WorldWideScience

Sample records for quadratic nonlinear photonic

  1. Solitons in quadratic nonlinear photonic crystals

    DEFF Research Database (Denmark)

    Corney, Joel Frederick; Bang, Ole

    2001-01-01

    We study solitons in one-dimensional quadratic nonlinear photonic crystals with modulation of both the linear and nonlinear susceptibilities. We derive averaged equations that include induced cubic nonlinearities, which can be defocusing, and we numerically find previously unknown soliton families...

  2. Parametric localized modes in quadratic nonlinear photonic structures

    DEFF Research Database (Denmark)

    Sukhorukov, Andrey A.; Kivshar, Yuri S.; Bang, Ole;

    2001-01-01

    We analyze two-color spatially localized nonlinear modes formed by parametrically coupled fundamental and second-harmonic fields excited at quadratic (or chi2) nonlinear interfaces embedded in a linear layered structure-a quadratic nonlinear photonic crystal. For a periodic lattice of nonlinear...... interfaces, we derive an effective discrete model for the amplitudes of the fundamental and second-harmonic waves at the interfaces (the so-called discrete chi2 equations) and find, numerically and analytically, the spatially localized solutions-discrete gap solitons. For a single nonlinear interface...... in a linear superlattice, we study the properties of two-color localized modes, and describe both similarities to and differences from quadratic solitons in homogeneous media....

  3. Tuning quadratic nonlinear photonic crystal fibers for zero group-velocity mismatch

    DEFF Research Database (Denmark)

    Bache, Morten; Nielsen, Hanne; Lægsgaard, Jesper;

    2006-01-01

    We consider an index-guiding silica photonic crystal fiber with a triangular hole pattern and a periodically poled quadratic nonlinearity. By tuning the pitch and the relative hole size, second-harmonic generation with zero group-velocity mismatch is found for any fundamental wavelength above 780...... nm. The nonlinear strength is optimized when the fundamental has maximum confinement in the core. The conversion bandwidth allows for femtosecond-pulse conversion, and 4%-180% W-1 cm-2 relative efficiencies were found. © 2006 Optical Society of America......We consider an index-guiding silica photonic crystal fiber with a triangular hole pattern and a periodically poled quadratic nonlinearity. By tuning the pitch and the relative hole size, second-harmonic generation with zero group-velocity mismatch is found for any fundamental wavelength above 780...

  4. Soliton compression to ultra-short pulses using cascaded quadratic nonlinearities in silica photonic crystal fibers

    DEFF Research Database (Denmark)

    Bache, Morten; Lægsgaard, Jesper; Bang, Ole;

    2007-01-01

    We investigate the possibility of using poled silica photonic crystal fibers for self-defocusing soliton compression with cascaded quadratic nonlinearities. Such a configuration has promise due to the desirable possibility of reducing the group-velocity mismatch. However, this unfortunately leads...... nonlinearity, and show that compression of nJ pulses to few-cycle duration is possible in such a fiber. A small amount of group-velocity mismatch optimizes the compression.......We investigate the possibility of using poled silica photonic crystal fibers for self-defocusing soliton compression with cascaded quadratic nonlinearities. Such a configuration has promise due to the desirable possibility of reducing the group-velocity mismatch. However, this unfortunately leads...

  5. Compact engineering of path-entangled sources from a monolithic quadratic nonlinear photonic crystal

    CERN Document Server

    Jin, H; Luo, X W; Leng, H Y; Gong, Y X; Zhu, S N

    2013-01-01

    Photonic entangled states lie at the heart of quantum science for the demonstrations of quantum mechanics foundations and supply as a key resource for approaching various quantum technologies. An integrated realization of such states will certainly guarantee a high-degree of entanglement and improve the performance like portability, stability and miniaturization, hence becomes an inevitable tendency towards the integrated quantum optics. Here, we report the compact realization of steerable photonic path-entangled states from a monolithic quadratic nonlinear photonic crystal. The crystal acts as an inherent beam splitter to distribute photons into coherent spatial modes, producing the heralded single-photon even appealing beamlike two-photon path-entanglement, wherein the entanglement is characterized by quantum spatial beatings. Such multifunctional entangled source can be further extended to high-dimensional fashion and multi-photon level as well as involved with other degrees of freedom, which paves a desir...

