Accurate nonlocal theory for cascaded quadratic soliton compression
DEFF Research Database (Denmark)
Bache, Morten; Bang, Ole; Moses, Jeffrey
2007-01-01
We study soliton compression in bulk quadratic nonlinear materials at 800 nm, where group-velocity mismatch dominates. We develop a nonlocal theory showing that efficient compression depends strongly on characteristic nonlocal time scales related to pulse dispersion....
Cascaded Quadratic Soliton Compression in Waveguide Structures
DEFF Research Database (Denmark)
Guo, Hairun
between the Kerr nonlinear effects and the dispersive effects in the medium. A Kerr-like nonlinearity is produced through the cascaded phase mismatched quadratic process, e.g. the second harmonic generation process, which can be flexibly tuned in both the sign and the amplitude, making possible a strong......-phase-matching technology is not necessarily needed. In large-RI-changed waveguides, CQSC is extended to the mid-infrared range to generate single-cycle pulses with purely nonlinear interactions, since an all-normal dispersion profile could be achieved within the guidance band. We believe that CQSC in quadratic waveguides...
Limits to compression with cascaded quadratic soliton compressors
DEFF Research Database (Denmark)
Bache, Morten; Bang, Ole; Krolikowski, Wieslaw
2008-01-01
We study cascaded quadratic soliton compressors and address the physical mechanisms that limit the compression. A nonlocal model is derived, and the nonlocal response is shown to have an additional oscillatory component in the nonstationary regime when the group-velocity mismatch (GVM) is strong....... This inhibits efficient compression. Raman-like perturbations from the cascaded nonlinearity, competing cubic nonlinearities, higher-order dispersion, and soliton energy may also limit compression, and through realistic numerical simulations we point out when each factor becomes important. We find......, the simulations show that reaching single-cycle duration is ultimately inhibited by competing cubic nonlinearities as well as dispersive waves, that only show up when taking higher-order dispersion into account....
DEFF Research Database (Denmark)
Bache, Morten; Moses, J.; Wise, F.W.
2010-01-01
Erratum for [M. Bache, J. Moses, and F. W. Wise, "Scaling laws for soliton pulse compression by cascaded quadratic nonlinearities," J. Opt. Soc. Am. B 24, 2752-2762 (2007)].......Erratum for [M. Bache, J. Moses, and F. W. Wise, "Scaling laws for soliton pulse compression by cascaded quadratic nonlinearities," J. Opt. Soc. Am. B 24, 2752-2762 (2007)]....
DEFF Research Database (Denmark)
Bache, Morten; Moses, Jeffrey; Wise, Frank W.
2008-01-01
The output of a high-power femtosecond fiber laser is typically 300 fs with a wavelength around $\\lambda=1030-1060$ nm. Our numerical simulations show that cascaded quadratic soliton compression in bulk LiNbO$_3$ can compress such pulses to below 100 fs.......The output of a high-power femtosecond fiber laser is typically 300 fs with a wavelength around $\\lambda=1030-1060$ nm. Our numerical simulations show that cascaded quadratic soliton compression in bulk LiNbO$_3$ can compress such pulses to below 100 fs....
DEFF Research Database (Denmark)
Zeng, Xianglong; Guo, Hairun; Zhou, Binbin
2012-01-01
We propose an efficient approach to improve few-cycle soliton compression with cascaded quadratic nonlinearities by using an engineered multi-section structure of the nonlinear crystal. By exploiting engineering of the cascaded quadratic nonlinearities, in each section soliton compression...... with a low effective order is realized, and high-quality few-cycle pulses with large compression factors are feasible. Each subsequent section is designed so that the compressed pulse exiting the previous section experiences an overall effective self-defocusing cubic nonlinearity corresponding to a modest...... soliton order, which is kept larger than unity to ensure further compression. This is done by increasing the cascaded quadratic nonlinearity in the new section with an engineered reduced residual phase mismatch. The low soliton orders in each section ensure excellent pulse quality and high efficiency...
Quadratic spatial soliton interactions
Jankovic, Ladislav
Quadratic spatial soliton interactions were investigated in this Dissertation. The first part deals with characterizing the principal features of multi-soliton generation and soliton self-reflection. The second deals with two beam processes leading to soliton interactions and collisions. These subjects were investigated both theoretically and experimentally. The experiments were performed by using potassium niobate (KNBO 3) and periodically poled potassium titanyl phosphate (KTP) crystals. These particular crystals were desirable for these experiments because of their large nonlinear coefficients and, more importantly, because the experiments could be performed under non-critical-phase-matching (NCPM) conditions. The single soliton generation measurements, performed on KNBO3 by launching the fundamental component only, showed a broad angular acceptance bandwidth which was important for the soliton collisions performed later. Furthermore, at high input intensities multi-soliton generation was observed for the first time. The influence on the multi-soliton patterns generated of the input intensity and beam symmetry was investigated. The combined experimental and theoretical efforts indicated that spatial and temporal noise on the input laser beam induced multi-soliton patterns. Another research direction pursued was intensity dependent soliton routing by using of a specially engineered quadratically nonlinear interface within a periodically poled KTP sample. This was the first time demonstration of the self-reflection phenomenon in a system with a quadratic nonlinearity. The feature investigated is believed to have a great potential for soliton routing and manipulation by engineered structures. A detailed investigation was conducted on two soliton interaction and collision processes. Birth of an additional soliton resulting from a two soliton collision was observed and characterized for the special case of a non-planar geometry. A small amount of spiraling, up to 30
DEFF Research Database (Denmark)
Bache, Morten; Wise, Frank W.
2010-01-01
The output pulses of a commercial high-power femtosecond fiber laser or amplifier are typically around 300–500 fs with wavelengths of approximately 1030 nm and tens of microjoules of pulse energy. Here, we present a numerical study of cascaded quadratic soliton compression of such pulses in LiNbO3....... However, the strong group-velocity dispersion implies that the pulses can achieve moderate compression to durations of less than 130 fs in available crystal lengths. Most of the pulse energy is conserved because the compression is moderate. The effects of diffraction and spatial walk-off are addressed......, and in particular the latter could become an issue when compressing such long crystals (around 10 cm long). We finally show that the second harmonic contains a short pulse locked to the pump and a long multi-picosecond red-shifted detrimental component. The latter is caused by the nonlocal effects...
Designing quadratic nonlinear photonic crystal fibers for soliton compression to few-cycle pulses
DEFF Research Database (Denmark)
Bache, Morten; Moses, Jeffrey; Lægsgaard, Jesper
2007-01-01
phase shifts accessible. This self-defocusing nonlinearity can be used to compress a pulse when combined with normal dispersion, and problems normally encountered due to self-focusing in cubic media are avoided. Thus, having no power limit, in bulk media a self-defocusing soliton compressor can create...... high-energy near single-cycle fs pulses (Liu et al., 2006). However, the group-velocity mismatch (GVM) between the FW and second harmonic (SH), given by the inverse group velocity difference d12=1/Vg,1 - 1/Vg,2, limits the pulse quality and compression ratio. Especially very short input pulses (...
Impurity solitons with quadratic nonlinearities
DEFF Research Database (Denmark)
Clausen, Carl A. Balslev; Torres, Juan P-; Torner, Lluis
1998-01-01
We fmd families of solitary waves mediated by parametric mixing in quadratic nonlinear media that are localized at point-defect impurities. Solitons localized at attractive impurities are found to be dynamically stable. It is shown that localization at the impurity modifies strongly the soliton...
Solitons in quadratic nonlinear photonic crystals
DEFF Research Database (Denmark)
Corney, Joel Frederick; Bang, Ole
2001-01-01
We study solitons in one-dimensional quadratic nonlinear photonic crystals with modulation of both the linear and nonlinear susceptibilities. We derive averaged equations that include induced cubic nonlinearities, which can be defocusing, and we numerically find previously unknown soliton families....... Because of these induced cubic terms, solitons still exist even when the effective quadratic nonlinearity vanishes and conventional theory predicts that there can be no soliton. We demonstrate that both bright and dark forms of these solitons can propagate stably....
DEFF Research Database (Denmark)
Bache, Morten
2009-01-01
The dispersion of index-guiding microstructured polymer optical fibers is calculated for second-harmonic generation. The quadratic nonlinearity is assumed to come from poling of the polymer, which in this study is chosen to be the cyclic olefin copolymer Topas. We found a very large phase mismatc...
Walking solitons in quadratic nonlinear media
Torner Sabata, Lluís; Mazilu, D; Mihalache, Dumitru
1996-01-01
We study self-action of light in parametric wave interactions in nonlinear quadratic media. We show the existence of stationary solitons in the presence of Poynting vector beam walk-off or different group velocities between the waves. We discover that the new solitons constitute a two-parameter family, and they exist for different wave intensities and transverse velocities. We discuss the properties of the walking solitons and their experimental implications. Peer Reviewed
Quadratic soliton self-reflection at a quadratically nonlinear interface
Jankovic, Ladislav; Kim, Hongki; Stegeman, George; Carrasco, Silvia; Torner, Lluis; Katz, Mordechai
2003-11-01
The reflection of bulk quadratic solutions incident onto a quadratically nonlinear interface in periodically poled potassium titanyl phosphate was observed. The interface consisted of the boundary between two quasi-phase-matched regions displaced from each other by a half-period. At high intensities and small angles of incidence the soliton is reflected.
Stationary walking solitons in bulk quadratic nonlinear media
Mihalache, Dumitru; Mazilu, D; Crasonavn, L C; Torner Sabata, Lluís
1997-01-01
We study the mutual trapping of fundamental and second-harmonic light beams propagating in bulk quadratic nonlinear media in the presence of Poynting vector beam walk-off. We show numerically the existence of a two-parameter family of (2 + 1)-dimensional stationary, spatial walking solitons. We have found that the solitons exist at various values of material parameters with different wave intensities and soliton velocities. We discuss the differences between (2 + 1) and (1 + 1)-dimensional wa...
Soliton interaction in quadratic and cubic bulk media
DEFF Research Database (Denmark)
Johansen, Steffen Kjær; Bang, Ole
2000-01-01
Summary form only given. The understanding of how and to what extend the cubic nonlinearity affects beam propagation and spatial soliton formation in quadratic media is of vital importance in fundamental and applied nonlinear physics. We consider beam propagation under type-I SHG conditions...... in lossless bulk second order nonlinear optical materials with a nonvanishing third order nonlinearity. It is known that in pure second order systems a single soliton can never collapse whereas in systems with both nonlinearities and that stable single soliton propagation can only in some circumstances...
Spatiotemporal solitons in quadratic nonlinear media
Indian Academy of Sciences (India)
Optical solitons are localized electromagnetic waves that propagate stably in .... conversion generates a nonlinear phase shift ∆ΦNL at the FH frequency. ... to incidence on the SHG crystal (lithium iodate or barium borate, cut for type-I interac-.
Generation and dynamics of quadratic birefringent spatial gap solitons
International Nuclear Information System (INIS)
Anghel-Vasilescu, P.; Dorignac, J.; Geniet, F.; Leon, J.; Taki, A.
2011-01-01
A method is proposed to generate and study the dynamics of spatial light solitons in a birefringent medium with quadratic nonlinearity. Although no analytical expression for propagating solitons has been obtained, our numerical simulations show the existence of stable localized spatial solitons in the frequency forbidden band gap of the medium. The dynamics of these objects is quite rich and manifests for instance elastic reflections, or inelastic collisions where two solitons merge and propagate as a single solitary wave. We derive the dynamics of the slowly varying envelopes of the three fields (second harmonic pump and two-component signal) and study this new system theoretically. We show that it does present a threshold for nonlinear supratransmission that can be calculated from a series expansion approach with a very high accuracy. Specific physical implications of our theoretical predictions are illustrated on LiGaTe 2 (LGT) crystals. Once irradiated by a cw laser beam of 10 μm wavelength, at an incidence beyond the extinction angle, such crystals will transmit light, in the form of spatial solitons generated in the nonlinear regime above the nonlinear supratransmission threshold.
DEFF Research Database (Denmark)
Esbensen, B.K.; Bache, Morten; Krolikowski, W.
2012-01-01
We employ the formal analogy between quadratic and nonlocal solitons to investigate analytically the properties of solitons and soliton bound states in second-harmonic generation in the regime of negative diffraction or dispersion of the second harmonic. We show that in the nonlocal description...... this regime corresponds to a periodic nonlocal response function. We then use the strongly nonlocal approximation to find analytical solutions of the families of single bright solitons and their bound states in terms of Mathieu functions....
Mismatch management for optical and matter-wave quadratic solitons
International Nuclear Information System (INIS)
Driben, R.; Oz, Y.; Malomed, B. A.; Gubeskys, A.; Yurovsky, V. A.
2007-01-01
We propose a way to control solitons in χ (2) (quadratically nonlinear) systems by means of periodic modulation imposed on the phase-mismatch parameter ('mismatch management', MM). It may be realized in the cotransmission of fundamental-frequency (FF) and second-harmonic (SH) waves in a planar optical waveguide via a long-period modulation of the usual quasi-phase-matching pattern of ferroelectric domains. In an altogether different physical setting, the MM may also be implemented by dint of the Feshbach resonance in a harmonically modulated magnetic field in a hybrid atomic-molecular Bose-Einstein condensate (BEC), with the atomic and molecular mean fields (MFs) playing the roles of the FF and SH, respectively. Accordingly, the problem is analyzed in two different ways. First, in the optical model, we identify stability regions for spatial solitons in the MM system, in terms of the MM amplitude and period, using the MF equations for spatially inhomogeneous configurations. In particular, an instability enclave is found inside the stability area. The robustness of the solitons is also tested against variation of the shape of the input pulse, and a threshold for the formation of stable solitons is found in terms of the power. Interactions between stable solitons are virtually unaffected by the MM. The second method (parametric approximation), going beyond the MF description, is developed for spatially homogeneous states in the BEC model. It demonstrates that the MF description is valid for large modulation periods, while, at smaller periods, non-MF components acquire gain, which implies destruction of the MF under the action of the high-frequency MM
Nonlinear compression of optical solitons
Indian Academy of Sciences (India)
linear pulse propagation is the nonlinear Schrödinger (NLS) equation [1]. There are ... Optical pulse compression finds important applications in optical fibres. The pulse com ..... to thank CSIR, New Delhi for financial support in the form of SRF.
Observation of soliton compression in silicon photonic crystals
Blanco-Redondo, A.; Husko, C.; Eades, D.; Zhang, Y.; Li, J.; Krauss, T.F.; Eggleton, B.J.
2014-01-01
Solitons are nonlinear waves present in diverse physical systems including plasmas, water surfaces and optics. In silicon, the presence of two photon absorption and accompanying free carriers strongly perturb the canonical dynamics of optical solitons. Here we report the first experimental demonstration of soliton-effect pulse compression of picosecond pulses in silicon, despite two photon absorption and free carriers. Here we achieve compression of 3.7 ps pulses to 1.6 ps with photonic crystal waveguide and an ultra-sensitive frequency-resolved electrical gating technique to detect the ultralow energies in the nanostructured device. Strong agreement with a nonlinear Schrödinger model confirms the measurements. These results further our understanding of nonlinear waves in silicon and open the way to soliton-based functionalities in complementary metal-oxide-semiconductor-compatible platforms. PMID:24423977
Free-beam soliton self-compression in air
Voronin, A. A.; Mitrofanov, A. V.; Sidorov-Biryukov, D. A.; Fedotov, A. B.; Pugžlys, A.; Panchenko, V. Ya; Shumakova, V.; Ališauskas, S.; Baltuška, A.; Zheltikov, A. M.
2018-02-01
We identify a physical scenario whereby soliton transients generated in freely propagating laser beams within the regions of anomalous dispersion in air can be compressed as a part of their free-beam spatiotemporal evolution to yield few-cycle mid- and long-wavelength-infrared field waveforms, whose peak power is substantially higher than the peak power of the input pulses. We show that this free-beam soliton self-compression scenario does not require ionization or laser-induced filamentation, enabling high-throughput self-compression of mid- and long-wavelength-infrared laser pulses within a broad range of peak powers from tens of gigawatts up to the terawatt level. We also demonstrate that this method of pulse compression can be extended to long-range propagation, providing self-compression of high-peak-power laser pulses in atmospheric air within propagation ranges as long as hundreds of meters, suggesting new ways towards longer-range standoff detection and remote sensing.
Multiple soliton compression stages in mid-IR gas-filled hollow-core fibers
DEFF Research Database (Denmark)
Habib, Md Selim; Markos, Christos; Bang, Ole
2017-01-01
The light confinement inside hollow-core (HC) fibers filled with noble gases constitutes an efficient route to study interesting soliton-plasma dynamics [1]. More recently, plasma-induced soliton splitting at the self-compression point was observed in a gas-filled fiber in the near-IR [2]. However...
Theory of adiabatic pressure-gradient soliton compression in hollow-core photonic bandgap fibers
DEFF Research Database (Denmark)
Lægsgaard, Jesper; Roberts, John
2009-01-01
Adiabatic soliton compression by means of a pressure gradient in a hollow-core photonic bandgap fiber is investigated theoretically and numerically. It is shown that the dureation of the compressed pulse is limited mainly by the interplay between third-order dispersion and the Raman-induced soliton...... frequency shift. Analytical expressions for this limit are derived and compared with results of detailed numerical simulations for a realistic fiber structure....
International Nuclear Information System (INIS)
Bullough, R.K.
1978-01-01
Two sorts of solitons are considered - the classical soliton, a solitary wave which shows great stability in collision with other solitary waves, and the quantal, that is quantised, soliton. Solitons as mathematical objects have excited theoreticians because of their wide ranging applications in physics. They appear as solutions of particular nonlinear wave equations which often have a certain universal significance. The importance of solitons in modern physics is discussed with especial reference to; nonlinearity and solitons, the nonlinear Schroedinger equation, the sine-Gordon equation, notional spins and particle physics. (U.K.)
DEFF Research Database (Denmark)
Liu, Xing; Zhou, Binbin; Guo, Hairun
2015-01-01
in a quadratic nonlinear crystal (beta-barium borate) in the normal dispersion regime due to cascaded (phase-mismatched) second-harmonic generation, and the mid-IR converted wave is formed in the anomalous dispersion regime between. lambda = 2.2-2.4 mu m as a resonant dispersive wave. This process relies...... on nondegenerate four-wave mixing mediated by an effective negative cross-phase modulation term caused by cascaded soliton-probe sum-frequency generation. (C) 2015 Optical Society of America...
Scaling relations for soliton compression and dispersive-wave generation in tapered optical fibers
DEFF Research Database (Denmark)
Lægsgaard, Jesper
2018-01-01
In this paper, scaling relations for soliton compression in tapered optical fibers are derived and discussed. The relations allow simple and semi-accurate estimates of the compression point and output noise level, which is useful, for example, for tunable dispersive-wave generation with an agile ...
Guo, Boling; Wang, Yu-Feng; Liu, Nan
2018-01-01
This book provides an up-to-date overview of mathematical theories and research results on solitons, presenting related mathematical methods and applications as well as numerical experiments. Different types of soliton equations are covered along with their dynamical behaviors and applications from physics, making the book an essential reference for researchers and graduate students in applied mathematics and physics.
International Nuclear Information System (INIS)
Ventura, J.
1983-01-01
An introductory and partial discussion on the conceptual news and the multiple consequences which originate from the existence of solitons is presented. Preliminary calculations related with the helium superfluid theory are discussed. (L.C.) [pt
Spatial Solitons and Induced Kerr Effects in Quasi-Phase-Matched Quadratic Media
DEFF Research Database (Denmark)
Clausen, Carl A. Balslev; Bang, Ole; Kivshar, Yu.S.
1997-01-01
We show that the evolution of the average intensity of cw beams in a quasi-phase-matched quadratic (or chi((2))) medium is strongly influenced by induced Kerr effects, such as self- and cross-phase modulation. We prove the existence of rapidly oscillating solitary waves (a spatial analog of the g......We show that the evolution of the average intensity of cw beams in a quasi-phase-matched quadratic (or chi((2))) medium is strongly influenced by induced Kerr effects, such as self- and cross-phase modulation. We prove the existence of rapidly oscillating solitary waves (a spatial analog...
Trullinger, SE; Pokrovsky, VL
1986-01-01
In the twenty years since Zabusky and Kruskal coined the term ``soliton'', this concept changed the outlook on certain types of nonlinear phenomena and found its way into all branches of physics. The present volume deals with a great variety of applications of the new concept in condensed-matter physics, which is particularly reached in experimentally observable occurrences. The presentation is not centred around the mathematical aspects; the emphasis is on the physical nature of the nonlinear phenomena occurring in particular situations.With its emphasis on concrete, mostly experime
Millikan, Brian; Dutta, Aritra; Sun, Qiyu; Foroosh, Hassan
2017-01-01
Target detection of potential threats at night can be deployed on a costly infrared focal plane array with high resolution. Due to the compressibility of infrared image patches, the high resolution requirement could be reduced with target detection capability preserved. For this reason, a compressive midwave infrared imager (MWIR) with a low-resolution focal plane array has been developed. As the most probable coefficient indices of the support set of the infrared image patches could be learned from the training data, we develop stochastically trained least squares (STLS) for MWIR image reconstruction. Quadratic correlation filters (QCF) have been shown to be effective for target detection and there are several methods for designing a filter. Using the same measurement matrix as in STLS, we construct a compressed quadratic correlation filter (CQCF) employing filter designs for compressed infrared target detection. We apply CQCF to the U.S. Army Night Vision and Electronic Sensors Directorate dataset. Numerical simulations show that the recognition performance of our algorithm matches that of the standard full reconstruction methods, but at a fraction of the execution time.
Millikan, Brian
2017-05-02
Target detection of potential threats at night can be deployed on a costly infrared focal plane array with high resolution. Due to the compressibility of infrared image patches, the high resolution requirement could be reduced with target detection capability preserved. For this reason, a compressive midwave infrared imager (MWIR) with a low-resolution focal plane array has been developed. As the most probable coefficient indices of the support set of the infrared image patches could be learned from the training data, we develop stochastically trained least squares (STLS) for MWIR image reconstruction. Quadratic correlation filters (QCF) have been shown to be effective for target detection and there are several methods for designing a filter. Using the same measurement matrix as in STLS, we construct a compressed quadratic correlation filter (CQCF) employing filter designs for compressed infrared target detection. We apply CQCF to the U.S. Army Night Vision and Electronic Sensors Directorate dataset. Numerical simulations show that the recognition performance of our algorithm matches that of the standard full reconstruction methods, but at a fraction of the execution time.
Spatial solitons in nonlinear photonic crystals
DEFF Research Database (Denmark)
Corney, Joel Frederick; Bang, Ole
2000-01-01
We study solitons in one-dimensional quadratic nonlinear photonic crystals with periodic linear and nonlinear susceptibilities. We show that such crystals support stable bright and dark solitons, even when the effective quadratic nonlinearity is zero.......We study solitons in one-dimensional quadratic nonlinear photonic crystals with periodic linear and nonlinear susceptibilities. We show that such crystals support stable bright and dark solitons, even when the effective quadratic nonlinearity is zero....
DEFF Research Database (Denmark)
Bache, Morten; Guo, Hairun; Zhou, Binbin
2013-01-01
We discuss a novel method for generating octave-spanning supercontinua and few-cycle pulses in the important mid-IR wavelength range. The technique relies on strongly phase-mismatched cascaded second-harmonic generation (SHG) in mid-IR nonlinear frequency conversion crystals. Importantly we here...... of the promising crystals: in one case soliton pulse compression from 50 fs to 15 fs (1.5 cycles) at 3.0 μm is achieved, and at the same time a 3-cycle dispersive wave at 5.0 μm is formed that can be isolated using a long-pass filter. In another example we show that extremely broadband supercontinua can form...
Probe-controlled soliton frequency shift in the regime of optical event horizon.
Gu, Jie; Guo, Hairun; Wang, Shaofei; Zeng, Xianglong
2015-08-24
In optical analogy of the event horizon, temporal pulse collision and mutual interactions are mainly between an intense solitary wave (soliton) and a dispersive probe wave. In such a regime, here we numerically investigate the probe-controlled soliton frequency shift as well as the soliton self-compression. In particular, in the dispersion landscape with multiple zero dispersion wavelengths, bi-directional soliton spectral tunneling effects is possible. Moreover, we propose a mid-infrared soliton self-compression to the generation of few-cycle ultrashort pulses, in a bulk of quadratic nonlinear crystals in contrast to optical fibers or cubic nonlinear media, which could contribute to the community with a simple and flexible method to experimental implementations.
DEFF Research Database (Denmark)
Zhou, Binbin; Guo, Hairun; Bache, Morten
2015-01-01
Generating energetic femtosecond mid-IR pulses is crucial for ultrafast spectroscopy, and currently relies on parametric processes that, while efficient, are also complex. Here we experimentally show a simple alternative that uses a single pump wavelength without any pump synchronization and with...... by using large-aperture crystals. The technique can readily be implemented with other crystals and laser wavelengths, and can therefore potentially replace current ultrafast frequency-conversion processes to the mid-IR....... and without critical phase-matching requirements. Pumping a bulk quadratic nonlinear crystal (unpoled LiNbO3 cut for noncritical phase-mismatched interaction) with sub-mJ near-IR 50-fs pulses, tunable and broadband (∼ 1,000 cm−1) mid-IR pulses around 3.0 μm are generated with excellent spatio-temporal pulse...... quality, having up to 10.5 μJ energy (6.3% conversion). The mid-IR pulses are dispersive waves phase-matched to near-IR self-defocusing solitons created by the induced self-defocusing cascaded nonlinearity. This process is filament-free and the input pulse energy can therefore be scaled arbitrarily...
Compressive and rarefactive dust-ion-acoustic Gardner solitons in a multi-component dusty plasma
International Nuclear Information System (INIS)
Ema, S. A.; Ferdousi, M.; Mamun, A. A.
2015-01-01
The linear and nonlinear propagations of dust-ion-acoustic solitary waves (DIASWs) in a collisionless four-component unmagnetized dusty plasma system containing nonextensive electrons, inertial negative ions, Maxwellian positive ions, and negatively charged static dust grains have been investigated theoretically. The linear properties are analyzed by using the normal mode analysis and the reductive perturbation method is used to derive the nonlinear equations, namely, the Korteweg-de Vries (K-dV), the modified K-dV (mK-dV), and the Gardner equations. The basic features (viz., polarity, amplitude, width, etc.) of Gardner solitons (GS) are found to exist beyond the K-dV limit and these dust-ion-acoustic GS are qualitatively different from the K-dV and mK-dV solitons. It is observed that the basic features of DIASWs are affected by various plasma parameters (viz., electron nonextensivity, negative-to-positive ion number density ratio, electron-to-positive ion number density ratio, electron-to-positive ion temperature ratio, etc.) of the considered plasma system. The findings of our results obtained from this theoretical investigation may be useful in understanding the nonlinear structures and the characteristics of DIASWs propagating in both space and laboratory plasmas
Compression, splitting and switching of bright and dark solitons in nonlinear directional coupler
International Nuclear Information System (INIS)
Mandal, Basanti; Chowdhury, A. Roy
2006-01-01
A detailed numerical simulation of the switching, compression and splitting characteristics of various solitary pulses (bright, grey and dark) are carried out by a direct solution of the associated coupled NLS equation. Important physical parameters of the out going pulse such as, intensity distribution, root mean square spatial and temporal width and chirp are calculated. Both the cases of symmetric and asymmetric couplers are considered. The important phenomenon of periodic power transfer from one channel to the other unfolds. The compression varies with the type of pulse launched in the initial channel. It is observed that the chirping of the initial pulse has an optimum value and it vary quite noticeably with the character of the pulse and couplers, symmetric and asymmetric
Zhang, Xuyan; Zhang, Zhiyao; Wang, Shubing; Liang, Dong; Li, Heping; Liu, Yong
2018-03-01
We propose and demonstrate an approach that can achieve high-resolution quantization by employing soliton self-frequency shift and spectral compression. Our approach is based on a bi-directional comb-fiber architecture which is composed of a Sagnac-loop-based mirror and a comb-like combination of N sections of interleaved single-mode fibers and high nonlinear fibers. The Sagnac-loop-based mirror placed at the terminal of a bus line reflects the optical pulses back to the bus line to achieve additional N-stage spectral compression, thus single-stage soliton self-frequency shift (SSFS) and (2 N - 1)-stage spectral compression are realized in the bi-directional scheme. The fiber length in the architecture is numerically optimized, and the proposed quantization scheme is evaluated by both simulation and experiment in the case of N = 2. In the experiment, a quantization resolution of 6.2 bits is obtained, which is 1.2-bit higher than that of its uni-directional counterpart.
DEFF Research Database (Denmark)
Zhou, Binbin; Guo, Hairun; Bache, Morten
2014-01-01
Experimental data of femtosecond thick-crystal second-harmonic generation show that when tuning away from phase matching, a dominating narrow spectral peak appears in the second harmonic that can be tuned over hundreds of nanometers by changing the phase-mismatch parameter. Traditional theory...... and the nonlocal theory indirectly proves that we have observed a soliton-induced nonlocal resonance. The soliton exists in the self-defocusing regime of the cascaded nonlinear interaction and in the normal dispersion regime of the crystal, and needs high input intensities to become excited....
Spatiotemporal optical solitons
International Nuclear Information System (INIS)
Malomed, Boris A; Mihalache, Dumitru; Wise, Frank; Torner, Lluis
2005-01-01
In the course of the past several years, a new level of understanding has been achieved about conditions for the existence, stability, and generation of spatiotemporal optical solitons, which are nondiffracting and nondispersing wavepackets propagating in nonlinear optical media. Experimentally, effectively two-dimensional (2D) spatiotemporal solitons that overcome diffraction in one transverse spatial dimension have been created in quadratic nonlinear media. With regard to the theory, fundamentally new features of light pulses that self-trap in one or two transverse spatial dimensions and do not spread out in time, when propagating in various optical media, were thoroughly investigated in models with various nonlinearities. Stable vorticity-carrying spatiotemporal solitons have been predicted too, in media with competing nonlinearities (quadratic-cubic or cubic-quintic). This article offers an up-to-date survey of experimental and theoretical results in this field. Both achievements and outstanding difficulties are reviewed, and open problems are highlighted. Also briefly described are recent predictions for stable 2D and 3D solitons in Bose-Einstein condensates supported by full or low-dimensional optical lattices. (review article)
Fay, Temple H.
2012-01-01
Quadratic friction involves a discontinuous damping term in equations of motion in order that the frictional force always opposes the direction of the motion. Perhaps for this reason this topic is usually omitted from beginning texts in differential equations and physics. However, quadratic damping is more realistic than viscous damping in many…
Solitonic Dispersive Hydrodynamics: Theory and Observation
Maiden, Michelle D.; Anderson, Dalton V.; Franco, Nevil A.; El, Gennady A.; Hoefer, Mark A.
2018-04-01
Ubiquitous nonlinear waves in dispersive media include localized solitons and extended hydrodynamic states such as dispersive shock waves. Despite their physical prominence and the development of thorough theoretical and experimental investigations of each separately, experiments and a unified theory of solitons and dispersive hydrodynamics are lacking. Here, a general soliton-mean field theory is introduced and used to describe the propagation of solitons in macroscopic hydrodynamic flows. Two universal adiabatic invariants of motion are identified that predict trapping or transmission of solitons by hydrodynamic states. The result of solitons incident upon smooth expansion waves or compressive, rapidly oscillating dispersive shock waves is the same, an effect termed hydrodynamic reciprocity. Experiments on viscous fluid conduits quantitatively confirm the soliton-mean field theory with broader implications for nonlinear optics, superfluids, geophysical fluids, and other dispersive hydrodynamic media.
Escape angles in bulk chi((2)) soliton interactions
DEFF Research Database (Denmark)
Johansen, Steffen Kjær; Bang, Ole; Sørensen, Mads Peter
2002-01-01
We develop a theory for nonplanar interaction between two identical type I spatial solitons propagating at opposite, but arbitrary transverse angles in quadratic nonlinear (or so-called chi((2))) bulk, media. We predict quantitatively the outwards escape angle, below which the solitons turn around...
Reflection of ion acoustic solitons in a plasma having negative ions
International Nuclear Information System (INIS)
Chauhan, S.S.; Malik, H.K.; Dahiya, R.P.
1996-01-01
Reflection of compressive and rarefactive ion acoustic solitons propagating in an inhomogeneous plasma in the presence of negative ions is investigated. Modified Korteweg endash deVries equations for incident and reflected solitons are derived and solved. The amplitude of incident and reflected solitons increases with negative to positive ion density ratio. With increasing density ratio, reflection of rarefactive solitons is reinforced whereas that of compressive solitons weakened. The rarefactive solitons are found to undergo stronger reflection than the compressive ones. copyright 1996 American Institute of Physics
International Nuclear Information System (INIS)
Aichelburg, P.C.; Embacher, F.
1987-01-01
In previous work solitons of N = 2 supergravity were described as test particles in an external supergravity field. In the present paper we derive the effective interaction of two solitons by inserting a classical soliton configuration for the background into the Lagrangian and apply a slow-motion and large-distance approximation. We obtain the interaction potential to lowest order that incorporates the effect of the supercharge. The resulting classical system is quantized and, as a final step, an effective quantum field theory is formulated. (Author)
Polishchuk, Alexander
2005-01-01
Quadratic algebras, i.e., algebras defined by quadratic relations, often occur in various areas of mathematics. One of the main problems in the study of these (and similarly defined) algebras is how to control their size. A central notion in solving this problem is the notion of a Koszul algebra, which was introduced in 1970 by S. Priddy and then appeared in many areas of mathematics, such as algebraic geometry, representation theory, noncommutative geometry, K-theory, number theory, and noncommutative linear algebra. The book offers a coherent exposition of the theory of quadratic and Koszul algebras, including various definitions of Koszulness, duality theory, Poincar�-Birkhoff-Witt-type theorems for Koszul algebras, and the Koszul deformation principle. In the concluding chapter of the book, they explain a surprising connection between Koszul algebras and one-dependent discrete-time stochastic processes.
Soliton-soliton effective interaction
International Nuclear Information System (INIS)
Maki, J.N.
1986-01-01
A scheme of semi-phenomenological quantization is proposed for the collision process of two equal size envelopes-solitons provided by nonlinear Schroedinger equation. The time advance due to two envelopes-solitons collision was determined. Considering the solitons as puntual particles and using the description of classical mechanics, the effective envelope soliton-envelope soliton attractive potential, denominated modified Poschl-Teller potential. The obtainment of this potential was possible using the information in from of system memory, done by an analytical expression of time delay. Such system was quantized using this effective potential in Schroeding equation. The S col matrix of two punctual bodies was determined, and it is shown that, in the limit of 1 2 2 /mN 4 it reproduces the exact S 2N matrix obtained from soliton packet wich incurs on another soliton packet. Every ones have the same mass, interacts by contact force between two bodies. These packets have only one bound state, i e, do not have excited states. It was verified that, using the S col matrix, the binding energy of ground state of the system can be obtained, which is coincident with 2N particles in the 1/N approximation. In this scheme infinite spurious bound states are found (M.C.K.) [pt
International Nuclear Information System (INIS)
Aichelburg, P.C.; Embacher, F.
1987-01-01
The motion of a soliton in a supergravity background configuration is studied. The dynamics of the soliton is desribed by a trajectory in curved N = 2 superspace. For the proposed Langrangian the moments, the constraints and the generators of local supertranslations are displayed. An additional local gauge symmetry is exhibited. Special emphasis is laid on the classical equations of motion. These turn out to be a supersymmetric generalization of Papapetrou's equation of motion for a spinning particle in a gravitational field. (Author)
International Nuclear Information System (INIS)
Friedberg, R.
1977-01-01
It is pointed out that the study of solitons offers a new departure for the problem of handling bound states in relativistic quantum field theory which has hampered development of a simple conventional model of hadrons. The principle is illustrated by the case of a quantum mechanical particle moving in two dimensions under the centrally symmetric and quasi-harmonic potential. Restriction is made to nontopological solitons. These ideas are applied to a model of hadrons. 10 references
Energy Technology Data Exchange (ETDEWEB)
Abram, I [Centre National d' Etudes des Telecommunications (CNET), 196 Avenue Henri Ravera, F-92220 Bagneux (France)
1999-02-01
Two of the most remarkable properties of light - squeezing and solitons - are being combined in a new generation of experiments that could revolutionize optics and communications. One area of application concerns the transmission and processing of classical (binary) information, in which the presence or absence of a soliton in a time-window corresponds to a ''1'' or ''0'', as in traditional optical-fibre communications. However, since solitons occur at fixed power levels, we do not have the luxury of being able to crank up the input power to improve the signal-to-noise ratio at the receiving end. Nevertheless, the exploitation of quantum effects such as squeezing could help to reduce noise and improve fidelity. In long-distance communications, where the signal is amplified every 50-100 kilometres or so, the soliton pulse is strongest just after the amplifier. Luckily this is where the bulk of the nonlinear interaction needed to maintain the soliton shape occurs. However, the pulse gets weaker as it propagates along the fibre, so the nonlinear interaction also becomes weakerand weaker. This means that dispersive effects become dominant until the next stage of amplification, where the nonlinearity takes over again. One problem is that quantum fluctuations in the amplifiers lead to random jumps in the central wavelength of the individual solitons, and this results in a random variation of the speed of individual solitons in the fibre. Several schemes have been devised to remove this excess noise and bring the train of solitons back to the orderly behaviour characteristic of a stable coherent state (e.g. the solitons could be passed through a spectral filter). Photon-number squeezing could also play a key role in solving this problem. For example, if the solitons are number-squeezed immediately after amplification, there will be a smaller uncertainty in the nonlinearity that keeps the soliton in shape and, therefore, there will also be less noise in the soliton. This
International Nuclear Information System (INIS)
Aichelburg, P.C.; Embacher, F.
1987-01-01
The Langrangian for a single free soliton in N = 2 supergravity as proposed in an earlier paper, is studied. We analyze the algebra of constraints and discuss the local gauge symmetry due to the existence of first class constraints. The classical motion as well as a Gupta-Bleuler type quantization are given. (Author)
Tchen, C. M.
1986-01-01
Theoretical and numerical works in atmospheric turbulence have used the Navier-Stokes fluid equations exclusively for describing large-scale motions. Controversy over the existence of an average temperature gradient for the very large eddies in the atmosphere suggested that a new theoretical basis for describing large-scale turbulence was necessary. A new soliton formalism as a fluid analogue that generalizes the Schrodinger equation and the Zakharov equations has been developed. This formalism, processing all the nonlinearities including those from modulation provided by the density fluctuations and from convection due to the emission of finite sound waves by velocity fluctuations, treats large-scale turbulence as coalescing and colliding solitons. The new soliton system describes large-scale instabilities more explicitly than the Navier-Stokes system because it has a nonlinearity of the gradient type, while the Navier-Stokes has a nonlinearity of the non-gradient type. The forced Schrodinger equation for strong fluctuations describes the micro-hydrodynamical state of soliton turbulence and is valid for large-scale turbulence in fluids and plasmas where internal waves can interact with velocity fluctuations.
Parveen, Shahida; Mahmood, Shahzad; Adnan, Muhammad; Qamar, Anisa
2016-09-01
The head on collision between two dust ion acoustic (DIA) solitary waves, propagating in opposite directions, is studied in an unmagnetized plasma constituting adiabatic ions, static dust charged (positively/negatively) grains, and non-inertial kappa distributed electrons. In the linear limit, the dispersion relation of the dust ion acoustic (DIA) solitary wave is obtained using the Fourier analysis. For studying characteristic head-on collision of DIA solitons, the extended Poincaré-Lighthill-Kuo method is employed to obtain Korteweg-de Vries (KdV) equations with quadratic nonlinearities and investigated the phase shifts in their trajectories after the interaction. It is revealed that only compressive solitary waves can exist for the positive dust charged concentrations while for negative dust charge concentrations both the compressive and rarefactive solitons can propagate in such dusty plasma. It is found that for specific sets of plasma parameters, the coefficient of nonlinearity disappears in the KdV equation for the negative dust charged grains. Therefore, the modified Korteweg-de Vries (mKdV) equations with cubic nonlinearity coefficient, and their corresponding phase shift and trajectories, are also derived for negative dust charged grains plasma at critical composition. The effects of different plasma parameters such as superthermality, concentration of positively/negatively static dust charged grains, and ion to electron temperature ratio on the colliding soliton profiles and their corresponding phase shifts are parametrically examined.
Nonlinear tunneling of optical soliton in 3 coupled NLS equation with symbolic computation
Energy Technology Data Exchange (ETDEWEB)
Mani Rajan, M.S., E-mail: senthilmanirajanofc@gmail.com [Department of Physics, Anna University, Madurai Region, Ramanathapuram (India); Mahalingam, A. [Department of Physics, Anna University, Chennai - 600 025 (India); Uthayakumar, A. [Department of Physics, Presidency College, Chennai - 600 005 (India)
2014-07-15
We investigated the soliton solution for N coupled nonlinear Schrödinger (CNLS) equations. These equations are coupled due to the cross-phase-modulation (CPM). Lax pair of this system is obtained via the Ablowitz–Kaup–Newell–Segur (AKNS) scheme and the corresponding Darboux transformation is constructed to derive the soliton solution. One and two soliton solutions are generated. Using two soliton solutions of 3 CNLS equation, nonlinear tunneling of soliton for both with and without exponential background has been discussed. Finally cascade compression of optical soliton through multi-nonlinear barrier has been discussed. The obtained results may have promising applications in all-optical devices based on optical solitons, study of soliton propagation in birefringence fiber systems and optical soliton with distributed dispersion and nonlinearity management. -- Highlights: •We consider the nonlinear tunneling of soliton in birefringence fiber. •3-coupled NLS (CNLS) equation with variable coefficients is considered. •Two soliton solutions are obtained via Darboux transformation using constructed Lax pair. •Soliton tunneling through dispersion barrier and well are investigated. •Finally, cascade compression of soliton has been achieved.
Induced Kerr effects and self-guided beams in quasi-phase-matched quadratic media [CBC4
DEFF Research Database (Denmark)
Clausen, Carl A. Balslev; Bang, Ole; Kivshar, Yuri S.
1997-01-01
We show that quasi-phase-matching of quadratic media induces Kerr effects, such as self- and cross-phase modulation, and leads to the existence of a novel class of solitary waves, QPM-solitons......We show that quasi-phase-matching of quadratic media induces Kerr effects, such as self- and cross-phase modulation, and leads to the existence of a novel class of solitary waves, QPM-solitons...
International Nuclear Information System (INIS)
Gopakumar, R.
2002-01-01
Though noncommutative field theories have been explored for several years, a resurgence of interest in it was sparked off after it was realised that they arise very naturally as limits of string theory in certain background fields. It became more plausible (at least to string theorists) that these nonlocal deformations of usual quantum field theories are consistent theories in themselves. This led to a detailed exploration of many of their classical and quantum properties. I will elaborate further on the string theory context in the next section. One of the consequences of this exploration was the discovery of novel classical solutions in noncommutative field theories. Since then much work has been done in exploring many of their novel properties. My lectures focussed on some specific aspects of these noncommutative solitons. They primarily reflect the topics that I have worked on and are not intended to be a survey of the large amount of work on this topic. We have tried to give a flavour of the physics that can be captured by the relatively elementary classical solutions of noncommutative field theories. We have seen in different contexts how these solitons are really simple manifestations of D-branes, possessing many of their important features. Though they have been primarily studied in the context of tachyon condensation, we saw that they can also shed some light on the resolution of singularities in spacetime by D-brane probes. In addition to other applications in string theory it is important at this stage to explore their presence in other systems with a strong magnetic field like the quantum hall effect
Energy Technology Data Exchange (ETDEWEB)
Gopakumar, R [Harish-Chandra Research Institute, Jhusi, Allahabad (India)
2002-05-15
Though noncommutative field theories have been explored for several years, a resurgence of interest in it was sparked off after it was realised that they arise very naturally as limits of string theory in certain background fields. It became more plausible (at least to string theorists) that these nonlocal deformations of usual quantum field theories are consistent theories in themselves. This led to a detailed exploration of many of their classical and quantum properties. I will elaborate further on the string theory context in the next section. One of the consequences of this exploration was the discovery of novel classical solutions in noncommutative field theories. Since then much work has been done in exploring many of their novel properties. My lectures focussed on some specific aspects of these noncommutative solitons. They primarily reflect the topics that I have worked on and are not intended to be a survey of the large amount of work on this topic. We have tried to give a flavour of the physics that can be captured by the relatively elementary classical solutions of noncommutative field theories. We have seen in different contexts how these solitons are really simple manifestations of D-branes, possessing many of their important features. Though they have been primarily studied in the context of tachyon condensation, we saw that they can also shed some light on the resolution of singularities in spacetime by D-brane probes. In addition to other applications in string theory it is important at this stage to explore their presence in other systems with a strong magnetic field like the quantum hall effect.
Soliton formation in hollow-core photonic bandgap fibers
DEFF Research Database (Denmark)
Lægsgaard, Jesper
2009-01-01
of an approximate scaling relation is tested. It is concluded that compression of input pulses of several ps duration and sub-MW peak power can lead to a formation of solitons with ∼100 fs duration and multi-megawatt peak powers. The dispersion slope of realistic hollow-core fibers appears to be the main obstacle......The formation of solitons upon compression of linearly chirped pulses in hollow-core photonic bandgap fibers is investigated numerically. The dependence of soliton duration on the chirp and power of the input pulse and on the dispersion slope of the fiber is investigated, and the validity...
Dynamical Instability and Soliton Concept
International Nuclear Information System (INIS)
Kartavenko, V.G.
1994-01-01
The problem of dynamical instability and clustering (stable fragments formation) in a breakup of excited nuclear systems are considered from the points of view of the soliton concept. It is noted that the volume (spinodal) instability can be associated with nonlinear terms, and the surface (Rayleigh-Taylor type) instability, with the dispersion terms in the evolution equations. The spinodal instability and the Rayleigh-Taylor instability may compensate each other and lead to stable quasi-soliton type objects. The simple analytical model is presented to illustrate this physical picture. The time evolution of an initially compressed cold nuclear system is analysed in the framework of the inverse mean-field method. It is demonstrated that the nonlinearity and dispersion terms of the evolution equations can lead to clusterization in the final channel. 8 p
Large amplitude ion-acoustic solitons in dusty plasmas
International Nuclear Information System (INIS)
Tiwari, R. S.; Jain, S. L.; Mishra, M. K.
2011-01-01
Characteristics of ion-acoustic soliton in dusty plasma, including the dynamics of heavily charged massive dust grains, are investigated following the Sagdeev Potential formalism. Retaining fourth order nonlinearities of electric potential in the expansion of the Sagdeev Potential in the energy equation for a pseudo particle and integrating the resulting energy equation, large amplitude soliton solution is determined. Variation of amplitude (A), half width (W) at half maxima and the product P = AW 2 of the Korteweg-deVries (KdV), dressed and large amplitude soliton as a function of wide range of dust concentration are numerically studied for recently observed parameters of dusty plasmas. We have also presented the region of existence of large amplitude ion-acoustic soliton in the dusty plasma by analyzing the structure of the pseudo potential. It is found that in the presence of positively charged dust grains, system supports only compressive solitons, on the other hand, in the presence of negatively charged dust grains, the system supports compressive solitons up to certain critical concentration of dust grains and above this critical concentration, the system can support rarefactive solitons also. The effects of dust concentration, charge, and mass of the dust grains, on the characteristics of KdV, dressed and large amplitude the soliton, i.e., amplitude (A), half width at half maxima (W), and product of amplitude (A) and half width at half maxima (P = AW 2 ), are discussed in detail
CHARACTERIZATION AND MODELING OF SOLITON TRANSMISSION AT 2.5 GB/S OVER 200 KM
Directory of Open Access Journals (Sweden)
KHALID A. S. AL-KHATEEB
2010-09-01
Full Text Available Soliton characteristics and soliton transmission have been simulated using a VPI simulator. Simulation was also used to construct and study a soliton communication system. Near soliton pulses emitted by an actively mode-locked laser is then compressed in a dispersion-compensating fiber (DCF to produce solitons. The effects of non-linearity and active pre-chirping of mode-locked laser diode sources were also investigated. Assessment on a modeled system using real data shows that propagation over 250 km at 2.5 Gb/s in standard fibers with 20 ps pulse widths is possible in the 1550 nm wavelength range.
Optimal Quadratic Programming Algorithms
Dostal, Zdenek
2009-01-01
Quadratic programming (QP) is one technique that allows for the optimization of a quadratic function in several variables in the presence of linear constraints. This title presents various algorithms for solving large QP problems. It is suitable as an introductory text on quadratic programming for graduate students and researchers
Withers, Christopher S.; Nadarajah, Saralees
2012-01-01
We show that there are exactly four quadratic polynomials, Q(x) = x [superscript 2] + ax + b, such that (x[superscript 2] + ax + b) (x[superscript 2] - ax + b) = (x[superscript 4] + ax[superscript 2] + b). For n = 1, 2, ..., these quadratic polynomials can be written as the product of N = 2[superscript n] quadratic polynomials in x[superscript…
Hydrodynamic optical soliton tunneling
Sprenger, P.; Hoefer, M. A.; El, G. A.
2018-03-01
A notion of hydrodynamic optical soliton tunneling is introduced in which a dark soliton is incident upon an evolving, broad potential barrier that arises from an appropriate variation of the input signal. The barriers considered include smooth rarefaction waves and highly oscillatory dispersive shock waves. Both the soliton and the barrier satisfy the same one-dimensional defocusing nonlinear Schrödinger (NLS) equation, which admits a convenient dispersive hydrodynamic interpretation. Under the scale separation assumption of nonlinear wave (Whitham) modulation theory, the highly nontrivial nonlinear interaction between the soliton and the evolving hydrodynamic barrier is described in terms of self-similar, simple wave solutions to an asymptotic reduction of the Whitham-NLS partial differential equations. One of the Riemann invariants of the reduced modulation system determines the characteristics of a soliton interacting with a mean flow that results in soliton tunneling or trapping. Another Riemann invariant yields the tunneled soliton's phase shift due to hydrodynamic interaction. Soliton interaction with hydrodynamic barriers gives rise to effects that include reversal of the soliton propagation direction and spontaneous soliton cavitation, which further suggest possible methods of dark soliton control in optical fibers.
Phononless soliton waves as early forerunners of crystalline material fracture
International Nuclear Information System (INIS)
Dubovskij, O.A.; Orlov, A.V.
2007-01-01
Phononless soliton waves of compression are shown to generate at a critical tension of crystals featuring real Lennard-Jones potential of interatomic interaction just before their fracture. A new method of nonlinear micro dynamics was applied to define the initial atomic displacements at high excitation energies. A solution is found that corresponds to a soliton wave running before the front of fracture. In a bounded crystal, the soliton being reflected from the crystal boundary passes the front of fracture and deforms while moving in the opposite direction. The amplitude and spectral characteristics of that type of soliton waves in crystals with a modified Lennard-Jones potential have been investigated. An approximate analytical solution was found for the soliton waves [ru
Soliton excitation in superlattice
International Nuclear Information System (INIS)
Mensah, S.Y.; Allotey, F.K.A.; Mensah, N.G.; Twum, A.K.
1995-10-01
Excitation of soliton in superlattice has been investigated theoretically. It is noted that the soliton velocity u and the length L depend on the amplitude E 0 and that an increase in the amplitude causes soliton width L to approach zero and the velocity u to that of light V in homogeneous medium. The characteristic parameters of soliton u, L and E 0 are related by expression u/L E 0 = ed/2(h/2π) which is constant depending only on the SL period d. It is observed also that the soliton has both energy E = 8V 2 (1 - u 2 /V 2 ) -1/2 and momentum P = u/V 2 E which makes it behave as relativistic free particle with rest energy 8V 2 . Its interaction with electrons can cause the soliton electric effect in SL. (author). 27 refs
Optical solitons and quasisolitons
International Nuclear Information System (INIS)
Zakharov, V.E.; Kuznetsov, E.A.
1998-01-01
Optical solitons and quasisolitons are investigated in reference to Cherenkov radiation. It is shown that both solitons and quasisolitons can exist, if the linear operator specifying their asymptotic behavior at infinity is sign-definite. In particular, the application of this criterion to stationary optical solitons shifts the soliton carrier frequency at which the first derivative of the dielectric constant with respect to the frequency vanishes. At that point the phase and group velocities coincide. Solitons and quasisolitons are absent, if the third-order dispersion is taken into account. The stability of a soliton is proved for fourth order dispersion using the sign-definiteness of the operator and integral estimates of the Sobolev type. This proof is based on the boundedness of the Hamiltonian for a fixed value of the pulse energy
Gravitation and quadratic forms
International Nuclear Information System (INIS)
Ananth, Sudarshan; Brink, Lars; Majumdar, Sucheta; Mali, Mahendra; Shah, Nabha
2017-01-01
The light-cone Hamiltonians describing both pure (N=0) Yang-Mills and N=4 super Yang-Mills may be expressed as quadratic forms. Here, we show that this feature extends to theories of gravity. We demonstrate how the Hamiltonians of both pure gravity and N=8 supergravity, in four dimensions, may be written as quadratic forms. We examine the effect of residual reparametrizations on the Hamiltonian and the resulting quadratic form.
Gravitation and quadratic forms
Energy Technology Data Exchange (ETDEWEB)
Ananth, Sudarshan [Indian Institute of Science Education and Research,Pune 411008 (India); Brink, Lars [Department of Physics, Chalmers University of Technology,S-41296 Göteborg (Sweden); Institute of Advanced Studies and Department of Physics & Applied Physics,Nanyang Technological University,Singapore 637371 (Singapore); Majumdar, Sucheta [Indian Institute of Science Education and Research,Pune 411008 (India); Mali, Mahendra [School of Physics, Indian Institute of Science Education and Research,Thiruvananthapuram, Trivandrum 695016 (India); Shah, Nabha [Indian Institute of Science Education and Research,Pune 411008 (India)
2017-03-31
The light-cone Hamiltonians describing both pure (N=0) Yang-Mills and N=4 super Yang-Mills may be expressed as quadratic forms. Here, we show that this feature extends to theories of gravity. We demonstrate how the Hamiltonians of both pure gravity and N=8 supergravity, in four dimensions, may be written as quadratic forms. We examine the effect of residual reparametrizations on the Hamiltonian and the resulting quadratic form.
International Nuclear Information System (INIS)
Manciu, M.; Sen, S.; Hurd, A.J.
1999-01-01
The authors consider a chain of elastic (Hertzian) grains that repel upon contact according to the potential V = adelta u , u > 2, where delta is the overlap between the grains. They present numerical and analytical results to show that an impulse initiated at an end of a chain of Hertzian grains in contact eventually propagates as a soliton for all n > 2 and that no solitons are possible for n le 2. Unlike continuous, they find that colliding solitons in discrete media initiative multiple weak solitons at the point of crossing
International Nuclear Information System (INIS)
Rajasekaran, G.
1978-01-01
Recent developments in the theory of solitons and related objects in the fields of high energy physics and nuclear physics are reviewed. The aim is to concentrate on the physical aspects and explain why these objects have awakened the interest of physicists. The physics of solitons is discussed with the help of a simple one-dimensional soliton. Then the physically more interesting monopole-soliton is considered and its connection with the original Dirac monopole is pointed out. The ''revolutionary'' possibility of making fermions as composites of bosons is indicated. Both the one-dimensional solitons and the monopole-soliton are examples of ''topological solitons'' and the role of topology in the physics of solitons is explained. The possible importance of topological quantum numbers in providing a fundamental understanding of the basic conservation laws of physics is pointed out. Two examples of non-topological solitons namely, the nucleon as a bag of almost-massless quarks and the abnormal nucleons as a bag of almost massless nucleons is discussed. (auth.)
Multiple soliton production and the Korteweg-de Vries equation.
Hershkowitz, N.; Romesser, T.; Montgomery, D.
1972-01-01
Compressive square-wave pulses are launched in a double-plasma device. Their evolution is interpreted according to the Korteweg-de Vries description of Washimi and Taniuti. Square-wave pulses are an excitation for which an explicit solution of the Schrodinger equation permits an analytical prediction of the number and amplitude of emergent solitons. Bursts of energetic particles (pseudowaves) appear above excitation voltages greater than an electron thermal energy, and may be mistaken for solitons.
A revisit to quadratic programming with fuzzy parameters
International Nuclear Information System (INIS)
Liu, S.-T.
2009-01-01
Quadratic programming has been widely applied to solving real-world problems. Recently, Liu describes a solution method for solving a class of fuzzy quadratic programming problems, where the cost coefficients of the linear terms in objective function, constraint coefficients, and right-hand sides are fuzzy numbers [Liu ST. Quadratic programming with fuzzy parameters: a membership function approach. Chaos, Solitons and Fractals 2009;40:237-45]. In this paper, we generalize Liu's method to a more general fuzzy quadratic programming problem, where the cost coefficients in objective function, constraint coefficients, and right-hand sides are all fuzzy numbers. A pair of two-level mathematical programs is formulated to calculate the upper bound and lower bound of the objective values of the fuzzy quadratic program. Based on the duality theorem and by applying the variable transformation technique, the pair of two-level mathematical programs is transformed into a family of conventional one-level quadratic programs. Solving the pair of quadratic programs produces the fuzzy objective values of the problem. With the ability of calculating the fuzzy objective value developed in this paper, it might help initiate wider applications.
Directory of Open Access Journals (Sweden)
Binbin Zhou
2016-08-01
Full Text Available Bright and broadband coherent mid-IR radiation is important for exciting and probing molecular vibrations. Using cascaded nonlinearities in conventional quadratic nonlinear crystals like lithium niobate, self-defocusing near-IR solitons have been demonstrated that led to very broadband supercontinuum generation in the visible, near-IR, and short-wavelength mid-IR. Here we conduct an experiment where a mid-IR crystal is pumped in the mid-IR. The crystal is cut for noncritical interaction, so the three-wave mixing of a single mid-IR femtosecond pump source leads to highly phase-mismatched second-harmonic generation. This self-acting cascaded process leads to the formation of a self-defocusing soliton at the mid-IR pump wavelength and after the self-compression point multiple octave-spanning supercontinua are observed. The results were recorded in a commercially available crystal LiInS2 pumped in the 3-4 μm range with 85 fs 50 μJ pulse energy, with the broadest supercontinuum covering 1.6-7.0 μm. We measured up 30 μJ energy in the supercontinuum, and the energy promises to scale favorably with an increased pump energy. Other mid-IR crystals can readily be used as well to cover other pump wavelengths and target other supercontinuum wavelength ranges.
Indian Academy of Sciences (India)
The history leading to the discovery of soliton is interesting and impressive. The first documented observation of the solitary wave was made in 1834 by the .... Through the inverse scattering method, we are in a position to define the soliton in a rigorous manner. A transformation from the field variables to the scattering data is ...
Wakeless triple soliton accelerator
International Nuclear Information System (INIS)
Mima, K.; Ohsuga, T.; Takabe, H.; Nishihara, K.; Tajima, T.; Zaidman, E.; Horton, W.
1986-09-01
We introduce and analyze the concept of a wakeless triple soliton accelerator in a plasma fiber. Under appropriate conditions the triple soliton with two electromagnetic and one electrostatic waves in the beat-wave resonance propagates with velocity c leaving no plasma wake behind, while the phase velocity of the electrostatic wave is made also c in the fiber
Solitons as Newtonian particles
International Nuclear Information System (INIS)
Eboli, O.J.P.; Marques, G.C.
1982-07-01
The effect of external electromagnetic fields on non relativistic solitons is studied. Although the solitons are distorted by external fields, they still exhibit a Newtonian behavior. Some explicit examples of such a phenomenon are given, presenting solutions which exhibit Newtonian behavior for simple external fields. Furthermore, general results like charge and flux quantization are shown. (Author) [pt
On modelling adiabatic N-soliton interactions and perturbations. Effects of external potentials
International Nuclear Information System (INIS)
Gerdjikov, V.; Baizakov, B.
2005-01-01
We analyze several perturbed versions of the complex Toda chain (CTC) in an attempt to describe the adiabatic N-soliton train interactions of the perturbed nonlinear Schrodinger equation (NLS). Particular types of perturbations, including quadratic and periodic external potentials are treated by both analytical and numerical means. We show that the perturbed CTC model provides a good description for the N-soliton interactions in the presence of a weak external potential. (authors)
Soliton-plasma nonlinear dynamics in mid-IR gas-filled hollow-core fibers
DEFF Research Database (Denmark)
Habib, Selim; Markos, Christos; Bang, Ole
2017-01-01
We investigate numerically soliton-plasma interaction in a noble-gas-filled silica hollow-core anti-resonant fiber pumped in the mid-IR at 3.0 mu m. We observe multiple soliton self-compression stages due to distinct stages where either the self-focusing or the self-defocusing nonlinearity...
Dickmann, M
2015-01-01
In this monograph the authors extend the classical algebraic theory of quadratic forms over fields to diagonal quadratic forms with invertible entries over broad classes of commutative, unitary rings where -1 is not a sum of squares and 2 is invertible. They accomplish this by: (1) Extending the classical notion of matrix isometry of forms to a suitable notion of T-isometry, where T is a preorder of the given ring, A, or T = A^2. (2) Introducing in this context three axioms expressing simple properties of (value) representation of elements of the ring by quadratic forms, well-known to hold in
Ion-acoustic dressed solitons in a dusty plasma
International Nuclear Information System (INIS)
Tiwari, R.S.; Mishra, M.K.
2006-01-01
Using the reductive perturbation method, equations for ion-acoustic waves governing the evolution of first- and second-order potentials in a dusty plasma including the dynamics of charged dust grains have been derived. The renormalization procedure of Kodama and Taniuti is used to obtain a steady state nonsecular solution of these equations. The variation of velocity and width of the Korteweg-de Vries (KdV) as well as dressed solitons with amplitude have been studied for different concentrations and charge multiplicity of dust grains. The higher-order perturbation corrections to the KdV soliton description significantly affect the characteristics of the solitons in dusty plasma. It is found that in the presence of positively charged dust grains the system supports only compressive solitons. However, the plasma with negatively charged dust grains can support compressive solitons only up to a certain concentration of dust. Above this critical concentration of negative charge, the dusty plasma can support rarefactive solitons. An expression for the critical concentration of negatively charged dust in terms of charge and mass ratio of dust grains with plasma ions is also derived
Ellis, John; Sueiro, Maria
2014-01-01
Inflationary models based on a single scalar field $\\phi$ with a quadratic potential $V = \\frac{1}{2} m^2 \\phi^2$ are disfavoured by the recent Planck constraints on the scalar index, $n_s$, and the tensor-to-scalar ratio for cosmological density perturbations, $r_T$. In this paper we study how such a quadratic inflationary model can be rescued by postulating additional fields with quadratic potentials, such as might occur in sneutrino models, which might serve as either curvatons or supplementary inflatons. Introducing a second scalar field reduces but does not remove the pressure on quadratic inflation, but we find a sample of three-field models that are highly compatible with the Planck data on $n_s$ and $r_T$. We exhibit a specific three-sneutrino example that is also compatible with the data on neutrino mass difference and mixing angles.
Separable quadratic stochastic operators
International Nuclear Information System (INIS)
Rozikov, U.A.; Nazir, S.
2009-04-01
We consider quadratic stochastic operators, which are separable as a product of two linear operators. Depending on properties of these linear operators we classify the set of the separable quadratic stochastic operators: first class of constant operators, second class of linear and third class of nonlinear (separable) quadratic stochastic operators. Since the properties of operators from the first and second classes are well known, we mainly study the properties of the operators of the third class. We describe some Lyapunov functions of the operators and apply them to study ω-limit sets of the trajectories generated by the operators. We also compare our results with known results of the theory of quadratic operators and give some open problems. (author)
Energy Technology Data Exchange (ETDEWEB)
Christian, J M; McDonald, G S [Joule Physics Laboratory, School of Computing, Science and Engineering, Materials and Physics Research Centre, University of Salford, Salford M5 4WT (United Kingdom); Chamorro-Posada, P, E-mail: j.christian@salford.ac.u [Departamento de Teoria de la Senal y Comunicaciones e Ingenieria Telematica, Universidad de Valladolid, ETSI Telecomunicacion, Campus Miguel Delibes s/n, 47011 Valladolid (Spain)
2010-02-26
We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.
International Nuclear Information System (INIS)
Christian, J M; McDonald, G S; Chamorro-Posada, P
2010-01-01
We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.
International Nuclear Information System (INIS)
Carr, L.D.; Brand, J.
2004-01-01
It is shown that simultaneously changing the scattering length of an elongated, harmonically trapped Bose-Einstein condensate from positive to negative and inverting the axial portion of the trap, so that it becomes expulsive, results in a train of self-coherent solitonic pulses. Each pulse is itself a nondispersive attractive Bose-Einstein condensate that rapidly self-cools. The axial trap functions as a waveguide. The solitons can be made robustly stable with the right choice of trap geometry, number of atoms, and interaction strength. Theoretical and numerical evidence suggests that such a pulsed atomic soliton laser can be made in present experiments
Experiments on ion-acoustic rarefactive solitons in a multi-component plasma with negative ions
International Nuclear Information System (INIS)
Nakamura, Y.; Ferreira, J.L.; Ludwig, G.O.
1987-09-01
Ion-acoustic solitons in a three-component plasma which consists of electrons, positive and negative ions have been investigated experimentally. When the concentration of negative ions is smaller than a certain value, positive or compressive solitons are observed. At the critical concentration, a broad pulse of small but finite amplitude propagates without changing its shape. When the concentration is larger than this value, negative or rarefactive solitons are excited. The velocity and the width of these solitons are measured and compared with predictions of the Korteweg- de Vries equation which takes the negative ions and the ion temperature into consideration. Head-ion and over-taking collisions of the rarefactive solitons have been observed to show that the solitons are not affected by these collisions. (author) [pt
Relativistic solitons and pulsars
Energy Technology Data Exchange (ETDEWEB)
Karpman, V I [Inst. of Terrestrial Magnetism, Ionosphere, and Radio-Wave Propagation, Moscow; Norman, C A; ter Haar, D; Tsytovich, V N
1975-05-01
A production mechanism for stable electron bunches or sheets of localized electric fields is investigated which may account for pulsar radio emission. Possible soliton phenomena in a one-dimensional relativistic plasma are analyzed, and it is suggested that the motion of a relativistic soliton, or ''relaton'', along a curved magnetic-field line may produce radio emission with the correct polarization properties. A general MHD solution is obtained for relatons, the radiation produced by a relativistic particle colliding with a soliton is evaluated, and the emission by a soliton moving along a curved field line is estimated. It is noted that due to a number of severe physical restrictions, curvature radiation is not a very likely solution to the problem of pulsar radio emission. (IAA)
International Nuclear Information System (INIS)
Swieca, J.A.
1976-01-01
Some aspects of two recent developments in quantum field theory are discussed. First, related with 'extended particles' such as soliton, kink and the 't Hooft monopole. Second, with confinement of particles which are realized in the Schwinger model [pt
Soliton on thin vortex filament
International Nuclear Information System (INIS)
Konno, Kimiaki; Mituhashi, Masahiko; Ichikawa, Y.H.
1990-12-01
Showing that one of the equations found by Wadati, Konno and Ichikawa is equivalent to the equation of motion of a thin vortex filament, we investigate solitons on the vortex filament. N vortex soliton solution is given in terms of the inverse scattering method. We examine two soliton collision processes on the filament. Our analysis provides the theoretical foundation of two soliton collision processes observed numerically by Aref and Flinchem. (author)
International Nuclear Information System (INIS)
Adam, C.; Haberichter, M.; Wereszczynski, A.
2016-01-01
There exists, in general, no unique definition of the size (volume, area, etc., depending on dimension) of a soliton. Here we demonstrate that the geometric volume (area etc.) of a soliton is singled out in the sense that it exactly coincides with the thermodynamical or continuum-mechanical volume. In addition, this volume may be defined uniquely for rather arbitrary solitons in arbitrary dimensions.
Energy Technology Data Exchange (ETDEWEB)
Adam, C., E-mail: adam@fpaxp1.usc.es [Departamento de Física de Partículas, Universidad de Santiago de Compostela and Instituto Galego de Física de Altas Enerxias (IGFAE), E-15782 Santiago de Compostela (Spain); Haberichter, M. [School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, CT2 7NF (United Kingdom); Wereszczynski, A. [Institute of Physics, Jagiellonian University, Lojasiewicza 11, Kraków (Poland)
2016-03-10
There exists, in general, no unique definition of the size (volume, area, etc., depending on dimension) of a soliton. Here we demonstrate that the geometric volume (area etc.) of a soliton is singled out in the sense that it exactly coincides with the thermodynamical or continuum-mechanical volume. In addition, this volume may be defined uniquely for rather arbitrary solitons in arbitrary dimensions.
Transverse stability of Kawahara solitons
DEFF Research Database (Denmark)
Karpman, V.I.
1993-01-01
The transverse stability of the planar solitons described by the fifth-order Korteweg-de Vries equation (Kawahara solitons) is studied. It is shown that the planar solitons are unstable with respect to bending if the coefficient at the fifth-derivative term is positive and stable if it is negative...
Propagation and oblique collision of electron-acoustic solitons in ...
Indian Academy of Sciences (India)
Critical plasma parameter is found to distinguish the types of solitons and their interaction phase-shifts. It is shown that, depending on the critical quantum diffraction parameter cr, both compressive and rarefactive solitary excitations may exist in this plasma and their collision phase-shifts can be either positive or negative ...
On Convex Quadratic Approximation
den Hertog, D.; de Klerk, E.; Roos, J.
2000-01-01
In this paper we prove the counterintuitive result that the quadratic least squares approximation of a multivariate convex function in a finite set of points is not necessarily convex, even though it is convex for a univariate convex function. This result has many consequences both for the field of
Alvarez-Gaume, Luis; Kounnas, Costas; Lust, Dieter; Riotto, Antonio
2016-01-01
We discuss quadratic gravity where terms quadratic in the curvature tensor are included in the action. After reviewing the corresponding field equations, we analyze in detail the physical propagating modes in some specific backgrounds. First we confirm that the pure $R^2$ theory is indeed ghost free. Then we point out that for flat backgrounds the pure $R^2$ theory propagates only a scalar massless mode and no spin-two tensor mode. However, the latter emerges either by expanding the theory around curved backgrounds like de Sitter or anti-de Sitter, or by changing the long-distance dynamics by introducing the standard Einstein term. In both cases, the theory is modified in the infrared and a propagating graviton is recovered. Hence we recognize a subtle interplay between the UV and IR properties of higher order gravity. We also calculate the corresponding Newton's law for general quadratic curvature theories. Finally, we discuss how quadratic actions may be obtained from a fundamental theory like string- or M-...
Fay, Temple H.
2010-01-01
Through numerical investigations, we study examples of the forced quadratic spring equation [image omitted]. By performing trial-and-error numerical experiments, we demonstrate the existence of stability boundaries in the phase plane indicating initial conditions yielding bounded solutions, investigate the resonance boundary in the [omega]…
Musammil, N. M.; Porsezian, K.; Nithyanandan, K.; Subha, P. A.; Tchofo Dinda, P.
2017-09-01
We present the study of the dark soliton dynamics in an inhomogeneous fiber by means of a variable coefficient modified nonlinear Schrödinger equation (Vc-MNLSE) with distributed dispersion, self-phase modulation, self-steepening and linear gain/loss. The ultrashort dark soliton pulse evolution and interaction is studied by using the Hirota bilinear (HB) method. In particular, we give much insight into the effect of self-steepening (SS) on the dark soliton dynamics. The study reveals a shock wave formation, as a major effect of SS. Numerically, we study the dark soliton propagation in the continuous wave background, and the stability of the soliton solution is tested in the presence of photon noise. The elastic collision behaviors of the dark solitons are discussed by the asymptotic analysis. On the other hand, considering the nonlinear tunneling of dark soliton through barrier/well, we find that the tunneling of the dark soliton depends on the height of the barrier and the amplitude of the soliton. The intensity of the tunneling soliton either forms a peak or valley and retains its shape after the tunneling. For the case of exponential background, the soliton tends to compress after tunneling through the barrier/well.
The Effects of Five-Order Nonlinear on the Dynamics of Dark Solitons in Optical Fiber
Directory of Open Access Journals (Sweden)
Feng-Tao He
2013-01-01
Full Text Available We study the influence of five-order nonlinear on the dynamic of dark soliton. Starting from the cubic-quintic nonlinear Schrodinger equation with the quadratic phase chirp term, by using a similarity transformation technique, we give the exact solution of dark soliton and calculate the precise expressions of dark soliton's width, amplitude, wave central position, and wave velocity which can describe the dynamic behavior of soliton's evolution. From two different kinds of quadratic phase chirps, we mainly analyze the effect on dark soliton’s dynamics which different fiver-order nonlinear term generates. The results show the following two points with quintic nonlinearities coefficient increasing: (1 if the coefficients of the quadratic phase chirp term relate to the propagation distance, the solitary wave displays a periodic change and the soliton’s width increases, while its amplitude and wave velocity reduce. (2 If the coefficients of the quadratic phase chirp term do not depend on propagation distance, the wave function only emerges in a fixed area. The soliton’s width increases, while its amplitude and the wave velocity reduce.
Hidden conic quadratic representation of some nonconvex quadratic optimization problems
Ben-Tal, A.; den Hertog, D.
The problem of minimizing a quadratic objective function subject to one or two quadratic constraints is known to have a hidden convexity property, even when the quadratic forms are indefinite. The equivalent convex problem is a semidefinite one, and the equivalence is based on the celebrated
Binary classification posed as a quadratically constrained quadratic ...
Indian Academy of Sciences (India)
Binary classification is posed as a quadratically constrained quadratic problem and solved using the proposed method. Each class in the binary classification problem is modeled as a multidimensional ellipsoid to forma quadratic constraint in the problem. Particle swarms help in determining the optimal hyperplane or ...
Accessible solitons of fractional dimension
Energy Technology Data Exchange (ETDEWEB)
Zhong, Wei-Ping, E-mail: zhongwp6@126.com [Department of Electronic and Information Engineering, Shunde Polytechnic, Guangdong Province, Shunde 528300 (China); Texas A& M University at Qatar, P.O. Box 23874, Doha (Qatar); Belić, Milivoj [Texas A& M University at Qatar, P.O. Box 23874, Doha (Qatar); Zhang, Yiqi [Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China)
2016-05-15
We demonstrate that accessible solitons described by an extended Schrödinger equation with the Laplacian of fractional dimension can exist in strongly nonlocal nonlinear media. The soliton solutions of the model are constructed by two special functions, the associated Legendre polynomials and the Laguerre polynomials in the fraction-dimensional space. Our results show that these fractional accessible solitons form a soliton family which includes crescent solitons, and asymmetric single-layer and multi-layer necklace solitons. -- Highlights: •Analytic solutions of a fractional Schrödinger equation are obtained. •The solutions are produced by means of self-similar method applied to the fractional Schrödinger equation with parabolic potential. •The fractional accessible solitons form crescent, asymmetric single-layer and multilayer necklace profiles. •The model applies to the propagation of optical pulses in strongly nonlocal nonlinear media.
Head-on collisions of electrostatic solitons in multi-ion plasmas
International Nuclear Information System (INIS)
Verheest, Frank; Hellberg, Manfred A.; Hereman, Willy A.
2012-01-01
Head-on collisions between two electrostatic solitons are dealt with by the Poincaré-Lighthill-Kuo method of strained coordinates, for a plasma composed of a number of cold (positive and negative) ion species and Boltzmann electrons. The nonlinear evolution equations for both solitons and their phase shift due to the collision, resulting in time delays, are established. A Korteweg-de Vries description is the generic conclusion, except when the plasma composition is special enough to replace the quadratic by a cubic nonlinearity in the evolution equations, with concomitant repercussions on the phase shifts. Applications include different two-ion plasmas, showing positive or negative polarity solitons in the generic case. At critical composition, a combination of a positive and a negative polarity soliton is possible.
International Nuclear Information System (INIS)
Boya, L.J.; Carinena, J.F.; Mateos, J.
1978-01-01
Starting from classical field theory with a Lagrangian, solitons are identified with solutions of the field equations which satisfy peculiar boundary conditions. The symmetry group which causes the degenerate vacuum is taken generally internal, that is, not operating in space-time. Gauge symmetry plays a dominant role. A precise definition of solitons is given and it is shown how to study some continuous mappings of the ''distant'' parts of space on the set of degenerate vacua. A marvellous instrument, the exact homotopy sequence, is applied to calculate homotopy groups of some higher-dimensional manifolds
Real and virtual multidimensional solitons
International Nuclear Information System (INIS)
Boiti, M.; Martina, L.; Pashaev, O.K.; Pempinelli, F.
1993-01-01
Recently it has been shown that in two spatial and one temporal dimensions (2+1) there exist localized solitons. These coherent structures display a richer phenomenology than the one dimensional solitons. Different effects have been reported successively in a series of papers. Some of them are due to the fact that the soliton solution is structurally unstable with respect to special choices of the parameters. Also some quantum-like effects as the non conservation of the number of solitons have been discovered by using direct methods. This report is dedicated to the study of the origin and generality of these new effects in the context of the Spectral Transform (ST) theory. By choosing more general boundaries than those used in previous papers we derive an N 2 -soliton solution, which is parameterized by a point in a space of 4N(N+1) real parameters. Of these parameters 2N(N+2) are determined by the choice of the boundaries and fix the velocity and the possible location of the solitons in the plane at large times, while the remaining 2N govern the dynamics of the solitons during the interaction. The total mass of solitons is conserved but, in general, the mass of the single soliton is not preserved by the interaction. The extreme cases in which the masses of one or more solitons are zero at t = -∞ or/and t = +∞ are also allowed. We call these solitons with asymptotic zero masses and, consequently, with asymptotic zero amplitudes virtual solitons. The total momentum of solitons is not conserved because the boundaries act as external forces. Solitons can simulate inelastic scattering processes of quantum particles including creation and annihilation of particles
Quadratic Diophantine equations
Andreescu, Titu
2015-01-01
This monograph treats the classical theory of quadratic Diophantine equations and guides the reader through the last two decades of computational techniques and progress in the area. These new techniques combined with the latest increases in computational power shed new light on important open problems. The authors motivate the study of quadratic Diophantine equations with excellent examples, open problems, and applications. Moreover, the exposition aptly demonstrates many applications of results and techniques from the study of Pell-type equations to other problems in number theory. The book is intended for advanced undergraduate and graduate students as well as researchers. It challenges the reader to apply not only specific techniques and strategies, but also to employ methods and tools from other areas of mathematics, such as algebra and analysis.
Indian Academy of Sciences (India)
V. Suresh University Of Hyderabad Hyderabad
2008-10-31
Oct 31, 2008 ... We say that (a1,··· ,an) is a zero of the polynomial f if f (a1,··· ,an) = 0. One of the main problems in Mathematics is to determine whether the given polynomial has a (non-trivial) zero or not. For example, let us recall the Fermat's last theorem: V. Suresh University Of Hyderabad Hyderabad. Isotropy of quadratic ...
Obregon, Maria; Raj, Nawin; Stepanyants, Yury
2018-03-01
The adiabatic decay of different types of internal wave solitons caused by the Earth's rotation is studied within the framework of the Gardner-Ostrovsky equation. The governing equation describing such processes includes quadratic and cubic nonlinear terms, as well as the Boussinesq and Coriolis dispersions: (ut + c ux + α u ux + α1 u2 ux + β uxxx)x = γ u. It is shown that at the early stage of evolution solitons gradually decay under the influence of weak Earth's rotation described by the parameter γ. The characteristic decay time is derived for different types of solitons for positive and negative coefficients of cubic nonlinearity α1 (both signs of that parameter may occur in the oceans). The coefficient of quadratic nonlinearity α determines only a polarity of solitary wave when α1 0. It is found that the adiabatic theory describes well the decay of solitons having bell-shaped profiles. In contrast to that, large amplitude table-top solitons, which can exist when α1 is negative, are structurally unstable. Under the influence of Earth's rotation, they transfer first to the bell-shaped solitons, which decay then adiabatically. Estimates of the characteristic decay time of internal solitons are presented for the real oceanographic conditions.
A fluid dynamic approach to the dust-acoustic soliton
International Nuclear Information System (INIS)
McKenzie, J.F.; Doyle, T.B.
2002-01-01
The properties of dust-acoustic solitons are derived from a fluid dynamic viewpoint in which conservation of total momentum, combined with the Bernoulli-like energy equations for each species, yields the structure equation for the heavy (or dust) speed in the stationary wave. This fully nonlinear approach reveals the crucial role played by the heavy sonic point in limiting the collective dust-acoustic Mach number, above which solitons cannot exist. An exact solution illustrates that the cold heavy species is compressed and this implies concomitant contraints on the potential and on the flow speed of the electrons and protons in the wave
A Fluid Dynamic Approach to the Dust-Acoustic Soliton
McKenzie, J. F.; Doyle, T. B.
2002-12-01
The properties of dust-acoustic solitons are derived from a fluid dynamic viewpoint in which conservation of total momentum, combined with the Bernoulli-like energy equations for each species, yields the structure equation for the heavy (or dust) speed in the stationary wave. This fully nonlinear approach reveals the crucial role played by the heavy sonic point in limiting the collective dust-acoustic Mach number, above which solitons cannot exist. An exact solution illustrates that the cold heavy species is compressed and this implies concomitant contraints on the potential and on the flow speed of the electrons and protons in the wave.
The nontopological soliton model
International Nuclear Information System (INIS)
Wilets, L.
1988-01-01
The nontopological soliton model introduced by Friedberg and Lee, and variations of it, provide a method for modeling QCD which can effectively include the dynamics of hadronic collisions as well as spectra. Absolute color confinement is effected by the assumed dielectric properties of the medium. A recently proposed version of the model is chirally invariant. 32 refs., 5 figs., 1 tab
International Nuclear Information System (INIS)
Wilets, L.; Bickeboeller, M.; Birse, M.C.
1985-01-01
A summary of recent and current research on the Soliton Bag Model is presented. The unique feature of the model, namely dynamics, is emphasized, since this permits calculation of reactions within the framework of a covariant effective Lagrangian. One gluon exchange effects are included. 17 refs., 3 figs
Statistical mechanics of solitons
International Nuclear Information System (INIS)
Bishop, A.
1980-01-01
The status of statistical mechanics theory (classical and quantum, statics and dynamics) is reviewed for 1-D soliton or solitary-wave-bearing systems. Primary attention is given to (i) perspective for existing results with evaluation and representative literature guide; (ii) motivation and status report for remaining problems; (iii) discussion of connections with other 1-D topics
DEFF Research Database (Denmark)
Zhou, Binbin; Bache, Morten
2016-01-01
Bright and broadband coherent mid-IR radiation is important for exciting and probing molecular vibrations. Using cascaded nonlinearities in conventional quadratic nonlinear crystals like lithium niobate, self-defocusing near-IR solitons have been demonstrated that led to very broadband...
Helmholtz bright and boundary solitons
Energy Technology Data Exchange (ETDEWEB)
Christian, J M [Joule Physics Laboratory, School of Computing, Science and Engineering, Institute for Materials Research, University of Salford, Salford M5 4WT (United Kingdom); McDonald, G S [Joule Physics Laboratory, School of Computing, Science and Engineering, Institute for Materials Research, University of Salford, Salford M5 4WT (United Kingdom); Chamorro-Posada, P [Departmento de TeorIa de la Senal y Comunicaciones e IngenierIa Telematica, Universidad de Valladolid, ETSI Telecomunicacion, Campus Miguel Delibes s/n, 47011 Valladolid (Spain)
2007-02-16
We report, for the first time, exact analytical boundary solitons of a generalized cubic-quintic nonlinear Helmholtz (NLH) equation. These solutions have a linked-plateau topology that is distinct from conventional dark soliton solutions; their amplitude and intensity distributions are spatially delocalized and connect regions of finite and zero wave-field disturbances (suggesting also the classification as 'edge solitons'). Extensive numerical simulations compare the stability properties of recently derived Helmholtz bright solitons, for this type of polynomial nonlinearity, to those of the new boundary solitons. The latter are found to possess a remarkable stability characteristic, exhibiting robustness against perturbations that would otherwise lead to the destabilizing of their bright-soliton counterparts.
Helmholtz bright and boundary solitons
International Nuclear Information System (INIS)
Christian, J M; McDonald, G S; Chamorro-Posada, P
2007-01-01
We report, for the first time, exact analytical boundary solitons of a generalized cubic-quintic nonlinear Helmholtz (NLH) equation. These solutions have a linked-plateau topology that is distinct from conventional dark soliton solutions; their amplitude and intensity distributions are spatially delocalized and connect regions of finite and zero wave-field disturbances (suggesting also the classification as 'edge solitons'). Extensive numerical simulations compare the stability properties of recently derived Helmholtz bright solitons, for this type of polynomial nonlinearity, to those of the new boundary solitons. The latter are found to possess a remarkable stability characteristic, exhibiting robustness against perturbations that would otherwise lead to the destabilizing of their bright-soliton counterparts
Periodic modulations controlling Kuznetsov–Ma soliton formation in nonlinear Schrödinger equations
Energy Technology Data Exchange (ETDEWEB)
Tiofack, C.G.L., E-mail: glatchio@yahoo.fr [Univ. Lille, CNRS, UMR 8523 – PhLAM – Physique des Lasers Atomes et Molécules, F-59000 Lille (France); Coulibaly, S.; Taki, M. [Univ. Lille, CNRS, UMR 8523 – PhLAM – Physique des Lasers Atomes et Molécules, F-59000 Lille (France); De Bièvre, S.; Dujardin, G. [Univ. Lille, CNRS, UMR 8524 – Laboratoire Paul Painlevé, F-59000 Lille (France); Équipe-Projet Mephysto, INRIA Lille-Nord Europe (France)
2017-06-28
We analyze the exact Kuznetsov–Ma soliton solution of the one-dimensional nonlinear Schrödinger equation in the presence of periodic modulations satisfying an integrability condition. We show that, in contrast to the case without modulation, the Kuznetsov–Ma soliton develops multiple compression points whose number, shape and position are controlled both by the intensity of the modulation and by its frequency. In addition, when this modulation frequency is a rational multiple of the natural frequency of the Kuznetsov–Ma soliton, a scenario similar to a nonlinear resonance is obtained: in this case the spatial oscillations of the Kuznetsov–Ma soliton's intensity are periodic. When the ratio of the two frequencies is irrational, the soliton's intensity is a quasiperiodic function. A striking and important result of our analysis is the possibility to suppress any component of the output spectrum of the Kuznetsov–Ma soliton by a judicious choice of the amplitude and frequency of the modulation. - Highlights: • Exact Kuznetsov–Ma soliton solution in presence of periodic coefficients is obtained. • The multiple compression points of the solution are studied. • The quasi-periodicity of the solution is discussed. • The possibility to suppress any component of the spectrum is analyzed.
Influence of air pressure on soliton formation in hollow-core photonic bandgap fibers
DEFF Research Database (Denmark)
Lægsgaard, Jesper; Roberts, Peter John
2009-01-01
Abstract Soliton formation during dispersive compression of chirped few-picosecond pulses at the microjoule level in a hollow-core photonic bandgap (HC-PBG) fiber is studied by numerical simulations. Long-pass filtering of the emerging frequency-shifted solitons is investigated with the objective...... of obtaining pedestal-free output pulses. Particular emphasis is placed on the influence of the air pressure in the HC-PBG fiber. It is found that a reduction in air pressure enables an increase in the fraction of power going into the most redshifted soliton and also improves the quality of the filtered pulse...
Observation of ion-acoustic rarefaction solitons in a multicomponent plasma with negative ions
International Nuclear Information System (INIS)
Ludwig, G.O.; Ferreira, J.L.; Nakamura, Y.
1984-01-01
The propagation of ion-acoustic solitons in a plasma with negative ions has been observed. For sufficiently large concentration of negative ions, applied rarefactive (negative) voltage pulses break up into solitons, whereas compressive pulses evolve into wave trains, with exactly the opposite behavior as that for a plasma composed only of positive ions. There is a critical value of the negative-ion concentration for which a finite-amplitude pulse propagates without steepening
All-fiber nonlinearity- and dispersion-managed dissipative soliton nanotube mode-locked laser
Energy Technology Data Exchange (ETDEWEB)
Zhang, Z. [Department of Physics, Bilkent University, 06800 Ankara (Turkey); Nanjing University of Posts and Communications, Nanjing 210003 (China); Popa, D., E-mail: dp387@cam.ac.uk; Wittwer, V. J.; Milana, S.; Hasan, T.; Jiang, Z.; Ferrari, A. C. [Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA (United Kingdom); Ilday, F. Ö. [Department of Physics, Bilkent University, 06800 Ankara (Turkey); Department of Electrical and Electronics Engineering, Bilkent University, 06800 Ankara (Turkey)
2015-12-14
We report dissipative soliton generation from an Yb-doped all-fiber nonlinearity- and dispersion-managed nanotube mode-locked laser. A simple all-fiber ring cavity exploits a photonic crystal fiber for both nonlinearity enhancement and dispersion compensation. The laser generates stable dissipative solitons with large linear chirp in the net normal dispersion regime. Pulses that are 8.7 ps long are externally compressed to 118 fs, outperforming current nanotube-based Yb-doped fiber laser designs.
Roper resonances and generator coordinate method in the chiral-soliton model
International Nuclear Information System (INIS)
Meissner, T.; Gruemmer, F.; Goeke, K.; Harvey, M.
1989-01-01
The nucleon and Δ Roper resonances are described by means of the generator coordinate method in the framework of the nontopological chiral-soliton model. Solitons with various sizes are constructed with a constrained variational technique. The masses of all known Roper resonances come out to within 150 MeV of their experimental values. A nucleon compression modulus of about 4 GeV is extracted. The limits of the approach due to the polarization of the Dirac vacuum are displayed
Soliton microcomb range measurement
Suh, Myoung-Gyun; Vahala, Kerry J.
2018-02-01
Laser-based range measurement systems are important in many application areas, including autonomous vehicles, robotics, manufacturing, formation flying of satellites, and basic science. Coherent laser ranging systems using dual-frequency combs provide an unprecedented combination of long range, high precision, and fast update rate. We report dual-comb distance measurement using chip-based soliton microcombs. A single pump laser was used to generate dual-frequency combs within a single microresonator as counterpropagating solitons. We demonstrated time-of-flight measurement with 200-nanometer precision at an averaging time of 500 milliseconds within a range ambiguity of 16 millimeters. Measurements at distances up to 25 meters with much lower precision were also performed. Our chip-based source is an important step toward miniature dual-comb laser ranging systems that are suitable for photonic integration.
Solutions to the equations describing materials with competing quadratic and cubic nonlinearities
International Nuclear Information System (INIS)
Li-Na, Zhao; Ji, Lin; Zi-Shuang, Tong
2009-01-01
The Lie group theoretical method is used to study the equations describing materials with competing quadratic and cubic nonlinearities. The equations share some of the nice properties of soliton equations. From the elliptic functions expansion method, we obtain large families of analytical solutions, in special cases, we have the periodic, kink and solitary solutions of the equations. Furthermore, we investigate the stability of these solutions under the perturbation of amplitude noises by numerical simulation
International Nuclear Information System (INIS)
Walliser, Hans
2000-01-01
Chiral Lagrangians as effective field theories of QCD are successfully applied to meson physics in the framework of chiral perturbation theory. Because of their nonlinear structure these Lagrangians allow for static soliton solutions interpreted as baryons. Their semiclassical quantization, which provides the leading order in an 1/N C expansion with N C the number of colors, turned out to be insufficient to obtain satisfactory agreement with empirical baryon observables. However with N C =3, large corrections are expected in the next-to-leading order carried by mesonic fluctuations around the soliton background, which require renormalization to 1-loop. In contrast to chiral perturbation theory, the low-energy Lagrangian proves inapt and terms with an arbitrary number of gradients may in principle contribute. Assumptions about the a priori unknown higher chiral orders are tested by the scale-dependence of the results. For example, in the simple Sine-Gordon model with 1 scalar field in 1+1 dimensions, knowledge of the low-energy behavior together with the mere existence of an underlying 1-loop renormalizable scale-independent solitonic theory is sufficient to regain the full solution. Baryonic observables calculated within that framework generally lead to better agreement with experiment except for the axial quantities. For these quantities the 1/N C expansion does not converge sufficiently fast because the current algebra mixes different N C orders
Exact periodic and solitonic states of the spinor condensates in a uniform external potential
Energy Technology Data Exchange (ETDEWEB)
Zhang, Zhi-Hai [School of Physics and Electronics, Yancheng Teachers University, Yancheng 224051 (China); Yang, Shi-Jie, E-mail: yangshijie@tsinghua.org.cn [Department of Physics, Beijing Normal University, Beijing 100875 (China)
2016-08-15
We propose a method to analytically solve the one-dimensional coupled nonlinear Gross–Pitaevskii equations which govern the motion of the spinor Bose–Einstein condensates. In a uniform external potential, several classes of exact periodic and solitonic solutions, either in real or in complex forms, are obtained for both the F=1 and F=2 condensates for the Hamiltonian comprising the kinetic energy, the linear and the quadratic Zeeman energies. Real solutions take the form of composite soliton trains. Complex solutions correspond to the mass counter-flows as well as spin currents. These solutions are general that contains neither approximations nor constraints on the system parameters.
International Nuclear Information System (INIS)
Ichikawa, Y.H.
1990-09-01
Plasma exhibits a full of variety of nonlinear phenomena. Active research in nonlinear plasma physics contributed to explore the concepts of soliton and chaos. Structure of soliton equations and dynamics of low dimensional Hamiltonian systems are discussed to emphasize the universality of these novel concepts in the wide branch of science and engineering. (author) 52 refs
Oscillating solitons in nonlinear optics
Indian Academy of Sciences (India)
... are derived, and the relevant properties and features of oscillating solitons are illustrated. Oscillating solitons are controlled by the reciprocal of the group velocity and Kerr nonlinearity. Results of this paper will be valuable to the study of dispersion-managed optical communication system and mode-locked fibre lasers.
Energy Technology Data Exchange (ETDEWEB)
Han, Jiu-Ning, E-mail: hanjiuning@126.com; Luo, Jun-Hua; Li, Jun-Xiu [Institute of Theoretical Physics and College of Physics and Electromechanical Engineering, Hexi University, Zhangye 734000 (China); Li, Sheng-Chang [School of Science, Xi' an Jiaotong University, Xi' an 710049 (China); Liu, Shi-Wei; Yang, Yang; Duan, Wen-Shan; Han, Juan-Fang [Joint Laboratory of Atomic and Molecular Physics of NWNU and IMPCAS and College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China)
2015-06-15
We study the basic physical properties of composite nonlinear structure induced by the head-on collision of magnetosonic solitons. Solitary waves are assumed to propagate in a quantum electron-ion magnetoplasma with spin-1/2 degenerate electrons. The main interest of the present work is to investigate the time evolution of the merged composite structure during a specific time interval of the wave interaction process. We consider three cases of colliding-situation, namely, compressive-rarefactive solitons interaction, compressive-compressive solitons interaction, and rarefactive-rarefactive solitons interaction, respectively. Compared with the last two colliding cases, the changing process of the composite structure is more complex for the first situation. Moreover, it is found that they are obviously different for the last two colliding cases.
Musammil, N M; Porsezian, K; Subha, P A; Nithyanandan, K
2017-02-01
We investigate the dynamics of vector dark solitons propagation using variable coefficient coupled nonlinear Schrödinger (Vc-CNLS) equation. The dark soliton propagation and evolution dynamics in the inhomogeneous system are studied analytically by employing the Hirota bilinear method. It is apparent from our asymptotic analysis that the collision between the dark solitons is elastic in nature. The various inhomogeneous effects on the evolution and interaction between dark solitons are explored, with a particular emphasis on nonlinear tunneling. It is found that the tunneling of the soliton depends on a condition related to the height of the barrier and the amplitude of the soliton. The intensity of the tunneling soliton either forms a peak or a valley, thus retaining its shape after tunneling. For the case of exponential background, the soliton tends to compress after tunneling through the barrier/well. Thus, a comprehensive study of dark soliton pulse evolution and propagation dynamics in Vc-CNLS equation is presented in the paper.
Quadratic brackets from symplectic forms
International Nuclear Information System (INIS)
Alekseev, Anton Yu.; Todorov, Ivan T.
1994-01-01
We give a physicist oriented survey of Poisson-Lie symmetries of classical systems. We consider finite-dimensional geometric actions and the chiral WZNW model as examples for the general construction. An essential point is the appearance of quadratic Poisson brackets for group-like variables. It is believed that upon quantization they lead to quadratic exchange algebras. ((orig.))
Students' Understanding of Quadratic Equations
López, Jonathan; Robles, Izraim; Martínez-Planell, Rafael
2016-01-01
Action-Process-Object-Schema theory (APOS) was applied to study student understanding of quadratic equations in one variable. This required proposing a detailed conjecture (called a genetic decomposition) of mental constructions students may do to understand quadratic equations. The genetic decomposition which was proposed can contribute to help…
International Nuclear Information System (INIS)
Sun, Zhi-Yuan; Gao, Yi-Tian; Yu, Xin; Liu, Ying
2013-01-01
We respectively investigate breakup and switching of the Manakov-typed bound vector solitons (BVSs) induced by two types of stochastic perturbations: the homogenous and nonhomogenous. Symmetry-recovering is discovered for the asymmetrical homogenous case, while soliton switching is found to relate with the perturbation amplitude and soliton coherence. Simulations show that soliton switching in the circularly-polarized light system is much weaker than that in the Manakov and linearly-polarized systems. In addition, the homogenous perturbations can enhance the soliton switching in both of the Manakov and non-integrable (linearly- and circularly-polarized) systems. Our results might be helpful in interpreting dynamics of the BVSs with stochastic noises in nonlinear optics or with stochastic quantum fluctuations in Bose–Einstein condensates.
International Nuclear Information System (INIS)
Schuur, P.C.
1985-01-01
The author presents a rigorous demonstration of the emergence of solitons from the KdV initial value problem with arbitrary initial function. Studying multisoliton solutions of the KdV in the general case of a nonzero reflection coefficient, he derives a new phase shift formula. He derives an estimate which indicates how well a real potential in the Zakharov-Shabat system is approximated by its reflectionless part. Moreover, the associated inverse scattering formalism is simplified considerably. He presents an asymptotic analysis of the sine-Gordon equation on right half lines almost linearly moving leftward. (Auth.)
Bright matter wave solitons and their collision in Bose-Einstein condensates
International Nuclear Information System (INIS)
Radha, R.; Ramesh Kumar, V.
2007-01-01
We obtain the bright matter wave solitons in Bose-Einstein condensates from a trivial input solution by solving the time dependent Gross-Pitaevskii (GP) equation with quadratic potential and exponentially varying scattering length. We observe that the matter wave density of bright soliton increases with time by virtue of the exponentially increasing scattering length. We also understand that the matter wave densities of bright soliton trains remain finite despite the exchange of atoms during interaction and they travel along different trajectories (diverge) after interaction. We also observe that their amplitudes continue to fluctuate with time. For exponentially decaying scattering lengths, instability sets in the condensates. However, the scattering length can be suitably manipulated without causing the explosion or the collapse of the condensates
A Sequential Quadratically Constrained Quadratic Programming Method of Feasible Directions
International Nuclear Information System (INIS)
Jian Jinbao; Hu Qingjie; Tang Chunming; Zheng Haiyan
2007-01-01
In this paper, a sequential quadratically constrained quadratic programming method of feasible directions is proposed for the optimization problems with nonlinear inequality constraints. At each iteration of the proposed algorithm, a feasible direction of descent is obtained by solving only one subproblem which consist of a convex quadratic objective function and simple quadratic inequality constraints without the second derivatives of the functions of the discussed problems, and such a subproblem can be formulated as a second-order cone programming which can be solved by interior point methods. To overcome the Maratos effect, an efficient higher-order correction direction is obtained by only one explicit computation formula. The algorithm is proved to be globally convergent and superlinearly convergent under some mild conditions without the strict complementarity. Finally, some preliminary numerical results are reported
Basic methods of soliton theory
Cherednik, I
1996-01-01
In the 25 years of its existence Soliton Theory has drastically expanded our understanding of "integrability" and contributed a lot to the reunification of Mathematics and Physics in the range from deep algebraic geometry and modern representation theory to quantum field theory and optical transmission lines.The book is a systematic introduction to the Soliton Theory with an emphasis on its background and algebraic aspects. It is the first one devoted to the general matrix soliton equations, which are of great importance for the foundations and the applications.Differential algebra (local cons
Solitons in relativistic cosmologies
International Nuclear Information System (INIS)
Pullin, J.
1988-08-01
The application to the construction of solitonic cosmologies in General Relativity of the Inverse Scattering Technique of Belinskii an Zakharov is analyzed. Three improvements to the mentioned technique are proposed: the inclusion of higher order poles in the scattering matrix, a new renormalization technique for diagonal metrics and the extension of the technique to include backgrounds with material content by means of a Kaluza-Klein formalism. As a consequence of these improvements, three new aspects can be analyzed: a) The construction of anisotropic and inhomogeneous cosmological models which can mimic the formation of halos and voids, due to the presence of a material content. The new renormalization technique allows to construct an exact perturbation theory. b) The analysis of the dynamics of models with cosmological constant (inflationary models) and their perturbations. c) The study of interaction of gravitational solitonic waves on material backgrounds. Moreover, some additional works, connected with the existance of 'Crack of doom' type singularities in Kaluza-Klein cosmologies, stochastic perturbations in inflationary universes and inflationary phase transitions in rotating universes are described. (Author) [es
On Characterization of Quadratic Splines
DEFF Research Database (Denmark)
Chen, B. T.; Madsen, Kaj; Zhang, Shuzhong
2005-01-01
that the representation can be refined in a neighborhood of a non-degenerate point and a set of non-degenerate minimizers. Based on these characterizations, many existing algorithms for specific convex quadratic splines are also finite convergent for a general convex quadratic spline. Finally, we study the relationship...... between the convexity of a quadratic spline function and the monotonicity of the corresponding LCP problem. It is shown that, although both conditions lead to easy solvability of the problem, they are different in general....
Multi-wavelength and multi-colour temporal and spatial optical solitons
DEFF Research Database (Denmark)
Kivshar, Y. S.; Sukhorukov, A. A.; Ostrovskaya, E. A.
2000-01-01
We present an overview of several novel types of multi- component envelope solitary waves that appear in fiber and waveguide nonlinear optics. In particular, we describe multi-channel solitary waves in bit-parallel-wavelength fiber transmission systems for high performance computer networks, multi......-color parametric spatial solitary waves due to cascaded nonlinearities of quadratic materials, and quasiperiodic envelope solitons in Fibonacci optical superlattices....
Generalized sine-Gordon solitons
International Nuclear Information System (INIS)
Santos, C dos; Rubiera-Garcia, D
2011-01-01
In this paper, we construct analytical self-dual soliton solutions in (1+1) dimensions for two families of models which can be seen as generalizations of the sine-Gordon system but where the kinetic term is non-canonical. For that purpose we use a projection method applied to the sine-Gordon soliton. We focus our attention on the wall and lump-like soliton solutions of these k-field models. These solutions and their potentials reduce to those of the Klein-Gordon kink and the standard lump for the case of a canonical kinetic term. As we increase the nonlinearity on the kinetic term the corresponding potentials get modified and the nature of the soliton may change, in particular, undergoing a topology modification. The procedure constructed here is shown to be a sort of generalization of the deformation method for a specific class of k-field models. (paper)
International Nuclear Information System (INIS)
Brekke, L.; Imbo, T.D.
1992-01-01
The authors study the inequivalent quantizations of (1 + 1)-dimensional nonlinear sigma models with space manifold S 1 and target manifold X. If x is multiply connected, these models possess topological solitons. After providing a definition of spin and statistics for these solitons and demonstrating a spin-statistics correlation, we give various examples where the solitons can have exotic statistics. In some of these models, the solitons may obey a generalized version of fractional statistics called ambistatistics. In this paper the relevance of these 2d models to the statistics of vortices in (2 + 1)-dimensional spontaneously broken gauge theories is discussed. The authors close with a discussion concerning the extension of our results to higher dimensions
The fluid-dynamic paradigm of the dust-acoustic soliton
McKenzie, J. F.
2002-06-01
In most studies, the properties of dust-acoustic solitons are derived from the first integral of the Poisson equation, in which the shape of the pseudopotential determines both the conditions in which a soliton may exist and its amplitude. Here this first integral is interpreted as conservation of total momentum, which, along with the Bernoulli-like energy equations for each species, may be cast as the structure equation for the dust (or heavy-ion) speed in the wave. In this fluid-dynamic picture, the significance of the sonic points of each species becomes apparent. In the wave, the heavy-ion (or dust) flow speed is supersonic (relative to its sound speed), whereas the protons and electrons are subsonic (relative to their sound speeds), and the dust flow is driven towards its sonic point. It is this last feature that limits the strength (amplitude) of the wave, since the equilibrium point (the centre of the wave) must be reached before the dust speed becomes sonic. The wave is characterized by a compression in the heavies and a compression (rarefaction) in the electrons and a rarefaction (compression) in the protons if the heavies have positive (negative) charge, and the corresponding potential is a hump (dip). These features are elucidated by an exact analytical soliton, in a special case, which provides the fully nonlinear counterpoint to the weakly nonlinear sech2-type solitons associated with the Korteweg de Vries equation, and indicates the parameter regimes in which solitons may exist.
International Nuclear Information System (INIS)
Anabalón, Andrés; Astefanesei, Dumitru; Choque, David
2016-01-01
We construct exact hairy AdS soliton solutions in Einstein-dilaton gravity theory. We examine their thermodynamic properties and discuss the role of these solutions for the existence of first order phase transitions for hairy black holes. The negative energy density associated to hairy AdS solitons can be interpreted as the Casimir energy that is generated in the dual filed theory when the fermions are antiperiodic on the compact coordinate.
Soliton structure in crystalline acetanilide
International Nuclear Information System (INIS)
Eilbeck, J.C.; Lomdahl, P.S.; Scott, A.C.
1984-01-01
The theory of self-trapping of amide I vibrational energy in crystalline acetanilide is studied in detail. A spectrum of stationary, self-trapped (soliton) solutions is determined and tested for dynamic stability. Only those solutions for which the amide I energy is concentrated near a single molecule were found to be stable. Exciton modes were found to be unstable to decay into solitons
Energy Technology Data Exchange (ETDEWEB)
Anabalón, Andrés, E-mail: andres.anabalon@uai.cl [Departamento de Ciencias, Facultad de Artes Liberales and Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Av. Padre Hurtado 750, Viña del Mar (Chile); Astefanesei, Dumitru, E-mail: dumitru.astefanesei@pucv.cl [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile); Choque, David, E-mail: brst1010123@gmail.com [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile); Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile)
2016-11-10
We construct exact hairy AdS soliton solutions in Einstein-dilaton gravity theory. We examine their thermodynamic properties and discuss the role of these solutions for the existence of first order phase transitions for hairy black holes. The negative energy density associated to hairy AdS solitons can be interpreted as the Casimir energy that is generated in the dual filed theory when the fermions are antiperiodic on the compact coordinate.
International Nuclear Information System (INIS)
Wilets, L.
1988-01-01
Soliton models are well-suited for dynamical calculations, such as hadron-hadron interactions and collisions, since for each variable in the Lagrangian the time derivative of that variable also appears. For such models, constrained (deformed) mean field solutions provide a basis for generator coordinate dynamical calculations. This requires the solution of a large number of coupled, nonlinear, differential equations involving the quark and scalar fields. The Henyey-Wilets method reduces the problem to the solution of a set of coupled, linear, inhomogeneous, differential equations to be iterated. In the chromodielectric model, color confinement is effected by the self and mutual interactios of the quarks through the chromelectric field. This requires the self-consistent calculation of the gluon propagator in a spatially varying dielectric function. This now involves the solution of a set of coupled, nonlinear integro-differential equations, which can be linearized and solved by iterations. The problem is computation intensive. 20 refs
International Nuclear Information System (INIS)
Goetz, G.
1988-01-01
It is shown that the plane-wave solutions for the equations governing the motion of a self-gravitating isothermal fluid in Newtonian hydrodynamics are generated by a sine-Gordon equation which is solvable by an 'inverse scattering' transformation. A transformation procedure is outlined by means of which one can construct solutions of the gravity system out of a pair of solutions of the sine-Gordon equation, which are interrelated via an auto-Baecklund transformation. In general the solutions to the gravity system are obtained in a parametric representation in terms of characteristic coordinates. All solutions of the gravity system generated by the one-and two-soliton solutions of the sine-Gordon equation can be constructed explicitly. These might provide models for the evolution of flat structures as they are predicted to arise in the process of galaxy formation. (author)
Cioslowski, Jerzy
2018-04-01
The dependence of the natural amplitudes of the harmonium atom in its ground state on the confinement strength ω is thoroughly investigated. A combination of rigorous analysis and extensive, highly accurate numerical calculations reveals the presence of only one positive-valued natural amplitude ("the normal sign pattern") for all ω ≥1/2 . More importantly, it is shown that unusual, weakly occupied natural orbitals (NOs) corresponding to additional positive-valued natural amplitudes emerge upon sufficient weakening of the confinement. These solitonic NOs, whose shapes remain almost invariant as their radial positions drift toward infinity upon the critical values of ω being approached from below, exhibit strong radial localization. Their asymptotic properties are extracted from the numerical data and their relevance to calculations on fully Coulombic systems is discussed.
Geometric solitons of Hamiltonian flows on manifolds
Energy Technology Data Exchange (ETDEWEB)
Song, Chong, E-mail: songchong@xmu.edu.cn [School of Mathematical Sciences, Xiamen University, Xiamen 361005 (China); Sun, Xiaowei, E-mail: sunxw@cufe.edu.cn [School of Applied Mathematics, Central University of Finance and Economics, Beijing 100081 (China); Wang, Youde, E-mail: wyd@math.ac.cn [Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190 (China)
2013-12-15
It is well-known that the LIE (Locally Induction Equation) admit soliton-type solutions and same soliton solutions arise from different and apparently irrelevant physical models. By comparing the solitons of LIE and Killing magnetic geodesics, we observe that these solitons are essentially decided by two families of isometries of the domain and the target space, respectively. With this insight, we propose the new concept of geometric solitons of Hamiltonian flows on manifolds, such as geometric Schrödinger flows and KdV flows for maps. Moreover, we give several examples of geometric solitons of the Schrödinger flow and geometric KdV flow, including magnetic curves as geometric Schrödinger solitons and explicit geometric KdV solitons on surfaces of revolution.
Quantization in presence of external soliton fields
International Nuclear Information System (INIS)
Grosse, H.; Karner, G.
1986-01-01
Quantization of a fermi field interacting with an external soliton protential is considered. Classes of interactions leading to unitarily equivalent representations of the canonical anticommutation relations are determined. Soliton-like potentials compared to trivial ones yield inequivalent representations. (Author)
Evolution of envelope solitons of ionization waves
International Nuclear Information System (INIS)
Ohe, K.; Hashimoto, M.
1985-01-01
The time evolution of a particle-like envelope soliton of ionization waves in plasma was investigated theoretically. The hydrodynamic equations of one spatial dimension were solved and the nonlinear dispersion relation was derived. For the amplitude of the wave the nonlinear Schroedinger equation was derived. Its soliton solution was interpreted as the envelope soliton which was experimentally found. The damping rate of the envelope soliton was estimated. (D.Gy.)
On the supersymmetric solitons and monopoles
International Nuclear Information System (INIS)
Hruby, J.
1978-01-01
The basic results in a new trend in supersymmetry and soliton theory are presented. It is shown that the soliton expectation value of the energy operator is mass of the soliton without the quantum corrections. A new supersymmetric monopole model in three dimensions is constructed by generalization of the supersymmetric sine-Gordon model in one space dimension
Soliton resonance in bose-einstein condensate
Zak, Michail; Kulikov, I.
2002-01-01
A new phenomenon in nonlinear dispersive systems, including a Bose-Einstein Condensate (BEC), has been described. It is based upon a resonance between an externally induced soliton and 'eigen-solitons' of the homogeneous cubic Schrodinger equation. There have been shown that a moving source of positive /negative potential induces bright /dark solitons in an attractive / repulsive Bose condensate.
Two-Dimensional Spatial Solitons in Nematic Liquid Crystals
International Nuclear Information System (INIS)
Zhong Weiping; Xie Ruihua; Goong Chen; Belic, Milivoj; Yang Zhengping
2009-01-01
We study the propagation of spatial solitons in nematic liquid crystals, using the self-similar method. Analytical solutions in the form of self-similar solitons are obtained exactly. We confirm the stability of these solutions by direct numerical simulation, and find that the stable spatial solitons can exist in various forms, such as Gaussian solitons, radially symmetric solitons, multipole solitons, and soliton vortices.
A unified view of acoustic-electrostatic solitons in complex plasmas
McKenzie, J. F.; Doyle, T. B.
2003-03-01
A fluid dynamic approach is used in a unified fully nonlinear treatment of the properties of the dust-acoustic, ion-acoustic and Langmuir-acoustic solitons. The analysis, which is carried out in the wave frame of the soliton, is based on total momentum conservation and Bernoulli-like energy equations for each of the particle species in each wave type, and yields the structure equation for the `heavy' species flow speed in each case. The heavy (cold or supersonic) species is always compressed in the soliton, requiring concomitant contraints on the potential and on the flow speed of the electrons and protons in the wave. The treatment clearly elucidates the crucial role played by the heavy species sonic point in limiting the collective species Mach number, which determines the upper limit for the existence of the soliton and its amplitude, and also shows the essentially similar nature of each soliton type. An exact solution, which highlights these characteristic properties, shows that the three acoustic solitons are in fact the same mathematical entity in different physical disguises.
A unified view of acoustic-electrostatic solitons in complex plasmas
International Nuclear Information System (INIS)
McKenzie, J F; Doyle, T B
2003-01-01
A fluid dynamic approach is used in a unified fully nonlinear treatment of the properties of the dust-acoustic, ion-acoustic and Langmuir-acoustic solitons. The analysis, which is carried out in the wave frame of the soliton, is based on total momentum conservation and Bernoulli-like energy equations for each of the particle species in each wave type, and yields the structure equation for the 'heavy' species flow speed in each case. The heavy (cold or supersonic) species is always compressed in the soliton, requiring concomitant constraints on the potential and on the flow speed of the electrons and protons in the wave. The treatment clearly elucidates the crucial role played by the heavy species sonic point in limiting the collective species Mach number, which determines the upper limit for the existence of the soliton and its amplitude, and also shows the essentially similar nature of each soliton type. An exact solution, which highlights these characteristic properties, shows that the three acoustic solitons are in fact the same mathematical entity in different physical disguises
Energy Technology Data Exchange (ETDEWEB)
Blyakhman, L.G.; Gromov, E.M.; Onosova, I.V.; Tyutin, V.V., E-mail: vtyutin@hse.ru
2017-05-03
The dynamics of a two-component Davydov–Scott (DS) soliton with a small mismatch of the initial location or velocity of the high-frequency (HF) component was investigated within the framework of the Zakharov-type system of two coupled equations for the HF and low-frequency (LF) fields. In this system, the HF field is described by the linear Schrödinger equation with the potential generated by the LF component varying in time and space. The LF component in this system is described by the Korteweg–de Vries equation with a term of quadratic influence of the HF field on the LF field. The frequency of the DS soliton's component oscillation was found analytically using the balance equation. The perturbed DS soliton was shown to be stable. The analytical results were confirmed by numerical simulations. - Highlights: • The dynamics of the Davydov–Scott soliton with initial location or velocity mismatch of the HF component was investigated. • The study was performed within the framework of coupled linear Schrödinger and KdV equations for the HF and LF fields. • Analytical and numerical approaches were used. • The frequency of the DS soliton component oscillation was found. • Stability of the perturbed DS solitons was demonstrated.
Stability in quadratic torsion theories
Energy Technology Data Exchange (ETDEWEB)
Vasilev, Teodor Borislavov; Cembranos, Jose A.R.; Gigante Valcarcel, Jorge; Martin-Moruno, Prado [Universidad Complutense de Madrid, Departamento de Fisica Teorica I, Madrid (Spain)
2017-11-15
We revisit the definition and some of the characteristics of quadratic theories of gravity with torsion. We start from a Lagrangian density quadratic in the curvature and torsion tensors. By assuming that General Relativity should be recovered when the torsion vanishes and investigating the behaviour of the vector and pseudo-vector torsion fields in the weak-gravity regime, we present a set of necessary conditions for the stability of these theories. Moreover, we explicitly obtain the gravitational field equations using the Palatini variational principle with the metricity condition implemented via a Lagrange multiplier. (orig.)
Stability in quadratic torsion theories
International Nuclear Information System (INIS)
Vasilev, Teodor Borislavov; Cembranos, Jose A.R.; Gigante Valcarcel, Jorge; Martin-Moruno, Prado
2017-01-01
We revisit the definition and some of the characteristics of quadratic theories of gravity with torsion. We start from a Lagrangian density quadratic in the curvature and torsion tensors. By assuming that General Relativity should be recovered when the torsion vanishes and investigating the behaviour of the vector and pseudo-vector torsion fields in the weak-gravity regime, we present a set of necessary conditions for the stability of these theories. Moreover, we explicitly obtain the gravitational field equations using the Palatini variational principle with the metricity condition implemented via a Lagrange multiplier. (orig.)
Soliton concepts and protein structure
Krokhotin, Andrei; Niemi, Antti J.; Peng, Xubiao
2012-03-01
Structural classification shows that the number of different protein folds is surprisingly small. It also appears that proteins are built in a modular fashion from a relatively small number of components. Here we propose that the modular building blocks are made of the dark soliton solution of a generalized discrete nonlinear Schrödinger equation. We find that practically all protein loops can be obtained simply by scaling the size and by joining together a number of copies of the soliton, one after another. The soliton has only two loop-specific parameters, and we compute their statistical distribution in the Protein Data Bank (PDB). We explicitly construct a collection of 200 sets of parameters, each determining a soliton profile that describes a different short loop. The ensuing profiles cover practically all those proteins in PDB that have a resolution which is better than 2.0 Å, with a precision such that the average root-mean-square distance between the loop and its soliton is less than the experimental B-factor fluctuation distance. We also present two examples that describe how the loop library can be employed both to model and to analyze folded proteins.
International Nuclear Information System (INIS)
Kalita, B. C.; Barman, S. N.
2009-01-01
The propagation of ion-acoustic solitary waves in magnetized plasma with cold ions and ion-beams together with electron inertia has been investigated theoretically through the Korteweg-de Vries equation. Subject to the drift velocity of the ion beam, the existence of compressive solitons is found to become extinct as α (=cold ion mass/ion-beam mass) tends to 0.01 when γ=0.985 (γ is the beam velocity/phase velocity). Interestingly, a transitional direction of propagation of solitary waves has been unearthed for change over, from compressive solitons to rarefactive solitons based on α and σ υ (=cosine of the angle θ made by the wave propagation direction ξ with the direction of the magnetic field) for fixed Q(=electron mass/ion mass). Further, the direction of propagation of ion-acoustic waves is found to be the deterministic factor to admit compressive or rarefactive solitons subject to beam outsource.
Interaction of Langmuir solitons with sound
International Nuclear Information System (INIS)
Kurin, V.V.; Fraiman, G.M.
1981-01-01
The adiabatic approximation is used to study the interaction of Langmuir solitons with long ion-acoustic waves. The finite acoustic velocity gives rise to an effective mass for the soliton which is quite different from that in the approximation of a local nonlinearity. The force acting on a soliton, averaged over the period of the acoustic wave, is derived. The system of kinetic equations is analyzed in the approximation of random phases of the acoustic waves. The interaction of acoustic waves with solitons causes the acoustic spectrum to become more nearly isotropic, and the solitons are effectively damped
Gap states of charged soliton in polyacetylene
International Nuclear Information System (INIS)
Lu Dingwei; Liu Jie; Fu Rouli
1988-10-01
By considering the electron interaction in polyacetylene, it is found that two gap states in charged solitons of trans-polyacetylene exist: one is deep level, another is shallow level. The deep one shifts 0.23 ev down (for positive soliton) or up (for negative soliton) from the center of the gap; while the shallow one is 0.06 ev under the bottom of conduction band (positive soliton) or above the top of valence band (negative soliton). These results agree with the absorption spectra of trans-polyacetylene. (author). 5 refs, 4 figs
Extension of noncommutative soliton hierarchies
International Nuclear Information System (INIS)
Dimakis, Aristophanes; Mueller-Hoissen, Folkert
2004-01-01
A linear system, which generates a Moyal-deformed two-dimensional soliton equation as an integrability condition, can be extended to a three-dimensional linear system, treating the deformation parameter as an additional coordinate. The supplementary integrability conditions result in a first-order differential equation with respect to the deformation parameter, the flow of which commutes with the flow of the deformed soliton equation. In this way, a deformed soliton hierarchy can be extended to a bigger hierarchy by including the corresponding deformation equations. We prove the extended hierarchy properties for the deformed AKNS hierarchy, and specialize to the cases of deformed NLS, KdV and mKdV hierarchies. Corresponding results are also obtained for the deformed KP hierarchy. A deformation equation determines a kind of Seiberg-Witten map from classical solutions to solutions of the respective 'noncommutative' deformed equation
International Nuclear Information System (INIS)
Atkinson, James; Nijhoff, Frank; Hietarinta, Jarmo
2008-01-01
We construct N-soliton solutions to the equation called Q3 in the recent Adler-Bobenko-Suris classification. An essential ingredient in the construction is the relationship of (Q3) δ=0 to the equation proposed by Nijhoff, Quispel and Capel in 1983 (the NQC equation). This latter equation has two extra parameters, and depending on their sign choices we get a 4-to-1 relationship from NQC to (Q3) δ=0 . This leads to a four-term background solution, and then to a 1-soliton solution using a Baecklund transformation. Using the 1SS as a guide allows us to get the N-soliton solution in terms of the τ-function of the Hirota-Miwa equation. (fast track communication)
Solitons in the Peierls condensate
International Nuclear Information System (INIS)
Horowitz, B.; Krumhansl, J.A.
1983-05-01
The electron-phonon system in one dimension is studied within the adiabatic (Hartree) and Hartree-Fock approximations. The equations of motion for the Peierls order parameter at zero temperature are derived from a microscopic Hamiltonian and an effective Lagrangian is constructed. Charged phase solitons describe systems whose electron density is at or near M fold commensurability with M >= 3. For M = 2 the order parameter is real in the adiabatic approximation, but becomes complex when both acoustic and optical phonons are coupled, or for a non-adiabatic theory. The latter is studied with Coulomb exchange force and phase solitons are derived. The soliton charge is 2/M for all M > = 2. When M = 4 the pinning potential can be anomalously low, in agreement with data on TaS 3 and similar compounds. (author)
Quadratic prediction of factor scores
Wansbeek, T
1999-01-01
Factor scores are naturally predicted by means of their conditional expectation given the indicators y. Under normality this expectation is linear in y but in general it is an unknown function of y. II is discussed that under nonnormality factor scores can be more precisely predicted by a quadratic
On quadratic variation of martingales
Indian Academy of Sciences (India)
On quadratic variation of martingales. 459. The proof relied on the theory of stochastic integration. Subsequently, in Karandikar. [4], the formula was derived using only Doob's maximal inequality. Thus this could be the starting point for the development of stochastic calculus for continuous semimartingales without bringing in ...
Quadratic divergences and dimensional regularisation
International Nuclear Information System (INIS)
Jack, I.; Jones, D.R.T.
1990-01-01
We present a detailed analysis of quadratic and quartic divergences in dimensionally regulated renormalisable theories. We perform explicit three-loop calculations for a general theory of scalars and fermions. We find that the higher-order quartic divergences are related to the lower-order ones by the renormalisation group β-functions. (orig.)
Deceleration of solitons in molecular chains
International Nuclear Information System (INIS)
Davydov, A.S.; Eremko, A.A.
1980-01-01
Effects of external actions on solitons arising under local excitations in molecular quasi-one-dimensional chains are investigated. The main formulas describing free solitons are presented. The motion of solitons in the presence of the force of friction proportional to their velocity is studied. It is shown that in this case the soliton velocity decreases with time in an exponential manner. It is shown that if the forces of friction are proportional to the square of velocity, the velocity decreases with time according to a linear law. The motion of solitons is investigated an the presence of small local non-uniformities or external fields. It is shown that an this case the soliton centre moves according to the Newton law in which however the force is determined by the integral expression. The conclusion is made that it is impossible to describe correctly the dynamic properties of solitons without taking into account physical factors causing the nonlinearity
Soliton robustness in optical fibers
International Nuclear Information System (INIS)
Menyuk, C.R.
1993-01-01
Simulations and experiments indicate that solitons in optical fibers are robust in the presence of Hamiltonian deformations such as higher-order dispersion and birefringence but are destroyed in the presence of non-Hamiltonian deformations such as attenuation and the Raman effect. Two hypotheses are introduced that generalize these observations and give a recipe for when deformations will be Hamiltonian. Concepts from nonlinear dynamics are used to make these two hypotheses plausible. Soliton stabilization with frequency filtering is also briefly discussed from this point of view
Negative mass solitons in gravity
International Nuclear Information System (INIS)
Cebeci, Hakan; Sarioglu, Oezguer; Tekin, Bayram
2006-01-01
We first reconstruct the conserved (Abbott-Deser) charges in the spin-connection formalism of gravity for asymptotically (Anti)-de Sitter spaces, and then compute the masses of the AdS soliton and the recently found Eguchi-Hanson solitons in generic odd dimensions, unlike the previous result obtained for only five dimensions. These solutions have negative masses compared to the global AdS or AdS/Z p spacetimes. As a separate note, we also compute the masses of the recent even dimensional Taub-NUT-Reissner-Nordstroem metrics
The properties of fast and slow oblique solitons in a magnetized plasma
McKenzie, J. F.; Doyle, T. B.
2002-01-01
This work builds on a recent treatment by McKenzie and Doyle [Phys. Plasmas 8, 4367 (2001)], on oblique solitons in a cold magnetized plasma, to include the effects of plasma thermal pressure. Conservation of total momentum in the direction of wave propagation immediately shows that if the flow is supersonic, compressive (rarefactive) changes in the magnetic pressure induce decelerations (accelerations) in the flow speed, whereas if the flow is subsonic, compressive (rarefactive) changes in the magnetic pressure induce accelerations (decelerations) in the flow speed. Such behavior is characteristic of a Bernoulli-type plasma momentum flux which exhibits a minimum at the plasma sonic point. The plasma energy flux (kinetic plus enthalpy) also shows similar Bernoulli-type behavior. This transonic effect is manifest in the spatial structure equation for the flow speed (in the direction of propagation) which shows that soliton structures may exist if the wave speed lies either (i) in the range between the fast and Alfven speeds or (ii) between the sound and slow mode speed. These conditions follow from the requirement that a defined, characteristic "soliton parameter" m exceeds unity. It is in this latter slow soliton regime that the effects of plasma pressure are most keenly felt. The equilibrium points of the structure equation define the center of the wave. The structure of both fast and slow solitons is elucidated through the properties of the energy integral function of the structure equation. In particular, the slow soliton, which owes its existence to plasma pressure, may have either a compressive or rarefactive nature, and exhibits a rich structure, which is revealed through the spatial structure of the longitudinal speed and its corresponding transverse velocity hodograph.
The properties of fast and slow oblique solitons in a magnetized plasma
International Nuclear Information System (INIS)
McKenzie, J.F.; Doyle, T.B.
2002-01-01
This work builds on a recent treatment by McKenzie and Doyle [Phys. Plasmas 8, 4367 (2001)], on oblique solitons in a cold magnetized plasma, to include the effects of plasma thermal pressure. Conservation of total momentum in the direction of wave propagation immediately shows that if the flow is supersonic, compressive (rarefactive) changes in the magnetic pressure induce decelerations (accelerations) in the flow speed, whereas if the flow is subsonic, compressive (rarefactive) changes in the magnetic pressure induce accelerations (decelerations) in the flow speed. Such behavior is characteristic of a Bernoulli-type plasma momentum flux which exhibits a minimum at the plasma sonic point. The plasma energy flux (kinetic plus enthalpy) also shows similar Bernoulli-type behavior. This transonic effect is manifest in the spatial structure equation for the flow speed (in the direction of propagation) which shows that soliton structures may exist if the wave speed lies either (i) in the range between the fast and Alfven speeds or (ii) between the sound and slow mode speed. These conditions follow from the requirement that a defined, characteristic 'soliton parameter' m exceeds unity. It is in this latter slow soliton regime that the effects of plasma pressure are most keenly felt. The equilibrium points of the structure equation define the center of the wave. The structure of both fast and slow solitons is elucidated through the properties of the energy integral function of the structure equation. In particular, the slow soliton, which owes its existence to plasma pressure, may have either a compressive or rarefactive nature, and exhibits a rich structure, which is revealed through the spatial structure of the longitudinal speed and its corresponding transverse velocity hodograph
Motion of a magnetic soliton about a lattice soliton in a Heisenberg chain
International Nuclear Information System (INIS)
Nayyar, A.H.; Murtaza, G.
1981-08-01
As an example of interaction between two solitons belonging to different species, a semiclassical study of the nonlinear dynamics of a coupled magnon-phonon system in a one-dimensional Heisenberg ferromagnet is made, where both the lattice and the spin systems are taken with their respective nonlinear interactions. The lattice soliton is shown to introduce spatial inhomogeneities into the propagation of the magnetic soliton resulting in (a) the trapping of the magnetic soliton in the harmonic field of the lattice soliton and (b) the amplitude and the width of the magnetic soliton becoming time-dependent. (author)
Dressing method and quadratic bundles related to symmetric spaces. Vanishing boundary conditions
Valchev, T. I.
2016-02-01
We consider quadratic bundles related to Hermitian symmetric spaces of the type SU(m + n)/S(U(m) × U(n)). The simplest representative of the corresponding integrable hierarchy is given by a multi-component Kaup-Newell derivative nonlinear Schrödinger equation which serves as a motivational example for our general considerations. We extensively discuss how one can apply Zakharov-Shabat's dressing procedure to derive reflectionless potentials obeying zero boundary conditions. Those could be used for one to construct fast decaying solutions to any nonlinear equation belonging to the same hierarchy. One can distinguish between generic soliton type solutions and rational solutions.
International Nuclear Information System (INIS)
Ji Mingjun; Lue Zhuosheng
2005-01-01
By using the further extended tanh method [Phys. Lett. A 307 (2003) 269; Chaos, Solitons and Fractals 17 (2003) 669] to the Broer-Kaup system with variable coefficients, abundant new soliton-like solutions and multi-soliton-like solutions are derived. Based on the derived multi-soliton-like solutions which contain arbitrary functions, some interesting multi-soliton structures are revealed.
Quadratic third-order tensor optimization problem with quadratic constraints
Directory of Open Access Journals (Sweden)
Lixing Yang
2014-05-01
Full Text Available Quadratically constrained quadratic programs (QQPs problems play an important modeling role for many diverse problems. These problems are in general NP hard and numerically intractable. Semidenite programming (SDP relaxations often provide good approximate solutions to these hard problems. For several special cases of QQP, e.g., convex programs and trust region subproblems, SDP relaxation provides the exact optimal value, i.e., there is a zero duality gap. However, this is not true for the general QQP, or even the QQP with two convex constraints, but a nonconvex objective.In this paper, we consider a certain QQP where the variable is neither vector nor matrix but a third-order tensor. This problem can be viewed as a generalization of the ordinary QQP with vector or matrix as it's variant. Under some mild conditions, we rst show that SDP relaxation provides exact optimal solutions for the original problem. Then we focus on two classes of homogeneous quadratic tensor programming problems which have no requirements on the constraints number. For one, we provide an easily implemental polynomial time algorithm to approximately solve the problem and discuss the approximation ratio. For the other, we show there is no gap between the SDP relaxation and itself.
Ion temperature gradient mode driven solitons and shocks
Zakir, U.; Adnan, Muhammad; Haque, Q.; Qamar, Anisa; Mirza, Arshad M.
2016-04-01
Ion temperature gradient (ITG) driven solitons and shocks are studied in a plasma having gradients in the equilibrium number density and equilibrium ion temperature. In the linear regime, it is found that the ion temperature and the ratio of the gradient scale lengths, ηi=Ln/LT , affect both the real frequency and the growth rate of the ITG driven wave instability. In the nonlinear regime, for the first time we derive a Korteweg de Vries-type equation for the ITG mode, which admits solitary wave solution. It is found that the ITG mode supports only compressive solitons. Further, it is noticed that the soliton amplitude and width are sensitive to the parameter ηi=Ln/LT . Second, in the presence of dissipation in the system, we obtain a Burger type equation, which admits the shock wave solution. This work may be useful to understand the low frequency electrostatic modes in inhomogeneous electron-ion plasma having density and ion temperature gradients. For illustration, the model has been applied to tokamak plasma.
Quantum deflation of classical solitons
International Nuclear Information System (INIS)
Sveshnikov, K.; Silaev, P.
1996-01-01
It is shown, that due to nonperturbative effects, in the relativistic QFT the extended particle-like solutions should infinitely long collapse into some discontinuous configurations of the same topology, but vanishing mass. Analytical and numerical results for the dynamics of such a process are given for 1 + 1 dimensional soliton models
International Nuclear Information System (INIS)
Olsen, M.; Smith, H.; Scott, A.C.
