#### Sample records for quadratic upstream interpolation

1. Quadratic Interpolation and Linear Lifting Design

Directory of Open Access Journals (Sweden)

Joel Solé

2007-03-01

Full Text Available A quadratic image interpolation method is stated. The formulation is connected to the optimization of lifting steps. This relation triggers the exploration of several interpolation possibilities within the same context, which uses the theory of convex optimization to minimize quadratic functions with linear constraints. The methods consider possible knowledge available from a given application. A set of linear equality constraints that relate wavelet bases and coefficients with the underlying signal is introduced in the formulation. As a consequence, the formulation turns out to be adequate for the design of lifting steps. The resulting steps are related to the prediction minimizing the detail signal energy and to the update minimizing the l2-norm of the approximation signal gradient. Results are reported for the interpolation methods in terms of PSNR and also, coding results are given for the new update lifting steps.

2. Quadratic polynomial interpolation on triangular domain

Science.gov (United States)

Li, Ying; Zhang, Congcong; Yu, Qian

2018-04-01

In the simulation of natural terrain, the continuity of sample points are not in consonance with each other always, traditional interpolation methods often can't faithfully reflect the shape information which lie in data points. So, a new method for constructing the polynomial interpolation surface on triangular domain is proposed. Firstly, projected the spatial scattered data points onto a plane and then triangulated them; Secondly, A C1 continuous piecewise quadric polynomial patch was constructed on each vertex, all patches were required to be closed to the line-interpolation one as far as possible. Lastly, the unknown quantities were gotten by minimizing the object functions, and the boundary points were treated specially. The result surfaces preserve as many properties of data points as possible under conditions of satisfying certain accuracy and continuity requirements, not too convex meantime. New method is simple to compute and has a good local property, applicable to shape fitting of mines and exploratory wells and so on. The result of new surface is given in experiments.

3. C1 Rational Quadratic Trigonometric Interpolation Spline for Data Visualization

Directory of Open Access Journals (Sweden)

Shengjun Liu

2015-01-01

Full Text Available A new C1 piecewise rational quadratic trigonometric spline with four local positive shape parameters in each subinterval is constructed to visualize the given planar data. Constraints are derived on these free shape parameters to generate shape preserving interpolation curves for positive and/or monotonic data sets. Two of these shape parameters are constrained while the other two can be set free to interactively control the shape of the curves. Moreover, the order of approximation of developed interpolant is investigated as O(h3. Numeric experiments demonstrate that our method can construct nice shape preserving interpolation curves efficiently.

4. Linear and Quadratic Interpolators Using Truncated-Matrix Multipliers and Squarers

Directory of Open Access Journals (Sweden)

E. George Walters III

2015-11-01

Full Text Available This paper presents a technique for designing linear and quadratic interpolators for function approximation using truncated multipliers and squarers. Initial coefficient values are found using a Chebyshev-series approximation and then adjusted through exhaustive simulation to minimize the maximum absolute error of the interpolator output. This technique is suitable for any function and any precision up to 24 bits (IEEE single precision. Designs for linear and quadratic interpolators that implement the 1/x, 1/ √ x, log2(1+2x, log2(x and 2x functions are presented and analyzed as examples. Results show that a proposed 24-bit interpolator computing 1/x with a design specification of ±1 unit in the last place of the product (ulp error uses 16.4% less area and 15.3% less power than a comparable standard interpolator with the same error specification. Sixteen-bit linear interpolators for other functions are shown to use up to 17.3% less area and 12.1% less power, and 16-bit quadratic interpolators are shown to use up to 25.8% less area and 24.7% less power.

5. Sinusoidal Parameter Estimation Using Quadratic Interpolation around Power-Scaled Magnitude Spectrum Peaks

Directory of Open Access Journals (Sweden)

Kurt James Werner

2016-10-01

Full Text Available The magnitude of the Discrete Fourier Transform (DFT of a discrete-time signal has a limited frequency definition. Quadratic interpolation over the three DFT samples surrounding magnitude peaks improves the estimation of parameters (frequency and amplitude of resolved sinusoids beyond that limit. Interpolating on a rescaled magnitude spectrum using a logarithmic scale has been shown to improve those estimates. In this article, we show how to heuristically tune a power scaling parameter to outperform linear and logarithmic scaling at an equivalent computational cost. Although this power scaling factor is computed heuristically rather than analytically, it is shown to depend in a structured way on window parameters. Invariance properties of this family of estimators are studied and the existence of a bias due to noise is shown. Comparing to two state-of-the-art estimators, we show that an optimized power scaling has a lower systematic bias and lower mean-squared-error in noisy conditions for ten out of twelve common windowing functions.

6. A Collision-Free G2 Continuous Path-Smoothing Algorithm Using Quadratic Polynomial Interpolation

Directory of Open Access Journals (Sweden)

Seong-Ryong Chang

2014-12-01

Full Text Available Most path-planning algorithms are used to obtain a collision-free path without considering continuity. On the other hand, a continuous path is needed for stable movement. In this paper, the searched path was converted into a G2 continuous path using the modified quadratic polynomial and membership function interpolation algorithm. It is simple, unique and provides a good geometric interpretation. In addition, a collision-checking and improvement algorithm is proposed. The collision-checking algorithm can check the collisions of a smoothed path. If collisions are detected, the collision improvement algorithm modifies the collision path to a collision-free path. The collision improvement algorithm uses a geometric method. This method uses the perpendicular line between a collision position and the collision piecewise linear path. The sub-waypoint is added, and the QPMI algorithm is applied again. As a result, the collision-smoothed path is converted into a collision-free smooth path without changing the continuity.

7. Application of the piecewise rational quadratic interpolant to the AUC calculation in the bioavailability study.

Science.gov (United States)

Akhter, Khalid P; Ahmad, Mahmood; Khan, Shujaat Ali; Ramzan, Munazza; Shafi, Ishrat; Muryam, Burhana; Javed, Zafar; Murtaza, Ghulam

2012-01-01

This study presents an application of the piecewise rational quadratic interpolant to the AUC calculation in the bioavailability study. The objective of this work is to find an area under the plasma concentration-time curve (AUC) for multiple doses of salbutamol sulfate sustained release tablets (Ventolin oral tablets SR 8 mg, GSK, Pakistan) in the group of 24 healthy adults by using computational mathematics techniques. Following the administration of 4 doses of Ventolin tablets 12 hourly to 24 healthy human subjects and bioanalysis of obtained plasma samples, plasma drug concentration-time profile was constructed. The approximated AUC was computed by using computational mathematics techniques such as extended rectangular, extended trapezium and extended Simpson's rule and compared with exact value of AUC calculated by using software - Kinetica to find best computational mathematics method that gives AUC values closest to exact. The exact values of AUC for four consecutive doses of Ventolin oral tablets were 150.58, 157.81, 164.41 and 162.78 ngxh/mL while the closest approximated AUC values were 149.24, 157.33, 164.25 and 162.28 ngxh/mL, respectively, as found by extended rectangular rule. The errors in the approximated values of AUC were negligible. It is concluded that all computational tools approximated values of AUC accurately but the extended rectangular rule gives slightly better approximated values of AUC as compared to extended trapezium and extended Simpson's rules.

8. Analysis of ECT Synchronization Performance Based on Different Interpolation Methods

Directory of Open Access Journals (Sweden)

Yang Zhixin

2014-01-01

Full Text Available There are two synchronization methods of electronic transformer in IEC60044-8 standard: impulsive synchronization and interpolation. When the impulsive synchronization method is inapplicability, the data synchronization of electronic transformer can be realized by using the interpolation method. The typical interpolation methods are piecewise linear interpolation, quadratic interpolation, cubic spline interpolation and so on. In this paper, the influences of piecewise linear interpolation, quadratic interpolation and cubic spline interpolation for the data synchronization of electronic transformer are computed, then the computational complexity, the synchronization precision, the reliability, the application range of different interpolation methods are analyzed and compared, which can serve as guide studies for practical applications.

9. Interpolation-Based Condensation Model Reduction Part 1: Frequency Window Reduction Method Application to Structural Acoustics

National Research Council Canada - National Science Library

Ingel, R

1999-01-01

... (which require derivative information) interpolation functions as well as standard Lagrangian functions, which can be linear, quadratic or cubic, have been used to construct the interpolation windows...

10. Multivariate interpolation

Directory of Open Access Journals (Sweden)

Pakhnutov I.A.

2017-04-01

Full Text Available the paper deals with iterative interpolation methods in forms of similar recursive procedures defined by a sort of simple functions (interpolation basis not necessarily real valued. These basic functions are kind of arbitrary type being defined just by wish and considerations of user. The studied interpolant construction shows virtue of versatility: it may be used in a wide range of vector spaces endowed with scalar product, no dimension restrictions, both in Euclidean and Hilbert spaces. The choice of basic interpolation functions is as wide as possible since it is subdued nonessential restrictions. The interpolation method considered in particular coincides with traditional polynomial interpolation (mimic of Lagrange method in real unidimensional case or rational, exponential etc. in other cases. The interpolation as iterative process, in fact, is fairly flexible and allows one procedure to change the type of interpolation, depending on the node number in a given set. Linear interpolation basis options (perhaps some nonlinear ones allow to interpolate in noncommutative spaces, such as spaces of nondegenerate matrices, interpolated data can also be relevant elements of vector spaces over arbitrary numeric field. By way of illustration, the author gives the examples of interpolation on the real plane, in the separable Hilbert space and the space of square matrices with vektorvalued source data.

Science.gov (United States)

Fay, Temple H.

2012-01-01

Quadratic friction involves a discontinuous damping term in equations of motion in order that the frictional force always opposes the direction of the motion. Perhaps for this reason this topic is usually omitted from beginning texts in differential equations and physics. However, quadratic damping is more realistic than viscous damping in many…

12. Spatial interpolation

NARCIS (Netherlands)

Stein, A.

1991-01-01

The theory and practical application of techniques of statistical interpolation are studied in this thesis, and new developments in multivariate spatial interpolation and the design of sampling plans are discussed. Several applications to studies in soil science are

13. Interpolating string field theories

International Nuclear Information System (INIS)

Zwiebach, B.

1992-01-01

This paper reports that a minimal area problem imposing different length conditions on open and closed curves is shown to define a one-parameter family of covariant open-closed quantum string field theories. These interpolate from a recently proposed factorizable open-closed theory up to an extended version of Witten's open string field theory capable of incorporating on shell closed strings. The string diagrams of the latter define a new decomposition of the moduli spaces of Riemann surfaces with punctures and boundaries based on quadratic differentials with both first order and second order poles

CERN Document Server

Polishchuk, Alexander

2005-01-01

Quadratic algebras, i.e., algebras defined by quadratic relations, often occur in various areas of mathematics. One of the main problems in the study of these (and similarly defined) algebras is how to control their size. A central notion in solving this problem is the notion of a Koszul algebra, which was introduced in 1970 by S. Priddy and then appeared in many areas of mathematics, such as algebraic geometry, representation theory, noncommutative geometry, K-theory, number theory, and noncommutative linear algebra. The book offers a coherent exposition of the theory of quadratic and Koszul algebras, including various definitions of Koszulness, duality theory, Poincar�-Birkhoff-Witt-type theorems for Koszul algebras, and the Koszul deformation principle. In the concluding chapter of the book, they explain a surprising connection between Koszul algebras and one-dependent discrete-time stochastic processes.

15. Interpolation theory

CERN Document Server

Lunardi, Alessandra

2018-01-01

This book is the third edition of the 1999 lecture notes of the courses on interpolation theory that the author delivered at the Scuola Normale in 1998 and 1999. In the mathematical literature there are many good books on the subject, but none of them is very elementary, and in many cases the basic principles are hidden below great generality. In this book the principles of interpolation theory are illustrated aiming at simplification rather than at generality. The abstract theory is reduced as far as possible, and many examples and applications are given, especially to operator theory and to regularity in partial differential equations. Moreover the treatment is self-contained, the only prerequisite being the knowledge of basic functional analysis.

16. Interpolation functors and interpolation spaces

CERN Document Server

Brudnyi, Yu A

1991-01-01

The theory of interpolation spaces has its origin in the classical work of Riesz and Marcinkiewicz but had its first flowering in the years around 1960 with the pioneering work of Aronszajn, Calderón, Gagliardo, Krein, Lions and a few others. It is interesting to note that what originally triggered off this avalanche were concrete problems in the theory of elliptic boundary value problems related to the scale of Sobolev spaces. Later on, applications were found in many other areas of mathematics: harmonic analysis, approximation theory, theoretical numerical analysis, geometry of Banach spaces, nonlinear functional analysis, etc. Besides this the theory has a considerable internal beauty and must by now be regarded as an independent branch of analysis, with its own problems and methods. Further development in the 1970s and 1980s included the solution by the authors of this book of one of the outstanding questions in the theory of the real method, the K-divisibility problem. In a way, this book harvests the r...

17. Linear Methods for Image Interpolation

OpenAIRE

Pascal Getreuer

2011-01-01

We discuss linear methods for interpolation, including nearest neighbor, bilinear, bicubic, splines, and sinc interpolation. We focus on separable interpolation, so most of what is said applies to one-dimensional interpolation as well as N-dimensional separable interpolation.

CERN Document Server

Dostal, Zdenek

2009-01-01

Quadratic programming (QP) is one technique that allows for the optimization of a quadratic function in several variables in the presence of linear constraints. This title presents various algorithms for solving large QP problems. It is suitable as an introductory text on quadratic programming for graduate students and researchers

Science.gov (United States)

2012-01-01

We show that there are exactly four quadratic polynomials, Q(x) = x [superscript 2] + ax + b, such that (x[superscript 2] + ax + b) (x[superscript 2] - ax + b) = (x[superscript 4] + ax[superscript 2] + b). For n = 1, 2, ..., these quadratic polynomials can be written as the product of N = 2[superscript n] quadratic polynomials in x[superscript…

20. Research on Electronic Transformer Data Synchronization Based on Interpolation Methods and Their Error Analysis

Directory of Open Access Journals (Sweden)

Pang Fubin

2015-09-01

Full Text Available In this paper the origin problem of data synchronization is analyzed first, and then three common interpolation methods are introduced to solve the problem. Allowing for the most general situation, the paper divides the interpolation error into harmonic and transient interpolation error components, and the error expression of each method is derived and analyzed. Besides, the interpolation errors of linear, quadratic and cubic methods are computed at different sampling rates, harmonic orders and transient components. Further, the interpolation accuracy and calculation amount of each method are compared. The research results provide theoretical guidance for selecting the interpolation method in the data synchronization application of electronic transformer.

1. Spline Interpolation of Image

OpenAIRE

I. Kuba; J. Zavacky; J. Mihalik

1995-01-01

This paper presents the use of B spline functions in various digital signal processing applications. The theory of one-dimensional B spline interpolation is briefly reviewed, followed by its extending to two dimensions. After presenting of one and two dimensional spline interpolation, the algorithms of image interpolation and resolution increasing were proposed. Finally, experimental results of computer simulations are presented.

2. Optimized Quasi-Interpolators for Image Reconstruction.

Science.gov (United States)

Sacht, Leonardo; Nehab, Diego

2015-12-01

We propose new quasi-interpolators for the continuous reconstruction of sampled images, combining a narrowly supported piecewise-polynomial kernel and an efficient digital filter. In other words, our quasi-interpolators fit within the generalized sampling framework and are straightforward to use. We go against standard practice and optimize for approximation quality over the entire Nyquist range, rather than focusing exclusively on the asymptotic behavior as the sample spacing goes to zero. In contrast to previous work, we jointly optimize with respect to all degrees of freedom available in both the kernel and the digital filter. We consider linear, quadratic, and cubic schemes, offering different tradeoffs between quality and computational cost. Experiments with compounded rotations and translations over a range of input images confirm that, due to the additional degrees of freedom and the more realistic objective function, our new quasi-interpolators perform better than the state of the art, at a similar computational cost.

International Nuclear Information System (INIS)

Ananth, Sudarshan; Brink, Lars; Majumdar, Sucheta; Mali, Mahendra; Shah, Nabha

2017-01-01

The light-cone Hamiltonians describing both pure (N=0) Yang-Mills and N=4 super Yang-Mills may be expressed as quadratic forms. Here, we show that this feature extends to theories of gravity. We demonstrate how the Hamiltonians of both pure gravity and N=8 supergravity, in four dimensions, may be written as quadratic forms. We examine the effect of residual reparametrizations on the Hamiltonian and the resulting quadratic form.

Energy Technology Data Exchange (ETDEWEB)

Ananth, Sudarshan [Indian Institute of Science Education and Research,Pune 411008 (India); Brink, Lars [Department of Physics, Chalmers University of Technology,S-41296 Göteborg (Sweden); Institute of Advanced Studies and Department of Physics & Applied Physics,Nanyang Technological University,Singapore 637371 (Singapore); Majumdar, Sucheta [Indian Institute of Science Education and Research,Pune 411008 (India); Mali, Mahendra [School of Physics, Indian Institute of Science Education and Research,Thiruvananthapuram, Trivandrum 695016 (India); Shah, Nabha [Indian Institute of Science Education and Research,Pune 411008 (India)

2017-03-31

The light-cone Hamiltonians describing both pure (N=0) Yang-Mills and N=4 super Yang-Mills may be expressed as quadratic forms. Here, we show that this feature extends to theories of gravity. We demonstrate how the Hamiltonians of both pure gravity and N=8 supergravity, in four dimensions, may be written as quadratic forms. We examine the effect of residual reparametrizations on the Hamiltonian and the resulting quadratic form.

5. SPLINE, Spline Interpolation Function

International Nuclear Information System (INIS)

Allouard, Y.

1977-01-01

1 - Nature of physical problem solved: The problem is to obtain an interpolated function, as smooth as possible, that passes through given points. The derivatives of these functions are continuous up to the (2Q-1) order. The program consists of the following two subprograms: ASPLERQ. Transport of relations method for the spline functions of interpolation. SPLQ. Spline interpolation. 2 - Method of solution: The methods are described in the reference under item 10

6. Analysis of Spatial Interpolation in the Material-Point Method

DEFF Research Database (Denmark)

Andersen, Søren; Andersen, Lars

2010-01-01

are obtained using quadratic elements. It is shown that for more complex problems, the use of partially negative shape functions is inconsistent with the material-point method in its current form, necessitating other types of interpolation such as cubic splines in order to obtain smoother representations...

7. Generalized interpolative quantum statistics

International Nuclear Information System (INIS)

Ramanathan, R.

1992-01-01

A generalized interpolative quantum statistics is presented by conjecturing a certain reordering of phase space due to the presence of possible exotic objects other than bosons and fermions. Such an interpolation achieved through a Bose-counting strategy predicts the existence of an infinite quantum Boltzmann-Gibbs statistics akin to the one discovered by Greenberg recently

8. CMB anisotropies interpolation

NARCIS (Netherlands)

Zinger, S.; Delabrouille, Jacques; Roux, Michel; Maitre, Henri

2010-01-01

We consider the problem of the interpolation of irregularly spaced spatial data, applied to observation of Cosmic Microwave Background (CMB) anisotropies. The well-known interpolation methods and kriging are compared to the binning method which serves as a reference approach. We analyse kriging

9. Monotone piecewise bicubic interpolation

International Nuclear Information System (INIS)

Carlson, R.E.; Fritsch, F.N.

1985-01-01

In a 1980 paper the authors developed a univariate piecewise cubic interpolation algorithm which produces a monotone interpolant to monotone data. This paper is an extension of those results to monotone script C 1 piecewise bicubic interpolation to data on a rectangular mesh. Such an interpolant is determined by the first partial derivatives and first mixed partial (twist) at the mesh points. Necessary and sufficient conditions on these derivatives are derived such that the resulting bicubic polynomial is monotone on a single rectangular element. These conditions are then simplified to a set of sufficient conditions for monotonicity. The latter are translated to a system of linear inequalities, which form the basis for a monotone piecewise bicubic interpolation algorithm. 4 references, 6 figures, 2 tables

10. Linear Methods for Image Interpolation

Directory of Open Access Journals (Sweden)

Pascal Getreuer

2011-09-01

Full Text Available We discuss linear methods for interpolation, including nearest neighbor, bilinear, bicubic, splines, and sinc interpolation. We focus on separable interpolation, so most of what is said applies to one-dimensional interpolation as well as N-dimensional separable interpolation.

CERN Document Server

Dickmann, M

2015-01-01

In this monograph the authors extend the classical algebraic theory of quadratic forms over fields to diagonal quadratic forms with invertible entries over broad classes of commutative, unitary rings where -1 is not a sum of squares and 2 is invertible. They accomplish this by: (1) Extending the classical notion of matrix isometry of forms to a suitable notion of T-isometry, where T is a preorder of the given ring, A, or T = A^2. (2) Introducing in this context three axioms expressing simple properties of (value) representation of elements of the ring by quadratic forms, well-known to hold in

CERN Document Server

Ellis, John; Sueiro, Maria

2014-01-01

Inflationary models based on a single scalar field $\\phi$ with a quadratic potential $V = \\frac{1}{2} m^2 \\phi^2$ are disfavoured by the recent Planck constraints on the scalar index, $n_s$, and the tensor-to-scalar ratio for cosmological density perturbations, $r_T$. In this paper we study how such a quadratic inflationary model can be rescued by postulating additional fields with quadratic potentials, such as might occur in sneutrino models, which might serve as either curvatons or supplementary inflatons. Introducing a second scalar field reduces but does not remove the pressure on quadratic inflation, but we find a sample of three-field models that are highly compatible with the Planck data on $n_s$ and $r_T$. We exhibit a specific three-sneutrino example that is also compatible with the data on neutrino mass difference and mixing angles.

International Nuclear Information System (INIS)

Rozikov, U.A.; Nazir, S.

2009-04-01

We consider quadratic stochastic operators, which are separable as a product of two linear operators. Depending on properties of these linear operators we classify the set of the separable quadratic stochastic operators: first class of constant operators, second class of linear and third class of nonlinear (separable) quadratic stochastic operators. Since the properties of operators from the first and second classes are well known, we mainly study the properties of the operators of the third class. We describe some Lyapunov functions of the operators and apply them to study ω-limit sets of the trajectories generated by the operators. We also compare our results with known results of the theory of quadratic operators and give some open problems. (author)

14. Shape Preserving Interpolation Using C2 Rational Cubic Spline

Directory of Open Access Journals (Sweden)

Samsul Ariffin Abdul Karim

2016-01-01

Full Text Available This paper discusses the construction of new C2 rational cubic spline interpolant with cubic numerator and quadratic denominator. The idea has been extended to shape preserving interpolation for positive data using the constructed rational cubic spline interpolation. The rational cubic spline has three parameters αi, βi, and γi. The sufficient conditions for the positivity are derived on one parameter γi while the other two parameters αi and βi are free parameters that can be used to change the final shape of the resulting interpolating curves. This will enable the user to produce many varieties of the positive interpolating curves. Cubic spline interpolation with C2 continuity is not able to preserve the shape of the positive data. Notably our scheme is easy to use and does not require knots insertion and C2 continuity can be achieved by solving tridiagonal systems of linear equations for the unknown first derivatives di, i=1,…,n-1. Comparisons with existing schemes also have been done in detail. From all presented numerical results the new C2 rational cubic spline gives very smooth interpolating curves compared to some established rational cubic schemes. An error analysis when the function to be interpolated is ft∈C3t0,tn is also investigated in detail.

15. Feature displacement interpolation

DEFF Research Database (Denmark)

1998-01-01

Given a sparse set of feature matches, we want to compute an interpolated dense displacement map. The application may be stereo disparity computation, flow computation, or non-rigid medical registration. Also estimation of missing image data, may be phrased in this framework. Since the features...... often are very sparse, the interpolation model becomes crucial. We show that a maximum likelihood estimation based on the covariance properties (Kriging) show properties more expedient than methods such as Gaussian interpolation or Tikhonov regularizations, also including scale......-selection. The computational complexities are identical. We apply the maximum likelihood interpolation to growth analysis of the mandibular bone. Here, the features used are the crest-lines of the object surface....

16. Extension Of Lagrange Interpolation

Directory of Open Access Journals (Sweden)

2015-01-01

Full Text Available Abstract In this paper is to present generalization of Lagrange interpolation polynomials in higher dimensions by using Gramers formula .The aim of this paper is to construct a polynomials in space with error tends to zero.

17. Efficient Algorithms and Design for Interpolation Filters in Digital Receiver

Directory of Open Access Journals (Sweden)

Xiaowei Niu

2014-05-01

Full Text Available Based on polynomial functions this paper introduces a generalized design method for interpolation filters. The polynomial-based interpolation filters can be implemented efficiently by using a modified Farrow structure with an arbitrary frequency response, the filters allow many pass- bands and stop-bands, and for each band the desired amplitude and weight can be set arbitrarily. The optimization coefficients of the interpolation filters in time domain are got by minimizing the weighted mean squared error function, then converting to solve the quadratic programming problem. The optimization coefficients in frequency domain are got by minimizing the maxima (MiniMax of the weighted mean squared error function. The degree of polynomials and the length of interpolation filter can be selected arbitrarily. Numerical examples verified the proposed design method not only can reduce the hardware cost effectively but also guarantee an excellent performance.

18. Digital time-interpolator

International Nuclear Information System (INIS)

Schuller, S.; Nationaal Inst. voor Kernfysica en Hoge-Energiefysica

1990-01-01

This report presents a description of the design of a digital time meter. This time meter should be able to measure, by means of interpolation, times of 100 ns with an accuracy of 50 ps. In order to determine the best principle for interpolation, three methods were simulated at the computer with a Pascal code. On the basis of this the best method was chosen and used in the design. In order to test the principal operation of the circuit a part of the circuit was constructed with which the interpolation could be tested. The remainder of the circuit was simulated with a computer. So there are no data available about the operation of the complete circuit in practice. The interpolation part however is the most critical part, the remainder of the circuit is more or less simple logic. Besides this report also gives a description of the principle of interpolation and the design of the circuit. The measurement results at the prototype are presented finally. (author). 3 refs.; 37 figs.; 2 tabs

NARCIS (Netherlands)

den Hertog, D.; de Klerk, E.; Roos, J.

2000-01-01

In this paper we prove the counterintuitive result that the quadratic least squares approximation of a multivariate convex function in a finite set of points is not necessarily convex, even though it is convex for a univariate convex function. This result has many consequences both for the field of

CERN Document Server

Alvarez-Gaume, Luis; Kounnas, Costas; Lust, Dieter; Riotto, Antonio

2016-01-01

We discuss quadratic gravity where terms quadratic in the curvature tensor are included in the action. After reviewing the corresponding field equations, we analyze in detail the physical propagating modes in some specific backgrounds. First we confirm that the pure $R^2$ theory is indeed ghost free. Then we point out that for flat backgrounds the pure $R^2$ theory propagates only a scalar massless mode and no spin-two tensor mode. However, the latter emerges either by expanding the theory around curved backgrounds like de Sitter or anti-de Sitter, or by changing the long-distance dynamics by introducing the standard Einstein term. In both cases, the theory is modified in the infrared and a propagating graviton is recovered. Hence we recognize a subtle interplay between the UV and IR properties of higher order gravity. We also calculate the corresponding Newton's law for general quadratic curvature theories. Finally, we discuss how quadratic actions may be obtained from a fundamental theory like string- or M-...

Science.gov (United States)

Fay, Temple H.

2010-01-01

Through numerical investigations, we study examples of the forced quadratic spring equation [image omitted]. By performing trial-and-error numerical experiments, we demonstrate the existence of stability boundaries in the phase plane indicating initial conditions yielding bounded solutions, investigate the resonance boundary in the [omega]…

2. Multivariate Birkhoff interpolation

CERN Document Server

Lorentz, Rudolph A

1992-01-01

The subject of this book is Lagrange, Hermite and Birkhoff (lacunary Hermite) interpolation by multivariate algebraic polynomials. It unifies and extends a new algorithmic approach to this subject which was introduced and developed by G.G. Lorentz and the author. One particularly interesting feature of this algorithmic approach is that it obviates the necessity of finding a formula for the Vandermonde determinant of a multivariate interpolation in order to determine its regularity (which formulas are practically unknown anyways) by determining the regularity through simple geometric manipulations in the Euclidean space. Although interpolation is a classical problem, it is surprising how little is known about its basic properties in the multivariate case. The book therefore starts by exploring its fundamental properties and its limitations. The main part of the book is devoted to a complete and detailed elaboration of the new technique. A chapter with an extensive selection of finite elements follows as well a...

NARCIS (Netherlands)

Ben-Tal, A.; den Hertog, D.

The problem of minimizing a quadratic objective function subject to one or two quadratic constraints is known to have a hidden convexity property, even when the quadratic forms are indefinite. The equivalent convex problem is a semidefinite one, and the equivalence is based on the celebrated

Binary classification is posed as a quadratically constrained quadratic problem and solved using the proposed method. Each class in the binary classification problem is modeled as a multidimensional ellipsoid to forma quadratic constraint in the problem. Particle swarms help in determining the optimal hyperplane or ...

CERN Document Server

Andreescu, Titu

2015-01-01

This monograph treats the classical theory of quadratic Diophantine equations and guides the reader through the last two decades of computational techniques and progress in the area. These new techniques combined with the latest increases in computational power shed new light on important open problems. The authors motivate the study of quadratic Diophantine equations with excellent examples, open problems, and applications. Moreover, the exposition aptly demonstrates many applications of results and techniques from the study of Pell-type equations to other problems in number theory. The book is intended for advanced undergraduate and graduate students as well as researchers. It challenges the reader to apply not only specific techniques and strategies, but also to employ methods and tools from other areas of mathematics, such as algebra and analysis.

2008-10-31

Oct 31, 2008 ... We say that (a1,··· ,an) is a zero of the polynomial f if f (a1,··· ,an) = 0. One of the main problems in Mathematics is to determine whether the given polynomial has a (non-trivial) zero or not. For example, let us recall the Fermat's last theorem: V. Suresh University Of Hyderabad Hyderabad. Isotropy of quadratic ...

7. Upstream cash cloud

International Nuclear Information System (INIS)

Shepherd, R.

1998-01-01

This paper focuses on the effects of the slowdown in budgetary growth on the upstream business and offshore services. The dangers facing investors, the strong growth in energy demand, oil company priorities, the dip in profits of the oil companies, new field economics, the budgets for exploration and production, and the rig market outlook are discussed. (UK)

8. Time-interpolator

International Nuclear Information System (INIS)

Blok, M. de; Nationaal Inst. voor Kernfysica en Hoge-Energiefysica

1990-01-01

This report describes a time-interpolator with which time differences can be measured using digital and analog techniques. It concerns a maximum measuring time of 6.4 μs with a resolution of 100 ps. Use is made of Emitter Coupled Logic (ECL) and analogues of high-frequency techniques. The difficulty which accompanies the use of ECL-logic is keeping as short as possible the mutual connections and closing properly the outputs in order to avoid reflections. The digital part of the time-interpolator consists of a continuous running clock and logic which converts an input signal into a start- and stop signal. The analog part consists of a Time to Amplitude Converter (TAC) and an analog to digital converter. (author). 3 refs.; 30 figs

9. Interpolative Boolean Networks

Directory of Open Access Journals (Sweden)

2017-01-01

Full Text Available Boolean networks are used for modeling and analysis of complex systems of interacting entities. Classical Boolean networks are binary and they are relevant for modeling systems with complex switch-like causal interactions. More descriptive power can be provided by the introduction of gradation in this model. If this is accomplished by using conventional fuzzy logics, the generalized model cannot secure the Boolean frame. Consequently, the validity of the model’s dynamics is not secured. The aim of this paper is to present the Boolean consistent generalization of Boolean networks, interpolative Boolean networks. The generalization is based on interpolative Boolean algebra, the [0,1]-valued realization of Boolean algebra. The proposed model is adaptive with respect to the nature of input variables and it offers greater descriptive power as compared with traditional models. For illustrative purposes, IBN is compared to the models based on existing real-valued approaches. Due to the complexity of the most systems to be analyzed and the characteristics of interpolative Boolean algebra, the software support is developed to provide graphical and numerical tools for complex system modeling and analysis.

10. Upstream health law.

Science.gov (United States)

Sage, William M; McIlhattan, Kelley

2014-01-01

For the first time, entrepreneurs are aggressively developing new technologies and business models designed to improve individual and population health, not just to deliver specialized medical care. Consumers of these goods and services are not yet "patients"; they are simply people. As this sector of the health care industry expands, it is likely to require new forms of legal governance, which we term "upstream health law." © 2014 American Society of Law, Medicine & Ethics, Inc.

11. Smooth Phase Interpolated Keying

Science.gov (United States)

Borah, Deva K.

2007-01-01

Smooth phase interpolated keying (SPIK) is an improved method of computing smooth phase-modulation waveforms for radio communication systems that convey digital information. SPIK is applicable to a variety of phase-shift-keying (PSK) modulation schemes, including quaternary PSK (QPSK), octonary PSK (8PSK), and 16PSK. In comparison with a related prior method, SPIK offers advantages of better performance and less complexity of implementation. In a PSK scheme, the underlying information waveform that one seeks to convey consists of discrete rectangular steps, but the spectral width of such a waveform is excessive for practical radio communication. Therefore, the problem is to smooth the step phase waveform in such a manner as to maintain power and bandwidth efficiency without incurring an unacceptably large error rate and without introducing undesired variations in the amplitude of the affected radio signal. Although the ideal constellation of PSK phasor points does not cause amplitude variations, filtering of the modulation waveform (in which, typically, a rectangular pulse is converted to a square-root raised cosine pulse) causes amplitude fluctuations. If a power-efficient nonlinear amplifier is used in the radio communication system, the fluctuating-amplitude signal can undergo significant spectral regrowth, thus compromising the bandwidth efficiency of the system. In the related prior method, one seeks to solve the problem in a procedure that comprises two major steps: phase-value generation and phase interpolation. SPIK follows the two-step approach of the related prior method, but the details of the steps are different. In the phase-value-generation step, the phase values of symbols in the PSK constellation are determined by a phase function that is said to be maximally smooth and that is chosen to minimize the spectral spread of the modulated signal. In this step, the constellation is divided into two groups by assigning, to information symbols, phase values

Science.gov (United States)

Quadratic spatial soliton interactions were investigated in this Dissertation. The first part deals with characterizing the principal features of multi-soliton generation and soliton self-reflection. The second deals with two beam processes leading to soliton interactions and collisions. These subjects were investigated both theoretically and experimentally. The experiments were performed by using potassium niobate (KNBO 3) and periodically poled potassium titanyl phosphate (KTP) crystals. These particular crystals were desirable for these experiments because of their large nonlinear coefficients and, more importantly, because the experiments could be performed under non-critical-phase-matching (NCPM) conditions. The single soliton generation measurements, performed on KNBO3 by launching the fundamental component only, showed a broad angular acceptance bandwidth which was important for the soliton collisions performed later. Furthermore, at high input intensities multi-soliton generation was observed for the first time. The influence on the multi-soliton patterns generated of the input intensity and beam symmetry was investigated. The combined experimental and theoretical efforts indicated that spatial and temporal noise on the input laser beam induced multi-soliton patterns. Another research direction pursued was intensity dependent soliton routing by using of a specially engineered quadratically nonlinear interface within a periodically poled KTP sample. This was the first time demonstration of the self-reflection phenomenon in a system with a quadratic nonlinearity. The feature investigated is believed to have a great potential for soliton routing and manipulation by engineered structures. A detailed investigation was conducted on two soliton interaction and collision processes. Birth of an additional soliton resulting from a two soliton collision was observed and characterized for the special case of a non-planar geometry. A small amount of spiraling, up to 30

Science.gov (United States)

Jankovic, Ladislav; Kim, Hongki; Stegeman, George; Carrasco, Silvia; Torner, Lluis; Katz, Mordechai

2003-11-01

The reflection of bulk quadratic solutions incident onto a quadratically nonlinear interface in periodically poled potassium titanyl phosphate was observed. The interface consisted of the boundary between two quasi-phase-matched regions displaced from each other by a half-period. At high intensities and small angles of incidence the soliton is reflected.

14. Image Interpolation with Contour Stencils

OpenAIRE

Pascal Getreuer

2011-01-01

Image interpolation is the problem of increasing the resolution of an image. Linear methods must compromise between artifacts like jagged edges, blurring, and overshoot (halo) artifacts. More recent works consider nonlinear methods to improve interpolation of edges and textures. In this paper we apply contour stencils for estimating the image contours based on total variation along curves and then use this estimation to construct a fast edge-adaptive interpolation.

15. Quasi interpolation with Voronoi splines.

Science.gov (United States)

Mirzargar, Mahsa; Entezari, Alireza

2011-12-01

We present a quasi interpolation framework that attains the optimal approximation-order of Voronoi splines for reconstruction of volumetric data sampled on general lattices. The quasi interpolation framework of Voronoi splines provides an unbiased reconstruction method across various lattices. Therefore this framework allows us to analyze and contrast the sampling-theoretic performance of general lattices, using signal reconstruction, in an unbiased manner. Our quasi interpolation methodology is implemented as an efficient FIR filter that can be applied online or as a preprocessing step. We present visual and numerical experiments that demonstrate the improved accuracy of reconstruction across lattices, using the quasi interpolation framework. © 2011 IEEE

16. Quadratic brackets from symplectic forms

International Nuclear Information System (INIS)

Alekseev, Anton Yu.; Todorov, Ivan T.

1994-01-01

We give a physicist oriented survey of Poisson-Lie symmetries of classical systems. We consider finite-dimensional geometric actions and the chiral WZNW model as examples for the general construction. An essential point is the appearance of quadratic Poisson brackets for group-like variables. It is believed that upon quantization they lead to quadratic exchange algebras. ((orig.))

17. Students' Understanding of Quadratic Equations

Science.gov (United States)

López, Jonathan; Robles, Izraim; Martínez-Planell, Rafael

2016-01-01

Action-Process-Object-Schema theory (APOS) was applied to study student understanding of quadratic equations in one variable. This required proposing a detailed conjecture (called a genetic decomposition) of mental constructions students may do to understand quadratic equations. The genetic decomposition which was proposed can contribute to help…

18. Pixel Interpolation Methods

OpenAIRE

Mintěl, Tomáš

2009-01-01

Tato diplomová práce se zabývá akcelerací interpolačních metod s využitím GPU a architektury NVIDIA (R) CUDA TM. Grafický výstup je reprezentován demonstrační aplikací pro transformaci obrazu nebo videa s použitím vybrané interpolace. Časově kritické části kódu jsou přesunuty na GPU a vykonány paralelně. Pro práci s obrazem a videem jsou použity vysoce optimalizované algoritmy z knihovny OpenCV, od firmy Intel. This master's thesis deals with acceleration of pixel interpolation methods usi...

19. LHCb upstream tracker

CERN Multimedia

Artuso, Marina

2016-01-01

The detector for the LHCb upgrade is designed for 40MHz readout, allowing the experiment to run at an instantaneous luminosity of 2x10^33 cm$^2$s$^-1$. The upgrade of the tracker subsystem in front of the dipole magnet, the Upstream Tracker, is crucial for charged track reconstruction and fast trigger decisions based on a tracking algorithm involving also vertex detector information. The detector consists of 4 planes with a total area of about 8.5m$^2$, made of single sided silicon strip sensors read-out by a novel custom-made ASIC (SALT). Details on the performance of prototype sensors, front-end electronics, near-detector electronics and mechanical components are presented.

20. Fuzzy linguistic model for interpolation

International Nuclear Information System (INIS)

2007-01-01

In this paper, a fuzzy method for interpolating of smooth curves was represented. We present a novel approach to interpolate real data by applying the universal approximation method. In proposed method, fuzzy linguistic model (FLM) applied as universal approximation for any nonlinear continuous function. Finally, we give some numerical examples and compare the proposed method with spline method

1. A disposition of interpolation techniques

NARCIS (Netherlands)

2010-01-01

A large collection of interpolation techniques is available for application in environmental research. To help environmental scientists in choosing an appropriate technique a disposition is made, based on 1) applicability in space, time and space-time, 2) quantification of accuracy of interpolated

International Nuclear Information System (INIS)

Jian Jinbao; Hu Qingjie; Tang Chunming; Zheng Haiyan

2007-01-01

In this paper, a sequential quadratically constrained quadratic programming method of feasible directions is proposed for the optimization problems with nonlinear inequality constraints. At each iteration of the proposed algorithm, a feasible direction of descent is obtained by solving only one subproblem which consist of a convex quadratic objective function and simple quadratic inequality constraints without the second derivatives of the functions of the discussed problems, and such a subproblem can be formulated as a second-order cone programming which can be solved by interior point methods. To overcome the Maratos effect, an efficient higher-order correction direction is obtained by only one explicit computation formula. The algorithm is proved to be globally convergent and superlinearly convergent under some mild conditions without the strict complementarity. Finally, some preliminary numerical results are reported

3. Contrast-guided image interpolation.

Science.gov (United States)

Wei, Zhe; Ma, Kai-Kuang

2013-11-01

In this paper a contrast-guided image interpolation method is proposed that incorporates contrast information into the image interpolation process. Given the image under interpolation, four binary contrast-guided decision maps (CDMs) are generated and used to guide the interpolation filtering through two sequential stages: 1) the 45(°) and 135(°) CDMs for interpolating the diagonal pixels and 2) the 0(°) and 90(°) CDMs for interpolating the row and column pixels. After applying edge detection to the input image, the generation of a CDM lies in evaluating those nearby non-edge pixels of each detected edge for re-classifying them possibly as edge pixels. This decision is realized by solving two generalized diffusion equations over the computed directional variation (DV) fields using a derived numerical approach to diffuse or spread the contrast boundaries or edges, respectively. The amount of diffusion or spreading is proportional to the amount of local contrast measured at each detected edge. The diffused DV fields are then thresholded for yielding the binary CDMs, respectively. Therefore, the decision bands with variable widths will be created on each CDM. The two CDMs generated in each stage will be exploited as the guidance maps to conduct the interpolation process: for each declared edge pixel on the CDM, a 1-D directional filtering will be applied to estimate its associated to-be-interpolated pixel along the direction as indicated by the respective CDM; otherwise, a 2-D directionless or isotropic filtering will be used instead to estimate the associated missing pixels for each declared non-edge pixel. Extensive simulation results have clearly shown that the proposed contrast-guided image interpolation is superior to other state-of-the-art edge-guided image interpolation methods. In addition, the computational complexity is relatively low when compared with existing methods; hence, it is fairly attractive for real-time image applications.

4. On Characterization of Quadratic Splines

DEFF Research Database (Denmark)

Chen, B. T.; Madsen, Kaj; Zhang, Shuzhong

2005-01-01

that the representation can be refined in a neighborhood of a non-degenerate point and a set of non-degenerate minimizers. Based on these characterizations, many existing algorithms for specific convex quadratic splines are also finite convergent for a general convex quadratic spline. Finally, we study the relationship...... between the convexity of a quadratic spline function and the monotonicity of the corresponding LCP problem. It is shown that, although both conditions lead to easy solvability of the problem, they are different in general....

5. Interpolation for de-Dopplerisation

Science.gov (United States)

Graham, W. R.

2018-05-01

'De-Dopplerisation' is one aspect of a problem frequently encountered in experimental acoustics: deducing an emitted source signal from received data. It is necessary when source and receiver are in relative motion, and requires interpolation of the measured signal. This introduces error. In acoustics, typical current practice is to employ linear interpolation and reduce error by over-sampling. In other applications, more advanced approaches with better performance have been developed. Associated with this work is a large body of theoretical analysis, much of which is highly specialised. Nonetheless, a simple and compact performance metric is available: the Fourier transform of the 'kernel' function underlying the interpolation method. Furthermore, in the acoustics context, it is a more appropriate indicator than other, more abstract, candidates. On this basis, interpolators from three families previously identified as promising - - piecewise-polynomial, windowed-sinc, and B-spline-based - - are compared. The results show that significant improvements over linear interpolation can straightforwardly be obtained. The recommended approach is B-spline-based interpolation, which performs best irrespective of accuracy specification. Its only drawback is a pre-filtering requirement, which represents an additional implementation cost compared to other methods. If this cost is unacceptable, and aliasing errors (on re-sampling) up to approximately 1% can be tolerated, a family of piecewise-cubic interpolators provides the best alternative.

6. Occlusion-Aware View Interpolation

Directory of Open Access Journals (Sweden)

2009-01-01

Full Text Available View interpolation is an essential step in content preparation for multiview 3D displays, free-viewpoint video, and multiview image/video compression. It is performed by establishing a correspondence among views, followed by interpolation using the corresponding intensities. However, occlusions pose a significant challenge, especially if few input images are available. In this paper, we identify challenges related to disparity estimation and view interpolation in presence of occlusions. We then propose an occlusion-aware intermediate view interpolation algorithm that uses four input images to handle the disappearing areas. The algorithm consists of three steps. First, all pixels in view to be computed are classified in terms of their visibility in the input images. Then, disparity for each pixel is estimated from different image pairs depending on the computed visibility map. Finally, luminance/color of each pixel is adaptively interpolated from an image pair selected by its visibility label. Extensive experimental results show striking improvements in interpolated image quality over occlusion-unaware interpolation from two images and very significant gains over occlusion-aware spline-based reconstruction from four images, both on synthetic and real images. Although improvements are obvious only in the vicinity of object boundaries, this should be useful in high-quality 3D applications, such as digital 3D cinema and ultra-high resolution multiview autostereoscopic displays, where distortions at depth discontinuities are highly objectionable, especially if they vary with viewpoint change.

7. Occlusion-Aware View Interpolation

Directory of Open Access Journals (Sweden)

Ince Serdar

2008-01-01

Full Text Available Abstract View interpolation is an essential step in content preparation for multiview 3D displays, free-viewpoint video, and multiview image/video compression. It is performed by establishing a correspondence among views, followed by interpolation using the corresponding intensities. However, occlusions pose a significant challenge, especially if few input images are available. In this paper, we identify challenges related to disparity estimation and view interpolation in presence of occlusions. We then propose an occlusion-aware intermediate view interpolation algorithm that uses four input images to handle the disappearing areas. The algorithm consists of three steps. First, all pixels in view to be computed are classified in terms of their visibility in the input images. Then, disparity for each pixel is estimated from different image pairs depending on the computed visibility map. Finally, luminance/color of each pixel is adaptively interpolated from an image pair selected by its visibility label. Extensive experimental results show striking improvements in interpolated image quality over occlusion-unaware interpolation from two images and very significant gains over occlusion-aware spline-based reconstruction from four images, both on synthetic and real images. Although improvements are obvious only in the vicinity of object boundaries, this should be useful in high-quality 3D applications, such as digital 3D cinema and ultra-high resolution multiview autostereoscopic displays, where distortions at depth discontinuities are highly objectionable, especially if they vary with viewpoint change.

8. BIMOND3, Monotone Bivariate Interpolation

International Nuclear Information System (INIS)

Fritsch, F.N.; Carlson, R.E.

2001-01-01

1 - Description of program or function: BIMOND is a FORTRAN-77 subroutine for piecewise bi-cubic interpolation to data on a rectangular mesh, which reproduces the monotonousness of the data. A driver program, BIMOND1, is provided which reads data, computes the interpolating surface parameters, and evaluates the function on a mesh suitable for plotting. 2 - Method of solution: Monotonic piecewise bi-cubic Hermite interpolation is used. 3 - Restrictions on the complexity of the problem: The current version of the program can treat data which are monotone in only one of the independent variables, but cannot handle piecewise monotone data

9. The research on NURBS adaptive interpolation technology

Science.gov (United States)

Zhang, Wanjun; Gao, Shanping; Zhang, Sujia; Zhang, Feng

2017-04-01

In order to solve the problems of Research on NURBS Adaptive Interpolation Technology, such as interpolation time bigger, calculation more complicated, and NURBS curve step error are not easy changed and so on. This paper proposed a study on the algorithm for NURBS adaptive interpolation method of NURBS curve and simulation. We can use NURBS adaptive interpolation that calculates (xi, yi, zi). Simulation results show that the proposed NURBS curve interpolator meets the high-speed and high-accuracy interpolation requirements of CNC systems. The interpolation of NURBS curve should be finished. The simulation results show that the algorithm is correct; it is consistent with a NURBS curve interpolation requirements.

10. COMPARISONS BETWEEN DIFFERENT INTERPOLATION TECHNIQUES

Directory of Open Access Journals (Sweden)

G. Garnero

2014-01-01

In the present study different algorithms will be analysed in order to spot an optimal interpolation methodology. The availability of the recent digital model produced by the Regione Piemonte with airborne LIDAR and the presence of sections of testing realized with higher resolutions and the presence of independent digital models on the same territory allow to set a series of analysis with consequent determination of the best methodologies of interpolation. The analysis of the residuals on the test sites allows to calculate the descriptive statistics of the computed values: all the algorithms have furnished interesting results; all the more interesting, notably for dense models, the IDW (Inverse Distance Weighing algorithm results to give best results in this study case. Moreover, a comparative analysis was carried out by interpolating data at different input point density, with the purpose of highlighting thresholds in input density that may influence the quality reduction of the final output in the interpolation phase.

11. Interpolation in Spaces of Functions

Directory of Open Access Journals (Sweden)

K. Mosaleheh

2006-03-01

Full Text Available In this paper we consider the interpolation by certain functions such as trigonometric and rational functions for finite dimensional linear space X. Then we extend this to infinite dimensional linear spaces

12. Computing Diffeomorphic Paths for Large Motion Interpolation.

Science.gov (United States)

Seo, Dohyung; Jeffrey, Ho; Vemuri, Baba C

2013-06-01

In this paper, we introduce a novel framework for computing a path of diffeomorphisms between a pair of input diffeomorphisms. Direct computation of a geodesic path on the space of diffeomorphisms Diff (Ω) is difficult, and it can be attributed mainly to the infinite dimensionality of Diff (Ω). Our proposed framework, to some degree, bypasses this difficulty using the quotient map of Diff (Ω) to the quotient space Diff ( M )/ Diff ( M ) μ obtained by quotienting out the subgroup of volume-preserving diffeomorphisms Diff ( M ) μ . This quotient space was recently identified as the unit sphere in a Hilbert space in mathematics literature, a space with well-known geometric properties. Our framework leverages this recent result by computing the diffeomorphic path in two stages. First, we project the given diffeomorphism pair onto this sphere and then compute the geodesic path between these projected points. Second, we lift the geodesic on the sphere back to the space of diffeomerphisms, by solving a quadratic programming problem with bilinear constraints using the augmented Lagrangian technique with penalty terms. In this way, we can estimate the path of diffeomorphisms, first, staying in the space of diffeomorphisms, and second, preserving shapes/volumes in the deformed images along the path as much as possible. We have applied our framework to interpolate intermediate frames of frame-sub-sampled video sequences. In the reported experiments, our approach compares favorably with the popular Large Deformation Diffeomorphic Metric Mapping framework (LDDMM).

13. Stability in quadratic torsion theories

Energy Technology Data Exchange (ETDEWEB)

2017-11-15

We revisit the definition and some of the characteristics of quadratic theories of gravity with torsion. We start from a Lagrangian density quadratic in the curvature and torsion tensors. By assuming that General Relativity should be recovered when the torsion vanishes and investigating the behaviour of the vector and pseudo-vector torsion fields in the weak-gravity regime, we present a set of necessary conditions for the stability of these theories. Moreover, we explicitly obtain the gravitational field equations using the Palatini variational principle with the metricity condition implemented via a Lagrange multiplier. (orig.)

14. Stability in quadratic torsion theories

International Nuclear Information System (INIS)

Vasilev, Teodor Borislavov; Cembranos, Jose A.R.; Gigante Valcarcel, Jorge; Martin-Moruno, Prado

2017-01-01

We revisit the definition and some of the characteristics of quadratic theories of gravity with torsion. We start from a Lagrangian density quadratic in the curvature and torsion tensors. By assuming that General Relativity should be recovered when the torsion vanishes and investigating the behaviour of the vector and pseudo-vector torsion fields in the weak-gravity regime, we present a set of necessary conditions for the stability of these theories. Moreover, we explicitly obtain the gravitational field equations using the Palatini variational principle with the metricity condition implemented via a Lagrange multiplier. (orig.)

15. Permanently calibrated interpolating time counter

International Nuclear Information System (INIS)

Jachna, Z; Szplet, R; Kwiatkowski, P; Różyc, K

2015-01-01

We propose a new architecture of an integrated time interval counter that provides its permanent calibration in the background. Time interval measurement and the calibration procedure are based on the use of a two-stage interpolation method and parallel processing of measurement and calibration data. The parallel processing is achieved by a doubling of two-stage interpolators in measurement channels of the counter, and by an appropriate extension of control logic. Such modification allows the updating of transfer characteristics of interpolators without the need to break a theoretically infinite measurement session. We describe the principle of permanent calibration, its implementation and influence on the quality of the counter. The precision of the presented counter is kept at a constant level (below 20 ps) despite significant changes in the ambient temperature (from −10 to 60 °C), which can cause a sevenfold decrease in the precision of the counter with a traditional calibration procedure. (paper)

16. Quadratic prediction of factor scores

NARCIS (Netherlands)

Wansbeek, T

1999-01-01

Factor scores are naturally predicted by means of their conditional expectation given the indicators y. Under normality this expectation is linear in y but in general it is an unknown function of y. II is discussed that under nonnormality factor scores can be more precisely predicted by a quadratic

17. On quadratic variation of martingales

On quadratic variation of martingales. 459. The proof relied on the theory of stochastic integration. Subsequently, in Karandikar. [4], the formula was derived using only Doob's maximal inequality. Thus this could be the starting point for the development of stochastic calculus for continuous semimartingales without bringing in ...

18. Impurity solitons with quadratic nonlinearities

DEFF Research Database (Denmark)

Clausen, Carl A. Balslev; Torres, Juan P-; Torner, Lluis

1998-01-01

We fmd families of solitary waves mediated by parametric mixing in quadratic nonlinear media that are localized at point-defect impurities. Solitons localized at attractive impurities are found to be dynamically stable. It is shown that localization at the impurity modifies strongly the soliton...

19. Quadratic divergences and dimensional regularisation

International Nuclear Information System (INIS)

Jack, I.; Jones, D.R.T.

1990-01-01

We present a detailed analysis of quadratic and quartic divergences in dimensionally regulated renormalisable theories. We perform explicit three-loop calculations for a general theory of scalars and fermions. We find that the higher-order quartic divergences are related to the lower-order ones by the renormalisation group β-functions. (orig.)

Directory of Open Access Journals (Sweden)

Lixing Yang

2014-05-01

Full Text Available Quadratically constrained quadratic programs (QQPs problems play an important modeling role for many diverse problems. These problems are in general NP hard and numerically intractable. Semidenite programming (SDP relaxations often provide good approximate solutions to these hard problems. For several special cases of QQP, e.g., convex programs and trust region subproblems, SDP relaxation provides the exact optimal value, i.e., there is a zero duality gap. However, this is not true for the general QQP, or even the QQP with two convex constraints, but a nonconvex objective.In this paper, we consider a certain QQP where the variable is neither vector nor matrix but a third-order tensor. This problem can be viewed as a generalization of the ordinary QQP with vector or matrix as it's variant. Under some mild conditions, we rst show that SDP relaxation provides exact optimal solutions for the original problem. Then we focus on two classes of homogeneous quadratic tensor programming problems which have no requirements on the constraints number. For one, we provide an easily implemental polynomial time algorithm to approximately solve the problem and discuss the approximation ratio. For the other, we show there is no gap between the SDP relaxation and itself.

1. Interpolation of natural cubic spline

Directory of Open Access Journals (Sweden)

Arun Kumar

1992-01-01

Full Text Available From the result in [1] it follows that there is a unique quadratic spline which bounds the same area as that of the function. The matching of the area for the cubic spline does not follow from the corresponding result proved in [2]. We obtain cubic splines which preserve the area of the function.

2. Spatiotemporal Interpolation Methods for Solar Event Trajectories

Science.gov (United States)

Filali Boubrahimi, Soukaina; Aydin, Berkay; Schuh, Michael A.; Kempton, Dustin; Angryk, Rafal A.; Ma, Ruizhe

2018-05-01

This paper introduces four spatiotemporal interpolation methods that enrich complex, evolving region trajectories that are reported from a variety of ground-based and space-based solar observatories every day. Our interpolation module takes an existing solar event trajectory as its input and generates an enriched trajectory with any number of additional time–geometry pairs created by the most appropriate method. To this end, we designed four different interpolation techniques: MBR-Interpolation (Minimum Bounding Rectangle Interpolation), CP-Interpolation (Complex Polygon Interpolation), FI-Interpolation (Filament Polygon Interpolation), and Areal-Interpolation, which are presented here in detail. These techniques leverage k-means clustering, centroid shape signature representation, dynamic time warping, linear interpolation, and shape buffering to generate the additional polygons of an enriched trajectory. Using ground-truth objects, interpolation effectiveness is evaluated through a variety of measures based on several important characteristics that include spatial distance, area overlap, and shape (boundary) similarity. To our knowledge, this is the first research effort of this kind that attempts to address the broad problem of spatiotemporal interpolation of solar event trajectories. We conclude with a brief outline of future research directions and opportunities for related work in this area.

3. Exact solutions to quadratic gravity

Czech Academy of Sciences Publication Activity Database

Pravda, Vojtěch; Pravdová, Alena; Podolský, J.; Švarc, J.

2017-01-01

Roč. 95, č. 8 (2017), č. článku 084025. ISSN 2470-0010 R&D Projects: GA ČR GB14-37086G Institutional support: RVO:67985840 Keywords : quadratic gravity * exact solutions * Kundt spacetimes Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 4.568, year: 2016 https://journals.aps.org/prd/abstract/10.1103/PhysRevD.95.084025

4. On Quadratic Variation of Martingales

where D ( [ 0 , ∞ ) , R ) denotes the class of real valued r.c.l.l. functions on [ 0 , ∞ ) such that for a locally square integrable martingale ( M t ) with r.c.l.l. paths,. Ψ ( M . ( ) ) = A . ( ). gives the quadratic variation process (written usually as [ M , M ] t ) of ( M t ) . We also show that this process ( A t ) is the unique increasing ...

5. Exact solutions to quadratic gravity

Czech Academy of Sciences Publication Activity Database

Pravda, Vojtěch; Pravdová, Alena; Podolský, J.; Švarc, J.

2017-01-01

Roč. 95, č. 8 (2017), č. článku 084025. ISSN 2470-0010 R&D Projects: GA ČR GB14-37086G Institutional support: RVO:67985840 Keywords : quadratic gravity * exact solutions * Kundt spacetimes Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 4.568, year: 2016 https://journals. aps .org/prd/abstract/10.1103/PhysRevD.95.084025

6. Orthogonality preserving infinite dimensional quadratic stochastic operators

International Nuclear Information System (INIS)

Akın, Hasan; Mukhamedov, Farrukh

2015-01-01

In the present paper, we consider a notion of orthogonal preserving nonlinear operators. We introduce π-Volterra quadratic operators finite and infinite dimensional settings. It is proved that any orthogonal preserving quadratic operator on finite dimensional simplex is π-Volterra quadratic operator. In infinite dimensional setting, we describe all π-Volterra operators in terms orthogonal preserving operators

7. Extending the Scope of Robust Quadratic Optimization

NARCIS (Netherlands)

Marandi, Ahmadreza; Ben-Tal, A.; den Hertog, Dick; Melenberg, Bertrand

In this paper, we derive tractable reformulations of the robust counterparts of convex quadratic and conic quadratic constraints with concave uncertainties for a broad range of uncertainty sets. For quadratic constraints with convex uncertainty, it is well-known that the robust counterpart is, in

8. A Note on Cubic Convolution Interpolation

OpenAIRE

Meijering, E.; Unser, M.

2003-01-01

We establish a link between classical osculatory interpolation and modern convolution-based interpolation and use it to show that two well-known cubic convolution schemes are formally equivalent to two osculatory interpolation schemes proposed in the actuarial literature about a century ago. We also discuss computational differences and give examples of other cubic interpolation schemes not previously studied in signal and image processing.

9. Node insertion in Coalescence Fractal Interpolation Function

International Nuclear Information System (INIS)

2013-01-01

The Iterated Function System (IFS) used in the construction of Coalescence Hidden-variable Fractal Interpolation Function (CHFIF) depends on the interpolation data. The insertion of a new point in a given set of interpolation data is called the problem of node insertion. In this paper, the effect of insertion of new point on the related IFS and the Coalescence Fractal Interpolation Function is studied. Smoothness and Fractal Dimension of a CHFIF obtained with a node are also discussed

10. Bayer Demosaicking with Polynomial Interpolation.

Science.gov (United States)

Wu, Jiaji; Anisetti, Marco; Wu, Wei; Damiani, Ernesto; Jeon, Gwanggil

2016-08-30

Demosaicking is a digital image process to reconstruct full color digital images from incomplete color samples from an image sensor. It is an unavoidable process for many devices incorporating camera sensor (e.g. mobile phones, tablet, etc.). In this paper, we introduce a new demosaicking algorithm based on polynomial interpolation-based demosaicking (PID). Our method makes three contributions: calculation of error predictors, edge classification based on color differences, and a refinement stage using a weighted sum strategy. Our new predictors are generated on the basis of on the polynomial interpolation, and can be used as a sound alternative to other predictors obtained by bilinear or Laplacian interpolation. In this paper we show how our predictors can be combined according to the proposed edge classifier. After populating three color channels, a refinement stage is applied to enhance the image quality and reduce demosaicking artifacts. Our experimental results show that the proposed method substantially improves over existing demosaicking methods in terms of objective performance (CPSNR, S-CIELAB E, and FSIM), and visual performance.

11. Reconfiguration of face expressions based on the discrete capture data of radial basis function interpolation

Institute of Scientific and Technical Information of China (English)

ZHENG Guangguo; ZHOU Dongsheng; WEI Xiaopeng; ZHANG Qiang

2012-01-01

Compactly supported radial basis function can enable the coefficient matrix of solving weigh linear system to have a sparse banded structure, thereby reducing the complexity of the algorithm. Firstly, based on the compactly supported radial basis function, the paper makes the complex quadratic function （Multiquadric, MQ for short） to be transformed and proposes a class of compactly supported MQ function. Secondly, the paper describes a method that interpolates discrete motion capture data to solve the motion vectors of the interpolation points and they are used in facial expression reconstruction. Finally, according to this characteris- tic of the uneven distribution of the face markers, the markers are numbered and grouped in accordance with the density level, and then be interpolated in line with each group. The approach not only ensures the accuracy of the deformation of face local area and smoothness, but also reduces the time complexity of computing.

12. Coherent states for quadratic Hamiltonians

International Nuclear Information System (INIS)

Contreras-Astorga, Alonso; Fernandez C, David J; Velazquez, Mercedes

2011-01-01

The coherent states for a set of quadratic Hamiltonians in the trap regime are constructed. A matrix technique which allows us to directly identify the creation and annihilation operators will be presented. Then, the coherent states as simultaneous eigenstates of the annihilation operators will be derived, and will be compared with those attained through the displacement operator method. The corresponding wavefunction will be found, and a general procedure for obtaining several mean values involving the canonical operators in these states will be described. The results will be illustrated through the asymmetric Penning trap.

13. Quadratic Variation by Markov Chains

DEFF Research Database (Denmark)

Hansen, Peter Reinhard; Horel, Guillaume

We introduce a novel estimator of the quadratic variation that is based on the the- ory of Markov chains. The estimator is motivated by some general results concerning filtering contaminated semimartingales. Specifically, we show that filtering can in prin- ciple remove the effects of market...... microstructure noise in a general framework where little is assumed about the noise. For the practical implementation, we adopt the dis- crete Markov chain model that is well suited for the analysis of financial high-frequency prices. The Markov chain framework facilitates simple expressions and elegant analyti...

14. Factorization method of quadratic template

Science.gov (United States)

Kotyrba, Martin

2017-07-01

Multiplication of two numbers is a one-way function in mathematics. Any attempt to distribute the outcome to its roots is called factorization. There are many methods such as Fermat's factorization, Dixońs method or quadratic sieve and GNFS, which use sophisticated techniques fast factorization. All the above methods use the same basic formula differing only in its use. This article discusses a newly designed factorization method. Effective implementation of this method in programs is not important, it only represents and clearly defines its properties.

15. Optimal control linear quadratic methods

CERN Document Server

Anderson, Brian D O

2007-01-01

This augmented edition of a respected text teaches the reader how to use linear quadratic Gaussian methods effectively for the design of control systems. It explores linear optimal control theory from an engineering viewpoint, with step-by-step explanations that show clearly how to make practical use of the material.The three-part treatment begins with the basic theory of the linear regulator/tracker for time-invariant and time-varying systems. The Hamilton-Jacobi equation is introduced using the Principle of Optimality, and the infinite-time problem is considered. The second part outlines the

16. Quadratic reactivity fuel cycle model

International Nuclear Information System (INIS)

Lewins, J.D.

1985-01-01

For educational purposes it is highly desirable to provide simple yet realistic models for fuel cycle and fuel economy. In particular, a lumped model without recourse to detailed spatial calculations would be very helpful in providing the student with a proper understanding of the purposes of fuel cycle calculations. A teaching model for fuel cycle studies based on a lumped model assuming the summability of partial reactivities with a linear dependence of reactivity usefully illustrates fuel utilization concepts. The linear burnup model does not satisfactorily represent natural enrichment reactors. A better model, showing the trend of initial plutonium production before subsequent fuel burnup and fission product generation, is a quadratic fit. The study of M-batch cycles, reloading 1/Mth of the core at end of cycle, is now complicated by nonlinear equations. A complete account of the asymptotic cycle for any order of M-batch refueling can be given and compared with the linear model. A complete account of the transient cycle can be obtained readily in the two-batch model and this exact solution would be useful in verifying numerical marching models. It is convenient to treat the parabolic fit rho = 1 - tau 2 as a special case of the general quadratic fit rho = 1 - C/sub tau/ - (1 - C)tau 2 in suitably normalized reactivity and cycle time units. The parabolic results are given in this paper

17. Precipitation interpolation in mountainous areas

Science.gov (United States)

Kolberg, Sjur

2015-04-01

Different precipitation interpolation techniques as well as external drift covariates are tested and compared in a 26000 km2 mountainous area in Norway, using daily data from 60 stations. The main method of assessment is cross-validation. Annual precipitation in the area varies from below 500 mm to more than 2000 mm. The data were corrected for wind-driven undercatch according to operational standards. While temporal evaluation produce seemingly acceptable at-station correlation values (on average around 0.6), the average daily spatial correlation is less than 0.1. Penalising also bias, Nash-Sutcliffe R2 values are negative for spatial correspondence, and around 0.15 for temporal. Despite largely violated assumptions, plain Kriging produces better results than simple inverse distance weighting. More surprisingly, the presumably 'worst-case' benchmark of no interpolation at all, simply averaging all 60 stations for each day, actually outperformed the standard interpolation techniques. For logistic reasons, high altitudes are under-represented in the gauge network. The possible effect of this was investigated by a) fitting a precipitation lapse rate as an external drift, and b) applying a linear model of orographic enhancement (Smith and Barstad, 2004). These techniques improved the results only marginally. The gauge density in the region is one for each 433 km2; higher than the overall density of the Norwegian national network. Admittedly the cross-validation technique reduces the gauge density, still the results suggest that we are far from able to provide hydrological models with adequate data for the main driving force.

18. Potential problems with interpolating fields

Energy Technology Data Exchange (ETDEWEB)

Birse, Michael C. [The University of Manchester, Theoretical Physics Division, School of Physics and Astronomy, Manchester (United Kingdom)

2017-11-15

A potential can have features that do not reflect the dynamics of the system it describes but rather arise from the choice of interpolating fields used to define it. This is illustrated using a toy model of scattering with two coupled channels. A Bethe-Salpeter amplitude is constructed which is a mixture of the waves in the two channels. The potential derived from this has a strong repulsive core, which arises from the admixture of the closed channel in the wave function and not from the dynamics of the model. (orig.)

19. Dynamical invariants for variable quadratic Hamiltonians

International Nuclear Information System (INIS)

Suslov, Sergei K

2010-01-01

We consider linear and quadratic integrals of motion for general variable quadratic Hamiltonians. Fundamental relations between the eigenvalue problem for linear dynamical invariants and solutions of the corresponding Cauchy initial value problem for the time-dependent Schroedinger equation are emphasized. An eigenfunction expansion of the solution of the initial value problem is also found. A nonlinear superposition principle for generalized Ermakov systems is established as a result of decomposition of the general quadratic invariant in terms of the linear ones.

20. Quadratically convergent MCSCF scheme using Fock operators

International Nuclear Information System (INIS)

Das, G.

1981-01-01

A quadratically convergent formulation of the MCSCF method using Fock operators is presented. Among its advantages the present formulation is quadratically convergent unlike the earlier ones based on Fock operators. In contrast to other quadratically convergent schemes as well as the one based on generalized Brillouin's theorem, this method leads easily to a hybrid scheme where the weakly coupled orbitals (such as the core) are handled purely by Fock equations, while the rest of the orbitals are treated by a quadratically convergent approach with a truncated virtual space obtained by the use of the corresponding Fock equations

1. Geometrical and Graphical Solutions of Quadratic Equations.

Science.gov (United States)

Hornsby, E. John, Jr.

1990-01-01

Presented are several geometrical and graphical methods of solving quadratic equations. Discussed are Greek origins, Carlyle's method, von Staudt's method, fixed graph methods and imaginary solutions. (CW)

2. A New Interpolation Approach for Linearly Constrained Convex Optimization

KAUST Repository

Espinoza, Francisco

2012-08-01

In this thesis we propose a new class of Linearly Constrained Convex Optimization methods based on the use of a generalization of Shepard\\'s interpolation formula. We prove the properties of the surface such as the interpolation property at the boundary of the feasible region and the convergence of the gradient to the null space of the constraints at the boundary. We explore several descent techniques such as steepest descent, two quasi-Newton methods and the Newton\\'s method. Moreover, we implement in the Matlab language several versions of the method, particularly for the case of Quadratic Programming with bounded variables. Finally, we carry out performance tests against Matab Optimization Toolbox methods for convex optimization and implementations of the standard log-barrier and active-set methods. We conclude that the steepest descent technique seems to be the best choice so far for our method and that it is competitive with other standard methods both in performance and empirical growth order.

3. Multiobjective Optimization Involving Quadratic Functions

Directory of Open Access Journals (Sweden)

Oscar Brito Augusto

2014-01-01

Full Text Available Multiobjective optimization is nowadays a word of order in engineering projects. Although the idea involved is simple, the implementation of any procedure to solve a general problem is not an easy task. Evolutionary algorithms are widespread as a satisfactory technique to find a candidate set for the solution. Usually they supply a discrete picture of the Pareto front even if this front is continuous. In this paper we propose three methods for solving unconstrained multiobjective optimization problems involving quadratic functions. In the first, for biobjective optimization defined in the bidimensional space, a continuous Pareto set is found analytically. In the second, applicable to multiobjective optimization, a condition test is proposed to check if a point in the decision space is Pareto optimum or not and, in the third, with functions defined in n-dimensional space, a direct noniterative algorithm is proposed to find the Pareto set. Simple problems highlight the suitability of the proposed methods.

4. Quadratic Lagrangians and Legendre transformation

International Nuclear Information System (INIS)

Magnano, G.

1988-01-01

In recent years interest is grown about the so-called non-linear Lagrangians for gravitation. In particular, the quadratic lagrangians are currently believed to play a fundamental role both for quantum gravity and for the super-gravity approach. The higher order and high degree of non-linearity of these theories make very difficult to extract physical information out of them. The author discusses how the Legendre transformation can be applied to a wide class of non-linear theories: it corresponds to a conformal transformation whenever the Lagrangian depends only on the scalar curvature, while it has a more general form if the Lagrangian depends on the full Ricci tensor

5. Upstream waves in Saturn's foreshock

Science.gov (United States)

Bavassano Cattaneo, M. B.; Cattaneo, P.; Moreno, G.; Lepping, R. P.

1991-01-01

An analysis based on plasma and magnetic-field data obtained from Voyager 1 during its Saturn encounter is reported. The plasma data provided every 96 sec and magnetic-field data averaged over 48 sec are utilized. The evidence of upstream waves at Saturn are detected. The waves have a period, in the spacecraft frame, of about 550 sec and a relative amplitude larger than 0.3, are left- and right-hand elliptically polarized, and propagate at about 30 deg with respect to the average magnetic field. The appearance of the waves is correlated with the spacecraft being magnetically connected to the bow shock.

6. Interpolation of rational matrix functions

CERN Document Server

Ball, Joseph A; Rodman, Leiba

1990-01-01

This book aims to present the theory of interpolation for rational matrix functions as a recently matured independent mathematical subject with its own problems, methods and applications. The authors decided to start working on this book during the regional CBMS conference in Lincoln, Nebraska organized by F. Gilfeather and D. Larson. The principal lecturer, J. William Helton, presented ten lectures on operator and systems theory and the interplay between them. The conference was very stimulating and helped us to decide that the time was ripe for a book on interpolation for matrix valued functions (both rational and non-rational). When the work started and the first partial draft of the book was ready it became clear that the topic is vast and that the rational case by itself with its applications is already enough material for an interesting book. In the process of writing the book, methods for the rational case were developed and refined. As a result we are now able to present the rational case as an indepe...

7. Evaluation of various interpolants available in DICE

Energy Technology Data Exchange (ETDEWEB)

Turner, Daniel Z. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reu, Phillip L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Crozier, Paul [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

2015-02-01

This report evaluates several interpolants implemented in the Digital Image Correlation Engine (DICe), an image correlation software package developed by Sandia. By interpolants we refer to the basis functions used to represent discrete pixel intensity data as a continuous signal. Interpolation is used to determine intensity values in an image at non - pixel locations. It is also used, in some cases, to evaluate the x and y gradients of the image intensities. Intensity gradients subsequently guide the optimization process. The goal of this report is to inform analysts as to the characteristics of each interpolant and provide guidance towards the best interpolant for a given dataset. This work also serves as an initial verification of each of the interpolants implemented.

8. The LHCb Upstream Tracker Project

CERN Document Server

Steinkamp, Olaf

2015-01-01

The LHCb detector performs searches for New Physics in CP-violating observables and rare heavy-quark decays at the LHC. A comprehensive upgrade is planned for the long shutdown of the LHC in 2018/19. A goal of this upgrade is to abolish hardware triggers and read out the full detector at 40 MHz. This requires to replace the existing TT station upstream of the LHCb magnet by a new silicon micro-strip detector, the Upstream Tracker (UT). The UT will have a new front-end chip compatible with 40 MHz readout, silicon sensors with improved radiation hardness, finer readout granularity, and improved acceptance coverage at small polar angles. The outer region of each detection layer will be covered by p-in-n sensors with 10 cm long strips and a pitch of about 180 mum, while n-in-p sensors with half the pitch and strip length will be employed in the regions of highest particle density close to the beam pipe. The innermost sensors will have a circular cutout to optimize the forward acceptance. The front-end chip is bei...

9. Research on interpolation methods in medical image processing.

Science.gov (United States)

Pan, Mei-Sen; Yang, Xiao-Li; Tang, Jing-Tian

2012-04-01

Image interpolation is widely used for the field of medical image processing. In this paper, interpolation methods are divided into three groups: filter interpolation, ordinary interpolation and general partial volume interpolation. Some commonly-used filter methods for image interpolation are pioneered, but the interpolation effects need to be further improved. When analyzing and discussing ordinary interpolation, many asymmetrical kernel interpolation methods are proposed. Compared with symmetrical kernel ones, the former are have some advantages. After analyzing the partial volume and generalized partial volume estimation interpolations, the new concept and constraint conditions of the general partial volume interpolation are defined, and several new partial volume interpolation functions are derived. By performing the experiments of image scaling, rotation and self-registration, the interpolation methods mentioned in this paper are compared in the entropy, peak signal-to-noise ratio, cross entropy, normalized cross-correlation coefficient and running time. Among the filter interpolation methods, the median and B-spline filter interpolations have a relatively better interpolating performance. Among the ordinary interpolation methods, on the whole, the symmetrical cubic kernel interpolations demonstrate a strong advantage, especially the symmetrical cubic B-spline interpolation. However, we have to mention that they are very time-consuming and have lower time efficiency. As for the general partial volume interpolation methods, from the total error of image self-registration, the symmetrical interpolations provide certain superiority; but considering the processing efficiency, the asymmetrical interpolations are better.

10. Quadratic independence of coordinate functions of certain ...

... are quadratically independent' in the sense that they do not satisfy any nontrivial homogeneous quadratic relations among them. Using this, it is proved that there is no genuine compact quantum group which can act faithfully on C ( M ) such that the action leaves invariant the linear span of the above coordinate functions.

11. Sibling curves of quadratic polynomials | Wiggins | Quaestiones ...

African Journals Online (AJOL)

Sibling curves were demonstrated in [1, 2] as a novel way to visualize the zeroes of real valued functions. In [3] it was shown that a polynomial of degree n has n sibling curves. This paper focuses on the algebraic and geometric properites of the sibling curves of real and complex quadratic polynomials. Key words: Quadratic ...

12. An example in linear quadratic optimal control

NARCIS (Netherlands)

Weiss, George; Zwart, Heiko J.

1998-01-01

We construct a simple example of a quadratic optimal control problem for an infinite-dimensional linear system based on a shift semigroup. This system has an unbounded control operator. The cost is quadratic in the input and the state, and the weighting operators are bounded. Despite its extreme

13. Quadratic Boost A-Source Impedance Network

DEFF Research Database (Denmark)

Siwakoti, Yam Prasad; Blaabjerg, Frede; Chub, Andrii

2016-01-01

A novel quadratic boost A-source impedance network is proposed to realize converters that demand very high voltage gain. To satisfy the requirement, the network uses an autotransformer where the obtained gain is quadratically dependent on the duty ratio and is unmatched by any existing impedance...

14. Quadratic Hedging of Basis Risk

Directory of Open Access Journals (Sweden)

Hardy Hulley

2015-02-01

Full Text Available This paper examines a simple basis risk model based on correlated geometric Brownian motions. We apply quadratic criteria to minimize basis risk and hedge in an optimal manner. Initially, we derive the Föllmer–Schweizer decomposition for a European claim. This allows pricing and hedging under the minimal martingale measure, corresponding to the local risk-minimizing strategy. Furthermore, since the mean-variance tradeoff process is deterministic in our setup, the minimal martingale- and variance-optimal martingale measures coincide. Consequently, the mean-variance optimal strategy is easily constructed. Simple pricing and hedging formulae for put and call options are derived in terms of the Black–Scholes formula. Due to market incompleteness, these formulae depend on the drift parameters of the processes. By making a further equilibrium assumption, we derive an approximate hedging formula, which does not require knowledge of these parameters. The hedging strategies are tested using Monte Carlo experiments, and are compared with results achieved using a utility maximization approach.

15. Differential Interpolation Effects in Free Recall

Science.gov (United States)

Petrusic, William M.; Jamieson, Donald G.

1978-01-01

Attempts to determine whether a sufficiently demanding and difficult interpolated task (shadowing, i.e., repeating aloud) would decrease recall for earlier-presented items as well as for more recent items. Listening to music was included as a second interpolated task. Results support views that serial position effects reflect a single process.…

16. Transfinite C2 interpolant over triangles

International Nuclear Information System (INIS)

Alfeld, P.; Barnhill, R.E.

1984-01-01

A transfinite C 2 interpolant on a general triangle is created. The required data are essentially C 2 , no compatibility conditions arise, and the precision set includes all polynomials of degree less than or equal to eight. The symbol manipulation language REDUCE is used to derive the scheme. The scheme is discretized to two different finite dimensional C 2 interpolants in an appendix

17. Analysis of velocity planning interpolation algorithm based on NURBS curve

Science.gov (United States)

Zhang, Wanjun; Gao, Shanping; Cheng, Xiyan; Zhang, Feng

2017-04-01

To reduce interpolation time and Max interpolation error in NURBS (Non-Uniform Rational B-Spline) inter-polation caused by planning Velocity. This paper proposed a velocity planning interpolation algorithm based on NURBS curve. Firstly, the second-order Taylor expansion is applied on the numerator in NURBS curve representation with parameter curve. Then, velocity planning interpolation algorithm can meet with NURBS curve interpolation. Finally, simulation results show that the proposed NURBS curve interpolator meet the high-speed and high-accuracy interpolation requirements of CNC systems. The interpolation of NURBS curve should be finished.

18. An Improved Rotary Interpolation Based on FPGA

Directory of Open Access Journals (Sweden)

Mingyu Gao

2014-08-01

Full Text Available This paper presents an improved rotary interpolation algorithm, which consists of a standard curve interpolation module and a rotary process module. Compared to the conventional rotary interpolation algorithms, the proposed rotary interpolation algorithm is simpler and more efficient. The proposed algorithm was realized on a FPGA with Verilog HDL language, and simulated by the ModelSim software, and finally verified on a two-axis CNC lathe, which uses rotary ellipse and rotary parabolic as an example. According to the theoretical analysis and practical process validation, the algorithm has the following advantages: firstly, less arithmetic items is conducive for interpolation operation; and secondly the computing time is only two clock cycles of the FPGA. Simulations and actual tests have proved that the high accuracy and efficiency of the algorithm, which shows that it is highly suited for real-time applications.

Directory of Open Access Journals (Sweden)

Tanwiwat Jaikuna

2017-02-01

Full Text Available Purpose: To develop an in-house software program that is able to calculate and generate the biological dose distribution and biological dose volume histogram by physical dose conversion using the linear-quadratic-linear (LQL model. Material and methods : The Isobio software was developed using MATLAB version 2014b to calculate and generate the biological dose distribution and biological dose volume histograms. The physical dose from each voxel in treatment planning was extracted through Computational Environment for Radiotherapy Research (CERR, and the accuracy was verified by the differentiation between the dose volume histogram from CERR and the treatment planning system. An equivalent dose in 2 Gy fraction (EQD2 was calculated using biological effective dose (BED based on the LQL model. The software calculation and the manual calculation were compared for EQD2 verification with pair t-test statistical analysis using IBM SPSS Statistics version 22 (64-bit. Results: Two and three-dimensional biological dose distribution and biological dose volume histogram were displayed correctly by the Isobio software. Different physical doses were found between CERR and treatment planning system (TPS in Oncentra, with 3.33% in high-risk clinical target volume (HR-CTV determined by D90%, 0.56% in the bladder, 1.74% in the rectum when determined by D2cc, and less than 1% in Pinnacle. The difference in the EQD2 between the software calculation and the manual calculation was not significantly different with 0.00% at p-values 0.820, 0.095, and 0.593 for external beam radiation therapy (EBRT and 0.240, 0.320, and 0.849 for brachytherapy (BT in HR-CTV, bladder, and rectum, respectively. Conclusions : The Isobio software is a feasible tool to generate the biological dose distribution and biological dose volume histogram for treatment plan evaluation in both EBRT and BT.

20. Buzz words in the upstream

International Nuclear Information System (INIS)

Knoll, B.

1998-01-01

Examples of misleading or misunderstood 'buzz' words that are prevalent in modern upstream technology are illustrated. The terms underbalanced drilling, horizontal wells, and geo-steering, which were unheard of in the early 1980s, have become key 'buzz' words in modern exploitation terminology. The terms are not only misused, but the technologies themselves are frequently mis-applied as shown by the frequency of economic failures, or less than optimal technical successes which have occurred when these technologies have been employed. Two examples, 'horizontal drilling' and 'geosteering', are used to illustrate the point. With regard to horizontal drilling, many oil field professionals consider it as merely a more advanced method of directional drilling. This represents a serious, yet common, misconception. In truth, horizontal wells are not just an altered drilling process, but a fundamental change in exploitation technology. A more appropriate definition would be that a horizontal well is an enhanced oil recovery process, clearly implying a relationship to the exploitation benefit potential of horizontal wells. The other term, 'geo-steering' refers to defining, generating and monitoring a wellpath on geology rather than geometry. It, too, is frequently misused in the technical media. The term is also misrepresented by implying that it is applicable only to the horizontal section of a well, which in fact is far from the truth. To counter these misconceptions, the paper provides appropriate definitions for each of these terms, and defines the conditions under which the techniques themselves are most appropriately used. 7 figs

1. Gain-scheduled Linear Quadratic Control of Wind Turbines Operating at High Wind Speed

DEFF Research Database (Denmark)

Østergaard, Kasper Zinck; Stoustrup, Jakob; Brath, Per

2007-01-01

This paper addresses state estimation and linear quadratic (LQ) control of variable speed variable pitch wind turbines. On the basis of a nonlinear model of a wind turbine, a set of operating conditions is identified and a LQ controller is designed for each operating point. The controller gains...... are then interpolated linearly to get a control law for the entire operating envelope. A nonlinear state estimator is designed as a combination of two unscented Kalman filters and a linear disturbance estimator. The gain-scheduling variable (wind speed) is then calculated from the output of these state estimators...

2. Interferometric interpolation of sparse marine data

KAUST Repository

Hanafy, Sherif M.

2013-10-11

We present the theory and numerical results for interferometrically interpolating 2D and 3D marine surface seismic profiles data. For the interpolation of seismic data we use the combination of a recorded Green\\'s function and a model-based Green\\'s function for a water-layer model. Synthetic (2D and 3D) and field (2D) results show that the seismic data with sparse receiver intervals can be accurately interpolated to smaller intervals using multiples in the data. An up- and downgoing separation of both recorded and model-based Green\\'s functions can help in minimizing artefacts in a virtual shot gather. If the up- and downgoing separation is not possible, noticeable artefacts will be generated in the virtual shot gather. As a partial remedy we iteratively use a non-stationary 1D multi-channel matching filter with the interpolated data. Results suggest that a sparse marine seismic survey can yield more information about reflectors if traces are interpolated by interferometry. Comparing our results to those of f-k interpolation shows that the synthetic example gives comparable results while the field example shows better interpolation quality for the interferometric method. © 2013 European Association of Geoscientists & Engineers.

3. Designing Camera Networks by Convex Quadratic Programming

KAUST Repository

Ghanem, Bernard; Wonka, Peter; Cao, Yuanhao

2015-01-01

be formulated mathematically as a convex binary quadratic program (BQP) under linear constraints. Moreover, we propose an optimization strategy with a favorable trade-off between speed and solution quality. Our solution

4. Schur Stability Regions for Complex Quadratic Polynomials

Science.gov (United States)

Cheng, Sui Sun; Huang, Shao Yuan

2010-01-01

Given a quadratic polynomial with complex coefficients, necessary and sufficient conditions are found in terms of the coefficients such that all its roots have absolute values less than 1. (Contains 3 figures.)

5. Quadratic Functionals with General Boundary Conditions

International Nuclear Information System (INIS)

Dosla, Z.; Dosly, O.

1997-01-01

The purpose of this paper is to give the Reid 'Roundabout Theorem' for quadratic functionals with general boundary conditions. In particular, we describe the so-called coupled point and regularity condition introduced in terms of Riccati equation solutions

6. Linear quadratic optimization for positive LTI system

Science.gov (United States)

Muhafzan, Yenti, Syafrida Wirma; Zulakmal

2017-05-01

Nowaday the linear quadratic optimization subject to positive linear time invariant (LTI) system constitute an interesting study considering it can become a mathematical model of variety of real problem whose variables have to nonnegative and trajectories generated by these variables must be nonnegative. In this paper we propose a method to generate an optimal control of linear quadratic optimization subject to positive linear time invariant (LTI) system. A sufficient condition that guarantee the existence of such optimal control is discussed.

CERN Document Server

Chapman, J Donald

2015-01-01

Understand Quantitative Radiobiology from a Radiation Biophysics PerspectiveIn the field of radiobiology, the linear-quadratic (LQ) equation has become the standard for defining radiation-induced cell killing. Radiotherapy Treatment Planning: Linear-Quadratic Radiobiology describes tumor cell inactivation from a radiation physics perspective and offers appropriate LQ parameters for modeling tumor and normal tissue responses.Explore the Latest Cell Killing Numbers for Defining Iso-Effective Cancer TreatmentsThe book compil

8. Solitons in quadratic nonlinear photonic crystals

DEFF Research Database (Denmark)

Corney, Joel Frederick; Bang, Ole

2001-01-01

We study solitons in one-dimensional quadratic nonlinear photonic crystals with modulation of both the linear and nonlinear susceptibilities. We derive averaged equations that include induced cubic nonlinearities, which can be defocusing, and we numerically find previously unknown soliton families....... Because of these induced cubic terms, solitons still exist even when the effective quadratic nonlinearity vanishes and conventional theory predicts that there can be no soliton. We demonstrate that both bright and dark forms of these solitons can propagate stably....

9. A MAP-based image interpolation method via Viterbi decoding of Markov chains of interpolation functions.

Science.gov (United States)

2014-01-01

A new method of image resolution up-conversion (image interpolation) based on maximum a posteriori sequence estimation is proposed. Instead of making a hard decision about the value of each missing pixel, we estimate the missing pixels in groups. At each missing pixel of the high resolution (HR) image, we consider an ensemble of candidate interpolation methods (interpolation functions). The interpolation functions are interpreted as states of a Markov model. In other words, the proposed method undergoes state transitions from one missing pixel position to the next. Accordingly, the interpolation problem is translated to the problem of estimating the optimal sequence of interpolation functions corresponding to the sequence of missing HR pixel positions. We derive a parameter-free probabilistic model for this to-be-estimated sequence of interpolation functions. Then, we solve the estimation problem using a trellis representation and the Viterbi algorithm. Using directional interpolation functions and sequence estimation techniques, we classify the new algorithm as an adaptive directional interpolation using soft-decision estimation techniques. Experimental results show that the proposed algorithm yields images with higher or comparable peak signal-to-noise ratios compared with some benchmark interpolation methods in the literature while being efficient in terms of implementation and complexity considerations.

10. NOAA Optimum Interpolation (OI) SST V2

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — The optimum interpolation (OI) sea surface temperature (SST) analysis is produced weekly on a one-degree grid. The analysis uses in situ and satellite SST's plus...

11. Kuu plaat : Interpol Antics. Plaadid kauplusest Lasering

Index Scriptorium Estoniae

2005-01-01

Heliplaatidest: "Interpol Antics", Scooter "Mind the Gap", Slide-Fifty "The Way Ahead", Psyhhoterror "Freddy, löö esimesena!", Riho Sibul "Must", Bossacucanova "Uma Batida Diferente", "Biscantorat - Sound of the spirit from Glenstal Abbey"

12. Revisiting Veerman’s interpolation method

DEFF Research Database (Denmark)

Christiansen, Peter; Bay, Niels Oluf

2016-01-01

and (c) FEsimulations. A comparison of the determined forming limits yields insignificant differences in the limit strain obtainedwith Veerman’s method or exact Lagrangian interpolation for the two sheet metal forming processes investigated. Theagreement with the FE-simulations is reasonable.......This article describes an investigation of Veerman’s interpolation method and its applicability for determining sheet metalformability. The theoretical foundation is established and its mathematical assumptions are clarified. An exact Lagrangianinterpolation scheme is also established...... for comparison. Bulge testing and tensile testing of aluminium sheets containingelectro-chemically etched circle grids are performed to experimentally determine the forming limit of the sheet material.The forming limit is determined using (a) Veerman’s interpolation method, (b) exact Lagrangian interpolation...

13. NOAA Daily Optimum Interpolation Sea Surface Temperature

Data.gov (United States)

National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA 1/4° daily Optimum Interpolation Sea Surface Temperature (or daily OISST) is an analysis constructed by combining observations from different platforms...

14. Integration and interpolation of sampled waveforms

International Nuclear Information System (INIS)

Stearns, S.D.

1978-01-01

Methods for integrating, interpolating, and improving the signal-to-noise ratio of digitized waveforms are discussed with regard to seismic data from underground tests. The frequency-domain integration method and the digital interpolation method of Schafer and Rabiner are described and demonstrated using test data. The use of bandpass filtering for noise reduction is also demonstrated. With these methods, a backlog of seismic test data has been successfully processed

15. Wideband DOA Estimation through Projection Matrix Interpolation

OpenAIRE

Selva, J.

2017-01-01

This paper presents a method to reduce the complexity of the deterministic maximum likelihood (DML) estimator in the wideband direction-of-arrival (WDOA) problem, which is based on interpolating the array projection matrix in the temporal frequency variable. It is shown that an accurate interpolator like Chebyshev's is able to produce DML cost functions comprising just a few narrowband-like summands. Actually, the number of such summands is far smaller (roughly by factor ten in the numerical ...

16. Interpolation for a subclass of H

|g(zm)| ≤ c |zm − zm |, ∀m ∈ N. Thus it is natural to pose the following interpolation problem for H. ∞. : DEFINITION 4. We say that (zn) is an interpolating sequence in the weak sense for H. ∞ if given any sequence of complex numbers (λn) verifying. |λn| ≤ c ψ(zn,z. ∗ n) |zn − zn |, ∀n ∈ N,. (4) there exists a product fg ∈ H.

17. Linear Invariant Tensor Interpolation Applied to Cardiac Diffusion Tensor MRI

Science.gov (United States)

Gahm, Jin Kyu; Wisniewski, Nicholas; Kindlmann, Gordon; Kung, Geoffrey L.; Klug, William S.; Garfinkel, Alan; Ennis, Daniel B.

2015-01-01

Purpose Various methods exist for interpolating diffusion tensor fields, but none of them linearly interpolate tensor shape attributes. Linear interpolation is expected not to introduce spurious changes in tensor shape. Methods Herein we define a new linear invariant (LI) tensor interpolation method that linearly interpolates components of tensor shape (tensor invariants) and recapitulates the interpolated tensor from the linearly interpolated tensor invariants and the eigenvectors of a linearly interpolated tensor. The LI tensor interpolation method is compared to the Euclidean (EU), affine-invariant Riemannian (AI), log-Euclidean (LE) and geodesic-loxodrome (GL) interpolation methods using both a synthetic tensor field and three experimentally measured cardiac DT-MRI datasets. Results EU, AI, and LE introduce significant microstructural bias, which can be avoided through the use of GL or LI. Conclusion GL introduces the least microstructural bias, but LI tensor interpolation performs very similarly and at substantially reduced computational cost. PMID:23286085

18. Calculation of electromagnetic parameter based on interpolation algorithm

International Nuclear Information System (INIS)

Zhang, Wenqiang; Yuan, Liming; Zhang, Deyuan

2015-01-01

Wave-absorbing material is an important functional material of electromagnetic protection. The wave-absorbing characteristics depend on the electromagnetic parameter of mixed media. In order to accurately predict the electromagnetic parameter of mixed media and facilitate the design of wave-absorbing material, based on the electromagnetic parameters of spherical and flaky carbonyl iron mixture of paraffin base, this paper studied two different interpolation methods: Lagrange interpolation and Hermite interpolation of electromagnetic parameters. The results showed that Hermite interpolation is more accurate than the Lagrange interpolation, and the reflectance calculated with the electromagnetic parameter obtained by interpolation is consistent with that obtained through experiment on the whole. - Highlights: • We use interpolation algorithm on calculation of EM-parameter with limited samples. • Interpolation method can predict EM-parameter well with different particles added. • Hermite interpolation is more accurate than Lagrange interpolation. • Calculating RL based on interpolation is consistent with calculating RL from experiment

19. Elastic Model Transitions Using Quadratic Inequality Constrained Least Squares

Science.gov (United States)

Orr, Jeb S.