  6. Studies on spatial modes and the correlation anisotropy of entangled photons generated from 2D quadratic nonlinear photonic crystals

    Science.gov (United States)

    Luo, X. W.; Xu, P.; Sun, C. W.; Jin, H.; Hou, R. J.; Leng, H. Y.; Zhu, S. N.

    2017-06-01

    Concurrent spontaneous parametric down-conversion (SPDC) processes have proved to be an appealing approach for engineering the path-entangled photonic state with designable and tunable spatial modes. In this work, we propose a general scheme to construct high-dimensional path entanglement and demonstrate the basic properties of concurrent SPDC processes from domain-engineered quadratic nonlinear photonic crystals, including the spatial modes and the photon flux, as well as the anisotropy of spatial correlation under noncollinear quasi-phase-matching geometry. The overall understanding about the performance of concurrent SPDC processes will give valuable references to the construction of compact path entanglement and the development of new types of photonic quantum technologies.

  7. Soliton compression to few-cycle pulses using quadratic nonlinear photonic crystal fibers: A design study

    DEFF Research Database (Denmark)

    Bache, Morten; Moses, Jeffrey; Lægsgaard, Jesper;

    2007-01-01

    We show theoretically that high-quality soliton compression from ~500 fs to ~10 fs is possible in poled silica photonic crystal fibers using cascaded (2):(2) nonlinearities. A moderate group-velocity mismatch optimizes the compression.......We show theoretically that high-quality soliton compression from ~500 fs to ~10 fs is possible in poled silica photonic crystal fibers using cascaded (2):(2) nonlinearities. A moderate group-velocity mismatch optimizes the compression....

  8. Spatial solitons in nonlinear photonic crystals

    DEFF Research Database (Denmark)

    Corney, Joel Frederick; Bang, Ole

    2000-01-01

    We study solitons in one-dimensional quadratic nonlinear photonic crystals with periodic linear and nonlinear susceptibilities. We show that such crystals support stable bright and dark solitons, even when the effective quadratic nonlinearity is zero.......We study solitons in one-dimensional quadratic nonlinear photonic crystals with periodic linear and nonlinear susceptibilities. We show that such crystals support stable bright and dark solitons, even when the effective quadratic nonlinearity is zero....

  9. Designing quadratic nonlinear photonic crystal fibers for soliton compression to few-cycle pulses

    DEFF Research Database (Denmark)

    Bache, Morten; Moses, Jeffrey; Lægsgaard, Jesper

    2007-01-01

    Second-harmonic generation (SHG) in the limit of large phase mismatch, given by Deltabeta=beta2-2beta1 effectively induces a Kerr-like nonlinear phase shift on the fundamental wave (FW). The phase mismatch determines the sign and magnitude of the effective Kerr nonlinearity, making large negative...

  10. Tuning quadratic nonlinear photonic crystal fibers for zero group-velocity mismatch

    DEFF Research Database (Denmark)

    Bache, Morten; Lægsgaard, Jesper; Bang, Ole

    2006-01-01

    A nonlinear index-guiding silica PCF is optimized for efficient second-harmonic generation through dispersion calculations. Zero group-velocity mismatch is possible for any pump wavelength above 780 nm. Very high conversion efficiencies and bandwidths are found.......A nonlinear index-guiding silica PCF is optimized for efficient second-harmonic generation through dispersion calculations. Zero group-velocity mismatch is possible for any pump wavelength above 780 nm. Very high conversion efficiencies and bandwidths are found....

  11. Impurity solitons with quadratic nonlinearities

    DEFF Research Database (Denmark)

    Clausen, Carl A. Balslev; Torres, Juan P-; Torner, Lluis

    1998-01-01

    We fmd families of solitary waves mediated by parametric mixing in quadratic nonlinear media that are localized at point-defect impurities. Solitons localized at attractive impurities are found to be dynamically stable. It is shown that localization at the impurity modifies strongly the soliton p...

  12. Quadratic stabilization of switched nonlinear systems

    Institute of Scientific and Technical Information of China (English)

    DONG YaLi; FAN JiaoJiao; MEI ShengWei

    2009-01-01

    In this paper, the problem of quadratic stabilization of multi-input multi-output switched nonlinear systems under an arbitrary switching law is investigated. When switched nonlinear systems have uniform normal form and the zero dynamics of uniform normal form is asymptotically stable under an arbitrary switching law, state feedbacks are designed and a common quadratic Lyapunov function of all the closed-loop subsystems is constructed to realize quadratic stabilizability of the class of switched nonlinear systems under an arbitrary switching law. The results of this paper are also applied to switched linear systems.

  13. Modulational instability in periodic quadratic nonlinear materials

    DEFF Research Database (Denmark)

    Corney, Joel Frederick; Bang, Ole

    2001-01-01

    We investigate the modulational instability of plane waves in quadratic nonlinear materials with linear and nonlinear quasi-phase-matching gratings. Exact Floquet calculations, confirmed by numerical simulations, show that the periodicity can drastically alter the gain spectrum but never complete...

  14. The Nonlinear Analytical Envelope Equation in quadratic nonlinear crystals

    CERN Document Server

    Bache, Morten

    2016-01-01

    We here derive the so-called Nonlinear Analytical Envelope Equation (NAEE) inspired by the work of Conforti et al. [M. Conforti, A. Marini, T. X. Tran, D. Faccio, and F. Biancalana, "Interaction between optical fields and their conjugates in nonlinear media," Opt. Express 21, 31239-31252 (2013)], whose notation we follow. We present a complete model that includes $\\chi^{(2)}$ terms [M. Conforti, F. Baronio, and C. De Angelis, "Nonlinear envelope equation for broadband optical pulses in quadratic media," Phys. Rev. A 81, 053841 (2010)], $\\chi^{(3)}$ terms, and then extend the model to delayed Raman effects in the $\\chi^{(3)}$ term. We therefore get a complete model for ultrafast pulse propagation in quadratic nonlinear crystals similar to the Nonlinear Wave Equation in Frequency domain [H. Guo, X. Zeng, B. Zhou, and M. Bache, "Nonlinear wave equation in frequency domain: accurate modeling of ultrafast interaction in anisotropic nonlinear media," J. Opt. Soc. Am. B 30, 494-504 (2013)], but where the envelope is...

  15. Nonlinear optics and photonics

    CERN Document Server

    He, Guang S

    2015-01-01

    This book provides a comprehensive presentation on most of the major topics in nonlinear optics and photonics, with equal emphasis on principles, experiments, techniques, and applications. It covers many major new topics including optical solitons, multi-photon effects, nonlinear photoelectric effects, fast and slow light , and Terahertz photonics. Chapters 1-10 present the fundamentals of modern nonlinear optics, and could be used as a textbook with problems provided at the end of each chapter. Chapters 11-17 cover the more advanced topics of techniques and applications of nonlinear optics and photonics, serving as a highly informative reference for researchers and experts working in related areas. There are also 16 pages of color photographs to illustrate the visual appearances of some typical nonlinear optical effects and phenomena. The book could be adopted as a textbook for both undergraduates and graduate students, and serve as a useful reference work for researchers and experts in the fields of physics...

  16. Nonlinear silicon photonics

    Science.gov (United States)

    Borghi, M.; Castellan, C.; Signorini, S.; Trenti, A.; Pavesi, L.

    2017-09-01

    Silicon photonics is a technology based on fabricating integrated optical circuits by using the same paradigms as the dominant electronics industry. After twenty years of fervid development, silicon photonics is entering the market with low cost, high performance and mass-manufacturable optical devices. Until now, most silicon photonic devices have been based on linear optical effects, despite the many phenomenologies associated with nonlinear optics in both bulk materials and integrated waveguides. Silicon and silicon-based materials have strong optical nonlinearities which are enhanced in integrated devices by the small cross-section of the high-index contrast silicon waveguides or photonic crystals. Here the photons are made to strongly interact with the medium where they propagate. This is the central argument of nonlinear silicon photonics. It is the aim of this review to describe the state-of-the-art in the field. Starting from the basic nonlinearities in a silicon waveguide or in optical resonator geometries, many phenomena and applications are described—including frequency generation, frequency conversion, frequency-comb generation, supercontinuum generation, soliton formation, temporal imaging and time lensing, Raman lasing, and comb spectroscopy. Emerging quantum photonics applications, such as entangled photon sources, heralded single-photon sources and integrated quantum photonic circuits are also addressed at the end of this review.

  17. Modulational stability and dark solitons in periodic quadratic nonlinear media

    DEFF Research Database (Denmark)

    Corney, Joel Frederick; Bang, Ole

    2000-01-01

    We show that stable dark solitons exist in quadratic nonlinear media with periodic linear and nonlinear susceptibilities. We investigate the modulational stability of plane waves in such systems, a necessary condition for stable dark solitons....

  18. Nonlinear Photonics 2014: introduction.

    Science.gov (United States)

    Akhmediev, N; Kartashov, Yaroslav

    2015-01-12

    International Conference "Nonlinear Photonics-2014" took place in Barcelona, Spain on July 27-31, 2014. It was a part of the "Advanced Photonics Congress" which is becoming a traditional notable event in the world of photonics. The current focus issue of Optics Express contains contributions from the participants of the Conference and the Congress. The articles in this focus issue by no means represent the total number of the congress contributions (around 400). However, it demonstrates wide range of topics covered at the event. The next conference of this series is to be held in 2016 in Australia, which is the home of many researchers working in the field of photonics in general and nonlinear photonics in particular.

  19. Nonlinear silicon photonics

    Science.gov (United States)

    Tsia, Kevin K.; Jalali, Bahram

    2010-05-01

    An intriguing optical property of silicon is that it exhibits a large third-order optical nonlinearity, with orders-ofmagnitude larger than that of silica glass in the telecommunication band. This allows efficient nonlinear optical interaction at relatively low power levels in a small footprint. Indeed, we have witnessed a stunning progress in harnessing the Raman and Kerr effects in silicon as the mechanisms for enabling chip-scale optical amplification, lasing, and wavelength conversion - functions that until recently were perceived to be beyond the reach of silicon. With all the continuous efforts developing novel techniques, nonlinear silicon photonics is expected to be able to reach even beyond the prior achievements. Instead of providing a comprehensive overview of this field, this manuscript highlights a number of new branches of nonlinear silicon photonics, which have not been fully recognized in the past. In particular, they are two-photon photovoltaic effect, mid-wave infrared (MWIR) silicon photonics, broadband Raman effects, inverse Raman scattering, and periodically-poled silicon (PePSi). These novel effects and techniques could create a new paradigm for silicon photonics and extend its utility beyond the traditionally anticipated applications.

  20. Nonlinear Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Hansen, Kim Per

    2004-01-01

    , leading to reduced mode confinement and dispersion flexibility. In this thesis, we treat the nonlinear photonic crystal fiber – a special sub-class of photonic crystal fibers, the core of which has a diameter comparable to the wavelength of the light guided in the fiber. The small core results in a large...... nonlinear coefficient and in various applications, it is therefore possible to reduce the required fiber lengths quite dramatically, leading to increased stability and efficiency. Furthermore, it is possible to design these fibers with zero-dispersion at previously unreachable wavelengths, paving the way...... for completely new applications, especially in and near the visible wavelength region. One such application is supercontinuum generation. Supercontinuum generation is extreme broadening of pulses in a nonlinear medium (in this case a small-core fiber), and depending on the dispersion of the fiber, it is possible...

  1. Nonlocal description of X waves in quadratic nonlinear materials

    DEFF Research Database (Denmark)

    Larsen, Peter Ulrik Vingaard; Sørensen, Mads Peter; Bang, Ole

    2006-01-01

    We study localized light bullets and X-waves in quadratic media and show how the notion of nonlocality can provide an alternative simple physical picture of both types of multi-dimensional nonlinear waves. For X-waves we show that a local cascading limit in terms of a nonlinear Schrodinger equation...

  2. Observers for Systems with Nonlinearities Satisfying an Incremental Quadratic Inequality

    Science.gov (United States)

    Acikmese, Ahmet Behcet; Corless, Martin

    2004-01-01

    We consider the problem of state estimation for nonlinear time-varying systems whose nonlinearities satisfy an incremental quadratic inequality. These observer results unifies earlier results in the literature; and extend it to some additional classes of nonlinearities. Observers are presented which guarantee that the state estimation error exponentially converges to zero. Observer design involves solving linear matrix inequalities for the observer gain matrices. Results are illustrated by application to a simple model of an underwater.

  3. Frequency comb generation in quadratic nonlinear media

    CERN Document Server

    Ricciardi, Iolanda; Parisi, Maria; Maddaloni, Pasquale; Santamaria, Luigi; De Natale, Paolo; De Rosa, Maurizio

    2014-01-01

    Optical frequency combs are nowadays routinely used tools in a wide range of scientific and technological applications. Different techniques have been developed for generating optical frequency combs, like mode-locking in lasers and third-order interactions in microresonators, or to extend their spectral capabilities, using frequency conversion processes in nonlinear materials. Here, we experimentally demonstrate and theoretically explain the onset of optical frequency combs in a simple cavity-enhanced second-harmonic-generation system, exploiting second-order nonlinear interactions. We develop an elemental model which provides a deep physical insight into the observed dynamics. Moreover, despite the different underlying physical mechanism, the proposed model is remarkably similar to the description of third-order effects in microresonators, revealing a potential variety of new effects to be explored. Finally, exploiting a nonlinearity intrinsically stronger than the third-order one, our work lays the groundw...

  4. Few-cycle nonlinear mid-IR pulse generated with cascaded quadratic nonlinearities

    DEFF Research Database (Denmark)

    Bache, Morten; Liu, Xing; Zhou, Binbin

    change Δn = ncascI, where ncase ∝ −d2eff/Δk, and deff is the effective quadratic nonlinearity. Due to competing material nonlinearities nKerr the total nonlinear refractive is ncubic = ncasc + nKerr. Interestingly ncubic can become negative (self-defocusing), elegantly avoiding self-focusing problems...

  5. Quadratic and Cubic Nonlinear Oscillators with Damping and Their Applications

    Science.gov (United States)

    Li, Jibin; Feng, Zhaosheng

    We apply the qualitative theory of dynamical systems to study exact solutions and the dynamics of quadratic and cubic nonlinear oscillators with damping. Under certain parametric conditions, we also consider the van der Waals normal form, Chaffee-Infante equation, compound Burgers-KdV equation and Burgers-KdV equation for explicit representations of kink-profile wave solutions and unbounded traveling wave solutions.

  6. Adomian solution of a nonlinear quadratic integral equation

    Directory of Open Access Journals (Sweden)

    E.A.A. Ziada

    2013-04-01

    Full Text Available We are concerned here with a nonlinear quadratic integral equation (QIE. The existence of a unique solution will be proved. Convergence analysis of Adomian decomposition method (ADM applied to these type of equations is discussed. Convergence analysis is reliable enough to estimate the maximum absolute truncated error of Adomian’s series solution. Two methods are used to solve these type of equations; ADM and repeated trapezoidal method. The obtained results are compared.

  7. Femtosecond nonlinear polarization evolution based on cascade quadratic nonlinearities.

    Science.gov (United States)

    Liu, X; Ilday, F O; Beckwitt, K; Wise, F W

    2000-09-15

    We experimentally demonstrate that one can exploit nonlinear phase shifts produced in type I phase-mismatched second-harmonic generation to produce intensity-dependent polarization evolution with 100-fs pulses. An amplitude modulator based on nonlinear polarization rotation provides passive amplitude-modulation depth of up to ~50%. Applications of the amplitude and phase modulations to mode locking of femtosecond bulk and fiber lasers are promising and are discussed.

  8. On the exact solutions of nonlinear diffusion-reaction equations with quadratic and cubic nonlinearities

    Indian Academy of Sciences (India)

    R S Kaushal; Ranjit Kumar; Awadhesh Prasad

    2006-08-01

    Attempts have been made to look for the soliton content in the solutions of the recently studied nonlinear diffusion-reaction equations [R S Kaushal, J. Phys. 38, 3897 (2005)] involving quadratic or cubic nonlinearities in addition to the convective flux term which renders the system nonconservative and the corresponding Hamiltonian non-Hermitian.

  9. Lattice topology and spontaneous parametric down-conversion in quadratic nonlinear waveguide arrays

    CERN Document Server

    Leykam, Daniel; Sukhorukov, Andrey A; Desyatnikov, Anton S

    2015-01-01

    We analyze spontaneous parametric down-conversion in various experimentally feasible 1D quadratic nonlinear waveguide arrays, with emphasis on the relationship between the lattice's topological invariants and the biphoton correlations. Nontrivial topology results in a nontrivial "winding" of the array's Bloch waves, which introduces additional selection rules for the generation of biphotons. These selection rules are in addition to, and independent of existing control using the pump beam's spatial profile and phase matching conditions. In finite lattices, nontrivial topology produces single photon edge modes, resulting in "hybrid" biphoton edge modes, with one photon localized at the edge and the other propagating into the bulk. When the single photon band gap is sufficiently large, these hybrid biphoton modes reside in a band gap of the bulk biphoton Bloch wave spectrum. Numerical simulations support our analytical results.

  10. Lattice topology and spontaneous parametric down-conversion in quadratic nonlinear waveguide arrays

    Science.gov (United States)

    Leykam, Daniel; Solntsev, Alexander S.; Sukhorukov, Andrey A.; Desyatnikov, Anton S.

    2015-09-01

    We analyze spontaneous parametric down-conversion in various experimentally feasible one-dimensional quadratic nonlinear waveguide arrays, with emphasis on the relationship between the lattice's topological invariants and the biphoton correlations. Nontrivial topology results in a nontrivial "winding" of the array's Bloch waves, which introduces additional selection rules for the generation of biphotons, independent of existing control using the pump beam's spatial profile and phase-matching conditions. In finite lattices, nontrivial topology produces single-photon edge modes, resulting in "hybrid" biphoton edge modes, with one photon localized at the edge and the other propagating into the bulk. When the single-photon band gap is sufficiently large, these hybrid biphoton modes reside in a band gap of the bulk biphoton Bloch wave spectrum. Numerical simulations support our analytical results.

  11. High-Dimensional Nonlinear Envelope Equations and Nonlinear Localized Excitations in Photonic Crystals

    Institute of Scientific and Technical Information of China (English)

    HANG Chao; HUANG Guo-Xiang

    2006-01-01

    We investigate the nonlinear localized structures of optical pulses propagating in a one-dimensional photonic crystal with a quadratic nonlinearity. Using a method of multiple scales we show that the nonlinear evolution of a wave packet, formed by the superposition of short-wavelength excitations, and long-wavelength mean fields, generated by the self-interaction of the wave packet, are governed by a set of coupled high-dimensional nonlinear envelope equations, which can be reduced to Davey-Stewartson equations and thus support dromionlike high-dimensional nonlinear excitations in the system.

  12. Effects of quadratic and cubic nonlinearities on a perfectly tuned parametric amplifier

    Science.gov (United States)

    Neumeyer, S.; Sorokin, V. S.; Thomsen, J. J.

    2017-01-01

    We consider the performance of a parametric amplifier with perfect tuning (two-to-one ratio between the parametric and direct excitation frequencies) and quadratic and cubic nonlinearities. A forced Duffing-Mathieu equation with appended quadratic nonlinearity is considered as the model system, and approximate analytical steady-state solutions and corresponding stabilities are obtained by the method of varying amplitudes. Some general effects of pure quadratic, and mixed quadratic and cubic nonlinearities on parametric amplification are shown. In particular, the effects of mixed quadratic and cubic nonlinearities may generate additional amplitude-frequency solutions. In this case an increased response and a more phase sensitive amplitude (phase between excitation frequencies) is obtained, as compared to the case with either pure quadratic or cubic nonlinearity. Furthermore, jumps and bi-stability in the amplitude-phase characteristics are predicted, supporting previously reported experimental observations.

  13. Nonlinear Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Hansen, Kim Per

    2004-01-01

    Despite the general recession in the global economy and the collapse of the optical telecommunication market, research within specialty fibers is thriving. This is, more than anything else, due to the technology transition from standard all-glass fibers to photonic crystal fibers, which, instead...... of doping, use a microstructure of air and glass to obtain a refractive index difference between the core and the cladding. This air/glass microstructure lends the photonic crystal fibers a range of unique and highly usable properties, which are very different from those found in solid standard fibers....... The freedom to design the dispersion profile of the fibers is much larger and it is possible to create fibers, which support only a single spatial mode, regardless of wavelength. In comparison, the standard dispersion-shifted fibers are limited by a much lower index-contrast between the core and the cladding...

  14. Optical nonlinear response function with linear and diagonal quadratic electron-vibration coupling in mixed quantum-classical systems.

    Science.gov (United States)

    Toutounji, Mohamad

    2005-03-22

    While an optical linear response function of linearly and quadratically coupled mixed quantum-classical condensed-phase systems was derived by Toutounji [J. Chem. Phys. 121, 2228 (2004)], the corresponding analytical optical line shape is derived. The respective nonlinear correlation functions are also derived. Model calculations involving photon-echo, pump-probe, and hole-burning signals of model systems with both linear and quadratic coupling are provided. Hole-burning formula of Hayes-Small is compared to that of Mukamel in mixed quantum-classical systems.

  15. Observers for a class of systems with nonlinearities satisfying an incremental quadratic inequality

    Science.gov (United States)

    Acikmese, Ahmet Behcet; Martin, Corless

    2004-01-01

    We consider the problem of state estimation from nonlinear time-varying system whose nonlinearities satisfy an incremental quadratic inequality. Observers are presented which guarantee that the state estimation error exponentially converges to zero.

  16. Quantum nonlinear optics without photons

    Science.gov (United States)

    Stassi, Roberto; Macrı, Vincenzo; Kockum, Anton Frisk; Di Stefano, Omar; Miranowicz, Adam; Savasta, Salvatore; Nori, Franco

    2017-08-01

    Spontaneous parametric down-conversion is a well-known process in quantum nonlinear optics in which a photon incident on a nonlinear crystal spontaneously splits into two photons. Here we propose an analogous physical process where one excited atom directly transfers its excitation to a pair of spatially separated atoms with probability approaching 1. The interaction is mediated by the exchange of virtual rather than real photons. This nonlinear atomic process is coherent and reversible, so the pair of excited atoms can transfer the excitation back to the first one: the atomic analog of sum-frequency generation of light. The parameters used to investigate this process correspond to experimentally demonstrated values in ultrastrong circuit quantum electrodynamics. This approach can be extended to realize other nonlinear interatomic processes, such as four-atom mixing, and is an attractive architecture for the realization of quantum devices on a chip. We show that four-qubit mixing can efficiently implement quantum repetition codes and, thus, can be used for error-correction codes.

  17. Effects of quadratic and cubic nonlinearities on a perfectly tuned parametric amplifier

    DEFF Research Database (Denmark)

    Neumeyer, Stefan; Sorokin, Vladislav; Thomsen, Jon Juel

    2016-01-01

    We consider the performance of a parametric amplifier with perfect tuning (two-to-one ratio between the parametric and direct excitation frequencies) and quadratic and cubic nonlinearities. A forced Duffing–Mathieu equation with appended quadratic nonlinearity is considered as the model system, a...

  18. Asymptotic behavior for a quadratic nonlinear Schrodinger equation

    Directory of Open Access Journals (Sweden)

    Pavel I. Naumkin

    2008-02-01

    Full Text Available We study the initial-value problem for the quadratic nonlinear Schrodinger equation $$displaylines{ iu_{t}+frac{1}{2}u_{xx}=partial _{x}overline{u}^{2},quad xin mathbb{R},; t>1, cr u(1,x=u_{1}(x,quad xin mathbb{R}. }$$ For small initial data $u_{1}in mathbf{H}^{2,2}$ we prove that there exists a unique global solution $uin mathbf{C}([1,infty ;mathbf{H}^{2,2}$ of this Cauchy problem. Moreover we show that the large time asymptotic behavior of the solution is defined in the region $|x|leq Csqrt{t}$ by the self-similar solution $frac{1}{sqrt{t}}MS(frac{x}{sqrt{t}}$ such that the total mass $$ frac{1}{sqrt{t}}int_{mathbb{R}}MS(frac{x}{sqrt{t}} dx=int_{mathbb{R}}u_{1}(xdx, $$ and in the far region $|x|>sqrt{t}$ the asymptotic behavior of solutions has rapidly oscillating structure similar to that of the cubic nonlinear Schrodinger equations.

  19. Focus issue introduction: nonlinear photonics.

    Science.gov (United States)

    Akhmediev, Nail; Rottwitt, Karsten

    2012-11-19

    It is now 23 years since the first Topical Meeting "Nonlinear Guided Wave Phenomena" (Houston, TX, February 2-4, 1989) has been organised by George Stegeman and Allan Boardman with support of the Optical Society of America. These series of the OSA conferences known as NLGW, continued under the name "Nonlinear Photonics" starting from 2007. The latest one, in Colorado Springs in June 17-21, 2012 has been a great success despite the fierce fires advancing around the city at the time of the conference. This Focus issue is a collection of several papers presented at the conference with extended content submitted to Optics Express. Although this collection is small in comparison to the total number of papers presented at the conference, it gives a flavor of the topics considered at the meeting. It is also worthy to mention here that the next meeting "Nonlinear Photonics" is planned to be held in Barcelona - one of the main European centers on this subject.

  20. