coutsiers, Ernesto; Schivo, Miguel; Mazanttini, Oscar

    2003-01-01

    This work gives a description of the adjustment process of NUCIRC code to the actual aging conditions of Embalse nuclear power plant. For this adjustment the flow of the fuel channels of the primary heat transport system (PHTS) is calculated using the channel heat balance flow (CHBF) methodology. Then roughness and the localized loss of charge are modified in NUCIRC code for different groups of channels. These adjustments are done in way to fit by regions the channels flows calculated with NUCIRC to the CHBF flows. The fitting results in a discrepancy by regions of less than 0,1% and an average quadratic error of 5% approximately. These values indicate that the code NUCIRC is right adjusted for critical channel power calculations and aging tracking of PHTS. (author)

  7. On Convex Quadratic Approximation

    NARCIS (Netherlands)

    den Hertog, D.; de Klerk, E.; Roos, J.

    2000-01-01

    In this paper we prove the counterintuitive result that the quadratic least squares approximation of a multivariate convex function in a finite set of points is not necessarily convex, even though it is convex for a univariate convex function. This result has many consequences both for the field of

  8. The Model and Quadratic Stability Problem of Buck Converter in DCM

    Directory of Open Access Journals (Sweden)

    Li Xiaojing

    2016-01-01

    Full Text Available Quadratic stability is an important performance for control systems. At first, the model of Buck Converter in DCM is built based on the theories of hybrid systems and switched linear systems primarily. Then quadratic stability of SLS and hybrid feedback switching rule are introduced. The problem of Buck Converter’s quadratic stability is researched afterwards. In the end, the simulation analysis and verification are provided. Both experimental verification and theoretical analysis results indicate that the output of Buck Converter in DCM has an excellent performance via quadratic stability control and switching rules.

  9. Scalable Newton-Krylov solver for very large power flow problems

    NARCIS (Netherlands)

    Idema, R.; Lahaye, D.J.P.; Vuik, C.; Van der Sluis, L.

    2010-01-01

    The power flow problem is generally solved by the Newton-Raphson method with a sparse direct solver for the linear system of equations in each iteration. While this works fine for small power flow problems, we will show that for very large problems the direct solver is very slow and we present

  10. Solution of the Chew-Low equations in the quadratic approximation

    International Nuclear Information System (INIS)

    Gerdt, V.P.; Zharkov, A.Yu.

    1982-01-01

    Within the framework of the iteration scheme for constructing the general solution of the Chew-Low equations as suggested earlier the second order power contributions are found. In contrast to the linear approximation obtained before the quadratic approximation includes an infinite number of poles on the complex plane of the uniformizing variable w. It is shown that taking into account the second order corrections in the general solution allows us to select the class of solutions possessing the Born pole at w=0. The most cumbersome part of analytical computations has been carried out by computer using the algebraic system REDUCE-2

  11. Linear quadratic optimization for positive LTI system

    Science.gov (United States)

    Muhafzan, Yenti, Syafrida Wirma; Zulakmal

    2017-05-01

    Nowaday the linear quadratic optimization subject to positive linear time invariant (LTI) system constitute an interesting study considering it can become a mathematical model of variety of real problem whose variables have to nonnegative and trajectories generated by these variables must be nonnegative. In this paper we propose a method to generate an optimal control of linear quadratic optimization subject to positive linear time invariant (LTI) system. A sufficient condition that guarantee the existence of such optimal control is discussed.

  12. Nearly Quadratic n-Derivations on Non-Archimedean Banach Algebras

    Directory of Open Access Journals (Sweden)

    Madjid Eshaghi Gordji

    2012-01-01

    Full Text Available Let n>1 be an integer, let A be an algebra, and X be an A-module. A quadratic function D:A→X is called a quadratic n-derivation if D(∏i=1nai=D(a1a22⋯an2+a12D(a2a32⋯an2+⋯+a12a22⋯an−12D(an for all a1,...,an∈A. We investigate the Hyers-Ulam stability of quadratic n-derivations from non-Archimedean Banach algebras into non-Archimedean Banach modules by using the Banach fixed point theorem.

  13. Algorithms for sparse, symmetric, definite quadratic lambda-matrix eigenproblems

    International Nuclear Information System (INIS)

    Scott, D.S.; Ward, R.C.

    1981-01-01

    Methods are presented for computing eigenpairs of the quadratic lambda-matrix, M lambda 2 + C lambda + K, where M, C, and K are large and sparse, and have special symmetry-type properties. These properties are sufficient to insure that all the eigenvalues are real and that theory analogous to the standard symmetric eigenproblem exists. The methods employ some standard techniques such as partial tri-diagonalization via the Lanczos Method and subsequent eigenpair calculation, shift-and- invert strategy and subspace iteration. The methods also employ some new techniques such as Rayleigh-Ritz quadratic roots and the inertia of symmetric, definite, quadratic lambda-matrices

  14. Comparison between linear quadratic and early time dose models

    International Nuclear Information System (INIS)

    Chougule, A.A.; Supe, S.J.

    1993-01-01

    During the 70s, much interest was focused on fractionation in radiotherapy with the aim of improving tumor control rate without producing unacceptable normal tissue damage. To compare the radiobiological effectiveness of various fractionation schedules, empirical formulae such as Nominal Standard Dose, Time Dose Factor, Cumulative Radiation Effect and Tumour Significant Dose, were introduced and were used despite many shortcomings. It has been claimed that a recent linear quadratic model is able to predict the radiobiological responses of tumours as well as normal tissues more accurately. We compared Time Dose Factor and Tumour Significant Dose models with the linear quadratic model for tumour regression in patients with carcinomas of the cervix. It was observed that the prediction of tumour regression estimated by the Tumour Significant Dose and Time Dose factor concepts varied by 1.6% from that of the linear quadratic model prediction. In view of the lack of knowledge of the precise values of the parameters of the linear quadratic model, it should be applied with caution. One can continue to use the Time Dose Factor concept which has been in use for more than a decade as its results are within ±2% as compared to that predicted by the linear quadratic model. (author). 11 refs., 3 figs., 4 tabs

  15. PIC simulation of the vacuum power flow for a 5 terawatt, 5 MV, 1 MA pulsed power system

    Science.gov (United States)

    Liu, Laqun; Zou, Wenkang; Liu, Dagang; Guo, Fan; Wang, Huihui; Chen, Lin

    2018-03-01

    In this paper, a 5 Terawatt, 5 MV, 1 MA pulsed power system based on vacuum magnetic insulation is simulated by the particle-in-cell (PIC) simulation method. The system consists of 50 100-kV linear transformer drive (LTD) cavities in series, using magnetically insulated induction voltage adder (MIVA) technology for pulsed power addition and transmission. The pulsed power formation and the vacuum power flow are simulated when the system works in self-limited flow and load-limited flow. When the pulsed power system isn't connected to the load, the downstream magnetically insulated transmission line (MITL) works in the self-limited flow, the maximum of output current is 1.14 MA and the amplitude of voltage is 4.63 MV. The ratio of the electron current to the total current is 67.5%, when the output current reached the peak value. When the impedance of the load is 3.0 Ω, the downstream MITL works in the self-limited flow, the maximums of output current and the amplitude of voltage are 1.28 MA and 3.96 MV, and the ratio of the electron current to the total current is 11.7% when the output current reached the peak value. In addition, when the switches are triggered in synchronism with the passage of the pulse power flow, it effectively reduces the rise time of the pulse current.

  16. Power Flow and Structure-Borne Noise

    DEFF Research Database (Denmark)

    Wachulec, Marcin

    The method of power flow analysis within a structure depends on the frequency considered. For the low frequencies the standard Finite Element Method (FEM) can be used efficiently. In the high frequencies the Statistical Energy Analysis (SEA) proved its usefulness. The distinction between low and ...

  17. Magnetic insulation, power flow, and pulse power results on RITS-3

    International Nuclear Information System (INIS)

    Johnson, David L.; Smith, Ian; Corcoran, Patrick; Bailey, Vernon; Maenchen, John; Rovang, Dean; Molina, Isidro; Hahn, Kelly; Lucero, Robert; Kincy, Mark; Kitterman, David; Oliver, Bryan; Welch, Dale; Rose, David; Goldsack, Timothy J.; Phillips, Martin A.; Sinclair, Mark A.; Thomas, Kenneth J.

    2002-01-01

    RITS (Radiographic Integrated Test Stand) is an induction voltage adder designed by Sandia and PSD to provide 16-MV, 150-kA electron beams and other capabilities. Previous publications have reported on tests of a single pulse forming line and adder cell, including initial results of the effects of various degrees of non-uniform injection of current into the adder bore on magnetic insulation and power flow in the downstream MITL. Now RITS-3 has been constructed, consisting of three pfls driven by a common intermediate store; three induction cells, one driven by each pfl; a three-stage, 4-MV, 150-kA vacuum voltage adder; and an output MITL and diode. Here we report on (1) simulations of the three-stage adder using the MRC 3-D particle-in-cell code LSP that address the effects of injected current non-uniformities on magnetic insulation and power-flow both upstream and downstream in a multi-cell adder; (2) experimental results compared with simulations; and (3) initial performance of the RITS-3 pulse power

  18. Guises and disguises of quadratic divergences

    Energy Technology Data Exchange (ETDEWEB)

    Cherchiglia, A.L., E-mail: adriano@fisica.ufmg.br [Departamento de Física, ICEx, Universidade Federal de Minas Gerais, P.O. BOX 702, 30.161-970, Belo Horizonte, MG (Brazil); Vieira, A.R., E-mail: arvieira@fisica.ufmg.br [Departamento de Física, ICEx, Universidade Federal de Minas Gerais, P.O. BOX 702, 30.161-970, Belo Horizonte, MG (Brazil); Hiller, Brigitte, E-mail: brigitte@teor.fis.uc.pt [Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, 3004-516 Coimbra (Portugal); Baêta Scarpelli, A.P., E-mail: scarpelli.apbs@dpf.gov.br [Setor Técnico-Científico, Departamento de Polícia Federal, Rua Hugo D’Antola, 95 - Lapa, São Paulo (Brazil); Sampaio, Marcos, E-mail: marcos.sampaio@durham.ac.uk [Departamento de Física, ICEx, Universidade Federal de Minas Gerais, P.O. BOX 702, 30.161-970, Belo Horizonte, MG (Brazil); Centre for Particle Theory, Department of Mathematical Sciences, Durham University, South Road Durham DH1 3LE (United Kingdom)

    2014-12-15

    In this contribution, we present a new perspective on the control of quadratic divergences in quantum field theory, in general, and in the Higgs naturalness problem, in particular. Our discussion is essentially based on an approach where UV divergences are parameterized, after being reduced to basic divergent integrals (BDI) in one internal momentum, as functions of a cutoff and a renormalization group scale λ. We illustrate our proposal with well-known examples, such as the gluon vacuum self energy of QCD and the Higgs decay in two photons within this approach. We also discuss frameworks in effective low-energy QCD models, where quadratic divergences are indeed fundamental.

  19. PSQP: Puzzle Solving by Quadratic Programming.

    Science.gov (United States)

    Andalo, Fernanda A; Taubin, Gabriel; Goldenstein, Siome

    2017-02-01

    In this article we present the first effective method based on global optimization for the reconstruction of image puzzles comprising rectangle pieces-Puzzle Solving by Quadratic Programming (PSQP). The proposed novel mathematical formulation reduces the problem to the maximization of a constrained quadratic function, which is solved via a gradient ascent approach. The proposed method is deterministic and can deal with arbitrary identical rectangular pieces. We provide experimental results showing its effectiveness when compared to state-of-the-art approaches. Although the method was developed to solve image puzzles, we also show how to apply it to the reconstruction of simulated strip-shredded documents, broadening its applicability.

  20. Visualising the Roots of Quadratic Equations with Complex Coefficients

    Science.gov (United States)

    Bardell, Nicholas S.

    2014-01-01

    This paper is a natural extension of the root visualisation techniques first presented by Bardell (2012) for quadratic equations with real coefficients. Consideration is now given to the familiar quadratic equation "y = ax[superscript 2] + bx + c" in which the coefficients "a," "b," "c" are generally…

  1. Optimal power flow using the league championship algorithm: A case study of the Algerian power system

    International Nuclear Information System (INIS)

    Bouchekara, H.R.E.H.; Abido, M.A.; Chaib, A.E.; Mehasni, R.

    2014-01-01

    Highlights: • Optimal power flow. • Reducing electrical energy loss. • Saving electrical energy. • Optimal operation. - Abstract: A new efficient optimization method, called the League Championship Algorithm (LCA) is proposed in this paper for solving the optimal power flow problem. This method is inspired by the competition of sport teams in an artificial sport league for several weeks and over a number of seasons. The proposed method has been applied to the Algerian power system network for different objectives. Furthermore, in order to assess the effectiveness of the proposed LCA method the obtained results using this method have been compared to those obtained using other methods reported in the literature. The obtained results and the comparison with other techniques indicate that the league championship algorithm provides effective and high-quality solution when solving the optimal power flow problem

  2. Application of a quadratic method of programming to a particular problem of a rational development of a waterflooded field

    Energy Technology Data Exchange (ETDEWEB)

    Korotkov, S F; Khalitov, N T

    1965-01-01

    he quadratic method of programming is used to solve the following type of problem. A circular reservoir is subjected to a peripheral waterflood. The reservoir is drained by wells arranged in 3 concentric circles. The objective is to control the operation of producing wells, that a maximum quantity of water-free oil will be produced. The wells are flowed so that bottomhole pressure is above the bubble point. A quadratic equation is used to express the essential features of the problem; a system of linear equations is used to express the boundary conditions. The problem is solved by means of the Wolf algorithm method. The method is demonstrated by an illustrative example.

  3. Scale-Invariant Rotating Black Holes in Quadratic Gravity

    Directory of Open Access Journals (Sweden)

    Guido Cognola

    2015-07-01

    Full Text Available Black hole solutions in pure quadratic theories of gravity are interesting since they allow the formulation of a set of scale-invariant thermodynamics laws. Recently, we have proven that static scale-invariant black holes have a well-defined entropy, which characterizes equivalent classes of solutions. In this paper, we generalize these results and explore the thermodynamics of rotating black holes in pure quadratic gravity.

  4. Dynamic ADMM for Real-time Optimal Power Flow: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Dall-Anese, Emiliano [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-23

    This paper considers distribution networks featuring distributed energy resources (DERs), and develops a dynamic optimization method to maximize given operational objectives in real time while adhering to relevant network constraints. The design of the dynamic algorithm is based on suitable linearizations of the AC power flow equations, and it leverages the so-called alternating direction method of multipliers (ADMM). The steps of the ADMM, however, are suitably modified to accommodate appropriate measurements from the distribution network and the DERs. With the aid of these measurements, the resultant algorithm can enforce given operational constraints in spite of inaccuracies in the representation of the AC power flows, and it avoids ubiquitous metering to gather the state of non-controllable resources. Optimality and convergence of the propose algorithm are established in terms of tracking of the solution of a convex surrogate of the AC optimal power flow problem.

  5. Fuzzy algorithms to generate level controllers for nuclear power plant steam generators

    International Nuclear Information System (INIS)

    Moon, Byung Soo; Park, Jae Chang; Kim, Dong Hwa; Kim, Byung Koo

    1993-01-01

    In this paper, we present two sets of fuzzy algorithms for the steam generater level control; one for the high power operations where the flow error is available and the other for the low power operations where the flow error is not available. These are converted to a PID type controller for the high power case and to a quadratic function form of a controller for the low power case. These controllers are implemented on the Compact Nuclear Simulator at Korea Atomic Energy Research Institute and tested by a set of four simulation experiments for each. For both cases, the results show that the total variation of the level error and of the flow error are about 50% of those by the PI controllers with about one half of the control action. For the high power case, this is mainly due to the fact that a combination of two PD type controllers in the velocity algorithm form rather than a combination of two PI type controllers in the position algorithm form is used. For the low power case, the controller is essentially a PID type with a very small integral component where the average values for the derivative component input and for the controller output are used. (Author)

  6. Assessment of Power Potential of Tidal Currents and Impacts of Power Extraction on Flow Speeds in Indonesia

    Science.gov (United States)

    Orhan, K.; Mayerle, R.

    2016-12-01

    A methodology comprising of the estimates of power yield, evaluation of the effects of power extraction on flow conditions, and near-field investigations to deliver wake characteritics, recovery and interactions is described and applied to several straits in Indonesia. Site selection is done with high-resolution, three-dimensional flow models providing sufficient spatiotemporal coverage. Much attention has been given to the meteorological forcing, and conditions at the open sea boundaries to adequately capture the density gradients and flow fields. Model verification using tidal records shows excellent agreement. Sites with adequate depth for the energy conversion using horizontal axis tidal turbines, average kinetic power density greater than 0.5 kW/m2, and surface area larger than 0.5km2 are defined as energy hotspots. Spatial variation of the average extractable electric power is determined, and annual tidal energy resource is estimated for the straits in question. The results showed that the potential for tidal power generation in Indonesia is likely to exceed previous predictions reaching around 4,800MW. To assess the impact of the devices, flexible mesh models with higher resolutions have been developed. Effects on flow conditions, and near-field turbine wakes are resolved in greater detail with triangular horizontal grids. The energy is assumed to be removed uniformly by sub-grid scale arrays of turbines, and calculations are made based on velocities at the hub heights of the devices. An additional drag force resulting in dissipation of the pre-existing kinetic power from %10 to %60 within a flow cross-section is introduced to capture the impacts. It was found that the effect of power extraction on water levels and flow speeds in adjacent areas is not significant. Results show the effectivess of the method to capture wake characteritics and recovery reasonably well with low computational cost.

  7. Flow angle dependent photoacoustic Doppler power spectra under intensity-modulated continuous wave laser excitation

    Directory of Open Access Journals (Sweden)

    Yu Tong

    2016-02-01

    Full Text Available Photoacoustic Doppler (PAD power spectra showing an evident Doppler shift represent the major characteristics of the continuous wave-excited or burst wave-excited versions of PAD flow measurements. In this paper, the flow angle dependences of the PAD power spectra are investigated using an experiment setup that was established based on intensity-modulated continuous wave laser excitation. The setup has an overall configuration that is similar to a previously reported configuration, but is more sophisticated in that it accurately aligns the laser illumination with the ultrasound detection process, and in that it picks up the correct sample position. In the analysis of the power spectra data, we find that the background power spectra can be extracted by combining the output signals from the two channels of the lock-in amplifier, which is very useful for identification of the PAD power spectra. The power spectra are presented and analyzed in opposite flow directions, at different flow speeds, and at different flow angles. The power spectra at a 90° flow angle show the unique properties of symmetrical shapes due to PAD broadening. For the other flow angles, the smoothed power spectra clearly show a flow angle cosine relationship.

  8. Quadratic algebra approach to relativistic quantum Smorodinsky-Winternitz systems

    International Nuclear Information System (INIS)

    Marquette, Ian

    2011-01-01

    There exists a relation between the Klein-Gordon and the Dirac equations with scalar and vector potentials of equal magnitude and the Schroedinger equation. We obtain the relativistic energy spectrum for the four relativistic quantum Smorodinsky-Winternitz systems from their quasi-Hamiltonian and the quadratic algebras studied by Daskaloyannis in the nonrelativistic context. We also apply the quadratic algebra approach directly to the initial Dirac equation for these four systems and show that the quadratic algebras obtained are the same than those obtained from the quasi-Hamiltonians. We point out how results obtained in context of quantum superintegrable systems and their polynomial algebras can be applied to the quantum relativistic case.

  9. Fractionating power and outlet stream polydispersity in asymmetrical flow field-flow fractionation. Part I: isocratic operation.

    Science.gov (United States)

    Williams, P Stephen

    2016-05-01

    Asymmetrical flow field-flow fractionation (As-FlFFF) has become the most commonly used of the field-flow fractionation techniques. However, because of the interdependence of the channel flow and the cross flow through the accumulation wall, it is the most difficult of the techniques to optimize, particularly for programmed cross flow operation. For the analysis of polydisperse samples, the optimization should ideally be guided by the predicted fractionating power. Many experimentalists, however, neglect fractionating power and rely on light scattering detection simply to confirm apparent selectivity across the breadth of the eluted peak. The size information returned by the light scattering software is assumed to dispense with any reliance on theory to predict retention, and any departure of theoretical predictions from experimental observations is therefore considered of no importance. Separation depends on efficiency as well as selectivity, however, and efficiency can be a strong function of retention. The fractionation of a polydisperse sample by field-flow fractionation never provides a perfectly separated series of monodisperse fractions at the channel outlet. The outlet stream has some residual polydispersity, and it will be shown in this manuscript that the residual polydispersity is inversely related to the fractionating power. Due to the strong dependence of light scattering intensity and its angular distribution on the size of the scattering species, the outlet polydispersity must be minimized if reliable size data are to be obtained from the light scattering detector signal. It is shown that light scattering detection should be used with careful control of fractionating power to obtain optimized analysis of polydisperse samples. Part I is concerned with isocratic operation of As-FlFFF, and part II with programmed operation.

  10. Feasibility Study of Power Uprate Using Ultrasonic Flow Meters in NPPs

    International Nuclear Information System (INIS)

    Kim, Tae Mi; Heo, Gyun Young

    2010-01-01

    Feedwater flowrate is an important input parameter in establishing the plant's operating power level. In Korean nuclear power plants, venturi flow meters have been used for measuring the feedwater flow of the secondary side. However, as time goes on, the fouling in venture meters could cause measurement uncertainties to grow and that could lead to operation at less than about 2% of the licensed thermal power limit. In order to resolve the problem, nuclear power plants in other countries use Ultrasonic Flow Meters (UFMs) which have relatively lower measurement uncertainty (about 0.5%) instead of venturi flow meters and have reduced the errors from the fouling in venturi-type flow meters. USA amended 10 CFR 50 Appendix K so that US nuclear power plants can use real value of Core Operating Limit Supervisory System (COLSS) uncertainty, which is currently fixed as 2%, by adopting the UFM. Korea also has been amended the law in order to get benefits from the technology. In this study, we are going to present the fundamental principles of UFMs and the advantages and disadvantages of its installation. Also, we inquire into the conventional uses of UFMs in the overseas sites and then check what is needed to consider for its domestic application

  11. Geometric Approaches to Quadratic Equations from Other Times and Places.

    Science.gov (United States)

    Allaire, Patricia R.; Bradley, Robert E.

    2001-01-01

    Focuses on geometric solutions of quadratic problems. Presents a collection of geometric techniques from ancient Babylonia, classical Greece, medieval Arabia, and early modern Europe to enhance the quadratic equation portion of an algebra course. (KHR)

  12. Approximate *-derivations and approximate quadratic *-derivations on C*-algebras

    Directory of Open Access Journals (Sweden)

    Park Choonkil

    2011-01-01

    Full Text Available Abstract In this paper, we prove the stability of *-derivations and of quadratic *-derivations on Banach *-algebras. We moreover prove the superstability of *-derivations and of quadratic *-derivations on C*-algebras. 2000 Mathematics Subject Classification: 39B52; 47B47; 46L05; 39B72.

  13. Sludge pipe flow pressure drop prediction using composite power ...

    African Journals Online (AJOL)

    Sludge pipe flow pressure drop prediction using composite power-law friction ... Water SA. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue ... When predicting pressure gradients for the flow of sludges in pipes, the ...

  14. Linear Power-Flow Models in Multiphase Distribution Networks: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Andrey; Dall' Anese, Emiliano

    2017-05-26

    This paper considers multiphase unbalanced distribution systems and develops approximate power-flow models where bus-voltages, line-currents, and powers at the point of common coupling are linearly related to the nodal net power injections. The linearization approach is grounded on a fixed-point interpretation of the AC power-flow equations, and it is applicable to distribution systems featuring (i) wye connections; (ii) ungrounded delta connections; (iii) a combination of wye-connected and delta-connected sources/loads; and, (iv) a combination of line-to-line and line-to-grounded-neutral devices at the secondary of distribution transformers. The proposed linear models can facilitate the development of computationally-affordable optimization and control applications -- from advanced distribution management systems settings to online and distributed optimization routines. Performance of the proposed models is evaluated on different test feeders.

  15. QUADrATiC: scalable gene expression connectivity mapping for repurposing FDA-approved therapeutics.

    Science.gov (United States)

    O'Reilly, Paul G; Wen, Qing; Bankhead, Peter; Dunne, Philip D; McArt, Darragh G; McPherson, Suzanne; Hamilton, Peter W; Mills, Ken I; Zhang, Shu-Dong

    2016-05-04

    Gene expression connectivity mapping has proven to be a powerful and flexible tool for research. Its application has been shown in a broad range of research topics, most commonly as a means of identifying potential small molecule compounds, which may be further investigated as candidates for repurposing to treat diseases. The public release of voluminous data from the Library of Integrated Cellular Signatures (LINCS) programme further enhanced the utilities and potentials of gene expression connectivity mapping in biomedicine. We describe QUADrATiC ( http://go.qub.ac.uk/QUADrATiC ), a user-friendly tool for the exploration of gene expression connectivity on the subset of the LINCS data set corresponding to FDA-approved small molecule compounds. It enables the identification of compounds for repurposing therapeutic potentials. The software is designed to cope with the increased volume of data over existing tools, by taking advantage of multicore computing architectures to provide a scalable solution, which may be installed and operated on a range of computers, from laptops to servers. This scalability is provided by the use of the modern concurrent programming paradigm provided by the Akka framework. The QUADrATiC Graphical User Interface (GUI) has been developed using advanced Javascript frameworks, providing novel visualization capabilities for further analysis of connections. There is also a web services interface, allowing integration with other programs or scripts. QUADrATiC has been shown to provide an improvement over existing connectivity map software, in terms of scope (based on the LINCS data set), applicability (using FDA-approved compounds), usability and speed. It offers potential to biological researchers to analyze transcriptional data and generate potential therapeutics for focussed study in the lab. QUADrATiC represents a step change in the process of investigating gene expression connectivity and provides more biologically-relevant results than

  16. Anomalous Power Flow and ``Ghost'' Sources

    Science.gov (United States)

    Monzon, Cesar

    2008-08-01

    It is demonstrated that EM radiation from complex sources can result in real power in restricted regions of space flowing back towards the sources, thereby mimicking “ghost” sources. This counterintuitive mechanism of radiation does not rely on backward waves, as ordinary waves carry the power. Ways to harness the effect by making it directional are presented, together with selected applications, of which deception is a prime example due to the nature of the phenomenon. The concept can be applied to other areas, such as mechanics, acoustics, etc., and can be realized with available technology.

  17. Unconfined Unsteady Laminar Flow of a Power-Law Fluid across a Square Cylinder

    Directory of Open Access Journals (Sweden)

    Asterios Pantokratoras

    2016-11-01

    Full Text Available The flow of a non-Newtonian, power-law fluid, directed normally to a horizontal cylinder with square cross-section (two-dimensional flow is considered in the present paper. The problem is investigated numerically with a very large calculation domain in order that the flow could be considered unconfined. The investigation covers the power-law index from 0.1 up to 2 and the Reynolds number ranges from 60 to 160. Over this range of Reynolds numbers the flow is unsteady. It is found that the drag coefficient and the Strouhal number are higher in a confined flow compared to those of an unconfined flow. In addition some flow characteristics are lost in a confined flow. Complete results for the drag coefficient and Strouhal number in the entire shear-thinning and shear-thickening region have been produced. In shear-thinning fluids chaotic structures exist which diminish at higher values of power-law index. This study represents the first investigation of unsteady, non-Newtonian power-law flow past a square cylinder in an unconfined field.

  18. Quadratic-linear pattern in cancer fractional radiotherapy. Equations for a computering program

    International Nuclear Information System (INIS)

    Burgos, D.; Bullejos, J.; Garcia Puche, J.L.; Pedraza, V.

    1990-01-01

    Knowledge of equivalence between different tratment schemes with the same iso-effect is the essential thing in clinical cancer radiotherapy. For this purpose it is very useful the group of ideas derived from quadratic-linear pattern (Q-L) proposed in order to analyze cell survival curve to radiation. Iso-effect definition caused by several irradiation rules is done by extrapolated tolerance dose (ETD). Because equations for ETD are complex, a computering program have been carried out. In this paper, iso-effect equations for well defined therapeutic situations and flow diagram proposed for resolution, have been studied. (Author)

  19. Analysis of Students' Error in Learning of Quadratic Equations

    Science.gov (United States)

    Zakaria, Effandi; Ibrahim; Maat, Siti Mistima

    2010-01-01

    The purpose of the study was to determine the students' error in learning quadratic equation. The samples were 30 form three students from a secondary school in Jambi, Indonesia. Diagnostic test was used as the instrument of this study that included three components: factorization, completing the square and quadratic formula. Diagnostic interview…

  20. Quadratic hamiltonians and relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Razumov, A.V.; Solov'ev, V.O.; Taranov, A.Yu.

    1981-01-01

    For the case of a charged scalar field described by a quadratic hamiltonian the equivalent relativistic quantum mechanics is constructed in one-particle sector. Complete investigation of a charged relativistic particle motion in the Coulomb field is carried out. Subcritical as well as supercritical cases are considered. In the course of investigation of the charged scalar particle in the Coulomb field the diagonalization of the quadratic hamiltonian describing the charged scalar quantized field interaction with the external Coulomb field has taken place. Mathematically this problem is bound to the construction of self-conjugated expansions of the symmetric operator. The construction of such expansion is necessary at any small external field magnitude [ru

  1. Convex relaxation of Optimal Power Flow in Distribution Feeders with embedded solar power

    DEFF Research Database (Denmark)

    Hermann, Alexander Niels August; Wu, Qiuwei; Huang, Shaojun

    2016-01-01

    There is an increasing interest in using Distributed Energy Resources (DER) directly coupled to end user distribution feeders. This poses an array of challenges because most of today’s distribution feeders are designed for unidirectional power flow. Therefore when installing DERs such as solar...... panels with uncontrolled inverters, the upper limit of installable capacity is quickly reached in many of today’s distribution feeders. This problem can often be mitigated by optimally controlling the voltage angles of inverters. However, the optimal power flow problem in its standard form is a large...... scale non-convex optimization problem, and thus can’t be solved precisely and also is computationally heavy and intractable for large systems. This paper examines the use of a convex relaxation using Semi-definite programming to optimally control solar power inverters in a distribution grid in order...

  2. Power flow prediction in vibrating systems via model reduction

    Science.gov (United States)

    Li, Xianhui

    This dissertation focuses on power flow prediction in vibrating systems. Reduced order models (ROMs) are built based on rational Krylov model reduction which preserve power flow information in the original systems over a specified frequency band. Stiffness and mass matrices of the ROMs are obtained by projecting the original system matrices onto the subspaces spanned by forced responses. A matrix-free algorithm is designed to construct ROMs directly from the power quantities at selected interpolation frequencies. Strategies for parallel implementation of the algorithm via message passing interface are proposed. The quality of ROMs is iteratively refined according to the error estimate based on residual norms. Band capacity is proposed to provide a priori estimate of the sizes of good quality ROMs. Frequency averaging is recast as ensemble averaging and Cauchy distribution is used to simplify the computation. Besides model reduction for deterministic systems, details of constructing ROMs for parametric and nonparametric random systems are also presented. Case studies have been conducted on testbeds from Harwell-Boeing collections. Input and coupling power flow are computed for the original systems and the ROMs. Good agreement is observed in all cases.

  3. A heuristic technique to determine corrective control actions for reactive power flows

    Energy Technology Data Exchange (ETDEWEB)

    Trigo, Angel L.; Martinez, Jose L.; Riquelme, Jesus; Romero, Esther [Department of Electrical Engineering, University of Sevilla (Spain)

    2011-01-15

    This paper presents a sensitivity-based heuristic tool designed to help the system operator in the reactive power flow control problem. The objective of the proposed technique is to determine control actions to ensure that reactive power flows in transmission-subtransmission boundary transformers remain within specified limits, satisfying the new regulatory constraints imposed in most of deregulated markets. With this new constraint the utilities want to guarantee that the utility is able to satisfy its own reactive power requirements, avoiding reactive power flows through long distances in order to reduce the well known disadvantages that reactive power circulation has in the system. A 5-bus tutorial system is used to present the proposed algorithm. The results of the application of the proposed technique to the IEEE 118 buses system and to a regional subtransmission network of the South of Spain are reported and analyzed. In this last actual case, the aim is to maintain reactive power flows in transmission/distribution transformers between those limits set by the Spanish Regulation. A comparison between the proposed tool and a conventional OPF is discussed. (author)

  4. Sketching the General Quadratic Equation Using Dynamic Geometry Software

    Science.gov (United States)

    Stols, G. H.

    2005-01-01

    This paper explores a geometrical way to sketch graphs of the general quadratic in two variables with Geometer's Sketchpad. To do this, a geometric procedure as described by De Temple is used, bearing in mind that this general quadratic equation (1) represents all the possible conics (conics sections), and the fact that five points (no three of…

  5. Tangent Lines without Derivatives for Quadratic and Cubic Equations

    Science.gov (United States)

    Carroll, William J.

    2009-01-01

    In the quadratic equation, y = ax[superscript 2] + bx + c, the equation y = bx + c is identified as the equation of the line tangent to the parabola at its y-intercept. This is extended to give a convenient method of graphing tangent lines at any point on the graph of a quadratic or a cubic equation. (Contains 5 figures.)

  6. Power flow control strategy in distribution network for dc type distributed energy resource at load bus

    International Nuclear Information System (INIS)

    Hanif, A.; Choudhry, M.A.

    2013-01-01

    This research work presents a feed forward power flow control strategy in the secondary distribution network working in parallel with a DC type distributed energy resource (DER) unit with SPWM-IGBT Voltage Source Converter (VSC). The developed control strategy enables the VSC to be used as power flow controller at the load bus in the presence of utility supply. Due to the investigated control strategy, power flow control from distributed energy resource (DER) to common load bus is such that power flows to the load without facing any power quality problem. The technique has an added advantage of controlling power flow without having a dedicated power flow controller. The SPWM-IGBT VSC is serving the purpose of dc-ac converter as well as power flow controller. Simulations for a test system using proposed power flow control strategy are carried out using SimPower Systems toolbox of MATLAB at the rate and Simulink at the rate. The results show that a reliable, effective and efficient operation of DC type DER unit in coordination with main utility network can be achieved. (author)

  7. Impurity solitons with quadratic nonlinearities

    DEFF Research Database (Denmark)

    Clausen, Carl A. Balslev; Torres, Juan P-; Torner, Lluis

    1998-01-01

    We fmd families of solitary waves mediated by parametric mixing in quadratic nonlinear media that are localized at point-defect impurities. Solitons localized at attractive impurities are found to be dynamically stable. It is shown that localization at the impurity modifies strongly the soliton...