1984-01-01
A wave tank experiment (first described by the nineteenth-century engineer and naval architect John Scott Russell) relates a linear eigenvalue problem from elementary quantum mechanics to a striking feature of modern nonlinear wave theory: multiple generation of solitons. The tank experiment is intended for lecture demonstrations. 19 references, 6 figures
Oscillating solitons in nonlinear optics
Indian Academy of Sciences (India)
The study of solitons in those physical systems reveals some exciting .... With the following power series expansions for g(z,t) and f(z,t): g(z,t) = εg1(z,t) + ... If nonlinearity γ (z) is also taken as a function in figure 1b, the periodic and oscillation.
Spinning solitons in cubic-quintic nonlinear media
Indian Academy of Sciences (India)
Spinning solitons in cubic-quintic nonlinear media ... features of families of bright vortex solitons (doughnuts, or 'spinning' solitons) in both conservative and dissipative cubic-quintic nonlinear media. ... Pramana – Journal of Physics | News.
Exact solutions to quadratic gravity
Czech Academy of Sciences Publication Activity Database
Pravda, Vojtěch; Pravdová, Alena; Podolský, J.; Švarc, J.
2017-01-01
Roč. 95, č. 8 (2017), č. článku 084025. ISSN 2470-0010 R&D Projects: GA ČR GB14-37086G Institutional support: RVO:67985840 Keywords : quadratic gravity * exact solutions * Kundt spacetimes Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 4.568, year: 2016 https://journals.aps.org/prd/abstract/10.1103/PhysRevD.95.084025
On Quadratic Variation of Martingales
Indian Academy of Sciences (India)
where D ( [ 0 , ∞ ) , R ) denotes the class of real valued r.c.l.l. functions on [ 0 , ∞ ) such that for a locally square integrable martingale ( M t ) with r.c.l.l. paths,. Ψ ( M . ( ) ) = A . ( ). gives the quadratic variation process (written usually as [ M , M ] t ) of ( M t ) . We also show that this process ( A t ) is the unique increasing ...
Exact solutions to quadratic gravity
Czech Academy of Sciences Publication Activity Database
Pravda, Vojtěch; Pravdová, Alena; Podolský, J.; Švarc, J.
2017-01-01
Roč. 95, č. 8 (2017), č. článku 084025. ISSN 2470-0010 R&D Projects: GA ČR GB14-37086G Institutional support: RVO:67985840 Keywords : quadratic gravity * exact solutions * Kundt spacetimes Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 4.568, year: 2016 https://journals. aps .org/prd/abstract/10.1103/PhysRevD.95.084025
International Nuclear Information System (INIS)
Liu Wenjun; Tian Bo; Xu Tao; Sun Kun; Jiang Yan
2010-01-01
Symbolically investigated in this paper is a nonlinear Schroedinger equation with the varying dispersion and nonlinearity for the propagation of optical pulses in the normal dispersion regime of inhomogeneous optical fibers. With the aid of the Hirota method, analytic one- and two-soliton solutions are obtained. Relevant properties of physical and optical interest are illustrated. Different from the previous results, both the bright and dark solitons are hereby derived in the normal dispersion regime of the inhomogeneous optical fibers. Moreover, different dispersion profiles of the dispersion-decreasing fibers can be used to realize the soliton control. Finally, soliton interaction is discussed with the soliton control confirmed to have no influence on the interaction. The results might be of certain value for the study of the signal generator and soliton control.
Orthogonality preserving infinite dimensional quadratic stochastic operators
International Nuclear Information System (INIS)
Akın, Hasan; Mukhamedov, Farrukh
2015-01-01
In the present paper, we consider a notion of orthogonal preserving nonlinear operators. We introduce π-Volterra quadratic operators finite and infinite dimensional settings. It is proved that any orthogonal preserving quadratic operator on finite dimensional simplex is π-Volterra quadratic operator. In infinite dimensional setting, we describe all π-Volterra operators in terms orthogonal preserving operators
Extending the Scope of Robust Quadratic Optimization
Marandi, Ahmadreza; Ben-Tal, A.; den Hertog, Dick; Melenberg, Bertrand
In this paper, we derive tractable reformulations of the robust counterparts of convex quadratic and conic quadratic constraints with concave uncertainties for a broad range of uncertainty sets. For quadratic constraints with convex uncertainty, it is well-known that the robust counterpart is, in
Stable one-dimensional periodic waves in Kerr-type saturable and quadratic nonlinear media
International Nuclear Information System (INIS)
Kartashov, Yaroslav V; Egorov, Alexey A; Vysloukh, Victor A; Torner, Lluis
2004-01-01
We review the latest progress and properties of the families of bright and dark one-dimensional periodic waves propagating in saturable Kerr-type and quadratic nonlinear media. We show how saturation of the nonlinear response results in the appearance of stability (instability) bands in a focusing (defocusing) medium, which is in sharp contrast with the properties of periodic waves in Kerr media. One of the key results discovered is the stabilization of multicolour periodic waves in quadratic media. In particular, dark-type waves are shown to be metastable, while bright-type waves are completely stable in a broad range of energy flows and material parameters. This yields the first known example of completely stable periodic wave patterns propagating in conservative uniform media supporting bright solitons. Such results open the way to the experimental observation of the corresponding self-sustained periodic wave patterns
International Nuclear Information System (INIS)
Liu Chunping; Zhou Ling
2011-01-01
By improving the extended homogeneous balance method, a general method is suggested to derive a new auto-Baecklund transformation (BT) for (3+1)-Dimensional Jimbo-Miwa (JM) equation. The auto-BT obtained by using our method only involves one quadratic homogeneity equation written as a bilinear equation. Based on the auto-BT, two-soliton solution of the (3+1)-Dimensional JM equation is obtained. (general)
Top quark soliton and its anomalous chromomagnetic moment
International Nuclear Information System (INIS)
Berger, J.; Blotz, A.; Kim, H.; Goeke, K.
1996-01-01
We show that under the assumption of dynamical symmetry breaking of electroweak interactions by a top quark condensate, motivated by the top mode standard model, the top quark in this effective theory can be considered then as a chiral color soliton. This is realized in an effective four-fermion interaction with chiral SU(3) c as well as SU(2) L circle-times U Y (1) symmetry. In the pure top quark sector the soliton consists of a top valence quark and a Dirac sea of top quarks and top antiquarks coupled to a color octet of Goldstone pions. The mass spectra, isoscalar quadratic radii, and the anomalous chromomagnetic moment because of a nontrivial color form factor are calculated with zero and finite current top quark masses and effects at the hadron colliders are discussed. The anomalous chromomagnetic moment turns out to have a value consistent with the top quark production rates of the D0 and CDF measurements. copyright 1996 The American Physical Society
Matter-Wave Solitons In Optical Superlattices
International Nuclear Information System (INIS)
Louis, Pearl J. Y.; Ostrovskaya, Elena A.; Kivshar, Yuri S.
2006-01-01
In this work we show that the properties of both bright and dark Bose-Einstein condensate (BEC) solitons trapped in optical superlattices can be controlled by changing the shape of the trapping potential whilst maintaining a constant periodicity and lattice height. Using this method we can control the properties of bright gap solitons by dispersion management. We can also control the interactions between dark lattice solitons. In addition we demonstrate a method for controlled generation of matter-wave gap solitons in stationary optical lattices by interfering two condensate wavepackets, producing a single wavepacket at a gap edge with properties similar to a gap soliton. As this wavepacket evolves, it forms a bright gap soliton
Averaging for solitons with nonlinearity management
International Nuclear Information System (INIS)
Pelinovsky, D.E.; Kevrekidis, P.G.; Frantzeskakis, D.J.
2003-01-01
We develop an averaging method for solitons of the nonlinear Schroedinger equation with a periodically varying nonlinearity coefficient, which is used to effectively describe solitons in Bose-Einstein condensates, in the context of the recently proposed technique of Feshbach resonance management. Using the derived local averaged equation, we study matter-wave bright and dark solitons and demonstrate a very good agreement between solutions of the averaged and full equations
Solitons in a random force field
International Nuclear Information System (INIS)
Bass, F.G.; Konotop, V.V.; Sinitsyn, Y.A.
1985-01-01
We study the dynamics of a soliton of the sine-Gordon equation in a random force field in the adiabatic approximation. We obtain an Einstein-Fokker equation and find the distribution function for the soliton parameters which we use to evaluate its statistical characteristics. We derive an equation for the averaged functions of the soliton parameters. We determine the limits of applicability of the delta-correlated in time random field approximation
Intermode Breather Solitons in Optical Microresonators
Guo, Hairun; Lucas, Erwan; Pfeiffer, Martin H. P.; Karpov, Maxim; Anderson, Miles; Liu, Junqiu; Geiselmann, Michael; Jost, John D.; Kippenberg, Tobias J.
2017-10-01
Dissipative solitons can be found in a variety of systems resulting from the double balance between dispersion and nonlinearity, as well as gain and loss. Recently, they have been observed to spontaneously form in Kerr nonlinear microresonators driven by a continuous wave laser, providing a compact source of coherent optical frequency combs. As optical microresonators are commonly multimode, intermode interactions, which give rise to avoided mode crossings, frequently occur and can alter the soliton properties. Recent works have shown that avoided mode crossings cause the soliton to acquire a single-mode dispersive wave, a recoil in the spectrum, or lead to soliton decay. Here, we show that avoided mode crossings can also trigger the formation of breather solitons, solitons that undergo a periodic evolution in their amplitude and duration. This new breather soliton, referred to as an intermode breather soliton, occurs within a laser detuning range where conventionally stationary (i.e., stable) dissipative Kerr solitons are expected. We experimentally demonstrate the phenomenon in two microresonator platforms (crystalline magnesium fluoride and photonic chip-based silicon nitride microresonators) and theoretically describe the dynamics based on a pair of coupled Lugiato-Lefever equations. We show that the breathing is associated with a periodic energy exchange between the soliton and a second optical mode family, a behavior that can be modeled by a response function acting on dissipative solitons described by the Lugiato-Lefever model. The observation of breathing dynamics in the conventionally stable soliton regime is relevant to applications in metrology such as low-noise microwave generation, frequency synthesis, or spectroscopy.
Path-integral quantization of solitons using the zero-mode Feynman rule
International Nuclear Information System (INIS)
Sung Sheng Chang
1978-01-01
We propose a direct expansion treatment to quantize solitons without collective coordinates. Feynman's path integral for a free particle subject to an external force is directly used as the generating functional for the zero-frequency mode. The generating functional has no infrared singularity and defines a zero-mode Feynman rule which also gives a correct perturbative expansion for the harmonic-oscillator Green's function by treating the quadratic potential as a perturbation. We use the zero-mode Feynman rule to calculate the energy shift due to the second-order quantum corrections for solitons. Our result agrees with previous predictions using the collective-coordinate method or the method of Goldstone and Jackiw
Temperature effects on the Davydov soliton
DEFF Research Database (Denmark)
Cruzeiro, L.; Halding, J.; Christiansen, Peter Leth
1988-01-01
As a possible mechanism for energy storage and transport in proteins, Davydov has proposed soliton formation and propagation. In this paper we investigate the stability of Davydov solitons at biological temperatures. From Davydov’s original theory evolution equations are derived quantum mechanica......As a possible mechanism for energy storage and transport in proteins, Davydov has proposed soliton formation and propagation. In this paper we investigate the stability of Davydov solitons at biological temperatures. From Davydov’s original theory evolution equations are derived quantum...
Solitons in one-dimensional antiferromagnetic chains
International Nuclear Information System (INIS)
Pires, A.S.T.; Talim, S.L.; Costa, B.V.
1989-01-01
We study the quantum-statistical mechanics, at low temperatures, of a one-dimensional antiferromagnetic Heisenberg model with two anisotropies. In the weak-coupling limit we determine the temperature dependences of the soliton energy and the soliton density. We have found that the leading correction to the sine-Gordon (SG) expression for the soliton density and the quantum soliton energy comes from the out-of-plane magnon mode, not present in the pure SG model. We also show that when an external magnetic field is applied, the chain supports a new type of kink, where the sublattices rotate in opposite directions
Moving stable solitons in Galileon theory
International Nuclear Information System (INIS)
Masoumi, Ali; Xiao Xiao
2012-01-01
Despite the no-go theorem Endlich et al. (2011) which rules out static stable solitons in Galileon theory, we propose a family of solitons that evade the theorem by traveling at the speed of light. These domain-wall-like solitons are stable under small fluctuations-analysis of perturbation shows neither ghost-like nor tachyon-like instabilities, and perturbative collision of these solitons suggests that they pass through each other asymptotically, which maybe an indication of the integrability of the theory itself.
Soliton coding for secured optical communication link
Amiri, Iraj Sadegh; Idrus, Sevia Mahdaliza
2015-01-01
Nonlinear behavior of light such as chaos can be observed during propagation of a laser beam inside the microring resonator (MRR) systems. This Brief highlights the design of a system of MRRs to generate a series of logic codes. An optical soliton is used to generate an entangled photon. The ultra-short soliton pulses provide the required communication signals to generate a pair of polarization entangled photons required for quantum keys. In the frequency domain, MRRs can be used to generate optical millimetre-wave solitons with a broadband frequency of 0?100 GHz. The soliton signals are multi
Coherent states for quadratic Hamiltonians
International Nuclear Information System (INIS)
Contreras-Astorga, Alonso; Fernandez C, David J; Velazquez, Mercedes
2011-01-01
The coherent states for a set of quadratic Hamiltonians in the trap regime are constructed. A matrix technique which allows us to directly identify the creation and annihilation operators will be presented. Then, the coherent states as simultaneous eigenstates of the annihilation operators will be derived, and will be compared with those attained through the displacement operator method. The corresponding wavefunction will be found, and a general procedure for obtaining several mean values involving the canonical operators in these states will be described. The results will be illustrated through the asymmetric Penning trap.
Quadratic Variation by Markov Chains
DEFF Research Database (Denmark)
Hansen, Peter Reinhard; Horel, Guillaume
We introduce a novel estimator of the quadratic variation that is based on the the- ory of Markov chains. The estimator is motivated by some general results concerning filtering contaminated semimartingales. Specifically, we show that filtering can in prin- ciple remove the effects of market...... microstructure noise in a general framework where little is assumed about the noise. For the practical implementation, we adopt the dis- crete Markov chain model that is well suited for the analysis of financial high-frequency prices. The Markov chain framework facilitates simple expressions and elegant analyti...
Factorization method of quadratic template
Kotyrba, Martin
2017-07-01
Multiplication of two numbers is a one-way function in mathematics. Any attempt to distribute the outcome to its roots is called factorization. There are many methods such as Fermat's factorization, Dixońs method or quadratic sieve and GNFS, which use sophisticated techniques fast factorization. All the above methods use the same basic formula differing only in its use. This article discusses a newly designed factorization method. Effective implementation of this method in programs is not important, it only represents and clearly defines its properties.
Optimal control linear quadratic methods
Anderson, Brian D O
2007-01-01
This augmented edition of a respected text teaches the reader how to use linear quadratic Gaussian methods effectively for the design of control systems. It explores linear optimal control theory from an engineering viewpoint, with step-by-step explanations that show clearly how to make practical use of the material.The three-part treatment begins with the basic theory of the linear regulator/tracker for time-invariant and time-varying systems. The Hamilton-Jacobi equation is introduced using the Principle of Optimality, and the infinite-time problem is considered. The second part outlines the
Two-soliton interaction as an elementary act of soliton turbulence in integrable systems
Energy Technology Data Exchange (ETDEWEB)
Pelinovsky, E.N. [Department of Information Systems, National Research University – Higher School of Economics, Nizhny Novgorod (Russian Federation); Department of Nonlinear Geophysical Processes, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod (Russian Federation); Shurgalina, E.G.; Sergeeva, A.V.; Talipova, T.G. [Department of Nonlinear Geophysical Processes, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod (Russian Federation); Department of Applied Mathematics, Nizhny Novgorod State Technical University, Nizhny Novgorod (Russian Federation); El, G.A., E-mail: g.el@lboro.ac.uk [Department of Mathematical Sciences, Loughborough University (United Kingdom); Grimshaw, R.H.J. [Department of Mathematical Sciences, Loughborough University (United Kingdom)
2013-01-03
Two-soliton interactions play a definitive role in the formation of the structure of soliton turbulence in integrable systems. To quantify the contribution of these interactions to the dynamical and statistical characteristics of the nonlinear wave field of soliton turbulence we study properties of the spatial moments of the two-soliton solution of the Korteweg–de Vries (KdV) equation. While the first two moments are integrals of the KdV evolution, the 3rd and 4th moments undergo significant variations in the dominant interaction region, which could have strong effect on the values of the skewness and kurtosis in soliton turbulence.
Soliton Gases and Generalized Hydrodynamics
Doyon, Benjamin; Yoshimura, Takato; Caux, Jean-Sébastien
2018-01-01
We show that the equations of generalized hydrodynamics (GHD), a hydrodynamic theory for integrable quantum systems at the Euler scale, emerge in full generality in a family of classical gases, which generalize the gas of hard rods. In this family, the particles, upon colliding, jump forward or backward by a distance that depends on their velocities, reminiscent of classical soliton scattering. This provides a "molecular dynamics" for GHD: a numerical solver which is efficient, flexible, and which applies to the presence of external force fields. GHD also describes the hydrodynamics of classical soliton gases. We identify the GHD of any quantum model with that of the gas of its solitonlike wave packets, thus providing a remarkable quantum-classical equivalence. The theory is directly applicable, for instance, to integrable quantum chains and to the Lieb-Liniger model realized in cold-atom experiments.
Polarization Properties of Laser Solitons
Directory of Open Access Journals (Sweden)
Pedro Rodriguez
2017-04-01
Full Text Available The objective of this paper is to summarize the results obtained for the state of polarization in the emission of a vertical-cavity surface-emitting laser with frequency-selective feedback added. We start our research with the single soliton; this situation presents two perpendicular main orientations, connected by a hysteresis loop. In addition, we also find the formation of a ring-shaped intensity distribution, the vortex state, that shows two homogeneous states of polarization with very close values to those found in the soliton. For both cases above, the study shows the spatially resolved value of the orientation angle. It is important to also remark the appearance of a non-negligible amount of circular light that gives vectorial character to all the different emissions investigated.
Solitons in four dimensional gravity
International Nuclear Information System (INIS)
Matos, T.
1990-01-01
An alternative method to solve the Chiral equations with SL (2,R) symmetry is developed. One gets the N-soliton solution using the Neugebauer Ansatz. For N = 1 one obtains the Backlund transformation of the Chiral equations. From the application of this transformation for the flat seed solution one finds the Kerr-NUT solution. This method can be applied to generate solutions of the n-dimensional Einstein equations (Author)
Soliton collapse during ionospheric heating
International Nuclear Information System (INIS)
Sheerin, J.P.; Nicholson, D.R.; Payne, G.L.; Duncan, L.M.
1984-01-01
We present analytical and numerical work which indicates that during ionospheric heating with high-powered hf radio waves, the oscillating two-stream instability may dominate the parametric decay instability. The oscillating two-stream instability saturates nonlinearly through the formation of solitons which undergo a collisionally damped collapse. Using the heater and radar facilities at Arecibo Observatory, we have investigated this phenomenon experimentally. Recent results from our theoretical and experimental investigations are presented
Quadratic reactivity fuel cycle model
International Nuclear Information System (INIS)
Lewins, J.D.
1985-01-01
For educational purposes it is highly desirable to provide simple yet realistic models for fuel cycle and fuel economy. In particular, a lumped model without recourse to detailed spatial calculations would be very helpful in providing the student with a proper understanding of the purposes of fuel cycle calculations. A teaching model for fuel cycle studies based on a lumped model assuming the summability of partial reactivities with a linear dependence of reactivity usefully illustrates fuel utilization concepts. The linear burnup model does not satisfactorily represent natural enrichment reactors. A better model, showing the trend of initial plutonium production before subsequent fuel burnup and fission product generation, is a quadratic fit. The study of M-batch cycles, reloading 1/Mth of the core at end of cycle, is now complicated by nonlinear equations. A complete account of the asymptotic cycle for any order of M-batch refueling can be given and compared with the linear model. A complete account of the transient cycle can be obtained readily in the two-batch model and this exact solution would be useful in verifying numerical marching models. It is convenient to treat the parabolic fit rho = 1 - tau 2 as a special case of the general quadratic fit rho = 1 - C/sub tau/ - (1 - C)tau 2 in suitably normalized reactivity and cycle time units. The parabolic results are given in this paper
Electron acoustic-Langmuir solitons in a two-component electron plasma
McKenzie, J. F.
2003-04-01
We investigate the conditions under which ‘high-frequency’ electron acoustic Langmuir solitons can be constructed in a plasma consisting of protons and two electron populations: one ‘cold’ and the other ‘hot’. Conservation of total momentum can be cast as a structure equation either for the ‘cold’ or ‘hot’ electron flow speed in a stationary wave using the Bernoulli energy equations for each species. The linearized version of the governing equations gives the dispersion equation for the stationary waves of the system, from which follows the necessary but not sufficient conditions for the existence of soliton structures; namely that the wave speed must be less than the acoustic speed of the ‘hot’ electron component and greater than the low-frequency compound acoustic speed of the two electron populations. In this wave speed regime linear waves are ‘evanescent’, giving rise to the exponential growth or decay, which readily can give rise to non-linear effects that may balance dispersion and allow soliton formation. In general the ‘hot’ component must be more abundant than the ‘cold’ one and the wave is characterized by a compression of the ‘cold’ component and an expansion in the ‘hot’ component necessitating a potential dip. Both components are driven towards their sonic points; the ‘cold’ from above and the ‘hot’ from below. It is this transonic feature which limits the amplitude of the soliton. If the ‘hot’ component is not sufficiently abundant the window for soliton formation shrinks to a narrow speed regime which is quasi-transonic relative to the ‘hot’ electron acoustic speed, and it is shown that smooth solitons cannot be constructed. In the special case of a very cold electron population (i.e. ‘highly supersonic’) and the other population being very hot (i.e. ‘highly subsonic’) with adiabatic index 2, the structure equation simplifies and can be integrated in terms of elementary
Attraction of nonlocal dark optical solitons
DEFF Research Database (Denmark)
Nikolov, Nikola Ivanov; Neshev, Dragomir; Krolikowski, Wieslaw
2004-01-01
We study the formation and interaction of spatial dark optical solitons in materials with a nonlocal nonlinear response. We show that unlike in local materials, where dark solitons typically repel, the nonlocal nonlinearity leads to a long-range attraction and formation of stable bound states...
Reversible decay of ring dark solitons
International Nuclear Information System (INIS)
Toikka, L A; Suominen, K-A
2014-01-01
We show how boundary effects can cause a Bose–Einstein condensate to periodically oscillate between a (circular) array of quantized vortex–antivortex pairs and a (ring) dark soliton. If the boundary is restrictive enough, the ring dark soliton becomes long-lived. (paper)
Dissipative Solitons that Cannot be Trapped
International Nuclear Information System (INIS)
Pardo, Rosa; Perez-Garcia, Victor M.
2006-01-01
We show that dissipative solitons in systems with high-order nonlinear dissipation cannot survive in the presence of trapping potentials of the rigid wall or asymptotically increasing type. Solitons in such systems can survive in the presence of a weak potential but only with energies out of the interval of existence of linear quantum mechanical stationary states
Observation of attraction between dark solitons
DEFF Research Database (Denmark)
Dreischuh, A.; Neshev, D.N.; Petersen, D.E.
2006-01-01
We demonstrate a dramatic change in the interaction forces between dark solitons in nonlocal nonlinear media. We present what we believe is the first experimental evidence of attraction of dark solitons. Our results indicate that attraction should be observable in other nonlocal systems...
Dark Solitons in FPU Lattice Chain
Wang, Deng-Long; Yang, Ru-Shu; Yang, You-Tian
2007-11-01
Based on multiple scales method, we study the nonlinear properties of a new Fermi-Pasta-Ulam lattice model analytically. It is found that the lattice chain exhibits a novel nonlinear elementary excitation, i.e. a dark soliton. Moreover, the modulation depth of dark soliton is increasing as the anharmonic parameter increases.
Dark Solitons in FPU Lattice Chain
International Nuclear Information System (INIS)
Wang Denglong; Yang Youtian; Yang Rushu
2007-01-01
Based on multiple scales method, we study the nonlinear properties of a new Fermi-Pasta-Ulam lattice model analytically. It is found that the lattice chain exhibits a novel nonlinear elementary excitation, i.e. a dark soliton. Moreover, the modulation depth of dark soliton is increasing as the anharmonic parameter increases.
Modification of Plasma Solitons by Resonant Particles
DEFF Research Database (Denmark)
Karpman, Vladimir; Lynov, Jens-Peter; Michelsen, Poul
1979-01-01
Experimental and numerical results are compared with new theoretical results describing soliton propagation and deformation in a strongly magnetized, plasma-loaded waveguide.......Experimental and numerical results are compared with new theoretical results describing soliton propagation and deformation in a strongly magnetized, plasma-loaded waveguide....
Gravitational generation of mass in soliton theory
International Nuclear Information System (INIS)
Kozhevnikov, I.R.; Rybakov, Yu.P.
1985-01-01
It is shown that in the framework of a simple scalar field model, that admits soliton solutions, with gravitational field interactions being specially included, one succeeds in ensuring for a scalar field a correct spacial asymptotics that depends on the system mass. Theory, the quantum relation of a corpuscular-wave dualism is fulfilled for soliton solutions in such a model
Dynamical invariants for variable quadratic Hamiltonians
International Nuclear Information System (INIS)
Suslov, Sergei K
2010-01-01
We consider linear and quadratic integrals of motion for general variable quadratic Hamiltonians. Fundamental relations between the eigenvalue problem for linear dynamical invariants and solutions of the corresponding Cauchy initial value problem for the time-dependent Schroedinger equation are emphasized. An eigenfunction expansion of the solution of the initial value problem is also found. A nonlinear superposition principle for generalized Ermakov systems is established as a result of decomposition of the general quadratic invariant in terms of the linear ones.
Hopf solitons in the AFZ model
International Nuclear Information System (INIS)
Gillard, Mike
2011-01-01
The Aratyn–Ferreira–Zimerman (AFZ) model is a conformal field theory in three-dimensional space. It has solutions that are topological solitons classified by an integer-valued Hopf index. There exist infinitely many axial solutions which have been found analytically. Static axial, knot and linked solitons are found numerically using a modified volume preserving flow for Hopf index one to eight, allowing for comparison with other Hopf soliton models. Solutions include a static trefoil knot at Hopf index five. A one-parameter family of conformal Skyrme–Faddeev models, consisting of linear combinations of the Nicole and AFZ models, are also investigated numerically. The transition of solutions for Hopf index four is mapped across these models. A topological change between linked and axial solutions occurs, with fewer models (or a limited range of parameter values) permitting axial solitons than linked solitons at Hopf index four
Induced waveform transitions of dissipative solitons
Kochetov, Bogdan A.; Tuz, Vladimir R.
2018-01-01
The effect of an externally applied force upon the dynamics of dissipative solitons is analyzed in the framework of the one-dimensional cubic-quintic complex Ginzburg-Landau equation supplemented by a potential term with an explicit coordinate dependence. The potential accounts for the external force manipulations and consists of three symmetrically arranged potential wells whose depth varies along the longitudinal coordinate. It is found out that under an influence of such potential a transition between different soliton waveforms coexisting under the same physical conditions can be achieved. A low-dimensional phase-space analysis is applied in order to demonstrate that by only changing the potential profile, transitions between different soliton waveforms can be performed in a controllable way. In particular, it is shown that by means of a selected potential, stationary dissipative soliton can be transformed into another stationary soliton as well as into periodic, quasi-periodic, and chaotic spatiotemporal dissipative structures.
Kinetic slow mode-type solitons
Directory of Open Access Journals (Sweden)
K. Baumgärtel
2005-01-01
Full Text Available One-dimensional hybrid code simulations are presented, carried out in order both to study solitary waves of the slow mode branch in an isotropic, collisionless, medium-β plasma (βi=0.25 and to test the fluid based soliton interpretation of Cluster observed strong magnetic depressions (Stasiewicz et al., 2003; Stasiewicz, 2004 against kinetic theory. In the simulations, a variety of strongly oblique, large amplitude, solitons are seen, including solitons with Alfvenic polarization, similar to those predicted by the Hall-MHD theory, and robust, almost non-propagating, solitary structures of slow magnetosonic type with strong magnetic field depressions and perpendicular ion heating, which have no counterpart in fluid theory. The results support the soliton-based interpretation of the Cluster observations, but reveal substantial deficiencies of Hall-MHD theory in describing slow mode-type solitons in a plasma of moderate beta.
Brownian motion of solitons in a Bose-Einstein condensate.
Aycock, Lauren M; Hurst, Hilary M; Efimkin, Dmitry K; Genkina, Dina; Lu, Hsin-I; Galitski, Victor M; Spielman, I B
2017-03-07
We observed and controlled the Brownian motion of solitons. We launched solitonic excitations in highly elongated [Formula: see text] Bose-Einstein condensates (BECs) and showed that a dilute background of impurity atoms in a different internal state dramatically affects the soliton. With no impurities and in one dimension (1D), these solitons would have an infinite lifetime, a consequence of integrability. In our experiment, the added impurities scatter off the much larger soliton, contributing to its Brownian motion and decreasing its lifetime. We describe the soliton's diffusive behavior using a quasi-1D scattering theory of impurity atoms interacting with a soliton, giving diffusion coefficients consistent with experiment.
Quadratically convergent MCSCF scheme using Fock operators
International Nuclear Information System (INIS)
Das, G.
1981-01-01
A quadratically convergent formulation of the MCSCF method using Fock operators is presented. Among its advantages the present formulation is quadratically convergent unlike the earlier ones based on Fock operators. In contrast to other quadratically convergent schemes as well as the one based on generalized Brillouin's theorem, this method leads easily to a hybrid scheme where the weakly coupled orbitals (such as the core) are handled purely by Fock equations, while the rest of the orbitals are treated by a quadratically convergent approach with a truncated virtual space obtained by the use of the corresponding Fock equations
Geometrical and Graphical Solutions of Quadratic Equations.
Hornsby, E. John, Jr.
1990-01-01
Presented are several geometrical and graphical methods of solving quadratic equations. Discussed are Greek origins, Carlyle's method, von Staudt's method, fixed graph methods and imaginary solutions. (CW)
Multiobjective Optimization Involving Quadratic Functions
Directory of Open Access Journals (Sweden)
Oscar Brito Augusto
2014-01-01
Full Text Available Multiobjective optimization is nowadays a word of order in engineering projects. Although the idea involved is simple, the implementation of any procedure to solve a general problem is not an easy task. Evolutionary algorithms are widespread as a satisfactory technique to find a candidate set for the solution. Usually they supply a discrete picture of the Pareto front even if this front is continuous. In this paper we propose three methods for solving unconstrained multiobjective optimization problems involving quadratic functions. In the first, for biobjective optimization defined in the bidimensional space, a continuous Pareto set is found analytically. In the second, applicable to multiobjective optimization, a condition test is proposed to check if a point in the decision space is Pareto optimum or not and, in the third, with functions defined in n-dimensional space, a direct noniterative algorithm is proposed to find the Pareto set. Simple problems highlight the suitability of the proposed methods.
Quadratic Lagrangians and Legendre transformation
International Nuclear Information System (INIS)
Magnano, G.
1988-01-01
In recent years interest is grown about the so-called non-linear Lagrangians for gravitation. In particular, the quadratic lagrangians are currently believed to play a fundamental role both for quantum gravity and for the super-gravity approach. The higher order and high degree of non-linearity of these theories make very difficult to extract physical information out of them. The author discusses how the Legendre transformation can be applied to a wide class of non-linear theories: it corresponds to a conformal transformation whenever the Lagrangian depends only on the scalar curvature, while it has a more general form if the Lagrangian depends on the full Ricci tensor
Generalized massive optimal data compression
Alsing, Justin; Wandelt, Benjamin
2018-05-01
In this paper, we provide a general procedure for optimally compressing N data down to n summary statistics, where n is equal to the number of parameters of interest. We show that compression to the score function - the gradient of the log-likelihood with respect to the parameters - yields n compressed statistics that are optimal in the sense that they preserve the Fisher information content of the data. Our method generalizes earlier work on linear Karhunen-Loéve compression for Gaussian data whilst recovering both lossless linear compression and quadratic estimation as special cases when they are optimal. We give a unified treatment that also includes the general non-Gaussian case as long as mild regularity conditions are satisfied, producing optimal non-linear summary statistics when appropriate. As a worked example, we derive explicitly the n optimal compressed statistics for Gaussian data in the general case where both the mean and covariance depend on the parameters.
Design of reinforced areas of concrete column using quadratic polynomials
Arif Gunadi, Tjiang; Parung, Herman; Rachman Djamaluddin, Abd; Arwin Amiruddin, A.
2017-11-01
Designing of reinforced concrete columns mostly carried out by a simple planning method which uses column interaction diagram. However, the application of this method is limited because it valids only for certain compressive strenght of the concrete and yield strength of the reinforcement. Thus, a more applicable method is still in need. Another method is the use of quadratic polynomials as a basis for the approach in designing reinforced concrete columns, where the ratio of neutral lines to the effective height of a cross section (ξ) if associated with ξ in the same cross-section with different reinforcement ratios is assumed to form a quadratic polynomial. This is identical to the basic principle used in the Simpson rule for numerical integral using quadratic polynomials and had a sufficiently accurate level of accuracy. The basis of this approach to be used both the normal force equilibrium and the moment equilibrium. The abscissa of the intersection of the two curves is the ratio that had been mentioned, since it fulfill both of the equilibrium. The application of this method is relatively more complicated than the existing method but provided with tables and graphs (N vs ξN ) and (M vs ξM ) so that its used could be simplified. The uniqueness of these tables are only distinguished based on the compresssive strength of the concrete, so in application it could be combined with various yield strenght of the reinforcement available in the market. This method could be solved by using programming languages such as Fortran.
The application of the extending symmetry group approach in optical soliton communication
International Nuclear Information System (INIS)
Ruan Hangyu; Li Huijun; Chen Yixin
2005-01-01
A systematic method which is based on the classical Lie group reduction is used to find the novel exact solution of the nonlinear Schroedinger equation (NLS) with distributed dispersion, nonlinearity and gain or loss. We study the transformations between the standard NLS equation and the NLS equations with distributed dispersion, nonlinearity and gain or loss. Appropriate solitary wave solutions can be applied to discuss soliton propagation in optical fibres, and the amplification and compression of pulses in optical fibre amplifiers
Domain wall networks on solitons
International Nuclear Information System (INIS)
Sutcliffe, Paul
2003-01-01
Domain wall networks on the surface of a soliton are studied in a simple theory. It consists of two complex scalar fields, in 3+1 dimensions, with a global U(1)xZ n symmetry, where n>2. Solutions are computed numerically in which one of the fields forms a Q ball and the other field forms a network of domain walls localized on the surface of the Q ball. Examples are presented in which the domain walls lie along the edges of a spherical polyhedron, forming junctions at its vertices. It is explained why only a small restricted class of polyhedra can arise as domain wall networks
Chiral soliton models for baryons
International Nuclear Information System (INIS)
Weigel, H.
2008-01-01
This concise research monograph introduces and reviews the concept of chiral soliton models for baryons. In these models, baryons emerge as (topological) defects of the chiral field. The many applications shed light on a number of baryon properties, ranging from static properties via nucleon resonances and deep inelastic scattering to even heavy ion collisions. As far as possible, the theoretical investigations are confronted with experiment. Conceived to bridge the gap between advanced graduate textbooks and the research literature, this volume also features a number of appendices to help nonspecialist readers to follow in more detail some of the calculations in the main text. (orig.)
Soliton equations and Hamiltonian systems
Dickey, L A
2002-01-01
The theory of soliton equations and integrable systems has developed rapidly during the last 30 years with numerous applications in mechanics and physics. For a long time, books in this field have not been written but the flood of papers was overwhelming: many hundreds, maybe thousands of them. All this output followed one single work by Gardner, Green, Kruskal, and Mizura on the Korteweg-de Vries equation (KdV), which had seemed to be merely an unassuming equation of mathematical physics describing waves in shallow water. Besides its obvious practical use, this theory is attractive also becau
Wave Physics Oscillations - Solitons - Chaos
Nettel, Stephen
2009-01-01
This textbook is intended for those second year undergraduates in science and engineering who will later need an understanding of electromagnetic theory and quantum mechanics. The classical physics of oscillations and waves is developed at a more advanced level than has been customary for the second year, providing a basis for the quantum mechanics that follows. In this new edition the Green's function is explained, reinforcing the integration of quantum mechanics with classical physics. The text may also form the basis of an "introduction to theoretical physics" for physics majors. The concluding chapters give special attention to topics in current wave physics: nonlinear waves, solitons, and chaotic behavior.
Quadratic independence of coordinate functions of certain ...
Indian Academy of Sciences (India)
... are `quadratically independent' in the sense that they do not satisfy any nontrivial homogeneous quadratic relations among them. Using this, it is proved that there is no genuine compact quantum group which can act faithfully on C ( M ) such that the action leaves invariant the linear span of the above coordinate functions.
Sibling curves of quadratic polynomials | Wiggins | Quaestiones ...
African Journals Online (AJOL)
Sibling curves were demonstrated in [1, 2] as a novel way to visualize the zeroes of real valued functions. In [3] it was shown that a polynomial of degree n has n sibling curves. This paper focuses on the algebraic and geometric properites of the sibling curves of real and complex quadratic polynomials. Key words: Quadratic ...
An example in linear quadratic optimal control
Weiss, George; Zwart, Heiko J.
1998-01-01
We construct a simple example of a quadratic optimal control problem for an infinite-dimensional linear system based on a shift semigroup. This system has an unbounded control operator. The cost is quadratic in the input and the state, and the weighting operators are bounded. Despite its extreme
Quadratic Boost A-Source Impedance Network
DEFF Research Database (Denmark)
Siwakoti, Yam Prasad; Blaabjerg, Frede; Chub, Andrii
2016-01-01
A novel quadratic boost A-source impedance network is proposed to realize converters that demand very high voltage gain. To satisfy the requirement, the network uses an autotransformer where the obtained gain is quadratically dependent on the duty ratio and is unmatched by any existing impedance...
Interaction of ion-acoustic solitons in multi-dimensional space, 2
International Nuclear Information System (INIS)
Kako, Fujio; Yajima, Nobuo
1981-08-01
Numerical computations are made to study the collision process between two cylindrical or spherical solitons. The soliton resonance is found to play an important role in collision processes between two curved solitons as well as between two plane solitons. (author)
Lattice solitons in Bose-Einstein condensates
International Nuclear Information System (INIS)
Efremidis, Nikolaos K.; Christodoulides, Demetrios N.
2003-01-01
We systematically study the properties of lattice solitons in Bose-Einstein condensates with either attractive or repulsive atom interactions. This is done, by exactly solving the mean-field Gross-Pitaevskii equation in the presence of a periodic potential. We find new families of lattice soliton solutions that are characterized by the position of the energy eigenvalue within the associated band structure. These include lattice solitons in condensates with either attractive or repulsive atom interactions that exist in finite or semi-infinite gaps, as well as nonlinear modes that exhibit atomic population cutoffs
Soliton and polaron generation in polyacetylene
International Nuclear Information System (INIS)
Su, Zhao-bin; Yu, Lu.
1984-07-01
The nonradiative decay of an e-h pair into soliton pair and that of an electron (hole) into polaron as well as the photoproduction of soliton pairs are considered using the lattice relaxation theory of multiphonon processes generalized to include the self-consistency of the multi-electron states with the lattice symmetry breaking. The selection rule which forbids the direct process of photogeneration for neutral pair is derived from the symmetry arguments. The branching ratio of the photogenerated neutral to charged soliton pairs is estimated. The recent related experiments are discussed. (author)
Form factors and excitations of topological solitons
International Nuclear Information System (INIS)
Weir, David J.; Rajantie, Arttu
2011-01-01
We show how the interaction properties of topological solitons in quantum field theory can be calculated with lattice Monte Carlo simulations. Topologically nontrivial field configurations are key to understanding the nature of the QCD vacuum through, for example, the dual superconductor picture. Techniques that we have developed to understand the excitations and form factors of topological solitons, such as kinks and 't Hooft-Polyakov monopoles, should be equally applicable to chromoelectric flux tubes. We review our results for simple topological solitons and their agreement with exact results, then discuss our progress towards studying objects of interest to high energy physics.
Hopf solitons in the Nicole model
International Nuclear Information System (INIS)
Gillard, Mike; Sutcliffe, Paul
2010-01-01
The Nicole model is a conformal field theory in a three-dimensional space. It has topological soliton solutions classified by the integer-valued Hopf charge, and all currently known solitons are axially symmetric. A volume-preserving flow is used to construct soliton solutions numerically for all Hopf charges from 1 to 8. It is found that the known axially symmetric solutions are unstable for Hopf charges greater than 2 and new lower energy solutions are obtained that include knots and links. A comparison with the Skyrme-Faddeev model suggests many universal features, though there are some differences in the link types obtained in the two theories.
Soliton pair creation at finite temperatures
International Nuclear Information System (INIS)
Grigoriev, D.Yu.; Rubakov, V.A.
1988-01-01
Creation of soliton-antisoliton pairs at finite temperature is considered within a (1+1)-dimensional model of a real scalar field. It is argued that at certain temperatures, the soliton pair creation in quantum theory can be investigated by studying classical field evolution in real time. The classical field equations are solved numerically, and the pair creation rate and average number of solitons are evaluated. No peculiar suppression of the rate is observed. Some results on the sphaleron transitions in (1+1)-dimensional abelian Higgs model are also presented. (orig.)
A new class of nontopological solitons
International Nuclear Information System (INIS)
Li Xinzhou; Ni Zhixiang; Zhang Jianzu
1992-09-01
We construct a new class of nontopological solitons with scalar self-interaction term κφ 4 . Because of the scalar self-interaction, there is a maximum size for these objects. There exists a critical value κ crit for the coupling κ. For κ > κ crit there are no stable nontopological solitons. In thin-walled limit, we show the explicit solutions of NTS with scalar self-interaction and/or gauge interaction. In the case of gauged NTS, soliton becomes a superconductor. (author). 11 refs
Ring vortex solitons in nonlocal nonlinear media
DEFF Research Database (Denmark)
Briedis, D.; Petersen, D.E.; Edmundson, D.
2005-01-01
We study the formation and propagation of two-dimensional vortex solitons, i.e. solitons with a phase singularity, in optical materials with a nonlocal focusing nonlinearity. We show that nonlocality stabilizes the dynamics of an otherwise unstable vortex beam. This occurs for either single...... or higher charge fundamental vortices as well as higher order (multiple ring) vortex solitons. Our results pave the way for experimental observation of stable vortex rings in other nonlocal nonlinear systems including Bose-Einstein condensates with pronounced long-range interparticle interaction....
Spectral tunneling of lattice nonlocal solitons
International Nuclear Information System (INIS)
Kartashov, Yaroslav V.; Torner, Lluis; Vysloukh, Victor A.
2010-01-01
We address spectral tunneling of walking spatial solitons in photorefractive media with nonlocal diffusion component of the nonlinear response and an imprinted shallow optical lattice. In contrast to materials with local nonlinearities, where solitons traveling across the lattice close to the Bragg angle suffer large radiative losses, in photorefractive media with diffusion nonlinearity resulting in self-bending, solitons survive when their propagation angle approaches and even exceeds the Bragg angle. In the spatial frequency domain this effect can be considered as tunneling through the band of spatial frequencies centered around the Bragg frequency where the spatial group velocity dispersion is positive.
Soliton cellular automata associated with crystal bases
International Nuclear Information System (INIS)
Hatayama, Goro; Kuniba, Atsuo; Takagi, Taichiro
2000-01-01
We introduce a class of cellular automata associated with crystals of irreducible finite dimensional representations of quantum affine algebras U' q (g-circumflex n ). They have solitons labeled by crystals of the smaller algebra U' q (g-circumflex n-1 ). We prove stable propagation of one soliton for g-circumflex n =A (2) 2n-1 ,A (2) 2n ,B (1) n ,C (1) n ,D (1) n and D (2) n+1 . For g-circumflex n =C (1) n , we also prove that the scattering matrices of two solitons coincide with the combinatorial R matrices of U' q (C (1) n-1 )-crystals
Solitons in Gross-Pitaevskii equation
International Nuclear Information System (INIS)
Lopes, E.
1985-01-01
It is observed that, when the potential is integrable and repulsive, the Gross-Pitaevskii Equation, with non-vanishing boundary conditions, describes a family of planar solitons. A method is presented which provides an exact soliton field to the Dirac Delta potential and an approximation solution to any other kind of potential. As an example the method is then applied to the case of a repulsive Yukawa potential. A brief discuss the relation between these solitons and Anderson's superfluidity mechanism, is also presented. (author) [pt
Laser generated soliton waveguides in photorefractive crystals
International Nuclear Information System (INIS)
Vlad, V.I.; Fazio, E.; Bertolotti, M.; Bosco, A.; Petris, A.
2005-01-01
Non-linear photo-excited processes using the photorefractive effect are revisited with emphasis on spatial soliton generation in special laser beam propagation conditions. The soliton beams can create reversible or irreversible single-mode waveguides in the propagating materials. The important features are the 3D orientation and graded index profile matched to the laser fundamental mode. Bright spatial solitons are theoretically demonstrated and experimentally observed for the propagation of c.w. and pulsed femtosecond laser beams in photorefractive materials such as Bi 12 SiO 20 (BSO) and lithium niobate crystals. Applications in high coupling efficiency, adaptive optical interconnections and photonic crystal production are possible
Quadratic Hedging of Basis Risk
Directory of Open Access Journals (Sweden)
Hardy Hulley
2015-02-01
Full Text Available This paper examines a simple basis risk model based on correlated geometric Brownian motions. We apply quadratic criteria to minimize basis risk and hedge in an optimal manner. Initially, we derive the Föllmer–Schweizer decomposition for a European claim. This allows pricing and hedging under the minimal martingale measure, corresponding to the local risk-minimizing strategy. Furthermore, since the mean-variance tradeoff process is deterministic in our setup, the minimal martingale- and variance-optimal martingale measures coincide. Consequently, the mean-variance optimal strategy is easily constructed. Simple pricing and hedging formulae for put and call options are derived in terms of the Black–Scholes formula. Due to market incompleteness, these formulae depend on the drift parameters of the processes. By making a further equilibrium assumption, we derive an approximate hedging formula, which does not require knowledge of these parameters. The hedging strategies are tested using Monte Carlo experiments, and are compared with results achieved using a utility maximization approach.
Soliton Compton Mass from Auto-Parametric Wave-Soliton Coupling
Binder, B
2002-01-01
In this paper a self-excited Rayleigh-type system models the auto-parametric wave-soliton coupling via phase fluctuations. The parameter of dissipative terms determine not only the most likely quantum coupling between solitons and linear waves but also the most likely mass of the solitons. Phase fluctuations are mediated by virtual photons coupling at light-velocity in a permanent Compton scattering process. With a reference to the SI-units and proper scaling relations in length and velocity, the final result shows a highly interesting sequence: the likely soliton Compton mass is about 1.00138 times the neutron and 1.00276 times the proton mass.
International Nuclear Information System (INIS)
Liang, Z.X.; Zhang, Z.D.; Liu, W.M.
2005-01-01
We present a family of exact solutions of the one-dimensional nonlinear Schroedinger equation which describes the dynamics of a bright soliton in Bose-Einstein condensates with the time-dependent interatomic interaction in an expulsive parabolic potential. Our results show that, under a safe range of parameters, the bright soliton can be compressed into very high local matter densities by increasing the absolute value of the atomic scattering length, which can provide an experimental tool for investigating the range of validity of the one-dimensional Gross-Pitaevskii equation. We also find that the number of atoms in the bright soliton keeps dynamic stability: a time-periodic atomic exchange is formed between the bright soliton and the background
Dissipative Vortex Solitons in Defocusing Media with Spatially Inhomogeneous Nonlinear Absorption
Lai, Xian-Jing; Cai, Xiao-Ou; Zhang, Jie-Fang
2018-02-01
In this paper, by solving a complex nonlinear Schrödinger equation, radially symmetric dissipative vortex solitons are obtained analytically and are tested numerically. We find that spatially inhomogeneous nonlinear absorption gives rise to the stability of dissipative vortex solitons in self-defocusing nonlinear medium in the presence of constant linear gain. Numerical simulation reveals the interaction effect among linear gain and nonlinear loss in the azimuthal modulation instabilities of these vortices suppression. Apart from the uniform linear gain indeed affects the stability of vortex in this media, another noticeable feature of current setup is that the steep spatial modulation of the nonlinear absorption can suppress sidelobes effectively and support stable vortex solitons in situations with uniform linear gain. Under appropriate conditions, the vortex solitons can propagate stably and feature no symmetry breaking, although the beams exhibit radical compression and amplification as they propagate. Supported by the National Natural Science Foundation of China under Grant No. 11705164 and the Zhejiang Provincial Natural Science Foundation of China under Grant No. LQ16A040003
Directory of Open Access Journals (Sweden)
Tanwiwat Jaikuna
2017-02-01
Full Text Available Purpose: To develop an in-house software program that is able to calculate and generate the biological dose distribution and biological dose volume histogram by physical dose conversion using the linear-quadratic-linear (LQL model. Material and methods : The Isobio software was developed using MATLAB version 2014b to calculate and generate the biological dose distribution and biological dose volume histograms. The physical dose from each voxel in treatment planning was extracted through Computational Environment for Radiotherapy Research (CERR, and the accuracy was verified by the differentiation between the dose volume histogram from CERR and the treatment planning system. An equivalent dose in 2 Gy fraction (EQD2 was calculated using biological effective dose (BED based on the LQL model. The software calculation and the manual calculation were compared for EQD2 verification with pair t-test statistical analysis using IBM SPSS Statistics version 22 (64-bit. Results: Two and three-dimensional biological dose distribution and biological dose volume histogram were displayed correctly by the Isobio software. Different physical doses were found between CERR and treatment planning system (TPS in Oncentra, with 3.33% in high-risk clinical target volume (HR-CTV determined by D90%, 0.56% in the bladder, 1.74% in the rectum when determined by D2cc, and less than 1% in Pinnacle. The difference in the EQD2 between the software calculation and the manual calculation was not significantly different with 0.00% at p-values 0.820, 0.095, and 0.593 for external beam radiation therapy (EBRT and 0.240, 0.320, and 0.849 for brachytherapy (BT in HR-CTV, bladder, and rectum, respectively. Conclusions : The Isobio software is a feasible tool to generate the biological dose distribution and biological dose volume histogram for treatment plan evaluation in both EBRT and BT.
Solitons and spin transport in graphene boundary
Indian Academy of Sciences (India)
Graphene; Chern–Simons field theory; 2D gravity; KdV solitons. .... In the Lorentz (covariant) gauge, the corresponding induced electric current is found to ..... [44] G E Volovik, The Universe in a helium droplet (Clarendon Press, Oxford, 2003).
Illustrations of vacuum polarization by solitons
International Nuclear Information System (INIS)
MacKenzie, R.; Wilczek, F.
1984-01-01
The value and limitations of the adiabatic method for calculating induced charges are discussed in a general way and illustrated in some simple models in 1+1 dimensions. The relevance of the size of solitons is emphasized
Novel energy sharing collisions of multicomponent solitons
Indian Academy of Sciences (India)
2015-10-21
Oct 21, 2015 ... Abstract. In this paper, we discuss the fascinating energy sharing collisions of multicomponent solitons in certain incoherently coupled and coherently coupled nonlinear Schrödinger-type equations arising in the context of nonlinear optics.
Stable rotating dipole solitons in nonlocal media
DEFF Research Database (Denmark)
Lopez-Aguayo, Servando; Skupin, Stefan; Desyatnikov, Anton S.
2006-01-01
We present the first example of stable rotating two-soliton bound states in nonlinear optical media with nonlocal response. We show that, in contrast to media with local response, nonlocality opens possibilities to generate stable azimuthons.......We present the first example of stable rotating two-soliton bound states in nonlinear optical media with nonlocal response. We show that, in contrast to media with local response, nonlocality opens possibilities to generate stable azimuthons....
Phase-locked Josephson soliton oscillators
DEFF Research Database (Denmark)
Holst, T.; Hansen, Jørn Bindslev; Grønbech-Jensen, N.
1991-01-01
Detailed experimental characterization of the phase-locking at both DC and at microwave frequencies is presented for two closely spaced Josephson soliton (fluxon) oscillators. In the phase-locked state, the radiated microwave power exhibited an effective gain. With one common bias source......, a frequency tunability of the phase-locked oscillators up to 7% at 10 GHz was observed. The interacting soliton oscillators were modeled by two inductively coupled nonlinear transmission lines...
Hyperon resonances in SU(3) soliton models
International Nuclear Information System (INIS)
Scoccola, N.N.
1990-01-01
Hyperon resonances excited in kaon-nucleon scattering are investigated in the framework of an SU(3) soliton model in which kaon degrees of freedom are treated as small fluctuations around an SU(2) soliton. For partial waves l≥2 the model predicts correctly the quantum numbers and average excitation energies of most of the experimentally observed Λ and Σ resonances. Some disagreements are found for lower partial waves. (orig.)
Drift bifurcation detection for dissipative solitons
International Nuclear Information System (INIS)
Liehr, A W; Boedeker, H U; Roettger, M C; Frank, T D; Friedrich, R; Purwins, H-G
2003-01-01
We report on the experimental detection of a drift bifurcation for dissipative solitons, which we observe in the form of current filaments in a planar semiconductor-gas-discharge system. By introducing a new stochastic data analysis technique we find that due to a change of system parameters the dissipative solitons undergo a transition from purely noise-driven objects with Brownian motion to particles with a dynamically stabilized finite velocity
Mean-field theory and solitonic matter
International Nuclear Information System (INIS)
Cohen, T.D.
1989-01-01
Finite density solitonic matter is considered in the context of quantum field theory. Mean-field theory, which provides a reasonable description for single-soliton properties gives rise to a crystalline description. A heuristic description of solitonic matter is given which shows that the low-density limit of solitonic matter (the limit which is presumably relevant for nuclear matter) does not commute with the mean-field theory limit and gives rise to a Fermi-gas description of the system. It is shown on the basis of a formal expansion of simple soliton models in terms of the coupling constant why one expects mean-field theory to fail at low densities and why the corrections to mean-field theory are nonperturbative. This heuristic description is tested against an exactly solvable 1+1 dimensional model (the sine-Gordon model) and found to give the correct behavior. The relevance of these results to the program of doing nuclear physics based on soliton models is discussed. (orig.)
Solitons in plasma and other dispersive media
International Nuclear Information System (INIS)
Ichikawa, Y.H.; Wadati, Miki.
1977-03-01
A review is given to recent development of extensive studies of nonlinear waves with purpose of showing methods of systematic analysis of nonlinear phenomena has been now established on the basis of new concept ''soliton''. Firstly, characteristic properties of various kinds of solitons are discussed with illustration of typical nonlinear evolution equations. Brief discussions are also given to basic mechanisms which ensure the remarkable stability and individuality of solitons. The reductive perturbation theory is a key method to reduce a given nonlinear system to a soliton system. Introductory survey is presented for an example of ionic mode in plasmas, although the method can be applied to any dispersive medium. Central subject of the present review is the analytical methods of solving nonlinear evolution equations. The inverse method, the Beacklund transformation and the conservation laws are discussed to emphasize that very firm analytical basis is now available to disentangle the nonlinear problems. Finally, a notion of ''dressed'' solitons is introduced on basis of the higher order analysis of the reductive perturbation theory. In spite of the fact that success is restricted so far only for the one dimensional system, the achievement of soliton physics encourages us to face dawn of nonlinear physics with a confident expectation for forthcoming break through in the field. (auth.)
Condensate bright solitons under transverse confinement
International Nuclear Information System (INIS)
Salasnich, L.; Reatto, L.; Parola, A.
2002-01-01
We investigate the dynamics of Bose-Einstein condensate bright solitons made of alkali-metal atoms with negative scattering length and under harmonic confinement in the transverse direction. Contrary to the one-dimensional (1D) case, the 3D bright soliton exists only below a critical attractive interaction that depends on the extent of confinement. Such a behavior is also found in multisoliton condensates with box boundary conditions. We obtain numerical and analytical estimates of the critical strength beyond which the solitons do not exist. By using an effective 1D nonpolynomial nonlinear Schroedinger equation, which accurately takes into account the transverse dynamics of cigarlike condensates, we numerically simulate the dynamics of the 'soliton train' reported in a recent experiment [Nature (London) 417, 150 (2002)]. Then, analyzing the macroscopic quantum tunneling of the bright soliton on a Gaussian barrier, we find that its interference in the tunneling region is strongly suppressed with respect to nonsolitonic case; moreover, the tunneling through a barrier breaks the shape invariance of the matter wave. Finally, we show that the collapse of the soliton is induced by the scattering on the barrier or by the collision with another matter wave when the density reaches a critical value, for which we derive an accurate analytical formula
International Nuclear Information System (INIS)
Wilets, L.; Goldflam, R.
1983-09-01
The MIT bag was one of the earliest and most successful models of QCD, imposing confinement and including perturbative gluon interactions. An evolution of the MIT bag came with the introduction of the chiral and cloudy bags, which treat pions as elementary particles. As a model of QCD, the soliton model proposed by Friedberg and Lee is particularly attractive. It is based on a covariant field theory and is sufficiently general so that, for certain limiting cases of the adjustable parameters, it can describe either the MIT or SLAC (string) bags. The confinement mechanism appears as a dynamic field. This allows non-static processes, such as bag oscillations and bag collisions, to be calculated utilizing the well-developed techniques of nuclear many-body theory. The utilization of the model for calculating dynamical processes is discussed. 14 references
International Nuclear Information System (INIS)
Singh, Dhananjay K.; Malik, Hitendra K.
2007-01-01
Soliton propagation at critical density of negative ions is studied for weakly inhomogeneous magnetized cold plasma having positive ions, negative ions, and electrons. A general phase velocity relation is obtained and possible modes are studied for different cases involving different constituents of the plasma. Two types of modes (fast and slow) are found to propagate for the equal mass of the positive and negative ions. However, a limit on the obliqueness of magnetic field is obtained for the propagation of slow mode. For both types of modes, a variable coefficient modified Korteweg-deVries equation with an additional term arisen due to the density gradient is realized, which admits solutions for compressive solitons and rarefactive solitons of the same amplitudes at critical negative ion density. The propagation characteristics of these solitons are studied under the effect of densities of ions, magnetic field, and its obliqueness. The amplitudes of fast and slow wave solitons show their opposite behavior with the negative ion concentration, which is consistent with the variation of phase velocities with the negative ion density
Designing Camera Networks by Convex Quadratic Programming
Ghanem, Bernard; Wonka, Peter; Cao, Yuanhao
2015-01-01
be formulated mathematically as a convex binary quadratic program (BQP) under linear constraints. Moreover, we propose an optimization strategy with a favorable trade-off between speed and solution quality. Our solution
Schur Stability Regions for Complex Quadratic Polynomials
Cheng, Sui Sun; Huang, Shao Yuan
2010-01-01
Given a quadratic polynomial with complex coefficients, necessary and sufficient conditions are found in terms of the coefficients such that all its roots have absolute values less than 1. (Contains 3 figures.)
Quadratic Functionals with General Boundary Conditions
International Nuclear Information System (INIS)
Dosla, Z.; Dosly, O.
1997-01-01
The purpose of this paper is to give the Reid 'Roundabout Theorem' for quadratic functionals with general boundary conditions. In particular, we describe the so-called coupled point and regularity condition introduced in terms of Riccati equation solutions
Models of few optical cycle solitons beyond the slowly varying envelope approximation
International Nuclear Information System (INIS)
Leblond, H.; Mihalache, D.
2013-01-01
In the past years there was a huge interest in experimental and theoretical studies in the area of few-optical-cycle pulses and in the broader fast growing field of the so-called extreme nonlinear optics. This review concentrates on theoretical studies performed in the past decade concerning the description of few optical cycle solitons beyond the slowly varying envelope approximation (SVEA). Here we systematically use the powerful reductive expansion method (alias multiscale analysis) in order to derive simple integrable and nonintegrable evolution models describing both nonlinear wave propagation and interaction of ultrashort (femtosecond) pulses. To this aim we perform the multiple scale analysis on the Maxwell–Bloch equations and the corresponding Schrödinger–von Neumann equation for the density matrix of two-level atoms. We analyze in detail both long-wave and short-wave propagation models. The propagation of ultrashort few-optical-cycle solitons in quadratic and cubic nonlinear media are adequately described by generic integrable and nonintegrable nonlinear evolution equations such as the Korteweg–de Vries equation, the modified Korteweg–de Vries equation, the complex modified Korteweg–de Vries equation, the sine–Gordon equation, the cubic generalized Kadomtsev–Petviashvili equation, and the two-dimensional sine–Gordon equation. Moreover, we consider the propagation of few-cycle optical solitons in both (1+1)- and (2+1)-dimensional physical settings. A generalized modified Korteweg–de Vries equation is introduced in order to describe robust few-optical-cycle dissipative solitons. We investigate in detail the existence and robustness of both linearly polarized and circularly polarized few-cycle solitons, that is, we also take into account the effect of the vectorial nature of the electric field. Some of these results concerning the systematic use of the reductive expansion method beyond the SVEA can be relatively easily extended to few
Linear quadratic optimization for positive LTI system
Muhafzan, Yenti, Syafrida Wirma; Zulakmal
2017-05-01
Nowaday the linear quadratic optimization subject to positive linear time invariant (LTI) system constitute an interesting study considering it can become a mathematical model of variety of real problem whose variables have to nonnegative and trajectories generated by these variables must be nonnegative. In this paper we propose a method to generate an optimal control of linear quadratic optimization subject to positive linear time invariant (LTI) system. A sufficient condition that guarantee the existence of such optimal control is discussed.
Radiotherapy treatment planning linear-quadratic radiobiology
Chapman, J Donald
2015-01-01
Understand Quantitative Radiobiology from a Radiation Biophysics PerspectiveIn the field of radiobiology, the linear-quadratic (LQ) equation has become the standard for defining radiation-induced cell killing. Radiotherapy Treatment Planning: Linear-Quadratic Radiobiology describes tumor cell inactivation from a radiation physics perspective and offers appropriate LQ parameters for modeling tumor and normal tissue responses.Explore the Latest Cell Killing Numbers for Defining Iso-Effective Cancer TreatmentsThe book compil
Vector pulsing soliton of self-induced transparency in waveguide
International Nuclear Information System (INIS)
Adamashvili, G.T.
2015-01-01
A theory of an optical resonance vector pulsing soliton in waveguide is developed. A thin transition layer containing semiconductor quantum dots forms the boundary between the waveguide and one of the connected media. Analytical and numerical solutions for the optical vector pulsing soliton in waveguide are obtained. The vector pulsing soliton in the presence of excitonic and bi-excitonic excitations is compared with the soliton for waveguide TM-modes with parameters that can be used in modern optical experiments. It is shown that these nonlinear waves have significantly different parameters and shapes. - Highlights: • An optical vector pulsing soliton in a planar waveguide is presented. • Explicit form of the optical vector pulsing soliton are obtained. • The vector pulsing soliton and the soliton have different parameters and profiles
Pyroelectric photovoltaic spatial solitons in unbiased photorefractive crystals
International Nuclear Information System (INIS)
Jiang, Qichang; Su, Yanli; Ji, Xuanmang
2012-01-01
A new type of spatial solitons i.e. pyroelectric photovoltaic spatial solitons based on the combination of pyroelectric and photovoltaic effect is predicted theoretically. It shows that bright, dark and grey spatial solitons can exist in unbiased photovoltaic photorefractive crystals with appreciable pyroelectric effect. Especially, the bright soliton can form in self-defocusing photovoltaic crystals if it gives larger self-focusing pyroelectric effect. -- Highlights: ► A new type of spatial soliton i.e. pyroelectric photovoltaic spatial soliton is predicted. ► The bright, dark and grey pyroelectric photovoltaic spatial soliton can form. ► The bright soliton can also exist in self-defocusing photovoltaic crystals.
On soliton solutions of the Wu-Zhang system
Directory of Open Access Journals (Sweden)
Inc Mustafa
2016-01-01
Full Text Available In this paper, the extended tanh and hirota methods are used to construct soliton solutions for the WuZhang (WZ system. Singular solitary wave, periodic and multi soliton solutions of the WZ system are obtained.
Collision dynamics of gap solitons in Kerr media
International Nuclear Information System (INIS)
Royston Neill, D.; Atai, Javid
2006-01-01
The collision dynamics of counterpropagating gap solitons in a fiber Bragg grating are investigated. In the case of initially in-phase solitons, it is found that the dynamics are more complex and richer than previously reported. An important finding is that, in general, the outcome of the collisions is dependent upon gap soliton parameters (θ, V) and the initial separation of solitons. However, if the solitons are initially very far apart the dependence on the initial separation is negligible. In the case of π-out-of-phase solitons, we find that they generally bounce off each other with negligible radiation as long as the solitons are stable (i.e., 0 π/1.98) the collision strongly catalyzes the onset of instability and results in the destruction of solitons
BOOK REVIEW: Solitons, Instantons, and Twistors Solitons, Instantons, and Twistors
Witt, Donald M.
2011-04-01
Solitons and instantons play important roles both in pure and applied mathematics as well as in theoretical physics where they are related to the topological structure of the vacuum. Twistors are a useful tool for solving nonlinear differential equations and are useful for the study of the antiself-dual Yang-Mills equations and the Einstein equations. Many books and more advanced monographs have been written on these topics. However, this new book by Maciej Dunajski is a complete first introduction to all of the topics in the title. Moreover, it covers them in a very unique way, through integrable systems. The approach taken in this book is that of mathematical physics à la field theory. The book starts by giving an introduction to integrable systems of ordinary and partial differential equations and proceeds from there. Gauge theories are not covered until chapter 6 which means the reader learning the material for the first time can build up confidence with simpler models of solitons and instantons before encountering them in gauge theories. The book also has an extremely clear introduction to twistor theory useful to both mathematicians and physicists. In particular, the twistor theory presentation may be of interest to string theorists wanting understand twistors. There are many useful connections to research into general relativity. Chapter 9 on gravitational instantons is great treatment useful to anyone doing research in classical or quantum gravity. There is also a nice discussion of Kaluza-Klein monopoles. The three appendices A-C cover the necessary background material of basic differential geometry, complex manifolds, and partial differential equations needed to fully understand the subject. The reader who has some level of expertise in any of the topics covered can jump right into that material without necessarily reading all of the earlier chapters because of the extremely clear writing style of the author. This makes the book an excellent reference on
Optical spatial solitons: historical overview and recent advances.
Chen, Zhigang; Segev, Mordechai; Christodoulides, Demetrios N
2012-08-01
Solitons, nonlinear self-trapped wavepackets, have been extensively studied in many and diverse branches of physics such as optics, plasmas, condensed matter physics, fluid mechanics, particle physics and even astrophysics. Interestingly, over the past two decades, the field of solitons and related nonlinear phenomena has been substantially advanced and enriched by research and discoveries in nonlinear optics. While optical solitons have been vigorously investigated in both spatial and temporal domains, it is now fair to say that much soliton research has been mainly driven by the work on optical spatial solitons. This is partly due to the fact that although temporal solitons as realized in fiber optic systems are fundamentally one-dimensional entities, the high dimensionality associated with their spatial counterparts has opened up altogether new scientific possibilities in soliton research. Another reason is related to the response time of the nonlinearity. Unlike temporal optical solitons, spatial solitons have been realized by employing a variety of noninstantaneous nonlinearities, ranging from the nonlinearities in photorefractive materials and liquid crystals to the nonlinearities mediated by the thermal effect, thermophoresis and the gradient force in colloidal suspensions. Such a diversity of nonlinear effects has given rise to numerous soliton phenomena that could otherwise not be envisioned, because for decades scientists were of the mindset that solitons must strictly be the exact solutions of the cubic nonlinear Schrödinger equation as established for ideal Kerr nonlinear media. As such, the discoveries of optical spatial solitons in different systems and associated new phenomena have stimulated broad interest in soliton research. In particular, the study of incoherent solitons and discrete spatial solitons in optical periodic media not only led to advances in our understanding of fundamental processes in nonlinear optics and photonics, but also had a
Optical rogue waves and soliton turbulence in nonlinear fibre optics
DEFF Research Database (Denmark)
Genty, G.; Dudley, J. M.; de Sterke, C. M.
2009-01-01
We examine optical rogue wave generation in nonlinear fibre propagation in terms of soliton turbulence. We show that higher-order dispersion is sufficient to generate localized rogue soliton structures, and Raman scattering effects are not required.......We examine optical rogue wave generation in nonlinear fibre propagation in terms of soliton turbulence. We show that higher-order dispersion is sufficient to generate localized rogue soliton structures, and Raman scattering effects are not required....
Peregrine soliton generation and breakup in standard telecommunications fiber.
Hammani, Kamal; Kibler, Bertrand; Finot, Christophe; Morin, Philippe; Fatome, Julien; Dudley, John M; Millot, Guy
2011-01-15
We present experimental and numerical results showing the generation and breakup of the Peregrine soliton in standard telecommunications fiber. The impact of nonideal initial conditions is studied through direct cutback measurements of the longitudinal evolution of the emerging soliton dynamics and is shown to be associated with the splitting of the Peregrine soliton into two subpulses, with each subpulse itself exhibiting Peregrine soliton characteristics. Experimental results are in good agreement with simulations.
Enhanced mutual capture of colored solitons by matched modulator
Feigenbaum, Eyal; Orenstein, Meir
2004-08-01
The mutual capture of two colored solitons is enhanced by a modulator, to a level which enables its practical exploitation, e.g., for a read- write mechanism in a soliton buffer. The enhanced capture was analyzed using closed form particle-like soliton perturbation, and verified by numerical simulations. Optimal modulator frequency and modulation depth are obtained. This mutual capture can be utilized for all-optical soliton logic and memory.
The dark soliton on a cnoidal wave background
International Nuclear Information System (INIS)
Shin, H J
2005-01-01
We find a solution of the dark soliton lying on a cnoidal wave background in a defocusing medium. We use the method of Darboux transformation, which is applied to the cnoidal wave solution of the defocusing nonlinear Schroedinger equation. Interesting characteristics of the dark soliton, i.e., the velocity and greyness, are calculated and compared with those of the dark soliton lying on a continuous wave background. We also calculate the shift of the crest of the cnoidal wave along the soliton
Soliton-based ultra-high speed optical communications
Indian Academy of Sciences (India)
All these facts are the outcome of research on optical solitons in ﬁbers in spite of the fact that the commonly used RZ format is not always called a soliton format. The overview presented here attempts to incorporate the role of soliton-based communications research in present day ultra-high speed communications.
Rational solitons in deep nonlinear optical Bragg grating
Alatas, H.; Iskandar, A.A.; Tjia, M.O.; Valkering, T.P.
2006-01-01
We have examined the rational solitons in the Generalized Coupled Mode model for a deep nonlinear Bragg grating. These solitons are the degenerate forms of the ordinary solitons and appear at the transition lines in the parameter plane. A simple formulation is presented for the investigation of the
Creation and annihilation of solitons in the string nonlinear equation
International Nuclear Information System (INIS)
Aguero G, M.A.; Espinosa G, A.A.; Martinez O, J.
1997-01-01
Starting from the cubic-quintic Schroedinger equation it is obtained the nonlinear string equation. This system supports regular and singular solitons. It is shown that two singular solitons could be generated after the interaction of two regular solitons and viceversa. (Author)
Experimental Investigation of Trapped Sine-Gordon Solitons
DEFF Research Database (Denmark)
Davidson, A.; Dueholm, B.; Kryger, B.
1985-01-01
We have observed for the first time a single sine-Gordon soliton trapped in an annular Josephson junction. This system offers a unique possibility to study undisturbed soliton motion. In the context of perturbation theory, the soliton may be viewed as a relativistic particle moving under a uniform...
Soliton models in resonant and nonresonant optical fibers
Indian Academy of Sciences (India)
where Γ is the damping (> 0) and gain (< 0) parameter. Using the perturbation method and zeroth approximation, one-soliton solution is constructed and the amplification and damping of soliton is explained in figure 2. In addition, by introducing the initial phase. Figure 1. Two soliton solutions of the NLS equation. Figure 2.
Travelling solitons in the parametrically driven nonlinear Schroedinger equation
International Nuclear Information System (INIS)
Barashenkov, I.V.; Zemlyanaya, E.V.; Baer, M.
2000-01-01
We show that the parametrically driven nonlinear Schroedinger equation has wide classes of travelling soliton solutions, some of which are stable. For small driving strengths stable nonpropagating and moving solitons co-exist while strongly forced solitons can only be stable when moving sufficiently fast
Tunnelling effects of solitons in optical fibers with higher-order effects
Energy Technology Data Exchange (ETDEWEB)
Dai, Chao-Qing [Zhejiang A and F Univ., Lin' an (China). School of Sciences; Suzhou Univ., Jiangsu (China). School of Physical Science and Technology; Zhu, Hai-Ping [Zhejiang Lishui Univ., Zhejiang (China). School of Science; Zheng, Chun-Long [Shaoguan Univ., Guangdong (China). College of Physics and Electromechanical Engineering
2012-06-15
We construct four types of analytical soliton solutions for the higher-order nonlinear Schroedinger equation with distributed coefficients. These solutions include bright solitons, dark solitons, combined solitons, and M-shaped solitons. Moreover, the explicit functions which describe the evolution of the width, peak, and phase are discussed exactly. We finally discuss the nonlinear soliton tunnelling effect for four types of femtosecond solitons. (orig.)
Quark solitons as constituents of hadrons
International Nuclear Information System (INIS)
Ellis, J.; Frishman, Y.; Hanany, A.; Karlinev, M.
1992-01-01
We exhibit static solutions of multi-flavour QCD in two dimensions that have the quantum numbers of baryons and mesons, constructed out of quark and anti-quark solitons. In isolation the latter solitons have infinite energy, corresponding to the presence of a string carrying the non-singlet colour flux off to spatial infinity. When N c solitons of this type are combined, a static, finite-energy, colour singlet solution is formed, corresponding to a baryon. Similarly, static meson solutions are formed out of a soliton and an anti-soliton of different flavours. The stability of the mesons against annihilation is ensured by flavour conservation. The static solutions exist only when the fundamental fields of the bosonized lagrangian belong to U(N c xN f ) rather than to SU(N c )xU(N f ). Discussion of flavour-symmetry breaking requires a careful treatment of the normal-ordering ambiguity. Our results can be viewed as a derivation of the constituent quark model in QCD 2 , allowing a detailed study of constituent mass generation and of the heavy-quark symmetry. (orig.)
Linear-quadratic control and quadratic differential forms for multidimensional behaviors
Napp, D.; Trentelman, H.L.
2011-01-01
This paper deals with systems described by constant coefficient linear partial differential equations (nD-systems) from a behavioral point of view. In this context we treat the linear-quadratic control problem where the performance functional is the integral of a quadratic differential form. We look
DEFF Research Database (Denmark)
Mak, Vicky; Thomadsen, Tommy
2006-01-01
This paper considers the cardinality constrained quadratic knapsack problem (QKP) and the quadratic selective travelling salesman problem (QSTSP). The QKP is a generalization of the knapsack problem and the QSTSP is a generalization of the travelling salesman problem. Thus, both problems are NP...
Soliton models for thick branes
International Nuclear Information System (INIS)
Peyravi, Marzieh; Riazi, Nematollah; Lobo, Francisco S.N.
2016-01-01
In this work, we present new soliton solutions for thick branes in 4+1 dimensions. In particular, we consider brane models based on the sine-Gordon (SG), φ 4 and φ 6 scalar fields, which have broken Z 2 symmetry in some cases and are responsible for supporting and stabilizing the thick branes. The origin of the symmetry breaking in these models resides in the fact that the modified scalar field potential may have non-degenerate vacua. These vacua determine the cosmological constant on both sides of the brane. We also study the geodesic equations along the fifth dimension, in order to explore the particle motion in the neighborhood of the brane. Furthermore, we examine the stability of the thick branes, by determining the sign of the w 2 term in the expansion of the potential for the resulting Schroedinger-like equation, where w is the five-dimensional coordinate. It turns out that the φ 4 brane is stable, while there are unstable modes for certain ranges of the model parameters in the SG and φ 6 branes. (orig.)
Soliton models for thick branes
Energy Technology Data Exchange (ETDEWEB)
Peyravi, Marzieh [Ferdowsi University of Mashhad, Department of Physics, School of Sciences, Mashhad (Iran, Islamic Republic of); Riazi, Nematollah [Shahid Beheshti University, Physics Department, Tehran (Iran, Islamic Republic of); Lobo, Francisco S.N. [Faculdade de Ciencias da Universidade de Lisboa, Instituto de Astrofisica e Ciencias do Espaco, Lisbon (Portugal)
2016-05-15
In this work, we present new soliton solutions for thick branes in 4+1 dimensions. In particular, we consider brane models based on the sine-Gordon (SG), φ{sup 4} and φ{sup 6} scalar fields, which have broken Z{sub 2} symmetry in some cases and are responsible for supporting and stabilizing the thick branes. The origin of the symmetry breaking in these models resides in the fact that the modified scalar field potential may have non-degenerate vacua. These vacua determine the cosmological constant on both sides of the brane. We also study the geodesic equations along the fifth dimension, in order to explore the particle motion in the neighborhood of the brane. Furthermore, we examine the stability of the thick branes, by determining the sign of the w{sup 2} term in the expansion of the potential for the resulting Schroedinger-like equation, where w is the five-dimensional coordinate. It turns out that the φ{sup 4} brane is stable, while there are unstable modes for certain ranges of the model parameters in the SG and φ{sup 6} branes. (orig.)
A simple formula for the conserved charges of soliton theories
International Nuclear Information System (INIS)
Ferreira, Luiz Agostinho; Zakrzewski, Wojtek J.
2007-01-01
We present a simple formula for all the conserved charges of soliton theories, evaluated on the solutions belonging to the orbit of the vacuum under the group of dressing transformations. For pedagogical reasons we perform the explicit calculations for the case of the sine-Gordon model, taken as a prototype of soliton theories. We show that the energy and momentum are boundary terms for all the solutions on the orbit of the vacuum. That orbit includes practically all the solutions of physical interest, namely solitons, multi-solitons, breathers, and combinations of solitons and breathers. The example of the mKdV equation is also given explicitly
Soliton emission stimulated by sound wave or external field
International Nuclear Information System (INIS)
Malomed, B.A.
1987-01-01
Langmuir soliton interaction with ion-acoustic wave results in soliton radiative decay at the expence of emission by the soliton of linear langmuir waves. Intensity of this radiation in the ''subsonic'' regime as well as the rate of energy transfer from acoustic waves to langmuir ones and soliton decay rate are calculated. Three cases are considered: monochromatic acoustic wave, nonmonochromatic wave packet with a wide spectrum, random acoustic field, for which results appear to be qualitatively different. A related problem, concerning the radiation generation by soliton under external electromagnetic wave effect is also considered. Dissipation effect on radiation is investigated
Black and gray Helmholtz-Kerr soliton refraction
International Nuclear Information System (INIS)
Sanchez-Curto, Julio; Chamorro-Posada, Pedro; McDonald, Graham S.
2011-01-01
Refraction of black and gray solitons at boundaries separating different defocusing Kerr media is analyzed within a Helmholtz framework. A universal nonlinear Snell's law is derived that describes gray soliton refraction, in addition to capturing the behavior of bright and black Kerr solitons at interfaces. Key regimes, defined by beam and interface characteristics, are identified, and predictions are verified by full numerical simulations. The existence of a unique total nonrefraction angle for gray solitons is reported; both internal and external refraction at a single interface is shown possible (dependent only on incidence angle). This, in turn, leads to the proposal of positive or negative lensing operations on soliton arrays at planar boundaries.
An(1) Toda solitons and the dressing symmetry
International Nuclear Information System (INIS)
Belich, H.; Paunov, R.
1996-12-01
We present an elementary derivation of the soliton-like solutions in the A n (1) Toda models which is alternative to the previously used Hirota method. The solutions of the underlying linear problem corresponding to the N-solitons are calculated. This enables us to obtain explicit expression for the element which by dressing group action, produces a generic soliton solution. In the particular example of mono solitons we suggest a relation to vertex operator formalism, previously used by olive, Turok and Underwood. Our results can also be considered as generalization of the approach to the sine-Gordon solitons, proposed by Babelon and Bernard. (author)
Gravitational solitons and the squashed 7-sphere
International Nuclear Information System (INIS)
Bizon, P; Chmaj, T; Gibbons, G W; Pope, C N
2007-01-01
We discuss some aspects of higher-dimensional gravitational solitons and kinks, including in particular their stability. We illustrate our discussion with the examples of (non-BPS) higher-dimensional Taub-NUT solutions as the spatial metrics in (6 + 1) and (8 + 1) dimensions. We find them to be stable against small but non-infinitesimal disturbances, but unstable against large ones, which can lead to black-hole formation. In (8 + 1) dimensions we find a continuous non-BPS family of asymptotically-conical solitons connecting a previously-known kink metric with the supersymmetric A 8 solution which has Spin(7) holonomy. All the solitonic spacetimes we consider are topologically, but not geometrically, trivial. In an appendix we use the techniques developed in the paper to establish the linear stability of five-dimensional Myers-Perry black holes with equal angular momenta against cohomogeneity-2 perturbations
Bright solitons in Bose-Fermi mixtures
International Nuclear Information System (INIS)
Karpiuk, Tomasz; Brewczyk, Miroslaw; RzaPewski, Kazimierz
2006-01-01
We consider the formation of bright solitons in a mixture of Bose and Fermi degenerate gases confined in a three-dimensional elongated harmonic trap. The Bose and Fermi atoms are assumed to effectively attract each other whereas bosonic atoms repel each other. Strong enough attraction between bosonic and fermionic components can change the character of the interaction within the bosonic cloud from repulsive to attractive making thus possible the generation of bright solitons in the mixture. On the other hand, such structures might be in danger due to the collapse phenomenon existing in attractive gases. We show, however, that under some conditions (defined by the strength of the Bose-Fermi components attraction) the structures which neither spread nor collapse can be generated. For elongated enough traps the formation of solitons is possible even at the 'natural' value of the mutual Bose-Fermi ( 87 Rb- 40 K in our case) scattering length
Rigid-Plastic Post-Buckling Analysis of Columns and Quadratic Plates
DEFF Research Database (Denmark)
Jönsson, Jeppe
2008-01-01
the compressive load as a function of the transverse displacement. An estimate of the magnitude of the transverse displacement prior to the forming of the collapse mechanism is introduced into the compressive load function, determined by the virtual work equation, thereby revealing a qualified estimate...... yield lines accommodate differential rotations of rigid parts and the area “collapse” yield lines accommodate local area changes of the rigid parts thereby preserving compatibility of the rigid parts of a plate. The approach will be illustrated for rigid plastic column analysis and for a quadratic plate...
Guises and disguises of quadratic divergences
Energy Technology Data Exchange (ETDEWEB)
Cherchiglia, A.L., E-mail: adriano@fisica.ufmg.br [Departamento de Física, ICEx, Universidade Federal de Minas Gerais, P.O. BOX 702, 30.161-970, Belo Horizonte, MG (Brazil); Vieira, A.R., E-mail: arvieira@fisica.ufmg.br [Departamento de Física, ICEx, Universidade Federal de Minas Gerais, P.O. BOX 702, 30.161-970, Belo Horizonte, MG (Brazil); Hiller, Brigitte, E-mail: brigitte@teor.fis.uc.pt [Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, 3004-516 Coimbra (Portugal); Baêta Scarpelli, A.P., E-mail: scarpelli.apbs@dpf.gov.br [Setor Técnico-Científico, Departamento de Polícia Federal, Rua Hugo D’Antola, 95 - Lapa, São Paulo (Brazil); Sampaio, Marcos, E-mail: marcos.sampaio@durham.ac.uk [Departamento de Física, ICEx, Universidade Federal de Minas Gerais, P.O. BOX 702, 30.161-970, Belo Horizonte, MG (Brazil); Centre for Particle Theory, Department of Mathematical Sciences, Durham University, South Road Durham DH1 3LE (United Kingdom)
2014-12-15
In this contribution, we present a new perspective on the control of quadratic divergences in quantum field theory, in general, and in the Higgs naturalness problem, in particular. Our discussion is essentially based on an approach where UV divergences are parameterized, after being reduced to basic divergent integrals (BDI) in one internal momentum, as functions of a cutoff and a renormalization group scale λ. We illustrate our proposal with well-known examples, such as the gluon vacuum self energy of QCD and the Higgs decay in two photons within this approach. We also discuss frameworks in effective low-energy QCD models, where quadratic divergences are indeed fundamental.
Indirect quantum tomography of quadratic Hamiltonians
Energy Technology Data Exchange (ETDEWEB)
Burgarth, Daniel [Institute for Mathematical Sciences, Imperial College London, London SW7 2PG (United Kingdom); Maruyama, Koji; Nori, Franco, E-mail: daniel@burgarth.de, E-mail: kmaruyama@riken.jp [Advanced Science Institute, RIKEN, Wako-shi, Saitama 351-0198 (Japan)
2011-01-15
A number of many-body problems can be formulated using Hamiltonians that are quadratic in the creation and annihilation operators. Here, we show how such quadratic Hamiltonians can be efficiently estimated indirectly, employing very few resources. We found that almost all the properties of the Hamiltonian are determined by its surface and that these properties can be measured even if the system can only be initialized to a mixed state. Therefore, our method can be applied to various physical models, with important examples including coupled nano-mechanical oscillators, hopping fermions in optical lattices and transverse Ising chains.
Nonlinear dynamics of quadratically cubic systems
International Nuclear Information System (INIS)
Rudenko, O V
2013-01-01
We propose a modified form of the well-known nonlinear dynamic equations with quadratic relations used to model a cubic nonlinearity. We show that such quadratically cubic equations sometimes allow exact solutions and sometimes make the original problem easier to analyze qualitatively. Occasionally, exact solutions provide a useful tool for studying new phenomena. Examples considered include nonlinear ordinary differential equations and Hopf, Burgers, Korteweg–de Vries, and nonlinear Schrödinger partial differential equations. Some problems are solved exactly in the space–time and spectral representations. Unsolved problems potentially solvable by the proposed approach are listed. (methodological notes)
PSQP: Puzzle Solving by Quadratic Programming.
Andalo, Fernanda A; Taubin, Gabriel; Goldenstein, Siome
2017-02-01
In this article we present the first effective method based on global optimization for the reconstruction of image puzzles comprising rectangle pieces-Puzzle Solving by Quadratic Programming (PSQP). The proposed novel mathematical formulation reduces the problem to the maximization of a constrained quadratic function, which is solved via a gradient ascent approach. The proposed method is deterministic and can deal with arbitrary identical rectangular pieces. We provide experimental results showing its effectiveness when compared to state-of-the-art approaches. Although the method was developed to solve image puzzles, we also show how to apply it to the reconstruction of simulated strip-shredded documents, broadening its applicability.
On orthogonality preserving quadratic stochastic operators
Energy Technology Data Exchange (ETDEWEB)
Mukhamedov, Farrukh; Taha, Muhammad Hafizuddin Mohd [Department of Computational and Theoretical Sciences, Faculty of Science International Islamic University Malaysia, P.O. Box 141, 25710 Kuantan, Pahang Malaysia (Malaysia)
2015-05-15
A quadratic stochastic operator (in short QSO) is usually used to present the time evolution of differing species in biology. Some quadratic stochastic operators have been studied by Lotka and Volterra. In the present paper, we first give a simple characterization of Volterra QSO in terms of absolutely continuity of discrete measures. Further, we introduce a notion of orthogonal preserving QSO, and describe such kind of operators defined on two dimensional simplex. It turns out that orthogonal preserving QSOs are permutations of Volterra QSO. The associativity of genetic algebras generated by orthogonal preserving QSO is studied too.
Bound constrained quadratic programming via piecewise
DEFF Research Database (Denmark)
Madsen, Kaj; Nielsen, Hans Bruun; Pinar, M. C.
1999-01-01
of a symmetric, positive definite matrix, and is solved by Newton iteration with line search. The paper describes the algorithm and its implementation including estimation of lambda/sub 1/ , how to get a good starting point for the iteration, and up- and downdating of Cholesky factorization. Results of extensive......We consider the strictly convex quadratic programming problem with bounded variables. A dual problem is derived using Lagrange duality. The dual problem is the minimization of an unconstrained, piecewise quadratic function. It involves a lower bound of lambda/sub 1/ , the smallest eigenvalue...
On orthogonality preserving quadratic stochastic operators
International Nuclear Information System (INIS)
Mukhamedov, Farrukh; Taha, Muhammad Hafizuddin Mohd
2015-01-01
A quadratic stochastic operator (in short QSO) is usually used to present the time evolution of differing species in biology. Some quadratic stochastic operators have been studied by Lotka and Volterra. In the present paper, we first give a simple characterization of Volterra QSO in terms of absolutely continuity of discrete measures. Further, we introduce a notion of orthogonal preserving QSO, and describe such kind of operators defined on two dimensional simplex. It turns out that orthogonal preserving QSOs are permutations of Volterra QSO. The associativity of genetic algebras generated by orthogonal preserving QSO is studied too
Eigenfunctions of quadratic hamiltonians in Wigner representation
International Nuclear Information System (INIS)
Akhundova, Eh.A.; Dodonov, V.V.; Man'ko, V.I.