2012-01-01

A technique is presented for initializing multiple discrete finite element model (FEM) mode sets for certain types of flight dynamics formulations that rely on superposition of orthogonal modes for modeling the elastic response. Such approaches are commonly used for modeling launch vehicle dynamics, and challenges arise due to the rapidly time-varying nature of the rigid-body and elastic characteristics. By way of an energy argument, a quadratic inequality constrained least squares (LSQI) algorithm is employed to e ect a smooth transition from one set of FEM eigenvectors to another with no requirement that the models be of similar dimension or that the eigenvectors be correlated in any particular way. The physically unrealistic and controversial method of eigenvector interpolation is completely avoided, and the discrete solution approximates that of the continuously varying system. The real-time computational burden is shown to be negligible due to convenient features of the solution method. Simulation results are presented, and applications to staging and other discontinuous mass changes are discussed

NARCIS (Netherlands)

Napp, D.; Trentelman, H.L.

2011-01-01

This paper deals with systems described by constant coefficient linear partial differential equations (nD-systems) from a behavioral point of view. In this context we treat the linear-quadratic control problem where the performance functional is the integral of a quadratic differential form. We look

1. Polyhedral combinatorics of the cardinality constrained quadratic knapsack problem and the quadratic selective travelling salesman problem

DEFF Research Database (Denmark)

2006-01-01

This paper considers the cardinality constrained quadratic knapsack problem (QKP) and the quadratic selective travelling salesman problem (QSTSP). The QKP is a generalization of the knapsack problem and the QSTSP is a generalization of the travelling salesman problem. Thus, both problems are NP...

2. Edge-detect interpolation for direct digital periapical images

International Nuclear Information System (INIS)

Song, Nam Kyu; Koh, Kwang Joon

1998-01-01

The purpose of this study was to aid in the use of the digital images by edge-detect interpolation for direct digital periapical images using edge-deted interpolation. This study was performed by image processing of 20 digital periapical images; pixel replication, linear non-interpolation, linear interpolation, and edge-sensitive interpolation. The obtained results were as follows ; 1. Pixel replication showed blocking artifact and serious image distortion. 2. Linear interpolation showed smoothing effect on the edge. 3. Edge-sensitive interpolation overcame the smoothing effect on the edge and showed better image.

3. Guises and disguises of quadratic divergences

Energy Technology Data Exchange (ETDEWEB)

Cherchiglia, A.L., E-mail: adriano@fisica.ufmg.br [Departamento de Física, ICEx, Universidade Federal de Minas Gerais, P.O. BOX 702, 30.161-970, Belo Horizonte, MG (Brazil); Vieira, A.R., E-mail: arvieira@fisica.ufmg.br [Departamento de Física, ICEx, Universidade Federal de Minas Gerais, P.O. BOX 702, 30.161-970, Belo Horizonte, MG (Brazil); Hiller, Brigitte, E-mail: brigitte@teor.fis.uc.pt [Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, 3004-516 Coimbra (Portugal); Baêta Scarpelli, A.P., E-mail: scarpelli.apbs@dpf.gov.br [Setor Técnico-Científico, Departamento de Polícia Federal, Rua Hugo D’Antola, 95 - Lapa, São Paulo (Brazil); Sampaio, Marcos, E-mail: marcos.sampaio@durham.ac.uk [Departamento de Física, ICEx, Universidade Federal de Minas Gerais, P.O. BOX 702, 30.161-970, Belo Horizonte, MG (Brazil); Centre for Particle Theory, Department of Mathematical Sciences, Durham University, South Road Durham DH1 3LE (United Kingdom)

2014-12-15

In this contribution, we present a new perspective on the control of quadratic divergences in quantum field theory, in general, and in the Higgs naturalness problem, in particular. Our discussion is essentially based on an approach where UV divergences are parameterized, after being reduced to basic divergent integrals (BDI) in one internal momentum, as functions of a cutoff and a renormalization group scale λ. We illustrate our proposal with well-known examples, such as the gluon vacuum self energy of QCD and the Higgs decay in two photons within this approach. We also discuss frameworks in effective low-energy QCD models, where quadratic divergences are indeed fundamental.

4. Indirect quantum tomography of quadratic Hamiltonians

Energy Technology Data Exchange (ETDEWEB)

Burgarth, Daniel [Institute for Mathematical Sciences, Imperial College London, London SW7 2PG (United Kingdom); Maruyama, Koji; Nori, Franco, E-mail: daniel@burgarth.de, E-mail: kmaruyama@riken.jp [Advanced Science Institute, RIKEN, Wako-shi, Saitama 351-0198 (Japan)

2011-01-15

A number of many-body problems can be formulated using Hamiltonians that are quadratic in the creation and annihilation operators. Here, we show how such quadratic Hamiltonians can be efficiently estimated indirectly, employing very few resources. We found that almost all the properties of the Hamiltonian are determined by its surface and that these properties can be measured even if the system can only be initialized to a mixed state. Therefore, our method can be applied to various physical models, with important examples including coupled nano-mechanical oscillators, hopping fermions in optical lattices and transverse Ising chains.

5. Nonlinear dynamics of quadratically cubic systems

International Nuclear Information System (INIS)

Rudenko, O V

2013-01-01

We propose a modified form of the well-known nonlinear dynamic equations with quadratic relations used to model a cubic nonlinearity. We show that such quadratically cubic equations sometimes allow exact solutions and sometimes make the original problem easier to analyze qualitatively. Occasionally, exact solutions provide a useful tool for studying new phenomena. Examples considered include nonlinear ordinary differential equations and Hopf, Burgers, Korteweg–de Vries, and nonlinear Schrödinger partial differential equations. Some problems are solved exactly in the space–time and spectral representations. Unsolved problems potentially solvable by the proposed approach are listed. (methodological notes)

6. PSQP: Puzzle Solving by Quadratic Programming.

Science.gov (United States)

Andalo, Fernanda A; Taubin, Gabriel; Goldenstein, Siome

2017-02-01

In this article we present the first effective method based on global optimization for the reconstruction of image puzzles comprising rectangle pieces-Puzzle Solving by Quadratic Programming (PSQP). The proposed novel mathematical formulation reduces the problem to the maximization of a constrained quadratic function, which is solved via a gradient ascent approach. The proposed method is deterministic and can deal with arbitrary identical rectangular pieces. We provide experimental results showing its effectiveness when compared to state-of-the-art approaches. Although the method was developed to solve image puzzles, we also show how to apply it to the reconstruction of simulated strip-shredded documents, broadening its applicability.

DEFF Research Database (Denmark)

Guo, Hairun

between the Kerr nonlinear effects and the dispersive effects in the medium. A Kerr-like nonlinearity is produced through the cascaded phase mismatched quadratic process, e.g. the second harmonic generation process, which can be flexibly tuned in both the sign and the amplitude, making possible a strong......-phase-matching technology is not necessarily needed. In large-RI-changed waveguides, CQSC is extended to the mid-infrared range to generate single-cycle pulses with purely nonlinear interactions, since an all-normal dispersion profile could be achieved within the guidance band. We believe that CQSC in quadratic waveguides...

8. On orthogonality preserving quadratic stochastic operators

Energy Technology Data Exchange (ETDEWEB)

Mukhamedov, Farrukh; Taha, Muhammad Hafizuddin Mohd [Department of Computational and Theoretical Sciences, Faculty of Science International Islamic University Malaysia, P.O. Box 141, 25710 Kuantan, Pahang Malaysia (Malaysia)

2015-05-15

A quadratic stochastic operator (in short QSO) is usually used to present the time evolution of differing species in biology. Some quadratic stochastic operators have been studied by Lotka and Volterra. In the present paper, we first give a simple characterization of Volterra QSO in terms of absolutely continuity of discrete measures. Further, we introduce a notion of orthogonal preserving QSO, and describe such kind of operators defined on two dimensional simplex. It turns out that orthogonal preserving QSOs are permutations of Volterra QSO. The associativity of genetic algebras generated by orthogonal preserving QSO is studied too.

9. Bound constrained quadratic programming via piecewise

DEFF Research Database (Denmark)

Madsen, Kaj; Nielsen, Hans Bruun; Pinar, M. C.

1999-01-01

of a symmetric, positive definite matrix, and is solved by Newton iteration with line search. The paper describes the algorithm and its implementation including estimation of lambda/sub 1/ , how to get a good starting point for the iteration, and up- and downdating of Cholesky factorization. Results of extensive......We consider the strictly convex quadratic programming problem with bounded variables. A dual problem is derived using Lagrange duality. The dual problem is the minimization of an unconstrained, piecewise quadratic function. It involves a lower bound of lambda/sub 1/ , the smallest eigenvalue...

10. On orthogonality preserving quadratic stochastic operators

International Nuclear Information System (INIS)

Mukhamedov, Farrukh; Taha, Muhammad Hafizuddin Mohd

2015-01-01

A quadratic stochastic operator (in short QSO) is usually used to present the time evolution of differing species in biology. Some quadratic stochastic operators have been studied by Lotka and Volterra. In the present paper, we first give a simple characterization of Volterra QSO in terms of absolutely continuity of discrete measures. Further, we introduce a notion of orthogonal preserving QSO, and describe such kind of operators defined on two dimensional simplex. It turns out that orthogonal preserving QSOs are permutations of Volterra QSO. The associativity of genetic algebras generated by orthogonal preserving QSO is studied too

11. Eigenfunctions of quadratic hamiltonians in Wigner representation

International Nuclear Information System (INIS)

Akhundova, Eh.A.; Dodonov, V.V.; Man'ko, V.I.

1984-01-01

Exact solutions of the Schroedinger equation in Wigner representation are obtained for an arbitrary non-stationary N-dimensional quadratic Hamiltonian. It is shown that the complete system of the solutions can always be chosen in the form of the products of Laguerre polynomials, the arguments of which are the quadratic integrals of motion of the corresponding classical problem. The generating function is found for the transition probabilities between Fock states which represent a many-dimensional generatization of a well-known Husimi formula for the oscillator of variable frequency. As an example, the motion of a charged particle in an uniform alternate electromagnetic field is considered in detail

12. Discrete Orthogonal Transforms and Neural Networks for Image Interpolation

Directory of Open Access Journals (Sweden)

J. Polec

1999-09-01

Full Text Available In this contribution we present transform and neural network approaches to the interpolation of images. From transform point of view, the principles from [1] are modified for 1st and 2nd order interpolation. We present several new interpolation discrete orthogonal transforms. From neural network point of view, we present interpolation possibilities of multilayer perceptrons. We use various configurations of neural networks for 1st and 2nd order interpolation. The results are compared by means of tables.

13. Penyelesaian Numerik Persamaan Advection Dengan Radial Point Interpolation Method dan Integrasi Waktu Dengan Discontinuous Galerkin Method

Directory of Open Access Journals (Sweden)

2016-12-01

14. New families of interpolating type IIB backgrounds

Science.gov (United States)

Minasian, Ruben; Petrini, Michela; Zaffaroni, Alberto

2010-04-01

We construct new families of interpolating two-parameter solutions of type IIB supergravity. These correspond to D3-D5 systems on non-compact six-dimensional manifolds which are mathbb{T}2 fibrations over Eguchi-Hanson and multi-center Taub-NUT spaces, respectively. One end of the interpolation corresponds to a solution with only D5 branes and vanishing NS three-form flux. A topology changing transition occurs at the other end, where the internal space becomes a direct product of the four-dimensional surface and the two-torus and the complexified NS-RR three-form flux becomes imaginary self-dual. Depending on the choice of the connections on the torus fibre, the interpolating family has either mathcal{N}=2 or mathcal{N}=1 supersymmetry. In the mathcal{N}=2 case it can be shown that the solutions are regular.

15. Interpolation of quasi-Banach spaces

International Nuclear Information System (INIS)

Tabacco Vignati, A.M.

1986-01-01

This dissertation presents a method of complex interpolation for familities of quasi-Banach spaces. This method generalizes the theory for families of Banach spaces, introduced by others. Intermediate spaces in several particular cases are characterized using different approaches. The situation when all the spaces have finite dimensions is studied first. The second chapter contains the definitions and main properties of the new interpolation spaces, and an example concerning the Schatten ideals associated with a separable Hilbert space. The case of L/sup P/ spaces follows from the maximal operator theory contained in Chapter III. Also introduced is a different method of interpolation for quasi-Banach lattices of functions, and conditions are given to guarantee that the two techniques yield the same result. Finally, the last chapter contains a different, and more direct, approach to the case of Hardy spaces

16. Multiscale empirical interpolation for solving nonlinear PDEs

KAUST Repository

Calo, Victor M.

2014-12-01

In this paper, we propose a multiscale empirical interpolation method for solving nonlinear multiscale partial differential equations. The proposed method combines empirical interpolation techniques and local multiscale methods, such as the Generalized Multiscale Finite Element Method (GMsFEM). To solve nonlinear equations, the GMsFEM is used to represent the solution on a coarse grid with multiscale basis functions computed offline. Computing the GMsFEM solution involves calculating the system residuals and Jacobians on the fine grid. We use empirical interpolation concepts to evaluate these residuals and Jacobians of the multiscale system with a computational cost which is proportional to the size of the coarse-scale problem rather than the fully-resolved fine scale one. The empirical interpolation method uses basis functions which are built by sampling the nonlinear function we want to approximate a limited number of times. The coefficients needed for this approximation are computed in the offline stage by inverting an inexpensive linear system. The proposed multiscale empirical interpolation techniques: (1) divide computing the nonlinear function into coarse regions; (2) evaluate contributions of nonlinear functions in each coarse region taking advantage of a reduced-order representation of the solution; and (3) introduce multiscale proper-orthogonal-decomposition techniques to find appropriate interpolation vectors. We demonstrate the effectiveness of the proposed methods on several nonlinear multiscale PDEs that are solved with Newton\\'s methods and fully-implicit time marching schemes. Our numerical results show that the proposed methods provide a robust framework for solving nonlinear multiscale PDEs on a coarse grid with bounded error and significant computational cost reduction.

17. Quadratic mass relations in topological bootstrap theory

International Nuclear Information System (INIS)

Jones, C.E.; Uschersohn, J.

1980-01-01

From the requirement of reality of discontinuities of scattering amplitudes at the spherical level of the topological bootstrap theory, a large number of mass relations for hadrons is derived. Quadratic mass formulas for the symmetry-breaking pattern of both mesons and baryon is obtained and their relation to conventional models of symmetry breaking is briefly discussed

18. STABILIZED SEQUENTIAL QUADRATIC PROGRAMMING: A SURVEY

Directory of Open Access Journals (Sweden)

Damián Fernández

2014-12-01

Full Text Available We review the motivation for, the current state-of-the-art in convergence results, and some open questions concerning the stabilized version of the sequential quadratic programming algorithm for constrained optimization. We also discuss the tools required for its local convergence analysis, globalization challenges, and extentions of the method to the more general variational problems.

19. The Quadratic Selective Travelling Salesman Problem

DEFF Research Database (Denmark)

2003-01-01

A well-known extension of the Travelling Salesman Problem (TSP) is the Selective TSP (STSP): Each node has an associated profit and instead of visiting all nodes, the most profitable set of nodes, taking into account the tour cost, is visited. The Quadratic STSP (QSTSP) adds the additional...

20. orthogonal and scaling transformations of quadratic functions

African Journals Online (AJOL)

Preferred Customer

functions of sub-problems of various nonlinear programming problems that employ methods such as sequential quadratic programming and trust-region methods (Sorensen, 1982; Eldersveld,. 1991; Nocedal and Wright, 1999). Various problems in Algebra, Functional Analysis,. Analytic Geometry and Computational Mathe-.

1. Fundamental quadratic variational principle underlying general relativity

International Nuclear Information System (INIS)

Atkins, W.K.

1983-01-01

The fundamental result of Lanczos is used in a new type of quadratic variational principle whose field equations are the Einstein field equations together with the Yang-Mills type equations for the Riemann curvature. Additionally, a spin-2 theory of gravity for the special case of the Einstein vacuum is discussed

2. Investigating Students' Mathematical Difficulties with Quadratic Equations

Science.gov (United States)

O'Connor, Bronwyn Reid; Norton, Stephen

2016-01-01

This paper examines the factors that hinder students' success in working with and understanding the mathematics of quadratic equations using a case study analysis of student error patterns. Twenty-five Year 11 students were administered a written test to examine their understanding of concepts and procedures associated with this topic. The…

3. Commuting quantum traces for quadratic algebras

International Nuclear Information System (INIS)

Nagy, Zoltan; Avan, Jean; Doikou, Anastasia; Rollet, Genevieve

2005-01-01

Consistent tensor products on auxiliary spaces, hereafter denoted 'fusion procedures', and commuting transfer matrices are defined for general quadratic algebras, nondynamical and dynamical, inspired by results on reflection algebras. Applications of these procedures then yield integer-indexed families of commuting Hamiltonians

4. Positivity Preserving Interpolation Using Rational Bicubic Spline

Directory of Open Access Journals (Sweden)

Samsul Ariffin Abdul Karim

2015-01-01

Full Text Available This paper discusses the positivity preserving interpolation for positive surfaces data by extending the C1 rational cubic spline interpolant of Karim and Kong to the bivariate cases. The partially blended rational bicubic spline has 12 parameters in the descriptions where 8 of them are free parameters. The sufficient conditions for the positivity are derived on every four boundary curves network on the rectangular patch. Numerical comparison with existing schemes also has been done in detail. Based on Root Mean Square Error (RMSE, our partially blended rational bicubic spline is on a par with the established methods.

5. Interpolation algorithm for asynchronous ADC-data

Directory of Open Access Journals (Sweden)

S. Bramburger

2017-09-01

Full Text Available This paper presents a modified interpolation algorithm for signals with variable data rate from asynchronous ADCs. The Adaptive weights Conjugate gradient Toeplitz matrix (ACT algorithm is extended to operate with a continuous data stream. An additional preprocessing of data with constant and linear sections and a weighted overlap of step-by-step into spectral domain transformed signals improve the reconstruction of the asycnhronous ADC signal. The interpolation method can be used if asynchronous ADC data is fed into synchronous digital signal processing.

6. Optimality Conditions for Fuzzy Number Quadratic Programming with Fuzzy Coefficients

Directory of Open Access Journals (Sweden)

Xue-Gang Zhou

2014-01-01

Full Text Available The purpose of the present paper is to investigate optimality conditions and duality theory in fuzzy number quadratic programming (FNQP in which the objective function is fuzzy quadratic function with fuzzy number coefficients and the constraint set is fuzzy linear functions with fuzzy number coefficients. Firstly, the equivalent quadratic programming of FNQP is presented by utilizing a linear ranking function and the dual of fuzzy number quadratic programming primal problems is introduced. Secondly, we present optimality conditions for fuzzy number quadratic programming. We then prove several duality results for fuzzy number quadratic programming problems with fuzzy coefficients.

7. Multiscale empirical interpolation for solving nonlinear PDEs

KAUST Repository

Calo, Victor M.; Efendiev, Yalchin R.; Galvis, Juan; Ghommem, Mehdi

2014-01-01

residuals and Jacobians on the fine grid. We use empirical interpolation concepts to evaluate these residuals and Jacobians of the multiscale system with a computational cost which is proportional to the size of the coarse-scale problem rather than the fully

8. Fast image interpolation via random forests.

Science.gov (United States)

Huang, Jun-Jie; Siu, Wan-Chi; Liu, Tian-Rui

2015-10-01

This paper proposes a two-stage framework for fast image interpolation via random forests (FIRF). The proposed FIRF method gives high accuracy, as well as requires low computation. The underlying idea of this proposed work is to apply random forests to classify the natural image patch space into numerous subspaces and learn a linear regression model for each subspace to map the low-resolution image patch to high-resolution image patch. The FIRF framework consists of two stages. Stage 1 of the framework removes most of the ringing and aliasing artifacts in the initial bicubic interpolated image, while Stage 2 further refines the Stage 1 interpolated image. By varying the number of decision trees in the random forests and the number of stages applied, the proposed FIRF method can realize computationally scalable image interpolation. Extensive experimental results show that the proposed FIRF(3, 2) method achieves more than 0.3 dB improvement in peak signal-to-noise ratio over the state-of-the-art nonlocal autoregressive modeling (NARM) method. Moreover, the proposed FIRF(1, 1) obtains similar or better results as NARM while only takes its 0.3% computational time.

9. Spectral Compressive Sensing with Polar Interpolation

DEFF Research Database (Denmark)

Fyhn, Karsten; Dadkhahi, Hamid; F. Duarte, Marco

2013-01-01

. In this paper, we introduce a greedy recovery algorithm that leverages a band-exclusion function and a polar interpolation function to address these two issues in spectral compressive sensing. Our algorithm is geared towards line spectral estimation from compressive measurements and outperforms most existing...

10. Technique for image interpolation using polynomial transforms

NARCIS (Netherlands)

Escalante Ramírez, B.; Martens, J.B.; Haskell, G.G.; Hang, H.M.

1993-01-01

We present a new technique for image interpolation based on polynomial transforms. This is an image representation model that analyzes an image by locally expanding it into a weighted sum of orthogonal polynomials. In the discrete case, the image segment within every window of analysis is

11. Geometric Approaches to Quadratic Equations from Other Times and Places.

Science.gov (United States)

Allaire, Patricia R.; Bradley, Robert E.

2001-01-01

Focuses on geometric solutions of quadratic problems. Presents a collection of geometric techniques from ancient Babylonia, classical Greece, medieval Arabia, and early modern Europe to enhance the quadratic equation portion of an algebra course. (KHR)

12. Coherent states of systems with quadratic Hamiltonians

Energy Technology Data Exchange (ETDEWEB)

Bagrov, V.G., E-mail: bagrov@phys.tsu.ru [Department of Physics, Tomsk State University, Tomsk (Russian Federation); Gitman, D.M., E-mail: gitman@if.usp.br [Tomsk State University, Tomsk (Russian Federation); Pereira, A.S., E-mail: albertoufcg@hotmail.com [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Instituto de Fisica

2015-06-15

Different families of generalized coherent states (CS) for one-dimensional systems with general time-dependent quadratic Hamiltonian are constructed. In principle, all known CS of systems with quadratic Hamiltonian are members of these families. Some of the constructed generalized CS are close enough to the well-known due to Schroedinger and Glauber CS of a harmonic oscillator; we call them simply CS. However, even among these CS, there exist different families of complete sets of CS. These families differ by values of standard deviations at the initial time instant. According to the values of these initial standard deviations, one can identify some of the families with semiclassical CS. We discuss properties of the constructed CS, in particular, completeness relations, minimization of uncertainty relations and so on. As a unknown application of the general construction, we consider different CS of an oscillator with a time dependent frequency. (author)

13. Coherent states of systems with quadratic Hamiltonians

International Nuclear Information System (INIS)

Bagrov, V.G.; Gitman, D.M.; Pereira, A.S.

2015-01-01

Different families of generalized coherent states (CS) for one-dimensional systems with general time-dependent quadratic Hamiltonian are constructed. In principle, all known CS of systems with quadratic Hamiltonian are members of these families. Some of the constructed generalized CS are close enough to the well-known due to Schroedinger and Glauber CS of a harmonic oscillator; we call them simply CS. However, even among these CS, there exist different families of complete sets of CS. These families differ by values of standard deviations at the initial time instant. According to the values of these initial standard deviations, one can identify some of the families with semiclassical CS. We discuss properties of the constructed CS, in particular, completeness relations, minimization of uncertainty relations and so on. As a unknown application of the general construction, we consider different CS of an oscillator with a time dependent frequency. (author)

14. On quadratic residue codes and hyperelliptic curves

Directory of Open Access Journals (Sweden)

David Joyner

2008-01-01

Full Text Available For an odd prime p and each non-empty subset S⊂GF(p, consider the hyperelliptic curve X S defined by y 2 =f S (x, where f S (x = ∏ a∈S (x-a. Using a connection between binary quadratic residue codes and hyperelliptic curves over GF(p, this paper investigates how coding theory bounds give rise to bounds such as the following example: for all sufficiently large primes p there exists a subset S⊂GF(p for which the bound |X S (GF(p| > 1.39p holds. We also use the quasi-quadratic residue codes defined below to construct an example of a formally self-dual optimal code whose zeta function does not satisfy the `Riemann hypothesis.''

15. Quaternion orders, quadratic forms, and Shimura curves

CERN Document Server

Alsina, Montserrat

2004-01-01

Shimura curves are a far-reaching generalization of the classical modular curves. They lie at the crossroads of many areas, including complex analysis, hyperbolic geometry, algebraic geometry, algebra, and arithmetic. The text provides an introduction to the subject from a theoretic and algorithmic perspective. The main topics covered in it are Shimura curves defined over the rational number field, the construction of their fundamental domains, and the determination of their complex multiplication points. The study of complex multiplication points in Shimura curves leads to the study of families of binary quadratic forms with algebraic coefficients and to their classification by arithmetic Fuchsian groups. In this regard, the authors develop a theory full of new possibilities which parallels Gauss' theory on the classification of binary quadratic forms with integral coefficients by the action of the modular group. Each topic covered in the book begins with a theoretical discussion followed by carefully worked...

16. Quadratic hamiltonians and relativistic quantum mechanics

International Nuclear Information System (INIS)

Razumov, A.V.; Solov'ev, V.O.; Taranov, A.Yu.

1981-01-01

For the case of a charged scalar field described by a quadratic hamiltonian the equivalent relativistic quantum mechanics is constructed in one-particle sector. Complete investigation of a charged relativistic particle motion in the Coulomb field is carried out. Subcritical as well as supercritical cases are considered. In the course of investigation of the charged scalar particle in the Coulomb field the diagonalization of the quadratic hamiltonian describing the charged scalar quantized field interaction with the external Coulomb field has taken place. Mathematically this problem is bound to the construction of self-conjugated expansions of the symmetric operator. The construction of such expansion is necessary at any small external field magnitude [ru

DEFF Research Database (Denmark)

Danvy, O.; Schultz, U.P.

2004-01-01

-lifting transforms a block-structured program into a set of recursive equations, one for each local function in the source program. Each equation carries extra parameters to account for the free variables of the corresponding local function and of all its callees. It is the search for these extra parameters......Lambda-lifting is a program transformation that is used in compilers, partial evaluators, and program transformers. In this article, we show how to reduce its complexity from cubic time to quadratic time, and we present a flow-sensitive lambda-lifter that also works in quadratic time. Lambda...... that yields the cubic factor in the traditional formulation of lambda-lifting, which is due to Johnsson. This search is carried out by computing a transitive closure. To reduce the complexity of lambda-lifting, we partition the call graph of the source program into strongly connected components, based...

DEFF Research Database (Denmark)

Danvy, Olivier; Schultz, Ulrik Pagh

2002-01-01

Lambda-lifting is a program transformation that is used in compilers, partial evaluators, and program transformers. In this article, we show how to reduce its complexity from cubic time to quadratic time, and we present a flow-sensitive lambda-lifter that also works in quadratic time. Lambda-lifting...... that yields the cubic factor in the traditional formulation of lambda-lifting, which is due to Johnsson. This search is carried out by computing a transitive closure. To reduce the complexity of lambda-lifting, we partition the call graph of the source program into strongly connected components, based...... of lambda-lifting from O(n^3) to O(n^2) . where n is the size of the program. Since a lambda-lifter can output programs of size O(n^2), our algorithm is asympotically optimal....

DEFF Research Database (Denmark)

Danvy, Olivier; Schultz, Ulrik Pagh

2003-01-01

Lambda-lifting is a program transformation that is used in compilers, partial evaluators, and program transformers. In this article, we show how to reduce its complexity from cubic time to quadratic time, and we present a flow-sensitive lambda-lifter that also works in quadratic time. Lambda-lifting...... that yields the cubic factor in the traditional formulation of lambda-lifting, which is due to Johnsson. This search is carried out by computing a transitive closure. To reduce the complexity of lambda-lifting, we partition the call graph of the source program into strongly connected components, based...... of lambda-lifting from O(n^3) to O(n^2) . where n is the size of the program. Since a lambda-lifter can output programs of size O(n^2), our algorithm is asympotically optimal....

DEFF Research Database (Denmark)

Danvy, Olivier; Schultz, Ulrik Pagh

2004-01-01

Lambda-lifting is a program transformation that is used in compilers, partial evaluators, and program transformers. In this article, we show how to reduce its complexity from cubic time to quadratic time, and we present a flow-sensitive lambda-lifter that also works in quadratic time. Lambda-lifting...... that yields the cubic factor in the traditional formulation of lambda-lifting, which is due to Johnsson. This search is carried out by computing a transitive closure. To reduce the complexity of lambda-lifting, we partition the call graph of the source program into strongly connected components, based...... of lambda-lifting from O(n^3) to O(n^2) . where n is the size of the program. Since a lambda-lifter can output programs of size O(n^2), our algorithm is asympotically optimal....

1. Temporal quadratic expansion nodal Green's function method

International Nuclear Information System (INIS)

Liu Cong; Jing Xingqing; Xu Xiaolin

2000-01-01

A new approach is presented to efficiently solve the three-dimensional space-time reactor dynamics equation which overcomes the disadvantages of current methods. In the Temporal Quadratic Expansion Nodal Green's Function Method (TQE/NGFM), the Quadratic Expansion Method (QEM) is used for the temporal solution with the Nodal Green's Function Method (NGFM) employed for the spatial solution. Test calculational results using TQE/NGFM show that its time step size can be 5-20 times larger than that of the Fully Implicit Method (FIM) for similar precision. Additionally, the spatial mesh size with NGFM can be nearly 20 times larger than that using the finite difference method. So, TQE/NGFM is proved to be an efficient reactor dynamics analysis method

2. Walking solitons in quadratic nonlinear media

OpenAIRE

Torner Sabata, Lluís; Mazilu, D; Mihalache, Dumitru

1996-01-01

We study self-action of light in parametric wave interactions in nonlinear quadratic media. We show the existence of stationary solitons in the presence of Poynting vector beam walk-off or different group velocities between the waves. We discover that the new solitons constitute a two-parameter family, and they exist for different wave intensities and transverse velocities. We discuss the properties of the walking solitons and their experimental implications. Peer Reviewed

3. Quadratic Term Structure Models in Discrete Time

OpenAIRE

Marco Realdon

2006-01-01

This paper extends the results on quadratic term structure models in continuos time to the discrete time setting. The continuos time setting can be seen as a special case of the discrete time one. Recursive closed form solutions for zero coupon bonds are provided even in the presence of multiple correlated underlying factors. Pricing bond options requires simple integration. Model parameters may well be time dependent without scuppering such tractability. Model estimation does not require a r...

4. Least Squares Problems with Absolute Quadratic Constraints

Directory of Open Access Journals (Sweden)

R. Schöne

2012-01-01

Full Text Available This paper analyzes linear least squares problems with absolute quadratic constraints. We develop a generalized theory following Bookstein's conic-fitting and Fitzgibbon's direct ellipse-specific fitting. Under simple preconditions, it can be shown that a minimum always exists and can be determined by a generalized eigenvalue problem. This problem is numerically reduced to an eigenvalue problem by multiplications of Givens' rotations. Finally, four applications of this approach are presented.

5. Stochastic Linear Quadratic Optimal Control Problems

International Nuclear Information System (INIS)

Chen, S.; Yong, J.

2001-01-01

This paper is concerned with the stochastic linear quadratic optimal control problem (LQ problem, for short) for which the coefficients are allowed to be random and the cost functional is allowed to have a negative weight on the square of the control variable. Some intrinsic relations among the LQ problem, the stochastic maximum principle, and the (linear) forward-backward stochastic differential equations are established. Some results involving Riccati equation are discussed as well

6. Quadratic tracer dynamical models tobacco growth

International Nuclear Information System (INIS)

Qiang Jiyi; Hua Cuncai; Wang Shaohua

2011-01-01

In order to study the non-uniformly transferring process of some tracer dosages, we assume that the absorption of some tracer by tobacco is a quadratic function of the tracer quantity of the tracer in the case of fast absorption, whereas the exclusion of the tracer from tobacco is a linear function of the tracer quantity in the case of slow exclusion, after the tracer is introduced into tobacco once at zero time. A single-compartment quadratic dynamical model of Logistic type is established for the leaves of tobacco. Then, a two-compartment quadratic dynamical model is established for leaves and calms of the tobacco. Qualitative analysis of the models shows that the tracer applied to the leaves of the tobacco is excluded finally; however, the tracer stays at the tobacco for finite time. Two methods are also given for computing the parameters in the models. Finally, the results of the models are verified by the 32 P experiment for the absorption of tobacco. (authors)

7. A Finite Continuation Algorithm for Bound Constrained Quadratic Programming

DEFF Research Database (Denmark)

Madsen, Kaj; Nielsen, Hans Bruun; Pinar, Mustafa C.

1999-01-01

The dual of the strictly convex quadratic programming problem with unit bounds is posed as a linear $\\ell_1$ minimization problem with quadratic terms. A smooth approximation to the linear $\\ell_1$ function is used to obtain a parametric family of piecewise-quadratic approximation problems...

8. Graphical Solution of the Monic Quadratic Equation with Complex Coefficients

Science.gov (United States)

Laine, A. D.

2015-01-01

There are many geometrical approaches to the solution of the quadratic equation with real coefficients. In this article it is shown that the monic quadratic equation with complex coefficients can also be solved graphically, by the intersection of two hyperbolas; one hyperbola being derived from the real part of the quadratic equation and one from…

9. Inventories and upstream gasoline price dynamics

NARCIS (Netherlands)

Kuper, Gerard H.

This paper sheds new light on the asymmetric dynamics in upstream U.S. gasoline prices. The model is based on Pindyck's inventory model of commodity price dynamics. We show that asymmetry in gasoline price dynamics is caused by changes in the net marginal convenience yield: higher costs of marketing

10. Russian upstream joint ventures logging progress

International Nuclear Information System (INIS)

Anon.

1992-01-01

This paper reports that Occidental Petroleum Corp. has begun exporting oil from Russia as part of an enhanced recovery joint venture in western Siberia. Oxy holds a 50% interest in the joint venture company, Vanyoganneft, and will market the oil. In other activity, two Canadian companies are marking progress with Russian upstream joint ventures

11. SAR image formation with azimuth interpolation after azimuth transform

Science.gov (United States)

Doerry,; Armin W. , Martin; Grant D. , Holzrichter; Michael, W [Albuquerque, NM

2008-07-08

Two-dimensional SAR data can be processed into a rectangular grid format by subjecting the SAR data to a Fourier transform operation, and thereafter to a corresponding interpolation operation. Because the interpolation operation follows the Fourier transform operation, the interpolation operation can be simplified, and the effect of interpolation errors can be diminished. This provides for the possibility of both reducing the re-grid processing time, and improving the image quality.

12. Interpolation of fuzzy data | Khodaparast | Journal of Fundamental ...

African Journals Online (AJOL)

Considering the many applications of mathematical functions in different ways, it is essential to have a defining function. In this study, we used Fuzzy Lagrangian interpolation and natural fuzzy spline polynomials to interpolate the fuzzy data. In the current world and in the field of science and technology, interpolation issues ...

13. Interpolation of diffusion weighted imaging datasets

DEFF Research Database (Denmark)

Dyrby, Tim B; Lundell, Henrik; Burke, Mark W

2014-01-01

anatomical details and signal-to-noise-ratio for reliable fibre reconstruction. We assessed the potential benefits of interpolating DWI datasets to a higher image resolution before fibre reconstruction using a diffusion tensor model. Simulations of straight and curved crossing tracts smaller than or equal......Diffusion weighted imaging (DWI) is used to study white-matter fibre organisation, orientation and structural connectivity by means of fibre reconstruction algorithms and tractography. For clinical settings, limited scan time compromises the possibilities to achieve high image resolution for finer...... interpolation methods fail to disentangle fine anatomical details if PVE is too pronounced in the original data. As for validation we used ex-vivo DWI datasets acquired at various image resolutions as well as Nissl-stained sections. Increasing the image resolution by a factor of eight yielded finer geometrical...

14. Some splines produced by smooth interpolation

Czech Academy of Sciences Publication Activity Database

Segeth, Karel

2018-01-01

Roč. 319, 15 February (2018), s. 387-394 ISSN 0096-3003 R&D Projects: GA ČR GA14-02067S Institutional support: RVO:67985840 Keywords : smooth data approximation * smooth data interpolation * cubic spline Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 1.738, year: 2016 http://www.sciencedirect.com/science/article/pii/S0096300317302746?via%3Dihub

15. Some splines produced by smooth interpolation

Czech Academy of Sciences Publication Activity Database

Segeth, Karel

2018-01-01

Roč. 319, 15 February (2018), s. 387-394 ISSN 0096-3003 R&D Projects: GA ČR GA14-02067S Institutional support: RVO:67985840 Keywords : smooth data approximation * smooth data interpolation * cubic spline Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 1.738, year: 2016 http://www. science direct.com/ science /article/pii/S0096300317302746?via%3Dihub

16. A novel efficient coupled polynomial field interpolation scheme for higher order piezoelectric extension mode beam finite elements

International Nuclear Information System (INIS)

Sulbhewar, Litesh N; Raveendranath, P

2014-01-01

An efficient piezoelectric smart beam finite element based on Reddy’s third-order displacement field and layerwise linear potential is presented here. The present formulation is based on the coupled polynomial field interpolation of variables, unlike conventional piezoelectric beam formulations that use independent polynomials. Governing equations derived using a variational formulation are used to establish the relationship between field variables. The resulting expressions are used to formulate coupled shape functions. Starting with an assumed cubic polynomial for transverse displacement (w) and a linear polynomial for electric potential (φ), coupled polynomials for axial displacement (u) and section rotation (θ) are found. This leads to a coupled quadratic polynomial representation for axial displacement (u) and section rotation (θ). The formulation allows accommodation of extension–bending, shear–bending and electromechanical couplings at the interpolation level itself, in a variationally consistent manner. The proposed interpolation scheme is shown to eliminate the locking effects exhibited by conventional independent polynomial field interpolations and improve the convergence characteristics of HSDT based piezoelectric beam elements. Also, the present coupled formulation uses only three mechanical degrees of freedom per node, one less than the conventional formulations. Results from numerical test problems prove the accuracy and efficiency of the present formulation. (paper)

17. Trace interpolation by slant-stack migration

International Nuclear Information System (INIS)

Novotny, M.

1990-01-01

The slant-stack migration formula based on the radon transform is studied with respect to the depth steep Δz of wavefield extrapolation. It can be viewed as a generalized trace-interpolation procedure including wave extrapolation with an arbitrary step Δz. For Δz > 0 the formula yields the familiar plane-wave decomposition, while for Δz > 0 it provides a robust tool for migration transformation of spatially under sampled wavefields. Using the stationary phase method, it is shown that the slant-stack migration formula degenerates into the Rayleigh-Sommerfeld integral in the far-field approximation. Consequently, even a narrow slant-stack gather applied before the diffraction stack can significantly improve the representation of noisy data in the wavefield extrapolation process. The theory is applied to synthetic and field data to perform trace interpolation and dip reject filtration. The data examples presented prove that the radon interpolator works well in the dip range, including waves with mutual stepouts smaller than half the dominant period

18. Image Interpolation with Geometric Contour Stencils

Directory of Open Access Journals (Sweden)

Pascal Getreuer

2011-09-01

Full Text Available We consider the image interpolation problem where given an image vm,n with uniformly-sampled pixels vm,n and point spread function h, the goal is to find function u(x,y satisfying vm,n = (h*u(m,n for all m,n in Z. This article improves upon the IPOL article Image Interpolation with Contour Stencils. In the previous work, contour stencils are used to estimate the image contours locally as short line segments. This article begins with a continuous formulation of total variation integrated over a collection of curves and defines contour stencils as a consistent discretization. This discretization is more reliable than the previous approach and can effectively distinguish contours that are locally shaped like lines, curves, corners, and circles. These improved contour stencils sense more of the geometry in the image. Interpolation is performed using an extension of the method described in the previous article. Using the improved contour stencils, there is an increase in image quality while maintaining similar computational efficiency.

19. Delimiting areas of endemism through kernel interpolation.

Science.gov (United States)

Oliveira, Ubirajara; Brescovit, Antonio D; Santos, Adalberto J

2015-01-01

We propose a new approach for identification of areas of endemism, the Geographical Interpolation of Endemism (GIE), based on kernel spatial interpolation. This method differs from others in being independent of grid cells. This new approach is based on estimating the overlap between the distribution of species through a kernel interpolation of centroids of species distribution and areas of influence defined from the distance between the centroid and the farthest point of occurrence of each species. We used this method to delimit areas of endemism of spiders from Brazil. To assess the effectiveness of GIE, we analyzed the same data using Parsimony Analysis of Endemism and NDM and compared the areas identified through each method. The analyses using GIE identified 101 areas of endemism of spiders in Brazil GIE demonstrated to be effective in identifying areas of endemism in multiple scales, with fuzzy edges and supported by more synendemic species than in the other methods. The areas of endemism identified with GIE were generally congruent with those identified for other taxonomic groups, suggesting that common processes can be responsible for the origin and maintenance of these biogeographic units.

20. Delimiting areas of endemism through kernel interpolation.

Directory of Open Access Journals (Sweden)

Ubirajara Oliveira

Full Text Available We propose a new approach for identification of areas of endemism, the Geographical Interpolation of Endemism (GIE, based on kernel spatial interpolation. This method differs from others in being independent of grid cells. This new approach is based on estimating the overlap between the distribution of species through a kernel interpolation of centroids of species distribution and areas of influence defined from the distance between the centroid and the farthest point of occurrence of each species. We used this method to delimit areas of endemism of spiders from Brazil. To assess the effectiveness of GIE, we analyzed the same data using Parsimony Analysis of Endemism and NDM and compared the areas identified through each method. The analyses using GIE identified 101 areas of endemism of spiders in Brazil GIE demonstrated to be effective in identifying areas of endemism in multiple scales, with fuzzy edges and supported by more synendemic species than in the other methods. The areas of endemism identified with GIE were generally congruent with those identified for other taxonomic groups, suggesting that common processes can be responsible for the origin and maintenance of these biogeographic units.

1. A Novel Shape-Free Plane Quadratic Polygonal Hybrid Stress-Function Element

Directory of Open Access Journals (Sweden)

Pei-Lei Zhou

2015-01-01

Full Text Available A novel plane quadratic shape-free hybrid stress-function (HS-F polygonal element is developed by employing the principle of minimum complementary energy and the fundamental analytical solutions of the Airy stress function. Without construction of displacement interpolation function, the formulations of the new model are much simpler than those of the displacement-based polygonal elements and can be degenerated into triangular or quadrilateral elements directly. In particular, it is quite insensitive to various mesh distortions and even can keep precision when element shape is concave. Furthermore, the element does not show any spurious zero energy modes. Numerical examples show the excellent performance of the new element, denoted by HSF-AP-19β, in both displacement and stress solutions.

2. Image Interpolation Scheme based on SVM and Improved PSO

Science.gov (United States)

Jia, X. F.; Zhao, B. T.; Liu, X. X.; Song, H. P.

2018-01-01

In order to obtain visually pleasing images, a support vector machines (SVM) based interpolation scheme is proposed, in which the improved particle swarm optimization is applied to support vector machine parameters optimization. Training samples are constructed by the pixels around the pixel to be interpolated. Then the support vector machine with optimal parameters is trained using training samples. After the training, we can get the interpolation model, which can be employed to estimate the unknown pixel. Experimental result show that the interpolated images get improvement PNSR compared with traditional interpolation methods, which is agrees with the subjective quality.

3. Interpolation functions and the Lions-Peetre interpolation construction

International Nuclear Information System (INIS)

Ovchinnikov, V I

2014-01-01

The generalization of the Lions-Peetre interpolation method of means considered in the present survey is less general than the generalizations known since the 1970s. However, our level of generalization is sufficient to encompass spaces that are most natural from the point of view of applications, like the Lorentz spaces, Orlicz spaces, and their analogues. The spaces φ(X 0 ,X 1 ) p 0 ,p 1 considered here have three parameters: two positive numerical parameters p 0 and p 1 of equal standing, and a function parameter φ. For p 0 ≠p 1 these spaces can be regarded as analogues of Orlicz spaces under the real interpolation method. Embedding criteria are established for the family of spaces φ(X 0 ,X 1 ) p 0 ,p 1 , together with optimal interpolation theorems that refine all the known interpolation theorems for operators acting on couples of weighted spaces L p and that extend these theorems beyond scales of spaces. The main specific feature is that the function parameter φ can be an arbitrary natural functional parameter in the interpolation. Bibliography: 43 titles

4. Correlation-based motion vector processing with adaptive interpolation scheme for motion-compensated frame interpolation.

Science.gov (United States)

Huang, Ai-Mei; Nguyen, Truong

2009-04-01

In this paper, we address the problems of unreliable motion vectors that cause visual artifacts but cannot be detected by high residual energy or bidirectional prediction difference in motion-compensated frame interpolation. A correlation-based motion vector processing method is proposed to detect and correct those unreliable motion vectors by explicitly considering motion vector correlation in the motion vector reliability classification, motion vector correction, and frame interpolation stages. Since our method gradually corrects unreliable motion vectors based on their reliability, we can effectively discover the areas where no motion is reliable to be used, such as occlusions and deformed structures. We also propose an adaptive frame interpolation scheme for the occlusion areas based on the analysis of their surrounding motion distribution. As a result, the interpolated frames using the proposed scheme have clearer structure edges and ghost artifacts are also greatly reduced. Experimental results show that our interpolated results have better visual quality than other methods. In addition, the proposed scheme is robust even for those video sequences that contain multiple and fast motions.

5. Quadratic stochastic operators: Results and open problems

International Nuclear Information System (INIS)

Ganikhodzhaev, R.N.; Rozikov, U.A.

2009-03-01

The history of the quadratic stochastic operators can be traced back to the work of S. Bernshtein (1924). For more than 80 years this theory has been developed and many papers were published. In recent years it has again become of interest in connection with numerous applications in many branches of mathematics, biology and physics. But most results of the theory were published in non English journals, full text of which are not accessible. In this paper we give a brief description of the results and discuss several open problems. (author)

6. Sequential Quadratic Programming Algorithms for Optimization

Science.gov (United States)

1989-08-01

quadratic program- ma ng (SQ(2l ) aIiatain.seenis to be relgarded aIs tie( buest choice for the solution of smiall. dlense problema (see S tour L)toS...For the step along d, note that a < nOing + 3 szH + i3.ninA A a K f~Iz,;nd and from Id1 _< ,,, we must have that for some /3 , np , 11P11 < dn"p. 5.2...Nevertheless, many of these problems are considered hard to solve. Moreover, for some of these problems the assumptions made in Chapter 2 to establish the

7. Research progress and hotspot analysis of spatial interpolation

Science.gov (United States)

Jia, Li-juan; Zheng, Xin-qi; Miao, Jin-li

2018-02-01

In this paper, the literatures related to spatial interpolation between 1982 and 2017, which are included in the Web of Science core database, are used as data sources, and the visualization analysis is carried out according to the co-country network, co-category network, co-citation network, keywords co-occurrence network. It is found that spatial interpolation has experienced three stages: slow development, steady development and rapid development; The cross effect between 11 clustering groups, the main convergence of spatial interpolation theory research, the practical application and case study of spatial interpolation and research on the accuracy and efficiency of spatial interpolation. Finding the optimal spatial interpolation is the frontier and hot spot of the research. Spatial interpolation research has formed a theoretical basis and research system framework, interdisciplinary strong, is widely used in various fields.