  8. A low-power high-flow shape memory alloy wire gas microvalve

    International Nuclear Information System (INIS)

    Gradin, Henrik; Braun, Stefan; Stemme, Göran; Van der Wijngaart, Wouter; Clausi, Donato; Peirs, Jan; Reynaerts, Dominiek

    2012-01-01

    In this paper the use of shape memory alloy (SMA) wire actuators for high gas flow control is investigated. A theoretical model for effective gas flow control is presented and gate microvalve prototypes are fabricated. The SMA wire actuator demonstrates the robust flow control of more than 1600 sccm at a pressure drop of 200 kPa. The valve can be successfully switched at over 10 Hz and at an actuation power of 90 mW. Compared to the current state-of-the-art high-flow microvalves, the proposed solution benefits from a low-voltage actuator with low overall power consumption. This paper demonstrate that SMA wire actuators are well suited for high-pressurehigh-flow applications. (paper)

  9. Cascaded Quadratic Soliton Compression in Waveguide Structures

    DEFF Research Database (Denmark)

    Guo, Hairun

    between the Kerr nonlinear effects and the dispersive effects in the medium. A Kerr-like nonlinearity is produced through the cascaded phase mismatched quadratic process, e.g. the second harmonic generation process, which can be flexibly tuned in both the sign and the amplitude, making possible a strong......-phase-matching technology is not necessarily needed. In large-RI-changed waveguides, CQSC is extended to the mid-infrared range to generate single-cycle pulses with purely nonlinear interactions, since an all-normal dispersion profile could be achieved within the guidance band. We believe that CQSC in quadratic waveguides...

  10. A Trust-region-based Sequential Quadratic Programming Algorithm

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian; Poulsen, Niels Kjølstad

    This technical note documents the trust-region-based sequential quadratic programming algorithm used in other works by the authors. The algorithm seeks to minimize a convex nonlinear cost function subject to linear inequalty constraints and nonlinear equality constraints.......This technical note documents the trust-region-based sequential quadratic programming algorithm used in other works by the authors. The algorithm seeks to minimize a convex nonlinear cost function subject to linear inequalty constraints and nonlinear equality constraints....

  11. Cash flow forecasting model for nuclear power projects

    International Nuclear Information System (INIS)

    Liu Wei; Guo Jilin

    2002-01-01

    Cash flow forecasting is very important for owners and contractors of nuclear power projects to arrange the capital and to decrease the capital cost. The factors related to contractor cash flow forecasting are analyzed and a cash flow forecasting model is presented which is suitable for both contractors and owners. The model is efficiently solved using a cost-schedule data integration scheme described. A program is developed based on the model and verified with real project data. The result indicates that the model is efficient and effective

  12. Integration of power flow controlling devices and HVDC-systems into the optimal power flow; Integration von leistungsflusssteuernden Komponenten und HGUe-Systemen in die Leistungsflussoptimierung

    Energy Technology Data Exchange (ETDEWEB)

    Natemeyer, Hendrik; Scheufen, Martin; Roehder, Andreas; Schnettler, Armin [RWTH Aachen Univ. (Germany). Inst. fuer Hochspannungstechnik (IFHT)

    2012-07-01

    An integration of High Voltage Direct Current Transmission Systems (HVDC) or Flexible AC Transmission Systems (FACTS) into power systems enables the possibility to actively influence and control the corresponding power flows in the electrical network. The systemic benefits are a more efficient utilization of existing transmission capacities and improved controllability in fault situations. This paper introduces methods of a coordinative control of such devices and their representation in stationary power flow calculations including the control in (n-1)-cases. This might be a useful tool for the network operation, especially in face of more frequently occurring fast system changes. Examples of a corresponding implementation and application are provided. (orig.)

  13. Estimating the vibration level of an L-shaped beam using power flow techniques

    Science.gov (United States)

    Cuschieri, J. M.; Mccollum, M.; Rassineux, J. L.; Gilbert, T.

    1986-01-01

    The response of one component of an L-shaped beam, with point force excitation on the other component, is estimated using the power flow method. The transmitted power from the source component to the receiver component is expressed in terms of the transfer and input mobilities at the excitation point and the joint. The response is estimated both in narrow frequency bands, using the exact geometry of the beams, and as a frequency averaged response using infinite beam models. The results using this power flow technique are compared to the results obtained using finite element analysis (FEA) of the L-shaped beam for the low frequency response and to results obtained using statistical energy analysis (SEA) for the high frequencies. The agreement between the FEA results and the power flow method results at low frequencies is very good. SEA results are in terms of frequency averaged levels and these are in perfect agreement with the results obtained using the infinite beam models in the power flow method. The narrow frequency band results from the power flow method also converge to the SEA results at high frequencies. The advantage of the power flow method is that detail of the response can be retained while reducing computation time, which will allow the narrow frequency band analysis of the response to be extended to higher frequencies.

  14. Convective flow reversal in self-powered enzyme micropumps.

    Science.gov (United States)

    Ortiz-Rivera, Isamar; Shum, Henry; Agrawal, Arjun; Sen, Ayusman; Balazs, Anna C

    2016-03-08

    Surface-bound enzymes can act as pumps that drive large-scale fluid flows in the presence of their substrates or promoters. Thus, enzymatic catalysis can be harnessed for “on demand” pumping in nano- and microfluidic devices powered by an intrinsic energy source. The mechanisms controlling the pumping have not, however, been completely elucidated. Herein, we combine theory and experiments to demonstrate a previously unreported spatiotemporal variation in pumping behavior in urease-based pumps and uncover the mechanisms behind these dynamics. We developed a theoretical model for the transduction of chemical energy into mechanical fluid flow in these systems, capturing buoyancy effects due to the solution containing nonuniform concentrations of substrate and product. We find that the qualitative features of the flow depend on the ratios of diffusivities δ=D(P)/D(S) and expansion coefficients β=β(P)/β(S) of the reaction substrate (S) and product (P). If δ>1 and δ>β (or if δself-powered fluidic devices.

  15. Power system security enhancement with unified power flow controller under multi-event contingency conditions

    Directory of Open Access Journals (Sweden)

    S. Ravindra

    2017-03-01

    Full Text Available Power system security analysis plays key role in enhancing the system security and to avoid the system collapse condition. In this paper, a novel severity function is formulated using transmission line loadings and bus voltage magnitude deviations. The proposed severity function and generation fuel cost objectives are analyzed under transmission line(s and/or generator(s contingency conditions. The system security under contingency conditions is analyzed using optimal power flow problem. An improved teaching learning based optimization (ITLBO algorithm has been presented. To enhance the system security under contingency conditions in the presence of unified power flow controller (UPFC, it is necessary to identify an optimal location to install this device. Voltage source based power injection model of UPFC, incorporation procedure and optimal location identification strategy based on line overload sensitivity indexes are proposed. The entire proposed methodology is tested on standard IEEE-30 bus test system with supporting numerical and graphical results.

  16. The quadratic reciprocity law a collection of classical proofs

    CERN Document Server

    Baumgart, Oswald

    2015-01-01

    This book is the English translation of Baumgart’s thesis on the early proofs of the quadratic reciprocity law (“Über das quadratische Reciprocitätsgesetz. Eine vergleichende Darstellung der Beweise”), first published in 1885. It is divided into two parts. The first part presents a very brief history of the development of number theory up to Legendre, as well as detailed descriptions of several early proofs of the quadratic reciprocity law. The second part highlights Baumgart’s comparisons of the principles behind these proofs. A current list of all known proofs of the quadratic reciprocity law, with complete references, is provided in the appendix. This book will appeal to all readers interested in elementary number theory and the history of number theory.

  17. Distributed routing algorithms to manage power flow in agent-based active distribution network

    NARCIS (Netherlands)

    Nguyen, H.P.; Kling, W.L.; Georgiadis, G.; Papatriantafilou, M.; Anh-Tuan, L.; Bertling, L.

    2010-01-01

    The current transition from passive to active electric distribution networks comes with problems and challenges on bi-directional power flow in the network and the uncertainty in the forecast of power generation from grid-connected renewable and distributed energy sources. The power flow management

  18. Linear quadratic Gaussian controller design for plasma current, position and shape control system in ITER

    International Nuclear Information System (INIS)

    Belyakov, V.; Kavin, A.; Rumyantsev, E.; Kharitonov, V.; Misenov, B.; Ovsyannikov, A.; Ovsyannikov, D.; Veremei, E.; Zhabko, A.; Mitrishkin, Y.

    1999-01-01

    This paper is focused on the linear quadratic Gaussian (LQG) controller synthesis methodology for the ITER plasma current, position and shape control system as well as power derivative management system. It has been shown that some poloidal field (PF) coils have less influence on reference plasma-wall gaps control during plasma disturbances and hence they have been used to reduce total control power derivative by means of the additional non-linear feedback. The design has been done on the basis of linear models. Simulation was provided for non-linear model and results are presented and discussed. (orig.)

  19. A virtual power plant model for time-driven power flow calculations

    Directory of Open Access Journals (Sweden)

    Gerardo Guerra

    2017-11-01

    Full Text Available This paper presents the implementation of a custom-made virtual power plant model in OpenDSS. The goal is to develop a model adequate for time-driven power flow calculations in distribution systems. The virtual power plant is modeled as the aggregation of renewable generation and energy storage connected to the distribution system through an inverter. The implemented operation mode allows the virtual power plant to act as a single dispatchable generation unit. The case studies presented in the paper demonstrate that the model behaves according to the specified control algorithm and show how it can be incorporated into the solution scheme of a general parallel genetic algorithm in order to obtain the optimal day-ahead dispatch. Simulation results exhibit a clear benefit from the deployment of a virtual power plant when compared to distributed generation based only on renewable intermittent generation.

  20. Wave propagation and power flow in an acoustic metamaterial plate with lateral local resonance attachment

    Science.gov (United States)

    Wang, Ting; Sheng, Meiping; Ding, Xiaodong; Yan, Xiaowei

    2018-03-01

    This paper presents analysis on wave propagation and power flow in an acoustic metamaterial plate with lateral local resonance. The metamaterial is designed to have lateral local resonance systems attached to a homogeneous plate. Relevant theoretical analysis, numerical modelling and application prospect are presented. Results show that the metamaterial has two complete band gaps for flexural wave absorption and vibration attenuation. Damping can smooth and lower the metamaterial’s frequency responses in high frequency ranges at the expense of the band gap effect, and as an important factor to calculate the power flow is thoroughly investigated. Moreover, the effective mass density becomes negative and unbounded at specific frequencies. Simultaneously, power flow within band gaps are dramatically blocked from the power flow contour and power flow maps. Results from finite element modelling and power flow analysis reveal the working mechanism of the flexural wave attenuation and power flow blocked within the band gaps, where part of the flexural vibration is absorbed by the vertical resonator and the rest is transformed through four-link-mechanisms to the lateral resonators that oscillate and generate inertial forces indirectly to counterbalance the shear forces induced by the vibrational plate. The power flow is stored in the vertical and lateral local resonance, as well as in the connected plate.

  1. New Li-Yau-Hamilton Inequalities for the Ricci Flow via the Space-Time Approach

    OpenAIRE

    Chow, Bennett; Knopf, Dan

    2002-01-01

    We generalize Hamilton's matrix Li-Yau-type Harnack estimate for the Ricci flow by considering the space of all LYH (Li-Yau-Hamilton) quadratics that arise as curvature tensors of space-time connections satisfying the Ricci flow with respect to the natural space-time degenerate metric. As a special case, we employ scaling arguments to derive a linear-type matrix LYH estimate. The new LYH quadratics obtained in this way are associated to the system of the Ricci flow coupled to a 1-form and a 2...

  2. A Novel Algorithm for Power Flow Transferring Identification Based on WAMS

    Directory of Open Access Journals (Sweden)

    Xu Yan

    2015-01-01

    Full Text Available After a faulted transmission line is removed, power flow on it will be transferred to other lines in the network. If those lines are heavily loaded beforehand, the transferred flow may cause the nonfault overload and the incorrect operation of far-ranging backup relays, which are considered as the key factors leading to cascading trips. In this paper, a novel algorithm for power flow transferring identification based on wide area measurement system (WAMS is proposed, through which the possible incorrect tripping of backup relays will be blocked in time. A new concept of Transferred Flow Characteristic Ratio (TFCR is presented and is applied to the identification criteria. Mathematical derivation of TFCR is carried out in detail by utilization of power system short circuit fault modeling. The feasibility and effectiveness of the proposed algorithm to prevent the malfunction of backup relays are demonstrated by a large number of simulations.

  3. On quadratic variation of martingales

    Indian Academy of Sciences (India)

    On quadratic variation of martingales. 459. The proof relied on the theory of stochastic integration. Subsequently, in Karandikar. [4], the formula was derived using only Doob's maximal inequality. Thus this could be the starting point for the development of stochastic calculus for continuous semimartingales without bringing in ...

  4. Quadratic prediction of factor scores

    NARCIS (Netherlands)

    Wansbeek, T

    1999-01-01

    Factor scores are naturally predicted by means of their conditional expectation given the indicators y. Under normality this expectation is linear in y but in general it is an unknown function of y. II is discussed that under nonnormality factor scores can be more precisely predicted by a quadratic

  5. The regular indefinite linear-quadratic problem with linear endpoint constraints

    NARCIS (Netherlands)

    Soethoudt, J.M.; Trentelman, H.L.

    1989-01-01

    This paper deals with the infinite horizon linear-quadratic problem with indefinite cost. Given a linear system, a quadratic cost functional and a subspace of the state space, we consider the problem of minimizing the cost functional over all inputs for which the state trajectory converges to that

  6. Optimal Power Flow in Multiphase Radial Networks with Delta Connections: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Changhong [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dall-Anese, Emiliano [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Low, Steven H. [California Institute of Technology

    2017-11-27

    This paper focuses on multiphase radial distribution networks with mixed wye and delta connections, and proposes a semidefinite relaxation of the AC optimal power flow (OPF) problem. Two multiphase power-flow models are developed to facilitate the integration of delta-connected generation units/loads in the OPF problem. The first model extends traditional branch flow models - and it is referred to as extended branch flow model (EBFM). The second model leverages a linear relationship between per-phase power injections and delta connections, which holds under a balanced voltage approximation (BVA). Based on these models, pertinent OPF problems are formulated and relaxed to semidefinite programs (SDPs). Numerical studies on IEEE test feeders show that SDP relaxations can be solved efficiently by a generic optimization solver. Numerical evidences indicate that solving the resultant SDP under BVA is faster than under EBFM. Moreover, both SDP solutions are numerically exact with respect to voltages and branch flows. It is also shown that the SDP solution under BVA has a small optimality gap, while the BVA model is accurate in the sense that it reflects actual system voltages.

  7. PACTOLUS, Nuclear Power Plant Cost and Economics by Discounted Cash Flow Method. CLOTHO, Mass Flow Data Calculation for Program PACTOLUS

    International Nuclear Information System (INIS)

    Haffner, D.R.

    1976-01-01

    1 - Description of problem or function: PACTOLUS is a code for computing nuclear power costs using the discounted cash flow method. The cash flows are generated from input unit costs, time schedules and burnup data. CLOTHO calculates and communicates to PACTOLUS mass flow data to match a specified load factor history. 2 - Method of solution: Plant lifetime power costs are calculated using the discounted cash flow method. 3 - Restrictions on the complexity of the problem - Maxima of: 40 annual time periods into which all costs and mass flows are accumulated, 20 isotopic mass flows charged into and discharged from the reactor model

  8. Identify Beta-Hairpin Motifs with Quadratic Discriminant Algorithm Based on the Chemical Shifts.

    Directory of Open Access Journals (Sweden)

    Feng YongE

    Full Text Available Successful prediction of the beta-hairpin motif will be helpful for understanding the of the fold recognition. Some algorithms have been proposed for the prediction of beta-hairpin motifs. However, the parameters used by these methods were primarily based on the amino acid sequences. Here, we proposed a novel model for predicting beta-hairpin structure based on the chemical shift. Firstly, we analyzed the statistical distribution of chemical shifts of six nuclei in not beta-hairpin and beta-hairpin motifs. Secondly, we used these chemical shifts as features combined with three algorithms to predict beta-hairpin structure. Finally, we achieved the best prediction, namely sensitivity of 92%, the specificity of 94% with 0.85 of Mathew's correlation coefficient using quadratic discriminant analysis algorithm, which is clearly superior to the same method for the prediction of beta-hairpin structure from 20 amino acid compositions in the three-fold cross-validation. Our finding showed that the chemical shift is an effective parameter for beta-hairpin prediction, suggesting the quadratic discriminant analysis is a powerful algorithm for the prediction of beta-hairpin.

  9. Eigenfunctions of quadratic hamiltonians in Wigner representation

    International Nuclear Information System (INIS)

    Akhundova, Eh.A.; Dodonov, V.V.; Man'ko, V.I.

    1984-01-01

    Exact solutions of the Schroedinger equation in Wigner representation are obtained for an arbitrary non-stationary N-dimensional quadratic Hamiltonian. It is shown that the complete system of the solutions can always be chosen in the form of the products of Laguerre polynomials, the arguments of which are the quadratic integrals of motion of the corresponding classical problem. The generating function is found for the transition probabilities between Fock states which represent a many-dimensional generatization of a well-known Husimi formula for the oscillator of variable frequency. As an example, the motion of a charged particle in an uniform alternate electromagnetic field is considered in detail

  10. The bounds of feasible space on constrained nonconvex quadratic programming

    Science.gov (United States)

    Zhu, Jinghao

    2008-03-01

    This paper presents a method to estimate the bounds of the radius of the feasible space for a class of constrained nonconvex quadratic programmingsE Results show that one may compute a bound of the radius of the feasible space by a linear programming which is known to be a P-problem [N. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica 4 (1984) 373-395]. It is proposed that one applies this method for using the canonical dual transformation [D.Y. Gao, Canonical duality theory and solutions to constrained nonconvex quadratic programming, J. Global Optimization 29 (2004) 377-399] for solving a standard quadratic programming problem.

  11. AGC of a multi-area power system under deregulated environment using redox flow batteries and interline power flow controller

    Directory of Open Access Journals (Sweden)

    Tulasichandra Sekhar Gorripotu

    2015-12-01

    Full Text Available In this paper, Proportional Integral Derivative with Filter (PIDF is proposed for Automatic Generation Control (AGC of a multi-area power system in deregulated environment. Initially, a two area four units thermal system without any physical constraints is considered and the gains of the PIDF controller are optimized employing Differential Evolution (DE algorithm using ITAE criterion. The superiority of proposed DE optimized PIDF controller over Fuzzy Logic controller is demonstrated. Then, to further improve the system performance, an Interline Power Flow Controller (IPFC is placed in the tie-line and Redox Flow Batteries (RFB is considered in the first area and the controller parameters are tuned. Additionally, to get an accurate insight of the AGC problem, important physical constraints such as Time Delay (TD and Generation Rate Constraints (GRC are considered and the controller parameters are retuned. The performance of proposed controller is evaluated under different operating conditions that take place in a deregulated power market. Further, the proposed approach is extended to a two area six units hydro thermal system. Finally, sensitivity analysis is performed by varying the system parameters and operating load conditions from their nominal values.

  12. Remarks on second-order quadratic systems in algebras

    Directory of Open Access Journals (Sweden)

    Art Sagle

    2017-10-01

    Full Text Available This paper is an addendum to our earlier paper [8], where a systematic study of quadratic systems of second order ordinary differential equations defined in commutative algebras was presented. Here we concentrate on special solutions and energy considerations of some quadratic systems defined in algebras which need not be commutative, however, we shall throughout assume the algebra to be associative. We here also give a positive answer to an open question, concerning periodic motions of such systems, posed in our earlier paper.

  13. A Linear Programming Reformulation of the Standard Quadratic Optimization Problem

    NARCIS (Netherlands)

    de Klerk, E.; Pasechnik, D.V.

    2005-01-01

    The problem of minimizing a quadratic form over the standard simplex is known as the standard quadratic optimization problem (SQO).It is NPhard, and contains the maximum stable set problem in graphs as a special case.In this note we show that the SQO problem may be reformulated as an (exponentially

  14. Estimating sample size for a small-quadrat method of botanical ...

    African Journals Online (AJOL)

    Reports the results of a study conducted to determine an appropriate sample size for a small-quadrat method of botanical survey for application in the Mixed Bushveld of South Africa. Species density and grass density were measured using a small-quadrat method in eight plant communities in the Nylsvley Nature Reserve.

  15. Optimal power flow for technically feasible Energy Management systems in Islanded Microgrids

    DEFF Research Database (Denmark)

    Sanseverino, Eleonora Riva; T. T. Quynh, T.; Di Silvestre, Maria Luisa

    2016-01-01

    This paper presents a combined optimal energy and power flow management for islanded microgrids. The highest control level in this case will provide a feasible and optimized operating point around the economic optimum. In order to account for both unbalanced and balanced loads, the optimal power...... flow is carried out using a Glow-worm Swarm Optimizer. The control level is organized into two different sub-levels, the highest of which accounts for minimum cost operation and the lowest one solving the optimal power flow and devising the set points of inverter interfaced generation units...... and rotating machines with a minimum power loss. A test has been carried out for 6 bus islanded microgrids to show the efficiency and feasibility of the proposed technique....

  16. Quadratic divergences and dimensional regularisation

    International Nuclear Information System (INIS)

    Jack, I.; Jones, D.R.T.

    1990-01-01

    We present a detailed analysis of quadratic and quartic divergences in dimensionally regulated renormalisable theories. We perform explicit three-loop calculations for a general theory of scalars and fermions. We find that the higher-order quartic divergences are related to the lower-order ones by the renormalisation group β-functions. (orig.)

  17. Facets for the Cardinality Constrained Quadratic Knapsack Problem and the Quadratic Selective Travelling Salesman Problem

    DEFF Research Database (Denmark)

    Mak, Vicky; Thomadsen, Tommy

    2004-01-01

    A well-known extension of the Travelling Salesman Problem (TSP) is the Selective (or Prize-collecting) TSP: In addition to the edge-costs, each node has an associated reward (denoted the node-reward) and instead of visiting all nodes, only profitable nodes are visited. The Quadratic Selective TSP...

  18. A decomposition method for network-constrained unit commitment with AC power flow constraints

    International Nuclear Information System (INIS)

    Bai, Yang; Zhong, Haiwang; Xia, Qing; Kang, Chongqing; Xie, Le

    2015-01-01

    To meet the increasingly high requirement of smart grid operations, considering AC power flow constraints in the NCUC (network-constrained unit commitment) is of great significance in terms of both security and economy. This paper proposes a decomposition method to solve NCUC with AC power flow constraints. With conic approximations of the AC power flow equations, the master problem is formulated as a MISOCP (mixed integer second-order cone programming) model. The key advantage of this model is that the active power and reactive power are co-optimised, and the transmission losses are considered. With the AC optimal power flow model, the AC feasibility of the UC result of the master problem is checked in subproblems. If infeasibility is detected, feedback constraints are generated based on the sensitivity of bus voltages to a change in the unit reactive power generation. They are then introduced into the master problem in the next iteration until all AC violations are eliminated. A 6-bus system, a modified IEEE 30-bus system and the IEEE 118-bus system are used to validate the performance of the proposed method, which provides a satisfactory solution with approximately 44-fold greater computational efficiency. - Highlights: • A decomposition method is proposed to solve the NCUC with AC power flow constraints • The master problem considers active power, reactive power and transmission losses. • OPF-based subproblems check the AC feasibility using parallel computing techniques. • An effective feedback constraint interacts between the master problem and subproblem. • Computational efficiency is significantly improved with satisfactory accuracy

  19. Dynamic Optimal Energy Flow in the Integrated Natural Gas and Electrical Power Systems

    DEFF Research Database (Denmark)

    Fang, Jiakun; Zeng, Qing; Ai, Xiaomeng

    2018-01-01

    . Simulation on the test case illustrates the success of the modelling and the beneficial roles of the power-to-gas are analyzed. The proposed model can be used in the decision support for both planning and operation of the coordinated natural gas and electrical power systems.......This work focuses on the optimal operation of the integrated gas and electrical power system with bi-directional energy conversion. Considering the different response times of the gas and power systems, the transient gas flow and steady- state power flow are combined to formulate the dynamic...... optimal energy flow in the integrated gas and power systems. With proper assumptions and simplifications, the problem is transformed into a single stage linear programming. And only a single stage linear programming is needed to obtain the optimal operation strategy for both gas and power systems...

  20. Isotropy of quadratic forms

    Indian Academy of Sciences (India)

    V. Suresh University Of Hyderabad Hyderabad

    2008-10-31

    Oct 31, 2008 ... We say that (a1,··· ,an) is a zero of the polynomial f if f (a1,··· ,an) = 0. One of the main problems in Mathematics is to determine whether the given polynomial has a (non-trivial) zero or not. For example, let us recall the Fermat's last theorem: V. Suresh University Of Hyderabad Hyderabad. Isotropy of quadratic ...

  1. Application of neural networks to validation of feedwater flow rate in a nuclear power plant

    International Nuclear Information System (INIS)

    Khadem, M.; Ipakchi, A.; Alexandro, F.J.; Colley, R.W.

    1993-01-01

    Feedwater flow rate measurement in nuclear power plants requires periodic calibration. This is due to the fact that the venturi surface condition of the feedwater flow rate sensor changes because of a chemical reaction between the surface coating material and the feedwater. Fouling of the venturi surface, due to this chemical reaction and the deposits of foreign materials, has been observed shortly after a clean venturi is put in operation. A fouled venturi causes an incorrect measurement of feedwater flow rate, which in turn results in an inaccurate calculation of the generated power. This paper presents two methods for verifying incipient and continuing fouling of the venturi of the feedwater flow rate sensors. Both methods are based on the use of a set of dissimilar process variables dynamically related to the feedwater flow rate variable. The first method uses a neural network to generate estimates of the feedwater flow rate readings. Agreement, within a given tolerance, of the feedwater flow rate instrument reading, and the corresponding neural network output establishes that the feedwater flow rate instrument is operating properly. The second method is similar to the first method except that the neural network predicts the core power which is calculated from measurements on the primary loop, rather than the feedwater flow rates. This core power is referred to the primary core power in this paper. A comparison of the power calculated from the feedwater flow measurements in the secondary loop, with the calculated and neural network predicted primary core power provides information from which it can be determined whether fouling is beginning to occur. The two methods were tested using data from the feedwater flow meters in the two feedwater flow loops of the TMI-1 nuclear power plant

  2. Bôcher and Abstract Contractions of 2nd Order Quadratic Algebras

    Science.gov (United States)

    Escobar-Ruiz, Mauricio A.; Kalnins, Ernest G.; Miller, Willar, Jr.; Subag, Eyal

    2017-03-01

    Quadratic algebras are generalizations of Lie algebras which include the symmetry algebras of 2nd order superintegrable systems in 2 dimensions as special cases. The superintegrable systems are exactly solvable physical systems in classical and quantum mechanics. Distinct superintegrable systems and their quadratic algebras can be related by geometric contractions, induced by Bôcher contractions of the conformal Lie algebra {so}(4,C) to itself. In this paper we give a precise definition of Bôcher contractions and show how they can be classified. They subsume well known contractions of {e}(2,C) and {so}(3,C) and have important physical and geometric meanings, such as the derivation of the Askey scheme for obtaining all hypergeometric orthogonal polynomials as limits of Racah/Wilson polynomials. We also classify abstract nondegenerate quadratic algebras in terms of an invariant that we call a canonical form. We describe an algorithm for finding the canonical form of such algebras. We calculate explicitly all canonical forms arising from quadratic algebras of 2D nondegenerate superintegrable systems on constant curvature spaces and Darboux spaces. We further discuss contraction of quadratic algebras, focusing on those coming from superintegrable systems.

  3. Method of critical power prediction based on film flow model coupled with subchannel analysis

    International Nuclear Information System (INIS)

    Tomiyama, Akio; Yokomizo, Osamu; Yoshimoto, Yuichiro; Sugawara, Satoshi.

    1988-01-01

    A new method was developed to predict critical powers for a wide variety of BWR fuel bundle designs. This method couples subchannel analysis with a liquid film flow model, instead of taking the conventional way which couples subchannel analysis with critical heat flux correlations. Flow and quality distributions in a bundle are estimated by the subchannel analysis. Using these distributions, film flow rates along fuel rods are then calculated with the film flow model. Dryout is assumed to occur where one of the film flows disappears. This method is expected to give much better adaptability to variations in geometry, heat flux, flow rate and quality distributions than the conventional methods. In order to verify the method, critical power data under BWR conditions were analyzed. Measured and calculated critical powers agreed to within ±7%. Furthermore critical power data for a tight-latticed bundle obtained by LeTourneau et al. were compared with critical powers calculated by the present method and two conventional methods, CISE correlation and subchannel analysis coupled with the CISE correlation. It was confirmed that the present method can predict critical powers more accurately than the conventional methods. (author)

  4. Three-dimensional power Doppler sonography: imaging and quantifying blood flow and vascularization.

    Science.gov (United States)

    Pairleitner, H; Steiner, H; Hasenoehrl, G; Staudach, A

    1999-08-01

    To assess the feasibility of imaging low-velocity blood flow in adnexal masses by transvaginal three-dimensional power Doppler sonography, to analyze three-dimensional power Doppler sonography data sets with a new computer-assisted method and to test the reproducibility of the technique. A commercially available 5-MHz Combison 530 ultrasound system was used to perform three-dimensional power Doppler sonography transvaginally. A cube (= volume of interest) was defined enclosing the vessels of the cyst and the Cartesian characteristics were stored on a hard disk. This cube was analyzed using specially designed software. Five indices representing vascularization (the vascularization index (VI) or blood flow (the flow index (FI)) or both (the vascularization-flow index (VFI)) were calculated. The intraobserver repeatability of cube definition and scan repetition was assessed using Hartley's test for homogeneous variances. Interobserver agreement was assessed by the Pearson correlation coefficient. Imaging of vessels with low-velocity blood flow by three-dimensional power Doppler sonography and cube definition was possible in all adnexal massed studied. In some cases even induced non-vascular flow related to endometriosis was detected. The calculated F value with intraobserver repeated Cartesian file-saving ranged from 0 to 18.8, with intraobserver scan repetition from 4.74 to 24.8 for VI, FI 1, FI 2 and VFI 1; for VFI 2 the calculated F value was 64. The interobserver correlation coefficient ranged between 0.83 and 0.92 for VI, FI 1, FI 2 and VFI 1; for VFI 2 the correlation coefficient was less than 0.75. Vessels with low-velocity blood flow can be imaged using three-dimensional power Doppler sonography. Induced non-vascular flow was detected in endometriotic cyst fluid. Three-dimensional power Doppler sonography combined with the cube method gave reproducible information for all indices except VFI 2. These indices might prove to be a new predictor in all fields of

  5. New robust chaotic system with exponential quadratic term

    International Nuclear Information System (INIS)

    Bao Bocheng; Li Chunbiao; Liu Zhong; Xu Jianping

    2008-01-01

    This paper proposes a new robust chaotic system of three-dimensional quadratic autonomous ordinary differential equations by introducing an exponential quadratic term. This system can display a double-scroll chaotic attractor with only two equilibria, and can be found to be robust chaotic in a very wide parameter domain with positive maximum Lyapunov exponent. Some basic dynamical properties and chaotic behaviour of novel attractor are studied. By numerical simulation, this paper verifies that the three-dimensional system can also evolve into periodic and chaotic behaviours by a constant controller. (general)

  6. Effects of Classroom Instruction on Students' Understanding of Quadratic Equations

    Science.gov (United States)

    Vaiyavutjamai, Pongchawee; Clements, M. A.

    2006-01-01

    Two hundred and thirty-one students in six Grade 9 classes in two government secondary schools located near Chiang Mai, Thailand, attempted to solve the same 18 quadratic equations before and after participating in 11 lessons on quadratic equations. Data from the students' written responses to the equations, together with data in the form of…

  7. Evaluating the Wald entropy from two-derivative terms in quadratic actions

    International Nuclear Information System (INIS)

    Brustein, Ram; Gorbonos, Dan; Hadad, Merav; Medved, A. J. M.

    2011-01-01

    We evaluate the Wald Noether charge entropy for a black hole in generalized theories of gravity. Expanding the Lagrangian to second order in gravitational perturbations, we show that contributions to the entropy density originate only from the coefficients of two-derivative terms. The same considerations are extended to include matter fields and to show that arbitrary powers of matter fields and their symmetrized covariant derivatives cannot contribute to the entropy density. We also explain how to use the linearized gravitational field equation rather than quadratic actions to obtain the same results. Several explicit examples are presented that allow us to clarify subtle points in the derivation and application of our method.

  8. Two-phase flow in porous media: power-law scaling of effective permeability

    Energy Technology Data Exchange (ETDEWEB)

    Groeva, Morten; Hansen, Alex, E-mail: Morten.Grova@ntnu.no, E-mail: Alex.Hansen@ntnu.no [Department of Physics, NTNU, NO-7491 Trondheim (Norway)

    2011-09-15

    A recent experiment has reported power-law scaling of effective permeability of two-phase flow with respect to capillary number for a two-dimensional model porous medium. In this paper, we consider the simultaneous flow of two phases through a porous medium under steady-state conditions, fixed total flow-rate and saturation, using a two-dimensional network simulator. We obtain power-law exponents for the scaling of effective permeability with respect to capillary number. The simulations are performed both for viscosity matched fluids and for a high viscosity ratio resembling that of air and water. Good power-law behaviour is found for both cases. Different exponents are found, depending on saturation.

  9. Quadratic Functionals with General Boundary Conditions

    International Nuclear Information System (INIS)

    Dosla, Z.; Dosly, O.

    1997-01-01

    The purpose of this paper is to give the Reid 'Roundabout Theorem' for quadratic functionals with general boundary conditions. In particular, we describe the so-called coupled point and regularity condition introduced in terms of Riccati equation solutions

  10. Efficient relaxations for joint chance constrained AC optimal power flow

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Kyri; Toomey, Bridget

    2017-07-01

    Evolving power systems with increasing levels of stochasticity call for a need to solve optimal power flow problems with large quantities of random variables. Weather forecasts, electricity prices, and shifting load patterns introduce higher levels of uncertainty and can yield optimization problems that are difficult to solve in an efficient manner. Solution methods for single chance constraints in optimal power flow problems have been considered in the literature, ensuring single constraints are satisfied with a prescribed probability; however, joint chance constraints, ensuring multiple constraints are simultaneously satisfied, have predominantly been solved via scenario-based approaches or by utilizing Boole's inequality as an upper bound. In this paper, joint chance constraints are used to solve an AC optimal power flow problem while preventing overvoltages in distribution grids under high penetrations of photovoltaic systems. A tighter version of Boole's inequality is derived and used to provide a new upper bound on the joint chance constraint, and simulation results are shown demonstrating the benefit of the proposed upper bound. The new framework allows for a less conservative and more computationally efficient solution to considering joint chance constraints, specifically regarding preventing overvoltages.

  11. Spatial statistics of pitting corrosion patterning: Quadrat counts and the non-homogeneous Poisson process

    International Nuclear Information System (INIS)

    Lopez de la Cruz, J.; Gutierrez, M.A.