1984-01-01
Exact solutions of the Schroedinger equation in Wigner representation are obtained for an arbitrary non-stationary N-dimensional quadratic Hamiltonian. It is shown that the complete system of the solutions can always be chosen in the form of the products of Laguerre polynomials, the arguments of which are the quadratic integrals of motion of the corresponding classical problem. The generating function is found for the transition probabilities between Fock states which represent a many-dimensional generatization of a well-known Husimi formula for the oscillator of variable frequency. As an example, the motion of a charged particle in an uniform alternate electromagnetic field is considered in detail
Modification of ion-acoustic solitons on interaction with Langmuir waves
International Nuclear Information System (INIS)
Basovich, A.Ya.; Gromov, E.M.; Karpman, V.I.
1981-01-01
Variation of an ion-accoustic soliton under the effect of the Langmuir quasimonochromatic wave has been considered. Parameters of the soliton tail and variation of soliton velocity have been determined. It is shown that the soliton tail consists of two parts: averaged and oscillating. Density oscillations have a forced nature and are related to the modulation of striction force appearing during interference of waves incident and reflected from a soliton. Oscillations appear behind soliton when the wave runs after soliton and in front of soliton when soliton runs after wave [ru
Massive WDM and TDM Soliton Transmission Systems : a ROSC Symposium
2002-01-01
This book summarizes the proceedings of the invited talks presented at the “International Symposium on Massive TDM and WDM Optical Soliton Tra- mission Systems” held in Kyoto during November 9–12, 1999. The symposium is the third of the series organized by Research Group for Optical Soliton C- munications (ROSC) chaired by Akira Hasegawa. The research group, ROSC, was established in Japan in April 1995 with a support of the Japanese Ministry of Post and Telecommunications to promote collaboration and information - change among communication service companies, communication industries and academic circles in the theory and application of optical solitons. The symposium attracted enthusiastic response from worldwide researchers in the field of soliton based communications and intensive discussions were made. In the symposium held in 1997, new concept of soliton transmission based on dispersion management of optical fibers were presented. This new soliton is now called the dispersion managed soliton. The p...
On the Creation of Solitons in Amplifying Optical Fibers
Directory of Open Access Journals (Sweden)
Christoph Mahnke
2018-01-01
Full Text Available We treat the creation of solitons in amplifying fibers. Strictly speaking, solitons are objects in an integrable setting while in real-world systems loss and gain break integrability. That case usually has been treated in the perturbation limit of low loss or gain. In a recent approach fiber-optic solitons were described beyond that limit, so that it became possible to specify how and where solitons are eventually destroyed. Here we treat the opposite case: in the presence of gain, new solitons can arise from an initially weak pulse. We find conditions for that to happen for both localized and distributed gain, with no restriction to small gain. By tracing the energy budget we show that even when another soliton is already present and copropagates, a newly created soliton takes its energy from radiation only. Our results may find applications in amplified transmission lines or in fiber lasers.
Interactions of solitary waves and compression/expansion waves in core-annular flows
Maiden, Michelle; Anderson, Dalton; El, Gennady; Franco, Nevil; Hoefer, Mark
2017-11-01
The nonlinear hydrodynamics of an initial step leads to the formation of rarefaction waves and dispersive shock waves in dispersive media. Another hallmark of these media is the soliton, a localized traveling wave whose speed is amplitude dependent. Although compression/expansion waves and solitons have been well-studied individually, there has been no mathematical description of their interaction. In this talk, the interaction of solitons and shock/rarefaction waves for interfacial waves in viscous, miscible core-annular flows are modeled mathematically and explored experimentally. If the interior fluid is continuously injected, a deformable conduit forms whose interfacial dynamics are well-described by a scalar, dispersive nonlinear partial differential equation. The main focus is on interactions of solitons with dispersive shock waves and rarefaction waves. Theory predicts that a soliton can either be transmitted through or trapped by the extended hydrodynamic state. The notion of reciprocity is introduced whereby a soliton interacts with a shock wave in a reciprocal or dual fashion as with the rarefaction. Soliton reciprocity, trapping, and transmission are observed experimentally and are found to agree with the modulation theory and numerical simulations. This work was partially supported by NSF CAREER DMS-1255422 (M.A.H.) and NSF GRFP (M.D.M.).
Solitons on H bonds in proteins
DEFF Research Database (Denmark)
d'Ovidio, F.; Bohr, H.G.; Lindgård, Per-Anker
2003-01-01
system shows that the solitons are spontaneously created and are stable and moving along the helix axis. A perturbation on one of the three H-bond lines forms solitons on the other H bonds as well. The robust solitary wave may explain very long-lived modes in the frequency range of 100 cm(-1) which...... are found in recent x-ray laser experiments. The dynamics parameters of the Toda lattice are in accordance with the usual Lennard-Jones parameters used for realistic H-bond potentials in proteins....
Phase noise of dispersion-managed solitons
International Nuclear Information System (INIS)
Spiller, Elaine T.; Biondini, Gino
2009-01-01
We quantify noise-induced phase deviations of dispersion-managed solitons (DMS) in optical fiber communications and femtosecond lasers. We first develop a perturbation theory for the dispersion-managed nonlinear Schroedinger equation (DMNLSE) in order to compute the noise-induced mean and variance of the soliton parameters. We then use the analytical results to guide importance-sampled Monte Carlo simulations of the noise-driven DMNLSE. Comparison of these results with those from the original unaveraged governing equations confirms the validity of the DMNLSE as a model for many dispersion-managed systems and quantify the increased robustness of DMS with respect to noise-induced phase jitter.
Green's functions of solitons in heat bath
International Nuclear Information System (INIS)
Smilga, A.V.
1989-01-01
Soliton Green's functions at nonzero temperature are studied. Considering various model example it is shown that the Green's function pole position does not coincide generally speaking with free energy of a soliton. The Froelich polaron and the t'Hooft-Polyakov monopole the Green's function for which is in general a poorly defined concept as it involves an infinite imaginary part connected to the infinite total cross section of monopole scattering by electric charge are discussed. The pole position of the Green's function of the collective sphaleron excitation in the Glashow-Weinberg-Salem model does not as well coincide with the sphaleron free energy. 24 refs.; 9 figs
Rigidity of complete generic shrinking Ricci solitons
Chu, Yawei; Zhou, Jundong; Wang, Xue
2018-01-01
Let (Mn , g , X) be a complete generic shrinking Ricci soliton of dimension n ≥ 3. In this paper, by employing curvature inequalities, the formula of X-Laplacian for the norm square of the trace-free curvature tensor, the weak maximum principle and the estimate of the scalar curvature of (Mn , g) , we prove some rigidity results for (Mn , g , X) . In particular, it is showed that (Mn , g , X) is isometric to Rn or a finite quotient of Sn under a pointwise pinching condition. Moreover, we establish several optimal inequalities and classify those shrinking solitons for equalities.
Slunyaev, Alexey; Klein, Marco; Clauss, Günther F.
2016-04-01
Envelope soliton solutions are key elements governing the nonlinear wave dynamics within a simplified theory for unidirectional weakly modulated weakly nonlinear wave groups on the water surface. Within integrable models the solitons preserve their structure in collisions with other waves; they do not disperse and can carry energy infinitively long. Steep and short soliton-like wave groups have been shown to exist in laboratory tests [1] and, even earlier, in numerical simulations [2, 3]. Thus, long-living wave groups may play important role in the dynamics of intense sea waves and wave-structure interactions. The solitary wave groups may change the wave statistics and can be taken into account when developing approaches for the deterministic forecasting of dangerous waves, including so-called rogue waves. An experimental campaign has been conducted in the wave basin of the Technical University of Berlin on simulations of intense solitary wave groups. The first successful experimental observation of intense envelope solitons took place in this facility [1]. The new experiments aimed at following main goals: 1) to reproduce intense envelope solitons with different carrier wave lengths; 2) to estimate the rate of envelope soliton dissipation; 3) to consider the reflection of envelope solitons on a vertical wall; 4) to consider head-on collisions of envelope solitons, and 5) to consider overtaking interactions of envelope solitons. Up to 9 wave gauges were used in each experimental run, which enabled registration of the surface movement at different distances from the wavemaker, at different locations across the wave flume and near the wall. Besides surface displacements, the group envelope shapes were directly recorded, with use of phase shifts applied to the modulated waves generated by the wavemaker. [1] A. Slunyaev, G.F. Clauss, M. Klein, M. Onorato, Simulations and experiments of short intense envelope solitons of surface water waves. Phys. Fluids 25, 067105
Quadratic mass relations in topological bootstrap theory
International Nuclear Information System (INIS)
Jones, C.E.; Uschersohn, J.
1980-01-01
From the requirement of reality of discontinuities of scattering amplitudes at the spherical level of the topological bootstrap theory, a large number of mass relations for hadrons is derived. Quadratic mass formulas for the symmetry-breaking pattern of both mesons and baryon is obtained and their relation to conventional models of symmetry breaking is briefly discussed
STABILIZED SEQUENTIAL QUADRATIC PROGRAMMING: A SURVEY
Directory of Open Access Journals (Sweden)
Damián Fernández
2014-12-01
Full Text Available We review the motivation for, the current state-of-the-art in convergence results, and some open questions concerning the stabilized version of the sequential quadratic programming algorithm for constrained optimization. We also discuss the tools required for its local convergence analysis, globalization challenges, and extentions of the method to the more general variational problems.
The Quadratic Selective Travelling Salesman Problem
DEFF Research Database (Denmark)
Thomadsen, Tommy; Stidsen, Thomas K.
2003-01-01
A well-known extension of the Travelling Salesman Problem (TSP) is the Selective TSP (STSP): Each node has an associated profit and instead of visiting all nodes, the most profitable set of nodes, taking into account the tour cost, is visited. The Quadratic STSP (QSTSP) adds the additional...
orthogonal and scaling transformations of quadratic functions
African Journals Online (AJOL)
Preferred Customer
functions of sub-problems of various nonlinear programming problems that employ methods such as sequential quadratic programming and trust-region methods (Sorensen, 1982; Eldersveld,. 1991; Nocedal and Wright, 1999). Various problems in Algebra, Functional Analysis,. Analytic Geometry and Computational Mathe-.
Fundamental quadratic variational principle underlying general relativity
International Nuclear Information System (INIS)
Atkins, W.K.
1983-01-01
The fundamental result of Lanczos is used in a new type of quadratic variational principle whose field equations are the Einstein field equations together with the Yang-Mills type equations for the Riemann curvature. Additionally, a spin-2 theory of gravity for the special case of the Einstein vacuum is discussed
Investigating Students' Mathematical Difficulties with Quadratic Equations
O'Connor, Bronwyn Reid; Norton, Stephen
2016-01-01
This paper examines the factors that hinder students' success in working with and understanding the mathematics of quadratic equations using a case study analysis of student error patterns. Twenty-five Year 11 students were administered a written test to examine their understanding of concepts and procedures associated with this topic. The…
Commuting quantum traces for quadratic algebras
International Nuclear Information System (INIS)
Nagy, Zoltan; Avan, Jean; Doikou, Anastasia; Rollet, Genevieve
2005-01-01
Consistent tensor products on auxiliary spaces, hereafter denoted 'fusion procedures', and commuting transfer matrices are defined for general quadratic algebras, nondynamical and dynamical, inspired by results on reflection algebras. Applications of these procedures then yield integer-indexed families of commuting Hamiltonians
DNABIT Compress - Genome compression algorithm.
Rajarajeswari, Pothuraju; Apparao, Allam
2011-01-22
Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, "DNABIT Compress" for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our proposed algorithm achieves the best compression ratio for DNA sequences for larger genome. Significantly better compression results show that "DNABIT Compress" algorithm is the best among the remaining compression algorithms. While achieving the best compression ratios for DNA sequences (Genomes),our new DNABIT Compress algorithm significantly improves the running time of all previous DNA compression programs. Assigning binary bits (Unique BIT CODE) for (Exact Repeats, Reverse Repeats) fragments of DNA sequence is also a unique concept introduced in this algorithm for the first time in DNA compression. This proposed new algorithm could achieve the best compression ratio as much as 1.58 bits/bases where the existing best methods could not achieve a ratio less than 1.72 bits/bases.
Call your health insurance or prescription plan: Find out if they pay for compression stockings. Ask if your durable medical equipment benefit pays for compression stockings. Get a prescription from your doctor. Find a medical equipment store where they can ...
Optimality Conditions for Fuzzy Number Quadratic Programming with Fuzzy Coefficients
Directory of Open Access Journals (Sweden)
Xue-Gang Zhou
2014-01-01
Full Text Available The purpose of the present paper is to investigate optimality conditions and duality theory in fuzzy number quadratic programming (FNQP in which the objective function is fuzzy quadratic function with fuzzy number coefficients and the constraint set is fuzzy linear functions with fuzzy number coefficients. Firstly, the equivalent quadratic programming of FNQP is presented by utilizing a linear ranking function and the dual of fuzzy number quadratic programming primal problems is introduced. Secondly, we present optimality conditions for fuzzy number quadratic programming. We then prove several duality results for fuzzy number quadratic programming problems with fuzzy coefficients.
International Nuclear Information System (INIS)
Hefter, E.F.; Gridnev, K.A.
1984-01-01
Within the inverse mean field method solitons are taken to model elastic α+α collisions in a TDHF-like fashion. Attention is drawn to common points of this approach with TDHF. The analytical formula for the phase-shift within this approach yields a nice correspondence to experiment. (author)
Perturbed soliton excitations in inhomogeneous DNA
International Nuclear Information System (INIS)
Daniel, M.; Vasumathi, V.
2005-05-01
We study nonlinear dynamics of inhomogeneous DNA double helical chain under dynamic plane-base rotator model by considering angular rotation of bases in a plane normal to the helical axis. The DNA dynamics in this case is found to be governed by a perturbed sine-Gordon equation when taking into account the interstrand hydrogen bonding energy and intrastrand inhomogeneous stacking energy and making an analogy with the Heisenberg model of the Hamiltonian for an inhomogeneous anisotropic spin ladder with ferromagnetic legs and antiferromagentic rung coupling. In the homogeneous limit the dynamics is governed by the kink-antikink soliton of the sine-Gordon equation which represents the formation of open state configuration in DNA double helix. The effect of inhomogeneity in stacking energy in the form of localized and periodic variations on the formation of open states in DNA is studied under perturbation. The perturbed soliton is obtained using a multiple scale soliton perturbation theory by solving the associated linear eigen value problem and constructing the complete set of eigen functions. The inhomogeneity in stacking energy is found to modulate the width and speed of the soliton depending on the nature of inhomogeneity. Also it introduces fluctuations in the form of train of pulses or periodic oscillation in the open state configuration (author)
New solitons connected to the Dirac equation
International Nuclear Information System (INIS)
Grosse, H.
1984-01-01
Imposing isospectral invariance for the one dimensional Dirac operator leads to systems of nonlinear partial differential equations. By constructing reflectionless potentials of the Dirac equation we obtain a new type of solitons for a system of modified Korteweg-de Vries equations. (Author)
Solitons and Weakly Nonlinear Waves in Plasmas
DEFF Research Database (Denmark)
Pécseli, Hans
1985-01-01
Theoretical descriptions of solitons and weakly nonlinear waves propagating in plasma media are reviewed, with particular attention to the Korteweg-de Vries (KDV) equation and the Nonlinear Schrödinger equation (NLS). The modifications of these basic equations due to the effects of resonant...
Infrared Absorption in Acetanilide by Solitons
DEFF Research Database (Denmark)
Careri, G.; Buontempo, U.; Carta, F.
1983-01-01
The infrared spectrum of acetanilide shows a new band that is red shifted from the main amide-I maximum by about 15 cm-1, the intensity of which increases at low temperature. It is suggested that this band may arise from the creation of amide-I solitons that are similar (but not identical) to those...
Novel energy sharing collisions of multicomponent solitons
Indian Academy of Sciences (India)
optical communication and in artificial metamaterials. ... multicomponent generalization of Manakov system have been obtained by Kanna et al .... The main objective of the present paper is to give a clear picture of various energy ... occur as a consequence of energy exchange between the two colliding solitons as well as.
Nonlinear soliton matching between optical fibers
DEFF Research Database (Denmark)
Agger, Christian; Sørensen, Simon Toft; Thomsen, Carsten L.
2011-01-01
In this Letter, we propose a generic nonlinear coupling coefficient, η2 NL ¼ ηjγ=β2jfiber2=jγ=β2jfiber1, which gives a quantitative measure for the efficiency of nonlinear matching of optical fibers by describing how a fundamental soliton couples from one fiber into another. Specifically, we use η...
Quantization of bag-like solitons
International Nuclear Information System (INIS)
Breit, J.D.
1982-01-01
The method of collective coordinates is used to quantize bag-like solitons formed by scalar and spinor fields. This method leads to approximate wave functions for quarks in the bag that are orthogonal to the translational modes. Solutions are given for the MIT bag limit of the fields. (orig.)
Solitons and nonlinear waves in space plasmas
International Nuclear Information System (INIS)
Stasiewicz, K.
2005-01-01
Recent measurements made on the ESA/NASA Cluster mission to the Earth's magnetosphere have provided first detailed measurements of magnetosonic solitons in space. The solitons represent localized enhancements of the magnetic field by a factor of 2-10, or depressions down to 10% of the ambient field. The magnetic field signatures are associated with density depressions/enhancements A two-fluid model of nonlinear electron and ion inertial waves in anisotropic plasmas explains the main properties of these structures. It is shown that warm plasmas support four types of nonlinear waves, which correspond to four linear modes: Alfvenic, magnetosonic, sound, and electron inertial waves. Each of these nonlinear modes has slow and fast versions. It is shown by direct integration that the exponential growth rate of nonlinear modes is balanced by the ion and electron dispersion leading to solutions in the form of trains of solitons or cnoidal waves. By using a novel technique of phase portraits it is shown how the dispersive properties of electron and ion inertial waves change at the transition between warm and hot plasmas, and how trains of solitons ('' mirror modes '') are produced in a hot, anisotropic plasma. The applicability of the model is illustrated with data from Cluster spacecraft. (author)
Fractional Solitons in Excitonic Josephson Junctions
Su, Jung-Jung; Hsu, Ya-Fen
The Josephson effect is especially appealing because it reveals macroscopically the quantum order and phase. Here we study this effect in an excitonic Josephson junction: a conjunct of two exciton condensates with a relative phase ϕ0 applied. Such a junction is proposed to take place in the quantum Hall bilayer (QHB) that makes it subtler than in superconductor because of the counterflow of excitonic supercurrent and the interlayer tunneling in QHB. We treat the system theoretically by first mapping it into a pseudospin ferromagnet then describing it by the Landau-Lifshitz-Gilbert equation. In the presence of interlayer tunneling, the excitonic Josephson junction can possess a family of fractional sine-Gordon solitons that resemble the static fractional Josephson vortices in the extended superconducting Josephson junctions. Interestingly, each fractional soliton carries a topological charge Q which is not necessarily a half/full integer but can vary continuously. The resultant current-phase relation (CPR) shows that solitons with Q =ϕ0 / 2 π are the lowest energy states for small ϕ0. When ϕ0 > π , solitons with Q =ϕ0 / 2 π - 1 take place - the polarity of CPR is then switched.
Transmutation of skyrmions to half-solitons driven by the nonlinear optical spin Hall effect.
Flayac, H; Solnyshkov, D D; Shelykh, I A; Malpuech, G
2013-01-04
We show that the spin domains, generated in the linear optical spin Hall effect by the analog of spin-orbit interaction for exciton polaritons, are associated with the formation of a Skyrmion lattice. In the nonlinear regime, the spin anisotropy of the polariton-polariton interactions results in a spatial compression of the domains and in a transmutation of the Skyrmions into oblique half-solitons. This phase transition is associated with both the focusing of the spin currents and the emergence of a strongly anisotropic emission pattern.
Optimizing switching frequency of the soliton transistor by numerical simulation
Energy Technology Data Exchange (ETDEWEB)
Izadyar, S., E-mail: S_izadyar@yahoo.co [Department of Electronics, Khaje Nasir Toosi University of Technology, Shariati Ave., Tehran (Iran, Islamic Republic of); Niazzadeh, M.; Raissi, F. [Department of Electronics, Khaje Nasir Toosi University of Technology, Shariati Ave., Tehran (Iran, Islamic Republic of)
2009-10-15
In this paper, by numerical simulations we have examined different ways to increase the soliton transistor's switching frequency. Speed of the solitons in a soliton transistor depends on various parameters such as the loss of the junction, the applied bias current, and the transmission line characteristics. Three different ways have been examined; (i) decreasing the size of the transistor without losing transistor effect. (ii) Decreasing the amount of loss of the junction to increase the soliton speed. (iii) Optimizing the bias current to obtain maximum possible speed. We have obtained the shortest possible length to have at least one working soliton inside the transistor. The dimension of the soliton can be decreased by changing the inductance of the transmission line, causing a further decrease in the size of the transistor, however, a trade off between the size and the inductance is needed to obtain the optimum switching speed. Decreasing the amount of loss can be accomplished by increasing the characteristic tunneling resistance of the device, however, a trade off is again needed to make soliton and antisoliton annihilation possible. By increasing the bias current, the forces acting the solitons increases and so does their speed. Due to nonuniform application of bias current a self induced magnetic field is created which can result in creation of unwanted solitons. Optimum bias current application can result in larger bias currents and larger soliton speed. Simulations have provided us with such an arrangement of bias current paths.
Optimizing switching frequency of the soliton transistor by numerical simulation
International Nuclear Information System (INIS)
Izadyar, S.; Niazzadeh, M.; Raissi, F.
2009-01-01
In this paper, by numerical simulations we have examined different ways to increase the soliton transistor's switching frequency. Speed of the solitons in a soliton transistor depends on various parameters such as the loss of the junction, the applied bias current, and the transmission line characteristics. Three different ways have been examined; (i) decreasing the size of the transistor without losing transistor effect. (ii) Decreasing the amount of loss of the junction to increase the soliton speed. (iii) Optimizing the bias current to obtain maximum possible speed. We have obtained the shortest possible length to have at least one working soliton inside the transistor. The dimension of the soliton can be decreased by changing the inductance of the transmission line, causing a further decrease in the size of the transistor, however, a trade off between the size and the inductance is needed to obtain the optimum switching speed. Decreasing the amount of loss can be accomplished by increasing the characteristic tunneling resistance of the device, however, a trade off is again needed to make soliton and antisoliton annihilation possible. By increasing the bias current, the forces acting the solitons increases and so does their speed. Due to nonuniform application of bias current a self induced magnetic field is created which can result in creation of unwanted solitons. Optimum bias current application can result in larger bias currents and larger soliton speed. Simulations have provided us with such an arrangement of bias current paths.
Bidirectional soliton spectral tunneling effects in the regime of optical event horizon
DEFF Research Database (Denmark)
Gu, Jie; Guo, Hairun; Wang, Shaofei
2015-01-01
We study the cross-phase-modulation-induced soliton spectral shifting in the regime of the optical event horizon. The perturbed soliton to either red-shifting or blue-shifting is controllable, which could evoke bidirectional soliton spectral tunneling effects.......We study the cross-phase-modulation-induced soliton spectral shifting in the regime of the optical event horizon. The perturbed soliton to either red-shifting or blue-shifting is controllable, which could evoke bidirectional soliton spectral tunneling effects....
International Nuclear Information System (INIS)
Lyu, L.H.; Kan, J.R.
1989-01-01
Nonlinear one-dimensional constant-profile hydromagnetic wave solutions are obtained in finite-temperature two-fluid collisionless plasmas under adiabatic equation of state. The nonlinear wave solutions can be classified according to the wavelength. The long-wavelength solutions are circularly polarized incompressible oblique Alfven wave trains with wavelength greater than hudreds of ion inertial length. The oblique wave train solutions can explain the high degree of alignment between the local average magnetic field and the wave normal direction observed in the solar wind. The short-wavelength solutions include rarefaction fast solitons, compression slow solitons, Alfven solitons and rotational discontinuities, with wavelength of several tens of ion inertial length, provided that the upstream flow speed is less than the fast-mode speed
Geometric Approaches to Quadratic Equations from Other Times and Places.
Allaire, Patricia R.; Bradley, Robert E.
2001-01-01
Focuses on geometric solutions of quadratic problems. Presents a collection of geometric techniques from ancient Babylonia, classical Greece, medieval Arabia, and early modern Europe to enhance the quadratic equation portion of an algebra course. (KHR)
Coherent states of systems with quadratic Hamiltonians
Energy Technology Data Exchange (ETDEWEB)
Bagrov, V.G., E-mail: bagrov@phys.tsu.ru [Department of Physics, Tomsk State University, Tomsk (Russian Federation); Gitman, D.M., E-mail: gitman@if.usp.br [Tomsk State University, Tomsk (Russian Federation); Pereira, A.S., E-mail: albertoufcg@hotmail.com [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Instituto de Fisica
2015-06-15
Different families of generalized coherent states (CS) for one-dimensional systems with general time-dependent quadratic Hamiltonian are constructed. In principle, all known CS of systems with quadratic Hamiltonian are members of these families. Some of the constructed generalized CS are close enough to the well-known due to Schroedinger and Glauber CS of a harmonic oscillator; we call them simply CS. However, even among these CS, there exist different families of complete sets of CS. These families differ by values of standard deviations at the initial time instant. According to the values of these initial standard deviations, one can identify some of the families with semiclassical CS. We discuss properties of the constructed CS, in particular, completeness relations, minimization of uncertainty relations and so on. As a unknown application of the general construction, we consider different CS of an oscillator with a time dependent frequency. (author)
Coherent states of systems with quadratic Hamiltonians
International Nuclear Information System (INIS)
Bagrov, V.G.; Gitman, D.M.; Pereira, A.S.
2015-01-01
Different families of generalized coherent states (CS) for one-dimensional systems with general time-dependent quadratic Hamiltonian are constructed. In principle, all known CS of systems with quadratic Hamiltonian are members of these families. Some of the constructed generalized CS are close enough to the well-known due to Schroedinger and Glauber CS of a harmonic oscillator; we call them simply CS. However, even among these CS, there exist different families of complete sets of CS. These families differ by values of standard deviations at the initial time instant. According to the values of these initial standard deviations, one can identify some of the families with semiclassical CS. We discuss properties of the constructed CS, in particular, completeness relations, minimization of uncertainty relations and so on. As a unknown application of the general construction, we consider different CS of an oscillator with a time dependent frequency. (author)
On quadratic residue codes and hyperelliptic curves
Directory of Open Access Journals (Sweden)
David Joyner
2008-01-01
Full Text Available For an odd prime p and each non-empty subset S⊂GF(p, consider the hyperelliptic curve X S defined by y 2 =f S (x, where f S (x = ∏ a∈S (x-a. Using a connection between binary quadratic residue codes and hyperelliptic curves over GF(p, this paper investigates how coding theory bounds give rise to bounds such as the following example: for all sufficiently large primes p there exists a subset S⊂GF(p for which the bound |X S (GF(p| > 1.39p holds. We also use the quasi-quadratic residue codes defined below to construct an example of a formally self-dual optimal code whose zeta function does not satisfy the ``Riemann hypothesis.''
Quaternion orders, quadratic forms, and Shimura curves
Alsina, Montserrat
2004-01-01
Shimura curves are a far-reaching generalization of the classical modular curves. They lie at the crossroads of many areas, including complex analysis, hyperbolic geometry, algebraic geometry, algebra, and arithmetic. The text provides an introduction to the subject from a theoretic and algorithmic perspective. The main topics covered in it are Shimura curves defined over the rational number field, the construction of their fundamental domains, and the determination of their complex multiplication points. The study of complex multiplication points in Shimura curves leads to the study of families of binary quadratic forms with algebraic coefficients and to their classification by arithmetic Fuchsian groups. In this regard, the authors develop a theory full of new possibilities which parallels Gauss' theory on the classification of binary quadratic forms with integral coefficients by the action of the modular group. Each topic covered in the book begins with a theoretical discussion followed by carefully worked...
Quadratic hamiltonians and relativistic quantum mechanics
International Nuclear Information System (INIS)
Razumov, A.V.; Solov'ev, V.O.; Taranov, A.Yu.
1981-01-01
For the case of a charged scalar field described by a quadratic hamiltonian the equivalent relativistic quantum mechanics is constructed in one-particle sector. Complete investigation of a charged relativistic particle motion in the Coulomb field is carried out. Subcritical as well as supercritical cases are considered. In the course of investigation of the charged scalar particle in the Coulomb field the diagonalization of the quadratic hamiltonian describing the charged scalar quantized field interaction with the external Coulomb field has taken place. Mathematically this problem is bound to the construction of self-conjugated expansions of the symmetric operator. The construction of such expansion is necessary at any small external field magnitude [ru
Lambda-lifting in Quadratic Time
DEFF Research Database (Denmark)
Danvy, O.; Schultz, U.P.
2004-01-01
-lifting transforms a block-structured program into a set of recursive equations, one for each local function in the source program. Each equation carries extra parameters to account for the free variables of the corresponding local function and of all its callees. It is the search for these extra parameters......Lambda-lifting is a program transformation that is used in compilers, partial evaluators, and program transformers. In this article, we show how to reduce its complexity from cubic time to quadratic time, and we present a flow-sensitive lambda-lifter that also works in quadratic time. Lambda...... that yields the cubic factor in the traditional formulation of lambda-lifting, which is due to Johnsson. This search is carried out by computing a transitive closure. To reduce the complexity of lambda-lifting, we partition the call graph of the source program into strongly connected components, based...
Quadratic Interpolation and Linear Lifting Design
Directory of Open Access Journals (Sweden)
Joel Solé
2007-03-01
Full Text Available A quadratic image interpolation method is stated. The formulation is connected to the optimization of lifting steps. This relation triggers the exploration of several interpolation possibilities within the same context, which uses the theory of convex optimization to minimize quadratic functions with linear constraints. The methods consider possible knowledge available from a given application. A set of linear equality constraints that relate wavelet bases and coefficients with the underlying signal is introduced in the formulation. As a consequence, the formulation turns out to be adequate for the design of lifting steps. The resulting steps are related to the prediction minimizing the detail signal energy and to the update minimizing the l2-norm of the approximation signal gradient. Results are reported for the interpolation methods in terms of PSNR and also, coding results are given for the new update lifting steps.
Lambda-Lifting in Quadratic Time
DEFF Research Database (Denmark)
Danvy, Olivier; Schultz, Ulrik Pagh
2002-01-01
Lambda-lifting is a program transformation that is used in compilers, partial evaluators, and program transformers. In this article, we show how to reduce its complexity from cubic time to quadratic time, and we present a flow-sensitive lambda-lifter that also works in quadratic time. Lambda-lifting...... that yields the cubic factor in the traditional formulation of lambda-lifting, which is due to Johnsson. This search is carried out by computing a transitive closure. To reduce the complexity of lambda-lifting, we partition the call graph of the source program into strongly connected components, based...... of lambda-lifting from O(n^3) to O(n^2) . where n is the size of the program. Since a lambda-lifter can output programs of size O(n^2), our algorithm is asympotically optimal....
Lambda-Lifting in Quadratic Time
DEFF Research Database (Denmark)
Danvy, Olivier; Schultz, Ulrik Pagh
2003-01-01
Lambda-lifting is a program transformation that is used in compilers, partial evaluators, and program transformers. In this article, we show how to reduce its complexity from cubic time to quadratic time, and we present a flow-sensitive lambda-lifter that also works in quadratic time. Lambda-lifting...... that yields the cubic factor in the traditional formulation of lambda-lifting, which is due to Johnsson. This search is carried out by computing a transitive closure. To reduce the complexity of lambda-lifting, we partition the call graph of the source program into strongly connected components, based...... of lambda-lifting from O(n^3) to O(n^2) . where n is the size of the program. Since a lambda-lifter can output programs of size O(n^2), our algorithm is asympotically optimal....
Lambda-Lifting in Quadratic Time
DEFF Research Database (Denmark)
Danvy, Olivier; Schultz, Ulrik Pagh
2004-01-01
Lambda-lifting is a program transformation that is used in compilers, partial evaluators, and program transformers. In this article, we show how to reduce its complexity from cubic time to quadratic time, and we present a flow-sensitive lambda-lifter that also works in quadratic time. Lambda-lifting...... that yields the cubic factor in the traditional formulation of lambda-lifting, which is due to Johnsson. This search is carried out by computing a transitive closure. To reduce the complexity of lambda-lifting, we partition the call graph of the source program into strongly connected components, based...... of lambda-lifting from O(n^3) to O(n^2) . where n is the size of the program. Since a lambda-lifter can output programs of size O(n^2), our algorithm is asympotically optimal....
Temporal quadratic expansion nodal Green's function method
International Nuclear Information System (INIS)
Liu Cong; Jing Xingqing; Xu Xiaolin
2000-01-01
A new approach is presented to efficiently solve the three-dimensional space-time reactor dynamics equation which overcomes the disadvantages of current methods. In the Temporal Quadratic Expansion Nodal Green's Function Method (TQE/NGFM), the Quadratic Expansion Method (QEM) is used for the temporal solution with the Nodal Green's Function Method (NGFM) employed for the spatial solution. Test calculational results using TQE/NGFM show that its time step size can be 5-20 times larger than that of the Fully Implicit Method (FIM) for similar precision. Additionally, the spatial mesh size with NGFM can be nearly 20 times larger than that using the finite difference method. So, TQE/NGFM is proved to be an efficient reactor dynamics analysis method
Collisions of Two Spatial Solitons in Inhomogeneous Nonlinear Media
International Nuclear Information System (INIS)
Zhong Weiping; Yi Lin; Yang Zhengping; Xie Ruihua; Milivoj, Belic; Chen Goong
2008-01-01
Collisions of spatial solitons occurring in the nonlinear Schroeinger equation with harmonic potential are studied, using conservation laws and the split-step Fourier method. We find an analytical solution for the separation distance between the spatial solitons in an inhomogeneous nonlinear medium when the light beam is self-trapped in the transverse dimension. In the self-focusing nonlinear media the spatial solitons can be transmitted stably, and the interaction between spatial solitons is enhanced due to the linear focusing effect (and also diminished for the linear defocusing effect). In the self-defocusing nonlinear media, in the absence of self-trapping or in the presence of linear self-defocusing, no transmission of stable spatial solitons is possible. However, in such media the linear focusing effect can be exactly compensated, and the spatial solitons can propagate through
Quadratic Term Structure Models in Discrete Time
Marco Realdon
2006-01-01
This paper extends the results on quadratic term structure models in continuos time to the discrete time setting. The continuos time setting can be seen as a special case of the discrete time one. Recursive closed form solutions for zero coupon bonds are provided even in the presence of multiple correlated underlying factors. Pricing bond options requires simple integration. Model parameters may well be time dependent without scuppering such tractability. Model estimation does not require a r...
Least Squares Problems with Absolute Quadratic Constraints
Directory of Open Access Journals (Sweden)
R. Schöne
2012-01-01
Full Text Available This paper analyzes linear least squares problems with absolute quadratic constraints. We develop a generalized theory following Bookstein's conic-fitting and Fitzgibbon's direct ellipse-specific fitting. Under simple preconditions, it can be shown that a minimum always exists and can be determined by a generalized eigenvalue problem. This problem is numerically reduced to an eigenvalue problem by multiplications of Givens' rotations. Finally, four applications of this approach are presented.
Stochastic Linear Quadratic Optimal Control Problems
International Nuclear Information System (INIS)
Chen, S.; Yong, J.
2001-01-01
This paper is concerned with the stochastic linear quadratic optimal control problem (LQ problem, for short) for which the coefficients are allowed to be random and the cost functional is allowed to have a negative weight on the square of the control variable. Some intrinsic relations among the LQ problem, the stochastic maximum principle, and the (linear) forward-backward stochastic differential equations are established. Some results involving Riccati equation are discussed as well
Quadratic tracer dynamical models tobacco growth
International Nuclear Information System (INIS)
Qiang Jiyi; Hua Cuncai; Wang Shaohua
2011-01-01
In order to study the non-uniformly transferring process of some tracer dosages, we assume that the absorption of some tracer by tobacco is a quadratic function of the tracer quantity of the tracer in the case of fast absorption, whereas the exclusion of the tracer from tobacco is a linear function of the tracer quantity in the case of slow exclusion, after the tracer is introduced into tobacco once at zero time. A single-compartment quadratic dynamical model of Logistic type is established for the leaves of tobacco. Then, a two-compartment quadratic dynamical model is established for leaves and calms of the tobacco. Qualitative analysis of the models shows that the tracer applied to the leaves of the tobacco is excluded finally; however, the tracer stays at the tobacco for finite time. Two methods are also given for computing the parameters in the models. Finally, the results of the models are verified by the 32 P experiment for the absorption of tobacco. (authors)
A Finite Continuation Algorithm for Bound Constrained Quadratic Programming
DEFF Research Database (Denmark)
Madsen, Kaj; Nielsen, Hans Bruun; Pinar, Mustafa C.
1999-01-01
The dual of the strictly convex quadratic programming problem with unit bounds is posed as a linear $\\ell_1$ minimization problem with quadratic terms. A smooth approximation to the linear $\\ell_1$ function is used to obtain a parametric family of piecewise-quadratic approximation problems...
Graphical Solution of the Monic Quadratic Equation with Complex Coefficients
Laine, A. D.
2015-01-01
There are many geometrical approaches to the solution of the quadratic equation with real coefficients. In this article it is shown that the monic quadratic equation with complex coefficients can also be solved graphically, by the intersection of two hyperbolas; one hyperbola being derived from the real part of the quadratic equation and one from…
Electromagnetic solitons in degenerate relativistic electron–positron plasma
International Nuclear Information System (INIS)
Berezhiani, V I; Shatashvili, N L; Tsintsadze, N L
2015-01-01
The existence of soliton-like electromagnetic (EM) distributions in a fully degenerate electron–positron plasma is studied applying relativistic hydrodynamic and Maxwell equations. For a circularly polarized wave it is found that the soliton solutions exist both in relativistic as well as nonrelativistic degenerate plasmas. Plasma density in the region of soliton pulse localization is reduced considerably. The possibility of plasma cavitation is also shown. (invited comment)
A Statistical Model for Soliton Particle Interaction in Plasmas
DEFF Research Database (Denmark)
Dysthe, K. B.; Pécseli, Hans; Truelsen, J.
1986-01-01
A statistical model for soliton-particle interaction is presented. A master equation is derived for the time evolution of the particle velocity distribution as induced by resonant interaction with Korteweg-de Vries solitons. The detailed energy balance during the interaction subsequently determines...... the evolution of the soliton amplitude distribution. The analysis applies equally well for weakly nonlinear plasma waves in a strongly magnetized waveguide, or for ion acoustic waves propagating in one-dimensional systems....
Soliton matter as a model of dense nuclear matter
International Nuclear Information System (INIS)
Glendenning, N.K.
1985-01-01
We employ the hybrid soliton model of the nucleon consisting of a topological meson field and deeply bound quarks to investigate the behavior of the quarks in soliton matter as a function of density. To organize the calculation, we place the solitons on a spatial lattice. The model suggests the transition of matter from a color insulator to a color conductor above a critical density of a few times normal nuclear density. 9 references, 5 figures
Topological Vortex and Knotted Dissipative Optical 3D Solitons Generated by 2D Vortex Solitons.
Veretenov, N A; Fedorov, S V; Rosanov, N N
2017-12-29
We predict a new class of three-dimensional (3D) topological dissipative optical one-component solitons in homogeneous laser media with fast saturable absorption. Their skeletons formed by vortex lines where the field vanishes are tangles, i.e., N_{c} knotted or unknotted, linked or unlinked closed lines and M unclosed lines that thread all the closed lines and end at the infinitely far soliton periphery. They are generated by embedding two-dimensional laser solitons or their complexes in 3D space after their rotation around an unclosed, infinite vortex line with topological charge M_{0} (N_{c}, M, and M_{0} are integers). With such structure propagation, the "hula-hoop" solitons form; their stability is confirmed numerically. For the solitons found, all vortex lines have unit topological charge: the number of closed lines N_{c}=1 and 2 (unknots, trefoils, and Solomon knots links); unclosed vortex lines are unknotted and unlinked, their number M=1, 2, and 3.
Bright, dark and singular optical solitons in a cascaded system
International Nuclear Information System (INIS)
Zhou, Qin; Zhu, Qiuping; Yu, Hua; Liu, Yaxian; Wei, Chun; Yao, Ping; Bhrawy, Ali H; Biswas, Anjan
2015-01-01
This work studies nonlinear dynamics of optical solitons in a cascaded system with Kerr law nonlinearity and spatio-temporal dispersion. The mathematical model that describes the propagation of optical solitons through a cascaded system is given by the vector-coupled nonlinear Schrödinger equation. It is investigated analytically using three integration algorithms. The Jacobian elliptic equation expansion method, Bernoulli equation expansion approach and Riccati equation expansion scheme are the integration tools of this model that are recruited to extract singular, bright and dark solitons. The restrictions that need to hold for the existence of these solitons are derived. (paper)
Noncommutative solitons: moduli spaces, quantization, finite θ effects and stability
Hadasz, Leszek; Rocek, Martin; Lindström, Ulf; von Unge, Rikard
2001-06-01
We find the N-soliton solution at infinite θ, as well as the metric on the moduli space corresponding to spatial displacements of the solitons. We use a perturbative expansion to incorporate the leading θ-1 corrections, and find an effective short range attraction between solitons. We study the stability of various solutions. We discuss the finite θ corrections to scattering, and find metastable orbits. Upon quantization of the two-soliton moduli space, for any finite θ, we find an s-wave bound state.
On the theory of ultracold neutrons scattering by Davydov solitons
International Nuclear Information System (INIS)
Brizhik, L.S.
1984-01-01
Elastic coherent scattering of ultracold neutrons by Davydov solitons in one-dimensional periodic molecular chains without account of thermal oscillations of chain atoms is studied. It is shown that the expression for the differential cross section of the elastic neutron scattering by Davydov soliton breaks down into two components. One of them corresponds to scattering by a resting soliton, the other is proportional to the soliton velocity and has a sharp maximum in the direction of mirror reflection of neutrons from the chain
Coexistence of collapse and stable spatiotemporal solitons in multimode fibers
Shtyrina, Olga V.; Fedoruk, Mikhail P.; Kivshar, Yuri S.; Turitsyn, Sergei K.
2018-01-01
We analyze spatiotemporal solitons in multimode optical fibers and demonstrate the existence of stable solitons, in a sharp contrast to earlier predictions of collapse of multidimensional solitons in three-dimensional media. We discuss the coexistence of blow-up solutions and collapse stabilization by a low-dimensional external potential in graded-index media, and also predict the existence of stable higher-order nonlinear waves such as dipole-mode spatiotemporal solitons. To support the main conclusions of our numerical studies we employ a variational approach and derive analytically the stability criterion for input powers for the collapse stabilization.
Detection of fractional solitons in quantum spin Hall systems
Fleckenstein, C.; Traverso Ziani, N.; Trauzettel, B.
2018-03-01
We propose two experimental setups that allow for the implementation and the detection of fractional solitons of the Goldstone-Wilczek type. The first setup is based on two magnetic barriers at the edge of a quantum spin Hall system for generating the fractional soliton. If then a quantum point contact is created with the other edge, the linear conductance shows evidence of the fractional soliton. The second setup consists of a single magnetic barrier covering both edges and implementing a long quantum point contact. In this case, the fractional soliton can unambiguously be detected as a dip in the conductance without the need to control the magnetization of the barrier.
Bragg Fibers with Soliton-like Grating Profiles
Directory of Open Access Journals (Sweden)
Bugaychuk S.
2016-01-01
Full Text Available Nonlinear dynamical system corresponding to the optical holography in a nonlocal nonlinear medium with dissipation contains stable localized spatio-temporal states, namely the grid dissipative solitons. These solitons display a non-uniform profile of the grating amplitude, which has the form of the dark soliton in the reflection geometry. The transformation of the grating amplitude gives rise many new atypical effects for the beams diffracted on such grating, and they are very suitable for the fiber Brass gratings. The damped nonlinear Schrodinger equation is derived that describes the properties of the grid dissipative soliton.
Spectroscopy of dark soliton states in Bose-Einstein condensates
International Nuclear Information System (INIS)
Bongs, K; Burger, S; Hellweg, D; Kottke, M; Dettmer, S; Rinkleff, T; Cacciapuoti, L; Arlt, J; Sengstock, K; Ertmer, W
2003-01-01
Experimental and numerical studies of the velocity field of dark solitons in Bose-Einstein condensates are presented. The formation process after phase imprinting as well as the propagation of the emerging soliton are investigated using spatially resolved Bragg spectroscopy of soliton states in Bose-Einstein condensates of 87 Rb. A comparison of experimental data to results from numerical simulations of the Gross-Pitaevskii equation clearly identifies the flux underlying a dark soliton propagating in a Bose-Einstein condensate. The results allow further optimization of the phase imprinting method for creating collective excitations of Bose-Einstein condensates
Spectral long-range interaction of temporal incoherent solitons.
Xu, Gang; Garnier, Josselin; Picozzi, Antonio
2014-02-01
We study the interaction of temporal incoherent solitons sustained by a highly noninstantaneous (Raman-like) nonlinear response. The incoherent solitons exhibit a nonmutual interaction, which can be either attractive or repulsive depending on their relative initial distance. The analysis reveals that incoherent solitons exhibit a long-range interaction in frequency space, which is in contrast with the expected spectral short-range interaction described by the usual approach based on the Raman-like spectral gain curve. Both phenomena of anomalous interaction and spectral long-range behavior of incoherent solitons are described in detail by a long-range Vlasov equation.
Generation and interaction of solitons in Bose-Einstein condensates
International Nuclear Information System (INIS)
Burger, S.; Sengstock, K.; Carr, L.D.; Oehberg, P.; Sanpera, A.
2002-01-01
Generation, interaction, and detection of dark solitons in Bose-Einstein condensates are studied. In particular, we focus on the dynamics resulting from phase imprinting and density engineering. We show that solitons slow down significantly when the trap is opened and that soliton phase shifts after binary interactions cannot be observed with present experiments. Finally, motivated by the recent experimental results of Cornish et al. [Phys. Rev Lett. 85, 1795 (2000)], we analyze the stability of dark solitons under changes of the scattering length and thereby demonstrate a new way to detect them. Our theoretical and numerical results compare well with the existing experimental ones and provide guidance for future experiments
Steering the motion of rotary solitons in radial lattices
International Nuclear Information System (INIS)
He, Y. J.; Malomed, Boris A.; Wang, H. Z.
2007-01-01
We demonstrate that rotary motion of a two-dimensional soliton trapped in a Bessel lattice can be precisely controlled by application of a finite-time push to the lattice, due to the transfer of the lattice's linear momentum to the orbital momentum of the soliton. A simple analytical consideration treating the soliton as a particle provides for an accurate explanation of numerical findings. Some effects beyond the quasi-particle approximation are explored too, such as destruction of the soliton by a hard push
Helmholtz solitons in power-law optical materials
International Nuclear Information System (INIS)
Christian, J. M.; McDonald, G. S.; Potton, R. J.; Chamorro-Posada, P.
2007-01-01
A nonlinear Helmholtz equation for optical materials with regimes of power-law type of nonlinearity is proposed. This model captures the evolution of broad beams at any angle with respect to the reference direction in a wide range of media, including some semiconductors, doped glasses, and liquid crystals. Exact analytical soliton solutions are presented for a generic nonlinearity, within which known Kerr solitons comprise a subset. Three general conservation laws are also reported. Analysis and numerical simulations examine the stability of the Helmholtz power-law solitons. A propagation feature, associated with spatial solitons in power-law media, constituting a class of oscillatory solution, is identified
Understanding Soliton Spectral Tunneling as a Spectral Coupling Effect
DEFF Research Database (Denmark)
Guo, Hairun; Wang, Shaofei; Zeng, Xianglong
2013-01-01
Soliton eigenstate is found corresponding to a dispersive phase profile under which the soliton phase changes induced by the dispersion and nonlinearity are instantaneously counterbalanced. Much like a waveguide coupler relying on a spatial refractive index profile that supports mode coupling...... between channels, here we suggest that the soliton spectral tunneling effect can be understood supported by a spectral phase coupler. The dispersive wave number in the spectral domain must have a coupler-like symmetric profile for soliton spectral tunneling to occur. We show that such a spectral coupler...
International Nuclear Information System (INIS)
Tang, D.Y.; Zhao, L.M.; Zhao, B.; Liu, A.Q.
2005-01-01
We report results of numerical simulations on multiple-soliton generation and soliton energy quantization in a soliton fiber ring laser passively mode locked by using the nonlinear polarization rotation technique. We found numerically that the formation of multiple solitons in the laser is caused by a peak-power-limiting effect of the laser cavity. It is also the same effect that suppresses the soliton pulse collapse, an intrinsic feature of solitons propagating in gain media, and makes the solitons stable in the laser. Furthermore, we show that the soliton energy quantization observed in the lasers is a natural consequence of the gain competition between the multiple solitons. Enlightened by the numerical result we speculate that multisoliton formation and soliton energy quantization observed in other types of soliton fiber lasers could have a similar mechanism
Non-topological soliton bag model
International Nuclear Information System (INIS)
Wilets, L.
1986-01-01
The Friedberg-Lee soliton model, which effects confinement by a quantal scalar field, is discussed. The Lagrangian for the non-topological soliton model is the usual QCD Lagrangian supplemented by a non-linear scalar sigma field term. Static solutions to the field equations are considered in the mean field approximation. Small amplitude oscillations are discussed. Quantum alternatives to the mean field approximation are also considered. Methods of momentum projection and Lorentz boost are described, and the generator coordinate method is discussed. Calculations of the N-N interaction are reviewed briefly. Also discussed is one-gluon exchange, as well as the pion and dressing of the baryons. The hadron states are summarized. One loop quantum corrections are discussed briefly. Work in progress is mentioned in the areas of N-anti N annihilation, the many bag problem, and a Pauli equation for the nucleon. 31 refs
Chiral solitons in spinor polariton rings
Zezyulin, D. A.; Gulevich, D. R.; Skryabin, D. V.; Shelykh, I. A.
2018-04-01
We consider theoretically one-dimensional polariton ring accounting for both longitudinal-transverse (TE-TM) and Zeeman splittings of spinor polariton states and spin-dependent polariton-polariton interactions. We present a class of solutions in the form of the localized defects rotating with constant angular velocity and analyze their properties for realistic values of the parameters of the system. We show that the effects of the geometric phase arising from the interplay between the external magnetic field and the TE-TM splitting introduce chirality in the system and make solitons propagating in clockwise and anticlockwise directions nonequivalent. This can be interpreted as a solitonic analog of the Aharonov-Bohm effect.
Lectures on the soliton theory of nucleons
International Nuclear Information System (INIS)
Ripka, G.
1984-04-01
In these lectures we describe models in which the pion field or, more precisely, the chiral fields, are responsible for the binding of quarks in the nucleon. Such bound states in which the quarks constitute a source for the chiral fields, which, in turn, bind the quarks to each other, are called solitons. The starting point for such theories or models are chiral invariant lagrangians. They are not derived from QCD. The Skyrme lagrangian is simpler in that it involves only chiral fields and no quarks. However it may be understood as an effective lagrangian from which the quark degrees of freedom have been integrated out. It is not yet clear to what extent various models are equivalent. The description of the nucleon in these lectures may be viewed as an extension of the T.D. Lee solitons so as to include the pionic degree of freedom
Topological solitons in the supersymmetric Skyrme model
Energy Technology Data Exchange (ETDEWEB)
Gudnason, Sven Bjarke [Institute of Modern Physics, Chinese Academy of Sciences,Lanzhou 730000 (China); Nitta, Muneto [Department of Physics, and Research and Education Center for Natural Sciences,Keio University, Hiyoshi 4-1-1, Yokohama, Kanagawa 223-8521 (Japan); Sasaki, Shin [Department of Physics, Kitasato University,Sagamihara 252-0373 (Japan)
2017-01-04
A supersymmetric extension of the Skyrme model was obtained recently, which consists of only the Skyrme term in the Nambu-Goldstone (pion) sector complemented by the same number of quasi-Nambu-Goldstone bosons. Scherk-Schwarz dimensional reduction yields a kinetic term in three or lower dimensions and a potential term in two dimensions, preserving supersymmetry. Euclidean solitons (instantons) are constructed in the supersymmetric Skyrme model. In four dimensions, the soliton is an instanton first found by Speight. Scherk-Schwarz dimensional reduction is then performed once to get a 3-dimensional theory in which a 3d Skyrmion-instanton is found and then once more to get a 2d theory in which a 2d vortex-instanton is obtained. Although the last one is a global vortex it has finite action in contrast to conventional theory. All of them are non-BPS states breaking all supersymmetries.
Vibron Solitons and Soliton-Induced Infrared Spectra of Crystalline Acetanilide
Takeno, S.
1986-01-01
Red-shifted infrared spectra at low temperatures of amide I (C=O stretching) vibrations of crystalline acetanilide measured by Careri et al. are shown to be due to vibron solitons, which are nonlinearity-induced localized modes of vibrons arising from their nonlinear interactions with optic-type phonons. A nonlinear eigenvalue equation giving the eigenfrequency of stationary solitons is solved approximately by introducing lattice Green's functions, and the obtained result is in good agreement with the experimental result. Inclusion of interactions with acoustic phonons yields the Debye-Waller factor in the zero-phonon line spectrum of vibron solitons, in a manner analogous to the case of impurity-induced localized harmonic phonon modes in alkali halides.
Bifurcations and chaos of DNA solitonic dynamics
International Nuclear Information System (INIS)
Gonzalez, J.A.; Martin-Landrove, M.; Carbo, J.R.; Chacon, M.
1994-09-01
We investigated the nonlinear DNA torsional equations proposed by Yakushevich in the presence of damping and external torques. Analytical expressions for some solutions are obtained in the case of the isolated chain. Special attention is paid to the stability of the solutions and the range of soliton interaction in the general case. The bifurcation analysis is performed and prediction of chaos is obtained for some set of parameters. Some biological implications are suggested. (author). 11 refs, 13 figs
Soliton solutions in a diatomic lattice system
International Nuclear Information System (INIS)
Yajima, Nobuo; Satsuma, Junkichi.
1979-04-01
A continuum limit is considered for a diatomic lattice system with a cubic nonlinearity. A long wave equation describing the interaction of acoustic and optical modes is obtained. It reduces, in certain approximations, to equations having coupled wave solutions. The solutions exhibit trapping of an optical mode by an acoustic soliton. The form of the trapped optical wave depends on the mass ratio of adjacent particles in the diatomic lattice. (author)
Topological solitons in 8-spinor mie electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Rybakov, Yu. P., E-mail: soliton4@mail.ru [Peoples' Friendship University of Russia, Department of Theoretical Physics (Russian Federation)
2013-10-15
We investigate the effective 8-spinor field model suggested earlier as the generalization of nonlinear Mie electrodynamics. We first study in pure spinorial model the existence of topological solitons endowed with the nontrivial Hopf invariant Q{sub H}, which can be interpreted as the lepton number. Electromagnetic field being included as the perturbation, we estimate the energy and the spin of the localized charged configuration.
Infrared Absorption in Acetanilide by Solitons
Careri, G.; Buontempo, U.; Carta, F.; Gratton, E.; Scott, Alwyn C.
1983-01-01
The infrared spectrum of acetanilide shows a new band that is red shifted from the main amide-I maximum by about 15 cm-1, the intensity of which increases at low temperature. It is suggested that this band may arise from the creation of amide-I solitons that are similar (but not identical) to those proposed by Davydov for the alpha helix in proteins.
Introduction to solitons and their applications in physics and biology
International Nuclear Information System (INIS)
Peyrard, M.
1995-01-01
The response of most of the physical systems to combined excitations is not a simple superposition of their response to individual stimuli. This is particularly true for biological systems in which the nonlinear effects are often the dominant ones. The intrinsic treatment of nonlinearities in mathematical models and physical systems has led to the emergence of the chaos and solitons concepts. The concept of soliton, relevant for systems with many degrees of freedom, provides a new tool in the studies of biomolecules because it has no equivalent in the world of linear excitations. The aim of this lecture is to present the main ideas that underline the soliton concept and to discuss some applications. Solitons are solitary waves, that propagate at constant speed without changing their shape. They are extremely stable to perturbations, in particular to collisions with small amplitude linear waves and with other solitons. Conditions to have solitons and equations of solitons propagation are analysed. Solitons can be divided into two main classes: topological and non-topological solitons which can be found at all scales and in various domains of physics and chemistry. Using simple examples, this paper shows how linear expansions can miss completely essential physical properties of a system. This is particularly characteristic for the pendulum chain example. Soliton theory offers alternative methods. Multiple scale approximations, or expansion on a soliton basis, can be very useful to provide a description of some physical phenomena. Nonlinear energy localization is also a very important concept valid for a large variety of systems. These concepts are probably even more relevant for biological molecules than for solid state physics, because these molecules are very deformable objects where large amplitude nonlinear motions or conformational changes are crucial for function. (J.S.). 14 refs., 9 figs
Quadratic stochastic operators: Results and open problems
International Nuclear Information System (INIS)
Ganikhodzhaev, R.N.; Rozikov, U.A.
2009-03-01
The history of the quadratic stochastic operators can be traced back to the work of S. Bernshtein (1924). For more than 80 years this theory has been developed and many papers were published. In recent years it has again become of interest in connection with numerous applications in many branches of mathematics, biology and physics. But most results of the theory were published in non English journals, full text of which are not accessible. In this paper we give a brief description of the results and discuss several open problems. (author)
Sequential Quadratic Programming Algorithms for Optimization
1989-08-01
quadratic program- ma ng (SQ(2l ) aIiatain.seenis to be relgarded aIs tie( buest choice for the solution of smiall. dlense problema (see S tour L)toS...For the step along d, note that a < nOing + 3 szH + i3.ninA A a K f~Iz,;nd and from Id1 _< ,,, we must have that for some /3 , np , 11P11 < dn"p. 5.2...Nevertheless, many of these problems are considered hard to solve. Moreover, for some of these problems the assumptions made in Chapter 2 to establish the
Topological soliton solutions for some nonlinear evolution equations
Directory of Open Access Journals (Sweden)
Ahmet Bekir
2014-03-01
Full Text Available In this paper, the topological soliton solutions of nonlinear evolution equations are obtained by the solitary wave ansatz method. Under some parameter conditions, exact solitary wave solutions are obtained. Note that it is always useful and desirable to construct exact solutions especially soliton-type (dark, bright, kink, anti-kink, etc. envelope for the understanding of most nonlinear physical phenomena.
Spinning solitons in cubic-quintic nonlinear media
Indian Academy of Sciences (India)
in contrast to a recently found azimuthal instability of spinning doughnut-shaped solitons in the CQ NLS equation, their GL counterparts may be completely stable. On the other hand, a problem of fundamental interest is the possibility of the formation of fully three-dimensional (3D) optical spatiotemporal solitons, also referred ...
Ion-acoustic solitons in a plasma with electron beam
International Nuclear Information System (INIS)
Esfandyari, A. R.; Khorram, S.
2001-01-01
Ion-acoustic solitons in a collisionless plasma consisting of warm ions, hot isothermal electrons and a electron beam are studied by using the reductive perturbation method. The basic set of fluid equations is reduced to Korteweg-de Vries and modified Korteweg-de Vries temperature and electron beam on ion acoustic equations. The effect of ion solitons are investigated
Matter-wave bright solitons in effective bichromatic lattice potentials
Indian Academy of Sciences (India)
Matter-wave bright solitons in bichromatic lattice potentials are considered and their dynamics for different lattice environments are studied. Bichromatic potentials are created from superpositions of (i) two linear optical lattices and (ii) a linear and a nonlinear optical lattice. Effective potentials are found for the solitons in both ...
Pure soliton solutions of some nonlinear partial differential equations
International Nuclear Information System (INIS)
Fuchssteiner, B.
1977-01-01
A general approach is given to obtain the system of ordinary differential equations which determines the pure soliton solutions for the class of generalized Korteweg-de Vries equations. This approach also leads to a system of ordinary differential equations for the pure soliton solutions of the sine-Gordon equation. (orig.) [de
Dark and bright vortex solitons in electromagnetically induced transparent media
International Nuclear Information System (INIS)
Wu Xuan; Xie Xiaotao; Yang Xiaoxue
2006-01-01
We show that dark and bright vortex solitons can exist in three-state electromagnetically induced transparent media under some appropriate conditions. We also analyse the stability of the dark and bright vortex solitons. This work may provide other research opportunities in nonlinear optical experiments and may result in a substantial impact on technology
Bunched soliton states in weakly coupled sine-Gordon systems
DEFF Research Database (Denmark)
Grønbech-Jensen, N.; Samuelsen, Mogens Rugholm; Lomdahl, P. S.
1990-01-01
The interaction between solitons of two weakly coupled sine-Gordon systems is considered. In particular, the stability of bunched states is investigated, and perturbation results are compared with numerical results.......The interaction between solitons of two weakly coupled sine-Gordon systems is considered. In particular, the stability of bunched states is investigated, and perturbation results are compared with numerical results....
Translating solitons to symplectic and Lagrangian mean curvature flows
International Nuclear Information System (INIS)
Han Xiaoli; Li Jiayu
2007-05-01
In this paper, we construct finite blow-up examples for symplectic mean curvature flows and we study symplectic translating solitons. We prove that there is no translating solitons with vertical bar α vertical bar ≤ α 0 to the symplectic mean curvature flow or to the almost calibrated Lagrangian mean curvature flow for some α 0 . (author)
Cavity-soliton laser with frequency-selective feedback
International Nuclear Information System (INIS)
Scroggie, A. J.; Firth, W. J.; Oppo, G.-L.
2009-01-01
We present a coupled-cavity model of a laser with frequency-selective feedback, and use it to analyze and explain the existence of stationary and dynamic spatial solitons in the device. Particular features of soliton addressing in this system are discussed. We demonstrate the advantages of our model with respect to the common Lang-Kobayashi approximation.
Bistable soliton states and switching in doubly inhomogeneously ...
Indian Academy of Sciences (India)
Dec. 2001 physics pp. 969–979. Bistable soliton states and switching in doubly inhomogeneously doped fiber couplers. AJIT KUMAR. Department of Physics, Indian Institute of Technology, Hauz Khas, New Delhi 110 016, India. Abstract. Switching between the bistable soliton states in a doubly and inhomogeneously doped.
One-parameter family of solitons from minimal surfaces
Indian Academy of Sciences (India)
solitons arising from a one parameter family of minimal surfaces. The process enables us to generate a new solution of the B–I equation from a given complex solution of a special type (which are abundant). We illustrate this with many examples. We find that the action or the energy of this family of solitons remains invariant ...
Exact soliton-like solutions of perturbed phi4-equation
International Nuclear Information System (INIS)
Gonzalez, J.A.
1986-05-01
Exact soliton-like solutions of damped, driven phi 4 -equation are found. The exact expressions for the velocities of solitons are given. It is non-perturbatively proved that the perturbed phi 4 -equation has stable kink-like solutions of a new type. (author)
Integrable coupling system of fractional soliton equation hierarchy
Energy Technology Data Exchange (ETDEWEB)
Yu Fajun, E-mail: yfajun@163.co [College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034 (China)
2009-10-05
In this Letter, we consider the derivatives and integrals of fractional order and present a class of the integrable coupling system of the fractional order soliton equations. The fractional order coupled Boussinesq and KdV equations are the special cases of this class. Furthermore, the fractional AKNS soliton equation hierarchy is obtained.
Potential motion for Thomas-Fermi non-topological solitons
International Nuclear Information System (INIS)
Bahcall, S.
1992-04-01
In the Thomas-Fermi approximation to theories of coupled fermions and scalars, the equations for spherically-symmetric non-topological solitons have the form of potential motion. This gives a straightforward method for proving the existence of non-topological solitons in a given theory and for finding the constant-density, saturating solutions
On a quadratic inverse eigenvalue problem
International Nuclear Information System (INIS)
Cai, Yunfeng; Xu, Shufang
2009-01-01
This paper concerns the quadratic inverse eigenvalue problem (QIEP) of constructing real symmetric matrices M, C and K of size n × n, with M nonsingular, so that the quadratic matrix polynomial Q(λ) ≡ λ 2 M + λC + K has a completely prescribed set of eigenvalues and eigenvectors. It is shown via construction that the QIEP has a solution if and only if r 0, where r and δ are computable from the prescribed spectral data. A necessary and sufficient condition for the existence of a solution to the QIEP with M being positive definite is also established in a constructive way. Furthermore, two algorithms are developed: one is to solve the QIEP; another is to find a particular solution to the QIEP with the leading coefficient matrix being positive definite, which also provides us an approach to a simultaneous reduction of real symmetric matrix triple (M, C, K) by real congruence. Numerical results show that the two algorithms are feasible and numerically reliable
Phase space eigenfunctions of multidimensional quadratic Hamiltonians
International Nuclear Information System (INIS)
Dodonov, V.V.; Man'ko, V.I.
1986-01-01
We obtain the explicit expressions for phace space eigenfunctions (PSE),i.e. Weyl's symbols of dyadic operators like vertical stroken> ,vertical strokem>, being the solution of the Schroedinger equation with the Hamiltonian which is a quite arbitrary multidimensional quadratic form of the operators of Cartesian coordinates and conjugated to them momenta with time-dependent coefficients. It is shown that for an arbitrary quadratic Hamiltonian one can always construct the set of completely factorized PSE which are products of N factors, each factor being dependent only on two arguments for nnot=m and on a single argument for n=m. These arguments are nothing but constants of motion of the correspondent classical system. PSE are expressed in terms of the associated Laguerre polynomials in the case of a discrete spectrum and in terms of the Airy functions in the continuous spectrum case. Three examples are considered: a harmonic oscillator with a time-dependent frequency, a charged particle in a nonstationary uniform magnetic field, and a particle in a time-dependent uniform potential field. (orig.)
Quadratic forms for Feynman-Kac semigroups
International Nuclear Information System (INIS)
Hibey, Joseph L.; Charalambous, Charalambos D.
2006-01-01
Some problems in a stochastic setting often involve the need to evaluate the Feynman-Kac formula that follows from models described in terms of stochastic differential equations. Equivalent representations in terms of partial differential equations are also of interest, and these establish the well-known connection between probabilistic and deterministic formulations of these problems. In this Letter, this connection is studied in terms of the quadratic form associated with the Feynman-Kac semigroup. The probability measures that naturally arise in this approach, and thus define how Brownian motion is killed at a specified rate while exiting a set, are interpreted as a random time change of the original stochastic differential equation. Furthermore, since random time changes alter the diffusion coefficients in stochastic differential equations while Girsanov-type measure transformations alter their drift coefficients, their simultaneous use should lead to more tractable solutions for some classes of problems. For example, the minimization of some quadratic forms leads to solutions that satisfy certain partial differential equations and, therefore, the techniques discussed provide a variational approach for finding these solutions
DEFF Research Database (Denmark)
Mak, Vicky; Thomadsen, Tommy
2004-01-01
A well-known extension of the Travelling Salesman Problem (TSP) is the Selective (or Prize-collecting) TSP: In addition to the edge-costs, each node has an associated reward (denoted the node-reward) and instead of visiting all nodes, only profitable nodes are visited. The Quadratic Selective TSP...
Optical analogue of relativistic Dirac solitons in binary waveguide arrays
Energy Technology Data Exchange (ETDEWEB)
Tran, Truong X., E-mail: truong.tran@mpl.mpg.de [Department of Physics, Le Quy Don University, 236 Hoang Quoc Viet str., 10000 Hanoi (Viet Nam); Max Planck Institute for the Science of Light, Günther-Scharowsky str. 1, 91058 Erlangen (Germany); Longhi, Stefano [Department of Physics, Politecnico di Milano and Istituto di Fotonica e Nanotecnologie del Consiglio Nazionale delle Ricerche, Piazza L. da Vinci 32, I-20133 Milano (Italy); Biancalana, Fabio [Max Planck Institute for the Science of Light, Günther-Scharowsky str. 1, 91058 Erlangen (Germany); School of Engineering and Physical Sciences, Heriot-Watt University, EH14 4AS Edinburgh (United Kingdom)
2014-01-15
We study analytically and numerically an optical analogue of Dirac solitons in binary waveguide arrays in the presence of Kerr nonlinearity. Pseudo-relativistic soliton solutions of the coupled-mode equations describing dynamics in the array are analytically derived. We demonstrate that with the found soliton solutions, the coupled mode equations can be converted into the nonlinear relativistic 1D Dirac equation. This paves the way for using binary waveguide arrays as a classical simulator of quantum nonlinear effects arising from the Dirac equation, something that is thought to be impossible to achieve in conventional (i.e. linear) quantum field theory. -- Highlights: •An optical analogue of Dirac solitons in nonlinear binary waveguide arrays is suggested. •Analytical solutions to pseudo-relativistic solitons are presented. •A correspondence of optical coupled-mode equations with the nonlinear relativistic Dirac equation is established.
Soliton interaction in the coupled mixed derivative nonlinear Schroedinger equations
International Nuclear Information System (INIS)
Zhang Haiqiang; Tian Bo; Lue Xing; Li He; Meng Xianghua
2009-01-01
The bright one- and two-soliton solutions of the coupled mixed derivative nonlinear Schroedinger equations in birefringent optical fibers are obtained by using the Hirota's bilinear method. The investigation on the collision dynamics of the bright vector solitons shows that there exists complete or partial energy switching in this coupled model. Such parametric energy exchanges can be effectively controlled and quantificationally measured by analyzing the collision dynamics of the bright vector solitons. The influence of two types of nonlinear coefficient parameters on the energy of each vector soliton, is also discussed. Based on the significant energy transfer between the two components of each vector soliton, it is feasible to exploit the future applications in the design of logical gates, fiber directional couplers and quantum information processors.
Weyl solitons in three-dimensional optical lattices
Shang, Ce; Zheng, Yuanlin; Malomed, Boris A.
2018-04-01
Weyl fermions are massless chiral quasiparticles existing in materials known as Weyl semimetals. Topological surface states, associated with the unusual electronic structure in the Weyl semimetals, have been recently demonstrated in linear systems. Ultracold atomic gases, featuring laser-assisted tunneling in three-dimensional optical lattices, can be used for the emulation of Weyl semimetals, including nonlinear effects induced by the collisional nonlinearity of atomic Bose-Einstein condensates. We demonstrate that this setting gives rise to topological states in the form of Weyl solitons at the surface of the underlying optical lattice. These nonlinear modes, being exceptionally robust, bifurcate from linear states for a given quasimomentum. The Weyl solitons may be used to design an efficient control scheme for topologically protected unidirectional propagation of excitations in light-matter-interaction physics. After the recently introduced Majorana and Dirac solitons, the Weyl solitons proposed in this work constitute the third (and the last) member in this family of topological solitons.
Quadratic residues and non-residues selected topics
Wright, Steve
2016-01-01
This book offers an account of the classical theory of quadratic residues and non-residues with the goal of using that theory as a lens through which to view the development of some of the fundamental methods employed in modern elementary, algebraic, and analytic number theory. The first three chapters present some basic facts and the history of quadratic residues and non-residues and discuss various proofs of the Law of Quadratic Reciprosity in depth, with an emphasis on the six proofs that Gauss published. The remaining seven chapters explore some interesting applications of the Law of Quadratic Reciprocity, prove some results concerning the distribution and arithmetic structure of quadratic residues and non-residues, provide a detailed proof of Dirichlet’s Class-Number Formula, and discuss the question of whether quadratic residues are randomly distributed. The text is a valuable resource for graduate and advanced undergraduate students as well as for mathematicians interested in number theory.
The wrinkle-like N-solitons for the thermophoretic motion equation through graphene sheets
Ma, Yu-Lan; Li, Bang-Qing
2018-03-01
The main work is focused on the thermophoretic motion equation, which was derived from wrinkle wave motions in substrate-supported graphene sheets. Via the bilinear method, a class of wrinkle-like N-soliton solutions is constructed. The one-soliton, two-soliton and three-soliton are observed graphically. The shape, amplitude, open direction and width of the N-solitons are controllable through certain parameters.
Exact cancellation of quadratic divergences in top condensation models
International Nuclear Information System (INIS)
Blumhofer, A.
1995-01-01
We discuss the hierarchy problem and the corresponding quadratic divergences in the top mode Standard Model. Quadratic divergences appear at each order 1/N c since fermionic and bosonic contributions are of different order 1/N c . It is shown that the full dynamical system to all orders in 1/N c admits a solution, where the sum of all quadratic divergent contributions disappears. ((orig.))
Interactions of solitons in Bragg gratings with dispersive reflectivity in a cubic-quintic medium
Dasanayaka, Sahan; Atai, Javid
2011-08-01
Interactions between quiescent solitons in Bragg gratings with cubic-quintic nonlinearity and dispersive reflectivity are systematically investigated. In a previous work two disjoint families of solitons were identified in this model. One family can be viewed as the generalization of the Bragg grating solitons in Kerr nonlinearity with dispersive reflectivity (Type 1). On the other hand, the quintic nonlinearity is dominant in the other family (Type 2). For weak to moderate dispersive reflectivity, two in-phase solitons will attract and collide. Possible collision outcomes include merger to form a quiescent soliton, formation of three solitons including a quiescent one, separation after passing through each other once, asymmetric separation after several quasielastic collisions, and soliton destruction. Type 2 solitons are always destroyed by collisions. Solitons develop sidelobes when dispersive reflectivity is strong. In this case, it is found that the outcome of the interactions is strongly dependent on the initial separation of solitons. Solitons with sidelobes will collide only if they are in-phase and their initial separation is below a certain critical value. For larger separations, both in-phase and π-out-of-phase Type 1 and Type 2 solitons may either repel each other or form a temporary bound state that subsequently splits into two separating solitons. Additionally, in the case of Type 2 solitons, for certain initial separations, the bound state disintegrates into a single moving soliton.
Distance matrices and quadratic embedding of graphs
Directory of Open Access Journals (Sweden)
Nobuaki Obata
2018-04-01
Full Text Available A connected graph is said to be of QE class if it admits a quadratic embedding in a Hilbert space, or equivalently, if the distance matrix is conditionally negative definite. Several criteria for a graph to be of QE class are derived from the point of view of graph operations. For a quantitative criterion the QE constant is introduced and concrete examples are shown with explicit calculation. If the distance matrix admits a constant row sum, the QE constant coincides with the second largest eigenvalue of the distance matrix. The QE constants are determined for all graphs on $n$ vertices with $n\\le5$, among which two are not of QE class.
Low-rank quadratic semidefinite programming
Yuan, Ganzhao
2013-04-01
Low rank matrix approximation is an attractive model in large scale machine learning problems, because it can not only reduce the memory and runtime complexity, but also provide a natural way to regularize parameters while preserving learning accuracy. In this paper, we address a special class of nonconvex quadratic matrix optimization problems, which require a low rank positive semidefinite solution. Despite their non-convexity, we exploit the structure of these problems to derive an efficient solver that converges to their local optima. Furthermore, we show that the proposed solution is capable of dramatically enhancing the efficiency and scalability of a variety of concrete problems, which are of significant interest to the machine learning community. These problems include the Top-k Eigenvalue problem, Distance learning and Kernel learning. Extensive experiments on UCI benchmarks have shown the effectiveness and efficiency of our proposed method. © 2012.
Polarization Nonlinear Optics of Quadratically Nonlinear Azopolymers
International Nuclear Information System (INIS)
Konorov, S.O.; Akimov, D.A.; Ivanov, A.A.; Petrov, A.N.; Alfimov, M.V.; Yakimanskii, A.V.; Smirnov, N.N.; Ivanova, V.N.; Kudryavtsev, V.V.; Podshivalov, A.A.; Sokolova, I.M.; Zheltikov, A.M.
2005-01-01
The polarization properties of second harmonic and sum-frequency signals generated by femtosecond laser pulses in films of polymers containing covalent groups of an azobenzothiazole chromophore polarized by an external electric field are investigated. It is shown that the methods of polarization nonlinear optics make it possible to determine the structure of oriented molecular dipoles and reveal important properties of the motion of collectivized πelectrons in organic molecules with strong optical nonlinearities. The polarization measurements show that the tensor of quadratic nonlinear optical susceptibility of chromophore fragments oriented by an external field in macromolecules of the noted azopolymers has a degenerate form. This is indicative of a predominantly one-dimensional character of motion of collectivized π electrons along an extended group of atoms in such molecules
Gain scheduled linear quadratic control for quadcopter
Okasha, M.; Shah, J.; Fauzi, W.; Hanouf, Z.
2017-12-01
This study exploits the dynamics and control of quadcopters using Linear Quadratic Regulator (LQR) control approach. The quadcopter’s mathematical model is derived using the Newton-Euler method. It is a highly manoeuvrable, nonlinear, coupled with six degrees of freedom (DOF) model, which includes aerodynamics and detailed gyroscopic moments that are often ignored in many literatures. The linearized model is obtained and characterized by the heading angle (i.e. yaw angle) of the quadcopter. The adopted control approach utilizes LQR method to track several reference trajectories including circle and helix curves with significant variation in the yaw angle. The controller is modified to overcome difficulties related to the continuous changes in the operating points and eliminate chattering and discontinuity that is observed in the control input signal. Numerical non-linear simulations are performed using MATLAB and Simulink to illustrate to accuracy and effectiveness of the proposed controller.
Charged black holes in quadratic gravity
International Nuclear Information System (INIS)
Matyjasek, Jerzy; Tryniecki, Dariusz
2004-01-01
Iterative solutions to fourth-order gravity describing static and electrically charged black holes are constructed. The obtained solutions are parametrized by two integration constants which are related to the electric charge and the exact location of the event horizon. Special emphasis is put on the extremal black holes. It is explicitly demonstrated that in the extremal limit the exact location of the (degenerate) event horizon is given by r + =|e|. Similarly to the classical Reissner-Nordstroem solution, the near-horizon geometry of the charged black holes in quadratic gravity, when expanded into the whole manifold, is simply that of Bertotti and Robinson. Similar considerations have been carried out for boundary conditions of the second type which employ the electric charge and the mass of the system as seen by a distant observer. The relations between results obtained within the framework of each method are briefly discussed
Lambda-Lifting in Quadratic Time
DEFF Research Database (Denmark)
Danvy, Olivier; Schultz, Ulrik Pagh
2002-01-01
Lambda-lifting is a program transformation used in compilers and in partial evaluators and that operates in cubic time. In this article, we show how to reduce this complexity to quadratic time. Lambda-lifting transforms a block-structured program into a set of recursive equations, one for each...... local function in the source program. Each equation carries extra parameters to account for the free variables of the corresponding local function and of all its callees. It is the search for these extra parameters that yields the cubic factor in the traditional formulation of lambda-lifting, which...... is not needed. We therefore simplify the search for extra parameters by treating each strongly connected component instead of each function as a unit, thereby reducing the time complexity of lambda-lifting from O(n 3 log n)toO(n2 log n), where n is the size of the program. Since a lambda-lifter can output...
Low-rank quadratic semidefinite programming
Yuan, Ganzhao; Zhang, Zhenjie; Ghanem, Bernard; Hao, Zhifeng
2013-01-01
Low rank matrix approximation is an attractive model in large scale machine learning problems, because it can not only reduce the memory and runtime complexity, but also provide a natural way to regularize parameters while preserving learning accuracy. In this paper, we address a special class of nonconvex quadratic matrix optimization problems, which require a low rank positive semidefinite solution. Despite their non-convexity, we exploit the structure of these problems to derive an efficient solver that converges to their local optima. Furthermore, we show that the proposed solution is capable of dramatically enhancing the efficiency and scalability of a variety of concrete problems, which are of significant interest to the machine learning community. These problems include the Top-k Eigenvalue problem, Distance learning and Kernel learning. Extensive experiments on UCI benchmarks have shown the effectiveness and efficiency of our proposed method. © 2012.
A ''quadratized'' augmented plane wave method
International Nuclear Information System (INIS)
Smrcka, L.
1982-02-01
The exact radial solution inside the muffin-tin sphere is replaced by its Taylor expansion with respect to the energy, truncated after the quadratic term. Making use of it the energy independent augmented plane waves are formed which lead to the secular equations linear in energy. The method resembles the currently used linearized APW method but yields higher accuracy. The analysis of solution inside one muffin-tin sphere shows that the eigenvalue error is proportional to (E-E 0 ) 6 as compared with (E-E 0 ) 4 for LAPW. The error of eigenfunctions is (E-E 0 ) 3 ((E-E 0 ) 2 for LAPW). These conclusions are confirmed by direct numerical calculation of band structure of Cu and Al. (author)
Quadratic gravity in first order formalism
Energy Technology Data Exchange (ETDEWEB)
Alvarez, Enrique; Anero, Jesus; Gonzalez-Martin, Sergio, E-mail: enrique.alvarez@uam.es, E-mail: jesusanero@gmail.com, E-mail: sergio.gonzalez.martin@uam.es [Departamento de Física Teórica and Instituto de Física Teórica (IFT-UAM/CSIC), Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid (Spain)
2017-10-01
We consider the most general action for gravity which is quadratic in curvature. In this case first order and second order formalisms are not equivalent. This framework is a good candidate for a unitary and renormalizable theory of the gravitational field; in particular, there are no propagators falling down faster than 1/ p {sup 2}. The drawback is of course that the parameter space of the theory is too big, so that in many cases will be far away from a theory of gravity alone. In order to analyze this issue, the interaction between external sources was examined in some detail. We find that this interaction is conveyed mainly by propagation of the three-index connection field. At any rate the theory as it stands is in the conformal invariant phase; only when Weyl invariance is broken through the coupling to matter can an Einstein-Hilbert term (and its corresponding Planck mass scale) be generated by quantum corrections.
Integrable Abelian vortex-like solitons
Energy Technology Data Exchange (ETDEWEB)
Contatto, Felipe, E-mail: felipe.contatto@damtp.cam.ac.uk [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); CAPES Foundation, Ministry of Education of Brazil, Brasília, DF 70040-020 (Brazil)
2017-05-10
We propose a modified version of the Ginzburg–Landau energy functional admitting static solitons and determine all the Painlevé-integrable cases of its Bogomolny equations of a given class of models. Explicit solutions are determined in terms of the third Painlevé transcendents, allowing us to calculate physical quantities such as the vortex number and the vortex strength. These solutions can be interpreted as the usual Abelian-Higgs vortices on surfaces of non-constant curvature with conical singularity.
Integrable Abelian vortex-like solitons
Directory of Open Access Journals (Sweden)
Felipe Contatto
2017-05-01
Full Text Available We propose a modified version of the Ginzburg–Landau energy functional admitting static solitons and determine all the Painlevé-integrable cases of its Bogomolny equations of a given class of models. Explicit solutions are determined in terms of the third Painlevé transcendents, allowing us to calculate physical quantities such as the vortex number and the vortex strength. These solutions can be interpreted as the usual Abelian-Higgs vortices on surfaces of non-constant curvature with conical singularity.
Phase locking between Josephson soliton oscillators
DEFF Research Database (Denmark)
Holst, T.; Hansen, Jørn Bindslev; Grønbech-Jensen, N.
1990-01-01
We report observations of phase-locking phenomena between two Josephson soliton (fluxon) oscillators biased in self-resonant modes. The locking strength was measured as a function of bias conditions. A frequency tunability of the phase-locked oscillators up to 7% at 10 GHz was observed. Two coupled...... perturbed sine-Gordon equations were derived from an equivalent circuit consisting of inductively coupled, nonlinear, lossy transmission lines. These equations were solved numerically to find the locking regions. Good qualitative agreement was found between the experimental results and the calculations...
Ramanujan's identities, minimal surfaces and solitons
Indian Academy of Sciences (India)
In this paper, using some of Ramanujan's identites and the W–E representation of minimal surfaces, and the analogue for B–I solitons, we obtain non-trivial identities. (1) For ζ = ±1, ±i and belonging to a suitable domain in C,. Re ln. (. 1 + ζ2. 1 − ζ2. ) = ∞. ∑ k=1 ln. ⎛. ⎝. −Im ln. (. 1+ζ. 1−ζ. ) −. ( k − 1. 2. ) π. 2 Re tan−1(ζ ) −.
Solitonic Integrable Perturbations of Parafermionic Theories
Fernández-Pousa, C R; Hollowood, Timothy J; Miramontes, J L
1997-01-01
The quantum integrability of a class of massive perturbations of the parafermionic conformal field theories associated to compact Lie groups is established by showing that they have quantum conserved densities of scale dimension 2 and 3. These theories are integrable for any value of a continuous vector coupling constant, and they generalize the perturbation of the minimal parafermionic models by their first thermal operator. The classical equations-of-motion of these perturbed theories are the non-abelian affine Toda equations which admit (charged) soliton solutions whose semi-classical quantization is expected to permit the identification of the exact S-matrix of the theory.
Static solitons in more than one dimension
International Nuclear Information System (INIS)
O'Raifeartaigh, L.
1978-01-01
The most important development of the last decade in particle physics and field theory has undoubtedly been the advent of hidden-symmetric gauge theories. One of the more interesting by-products of this development has been the discovery that hidden-symmetric gauge theories admit static solutions to the field equations which are regular everywhere and for which the energy is finite. Such solutions will be called solitons. The hidden-symmetric gauge solutions exist for n space dimensions, where 1 [de
Structure functions from chiral soliton models
International Nuclear Information System (INIS)
Weigel, H.; Reinhardt, H.; Gamberg, L.
1997-01-01
We study nucleon structure functions within the bosonized Nambu-Jona-Lasinio (NJL) model where the nucleon emerges as a chiral soliton. We discuss the model predictions on the Gottfried sum rule for electron-nucleon scattering. A comparison with a low-scale parametrization shows that the model reproduces the gross features of the empirical structure functions. We also compute the leading twist contributions of the polarized structure functions g 1 and g 2 in this model. We compare the model predictions on these structure functions with data from the E143 experiment by GLAP evolving them from the scale characteristic for the NJL-model to the scale of the data
On the theory of Langmuir solitons
International Nuclear Information System (INIS)
Gibbons, J.; Thornhill, S.G.; Wardrop, M.J.; Ter Haar, D.
1977-01-01
A Lagrangian density is found from which the equations of motion for the Langmuir solitons follow in the usual way. It is shown how this Lagrangian leads to the usual conservation laws. For the one-dimensional case a consideration of these conservation laws can help in understanding some of the results obtained in numerical experiments on the behaviour of a strongly turbulent plasma. It is shown that the situation in the three-dimensional case may be fundamentally different, and the near-sonic perturbations and Karpman's treatment of these is discussed. (U.K.)
Large-scale sequential quadratic programming algorithms
Energy Technology Data Exchange (ETDEWEB)
Eldersveld, S.K.
1992-09-01
The problem addressed is the general nonlinear programming problem: finding a local minimizer for a nonlinear function subject to a mixture of nonlinear equality and inequality constraints. The methods studied are in the class of sequential quadratic programming (SQP) algorithms, which have previously proved successful for problems of moderate size. Our goal is to devise an SQP algorithm that is applicable to large-scale optimization problems, using sparse data structures and storing less curvature information but maintaining the property of superlinear convergence. The main features are: 1. The use of a quasi-Newton approximation to the reduced Hessian of the Lagrangian function. Only an estimate of the reduced Hessian matrix is required by our algorithm. The impact of not having available the full Hessian approximation is studied and alternative estimates are constructed. 2. The use of a transformation matrix Q. This allows the QP gradient to be computed easily when only the reduced Hessian approximation is maintained. 3. The use of a reduced-gradient form of the basis for the null space of the working set. This choice of basis is more practical than an orthogonal null-space basis for large-scale problems. The continuity condition for this choice is proven. 4. The use of incomplete solutions of quadratic programming subproblems. Certain iterates generated by an active-set method for the QP subproblem are used in place of the QP minimizer to define the search direction for the nonlinear problem. An implementation of the new algorithm has been obtained by modifying the code MINOS. Results and comparisons with MINOS and NPSOL are given for the new algorithm on a set of 92 test problems.
Classification of the line-soliton solutions of KPII
International Nuclear Information System (INIS)
Chakravarty, Sarbarish; Kodama, Yuji
2008-01-01
In the previous papers (notably, Kodama Y 2004 J. Phys. A: Math. Gen. 37 11169-90, Biondini G and Chakravarty S 2006 J. Math. Phys. 47 033514), a large variety of line-soliton solutions of the Kadomtsev-Petviashvili II (KPII) equation was found. The line-soliton solutions are solitary waves which decay exponentially in the (x, y)-plane except along certain rays. In this paper, it is shown that those solutions are classified by asymptotic information of the solution as |y| → ∞. The present work then unravels some interesting relations between the line-soliton classification scheme and classical results in the theory of permutations
Travelling Solitons in the Damped Driven Nonlinear Schroedinger Equation
Barashenkov, I V
2003-01-01
The well-known effect of the linear damping on the moving nonlinear Schrodinger soliton (even when there is energy supply via the spatially homogeneous driving) is to quench its momentum to zero. Surprisingly, the zero momentum does not necessarily mean zero velocity. We show that two or more parametrically driven damped solitons can form a complex travelling with zero momentum at a nonzero constant speed. All travelling complexes we have found so far, turned out to be unstable. Thus, the parametric driving is capable of sustaining the uniform motion of damped solitons, but some additional agent is required to make this motion stable.
Exact, multiple soliton solutions of the double sine Gordon equation
International Nuclear Information System (INIS)
Burt, P.B.
1978-01-01
Exact, particular solutions of the double sine Gordon equation in n dimensional space are constructed. Under certain restrictions these solutions are N solitons, where N <= 2q - 1 and q is the dimensionality of space-time. The method of solution, known as the base equation technique, relates solutions of nonlinear partial differential equations to solutions of linear partial differential equations. This method is reviewed and its applicability to the double sine Gordon equation shown explicitly. The N soliton solutions have the remarkable property that they collapse to a single soliton when the wave vectors are parallel. (author)
Soliton-type solutions for two models in mathematical physics
Al-Ghafri, K. S.
2018-04-01
In this paper, the generalised Klein-Gordon and Kadomtsov-Petviashvili Benjamin-Bona-Mahony equations with power law nonlinearity are investigated. Our study is based on reducing the form of both equations to a first-order ordinary differential equation having the travelling wave solutions. Subsequently, soliton-type solutions such as compacton and solitary pattern solutions are obtained analytically. Additionally, the peaked soliton has been derived where it exists under a specific restrictions. In addition to the soliton solutions, the mathematical method which is exploited in this work also creates a few amount of travelling wave solutions.
Topological solitons of the Nambu-Jona-Lasinio model
International Nuclear Information System (INIS)
Reinhardt, H.; Wuensch, R.
1989-06-01
The baryon number one soliton solution of the Nambu-Jona-Lasinio model are found numerically in the mean-field approximation with full inclusion of the Dirac sea using the proper-time regularization for the underlying fermion determinant (quark loop). Explicit breaking of chiral symmetry is included by bare (current) quark masses. The obtained lowest-energy chiral soliton solutions with baryon number one carry winding number one. Fitting the parameters of the model from low-energy pion data the classical energies of these solitons are of the order of the nucleon mass. (orig.)
Classification of the line-soliton solutions of KPII
Chakravarty, Sarbarish; Kodama, Yuji
2008-07-01
In the previous papers (notably, Kodama Y 2004 J. Phys. A: Math. Gen. 37 11169-90, Biondini G and Chakravarty S 2006 J. Math. Phys. 47 033514), a large variety of line-soliton solutions of the Kadomtsev-Petviashvili II (KPII) equation was found. The line-soliton solutions are solitary waves which decay exponentially in the (x, y)-plane except along certain rays. In this paper, it is shown that those solutions are classified by asymptotic information of the solution as |y| → ∞. The present work then unravels some interesting relations between the line-soliton classification scheme and classical results in the theory of permutations.
The Baryon Number Two System in the Chiral Soliton Model
International Nuclear Information System (INIS)
Mantovani-Sarti, V.; Drago, A.; Vento, V.; Park, B.-Y.
2013-01-01
We study the interaction between two B = 1 states in a chiral soliton model where baryons are described as non-topological solitons. By using the hedgehog solution for the B = 1 states we construct three possible B = 2 configurations to analyze the role of the relative orientation of the hedgehog quills in the dynamics. The strong dependence of the inter soliton interaction on these relative orientations reveals that studies of dense hadronic matter using this model should take into account their implications. (author)
Bistable Helmholtz solitons in cubic-quintic materials
International Nuclear Information System (INIS)
Christian, J. M.; McDonald, G. S.; Chamorro-Posada, P.
2007-01-01
We propose a nonlinear Helmholtz equation for modeling the evolution of broad optical beams in media with a cubic-quintic intensity-dependent refractive index. This type of nonlinearity is appropriate for some semiconductor materials, glasses, and polymers. Exact analytical soliton solutions are presented that describe self-trapped nonparaxial beams propagating at any angle with respect to the reference direction. These spatially symmetric solutions are, to the best of our knowledge, the first bistable Helmholtz solitons to be derived. Accompanying conservation laws (both integral and particular forms) are also reported. Numerical simulations investigate the stability of the solitons, which appear to be remarkably robust against perturbations
Travelling solitons in the damped driven nonlinear Schroedinger equation
International Nuclear Information System (INIS)
Barashenkov, I.V.; Zemlyanaya, E.V.
2003-01-01
The well known effect of the linear damping on the moving nonlinear Schroedinger soliton (even when there is energy supply via the spatially homogeneous driving) is to quench its momentum to zero. Surprisingly, the zero momentum does not necessarily mean zero velocity. We show that two or more parametrically driven damped solitons can form a complex travelling with zero momentum at a nonzero constant speed. All travelling complexes we have found so far, turned out to be unstable. Thus, the parametric driving is capable of sustaining the uniform motion of damped solitons, but some additional agent is required to make this motion stable
Ring resonator systems to perform optical communication enhancement using soliton
Amiri, Iraj Sadegh
2014-01-01
The title explain new technique of secured and high capacity optical communication signals generation by using the micro and nano ring resonators. The pulses are known as soliton pulses which are more secured due to having the properties of chaotic and dark soliton signals with ultra short bandwidth. They have high capacity due to the fact that ring resonators are able to generate pulses in the form of solitons in multiples and train form. These pulses generated by ring resonators are suitable in optical communication due to use the compact and integrated rings system, easy to control, flexibi
Compression of realistic laser pulses in hollow-core photonic bandgap fibers
DEFF Research Database (Denmark)
Lægsgaard, Jesper; Roberts, John
2009-01-01
Dispersive compression of chirped few-picosecond pulses at the microjoule level in a hollow-core photonic bandgap fiber is studied numerically. The performance of ideal parabolic input pulses is compared to pulses from a narrowband picosecond oscillator broadened by self-phase modulation during...... amplification. It is shown that the parabolic pulses are superior for compression of high-quality femtosecond pulses up to the few-megawatts level. With peak powers of 5-10 MW or higher, there is no significant difference in power scaling and pulse quality between the two pulse types for comparable values...... of power, duration, and bandwidth. The same conclusion is found for the peak power and energy of solitons formed beyond the point of maximal compression. Long-pass filtering of these solitons is shown to be a promising route to clean solitonlike output pulses with peak powers of several MW....
Multiphase averaging of periodic soliton equations
International Nuclear Information System (INIS)
Forest, M.G.
1979-01-01
The multiphase averaging of periodic soliton equations is considered. Particular attention is given to the periodic sine-Gordon and Korteweg-deVries (KdV) equations. The periodic sine-Gordon equation and its associated inverse spectral theory are analyzed, including a discussion of the spectral representations of exact, N-phase sine-Gordon solutions. The emphasis is on physical characteristics of the periodic waves, with a motivation from the well-known whole-line solitons. A canonical Hamiltonian approach for the modulational theory of N-phase waves is prescribed. A concrete illustration of this averaging method is provided with the periodic sine-Gordon equation; explicit averaging results are given only for the N = 1 case, laying a foundation for a more thorough treatment of the general N-phase problem. For the KdV equation, very general results are given for multiphase averaging of the N-phase waves. The single-phase results of Whitham are extended to general N phases, and more importantly, an invariant representation in terms of Abelian differentials on a Riemann surface is provided. Several consequences of this invariant representation are deduced, including strong evidence for the Hamiltonian structure of N-phase modulational equations
Plasma Soliton Turbulence and Statistical Mechanics
International Nuclear Information System (INIS)
Treumann, R.A.; Pottelette, R.
1999-01-01
Collisionless kinetic plasma turbulence is described approximately in terms of a superposition of non-interacting solitary waves. We discuss the relevance of such a description under astrophysical conditions. Several types of solitary waves may be of interest in this relation as generators of turbulence and turbulent transport. A consistent theory of turbulence can be given only in a few particular cases when the description can be reduced to the Korteweg-de Vries equation or some other simple equation like the Kadomtsev-Petviashvili equation. It turns out that the soliton turbulence is usually energetically harder than the ordinary weakly turbulent plasma description. This implies that interaction of particles with such kinds of turbulence can lead to stronger acceleration than in ordinary turbulence. However, the description in our model is only classical and non-relativistic. Transport in solitary turbulence is most important for drift wave turbulence. Such waves form solitary drift wave vortices which may provide cross-field transport. A more general discussion is given on transport. In a model of Levy flight trapping of particles in solitons (or solitary turbulence) one finds that the residence time of particles in the region of turbulence may be described by a generalized Lorentzian probability distribution. It is shown that under collisionless equilibrium conditions far away from thermal equilibrium such distributions are natural equilibrium distributions. A consistent thermodynamic description of such media can be given in terms of a generalized Lorentzian statistical mechanics and thermodynamics. (author)
Soliton excitations in Josephson tunnel junctions
DEFF Research Database (Denmark)
Lomdahl, P. S.; Sørensen, O. H.; Christiansen, Peter Leth
1982-01-01
A detailed numerical study of a sine-Gordon model of the Josephson tunnel junction is compared with experimental measurements on junctions with different L / λJ ratios. The soliton picture is found to apply well on both relatively long (L / λJ=6) and intermediate (L / λJ=2) junctions. We find good...... agreement for the current-voltage characteristics, power output, and for the shape and height of the zero-field steps (ZFS). Two distinct modes of soliton oscillations are observed: (i) a bunched or congealed mode giving rise to the fundamental frequency f1 on all ZFS's and (ii) a "symmetric" mode which...... on the Nth ZFS yields the frequency Nf1 Coexistence of two adjacent frequencies is found on the third ZFS of the longer junction (L / λJ=6) in a narrow range of bias current as also found in the experiments. Small asymmetries in the experimental environment, a weak magnetic field, e.g., is introduced via...
Modification of Plasma Solitons by Resonant Particles
DEFF Research Database (Denmark)
Karpman, Vladimir; Lynov, Jens-Peter; Michelsen, Poul
1980-01-01
A consistent theory of plasma soliton interaction with resonant particles is developed. A simple derivation of a perturbed Korteweg–de Vries equation with the interaction term is presented. It is shown how the known limit cases (such as Ott–Sudan’s, etc.) can be derived from the general equations...... Korteweg–de Vries equation. Laboratory measurements carried out in a strongly magnetized, plasma‐filled waveguide and results from particle simulation are interpreted in terms of the analytical results.......A consistent theory of plasma soliton interaction with resonant particles is developed. A simple derivation of a perturbed Korteweg–de Vries equation with the interaction term is presented. It is shown how the known limit cases (such as Ott–Sudan’s, etc.) can be derived from the general equations...... and what their regions of applicability are. Some effects caused by the soliton‐particle interaction (amplitude change‐rate, tail formation, etc.) are analyzed by means of a recently developed perturbation method. The analytical results are compared with a direct numerical integration of the perturbed...
Sakkaravarthi, K; Kanna, T; Vijayajayanthi, M; Lakshmanan, M
2014-11-01
We consider a general multicomponent (2+1)-dimensional long-wave-short-wave resonance interaction (LSRI) system with arbitrary nonlinearity coefficients, which describes the nonlinear resonance interaction of multiple short waves with a long wave in two spatial dimensions. The general multicomponent LSRI system is shown to be integrable by performing the Painlevé analysis. Then we construct the exact bright multisoliton solutions by applying the Hirota's bilinearization method and study the propagation and collision dynamics of bright solitons in detail. Particularly, we investigate the head-on and overtaking collisions of bright solitons and explore two types of energy-sharing collisions as well as standard elastic collision. We have also corroborated the obtained analytical one-soliton solution by direct numerical simulation. Also, we discuss the formation and dynamics of resonant solitons. Interestingly, we demonstrate the formation of resonant solitons admitting breather-like (localized periodic pulse train) structure and also large amplitude localized structures akin to rogue waves coexisting with solitons. For completeness, we have also obtained dark one- and two-soliton solutions and studied their dynamics briefly.
Aspects of solitons in noncommutative field theories. The modified Ward model
International Nuclear Information System (INIS)
Petersen, S.
2006-01-01
In this thesis several aspects of solutions to the equations of motions to noncommutative field theories are investigated in detail. The main focus of the analysis is on the integrable chiral or modified unitary sigma model with U(n)-valued fields as introduced by Ward and its noncommutative extension where the above mentioned new solutions arise. Of particular interest in this context are to us the question of stability of static solitons and the applicability of the so-called adiabatic approach to as a means to approximate time-dependent solutions by geodesic motion in the moduli space of static solutions. After some introductory remarks we proceed to present the Ward model together with its noncommutative extension and give a unified exposition of its known static solutions. This model, as the prime example of an almost Lorentz-invariant field theory in 1+2 dimensions, has several virtues which make its analysis worthwhile. First of all it is integrable thus allowing for powerful, well developed, techniques to generate soliton solutions. At the same time these feature interaction among them. Furthermore, the commutative counterpart of the Ward model has been investigated in great detail such that many results are available for comparison. Next, the question of stability for the present static solutions is considered. This stability is governed by the quadratic form of the fluctuations, which, upon concentrating on the case of diagonal U(1) solutions, is explicitly computed. We show that the considered solutions are stable within a certain subsector of possible configurations, namely the grassmannian ones, and become unstable upon embedding them into the full unitary sigma model. Finally, we remark on some possible generalization of these results. This subject is followed, after a brief review of time-dependent Ward model solutions, by the application of the adiabatic approach, as proposed by Manton, to the static solutions. (orig.)
Khusnutdinova, K. R.; Stepanyants, Y. A.; Tranter, M. R.
2018-02-01
We study solitary wave solutions of the fifth-order Korteweg-de Vries equation which contains, besides the traditional quadratic nonlinearity and third-order dispersion, additional terms including cubic nonlinearity and fifth order linear dispersion, as well as two nonlinear dispersive terms. An exact solitary wave solution to this equation is derived, and the dependence of its amplitude, width, and speed on the parameters of the governing equation is studied. It is shown that the derived solution can represent either an embedded or regular soliton depending on the equation parameters. The nonlinear dispersive terms can drastically influence the existence of solitary waves, their nature (regular or embedded), profile, polarity, and stability with respect to small perturbations. We show, in particular, that in some cases embedded solitons can be stable even with respect to interactions with regular solitons. The results obtained are applicable to surface and internal waves in fluids, as well as to waves in other media (plasma, solid waveguides, elastic media with microstructure, etc.).
Orthogonal and Scaling Transformations of Quadratic Functions with ...
African Journals Online (AJOL)
In this paper we present a non-singular transformation that can reduce a given quadratic function defined on Rn to another simpler quadratic function and study the impact of the transformation in relation to the problem of minimization of the function. In particular, we construct a non-singular transformation that can reduce a ...
Quadratic Twists of Rigid Calabi–Yau Threefolds Over
DEFF Research Database (Denmark)
Gouvêa, Fernando Q.; Kiming, Ian; Yui, Noriko
2013-01-01
of weight 4 on some Γ 0(N). We show that quadratic twisting of a threefold corresponds to twisting the attached newform by quadratic characters and illustrate with a number of obvious and not so obvious examples. The question is motivated by the deeper question of which newforms of weight 4 on some Γ 0(N...
Approximate *-derivations and approximate quadratic *-derivations on C*-algebras
Directory of Open Access Journals (Sweden)
Park Choonkil
2011-01-01
Full Text Available Abstract In this paper, we prove the stability of *-derivations and of quadratic *-derivations on Banach *-algebras. We moreover prove the superstability of *-derivations and of quadratic *-derivations on C*-algebras. 2000 Mathematics Subject Classification: 39B52; 47B47; 46L05; 39B72.
A Linear Programming Reformulation of the Standard Quadratic Optimization Problem
de Klerk, E.; Pasechnik, D.V.
2005-01-01
The problem of minimizing a quadratic form over the standard simplex is known as the standard quadratic optimization problem (SQO).It is NPhard, and contains the maximum stable set problem in graphs as a special case.In this note we show that the SQO problem may be reformulated as an (exponentially
Effects of Classroom Instruction on Students' Understanding of Quadratic Equations
Vaiyavutjamai, Pongchawee; Clements, M. A.
2006-01-01
Two hundred and thirty-one students in six Grade 9 classes in two government secondary schools located near Chiang Mai, Thailand, attempted to solve the same 18 quadratic equations before and after participating in 11 lessons on quadratic equations. Data from the students' written responses to the equations, together with data in the form of…
Analysis of Students' Error in Learning of Quadratic Equations
Zakaria, Effandi; Ibrahim; Maat, Siti Mistima
2010-01-01
The purpose of the study was to determine the students' error in learning quadratic equation. The samples were 30 form three students from a secondary school in Jambi, Indonesia. Diagnostic test was used as the instrument of this study that included three components: factorization, completing the square and quadratic formula. Diagnostic interview…
Sketching the General Quadratic Equation Using Dynamic Geometry Software
Stols, G. H.
2005-01-01
This paper explores a geometrical way to sketch graphs of the general quadratic in two variables with Geometer's Sketchpad. To do this, a geometric procedure as described by De Temple is used, bearing in mind that this general quadratic equation (1) represents all the possible conics (conics sections), and the fact that five points (no three of…
Tangent Lines without Derivatives for Quadratic and Cubic Equations
Carroll, William J.
2009-01-01
In the quadratic equation, y = ax[superscript 2] + bx + c, the equation y = bx + c is identified as the equation of the line tangent to the parabola at its y-intercept. This is extended to give a convenient method of graphing tangent lines at any point on the graph of a quadratic or a cubic equation. (Contains 5 figures.)
Visualising the Roots of Quadratic Equations with Complex Coefficients
Bardell, Nicholas S.
2014-01-01
This paper is a natural extension of the root visualisation techniques first presented by Bardell (2012) for quadratic equations with real coefficients. Consideration is now given to the familiar quadratic equation "y = ax[superscript 2] + bx + c" in which the coefficients "a," "b," "c" are generally…
Soliton analysis in complex molecular systems: A zig-zag chain
International Nuclear Information System (INIS)
Christiansen, P.L.; Savin, A.V.; Zolotaryuk, A.V.
1997-01-01
A simple numerical method for seeking solitary wave solutions of a permanent profile in molecular systems of big complexity is presented. The method is essentially based on the minimization of a finite-dimensional function which is chosen under an appropriate discretization of time derivatives in equations of motion. In the present paper, it is applied to a zig-zag chain backbone of coupled particles, each of which has two degrees of freedom (longitudinal and transverse). Both topological and nontopological soliton solutions are treated for this chain when it is (i) subjected to a two-dimensional periodic substrate potential or (ii) considered as an isolated object, respectively. In the first case, which may be considered as a zig-zag generalization of the Frenkel-Kontorova chain model, two types of kink solutions with different topological charges, describing vacancies of one or two atoms (I- or II-kinks) and defects with excess one or two atoms in the chain (I- or II-antikinks), have been found. The second case (isolated chain) is a generalization of the well-known Fermi-Pasta-Ulam chain model, which takes into account transverse degrees of freedom of the chain molecules. Two types of stable nontopological soliton solutions which describe either (i) a supersonic solitary wave of longitudinal stretching accompanied by transverse slandering or supersonic pulses of longitudinal compression propagating together with localized transverse thickening (bulge) have been obtained. 32 refs., 11 figs
Soliton Analysis in Complex Molecular Systems: A Zig-Zag Chain
Christiansen, P. L.; Savin, A. V.; Zolotaryuk, A. V.
1997-06-01
A simple numerical method for seeking solitary wavesolutions of a permanent profile in molecular systems of big complexity is presented. The method is essentially based on the minimization of a finite-dimensional function which is chosen under an appropriate discretization of time derivatives in equations of motion. In the present paper, it is applied to a zig-zag chain backbone of coupled particles, each of which has twodegrees of freedom (longitudinal and transverse). Both topological and nontopological soliton solutions are treated for this chain when it is (i) subjected to a two-dimensional periodic substrate potential or (ii) considered as an isolated object, respectively. In the first case, which may be considered as a zig-zag generalization of the Frenkel-Kontorova chain model, two types of kink solutions with different topological charges, describing vacancies of one or two atoms (I- or II-kinks) and defects with excess one or two atoms in the chain (I- or II-antikinks), have been found. The second case (isolated chain) is a generalization of the well-known Fermi-Pasta-Ulam chain model, which takes into account transverse degrees of freedom of the chain molecules. Two types of stable nontopological soliton solutions which describe either (i) a supersonic solitary wave of longitudinal stretching accompanied by transverse slendering or (ii) supersonic pulses of longitudinal compression propagating together with localized transverse thickening (bulge) have been obtained.
International Nuclear Information System (INIS)
Diaz-Otero, Francisco J.; Guillán-Lorenzo, Omar; Pedrosa-Rodríguez, Laura
2017-01-01
Highlights: • Empirical model describing the pulse energy enhancement required to obtain stable pulses to higher-order polynomial equations • An improvement in the accuracy is obtained through the addition of a new quartic addend dependent on the map strength. • This conclusion is validated through a comparison in a commercial DM soliton submarine network. • The error in the interaction distance for two adjacent pulses in the same channel is of the same order as the energy error - Abstract: We study the propagation properties of nonlinear pulses with periodic evolution in a dispersion-managed transmission link by means of a variational approach. We fit the energy enhancement required for stable propagation of a single soliton in a prototypical commercial link to a polynomial approximation that describes the dependence of the energy on the map strength of the normalized unit cell. We present an improvement of a relatively old and essential result, namely, the dependence of the energy-enhancement factor of dispersion-management solitons with the square of the map strength of the fiber link. We find that adding additional corrections to the conventional quadratic formula up to the fourth order results in an improvement in the accuracy of the description of the numerical results obtained with the variational approximation. Even a small error in the energy is found to introduce large deviations in the pulse parameters during its evolution. The error in the evaluation of the interaction distance between two adjacent time division multiplexed pulses propagating in the same channel in a prototypical submarine link is of the same order as the error in the energy.
Energy Technology Data Exchange (ETDEWEB)
Matsumura, M. [Shizuoka University, Shizuoka (Japan); Nagatani, T. [Shizuoka University, Shizuoka (Japan). Faculty of Engineering
1999-07-25
Traffic jams are investigated numerically and analystically in the optimal velocity model on a single-line highway. The condition is found whether or not traffic jams occur when a car stops instantly. It is shown that traffic soliton appears at the threshold of occurrence of traffic jams. The Korteweg-de Vries (KdV) equation is derived from the optimal velocity model by the use of the nonlinear analysis. It is found that the traffic soliton appears only near the neutral stability point. The soliton obtained from the nonlinear analysis is consistent with that of the numerical simulation. (author)
Energy Technology Data Exchange (ETDEWEB)
Harrington, Joe [Sertco Industries, Inc., Okemah, OK (United States); Vazquez, Daniel [Hoerbiger Service Latin America Inc., Deerfield Beach, FL (United States); Jacobs, Denis Richard [Hoerbiger do Brasil Industria de Equipamentos, Cajamar, SP (Brazil)
2012-07-01
Over time, all wells experience a natural decline in oil and gas production. In gas wells, the major problems are liquid loading and low downhole differential pressures which negatively impact total gas production. As a form of artificial lift, wellhead compressors help reduce the tubing pressure resulting in gas velocities above the critical velocity needed to surface water, oil and condensate regaining lost production and increasing recoverable reserves. Best results come from reservoirs with high porosity, high permeability, high initial flow rates, low decline rates and high total cumulative production. In oil wells, excessive annulus gas pressure tends to inhibit both oil and gas production. Wellhead compression packages can provide a cost effective solution to these problems by reducing the system pressure in the tubing or annulus, allowing for an immediate increase in production rates. Wells furthest from the gathering compressor typically benefit the most from wellhead compression due to system pressure drops. Downstream compressors also benefit from higher suction pressures reducing overall compression horsepower requirements. Special care must be taken in selecting the best equipment for these applications. The successful implementation of wellhead compression from an economical standpoint hinges on the testing, installation and operation of the equipment. Key challenges and suggested equipment features designed to combat those challenges and successful case histories throughout Latin America are discussed below.(author)
International Nuclear Information System (INIS)
2005-01-01
Nature of physical problem solved: AUTOJOM is a computer program that will generate the coefficients of any quadratic equation used to define conic volumes and also the coefficients of the planes needed to define parallelepipeds, wedges, and pyramids. JOMREAD is a computer code to check any 3D geometry composed of and constructed with quadratic surfaces
Existence domains of dust-acoustic solitons and supersolitons
International Nuclear Information System (INIS)
Maharaj, S. K.; Bharuthram, R.; Singh, S. V.; Lakhina, G. S.
2013-01-01
Using the Sagdeev potential method, the existence of large amplitude dust-acoustic solitons and supersolitons is investigated in a plasma comprising cold negative dust, adiabatic positive dust, Boltzmann electrons, and non-thermal ions. This model supports the existence of positive potential supersolitons in a certain region in parameter space in addition to regular solitons having negative and positive potentials. The lower Mach number limit for supersolitons coincides with the occurrence of double layers whereas the upper limit is imposed by the constraint that the adiabatic positive dust number density must remain real valued. The upper Mach number limits for negative potential (positive potential) solitons coincide with limiting values of the negative (positive) potential for which the negative (positive) dust number density is real valued. Alternatively, the existence of positive potential solitons can terminate when positive potential double layers occur
Images of the dark soliton in a depleted condensate
International Nuclear Information System (INIS)
Dziarmaga, Jacek; Karkuszewski, Zbyszek P; Sacha, Krzysztof
2003-01-01
The dark soliton created in a Bose-Einstein condensate becomes grey in the course of time evolution because its notch fills up with depleted atoms. This is the result of quantum mechanical calculations which describe the output of many experimental repetitions of creation of the stationary soliton, and its time evolution terminated by a destructive density measurement. However, such a description is not suitable to predict the outcome of a single realization of the experiment where two extreme scenarios and many combinations thereof are possible: one will see either (1) a displaced dark soliton without any atoms in the notch, but with a randomly displaced position, or (2) a grey soliton with a fixed position, but a random number of atoms filling its notch. In either case the average over many realizations will reproduce the mentioned quantum mechanical result. In this paper we use N-particle wavefunctions, which follow from the number-conserving Bogoliubov theory, to settle this issue
Bunched soliton states in weakly coupled sine-Gordon systems
International Nuclear Information System (INIS)
Gronbech-Jensen, N.; Samuelsen, M.R.; Lomdahl, P.S.; Blackburn, J.A.
1990-01-01
The interaction between solitons of two weakly coupled sine-Gordon systems is considered. In particular, the stability of bunched states is investigated, and perturbation results are compared with numerical results
Translating Solitons of Mean Curvature Flow of Noncompact Submanifolds
International Nuclear Information System (INIS)
Li Guanghan; Tian Daping; Wu Chuanxi
2011-01-01
We prove the existence and asymptotic behavior of rotationally symmetric solitons of mean curvature flow for noncompact submanifolds in Euclidean and Minkowski spaces, which generalizes part of the corresponding results for hypersurfaces of Jian.
Topological and non-topological soliton solutions to some time
Indian Academy of Sciences (India)
Topological and non-topological soliton solutions to some time-fractional differential equations ... These equations have been widely applied in many branches of nonlinear ... Department of Engineering Sciences, Faculty of Technology and ...
Can plane wave modes be physical modes in soliton models?
International Nuclear Information System (INIS)
Aldabe, F.
1995-08-01
I show that plane waves may not be used as asymptotic states in soliton models because they describe unphysical states. When asymptotic states are taken to the physical there is not T-matrix of O(1). (author). 9 refs
Bistable dark solitons of a cubic-quintic Helmholtz equation
International Nuclear Information System (INIS)
Christian, J. M.; McDonald, G. S.; Chamorro-Posada, P.
2010-01-01
We provide a report on exact analytical bistable dark spatial solitons of a nonlinear Helmholtz equation with a cubic-quintic refractive-index model. Our analysis begins with an investigation of the modulational instability characteristics of Helmholtz plane waves. We then derive a dark soliton by mapping the desired asymptotic form onto a uniform background field and obtain a more general solution by deploying rotational invariance laws in the laboratory frame. The geometry of the new soliton is explored in detail, and a range of new physical predictions is uncovered. Particular attention is paid to the unified phenomena of arbitrary-angle off-axis propagation and nondegenerate bistability. Crucially, the corresponding solution of paraxial theory emerges in a simultaneous multiple limit. We conclude with a set of computer simulations that examine the role of Helmholtz dark solitons as robust attractors.
Quantum gates controlled by spin chain soliton excitations
Energy Technology Data Exchange (ETDEWEB)
Cuccoli, Alessandro, E-mail: cuccoli@fi.infn.it [Dipartimento di Fisica e Astronomia, Università di Firenze, I-50019 Sesto Fiorentino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, I-50019 Sesto Fiorentino (Italy); Nuzzi, Davide [Dipartimento di Fisica e Astronomia, Università di Firenze, I-50019 Sesto Fiorentino (Italy); Vaia, Ruggero [Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, I-50019 Sesto Fiorentino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, I-50019 Sesto Fiorentino (Italy); Verrucchi, Paola [Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, I-50019 Sesto Fiorentino (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze, I-50019 Sesto Fiorentino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, I-50019 Sesto Fiorentino (Italy)
2014-05-07
Propagation of soliton-like excitations along spin chains has been proposed as a possible way for transmitting both classical and quantum information between two distant parties with negligible dispersion and dissipation. In this work, a somewhat different use of solitons is considered. Solitons propagating along a spin chain realize an effective magnetic field, well localized in space and time, which can be exploited as a means to manipulate the state of an external spin (i.e., a qubit) that is weakly coupled to the chain. We have investigated different couplings between the qubit and the chain, as well as different soliton shapes, according to a Heisenberg chain model. It is found that symmetry properties strongly affect the effectiveness of the proposed scheme, and the most suitable setups for implementing single qubit quantum gates are singled out.
Soliton ratchetlike dynamics by ac forces with harmonic mixing
DEFF Research Database (Denmark)
Salerno, Mario; Zolotaryuk, Yaroslav
2002-01-01
The possibility of unidirectional motion of a kink (topological soliton) of a dissipative sine-Gordon equation in the presence of ac forces with harmonic mixing (at least biharmonic) and of zero mean, is presented. The dependence of the kink mean velocity on system parameters is investigated...... numerically and the results are compared with a perturbation analysis based on a point-particle representation of the soliton. We find that first order perturbative calculations lead to incomplete descriptions, due to the important role played by the soliton-phonon interaction in establishing the phenomenon...... in the system. Effective soliton transport is achieved when the internal mode and the external force get phase locked. We find that for kinks driven by biharmonic drivers consisting of the superposition of a fundamental driver with its first odd harmonic, the transport arises only due to this internal mode...
(2+1)-dimensional stable spatial Raman solitons
International Nuclear Information System (INIS)
Shverdin, M.Y.; Yavuz, D.D.; Walker, D.R.
2004-01-01
We analyze the formation, propagation, and interaction of stable two-frequency (2+1)-dimensional solitons, formed in a Raman media driven near maximum molecular coherence. The propagating light is trapped in the two transverse dimensions
Are ghost surfaces quadratic-flux-minimizing?
International Nuclear Information System (INIS)
Hudson, S.R.; Dewar, R.L.
2009-01-01
Two candidates for 'almost-invariant' toroidal surfaces passing through magnetic islands, namely quadratic-flux-minimizing (QFMin) surfaces and ghost surfaces, use families of periodic pseudo-orbits (i.e. paths for which the action is not exactly extremal). QFMin pseudo-orbits, which are coordinate-dependent, are field lines obtained from a modified magnetic field, and ghost-surface pseudo-orbits are obtained by displacing closed field lines in the direction of steepest descent of magnetic action, ∫A.dl. A generalized Hamiltonian definition of ghost surfaces is given and specialized to the usual Lagrangian definition. A modified Hamilton's Principle is introduced that allows the use of Lagrangian integration for calculation of the QFMin pseudo-orbits. Numerical calculations show QFMin and Lagrangian ghost surfaces give very similar results for a chaotic magnetic field perturbed from an integrable case, and this is explained using a perturbative construction of an auxiliary poloidal angle for which QFMin and Lagrangian ghost surfaces are the same up to second order. While presented in the context of 3-dimensional magnetic field line systems, the concepts are applicable to defining almost-invariant tori in other 11/2 degree-of-freedom nonintegrable Lagrangian/Hamiltonian systems.
Securing Digital Audio using Complex Quadratic Map
Suryadi, MT; Satria Gunawan, Tjandra; Satria, Yudi
2018-03-01
In This digital era, exchanging data are common and easy to do, therefore it is vulnerable to be attacked and manipulated from unauthorized parties. One data type that is vulnerable to attack is digital audio. So, we need data securing method that is not vulnerable and fast. One of the methods that match all of those criteria is securing the data using chaos function. Chaos function that is used in this research is complex quadratic map (CQM). There are some parameter value that causing the key stream that is generated by CQM function to pass all 15 NIST test, this means that the key stream that is generated using this CQM is proven to be random. In addition, samples of encrypted digital sound when tested using goodness of fit test are proven to be uniform, so securing digital audio using this method is not vulnerable to frequency analysis attack. The key space is very huge about 8.1×l031 possible keys and the key sensitivity is very small about 10-10, therefore this method is also not vulnerable against brute-force attack. And finally, the processing speed for both encryption and decryption process on average about 450 times faster that its digital audio duration.
Designing Camera Networks by Convex Quadratic Programming
Ghanem, Bernard
2015-05-04
In this paper, we study the problem of automatic camera placement for computer graphics and computer vision applications. We extend the problem formulations of previous work by proposing a novel way to incorporate visibility constraints and camera-to-camera relationships. For example, the placement solution can be encouraged to have cameras that image the same important locations from different viewing directions, which can enable reconstruction and surveillance tasks to perform better. We show that the general camera placement problem can be formulated mathematically as a convex binary quadratic program (BQP) under linear constraints. Moreover, we propose an optimization strategy with a favorable trade-off between speed and solution quality. Our solution is almost as fast as a greedy treatment of the problem, but the quality is significantly higher, so much so that it is comparable to exact solutions that take orders of magnitude more computation time. Because it is computationally attractive, our method also allows users to explore the space of solutions for variations in input parameters. To evaluate its effectiveness, we show a range of 3D results on real-world floorplans (garage, hotel, mall, and airport).
Real-time visualization of soliton molecules with evolving behavior in an ultrafast fiber laser
Liu, Meng; Li, Heng; Luo, Ai-Ping; Cui, Hu; Xu, Wen-Cheng; Luo, Zhi-Chao
2018-03-01
Ultrafast fiber lasers have been demonstrated to be great platforms for the investigation of soliton dynamics. The soliton molecules, as one of the most fascinating nonlinear phenomena, have been a hot topic in the field of nonlinear optics in recent years. Herein, we experimentally observed the real-time evolving behavior of soliton molecule in an ultrafast fiber laser by using the dispersive Fourier transformation technology. Several types of evolving soliton molecules were obtained in our experiments, such as soliton molecules with monotonically or chaotically evolving phase, flipping and hopping phase. These results would be helpful to the communities interested in soliton nonlinear dynamics as well as ultrafast laser technologies.
Ion-sound emission by Langmuir soliton reflected at density barrier
International Nuclear Information System (INIS)
El-Ashry, M.Y.
1989-07-01
The emission of ion-sound waves by an accelerated Langmuir soliton is studied. The acceleration of the soliton is due to an inhomogeneous density barrier. On the assumption that the kinetic energy of the Langmuir soliton is smaller than the potential energy created by the barrier. The basic equations describing the dynamic behaviour of the soliton and the emission of the ion-sound waves are formulated. The qualitative spatial distributions of the perturbed concentration in the ion-sound waves are analyzed at different characteristic points of the soliton. The energy lost by the soliton, as a result of the emission, is estimated. (author). 6 refs, 4 figs
Three-Dimensional Hermite—Bessel—Gaussian Soliton Clusters in Strongly Nonlocal Media
International Nuclear Information System (INIS)
Jin Hai-Qin; Yi Lin; Liang Jian-Chu; Cai Ze-Bin; Liu Fei
2012-01-01
We analytically and numerically demonstrate the existence of Hermite—Bessel—Gaussian spatial soliton clusters in three-dimensional strongly nonlocal media. It is found that the soliton clusters display the vortex, dipole azimuthon and quadrupole azimuthon in geometry, and the total number of solitons in the necklaces depends on the quantum number n and m of the Hermite functions and generalized Bessel polynomials. The numerical simulation is basically identical to the analytical solution, and white noise does not lead to collapse of the soliton, which confirms the stability of the soliton waves. The theoretical predictions may give new insights into low-energetic spatial soliton transmission with high fidelity
Dark and bright solitons in a quasi-one-dimensional Bose-Einstein condensate
International Nuclear Information System (INIS)
Wang, Shun-Jin; Jia, Cheng-Long; An, Jun-Hong; Zhao, Dun; Luo, Hong-Gang
2003-01-01
The analytical dark and bright soliton solutions of the one-dimensional Gross-Pitaevskii equation with a confining potential are obtained. For the bright soliton, the recent experimental finding is studied, and the particle number of the soliton and the window of the particle numbers for the bright soliton to occur are estimated analytically and in good agreement with the experimental data. The existence of dark soliton for the attractive interaction and bright soliton for the repulsive interaction is predicted under proper conditions
Parametric localized modes in quadratic nonlinear photonic structures
DEFF Research Database (Denmark)
Sukhorukov, Andrey A.; Kivshar, Yuri S.; Bang, Ole
2001-01-01
interfaces, we derive an effective discrete model for the amplitudes of the fundamental and second-harmonic waves at the interfaces (the so-called discrete chi2 equations) and find, numerically and analytically, the spatially localized solutions-discrete gap solitons. For a single nonlinear interface...
Coupled matter-wave solitons in optical lattices
Golam Ali, Sk; Talukdar, B.
2009-06-01
We make use of a potential model to study the dynamics of two coupled matter-wave or Bose-Einstein condensate (BEC) solitons loaded in optical lattices. With separate attention to linear and nonlinear lattices we find some remarkable differences for response of the system to effects of these lattices. As opposed to the case of linear optical lattice (LOL), the nonlinear lattice (NOL) can be used to control the mutual interaction between the two solitons. For a given lattice wave number k, the effective potentials in which the two solitons move are such that the well (Veff(NOL)), resulting from the juxtaposition of soliton interaction and nonlinear lattice potential, is deeper than the corresponding well Veff(LOL). But these effective potentials have opposite k dependence in the sense that the depth of Veff(LOL) increases as k increases and that of Veff(NOL) decreases for higher k values. We verify that the effectiveness of optical lattices to regulate the motion of the coupled solitons depends sensitively on the initial locations of the motionless solitons as well as values of the lattice wave number. For both LOL and NOL the two solitons meet each other due to mutual interaction if their initial locations are taken within the potential wells with the difference that the solitons in the NOL approach each other rather rapidly and take roughly half the time to meet as compared with the time needed for such coalescence in the LOL. In the NOL, the soliton profiles can move freely and respond to the lattice periodicity when the separation between their initial locations are as twice as that needed for a similar free movement in the LOL. We observe that, in both cases, slow tuning of the optical lattices by varying k with respect to a time parameter τ drags the oscillatory solitons apart to take them to different locations. In our potential model the oscillatory solitons appear to propagate undistorted. But a fully numerical calculation indicates that during evolution
Coupled matter-wave solitons in optical lattices
International Nuclear Information System (INIS)
Golam Ali, Sk; Talukdar, B.
2009-01-01
We make use of a potential model to study the dynamics of two coupled matter-wave or Bose-Einstein condensate (BEC) solitons loaded in optical lattices. With separate attention to linear and nonlinear lattices we find some remarkable differences for response of the system to effects of these lattices. As opposed to the case of linear optical lattice (LOL), the nonlinear lattice (NOL) can be used to control the mutual interaction between the two solitons. For a given lattice wave number k, the effective potentials in which the two solitons move are such that the well (V eff (NOL)), resulting from the juxtaposition of soliton interaction and nonlinear lattice potential, is deeper than the corresponding well V eff (LOL). But these effective potentials have opposite k dependence in the sense that the depth of V eff (LOL) increases as k increases and that of V eff (NOL) decreases for higher k values. We verify that the effectiveness of optical lattices to regulate the motion of the coupled solitons depends sensitively on the initial locations of the motionless solitons as well as values of the lattice wave number. For both LOL and NOL the two solitons meet each other due to mutual interaction if their initial locations are taken within the potential wells with the difference that the solitons in the NOL approach each other rather rapidly and take roughly half the time to meet as compared with the time needed for such coalescence in the LOL. In the NOL, the soliton profiles can move freely and respond to the lattice periodicity when the separation between their initial locations are as twice as that needed for a similar free movement in the LOL. We observe that, in both cases, slow tuning of the optical lattices by varying k with respect to a time parameter τ drags the oscillatory solitons apart to take them to different locations. In our potential model the oscillatory solitons appear to propagate undistorted. But a fully numerical calculation indicates that during
Spiraling solitons and multipole localized modes in nonlocal nonlinear media
International Nuclear Information System (INIS)
Buccoliero, Daniel; Lopez-Aguayo, Servando; Skupin, Stefan; Desyatnikov, Anton S.; Bang, Ole; Krolikowski, Wieslaw; Kivshar, Yuri S.
2007-01-01
We analyze the propagation of rotating multi-soliton localized structures in optical media with spatially nonlocal nonlinearity. We demonstrate that nonlocality stabilizes the azimuthal breakup of rotating dipole as well as multipole localized soliton modes. We compare the results for two different models of nonlocal nonlinearity and suggest that the stabilization mechanism is a generic property of a spatial nonlocal nonlinear response independent of its particular functional form
Controlled transport of solitons and bubbles using external perturbations
International Nuclear Information System (INIS)
Gonzalez, J.A.; Marcano, A.; Mello, B.A.; Trujillo, L.
2006-01-01
We investigate generalized soliton-bearing systems in the presence of external perturbations. We show the possibility of the transport of solitons using external waves, provided the waveform and its velocity satisfy certain conditions. We also investigate the stabilization and transport of bubbles using external perturbations in 3D-systems. We also present the results of real experiments with laser-induced vapor bubbles in liquids
Soliton excitations in a class of nonlinear field theory models
International Nuclear Information System (INIS)
Makhan'kov, V.G.; Fedyanin, V.K.
1985-01-01
Investigation results of nonlinear models of the field theory with a lagrangian are described. The theory includes models both with zero stable vacuum epsilon=1 and with condensate epsilon=-1 (of disturbed symmetry). Conditions of existence of particle-like solutions (PLS), stability of these solutions are investigated. Soliton dynamics is studied. PLS formfactors are calculated. Statistical mechanics of solitons is built and their dynamic structure factors are calculated
Matter-wave dark solitons in optical lattices
International Nuclear Information System (INIS)
Louis, Pearl J Y; Ostrovskaya, Elena A; Kivshar, Yuri S
2004-01-01
We analyse the Floquet-Bloch spectrum of matter waves in Bose-Einstein condensates loaded into single-periodic optical lattices and double-periodic superlattices. In the framework of the Gross-Pitaevskii equation, we describe the structure and analyse the mobility properties of matter-wave dark solitons residing on backgrounds of extended nonlinear Bloch-type states. We demonstrate that interactions between dark solitons can be effectively controlled in optical superlattices
Stabilization of matter wave solitons in weakly coupled atomic condensates
International Nuclear Information System (INIS)
Radha, R.; Vinayagam, P.S.
2012-01-01
We investigate the dynamics of a weakly coupled two component Bose–Einstein condensate and generate bright soliton solutions. We observe that when the bright solitons evolve in time, the density of the condensates shoots up suddenly by virtue of weak coupling indicating the onset of instability in the dynamical system. However, this instability can be overcome either through Feshbach resonance by tuning the temporal scattering length or by suitably changing the time dependent coupling coefficient, thereby extending the lifetime of the condensates.
New types of exact solutions for a breaking soliton equation
International Nuclear Information System (INIS)
Mei Jianqin; Zhang Hongqing
2004-01-01
In this paper based on a system of Riccati equations, we present a newly generally projective Riccati equation expansion method and its algorithm, which can be used to construct more new exact solutions of nonlinear differential equations in mathematical physics. A typical breaking soliton equation is chosen to illustrate our algorithm such that more families of new exact solutions are obtained, which contain soliton-like solutions and periodic solutions. This algorithm can also be applied to other nonlinear differential equations
Intensity limits for stationary and interacting multi-soliton complexes
International Nuclear Information System (INIS)
Sukhorukov, Andrey A.; Akhmediev, Nail N.
2002-01-01
We obtain an accurate estimate for the peak intensities of multi-soliton complexes for a Kerr-type nonlinearity in the (1+1) dimension problem. Using exact analytical solutions of the integrable set of nonlinear Schroedinger equations, we establish a rigorous relationship between the eigenvalues of incoherently-coupled fundamental solitons and the range of admissible intensities. A clear geometrical interpretation of this effect is given