8. Biodiesel byproduct bioconversion to rhamnolipids: Upstream aspects

OpenAIRE

Salazar-Bryam, Ana Maria; Lovaglio, Roberta Barros; Contiero, Jonas

2017-01-01

This study focused on two important aspects of the upstream process: the appropriate use of crude glycerol as a low-cost carbon source, and strain selection. The effect of different crude glycerol concentrations on rhamnolipid biosynthesis by two Pseudomonas aeruginosa strains (wild type LBI and mutant LBI 2A1) was studied. Finally, the synthesized rhamnolipids were characterized by mass spectrometry. When both strains were compared, 50 g/L was the most favorable concentration for both, but P...

9. Anatomy of top 100 upstream players

International Nuclear Information System (INIS)

Burk, V.A.

1992-01-01

A brief review is given of a recent survey of the top one hundred upstream oil and gas companies which file financial data with the US Securities and Exchange Commission. The analysis indicates the increasing globalisation of the industry with exploration and development spending increasing dramatically outside the US. To survive, companies must operate as efficient low cost finders and producers of oil and gas and anticipate and meet changing market demands quickly. (UK)

10. Aliasless fresnel transform image reconstruction in phase scrambling fourier transform technique by data interpolation

International Nuclear Information System (INIS)

Yamada, Yoshifumi; Liu, Na; Ito, Satoshi

2006-01-01

The signal in the Fresnel transform technique corresponds to a blurred one of the spin density image. Because the amplitudes of adjacent sampled signals have a high interrelation, the signal amplitude at a point between sampled points can be estimated with a high degree of accuracy even if the sampling is so coarse as to generate aliasing in the reconstructed images. In this report, we describe a new aliasless image reconstruction technique in the phase scrambling Fourier transform (PSFT) imaging technique in which the PSFT signals are converted to Fresnel transform signals by multiplying them by a quadratic phase term and are then interpolated using polynomial expressions to generate fully encoded signals. Numerical simulation using MR images showed that almost completely aliasless images are reconstructed by this technique. Experiments using ultra-low-field PSFT MRI were conducted, and aliasless images were reconstructed from coarsely sampled PSFT signals. (author)

11. Upstream Atlantic salmon (Salmo salar) passage

International Nuclear Information System (INIS)

Clay, C.H.

1993-01-01

Upstream salmon passage though a dam is discussed with respect to three main components: the fishway entrance, the fishway, and the exit. Design considerations and alternative types of components are presented. For fishway entrances, an important consideration is the positioning of the entrance as far upstream as the fish can swim with respect to obstacles. For powerhouses using water diverted from a river, the problem of leading fish past the powerhouse may be overcome by either installing a tailrace barrier or increasing the flow until the home stream odor is sufficient to attract fish. Swimming ability should be the first consideration in fishway design. Fishways with 50 cm drops per pool would be satisfactory in most cases. The problem of headwater fluctuation is overcome through careful fishway selection. Fish locks, hoists, and elevators are other alternatives to pool/weir fishways. The location for a fish exit must be decided on the basis of whether the fishway will be used only for upstream migrations. 5 refs., 1 fig., 1 tab

12. On a quadratic inverse eigenvalue problem

International Nuclear Information System (INIS)

Cai, Yunfeng; Xu, Shufang

2009-01-01

This paper concerns the quadratic inverse eigenvalue problem (QIEP) of constructing real symmetric matrices M, C and K of size n × n, with M nonsingular, so that the quadratic matrix polynomial Q(λ) ≡ λ 2 M + λC + K has a completely prescribed set of eigenvalues and eigenvectors. It is shown via construction that the QIEP has a solution if and only if r 0, where r and δ are computable from the prescribed spectral data. A necessary and sufficient condition for the existence of a solution to the QIEP with M being positive definite is also established in a constructive way. Furthermore, two algorithms are developed: one is to solve the QIEP; another is to find a particular solution to the QIEP with the leading coefficient matrix being positive definite, which also provides us an approach to a simultaneous reduction of real symmetric matrix triple (M, C, K) by real congruence. Numerical results show that the two algorithms are feasible and numerically reliable

13. Phase space eigenfunctions of multidimensional quadratic Hamiltonians

International Nuclear Information System (INIS)

Dodonov, V.V.; Man'ko, V.I.

1986-01-01

We obtain the explicit expressions for phace space eigenfunctions (PSE),i.e. Weyl's symbols of dyadic operators like vertical stroken> ,vertical strokem>, being the solution of the Schroedinger equation with the Hamiltonian which is a quite arbitrary multidimensional quadratic form of the operators of Cartesian coordinates and conjugated to them momenta with time-dependent coefficients. It is shown that for an arbitrary quadratic Hamiltonian one can always construct the set of completely factorized PSE which are products of N factors, each factor being dependent only on two arguments for nnot=m and on a single argument for n=m. These arguments are nothing but constants of motion of the correspondent classical system. PSE are expressed in terms of the associated Laguerre polynomials in the case of a discrete spectrum and in terms of the Airy functions in the continuous spectrum case. Three examples are considered: a harmonic oscillator with a time-dependent frequency, a charged particle in a nonstationary uniform magnetic field, and a particle in a time-dependent uniform potential field. (orig.)

14. Quadratic forms for Feynman-Kac semigroups

International Nuclear Information System (INIS)

Hibey, Joseph L.; Charalambous, Charalambos D.

2006-01-01

Some problems in a stochastic setting often involve the need to evaluate the Feynman-Kac formula that follows from models described in terms of stochastic differential equations. Equivalent representations in terms of partial differential equations are also of interest, and these establish the well-known connection between probabilistic and deterministic formulations of these problems. In this Letter, this connection is studied in terms of the quadratic form associated with the Feynman-Kac semigroup. The probability measures that naturally arise in this approach, and thus define how Brownian motion is killed at a specified rate while exiting a set, are interpreted as a random time change of the original stochastic differential equation. Furthermore, since random time changes alter the diffusion coefficients in stochastic differential equations while Girsanov-type measure transformations alter their drift coefficients, their simultaneous use should lead to more tractable solutions for some classes of problems. For example, the minimization of some quadratic forms leads to solutions that satisfy certain partial differential equations and, therefore, the techniques discussed provide a variational approach for finding these solutions

15. Facets for the Cardinality Constrained Quadratic Knapsack Problem and the Quadratic Selective Travelling Salesman Problem

DEFF Research Database (Denmark)

2004-01-01

A well-known extension of the Travelling Salesman Problem (TSP) is the Selective (or Prize-collecting) TSP: In addition to the edge-costs, each node has an associated reward (denoted the node-reward) and instead of visiting all nodes, only profitable nodes are visited. The Quadratic Selective TSP...

16. Generation of nuclear data banks through interpolation

International Nuclear Information System (INIS)

Castillo M, J.A.

1999-01-01

Nuclear Data Bank generation, is a process in which a great amount of resources is required, both computing and humans. If it is taken into account that at some times it is necessary to create a great amount of those, it is convenient to have a reliable tool that generates Data Banks with the lesser resources, in the least possible time and with a very good approximation. In this work are shown the results obtained during the development of INTPOLBI code, used to generate Nuclear Data Banks employing bi cubic polynomial interpolation, taking as independent variables the uranium and gadolinium percents. Two proposals were worked, applying in both cases the finite element method, using one element with 16 nodes to carry out the interpolation. In the first proposals the canonic base was employed to obtain the interpolating polynomial and later, the corresponding linear equations system. In the solution of this system the Gaussian elimination method with partial pivot was applied. In the second case, the Newton base was used to obtain the mentioned system, resulting in a triangular inferior matrix, which structure, applying elemental operations, to obtain a blocks diagonal matrix, with special characteristics and easier to work with. For the validations test, a comparison was made between the values obtained with INTPOLBI and INTERTEG (created at the Instituto de Investigaciones Electricas with the same purpose) codes, and Data Banks created through the conventional process, that is, with nuclear codes normally used. Finally, it is possible to conclude that the Nuclear Data Banks generated with INTPOLBI code constitute a very good approximation that, even though do not wholly replace conventional process, however are helpful in cases when it is necessary to create a great amount of Data Banks. (Author)

17. Nuclear data banks generation by interpolation

International Nuclear Information System (INIS)

Castillo M, J. A.

1999-01-01

Nuclear Data Bank generation, is a process in which a great amount of resources is required, both computing and humans. If it is taken into account that at some times it is necessary to create a great amount of those, it is convenient to have a reliable tool that generates Data Banks with the lesser resources, in the least possible time and with a very good approximation. In this work are shown the results obtained during the development of INTPOLBI code, use to generate Nuclear Data Banks employing bicubic polynominal interpolation, taking as independent variables the uranium and gadolinia percents. Two proposal were worked, applying in both cases the finite element method, using one element with 16 nodes to carry out the interpolation. In the first proposals the canonic base was employed, to obtain the interpolating polynomial and later, the corresponding linear equation systems. In the solution of this systems the Gaussian elimination methods with partial pivot was applied. In the second case, the Newton base was used to obtain the mentioned system, resulting in a triangular inferior matrix, which structure, applying elemental operations, to obtain a blocks diagonal matrix, with special characteristics and easier to work with. For the validation tests, a comparison was made between the values obtained with INTPOLBI and INTERTEG (create at the Instituto de Investigaciones Electricas (MX) with the same purpose) codes, and Data Banks created through the conventional process, that is, with nuclear codes normally used. Finally, it is possible to conclude that the Nuclear Data Banks generated with INTPOLBI code constitute a very good approximation that, even though do not wholly replace conventional process, however are helpful in cases when it is necessary to create a great amount of Data Banks

18. Calculation of reactivity without Lagrange interpolation

International Nuclear Information System (INIS)

Suescun D, D.; Figueroa J, J. H.; Rodriguez R, K. C.; Villada P, J. P.

2015-09-01

A new method to solve numerically the inverse equation of punctual kinetics without using Lagrange interpolating polynomial is formulated; this method uses a polynomial approximation with N points based on a process of recurrence for simulating different forms of nuclear power. The results show a reliable accuracy. Furthermore, the method proposed here is suitable for real-time measurements of reactivity, with step sizes of calculations greater that Δt = 0.3 s; due to its precision can be used to implement a digital meter of reactivity in real time. (Author)

19. Solving the Schroedinger equation using Smolyak interpolants

International Nuclear Information System (INIS)

Avila, Gustavo; Carrington, Tucker Jr.

2013-01-01

In this paper, we present a new collocation method for solving the Schroedinger equation. Collocation has the advantage that it obviates integrals. All previous collocation methods have, however, the crucial disadvantage that they require solving a generalized eigenvalue problem. By combining Lagrange-like functions with a Smolyak interpolant, we device a collocation method that does not require solving a generalized eigenvalue problem. We exploit the structure of the grid to develop an efficient algorithm for evaluating the matrix-vector products required to compute energy levels and wavefunctions. Energies systematically converge as the number of points and basis functions are increased

20. Topics in multivariate approximation and interpolation

CERN Document Server

Jetter, Kurt

2005-01-01

This book is a collection of eleven articles, written by leading experts and dealing with special topics in Multivariate Approximation and Interpolation. The material discussed here has far-reaching applications in many areas of Applied Mathematics, such as in Computer Aided Geometric Design, in Mathematical Modelling, in Signal and Image Processing and in Machine Learning, to mention a few. The book aims at giving a comprehensive information leading the reader from the fundamental notions and results of each field to the forefront of research. It is an ideal and up-to-date introduction for gr

1. Quadratic residues and non-residues selected topics

CERN Document Server

Wright, Steve

2016-01-01

This book offers an account of the classical theory of quadratic residues and non-residues with the goal of using that theory as a lens through which to view the development of some of the fundamental methods employed in modern elementary, algebraic, and analytic number theory. The first three chapters present some basic facts and the history of quadratic residues and non-residues and discuss various proofs of the Law of Quadratic Reciprosity in depth, with an emphasis on the six proofs that Gauss published. The remaining seven chapters explore some interesting applications of the Law of Quadratic Reciprocity, prove some results concerning the distribution and arithmetic structure of quadratic residues and non-residues, provide a detailed proof of Dirichlet’s Class-Number Formula, and discuss the question of whether quadratic residues are randomly distributed. The text is a valuable resource for graduate and advanced undergraduate students as well as for mathematicians interested in number theory.

2. Exact cancellation of quadratic divergences in top condensation models

International Nuclear Information System (INIS)

Blumhofer, A.

1995-01-01

We discuss the hierarchy problem and the corresponding quadratic divergences in the top mode Standard Model. Quadratic divergences appear at each order 1/N c since fermionic and bosonic contributions are of different order 1/N c . It is shown that the full dynamical system to all orders in 1/N c admits a solution, where the sum of all quadratic divergent contributions disappears. ((orig.))

3. Air Quality Assessment Using Interpolation Technique

Directory of Open Access Journals (Sweden)

Awkash Kumar

2016-07-01

Full Text Available Air pollution is increasing rapidly in almost all cities around the world due to increase in population. Mumbai city in India is one of the mega cities where air quality is deteriorating at a very rapid rate. Air quality monitoring stations have been installed in the city to regulate air pollution control strategies to reduce the air pollution level. In this paper, air quality assessment has been carried out over the sample region using interpolation techniques. The technique Inverse Distance Weighting (IDW of Geographical Information System (GIS has been used to perform interpolation with the help of concentration data on air quality at three locations of Mumbai for the year 2008. The classification was done for the spatial and temporal variation in air quality levels for Mumbai region. The seasonal and annual variations of air quality levels for SO2, NOx and SPM (Suspended Particulate Matter have been focused in this study. Results show that SPM concentration always exceeded the permissible limit of National Ambient Air Quality Standard. Also, seasonal trends of pollutant SPM was low in monsoon due rain fall. The finding of this study will help to formulate control strategies for rational management of air pollution and can be used for many other regions.

4. Randomized interpolative decomposition of separated representations

Science.gov (United States)

Biagioni, David J.; Beylkin, Daniel; Beylkin, Gregory

2015-01-01

We introduce an algorithm to compute tensor interpolative decomposition (dubbed CTD-ID) for the reduction of the separation rank of Canonical Tensor Decompositions (CTDs). Tensor ID selects, for a user-defined accuracy ɛ, a near optimal subset of terms of a CTD to represent the remaining terms via a linear combination of the selected terms. CTD-ID can be used as an alternative to or in combination with the Alternating Least Squares (ALS) algorithm. We present examples of its use within a convergent iteration to compute inverse operators in high dimensions. We also briefly discuss the spectral norm as a computational alternative to the Frobenius norm in estimating approximation errors of tensor ID. We reduce the problem of finding tensor IDs to that of constructing interpolative decompositions of certain matrices. These matrices are generated via randomized projection of the terms of the given tensor. We provide cost estimates and several examples of the new approach to the reduction of separation rank.

5. Size-Dictionary Interpolation for Robot's Adjustment

Directory of Open Access Journals (Sweden)

Morteza eDaneshmand

2015-05-01

Full Text Available This paper describes the classification and size-dictionary interpolation of the three-dimensional data obtained by a laser scanner to be used in a realistic virtual fitting room, where automatic activation of the chosen mannequin robot, while several mannequin robots of different genders and sizes are simultaneously connected to the same computer, is also considered to make it mimic the body shapes and sizes instantly. The classification process consists of two layers, dealing, respectively, with gender and size. The interpolation procedure tries to find out which set of the positions of the biologically-inspired actuators for activation of the mannequin robots could lead to the closest possible resemblance of the shape of the body of the person having been scanned, through linearly mapping the distances between the subsequent size-templates and the corresponding position set of the bioengineered actuators, and subsequently, calculating the control measures that could maintain the same distance proportions, where minimizing the Euclidean distance between the size-dictionary template vectors and that of the desired body sizes determines the mathematical description. In this research work, the experimental results of the implementation of the proposed method on Fits.me's mannequin robots are visually illustrated, and explanation of the remaining steps towards completion of the whole realistic online fitting package is provided.

6. Meeting the challenge : capturing the upstream

International Nuclear Information System (INIS)

Bogle, E.W.

1998-01-01

The challenge facing the exploration and production sector of the petroleum industry to capture and hold onto the upstream was the main focus of this paper. The exploration and production (E and P) business was described as being highly complex, characterized by constant change and increasing competition. Some of the dynamic changes which have occurred in the Western Canada Basin (WCB) during the last five years and how they relate to the international playing field were reviewed. Significant changes to the production ranking profile as a result of acquisitions, and basin reserve endowment and maturity are the two major factors affecting current and future dynamics of upstream WCB E and P activity. Competitive pressures, contractor relationships, infrastructure access and controls, environmental issues are some of the other factors. Taking these factors into account, Talisman Energy Inc. has used its growth in the WCB to leverage its international activities, diversifying to less mature, but proven hydrocarbon basins. The company's international exploration strategy is designed to be adaptive and flexible and is guided by focus on a limited number of core areas with proven source rock and existing production, achievement of a set production level within a five-year time frame, ensuring strong relationships with host governments and partners, and selecting areas where a multiple of opportunity types are available. In general, for any upstream company it is important to recognize that the more predictable traditional order has given way to a market-driven environment where the rules change almost daily, and success depends on the ability to adapt to change.14 figs

7. DOWNSTREAM ECOCIDE FROM UPSTREAM WATER PIRACY

OpenAIRE

2012-01-01

Upstream India and downstream Bangladesh share more than 50 international rivers. India has set up water diversion constructions in more than 50% of these rivers, the largest one being on the Bangladeshâs northwest upon the Ganges River, puts Bangladeshâs Gangetic ecosystem at stake. In some border rivers, India has set up groins on her side of river banks. Also, Indian side pumps Bangladesh river water stealthily from border-rivers. Further, India is constructing another dam and reservoir up...

8. Canada's upstream petroleum industry : 1997 perspective

International Nuclear Information System (INIS)

1997-06-01

A review of the trends and activities in the upstream petroleum industry during 1996 were presented, emphasizing the significance of the industry' contribution to Canada's economy. Among the areas included were highlights of Canada's hydrocarbon reserves, conventional production, frontier production, and non-conventional (oil sands) production. New market opportunities and activities in the pipeline transportation sector were also discussed. Environmental issues including health and safety received due attention. In this regard, the industry's efforts to work with government and other stakeholders to ensure that requirements for land use are balanced with the need to protect wilderness and wildlife habitat, received special mention. 16 figs

9. Distance matrices and quadratic embedding of graphs

Directory of Open Access Journals (Sweden)

Nobuaki Obata

2018-04-01

Full Text Available A connected graph is said to be of QE class if it admits  a quadratic embedding in a Hilbert space, or equivalently, if the distance matrix is conditionally negative definite. Several criteria for a graph to be of QE class are derived from the point of view of graph operations. For a quantitative criterion the QE constant is introduced and concrete examples are shown with explicit calculation. If the distance matrix admits a constant row sum, the QE constant coincides with the second largest eigenvalue of the distance matrix. The QE constants are determined for all graphs on $n$ vertices with $n\\le5$, among which two are not of QE class.

KAUST Repository

Yuan, Ganzhao

2013-04-01

Low rank matrix approximation is an attractive model in large scale machine learning problems, because it can not only reduce the memory and runtime complexity, but also provide a natural way to regularize parameters while preserving learning accuracy. In this paper, we address a special class of nonconvex quadratic matrix optimization problems, which require a low rank positive semidefinite solution. Despite their non-convexity, we exploit the structure of these problems to derive an efficient solver that converges to their local optima. Furthermore, we show that the proposed solution is capable of dramatically enhancing the efficiency and scalability of a variety of concrete problems, which are of significant interest to the machine learning community. These problems include the Top-k Eigenvalue problem, Distance learning and Kernel learning. Extensive experiments on UCI benchmarks have shown the effectiveness and efficiency of our proposed method. © 2012.

11. Polarization Nonlinear Optics of Quadratically Nonlinear Azopolymers

International Nuclear Information System (INIS)

Konorov, S.O.; Akimov, D.A.; Ivanov, A.A.; Petrov, A.N.; Alfimov, M.V.; Yakimanskii, A.V.; Smirnov, N.N.; Ivanova, V.N.; Kudryavtsev, V.V.; Podshivalov, A.A.; Sokolova, I.M.; Zheltikov, A.M.

2005-01-01

The polarization properties of second harmonic and sum-frequency signals generated by femtosecond laser pulses in films of polymers containing covalent groups of an azobenzothiazole chromophore polarized by an external electric field are investigated. It is shown that the methods of polarization nonlinear optics make it possible to determine the structure of oriented molecular dipoles and reveal important properties of the motion of collectivized πelectrons in organic molecules with strong optical nonlinearities. The polarization measurements show that the tensor of quadratic nonlinear optical susceptibility of chromophore fragments oriented by an external field in macromolecules of the noted azopolymers has a degenerate form. This is indicative of a predominantly one-dimensional character of motion of collectivized π electrons along an extended group of atoms in such molecules

Science.gov (United States)

Okasha, M.; Shah, J.; Fauzi, W.; Hanouf, Z.

2017-12-01

This study exploits the dynamics and control of quadcopters using Linear Quadratic Regulator (LQR) control approach. The quadcopter’s mathematical model is derived using the Newton-Euler method. It is a highly manoeuvrable, nonlinear, coupled with six degrees of freedom (DOF) model, which includes aerodynamics and detailed gyroscopic moments that are often ignored in many literatures. The linearized model is obtained and characterized by the heading angle (i.e. yaw angle) of the quadcopter. The adopted control approach utilizes LQR method to track several reference trajectories including circle and helix curves with significant variation in the yaw angle. The controller is modified to overcome difficulties related to the continuous changes in the operating points and eliminate chattering and discontinuity that is observed in the control input signal. Numerical non-linear simulations are performed using MATLAB and Simulink to illustrate to accuracy and effectiveness of the proposed controller.

13. Charged black holes in quadratic gravity

International Nuclear Information System (INIS)

Matyjasek, Jerzy; Tryniecki, Dariusz

2004-01-01

Iterative solutions to fourth-order gravity describing static and electrically charged black holes are constructed. The obtained solutions are parametrized by two integration constants which are related to the electric charge and the exact location of the event horizon. Special emphasis is put on the extremal black holes. It is explicitly demonstrated that in the extremal limit the exact location of the (degenerate) event horizon is given by r + =|e|. Similarly to the classical Reissner-Nordstroem solution, the near-horizon geometry of the charged black holes in quadratic gravity, when expanded into the whole manifold, is simply that of Bertotti and Robinson. Similar considerations have been carried out for boundary conditions of the second type which employ the electric charge and the mass of the system as seen by a distant observer. The relations between results obtained within the framework of each method are briefly discussed

DEFF Research Database (Denmark)

Danvy, Olivier; Schultz, Ulrik Pagh

2002-01-01

Lambda-lifting is a program transformation used in compilers and in partial evaluators and that operates in cubic time. In this article, we show how to reduce this complexity to quadratic time. Lambda-lifting transforms a block-structured program into a set of recursive equations, one for each...... local function in the source program. Each equation carries extra parameters to account for the free variables of the corresponding local function and of all its callees. It is the search for these extra parameters that yields the cubic factor in the traditional formulation of lambda-lifting, which...... is not needed. We therefore simplify the search for extra parameters by treating each strongly connected component instead of each function as a unit, thereby reducing the time complexity of lambda-lifting from O(n 3 log n)toO(n2 log n), where n is the size of the program. Since a lambda-lifter can output...

KAUST Repository

Yuan, Ganzhao; Zhang, Zhenjie; Ghanem, Bernard; Hao, Zhifeng

2013-01-01

Low rank matrix approximation is an attractive model in large scale machine learning problems, because it can not only reduce the memory and runtime complexity, but also provide a natural way to regularize parameters while preserving learning accuracy. In this paper, we address a special class of nonconvex quadratic matrix optimization problems, which require a low rank positive semidefinite solution. Despite their non-convexity, we exploit the structure of these problems to derive an efficient solver that converges to their local optima. Furthermore, we show that the proposed solution is capable of dramatically enhancing the efficiency and scalability of a variety of concrete problems, which are of significant interest to the machine learning community. These problems include the Top-k Eigenvalue problem, Distance learning and Kernel learning. Extensive experiments on UCI benchmarks have shown the effectiveness and efficiency of our proposed method. © 2012.

16. A ''quadratized'' augmented plane wave method

International Nuclear Information System (INIS)

Smrcka, L.

1982-02-01

The exact radial solution inside the muffin-tin sphere is replaced by its Taylor expansion with respect to the energy, truncated after the quadratic term. Making use of it the energy independent augmented plane waves are formed which lead to the secular equations linear in energy. The method resembles the currently used linearized APW method but yields higher accuracy. The analysis of solution inside one muffin-tin sphere shows that the eigenvalue error is proportional to (E-E 0 ) 6 as compared with (E-E 0 ) 4 for LAPW. The error of eigenfunctions is (E-E 0 ) 3 ((E-E 0 ) 2 for LAPW). These conclusions are confirmed by direct numerical calculation of band structure of Cu and Al. (author)

17. Quadratic gravity in first order formalism

Energy Technology Data Exchange (ETDEWEB)

Alvarez, Enrique; Anero, Jesus; Gonzalez-Martin, Sergio, E-mail: enrique.alvarez@uam.es, E-mail: jesusanero@gmail.com, E-mail: sergio.gonzalez.martin@uam.es [Departamento de Física Teórica and Instituto de Física Teórica (IFT-UAM/CSIC), Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid (Spain)

2017-10-01

We consider the most general action for gravity which is quadratic in curvature. In this case first order and second order formalisms are not equivalent. This framework is a good candidate for a unitary and renormalizable theory of the gravitational field; in particular, there are no propagators falling down faster than 1/ p {sup 2}. The drawback is of course that the parameter space of the theory is too big, so that in many cases will be far away from a theory of gravity alone. In order to analyze this issue, the interaction between external sources was examined in some detail. We find that this interaction is conveyed mainly by propagation of the three-index connection field. At any rate the theory as it stands is in the conformal invariant phase; only when Weyl invariance is broken through the coupling to matter can an Einstein-Hilbert term (and its corresponding Planck mass scale) be generated by quantum corrections.

18. Large-scale sequential quadratic programming algorithms

Energy Technology Data Exchange (ETDEWEB)

Eldersveld, S.K.

1992-09-01

The problem addressed is the general nonlinear programming problem: finding a local minimizer for a nonlinear function subject to a mixture of nonlinear equality and inequality constraints. The methods studied are in the class of sequential quadratic programming (SQP) algorithms, which have previously proved successful for problems of moderate size. Our goal is to devise an SQP algorithm that is applicable to large-scale optimization problems, using sparse data structures and storing less curvature information but maintaining the property of superlinear convergence. The main features are: 1. The use of a quasi-Newton approximation to the reduced Hessian of the Lagrangian function. Only an estimate of the reduced Hessian matrix is required by our algorithm. The impact of not having available the full Hessian approximation is studied and alternative estimates are constructed. 2. The use of a transformation matrix Q. This allows the QP gradient to be computed easily when only the reduced Hessian approximation is maintained. 3. The use of a reduced-gradient form of the basis for the null space of the working set. This choice of basis is more practical than an orthogonal null-space basis for large-scale problems. The continuity condition for this choice is proven. 4. The use of incomplete solutions of quadratic programming subproblems. Certain iterates generated by an active-set method for the QP subproblem are used in place of the QP minimizer to define the search direction for the nonlinear problem. An implementation of the new algorithm has been obtained by modifying the code MINOS. Results and comparisons with MINOS and NPSOL are given for the new algorithm on a set of 92 test problems.

19. Multiresolution Motion Estimation for Low-Rate Video Frame Interpolation

Directory of Open Access Journals (Sweden)

Hezerul Abdul Karim

2004-09-01

Full Text Available Interpolation of video frames with the purpose of increasing the frame rate requires the estimation of motion in the image so as to interpolate pixels along the path of the objects. In this paper, the specific challenges of low-rate video frame interpolation are illustrated by choosing one well-performing algorithm for high-frame-rate interpolation (Castango 1996 and applying it to low frame rates. The degradation of performance is illustrated by comparing the original algorithm, the algorithm adapted to low frame rate, and simple averaging. To overcome the particular challenges of low-frame-rate interpolation, two algorithms based on multiresolution motion estimation are developed and compared on objective and subjective basis and shown to provide an elegant solution to the specific challenges of low-frame-rate video interpolation.

20. Systems and methods for interpolation-based dynamic programming

KAUST Repository

Rockwood, Alyn

2013-01-03

Embodiments of systems and methods for interpolation-based dynamic programming. In one embodiment, the method includes receiving an object function and a set of constraints associated with the objective function. The method may also include identifying a solution on the objective function corresponding to intersections of the constraints. Additionally, the method may include generating an interpolated surface that is in constant contact with the solution. The method may also include generating a vector field in response to the interpolated surface.

1. Systems and methods for interpolation-based dynamic programming

KAUST Repository

Rockwood, Alyn

2013-01-01

Embodiments of systems and methods for interpolation-based dynamic programming. In one embodiment, the method includes receiving an object function and a set of constraints associated with the objective function. The method may also include identifying a solution on the objective function corresponding to intersections of the constraints. Additionally, the method may include generating an interpolated surface that is in constant contact with the solution. The method may also include generating a vector field in response to the interpolated surface.

2. Biodiesel byproduct bioconversion to rhamnolipids: Upstream aspects.

Science.gov (United States)

Salazar-Bryam, Ana Maria; Lovaglio, Roberta Barros; Contiero, Jonas

2017-06-01

This study focused on two important aspects of the upstream process: the appropriate use of crude glycerol as a low-cost carbon source, and strain selection. The effect of different crude glycerol concentrations on rhamnolipid biosynthesis by two Pseudomonas aeruginosa strains (wild type LBI and mutant LBI 2A1) was studied. Finally, the synthesized rhamnolipids were characterized by mass spectrometry. When both strains were compared, 50 g/L was the most favorable concentration for both, but P. aeruginosa LBI 2A1 showed an increase in rhamnolipid production (2.55 g/L) of 192% over wild type (1.3 g/L). The higher rhamnolipid production could be related to a possible mechanism developed after the mutation process at high antibiotic concentrations. Mass spectrometry confirmed the glycolipid nature of the produced biosurfactant, and the homologue composition showed a wide mixture of mono and di-rhamnolipids. These results show that high glycerol concentrations can inhibit microbial metabolism, due to osmotic stress, leading to a better understanding of glycerol metabolism towards its optimization in fermentation media. Since P. aeruginosa LBI 2A1 showed higher conversion yields than P. aeruginosa LBI, the use of a mutant strain associated with a low cost carbon source might improve biosurfactant biosynthesis, therefore yielding an important upstream improvement.

3. Biodiesel byproduct bioconversion to rhamnolipids: Upstream aspects

Directory of Open Access Journals (Sweden)

Ana Maria Salazar-Bryam

2017-06-01

Full Text Available This study focused on two important aspects of the upstream process: the appropriate use of crude glycerol as a low-cost carbon source, and strain selection. The effect of different crude glycerol concentrations on rhamnolipid biosynthesis by two Pseudomonas aeruginosa strains (wild type LBI and mutant LBI 2A1 was studied. Finally, the synthesized rhamnolipids were characterized by mass spectrometry. When both strains were compared, 50 g/L was the most favorable concentration for both, but P. aeruginosa LBI 2A1 showed an increase in rhamnolipid production (2.55 g/L of 192% over wild type (1.3 g/L. The higher rhamnolipid production could be related to a possible mechanism developed after the mutation process at high antibiotic concentrations. Mass spectrometry confirmed the glycolipid nature of the produced biosurfactant, and the homologue composition showed a wide mixture of mono and di-rhamnolipids. These results show that high glycerol concentrations can inhibit microbial metabolism, due to osmotic stress, leading to a better understanding of glycerol metabolism towards its optimization in fermentation media. Since P. aeruginosa LBI 2A1 showed higher conversion yields than P. aeruginosa LBI, the use of a mutant strain associated with a low cost carbon source might improve biosurfactant biosynthesis, therefore yielding an important upstream improvement. Keywords: Biotechnology, Microbiology

4. Distance-two interpolation for parallel algebraic multigrid

International Nuclear Information System (INIS)

Sterck, H de; Falgout, R D; Nolting, J W; Yang, U M

2007-01-01

In this paper we study the use of long distance interpolation methods with the low complexity coarsening algorithm PMIS. AMG performance and scalability is compared for classical as well as long distance interpolation methods on parallel computers. It is shown that the increased interpolation accuracy largely restores the scalability of AMG convergence factors for PMIS-coarsened grids, and in combination with complexity reducing methods, such as interpolation truncation, one obtains a class of parallel AMG methods that enjoy excellent scalability properties on large parallel computers

5. Comparison of Interpolation Methods as Applied to Time Synchronous Averaging

National Research Council Canada - National Science Library

Decker, Harry

1999-01-01

Several interpolation techniques were investigated to determine their effect on time synchronous averaging of gear vibration signals and also the effects on standard health monitoring diagnostic parameters...

6. Orthogonal and Scaling Transformations of Quadratic Functions with ...

African Journals Online (AJOL)

In this paper we present a non-singular transformation that can reduce a given quadratic function defined on Rn to another simpler quadratic function and study the impact of the transformation in relation to the problem of minimization of the function. In particular, we construct a non-singular transformation that can reduce a ...

7. Quadratic Twists of Rigid Calabi–Yau Threefolds Over

DEFF Research Database (Denmark)

Gouvêa, Fernando Q.; Kiming, Ian; Yui, Noriko

2013-01-01

of weight 4 on some Γ 0(N). We show that quadratic twisting of a threefold corresponds to twisting the attached newform by quadratic characters and illustrate with a number of obvious and not so obvious examples. The question is motivated by the deeper question of which newforms of weight 4 on some Γ 0(N...

8. Approximate *-derivations and approximate quadratic *-derivations on C*-algebras

Directory of Open Access Journals (Sweden)

Park Choonkil

2011-01-01

Full Text Available Abstract In this paper, we prove the stability of *-derivations and of quadratic *-derivations on Banach *-algebras. We moreover prove the superstability of *-derivations and of quadratic *-derivations on C*-algebras. 2000 Mathematics Subject Classification: 39B52; 47B47; 46L05; 39B72.

9. A Linear Programming Reformulation of the Standard Quadratic Optimization Problem

NARCIS (Netherlands)

de Klerk, E.; Pasechnik, D.V.

2005-01-01

The problem of minimizing a quadratic form over the standard simplex is known as the standard quadratic optimization problem (SQO).It is NPhard, and contains the maximum stable set problem in graphs as a special case.In this note we show that the SQO problem may be reformulated as an (exponentially

10. Effects of Classroom Instruction on Students' Understanding of Quadratic Equations

Science.gov (United States)

Vaiyavutjamai, Pongchawee; Clements, M. A.

2006-01-01

Two hundred and thirty-one students in six Grade 9 classes in two government secondary schools located near Chiang Mai, Thailand, attempted to solve the same 18 quadratic equations before and after participating in 11 lessons on quadratic equations. Data from the students' written responses to the equations, together with data in the form of…

11. Analysis of Students' Error in Learning of Quadratic Equations

Science.gov (United States)

Zakaria, Effandi; Ibrahim; Maat, Siti Mistima

2010-01-01

The purpose of the study was to determine the students' error in learning quadratic equation. The samples were 30 form three students from a secondary school in Jambi, Indonesia. Diagnostic test was used as the instrument of this study that included three components: factorization, completing the square and quadratic formula. Diagnostic interview…

12. Sketching the General Quadratic Equation Using Dynamic Geometry Software

Science.gov (United States)

Stols, G. H.

2005-01-01

This paper explores a geometrical way to sketch graphs of the general quadratic in two variables with Geometer's Sketchpad. To do this, a geometric procedure as described by De Temple is used, bearing in mind that this general quadratic equation (1) represents all the possible conics (conics sections), and the fact that five points (no three of…

13. Tangent Lines without Derivatives for Quadratic and Cubic Equations

Science.gov (United States)

Carroll, William J.

2009-01-01

In the quadratic equation, y = ax[superscript 2] + bx + c, the equation y = bx + c is identified as the equation of the line tangent to the parabola at its y-intercept. This is extended to give a convenient method of graphing tangent lines at any point on the graph of a quadratic or a cubic equation. (Contains 5 figures.)

14. Visualising the Roots of Quadratic Equations with Complex Coefficients

Science.gov (United States)

Bardell, Nicholas S.

2014-01-01

This paper is a natural extension of the root visualisation techniques first presented by Bardell (2012) for quadratic equations with real coefficients. Consideration is now given to the familiar quadratic equation "y = ax[superscript 2] + bx + c" in which the coefficients "a," "b," "c" are generally…

15. Shape-based grey-level image interpolation

International Nuclear Information System (INIS)

Keh-Shih Chuang; Chun-Yuan Chen; Ching-Kai Yeh

1999-01-01

The three-dimensional (3D) object data obtained from a CT scanner usually have unequal sampling frequencies in the x-, y- and z-directions. Generally, the 3D data are first interpolated between slices to obtain isotropic resolution, reconstructed, then operated on using object extraction and display algorithms. The traditional grey-level interpolation introduces a layer of intermediate substance and is not suitable for objects that are very different from the opposite background. The shape-based interpolation method transfers a pixel location to a parameter related to the object shape and the interpolation is performed on that parameter. This process is able to achieve a better interpolation but its application is limited to binary images only. In this paper, we present an improved shape-based interpolation method for grey-level images. The new method uses a polygon to approximate the object shape and performs the interpolation using polygon vertices as references. The binary images representing the shape of the object were first generated via image segmentation on the source images. The target object binary image was then created using regular shape-based interpolation. The polygon enclosing the object for each slice can be generated from the shape of that slice. We determined the relative location in the source slices of each pixel inside the target polygon using the vertices of a polygon as the reference. The target slice grey-level was interpolated from the corresponding source image pixels. The image quality of this interpolation method is better and the mean squared difference is smaller than with traditional grey-level interpolation. (author)

16. Upstream from OPERA: extreme attention to detail

CERN Multimedia

CERN Bulletin

2011-01-01

Two weeks ago, at a seminar held at CERN, the OPERA collaboration revealed their astonishing observation: neutrinos might move faster than light. The finding is currently under scrutiny in the scientific community. While the result downstream at Gran Sasso speaks for itself, upstream at CERN things are no less intriguing, with high-tech GPS systems, novel techniques for accurately measuring the time, and unique ways keeping the initial particle beam stable. Take away one ingredient and the accuracy needed for the final measurement is spoiled.   Underground installations of the CERN Neutrinos to Gran Sasso (CNGS) project. First ingredient: a stable beam CERN produces neutrinos by sending a beam of protons to hit a target. The collisions produce a secondary beam, which mostly consists of pions and kaons that decay in flight within an evacuated tunnel. Their decay products are muons and muon-neutrinos. An absorber stops the pions and kaons that do not decay, while the resulting muons are absorb...

17. AUTOJOM, Quadratic Equation Coefficient for Conic Volume, Parallelepipeds, Wedges, Pyramids. JOMREAD, Check of 3-D Geometry Structure from Quadratic Surfaces

International Nuclear Information System (INIS)

2005-01-01

Nature of physical problem solved: AUTOJOM is a computer program that will generate the coefficients of any quadratic equation used to define conic volumes and also the coefficients of the planes needed to define parallelepipeds, wedges, and pyramids. JOMREAD is a computer code to check any 3D geometry composed of and constructed with quadratic surfaces

International Nuclear Information System (INIS)

Hudson, S.R.; Dewar, R.L.

2009-01-01

Two candidates for 'almost-invariant' toroidal surfaces passing through magnetic islands, namely quadratic-flux-minimizing (QFMin) surfaces and ghost surfaces, use families of periodic pseudo-orbits (i.e. paths for which the action is not exactly extremal). QFMin pseudo-orbits, which are coordinate-dependent, are field lines obtained from a modified magnetic field, and ghost-surface pseudo-orbits are obtained by displacing closed field lines in the direction of steepest descent of magnetic action, ∫A.dl. A generalized Hamiltonian definition of ghost surfaces is given and specialized to the usual Lagrangian definition. A modified Hamilton's Principle is introduced that allows the use of Lagrangian integration for calculation of the QFMin pseudo-orbits. Numerical calculations show QFMin and Lagrangian ghost surfaces give very similar results for a chaotic magnetic field perturbed from an integrable case, and this is explained using a perturbative construction of an auxiliary poloidal angle for which QFMin and Lagrangian ghost surfaces are the same up to second order. While presented in the context of 3-dimensional magnetic field line systems, the concepts are applicable to defining almost-invariant tori in other 11/2 degree-of-freedom nonintegrable Lagrangian/Hamiltonian systems.

19. Securing Digital Audio using Complex Quadratic Map

Science.gov (United States)

Suryadi, MT; Satria Gunawan, Tjandra; Satria, Yudi

2018-03-01

In This digital era, exchanging data are common and easy to do, therefore it is vulnerable to be attacked and manipulated from unauthorized parties. One data type that is vulnerable to attack is digital audio. So, we need data securing method that is not vulnerable and fast. One of the methods that match all of those criteria is securing the data using chaos function. Chaos function that is used in this research is complex quadratic map (CQM). There are some parameter value that causing the key stream that is generated by CQM function to pass all 15 NIST test, this means that the key stream that is generated using this CQM is proven to be random. In addition, samples of encrypted digital sound when tested using goodness of fit test are proven to be uniform, so securing digital audio using this method is not vulnerable to frequency analysis attack. The key space is very huge about 8.1×l031 possible keys and the key sensitivity is very small about 10-10, therefore this method is also not vulnerable against brute-force attack. And finally, the processing speed for both encryption and decryption process on average about 450 times faster that its digital audio duration.

20. Designing Camera Networks by Convex Quadratic Programming

KAUST Repository

Ghanem, Bernard

2015-05-04

​In this paper, we study the problem of automatic camera placement for computer graphics and computer vision applications. We extend the problem formulations of previous work by proposing a novel way to incorporate visibility constraints and camera-to-camera relationships. For example, the placement solution can be encouraged to have cameras that image the same important locations from different viewing directions, which can enable reconstruction and surveillance tasks to perform better. We show that the general camera placement problem can be formulated mathematically as a convex binary quadratic program (BQP) under linear constraints. Moreover, we propose an optimization strategy with a favorable trade-off between speed and solution quality. Our solution is almost as fast as a greedy treatment of the problem, but the quality is significantly higher, so much so that it is comparable to exact solutions that take orders of magnitude more computation time. Because it is computationally attractive, our method also allows users to explore the space of solutions for variations in input parameters. To evaluate its effectiveness, we show a range of 3D results on real-world floorplans (garage, hotel, mall, and airport). ​

1. Interpolation from Grid Lines: Linear, Transfinite and Weighted Method

DEFF Research Database (Denmark)

Lindberg, Anne-Sofie Wessel; Jørgensen, Thomas Martini; Dahl, Vedrana Andersen

2017-01-01

When two sets of line scans are acquired orthogonal to each other, intensity values are known along the lines of a grid. To view these values as an image, intensities need to be interpolated at regularly spaced pixel positions. In this paper we evaluate three methods for interpolation from grid l...

2. Input variable selection for interpolating high-resolution climate ...

African Journals Online (AJOL)

Although the primary input data of climate interpolations are usually meteorological data, other related (independent) variables are frequently incorporated in the interpolation process. One such variable is elevation, which is known to have a strong influence on climate. This research investigates the potential of 4 additional ...

3. An efficient interpolation filter VLSI architecture for HEVC standard

Science.gov (United States)

Zhou, Wei; Zhou, Xin; Lian, Xiaocong; Liu, Zhenyu; Liu, Xiaoxiang

2015-12-01

The next-generation video coding standard of High-Efficiency Video Coding (HEVC) is especially efficient for coding high-resolution video such as 8K-ultra-high-definition (UHD) video. Fractional motion estimation in HEVC presents a significant challenge in clock latency and area cost as it consumes more than 40 % of the total encoding time and thus results in high computational complexity. With aims at supporting 8K-UHD video applications, an efficient interpolation filter VLSI architecture for HEVC is proposed in this paper. Firstly, a new interpolation filter algorithm based on the 8-pixel interpolation unit is proposed in this paper. It can save 19.7 % processing time on average with acceptable coding quality degradation. Based on the proposed algorithm, an efficient interpolation filter VLSI architecture, composed of a reused data path of interpolation, an efficient memory organization, and a reconfigurable pipeline interpolation filter engine, is presented to reduce the implement hardware area and achieve high throughput. The final VLSI implementation only requires 37.2k gates in a standard 90-nm CMOS technology at an operating frequency of 240 MHz. The proposed architecture can be reused for either half-pixel interpolation or quarter-pixel interpolation, which can reduce the area cost for about 131,040 bits RAM. The processing latency of our proposed VLSI architecture can support the real-time processing of 4:2:0 format 7680 × 4320@78fps video sequences.

4. Some observations on interpolating gauges and non-covariant gauges

We discuss the viability of using interpolating gauges to deﬁne the non-covariant gauges starting from the covariant ones. We draw attention to the need for a very careful treatment of boundary condition deﬁning term. We show that the boundary condition needed to maintain gauge-invariance as the interpolating parameter ...

5. Convergence of trajectories in fractal interpolation of stochastic processes

International Nuclear Information System (INIS)

MaIysz, Robert

2006-01-01

The notion of fractal interpolation functions (FIFs) can be applied to stochastic processes. Such construction is especially useful for the class of α-self-similar processes with stationary increments and for the class of α-fractional Brownian motions. For these classes, convergence of the Minkowski dimension of the graphs in fractal interpolation of the Hausdorff dimension of the graph of original process was studied in [Herburt I, MaIysz R. On convergence of box dimensions of fractal interpolation stochastic processes. Demonstratio Math 2000;4:873-88.], [MaIysz R. A generalization of fractal interpolation stochastic processes to higher dimension. Fractals 2001;9:415-28.], and [Herburt I. Box dimension of interpolations of self-similar processes with stationary increments. Probab Math Statist 2001;21:171-8.]. We prove that trajectories of fractal interpolation stochastic processes converge to the trajectory of the original process. We also show that convergence of the trajectories in fractal interpolation of stochastic processes is equivalent to the convergence of trajectories in linear interpolation

6. Improved Interpolation Kernels for Super-resolution Algorithms

DEFF Research Database (Denmark)

Rasti, Pejman; Orlova, Olga; Tamberg, Gert

2016-01-01

Super resolution (SR) algorithms are widely used in forensics investigations to enhance the resolution of images captured by surveillance cameras. Such algorithms usually use a common interpolation algorithm to generate an initial guess for the desired high resolution (HR) image. This initial guess...... when their original interpolation kernel is replaced by the ones introduced in this work....

7. Scalable Intersample Interpolation Architecture for High-channel-count Beamformers

DEFF Research Database (Denmark)

Tomov, Borislav Gueorguiev; Nikolov, Svetoslav I; Jensen, Jørgen Arendt

2011-01-01

Modern ultrasound scanners utilize digital beamformers that operate on sampled and quantized echo signals. Timing precision is of essence for achieving good focusing. The direct way to achieve it is through the use of high sampling rates, but that is not economical, so interpolation between echo...... samples is used. This paper presents a beamformer architecture that combines a band-pass filter-based interpolation algorithm with the dynamic delay-and-sum focusing of a digital beamformer. The reduction in the number of multiplications relative to a linear perchannel interpolation and band-pass per......-channel interpolation architecture is respectively 58 % and 75 % beamformer for a 256-channel beamformer using 4-tap filters. The approach allows building high channel count beamformers while maintaining high image quality due to the use of sophisticated intersample interpolation....

8. Fractional Delayer Utilizing Hermite Interpolation with Caratheodory Representation

Directory of Open Access Journals (Sweden)

Qiang DU

2018-04-01

Full Text Available Fractional delay is indispensable for many sorts of circuits and signal processing applications. Fractional delay filter (FDF utilizing Hermite interpolation with an analog differentiator is a straightforward way to delay discrete signals. This method has a low time-domain error, but a complicated sampling module than the Shannon sampling scheme. A simplified scheme, which is based on Shannon sampling and utilizing Hermite interpolation with a digital differentiator, will lead a much higher time-domain error when the signal frequency approaches the Nyquist rate. In this letter, we propose a novel fractional delayer utilizing Hermite interpolation with Caratheodory representation. The samples of differential signal are obtained by Caratheodory representation from the samples of the original signal only. So, only one sampler is needed and the sampling module is simple. Simulation results for four types of signals demonstrate that the proposed method has significantly higher interpolation accuracy than Hermite interpolation with digital differentiator.

9. A revisit to quadratic programming with fuzzy parameters

International Nuclear Information System (INIS)

Liu, S.-T.

2009-01-01

Quadratic programming has been widely applied to solving real-world problems. Recently, Liu describes a solution method for solving a class of fuzzy quadratic programming problems, where the cost coefficients of the linear terms in objective function, constraint coefficients, and right-hand sides are fuzzy numbers [Liu ST. Quadratic programming with fuzzy parameters: a membership function approach. Chaos, Solitons and Fractals 2009;40:237-45]. In this paper, we generalize Liu's method to a more general fuzzy quadratic programming problem, where the cost coefficients in objective function, constraint coefficients, and right-hand sides are all fuzzy numbers. A pair of two-level mathematical programs is formulated to calculate the upper bound and lower bound of the objective values of the fuzzy quadratic program. Based on the duality theorem and by applying the variable transformation technique, the pair of two-level mathematical programs is transformed into a family of conventional one-level quadratic programs. Solving the pair of quadratic programs produces the fuzzy objective values of the problem. With the ability of calculating the fuzzy objective value developed in this paper, it might help initiate wider applications.

10. Algorithms for sparse, symmetric, definite quadratic lambda-matrix eigenproblems

International Nuclear Information System (INIS)

Scott, D.S.; Ward, R.C.

1981-01-01

Methods are presented for computing eigenpairs of the quadratic lambda-matrix, M lambda 2 + C lambda + K, where M, C, and K are large and sparse, and have special symmetry-type properties. These properties are sufficient to insure that all the eigenvalues are real and that theory analogous to the standard symmetric eigenproblem exists. The methods employ some standard techniques such as partial tri-diagonalization via the Lanczos Method and subsequent eigenpair calculation, shift-and- invert strategy and subspace iteration. The methods also employ some new techniques such as Rayleigh-Ritz quadratic roots and the inertia of symmetric, definite, quadratic lambda-matrices

11. Functions with disconnected spectrum sampling, interpolation, translates

CERN Document Server

Olevskii, Alexander M

2016-01-01

The classical sampling problem is to reconstruct entire functions with given spectrum S from their values on a discrete set L. From the geometric point of view, the possibility of such reconstruction is equivalent to determining for which sets L the exponential system with frequencies in L forms a frame in the space L^2(S). The book also treats the problem of interpolation of discrete functions by analytic ones with spectrum in S and the problem of completeness of discrete translates. The size and arithmetic structure of both the spectrum S and the discrete set L play a crucial role in these problems. After an elementary introduction, the authors give a new presentation of classical results due to Beurling, Kahane, and Landau. The main part of the book focuses on recent progress in the area, such as construction of universal sampling sets, high-dimensional and non-analytic phenomena. The reader will see how methods of harmonic and complex analysis interplay with various important concepts in different areas, ...

12. Spatiotemporal video deinterlacing using control grid interpolation

Science.gov (United States)

Venkatesan, Ragav; Zwart, Christine M.; Frakes, David H.; Li, Baoxin

2015-03-01

With the advent of progressive format display and broadcast technologies, video deinterlacing has become an important video-processing technique. Numerous approaches exist in the literature to accomplish deinterlacing. While most earlier methods were simple linear filtering-based approaches, the emergence of faster computing technologies and even dedicated video-processing hardware in display units has allowed higher quality but also more computationally intense deinterlacing algorithms to become practical. Most modern approaches analyze motion and content in video to select different deinterlacing methods for various spatiotemporal regions. We introduce a family of deinterlacers that employs spectral residue to choose between and weight control grid interpolation based spatial and temporal deinterlacing methods. The proposed approaches perform better than the prior state-of-the-art based on peak signal-to-noise ratio, other visual quality metrics, and simple perception-based subjective evaluations conducted by human viewers. We further study the advantages of using soft and hard decision thresholds on the visual performance.

13. Upstream petroleum industry flaring guide : review draft

International Nuclear Information System (INIS)

1999-03-01

The Alberta requirements and expectations for upstream petroleum flaring are presented. Flaring is associated with a wide range of energy activities including oil and gas well drilling and well completion operations. The guide incorporates the recommendations made to the Alberta Energy and Utilities Board (EUB) in June 1998 by the multi-stakeholder Clean Air Strategic Alliance (CASA) on associated or solution gas flaring. Additional requirements which address flaring issues not covered in the CASA report are also included in this guide. The Guide requires a 15 per cent reduction in solution gas flare volume by the end of year 2000 from the 1996 baseline, and a 25 per cent reduction by the end of 2001. The Guide prescribes new flare performance requirements for all flares, within three years for existing solution gas flares, five years for flares at other existing permanent facilities. It sets personal consultation and public notification requirements for new and existing solution gas batteries, and new sulphur recovery requirements for facilities not covered by existing EUB regulations. The Guide also addresses the question of conflict resolution to deal with flaring concerns, the release of flaring and venting data, the proposed reduction of flare limits, progress towards minimizing requirements for electricity generators using otherwise flared gas, annual reporting to the EUB, and management framework review in 2001

14. Developmental Origins, Epigenetics, and Equity: Moving Upstream.

Science.gov (United States)

Wallack, Lawrence; Thornburg, Kent

2016-05-01

The Developmental Origins of Health and Disease and the related science of epigenetics redefines the meaning of what constitutes upstream approaches to significant social and public health problems. An increasingly frequent concept being expressed is "When it comes to your health, your zip code may be more important than your genetic code". Epigenetics explains how the environment-our zip code-literally gets under our skin, creates biological changes that increase our vulnerability for disease, and even children's prospects for social success, over their life course and into future generations. This science requires us to rethink where disease comes from and the best way to promote health. It identifies the most fundamental social equity issue in our society: that initial social and biological disadvantage, established even prior to birth, and linked to the social experience of prior generations, is made worse by adverse environments throughout the life course. But at the same time, it provides hope because it tells us that a concerted focus on using public policy to improve our social, physical, and economic environments can ultimately change our biology and the trajectory of health and social success into future generations.

15. Research of Cubic Bezier Curve NC Interpolation Signal Generator

Directory of Open Access Journals (Sweden)

Shijun Ji

2014-08-01

Full Text Available Interpolation technology is the core of the computer numerical control (CNC system, and the precision and stability of the interpolation algorithm directly affect the machining precision and speed of CNC system. Most of the existing numerical control interpolation technology can only achieve circular arc interpolation, linear interpolation or parabola interpolation, but for the numerical control (NC machining of parts with complicated surface, it needs to establish the mathematical model and generate the curved line and curved surface outline of parts and then discrete the generated parts outline into a large amount of straight line or arc to carry on the processing, which creates the complex program and a large amount of code, so it inevitably introduce into the approximation error. All these factors affect the machining accuracy, surface roughness and machining efficiency. The stepless interpolation of cubic Bezier curve controlled by analog signal is studied in this paper, the tool motion trajectory of Bezier curve can be directly planned out in CNC system by adjusting control points, and then these data were put into the control motor which can complete the precise feeding of Bezier curve. This method realized the improvement of CNC trajectory controlled ability from the simple linear and circular arc to the complex project curve, and it provides a new way for economy realizing the curve surface parts with high quality and high efficiency machining.

16. [An Improved Spectral Quaternion Interpolation Method of Diffusion Tensor Imaging].

Science.gov (United States)

Xu, Yonghong; Gao, Shangce; Hao, Xiaofei

2016-04-01

Diffusion tensor imaging(DTI)is a rapid development technology in recent years of magnetic resonance imaging.The diffusion tensor interpolation is a very important procedure in DTI image processing.The traditional spectral quaternion interpolation method revises the direction of the interpolation tensor and can preserve tensors anisotropy,but the method does not revise the size of tensors.The present study puts forward an improved spectral quaternion interpolation method on the basis of traditional spectral quaternion interpolation.Firstly,we decomposed diffusion tensors with the direction of tensors being represented by quaternion.Then we revised the size and direction of the tensor respectively according to different situations.Finally,we acquired the tensor of interpolation point by calculating the weighted average.We compared the improved method with the spectral quaternion method and the Log-Euclidean method by the simulation data and the real data.The results showed that the improved method could not only keep the monotonicity of the fractional anisotropy(FA)and the determinant of tensors,but also preserve the tensor anisotropy at the same time.In conclusion,the improved method provides a kind of important interpolation method for diffusion tensor image processing.

17. Shape-based interpolation of multidimensional grey-level images

International Nuclear Information System (INIS)

Grevera, G.J.; Udupa, J.K.

1996-01-01

Shape-based interpolation as applied to binary images causes the interpolation process to be influenced by the shape of the object. It accomplishes this by first applying a distance transform to the data. This results in the creation of a grey-level data set in which the value at each point represents the minimum distance from that point to the surface of the object. (By convention, points inside the object are assigned positive values; points outside are assigned negative values.) This distance transformed data set is then interpolated using linear or higher-order interpolation and is then thresholded at a distance value of zero to produce the interpolated binary data set. In this paper, the authors describe a new method that extends shape-based interpolation to grey-level input data sets. This generalization consists of first lifting the n-dimensional (n-D) image data to represent it as a surface, or equivalently as a binary image, in an (n + 1)-dimensional [(n + 1)-D] space. The binary shape-based method is then applied to this image to create an (n + 1)-D binary interpolated image. Finally, this image is collapsed (inverse of lifting) to create the n-D interpolated grey-level data set. The authors have conducted several evaluation studies involving patient computed tomography (CT) and magnetic resonance (MR) data as well as mathematical phantoms. They all indicate that the new method produces more accurate results than commonly used grey-level linear interpolation methods, although at the cost of increased computation

18. Integrable Hamiltonian systems and interactions through quadratic constraints

International Nuclear Information System (INIS)

Pohlmeyer, K.

1975-08-01

Osub(n)-invariant classical relativistic field theories in one time and one space dimension with interactions that are entirely due to quadratic constraints are shown to be closely related to integrable Hamiltonian systems. (orig.) [de

19. A perturbative solution for gravitational waves in quadratic gravity

International Nuclear Information System (INIS)

Neto, Edgard C de Rey; Aguiar, Odylio D; Araujo, Jose C N de

2003-01-01

We find a gravitational wave solution to the linearized version of quadratic gravity by adding successive perturbations to Einstein's linearized field equations. We show that only the Ricci-squared quadratic invariant contributes to give a different solution to those found in Einstein's general relativity. The perturbative solution is written as a power series in the β parameter, the coefficient of the Ricci-squared term in the quadratic gravitational action. We also show that, for monochromatic waves of a given angular frequency ω, the perturbative solution can be summed out to give an exact solution to the linearized version of quadratic gravity, for 0 1/2 . This result may lead to implications for the predictions for gravitational wave backgrounds of cosmological origin

DEFF Research Database (Denmark)

Bache, Morten; Bang, Ole; Moses, Jeffrey

2007-01-01

We study soliton compression in bulk quadratic nonlinear materials at 800 nm, where group-velocity mismatch dominates. We develop a nonlocal theory showing that efficient compression depends strongly on characteristic nonlocal time scales related to pulse dispersion....

1. On Multiple Interpolation Functions of the -Genocchi Polynomials

Directory of Open Access Journals (Sweden)

Jin Jeong-Hee

2010-01-01

Full Text Available Abstract Recently, many mathematicians have studied various kinds of the -analogue of Genocchi numbers and polynomials. In the work (New approach to q-Euler, Genocchi numbers and their interpolation functions, "Advanced Studies in Contemporary Mathematics, vol. 18, no. 2, pp. 105–112, 2009.", Kim defined new generating functions of -Genocchi, -Euler polynomials, and their interpolation functions. In this paper, we give another definition of the multiple Hurwitz type -zeta function. This function interpolates -Genocchi polynomials at negative integers. Finally, we also give some identities related to these polynomials.

2. Spectral interpolation - Zero fill or convolution. [image processing

Science.gov (United States)

Forman, M. L.

1977-01-01

Zero fill, or augmentation by zeros, is a method used in conjunction with fast Fourier transforms to obtain spectral spacing at intervals closer than obtainable from the original input data set. In the present paper, an interpolation technique (interpolation by repetitive convolution) is proposed which yields values accurate enough for plotting purposes and which lie within the limits of calibration accuracies. The technique is shown to operate faster than zero fill, since fewer operations are required. The major advantages of interpolation by repetitive convolution are that efficient use of memory is possible (thus avoiding the difficulties encountered in decimation in time FFTs) and that is is easy to implement.

3. Steady State Stokes Flow Interpolation for Fluid Control

DEFF Research Database (Denmark)

Bhatacharya, Haimasree; Nielsen, Michael Bang; Bridson, Robert

2012-01-01

— suffer from a common problem. They fail to capture the rotational components of the velocity field, although extrapolation in the normal direction does consider the tangential component. We address this problem by casting the interpolation as a steady state Stokes flow. This type of flow captures......Fluid control methods often require surface velocities interpolated throughout the interior of a shape to use the velocity as a feedback force or as a boundary condition. Prior methods for interpolation in computer graphics — velocity extrapolation in the normal direction and potential flow...

4. Resolving Actuator Redundancy - Control Allocation vs. Linear Quadratic Control

OpenAIRE

Härkegård, Ola

2004-01-01

When designing control laws for systems with more inputs than controlled variables, one issue to consider is how to deal with actuator redundancy. Two tools for distributing the control effort among a redundant set of actuators are control allocation and linear quadratic control design. In this paper, we investigate the relationship between these two design tools when a quadratic performance index is used for control allocation. We show that for a particular class of linear systems, they give...

5. Quadratic measurement and conditional state preparation in an optomechanical system

DEFF Research Database (Denmark)

A. Brawley, George; Vanner, Michael A.; Bowen, Warwick P.

2014-01-01

We experimentally demonstrate, for the first time, quadratic measurement of mechanical motion in an optomechanical system. We use this nonlinear easurement to conditionally prepare classical non-Gaussian states of motion of a micro-mechanical oscillator.......We experimentally demonstrate, for the first time, quadratic measurement of mechanical motion in an optomechanical system. We use this nonlinear easurement to conditionally prepare classical non-Gaussian states of motion of a micro-mechanical oscillator....

6. Scale-Invariant Rotating Black Holes in Quadratic Gravity

Directory of Open Access Journals (Sweden)

Guido Cognola

2015-07-01

Full Text Available Black hole solutions in pure quadratic theories of gravity are interesting since they allow the formulation of a set of scale-invariant thermodynamics laws. Recently, we have proven that static scale-invariant black holes have a well-defined entropy, which characterizes equivalent classes of solutions. In this paper, we generalize these results and explore the thermodynamics of rotating black holes in pure quadratic gravity.

7. A Trust-region-based Sequential Quadratic Programming Algorithm

DEFF Research Database (Denmark)

Henriksen, Lars Christian; Poulsen, Niels Kjølstad

This technical note documents the trust-region-based sequential quadratic programming algorithm used in other works by the authors. The algorithm seeks to minimize a convex nonlinear cost function subject to linear inequalty constraints and nonlinear equality constraints.......This technical note documents the trust-region-based sequential quadratic programming algorithm used in other works by the authors. The algorithm seeks to minimize a convex nonlinear cost function subject to linear inequalty constraints and nonlinear equality constraints....

8. Staff turnover in hotels : exploring the quadratic and linear relationships.

OpenAIRE

Mohsin, A.; Lengler, J.F.B.; Aguzzoli, R.L.

2015-01-01

The aim of this study is to assess whether the relationship between intention to leave the job and its antecedents is quadratic or linear. To explore those relationships a theoretical model (see Fig. 1) and eight hypotheses are proposed. Each linear hypothesis is followed by an alternative quadratic hypothesis. The alternative hypotheses propose that the relationship between the four antecedent constructs and intention to leave the job might not be linear, as the existing literature suggests....

9. On wave-packet dynamics in a decaying quadratic potential

DEFF Research Database (Denmark)

Møller, Klaus Braagaard; Henriksen, Niels Engholm

1997-01-01

We consider the time-dependent Schrodinger equation for a quadratic potential with an exponentially decaying force constant. General analytical solutions are presented and we highlight in particular, the signatures of classical mechanics in the wave packet dynamics.......We consider the time-dependent Schrodinger equation for a quadratic potential with an exponentially decaying force constant. General analytical solutions are presented and we highlight in particular, the signatures of classical mechanics in the wave packet dynamics....

10. The stability of quadratic-reciprocal functional equation

Science.gov (United States)

Song, Aimin; Song, Minwei

2018-04-01

A new quadratic-reciprocal functional equation f ((k +1 )x +k y )+f ((k +1 )x -k y )=2/f (x )f (y )[(k+1 ) 2f (y )+k2f (x )] [(k+1)2f (y )-k2f (x )] 2 is introduced. The Hyers-Ulam stability for the quadratic-reciprocal functional equations is proved in Banach spaces using the direct method and the fixed point method, respectively.

11. Burgers' turbulence problem with linear or quadratic external potential

DEFF Research Database (Denmark)

Barndorff-Nielsen, Ole Eiler; Leonenko, N.N.

2005-01-01

We consider solutions of Burgers' equation with linear or quadratic external potential and stationary random initial conditions of Ornstein-Uhlenbeck type. We study a class of limit laws that correspond to a scale renormalization of the solutions.......We consider solutions of Burgers' equation with linear or quadratic external potential and stationary random initial conditions of Ornstein-Uhlenbeck type. We study a class of limit laws that correspond to a scale renormalization of the solutions....

12. Chiral properties of baryon interpolating fields

International Nuclear Information System (INIS)

Nagata, Keitaro; Hosaka, Atsushi; Dmitrasinovic, V.

2008-01-01

We study the chiral transformation properties of all possible local (non-derivative) interpolating field operators for baryons consisting of three quarks with two flavors, assuming good isospin symmetry. We derive and use the relations/identities among the baryon operators with identical quantum numbers that follow from the combined color, Dirac and isospin Fierz transformations. These relations reduce the number of independent baryon operators with any given spin and isospin. The Fierz identities also effectively restrict the allowed baryon chiral multiplets. It turns out that the non-derivative baryons' chiral multiplets have the same dimensionality as their Lorentz representations. For the two independent nucleon operators the only permissible chiral multiplet is the fundamental one, ((1)/(2),0)+(0,(1)/(2)). For the Δ, admissible Lorentz representations are (1,(1)/(2))+((1)/(2),1) and ((3)/(2),0)+(0,(3)/(2)). In the case of the (1,(1)/(2))+((1)/(2),1) chiral multiplet, the I(J)=(3)/(2)((3)/(2)) Δ field has one I(J)=(1)/(2)((3)/(2)) chiral partner; otherwise it has none. We also consider the Abelian (U A (1)) chiral transformation properties of the fields and show that each baryon comes in two varieties: (1) with Abelian axial charge +3; and (2) with Abelian axial charge -1. In case of the nucleon these are the two Ioffe fields; in case of the Δ, the (1,(1)/(2))+((1)/(2),1) multiplet has an Abelian axial charge -1 and the ((3)/(2),0)+(0,(3)/(2)) multiplet has an Abelian axial charge +3. (orig.)

13. MODIS Snow Cover Recovery Using Variational Interpolation

Science.gov (United States)

Tran, H.; Nguyen, P.; Hsu, K. L.; Sorooshian, S.

2017-12-01

Cloud obscuration is one of the major problems that limit the usages of satellite images in general and in NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) global Snow-Covered Area (SCA) products in particular. Among the approaches to resolve the problem, the Variational Interpolation (VI) algorithm method, proposed by Xia et al., 2012, obtains cloud-free dynamic SCA images from MODIS. This method is automatic and robust. However, computational deficiency is a main drawback that degrades applying the method for larger scales (i.e., spatial and temporal scales). To overcome this difficulty, this study introduces an improved version of the original VI. The modified VI algorithm integrates the MINimum RESidual (MINRES) iteration (Paige and Saunders., 1975) to prevent the system from breaking up when applied to much broader scales. An experiment was done to demonstrate the crash-proof ability of the new algorithm in comparison with the original VI method, an ability that is obtained when maintaining the distribution of the weights set after solving the linear system. After that, the new VI algorithm was applied to the whole Contiguous United States (CONUS) over four winter months of 2016 and 2017, and validated using the snow station network (SNOTEL). The resulting cloud free images have high accuracy in capturing the dynamical changes of snow in contrast with the MODIS snow cover maps. Lastly, the algorithm was applied to create a Cloud free images dataset from March 10, 2000 to February 28, 2017, which is able to provide an overview of snow trends over CONUS for nearly two decades. ACKNOWLEDGMENTSWe would like to acknowledge NASA, NOAA Office of Hydrologic Development (OHD) National Weather Service (NWS), Cooperative Institute for Climate and Satellites (CICS), Army Research Office (ARO), ICIWaRM, and UNESCO for supporting this research.

14. Comparison of two fractal interpolation methods

Science.gov (United States)

Fu, Yang; Zheng, Zeyu; Xiao, Rui; Shi, Haibo

2017-03-01

As a tool for studying complex shapes and structures in nature, fractal theory plays a critical role in revealing the organizational structure of the complex phenomenon. Numerous fractal interpolation methods have been proposed over the past few decades, but they differ substantially in the form features and statistical properties. In this study, we simulated one- and two-dimensional fractal surfaces by using the midpoint displacement method and the Weierstrass-Mandelbrot fractal function method, and observed great differences between the two methods in the statistical characteristics and autocorrelation features. From the aspect of form features, the simulations of the midpoint displacement method showed a relatively flat surface which appears to have peaks with different height as the fractal dimension increases. While the simulations of the Weierstrass-Mandelbrot fractal function method showed a rough surface which appears to have dense and highly similar peaks as the fractal dimension increases. From the aspect of statistical properties, the peak heights from the Weierstrass-Mandelbrot simulations are greater than those of the middle point displacement method with the same fractal dimension, and the variances are approximately two times larger. When the fractal dimension equals to 1.2, 1.4, 1.6, and 1.8, the skewness is positive with the midpoint displacement method and the peaks are all convex, but for the Weierstrass-Mandelbrot fractal function method the skewness is both positive and negative with values fluctuating in the vicinity of zero. The kurtosis is less than one with the midpoint displacement method, and generally less than that of the Weierstrass-Mandelbrot fractal function method. The autocorrelation analysis indicated that the simulation of the midpoint displacement method is not periodic with prominent randomness, which is suitable for simulating aperiodic surface. While the simulation of the Weierstrass-Mandelbrot fractal function method has

15. Quadratic programming with fuzzy parameters: A membership function approach

International Nuclear Information System (INIS)

Liu, S.-T.

2009-01-01

Quadratic programming has been widely applied to solving real world problems. The conventional quadratic programming model requires the parameters to be known constants. In the real world, however, the parameters are seldom known exactly and have to be estimated. This paper discusses the fuzzy quadratic programming problems where the cost coefficients, constraint coefficients, and right-hand sides are represented by convex fuzzy numbers. Since the parameters in the program are fuzzy numbers, the derived objective value is a fuzzy number as well. Using Zadeh's extension principle, a pair of two-level mathematical programs is formulated to calculate the upper bound and lower bound of the objective values of the fuzzy quadratic program. Based on the duality theorem and by applying the variable transformation technique, the pair of two-level mathematical programs is transformed into a family of conventional one-level quadratic programs. Solving the pair of quadratic programs produces the fuzzy objective values of the problem. An example illustrates method proposed in this paper.

16. Rhie-Chow interpolation in strong centrifugal fields

Science.gov (United States)

Bogovalov, S. V.; Tronin, I. V.

2015-10-01

Rhie-Chow interpolation formulas are derived from the Navier-Stokes and continuity equations. These formulas are generalized to gas dynamics in strong centrifugal fields (as high as 106 g) occurring in gas centrifuges.

17. A Meshfree Quasi-Interpolation Method for Solving Burgers’ Equation

Directory of Open Access Journals (Sweden)

Mingzhu Li

2014-01-01

Full Text Available The main aim of this work is to consider a meshfree algorithm for solving Burgers’ equation with the quartic B-spline quasi-interpolation. Quasi-interpolation is very useful in the study of approximation theory and its applications, since it can yield solutions directly without the need to solve any linear system of equations and overcome the ill-conditioning problem resulting from using the B-spline as a global interpolant. The numerical scheme is presented, by using the derivative of the quasi-interpolation to approximate the spatial derivative of the dependent variable and a low order forward difference to approximate the time derivative of the dependent variable. Compared to other numerical methods, the main advantages of our scheme are higher accuracy and lower computational complexity. Meanwhile, the algorithm is very simple and easy to implement and the numerical experiments show that it is feasible and valid.

18. [Multimodal medical image registration using cubic spline interpolation method].

Science.gov (United States)

He, Yuanlie; Tian, Lianfang; Chen, Ping; Wang, Lifei; Ye, Guangchun; Mao, Zongyuan

2007-12-01

Based on the characteristic of the PET-CT multimodal image series, a novel image registration and fusion method is proposed, in which the cubic spline interpolation method is applied to realize the interpolation of PET-CT image series, then registration is carried out by using mutual information algorithm and finally the improved principal component analysis method is used for the fusion of PET-CT multimodal images to enhance the visual effect of PET image, thus satisfied registration and fusion results are obtained. The cubic spline interpolation method is used for reconstruction to restore the missed information between image slices, which can compensate for the shortage of previous registration methods, improve the accuracy of the registration, and make the fused multimodal images more similar to the real image. Finally, the cubic spline interpolation method has been successfully applied in developing 3D-CRT (3D Conformal Radiation Therapy) system.

19. Interpolating and sampling sequences in finite Riemann surfaces

OpenAIRE

Ortega-Cerda, Joaquim

2007-01-01

We provide a description of the interpolating and sampling sequences on a space of holomorphic functions on a finite Riemann surface, where a uniform growth restriction is imposed on the holomorphic functions.

20. Illumination estimation via thin-plate spline interpolation.

Science.gov (United States)

Shi, Lilong; Xiong, Weihua; Funt, Brian

2011-05-01

Thin-plate spline interpolation is used to interpolate the chromaticity of the color of the incident scene illumination across a training set of images. Given the image of a scene under unknown illumination, the chromaticity of the scene illumination can be found from the interpolated function. The resulting illumination-estimation method can be used to provide color constancy under changing illumination conditions and automatic white balancing for digital cameras. A thin-plate spline interpolates over a nonuniformly sampled input space, which in this case is a training set of image thumbnails and associated illumination chromaticities. To reduce the size of the training set, incremental k medians are applied. Tests on real images demonstrate that the thin-plate spline method can estimate the color of the incident illumination quite accurately, and the proposed training set pruning significantly decreases the computation.

1. Fast image interpolation for motion estimation using graphics hardware

Science.gov (United States)

Kelly, Francis; Kokaram, Anil

2004-05-01

Motion estimation and compensation is the key to high quality video coding. Block matching motion estimation is used in most video codecs, including MPEG-2, MPEG-4, H.263 and H.26L. Motion estimation is also a key component in the digital restoration of archived video and for post-production and special effects in the movie industry. Sub-pixel accurate motion vectors can improve the quality of the vector field and lead to more efficient video coding. However sub-pixel accuracy requires interpolation of the image data. Image interpolation is a key requirement of many image processing algorithms. Often interpolation can be a bottleneck in these applications, especially in motion estimation due to the large number pixels involved. In this paper we propose using commodity computer graphics hardware for fast image interpolation. We use the full search block matching algorithm to illustrate the problems and limitations of using graphics hardware in this way.

2. 3D Medical Image Interpolation Based on Parametric Cubic Convolution

Institute of Scientific and Technical Information of China (English)

2007-01-01

In the process of display, manipulation and analysis of biomedical image data, they usually need to be converted to data of isotropic discretization through the process of interpolation, while the cubic convolution interpolation is widely used due to its good tradeoff between computational cost and accuracy. In this paper, we present a whole concept for the 3D medical image interpolation based on cubic convolution, and the six methods, with the different sharp control parameter, which are formulated in details. Furthermore, we also give an objective comparison for these methods using data sets with the different slice spacing. Each slice in these data sets is estimated by each interpolation method and compared with the original slice using three measures: mean-squared difference, number of sites of disagreement, and largest difference. According to the experimental results, we present a recommendation for 3D medical images under the different situations in the end.

3. Interpolation and sampling in spaces of analytic functions

CERN Document Server

Seip, Kristian

2004-01-01

The book is about understanding the geometry of interpolating and sampling sequences in classical spaces of analytic functions. The subject can be viewed as arising from three classical topics: Nevanlinna-Pick interpolation, Carleson's interpolation theorem for H^\\infty, and the sampling theorem, also known as the Whittaker-Kotelnikov-Shannon theorem. The book aims at clarifying how certain basic properties of the space at hand are reflected in the geometry of interpolating and sampling sequences. Key words for the geometric descriptions are Carleson measures, Beurling densities, the Nyquist rate, and the Helson-Szegő condition. The book is based on six lectures given by the author at the University of Michigan. This is reflected in the exposition, which is a blend of informal explanations with technical details. The book is essentially self-contained. There is an underlying assumption that the reader has a basic knowledge of complex and functional analysis. Beyond that, the reader should have some familiari...

4. Energy-Driven Image Interpolation Using Gaussian Process Regression

Directory of Open Access Journals (Sweden)

Lingling Zi

2012-01-01

Full Text Available Image interpolation, as a method of obtaining a high-resolution image from the corresponding low-resolution image, is a classical problem in image processing. In this paper, we propose a novel energy-driven interpolation algorithm employing Gaussian process regression. In our algorithm, each interpolated pixel is predicted by a combination of two information sources: first is a statistical model adopted to mine underlying information, and second is an energy computation technique used to acquire information on pixel properties. We further demonstrate that our algorithm can not only achieve image interpolation, but also reduce noise in the original image. Our experiments show that the proposed algorithm can achieve encouraging performance in terms of image visualization and quantitative measures.

5. Spatial interpolation of point velocities in stream cross-section

Directory of Open Access Journals (Sweden)

Hasníková Eliška

2015-03-01

Full Text Available The most frequently used instrument for measuring velocity distribution in the cross-section of small rivers is the propeller-type current meter. Output of measuring using this instrument is point data of a tiny bulk. Spatial interpolation of measured data should produce a dense velocity profile, which is not available from the measuring itself. This paper describes the preparation of interpolation models.

6. The Convergence Acceleration of Two-Dimensional Fourier Interpolation

Directory of Open Access Journals (Sweden)

Anry Nersessian

2008-07-01

Full Text Available Hereby, the convergence acceleration of two-dimensional trigonometric interpolation for a smooth functions on a uniform mesh is considered. Together with theoretical estimates some numerical results are presented and discussed that reveal the potential of this method for application in image processing. Experiments show that suggested algorithm allows acceleration of conventional Fourier interpolation even for sparse meshes that can lead to an efficient image compression/decompression algorithms and also to applications in image zooming procedures.

7. Survey: interpolation methods for whole slide image processing.

Science.gov (United States)

Roszkowiak, L; Korzynska, A; Zak, J; Pijanowska, D; Swiderska-Chadaj, Z; Markiewicz, T

2017-02-01

Evaluating whole slide images of histological and cytological samples is used in pathology for diagnostics, grading and prognosis . It is often necessary to rescale whole slide images of a very large size. Image resizing is one of the most common applications of interpolation. We collect the advantages and drawbacks of nine interpolation methods, and as a result of our analysis, we try to select one interpolation method as the preferred solution. To compare the performance of interpolation methods, test images were scaled and then rescaled to the original size using the same algorithm. The modified image was compared to the original image in various aspects. The time needed for calculations and results of quantification performance on modified images were also compared. For evaluation purposes, we used four general test images and 12 specialized biological immunohistochemically stained tissue sample images. The purpose of this survey is to determine which method of interpolation is the best to resize whole slide images, so they can be further processed using quantification methods. As a result, the interpolation method has to be selected depending on the task involving whole slide images. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

8. Comparing interpolation schemes in dynamic receive ultrasound beamforming

DEFF Research Database (Denmark)

Kortbek, Jacob; Andresen, Henrik; Nikolov, Svetoslav

2005-01-01

In medical ultrasound interpolation schemes are of- ten applied in receive focusing for reconstruction of image points. This paper investigates the performance of various interpolation scheme by means of ultrasound simulations of point scatterers in Field II. The investigation includes conventional...... B-mode imaging and synthetic aperture (SA) imaging using a 192-element, 7 MHz linear array transducer with λ pitch as simulation model. The evaluation consists primarily of calculations of the side lobe to main lobe ratio, SLMLR, and the noise power of the interpolation error. When using...... conventional B-mode imaging and linear interpolation, the difference in mean SLMLR is 6.2 dB. With polynomial interpolation the ratio is in the range 6.2 dB to 0.3 dB using 2nd to 5th order polynomials, and with FIR interpolation the ratio is in the range 5.8 dB to 0.1 dB depending on the filter design...

9. Surface interpolation with radial basis functions for medical imaging

International Nuclear Information System (INIS)

Carr, J.C.; Beatson, R.K.; Fright, W.R.

1997-01-01

Radial basis functions are presented as a practical solution to the problem of interpolating incomplete surfaces derived from three-dimensional (3-D) medical graphics. The specific application considered is the design of cranial implants for the repair of defects, usually holes, in the skull. Radial basis functions impose few restrictions on the geometry of the interpolation centers and are suited to problems where interpolation centers do not form a regular grid. However, their high computational requirements have previously limited their use to problems where the number of interpolation centers is small (<300). Recently developed fast evaluation techniques have overcome these limitations and made radial basis interpolation a practical approach for larger data sets. In this paper radial basis functions are fitted to depth-maps of the skull's surface, obtained from X-ray computed tomography (CT) data using ray-tracing techniques. They are used to smoothly interpolate the surface of the skull across defect regions. The resulting mathematical description of the skull's surface can be evaluated at any desired resolution to be rendered on a graphics workstation or to generate instructions for operating a computer numerically controlled (CNC) mill

10. 5-D interpolation with wave-front attributes

Science.gov (United States)

Xie, Yujiang; Gajewski, Dirk

2017-11-01

Most 5-D interpolation and regularization techniques reconstruct the missing data in the frequency domain by using mathematical transforms. An alternative type of interpolation methods uses wave-front attributes, that is, quantities with a specific physical meaning like the angle of emergence and wave-front curvatures. In these attributes structural information of subsurface features like dip and strike of a reflector are included. These wave-front attributes work on 5-D data space (e.g. common-midpoint coordinates in x and y, offset, azimuth and time), leading to a 5-D interpolation technique. Since the process is based on stacking next to the interpolation a pre-stack data enhancement is achieved, improving the signal-to-noise ratio (S/N) of interpolated and recorded traces. The wave-front attributes are determined in a data-driven fashion, for example, with the Common Reflection Surface (CRS method). As one of the wave-front-attribute-based interpolation techniques, the 3-D partial CRS method was proposed to enhance the quality of 3-D pre-stack data with low S/N. In the past work on 3-D partial stacks, two potential problems were still unsolved. For high-quality wave-front attributes, we suggest a global optimization strategy instead of the so far used pragmatic search approach. In previous works, the interpolation of 3-D data was performed along a specific azimuth which is acceptable for narrow azimuth acquisition but does not exploit the potential of wide-, rich- or full-azimuth acquisitions. The conventional 3-D partial CRS method is improved in this work and we call it as a wave-front-attribute-based 5-D interpolation (5-D WABI) as the two problems mentioned above are addressed. Data examples demonstrate the improved performance by the 5-D WABI method when compared with the conventional 3-D partial CRS approach. A comparison of the rank-reduction-based 5-D seismic interpolation technique with the proposed 5-D WABI method is given. The comparison reveals that

11. An integral conservative gridding--algorithm using Hermitian curve interpolation.

Science.gov (United States)

Volken, Werner; Frei, Daniel; Manser, Peter; Mini, Roberto; Born, Ernst J; Fix, Michael K

2008-11-07

The problem of re-sampling spatially distributed data organized into regular or irregular grids to finer or coarser resolution is a common task in data processing. This procedure is known as 'gridding' or 're-binning'. Depending on the quantity the data represents, the gridding-algorithm has to meet different requirements. For example, histogrammed physical quantities such as mass or energy have to be re-binned in order to conserve the overall integral. Moreover, if the quantity is positive definite, negative sampling values should be avoided. The gridding process requires a re-distribution of the original data set to a user-requested grid according to a distribution function. The distribution function can be determined on the basis of the given data by interpolation methods. In general, accurate interpolation with respect to multiple boundary conditions of heavily fluctuating data requires polynomial interpolation functions of second or even higher order. However, this may result in unrealistic deviations (overshoots or undershoots) of the interpolation function from the data. Accordingly, the re-sampled data may overestimate or underestimate the given data by a significant amount. The gridding-algorithm presented in this work was developed in order to overcome these problems. Instead of a straightforward interpolation of the given data using high-order polynomials, a parametrized Hermitian interpolation curve was used to approximate the integrated data set. A single parameter is determined by which the user can control the behavior of the interpolation function, i.e. the amount of overshoot and undershoot. Furthermore, it is shown how the algorithm can be extended to multidimensional grids. The algorithm was compared to commonly used gridding-algorithms using linear and cubic interpolation functions. It is shown that such interpolation functions may overestimate or underestimate the source data by about 10-20%, while the new algorithm can be tuned to

12. An integral conservative gridding-algorithm using Hermitian curve interpolation

International Nuclear Information System (INIS)

Volken, Werner; Frei, Daniel; Manser, Peter; Mini, Roberto; Born, Ernst J; Fix, Michael K

2008-01-01

The problem of re-sampling spatially distributed data organized into regular or irregular grids to finer or coarser resolution is a common task in data processing. This procedure is known as 'gridding' or 're-binning'. Depending on the quantity the data represents, the gridding-algorithm has to meet different requirements. For example, histogrammed physical quantities such as mass or energy have to be re-binned in order to conserve the overall integral. Moreover, if the quantity is positive definite, negative sampling values should be avoided. The gridding process requires a re-distribution of the original data set to a user-requested grid according to a distribution function. The distribution function can be determined on the basis of the given data by interpolation methods. In general, accurate interpolation with respect to multiple boundary conditions of heavily fluctuating data requires polynomial interpolation functions of second or even higher order. However, this may result in unrealistic deviations (overshoots or undershoots) of the interpolation function from the data. Accordingly, the re-sampled data may overestimate or underestimate the given data by a significant amount. The gridding-algorithm presented in this work was developed in order to overcome these problems. Instead of a straightforward interpolation of the given data using high-order polynomials, a parametrized Hermitian interpolation curve was used to approximate the integrated data set. A single parameter is determined by which the user can control the behavior of the interpolation function, i.e. the amount of overshoot and undershoot. Furthermore, it is shown how the algorithm can be extended to multidimensional grids. The algorithm was compared to commonly used gridding-algorithms using linear and cubic interpolation functions. It is shown that such interpolation functions may overestimate or underestimate the source data by about 10-20%, while the new algorithm can be tuned to

13. Comparison between linear quadratic and early time dose models

International Nuclear Information System (INIS)

Chougule, A.A.; Supe, S.J.

1993-01-01

During the 70s, much interest was focused on fractionation in radiotherapy with the aim of improving tumor control rate without producing unacceptable normal tissue damage. To compare the radiobiological effectiveness of various fractionation schedules, empirical formulae such as Nominal Standard Dose, Time Dose Factor, Cumulative Radiation Effect and Tumour Significant Dose, were introduced and were used despite many shortcomings. It has been claimed that a recent linear quadratic model is able to predict the radiobiological responses of tumours as well as normal tissues more accurately. We compared Time Dose Factor and Tumour Significant Dose models with the linear quadratic model for tumour regression in patients with carcinomas of the cervix. It was observed that the prediction of tumour regression estimated by the Tumour Significant Dose and Time Dose factor concepts varied by 1.6% from that of the linear quadratic model prediction. In view of the lack of knowledge of the precise values of the parameters of the linear quadratic model, it should be applied with caution. One can continue to use the Time Dose Factor concept which has been in use for more than a decade as its results are within ±2% as compared to that predicted by the linear quadratic model. (author). 11 refs., 3 figs., 4 tabs

14. Study on Scattered Data Points Interpolation Method Based on Multi-line Structured Light

International Nuclear Information System (INIS)

Fan, J Y; Wang, F G; W, Y; Zhang, Y L

2006-01-01

Aiming at the range image obtained through multi-line structured light, a regional interpolation method is put forward in this paper. This method divides interpolation into two parts according to the memory format of the scattered data, one is interpolation of the data on the stripes, and the other is interpolation of data between the stripes. Trend interpolation method is applied to the data on the stripes, and Gauss wavelet interpolation method is applied to the data between the stripes. Experiments prove regional interpolation method feasible and practical, and it also promotes the speed and precision

15. The quadratic reciprocity law a collection of classical proofs

CERN Document Server

Baumgart, Oswald

2015-01-01

This book is the English translation of Baumgart’s thesis on the early proofs of the quadratic reciprocity law (“Über das quadratische Reciprocitätsgesetz. Eine vergleichende Darstellung der Beweise”), first published in 1885. It is divided into two parts. The first part presents a very brief history of the development of number theory up to Legendre, as well as detailed descriptions of several early proofs of the quadratic reciprocity law. The second part highlights Baumgart’s comparisons of the principles behind these proofs. A current list of all known proofs of the quadratic reciprocity law, with complete references, is provided in the appendix. This book will appeal to all readers interested in elementary number theory and the history of number theory.

16. Quadratic algebra approach to relativistic quantum Smorodinsky-Winternitz systems

International Nuclear Information System (INIS)

Marquette, Ian

2011-01-01

There exists a relation between the Klein-Gordon and the Dirac equations with scalar and vector potentials of equal magnitude and the Schroedinger equation. We obtain the relativistic energy spectrum for the four relativistic quantum Smorodinsky-Winternitz systems from their quasi-Hamiltonian and the quadratic algebras studied by Daskaloyannis in the nonrelativistic context. We also apply the quadratic algebra approach directly to the initial Dirac equation for these four systems and show that the quadratic algebras obtained are the same than those obtained from the quasi-Hamiltonians. We point out how results obtained in context of quantum superintegrable systems and their polynomial algebras can be applied to the quantum relativistic case.

17. The bounds of feasible space on constrained nonconvex quadratic programming

Science.gov (United States)

Zhu, Jinghao

2008-03-01

This paper presents a method to estimate the bounds of the radius of the feasible space for a class of constrained nonconvex quadratic programmingsE Results show that one may compute a bound of the radius of the feasible space by a linear programming which is known to be a P-problem [N. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica 4 (1984) 373-395]. It is proposed that one applies this method for using the canonical dual transformation [D.Y. Gao, Canonical duality theory and solutions to constrained nonconvex quadratic programming, J. Global Optimization 29 (2004) 377-399] for solving a standard quadratic programming problem.

18. Cubic-spline interpolation to estimate effects of inbreeding on milk yield in first lactation Holstein cows

Directory of Open Access Journals (Sweden)

Makram J. Geha

2011-01-01

Full Text Available Milk yield records (305d, 2X, actual milk yield of 123,639 registered first lactation Holstein cows were used to compare linear regression (y = β0 + β1X + e ,quadratic regression, (y = β0 + β1X + β2X2 + e cubic regression (y = β0 + β1X + β2X2 + β3X3 + e and fixed factor models, with cubic-spline interpolation models, for estimating the effects of inbreeding on milk yield. Ten animal models, all with herd-year-season of calving as fixed effect, were compared using the Akaike corrected-Information Criterion (AICc. The cubic-spline interpolation model with seven knots had the lowest AICc, whereas for all those labeled as "traditional", AICc was higher than the best model. Results from fitting inbreeding using a cubic-spline with seven knots were compared to results from fitting inbreeding as a linear covariate or as a fixed factor with seven levels. Estimates of inbreeding effects were not significantly different between the cubic-spline model and the fixed factor model, but were significantly different from the linear regression model. Milk yield decreased significantly at inbreeding levels greater than 9%. Variance component estimates were similar for the three models. Ranking of the top 100 sires with daughter records remained unaffected by the model used.

19. An efficient coupled polynomial interpolation scheme to eliminate material-locking in the Euler-Bernoulli piezoelectric beam finite element

Directory of Open Access Journals (Sweden)

Litesh N. Sulbhewar

Full Text Available The convergence characteristic of the conventional two-noded Euler-Bernoulli piezoelectric beam finite element depends on the configuration of the beam cross-section. The element shows slower convergence for the asymmetric material distribution in the beam cross-section due to 'material-locking' caused by extension-bending coupling. Hence, the use of conventional Euler-Bernoulli beam finite element to analyze piezoelectric beams which are generally made of the host layer with asymmetrically surface bonded piezoelectric layers/patches, leads to increased computational effort to yield converged results. Here, an efficient coupled polynomial interpolation scheme is proposed to improve the convergence of the Euler-Bernoulli piezoelectric beam finite elements, by eliminating ill-effects of material-locking. The equilibrium equations, derived using a variational formulation, are used to establish relationships between field variables. These relations are used to find a coupled quadratic polynomial for axial displacement, having contributions from an assumed cubic polynomial for transverse displacement and assumed linear polynomials for layerwise electric potentials. A set of coupled shape functions derived using these polynomials efficiently handles extension-bending and electromechanical couplings at the field interpolation level itself in a variationally consistent manner, without increasing the number of nodal degrees of freedom. The comparison of results obtained from numerical simulation of test problems shows that the convergence characteristic of the proposed element is insensitive to the material configuration of the beam cross-section.

20. A FAST MORPHING-BASED INTERPOLATION FOR MEDICAL IMAGES: APPLICATION TO CONFORMAL RADIOTHERAPY

Directory of Open Access Journals (Sweden)

Hussein Atoui

2011-05-01

Full Text Available A method is presented for fast interpolation between medical images. The method is intended for both slice and projective interpolation. It allows offline interpolation between neighboring slices in tomographic data. Spatial correspondence between adjacent images is established using a block matching algorithm. Interpolation of image intensities is then carried out by morphing between the images. The morphing-based method is compared to standard linear interpolation, block-matching-based interpolation and registrationbased interpolation in 3D tomographic data sets. Results show that the proposed method scored similar performance in comparison to registration-based interpolation, and significantly outperforms both linear and block-matching-based interpolation. This method is applied in the context of conformal radiotherapy for online projective interpolation between Digitally Reconstructed Radiographs (DRRs.

1. Extensions of linear-quadratic control, optimization and matrix theory

CERN Document Server

Jacobson, David H

1977-01-01

In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank mat

2. Sparse representation based image interpolation with nonlocal autoregressive modeling.

Science.gov (United States)

Dong, Weisheng; Zhang, Lei; Lukac, Rastislav; Shi, Guangming

2013-04-01

Sparse representation is proven to be a promising approach to image super-resolution, where the low-resolution (LR) image is usually modeled as the down-sampled version of its high-resolution (HR) counterpart after blurring. When the blurring kernel is the Dirac delta function, i.e., the LR image is directly down-sampled from its HR counterpart without blurring, the super-resolution problem becomes an image interpolation problem. In such cases, however, the conventional sparse representation models (SRM) become less effective, because the data fidelity term fails to constrain the image local structures. In natural images, fortunately, many nonlocal similar patches to a given patch could provide nonlocal constraint to the local structure. In this paper, we incorporate the image nonlocal self-similarity into SRM for image interpolation. More specifically, a nonlocal autoregressive model (NARM) is proposed and taken as the data fidelity term in SRM. We show that the NARM-induced sampling matrix is less coherent with the representation dictionary, and consequently makes SRM more effective for image interpolation. Our extensive experimental results demonstrate that the proposed NARM-based image interpolation method can effectively reconstruct the edge structures and suppress the jaggy/ringing artifacts, achieving the best image interpolation results so far in terms of PSNR as well as perceptual quality metrics such as SSIM and FSIM.

3. Reducing Interpolation Artifacts for Mutual Information Based Image Registration

Science.gov (United States)

Soleimani, H.; Khosravifard, M.A.

2011-01-01

Medical image registration methods which use mutual information as similarity measure have been improved in recent decades. Mutual Information is a basic concept of Information theory which indicates the dependency of two random variables (or two images). In order to evaluate the mutual information of two images their joint probability distribution is required. Several interpolation methods, such as Partial Volume (PV) and bilinear, are used to estimate joint probability distribution. Both of these two methods yield some artifacts on mutual information function. Partial Volume-Hanning window (PVH) and Generalized Partial Volume (GPV) methods are introduced to remove such artifacts. In this paper we show that the acceptable performance of these methods is not due to their kernel function. It's because of the number of pixels which incorporate in interpolation. Since using more pixels requires more complex and time consuming interpolation process, we propose a new interpolation method which uses only four pixels (the same as PV and bilinear interpolations) and removes most of the artifacts. Experimental results of the registration of Computed Tomography (CT) images show superiority of the proposed scheme. PMID:22606673

International Nuclear Information System (INIS)

Halpern, M.B.

1980-01-01

I develop a large N saddle point formulation for the broad class of 'theories of quadratic building blocks'. Such theories are those on which the sums over internal indices are contained in quadratic building blocks, e.g. PHI 2 = Σsup(N)sub(a-1)PHi sup(a)sup(a). The formulation applies as well to fermions, derivative coupling and non-polynomial interactions. In a related development, closed Schwinger-Dyson equations for Green functions of the building blocks are derived and solved for large N. (orig.)

5. Remarks on second-order quadratic systems in algebras

Directory of Open Access Journals (Sweden)

Art Sagle

2017-10-01

Full Text Available This paper is an addendum to our earlier paper [8], where a systematic study of quadratic systems of second order ordinary differential equations defined in commutative algebras was presented. Here we concentrate on special solutions and energy considerations of some quadratic systems defined in algebras which need not be commutative, however, we shall throughout assume the algebra to be associative. We here also give a positive answer to an open question, concerning periodic motions of such systems, posed in our earlier paper.

6. Dhage Iteration Method for Generalized Quadratic Functional Integral Equations

Directory of Open Access Journals (Sweden)

Bapurao C. Dhage

2015-01-01

Full Text Available In this paper we prove the existence as well as approximations of the solutions for a certain nonlinear generalized quadratic functional integral equation. An algorithm for the solutions is developed and it is shown that the sequence of successive approximations starting at a lower or upper solution converges monotonically to the solutions of related quadratic functional integral equation under some suitable mixed hybrid conditions. We rely our main result on Dhage iteration method embodied in a recent hybrid fixed point theorem of Dhage (2014 in partially ordered normed linear spaces. An example is also provided to illustrate the abstract theory developed in the paper.

7. Quantum tomography and classical propagator for quadratic quantum systems

International Nuclear Information System (INIS)

Man'ko, O.V.

1999-03-01

The classical propagator for tomographic probability (which describes the quantum state instead of wave function or density matrix) is presented for quadratic quantum systems and its relation to the quantum propagator is considered. The new formalism of quantum mechanics, based on the probability representation of the state, is applied to particular quadratic systems - the harmonic oscillator, particle's free motion, problems of an ion in a Paul trap and in asymmetric Penning trap, and to the process of stimulated Raman scattering. The classical propagator for these systems is written in an explicit form. (author)

8. New robust chaotic system with exponential quadratic term

International Nuclear Information System (INIS)

Bao Bocheng; Li Chunbiao; Liu Zhong; Xu Jianping

2008-01-01

This paper proposes a new robust chaotic system of three-dimensional quadratic autonomous ordinary differential equations by introducing an exponential quadratic term. This system can display a double-scroll chaotic attractor with only two equilibria, and can be found to be robust chaotic in a very wide parameter domain with positive maximum Lyapunov exponent. Some basic dynamical properties and chaotic behaviour of novel attractor are studied. By numerical simulation, this paper verifies that the three-dimensional system can also evolve into periodic and chaotic behaviours by a constant controller. (general)

9. Subgroups of class groups of algebraic quadratic function fields

International Nuclear Information System (INIS)

Wang Kunpeng; Zhang Xianke

2001-09-01

Ideal class groups H(K) of algebraic quadratic function fields K are studied, by using mainly the theory of continued fractions of algebraic functions. Properties of such continued fractions are discussed first. Then a necessary and sufficient condition is given for the class group H(K) to contain a cyclic subgroup of any order n, this criterion condition holds true for both real and imaginary fields K. Furthermore, several series of function fields K, including real, inertia imaginary, as well as ramified imaginary quadratic function fields, are given, and their class groups H(K) are proved to contain cyclic subgroups of order n. (author)

10. Smoothing optimization of supporting quadratic surfaces with Zernike polynomials

Science.gov (United States)

Zhang, Hang; Lu, Jiandong; Liu, Rui; Ma, Peifu

2018-03-01

A new optimization method to get a smooth freeform optical surface from an initial surface generated by the supporting quadratic method (SQM) is proposed. To smooth the initial surface, a 9-vertex system from the neighbor quadratic surface and the Zernike polynomials are employed to establish a linear equation system. A local optimized surface to the 9-vertex system can be build by solving the equations. Finally, a continuous smooth optimization surface is constructed by stitching the above algorithm on the whole initial surface. The spot corresponding to the optimized surface is no longer discrete pixels but a continuous distribution.

11. Impact of upstream industrial effluents on irrigation water quality ...

African Journals Online (AJOL)

Impact of upstream industrial effluents on irrigation water quality, soils and ... Knowledge of irrigation water quality is critical to predicting, managing and reducing salt ... Presence of heavy metals in concentration higher than the recommended ...

12. Interpolant tree automata and their application in Horn clause verification

DEFF Research Database (Denmark)

Kafle, Bishoksan; Gallagher, John Patrick

2016-01-01

This paper investigates the combination of abstract interpretation over the domain of convex polyhedra with interpolant tree automata, in an abstraction-refinement scheme for Horn clause verification. These techniques have been previously applied separately, but are combined in a new way in this ......This paper investigates the combination of abstract interpretation over the domain of convex polyhedra with interpolant tree automata, in an abstraction-refinement scheme for Horn clause verification. These techniques have been previously applied separately, but are combined in a new way...... clause verification problems indicates that the combination of interpolant tree automaton with abstract interpretation gives some increase in the power of the verification tool, while sometimes incurring a performance overhead....

13. Interpolation of vector fields from human cardiac DT-MRI

International Nuclear Information System (INIS)

Yang, F; Zhu, Y M; Rapacchi, S; Robini, M; Croisille, P; Luo, J H

2011-01-01

There has recently been increased interest in developing tensor data processing methods for the new medical imaging modality referred to as diffusion tensor magnetic resonance imaging (DT-MRI). This paper proposes a method for interpolating the primary vector fields from human cardiac DT-MRI, with the particularity of achieving interpolation and denoising simultaneously. The method consists of localizing the noise-corrupted vectors using the local statistical properties of vector fields, removing the noise-corrupted vectors and reconstructing them by using the thin plate spline (TPS) model, and finally applying global TPS interpolation to increase the resolution in the spatial domain. Experiments on 17 human hearts show that the proposed method allows us to obtain higher resolution while reducing noise, preserving details and improving direction coherence (DC) of vector fields as well as fiber tracking. Moreover, the proposed method perfectly reconstructs azimuth and elevation angle maps.

14. Inoculating against eyewitness suggestibility via interpolated verbatim vs. gist testing.

Science.gov (United States)

Pansky, Ainat; Tenenboim, Einat

2011-01-01

In real-life situations, eyewitnesses often have control over the level of generality in which they choose to report event information. In the present study, we adopted an early-intervention approach to investigate to what extent eyewitness memory may be inoculated against suggestibility, following two different levels of interpolated reporting: verbatim and gist. After viewing a target event, participants responded to interpolated questions that required reporting of target details at either the verbatim or the gist level. After 48 hr, both groups of participants were misled about half of the target details and were finally tested for verbatim memory of all the details. The findings were consistent with our predictions: Whereas verbatim testing was successful in completely inoculating against suggestibility, gist testing did not reduce it whatsoever. These findings are particularly interesting in light of the comparable testing effects found for these two modes of interpolated testing.

15. Interpolation-free scanning and sampling scheme for tomographic reconstructions

International Nuclear Information System (INIS)

Donohue, K.D.; Saniie, J.

1987-01-01

In this paper a sampling scheme is developed for computer tomography (CT) systems that eliminates the need for interpolation. A set of projection angles along with their corresponding sampling rates are derived from the geometry of the Cartesian grid such that no interpolation is required to calculate the final image points for the display grid. A discussion is presented on the choice of an optimal set of projection angles that will maintain a resolution comparable to a sampling scheme of regular measurement geometry, while minimizing the computational load. The interpolation-free scanning and sampling (IFSS) scheme developed here is compared to a typical sampling scheme of regular measurement geometry through a computer simulation

16. Gaussian Process Interpolation for Uncertainty Estimation in Image Registration

Science.gov (United States)

Wachinger, Christian; Golland, Polina; Reuter, Martin; Wells, William

2014-01-01

Intensity-based image registration requires resampling images on a common grid to evaluate the similarity function. The uncertainty of interpolation varies across the image, depending on the location of resampled points relative to the base grid. We propose to perform Bayesian inference with Gaussian processes, where the covariance matrix of the Gaussian process posterior distribution estimates the uncertainty in interpolation. The Gaussian process replaces a single image with a distribution over images that we integrate into a generative model for registration. Marginalization over resampled images leads to a new similarity measure that includes the uncertainty of the interpolation. We demonstrate that our approach increases the registration accuracy and propose an efficient approximation scheme that enables seamless integration with existing registration methods. PMID:25333127

17. Image interpolation used in three-dimensional range data compression.

Science.gov (United States)

Zhang, Shaoze; Zhang, Jianqi; Huang, Xi; Liu, Delian

2016-05-20

Advances in the field of three-dimensional (3D) scanning have made the acquisition of 3D range data easier and easier. However, with the large size of 3D range data comes the challenge of storing and transmitting it. To address this challenge, this paper presents a framework to further compress 3D range data using image interpolation. We first use a virtual fringe-projection system to store 3D range data as images, and then apply the interpolation algorithm to the images to reduce their resolution to further reduce the data size. When the 3D range data are needed, the low-resolution image is scaled up to its original resolution by applying the interpolation algorithm, and then the scaled-up image is decoded and the 3D range data are recovered according to the decoded result. Experimental results show that the proposed method could further reduce the data size while maintaining a low rate of error.

18. Importance of interpolation and coincidence errors in data fusion

Science.gov (United States)

Ceccherini, Simone; Carli, Bruno; Tirelli, Cecilia; Zoppetti, Nicola; Del Bianco, Samuele; Cortesi, Ugo; Kujanpää, Jukka; Dragani, Rossana

2018-02-01

The complete data fusion (CDF) method is applied to ozone profiles obtained from simulated measurements in the ultraviolet and in the thermal infrared in the framework of the Sentinel 4 mission of the Copernicus programme. We observe that the quality of the fused products is degraded when the fusing profiles are either retrieved on different vertical grids or referred to different true profiles. To address this shortcoming, a generalization of the complete data fusion method, which takes into account interpolation and coincidence errors, is presented. This upgrade overcomes the encountered problems and provides products of good quality when the fusing profiles are both retrieved on different vertical grids and referred to different true profiles. The impact of the interpolation and coincidence errors on number of degrees of freedom and errors of the fused profile is also analysed. The approach developed here to account for the interpolation and coincidence errors can also be followed to include other error components, such as forward model errors.

19. An adaptive interpolation scheme for molecular potential energy surfaces

Science.gov (United States)

Kowalewski, Markus; Larsson, Elisabeth; Heryudono, Alfa

2016-08-01

The calculation of potential energy surfaces for quantum dynamics can be a time consuming task—especially when a high level of theory for the electronic structure calculation is required. We propose an adaptive interpolation algorithm based on polyharmonic splines combined with a partition of unity approach. The adaptive node refinement allows to greatly reduce the number of sample points by employing a local error estimate. The algorithm and its scaling behavior are evaluated for a model function in 2, 3, and 4 dimensions. The developed algorithm allows for a more rapid and reliable interpolation of a potential energy surface within a given accuracy compared to the non-adaptive version.

20. Estimating monthly temperature using point based interpolation techniques

Science.gov (United States)

Saaban, Azizan; Mah Hashim, Noridayu; Murat, Rusdi Indra Zuhdi

2013-04-01

This paper discusses the use of point based interpolation to estimate the value of temperature at an unallocated meteorology stations in Peninsular Malaysia using data of year 2010 collected from the Malaysian Meteorology Department. Two point based interpolation methods which are Inverse Distance Weighted (IDW) and Radial Basis Function (RBF) are considered. The accuracy of the methods is evaluated using Root Mean Square Error (RMSE). The results show that RBF with thin plate spline model is suitable to be used as temperature estimator for the months of January and December, while RBF with multiquadric model is suitable to estimate the temperature for the rest of the months.

1. Multi-dimensional cubic interpolation for ICF hydrodynamics simulation

International Nuclear Information System (INIS)

Aoki, Takayuki; Yabe, Takashi.

1991-04-01

A new interpolation method is proposed to solve the multi-dimensional hyperbolic equations which appear in describing the hydrodynamics of inertial confinement fusion (ICF) implosion. The advection phase of the cubic-interpolated pseudo-particle (CIP) is greatly improved, by assuming the continuities of the second and the third spatial derivatives in addition to the physical value and the first derivative. These derivatives are derived from the given physical equation. In order to evaluate the new method, Zalesak's example is tested, and we obtain successfully good results. (author)

2. Oversampling of digitized images. [effects on interpolation in signal processing

Science.gov (United States)

Fischel, D.

1976-01-01

Oversampling is defined as sampling with a device whose characteristic width is greater than the interval between samples. This paper shows why oversampling should be avoided and discusses the limitations in data processing if circumstances dictate that oversampling cannot be circumvented. Principally, oversampling should not be used to provide interpolating data points. Rather, the time spent oversampling should be used to obtain more signal with less relative error, and the Sampling Theorem should be employed to provide any desired interpolated values. The concepts are applicable to single-element and multielement detectors.

3. Scientific data interpolation with low dimensional manifold model

Science.gov (United States)

Zhu, Wei; Wang, Bao; Barnard, Richard; Hauck, Cory D.; Jenko, Frank; Osher, Stanley

2018-01-01

We propose to apply a low dimensional manifold model to scientific data interpolation from regular and irregular samplings with a significant amount of missing information. The low dimensionality of the patch manifold for general scientific data sets has been used as a regularizer in a variational formulation. The problem is solved via alternating minimization with respect to the manifold and the data set, and the Laplace-Beltrami operator in the Euler-Lagrange equation is discretized using the weighted graph Laplacian. Various scientific data sets from different fields of study are used to illustrate the performance of the proposed algorithm on data compression and interpolation from both regular and irregular samplings.

4. Implementing fuzzy polynomial interpolation (FPI and fuzzy linear regression (LFR

Directory of Open Access Journals (Sweden)

Maria Cristina Floreno

1996-05-01

Full Text Available This paper presents some preliminary results arising within a general framework concerning the development of software tools for fuzzy arithmetic. The program is in a preliminary stage. What has been already implemented consists of a set of routines for elementary operations, optimized functions evaluation, interpolation and regression. Some of these have been applied to real problems.This paper describes a prototype of a library in C++ for polynomial interpolation of fuzzifying functions, a set of routines in FORTRAN for fuzzy linear regression and a program with graphical user interface allowing the use of such routines.

5. Scientific data interpolation with low dimensional manifold model

International Nuclear Information System (INIS)

Zhu, Wei; Wang, Bao; Barnard, Richard C.; Hauck, Cory D.

2017-01-01

Here, we propose to apply a low dimensional manifold model to scientific data interpolation from regular and irregular samplings with a significant amount of missing information. The low dimensionality of the patch manifold for general scientific data sets has been used as a regularizer in a variational formulation. The problem is solved via alternating minimization with respect to the manifold and the data set, and the Laplace–Beltrami operator in the Euler–Lagrange equation is discretized using the weighted graph Laplacian. Various scientific data sets from different fields of study are used to illustrate the performance of the proposed algorithm on data compression and interpolation from both regular and irregular samplings.

6. Decentralized linear quadratic power system stabilizers for multi ...

Linear quadratic stabilizers are well-known for their superior control capabilities when compared to the conventional lead–lag power system stabilizers. However, they have not seen much of practical importance as the state variables are generally not measurable; especially the generator rotor angle measurement is not ...

7. Diagonalization of bosonic quadratic Hamiltonians by Bogoliubov transformations

DEFF Research Database (Denmark)

Nam, Phan Thanh; Napiorkowski, Marcin; Solovej, Jan Philip

2016-01-01

We provide general conditions for which bosonic quadratic Hamiltonians on Fock spaces can be diagonalized by Bogoliubov transformations. Our results cover the case when quantum systems have infinite degrees of freedom and the associated one-body kinetic and paring operators are unbounded. Our...

8. ON WEIGHTED GENERALIZED FUNCTIONS ASSOCIATED WITH QUADRATIC FORMS

Directory of Open Access Journals (Sweden)

E. L. Shishkina

2016-12-01

Full Text Available In this article we consider certain types of weighted generalized functions associated with nondegenerate quadratic forms. Such functions and their derivatives are used for constructing fundamental solutions of iterated ultra-hyperbolic equations with the Bessel operator and for constructing negative real powers of ultra-hyperbolic operators with the Bessel operator.

9. Feedback nash equilibria for linear quadratic descriptor differential games

NARCIS (Netherlands)

Engwerda, J.C.; Salmah, S.

2012-01-01

In this paper, we consider the non-cooperative linear feedback Nash quadratic differential game with an infinite planning horizon for descriptor systems of index one. The performance function is assumed to be indefinite. We derive both necessary and sufficient conditions under which this game has a

10. Initial post dynamic buckling of a quadratic-cubic column ...

African Journals Online (AJOL)

In this investigation, we determine the dynamic buckling load of an imperfect finite column resting on a mixed quadratic-cubic nonlinear elastic foundation trapped by an explicitly time dependent sinusoidally slowly varying dynamic load .The resultant coefficients are dynamically slowly varying and the formulation contains ...

11. Quadratic algebras in the noncommutative integration method of wave equation

International Nuclear Information System (INIS)

Varaksin, O.L.

1995-01-01

The paper deals with the investigation of applications of the method of noncommutative integration of linear differential equations by partial derivatives. Nontrivial example was taken for integration of three-dimensions wave equation with the use of non-Abelian quadratic algebras

12. Propagator of a time-dependent unbound quadratic Hamiltonian system

International Nuclear Information System (INIS)

Yeon, K.H.; Kim, H.J.; Um, C.I.; George, T.F.; Pandey, L.N.

1996-01-01

The propagator for a time-dependent unbound quadratic Hamiltonian system is explicitly evaluated using the path integral method. Two time-invariant quantities of the system are found where these invariants determine whether or not the system is bound. Several examples are considered to illustrate that the propagator obtained for the unbound systems is correct

13. On Fredholm-Stieltjes quadratic integral equation with supremum

International Nuclear Information System (INIS)

Darwish, M.A.

2007-08-01

We prove an existence theorem of monotonic solutions for a quadratic integral equation of Fredholm-Stieltjes type in C[0,1]. The concept of measure of non-compactness and a fixed point theorem due to Darbo are the main tools in carrying out our proof. (author)

14. Quadratic theory and feedback controllers for linear time delay systems

International Nuclear Information System (INIS)

Lee, E.B.

1976-01-01

Recent research on the design of controllers for systems having time delays is discussed. Results for the ''open loop'' and ''closed loop'' designs will be presented. In both cases results for minimizing a quadratic cost functional are given. The usefulness of these results is not known, but similar results for the non-delay case are being routinely applied. (author)

15. Pareto optimality in infinite horizon linear quadratic differential games

NARCIS (Netherlands)

Reddy, P.V.; Engwerda, J.C.

2013-01-01

In this article we derive conditions for the existence of Pareto optimal solutions for linear quadratic infinite horizon cooperative differential games. First, we present a necessary and sufficient characterization for Pareto optimality which translates to solving a set of constrained optimal

16. Special cases of the quadratic shortest path problem

NARCIS (Netherlands)

Sotirov, Renata; Hu, Hao

2017-01-01

The quadratic shortest path problem (QSPP) is the problem of finding a path with prespecified start vertex s and end vertex t in a digraph such that the sum of weights of arcs and the sum of interaction costs over all pairs of arcs on the path is minimized. We first consider a variant of the QSPP

17. Quadratic Poisson brackets compatible with an algebra structure

OpenAIRE

Balinsky, A. A.; Burman, Yu.

1994-01-01

Quadratic Poisson brackets on a vector space equipped with a bilinear multiplication are studied. A notion of a bracket compatible with the multiplication is introduced and an effective criterion of such compatibility is given. Among compatible brackets, a subclass of coboundary brackets is described, and such brackets are enumerated in a number of examples.

18. On misclassication probabilities of linear and quadratic classiers ...

African Journals Online (AJOL)

We study the theoretical misclassication probability of linear and quadratic classiers and examine the performance of these classiers under distributional variations in theory and using simulation. We derive expression for Bayes errors for some competing distributions from the same family under location shift. Keywords: ...

19. Feedback Nash Equilibria for Linear Quadratic Descriptor Differential Games

NARCIS (Netherlands)

Engwerda, J.C.; Salmah, Y.

2010-01-01

In this note we consider the non-cooperative linear feedback Nash quadratic differential game with an infinite planning horizon for descriptor systems of index one. The performance function is assumed to be indefinite. We derive both necessary and sufficient conditions under which this game has a

20. A Unified Approach to Teaching Quadratic and Cubic Equations.

Science.gov (United States)

Ward, A. J. B.

2003-01-01

Presents a simple method for teaching the algebraic solution of cubic equations via completion of the cube. Shows that this method is readily accepted by students already familiar with completion of the square as a method for quadratic equations. (Author/KHR)

1. Analysis of Quadratic Diophantine Equations with Fibonacci Number Solutions

Science.gov (United States)

Leyendekkers, J. V.; Shannon, A. G.

2004-01-01

An analysis is made of the role of Fibonacci numbers in some quadratic Diophantine equations. A general solution is obtained for finding factors in sums of Fibonacci numbers. Interpretation of the results is facilitated by the use of a modular ring which also permits extension of the analysis.

2. Visualising the Complex Roots of Quadratic Equations with Real Coefficients

Science.gov (United States)

Bardell, Nicholas S.

2012-01-01

The roots of the general quadratic equation y = ax[superscript 2] + bx + c (real a, b, c) are known to occur in the following sets: (i) real and distinct; (ii) real and coincident; and (iii) a complex conjugate pair. Case (iii), which provides the focus for this investigation, can only occur when the values of the real coefficients a, b, and c are…

3. Nonlocal description of X waves in quadratic nonlinear materials

DEFF Research Database (Denmark)

Larsen, Peter Ulrik Vingaard; Sørensen, Mads Peter; Bang, Ole

2006-01-01

We study localized light bullets and X-waves in quadratic media and show how the notion of nonlocality can provide an alternative simple physical picture of both types of multi-dimensional nonlinear waves. For X-waves we show that a local cascading limit in terms of a nonlinear Schrodinger equation...

4. Linear and quadratic in temperature resistivity from holography

Energy Technology Data Exchange (ETDEWEB)

Ge, Xian-Hui [Department of Physics, Shanghai University, Shanghai 200444 (China); Shanghai Key Laboratory of High Temperature Superconductors,Shanghai 200444 (China); Shanghai Key Lab for Astrophysics,100 Guilin Road, 200234 Shanghai (China); Tian, Yu [School of Physics, University of Chinese Academy of Sciences,Beijing, 100049 (China); Shanghai Key Laboratory of High Temperature Superconductors,Shanghai 200444 (China); Wu, Shang-Yu [Department of Electrophysics, National Chiao Tung University,Hsinchu 300 (China); Wu, Shao-Feng [Department of Physics, Shanghai University, Shanghai 200444 (China); Shanghai Key Laboratory of High Temperature Superconductors,Shanghai 200444 (China); Shanghai Key Lab for Astrophysics,100 Guilin Road, 200234 Shanghai (China)

2016-11-22

We present a new black hole solution in the asymptotic Lifshitz spacetime with a hyperscaling violating factor. A novel computational method is introduced to compute the DC thermoelectric conductivities analytically. We find that both the linear-T and quadratic-T contributions to the resistivity can be realized, indicating that a more detailed comparison with experimental phenomenology can be performed in this scenario.

5. Image interpolation allows accurate quantitative bone morphometry in registered micro-computed tomography scans.

Science.gov (United States)

Schulte, Friederike A; Lambers, Floor M; Mueller, Thomas L; Stauber, Martin; Müller, Ralph

2014-04-01

Time-lapsed in vivo micro-computed tomography is a powerful tool to analyse longitudinal changes in the bone micro-architecture. Registration can overcome problems associated with spatial misalignment between scans; however, it requires image interpolation which might affect the outcome of a subsequent bone morphometric analysis. The impact of the interpolation error itself, though, has not been quantified to date. Therefore, the purpose of this ex vivo study was to elaborate the effect of different interpolator schemes [nearest neighbour, tri-linear and B-spline (BSP)] on bone morphometric indices. None of the interpolator schemes led to significant differences between interpolated and non-interpolated images, with the lowest interpolation error found for BSPs (1.4%). Furthermore, depending on the interpolator, the processing order of registration, Gaussian filtration and binarisation played a role. Independent from the interpolator, the present findings suggest that the evaluation of bone morphometry should be done with images registered using greyscale information.

6. Biased motion vector interpolation for reduced video artifacts.

NARCIS (Netherlands)

2011-01-01

In a video processing system where motion vectors are estimated for a subset of the blocks of data forming a video frame, and motion vectors are interpolated for the remainder of the blocks of the frame, a method includes determining, for at least at least one block of the current frame for which a

7. A Note on Interpolation of Stable Processes | Nassiuma | Journal of ...

African Journals Online (AJOL)

Interpolation procedures tailored for gaussian processes may not be applied to infinite variance stable processes. Alternative techniques suitable for a limited set of stable case with index α∈(1,2] were initially studied by Pourahmadi (1984) for harmonizable processes. This was later extended to the ARMA stable process ...

8. Hybrid vehicle optimal control : Linear interpolation and singular control

NARCIS (Netherlands)

Delprat, S.; Hofman, T.

2015-01-01

Hybrid vehicle energy management can be formulated as an optimal control problem. Considering that the fuel consumption is often computed using linear interpolation over lookup table data, a rigorous analysis of the necessary conditions provided by the Pontryagin Minimum Principle is conducted. For

9. Fast interpolation for Global Positioning System (GPS) satellite orbits

OpenAIRE

Clynch, James R.; Sagovac, Christopher Patrick; Danielson, D. A. (Donald A.); Neta, Beny

1995-01-01

In this report, we discuss and compare several methods for polynomial interpolation of Global Positioning Systems ephemeris data. We show that the use of difference tables is more efficient than the method currently in use to construct and evaluate the Lagrange polynomials.

10. Interpolation in computing science : the semantics of modularization

NARCIS (Netherlands)

Renardel de Lavalette, Gerard R.

2008-01-01

The Interpolation Theorem, first formulated and proved by W. Craig fifty years ago for predicate logic, has been extended to many other logical frameworks and is being applied in several areas of computer science. We give a short overview, and focus on the theory of software systems and modules. An

11. Parallel optimization of IDW interpolation algorithm on multicore platform

Science.gov (United States)

Guan, Xuefeng; Wu, Huayi

2009-10-01

Due to increasing power consumption, heat dissipation, and other physical issues, the architecture of central processing unit (CPU) has been turning to multicore rapidly in recent years. Multicore processor is packaged with multiple processor cores in the same chip, which not only offers increased performance, but also presents significant challenges to application developers. As a matter of fact, in GIS field most of current GIS algorithms were implemented serially and could not best exploit the parallelism potential on such multicore platforms. In this paper, we choose Inverse Distance Weighted spatial interpolation algorithm (IDW) as an example to study how to optimize current serial GIS algorithms on multicore platform in order to maximize performance speedup. With the help of OpenMP, threading methodology is introduced to split and share the whole interpolation work among processor cores. After parallel optimization, execution time of interpolation algorithm is greatly reduced and good performance speedup is achieved. For example, performance speedup on Intel Xeon 5310 is 1.943 with 2 execution threads and 3.695 with 4 execution threads respectively. An additional output comparison between pre-optimization and post-optimization is carried out and shows that parallel optimization does to affect final interpolation result.

12. LIP: The Livermore Interpolation Package, Version 1.6

Energy Technology Data Exchange (ETDEWEB)

Fritsch, F. N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

2016-01-04

This report describes LIP, the Livermore Interpolation Package. LIP was totally rewritten from the package described in [1]. In particular, the independent variables are now referred to as x and y, since it is a general-purpose package that need not be restricted to equation of state data, which uses variables ρ (density) and T (temperature).

13. Interpolation decoding method with variable parameters for fractal image compression

International Nuclear Information System (INIS)

He Chuanjiang; Li Gaoping; Shen Xiaona

2007-01-01

The interpolation fractal decoding method, which is introduced by [He C, Yang SX, Huang X. Progressive decoding method for fractal image compression. IEE Proc Vis Image Signal Process 2004;3:207-13], involves generating progressively the decoded image by means of an interpolation iterative procedure with a constant parameter. It is well-known that the majority of image details are added at the first steps of iterations in the conventional fractal decoding; hence the constant parameter for the interpolation decoding method must be set as a smaller value in order to achieve a better progressive decoding. However, it needs to take an extremely large number of iterations to converge. It is thus reasonable for some applications to slow down the iterative process at the first stages of decoding and then to accelerate it afterwards (e.g., at some iteration as we need). To achieve the goal, this paper proposed an interpolation decoding scheme with variable (iteration-dependent) parameters and proved the convergence of the decoding process mathematically. Experimental results demonstrate that the proposed scheme has really achieved the above-mentioned goal

14. Functional Commutant Lifting and Interpolation on Generalized Analytic Polyhedra

Czech Academy of Sciences Publication Activity Database

Ambrozie, Calin-Grigore

2008-01-01

Roč. 34, č. 2 (2008), s. 519-543 ISSN 0362-1588 R&D Projects: GA ČR(CZ) GA201/06/0128 Institutional research plan: CEZ:AV0Z10190503 Keywords : intertwining lifting * interpolation * analytic functions Subject RIV: BA - General Mathematics Impact factor: 0.327, year: 2008

15. Interpolation solution of the single-impurity Anderson model

International Nuclear Information System (INIS)

Kuzemsky, A.L.

1990-10-01

The dynamical properties of the single-impurity Anderson model (SIAM) is studied using a novel Irreducible Green's Function method (IGF). The new solution for one-particle GF interpolating between the strong and weak correlation limits is obtained. The unified concept of relevant mean-field renormalizations is indispensable for strong correlation limit. (author). 21 refs

16. Interpolant Tree Automata and their Application in Horn Clause Verification

Directory of Open Access Journals (Sweden)

Bishoksan Kafle

2016-07-01

Full Text Available This paper investigates the combination of abstract interpretation over the domain of convex polyhedra with interpolant tree automata, in an abstraction-refinement scheme for Horn clause verification. These techniques have been previously applied separately, but are combined in a new way in this paper. The role of an interpolant tree automaton is to provide a generalisation of a spurious counterexample during refinement, capturing a possibly infinite set of spurious counterexample traces. In our approach these traces are then eliminated using a transformation of the Horn clauses. We compare this approach with two other methods; one of them uses interpolant tree automata in an algorithm for trace abstraction and refinement, while the other uses abstract interpretation over the domain of convex polyhedra without the generalisation step. Evaluation of the results of experiments on a number of Horn clause verification problems indicates that the combination of interpolant tree automaton with abstract interpretation gives some increase in the power of the verification tool, while sometimes incurring a performance overhead.

17. Two-dimensional interpolation with experimental data smoothing

International Nuclear Information System (INIS)

Trejbal, Z.

1989-01-01

A method of two-dimensional interpolation with smoothing of time statistically deflected points is developed for processing of magnetic field measurements at the U-120M field measurements at the U-120M cyclotron. Mathematical statement of initial requirements and the final result of relevant algebraic transformations are given. 3 refs

18. Data interpolation for vibration diagnostics using two-variable correlations

International Nuclear Information System (INIS)

Branagan, L.

1991-01-01

This paper reports that effective machinery vibration diagnostics require a clear differentiation between normal vibration changes caused by plant process conditions and those caused by degradation. The normal relationship between vibration and a process parameter can be quantified by developing the appropriate correlation. The differences in data acquisition requirements between dynamic signals (vibration spectra) and static signals (pressure, temperature, etc.) result in asynchronous data acquisition; the development of any correlation must then be based on some form of interpolated data. This interpolation can reproduce or distort the original measured quantity depending on the characteristics of the data and the interpolation technique. Relevant data characteristics, such as acquisition times, collection cycle times, compression method, storage rate, and the slew rate of the measured variable, are dependent both on the data handling and on the measured variable. Linear and staircase interpolation, along with the use of clustering and filtering, provide the necessary options to develop accurate correlations. The examples illustrate the appropriate application of these options

19. Recent developments in free-viewpoint interpolation for 3DTV

NARCIS (Netherlands)

Zinger, S.; Do, Q.L.; With, de P.H.N.

2012-01-01

Current development of 3D technologies brings 3DTV within reach for the customers. We discuss in this article the recent advancements in free-viewpoint interpolation for 3D video. This technology is still a research topic and many efforts are dedicated to creation, evaluation and improvement of new

20. A temporal interpolation approach for dynamic reconstruction in perfusion CT

International Nuclear Information System (INIS)

Montes, Pau; Lauritsch, Guenter

2007-01-01

This article presents a dynamic CT reconstruction algorithm for objects with time dependent attenuation coefficient. Projection data acquired over several rotations are interpreted as samples of a continuous signal. Based on this idea, a temporal interpolation approach is proposed which provides the maximum temporal resolution for a given rotational speed of the CT scanner. Interpolation is performed using polynomial splines. The algorithm can be adapted to slow signals, reducing the amount of data acquired and the computational cost. A theoretical analysis of the approximations made by the algorithm is provided. In simulation studies, the temporal interpolation approach is compared with three other dynamic reconstruction algorithms based on linear regression, linear interpolation, and generalized Parker weighting. The presented algorithm exhibits the highest temporal resolution for a given sampling interval. Hence, our approach needs less input data to achieve a certain quality in the reconstruction than the other algorithms discussed or, equivalently, less x-ray exposure and computational complexity. The proposed algorithm additionally allows the possibility of using slow rotating scanners for perfusion imaging purposes

1. Twitch interpolation technique in testing of maximal muscle strength

DEFF Research Database (Denmark)

Bülow, P M; Nørregaard, J; Danneskiold-Samsøe, B

1993-01-01

The aim was to study the methodological aspects of the muscle twitch interpolation technique in estimating the maximal force of contraction in the quadriceps muscle utilizing commercial muscle testing equipment. Six healthy subjects participated in seven sets of experiments testing the effects...

2. Limiting reiteration for real interpolation with slowly varying functions

Czech Academy of Sciences Publication Activity Database

Gogatishvili, Amiran; Opic, Bohumír; Trebels, W.

2005-01-01

Roč. 278, 1-2 (2005), s. 86-107 ISSN 0025-584X R&D Projects: GA ČR(CZ) GA201/01/0333 Institutional research plan: CEZ:AV0Z10190503 Keywords : real interpolation * K-functional * limiting reiteration Subject RIV: BA - General Mathematics Impact factor: 0.465, year: 2005

3. Approximating Exponential and Logarithmic Functions Using Polynomial Interpolation

Science.gov (United States)

Gordon, Sheldon P.; Yang, Yajun

2017-01-01

This article takes a closer look at the problem of approximating the exponential and logarithmic functions using polynomials. Either as an alternative to or a precursor to Taylor polynomial approximations at the precalculus level, interpolating polynomials are considered. A measure of error is given and the behaviour of the error function is…

4. Blind Authentication Using Periodic Properties ofInterpolation

Czech Academy of Sciences Publication Activity Database

Mahdian, Babak; Saic, Stanislav

2008-01-01

Roč. 3, č. 3 (2008), s. 529-538 ISSN 1556-6013 R&D Projects: GA ČR GA102/08/0470 Institutional research plan: CEZ:AV0Z10750506 Keywords : image forensics * digital forgery * image tampering * interpolation detection * resampling detection Subject RIV: IN - Informatics, Computer Science Impact factor: 2.230, year: 2008

5. Interpolation Inequalities and Spectral Estimates for Magnetic Operators

Science.gov (United States)

Dolbeault, Jean; Esteban, Maria J.; Laptev, Ari; Loss, Michael

2018-05-01

We prove magnetic interpolation inequalities and Keller-Lieb-Thir-ring estimates for the principal eigenvalue of magnetic Schr{\\"o}dinger operators. We establish explicit upper and lower bounds for the best constants and show by numerical methods that our theoretical estimates are accurate.

6. Clustering in large networks does not promote upstream reciprocity.

Directory of Open Access Journals (Sweden)

Naoki Masuda

Full Text Available Upstream reciprocity (also called generalized reciprocity is a putative mechanism for cooperation in social dilemma situations with which players help others when they are helped by somebody else. It is a type of indirect reciprocity. Although upstream reciprocity is often observed in experiments, most theories suggest that it is operative only when players form short cycles such as triangles, implying a small population size, or when it is combined with other mechanisms that promote cooperation on their own. An expectation is that real social networks, which are known to be full of triangles and other short cycles, may accommodate upstream reciprocity. In this study, I extend the upstream reciprocity game proposed for a directed cycle by Boyd and Richerson to the case of general networks. The model is not evolutionary and concerns the conditions under which the unanimity of cooperative players is a Nash equilibrium. I show that an abundance of triangles or other short cycles in a network does little to promote upstream reciprocity. Cooperation is less likely for a larger population size even if triangles are abundant in the network. In addition, in contrast to the results for evolutionary social dilemma games on networks, scale-free networks lead to less cooperation than networks with a homogeneous degree distribution.

7. Valuating Indonesian upstream oil management scenario through system dynamics modelling

Science.gov (United States)

Ketut Gunarta, I.; Putri, F. A.

2018-04-01

Under the existing regulation in Constitution Number 22 Year 2001 (UU No 22 Tahun 2001), Production Sharing Contract (PSC) continues to be the scenario in conducting oil and gas upstream mining activities as the previous regulation (UU No. 8 Tahun 1971). Because of the high costs and risks in upstream mining activities, the contractors are dominated by foreign companies, meanwhile National Oil Company (NOC) doesn’t act much. The domination of foreign contractor companies also warned Indonesia in several issues addressing to energy independence and energy security. Therefore, to achieve the goals of energy which is independence and security, there need to be a revision in upstream oil activities regulating scenario. The scenarios will be comparing the current scenario, which is PSC, with the “full concession” scenario for National Oil Company (NOC) in managing oil upstream mining activities. Both scenario will be modelled using System Dynamics methodology and assessed furthermore using financial valuation method of income approach. Under the 2 scenarios, the author will compare which scenario is better for upstream oil management in reaching the goals mentioned before and more profitable in financial aspect. From the simulation, it is gathered that concession scenario offers better option than PSC in reaching energy independence and energy security.

8. Clustering in large networks does not promote upstream reciprocity.

Science.gov (United States)

Masuda, Naoki

2011-01-01

Upstream reciprocity (also called generalized reciprocity) is a putative mechanism for cooperation in social dilemma situations with which players help others when they are helped by somebody else. It is a type of indirect reciprocity. Although upstream reciprocity is often observed in experiments, most theories suggest that it is operative only when players form short cycles such as triangles, implying a small population size, or when it is combined with other mechanisms that promote cooperation on their own. An expectation is that real social networks, which are known to be full of triangles and other short cycles, may accommodate upstream reciprocity. In this study, I extend the upstream reciprocity game proposed for a directed cycle by Boyd and Richerson to the case of general networks. The model is not evolutionary and concerns the conditions under which the unanimity of cooperative players is a Nash equilibrium. I show that an abundance of triangles or other short cycles in a network does little to promote upstream reciprocity. Cooperation is less likely for a larger population size even if triangles are abundant in the network. In addition, in contrast to the results for evolutionary social dilemma games on networks, scale-free networks lead to less cooperation than networks with a homogeneous degree distribution.

9. Participation costs can suppress the evolution of upstream reciprocity.

Science.gov (United States)

Peña, Jorge; Pestelacci, Enea; Berchtold, André; Tomassini, Marco

2011-03-21

Indirect reciprocity, one of the many mechanisms proposed to explain the evolution of cooperation, is the idea that altruistic actions can be rewarded by third parties. Upstream or generalized reciprocity is one type of indirect reciprocity in which individuals help someone if they have been helped by somebody else in the past. Although empirically found to be at work in humans, the evolution of upstream reciprocity is difficult to explain from a theoretical point of view. A recent model of upstream reciprocity, first proposed by Nowak and Roch (2007) and further analyzed by Iwagami and Masuda (2010), shows that while upstream reciprocity alone does not lead to the evolution of cooperation, it can act in tandem with mechanisms such as network reciprocity and increase the total level of cooperativity in the population. We argue, however, that Nowak and Roch's model systematically leads to non-uniform interaction rates, where more cooperative individuals take part in more games than less cooperative ones. As a result, the critical benefit-to-cost ratios derived under this model in previous studies are not invariant with respect to the addition of participation costs. We show that accounting for these costs can hinder and even suppress the evolution of upstream reciprocity, both for populations with non-random encounters and graph-structured populations. Copyright © 2011 Elsevier Ltd. All rights reserved.

10. Spatial interpolation schemes of daily precipitation for hydrologic modeling

Science.gov (United States)

Hwang, Y.; Clark, M.R.; Rajagopalan, B.; Leavesley, G.

2012-01-01

Distributed hydrologic models typically require spatial estimates of precipitation interpolated from sparsely located observational points to the specific grid points. We compare and contrast the performance of regression-based statistical methods for the spatial estimation of precipitation in two hydrologically different basins and confirmed that widely used regression-based estimation schemes fail to describe the realistic spatial variability of daily precipitation field. The methods assessed are: (1) inverse distance weighted average; (2) multiple linear regression (MLR); (3) climatological MLR; and (4) locally weighted polynomial regression (LWP). In order to improve the performance of the interpolations, the authors propose a two-step regression technique for effective daily precipitation estimation. In this simple two-step estimation process, precipitation occurrence is first generated via a logistic regression model before estimate the amount of precipitation separately on wet days. This process generated the precipitation occurrence, amount, and spatial correlation effectively. A distributed hydrologic model (PRMS) was used for the impact analysis in daily time step simulation. Multiple simulations suggested noticeable differences between the input alternatives generated by three different interpolation schemes. Differences are shown in overall simulation error against the observations, degree of explained variability, and seasonal volumes. Simulated streamflows also showed different characteristics in mean, maximum, minimum, and peak flows. Given the same parameter optimization technique, LWP input showed least streamflow error in Alapaha basin and CMLR input showed least error (still very close to LWP) in Animas basin. All of the two-step interpolation inputs resulted in lower streamflow error compared to the directly interpolated inputs. ?? 2011 Springer-Verlag.

11. The cyclicity of period annulus of a quadratic reversible Lotka–Volterra system

International Nuclear Information System (INIS)

Li, Chengzhi; Llibre, Jaume

2009-01-01

We prove that by perturbing the periodic annulus of the quadratic polynomial reversible Lotka–Volterra differential system, inside the class of all quadratic polynomial differential systems we can obtain at most two limit cycles

12. Human Resource Local Content in Ghana's Upstream Petroleum Industry

Science.gov (United States)

Benin, Papa

Enactment of Ghana's Petroleum (Local Content and Local Participation) Regulations, 2013 (L.I. 2204) was intended to regulate the percentage of local products, personnel, financing, and goods and services rendered within Ghana's upstream petroleum industry value chain. Five years after the inception of Ghana's upstream oil and gas industry, a gap is evident between the requirements of L.I. 2204 and professional practice. Drawing on Lewin's change theory, a cross-sectional study was conducted to examine the extent of differences between the prevailing human resource local content and the requirements of L.I. 2204 in Ghana's upstream petroleum industry. The extent to which training acquired by indigenous Ghanaians seeking jobs in Ghana's oil fields affects the prevalent local content in its upstream petroleum industry was also examined. Survey data were collected from 97 management, technical, and other staff in 2 multinational petroleum companies whose oil and gas development plans have been approved by the Petroleum Commission of Ghana. To answer the research questions and test their hypotheses, one-way ANOVA was performed with staff category (management, technical, and other) as the independent variable and prevalent local content as the dependent variable. Results indicated that prevailing local content in Ghana's upstream petroleum industry meets the requirements of L.I. 2204. Further, training acquired by indigenous Ghanaians seeking jobs in Ghana's oil fields affects the prevalent local content in its offshore petroleum industry. Findings may encourage leaders within multinational oil companies and the Petroleum Commission of Ghana to organize educational seminars that equip indigenous Ghanaians with specialized skills for working in Ghana's upstream petroleum industry.

13. Exploring Social Learning through Upstream Engagement in Science and Technology

DEFF Research Database (Denmark)

Mortensen, Jonas Egmose

This discussion paper deliberates on how the concept of social learning can be used for evaluating upstream engagement initiatives in science and technology.  The paper briefly introduces to the concept of upstream engagement and a concrete case, the UK Citizen Science for Sustainability project...... (SuScit), as an outset for discussing how the concept of social learning can be used for analysing and understanding relations between citizen participation, Science and research, and sustainability. A number of relevant research questions and methodological considerations are distilled...

14. Induced motion of domain walls in multiferroics with quadratic interaction

Energy Technology Data Exchange (ETDEWEB)

Gerasimchuk, Victor S., E-mail: viktor.gera@gmail.com [National Technical University of Ukraine “Kyiv Polytechnic Institute”, Peremohy Avenue 37, 03056 Kiev (Ukraine); Shitov, Anatoliy A., E-mail: shitov@mail.ru [Donbass National Academy of Civil Engineering, Derzhavina Street 2, 86123 Makeevka, Donetsk Region (Ukraine)

2013-10-15

We theoretically study the dynamics of 180-degree domain wall of the ab-type in magnetic materials with quadratic magnetoelectric interaction in external alternating magnetic and electric fields. The features of the oscillatory and translational motions of the domain walls and stripe structures depending on the parameters of external fields and characteristics of the multiferroics are discussed. The possibility of the domain walls drift in a purely electric field is established. - Highlights: • We study DW and stripe DS in multiferroics with quadratic magnetoelectric interaction. • We build up the theory of oscillatory and translational (drift) DW and DS motion. • DW motion can be caused by crossed alternating electric and magnetic fields. • DW motion can be caused by alternating “pure” electric field. • DW drift velocity is formed by the AFM and Dzyaloshinskii interaction terms.

15. Symmetric coupling of angular momenta, quadratic algebras and discrete polynomials

International Nuclear Information System (INIS)

Aquilanti, V; Marinelli, D; Marzuoli, A

2014-01-01

Eigenvalues and eigenfunctions of the volume operator, associated with the symmetric coupling of three SU(2) angular momentum operators, can be analyzed on the basis of a discrete Schrödinger–like equation which provides a semiclassical Hamiltonian picture of the evolution of a 'quantum of space', as shown by the authors in [1]. Emphasis is given here to the formalization in terms of a quadratic symmetry algebra and its automorphism group. This view is related to the Askey scheme, the hierarchical structure which includes all hypergeometric polynomials of one (discrete or continuous) variable. Key tool for this comparative analysis is the duality operation defined on the generators of the quadratic algebra and suitably extended to the various families of overlap functions (generalized recoupling coefficients). These families, recognized as lying at the top level of the Askey scheme, are classified and a few limiting cases are addressed

16. Quadratic grating apodized photon sieves for simultaneous multiplane microscopy

Science.gov (United States)

Cheng, Yiguang; Zhu, Jiangping; He, Yu; Tang, Yan; Hu, Song; Zhao, Lixin

2017-10-01

We present a new type of imaging device, named quadratic grating apodized photon sieve (QGPS), used as the objective for simultaneous multiplane imaging in X-rays. The proposed QGPS is structured based on the combination of two concepts: photon sieves and quadratic gratings. Its design principles are also expounded in detail. Analysis of imaging properties of QGPS in terms of point-spread function shows that QGPS can image multiple layers within an object field onto a single image plane. Simulated and experimental results in visible light both demonstrate the feasibility of QGPS for simultaneous multiplane imaging, which is extremely promising to detect dynamic specimens by X-ray microscopy in the physical and life sciences.

17. QUADRATIC SERENDIPITY FINITE ELEMENTS ON POLYGONS USING GENERALIZED BARYCENTRIC COORDINATES.

Science.gov (United States)

Rand, Alexander; Gillette, Andrew; Bajaj, Chandrajit

2014-01-01

We introduce a finite element construction for use on the class of convex, planar polygons and show it obtains a quadratic error convergence estimate. On a convex n -gon, our construction produces 2 n basis functions, associated in a Lagrange-like fashion to each vertex and each edge midpoint, by transforming and combining a set of n ( n + 1)/2 basis functions known to obtain quadratic convergence. The technique broadens the scope of the so-called 'serendipity' elements, previously studied only for quadrilateral and regular hexahedral meshes, by employing the theory of generalized barycentric coordinates. Uniform a priori error estimates are established over the class of convex quadrilaterals with bounded aspect ratio as well as over the class of convex planar polygons satisfying additional shape regularity conditions to exclude large interior angles and short edges. Numerical evidence is provided on a trapezoidal quadrilateral mesh, previously not amenable to serendipity constructions, and applications to adaptive meshing are discussed.

18. Linear Quadratic Controller with Fault Detection in Compact Disk Players

DEFF Research Database (Denmark)

Vidal, Enrique Sanchez; Hansen, K.G.; Andersen, R.S.

2001-01-01

The design of the positioning controllers in Optical Disk Drives are today subjected to a trade off between an acceptable suppression of external disturbances and an acceptable immunity against surfaces defects. In this paper an algorithm is suggested to detect defects of the disk surface combined...... with an observer and a Linear Quadratic Regulator. As a result, the mentioned trade off is minimized and the playability of the tested compact disk player is considerably enhanced....

19. Observers for Systems with Nonlinearities Satisfying an Incremental Quadratic Inequality

Science.gov (United States)

Acikmese, Ahmet Behcet; Corless, Martin

2004-01-01

We consider the problem of state estimation for nonlinear time-varying systems whose nonlinearities satisfy an incremental quadratic inequality. These observer results unifies earlier results in the literature; and extend it to some additional classes of nonlinearities. Observers are presented which guarantee that the state estimation error exponentially converges to zero. Observer design involves solving linear matrix inequalities for the observer gain matrices. Results are illustrated by application to a simple model of an underwater.

20. Information sets as permutation cycles for quadratic residue codes

Directory of Open Access Journals (Sweden)

Richard A. Jenson

1982-01-01

Full Text Available The two cases p=7 and p=23 are the only known cases where the automorphism group of the [p+1,   (p+1/2] extended binary quadratic residue code, O(p, properly contains PSL(2,p. These codes have some of their information sets represented as permutation cycles from Aut(Q(p. Analysis proves that all information sets of Q(7 are so represented but those of Q(23 are not.

1. On a linear-quadratic problem with Caputo derivative

Directory of Open Access Journals (Sweden)

Dariusz Idczak

2016-01-01

Full Text Available In this paper, we study a linear-quadratic optimal control problem with a fractional control system containing a Caputo derivative of unknown function. First, we derive the formulas for the differential and gradient of the cost functional under given constraints. Next, we prove an existence result and derive a maximum principle. Finally, we describe the gradient and projection of the gradient methods for the problem under consideration.

2. Stationary walking solitons in bulk quadratic nonlinear media

OpenAIRE

Mihalache, Dumitru; Mazilu, D; Crasonavn, L C; Torner Sabata, Lluís

1997-01-01

We study the mutual trapping of fundamental and second-harmonic light beams propagating in bulk quadratic nonlinear media in the presence of Poynting vector beam walk-off. We show numerically the existence of a two-parameter family of (2 + 1)-dimensional stationary, spatial walking solitons. We have found that the solitons exist at various values of material parameters with different wave intensities and soliton velocities. We discuss the differences between (2 + 1) and (1 + 1)-dimensional wa...

3. Bifurcation in Z2-symmetry quadratic polynomial systems with delay

International Nuclear Information System (INIS)

Zhang Chunrui; Zheng Baodong

2009-01-01

Z 2 -symmetry systems are considered. Firstly the general forms of Z 2 -symmetry quadratic polynomial system are given, and then a three-dimensional Z 2 equivariant system is considered, which describes the relations of two predator species for a single prey species. Finally, the explicit formulas for determining the Fold and Hopf bifurcations are obtained by using the normal form theory and center manifold argument.

4. Design of Linear-Quadratic-Regulator for a CSTR process

Science.gov (United States)

Meghna, P. R.; Saranya, V.; Jaganatha Pandian, B.

2017-11-01

This paper aims at creating a Linear Quadratic Regulator (LQR) for a Continuous Stirred Tank Reactor (CSTR). A CSTR is a common process used in chemical industries. It is a highly non-linear system. Therefore, in order to create the gain feedback controller, the model is linearized. The controller is designed for the linearized model and the concentration and volume of the liquid in the reactor are kept at a constant value as required.

5. A Note on 5-bit Quadratic Permutations’ Classification

OpenAIRE

Božilov, Dušan; Bilgin, Begül; Sahin, Hacı Ali

2017-01-01

Classification of vectorial Boolean functions up to affine equivalence is used widely to analyze various cryptographic and implementation properties of symmetric-key algorithms. We show that there exist 75 affine equivalence classes of 5-bit quadratic permutations. Furthermore, we explore important cryptographic properties of these classes, such as linear and differential properties and degrees of their inverses, together with multiplicative complexity and existence of uniform threshold reali...

6. Integrable systems with quadratic nonlinearity in Fourier space

International Nuclear Information System (INIS)

Marikhin, V.G.

2003-01-01

The Lax pair representation in Fourier space is used to obtain a list of integrable scalar evolutionary equations with quadratic nonlinearity. The known systems of this type such as KdV, intermediate long-wave equation (ILW), Camassa-Holm and Degasperis-Procesi systems are represented in this list. Some new systems are obtained as well. Two-dimensional and discrete generalizations are discussed

7. Complex eigenvalues for neutron transport equation with quadratically anisotropic scattering

International Nuclear Information System (INIS)

Sjoestrand, N.G.

1981-01-01

Complex eigenvalues for the monoenergetic neutron transport equation in the buckling approximation have been calculated for various combinations of linearly and quadratically anisotropic scattering. The results are discussed in terms of the time-dependent case. Tables are given of complex bucklings for real decay constants and of complex decay constants for real bucklings. The results fit nicely into the pattern of real and purely imaginary eigenvalues obtained earlier. (author)

8. Building Input Adaptive Parallel Applications: A Case Study of Sparse Grid Interpolation

KAUST Repository

Murarasu, Alin; Weidendorfer, Josef

2012-01-01

bring a substantial contribution to the speedup. By identifying common patterns in the input data, we propose new algorithms for sparse grid interpolation that accelerate the state-of-the-art non-specialized version. Sparse grid interpolation

9. General quadratic gauge theory: constraint structure, symmetries and physical functions

Energy Technology Data Exchange (ETDEWEB)

Gitman, D M [Institute of Physics, University of Sao Paulo (Brazil); Tyutin, I V [Lebedev Physics Institute, Moscow (Russian Federation)

2005-06-17

How can we relate the constraint structure and constraint dynamics of the general gauge theory in the Hamiltonian formulation to specific features of the theory in the Lagrangian formulation, especially relate the constraint structure to the gauge transformation structure of the Lagrangian action? How can we construct the general expression for the gauge charge if the constraint structure in the Hamiltonian formulation is known? Whether we can identify the physical functions defined as commuting with first-class constraints in the Hamiltonian formulation and the physical functions defined as gauge invariant functions in the Lagrangian formulation? The aim of the present paper is to consider the general quadratic gauge theory and to answer the above questions for such a theory in terms of strict assertions. To fulfil such a programme, we demonstrate the existence of the so-called superspecial phase-space variables in terms of which the quadratic Hamiltonian action takes a simple canonical form. On the basis of such a representation, we analyse a functional arbitrariness in the solutions of the equations of motion of the quadratic gauge theory and derive the general structure of symmetries by analysing a symmetry equation. We then use these results to identify the two definitions of physical functions and thus prove the Dirac conjecture.

10. Quadratic time dependent Hamiltonians and separation of variables

International Nuclear Information System (INIS)

Anzaldo-Meneses, A.

2017-01-01

Time dependent quantum problems defined by quadratic Hamiltonians are solved using canonical transformations. The Green’s function is obtained and a comparison with the classical Hamilton–Jacobi method leads to important geometrical insights like exterior differential systems, Monge cones and time dependent Gaussian metrics. The Wei–Norman approach is applied using unitary transformations defined in terms of generators of the associated Lie groups, here the semi-direct product of the Heisenberg group and the symplectic group. A new explicit relation for the unitary transformations is given in terms of a finite product of elementary transformations. The sequential application of adequate sets of unitary transformations leads naturally to a new separation of variables method for time dependent Hamiltonians, which is shown to be related to the Inönü–Wigner contraction of Lie groups. The new method allows also a better understanding of interacting particles or coupled modes and opens an alternative way to analyze topological phases in driven systems. - Highlights: • Exact unitary transformation reducing time dependent quadratic quantum Hamiltonian to zero. • New separation of variables method and simultaneous uncoupling of modes. • Explicit examples of transformations for one to four dimensional problems. • New general evolution equation for quadratic form in the action, respectively Green’s function.

11. Design of reinforced areas of concrete column using quadratic polynomials

Science.gov (United States)

Arif Gunadi, Tjiang; Parung, Herman; Rachman Djamaluddin, Abd; Arwin Amiruddin, A.

2017-11-01

Designing of reinforced concrete columns mostly carried out by a simple planning method which uses column interaction diagram. However, the application of this method is limited because it valids only for certain compressive strenght of the concrete and yield strength of the reinforcement. Thus, a more applicable method is still in need. Another method is the use of quadratic polynomials as a basis for the approach in designing reinforced concrete columns, where the ratio of neutral lines to the effective height of a cross section (ξ) if associated with ξ in the same cross-section with different reinforcement ratios is assumed to form a quadratic polynomial. This is identical to the basic principle used in the Simpson rule for numerical integral using quadratic polynomials and had a sufficiently accurate level of accuracy. The basis of this approach to be used both the normal force equilibrium and the moment equilibrium. The abscissa of the intersection of the two curves is the ratio that had been mentioned, since it fulfill both of the equilibrium. The application of this method is relatively more complicated than the existing method but provided with tables and graphs (N vs ξN ) and (M vs ξM ) so that its used could be simplified. The uniqueness of these tables are only distinguished based on the compresssive strength of the concrete, so in application it could be combined with various yield strenght of the reinforcement available in the market. This method could be solved by using programming languages such as Fortran.

12. Fast, multiple optimizations of quadratic dose objective functions in IMRT

International Nuclear Information System (INIS)

Breedveld, Sebastiaan; Storchi, Pascal R M; Keijzer, Marleen; Heijmen, Ben J M

2006-01-01

Inverse treatment planning for intensity-modulated radiotherapy may include time consuming, multiple minimizations of an objective function. In this paper, methods are presented to speed up the process of (repeated) minimization of the well-known quadratic dose objective function, extended with a smoothing term that ensures generation of clinically acceptable beam profiles. In between two subsequent optimizations, the voxel-dependent importance factors of the quadratic terms will generally be adjusted, based on an intermediate plan evaluation. The objective function has been written in matrix-vector format, facilitating the use of a recently published, fast quadratic minimization algorithm, instead of commonly applied gradient-based methods. This format also reduces the calculation time in between subsequent minimizations, related to adjustment of the voxel-dependent importance factors. Sparse matrices are used to limit the required amount of computer memory. For three patients, comparisons have been made with a gradient method. Mean speed improvements of up to a factor of 37 have been achieved

13. Measurement of quadratic electrogyration effect in castor oil

Science.gov (United States)

Izdebski, Marek; Ledzion, Rafał; Górski, Piotr

2015-07-01

This work presents a detailed analysis of electrogyration measurement in liquids with the usage of an optical polarimetric technique. Theoretical analysis of the optical response to an applied electric field is illustrated by experimental data for castor oil which exhibits natural optical activity, quadratic electro-optic effect and quadratic electrogyration effect. Moreover, the experimental data show that interaction of the oil with a pair of flat electrodes induces a significant dichroism and natural linear birefringence. The combination of these effects occurring at the same time complicates the procedure of measurements. It has been found that a single measurement is insufficient to separate the contribution of the electrogyration effect, but it is possible on the basis of several measurements performed with various orientations of the polarizer and the analyser. The obtained average values of the quadratic electrogyration coefficient β13 in castor oil at room temperature are from - 0.92 ×10-22 to - 1.44 ×10-22m2V-2 depending on the origin of the oil. Although this study is focused on measurements in castor oil, the presented analysis is much more general.

14. DATASPACE - A PROGRAM FOR THE LOGARITHMIC INTERPOLATION OF TEST DATA

Science.gov (United States)

Ledbetter, F. E.

1994-01-01

Scientists and engineers work with the reduction, analysis, and manipulation of data. In many instances, the recorded data must meet certain requirements before standard numerical techniques may be used to interpret it. For example, the analysis of a linear visoelastic material requires knowledge of one of two time-dependent properties, the stress relaxation modulus E(t) or the creep compliance D(t), one of which may be derived from the other by a numerical method if the recorded data points are evenly spaced or increasingly spaced with respect to the time coordinate. The problem is that most laboratory data are variably spaced, making the use of numerical techniques difficult. To ease this difficulty in the case of stress relaxation data analysis, NASA scientists developed DATASPACE (A Program for the Logarithmic Interpolation of Test Data), to establish a logarithmically increasing time interval in the relaxation data. The program is generally applicable to any situation in which a data set needs increasingly spaced abscissa values. DATASPACE first takes the logarithm of the abscissa values, then uses a cubic spline interpolation routine (which minimizes interpolation error) to create an evenly spaced array from the log values. This array is returned from the log abscissa domain to the abscissa domain and written to an output file for further manipulation. As a result of the interpolation in the log abscissa domain, the data is increasingly spaced. In the case of stress relaxation data, the array is closely spaced at short times and widely spaced at long times, thus avoiding the distortion inherent in evenly spaced time coordinates. The interpolation routine gives results which compare favorably with the recorded data. The experimental data curve is retained and the interpolated points reflect the desired spacing. DATASPACE is written in FORTRAN 77 for IBM PC compatibles with a math co-processor running MS-DOS and Apple Macintosh computers running MacOS. With

15. Effect of interpolation on parameters extracted from seating interface pressure arrays

OpenAIRE

Michael Wininger, PhD; Barbara Crane, PhD, PT

2015-01-01

Interpolation is a common data processing step in the study of interface pressure data collected at the wheelchair seating interface. However, there has been no focused study on the effect of interpolation on features extracted from these pressure maps, nor on whether these parameters are sensitive to the manner in which the interpolation is implemented. Here, two different interpolation paradigms, bilinear versus bicubic spline, are tested for their influence on parameters extracted from pre...

16. Radial basis function interpolation of unstructured, three-dimensional, volumetric particle tracking velocimetry data

International Nuclear Information System (INIS)

Casa, L D C; Krueger, P S

2013-01-01

Unstructured three-dimensional fluid velocity data were interpolated using Gaussian radial basis function (RBF) interpolation. Data were generated to imitate the spatial resolution and experimental uncertainty of a typical implementation of defocusing digital particle image velocimetry. The velocity field associated with a steadily rotating infinite plate was simulated to provide a bounded, fully three-dimensional analytical solution of the Navier–Stokes equations, allowing for robust analysis of the interpolation accuracy. The spatial resolution of the data (i.e. particle density) and the number of RBFs were varied in order to assess the requirements for accurate interpolation. Interpolation constraints, including boundary conditions and continuity, were included in the error metric used for the least-squares minimization that determines the interpolation parameters to explore methods for improving RBF interpolation results. Even spacing and logarithmic spacing of RBF locations were also investigated. Interpolation accuracy was assessed using the velocity field, divergence of the velocity field, and viscous torque on the rotating boundary. The results suggest that for the present implementation, RBF spacing of 0.28 times the boundary layer thickness is sufficient for accurate interpolation, though theoretical error analysis suggests that improved RBF positioning may yield more accurate results. All RBF interpolation results were compared to standard Gaussian weighting and Taylor expansion interpolation methods. Results showed that RBF interpolation improves interpolation results compared to the Taylor expansion method by 60% to 90% based on the average squared velocity error and provides comparable velocity results to Gaussian weighted interpolation in terms of velocity error. RMS accuracy of the flow field divergence was one to two orders of magnitude better for the RBF interpolation compared to the other two methods. RBF interpolation that was applied to

17. Determining the Optimal Solution for Quadratically Constrained Quadratic Programming (QCQP) on Energy-Saving Generation Dispatch Problem

Science.gov (United States)

Lesmana, E.; Chaerani, D.; Khansa, H. N.

2018-03-01

Energy-Saving Generation Dispatch (ESGD) is a scheme made by Chinese Government in attempt to minimize CO2 emission produced by power plant. This scheme is made related to global warming which is primarily caused by too much CO2 in earth’s atmosphere, and while the need of electricity is something absolute, the power plants producing it are mostly thermal-power plant which produced many CO2. Many approach to fulfill this scheme has been made, one of them came through Minimum Cost Flow in which resulted in a Quadratically Constrained Quadratic Programming (QCQP) form. In this paper, ESGD problem with Minimum Cost Flow in QCQP form will be solved using Lagrange’s Multiplier Method

18. Sector report: Malaysia. Upstream oil and gas industry

International Nuclear Information System (INIS)

1997-01-01

This report is one of a series designed to introduce British exporters to the opportunities offered by the Malaysian market in oil and natural gas. The report includes Malaysia's oil and gas reserves, production, exploration, major profits upstream, production sharing contracts, pipeline construction, operators in production, service sector, and Petronas. (UK)

19. Collisionless shocks and upstream waves and particles: Introductory remarks

International Nuclear Information System (INIS)

Kennel, C.F.

1981-01-01

We discuss more aspects of collisionless shock theory that might be pertinent to the problem of upstream waves and particles. It is hoped that our qualititive remarks may be a useful guide for the general reader as he goes through the detailed papers to come

20. Characterization of upstream sequences from the 8S globulin gene ...

African Journals Online (AJOL)

2011-09-21

Sep 21, 2011 ... added recombinant proteins and enzymes for industries. The upstream region ... cost, eukaryotic expression and no endogenous patho- gen pollution, thus it ... developmental process (Santino et al., 1997) which may deplete nutrient ... ideal bioreactors for economic production and storage of value-added ...

1. Employee assistance programs in the upstream petroleum industry

International Nuclear Information System (INIS)

Crutcher, R.A.; Yip, R.Y.; Young, M.R.

1991-01-01

This paper is a descriptive overview of Employee Assistance Programs (EAPs) in the upstream Canadian petroleum industry. The authors review current EAP models within the occupational health setting and the Canadian health care context. This article also explores the challenging issues of EAP's emergent functions in workplace substance abuse programs, its changing role in organizational effectiveness and its professional identity

2. Inlet effect induced ''upstream'' critical heat flux in smooth tubes

International Nuclear Information System (INIS)

Kitto, J.B. Jr.

1986-01-01

An unusual form of ''upstream'' critical heat flux (CHF) has been observed and directly linked to the inlet flow pattern during an experimental study of high pressure (17 - 20 MPa) water flowing through a vertical 38.1 mm ID smooth bore tube with uniform axial and nonuniform circumferential heating. These upstream CHF data were characterized by temperature excursions which initially occurred at a relatively fixed axial location in the middle of the test section while the outlet and inlet heated lengths experienced no change. A rifled tube inlet flow conditioner could be substituted for a smooth tube section to generate the desired swirling inlet flow pattern. The upstream CHF data were found to match data from a uniformly heated smooth bore tube when the comparison was made using the peak local heat flux. The mechanism proposed to account for the upstream CHF observations involves the destructive interference between the decaying swirl flow and the secondary circumferential liquid flow field resulting from the one-sided heating

3. A Robust Algorithm of Multiquadric Method Based on an Improved Huber Loss Function for Interpolating Remote-Sensing-Derived Elevation Data Sets

Directory of Open Access Journals (Sweden)

Chuanfa Chen

2015-03-01

Full Text Available Remote-sensing-derived elevation data sets often suffer from noise and outliers due to various reasons, such as the physical limitations of sensors, multiple reflectance, occlusions and low contrast of texture. Outliers generally have a seriously negative effect on DEM construction. Some interpolation methods like ordinary kriging (OK are capable of smoothing noise inherent in sample points, but are sensitive to outliers. In this paper, a robust algorithm of multiquadric method (MQ based on an Improved Huber loss function (MQ-IH has been developed to decrease the impact of outliers on DEM construction. Theoretically, the improved Huber loss function is null for outliers, quadratic for small errors, and linear for others. Simulated data sets drawn from a mathematical surface with different error distributions were employed to analyze the robustness of MQ-IH. Results indicate that MQ-IH obtains a good balance between efficiency and robustness. Namely, the performance of MQ-IH is comparative to those of the classical MQ and MQ based on the Classical Huber loss function (MQ-CH when sample points follow a normal distribution, and the former outperforms the latter two when sample points are subject to outliers. For example, for the Cauchy error distribution with the location parameter of 0 and scale parameter of 1, the root mean square errors (RMSEs of MQ-CH and the classical MQ are 0.3916 and 1.4591, respectively, whereas that of MQ-IH is 0.3698. The performance of MQ-IH is further evaluated by qualitative and quantitative analysis through a real-world example of DEM construction with the stereo-images-derived elevation points. Results demonstrate that compared with the classical interpolation methods, including natural neighbor (NN, OK and ANUDEM (a program that calculates regular grid digital elevation models (DEMs with sensible shape and drainage structure from arbitrarily large topographic data sets, and two versions of MQ, including the

4. Efficient GPU-based texture interpolation using uniform B-splines

NARCIS (Netherlands)

Ruijters, D.; Haar Romenij, ter B.M.; Suetens, P.

2008-01-01

This article presents uniform B-spline interpolation, completely contained on the graphics processing unit (GPU). This implies that the CPU does not need to compute any lookup tables or B-spline basis functions. The cubic interpolation can be decomposed into several linear interpolations [Sigg and

5. A parameterization of observer-based controllers: Bumpless transfer by covariance interpolation

DEFF Research Database (Denmark)

2009-01-01

This paper presents an algorithm to interpolate between two observer-based controllers for a linear multivariable system such that the closed loop system remains stable throughout the interpolation. The method interpolates between the inverse Lyapunov functions for the two original state feedback...

6. Dynamic Stability Analysis Using High-Order Interpolation

Directory of Open Access Journals (Sweden)

Juarez-Toledo C.

2012-10-01

Full Text Available A non-linear model with robust precision for transient stability analysis in multimachine power systems is proposed. The proposed formulation uses the interpolation of Lagrange and Newton's Divided Difference. The High-Order Interpolation technique developed can be used for evaluation of the critical conditions of the dynamic system.The technique is applied to a 5-area 45-machine model of the Mexican interconnected system. As a particular case, this paper shows the application of the High-Order procedure for identifying the slow-frequency mode for a critical contingency. Numerical examples illustrate the method and demonstrate the ability of the High-Order technique to isolate and extract temporal modal behavior.

7. LINTAB, Linear Interpolable Tables from any Continuous Variable Function

International Nuclear Information System (INIS)

1988-01-01

1 - Description of program or function: LINTAB is designed to construct linearly interpolable tables from any function. The program will start from any function of a single continuous variable... FUNKY(X). By user input the function can be defined, (1) Over 1 to 100 X ranges. (2) Within each X range the function is defined by 0 to 50 constants. (3) At boundaries between X ranges the function may be continuous or discontinuous (depending on the constants used to define the function within each X range). 2 - Method of solution: LINTAB will construct a table of X and Y values where the tabulated (X,Y) pairs will be exactly equal to the function (Y=FUNKY(X)) and linear interpolation between the tabulated pairs will be within any user specified fractional uncertainty of the function for all values of X within the requested X range

8. Single image interpolation via adaptive nonlocal sparsity-based modeling.

Science.gov (United States)

Romano, Yaniv; Protter, Matan; Elad, Michael

2014-07-01

Single image interpolation is a central and extensively studied problem in image processing. A common approach toward the treatment of this problem in recent years is to divide the given image into overlapping patches and process each of them based on a model for natural image patches. Adaptive sparse representation modeling is one such promising image prior, which has been shown to be powerful in filling-in missing pixels in an image. Another force that such algorithms may use is the self-similarity that exists within natural images. Processing groups of related patches together exploits their correspondence, leading often times to improved results. In this paper, we propose a novel image interpolation method, which combines these two forces-nonlocal self-similarities and sparse representation modeling. The proposed method is contrasted with competitive and related algorithms, and demonstrated to achieve state-of-the-art results.

9. Interpolation strategies for reducing IFOV artifacts in microgrid polarimeter imagery.

Science.gov (United States)

Ratliff, Bradley M; LaCasse, Charles F; Tyo, J Scott

2009-05-25

Microgrid polarimeters are composed of an array of micro-polarizing elements overlaid upon an FPA sensor. In the past decade systems have been designed and built in all regions of the optical spectrum. These systems have rugged, compact designs and the ability to obtain a complete set of polarimetric measurements during a single image capture. However, these systems acquire the polarization measurements through spatial modulation and each measurement has a varying instantaneous field-of-view (IFOV). When these measurements are combined to estimate the polarization images, strong edge artifacts are present that severely degrade the estimated polarization imagery. These artifacts can be reduced when interpolation strategies are first applied to the intensity data prior to Stokes vector estimation. Here we formally study IFOV error and the performance of several bilinear interpolation strategies used for reducing it.

10. Bi-local baryon interpolating fields with two flavors

Energy Technology Data Exchange (ETDEWEB)

Dmitrasinovic, V. [Belgrade University, Institute of Physics, Pregrevica 118, Zemun, P.O. Box 57, Beograd (RS); Chen, Hua-Xing [Institutos de Investigacion de Paterna, Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Valencia (Spain); Peking University, Department of Physics and State Key Laboratory of Nuclear Physics and Technology, Beijing (China)

2011-02-15

We construct bi-local interpolating field operators for baryons consisting of three quarks with two flavors, assuming good isospin symmetry. We use the restrictions following from the Pauli principle to derive relations/identities among the baryon operators with identical quantum numbers. Such relations that follow from the combined spatial, Dirac, color, and isospin Fierz transformations may be called the (total/complete) Fierz identities. These relations reduce the number of independent baryon operators with any given spin and isospin. We also study the Abelian and non-Abelian chiral transformation properties of these fields and place them into baryon chiral multiplets. Thus we derive the independent baryon interpolating fields with given values of spin (Lorentz group representation), chiral symmetry (U{sub L}(2) x U{sub R}(2) group representation) and isospin appropriate for the first angular excited states of the nucleon. (orig.)

11. Kriging for interpolation of sparse and irregularly distributed geologic data

Energy Technology Data Exchange (ETDEWEB)

Campbell, K.

1986-12-31

For many geologic problems, subsurface observations are available only from a small number of irregularly distributed locations, for example from a handful of drill holes in the region of interest. These observations will be interpolated one way or another, for example by hand-drawn stratigraphic cross-sections, by trend-fitting techniques, or by simple averaging which ignores spatial correlation. In this paper we consider an interpolation technique for such situations which provides, in addition to point estimates, the error estimates which are lacking from other ad hoc methods. The proposed estimator is like a kriging estimator in form, but because direct estimation of the spatial covariance function is not possible the parameters of the estimator are selected by cross-validation. Its use in estimating subsurface stratigraphy at a candidate site for geologic waste repository provides an example.

12. The modal surface interpolation method for damage localization

Science.gov (United States)

Pina Limongelli, Maria

2017-05-01

The Interpolation Method (IM) has been previously proposed and successfully applied for damage localization in plate like structures. The method is based on the detection of localized reductions of smoothness in the Operational Deformed Shapes (ODSs) of the structure. The IM can be applied to any type of structure provided the ODSs are estimated accurately in the original and in the damaged configurations. If the latter circumstance fails to occur, for example when the structure is subjected to an unknown input(s) or if the structural responses are strongly corrupted by noise, both false and missing alarms occur when the IM is applied to localize a concentrated damage. In order to overcome these drawbacks a modification of the method is herein investigated. An ODS is the deformed shape of a structure subjected to a harmonic excitation: at resonances the ODS are dominated by the relevant mode shapes. The effect of noise at resonance is usually lower with respect to other frequency values hence the relevant ODS are estimated with higher reliability. Several methods have been proposed to reliably estimate modal shapes in case of unknown input. These two circumstances can be exploited to improve the reliability of the IM. In order to reduce or eliminate the drawbacks related to the estimation of the ODSs in case of noisy signals, in this paper is investigated a modified version of the method based on a damage feature calculated considering the interpolation error relevant only to the modal shapes and not to all the operational shapes in the significant frequency range. Herein will be reported the comparison between the results of the IM in its actual version (with the interpolation error calculated summing up the contributions of all the operational shapes) and in the new proposed version (with the estimation of the interpolation error limited to the modal shapes).

13. Reconstruction of reflectance data using an interpolation technique.

Science.gov (United States)

2009-03-01

A linear interpolation method is applied for reconstruction of reflectance spectra of Munsell as well as ColorChecker SG color chips from the corresponding colorimetric values under a given set of viewing conditions. Hence, different types of lookup tables (LUTs) have been created to connect the colorimetric and spectrophotometeric data as the source and destination spaces in this approach. To optimize the algorithm, different color spaces and light sources have been used to build different types of LUTs. The effects of applied color datasets as well as employed color spaces are investigated. Results of recovery are evaluated by the mean and the maximum color difference values under other sets of standard light sources. The mean and the maximum values of root mean square (RMS) error between the reconstructed and the actual spectra are also calculated. Since the speed of reflectance reconstruction is a key point in the LUT algorithm, the processing time spent for interpolation of spectral data has also been measured for each model. Finally, the performance of the suggested interpolation technique is compared with that of the common principal component analysis method. According to the results, using the CIEXYZ tristimulus values as a source space shows priority over the CIELAB color space. Besides, the colorimetric position of a desired sample is a key point that indicates the success of the approach. In fact, because of the nature of the interpolation technique, the colorimetric position of the desired samples should be located inside the color gamut of available samples in the dataset. The resultant spectra that have been reconstructed by this technique show considerable improvement in terms of RMS error between the actual and the reconstructed reflectance spectra as well as CIELAB color differences under the other light source in comparison with those obtained from the standard PCA technique.

14. Direct Trajectory Interpolation on the Surface using an Open CNC

OpenAIRE

Beudaert , Xavier; Lavernhe , Sylvain; Tournier , Christophe

2014-01-01

International audience; Free-form surfaces are used for many industrial applications from aeronautical parts, to molds or biomedical implants. In the common machining process, computer-aided manufacturing (CAM) software generates approximated tool paths because of the limitation induced by the input tool path format of the industrial CNC. Then, during the tool path interpolation, marks on finished surfaces can appear induced by non smooth feedrate planning. Managing the geometry of the tool p...

15. Image interpolation via graph-based Bayesian label propagation.

Science.gov (United States)

Xianming Liu; Debin Zhao; Jiantao Zhou; Wen Gao; Huifang Sun

2014-03-01

In this paper, we propose a novel image interpolation algorithm via graph-based Bayesian label propagation. The basic idea is to first create a graph with known and unknown pixels as vertices and with edge weights encoding the similarity between vertices, then the problem of interpolation converts to how to effectively propagate the label information from known points to unknown ones. This process can be posed as a Bayesian inference, in which we try to combine the principles of local adaptation and global consistency to obtain accurate and robust estimation. Specially, our algorithm first constructs a set of local interpolation models, which predict the intensity labels of all image samples, and a loss term will be minimized to keep the predicted labels of the available low-resolution (LR) samples sufficiently close to the original ones. Then, all of the losses evaluated in local neighborhoods are accumulated together to measure the global consistency on all samples. Moreover, a graph-Laplacian-based manifold regularization term is incorporated to penalize the global smoothness of intensity labels, such smoothing can alleviate the insufficient training of the local models and make them more robust. Finally, we construct a unified objective function to combine together the global loss of the locally linear regression, square error of prediction bias on the available LR samples, and the manifold regularization term. It can be solved with a closed-form solution as a convex optimization problem. Experimental results demonstrate that the proposed method achieves competitive performance with the state-of-the-art image interpolation algorithms.

16. Strip interpolation in silicon and germanium strip detectors

International Nuclear Information System (INIS)

Wulf, E. A.; Phlips, B. F.; Johnson, W. N.; Kurfess, J. D.; Lister, C. J.; Kondev, F.; Physics; Naval Research Lab.

2004-01-01

The position resolution of double-sided strip detectors is limited by the strip pitch and a reduction in strip pitch necessitates more electronics. Improved position resolution would improve the imaging capabilities of Compton telescopes and PET detectors. Digitizing the preamplifier waveform yields more information than can be extracted with regular shaping electronics. In addition to the energy, depth of interaction, and which strip was hit, the digitized preamplifier signals can locate the interaction position to less than the strip pitch of the detector by looking at induced signals in neighboring strips. This allows the position of the interaction to be interpolated in three dimensions and improve the imaging capabilities of the system. In a 2 mm thick silicon strip detector with a strip pitch of 0.891 mm, strip interpolation located the interaction of 356 keV gamma rays to 0.3 mm FWHM. In a 2 cm thick germanium detector with a strip pitch of 5 mm, strip interpolation of 356 keV gamma rays yielded a position resolution of 1.5 mm FWHM

17. Importance of interpolation and coincidence errors in data fusion

Directory of Open Access Journals (Sweden)

S. Ceccherini

2018-02-01

Full Text Available The complete data fusion (CDF method is applied to ozone profiles obtained from simulated measurements in the ultraviolet and in the thermal infrared in the framework of the Sentinel 4 mission of the Copernicus programme. We observe that the quality of the fused products is degraded when the fusing profiles are either retrieved on different vertical grids or referred to different true profiles. To address this shortcoming, a generalization of the complete data fusion method, which takes into account interpolation and coincidence errors, is presented. This upgrade overcomes the encountered problems and provides products of good quality when the fusing profiles are both retrieved on different vertical grids and referred to different true profiles. The impact of the interpolation and coincidence errors on number of degrees of freedom and errors of the fused profile is also analysed. The approach developed here to account for the interpolation and coincidence errors can also be followed to include other error components, such as forward model errors.

18. Interpolation of daily rainfall using spatiotemporal models and clustering

KAUST Repository

Militino, A. F.

2014-06-11

Accumulated daily rainfall in non-observed locations on a particular day is frequently required as input to decision-making tools in precision agriculture or for hydrological or meteorological studies. Various solutions and estimation procedures have been proposed in the literature depending on the auxiliary information and the availability of data, but most such solutions are oriented to interpolating spatial data without incorporating temporal dependence. When data are available in space and time, spatiotemporal models usually provide better solutions. Here, we analyse the performance of three spatiotemporal models fitted to the whole sampled set and to clusters within the sampled set. The data consists of daily observations collected from 87 manual rainfall gauges from 1990 to 2010 in Navarre, Spain. The accuracy and precision of the interpolated data are compared with real data from 33 automated rainfall gauges in the same region, but placed in different locations than the manual rainfall gauges. Root mean squared error by months and by year are also provided. To illustrate these models, we also map interpolated daily precipitations and standard errors on a 1km2 grid in the whole region. © 2014 Royal Meteorological Society.

19. Interpolation of daily rainfall using spatiotemporal models and clustering

KAUST Repository

Militino, A. F.; Ugarte, M. D.; Goicoa, T.; Genton, Marc G.

2014-01-01

Accumulated daily rainfall in non-observed locations on a particular day is frequently required as input to decision-making tools in precision agriculture or for hydrological or meteorological studies. Various solutions and estimation procedures have been proposed in the literature depending on the auxiliary information and the availability of data, but most such solutions are oriented to interpolating spatial data without incorporating temporal dependence. When data are available in space and time, spatiotemporal models usually provide better solutions. Here, we analyse the performance of three spatiotemporal models fitted to the whole sampled set and to clusters within the sampled set. The data consists of daily observations collected from 87 manual rainfall gauges from 1990 to 2010 in Navarre, Spain. The accuracy and precision of the interpolated data are compared with real data from 33 automated rainfall gauges in the same region, but placed in different locations than the manual rainfall gauges. Root mean squared error by months and by year are also provided. To illustrate these models, we also map interpolated daily precipitations and standard errors on a 1km2 grid in the whole region. © 2014 Royal Meteorological Society.

20. Global sensitivity analysis using sparse grid interpolation and polynomial chaos

International Nuclear Information System (INIS)

Buzzard, Gregery T.

2012-01-01

Sparse grid interpolation is widely used to provide good approximations to smooth functions in high dimensions based on relatively few function evaluations. By using an efficient conversion from the interpolating polynomial provided by evaluations on a sparse grid to a representation in terms of orthogonal polynomials (gPC representation), we show how to use these relatively few function evaluations to estimate several types of sensitivity coefficients and to provide estimates on local minima and maxima. First, we provide a good estimate of the variance-based sensitivity coefficients of Sobol' (1990) [1] and then use the gradient of the gPC representation to give good approximations to the derivative-based sensitivity coefficients described by Kucherenko and Sobol' (2009) [2]. Finally, we use the package HOM4PS-2.0 given in Lee et al. (2008) [3] to determine the critical points of the interpolating polynomial and use these to determine the local minima and maxima of this polynomial. - Highlights: ► Efficient estimation of variance-based sensitivity coefficients. ► Efficient estimation of derivative-based sensitivity coefficients. ► Use of homotopy methods for approximation of local maxima and minima.

1. Adaptive Residual Interpolation for Color and Multispectral Image Demosaicking.

Science.gov (United States)

Monno, Yusuke; Kiku, Daisuke; Tanaka, Masayuki; Okutomi, Masatoshi

2017-12-01

Color image demosaicking for the Bayer color filter array is an essential image processing operation for acquiring high-quality color images. Recently, residual interpolation (RI)-based algorithms have demonstrated superior demosaicking performance over conventional color difference interpolation-based algorithms. In this paper, we propose adaptive residual interpolation (ARI) that improves existing RI-based algorithms by adaptively combining two RI-based algorithms and selecting a suitable iteration number at each pixel. These are performed based on a unified criterion that evaluates the validity of an RI-based algorithm. Experimental comparisons using standard color image datasets demonstrate that ARI can improve existing RI-based algorithms by more than 0.6 dB in the color peak signal-to-noise ratio and can outperform state-of-the-art algorithms based on training images. We further extend ARI for a multispectral filter array, in which more than three spectral bands are arrayed, and demonstrate that ARI can achieve state-of-the-art performance also for the task of multispectral image demosaicking.

2. Stereo matching and view interpolation based on image domain triangulation.

Science.gov (United States)

Fickel, Guilherme Pinto; Jung, Claudio R; Malzbender, Tom; Samadani, Ramin; Culbertson, Bruce

2013-09-01

This paper presents a new approach for stereo matching and view interpolation problems based on triangular tessellations suitable for a linear array of rectified cameras. The domain of the reference image is initially partitioned into triangular regions using edge and scale information, aiming to place vertices along image edges and increase the number of triangles in textured regions. A region-based matching algorithm is then used to find an initial disparity for each triangle, and a refinement stage is applied to change the disparity at the vertices of the triangles, generating a piecewise linear disparity map. A simple post-processing procedure is applied to connect triangles with similar disparities generating a full 3D mesh related to each camera (view), which are used to generate new synthesized views along the linear camera array. With the proposed framework, view interpolation reduces to the trivial task of rendering polygonal meshes, which can be done very fast, particularly when GPUs are employed. Furthermore, the generated views are hole-free, unlike most point-based view interpolation schemes that require some kind of post-processing procedures to fill holes.

3. On removing interpolation and resampling artifacts in rigid image registration.

Science.gov (United States)

Aganj, Iman; Yeo, Boon Thye Thomas; Sabuncu, Mert R; Fischl, Bruce

2013-02-01

We show that image registration using conventional interpolation and summation approximations of continuous integrals can generally fail because of resampling artifacts. These artifacts negatively affect the accuracy of registration by producing local optima, altering the gradient, shifting the global optimum, and making rigid registration asymmetric. In this paper, after an extensive literature review, we demonstrate the causes of the artifacts by comparing inclusion and avoidance of resampling analytically. We show the sum-of-squared-differences cost function formulated as an integral to be more accurate compared with its traditional sum form in a simple case of image registration. We then discuss aliasing that occurs in rotation, which is due to the fact that an image represented in the Cartesian grid is sampled with different rates in different directions, and propose the use of oscillatory isotropic interpolation kernels, which allow better recovery of true global optima by overcoming this type of aliasing. Through our experiments on brain, fingerprint, and white noise images, we illustrate the superior performance of the integral registration cost function in both the Cartesian and spherical coordinates, and also validate the introduced radial interpolation kernel by demonstrating the improvement in registration.

4. Spatial statistics of pitting corrosion patterning: Quadrat counts and the non-homogeneous Poisson process

International Nuclear Information System (INIS)

Lopez de la Cruz, J.; Gutierrez, M.A.

2008-01-01

This paper presents a stochastic analysis of spatial point patterns as effect of localized pitting corrosion. The Quadrat Counts method is studied with two empirical pit patterns. The results are dependent on the quadrat size and bias is introduced when empty quadrats are accounted for the analysis. The spatially inhomogeneous Poisson process is used to improve the performance of the Quadrat Counts method. The latter combines Quadrat Counts with distance-based statistics in the analysis of pit patterns. The Inter-Event and the Nearest-Neighbour statistics are here implemented in order to compare their results. Further, the treatment of patterns in irregular domains is discussed

5. The bases for the use of interpolation in helical computed tomography: an explanation for radiologists

International Nuclear Information System (INIS)

Garcia-Santos, J. M.; Cejudo, J.

2002-01-01

In contrast to conventional computed tomography (CT), helical CT requires the application of interpolators to achieve image reconstruction. This is because the projections processed by the computer are not situated in the same plane. Since the introduction of helical CT. a number of interpolators have been designed in the attempt to maintain the thickness of the reconstructed section as close as possible to the thickness of the X-ray beam. The purpose of this article is to discuss the function of these interpolators, stressing the advantages and considering the possible inconveniences of high-grade curved interpolators with respect to standard linear interpolators. (Author) 7 refs

6. Vacuum solutions of Bianchi cosmologies in quadratic gravity

International Nuclear Information System (INIS)

Deus, Juliano Alves de; Muller, Daniel

2011-01-01

Full text: In this work we solve numerically the vacuum solutions of field equations of Bianchi homogeneous universes in the context of Semiclassical theory. Our interest is to study the quadratic theory of gravity with regard in the cosmological description of our universe in periods of intense fields. Bianchi cosmologies are anisotropic homogeneous cosmological models, but can include the isotropic models as particular cases (Bianchi I, VII and IX include homogeneous and isotropic Friedmann models plane, hyperbolic and spherical, respectively). Homogeneous models are good cosmological representations of our universe. With focus in solutions for intense fields, like the early universe, where isotropy is not necessarily required, the adopted scenario is the vacuum solutions, where the geometry is dominant in determining the gravitation. Still following in this way, the Semiclassical theory, which considers quantum matter fields propagating in classical geometrical background, is addressed to give the field equations. This formalism leads to fourth-order ordinary differential equations, in contrast to second-order equations from General Relativity. The Lagrangian of the theory is quadratic in the Ricci scalar and in the Ricci tensor. The equations system is highly non-linear and can be only numerically solved, except perhaps for few particular cases. We obtained numerical solutions for Bianchi V II A evolving to Minkowski and to de Sitter solutions, and also to singularities. The both first and second solutions were obtained choosing initial conditions near from respective exact vacuum solutions from Einstein theory, which are also exact solutions of the quadratic theory. Other Bianchi types are still under study. (author)

7. Study on the algorithm for Newton-Rapson iteration interpolation of NURBS curve and simulation

Science.gov (United States)

Zhang, Wanjun; Gao, Shanping; Cheng, Xiyan; Zhang, Feng

2017-04-01

In order to solve the problems of Newton-Rapson iteration interpolation method of NURBS Curve, Such as interpolation time bigger, calculation more complicated, and NURBS curve step error are not easy changed and so on. This paper proposed a study on the algorithm for Newton-Rapson iteration interpolation method of NURBS curve and simulation. We can use Newton-Rapson iterative that calculate (xi, yi, zi). Simulation results show that the proposed NURBS curve interpolator meet the high-speed and high-accuracy interpolation requirements of CNC systems. The interpolation of NURBS curve should be finished. The simulation results show that the algorithm is correct; it is consistent with a NURBS curve interpolation requirements.

8. Lipschitz stability of the K-quadratic functional equation | Chahbi ...

African Journals Online (AJOL)

Let N be the set of all positive integers, G an Abelian group with a metric d and E a normed space. For any f : G → E we define the k-quadratic difference of the function f by the formula Qk ƒ(x; y) := 2ƒ(x) + 2k2ƒ(y) - f(x + ky) - f(x - ky) for x; y ∈ G and k ∈ N. Under some assumptions about f and Qkƒ we prove that if Qkƒ is ...

9. Uniform sparse bounds for discrete quadratic phase Hilbert transforms

Science.gov (United States)

Kesler, Robert; Arias, Darío Mena

2017-09-01

For each α \\in T consider the discrete quadratic phase Hilbert transform acting on finitely supported functions f : Z → C according to H^{α }f(n):= \\sum _{m ≠ 0} e^{iα m^2} f(n - m)/m. We prove that, uniformly in α \\in T , there is a sparse bound for the bilinear form for every pair of finitely supported functions f,g : Z→ C . The sparse bound implies several mapping properties such as weighted inequalities in an intersection of Muckenhoupt and reverse Hölder classes.

10. BRST operator for superconformal algebras with quadratic nonlinearity

International Nuclear Information System (INIS)

Khviengia, Z.; Sezgin, E.

1993-07-01

We construct the quantum BRST operators for a large class of superconformal and quasi-superconformal algebras with quadratic nonlinearity. The only free parameter in these algebras is the level of the (super) Kac-Moody sector. The nilpotency of the quantum BRST operator imposes a condition on the level. We find this condition for (quasi) superconformal algebras with a Kac-Moody sector based on a simple Lie algebra and for the Z 2 x Z 2 -graded superconformal algebras with a Kac-Moody sector based on the superalgebra osp(N modul 2M) or sl (N + 2 modul N). (author). 22 refs, 3 tabs

Energy Technology Data Exchange (ETDEWEB)

Brémond, Éric, E-mail: eric.bremond@iit.it; Savarese, Marika [CompuNet, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genoa (Italy); Sancho-García, Juan C.; Pérez-Jiménez, Ángel J. [Departamento de Química Física, Universidad de Alicante, E-03080 Alicante (Spain); Adamo, Carlo [CompuNet, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genoa (Italy); Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris IRCP, F-75005 Paris (France); Institut Universitaire de France, 103 Boulevard Saint Michel, F-75005 Paris (France)

2016-03-28

We propose two analytical expressions aiming to rationalize the spin-component-scaled (SCS) and spin-opposite-scaled (SOS) schemes for double-hybrid exchange-correlation density-functionals. Their performances are extensively tested within the framework of the nonempirical quadratic integrand double-hybrid (QIDH) model on energetic properties included into the very large GMTKN30 benchmark database, and on structural properties of semirigid medium-sized organic compounds. The SOS variant is revealed as a less computationally demanding alternative to reach the accuracy of the original QIDH model without losing any theoretical background.

12. SPEECH EMOTION RECOGNITION USING MODIFIED QUADRATIC DISCRIMINATION FUNCTION

Institute of Scientific and Technical Information of China (English)

2008-01-01

Quadratic Discrimination Function(QDF)is commonly used in speech emotion recognition,which proceeds on the premise that the input data is normal distribution.In this Paper,we propose a transformation to normalize the emotional features,then derivate a Modified QDF(MQDF) to speech emotion recognition.Features based on prosody and voice quality are extracted and Principal Component Analysis Neural Network (PCANN) is used to reduce dimension of the feature vectors.The results show that voice quality features are effective supplement for recognition.and the method in this paper could improve the recognition ratio effectively.

13. On Exponential Hedging and Related Quadratic Backward Stochastic Differential Equations

International Nuclear Information System (INIS)

Sekine, Jun

2006-01-01

The dual optimization problem for the exponential hedging problem is addressed with a cone constraint. Without boundedness conditions on the terminal payoff and the drift of the Ito-type controlled process, the backward stochastic differential equation, which has a quadratic growth term in the drift, is derived as a necessary and sufficient condition for optimality via a variational method and dynamic programming. Further, solvable situations are given, in which the value and the optimizer are expressed in closed forms with the help of the Clark-Haussmann-Ocone formula

14. Quadratic Forms and Semiclassical Eigenfunction Hypothesis for Flat Tori

Science.gov (United States)

T. Sardari, Naser

2018-03-01

Let Q( X) be any integral primitive positive definite quadratic form in k variables, where {k≥4}, and discriminant D. For any integer n, we give an upper bound on the number of integral solutions of Q( X) = n in terms of n, k, and D. As a corollary, we prove a conjecture of Lester and Rudnick on the small scale equidistribution of almost all functions belonging to any orthonormal basis of a given eigenspace of the Laplacian on the flat torus {T^d} for {d≥ 5}. This conjecture is motivated by the work of Berry [2,3] on the semiclassical eigenfunction hypothesis.

15. Abelian groups and quadratic residues in weak arithmetic

Czech Academy of Sciences Publication Activity Database

Jeřábek, Emil

2010-01-01

Roč. 56, č. 3 (2010), s. 262-278 ISSN 0942-5616 R&D Projects: GA AV ČR IAA1019401; GA MŠk(CZ) 1M0545 Institutional research plan: CEZ:AV0Z10190503 Keywords : bounded arithmetic * abelian group * Fermat's little theorem * quadratic reciprocity Subject RIV: BA - General Mathematics Impact factor: 0.361, year: 2010 http://onlinelibrary.wiley.com/doi/10.1002/malq.200910009/abstract;jsessionid=9F636FFACB84C025FD90C7E6880350DD.f03t03

16. Analysis of electroperforated materials using the quadrat counts method

Energy Technology Data Exchange (ETDEWEB)

Miranda, E; Garzon, C; Garcia-Garcia, J [Departament d' Enginyeria Electronica, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain); MartInez-Cisneros, C; Alonso, J, E-mail: enrique.miranda@uab.cat [Departament de Quimica AnalItica, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain)

2011-06-23

The electroperforation distribution in thin porous materials is investigated using the quadrat counts method (QCM), a classical statistical technique aimed to evaluate the deviation from complete spatial randomness (CSR). Perforations are created by means of electrical discharges generated by needle-like tungsten electrodes. The objective of perforating a thin porous material is to enhance its air permeability, a critical issue in many industrial applications involving paper, plastics, textiles, etc. Using image analysis techniques and specialized statistical software it is shown that the perforation locations follow, beyond a certain length scale, a homogeneous 2D Poisson distribution.

17. Soliton interaction in quadratic and cubic bulk media

DEFF Research Database (Denmark)

Johansen, Steffen Kjær; Bang, Ole

2000-01-01

Summary form only given. The understanding of how and to what extend the cubic nonlinearity affects beam propagation and spatial soliton formation in quadratic media is of vital importance in fundamental and applied nonlinear physics. We consider beam propagation under type-I SHG conditions...... in lossless bulk second order nonlinear optical materials with a nonvanishing third order nonlinearity. It is known that in pure second order systems a single soliton can never collapse whereas in systems with both nonlinearities and that stable single soliton propagation can only in some circumstances...

18. Linear-quadratic model predictions for tumor control probability

International Nuclear Information System (INIS)

Yaes, R.J.

1987-01-01

Sigmoid dose-response curves for tumor control are calculated from the linear-quadratic model parameters α and Β, obtained from human epidermoid carcinoma cell lines, and are much steeper than the clinical dose-response curves for head and neck cancers. One possible explanation is the presence of small radiation-resistant clones arising from mutations in an initially homogeneous tumor. Using the mutation theory of Delbruck and Luria and of Goldie and Coldman, the authors discuss the implications of such radiation-resistant clones for clinical radiation therapy

19. Sub-quadratic decoding of one-point hermitian codes

DEFF Research Database (Denmark)

Nielsen, Johan Sebastian Rosenkilde; Beelen, Peter

2015-01-01

We present the first two sub-quadratic complexity decoding algorithms for one-point Hermitian codes. The first is based on a fast realization of the Guruswami-Sudan algorithm using state-of-the-art algorithms from computer algebra for polynomial-ring matrix minimization. The second is a power...... decoding algorithm: an extension of classical key equation decoding which gives a probabilistic decoding algorithm up to the Sudan radius. We show how the resulting key equations can be solved by the matrix minimization algorithms from computer algebra, yielding similar asymptotic complexities....

20. Field equations for gravity quadratic in the curvature

International Nuclear Information System (INIS)

Rose, B.

1992-01-01

Vacuum field equations for gravity are studied having their origin in a Lagrangian quadratic in the curvature. The motivation for this choice of the Lagrangian-namely the treating of gravity in a strict analogy to gauge theories of Yang-Mills type-is criticized, especially the implied view of connections as gauge potentials with no dynamical relation to the metric. The correct field equations with respect to variation of the connections and the metric independently are given. We deduce field equations which differs from previous ones by variation of the metric, the torsion, and the nonmetricity from which the connections are built. 6 refs

1. Quadratic Hamiltonians on non-symmetric Poisson structures

International Nuclear Information System (INIS)

Arribas, M.; Blesa, F.; Elipe, A.

2007-01-01

Many dynamical systems may be represented in a set of non-canonical coordinates that generate an su(2) algebraic structure. The topology of the phase space is the one of the S 2 sphere, the Poisson structure is the one of the rigid body, and the Hamiltonian is a parametric quadratic form in these 'spherical' coordinates. However, there are other problems in which the Poisson structure losses its symmetry. In this paper we analyze this case and, we show how the loss of the spherical symmetry affects the phase flow and parametric bifurcations for the bi-parametric cases

2. On-line soft sensing in upstream bioprocessing.

Science.gov (United States)

Randek, Judit; Mandenius, Carl-Fredrik

2018-02-01

This review provides an overview and a critical discussion of novel possibilities of applying soft sensors for on-line monitoring and control of industrial bioprocesses. Focus is on bio-product formation in the upstream process but also the integration with other parts of the process is addressed. The term soft sensor is used for the combination of analytical hardware data (from sensors, analytical devices, instruments and actuators) with mathematical models that create new real-time information about the process. In particular, the review assesses these possibilities from an industrial perspective, including sensor performance, information value and production economy. The capabilities of existing analytical on-line techniques are scrutinized in view of their usefulness in soft sensor setups and in relation to typical needs in bioprocessing in general. The review concludes with specific recommendations for further development of soft sensors for the monitoring and control of upstream bioprocessing.

3. Upstream-downstream cooperation approach in Guanting Reservoir watershed.

Science.gov (United States)

Yang, Zhi-Feng; Zhang, Wen-Guo

2005-01-01

A case study is introduced and discussed concerning water dispute of misuse and pollution between up- and down-stream parts. The relations between water usage and local industrial structures are analyzed. Results show it is important to change industrial structures of the target region along with controlling water pollution by technical and engineering methods. Three manners of upstream-downstream cooperation are presented and discussed based on the actual conditions of Guangting Reservoir watershed. Two typical scenarios are supposed and studied along with the local plan on water resources development. The best solution for this cooperation presents a good way to help the upstream developing in a new pattern of eco-economy.

4. Torque fluctuations caused by upstream mean flow and turbulence

Science.gov (United States)

Farr, T. D.; Hancock, P. E.

2014-12-01

A series of studies are in progress investigating the effects of turbine-array-wake interactions for a range of atmospheric boundary layer states by means of the EnFlo meteorological wind tunnel. The small, three-blade model wind turbines drive 4-quadrant motor-generators. Only a single turbine in neutral flow is considered here. The motor-generator current can be measured with adequate sensitivity by means of a current sensor allowing the mean and fluctuating torque to be inferred. Spectra of torque fluctuations and streamwise velocity fluctuations ahead of the rotor, between 0.1 and 2 diameters, show that only the large-scale turbulent motions contribute significantly to the torque fluctuations. Time-lagged cross-correlation between upstream velocity and torque fluctuations are largest over the inner part of the blade. They also show the turbulence to be frozen in behaviour over the 2 diameters upstream of the turbine.

5. Environmental regulatory framework for the upstream petroleum industry

International Nuclear Information System (INIS)

1996-01-01

In order to provide its member companies with a useful reference document in environmental analysis and compliance, CAPP compiled a list of Canadian legislation, regulations and guidelines which relate to the upstream petroleum industry. Text of all federal, Alberta, British Columbia and Saskatchewan legislation, regulations, guidelines and related documents were provided. Pending legislation, regulations and government policy have been identified. Annual updates will be provided to all subscribers

6. Entrepreneurial Leadership in Upstream Oil and Gas Industry

OpenAIRE

Kalu, Mona Ukpai

2015-01-01

The study examined Entrepreneurial leadership in Upstream Oil and Gas industry and its ability to accelerate innovative energy technology development. The declining deliverability from existing reservoirs and ever increasing demand for energy to fuel growth in many parts of the world is driving oil and gas exploration into more difficult to access reservoirs like bituminous sands and shale gas. Accelerating new innovative technology development to access these new streams of profitable oil an...

7. DENSITY FLUCTUATIONS UPSTREAM AND DOWNSTREAM OF INTERPLANETARY SHOCKS

Energy Technology Data Exchange (ETDEWEB)

Pitňa, A.; Šafránková, J.; Němeček, Z.; Goncharov, O.; Němec, F.; Přech, L. [Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, 180 00 Prague 8 (Czech Republic); Chen, C. H. K. [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Zastenker, G. N., E-mail: jana.safrankova@mff.cuni.cz [Space Research Institute of Russian Academy of Sciences, Moscow, Russia, Profsoyuznaya ul. 84/32, Moscow 117997 (Russian Federation)

2016-03-01

Interplanetary (IP) shocks as typical large-scale disturbances arising from processes such as stream–stream interactions or Interplanetary Coronal Mass Ejection (ICME) launching play a significant role in the energy redistribution, dissipation, particle heating, acceleration, etc. They can change the properties of the turbulent cascade on shorter scales. We focus on changes of the level and spectral properties of ion flux fluctuations upstream and downstream of fast forward oblique shocks. Although the fluctuation level increases by an order of magnitude across the shock, the spectral slope in the magnetohydrodynamic range is conserved. The frequency spectra upstream of IP shocks are the same as those in the solar wind (if not spoiled by foreshock waves). The spectral slopes downstream are roughly proportional to the corresponding slopes upstream, suggesting that the properties of the turbulent cascade are conserved across the shock; thus, the shock does not destroy the shape of the spectrum as turbulence passes through it. Frequency spectra downstream of IP shocks often exhibit “an exponential decay” in the ion kinetic range that was earlier reported at electron scales in the solar wind or at ion scales in the interstellar medium. We suggest that the exponential shape of ion flux spectra in this range is caused by stronger damping of the fluctuations in the downstream region.

8. Upstream waves simultaneously observed by ISEE and UKS

International Nuclear Information System (INIS)

Russell, C.T.; Luhmann, J.G.; Elphic, R.C.; Southwood, D.J.; Smith, M.F.; Johnstone, A.D.

1987-01-01

Measurements obtained in the solar wind by ISEE-2 and the United Kingdom Subsatellite (UKS) have been examined for observations of upstream waves. These data reveal that the waves in the foreshock region are enhanced at all frequencies from at least 0.003 Hz to 0.5 Hz. The wave spectra generally have a spectral peak, but this peak is usually broad and the peak frequency depends on the position of the spacecraft. Generally, the spectra seen at the two spacecraft are most similar at high frequencies and least similar at low frequencies. The geometry of the interaction is displayed in the plane containing the magnetic field, the solar wind velocity, and the spacecraft location. However, this coordinate system does not order all the observed wave properties. It does not clearly explain or order the handedness of the waves, or their direction of propagation. It is clear that the upstream region is inherently three-dimensional. The position-dependent nature of the upstream waves indicates that comparisons between ground-based measurements and in-situ observations must be undertaken with some caution

9. Cyclic subgroups in class groups of real quadratic fields

International Nuclear Information System (INIS)

Washington, L.C.; Zhang Xianke.

1994-01-01

While examining the class numbers of the real quadratic field Q(√n 2 + 3n + 9), we observed that the class number is often a multiple of 3. There is a simple explanation for this, namely -27 = (2n + 3) 2 - 4(n 2 + 3n + 9), so the cubes of the prime ideals above 3 are principal. If the prime ideals themselves are non-principal then 3 must divide the class number. In the present paper, we study this idea from a couple different directions. In the first section we present a criterion that allows us to show that the ideal class group of a real quadratic field has a cyclic subgroup of a given order n. We then give several families of fields to which this criterion applies, hence in which the ideal class groups contain elements of order n. In the second section, we discuss the situation where there is only a potential element of order p (=an odd prime) in the class group, such as the situation described above. We present a modification of the Cohen-Lenstra heuristics for the probability that in this situation the class number is actually a multiple of p. We also extend this idea to predict how often the potential element of order p is actually non-trivial. Both of these predictions agree fairly well with the numerical data. (author). 14 refs, 2 tabs

10. Universality of quadratic to linear magnetoresistance crossover in disordered conductors

Science.gov (United States)

Lara, Silvia; Ramakrishnan, Navneeth; Lai, Ying Tong; Adam, Shaffique

Many experiments measuring Magnetoresistance (MR) showed unsaturating linear behavior at high magnetic fields and quadratic behavior at low fields. In the literature, two very different theoretical models have been used to explain this classical MR as a consequence of sample disorder. The phenomenological Random Resistor Network (RRN) model constructs a grid of four-terminal resistors each with a varying random resistance. The Effective Medium Theory (EMT) model imagines a smoothly varying disorder potential that causes a continuous variation of the local conductivity. In this theoretical work, we demonstrate numerically that both the RRN and EMT models belong to the same universality class, and that a single parameter (the ratio of the fluctuations in the carrier density to the average carrier density) completely determines both the magnitude of the MR and the B-field scale for the crossover from quadratic to linear MR. By considering several experimental data sets in the literature, ranging from thin films of InSb to graphene to Weyl semimetals like Na3Bi, we show that this disorder-induced mechanism for MR is in good agreement with the experiments, and that this comparison of MR with theory reveals information about the spatial carrier density inhomogeneity. This work was supported by the National Research Foundation of Singapore (NRF-NRFF2012-01).

11. STRUCTURE OPTIMIZATION OF RESERVATION BY PRECISE QUADRATIC REGULARIZATION

Directory of Open Access Journals (Sweden)

KOSOLAP A. I.

2015-11-01

Full Text Available The problem of optimization of the structure of systems redundancy elements. Such problems arise in the design of complex systems. To improve the reliability of operation of such systems of its elements are duplicated. This increases system cost and improves its reliability. When optimizing these systems is maximized probability of failure of the entire system while limiting its cost or the cost is minimized for a given probability of failure-free operation. A mathematical model of the problem is a discrete backup multiextremal. To search for the global extremum of currently used methods of Lagrange multipliers, coordinate descent, dynamic programming, random search. These methods guarantee a just and local solutions are used in the backup tasks of small dimension. In the work for solving redundancy uses a new method for accurate quadratic regularization. This method allows you to convert the original discrete problem to the maximization of multi vector norm on a convex set. This means that the diversity of the tasks given to the problem of redundancy maximize vector norm on a convex set. To solve the problem, a reformed straightdual interior point methods. Currently, it is the best method for local optimization of nonlinear problems. Transformed the task includes a new auxiliary variable, which is determined by dichotomy. There have been numerous comparative numerical experiments in problems with the number of redundant subsystems to one hundred. These experiments confirm the effectiveness of the method of precise quadratic regularization for solving problems of redundancy.

12. DQM: Decentralized Quadratically Approximated Alternating Direction Method of Multipliers

Science.gov (United States)

Mokhtari, Aryan; Shi, Wei; Ling, Qing; Ribeiro, Alejandro

2016-10-01

13. Wave propagation in elastic medium with heterogeneous quadratic nonlinearity

International Nuclear Information System (INIS)

Tang Guangxin; Jacobs, Laurence J.; Qu Jianmin

2011-01-01

This paper studies the one-dimensional wave propagation in an elastic medium with spatially non-uniform quadratic nonlinearity. Two problems are solved analytically. One is for a time-harmonic wave propagating in a half-space where the displacement is prescribed on the surface of the half-space. It is found that spatial non-uniformity of the material nonlinearity causes backscattering of the second order harmonic, which when combined with the forward propagating waves generates a standing wave in steady-state wave motion. The second problem solved is the reflection from and transmission through a layer of finite thickness embedded in an otherwise linearly elastic medium of infinite extent, where it is assumed that the layer has a spatially non-uniform quadratic nonlinearity. The results show that the transmission coefficient for the second order harmonic is proportional to the spatial average of the nonlinearity across the thickness of the layer, independent of the spatial distribution of the nonlinearity. On the other hand, the coefficient of reflection is proportional to a weighted average of the nonlinearity across the layer thickness. The weight function in this weighted average is related to the propagating phase, thus making the coefficient of reflection dependent on the spatial distribution of the nonlinearity. Finally, the paper concludes with some discussions on how to use the reflected and transmitted second harmonic waves to evaluate the variance and autocorrelation length of nonlinear parameter β when the nonlinearity distribution in the layer is a stochastic process.

Energy Technology Data Exchange (ETDEWEB)

Masina, Isabella [Ferrara Univ. (Italy). Dipt. di Fisica e Scienze della Terra; INFN, Sezione di Ferrara (Italy); Southern Denmark Univ., Odense (Denmark). CP3-Origins; Southern Denmark Univ., Odense (Denmark). DIAS; Nardini, Germano [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Quiros, Mariano [Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona (Spain); IFAE-IAB, Barcelona (Spain)

2015-07-15

If the Standard Model (SM) is an effective theory, as currently believed, it is valid up to some energy scale Λ to which the Higgs vacuum expectation value is sensitive throughout radiative quadratic terms. The latter ones destabilize the electroweak vacuum and generate the SM hierarchy problem. For a given perturbative Ultraviolet (UV) completion, the SM cutoff can be computed in terms of fundamental parameters. If the UV mass spectrum involves several scales the cutoff is not unique and each SM sector has its own UV cutoff Λ{sub i}. We have performed this calculation assuming the Minimal Supersymmetric Standard Model (MSSM) is the SM UV completion. As a result, from the SM point of view, the quadratic corrections to the Higgs mass are equivalent to finite threshold contributions. For the measured values of the top quark and Higgs masses, and depending on the values of the different cutoffs Λ{sub i}, these contributions can cancel even at renormalization scales as low as multi-TeV, unlike the case of a single cutoff where the cancellation only occurs at Planckian energies, a result originally obtained by Veltman. From the MSSM point of view, the requirement of stability of the electroweak minimum under radiative corrections is incorporated into the matching conditions and provides an extra constraint on the Focus Point solution to the little hierarchy problem in the MSSM. These matching conditions can be employed for precise calculations of the Higgs sector in scenarios with heavy supersymmetric fields.

15. Learning quadratic receptive fields from neural responses to natural stimuli.

Science.gov (United States)

Rajan, Kanaka; Marre, Olivier; Tkačik, Gašper

2013-07-01

Models of neural responses to stimuli with complex spatiotemporal correlation structure often assume that neurons are selective for only a small number of linear projections of a potentially high-dimensional input. In this review, we explore recent modeling approaches where the neural response depends on the quadratic form of the input rather than on its linear projection, that is, the neuron is sensitive to the local covariance structure of the signal preceding the spike. To infer this quadratic dependence in the presence of arbitrary (e.g., naturalistic) stimulus distribution, we review several inference methods, focusing in particular on two information theory-based approaches (maximization of stimulus energy and of noise entropy) and two likelihood-based approaches (Bayesian spike-triggered covariance and extensions of generalized linear models). We analyze the formal relationship between the likelihood-based and information-based approaches to demonstrate how they lead to consistent inference. We demonstrate the practical feasibility of these procedures by using model neurons responding to a flickering variance stimulus.

16. On bent and semi-bent quadratic Boolean functions

DEFF Research Database (Denmark)

Charpin, P.; Pasalic, Enes; Tavernier, C.

2005-01-01

correlation and high nonlinearity. We say that such a sequence is generated by a semi-bent function. Some new families of such function, represented by f(x) = Sigma(i=1)(n-1/2) c(i)Tr(x(2t+1)), n odd and c(i) is an element of F-2, have recently (2002) been introduced by Khoo et al. We first generalize......The maximum-length sequences, also called m-sequences, have received a lot of attention since the late 1960s. In terms of linear-feedback shift register (LFSR) synthesis they are usually generated by certain power polynomials over a finite field and in addition are characterized by a low cross...... their results to even n. We further investigate the conditions on the choice of ci for explicit definitions of new infinite families having three and four trace terms. Also, a class of nonpermutation polynomials whose composition with a quadratic function yields again a quadratic semi-bent function is specified...

17. Monitoring upstream sinkhole development by detailed sonar profiling

Energy Technology Data Exchange (ETDEWEB)

Rigbey, S. [Acres International Ltd., Niagara Falls, ON (Canada)

2004-09-01

This paper describes the development and use of a simple sonar system that has been used by engineers for routine monitoring of small sinkholes on the upstream face of a distressed earth dam. Improper construction of the dam led to the development of several sinkholes measuring 10 to 20 m in diameter upstream from the dam which is founded on deep alluvial sands and gravels. The dam has a central core of silt and leakage varies between 200 and 500 l/s, depending on the water level of the reservoir. The main issues with the upstream blanket are: improper fill placement due to the inability to dewater the area properly; omission of a filter material between the blanket and the alluvium foundation; thin placement of fill and runnelling of the blanket prior to impoundment; and, short upstream extent of the blanket. A downstream weighting toe of material was placed to address the seepage and piping that developed immediately following impounding. Other incidents continued over the years, such as downstream sinkholes, slumping of the crest and repairs about 12 years after construction. An inverter filter was also constructed to better control the seepage. Simple bathymetric surveys conducted by sounding the bottom of the reservoir from the ice surface each winter revealed the presence of several large sinkholes. Although infilling programs were conducted, sinkholes redeveloped after each program. The bathymetric surveys were found to be limited in accuracy and repeatability. Therefore, it was not possible to monitor small developments on a yearly basis. A 3-dimensional seepage model was developed to reconcile some of the unexplained piezometric patterns and to better understand the seepage patterns. However, this was also unsuccessful on its own. A trial sonar survey was then undertaken in 2002 by a Vancouver-based sonar company using an Imagenix profiling sonar head. It was successful in locating a small, previously unknown sinkhole measuring a few metres in diameter at

18. Optimal interpolation method for intercomparison of atmospheric measurements.

Science.gov (United States)

Ridolfi, Marco; Ceccherini, Simone; Carli, Bruno

2006-04-01

Intercomparison of atmospheric measurements is often a difficult task because of the different spatial response functions of the experiments considered. We propose a new method for comparison of two atmospheric profiles characterized by averaging kernels with different vertical resolutions. The method minimizes the smoothing error induced by the differences in the averaging kernels by exploiting an optimal interpolation rule to map one profile into the retrieval grid of the other. Compared with the techniques published so far, this method permits one to retain the vertical resolution of the less-resolved profile involved in the intercomparison.

19. Advantage of Fast Fourier Interpolation for laser modeling

International Nuclear Information System (INIS)

Epatko, I.V.; Serov, R.V.

2006-01-01

The abilities of a new algorithm: the 2-dimensional Fast Fourier Interpolation (FFI) with magnification factor (zoom) 2 n whose purpose is to improve the spatial resolution when necessary, are analyzed in details. FFI procedure is useful when diaphragm/aperture size is less than half of the current simulation scale. The computation noise due to FFI procedure is less than 10 -6 . The additional time for FFI is approximately equal to one Fast Fourier Transform execution time. For some applications using FFI procedure, the execution time decreases by a 10 4 factor compared with other laser simulation codes. (authors)

20. Rate of convergence of Bernstein quasi-interpolants

International Nuclear Information System (INIS)

Diallo, A.T.

1995-09-01

We show that if f is an element of C[0,1] and B (2r-1) n f (r integer ≥ 1) is the Bernstein Quasi-Interpolant defined by Sablonniere, then parallel B (2r-1) n f - f parallel C[0,1] ≤ ω 2r φ (f, 1/√n) where ω 2r φ is the Ditzian-Totik modulus of smoothness with φ(x) = √ x(1-x), x is an element of [0,1]. (author). 6 refs

1. Data mining techniques in sensor networks summarization, interpolation and surveillance

CERN Document Server

Appice, Annalisa; Fumarola, Fabio; Malerba, Donato

2013-01-01

Sensor networks comprise of a number of sensors installed across a spatially distributed network, which gather information and periodically feed a central server with the measured data. The server monitors the data, issues possible alarms and computes fast aggregates. As data analysis requests may concern both present and past data, the server is forced to store the entire stream. But the limited storage capacity of a server may reduce the amount of data stored on the disk. One solution is to compute summaries of the data as it arrives, and to use these summaries to interpolate the real data.

2. Hörmander spaces, interpolation, and elliptic problems

CERN Document Server

Mikhailets, Vladimir A; Malyshev, Peter V

2014-01-01

The monograph gives a detailed exposition of the theory of general elliptic operators (scalar and matrix) and elliptic boundary value problems in Hilbert scales of Hörmander function spaces. This theory was constructed by the authors in a number of papers published in 2005-2009. It is distinguished by a systematic use of the method of interpolation with a functional parameter of abstract Hilbert spaces and Sobolev inner product spaces. This method, the theory and their applications are expounded for the first time in the monographic literature. The monograph is written in detail and in a

3. Acceleration of Meshfree Radial Point Interpolation Method on Graphics Hardware

International Nuclear Information System (INIS)

Nakata, Susumu

2008-01-01

This article describes a parallel computational technique to accelerate radial point interpolation method (RPIM)-based meshfree method using graphics hardware. RPIM is one of the meshfree partial differential equation solvers that do not require the mesh structure of the analysis targets. In this paper, a technique for accelerating RPIM using graphics hardware is presented. In the method, the computation process is divided into small processes suitable for processing on the parallel architecture of the graphics hardware in a single instruction multiple data manner.

4. Calibration method of microgrid polarimeters with image interpolation.

Science.gov (United States)

Chen, Zhenyue; Wang, Xia; Liang, Rongguang

2015-02-10

Microgrid polarimeters have large advantages over conventional polarimeters because of the snapshot nature and because they have no moving parts. However, they also suffer from several error sources, such as fixed pattern noise (FPN), photon response nonuniformity (PRNU), pixel cross talk, and instantaneous field-of-view (IFOV) error. A characterization method is proposed to improve the measurement accuracy in visible waveband. We first calibrate the camera with uniform illumination so that the response of the sensor is uniform over the entire field of view without IFOV error. Then a spline interpolation method is implemented to minimize IFOV error. Experimental results show the proposed method can effectively minimize the FPN and PRNU.

5. Cardinal Basis Piecewise Hermite Interpolation on Fuzzy Data

Directory of Open Access Journals (Sweden)

H. Vosoughi

2016-01-01

Full Text Available A numerical method along with explicit construction to interpolation of fuzzy data through the extension principle results by widely used fuzzy-valued piecewise Hermite polynomial in general case based on the cardinal basis functions, which satisfy a vanishing property on the successive intervals, has been introduced here. We have provided a numerical method in full detail using the linear space notions for calculating the presented method. In order to illustrate the method in computational examples, we take recourse to three prime cases: linear, cubic, and quintic.

6. New extended interpolating operators for hadron correlation functions

Energy Technology Data Exchange (ETDEWEB)

Scardino, Francesco; Papinutto, Mauro [Roma ' ' Sapienza' ' Univ. (Italy). Dipt. di Fisica; INFN, Sezione di Roma (Italy); Schaefer, Stefan [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

2016-12-22

New extended interpolating operators made of quenched three dimensional fermions are introduced in the context of lattice QCD. The mass of the 3D fermions can be tuned in a controlled way to find a better overlap of the extended operators with the states of interest. The extended operators have good renormalisation properties and are easy to control when taking the continuum limit. Moreover the short distance behaviour of the two point functions built from these operators is greatly improved. The operators have been numerically implemented and a comparison to point sources and Jacobi smeared sources has been performed on the new CLS configurations.

7. New extended interpolating operators for hadron correlation functions

International Nuclear Information System (INIS)

Scardino, Francesco; Papinutto, Mauro; Schaefer, Stefan

2016-01-01

New extended interpolating operators made of quenched three dimensional fermions are introduced in the context of lattice QCD. The mass of the 3D fermions can be tuned in a controlled way to find a better overlap of the extended operators with the states of interest. The extended operators have good renormalisation properties and are easy to control when taking the continuum limit. Moreover the short distance behaviour of the two point functions built from these operators is greatly improved. The operators have been numerically implemented and a comparison to point sources and Jacobi smeared sources has been performed on the new CLS configurations.

8. Interpolation Error Estimates for Mean Value Coordinates over Convex Polygons.

Science.gov (United States)

Rand, Alexander; Gillette, Andrew; Bajaj, Chandrajit

2013-08-01

In a similar fashion to estimates shown for Harmonic, Wachspress, and Sibson coordinates in [Gillette et al., AiCM, to appear], we prove interpolation error estimates for the mean value coordinates on convex polygons suitable for standard finite element analysis. Our analysis is based on providing a uniform bound on the gradient of the mean value functions for all convex polygons of diameter one satisfying certain simple geometric restrictions. This work makes rigorous an observed practical advantage of the mean value coordinates: unlike Wachspress coordinates, the gradient of the mean value coordinates does not become large as interior angles of the polygon approach π.

9. Geometries and interpolations for symmetric positive definite matrices

DEFF Research Database (Denmark)

Feragen, Aasa; Fuster, Andrea

2017-01-01

. In light of the simulation results, we discuss the mathematical and qualitative properties of these new metrics in comparison with the classical ones. Finally, we explore the nonlinear variation of properties such as shape and scale throughout principal geodesics in different metrics, which affects...... the visualization of scale and shape variation in tensorial data. With the paper, we will release a software package with Matlab scripts for computing the interpolations and statistics used for the experiments in the paper (Code is available at https://sites.google.com/site/aasaferagen/home/software)....

10. Trends in Continuity and Interpolation for Computer Graphics.

Science.gov (United States)

Gonzalez Garcia, Francisco

2015-01-01

In every computer graphics oriented application today, it is a common practice to texture 3D models as a way to obtain realistic material. As part of this process, mesh texturing, deformation, and visualization are all key parts of the computer graphics field. This PhD dissertation was completed in the context of these three important and related fields in computer graphics. The article presents techniques that improve on existing state-of-the-art approaches related to continuity and interpolation in texture space (texturing), object space (deformation), and screen space (rendering).

11. Effect of interpolation on parameters extracted from seating interface pressure arrays.

Science.gov (United States)

Wininger, Michael; Crane, Barbara

2014-01-01

Interpolation is a common data processing step in the study of interface pressure data collected at the wheelchair seating interface. However, there has been no focused study on the effect of interpolation on features extracted from these pressure maps, nor on whether these parameters are sensitive to the manner in which the interpolation is implemented. Here, two different interpolation paradigms, bilinear versus bicubic spline, are tested for their influence on parameters extracted from pressure array data and compared against a conventional low-pass filtering operation. Additionally, analysis of the effect of tandem filtering and interpolation, as well as the interpolation degree (interpolating to 2, 4, and 8 times sampling density), was undertaken. The following recommendations are made regarding approaches that minimized distortion of features extracted from the pressure maps: (1) filter prior to interpolate (strong effect); (2) use of cubic interpolation versus linear (slight effect); and (3) nominal difference between interpolation orders of 2, 4, and 8 times (negligible effect). We invite other investigators to perform similar benchmark analyses on their own data in the interest of establishing a community consensus of best practices in pressure array data processing.

12. Comparison of the common spatial interpolation methods used to analyze potentially toxic elements surrounding mining regions.

Science.gov (United States)

Ding, Qian; Wang, Yong; Zhuang, Dafang

2018-04-15

The appropriate spatial interpolation methods must be selected to analyze the spatial distributions of Potentially Toxic Elements (PTEs), which is a precondition for evaluating PTE pollution. The accuracy and effect of different spatial interpolation methods, which include inverse distance weighting interpolation (IDW) (power = 1, 2, 3), radial basis function interpolation (RBF) (basis function: thin-plate spline (TPS), spline with tension (ST), completely regularized spline (CRS), multiquadric (MQ) and inverse multiquadric (IMQ)) and ordinary kriging interpolation (OK) (semivariogram model: spherical, exponential, gaussian and linear), were compared using 166 unevenly distributed soil PTE samples (As, Pb, Cu and Zn) in the Suxian District, Chenzhou City, Hunan Province as the study subject. The reasons for the accuracy differences of the interpolation methods and the uncertainties of the interpolation results are discussed, then several suggestions for improving the interpolation accuracy are proposed, and the direction of pollution control is determined. The results of this study are as follows: (i) RBF-ST and OK (exponential) are the optimal interpolation methods for As and Cu, and the optimal interpolation method for Pb and Zn is RBF-IMQ. (ii) The interpolation uncertainty is positively correlated with the PTE concentration, and higher uncertainties are primarily distributed around mines, which is related to the strong spatial variability of PTE concentrations caused by human interference. (iii) The interpolation accuracy can be improved by increasing the sample size around the mines, introducing auxiliary variables in the case of incomplete sampling and adopting the partition prediction method. (iv) It is necessary to strengthen the prevention and control of As and Pb pollution, particularly in the central and northern areas. The results of this study can provide an effective reference for the optimization of interpolation methods and parameters for

13. Effects of quadratic and cubic nonlinearities on a perfectly tuned parametric amplifier

DEFF Research Database (Denmark)

Neumeyer, Stefan; Sorokin, Vladislav; Thomsen, Jon Juel

2016-01-01

We consider the performance of a parametric amplifier with perfect tuning (two-to-one ratio between the parametric and direct excitation frequencies) and quadratic and cubic nonlinearities. A forced Duffing–Mathieu equation with appended quadratic nonlinearity is considered as the model system......, and approximate analytical steady-state solutions and corresponding stabilities are obtained by the method of varying amplitudes. Some general effects of pure quadratic, and mixed quadratic and cubic nonlinearities on parametric amplification are shown. In particular, the effects of mixed quadratic and cubic...... nonlinearities may generate additional amplitude–frequency solutions. In this case an increased response and a more phase sensitive amplitude (phase between excitation frequencies) is obtained, as compared to the case with either pure quadratic or cubic nonlinearity. Furthermore, jumps and bi...

14. Percent voluntary inactivation and peak force predictions with the interpolated twitch technique in individuals with high ability of voluntary activation

International Nuclear Information System (INIS)

Herda, Trent J; Walter, Ashley A; Hoge, Katherine M; Stout, Jeffrey R; Costa, Pablo B; Ryan, Eric D; Cramer, Joel T

2011-01-01

The purpose of this study was to examine the sensitivity and peak force prediction capability of the interpolated twitch technique (ITT) performed during submaximal and maximal voluntary contractions (MVCs) in subjects with the ability to maximally activate their plantar flexors. Twelve subjects performed two MVCs and nine submaximal contractions with the ITT method to calculate percent voluntary inactivation (%VI). Additionally, two MVCs were performed without the ITT. Polynomial models (linear, quadratic and cubic) were applied to the 10–90% VI and 40–90% VI versus force relationships to predict force. Peak force from the ITT MVC was 6.7% less than peak force from the MVC without the ITT. Fifty-eight percent of the 10–90% VI versus force relationships were best fit with nonlinear models; however, all 40–90% VI versus force relationships were best fit with linear models. Regardless of the polynomial model or the contraction intensities used to predict force, all models underestimated the actual force from 22% to 28%. There was low sensitivity of the ITT method at high contraction intensities and the predicted force from polynomial models significantly underestimated the actual force. Caution is warranted when interpreting the % VI at high contraction intensities and predicted peak force from submaximal contractions

15. THE EFFECT OF STIMULUS ANTICIPATION ON THE INTERPOLATED TWITCH TECHNIQUE

Directory of Open Access Journals (Sweden)

Duane C. Button

2008-12-01

Full Text Available The objective of this study was to investigate the effect of expected and unexpected interpolated stimuli (IT during a maximum voluntary contraction on quadriceps force output and activation. Two groups of male subjects who were either inexperienced (MI: no prior experience with IT tests or experienced (ME: previously experienced 10 or more series of IT tests received an expected or unexpected IT while performing quadriceps isometric maximal voluntary contractions (MVCs. Measurements included MVC force, quadriceps and hamstrings electromyographic (EMG activity, and quadriceps inactivation as measured by the interpolated twitch technique (ITT. When performing MVCs with the expectation of an IT, the knowledge or lack of knowledge of an impending IT occurring during a contraction did not result in significant overall differences in force, ITT inactivation, quadriceps or hamstrings EMG activity. However, the expectation of an IT significantly (p < 0.0001 reduced MVC force (9.5% and quadriceps EMG activity (14.9% when compared to performing MVCs with prior knowledge that stimulation would not occur. While ME exhibited non-significant decreases when expecting an IT during a MVC, MI force and EMG activity significantly decreased 12.4% and 20.9% respectively. Overall, ME had significantly (p < 0.0001 higher force (14.5% and less ITT inactivation (10.4% than MI. The expectation of the noxious stimuli may account for the significant decrements in force and activation during the ITT

16. Flip-avoiding interpolating surface registration for skull reconstruction.

Science.gov (United States)

Xie, Shudong; Leow, Wee Kheng; Lee, Hanjing; Lim, Thiam Chye

2018-03-30

Skull reconstruction is an important and challenging task in craniofacial surgery planning, forensic investigation and anthropological studies. Existing methods typically reconstruct approximating surfaces that regard corresponding points on the target skull as soft constraints, thus incurring non-zero error even for non-defective parts and high overall reconstruction error. This paper proposes a novel geometric reconstruction method that non-rigidly registers an interpolating reference surface that regards corresponding target points as hard constraints, thus achieving low reconstruction error. To overcome the shortcoming of interpolating a surface, a flip-avoiding method is used to detect and exclude conflicting hard constraints that would otherwise cause surface patches to flip and self-intersect. Comprehensive test results show that our method is more accurate and robust than existing skull reconstruction methods. By incorporating symmetry constraints, it can produce more symmetric and normal results than other methods in reconstructing defective skulls with a large number of defects. It is robust against severe outliers such as radiation artifacts in computed tomography due to dental implants. In addition, test results also show that our method outperforms thin-plate spline for model resampling, which enables the active shape model to yield more accurate reconstruction results. As the reconstruction accuracy of defective parts varies with the use of different reference models, we also study the implication of reference model selection for skull reconstruction. Copyright © 2018 John Wiley & Sons, Ltd.

17. Optimal Interpolation scheme to generate reference crop evapotranspiration

Science.gov (United States)

Tomas-Burguera, Miquel; Beguería, Santiago; Vicente-Serrano, Sergio; Maneta, Marco

2018-05-01

We used an Optimal Interpolation (OI) scheme to generate a reference crop evapotranspiration (ETo) grid, forcing meteorological variables, and their respective error variance in the Iberian Peninsula for the period 1989-2011. To perform the OI we used observational data from the Spanish Meteorological Agency (AEMET) and outputs from a physically-based climate model. To compute ETo we used five OI schemes to generate grids for the five observed climate variables necessary to compute ETo using the FAO-recommended form of the Penman-Monteith equation (FAO-PM). The granularity of the resulting grids are less sensitive to variations in the density and distribution of the observational network than those generated by other interpolation methods. This is because our implementation of the OI method uses a physically-based climate model as prior background information about the spatial distribution of the climatic variables, which is critical for under-observed regions. This provides temporal consistency in the spatial variability of the climatic fields. We also show that increases in the density and improvements in the distribution of the observational network reduces substantially the uncertainty of the climatic and ETo estimates. Finally, a sensitivity analysis of observational uncertainties and network densification suggests the existence of a trade-off between quantity and quality of observations.

18. 3D Interpolation Method for CT Images of the Lung

Directory of Open Access Journals (Sweden)

2003-06-01

Full Text Available A 3-D image can be reconstructed from numerous CT images of the lung. The procedure reconstructs a solid from multiple cross section images, which are collected during pulsation of the heart. Thus the motion of the heart is a special factor that must be taken into consideration during reconstruction. The lung exhibits a repeating transformation synchronized to the beating of the heart as an elastic body. There are discontinuities among neighboring CT images due to the beating of the heart, if no special techniques are used in taking CT images. The 3-D heart image is reconstructed from numerous CT images in which both the heart and the lung are taken. Although the outline shape of the reconstructed 3-D heart is quite unnatural, the envelope of the 3-D unnatural heart is fit to the shape of the standard heart. The envelopes of the lung in the CT images are calculated after the section images of the best fitting standard heart are located at the same positions of the CT images. Thus the CT images are geometrically transformed to the optimal CT images fitting best to the standard heart. Since correct transformation of images is required, an Area oriented interpolation method proposed by us is used for interpolation of transformed images. An attempt to reconstruct a 3-D lung image by a series of such operations without discontinuity is shown. Additionally, the same geometrical transformation method to the original projection images is proposed as a more advanced method.

19. Interpolation methods for creating a scatter radiation exposure map

Energy Technology Data Exchange (ETDEWEB)

Gonçalves, Elicardo A. de S., E-mail: elicardo.goncalves@ifrj.edu.br [Instituto Federal do Rio de Janeiro (IFRJ), Paracambi, RJ (Brazil); Gomes, Celio S.; Lopes, Ricardo T. [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Oliveira, Luis F. de; Anjos, Marcelino J. dos; Oliveira, Davi F. [Universidade do Estado do Rio de Janeiro (UFRJ), RJ (Brazil). Instituto de Física

2017-07-01

A well know way for best comprehension of radiation scattering during a radiography is to map exposure over the space around the source and sample. This map is done measuring exposure in points regularly spaced, it means, measurement will be placed in localization chosen by increasing a regular steps from a starting point, along the x, y and z axes or even radial and angular coordinates. However, it is not always possible to maintain the accuracy of the steps throughout the entire space, or there will be regions of difficult access where the regularity of the steps will be impaired. This work intended to use some interpolation techniques that work with irregular steps, and to compare their results and their limits. It was firstly done angular coordinates, and tested in lack of some points. Later, in the same data was performed the Delaunay tessellation interpolation ir order to compare. Computational and graphic treatments was done with the GNU OCTAVE software and its image-processing package. Real data was acquired from a bunker where a 6 MeV betatron can be used to produce radiation scattering. (author)

20. Interpolation on the manifold of K component GMMs.

Science.gov (United States)

Kim, Hyunwoo J; Adluru, Nagesh; Banerjee, Monami; Vemuri, Baba C; Singh, Vikas

2015-12-01

Probability density functions (PDFs) are fundamental objects in mathematics with numerous applications in computer vision, machine learning and medical imaging. The feasibility of basic operations such as computing the distance between two PDFs and estimating a mean of a set of PDFs is a direct function of the representation we choose to work with. In this paper, we study the Gaussian mixture model (GMM) representation of the PDFs motivated by its numerous attractive features. (1) GMMs are arguably more interpretable than, say, square root parameterizations (2) the model complexity can be explicitly controlled by the number of components and (3) they are already widely used in many applications. The main contributions of this paper are numerical algorithms to enable basic operations on such objects that strictly respect their underlying geometry. For instance, when operating with a set of K component GMMs, a first order expectation is that the result of simple operations like interpolation and averaging should provide an object that is also a K component GMM. The literature provides very little guidance on enforcing such requirements systematically. It turns out that these tasks are important internal modules for analysis and processing of a field of ensemble average propagators (EAPs), common in diffusion weighted magnetic resonance imaging. We provide proof of principle experiments showing how the proposed algorithms for interpolation can facilitate statistical analysis of such data, essential to many neuroimaging studies. Separately, we also derive interesting connections of our algorithm with functional spaces of Gaussians, that may be of independent interest.