    2008-01-01

    This paper presents a stochastic analysis of spatial point patterns as effect of localized pitting corrosion. The Quadrat Counts method is studied with two empirical pit patterns. The results are dependent on the quadrat size and bias is introduced when empty quadrats are accounted for the analysis. The spatially inhomogeneous Poisson process is used to improve the performance of the Quadrat Counts method. The latter combines Quadrat Counts with distance-based statistics in the analysis of pit patterns. The Inter-Event and the Nearest-Neighbour statistics are here implemented in order to compare their results. Further, the treatment of patterns in irregular domains is discussed

  12. Optimal Power Flow by Interior Point and Non Interior Point Modern Optimization Algorithms

    Directory of Open Access Journals (Sweden)

    Marcin Połomski

    2013-03-01

    Full Text Available The idea of optimal power flow (OPF is to determine the optimal settings for control variables while respecting various constraints, and in general it is related to power system operational and planning optimization problems. A vast number of optimization methods have been applied to solve the OPF problem, but their performance is highly dependent on the size of a power system being optimized. The development of the OPF recently has tracked significant progress both in numerical optimization techniques and computer techniques application. In recent years, application of interior point methods to solve OPF problem has been paid great attention. This is due to the fact that IP methods are among the fastest algorithms, well suited to solve large-scale nonlinear optimization problems. This paper presents the primal-dual interior point method based optimal power flow algorithm and new variant of the non interior point method algorithm with application to optimal power flow problem. Described algorithms were implemented in custom software. The experiments show the usefulness of computational software and implemented algorithms for solving the optimal power flow problem, including the system model sizes comparable to the size of the National Power System.

  13. Temporal quadratic expansion nodal Green's function method

    International Nuclear Information System (INIS)

    Liu Cong; Jing Xingqing; Xu Xiaolin

    2000-01-01

    A new approach is presented to efficiently solve the three-dimensional space-time reactor dynamics equation which overcomes the disadvantages of current methods. In the Temporal Quadratic Expansion Nodal Green's Function Method (TQE/NGFM), the Quadratic Expansion Method (QEM) is used for the temporal solution with the Nodal Green's Function Method (NGFM) employed for the spatial solution. Test calculational results using TQE/NGFM show that its time step size can be 5-20 times larger than that of the Fully Implicit Method (FIM) for similar precision. Additionally, the spatial mesh size with NGFM can be nearly 20 times larger than that using the finite difference method. So, TQE/NGFM is proved to be an efficient reactor dynamics analysis method

  14. Semi-Supervised Half-Quadratic Nonnegative Matrix Factorization for Face Recognition

    KAUST Repository

    Alghamdi, Masheal M.

    2014-05-01

    Face recognition is a challenging problem in computer vision. Difficulties such as slight differences between similar faces of different people, changes in facial expressions, light and illumination condition, and pose variations add extra complications to the face recognition research. Many algorithms are devoted to solving the face recognition problem, among which the family of nonnegative matrix factorization (NMF) algorithms has been widely used as a compact data representation method. Different versions of NMF have been proposed. Wang et al. proposed the graph-based semi-supervised nonnegative learning (S2N2L) algorithm that uses labeled data in constructing intrinsic and penalty graph to enforce separability of labeled data, which leads to a greater discriminating power. Moreover the geometrical structure of labeled and unlabeled data is preserved through using the smoothness assumption by creating a similarity graph that conserves the neighboring information for all labeled and unlabeled data. However, S2N2L is sensitive to light changes, illumination, and partial occlusion. In this thesis, we propose a Semi-Supervised Half-Quadratic NMF (SSHQNMF) algorithm that combines the benefits of S2N2L and the robust NMF by the half- quadratic minimization (HQNMF) algorithm.Our algorithm improves upon the S2N2L algorithm by replacing the Frobenius norm with a robust M-Estimator loss function. A multiplicative update solution for our SSHQNMF algorithmis driven using the half- 4 quadratic (HQ) theory. Extensive experiments on ORL, Yale-A and a subset of the PIE data sets for nine M-estimator loss functions for both SSHQNMF and HQNMF algorithms are investigated, and compared with several state-of-the-art supervised and unsupervised algorithms, along with the original S2N2L algorithm in the context of classification, clustering, and robustness against partial occlusion. The proposed algorithm outperformed the other algorithms. Furthermore, SSHQNMF with Maximum Correntropy

  15. On wave-packet dynamics in a decaying quadratic potential

    DEFF Research Database (Denmark)

    Møller, Klaus Braagaard; Henriksen, Niels Engholm

    1997-01-01

    We consider the time-dependent Schrodinger equation for a quadratic potential with an exponentially decaying force constant. General analytical solutions are presented and we highlight in particular, the signatures of classical mechanics in the wave packet dynamics.......We consider the time-dependent Schrodinger equation for a quadratic potential with an exponentially decaying force constant. General analytical solutions are presented and we highlight in particular, the signatures of classical mechanics in the wave packet dynamics....

  16. Burgers' turbulence problem with linear or quadratic external potential

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Leonenko, N.N.

    2005-01-01

    We consider solutions of Burgers' equation with linear or quadratic external potential and stationary random initial conditions of Ornstein-Uhlenbeck type. We study a class of limit laws that correspond to a scale renormalization of the solutions.......We consider solutions of Burgers' equation with linear or quadratic external potential and stationary random initial conditions of Ornstein-Uhlenbeck type. We study a class of limit laws that correspond to a scale renormalization of the solutions....

  17. Geometrical Solutions of Some Quadratic Equations with Non-Real Roots

    Science.gov (United States)

    Pathak, H. K.; Grewal, A. S.

    2002-01-01

    This note gives geometrical/graphical methods of finding solutions of the quadratic equation ax[squared] + bx + c = 0, a [not equal to] 0, with non-real roots. Three different cases which give rise to non-real roots of the quadratic equation have been discussed. In case I a geometrical construction and its proof for finding the solutions of the…

  18. 76 FR 53436 - Free Flow Power Corporation; Northland Power Mississippi River LLC; Notice of Competing...

    Science.gov (United States)

    2011-08-26

    ... Mississippi River, near the town of Luling, in St. Charles Parish, Louisiana. The sole purpose of a.... 14091-000] Free Flow Power Corporation; Northland Power Mississippi River LLC; Notice of Competing... Mississippi River LLC (Northland) filed preliminary permit applications, pursuant to section 4(f) of the...

  19. 76 FR 53427 - Free Flow Power Corporation; Northland Power Mississippi River LLC; Notice of Competing...

    Science.gov (United States)

    2011-08-26

    ... Mississippi River, near the town of Killona, in St. Charles Parish, Louisiana. The sole purpose of a.... 14092-000] Free Flow Power Corporation; Northland Power Mississippi River LLC; Notice of Competing... Mississippi River LLC (Northland) filed preliminary permit applications, pursuant to section 4(f) of the...

  20. Geometrical and Graphical Solutions of Quadratic Equations.

    Science.gov (United States)

    Hornsby, E. John, Jr.

    1990-01-01

    Presented are several geometrical and graphical methods of solving quadratic equations. Discussed are Greek origins, Carlyle's method, von Staudt's method, fixed graph methods and imaginary solutions. (CW)

  1. MHD free convection flow of a non-Newtonian power-law fluid over ...

    African Journals Online (AJOL)

    ... flow have been presented for various parameters such as Prandtl number, flow behavior index (n), porous plate parameter and magnetic parameter. The local Nusselt number and skin friction coefficient is also presented graphically. Keywords: Magnetohydrodynamic flow; free convection flow; Non-Newtonian power-law

  2. Power flow control of intertied ac microgrids

    DEFF Research Database (Denmark)

    Nutkani, Inam Ullah; Loh, Poh Chiang; Blaabjerg, Frede

    2013-01-01

    Microgrids are small reliable grids formed by clustering distributed sources and loads together. They can, in principle, operate at different voltages and frequencies like 50, 60, 400 Hz or even dc. Tying them together or to the mains grid for energy sharing would therefore require the insertion...... of interlinking power converters. Active and reactive power flows of these converters should preferably be managed autonomously without demanding for fast communication links. A scheme that can fulfill the objectives is now proposed, which upon realised, will result in more robustly integrated microgrids...

  3. Energy and ancillary service dispatch through dynamic optimal power flow

    International Nuclear Information System (INIS)

    Costa, A.L.; Costa, A. Simoes

    2007-01-01

    This paper presents an approach based on dynamic optimal power flow (DOPF) to clear both energy and spinning reserve day-ahead markets. A competitive environment is assumed, where agents can offer active power for both demand supply and ancillary services. The DOPF jointly determines the optimal solutions for both energy dispatch and reserve allocation. A non-linear representation for the electrical network is employed, which is able to take transmission losses and power flow limits into account. An attractive feature of the proposed approach is that the final optimal solution will automatically meet physical constraints such as generating limits and ramp rate restrictions. In addition, the proposed framework allows the definition of multiple zones in the network for each time interval, in order to ensure a more adequate distribution of reserves throughout the power system. (author)

  4. Modeling generalized interline power-flow controller (GIPFC using 48-pulse voltage source converters

    Directory of Open Access Journals (Sweden)

    Amir Ghorbani

    2018-05-01

    Full Text Available Generalized interline power-flow controller (GIPFC is one of the voltage-source controller (VSC-based flexible AC transmission system (FACTS controllers that can independently regulate the power-flow over each transmission line of a multiline system. This paper presents the modeling and performance analysis of GIPFC based on 48-pulsed voltage-source converters. This paper deals with a cascaded multilevel converter model, which is a 48-pulse (three levels voltage source converter. The voltage source converter described in this paper is a harmonic neutralized, 48-pulse GTO converter. The GIPFC controller is based on d-q orthogonal coordinates. The algorithm is verified using simulations in MATLAB/Simulink environment. Comparisons between unified power flow controller (UPFC and GIPFC are also included. Keywords: Generalized interline power-flow controller (GIPFC, Voltage source converter (VCS, 48-pulse GTO converter

  5. Commuting quantum traces for quadratic algebras

    International Nuclear Information System (INIS)

    Nagy, Zoltan; Avan, Jean; Doikou, Anastasia; Rollet, Genevieve

    2005-01-01

    Consistent tensor products on auxiliary spaces, hereafter denoted 'fusion procedures', and commuting transfer matrices are defined for general quadratic algebras, nondynamical and dynamical, inspired by results on reflection algebras. Applications of these procedures then yield integer-indexed families of commuting Hamiltonians

  6. Study of the heat transport primary system flow of Embalse nuclear power plant

    International Nuclear Information System (INIS)

    Coutsiers, Eduardo E.; Moreno, Carlos A.; Pomerantz, Marcelo E.

    1999-01-01

    In this work, the HTPS coolant channels flow and associate aleatory errors are estimated. The objective of this estimation is to verify the validity of the flow calculated using the Canadian thermalhydraulic design code 'NUCIRC'. From measurements it can also be observed the evolution of the calculated flow with power of the reactor and to correct the maximum flow with power. The percentage of standard deviation discrepancies of flow estimated by measurements and those calculated using NUCIRC code is 5,7%. As the average aleatory error in flow estimation is 8,0%, it is concluded that the flow distribution calculated using NUCIRC is representative of the current state of the reactor channels. (author)

  7. Isotropic harmonic oscillator plus inverse quadratic potential in N-dimensional spaces

    International Nuclear Information System (INIS)

    Oyewumi, K.A.; Bangudu, E.A.

    2003-01-01

    Some aspects of the N-dimensional isotropic harmonic plus inverse quadratic potential were discussed. The hyperradial equation for isotropic harmonic oscillator plus inverse quadratic potential is solved by transformation into the confluent hypergeometric equation to obtain the normalized hyperradial solution. Together with the hyperangular solutions (hyperspherical harmonics), these form the complete energy eigenfunctions of the N-dimensional isotropic harmonic oscillator plus inverse quadratic potential and the energy eigenvalues are also obtained. These are dimensionally dependent. The dependence of radial solution on the dimensions or potential strength and the degeneracy of the energy levels are discussed. (author)

  8. TradeWind Deliverable 5.1: Effects of increasing wind power penetration on the power flows in European grids

    DEFF Research Database (Denmark)

    Lemström, Bettina; Uski-Joutsenvuo, Sanna; Holttinen, Hannele

    2008-01-01

    This report presents the main activities and results of Work Package 5 – Effects of increasing wind power penetration on the power flows in European grids in the TradeWind project. VTT is the leader of Work Package 5 and carries the overall responsibility of this report. The work is based on power...... flow simulations with a grid and market model developed in TradeWind Work Package 3, led by Sintef Energy Research. VTT, Sintef Energy Research and Risø have carried out the simulations of the different scenarios, analysed the results and written Chapter 4 about the impact of wind power on cross...

  9. Resolving Actuator Redundancy - Control Allocation vs. Linear Quadratic Control

    OpenAIRE

    Härkegård, Ola

    2004-01-01

    When designing control laws for systems with more inputs than controlled variables, one issue to consider is how to deal with actuator redundancy. Two tools for distributing the control effort among a redundant set of actuators are control allocation and linear quadratic control design. In this paper, we investigate the relationship between these two design tools when a quadratic performance index is used for control allocation. We show that for a particular class of linear systems, they give...

  10. Wheeling rates evaluation using optimal power flows

    International Nuclear Information System (INIS)

    Muchayi, M.; El-Hawary, M. E.

    1998-01-01

    Wheeling is the transmission of electrical power and reactive power from a seller to a buyer through a transmission network owned by a third party. The wheeling rates are then the prices charged by the third party for the use of its network. This paper proposes and evaluates a strategy for pricing wheeling power using a pricing algorithm that in addition to the fuel cost for generation incorporates the optimal allocation of the transmission system operating cost, based on time-of-use pricing. The algorithm is implemented for the IEEE standard 14 and 30 bus system which involves solving a modified optimal power flow problem iteratively. The base of the proposed algorithm is the hourly spot price. The analysis spans a total time period of 24 hours. Unlike other algorithms that use DC models, the proposed model captures wheeling rates of both real and reactive power. Based on the evaluation, it was concluded that the model has the potential for wide application in calculating wheeling rates in a deregulated competitive power transmission environment. 9 refs., 3 tabs

  11. Stand-alone excitation synchronous wind power generators with power flow management strategy

    Directory of Open Access Journals (Sweden)

    Tzuen-Lih Chern

    2014-09-01

    Full Text Available This study presents a stand-alone excitation synchronous wind power generator (SESWPG with power flow management strategy (PFMS. The rotor speed of the excitation synchronous generator tracks the utility grid frequency by using servo motor tracking technologies. The automatic voltage regulator governs the exciting current of generator to achieve the control goals of stable voltage. When wind power is less than the needs of the consumptive loading, the proposed PFMS increases motor torque to provide a positive power output for the loads, while keeping the generator speed constant. Conversely, during the periods of wind power greater than output loads, the redundant power of generator production is charged to the battery pack and the motor speed remains constant with very low power consumption. The advantage of the proposed SESWPG is that the generator can directly output stable alternating current (AC electricity without using additional DC–AC converters. The operation principles with software simulation for the system are described in detail. Experimental results of a laboratory prototype are shown to verify the feasibility of the system.

  12. Quadratic spatial soliton interactions

    Science.gov (United States)

    Jankovic, Ladislav

    Quadratic spatial soliton interactions were investigated in this Dissertation. The first part deals with characterizing the principal features of multi-soliton generation and soliton self-reflection. The second deals with two beam processes leading to soliton interactions and collisions. These subjects were investigated both theoretically and experimentally. The experiments were performed by using potassium niobate (KNBO 3) and periodically poled potassium titanyl phosphate (KTP) crystals. These particular crystals were desirable for these experiments because of their large nonlinear coefficients and, more importantly, because the experiments could be performed under non-critical-phase-matching (NCPM) conditions. The single soliton generation measurements, performed on KNBO3 by launching the fundamental component only, showed a broad angular acceptance bandwidth which was important for the soliton collisions performed later. Furthermore, at high input intensities multi-soliton generation was observed for the first time. The influence on the multi-soliton patterns generated of the input intensity and beam symmetry was investigated. The combined experimental and theoretical efforts indicated that spatial and temporal noise on the input laser beam induced multi-soliton patterns. Another research direction pursued was intensity dependent soliton routing by using of a specially engineered quadratically nonlinear interface within a periodically poled KTP sample. This was the first time demonstration of the self-reflection phenomenon in a system with a quadratic nonlinearity. The feature investigated is believed to have a great potential for soliton routing and manipulation by engineered structures. A detailed investigation was conducted on two soliton interaction and collision processes. Birth of an additional soliton resulting from a two soliton collision was observed and characterized for the special case of a non-planar geometry. A small amount of spiraling, up to 30

  13. Electrohydrodynamic stability of two stratified power law liquid in couette flow

    International Nuclear Information System (INIS)

    Eldabe, N.T.

    1988-01-01

    Consideration is given to the stability of the flow of two power law liquids under the influence of normal electric field between two infinite parallel planes when one of the planes moves with constant velocity in its own plane. It is found that the electric fields have a dramatic effect and can be chosen to stabilize or destabilize the flow. The effects of the power law parameters on the problem are examinated

  14. Quadratic Interpolation and Linear Lifting Design

    Directory of Open Access Journals (Sweden)

    Joel Solé

    2007-03-01

    Full Text Available A quadratic image interpolation method is stated. The formulation is connected to the optimization of lifting steps. This relation triggers the exploration of several interpolation possibilities within the same context, which uses the theory of convex optimization to minimize quadratic functions with linear constraints. The methods consider possible knowledge available from a given application. A set of linear equality constraints that relate wavelet bases and coefficients with the underlying signal is introduced in the formulation. As a consequence, the formulation turns out to be adequate for the design of lifting steps. The resulting steps are related to the prediction minimizing the detail signal energy and to the update minimizing the l2-norm of the approximation signal gradient. Results are reported for the interpolation methods in terms of PSNR and also, coding results are given for the new update lifting steps.

  15. The cyclicity of period annulus of a quadratic reversible Lotka–Volterra system

    International Nuclear Information System (INIS)

    Li, Chengzhi; Llibre, Jaume

    2009-01-01

    We prove that by perturbing the periodic annulus of the quadratic polynomial reversible Lotka–Volterra differential system, inside the class of all quadratic polynomial differential systems we can obtain at most two limit cycles

  16. On quadratic residue codes and hyperelliptic curves

    Directory of Open Access Journals (Sweden)

    David Joyner

    2008-01-01

    Full Text Available For an odd prime p and each non-empty subset S⊂GF(p, consider the hyperelliptic curve X S defined by y 2 =f S (x, where f S (x = ∏ a∈S (x-a. Using a connection between binary quadratic residue codes and hyperelliptic curves over GF(p, this paper investigates how coding theory bounds give rise to bounds such as the following example: for all sufficiently large primes p there exists a subset S⊂GF(p for which the bound |X S (GF(p| > 1.39p holds. We also use the quasi-quadratic residue codes defined below to construct an example of a formally self-dual optimal code whose zeta function does not satisfy the ``Riemann hypothesis.''

  17. Impact of Negative Reactance on Definiteness of B-Matrix and Feasibility of DC Power Flow

    DEFF Research Database (Denmark)

    Ding, Tao; Bo, Rui; Yang, Yongheng

    2018-01-01

    This paper reports an essential phenomenon on the existence of “negative reactance” in practical power system models. The negative reactance issue is important, as it could affect the definiteness of the B admittance matrix of power networks and the feasibility of DC power flow. With the graph th...... in “physical dis-connectivity” and make the linear system singular, so that the DC power flow will be infeasible. The results on several test systems show that the location and value of the negative reactance affect the DC power flow feasibility....

  18. Designing Camera Networks by Convex Quadratic Programming

    KAUST Repository

    Ghanem, Bernard; Wonka, Peter; Cao, Yuanhao

    2015-01-01

    be formulated mathematically as a convex binary quadratic program (BQP) under linear constraints. Moreover, we propose an optimization strategy with a favorable trade-off between speed and solution quality. Our solution

  19. Solving symmetric-definite quadratic lambda-matrix problems without factorization

    International Nuclear Information System (INIS)

    Scott, D.S.; Ward, R.C.

    1982-01-01

    Algorithms are presented for computing some of the eigenvalues and their associated eigenvectors of the quadratic lambda-matrix M lambda 2 C lambda + K. M, C, and K are assumed to have special symmetry-type properties which insure that theory analogous to the standard symmetric eigenproblem exists. The algorithms are based on a generalization of the Rayleigh quotient and the Lanczos method for computing eigenpairs of standard symmetric eigenproblems. Monotone quadratic convergence of the basic method is proved. Test examples are presented

  20. Schur Stability Regions for Complex Quadratic Polynomials

    Science.gov (United States)

    Cheng, Sui Sun; Huang, Shao Yuan

    2010-01-01

    Given a quadratic polynomial with complex coefficients, necessary and sufficient conditions are found in terms of the coefficients such that all its roots have absolute values less than 1. (Contains 3 figures.)

  1. A Novel Single Switch Transformerless Quadratic DC/DC Buck-Boost Converter

    DEFF Research Database (Denmark)

    Mostaan, Ali; A. Gorji, Saman; N. Soltani, Mohsen

    2017-01-01

    A novel quadratic buck-boost DC/DC converter is presented in this study. The proposed converter utilizes only one active switch and can step-up/down the input voltage, while the existing single switch quadratic buck/boost converters can only work in step-up or step-down mode. First, the proposed ...

  2. Modelling and Simulation of TCPAR for Power System Flow Studies

    Directory of Open Access Journals (Sweden)

    Narimen Lahaçani AOUZELLAG

    2012-12-01

    Full Text Available In this paper, the modelling of Thyristor Controlled Phase Angle Regulator ‘TCPAR’ for power flow studies and the role of that modelling in the study of Flexible Alternating Current Transmission Systems ‘FACTS’ for power flow control are discussed. In order to investigate the impact of TCPAR on power systems effectively, it is essential to formulate a correct and appropriate model for it. The TCPAR, thus, makes it possible to increase or decrease the power forwarded in the line where it is inserted in a considerable way, which makes of it an ideal tool for this kind of use. Knowing that the TCPAR does not inject any active power, it offers a good solution with a less consumption. One of the adverse effects of the TCPAR is the voltage drop which it causes in the network although it is not significant. To solve this disadvantage, it is enough to introduce a Static VAR Compensator ‘SVC’ into the electrical network which will compensate the voltages fall and will bring them back to an acceptable level.

  3. Optimal power flow management for distributed energy resources with batteries

    International Nuclear Information System (INIS)

    Tazvinga, Henerica; Zhu, Bing; Xia, Xiaohua

    2015-01-01

    Highlights: • A PV-diesel-battery hybrid system is proposed. • Model minimizes fuel and battery wear costs. • Power flows are analysed in a 24-h period. • Results provide a practical platform for decision making. - Abstract: This paper presents an optimal energy management model of a solar photovoltaic-diesel-battery hybrid power supply system for off-grid applications. The aim is to meet the load demand completely while satisfying the system constraints. The proposed model minimizes fuel and battery wear costs and finds the optimal power flow, taking into account photovoltaic power availability, battery bank state of charge and load power demand. The optimal solutions are compared for cases when the objectives are weighted equally and when a larger weight is assigned to battery wear. A considerable increase in system operational cost is observed in the latter case owing to the increased usage of the diesel generator. The results are important for decision makers, as they depict the optimal decisions considered in the presence of trade-offs between conflicting objectives

  4. A solution to the optimal power flow using multi-verse optimizer

    Directory of Open Access Journals (Sweden)

    Bachir Bentouati

    2016-12-01

    Full Text Available In this work, the most common problem of the modern power system named optimal power flow (OPF is optimized using the novel meta-heuristic optimization Multi-verse Optimizer(MVO algorithm. In order to solve the optimal power flow problem, the IEEE 30-bus and IEEE 57-bus systems are used. MVO is applied to solve the proposed problem. The problems considered in the OPF problem are fuel cost reduction, voltage profile improvement, voltage stability enhancement. The obtained results are compared with recently published meta-heuristics. Simulation results clearly reveal the effectiveness and the rapidity of the proposed algorithm for solving the OPF problem.

  5. Model-based Fuel Flow Control for Fossil-fired Power Plants

    DEFF Research Database (Denmark)

    Niemczyk, Piotr

    2010-01-01

    -fired power plants represent the largest reserve of such controllable power sources in several countries. However, their production take-up rates are limited, mainly due to poor fuel flow control. The thesis presents analysis of difficulties and potential improvements in the control of the coal grinding...

  6. Newton Power Flow Methods for Unbalanced Three-Phase Distribution Networks

    NARCIS (Netherlands)

    Sereeter, B.; Vuik, C.; Witteveen, C.

    2017-01-01

    Two mismatch functions (power or current) and three coordinates (polar, Cartesian andcomplex form) result in six versions of the Newton–Raphson method for the solution of powerflow problems. In this paper, five new versions of the Newton power flow method developed forsingle-phase problems in our

  7. Measurement of quadratic electrogyration effect in castor oil

    Science.gov (United States)

    Izdebski, Marek; Ledzion, Rafał; Górski, Piotr

    2015-07-01

    This work presents a detailed analysis of electrogyration measurement in liquids with the usage of an optical polarimetric technique. Theoretical analysis of the optical response to an applied electric field is illustrated by experimental data for castor oil which exhibits natural optical activity, quadratic electro-optic effect and quadratic electrogyration effect. Moreover, the experimental data show that interaction of the oil with a pair of flat electrodes induces a significant dichroism and natural linear birefringence. The combination of these effects occurring at the same time complicates the procedure of measurements. It has been found that a single measurement is insufficient to separate the contribution of the electrogyration effect, but it is possible on the basis of several measurements performed with various orientations of the polarizer and the analyser. The obtained average values of the quadratic electrogyration coefficient β13 in castor oil at room temperature are from - 0.92 ×10-22 to - 1.44 ×10-22m2V-2 depending on the origin of the oil. Although this study is focused on measurements in castor oil, the presented analysis is much more general.

  8. On a quadratic inverse eigenvalue problem

    International Nuclear Information System (INIS)

    Cai, Yunfeng; Xu, Shufang

    2009-01-01

    This paper concerns the quadratic inverse eigenvalue problem (QIEP) of constructing real symmetric matrices M, C and K of size n × n, with M nonsingular, so that the quadratic matrix polynomial Q(λ) ≡ λ 2 M + λC + K has a completely prescribed set of eigenvalues and eigenvectors. It is shown via construction that the QIEP has a solution if and only if r 0, where r and δ are computable from the prescribed spectral data. A necessary and sufficient condition for the existence of a solution to the QIEP with M being positive definite is also established in a constructive way. Furthermore, two algorithms are developed: one is to solve the QIEP; another is to find a particular solution to the QIEP with the leading coefficient matrix being positive definite, which also provides us an approach to a simultaneous reduction of real symmetric matrix triple (M, C, K) by real congruence. Numerical results show that the two algorithms are feasible and numerically reliable

  9. Large N saddle formulation of quadratic building block theories

    International Nuclear Information System (INIS)

    Halpern, M.B.

    1980-01-01

    I develop a large N saddle point formulation for the broad class of 'theories of quadratic building blocks'. Such theories are those on which the sums over internal indices are contained in quadratic building blocks, e.g. PHI 2 = Σsup(N)sub(a-1)PHi sup(a)sup(a). The formulation applies as well to fermions, derivative coupling and non-polynomial interactions. In a related development, closed Schwinger-Dyson equations for Green functions of the building blocks are derived and solved for large N. (orig.)

  10. Using Free Flow Energy Cumulation in Wind and Hydro Power Production

    Directory of Open Access Journals (Sweden)

    Lev Ktitorov

    2016-09-01

    Full Text Available When approaching a conventional wind turbine, the air flow is slowed down and widened. This results in a loss of turbine efficiency. In order to exploit wind or water flow power as effectively as possible, it was suggested that the turbine should be placed inside a shroud, which consists of 4 wing-shaped surfaces. Two internal airfoils improve the turbine performance by speeding up the flow acting on the turbine blades, two external wings create a field of low pressure behind the turbine, thus, helping to draw more mass flow to the turbine and avoid the loss of efficiency due to flow deceleration.  The system accumulates kinetic energy of the flow in a small volume where the smaller (and, therefore, cheaper turbine can be installed. A smaller system can be installed inside the bigger one, which would help to accumulate even more kinetic energy on the turbine. We call this method the kinetic energy summation with local flow redistribution. Both experiments and CFD simulations demonstrate a significant increase in velocity and generated mechanical power in comparison of those for a bare turbine.

  11. Decentralized linear quadratic power system stabilizers for multi ...

    Indian Academy of Sciences (India)

    Introduction. Modern excitation systems considerably enhance the overall transient stability of power systems ..... to the local bus rather than the angle δ measured with respect to the remote bus. ... With this in view, the linear and nonlinear per-.

  12. User-friendly Tool for Power Flow Analysis and Distributed ...

    African Journals Online (AJOL)

    Akorede

    AKOREDE et al: TOOL FOR POWER FLOW ANALYSIS AND DISTRIBUTED GENERATION OPTIMISATION. 23 ... greenhouse gas emissions and the current deregulation of electric energy ..... Visual composition and temporal behaviour of GUI.

  13. PI2 controller based coordinated control with Redox Flow Battery and Unified Power Flow Controller for improved Restoration Indices in a deregulated power system

    Directory of Open Access Journals (Sweden)

    R. Thirunavukarasu

    2016-12-01

    Full Text Available The nature of power system restoration problem involves status assessment, optimization of generation capability and load pickup. This paper proposes the evaluation of Power System Restoration Indices (PSRI based on the Automatic Generation Control (AGC assessment of interconnected power system in a deregulated environment. The PSRI are useful for system planners to prepare the power system restoration plans and to improve the efficiency of the physical operation of the power system with the increased transmission capacity in the network. The stabilization of frequency and tie-line power oscillations in an interconnected power system becomes challenging when implemented in the future competitive environment. This paper also deals with the concept of AGC in two-area reheat power system having coordinated control action with Redox Flow Battery (RFB and Unified Power Flow Controller (UPFC are capable of controlling the network performance in a very fast manner and improve power transfer limits in order to have a better restoration. In addition to that a new Proportional–Double Integral (PI2 controller is designed and implemented in AGC loop and controller parameters are optimized through Bacterial Foraging Optimization (BFO algorithm. Simulation results reveal that the proposed PI2 controller is that it has good stability during load variations, excellent transient and dynamic responses when compared with the system comprising PI controller. Moreover the AGC loop with RFB coordinated with UPFC has greatly improved the dynamic response and it reduces the control input requirements, to ensure improved PSRI in order to provide the reduced restoration time, thereby improving the system reliability.

  14. Quadratic measurement and conditional state preparation in an optomechanical system

    DEFF Research Database (Denmark)

    A. Brawley, George; Vanner, Michael A.; Bowen, Warwick P.

    2014-01-01

    We experimentally demonstrate, for the first time, quadratic measurement of mechanical motion in an optomechanical system. We use this nonlinear easurement to conditionally prepare classical non-Gaussian states of motion of a micro-mechanical oscillator.......We experimentally demonstrate, for the first time, quadratic measurement of mechanical motion in an optomechanical system. We use this nonlinear easurement to conditionally prepare classical non-Gaussian states of motion of a micro-mechanical oscillator....

  15. Multi-objective optimal power flow with FACTS devices

    International Nuclear Information System (INIS)

    Basu, M.

    2011-01-01

    This paper presents multi-objective differential evolution to optimize cost of generation, emission and active power transmission loss of flexible ac transmission systems (FACTS) device-equipped power systems. In the proposed approach, optimal power flow problem is formulated as a multi-objective optimization problem. FACTS devices considered include thyristor controlled series capacitor (TCSC) and thyristor controlled phase shifter (TCPS). The proposed approach has been examined and tested on the modified IEEE 30-bus and 57-bus test systems. The results obtained from the proposed approach have been compared with those obtained from nondominated sorting genetic algorithm-II, strength pareto evolutionary algorithm 2 and pareto differential evolution.

  16. Hydrogen consumption and power density in a co-flow planar SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Ben Moussa, Hocine; Zitouni, Bariza [Laboratoire d' etude des systemes energetiques industriels (LESEI), Universite de Batna, Batna (Algeria); Oulmi, Kafia [Laboratoire de chimie et de chimie de l' environnement, Universite de Batna, Batna (Algeria); Mahmah, Bouziane; Belhamel, Maiouf [CDER, BP. 62 Route de l' Observatoire. Bouzareah. Alger (Algeria); Mandin, Philippe [Centre de Developpement des Energies Renouvelables (CDER), LECA, UMR 7575 CNRS-ENSCP Paris 6 (France)

    2009-06-15

    In the present work, power density and hydrogen consumption in a co-flow planar solid oxide fuel cell (SOFC) are studied according to the inlet functional parameters; such as the operational temperature, the operational pressure, the flow rates and the mass fractions of the species. Furthermore, the effect of the cell size is investigated. The results of a zero and a one-dimensional numerical electro-dynamic model predict the remaining quantity of the fed hydrogen at the output of the anode flow channel. The remaining hydrogen quantities and the SOFC's power density obtained are discussed as a function of the inlet functional parameters, the geometrical configuration of the cell and several operating cell voltages values. (author)

  17. On-line validation of feedwater flow rate in nuclear power plants using neural networks

    International Nuclear Information System (INIS)

    Khadem, M.; Ipakchi, A.; Alexandro, F.J.; Colley, R.W.

    1994-01-01

    On-line calibration of feedwater flow rate measurement in nuclear power plants provides a continuous realistic value of feedwater flow rate. It also reduces the manpower required for periodic calibration needed due to the fouling and defouling of the venturi meter surface condition. This paper presents a method for on-line validation of feedwater flow rate in nuclear power plants. The method is an improvement of the previously developed method which is based on the use of a set of process variables dynamically related to the feedwater flow rate. The online measurements of this set of variables are used as inputs to a neural network to obtain an estimate of the feedwater flow rate reading. The difference between the on-line feedwater flow rate reading, and the neural network estimate establishes whether there is a need to apply a correction factor to the feedwater flow rate measurement for calculation of the actual reactor power. The method was applied to the feedwater flow meters in the two feedwater flow loops of the TMI-1 nuclear power plant. The venturi meters used for flow measurements are susceptible to frequent fouling that degrades their measurement accuracy. The fouling effects can cause an inaccuracy of up to 3% relative error in feedwater flow rate reading. A neural network, whose inputs were the readings of a set of reference instruments, was designed to predict both feedwater flow rates simultaneously. A multi-layer feedforward neural network employing the backpropagation algorithm was used. A number of neural network training tests were performed to obtain an optimum filtering technique of the input/output data of the neural networks. The result of the selection of the filtering technique was confirmed by numerous Fast Fourier Transform (FFT) tests. Training and testing were done on data from TMI-1 nuclear power plant. The results show that the neural network can predict the correct flow rates with an absolute relative error of less than 2%

  18. The Quadratic Selective Travelling Salesman Problem

    DEFF Research Database (Denmark)

    Thomadsen, Tommy; Stidsen, Thomas K.

    2003-01-01

    A well-known extension of the Travelling Salesman Problem (TSP) is the Selective TSP (STSP): Each node has an associated profit and instead of visiting all nodes, the most profitable set of nodes, taking into account the tour cost, is visited. The Quadratic STSP (QSTSP) adds the additional...

  19. Exact solutions to quadratic gravity

    Czech Academy of Sciences Publication Activity Database

    Pravda, Vojtěch; Pravdová, Alena; Podolský, J.; Švarc, J.

    2017-01-01

    Roč. 95, č. 8 (2017), č. článku 084025. ISSN 2470-0010 R&D Projects: GA ČR GB14-37086G Institutional support: RVO:67985840 Keywords : quadratic gravity * exact solutions * Kundt spacetimes Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 4.568, year: 2016 https://journals.aps.org/prd/abstract/10.1103/PhysRevD.95.084025

  20. On Quadratic Variation of Martingales

    Indian Academy of Sciences (India)

    where D ( [ 0 , ∞ ) , R ) denotes the class of real valued r.c.l.l. functions on [ 0 , ∞ ) such that for a locally square integrable martingale ( M t ) with r.c.l.l. paths,. Ψ ( M . ( ) ) = A . ( ). gives the quadratic variation process (written usually as [ M , M ] t ) of ( M t ) . We also show that this process ( A t ) is the unique increasing ...

  1. Exact solutions to quadratic gravity

    Czech Academy of Sciences Publication Activity Database

    Pravda, Vojtěch; Pravdová, Alena; Podolský, J.; Švarc, J.

    2017-01-01

    Roč. 95, č. 8 (2017), č. článku 084025. ISSN 2470-0010 R&D Projects: GA ČR GB14-37086G Institutional support: RVO:67985840 Keywords : quadratic gravity * exact solutions * Kundt spacetimes Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 4.568, year: 2016 https://journals. aps .org/prd/abstract/10.1103/PhysRevD.95.084025

  2. Joint Power Allocation and Beamforming in Amplify-and-Forward Relay Networks under Per-Node Power Constraint

    Directory of Open Access Journals (Sweden)

    Farzin Azami

    2017-01-01

    Full Text Available Two-way relay networks (TWRN have been intensively investigated over the past decade due to their ability to enhance the performance assessment of networks in terms of cellular coverage and spectral efficiency. Yet, power control in such systems is a nontrivial issue, particularly in multirelay networks where relays are deployed to ensure a required Quality of Service (QoS. In this paper, we envision to address this critical issue by minimizing the sum-power with respect to per-node power consumption and acceptable users’ rates. To tackle this, we employ a variable transformation to turn the fractional quadratically constrained quadratic problem (QCQP into semidefinite programming (SDP. This algorithm is also extended to a distributed format. Simulation results of deploying 10 relay stations reveal that the total power consumption will decrease to approximately 8 dBW for 6 bps/Hz sum-rate.

  3. Probabilistic Constrained Load Flow Considering Integration of Wind Power Generation and Electric Vehicles

    DEFF Research Database (Denmark)

    Vlachogiannis, Ioannis (John)

    2009-01-01

    A new formulation and solution of probabilistic constrained load flow (PCLF) problem suitable for modern power systems with wind power generation and electric vehicles (EV) demand or supply is represented. The developed stochastic model of EV demand/supply and the wind power generation model...... are incorporated into load flow studies. In the resulted PCLF formulation, discrete and continuous control parameters are engaged. Therefore, a hybrid learning automata system (HLAS) is developed to find the optimal offline control settings over a whole planning period of power system. The process of HLAS...

  4. The Power Coefficient in the Theory of Energy Extraction from Tidal Channels

    Science.gov (United States)

    Cummins, P. F.

    2014-12-01

    The maximum average power available from a fence of turbines deployed in a tidal channel is given by the simple formula, Ρ=γρgaQmax, where ρga is the amplitude of pressure difference across ends of the channel, Qmax is the maximum volume flux through the channel in the undisturbed state (i.e., before turbines are deployed), and γ is a numerical coefficient. The latter depends only weakly on the underlying dynamical balance of the channel. This is shown to be consequence of quadratic drag and changes to the natural impedance of the channel as deployment of turbines impedes the flow. Additionally, it is shown that the power coefficient γ is relatively insensitive to the form of the turbine drag.

  5. Numerical Methods for Solution of the Extended Linear Quadratic Control Problem

    DEFF Research Database (Denmark)

    Jørgensen, John Bagterp; Frison, Gianluca; Gade-Nielsen, Nicolai Fog

    2012-01-01

    In this paper we present the extended linear quadratic control problem, its efficient solution, and a discussion of how it arises in the numerical solution of nonlinear model predictive control problems. The extended linear quadratic control problem is the optimal control problem corresponding...... to the Karush-Kuhn-Tucker system that constitute the majority of computational work in constrained nonlinear and linear model predictive control problems solved by efficient MPC-tailored interior-point and active-set algorithms. We state various methods of solving the extended linear quadratic control problem...... and discuss instances in which it arises. The methods discussed in the paper have been implemented in efficient C code for both CPUs and GPUs for a number of test examples....

  6. Estimating nonlinear selection gradients using quadratic regression coefficients: double or nothing?

    Science.gov (United States)

    Stinchcombe, John R; Agrawal, Aneil F; Hohenlohe, Paul A; Arnold, Stevan J; Blows, Mark W

    2008-09-01

    The use of regression analysis has been instrumental in allowing evolutionary biologists to estimate the strength and mode of natural selection. Although directional and correlational selection gradients are equal to their corresponding regression coefficients, quadratic regression coefficients must be doubled to estimate stabilizing/disruptive selection gradients. Based on a sample of 33 papers published in Evolution between 2002 and 2007, at least 78% of papers have not doubled quadratic regression coefficients, leading to an appreciable underestimate of the strength of stabilizing and disruptive selection. Proper treatment of quadratic regression coefficients is necessary for estimation of fitness surfaces and contour plots, canonical analysis of the gamma matrix, and modeling the evolution of populations on an adaptive landscape.

  7. Quantum tomography and classical propagator for quadratic quantum systems

    International Nuclear Information System (INIS)

    Man'ko, O.V.

    1999-03-01

    The classical propagator for tomographic probability (which describes the quantum state instead of wave function or density matrix) is presented for quadratic quantum systems and its relation to the quantum propagator is considered. The new formalism of quantum mechanics, based on the probability representation of the state, is applied to particular quadratic systems - the harmonic oscillator, particle's free motion, problems of an ion in a Paul trap and in asymmetric Penning trap, and to the process of stimulated Raman scattering. The classical propagator for these systems is written in an explicit form. (author)

  8. A quadratically regularized functional canonical correlation analysis for identifying the global structure of pleiotropy with NGS data.

    Science.gov (United States)

    Lin, Nan; Zhu, Yun; Fan, Ruzong; Xiong, Momiao

    2017-10-01

    Investigating the pleiotropic effects of genetic variants can increase statistical power, provide important information to achieve deep understanding of the complex genetic structures of disease, and offer powerful tools for designing effective treatments with fewer side effects. However, the current multiple phenotype association analysis paradigm lacks breadth (number of phenotypes and genetic variants jointly analyzed at the same time) and depth (hierarchical structure of phenotype and genotypes). A key issue for high dimensional pleiotropic analysis is to effectively extract informative internal representation and features from high dimensional genotype and phenotype data. To explore correlation information of genetic variants, effectively reduce data dimensions, and overcome critical barriers in advancing the development of novel statistical methods and computational algorithms for genetic pleiotropic analysis, we proposed a new statistic method referred to as a quadratically regularized functional CCA (QRFCCA) for association analysis which combines three approaches: (1) quadratically regularized matrix factorization, (2) functional data analysis and (3) canonical correlation analysis (CCA). Large-scale simulations show that the QRFCCA has a much higher power than that of the ten competing statistics while retaining the appropriate type 1 errors. To further evaluate performance, the QRFCCA and ten other statistics are applied to the whole genome sequencing dataset from the TwinsUK study. We identify a total of 79 genes with rare variants and 67 genes with common variants significantly associated with the 46 traits using QRFCCA. The results show that the QRFCCA substantially outperforms the ten other statistics.

  9. Regulation of Renewable Energy Sources to Optimal Power Flow Solutions Using ADMM: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yijian; Hong, Mingyi; Dall' Anese, Emiliano; Dhople, Sairaj; Xu, Zi

    2017-03-03

    This paper considers power distribution systems featuring renewable energy sources (RESs), and develops a distributed optimization method to steer the RES output powers to solutions of AC optimal power flow (OPF) problems. The design of the proposed method leverages suitable linear approximations of the AC-power flow equations, and is based on the Alternating Direction Method of Multipliers (ADMM). Convergence of the RES-inverter output powers to solutions of the OPF problem is established under suitable conditions on the stepsize as well as mismatches between the commanded setpoints and actual RES output powers. In a broad sense, the methods and results proposed here are also applicable to other distributed optimization problem setups with ADMM and inexact dual updates.

  10. Modeling a Distributed Power Flow Controller with a PEM Fuel Cell for Power Quality Improvement

    Directory of Open Access Journals (Sweden)

    J. Chakravorty

    2018-02-01

    Full Text Available Electrical power demand is increasing at a relatively fast rate over the last years. Because of this increasing demand the power system is becoming very complex. Both electric utilities and end users of electric power are becoming increasingly concerned about power quality. This paper presents a new concept of distributed power flow controller (DPFC, which has been implemented with a proton exchange membrane (PEM fuel cell. In this paper, a PEM fuel cell has been simulated in Simulink/MATLAB and then has been used in the proposed DPFC model. The new proposed DPFC model has been tested on a IEEE 30 bus system.

  11. Efficient solutions to the Euler equations for supersonic flow with embedded subsonic regions

    Science.gov (United States)

    Walters, Robert W.; Dwoyer, Douglas L.

    1987-01-01

    A line Gauss-Seidel (LGS) relaxation algorithm in conjunction with a one-parameter family of upwind discretizations of the Euler equations in two dimensions is described. Convergence of the basic algorithm to the steady state is quadratic for fully supersonic flows and is linear for other flows. This is in contrast to the block alternating direction implicit methods (either central or upwind differenced) and the upwind biased relaxation schemes, all of which converge linearly, independent of the flow regime. Moreover, the algorithm presented herein is easily coupled with methods to detect regions of subsonic flow embedded in supersonic flow. This allows marching by lines in the supersonic regions, converging each line quadratically, and iterating in the subsonic regions, and yields a very efficient iteration strategy. Numerical results are presented for two-dimensional supersonic and transonic flows containing oblique and normal shock waves which confirm the efficiency of the iteration strategy.

  12. Comparison of power Doppler and color Doppler ultrasonography in the detection of intrasticular blood flow of normal infants

    International Nuclear Information System (INIS)

    Shin, Sung Ran; Lee, Ho Kyoung; Lee, Won Gyun; Youk, Dong Joon; Rho, Taek Soo; Lee, Min Jin; Lee, Sang Chun

    1999-01-01

    To compare color Doppler ultrasonography (US) and power Doppler US in the detection of intratesticular blood flow in normal infants and to asses the symmetry of blood flow. Testicular blood flow was assessed prospectively in 100 testes of 50 infants with both power and color Doppler US. We compared the power Doppler with color Doppler to detect intratesticular blood. When the flow was detected, intratesticular blood flow was graded as follows: grade 1: single intratesticular Doppler signal ; grade 2: multiple intratesticular Doppler signals. The symmetry of intratesticular flow was assessed by using the same method. Intratesticular flow was detected in 72 (72%) and 68 (68%) testes on power and color Doppler US, respectively. In 76 testes (76%), intratesticular flow was detected in either one or both techniques. On power Doppler US, grade 1 was seen in 40 tests and grade 2 in 32 testes. On color Doppler US, grade 1 was noted in 52 testes and grade 2 in 16 testes. Testicular blood flow was symmetric on both power and color Doppler US in each patient. There was no difference between power Doppler and color Doppler ultrasonography in detecting intratesticular blood flow in normal infants.

  13. A Power System Optimal Dispatch Strategy Considering the Flow of Carbon Emissions and Large Consumers

    Directory of Open Access Journals (Sweden)

    Jun Yang

    2015-08-01

    Full Text Available The carbon emissions trading market and direct power purchases by large consumers are two promising directions of power system development. To trace the carbon emission flow in the power grid, the theory of carbon emission flow is improved by allocating power loss to the load side. Based on the improved carbon emission flow theory, an optimal dispatch model is proposed to optimize the cost of both large consumers and the power grid, which will benefit from the carbon emissions trading market. Moreover, to better simulate reality, the direct purchase of power by large consumers is also considered in this paper. The OPF (optimal power flow method is applied to solve the problem. To evaluate our proposed optimal dispatch strategy, an IEEE 30-bus system is used to test the performance. The effects of the price of carbon emissions and the price of electricity from normal generators and low-carbon generators with regards to the optimal dispatch are analyzed. The simulation results indicate that the proposed strategy can significantly reduce both the operation cost of the power grid and the power utilization cost of large consumers.

  14. Power Flow Control through a Multi-Level H-Bridge-based Power Converter for Universal and Flexible Power Management in Future Electrical Grids

    DEFF Research Database (Denmark)

    Iov, Florin; Bifaretti, Steffano; Zanchetta, Pericle

    2008-01-01

    The paper proposes a novel power conversion system for Universal and Flexible Power Management (UNIFLEX-PM) in Future Electricity Network. The structure is based on three AC-DC converters each one connected to a different grid, (representing the main grid and/or various distributed generation...... systems) on the AC side, and linked together at DC side by suitable DC isolation modules. Each port of the UNIFLEX-PM system employs a conversion structure based on a three-phase 7-level AC-DC cascaded converter. Effective and accurate power flow control is demonstrated through simulation in Matlab...... and Simulink environment on a simplified model based on a two-port structure and using a Stationery Reference Frame based control solution. Control of different Power flow profiles has been successfully tested in numerous network conditions such as voltage unbalance, frequency excursions and harmonic...

  15. Power flow control based solely on slow feedback loop for heart pump applications.

    Science.gov (United States)

    Wang, Bob; Hu, Aiguo Patrick; Budgett, David

    2012-06-01

    This paper proposes a new control method for regulating power flow via transcutaneous energy transfer (TET) for implantable heart pumps. Previous work on power flow controller requires a fast feedback loop that needs additional switching devices and resonant capacitors to be added to the primary converter. The proposed power flow controller eliminates these additional components, and it relies solely on a slow feedback loop to directly drive the primary converter to meet the heart pump power demand and ensure zero voltage switching. A controlled change in switching frequency varies the resonant tank shorting period of a current-fed push-pull resonant converter, thus changing the magnitude of the primary resonant voltage, as well as the tuning between primary and secondary resonant tanks. The proposed controller has been implemented successfully using an analogue circuit and has reached an end-to-end power efficiency of 79.6% at 10 W with a switching frequency regulation range of 149.3 kHz to 182.2 kHz.

  16. Congestion management of deregulated power systems by optimal setting of Interline Power Flow Controller using Gravitational Search algorithm

    Directory of Open Access Journals (Sweden)

    Akanksha Mishra

    2017-05-01

    Full Text Available In a deregulated electricity market it may at times become difficult to dispatch all the required power that is scheduled to flow due to congestion in transmission lines. An Interline Power Flow Controller (IPFC can be used to reduce the system loss and power flow in the heavily loaded line, improve stability and loadability of the system. This paper proposes a Disparity Line Utilization Factor for the optimal placement and Gravitational Search algorithm based optimal tuning of IPFC to control the congestion in transmission lines. DLUF ranks the transmission lines in terms of relative line congestion. The IPFC is accordingly placed in the most congested and the least congested line connected to the same bus. Optimal sizing of IPFC is carried using Gravitational Search algorithm. A multi-objective function has been chosen for tuning the parameters of the IPFC. The proposed method is implemented on an IEEE-30 bus test system. Graphical representations have been included in the paper showing reduction in LUF of the transmission lines after the placement of an IPFC. A reduction in active power and reactive power loss of the system by about 6% is observed after an optimally tuned IPFC has been included in the power system. The effectiveness of the proposed tuning method has also been shown in the paper through the reduction in the values of the objective functions.

  17. A Wavelet Bicoherence-Based Quadratic Nonlinearity Feature for Translational Axis Condition Monitoring

    Directory of Open Access Journals (Sweden)

    Yong Li

    2014-01-01

    Full Text Available The translational axis is one of the most important subsystems in modern machine tools, as its degradation may result in the loss of the product qualification and lower the control precision. Condition-based maintenance (CBM has been considered as one of the advanced maintenance schemes to achieve effective, reliable and cost-effective operation of machine systems, however, current vibration-based maintenance schemes cannot be employed directly in the translational axis system, due to its complex structure and the inefficiency of commonly used condition monitoring features. In this paper, a wavelet bicoherence-based quadratic nonlinearity feature is proposed for translational axis condition monitoring by using the torque signature of the drive servomotor. Firstly, the quadratic nonlinearity of the servomotor torque signature is discussed, and then, a biphase randomization wavelet bicoherence is introduced for its quadratic nonlinear detection. On this basis, a quadratic nonlinearity feature is proposed for condition monitoring of the translational axis. The properties of the proposed quadratic nonlinearity feature are investigated by simulations. Subsequently, this feature is applied to the real-world servomotor torque data collected from the X-axis on a high precision vertical machining centre. All the results show that the performance of the proposed feature is much better than that of original condition monitoring features.

  18. A Power Load Distribution Algorithm to Optimize Data Center Electrical Flow

    Directory of Open Access Journals (Sweden)

    Paulo Maciel

    2013-07-01

    Full Text Available Energy consumption is a matter of common concern in the world today. Research demonstrates that as a consequence of the constantly evolving and expanding field of information technology, data centers are now major consumers of electrical energy. Such high electrical energy consumption emphasizes the issues of sustainability and cost. Against this background, the present paper proposes a power load distribution algorithm (PLDA to optimize energy distribution of data center power infrastructures. The PLDA, which is based on the Ford-Fulkerson algorithm, is supported by an environment called ASTRO, capable of performing the integrated evaluation of dependability, cost and sustainability. More specifically, the PLDA optimizes the flow distribution of the energy flow model (EFM. EFMs are responsible for estimating sustainability and cost issues of data center infrastructures without crossing the restrictions of the power capacity that each device can provide (power system or extract (cooling system. Additionally, a case study is presented that analyzed seven data center power architectures. Significant results were observed, achieving a reduction in power consumption of up to 15.5%.

  19. Power and Flow Experience in Time-Intensive Business Simulation Game

    Science.gov (United States)

    Kiili, Kristian; Lainema, Timo

    2010-01-01

    Power is an influential component of social interaction and there are reasons for thinking that it may have important effects both on decision-making and psychological and interpersonal processes. The aim of this paper was to study the relations between the feeling of power, decision-making and flow experience in a collaborative business…

  20. Security constrained optimal power flow by modern optimization tools

    African Journals Online (AJOL)

    Security constrained optimal power flow by modern optimization tools. ... International Journal of Engineering, Science and Technology ... If you would like more information about how to print, save, and work with PDFs, Highwire Press ...

  1. Assessment of Power Potential of Tidal Currents and Impacts of Power Extraction on Flow Conditions in Indonesia

    Science.gov (United States)

    Orhan, Kadir; Mayerle, Roberto

    2017-04-01

    Climate change is an urgent and potentially irreversible threat to human societies and the planet and thus requires an effective and appropriate response, with a view to accelerating the reduction of global greenhouse gas emissions. At this point, a worldwide shift to renewable energy is crucial. In this study, a methodology comprising of the estimates of power yield, evaluation of the effects of power extraction on flow conditions, and near-field investigations to deliver wake characteristics, recovery and interactions is described and applied to several straits in Indonesia. Site selection is done with high-resolution, three-dimensional flow models providing sufficient spatiotemporal coverage. Much attention has been given to the meteorological forcing, and conditions at the open sea boundaries to adequately capture the density gradients and flow fields. Model verifications using tidal records show excellent agreement. Sites with adequate depth for the energy conversion using horizontal axis tidal turbines, average kinetic power density greater than 0.5 kW/m2, and surface area larger than 0.5km2 are defined as energy hotspots. Spatial variation of the average extractable electric power is determined, and annual tidal energy resource is estimated for the straits in question. The results showed that the potential for tidal power generation in Indonesia is likely to exceed previous predictions reaching around 4,800MW. Models with higher resolutions have been developed to assess the impacts of devices on flow conditions and to resolve near-field turbine wakes in greater detail. The energy is assumed to be removed uniformly by sub-grid scale arrays of turbines. An additional drag force resulting in dissipation of the pre-existing kinetic power from 10% to 60% within a flow cross-section is introduced to capture the impacts. k-ɛ model, which is a second order turbulence closure model is selected to involve the effects of the turbulent kinetic energy and turbulent

  2. Computing an operating parameter of a unified power flow controller

    Science.gov (United States)

    Wilson, David G.; Robinett, III, Rush D.

    2017-12-26

    A Unified Power Flow Controller described herein comprises a sensor that outputs at least one sensed condition, a processor that receives the at least one sensed condition, a memory that comprises control logic that is executable by the processor; and power electronics that comprise power storage, wherein the processor causes the power electronics to selectively cause the power storage to act as one of a power generator or a load based at least in part upon the at least one sensed condition output by the sensor and the control logic, and wherein at least one operating parameter of the power electronics is designed to facilitate maximal transmittal of electrical power generated at a variable power generation system to a grid system while meeting power constraints set forth by the electrical power grid.

  3. Computing an operating parameter of a unified power flow controller

    Science.gov (United States)

    Wilson, David G; Robinett, III, Rush D

    2015-01-06

    A Unified Power Flow Controller described herein comprises a sensor that outputs at least one sensed condition, a processor that receives the at least one sensed condition, a memory that comprises control logic that is executable by the processor; and power electronics that comprise power storage, wherein the processor causes the power electronics to selectively cause the power storage to act as one of a power generator or a load based at least in part upon the at least one sensed condition output by the sensor and the control logic, and wherein at least one operating parameter of the power electronics is designed to facilitate maximal transmittal of electrical power generated at a variable power generation system to a grid system while meeting power constraints set forth by the electrical power grid.

  4. Axial annular flow of power-law fluids - applicability of the limiting cases

    Czech Academy of Sciences Publication Activity Database

    Filip, Petr; David, Jiří

    2007-01-01

    Roč. 52, č. 4 (2007), s. 365-371 ISSN 0001-7043 R&D Projects: GA ČR GA103/06/1033 Institutional research plan: CEZ:AV0Z20600510 Keywords : Concentric annuli * Poiseuile flow * annular flow * power- law fluids * flow rate * pressure drop Subject RIV: BK - Fluid Dynamics

  5. Dual plane problems for creeping flow of power-law incompressible medium

    Directory of Open Access Journals (Sweden)

    Dmitriy S. Petukhov

    2016-09-01

    Full Text Available In this paper, we consider the class of solutions for a creeping plane flow of incompressible medium with power-law rheology, which are written in the form of the product of arbitrary power of the radial coordinate by arbitrary function of the angular coordinate of the polar coordinate system covering the plane. This class of solutions represents the asymptotics of fields in the vicinity of singular points in the domain occupied by the examined medium. We have ascertained the duality of two problems for a plane with wedge-shaped notch, at which boundaries in one of the problems the vector components of the surface force vanish, while in the other—the vanishing components are the vector components of velocity, We have investigated the asymptotics and eigensolutions of the dual nonlinear eigenvalue problems in relation to the rheological exponent and opening angle of the notch for the branch associated with the eigenvalue of the Hutchinson–Rice–Rosengren problem learned from the problem of stress distribution over a notched plane for a power law medium. In the context of the dual problem we have determined the velocity distribution in the flow of power-law medium at the vertex of a rigid wedge, We have also found another two eigenvalues, one of which was determined by V. V. Sokolovsky for the problem of power-law fluid flow in a convergent channel.

  6. Second-order small-disturbance solutions for hypersonic flow over power-law bodies

    Science.gov (United States)

    Townsend, J. C.

    1975-01-01

    Similarity solutions were found which give the adiabatic flow of an ideal gas about two-dimensional and axisymmetric power-law bodies at infinite Mach number to second order in the body slenderness parameter. The flow variables were expressed as a sum of zero-order and perturbation similarity functions for which the axial variations in the flow equations separated out. The resulting similarity equations were integrated numerically. The solutions, which are universal functions, are presented in graphic and tabular form. To avoid a singularity in the calculations, the results are limited to body power-law exponents greater than about 0.85 for the two-dimensional case and 0.75 for the axisymmetric case. Because of the entropy layer induced by the nose bluntness (for power-law bodies other than cones and wedges), only the pressure function is valid at the body surface. The similarity results give excellent agreement with the exact solutions for inviscid flow over wedges and cones having half-angles up to about 20 deg. They give good agreement with experimental shock-wave shapes and surface-pressure distributions for 3/4-power axisymmetric bodies, considering that Mach number and boundary-layer displacement effects are not included in the theory.

  7. Differences between quadratic equations and functions: Indonesian pre-service secondary mathematics teachers’ views

    Science.gov (United States)

    Aziz, T. A.; Pramudiani, P.; Purnomo, Y. W.

    2018-01-01

    Difference between quadratic equation and quadratic function as perceived by Indonesian pre-service secondary mathematics teachers (N = 55) who enrolled at one private university in Jakarta City was investigated. Analysis of participants’ written responses and interviews were conducted consecutively. Participants’ written responses highlighted differences between quadratic equation and function by referring to their general terms, main characteristics, processes, and geometrical aspects. However, they showed several obstacles in describing the differences such as inappropriate constraints and improper interpretations. Implications of the study are discussed.

  8. Exploiting Group Symmetry in Semidefinite Programming Relaxations of the Quadratic Assignment Problem

    NARCIS (Netherlands)

    de Klerk, E.; Sotirov, R.

    2007-01-01

    We consider semidefinite programming relaxations of the quadratic assignment problem, and show how to exploit group symmetry in the problem data. Thus we are able to compute the best known lower bounds for several instances of quadratic assignment problems from the problem library: [R.E. Burkard,

  9. Quadratic time dependent Hamiltonians and separation of variables

    International Nuclear Information System (INIS)

    Anzaldo-Meneses, A.

    2017-01-01

    Time dependent quantum problems defined by quadratic Hamiltonians are solved using canonical transformations. The Green’s function is obtained and a comparison with the classical Hamilton–Jacobi method leads to important geometrical insights like exterior differential systems, Monge cones and time dependent Gaussian metrics. The Wei–Norman approach is applied using unitary transformations defined in terms of generators of the associated Lie groups, here the semi-direct product of the Heisenberg group and the symplectic group. A new explicit relation for the unitary transformations is given in terms of a finite product of elementary transformations. The sequential application of adequate sets of unitary transformations leads naturally to a new separation of variables method for time dependent Hamiltonians, which is shown to be related to the Inönü–Wigner contraction of Lie groups. The new method allows also a better understanding of interacting particles or coupled modes and opens an alternative way to analyze topological phases in driven systems. - Highlights: • Exact unitary transformation reducing time dependent quadratic quantum Hamiltonian to zero. • New separation of variables method and simultaneous uncoupling of modes. • Explicit examples of transformations for one to four dimensional problems. • New general evolution equation for quadratic form in the action, respectively Green’s function.

  10. Staff turnover in hotels : exploring the quadratic and linear relationships.

    OpenAIRE

    Mohsin, A.; Lengler, J.F.B.; Aguzzoli, R.L.

    2015-01-01

    The aim of this study is to assess whether the relationship between intention to leave the job and its antecedents is quadratic or linear. To explore those relationships a theoretical model (see Fig. 1) and eight hypotheses are proposed. Each linear hypothesis is followed by an alternative quadratic hypothesis. The alternative hypotheses propose that the relationship between the four antecedent constructs and intention to leave the job might not be linear, as the existing literature suggests....

  11. Power of Your Pancreas: Keep Your Digestive Juices Flowing

    Science.gov (United States)

    ... 2017 Print this issue The Power of Your Pancreas Keep Your Digestive Juices Flowing En español Send ... in Check Better Check Your Bowels Wise Choices Pancreas Problems? Talk to your doctor if you have ...

  12. Robustness analysis of complex networks with power decentralization strategy via flow-sensitive centrality against cascading failures

    Science.gov (United States)

    Guo, Wenzhang; Wang, Hao; Wu, Zhengping

    2018-03-01

    Most existing cascading failure mitigation strategy of power grids based on complex network ignores the impact of electrical characteristics on dynamic performance. In this paper, the robustness of the power grid under a power decentralization strategy is analysed through cascading failure simulation based on AC flow theory. The flow-sensitive (FS) centrality is introduced by integrating topological features and electrical properties to help determine the siting of the generation nodes. The simulation results of the IEEE-bus systems show that the flow-sensitive centrality method is a more stable and accurate approach and can enhance the robustness of the network remarkably. Through the study of the optimal flow-sensitive centrality selection for different networks, we find that the robustness of the network with obvious small-world effect depends more on contribution of the generation nodes detected by community structure, otherwise, contribution of the generation nodes with important influence on power flow is more critical. In addition, community structure plays a significant role in balancing the power flow distribution and further slowing the propagation of failures. These results are useful in power grid planning and cascading failure prevention.

  13. orthogonal and scaling transformations of quadratic functions

    African Journals Online (AJOL)

    Preferred Customer

    functions of sub-problems of various nonlinear programming problems that employ methods such as sequential quadratic programming and trust-region methods (Sorensen, 1982; Eldersveld,. 1991; Nocedal and Wright, 1999). Various problems in Algebra, Functional Analysis,. Analytic Geometry and Computational Mathe-.

  14. Improved coal grinding and fuel flow control in thermal power plants

    DEFF Research Database (Denmark)

    Niemczyk, Piotr; Bendtsen, Jan Dimon

    2011-01-01

    A novel controller for coal circulation and pulverized coal flow in a coal mill is proposed. The design is based on optimal control theory for bilinear systems with additional integral action. The states are estimated from the grinding power consumption and the amount of coal accumulated in the m......A novel controller for coal circulation and pulverized coal flow in a coal mill is proposed. The design is based on optimal control theory for bilinear systems with additional integral action. The states are estimated from the grinding power consumption and the amount of coal accumulated...... as well as when parameter uncertainties and noise are present. The proposed controller lowers the grinding power consumption while in most cases exhibiting superior performance in comparison with the PID controller....

  15. Quadratic curvature terms and deformed Schwarzschild–de Sitter black hole analogues in the laboratory

    Directory of Open Access Journals (Sweden)

    R. da Rocha

    2017-12-01

    Full Text Available Sound waves on a fluid stream, in a de Laval nozzle, are shown to correspond to quasinormal modes emitted by black holes that are physical solutions in a quadratic curvature gravity with cosmological constant. Sound waves patterns in transsonic regimes at a laboratory are employed here to provide experimental data regarding generalized theories of gravity, comprised by the exact de Sitter-like solution and a perturbative solution around the Schwarzschild–de Sitter standard solution as well. Using the classical tests of General Relativity to bound free parameters in these solutions, acoustic perturbations on fluid flows in nozzles are then regarded, to study quasinormal modes of these black holes solutions, providing deviations of the de Laval nozzle cross-sectional area, when compared to the Schwarzschild solution. The fluid sonic point in the nozzle, for sound waves in the fluid, is shown to implement the acoustic event horizon corresponding to quasinormal modes. Keywords: Black holes, Fluid branes, Fluid dynamics, Quadratic curvature gravity, de Laval nozzle

  16. Smoothing optimization of supporting quadratic surfaces with Zernike polynomials

    Science.gov (United States)

    Zhang, Hang; Lu, Jiandong; Liu, Rui; Ma, Peifu

    2018-03-01

    A new optimization method to get a smooth freeform optical surface from an initial surface generated by the supporting quadratic method (SQM) is proposed. To smooth the initial surface, a 9-vertex system from the neighbor quadratic surface and the Zernike polynomials are employed to establish a linear equation system. A local optimized surface to the 9-vertex system can be build by solving the equations. Finally, a continuous smooth optimization surface is constructed by stitching the above algorithm on the whole initial surface. The spot corresponding to the optimized surface is no longer discrete pixels but a continuous distribution.

  17. Quadratic forms for Feynman-Kac semigroups

    International Nuclear Information System (INIS)

    Hibey, Joseph L.; Charalambous, Charalambos D.

    2006-01-01

    Some problems in a stochastic setting often involve the need to evaluate the Feynman-Kac formula that follows from models described in terms of stochastic differential equations. Equivalent representations in terms of partial differential equations are also of interest, and these establish the well-known connection between probabilistic and deterministic formulations of these problems. In this Letter, this connection is studied in terms of the quadratic form associated with the Feynman-Kac semigroup. The probability measures that naturally arise in this approach, and thus define how Brownian motion is killed at a specified rate while exiting a set, are interpreted as a random time change of the original stochastic differential equation. Furthermore, since random time changes alter the diffusion coefficients in stochastic differential equations while Girsanov-type measure transformations alter their drift coefficients, their simultaneous use should lead to more tractable solutions for some classes of problems. For example, the minimization of some quadratic forms leads to solutions that satisfy certain partial differential equations and, therefore, the techniques discussed provide a variational approach for finding these solutions

  18. DC microgrid power flow optimization by multi-layer supervision control. Design and experimental validation

    International Nuclear Information System (INIS)

    Sechilariu, Manuela; Wang, Bao Chao; Locment, Fabrice; Jouglet, Antoine

    2014-01-01

    Highlights: • DC microgrid (PV array, storage, power grid connection, DC load) with multi-layer supervision control. • Power balancing following power flow optimization while providing interface for smart grid communication. • Optimization under constraints: storage capability, grid power limitations, grid time-of-use pricing. • Experimental validation of DC microgrid power flow optimization by multi-layer supervision control. • DC microgrid able to perform peak shaving, to avoid undesired injection, and to make full use of locally energy. - Abstract: Urban areas have great potential for photovoltaic (PV) generation, however, direct PV power injection has limitations for high level PV penetration. It induces additional regulations in grid power balancing because of lacking abilities of responding to grid issues such as reducing grid peak consumption or avoiding undesired injections. The smart grid implementation, which is designed to meet these requirements, is facilitated by microgrids development. This paper presents a DC microgrid (PV array, storage, power grid connection, DC load) with multi-layer supervision control which handles instantaneous power balancing following the power flow optimization while providing interface for smart grid communication. The optimization takes into account forecast of PV power production and load power demand, while satisfying constraints such as storage capability, grid power limitations, grid time-of-use pricing and grid peak hour. Optimization, whose efficiency is related to the prediction accuracy, is carried out by mixed integer linear programming. Experimental results show that the proposed microgrid structure is able to control the power flow at near optimum cost and ensures self-correcting capability. It can respond to issues of performing peak shaving, avoiding undesired injection, and making full use of locally produced energy with respect to rigid element constraints

  19. Incorporation of a Wind Generator Model into a Dynamic Power Flow Analysis

    Directory of Open Access Journals (Sweden)

    Angeles-Camacho C.

    2011-07-01

    Full Text Available Wind energy is nowadays one of the most cost-effective and practical options for electric generation from renewable resources. However, increased penetration of wind generation causes the power networks to be more depend on, and vulnerable to, the varying wind speed. Modeling is a tool which can provide valuable information about the interaction between wind farms and the power network to which they are connected. This paper develops a realistic characterization of a wind generator. The wind generator model is incorporated into an algorithm to investigate its contribution to the stability of the power network in the time domain. The tool obtained is termed dynamic power flow. The wind generator model takes on account the wind speed and the reactive power consumption by induction generators. Dynamic power flow analysis is carried-out using real wind data at 10-minute time intervals collected for one meteorological station. The generation injected at one point into the network provides active power locally and is found to reduce global power losses. However, the power supplied is time-varying and causes fluctuations in voltage magnitude and power fl ows in transmission lines.

  20. Decay constants for pulsed monoenergetic neutron systems with quadratically anisotropic scattering

    International Nuclear Information System (INIS)

    Sjoestrand, N.G.

    1977-06-01

    The eigenvalues of the time-dependent transport equation for monoenergetic neutrons have been studied numerically for various combinations of linearly and quadratically anisotropic scattering assuming a space dependence of e β . The results, presented in the form of tables and graphs, show that quadratic anisotropy leads to a more complicated eigenvalue spectrum. However, no drastic changes occur in comparison to purely linear anistropy.(author)

  1. Permanent vegetation quadrats on Olkiluoto island. Establishment and results from the first inventory

    Energy Technology Data Exchange (ETDEWEB)

    Huhta, A.P.; Korpela, L. [Finnish Forest Research Institute, Helsinki (Finland)

    2006-05-15

    This report describes in detail the vegetation quadrats established inside the permanent, follow-up sample plots (Forest Extensive High-level monitoring plots, FEH) on Olkiluoto Island. During summer 2005 a total of 94 sample plots (a 30 m{sup 2}), each containing eight quadrats (a 1m{sup 2}), were investigated. The total number of sampled quadrats was 752. Seventy of the 94 plots represent coniferous stands: 57 Norway spruce-dominated and 13 Scots pine-dominated stands. Ten of the plots represent deciduous, birch-dominated (Betula spp.) stands, 7 plots common alder-dominated (Alnus glutinosa) stands, and seven plots are mires. The majority of the coniferous tree stands were growing on sites representing various succession stages of the Myrtillus, Vaccinium-Myrtillus and Deschampsia-Myrtillus forest site types. The pine-dominated stands growing on exposed bedrock clearly differed from the other coniferous stands: the vegetation was characterised by the Cladina, Calluna-Cladina and Empetrum-Vaccinium vitis-idaea/Vaccinium Myrtillus forest site types. The deciduous stands were characterized by tall grasses, especially Calamagrostis epigejos, C. purpurea and Deschampsia flexuosa. The vegetation of the deciduous stands dominated by common alder represented grove-like sites and seashore groves. Typical species for mires included Calamagrostis purpurea, Calla palustris, Equisetum sylvaticum, and especially white mosses (Sphagnum spp.). A total of 184 vascular plant species were found growing within the quadrats. Due to the high number of quadrats in these forests, the spruce stands had the highest total number of species, but the birch and alder-dominated forests had the highest average number of species per quadrat. This basic inventory of the permanent vegetation quadrats on Olkiluoto Island provides a sound starting point for future vegetation surveys. Guidelines for future inventories and supplementary sampling are given in the discussion part of this report. (orig.)

  2. Permanent vegetation quadrats on Olkiluoto island. Establishment and results from the first inventory

    International Nuclear Information System (INIS)

    Huhta, A.P.; Korpela, L.

    2006-05-01

    This report describes in detail the vegetation quadrats established inside the permanent, follow-up sample plots (Forest Extensive High-level monitoring plots, FEH) on Olkiluoto Island. During summer 2005 a total of 94 sample plots (a 30 m 2 ), each containing eight quadrats (a 1m 2 ), were investigated. The total number of sampled quadrats was 752. Seventy of the 94 plots represent coniferous stands: 57 Norway spruce-dominated and 13 Scots pine-dominated stands. Ten of the plots represent deciduous, birch-dominated (Betula spp.) stands, 7 plots common alder-dominated (Alnus glutinosa) stands, and seven plots are mires. The majority of the coniferous tree stands were growing on sites representing various succession stages of the Myrtillus, Vaccinium-Myrtillus and Deschampsia-Myrtillus forest site types. The pine-dominated stands growing on exposed bedrock clearly differed from the other coniferous stands: the vegetation was characterised by the Cladina, Calluna-Cladina and Empetrum-Vaccinium vitis-idaea/Vaccinium Myrtillus forest site types. The deciduous stands were characterized by tall grasses, especially Calamagrostis epigejos, C. purpurea and Deschampsia flexuosa. The vegetation of the deciduous stands dominated by common alder represented grove-like sites and seashore groves. Typical species for mires included Calamagrostis purpurea, Calla palustris, Equisetum sylvaticum, and especially white mosses (Sphagnum spp.). A total of 184 vascular plant species were found growing within the quadrats. Due to the high number of quadrats in these forests, the spruce stands had the highest total number of species, but the birch and alder-dominated forests had the highest average number of species per quadrat. This basic inventory of the permanent vegetation quadrats on Olkiluoto Island provides a sound starting point for future vegetation surveys. Guidelines for future inventories and supplementary sampling are given in the discussion part of this report. (orig.)

  3. Mean-Variance Portfolio Selection Problem with Stochastic Salary for a Defined Contribution Pension Scheme: A Stochastic Linear-Quadratic-Exponential Framework

    Directory of Open Access Journals (Sweden)

    Charles Nkeki

    2013-11-01

    Full Text Available This paper examines a mean-variance portfolio selection problem with stochastic salary and inflation protection strategy in the accumulation phase of a defined contribution (DC pension plan. The utility function is assumed to be quadratic. It was assumed that the flow of contributions made by the PPM are invested into a market that is characterized by a cash account, an inflation-linked bond and a stock. In this paper, inflationlinked bond is traded and used to hedge inflation risks associated with the investment. The aim of this paper is to maximize the expected final wealth and minimize its variance. Efficient frontier for the three classes of assets (under quadratic utility function that will enable pension plan members (PPMs to decide their own wealth and risk in their investment profile at retirement was obtained.

  4. Development of a multi-path ultrasonic flow meter for the application to feedwater flow measurement in nuclear power plants

    International Nuclear Information System (INIS)

    Jong, J. C.; Ha, J. H.; Kim, Y. H.; Jang, W. H.; Park, K. S.; Park, M. S.; Park, M. H.

    2002-01-01

    In this work, we propose a method to measure the feedwater flow using multi-path ultrasonic flow meter (UFM). Since the UFM measures a path velocity at which the ultrasonic wave is propagated, the flow profile may be important to convey the path velocity to the velocity averaged over the entire cross section of the flowing medium. The conventional UFM has used the smooth-wall circular pipe model presented by Nikurades. However, this model covers a lower range which is less than 3.2 million while the Reynolds number of the feedwater flow in operating nuclear power plants (NPPs) is about 20 million. Therefore, we feedwater flow in operating nuclear power plants (NPPs) is about 20 million. Therefore, we proposed the non-linear correlation model that combines the ratio between the DP output and proposed the non-linear correlation model that combines the ratio between the DP output and UFM output. Experiments were performed using both computer simulation and newly constructed NPPs' test data. The uncertainty analysis result shows that the proposed method has reasonably lower uncertainty than conventional UFM

  5. Estimating factors influencing the detection probability of semiaquatic freshwater snails using quadrat survey methods

    Science.gov (United States)

    Roesler, Elizabeth L.; Grabowski, Timothy B.

    2018-01-01

    Developing effective monitoring methods for elusive, rare, or patchily distributed species requires extra considerations, such as imperfect detection. Although detection is frequently modeled, the opportunity to assess it empirically is rare, particularly for imperiled species. We used Pecos assiminea (Assiminea pecos), an endangered semiaquatic snail, as a case study to test detection and accuracy issues surrounding quadrat searches. Quadrats (9 × 20 cm; n = 12) were placed in suitable Pecos assiminea habitat and randomly assigned a treatment, defined as the number of empty snail shells (0, 3, 6, or 9). Ten observers rotated through each quadrat, conducting 5-min visual searches for shells. The probability of detecting a shell when present was 67.4 ± 3.0%, but it decreased with the increasing litter depth and fewer number of shells present. The mean (± SE) observer accuracy was 25.5 ± 4.3%. Accuracy was positively correlated to the number of shells in the quadrat and negatively correlated to the number of times a quadrat was searched. The results indicate quadrat surveys likely underrepresent true abundance, but accurately determine the presence or absence. Understanding detection and accuracy of elusive, rare, or imperiled species improves density estimates and aids in monitoring and conservation efforts.

  6. STABILIZED SEQUENTIAL QUADRATIC PROGRAMMING: A SURVEY

    Directory of Open Access Journals (Sweden)

    Damián Fernández

    2014-12-01

    Full Text Available We review the motivation for, the current state-of-the-art in convergence results, and some open questions concerning the stabilized version of the sequential quadratic programming algorithm for constrained optimization. We also discuss the tools required for its local convergence analysis, globalization challenges, and extentions of the method to the more general variational problems.

  7. Quaternion orders, quadratic forms, and Shimura curves

    CERN Document Server

    Alsina, Montserrat

    2004-01-01

    Shimura curves are a far-reaching generalization of the classical modular curves. They lie at the crossroads of many areas, including complex analysis, hyperbolic geometry, algebraic geometry, algebra, and arithmetic. The text provides an introduction to the subject from a theoretic and algorithmic perspective. The main topics covered in it are Shimura curves defined over the rational number field, the construction of their fundamental domains, and the determination of their complex multiplication points. The study of complex multiplication points in Shimura curves leads to the study of families of binary quadratic forms with algebraic coefficients and to their classification by arithmetic Fuchsian groups. In this regard, the authors develop a theory full of new possibilities which parallels Gauss' theory on the classification of binary quadratic forms with integral coefficients by the action of the modular group. Each topic covered in the book begins with a theoretical discussion followed by carefully worked...

  8. Coherent states of systems with quadratic Hamiltonians

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, V.G., E-mail: bagrov@phys.tsu.ru [Department of Physics, Tomsk State University, Tomsk (Russian Federation); Gitman, D.M., E-mail: gitman@if.usp.br [Tomsk State University, Tomsk (Russian Federation); Pereira, A.S., E-mail: albertoufcg@hotmail.com [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Instituto de Fisica

    2015-06-15

    Different families of generalized coherent states (CS) for one-dimensional systems with general time-dependent quadratic Hamiltonian are constructed. In principle, all known CS of systems with quadratic Hamiltonian are members of these families. Some of the constructed generalized CS are close enough to the well-known due to Schroedinger and Glauber CS of a harmonic oscillator; we call them simply CS. However, even among these CS, there exist different families of complete sets of CS. These families differ by values of standard deviations at the initial time instant. According to the values of these initial standard deviations, one can identify some of the families with semiclassical CS. We discuss properties of the constructed CS, in particular, completeness relations, minimization of uncertainty relations and so on. As a unknown application of the general construction, we consider different CS of an oscillator with a time dependent frequency. (author)

  9. Coherent states of systems with quadratic Hamiltonians

    International Nuclear Information System (INIS)

    Bagrov, V.G.; Gitman, D.M.; Pereira, A.S.

    2015-01-01

    Different families of generalized coherent states (CS) for one-dimensional systems with general time-dependent quadratic Hamiltonian are constructed. In principle, all known CS of systems with quadratic Hamiltonian are members of these families. Some of the constructed generalized CS are close enough to the well-known due to Schroedinger and Glauber CS of a harmonic oscillator; we call them simply CS. However, even among these CS, there exist different families of complete sets of CS. These families differ by values of standard deviations at the initial time instant. According to the values of these initial standard deviations, one can identify some of the families with semiclassical CS. We discuss properties of the constructed CS, in particular, completeness relations, minimization of uncertainty relations and so on. As a unknown application of the general construction, we consider different CS of an oscillator with a time dependent frequency. (author)

  10. Fast, multiple optimizations of quadratic dose objective functions in IMRT

    International Nuclear Information System (INIS)

    Breedveld, Sebastiaan; Storchi, Pascal R M; Keijzer, Marleen; Heijmen, Ben J M

    2006-01-01

    Inverse treatment planning for intensity-modulated radiotherapy may include time consuming, multiple minimizations of an objective function. In this paper, methods are presented to speed up the process of (repeated) minimization of the well-known quadratic dose objective function, extended with a smoothing term that ensures generation of clinically acceptable beam profiles. In between two subsequent optimizations, the voxel-dependent importance factors of the quadratic terms will generally be adjusted, based on an intermediate plan evaluation. The objective function has been written in matrix-vector format, facilitating the use of a recently published, fast quadratic minimization algorithm, instead of commonly applied gradient-based methods. This format also reduces the calculation time in between subsequent minimizations, related to adjustment of the voxel-dependent importance factors. Sparse matrices are used to limit the required amount of computer memory. For three patients, comparisons have been made with a gradient method. Mean speed improvements of up to a factor of 37 have been achieved

  11. Security constrained optimal power flow by modern optimization tools

    African Journals Online (AJOL)

    The main objective of an optimal power flow (OPF) functions is to optimize .... It is characterized as propagation of plants and this happens by gametes union. ... ss and different variables, for example, wind, nearby fertilization can have a critic.

  12. Prediction of critical flow rates through power-operated relief valves

    International Nuclear Information System (INIS)

    Abdollahian, D.; Singh, A.

    1983-01-01

    Existing single-phase and two-phase critical flow models are used to predict the flow rates through the power-operated relief valves tested in the EPRI Safety and Relief Valve test program. For liquid upstream conditions, Homogeneous Equilibrium Model, Moody, Henry-Fauske and Burnell two-phase critical flow models are used for comparison with data. Under steam upstream conditions, the flow rates are predicted either by the single-phase isentropic equations or the Homogeneous Equilibrium Model, depending on the thermodynamic condition of the fluid at the choking plane. The results of the comparisons are used to specify discharge coefficients for different valves under steam and liquid upstream conditions and evaluate the existing approximate critical flow relations for a wide range of subcooled water and steam conditions

  13. Integrated Power Flow and Short Circuit Calculation Method for Distribution Network with Inverter Based Distributed Generation

    OpenAIRE

    Yang, Shan; Tong, Xiangqian

    2016-01-01

    Power flow calculation and short circuit calculation are the basis of theoretical research for distribution network with inverter based distributed generation. The similarity of equivalent model for inverter based distributed generation during normal and fault conditions of distribution network and the differences between power flow and short circuit calculation are analyzed in this paper. Then an integrated power flow and short circuit calculation method for distribution network with inverte...

  14. Partial analysis of wind power limit in an electric micro system using continuation power flow

    International Nuclear Information System (INIS)

    Fiallo Guerrero, Jandry; Santos Fuentefria, Ariel; Castro Fernández, Miguel

    2013-01-01

    The wind power insertion in the power system is an important issue and can create some instability problems in voltage and system frequency due to stochastic origin of wind. Know the Wind Power Limit that can insert in an electric grid without losing stability is a very important matter. Existing in bibliography a few methods for calculation of wind power limit, some of them are based in static constrains, an example is a method based in a continuation power flow analysis. In the present work the method is applied in an electric micro system formed when the system is disconnected of the man grid, the main goal was prove the method in a weak and island network. The software used in the simulations was the Power System Analysis Toolbox (PSAT). (author)

  15. New hybrid non-linear transformations of divergent perturbation series for quadratic Zeeman effects

    International Nuclear Information System (INIS)

    Belkic, D.

    1989-01-01

    The problem of hydrogen atoms in an external uniform magnetic field (quadratic Zeeman effect) is studied by means of perturbation theory. The power series for the ground-state energy in terms of magnetic-field strength B is divergent. Nevertheless, it is possible to induce convergence of this divergent series by applying various non-linear transformations. These transformations of originally divergent perturbation series yield new sequences, which then converge. The induced convergence is, however, quite slow. A new hybrid Shanks-Levin non-linear transform is devised here for accelerating these slowly converging series and sequences. Significant improvement in the convergence rate is obtained. Agreement with the exact results is excellent. (author)

  16. Dense granular Flows: a conceptual design of high-power neutron source

    Directory of Open Access Journals (Sweden)

    Yang Lei

    2017-01-01

    Full Text Available A high-power neutron source system is very useful for multifunctional applications, such as material facilities for advanced nuclear power, space radiation studies, radiography and tomography. Here the idea of inclined dense granular flow is utilized and developed in a new conceptual design of a compact high-power target to produce a high-energy and high-flux neutron irradiation (the flux is up to 1015 n/cm2/s or even 1016. Comparing to the traditional solid and liquid heavy metal targets, this design has advantages in material choice, fluid stability, heat removal, etc. In this paper the natures of the granular flows in an inclined chute are investigated and preliminary experimental and numerical results are reported. Then the feasibility of this design is discussed.

  17. Non-intrusive accurate and traceable flow measurements in nuclear power plant systems

    Energy Technology Data Exchange (ETDEWEB)

    Gurevich, A.; Kanda, V.; Sharp, B.; Lopez, A. [Advanced Measurement and Analysis Group Inc., ON (Canada); Gurevich, Y. [Daystar Technologies Inc., ON (Canada)

    2014-07-01

    Ultrasonic cross correlation flow meters, are a non-intrusive flow measurement technology based on measurement of the transport velocity of turbulent structures, and have many advantages over other ultrasonic flow measurement methods. The cross correlation flow meter CROSSFLOW, produced and operated by the Canadian company Advanced Measurement and Analysis Group Inc., is used in nuclear power plants around the world, for various application. This paper describes the operating principals of the ultrasonic cross correlation flow meter, its advantages over other ultrasonic flow measurement methods, its application around the world. (author)

  18. Considerations for transient stability, fault capacity and power flow study of offsite power system

    Energy Technology Data Exchange (ETDEWEB)

    Shin, M C; Kim, C W; Gwon, M H; Park, C W; Lee, K W; Kim, H M; Lee, G Y; Joe, P H [Sungkyunkwan Univ., Seoul (Korea, Republic of)

    1994-04-15

    By study of power flow calculation, fault capacity calculation and stability analysis according to connection of two units YGN 3 and 4 to KEPCO power system, we have conclusions as follows. As the result of power flow calculation, at peak load, the voltage change of each bus is very small when YGN 3 and 4 is connected with KEPCO power system. At base load, installation of phase modifing equipment is necessary in Seoul, Kyungki province where load is concentrated because bus voltage rises by increasing of charge capacity caused installation of underground cables. As the result of fault capacity calculation, fault capacity is increased because fault current increases when two units YGN 3 and 4 is connected with KEPCO power system. But it is enough to operate with presenting circuits breaker rated capacity. Transient stability studies have been conducted on the YK N/P generators 3 and 4 using a digital computer program. Three phase short faults have been simulated at the YK N/P 345[KV] bus with the resulting outage of transmission circuits. Several fault clearing times are applied: 6 cycles, 12 cycles, 15 cycles. The study results demonstrate that the transient stability of YK N/P is adequate to maintain stable for three phase short faults cleared within 12 cycles. The study results also demonstrate that the transient stability of YK N/P is stable for machine removals except 4-machine removal. In addition, the study shows that the transient stability analysis is implemented for the case of load.

  19. Analysis and distributed control of power flow in DC microgrids to improve system efficiency

    DEFF Research Database (Denmark)

    Chen, Fang; Burgos, Rolando; Boroyevich, Dushan

    2016-01-01

    DC Microgrid attains popularity in integrating renewable energy sources and batteries. It also has the potential to achieve higher efficiency than ac power grid under the condition of optimized power flow. In this paper, a general dc microgrid is modeled based on a cluster of general dc nodes......, which includes constant power renewables generation, droop-controlled voltage source and different kinds of load. Then the dc power flow is solved for optimization. A voltage restoration method based on consensus communication is used to restore the voltage deviation from droop characteristic...

  20. Numerical solution of large nonlinear boundary value problems by quadratic minimization techniques

    International Nuclear Information System (INIS)

    Glowinski, R.; Le Tallec, P.

    1984-01-01

    The objective of this paper is to describe the numerical treatment of large highly nonlinear two or three dimensional boundary value problems by quadratic minimization techniques. In all the different situations where these techniques were applied, the methodology remains the same and is organized as follows: 1) derive a variational formulation of the original boundary value problem, and approximate it by Galerkin methods; 2) transform this variational formulation into a quadratic minimization problem (least squares methods) or into a sequence of quadratic minimization problems (augmented lagrangian decomposition); 3) solve each quadratic minimization problem by a conjugate gradient method with preconditioning, the preconditioning matrix being sparse, positive definite, and fixed once for all in the iterative process. This paper will illustrate the methodology above on two different examples: the description of least squares solution methods and their application to the solution of the unsteady Navier-Stokes equations for incompressible viscous fluids; the description of augmented lagrangian decomposition techniques and their application to the solution of equilibrium problems in finite elasticity

  1. Dhage Iteration Method for Generalized Quadratic Functional Integral Equations

    Directory of Open Access Journals (Sweden)

    Bapurao C. Dhage

    2015-01-01

    Full Text Available In this paper we prove the existence as well as approximations of the solutions for a certain nonlinear generalized quadratic functional integral equation. An algorithm for the solutions is developed and it is shown that the sequence of successive approximations starting at a lower or upper solution converges monotonically to the solutions of related quadratic functional integral equation under some suitable mixed hybrid conditions. We rely our main result on Dhage iteration method embodied in a recent hybrid fixed point theorem of Dhage (2014 in partially ordered normed linear spaces. An example is also provided to illustrate the abstract theory developed in the paper.

  2. Subgroups of class groups of algebraic quadratic function fields

    International Nuclear Information System (INIS)

    Wang Kunpeng; Zhang Xianke

    2001-09-01

    Ideal class groups H(K) of algebraic quadratic function fields K are studied, by using mainly the theory of continued fractions of algebraic functions. Properties of such continued fractions are discussed first. Then a necessary and sufficient condition is given for the class group H(K) to contain a cyclic subgroup of any order n, this criterion condition holds true for both real and imaginary fields K. Furthermore, several series of function fields K, including real, inertia imaginary, as well as ramified imaginary quadratic function fields, are given, and their class groups H(K) are proved to contain cyclic subgroups of order n. (author)

  3. CHF during flow rate, pressure and power transients in heated channels

    International Nuclear Information System (INIS)

    Celata, G.P.; Cumo, M.

    1987-01-01

    The behaviour of forced two-phase flows following inlet flow rate, pressure and power transients is presented here with reference to experiments performed with a R-12 loop. A circular duct, vertical test section (L = 2300 mm; D = 7.5 mm) instrumented with fluid (six) and wall (twelve) thermocouples has been employed. Transients have been carried out performing several values of flow decays (exponential decrease), depressurization rates (exponential decrease) and power inputs (step-wise increase). Experimental data have shown the complete inadequacy of steady-state critical heat flux correlations in predicting the onset of boiling crisis during fast transients. Data analysis for a better theoretical prediction of CHF occurrence during transient conditions has been accomplished, and design correlations for critical heat flux and time-to-crisis predictions have been proposed for the different types of transients

  4. Genetic algorithm–based varying parameter linear quadratic regulator control for four-wheel independent steering vehicle

    Directory of Open Access Journals (Sweden)

    Linlin Gao

    2015-11-01

    Full Text Available From the perspective of vehicle dynamics, the four-wheel independent steering vehicle dynamics stability control method is studied, and a four-wheel independent steering varying parameter linear quadratic regulator control system is proposed with the help of expert control method. In the article, a four-wheel independent steering linear quadratic regulator controller for model following purpose is designed first. Then, by analyzing the four-wheel independent steering vehicle dynamic characteristics and the influence of linear quadratic regulator control parameters on control performance, a linear quadratic regulator control parameter adjustment strategy based on vehicle steering state is proposed to achieve the adaptive adjustment of linear quadratic regulator control parameters. In addition, to further improve the control performance, the proposed varying parameter linear quadratic regulator control system is optimized by genetic algorithm. Finally, simulation studies have been conducted by applying the proposed control system to the 8-degree-of-freedom four-wheel independent steering vehicle dynamics model. The simulation results indicate that the proposed control system has better performance and robustness and can effectively improve the stability and steering safety of the four-wheel independent steering vehicle.

  5. Grid-Connection Half-Bridge PV Inverter System for Power Flow Controlling and Active Power Filtering

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2012-01-01

    Full Text Available A half-bridge photovoltaic (PV system is proposed, which can not only deal with bidirectional power flowing but also improve power quality. According to varying insolation, the system conditions real power for dc and ac loads to accommodate different amounts of PV power. Furthermore, the system eliminates current harmonics and improves power factor simultaneously. As compared with conventional PV inverter, the total number of active switches and current sensors can be reduced so that its cost is lower significantly. For current command determination, a linear-approximation method (LAM is applied to avoid the complicated calculation and achieve the maximum power point tracking (MPPT feature. For current controlling, a direct-source-current-shaping (DSCS algorithm is presented to shape the waveform of line current. Simulation results and practical measurements also demonstrate the feasibility of the proposed half-bridge PV system.

  6. Electron laser acceleration in vacuum by a quadratically chirped laser pulse

    International Nuclear Information System (INIS)

    Salamin, Yousef I; Jisrawi, Najeh M

    2014-01-01

    Single MeV electrons in vacuum subjected to single high-intensity quadratically chirped laser pulses are shown to gain multi-GeV energies. The laser pulses are modelled by finite-duration trapezoidal and cos  2 pulse-shapes and the equations of motion are solved numerically. It is found that, typically, the maximum energy gain from interaction with a quadratic chirp is about half of what would be gained from a linear chirp. (paper)

  7. Quadratic reactivity fuel cycle model

    International Nuclear Information System (INIS)

    Lewins, J.D.

    1985-01-01

    For educational purposes it is highly desirable to provide simple yet realistic models for fuel cycle and fuel economy. In particular, a lumped model without recourse to detailed spatial calculations would be very helpful in providing the student with a proper understanding of the purposes of fuel cycle calculations. A teaching model for fuel cycle studies based on a lumped model assuming the summability of partial reactivities with a linear dependence of reactivity usefully illustrates fuel utilization concepts. The linear burnup model does not satisfactorily represent natural enrichment reactors. A better model, showing the trend of initial plutonium production before subsequent fuel burnup and fission product generation, is a quadratic fit. The study of M-batch cycles, reloading 1/Mth of the core at end of cycle, is now complicated by nonlinear equations. A complete account of the asymptotic cycle for any order of M-batch refueling can be given and compared with the linear model. A complete account of the transient cycle can be obtained readily in the two-batch model and this exact solution would be useful in verifying numerical marching models. It is convenient to treat the parabolic fit rho = 1 - tau 2 as a special case of the general quadratic fit rho = 1 - C/sub tau/ - (1 - C)tau 2 in suitably normalized reactivity and cycle time units. The parabolic results are given in this paper

  8. Vortexlike Power Flow at the Interfaces of Metamaterial Lens

    Directory of Open Access Journals (Sweden)

    K. Fang

    2012-10-01

    Full Text Available The metamaterial lens with DPS/DNS/DPS structure has been realized by using the two-dimensional (2D isotropic transmission line approach. We studied the vortexlike power flow at the interfaces of metamaterial lens and validated by the finite-difference time-domain (FDTD simulator. The computational results showing its different conditions near DPS/DNS and other kinds of interfaces are obtained by CST STUDIO SUITE at different frequencies, and demonstrate the intuitionistic power location at the metamaterial lens interfaces.

  9. Three-phase Power Flow Calculation of Low Voltage Distribution Network Considering Characteristics of Residents Load

    Science.gov (United States)

    Wang, Yaping; Lin, Shunjiang; Yang, Zhibin

    2017-05-01

    In the traditional three-phase power flow calculation of the low voltage distribution network, the load model is described as constant power. Since this model cannot reflect the characteristics of actual loads, the result of the traditional calculation is always different from the actual situation. In this paper, the load model in which dynamic load represented by air conditioners parallel with static load represented by lighting loads is used to describe characteristics of residents load, and the three-phase power flow calculation model is proposed. The power flow calculation model includes the power balance equations of three-phase (A,B,C), the current balance equations of phase 0, and the torque balancing equations of induction motors in air conditioners. And then an alternating iterative algorithm of induction motor torque balance equations with each node balance equations is proposed to solve the three-phase power flow model. This method is applied to an actual low voltage distribution network of residents load, and by the calculation of three different operating states of air conditioners, the result demonstrates the effectiveness of the proposed model and the algorithm.

  10. A study on heat transfer enhancement using flow channel inserts for thermoelectric power generation

    International Nuclear Information System (INIS)

    Lesage, Frédéric J.; Sempels, Éric V.; Lalande-Bertrand, Nathaniel

    2013-01-01

    Highlights: • Thermal enhancement in a thermoelectric liquid generator is tested. • Thermal enhancement is brought upon by flow impeding inserts. • CFD simulations attribute thermal enhancement to velocity field alterations. • Thermoelectric power enhancement is measured and discussed. • Power enhancement relative to adverse pressure drop is investigated. - Abstract: Thermoelectric power production has many potential applications that range from microelectronics heat management to large scale industrial waste-heat recovery. A low thermoelectric conversion efficiency of the current state of the art prevents wide spread use of thermoelectric modules. The difficulties lie in material conversion efficiency, module design, and thermal system management. The present study investigates thermoelectric power improvement due to heat transfer enhancement at the channel walls of a liquid-to-liquid thermoelectric generator brought upon by flow turbulating inserts. Care is taken to measure the adverse pressure drop due to the presence of flow impeding obstacles in order to measure the net thermoelectric power enhancement relative to an absence of inserts. The results illustrate the power enhancement performance of three different geometric forms fitted into the channels of a thermoelectric generator. Spiral inserts are shown to offer a minimal improvement in thermoelectric power production whereas inserts with protruding panels are shown to be the most effective. Measurements of the thermal enhancement factor which represents the ratio of heat flux into heat flux out of a channel and numerical simulations of the internal flow velocity field attribute the thermal enhancement resulting in the thermoelectric power improvement to thermal and velocity field synergy

  11. Integrable Hamiltonian systems and interactions through quadratic constraints

    International Nuclear Information System (INIS)

    Pohlmeyer, K.

    1975-08-01

    Osub(n)-invariant classical relativistic field theories in one time and one space dimension with interactions that are entirely due to quadratic constraints are shown to be closely related to integrable Hamiltonian systems. (orig.) [de

  12. Full Vehicle Vibration and Noise Analysis Based on Substructure Power Flow

    Directory of Open Access Journals (Sweden)

    Zhien Liu

    2017-01-01

    Full Text Available Combining substructure and power flow theory, in this paper an external program is written to control MSC. Nastran solution process and the substructure frequency response are also formulated accordingly. Based on a simple vehicle model, characteristics of vibration, noise, and power flow are studied, respectively. After being compared with the result of conventional FEM (finite element method, the new method is confirmed to be feasible. When it comes to a vehicle with the problem of low-frequency noise, finite element models of substructures for vehicle body and chassis are established, respectively. In addition, substructure power flow method is also employed to examine the transfer characteristics of multidimensional vibration energy for the whole vehicle system. By virtue of the adjustment stiffness of drive shaft support and bushes at rear suspension lower arm, the vehicle interior noise is decreased by about 3 dB when the engine speed is near 1050 rpm and 1650 rpm in experiment. At the same time, this method can increase the computation efficiency by 78%, 38%, and 98% when it comes to the optimization of chassis structure, body structure, and vibration isolation components, respectively.

  13. Thermal Flow and Structure Stability Analyses of High Power Waterload for 2450 MHz microwave applications

    International Nuclear Information System (INIS)

    Seon, S. W.; Kim, H. J.; Wang, S. J.; Kim, J. N.

    2016-01-01

    This study is focused on analyzing the internal flow dynamics in the waterload by changing the inlet and outlet locations and adding guide pipeline to the inlet. The internal flow field simulation is done with CFX tool to compare the water flow velocity and temperature distributions in the waterload. The waterload absorbs RF power, converts it to thermal power, and increases the water temperature so that heat could be quickly removed by the water injection. And it is installed on the end of transmission line and is used to absorb reflected RF power. High power waterload with cone-shaped quartz is designed for 10-30 kW power handling at 2450 MHz microwave system. The thermal flow and structural stability analysis for the 2450 MHz waterload is done using ANSYS and the results are presented in this work. Relocation of the inlet and addition of the guide pipeline in the simulation shows a decrease in the localized maximum water temperature and increased water velocity around the heat source. It is also shown that the modified waterload is structurally more stable

  14. Thermal Flow and Structure Stability Analyses of High Power Waterload for 2450 MHz microwave applications

    Energy Technology Data Exchange (ETDEWEB)

    Seon, S. W.; Kim, H. J.; Wang, S. J. [National Fusion Research Institute, Daejeon (Korea, Republic of); Kim, J. N. [KRF, Anyang (Korea, Republic of)

    2016-05-15

    This study is focused on analyzing the internal flow dynamics in the waterload by changing the inlet and outlet locations and adding guide pipeline to the inlet. The internal flow field simulation is done with CFX tool to compare the water flow velocity and temperature distributions in the waterload. The waterload absorbs RF power, converts it to thermal power, and increases the water temperature so that heat could be quickly removed by the water injection. And it is installed on the end of transmission line and is used to absorb reflected RF power. High power waterload with cone-shaped quartz is designed for 10-30 kW power handling at 2450 MHz microwave system. The thermal flow and structural stability analysis for the 2450 MHz waterload is done using ANSYS and the results are presented in this work. Relocation of the inlet and addition of the guide pipeline in the simulation shows a decrease in the localized maximum water temperature and increased water velocity around the heat source. It is also shown that the modified waterload is structurally more stable.

  15. A Hybrid Maximum Power Point Tracking Method for Automobile Exhaust Thermoelectric Generator

    Science.gov (United States)

    Quan, Rui; Zhou, Wei; Yang, Guangyou; Quan, Shuhai

    2017-05-01

    To make full use of the maximum output power of automobile exhaust thermoelectric generator (AETEG) based on Bi2Te3 thermoelectric modules (TEMs), taking into account the advantages and disadvantages of existing maximum power point tracking methods, and according to the output characteristics of TEMs, a hybrid maximum power point tracking method combining perturb and observe (P&O) algorithm, quadratic interpolation and constant voltage tracking method was put forward in this paper. Firstly, it searched the maximum power point with P&O algorithms and a quadratic interpolation method, then, it forced the AETEG to work at its maximum power point with constant voltage tracking. A synchronous buck converter and controller were implemented in the electric bus of the AETEG applied in a military sports utility vehicle, and the whole system was modeled and simulated with a MATLAB/Simulink environment. Simulation results demonstrate that the maximum output power of the AETEG based on the proposed hybrid method is increased by about 3.0% and 3.7% compared with that using only the P&O algorithm and the quadratic interpolation method, respectively. The shorter tracking time is only 1.4 s, which is reduced by half compared with that of the P&O algorithm and quadratic interpolation method, respectively. The experimental results demonstrate that the tracked maximum power is approximately equal to the real value using the proposed hybrid method,and it can preferentially deal with the voltage fluctuation of the AETEG with only P&O algorithm, and resolve the issue that its working point can barely be adjusted only with constant voltage tracking when the operation conditions change.

  16. Use of UPFC device controlled by fuzzy logic controllers for decoupled power flow control

    Directory of Open Access Journals (Sweden)

    Ivković Sanja

    2014-01-01

    Full Text Available This paper investigates the possibility of decoupled active and reactive power flow control in a power system using a UPFC device controlled by fuzzy logic controllers. A Brief theoretical review of the operation principles and applications of UPFC devices and design principles of the fuzzy logic controller used are given. A Matlab/Simulink model of the system with UPFC, the fuzzy controller setup, and graphs of the results are presented. Conclusions are drawn regarding the possibility of using this system for decoupled control of the power flow in power systems based on analysis of these graphs.

  17. Pulsed operation of high-power light emitting diodes for imaging flow velocimetry

    International Nuclear Information System (INIS)

    Willert, C; Klinner, J; Moessner, S; Stasicki, B

    2010-01-01

    High-powered light emitting diodes (LED) are investigated for possible uses as light sources in flow diagnostics, in particular, as an alternative to laser-based illumination in particle imaging flow velocimetry in side-scatter imaging arrangements. Recent developments in solid state illumination resulted in mass-produced LEDs that provide average radiant power in excess of 10 W. By operating these LEDs with short duration, pulsed currents that are considerably beyond their continuous current damage threshold, light pulses can be generated that are sufficient to illuminate and image micron-sized particles in flow velocimetry. Time-resolved PIV measurements in water at a framing rate of 2kHz are presented. The feasibility of LED-based PIV measurements in air is also demonstrated

  18. The Transient Elliptic Flow of Power-Law Fluid in Fractal Porous Media

    Institute of Scientific and Technical Information of China (English)

    宋付权; 刘慈群

    2002-01-01

    The steady oil production and pressure distribution formulae of vertically fractured well for power-law non-Newtonian fluid were derived on the basis of the elliptic flow model in fractal reservoirs. The corresponding transient flow in fractal reservoirs was studied by numerical differentiation method: the influence of fractal index to transient pressure of vertically fractured well was analyzed. Finally the approximate analytical solution of transient flow was given by average mass conservation law. The study shows that using elliptic flow method to analyze the flow of vertically fractured well is a simple method.

  19. Exact solutions for an oscillator with anti-symmetric quadratic nonlinearity

    Science.gov (United States)

    Beléndez, A.; Martínez, F. J.; Beléndez, T.; Pascual, C.; Alvarez, M. L.; Gimeno, E.; Arribas, E.

    2018-04-01

    Closed-form exact solutions for an oscillator with anti-symmetric quadratic nonlinearity are derived from the first integral of the nonlinear differential equation governing the behaviour of this oscillator. The mathematical model is an ordinary second order differential equation in which the sign of the quadratic nonlinear term changes. Two parameters characterize this oscillator: the coefficient of the linear term and the coefficient of the quadratic term. Not only the common case in which both coefficients are positive but also all possible combinations of positive and negative signs of these coefficients which provide periodic motions are considered, giving rise to four different cases. Three different periods and solutions are obtained, since the same result is valid in two of these cases. An interesting feature is that oscillatory motions whose equilibrium points are not at x = 0 are also considered. The periods are given in terms of an incomplete or complete elliptic integral of the first kind, and the exact solutions are expressed as functions including Jacobi elliptic cosine or sine functions.

  20. Zinc Bromide Flow Battery Installation for Islanding and Backup Power

    Science.gov (United States)

    2017-08-09

    demonstrates the energy security and cost benefits of implementing a Zn/Br Flow Battery-based ESS at the Marine Corps Air Station (MCAS) located at...user will be realized through the system’s peak shaving mode. This benefit was also used to calculate the operational cost reductions when using the...EW-201242) Zinc Bromide Flow Battery Installation for Islanding and Backup Power August 2017 This document has been cleared for public release

  1. Power Flow Distribution Strategy for Improved Power Electronics Energy Efficiency in Battery Storage Systems: Development and Implementation in a Utility-Scale System

    Directory of Open Access Journals (Sweden)

    Michael Schimpe

    2018-03-01

    Full Text Available Utility-scale battery storage systems typically consist of multiple smaller units contributing to the overall power dispatch of the system. Herein, the power distribution among these units is analyzed and optimized to operate the system with increased energy efficiency. To improve the real-life storage operation, a holistic system model for battery storage systems has been developed that enables a calculation of the energy efficiency. A utility-scale Second-Life battery storage system with a capacity of 3.3 MWh/3 MW is operated and evaluated in this work. The system is in operation for the provision of primary control reserve in combination with intraday trading for controlling the battery state of charge. The simulation model is parameterized with the system data. Results show that losses in power electronics dominate. An operational strategy improving the energy efficiency through an optimized power flow distribution within the storage system is developed. The power flow distribution strategy is based on the reduction of the power electronics losses at no-load/partial-load by minimizing their in-operation time. The simulation derived power flow distribution strategy is implemented in the real-life storage system. Field-test measurements and analysis prove the functionality of the power flow distribution strategy and reveal the reduction of the energy throughput of the units by 7%, as well as a significant reduction of energy losses in the units by 24%. The cost savings for electricity over the system’s lifetime are approximated to 4.4% of its investment cost.

  2. Accurate nonlocal theory for cascaded quadratic soliton compression

    DEFF Research Database (Denmark)

    Bache, Morten; Bang, Ole; Moses, Jeffrey

    2007-01-01

    We study soliton compression in bulk quadratic nonlinear materials at 800 nm, where group-velocity mismatch dominates. We develop a nonlocal theory showing that efficient compression depends strongly on characteristic nonlocal time scales related to pulse dispersion....

  3. Investigation on premature occurrence of critical heat flux under oscillatory flow and power conditions

    International Nuclear Information System (INIS)

    Vishnoi, A.K.; Dasgupta, A.; Chandraker, D.K.; Nayak, A.K.; Vijayan, P.K.

    2015-01-01

    Two-phase natural circulation loops have extensive applications in nuclear and process industries. One of the major concerns with natural circulation is the occurrence of the various types of flow instabilities, which can cause premature boiling crisis due to flow and power oscillations. In this work a transient computer code COPCOS (Code for Prediction of CHF under Oscillating flow and power condition) has been developed to predict the premature occurrence of CHF (critical heat flux) under oscillating flow and power. The code incorporates conduction equation of the fuel and coolant energy equation. For CHF prediction, CHF look-up table developed by Groeneveld is used. A facility named CHF and Instability Loop (CHIL) has been set up to study the effect of oscillatory flow on CHF. CHF and Instability Loop (CHIL) is a simple rectangular loop having a 10.5 mm ID and 1.2 m long test section. The flow through the test section is controlled by a canned motor pump using a Variable Frequency Drive (VFD). This leads to the ability of having a very precise control over flow oscillations which can be induced in the test section. The effect of frequency and amplitude of flow oscillation on occurrence of premature CHF has been investigated in this facility using COPCOS. Full paper covers details of COPCOS code, description of the facility and effect of frequency and the effect of oscillatory flow on CHF in the facility. (author)

  4. Quadratic grating apodized photon sieves for simultaneous multiplane microscopy

    Science.gov (United States)

    Cheng, Yiguang; Zhu, Jiangping; He, Yu; Tang, Yan; Hu, Song; Zhao, Lixin

    2017-10-01

    We present a new type of imaging device, named quadratic grating apodized photon sieve (QGPS), used as the objective for simultaneous multiplane imaging in X-rays. The proposed QGPS is structured based on the combination of two concepts: photon sieves and quadratic gratings. Its design principles are also expounded in detail. Analysis of imaging properties of QGPS in terms of point-spread function shows that QGPS can image multiple layers within an object field onto a single image plane. Simulated and experimental results in visible light both demonstrate the feasibility of QGPS for simultaneous multiplane imaging, which is extremely promising to detect dynamic specimens by X-ray microscopy in the physical and life sciences.

  5. Fundamental quadratic variational principle underlying general relativity

    International Nuclear Information System (INIS)

    Atkins, W.K.

    1983-01-01

    The fundamental result of Lanczos is used in a new type of quadratic variational principle whose field equations are the Einstein field equations together with the Yang-Mills type equations for the Riemann curvature. Additionally, a spin-2 theory of gravity for the special case of the Einstein vacuum is discussed

  6. Investigating Students' Mathematical Difficulties with Quadratic Equations

    Science.gov (United States)

    O'Connor, Bronwyn Reid; Norton, Stephen

    2016-01-01

    This paper examines the factors that hinder students' success in working with and understanding the mathematics of quadratic equations using a case study analysis of student error patterns. Twenty-five Year 11 students were administered a written test to examine their understanding of concepts and procedures associated with this topic. The…

  7. Optimal Power Flow for Distribution Systems under Uncertain Forecasts: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Dall' Anese, Emiliano; Baker, Kyri; Summers, Tyler

    2016-12-01

    The paper focuses on distribution systems featuring renewable energy sources and energy storage devices, and develops an optimal power flow (OPF) approach to optimize the system operation in spite of forecasting errors. The proposed method builds on a chance-constrained multi-period AC OPF formulation, where probabilistic constraints are utilized to enforce voltage regulation with a prescribed probability. To enable a computationally affordable solution approach, a convex reformulation of the OPF task is obtained by resorting to i) pertinent linear approximations of the power flow equations, and ii) convex approximations of the chance constraints. Particularly, the approximate chance constraints provide conservative bounds that hold for arbitrary distributions of the forecasting errors. An adaptive optimization strategy is then obtained by embedding the proposed OPF task into a model predictive control framework.

  8. Uncertainty analysis of power monitoring transit time ultrasonic flow meters

    International Nuclear Information System (INIS)

    Orosz, A.; Miller, D. W.; Christensen, R. N.; Arndt, S.

    2006-01-01

    A general uncertainty analysis is applied to chordal, transit time ultrasonic flow meters that are used in nuclear power plant feedwater loops. This investigation focuses on relationships between the major parameters of the flow measurement. For this study, mass flow rate is divided into three components, profile factor, density, and a form of volumetric flow rate. All system parameters are used to calculate values for these three components. Uncertainty is analyzed using a perturbation method. Sensitivity coefficients for major system parameters are shown, and these coefficients are applicable to a range of ultrasonic flow meters used in similar applications. Also shown is the uncertainty to be expected for density along with its relationship to other system uncertainties. One other conclusion is that pipe diameter sensitivity coefficients may be a function of the calibration technique used. (authors)

  9. Analysis and Experimental Verification of New Power Flow Control for Grid-Connected Inverter with LCL Filter in Microgrid

    Science.gov (United States)

    Gu, Herong; Guan, Yajuan; Wang, Huaibao; Wei, Baoze; Guo, Xiaoqiang

    2014-01-01

    Microgrid is an effective way to integrate the distributed energy resources into the utility networks. One of the most important issues is the power flow control of grid-connected voltage-source inverter in microgrid. In this paper, the small-signal model of the power flow control for the grid-connected inverter is established, from which it can be observed that the conventional power flow control may suffer from the poor damping and slow transient response. While the new power flow control can mitigate these problems without affecting the steady-state power flow regulation. Results of continuous-domain simulations in MATLAB and digital control experiments based on a 32-bit fixed-point TMS320F2812 DSP are in good agreement, which verify the small signal model analysis and effectiveness of the proposed method. PMID:24672304

  10. Analysis and experimental verification of new power flow control for grid-connected inverter with LCL filter in microgrid.

    Science.gov (United States)

    Gu, Herong; Guan, Yajuan; Wang, Huaibao; Wei, Baoze; Guo, Xiaoqiang

    2014-01-01

    Microgrid is an effective way to integrate the distributed energy resources into the utility networks. One of the most important issues is the power flow control of grid-connected voltage-source inverter in microgrid. In this paper, the small-signal model of the power flow control for the grid-connected inverter is established, from which it can be observed that the conventional power flow control may suffer from the poor damping and slow transient response. While the new power flow control can mitigate these problems without affecting the steady-state power flow regulation. Results of continuous-domain simulations in MATLAB and digital control experiments based on a 32-bit fixed-point TMS320F2812 DSP are in good agreement, which verify the small signal model analysis and effectiveness of the proposed method.

  11. PROBABILISTIC FLOW DISTRIBUTION AS A REACTION TO THE STOCHASTICITY OF THE LOAD IN THE POWER SYSTEM

    Directory of Open Access Journals (Sweden)

    A. M. Hashimov

    2016-01-01

    Full Text Available For the analysis and control of power systems deterministic approaches that are implemented in the form of well-known methods and models of calculation of steady-state and transient modes are mostly use in current practice. With the use of these methods it is possible to obtain solutions only for fixed circuit parameters of the system scheme and assuming that active and reactive powers as well as generation in nodal points of the network remain the same. In reality the stochastic character of power consumption cause the casual fluctuations of voltages at the nodes and power flows in electric power lines of the power system. Such casual fluctuations of operation can be estimated with the use of probabilistic simulation of the power flows. In the article the results of research of the influence of depth of casual fluctuations of the load power of the system on the probability distribution of voltage at nodes as well as on the flows of active and reactive power in the lines are presented. Probabilistic modeling of flow under stochastic load change is performed for different levels of fluctuations and under loading of the mode of the system up to peak load power. Test study to quantify the effect of stochastic variability of loads on the probabilistic distribution parameters of the modes was carried out on behalf of the electrical network of the real power system. The results of the simulation of the probability flow distribution for these fluctuations of the load, represented in the form of discrete sample values of the active power obtained with the use of the analytical Monte-Carlo method, and real data measurements of their values in the network under examination were compared.

  12. Analytic Expression of Arbitrary Matrix Elements for Boson Exponential Quadratic Polynomial Operators

    Institute of Scientific and Technical Information of China (English)

    XU Xiu-Wei; REN Ting-Qi; LIU Shu-Yan; MA Qiu-Ming; LIU Sheng-Dian

    2007-01-01

    Making use of the transformation relation among usual, normal, and antinormal ordering for the multimode boson exponential quadratic polynomial operators (BEQPO's), we present the analytic expression of arbitrary matrix elements for BEQPO's. As a preliminary application, we obtain the exact expressions of partition function about the boson quadratic polynomial system, matrix elements in particle-number, coordinate, and momentum representation, and P representation for the BEQPO's.

  13. Factorization method of quadratic template

    Science.gov (United States)

    Kotyrba, Martin

    2017-07-01

    Multiplication of two numbers is a one-way function in mathematics. Any attempt to distribute the outcome to its roots is called factorization. There are many methods such as Fermat's factorization, Dixońs method or quadratic sieve and GNFS, which use sophisticated techniques fast factorization. All the above methods use the same basic formula differing only in its use. This article discusses a newly designed factorization method. Effective implementation of this method in programs is not important, it only represents and clearly defines its properties.

  14. Multilevel flow modeling of Monju Nuclear Power Plant

    DEFF Research Database (Denmark)

    Lind, Morten; Yoshikawa, Hidekazu; Jørgensen, Sten Bay

    2011-01-01

    Multilevel Flow Modeling is a method for modeling complex processes on multiple levels of means-end and part-whole abstraction. The modeling method has been applied on a wide range of processes including power plants, chemical engineering plants and power systems. The modeling method is supported...... with reasoning tools for fault diagnosis and control and is proposed to be used as a central knowledge base giving integrated support in diagnosis and maintenance tasks. Recent developments of MFM include the introduction of concepts for representation of control functions and the relations between plant...... functions and structure. The paper will describe how MFM can be used to represent the goals and functions of the Japanese Monju Nuclear Power Plant. A detailed explanation will be given of the model describing the relations between levels of goal, function and structural. Furthermore, it will be explained...

  15. Method to predetermine current/power flow change in a dc grid

    DEFF Research Database (Denmark)

    2017-01-01

    occurs at one of the AC/DC converters; establishing a generalized droop feedback gain matrix G; controlling current/power flow within DC grid towards predefined setpoints, by use of control law. The invention presents an analytical approach to derive the generalized feedback gain allowing......The invention relates to a method for controlling current/power flow within a power transmission system, comprising two or more interconnected converter stations. The method comprises the steps of: providing a DC admittance matrix given from the DC grid; providing a current distribution matrix...... for a number of, such as for all possible AC/DC converter outages; providing a DC bus voltage vector for the DC grid; the DC bus voltage vector being a vector containing the values of the voltage change at the AC/DC converters, measured at the AC/DC converters, before, during and after a forced current change...

  16. Finite-Time Stability and Stabilization of Nonlinear Quadratic Systems with Jumps

    Directory of Open Access Journals (Sweden)

    Minsong Zhang

    2014-01-01

    Full Text Available This paper investigates the problems of finite-time stability and finite-time stabilization for nonlinear quadratic systems with jumps. The jump time sequences here are assumed to satisfy some given constraints. Based on Lyapunov function and a particular presentation of the quadratic terms, sufficient conditions for finite-time stability and finite-time stabilization are developed to a set containing bilinear matrix inequalities (BLIMs and linear matrix inequalities (LMIs. Numerical examples are given to illustrate the effectiveness of the proposed methodology.

  17. Mixmaster cosmological model in theories of gravity with a quadratic Lagrangian

    International Nuclear Information System (INIS)

    Barrow, J.D.; Sirousse-Zia, H.

    1989-01-01

    We use the method of matched asymptotic expansions to examine the behavior of the vacuum Bianchi type-IX mixmaster universe in a gravity theory derived from a purely quadratic gravitational Lagrangian. The chaotic behavior characteristic of the general-relativistic mixmaster model disappears and the asymptotic behavior is of the monotonic, nonchaotic form found in the exactly soluble Bianchi type-I models of the quadratic theory. The asymptotic behavior far from the singularity is also found to be of monotonic nonchaotic type

  18. Game-theoretic control of PHEV charging with power flow analysis

    Directory of Open Access Journals (Sweden)

    Yuan Liu

    2016-03-01

    Full Text Available Due to an ever-increasing market penetration of plug-in hybrid electric vehicles (PHEVs, the charging demand is expected to become a main determinant of the load in future distribution systems. In this paper, we investigate the problem of controlling in-home charging of PHEVs to accomplish peak load shifting while maximizing the revenue of the distribution service provider (DSP and PHEV owners. A leader-follower game model is proposed to characterize the preference and revenue expectation of PHEV owners and DSP, respectively. The follower (PHEV owner decides when to start charging based on the pricing schedule provided by the leader (DSP. The DSP can incentivize the charging of PHEV owners to avoid system peak load. The costs associated with power distribution, line loss, and voltage regulation are incorporated in the game model via power flow analysis. Based on a linear approximation of the power flow equations, the solution of sub-game perfect Nash equilibrium (SPNE is obtained. A case study is performed based on the IEEE 13-bus test feeder and realistic PHEV charging statistics, and the results demonstrate that our proposed PHEV charging control scheme can significantly improve the power quality in distribution systems by reducing the peak load and voltage fluctuations.

  19. Integrated Power Flow and Short Circuit Calculation Method for Distribution Network with Inverter Based Distributed Generation

    Directory of Open Access Journals (Sweden)

    Shan Yang

    2016-01-01

    Full Text Available Power flow calculation and short circuit calculation are the basis of theoretical research for distribution network with inverter based distributed generation. The similarity of equivalent model for inverter based distributed generation during normal and fault conditions of distribution network and the differences between power flow and short circuit calculation are analyzed in this paper. Then an integrated power flow and short circuit calculation method for distribution network with inverter based distributed generation is proposed. The proposed method let the inverter based distributed generation be equivalent to Iθ bus, which makes it suitable to calculate the power flow of distribution network with a current limited inverter based distributed generation. And the low voltage ride through capability of inverter based distributed generation can be considered as well in this paper. Finally, some tests of power flow and short circuit current calculation are performed on a 33-bus distribution network. The calculated results from the proposed method in this paper are contrasted with those by the traditional method and the simulation method, whose results have verified the effectiveness of the integrated method suggested in this paper.

  20. Geometric Methods in the Algebraic Theory of Quadratic Forms : Summer School

    CERN Document Server

    2004-01-01

    The geometric approach to the algebraic theory of quadratic forms is the study of projective quadrics over arbitrary fields. Function fields of quadrics have been central to the proofs of fundamental results since the renewal of the theory by Pfister in the 1960's. Recently, more refined geometric tools have been brought to bear on this topic, such as Chow groups and motives, and have produced remarkable advances on a number of outstanding problems. Several aspects of these new methods are addressed in this volume, which includes - an introduction to motives of quadrics by Alexander Vishik, with various applications, notably to the splitting patterns of quadratic forms under base field extensions; - papers by Oleg Izhboldin and Nikita Karpenko on Chow groups of quadrics and their stable birational equivalence, with application to the construction of fields which carry anisotropic quadratic forms of dimension 9, but none of higher dimension; - a contribution in French by Bruno Kahn which lays out a general fra...

  1. Modeling and Vulnerability Analysis of Cyber-Physical Power Systems Considering Network Topology and Power Flow Properties

    Directory of Open Access Journals (Sweden)

    Jia Guo

    2017-01-01

    Full Text Available Conventional power systems are developing into cyber-physical power systems (CPPS with wide applications of communication, computer and control technologies. However, multiple practical cases show that the failure of cyber layers is a major factor leading to blackouts. Therefore, it is necessary to discuss the cascading failure process considering cyber layer failures and analyze the vulnerability of CPPS. In this paper, a CPPS model, which consists of cyber layer, physical layer and cyber-physical interface, is presented using complex network theory. Considering power flow properties, the impacts of cyber node failures on the cascading failure propagation process are studied. Moreover, two vulnerability indices are established from the perspective of both network structure and power flow properties. A vulnerability analysis method is proposed, and the CPPS performance before and after cascading failures is analyzed by the proposed method to calculate vulnerability indices. In the case study, three typical scenarios are analyzed to illustrate the method, and vulnerabilities under different interface strategies and attack strategies are compared. Two thresholds are proposed to value the CPPS vulnerability roughly. The results show that CPPS is more vulnerable under malicious attacks and cyber nodes with high indices are vulnerable points which should be reinforced.

  2. Classification of the quantum two dimensional superintegrable systems with quadratic integrals and the Stackel transforms

    International Nuclear Information System (INIS)

    Dakaloyannis, C.

    2006-01-01

    Full text: (author)The two dimensional quantum superintegrable systems with quadratic integrals of motion on a manifold are classified by using the quadratic associative algebra of the integrals of motion. There are six general fundamental classes of quantum superintegrable systems corresponding to the classical ones. Analytic formulas for the involved integrals are calculated in all the cases. All the known quantum superintegrable systems with quadratic integrals are classified as special cases of these six general classes. The coefficients of the quadratic associative algebra of integrals are calculated and they are compared to the coefficients of the corresponding coefficients of the Poisson quadratic algebra of the classical systems. The quantum coefficients are similar as the classical ones multiplied by a quantum coefficient -n 2 plus a quantum deformation of order n 4 and n 6 . The systems inside the classes are transformed using Stackel transforms in the quantum case as in the classical case and general form is discussed. The idea of the Jacobi Hamiltonian corresponding to the Jacobi metric in the classical case is discussed

  3. Ultrasonic meters in the feedwater flow to recover thermal power in the reactor of nuclear power plant of Laguna Verde U1 and U2

    International Nuclear Information System (INIS)

    Tijerina S, F.

    2008-01-01

    The engineers in nuclear power plants BWRs and PWRs based on the development of the ultrasonic technology for the measurement of the mass, volumetric flow, density and temperature in fluids, have applied this technology in two primary targets approved by the NRC: the use for the recovery of thermal power in the reactor and/or to be able to realize an increase of thermal power licensed in a 2% (MUR) by 1OCFR50 Appendix K. The present article mentions the current problem in the measurement of the feedwater flow with Venturi meters, which affects that the thermal balance of reactor BWRs or PWRs this underestimated. One in broad strokes describes the application of the ultrasonic technology for the ultrasonic measurement in the flow of the feedwater system of the reactor and power to recover thermal power of the reactor. One is to the methodology developed in CFE for a calibration of the temperature transmitters of RTD's and the methodology for a calibration of the venturi flow transmitters using ultrasonic measurement. Are show the measurements in the feedwater of reactor of the temperature with RTD's and ultrasonic measurement, as well as the flow with the venturi and the ultrasonic measurement operating the reactor to the 100% of nominal thermal power, before and after the calibration of the temperature transmitters and flow. Finally, is a plan to be able to realize a recovery of thermal power of the reactor, showing as carrying out their estimations. As a result of the application of ultrasonic technology in the feedwater of reactor BWR-5 in Laguna Verde, in the Unit 1 cycle 13 it was recover an equivalent energy to a thermal power of 25 MWt in the reactor and an exit electrical power of 6 M We in the turbogenerator. Also in the Unit 2 cycle 10 it was recover an equivalent energy to a thermal power of 40 MWt in the reactor and an exit electrical power of 16 M We in the turbogenerator. (Author)

  4. FIX-II/2032, BWR Pump Trip Experiment 2032, Simulation Mass Flow and Power Transients

    International Nuclear Information System (INIS)

    1988-01-01

    1 - Description of test facility: In the FIX-II pump trip experiments, mass flow and power transients were simulated subsequent to a total loss of power to the recirculation pumps in an internal pump boiling water reactor. The aim was to determine the initial power limit to give dryout in the fuel bundle for the specified transient. In addition, the peak cladding temperature was measured and the rewetting was studied. 2 - Description of test: Pump trip experiment 2032 was a part of test group 2, i.e. the mass flow transient was to simulate the pump coast down with a pump inertia of 11.3 kg.m -2 . The initial power in the 36-rod bundle was 4.44 MW which gave dryout after 1.4 s from the start of the flow transient. A maximum rod cladding temperature of 457 degrees C was measured. Rewetting was obtained after 7.6 s. 3 - Experimental limitations or shortcomings: No ECCS injection systems

  5. Wind Power Development and Energy Storage under China’s Electricity Market Reform—A Case Study of Fujian Province

    Directory of Open Access Journals (Sweden)

    Dunguo Mou

    2018-01-01

    Full Text Available This paper, based on the Fujian provincial 500 kV grid and part of the 220 kV grid and the key power plants, including hydro, coal, nuclear, gas, wind and pumping and storage hydro powers (PSHP connected to the grid, constructs an independent electricity market model. Using data that are very close to reality about coal fired power production costs, along with data about power plants’ technical constraints, this paper studies the effect of wind power on Fujian’s provincial electricity market. Firstly, the paper analyzes the relationship between wind speed and wind power output and the effects of short-term power output fluctuation on frequency modulation and voltage regulation. Secondly, under supposition of the production costs following quadratic functions, the paper analyzes the effects of changes in wind power output on the electricity supply costs under optimal power flow. Thirdly, using the bidding model in the Australian Electricity Market Operator for reference and supposing that, in a competitive market, coal fired power plants can bid 6 price bands according to their capacity, the paper analyzes effects of wind power on electricity prices under optimal power flow, the stabilizing effects of PSHP and the minimum PSHP capacity needed to stabilize the electricity market. Finally, using a daily load curve, this paper simulates the electricity prices’ fluctuation under optimal power flow and PSHP’s stabilizing effect. The results show that, although PSHP has a large external social welfare effect, it can hardly make a profit. In the end, this paper puts forward some policy suggestions for Fujian province’s wind and nuclear power development, PSHP construction and electricity market development.

  6. Oil-water flows in wells with powerful fracture reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, N.P.

    1979-01-01

    The character of two phase liquid flows from powerful layer fractures to bottom holes in Starogrodnen and Malgobek-Voznesenskiy fields in the Chechen-Ingush ASSR found in the late stage of operation. The studies were done with the electrothermometer TEG-36, the manometer MGN-2, the remote control thermal flow meter T-4, the remote control moisture meter VBST-1, the density meter GGP-1M, whose accuracy class is 1.0 and whose working limits are: temperature, up to 150/sup 0/C and pressure, up to 1000 kGs/cm/sup 2/. The breakdown of the linear filtration law and the gravitational division of the water-oil mixture phase occurred during fieldwork. The oil and water, etc., flow intervals were defined. The data from the moisture meter and the gamma density meter coincided.

  7. Phase space eigenfunctions of multidimensional quadratic Hamiltonians

    International Nuclear Information System (INIS)

    Dodonov, V.V.; Man'ko, V.I.

    1986-01-01

    We obtain the explicit expressions for phace space eigenfunctions (PSE),i.e. Weyl's symbols of dyadic operators like vertical stroken> ,vertical strokem>, being the solution of the Schroedinger equation with the Hamiltonian which is a quite arbitrary multidimensional quadratic form of the operators of Cartesian coordinates and conjugated to them momenta with time-dependent coefficients. It is shown that for an arbitrary quadratic Hamiltonian one can always construct the set of completely factorized PSE which are products of N factors, each factor being dependent only on two arguments for nnot=m and on a single argument for n=m. These arguments are nothing but constants of motion of the correspondent classical system. PSE are expressed in terms of the associated Laguerre polynomials in the case of a discrete spectrum and in terms of the Airy functions in the continuous spectrum case. Three examples are considered: a harmonic oscillator with a time-dependent frequency, a charged particle in a nonstationary uniform magnetic field, and a particle in a time-dependent uniform potential field. (orig.)

  8. Quadratic Variation by Markov Chains

    DEFF Research Database (Denmark)

    Hansen, Peter Reinhard; Horel, Guillaume

    We introduce a novel estimator of the quadratic variation that is based on the the- ory of Markov chains. The estimator is motivated by some general results concerning filtering contaminated semimartingales. Specifically, we show that filtering can in prin- ciple remove the effects of market...... microstructure noise in a general framework where little is assumed about the noise. For the practical implementation, we adopt the dis- crete Markov chain model that is well suited for the analysis of financial high-frequency prices. The Markov chain framework facilitates simple expressions and elegant analyti...

  9. Coherent states for quadratic Hamiltonians

    International Nuclear Information System (INIS)

    Contreras-Astorga, Alonso; Fernandez C, David J; Velazquez, Mercedes

    2011-01-01

    The coherent states for a set of quadratic Hamiltonians in the trap regime are constructed. A matrix technique which allows us to directly identify the creation and annihilation operators will be presented. Then, the coherent states as simultaneous eigenstates of the annihilation operators will be derived, and will be compared with those attained through the displacement operator method. The corresponding wavefunction will be found, and a general procedure for obtaining several mean values involving the canonical operators in these states will be described. The results will be illustrated through the asymmetric Penning trap.

  10. Optimal control linear quadratic methods

    CERN Document Server

    Anderson, Brian D O

    2007-01-01

    This augmented edition of a respected text teaches the reader how to use linear quadratic Gaussian methods effectively for the design of control systems. It explores linear optimal control theory from an engineering viewpoint, with step-by-step explanations that show clearly how to make practical use of the material.The three-part treatment begins with the basic theory of the linear regulator/tracker for time-invariant and time-varying systems. The Hamilton-Jacobi equation is introduced using the Principle of Optimality, and the infinite-time problem is considered. The second part outlines the

  11. Design of Distributed Controllers Seeking Optimal Power Flow Solutions Under Communication Constraints

    Energy Technology Data Exchange (ETDEWEB)

    Dall' Anese, Emiliano; Simonetto, Andrea; Dhople, Sairaj

    2016-12-29

    This paper focuses on power distribution networks featuring inverter-interfaced distributed energy resources (DERs), and develops feedback controllers that drive the DER output powers to solutions of time-varying AC optimal power flow (OPF) problems. Control synthesis is grounded on primal-dual-type methods for regularized Lagrangian functions, as well as linear approximations of the AC power-flow equations. Convergence and OPF-solution-tracking capabilities are established while acknowledging: i) communication-packet losses, and ii) partial updates of control signals. The latter case is particularly relevant since it enables asynchronous operation of the controllers where DER setpoints are updated at a fast time scale based on local voltage measurements, and information on the network state is utilized if and when available, based on communication constraints. As an application, the paper considers distribution systems with high photovoltaic integration, and demonstrates that the proposed framework provides fast voltage-regulation capabilities, while enabling the near real-time pursuit of solutions of AC OPF problems.

  12. Diagonalization of bosonic quadratic Hamiltonians by Bogoliubov transformations

    DEFF Research Database (Denmark)

    Nam, Phan Thanh; Napiorkowski, Marcin; Solovej, Jan Philip

    2016-01-01

    We provide general conditions for which bosonic quadratic Hamiltonians on Fock spaces can be diagonalized by Bogoliubov transformations. Our results cover the case when quantum systems have infinite degrees of freedom and the associated one-body kinetic and paring operators are unbounded. Our...

  13. Critical heat flux phenomena in flow boiling during step wise and ramp wise power transients

    International Nuclear Information System (INIS)

    Celata, G.P.; Cumo, M.; D'Annibale, F.; Farello, G.E.; Abou Said, S.

    1987-01-01

    The present paper deals with the results of an experimental investigation of the forced flow critical heat flux during power transients in a vertically heated channel. Experiments were carried out with a Refrigerant-12 1oop employing a circular test section which was electrically and uniformly heated. The power transients were performed with the step-wise and ramp-wise increase of the power to the test section. The test parameters included several values of the initial power (before the transient) and the final power (at the end of the transient) in the case of step-wise transients and the slope of the ramp in the case of ramp-wise transients. The pressure and specific mass flow rate, which were kept constant during the power transient,were varied from 1.2 to 2.7 MPa and 850 to 1500 Kg/sm 2 , respectively. Correlations of the experimental data for the time-to-crisis in terms of the independent parameters of the system are also proposed and verified for different values of pressure,mass flow rate, and inlet subcooling

  14. Power Flow Analysis for Low-Voltage AC and DC Microgrids Considering Droop Control and Virtual Impedance

    DEFF Research Database (Denmark)

    Li, Chendan; Chaudhary, Sanjay Kumar; Savaghebi, Mehdi

    2017-01-01

    In the low-voltage (LV) ac microgrids (MGs), with a relatively high R/X ratio, virtual impedance is usually adopted to improve the performance of droop control applied to distributed generators (DGs). At the same time, LV dc MG using virtual impedance as droop control is emerging without adequate...... power flow studies. In this paper, power flow analyses for both ac and dc MGs are formulated and implemented. The mathematical models for both types of MGs considering the concept of virtual impedance are used to be in conformity with the practical control of the DGs. As a result, calculation accuracy...... is improved for both ac and dc MG power flow analyses, comparing with previous methods without considering virtual impedance. Case studies are conducted to verify the proposed power flow analyses in terms of convergence and accuracy. Investigation of the impact to the system of internal control parameters...

  15. Quadratic mass relations in topological bootstrap theory

    International Nuclear Information System (INIS)

    Jones, C.E.; Uschersohn, J.

    1980-01-01

    From the requirement of reality of discontinuities of scattering amplitudes at the spherical level of the topological bootstrap theory, a large number of mass relations for hadrons is derived. Quadratic mass formulas for the symmetry-breaking pattern of both mesons and baryon is obtained and their relation to conventional models of symmetry breaking is briefly discussed

  16. Vacuum solutions of Bianchi cosmologies in quadratic gravity

    International Nuclear Information System (INIS)

    Deus, Juliano Alves de; Muller, Daniel

    2011-01-01

    Full text: In this work we solve numerically the vacuum solutions of field equations of Bianchi homogeneous universes in the context of Semiclassical theory. Our interest is to study the quadratic theory of gravity with regard in the cosmological description of our universe in periods of intense fields. Bianchi cosmologies are anisotropic homogeneous cosmological models, but can include the isotropic models as particular cases (Bianchi I, VII and IX include homogeneous and isotropic Friedmann models plane, hyperbolic and spherical, respectively). Homogeneous models are good cosmological representations of our universe. With focus in solutions for intense fields, like the early universe, where isotropy is not necessarily required, the adopted scenario is the vacuum solutions, where the geometry is dominant in determining the gravitation. Still following in this way, the Semiclassical theory, which considers quantum matter fields propagating in classical geometrical background, is addressed to give the field equations. This formalism leads to fourth-order ordinary differential equations, in contrast to second-order equations from General Relativity. The Lagrangian of the theory is quadratic in the Ricci scalar and in the Ricci tensor. The equations system is highly non-linear and can be only numerically solved, except perhaps for few particular cases. We obtained numerical solutions for Bianchi V II A evolving to Minkowski and to de Sitter solutions, and also to singularities. The both first and second solutions were obtained choosing initial conditions near from respective exact vacuum solutions from Einstein theory, which are also exact solutions of the quadratic theory. Other Bianchi types are still under study. (author)

  17. Identification of spatially-localized initial conditions via sparse PCA

    Science.gov (United States)

    Dwivedi, Anubhav; Jovanovic, Mihailo

    2017-11-01

    Principal Component Analysis involves maximization of a quadratic form subject to a quadratic constraint on the initial flow perturbations and it is routinely used to identify the most energetic flow structures. For general flow configurations, principal components can be efficiently computed via power iteration of the forward and adjoint governing equations. However, the resulting flow structures typically have a large spatial support leading to a question of physical realizability. To obtain spatially-localized structures, we modify the quadratic constraint on the initial condition to include a convex combination with an additional regularization term which promotes sparsity in the physical domain. We formulate this constrained optimization problem as a nonlinear eigenvalue problem and employ an inverse power-iteration-based method to solve it. The resulting solution is guaranteed to converge to a nonlinear eigenvector which becomes increasingly localized as our emphasis on sparsity increases. We use several fluids examples to demonstrate that our method indeed identifies the most energetic initial perturbations that are spatially compact. This work was supported by Office of Naval Research through Grant Number N00014-15-1-2522.

  18. Non-chaotic behaviour for a class of quadratic jerk equations

    International Nuclear Information System (INIS)

    Malasoma, J.-M.

    2009-01-01

    It is shown that a class constituted by 27 different types of non-linear third-order differential equations of the form x - =j(x,x . ,x), where j is a quadratic polynomial with only one or two terms, and for which ∂j(x,y,z)/∂z is not a constant function of time, does not exhibit chaos. The three-dimensional dynamical systems associated to these equations are not necessarily dissipative everywhere nor conservative everywhere in the corresponding phase spaces. Our results include and improve some recent results obtained by Yang and Chen who only considered the case where j was a homogeneous quadratic polynomial with two terms.

  19. Walking solitons in quadratic nonlinear media

    OpenAIRE

    Torner Sabata, Lluís; Mazilu, D; Mihalache, Dumitru

    1996-01-01

    We study self-action of light in parametric wave interactions in nonlinear quadratic media. We show the existence of stationary solitons in the presence of Poynting vector beam walk-off or different group velocities between the waves. We discover that the new solitons constitute a two-parameter family, and they exist for different wave intensities and transverse velocities. We discuss the properties of the walking solitons and their experimental implications. Peer Reviewed

  20. Stochastic Linear Quadratic Optimal Control Problems

    International Nuclear Information System (INIS)

    Chen, S.; Yong, J.

    2001-01-01

    This paper is concerned with the stochastic linear quadratic optimal control problem (LQ problem, for short) for which the coefficients are allowed to be random and the cost functional is allowed to have a negative weight on the square of the control variable. Some intrinsic relations among the LQ problem, the stochastic maximum principle, and the (linear) forward-backward stochastic differential equations are established. Some results involving Riccati equation are discussed as well

  1. Hybridized electromagnetic-triboelectric nanogenerator for scavenging air-flow energy to sustainably power temperature sensors.

    Science.gov (United States)

    Wang, Xue; Wang, Shuhua; Yang, Ya; Wang, Zhong Lin

    2015-04-28

    We report a hybridized nanogenerator with dimensions of 6.7 cm × 4.5 cm × 2 cm and a weight of 42.3 g that consists of two triboelectric nanogenerators (TENGs) and two electromagnetic generators (EMGs) for scavenging air-flow energy. Under an air-flow speed of about 18 m/s, the hybridized nanogenerator can deliver largest output powers of 3.5 mW for one TENG (in correspondence of power per unit mass/volume: 8.8 mW/g and 14.6 kW/m(3)) at a loading resistance of 3 MΩ and 1.8 mW for one EMG (in correspondence of power per unit mass/volume: 0.3 mW/g and 0.4 kW/m(3)) at a loading resistance of 2 kΩ, respectively. The hybridized nanogenerator can be utilized to charge a capacitor of 3300 μF to sustainably power four temperature sensors for realizing self-powered temperature sensor networks. Moreover, a wireless temperature sensor driven by a hybridized nanogenerator charged Li-ion battery can work well to send the temperature data to a receiver/computer at a distance of 1.5 m. This work takes a significant step toward air-flow energy harvesting and its potential applications in self-powered wireless sensor networks.

  2. On misclassication probabilities of linear and quadratic classiers ...

    African Journals Online (AJOL)

    We study the theoretical misclassication probability of linear and quadratic classiers and examine the performance of these classiers under distributional variations in theory and using simulation. We derive expression for Bayes errors for some competing distributions from the same family under location shift. Keywords: ...

  3. Quadratic electromechanical strain in silicon investigated by scanning probe microscopy

    Science.gov (United States)

    Yu, Junxi; Esfahani, Ehsan Nasr; Zhu, Qingfeng; Shan, Dongliang; Jia, Tingting; Xie, Shuhong; Li, Jiangyu

    2018-04-01

    Piezoresponse force microscopy (PFM) is a powerful tool widely used to characterize piezoelectricity and ferroelectricity at the nanoscale. However, it is necessary to distinguish microscopic mechanisms between piezoelectricity and non-piezoelectric contributions measured by PFM. In this work, we systematically investigate the first and second harmonic apparent piezoresponses of a silicon wafer in both vertical and lateral modes, and we show that it exhibits an apparent electromechanical response that is quadratic to the applied electric field, possibly arising from ionic electrochemical dipoles induced by the charged probe. As a result, the electromechanical response measured is dominated by the second harmonic response in the vertical mode, and its polarity can be switched by the DC voltage with the evolving coercive field and maximum amplitude, in sharp contrast to typical ferroelectric materials we used as control. The ionic activity in silicon is also confirmed by the scanning thermo-ionic microscopy measurement, and the work points toward a set of methods to distinguish true piezoelectricity from the apparent ones.

  4. Nonlinear Slewing Spacecraft Control Based on Exergy, Power Flow, and Static and Dynamic Stability

    Science.gov (United States)

    Robinett, Rush D.; Wilson, David G.

    2009-10-01

    This paper presents a new nonlinear control methodology for slewing spacecraft, which provides both necessary and sufficient conditions for stability by identifying the stability boundaries, rigid body modes, and limit cycles. Conservative Hamiltonian system concepts, which are equivalent to static stability of airplanes, are used to find and deal with the static stability boundaries: rigid body modes. The application of exergy and entropy thermodynamic concepts to the work-rate principle provides a natural partitioning through the second law of thermodynamics of power flows into exergy generator, dissipator, and storage for Hamiltonian systems that is employed to find the dynamic stability boundaries: limit cycles. This partitioning process enables the control system designer to directly evaluate and enhance the stability and performance of the system by balancing the power flowing into versus the power dissipated within the system subject to the Hamiltonian surface (power storage). Relationships are developed between exergy, power flow, static and dynamic stability, and Lyapunov analysis. The methodology is demonstrated with two illustrative examples: (1) a nonlinear oscillator with sinusoidal damping and (2) a multi-input-multi-output three-axis slewing spacecraft that employs proportional-integral-derivative tracking control with numerical simulation results.

  5. Power Flow Calculation for Weakly Meshed Distribution Networks with Multiple DGs Based on Generalized Chain-table Storage Structure

    DEFF Research Database (Denmark)

    Chen, Shuheng; Hu, Weihao; Chen, Zhe

    2014-01-01

    Based on generalized chain-table storage structure (GCTSS), a novel power flow method is proposed, which can be used to solve the power flow of weakly meshed distribution networks with multiple distributed generators (DGs). GCTSS is designed based on chain-table technology and its target is to de......Based on generalized chain-table storage structure (GCTSS), a novel power flow method is proposed, which can be used to solve the power flow of weakly meshed distribution networks with multiple distributed generators (DGs). GCTSS is designed based on chain-table technology and its target...... is to describe the topology of radial distribution networks with a clear logic and a small memory size. The strategies of compensating the equivalent currents of break-point branches and the reactive power outputs of PV-type DGs are presented on the basis of superposition theorem. Their formulations...... are simplified to be the final multi-variable linear functions. Furthermore, an accelerating factor is applied to the outer-layer reactive power compensation for improving the convergence procedure. Finally, the proposed power flow method is performed in program language VC++ 6.0, and numerical tests have been...

  6. Multi-Objective Differential Evolution for Voltage Security Constrained Optimal Power Flow in Deregulated Power Systems

    Science.gov (United States)

    Roselyn, J. Preetha; Devaraj, D.; Dash, Subhransu Sekhar

    2013-11-01

    Voltage stability is an important issue in the planning and operation of deregulated power systems. The voltage stability problems is a most challenging one for the system operators in deregulated power systems because of the intense use of transmission line capabilities and poor regulation in market environment. This article addresses the congestion management problem avoiding offline transmission capacity limits related to voltage stability by considering Voltage Security Constrained Optimal Power Flow (VSCOPF) problem in deregulated environment. This article presents the application of Multi Objective Differential Evolution (MODE) algorithm to solve the VSCOPF problem in new competitive power systems. The maximum of L-index of the load buses is taken as the indicator of voltage stability and is incorporated in the Optimal Power Flow (OPF) problem. The proposed method in hybrid power market which also gives solutions to voltage stability problems by considering the generation rescheduling cost and load shedding cost which relieves the congestion problem in deregulated environment. The buses for load shedding are selected based on the minimum eigen value of Jacobian with respect to the load shed. In the proposed approach, real power settings of generators in base case and contingency cases, generator bus voltage magnitudes, real and reactive power demands of selected load buses using sensitivity analysis are taken as the control variables and are represented as the combination of floating point numbers and integers. DE/randSF/1/bin strategy scheme of differential evolution with self-tuned parameter which employs binomial crossover and difference vector based mutation is used for the VSCOPF problem. A fuzzy based mechanism is employed to get the best compromise solution from the pareto front to aid the decision maker. The proposed VSCOPF planning model is implemented on IEEE 30-bus system, IEEE 57 bus practical system and IEEE 118 bus system. The pareto optimal

  7. A Comparative Analysis of Quadratics Unit in Singaporean, Turkish and IBDP Mathematics Textbooks

    Directory of Open Access Journals (Sweden)

    Reyhan Sağlam

    2012-12-01

    Full Text Available The purpose of this study was to analyze and compare the contents of the chapters on quadratics in three mathematics textbooks selected from Turkey, Singapore, and the International Baccalaureate Diploma Program (IBDP through content analysis. The analysis of mathematical content showed that the three textbooks have different approaches and priorities in terms of the positions of chapters and weights of the quadratics units, and the time allocated to them within the respective curricular programs. It was also found that the Turkish textbook covers a greater number of learning outcomes targeted for quadratics among the three mathematics syllabi, showing a detailed treatment of the topic compared to the other two textbooks.Key Words: Content analysis, international comparative studies, mathematics textbooks

  8. A numerical study on an optimum design of a Cross-flow type Power Turbine (CPT)

    International Nuclear Information System (INIS)

    Ha, Jin Ho; Kim, Chul Ho

    2008-01-01

    A wind turbine is one of the most popular energy conversion systems to generate electricity from the natural renewable energy source and an axial-flow type wind turbine is commonly used system for the generation electricity in the wind farm nowadays. In this study, a cross-flow type turbine has been studied for the application of wind turbine for electricity generation. The target capacity of the electric power generation of the model wind turbine developing in this project is 12volts-150A/H(about 1.8Kw). The important design parameters of the model turbine impeller are the inlet and exit angle of the turbine blade, number of blade, hub/tip ratio and exit flow angle of the housing. In this study, the radial equilibrium theorem was used to decide the inlet and exit angle of the model impeller blade and CFD technique was incorporated to have performance analysis of the design model power turbine for the optimum design of the geometry of the Cross-flow Power Turbine impeller and Casing. In CFD, Navier-Stokes equation is solved with the SIMPLEC method in a general coordinates system. Realizable k-ε turbulent model with MARS scheme was used for evaluating torque of each blade in the Cross-flow Power Turbine (CPT). From the result, the designed CPT with 24 impeller blades at α=40 .deg. and β=85 .deg. of turbine blade angle was estimated to generate 1.2Nm of the indicated torque and 200watts of the indicated power. On the basis of the rules of similarity, the generating power capacity of the real size CPT that is eight times longer than the model impeller is predicted to have an 1.6kW of the output power (about 12V-130A/H or 24V-65A/H)

  9. Pump and Flow Control Subassembly of Thermal Control Subsystem for Photovoltaic Power Module

    Science.gov (United States)

    Motil, Brian; Santen, Mark A.

    1993-01-01

    The pump and flow control subassembly (PFCS) is an orbital replacement unit (ORU) on the Space Station Freedom photovoltaic power module (PVM). The PFCS pumps liquid ammonia at a constant rate of approximately 1170 kg/hr while providing temperature control by flow regulation between the radiator and the bypass loop. Also, housed within the ORU is an accumulator to compensate for fluid volumetric changes as well as the electronics and firmware for monitoring and control of the photovoltaic thermal control system (PVTCS). Major electronic functions include signal conditioning, data interfacing and motor control. This paper will provide a description of each major component within the PFCS along with performance test data. In addition, this paper will discuss the flow control algorithm and describe how the nickel hydrogen batteries and associated power electronics will be thermally controlled through regulation of coolant flow to the radiator.

  10. Cost-optimal power system extension under flow-based market coupling

    Energy Technology Data Exchange (ETDEWEB)

    Hagspiel, Simeon; Jaegemann, Cosima; Lindenberger, Dietmar [Koeln Univ. (Germany). Energiewirtschaftliches Inst.; Brown, Tom; Cherevatskiy, Stanislav; Troester, Eckehard [Energynautics GmbH, Langen (Germany)

    2013-05-15

    Electricity market models, implemented as dynamic programming problems, have been applied widely to identify possible pathways towards a cost-optimal and low carbon electricity system. However, the joint optimization of generation and transmission remains challenging, mainly due to the fact that different characteristics and rules apply to commercial and physical exchanges of electricity in meshed networks. This paper presents a methodology that allows to optimize power generation and transmission infrastructures jointly through an iterative approach based on power transfer distribution factors (PTDFs). As PTDFs are linear representations of the physical load flow equations, they can be implemented in a linear programming environment suitable for large scale problems. The algorithm iteratively updates PTDFs when grid infrastructures are modified due to cost-optimal extension and thus yields an optimal solution with a consistent representation of physical load flows. The method is first demonstrated on a simplified three-node model where it is found to be robust and convergent. It is then applied to the European power system in order to find its cost-optimal development under the prescription of strongly decreasing CO{sub 2} emissions until 2050.

  11. High pressure axial flow fans for modern coal power stations

    Energy Technology Data Exchange (ETDEWEB)

    Cyrus, Vaclav [AHT Energetika s.r.o., Praha (Czech Republic); Koci, Petr [ZVVZ Milevsko a.s. (Czech Republic)

    2008-07-01

    Brown coal fired power stations, located in Northern Bohemia, have mostly older boiler blocks with an output of 110 and 200 MWe. Flue gases are cleaned by the desulphurization plants installed between 1993 and 1997. Usually, each boiler block has two air fans and one to three flue gas fans. Flue gas fans operate in severe conditions; fan blades should be resistant to the flue gases containing sulphur and acid drops with the operating temperature at 170 C to 190 C. Additionally, flue gas also often contains ash particles. Currently, some boiler blocks are gradually being refurbished. New blocks with an electrical power output of 600 to 700 MWe are at the design stage. Submitted paper shows our design study of one stage axial flow fan for the new blocks. Results from the new aerodynamic research of the axial flow stages were used in the fan design. (orig.)

  12. Newton's method for solving a quadratic matrix equation with special coefficient matrices

    International Nuclear Information System (INIS)

    Seo, Sang-Hyup; Seo, Jong Hyun; Kim, Hyun-Min

    2014-01-01

    We consider the iterative method for solving a quadratic matrix equation with special coefficient matrices which arises in the quasi-birth-death problem. In this paper, we show that the elementwise minimal positive solvents to quadratic matrix equations can be obtained using Newton's method. We also prove that the convergence rate of the Newton iteration is quadratic if the Fréchet derivative at the elementwise minimal positive solvent is nonsingular. However, if the Fréchet derivative is singular, the convergence rate is at least linear. Numerical experiments of the convergence rate are given.(This is summarized a paper which is to appear in Honam Mathematical Journal.)

  13. On Fredholm-Stieltjes quadratic integral equation with supremum

    International Nuclear Information System (INIS)

    Darwish, M.A.

    2007-08-01

    We prove an existence theorem of monotonic solutions for a quadratic integral equation of Fredholm-Stieltjes type in C[0,1]. The concept of measure of non-compactness and a fixed point theorem due to Darbo are the main tools in carrying out our proof. (author)

  14. Quadratic Hierarchy Flavor Rule as the Origin of Dirac CP-Violating Phases

    OpenAIRE

    Lipmanov, E. M.

    2007-01-01

    The premise of an organizing quadratic hierarchy rule in lepton-quark flavor physics was used earlier for explanation of the hierarchy patterns of four generic pairs of flavor quantities 1) charged-lepton and 2) neutrino deviations from mass-degeneracy, 3) deviations of lepton mixing from maximal magnitude and 4) deviations of quark mixing from minimal one. Here it is shown that the quadratic hierarchy equation that is uniquely related to three flavor particle generations may have yet another...

  15. On the Equivalence of Quadratic Optimization Problems Commonly Used in Portfolio Theory

    OpenAIRE

    Taras Bodnar; Nestor Parolya; Wolfgang Schmid

    2012-01-01

    In the paper, we consider three quadratic optimization problems which are frequently applied in portfolio theory, i.e, the Markowitz mean-variance problem as well as the problems based on the mean-variance utility function and the quadratic utility.Conditions are derived under which the solutions of these three optimization procedures coincide and are lying on the efficient frontier, the set of mean-variance optimal portfolios. It is shown that the solutions of the Markowitz optimization prob...

  16. Power flow analysis for islanded microgrid in hierarchical structure of control system using optimal control theory

    Directory of Open Access Journals (Sweden)

    Thang Diep Thanh

    2017-12-01

    Full Text Available In environmental uncertainties, the power flow problem in islanded microgrid (MG becomes complex and non-trivial. The optimal power flow (OPL problem is described in this paper by using the energy balance between the power generation and load demand. The paper also presents the hierarchical control structure which consists of primary, secondary, tertiary, and emergency controls. Clearly, optimal power flow (OPL which implements a distributed tertiary control in hierarchical control. MG consists of diesel engine generator (DEG, wind turbine generator (WTG, and photovoltaic (PV power. In the control system considered, operation planning is realized based on profiles such that the MG, load, wind and photovoltaic power must be forecasted in short-period, meanwhile the dispatch source (i.e., DEG needs to be scheduled. The aim of the control problem is to find the dispatch output power by minimizing the total cost of energy that leads to the Hamilton-Jacobi-Bellman equation. Experimental results are presented, showing the effectiveness of optimal control such that the generation allows demand profile.

  17. Optimal power flow based on glow worm-swarm optimization for three-phase islanded microgrids

    DEFF Research Database (Denmark)

    Quang, Ninh Nguyen; Sanseverino, Eleonora Riva; Di Silvestre, Maria Luisa

    2014-01-01

    This paper presents an application of the Glowworm Swarm Optimization method (GSO) to solve the optimal power flow problem in three-phase islanded microgrids equipped with power electronics dc-ac inverter interfaced distributed generation units. In this system, the power injected by the distribut...

  18. Mathematical modeling for laminar flow of power law fluid in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Renato A.; Mesquita, Maximilian S. [Universidade Federal do Espirito Santo (UFES), Sao Mateus, ES (Brazil). Centro Universitario Norte do Espirito Santo. Dept. de Engenharias e Computacao

    2010-07-01

    In this paper, the macroscopic equations for laminar power-law fluid flow is obtained for a porous medium starting from traditional equations (Navier-Stokes). Then, the volume averaging is applied in traditional transport equations with the power-law fluid model. This procedure leads to macroscopic transport equations set for non-Newtonian fluid. (author)

  19. Large-scale Wind Power integration in a Hydro-Thermal Power Market

    OpenAIRE

    Trøtscher, Thomas

    2007-01-01

    This master thesis describes a quadratic programming model used to calculate the spot prices in an efficient multi-area power market. The model has been adapted to Northern Europe, with focus on Denmark West and the integration of large quantities of wind power. In the model, demand and supply of electricity are equated, at an hourly time resolution, to find the spot price in each area. Historical load values are used to represent demand which is assumed to be completely inelastic. Supply i...

  20. Emotion suppression moderates the quadratic association between RSA and executive function.

    Science.gov (United States)

    Spangler, Derek P; Bell, Martha Ann; Deater-Deckard, Kirby

    2015-09-01

    There is uncertainty about whether respiratory sinus arrhythmia (RSA), a cardiac marker of adaptive emotion regulation, is involved in relatively low or high executive function performance. In the present study, we investigated (a) whether RSA during rest and tasks predict both relatively low and high executive function within a larger quadratic association among the two variables, and (b) the extent to which this quadratic trend was moderated by individual differences in emotion regulation. To achieve these aims, a sample of ethnically and socioeconomically diverse women self-reported reappraisal and emotion suppression. They next experienced a 2-min resting period during which electrocardiogram (ECG) was continually assessed. In the next phase, the women completed an array of executive function and nonexecutive cognitive tasks while ECG was measured throughout. As anticipated, resting RSA showed a quadratic association with executive function that was strongest for high suppression. These results suggest that relatively high resting RSA may predict poor executive function ability when emotion regulation consumes executive control resources needed for ongoing cognitive performance. © 2015 Society for Psychophysiological Research.

  1. Optimal Power Flow Modelling and Analysis of Hybrid AC-DC Grids with Offshore Wind Power Plant

    DEFF Research Database (Denmark)

    Dhua, Debasish; Huang, Shaojun; Wu, Qiuwei

    2017-01-01

    In order to develop renewables based energy systems, the installation of the offshore wind power plants (WPPs) is globally encouraged. However, wind power generation is intermittent and uncertain. An accurate modelling and evaluation reduces investment and provide better operation. Hence......, the wind power production level also plays a major role in a hybrid system on transmission loss evaluation. The developed model is tested in Low, Medium and High wind power production levels to determine the objective function of the OPF solution. MATLAB Optimization Toolbox and MATLAB script are used......, it is essential to develop a suitable model and apply optimization algorithms for different application scenarios. The objective of this work is to develop a generalized model and evaluate the Optimal Power Flow (OPF) solutions in a hybrid AC/DC system including HVDC (LCC based) and offshore WPP (VSC based...

  2. Distributed AC power flow method for AC and AC-DC hybrid ...

    African Journals Online (AJOL)

    DR OKE

    presented here that solves the power flow problem node-wise, minimizing losses and .... The process is continued till the nodal mismatch values are negligibly small. .... operation and control; FACTS controllers; deregulation; generations and ...

  3. Hydro-thermal power flow scheduling accounting for head variations

    International Nuclear Information System (INIS)

    El-Hawary, M.E.; Ravindranath, K.M.

    1992-01-01

    In this paper the authors treat the problem of optimal economic operation of hydrothermal electric power systems with variable head hydro plants employing the power flow equations to represent the network. Newton's method is used to solve the problem for a number of test systems. A comparison with solutions with fixed head is presented. In general the optimal schedule requires higher slack bus and thermal power generation and cost in the case of variable head hydro plant than that required by the fixed head hydro plant in all demand periods. Correspondingly, the hydro generation is less in the case of variable head hydro plant compared to fixed head hydro plant. A negligible difference in voltage magnitudes in all the time intervals, but it is observed that slightly higher voltages occur in the case of the fixed head hydro plant. Higher power and energy losses occur in the case of variable head hydro plants compared to the fixed head hydro plants

  4. Simulation of Valve Operation for Flow Interrupt Test in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Kim, Jae Hyung; Shin, Dae Yong; Shin, Dong Woo; Kim, Charn Jung; Lee, Jung Hee

    2012-01-01

    The valve used in nuclear power plant must be qualified for the function according to the KEPIC MF. The test valve must be selected by shape and size, which is given by KEPIC MF. In the functional test, the mathematical model for the valve operation is needed. The mathematical model must be verified by the test, whose method and procedure is defined in KEPIC MF. The lack of analytical technique has lead to the poor mathematical model, with which the functional test for the big valve is impossible with analytical method. Especially, the tank and rupture disk in the flow test is not considered and the result of the analysis is so different to the real one. In these days, the 3D model for the flow interrupt test makes more accurate analysis. And no facility about functional test reduces the research will for the nuclear power plant valve. For this problem, the test facility for the functional test of the valve and pump in nuclear power plant has been made until 2012. With the test facility, the research project related the valve were initiated in KIMM( Korea Institute of Machinery and Materials). And the joint project to SNU(Seoul National University) has been going on the numerical analysis for the valve in nuclear power plant. Using the commercial software and user subroutine, UDF, the co-simulation with multi-body dynamic and fluid flow analysis and the addition of tank and rupture disk to the user subroutine make possible to simulate the flow interrupt test numerically. This is not simple and regular analysis, which was introduced in user subroutine. In order to simulate the real situation, the engineering work, related mathematical model, and the programming in the user subroutine are needed. This study is on the making the mathematical model for the functional test of the valve in nuclear power plan. The functional test is the real test procedure and defined in KEPIC MF

  5. Flow-driven triboelectric generator for directly powering a wireless sensor node.

    Science.gov (United States)

    Wang, Shuhua; Mu, Xiaojing; Yang, Ya; Sun, Chengliang; Gu, Alex Yuandong; Wang, Zhong Lin

    2015-01-14

    A triboelectric generator (TEG) for scavenging flow-driven mechanical -energy to directly power a wireless sensor node is demonstrated for the first time. The output performances of TEGs with different dimensions are systematically investigated, indicating that a largest output power of about 3.7 mW for one TEG can be achieved under an external load of 3 MΩ. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Multi-objective optimal reactive power dispatch to maximize power system social welfare in the presence of generalized unified power flow controller

    Directory of Open Access Journals (Sweden)

    Suresh Chintalapudi Venkata

    2015-09-01

    Full Text Available In this paper a novel non-linear optimization problem is formulated to maximize the social welfare in restructured environment with generalized unified power flow controller (GUPFC. This paper presents a methodology to optimally allocate the reactive power by minimizing voltage deviation at load buses and total transmission power losses so as to maximize the social welfare. The conventional active power generation cost function is modified by combining costs of reactive power generated by the generators, shunt capacitors and total power losses to it. The formulated objectives are optimized individually and simultaneously as multi-objective optimization problem, while satisfying equality, in-equality, practical and device operational constraints. A new optimization method, based on two stage initialization and random distribution processes is proposed to test the effectiveness of the proposed approach on IEEE-30 bus system, and the detailed analysis is carried out.

  7. Particle Swarm Optimization with Various Inertia Weight Variants for Optimal Power Flow Solution

    Directory of Open Access Journals (Sweden)

    Prabha Umapathy

    2010-01-01

    Full Text Available This paper proposes an efficient method to solve the optimal power flow problem in power systems using Particle Swarm Optimization (PSO. The objective of the proposed method is to find the steady-state operating point which minimizes the fuel cost, while maintaining an acceptable system performance in terms of limits on generator power, line flow, and voltage. Three different inertia weights, a constant inertia weight (CIW, a time-varying inertia weight (TVIW, and global-local best inertia weight (GLbestIW, are considered with the particle swarm optimization algorithm to analyze the impact of inertia weight on the performance of PSO algorithm. The PSO algorithm is simulated for each of the method individually. It is observed that the PSO algorithm with the proposed inertia weight yields better results, both in terms of optimal solution and faster convergence. The proposed method has been tested on the standard IEEE 30 bus test system to prove its efficacy. The algorithm is computationally faster, in terms of the number of load flows executed, and provides better results than other heuristic techniques.

  8. General quadratic gauge theory: constraint structure, symmetries and physical functions

    Energy Technology Data Exchange (ETDEWEB)

    Gitman, D M [Institute of Physics, University of Sao Paulo (Brazil); Tyutin, I V [Lebedev Physics Institute, Moscow (Russian Federation)

    2005-06-17

    How can we relate the constraint structure and constraint dynamics of the general gauge theory in the Hamiltonian formulation to specific features of the theory in the Lagrangian formulation, especially relate the constraint structure to the gauge transformation structure of the Lagrangian action? How can we construct the general expression for the gauge charge if the constraint structure in the Hamiltonian formulation is known? Whether we can identify the physical functions defined as commuting with first-class constraints in the Hamiltonian formulation and the physical functions defined as gauge invariant functions in the Lagrangian formulation? The aim of the present paper is to consider the general quadratic gauge theory and to answer the above questions for such a theory in terms of strict assertions. To fulfil such a programme, we demonstrate the existence of the so-called superspecial phase-space variables in terms of which the quadratic Hamiltonian action takes a simple canonical form. On the basis of such a representation, we analyse a functional arbitrariness in the solutions of the equations of motion of the quadratic gauge theory and derive the general structure of symmetries by analysing a symmetry equation. We then use these results to identify the two definitions of physical functions and thus prove the Dirac conjecture.

  9. Maximum-power-point tracking control of solar heating system

    KAUST Repository

    Huang, Bin-Juine

    2012-11-01

    The present study developed a maximum-power point tracking control (MPPT) technology for solar heating system to minimize the pumping power consumption at an optimal heat collection. The net solar energy gain Q net (=Q s-W p/η e) was experimentally found to be the cost function for MPPT with maximum point. The feedback tracking control system was developed to track the optimal Q net (denoted Q max). A tracking filter which was derived from the thermal analytical model of the solar heating system was used to determine the instantaneous tracking target Q max(t). The system transfer-function model of solar heating system was also derived experimentally using a step response test and used in the design of tracking feedback control system. The PI controller was designed for a tracking target Q max(t) with a quadratic time function. The MPPT control system was implemented using a microprocessor-based controller and the test results show good tracking performance with small tracking errors. It is seen that the average mass flow rate for the specific test periods in five different days is between 18.1 and 22.9kg/min with average pumping power between 77 and 140W, which is greatly reduced as compared to the standard flow rate at 31kg/min and pumping power 450W which is based on the flow rate 0.02kg/sm 2 defined in the ANSI/ASHRAE 93-1986 Standard and the total collector area 25.9m 2. The average net solar heat collected Q net is between 8.62 and 14.1kW depending on weather condition. The MPPT control of solar heating system has been verified to be able to minimize the pumping energy consumption with optimal solar heat collection. © 2012 Elsevier Ltd.

  10. Exact solutions for oscillators with quadratic damping and mixed-parity nonlinearity

    International Nuclear Information System (INIS)

    Lai, S K; Chow, K W

    2012-01-01

    Exact vibration modes of a nonlinear oscillator, which contains both quadratic friction and a mixed-parity restoring force, are derived analytically. Two families of exact solutions are obtained in terms of rational expressions for classical Jacobi elliptic functions. The present solutions allow the investigation of the dynamical behaviour of the system in response to changes in physical parameters that concern nonlinearity. The physical significance of the signs (i.e. attractive or repulsive nature) of the linear, quadratic and cubic restoring forces is discussed. A qualitative analysis is also conducted to provide valuable physical insight into the nature of the system. (paper)

  11. The internal flow pattern analysis of a tidal power turbine operating on bidirectional generation-pumping

    International Nuclear Information System (INIS)

    Luo, Y Y; Xiao, Y X; Wang, Z W

    2013-01-01

    Using tidal energy can reduce environment pollution, save conventional energy and improve energy structure, hence it presents great advantage and is developing potential. Influenced by flood tide and low tide, a fully functional tidal power station needs to experience six operating modes, including bidirectional generation, pumping and sluice; the internal unsteady flow pattern and dynamic characters are very complicated. Based on a bidirectional tidal generator unit, three-dimensional unsteady flows in the flow path were calculated for four typical operating conditions with the pressure pulsation characteristics analyzed. According to the numerical results, the internal flow characteristics in the flow path were discussed. The influence of gravity to the hydraulic performance and flow characteristics were analysed. The results provide a theoretical analysis method of the hydraulic optimization design of the same type unit as well as a direction for stable operation and optimal scheduling of existing tidal power unit

  12. Modeling of unified power quality conditioner (UPQC) in distribution systems load flow

    International Nuclear Information System (INIS)

    Hosseini, M.; Shayanfar, H.A.; Fotuhi-Firuzabad, M.

    2009-01-01

    This paper presents modeling of unified power quality conditioner (UPQC) in load flow calculations for steady-state voltage compensation. An accurate model for this device is derived to use in load flow calculations. The rating of this device as well as direction of reactive power injection required to compensate voltage to the desired value (1 p.u.) is derived and discussed analytically and mathematically using phasor diagram method. Since performance of the compensator varies when it reaches to its maximum capacity, modeling of UPQC in its maximum rating of reactive power injection is derived. The validity of the proposed model is examined using two standard distribution systems consisting of 33 and 69 nodes, respectively. The best location of UPQC for under voltage problem mitigation in the distribution network is determined. The results show the validity of the proposed model for UPQC in large distribution systems.

  13. Modeling of unified power quality conditioner (UPQC) in distribution systems load flow

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, M.; Shayanfar, H.A. [Center of Excellence for Power System Automation and Operation, Department of Electrical Engineering, Iran University of Science and Technology, Tehran (Iran); Fotuhi-Firuzabad, M. [Department of Electrical Engineering, Sharif University of Technology, Tehran (Iran)

    2009-06-15

    This paper presents modeling of unified power quality conditioner (UPQC) in load flow calculations for steady-state voltage compensation. An accurate model for this device is derived to use in load flow calculations. The rating of this device as well as direction of reactive power injection required to compensate voltage to the desired value (1 p.u.) is derived and discussed analytically and mathematically using phasor diagram method. Since performance of the compensator varies when it reaches to its maximum capacity, modeling of UPQC in its maximum rating of reactive power injection is derived. The validity of the proposed model is examined using two standard distribution systems consisting of 33 and 69 nodes, respectively. The best location of UPQC for under voltage problem mitigation in the distribution network is determined. The results show the validity of the proposed model for UPQC in large distribution systems. (author)

  14. Global stability and quadratic Hamiltonian structure in Lotka-Volterra and quasi-polynomial systems

    Energy Technology Data Exchange (ETDEWEB)

    Szederkenyi, Gabor; Hangos, Katalin M

    2004-04-26

    We show that the global stability of quasi-polynomial (QP) and Lotka-Volterra (LV) systems with the well-known logarithmic Lyapunov function is equivalent to the existence of a local generalized dissipative Hamiltonian description of the LV system with a diagonal quadratic form as a Hamiltonian function. The Hamiltonian function can be calculated and the quadratic dissipativity neighborhood of the origin can be estimated by solving linear matrix inequalities.

  15. Global stability and quadratic Hamiltonian structure in Lotka-Volterra and quasi-polynomial systems

    Science.gov (United States)

    Szederkényi, Gábor; Hangos, Katalin M.

    2004-04-01

    We show that the global stability of quasi-polynomial (QP) and Lotka-Volterra (LV) systems with the well-known logarithmic Lyapunov function is equivalent to the existence of a local generalized dissipative Hamiltonian description of the LV system with a diagonal quadratic form as a Hamiltonian function. The Hamiltonian function can be calculated and the quadratic dissipativity neighborhood of the origin can be estimated by solving linear matrix inequalities.

  16. Global stability and quadratic Hamiltonian structure in Lotka-Volterra and quasi-polynomial systems

    International Nuclear Information System (INIS)

    Szederkenyi, Gabor; Hangos, Katalin M.

    2004-01-01

    We show that the global stability of quasi-polynomial (QP) and Lotka-Volterra (LV) systems with the well-known logarithmic Lyapunov function is equivalent to the existence of a local generalized dissipative Hamiltonian description of the LV system with a diagonal quadratic form as a Hamiltonian function. The Hamiltonian function can be calculated and the quadratic dissipativity neighborhood of the origin can be estimated by solving linear matrix inequalities

  17. Exponential quadratic operators and evolution of bosonic systems coupled to a heat bath

    International Nuclear Information System (INIS)

    Ni Xiaotong; Liu Yuxi; Kwek, L. C.; Wang Xiangbin

    2010-01-01

    Using exponential quadratic operators, we present a general framework for studying the exact dynamics of system-bath interaction in which the Hamiltonian is described by the quadratic form of bosonic operators. To demonstrate the versatility of the approach, we study how the environment affects the squeezing of quadrature components of the system. We further propose that the squeezing can be enhanced when parity kicks are applied to the system.

  18. An Alternating Direction Method for Convex Quadratic Second-Order Cone Programming with Bounded Constraints

    Directory of Open Access Journals (Sweden)

    Xuewen Mu

    2015-01-01

    quadratic programming over second-order cones and a bounded set. At each iteration, we only need to compute the metric projection onto the second-order cones and the projection onto the bound set. The result of convergence is given. Numerical results demonstrate that our method is efficient for the convex quadratic second-order cone programming problems with bounded constraints.

  19. Impact of DC link control strategies on the power-flow convergence of integrated AC–DC systems

    Directory of Open Access Journals (Sweden)

    Shagufta Khan

    2016-03-01

    Full Text Available For the power-flow solution of integrated AC–DC systems, five quantities are required to be solved per converter, against three independent equations available. These three equations consist of two basic converter equations and one DC network equation, corresponding to each converter. Thus, for solution, two additional equations are required. These two equations are derived from the control specifications adopted for the DC link. Depending on the application, several combinations of valid control specifications are possible. A set of valid control specifications constitutes a control strategy. It is observed that the control strategy adopted for the DC link strongly affects the power-flow convergence of integrated AC–DC systems. This paper investigates how different control strategies affect the power flow convergence of integrated AC–DC systems. Sequential method is used to solve the DC variables in the Newton Raphson (NR power flow model. Seven typical control strategies have been taken into consideration. This is validated by numerous case studies carried out with multiple DC links incorporated in the IEEE 118-bus and 300-bus test systems.

  20. Groundwater flow modeling focused on the Fukushima Daiichi Nuclear Power Plant Site

    International Nuclear Information System (INIS)

    Saegusa, Hiromitsu; Onoe, Hironori; Kohashi, Akio; Watanabe, Masahisa

    2015-01-01

    Fukushima Daiichi nuclear power plant of Tokyo Electric Power Company is facing contaminated water issues in the aftermath of the Great East Japan Earthquake on March 11, 2011. The amount of contaminated water is continuously increasing due to groundwater leakage into the underground part of reactor and turbine buildings. Therefore, it is important to understand the groundwater flow conditions at the site and to predict the impact of countermeasures taken for isolating groundwater from the source of the contamination, i.e. the reactor buildings. Installations, such as of land-side and sea-side impermeable walls have been planned as countermeasures. In this study, groundwater flow modeling has been performed to estimate the response of groundwater flow conditions to the countermeasures. From the modeling, groundwater recharge and discharge areas, major groundwater flow direction, inflow rate into underground part of the buildings, and changes in response to implementation of the countermeasures could be reasonably estimated. The results indicate that the countermeasures will decrease the volume of inflow into the underground part of the buildings. This means that the countermeasures will be effective in reducing the discharge volume of contaminated groundwater to ocean. (author)

  1. Reproduction of the flow-power map of the Laguna Verde power plant

    International Nuclear Information System (INIS)

    Amador G, R.; Gonzalez M, V.M.

    1993-01-01

    The National Commission of Nuclear Safety and Safeguards (CNSNS) requires to have calculation tools which allows it to make analysis independent of the behavior of the reactor core of Laguna Verde nuclear power plant (CNLV) with the purpose to support the evaluation and discharge activities of the fuel recharges licensing. The software package Fms (Fuel Management System) allows to carry out an analysis of the core of the BWR type reactors along the operation cycle to detect possible anomalies and/or helping in the fuel management. In this work it is reproduced the flow-power for the CNLV using the Presto code of the Fms software package. The comparison of results with the map used by the operators of CNLV shows good agreement between them. Another exercise carried out was the changes study that the axial and radial power outlines undergo as well as the thermohydraulic parameters (LHGR, APLHGR, CPR) when moving a control rod. The obtained results show that is had the experience to effect analysis of the reactor behavior using the Presto-Fms code therefore the study of the rest of the software package for the obtention of nuclear parameters used in this code is recommended. (Author)

  2. Pareto optimality in infinite horizon linear quadratic differential games

    NARCIS (Netherlands)

    Reddy, P.V.; Engwerda, J.C.

    2013-01-01

    In this article we derive conditions for the existence of Pareto optimal solutions for linear quadratic infinite horizon cooperative differential games. First, we present a necessary and sufficient characterization for Pareto optimality which translates to solving a set of constrained optimal

  3. A Unified Approach to Teaching Quadratic and Cubic Equations.

    Science.gov (United States)

    Ward, A. J. B.

    2003-01-01

    Presents a simple method for teaching the algebraic solution of cubic equations via completion of the cube. Shows that this method is readily accepted by students already familiar with completion of the square as a method for quadratic equations. (Author/KHR)

  4. Design of Distributed Controllers Seeking Optimal Power Flow Solutions under Communication Constraints: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Dall' Anese, Emiliano; Simonetto, Andrea; Dhople, Sairaj

    2016-12-01

    This paper focuses on power distribution networks featuring inverter-interfaced distributed energy resources (DERs), and develops feedback controllers that drive the DER output powers to solutions of time-varying AC optimal power flow (OPF) problems. Control synthesis is grounded on primal-dual-type methods for regularized Lagrangian functions, as well as linear approximations of the AC power-flow equations. Convergence and OPF-solution-tracking capabilities are established while acknowledging: i) communication-packet losses, and ii) partial updates of control signals. The latter case is particularly relevant since it enables asynchronous operation of the controllers where DER setpoints are updated at a fast time scale based on local voltage measurements, and information on the network state is utilized if and when available, based on communication constraints. As an application, the paper considers distribution systems with high photovoltaic integration, and demonstrates that the proposed framework provides fast voltage-regulation capabilities, while enabling the near real-time pursuit of solutions of AC OPF problems.

  5. Optimal power flow with optimal placement TCSC device on 500 kV Java-Bali electrical power system using genetic Algorithm-Taguchi method

    Science.gov (United States)

    Apribowo, Chico Hermanu Brillianto; Ibrahim, Muhammad Hamka; Wicaksono, F. X. Rian

    2018-02-01

    The growing burden of the load and the complexity of the power system has had an impact on the need for optimization of power system operation. Optimal power flow (OPF) with optimal location placement and rating of thyristor controlled series capacitor (TCSC) is an effective solution used to determine the economic cost of operating the plant and regulate the power flow in the power system. The purpose of this study is to minimize the total cost of generation by placing the location and the optimal rating of TCSC using genetic algorithm-design of experiment techniques (GA-DOE). Simulation on Java-Bali system 500 kV with the amount of TCSC used by 5 compensator, the proposed method can reduce the generation cost by 0.89% compared to OPF without using TCSC.

  6. Contingency management of power system with Interline Power Flow Controller using Real Power Performance Index and Line Stability Index

    Directory of Open Access Journals (Sweden)

    Akanksha Mishra

    2016-03-01

    Full Text Available As a result of privatization of the electrical industry the power transmission lines have to transfer power at their maximum transmission limits because of the competitive scenario of the electrical market. Hence, secured operation of power system has become one of the most important issues of modern era. In this paper, a probability of severity based placement strategy for Interline Power Flow Controller (IPFC has been proposed based on Composite Severity Index (CSI. The composite severity index provides an exact measure of stress in the line in terms of mega watt overloading and voltage instability. IPFC is placed on the line which has the highest probability of severity during the occurrence of different outages. The IPFC has been tuned for a multi-objective function using Differential Evolution (DE and the results have been compared with genetic Algorithm (GA. To verify the proposed method, it has been tested and implemented on IEEE 14 and 57 bus systems.

  7. Fast parallel DNA-based algorithms for molecular computation: quadratic congruence and factoring integers.

    Science.gov (United States)

    Chang, Weng-Long

    2012-03-01

    Assume that n is a positive integer. If there is an integer such that M (2) ≡ C (mod n), i.e., the congruence has a solution, then C is said to be a quadratic congruence (mod n). If the congruence does not have a solution, then C is said to be a quadratic noncongruence (mod n). The task of solving the problem is central to many important applications, the most obvious being cryptography. In this article, we describe a DNA-based algorithm for solving quadratic congruence and factoring integers. In additional to this novel contribution, we also show the utility of our encoding scheme, and of the algorithm's submodules. We demonstrate how a variety of arithmetic, shifted and comparative operations, namely bitwise and full addition, subtraction, left shifter and comparison perhaps are performed using strands of DNA.

  8. Optical-response properties in hybrid optomechanical systems with quadratic coupling

    Science.gov (United States)

    Sun, Xue-Jian; Wang, Xin; Liu, Li-Na; Liu, Wen-Xiao; Fang, Ai-Ping; Li, Hong-Rong

    2018-02-01

    We theoretically investigate the optical-response properties of the four-mode quadratically coupled optomechanical system (OMS), in which two standard OMSs with quadratic coupling are coupled to each other via a common waveguide. In the presence of a strong control field applied to one cavity and a weak probe field applied to the other, we show that by suitably tuning the system parameters, there appears the normal mode splitting, optomechanically induced absorption, and double or triple electromagnetically induced transparency phenomena in the probe absorption spectrum. In particular, the explicit physical explanations for those fantastic phenomena are detailed discussed. Moreover, we also show that our proposal can be exploited to implement the optical switch as well as the slow and fast light effects.

  9. Study of Power Flow Algorithm of AC/DC Distribution System including VSC-MTDC

    Directory of Open Access Journals (Sweden)

    Haifeng Liang

    2015-08-01

    Full Text Available In recent years, distributed generation and a large number of sensitive AC and DC loads have been connected to distribution networks, which introduce a series of challenges to distribution network operators (DNOs. In addition, the advantages of DC distribution networks, such as the energy conservation and emission reduction, mean that the voltage source converter based multi-terminal direct current (VSC-MTDC for AC/DC distribution systems demonstrates a great potential, hence drawing growing research interest. In this paper, considering losses of the reactor, the filter and the converter, a mathematical model of VSC-HVDC for the load flow analysis is derived. An AC/DC distribution network architecture has been built, based on which the differences in modified equations of the VSC-MTDC-based network under different control modes are analyzed. In addition, corresponding interface functions under five control modes are provided, and a back/forward iterative algorithm which is applied to power flow calculation of the AC/DC distribution system including VSC-MTDC is proposed. Finally, by calculating the power flow of the modified IEEE14 AC/DC distribution network, the efficiency and validity of the model and algorithm are evaluated. With various distributed generations connected to the network at appropriate locations, power flow results show that network losses and utilization of transmission networks are effectively reduced.

  10. Power flow modelling in electric networks with renewable energy sources in large areas

    International Nuclear Information System (INIS)

    Buhawa, Z. M.; Dvorsky, E.

    2012-01-01

    In many worlds regions there is a great potential for utilizing home grid connected renewable power generating systems, with capacities of MW thousands. The optimal utilization of these sources is connected with power flow possibilities trough the power network in which they have to be connected. There is necessary to respect the long distances among the electric power sources with great outputs and power consumption and non even distribution of the power sources as well. The article gives the solution possibilities for Libya region under utilization of wind renewable sources in north in shore regions. (Authors)

  11. Quadratic Lagrangians and Legendre transformation

    International Nuclear Information System (INIS)

    Magnano, G.

    1988-01-01

    In recent years interest is grown about the so-called non-linear Lagrangians for gravitation. In particular, the quadratic lagrangians are currently believed to play a fundamental role both for quantum gravity and for the super-gravity approach. The higher order and high degree of non-linearity of these theories make very difficult to extract physical information out of them. The author discusses how the Legendre transformation can be applied to a wide class of non-linear theories: it corresponds to a conformal transformation whenever the Lagrangian depends only on the scalar curvature, while it has a more general form if the Lagrangian depends on the full Ricci tensor

  12. On Newton-Raphson formulation and algorithm for displacement based structural dynamics problem with quadratic damping nonlinearity

    Directory of Open Access Journals (Sweden)

    Koh Kim Jie

    2017-01-01

    Full Text Available Quadratic damping nonlinearity is challenging for displacement based structural dynamics problem as the problem is nonlinear in time derivative of the primitive variable. For such nonlinearity, the formulation of tangent stiffness matrix is not lucid in the literature. Consequently, ambiguity related to kinematics update arises when implementing the time integration-iterative algorithm. In present work, an Euler-Bernoulli beam vibration problem with quadratic damping nonlinearity is addressed as the main source of quadratic damping nonlinearity arises from drag force estimation, which is generally valid only for slender structures. Employing Newton-Raphson formulation, tangent stiffness components associated with quadratic damping nonlinearity requires velocity input for evaluation purpose. For this reason, two mathematically equivalent algorithm structures with different kinematics arrangement are tested. Both algorithm structures result in the same accuracy and convergence characteristic of solution.

  13. Quadratic Poisson brackets compatible with an algebra structure

    OpenAIRE

    Balinsky, A. A.; Burman, Yu.

    1994-01-01

    Quadratic Poisson brackets on a vector space equipped with a bilinear multiplication are studied. A notion of a bracket compatible with the multiplication is introduced and an effective criterion of such compatibility is given. Among compatible brackets, a subclass of coboundary brackets is described, and such brackets are enumerated in a number of examples.

  14. Classification of ξ(s)-Quadratic Stochastic Operators on 2D simplex

    International Nuclear Information System (INIS)

    Mukhamedov, Farrukh; Saburov, Mansoor; Qaralleh, Izzat

    2013-01-01

    A quadratic stochastic operator (in short QSO) is usually used to present the time evolution of differing species in biology. Some QSO has been studied by Lotka and Volterra. The general problem in the nonlinear operator theory is to study the behavior of operators. This problem was not fully finished even for the quadratic stochastic operators. To study this problem it was investigated several classes of such QSO. In this paper we study ξ (s) -QSO class of operators. We study such kind of operators on 2D simplex. We first classify these ξ (s) -QSO into 20 classes. Further, we investigate the dynamics of one class of such operators.

  15. Relativistic quantum vorticity of the quadratic form of the Dirac equation

    International Nuclear Information System (INIS)

    Asenjo, Felipe A; Mahajan, Swadesh M

    2015-01-01

    We explore the fluid version of the quadratic form of the Dirac equation, sometimes called the Feynman–Gell-Mann equation. The dynamics of the quantum spinor field is represented by equations of motion for the fluid density, the velocity field, and the spin field. In analogy with classical relativistic and non-relativistic quantum theories, the fully relativistic fluid formulation of this equation allows a vortex dynamics. The vortical form is described by a total tensor field that is the weighted combination of the inertial, electromagnetic and quantum forces. The dynamics contrives the quadratic form of the Dirac equation as a total vorticity free system. (paper)

  16. Inference for the jump part of quadratic variation of Itô semimartingales

    DEFF Research Database (Denmark)

    Veraart, Almut

    Recent research has focused on modelling asset prices by Itô semimartingales. In such a modelling framework, the quadratic variation consists of a continuous and a jump component. This paper is about inference on the jump part of the quadratic variation, which can be estimated by the difference...... of realised variance and realised multipower variation. The main contribution of this paper is twofold. First, it provides a bivariate asymptotic limit theory for realised variance and realised multipower variation in the presence of jumps. Second, this paper presents new, consistent estimators for the jump...

  17. Inference for the jump part of quadratic variation of Itô semimartingales

    DEFF Research Database (Denmark)

    Veraart, Almut

    2010-01-01

    Recent research has focused on modeling asset prices by Itô semimartingales. In such a modeling framework, the quadratic variation consists of a continuous and a jump component. This paper is about inference on the jump part of the quadratic variation, which can be estimated by the difference...... of realized variance and realized multipower variation. The main contribution of this paper is twofold. First, it provides a bivariate asymptotic limit theory for realized variance and realized multipower variation in the presence of jumps. Second, this paper presents new, consistent estimators for the jump...

  18. Newton equation for canonical, Lie-algebraic, and quadratic deformation of classical space

    International Nuclear Information System (INIS)

    Daszkiewicz, Marcin; Walczyk, Cezary J.

    2008-01-01

    The Newton equation describing particle motion in a constant external field force on canonical, Lie-algebraic, and quadratic space-time is investigated. We show that for canonical deformation of space-time the dynamical effects are absent, while in the case of Lie-algebraic noncommutativity, when spatial coordinates commute to the time variable, the additional acceleration of the particle is generated. We also indicate that in the case of spatial coordinates commuting in a Lie-algebraic way, as well as for quadratic deformation, there appear additional velocity and position-dependent forces

  19. Robust Weak Chimeras in Oscillator Networks with Delayed Linear and Quadratic Interactions

    Science.gov (United States)

    Bick, Christian; Sebek, Michael; Kiss, István Z.

    2017-10-01

    We present an approach to generate chimera dynamics (localized frequency synchrony) in oscillator networks with two populations of (at least) two elements using a general method based on a delayed interaction with linear and quadratic terms. The coupling design yields robust chimeras through a phase-model-based design of the delay and the ratio of linear and quadratic components of the interactions. We demonstrate the method in the Brusselator model and experiments with electrochemical oscillators. The technique opens the way to directly bridge chimera dynamics in phase models and real-world oscillator networks.

  20. Inelastic scattering in a local polaron model with quadratic coupling to bosons

    DEFF Research Database (Denmark)

    Olsen, Thomas

    2009-01-01

    We calculate the inelastic scattering probabilities in the wide band limit of a local polaron model with quadratic coupling to bosons. The central object is a two-particle Green's function which is calculated exactly using a purely algebraic approach. Compared with the usual linear interaction term...... a quadratic interaction term gives higher probabilities for inelastic scattering involving a large number of bosons. As an application we consider the problem hot-electron-mediated energy transfer at surfaces and use the delta self-consistent field extension of density-functional theory to calculate...

  1. A market power model with price caps and compact DC power flow constraints

    Energy Technology Data Exchange (ETDEWEB)

    Zuwei Yu [Purdue University, West Lafayette, IN (United States). School of Industrial Engineering

    2003-05-01

    This paper presents a spatial gaming model with price caps for deregulated electricity markets. There has been heated debate on price caps that have been enforced in deregulated electricity markets. Opponents argue that price caps may send wrong economic signals while advocates argue that price caps are good for damping market power. This paper does not intend to take a stand in the argument. Given the fact that price caps are enforced in several deregulated regional electricity markets in the US, a logical step is to reflect this reality in gaining modeling. However, current gaining models have not included any price cap formulation. This paper is the first one to address the issue. DC power flow equations are used for representing the spatial nature of an electrical network. An algorithm is proposed to find a generalized Nash equilibrium under the enforcement of price caps based on the Kuhn-Tucker Vector Optimization Theorem. Case studies show the successful application of the model. The conclusion is that market power impact can be reduced under appropriate price caps. (author)

  2. Effects of energetic coherent motions on the power and wake of an axial-flow turbine

    Science.gov (United States)

    Chamorro, L. P.; Hill, C.; Neary, V. S.; Gunawan, B.; Arndt, R. E. A.; Sotiropoulos, F.

    2015-05-01

    A laboratory experiment examined the effects of energetic coherent motions on the structure of the wake and power fluctuations generated by a model axial-flow hydrokinetic turbine. The model turbine was placed in an open-channel flow and operated under subcritical conditions. The incoming flow was locally perturbed with vertically oriented cylinders of various diameters. An array of three acoustic Doppler velocimeters aligned in the cross-stream direction and a torque transducer were used to collect high-resolution and synchronous measurements of the three-velocity components of the incoming and wake flow as well as the turbine power. A strong scale-to-scale interaction between the large-scale and broadband turbulence shed by the cylinders and the turbine power revealed how the turbulence structure modulates the turbine behavior. In particular, the response of the turbine to the distinctive von Kármán-type vortices shed from the cylinders highlighted this phenomenon. The mean and fluctuating characteristics of the turbine wake are shown to be very sensitive to the energetic motions present in the flow. Tip vortices were substantially dampened and the near-field mean wake recovery accelerated in the presence of energetic motions in the flow. Strong coherent motions are shown to be more effective than turbulence levels for triggering the break-up of the spiral structure of the tip-vortices.

  3. A SDP based design of relay precoding for the power minimization of MIMO AF-relay networks

    KAUST Repository

    Rao, Anlei

    2015-09-11

    Relay precoding for multiple-input and multiple-output (MIMO) relay networks has been approached by either optimizing the efficiency performance with given power consumption constraints or minimizing the power consumption with quality-of-service (QoS) requirements. For the later type design, previous works has worked on minimizing the approximated power consumption. In this paper, exact power consumption for all relays is derived into a quadratic form by diagonalizing the minimum-square error (MSE) matrix, and the relay precoding matrix is designed by optimizing this quadratic form with the help of semidefinite programming (SDP) relaxation. Our simulation results show that such a design can achieve a gain of around 3 dB against the previous design, which optimized the approximated power consumption. © 2015 IEEE.

  4. Special cases of the quadratic shortest path problem

    NARCIS (Netherlands)

    Sotirov, Renata; Hu, Hao

    2017-01-01

    The quadratic shortest path problem (QSPP) is the problem of finding a path with prespecified start vertex s and end vertex t in a digraph such that the sum of weights of arcs and the sum of interaction costs over all pairs of arcs on the path is minimized. We first consider a variant of the QSPP

  5. Load Flow and Short Circuit Analysis of the Class III Power System of HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H. K.; Jung, H. S

    2005-12-15

    The planning, design, and operation of electric power system require engineering studies to assist in the evaluation of the system performance, reliability, safety and economics. The Class III power of HANARO supplies power for not only HANARO but also RIPF and IMEF. The starting current of most ac motors is five to ten times normal full load current. The loads of the Class III power are connected in consecutive orders at an interval for 10 seconds to avoid excessive voltage drop. This technical report deals with the load flow study and motor starting study for the Class III power of HANARO using ETAP(Electrical Transient Analyzer Program) to verify the capacity of the diesel generator. Short-circuit studies are done to determine the magnitude of the prospective currents flowing throughout the power system at various time intervals after a fault occurs. Short-circuit studies can be performed at the planning stage in order to help finalize the system layout, determine voltage levels, and size cables, transformers, and conductors. From this study, we verify the short circuit current capacity of air circuit breaker(ACB) and automatic transfer switch(ATS) of the Class III power.

  6. Evaluation of the effect of reactant gases mass flow rates on power density in a polymer electrolyte membrane fuel cell

    Science.gov (United States)

    Kahveci, E. E.; Taymaz, I.

    2018-03-01

    In this study it was experimentally investigated the effect of mass flow rates of reactant gases which is one of the most important operational parameters of polymer electrolyte membrane (PEM) fuel cell on power density. The channel type is serpentine and single PEM fuel cell has an active area of 25 cm2. Design-Expert 8.0 (trial version) was used with four variables to investigate the effect of variables on the response using. Cell temperature, hydrogen mass flow rate, oxygen mass flow rate and humidification temperature were selected as independent variables. In addition, the power density was used as response to determine the combined effects of these variables. It was kept constant cell and humidification temperatures while changing mass flow rates of reactant gases. From the results an increase occurred in power density with increasing the hydrogen flow rates. But oxygen flow rate does not have a significant effect on power density within determined mass flow rates.

  7. UEDGE Simulations for Power and Particle Flow Analysis of FRC Rocket

    Science.gov (United States)

    Zheng, Fred; Evans, Eugene S.; McGreivy, Nick; Kaptanoglu, Alan; Izacard, Olivier; Cohen, Samuel A.

    2017-10-01

    The field-reversed configuration (FRC) is under consideration for use in a direct fusion drive (DFD) rocket propulsion system for future space missions. To achieve a rocket configuration, the FRC is embedded within an asymmetric magnetic mirror, in which one end is closed and contains a gas box, and the other end is open and incorporates a magnetic nozzle. Neutral deuterium is injected into the gas box, and flows through the scrape-off layer (SOL) around the core plasma and out the magnetic nozzle, both cooling the core and serving as propellant. Previous studies have examined a range of operating conditions for the SOL of a DFD using UEDGE, a 2D fluid code; discrepancies on the order of 5% were found during the analysis of overall power balance. This work extends the analysis of the previously-studied SOL geometry by updating boundary conditions and conducting a detailed study of power and particle flows within the simulation with the goals of modeling electrical power generation instead of thrust and achieving higher specific impulse. This work was supported, in part, by DOE Contract Number DE-AC02-09CH11466 and Princeton Environmental Institute.

  8. A trust region interior point algorithm for optimal power flow problems

    Energy Technology Data Exchange (ETDEWEB)

    Wang Min [Hefei University of Technology (China). Dept. of Electrical Engineering and Automation; Liu Shengsong [Jiangsu Electric Power Dispatching and Telecommunication Company (China). Dept. of Automation

    2005-05-01

    This paper presents a new algorithm that uses the trust region interior point method to solve nonlinear optimal power flow (OPF) problems. The OPF problem is solved by a primal/dual interior point method with multiple centrality corrections as a sequence of linearized trust region sub-problems. It is the trust region that controls the linear step size and ensures the validity of the linear model. The convergence of the algorithm is improved through the modification of the trust region sub-problem. Numerical results of standard IEEE systems and two realistic networks ranging in size from 14 to 662 buses are presented. The computational results show that the proposed algorithm is very effective to optimal power flow applications, and favors the successive linear programming (SLP) method. Comparison with the predictor/corrector primal/dual interior point (PCPDIP) method is also made to demonstrate the superiority of the multiple centrality corrections technique. (author)

  9. Least Squares Problems with Absolute Quadratic Constraints

    Directory of Open Access Journals (Sweden)

    R. Schöne

    2012-01-01

    Full Text Available This paper analyzes linear least squares problems with absolute quadratic constraints. We develop a generalized theory following Bookstein's conic-fitting and Fitzgibbon's direct ellipse-specific fitting. Under simple preconditions, it can be shown that a minimum always exists and can be determined by a generalized eigenvalue problem. This problem is numerically reduced to an eigenvalue problem by multiplications of Givens' rotations. Finally, four applications of this approach are presented.

  10. Equivalent model and power flow model for electric railway traction network

    Science.gov (United States)

    Wang, Feng

    2018-05-01

    An equivalent model of the Cable Traction Network (CTN) considering the distributed capacitance effect of the cable system is proposed. The model can be divided into 110kV side and 27.5kV side two kinds. The 110kV side equivalent model can be used to calculate the power supply capacity of the CTN. The 27.5kV side equivalent model can be used to solve the voltage of the catenary. Based on the equivalent simplified model of CTN, the power flow model of CTN which involves the reactive power compensation coefficient and the interaction of voltage and current, is derived.

  11. On two-primary algebraic K-theory of quadratic number rings with focus on K_2

    NARCIS (Netherlands)

    Crainic, M.; Østvær, Paul Arne

    1999-01-01

    We give explicit formulas for the 2-rank of the algebraic K-groups of quadratic number rings. A 4-rank formula for K2 of quadratic number rings given in [1] provides further information about the actual group structure. The K2 claculations are based on 2- and 4-rank formulas for Picard groups of

  12. Flow Control in Wells Turbines for Harnessing Maximum Wave Power

    Science.gov (United States)

    Garrido, Aitor J.; Garrido, Izaskun; Otaola, Erlantz; Maseda, Javier

    2018-01-01

    Oceans, and particularly waves, offer a huge potential for energy harnessing all over the world. Nevertheless, the performance of current energy converters does not yet allow us to use the wave energy efficiently. However, new control techniques can improve the efficiency of energy converters. In this sense, the plant sensors play a key role within the control scheme, as necessary tools for parameter measuring and monitoring that are then used as control input variables to the feedback loop. Therefore, the aim of this work is to manage the rotational speed control loop in order to optimize the output power. With the help of outward looking sensors, a Maximum Power Point Tracking (MPPT) technique is employed to maximize the system efficiency. Then, the control decisions are based on the pressure drop measured by pressure sensors located along the turbine. A complete wave-to-wire model is developed so as to validate the performance of the proposed control method. For this purpose, a novel sensor-based flow controller is implemented based on the different measured signals. Thus, the performance of the proposed controller has been analyzed and compared with a case of uncontrolled plant. The simulations demonstrate that the flow control-based MPPT strategy is able to increase the output power, and they confirm both the viability and goodness. PMID:29439408

  13. Flow Control in Wells Turbines for Harnessing Maximum Wave Power.

    Science.gov (United States)

    Lekube, Jon; Garrido, Aitor J; Garrido, Izaskun; Otaola, Erlantz; Maseda, Javier

    2018-02-10

    Oceans, and particularly waves, offer a huge potential for energy harnessing all over the world. Nevertheless, the performance of current energy converters does not yet allow us to use the wave energy efficiently. However, new control techniques can improve the efficiency of energy converters. In this sense, the plant sensors play a key role within the control scheme, as necessary tools for parameter measuring and monitoring that are then used as control input variables to the feedback loop. Therefore, the aim of this work is to manage the rotational speed control loop in order to optimize the output power. With the help of outward looking sensors, a Maximum Power Point Tracking (MPPT) technique is employed to maximize the system efficiency. Then, the control decisions are based on the pressure drop measured by pressure sensors located along the turbine. A complete wave-to-wire model is developed so as to validate the performance of the proposed control method. For this purpose, a novel sensor-based flow controller is implemented based on the different measured signals. Thus, the performance of the proposed controller has been analyzed and compared with a case of uncontrolled plant. The simulations demonstrate that the flow control-based MPPT strategy is able to increase the output power, and they confirm both the viability and goodness.

  14. Initial post dynamic buckling of a quadratic-cubic column ...

    African Journals Online (AJOL)

    In this investigation, we determine the dynamic buckling load of an imperfect finite column resting on a mixed quadratic-cubic nonlinear elastic foundation trapped by an explicitly time dependent sinusoidally slowly varying dynamic load .The resultant coefficients are dynamically slowly varying and the formulation contains ...

  15. Feedback nash equilibria for linear quadratic descriptor differential games

    NARCIS (Netherlands)

    Engwerda, J.C.; Salmah, S.

    2012-01-01

    In this paper, we consider the non-cooperative linear feedback Nash quadratic differential game with an infinite planning horizon for descriptor systems of index one. The performance function is assumed to be indefinite. We derive both necessary and sufficient conditions under which this game has a

  16. Feedback Nash Equilibria for Linear Quadratic Descriptor Differential Games

    NARCIS (Netherlands)

    Engwerda, J.C.; Salmah, Y.

    2010-01-01

    In this note we consider the non-cooperative linear feedback Nash quadratic differential game with an infinite planning horizon for descriptor systems of index one. The performance function is assumed to be indefinite. We derive both necessary and sufficient conditions under which this game has a

  17. FGP Approach for Solving Multi-level Multi-objective Quadratic Fractional Programming Problem with Fuzzy parameters

    Directory of Open Access Journals (Sweden)

    m. s. osman

    2017-09-01

    Full Text Available In this paper, we consider fuzzy goal programming (FGP approach for solving multi-level multi-objective quadratic fractional programming (ML-MOQFP problem with fuzzy parameters in the constraints. Firstly, the concept of the ?-cut approach is applied to transform the set of fuzzy constraints into a common deterministic one. Then, the quadratic fractional objective functions in each level are transformed into quadratic objective functions based on a proposed transformation. Secondly, the FGP approach is utilized to obtain a compromise solution for the ML-MOQFP problem by minimizing the sum of the negative deviational variables. Finally, an illustrative numerical example is given to demonstrate the applicability and performance of the proposed approach.

  18. Scaling laws for soliton pulse compression by cascaded quadratic nonlinearities (vol 24, pg 2752, 2007)

    DEFF Research Database (Denmark)

    Bache, Morten; Moses, J.; Wise, F.W.

    2010-01-01

    Erratum for [M. Bache, J. Moses, and F. W. Wise, "Scaling laws for soliton pulse compression by cascaded quadratic nonlinearities," J. Opt. Soc. Am. B 24, 2752-2762 (2007)].......Erratum for [M. Bache, J. Moses, and F. W. Wise, "Scaling laws for soliton pulse compression by cascaded quadratic nonlinearities," J. Opt. Soc. Am. B 24, 2752-2762 (2007)]....

  19. Spatial Solitons and Induced Kerr Effects in Quasi-Phase-Matched Quadratic Media

    DEFF Research Database (Denmark)

    Clausen, Carl A. Balslev; Bang, Ole; Kivshar, Yu.S.

    1997-01-01

    We show that the evolution of the average intensity of cw beams in a quasi-phase-matched quadratic (or chi((2))) medium is strongly influenced by induced Kerr effects, such as self- and cross-phase modulation. We prove the existence of rapidly oscillating solitary waves (a spatial analog of the g......We show that the evolution of the average intensity of cw beams in a quasi-phase-matched quadratic (or chi((2))) medium is strongly influenced by induced Kerr effects, such as self- and cross-phase modulation. We prove the existence of rapidly oscillating solitary waves (a spatial analog...

  20. The quadratic-form identity for constructing the Hamiltonian structure of integrable systems

    International Nuclear Information System (INIS)

    Guo Fukui; Zhang Yufeng

    2005-01-01

    A usual loop algebra, not necessarily the matrix form of the loop algebra A-tilde n-1 , is also made use of for constructing linear isospectral problems, whose compatibility conditions exhibit a zero-curvature equation from which integrable systems are derived. In order to look for the Hamiltonian structure of such integrable systems, a quadratic-form identity is created in the present paper whose special case is just the trace identity; that is, when taking the loop algebra A-tilde 1 , the quadratic-form identity presented in this paper is completely consistent with the trace identity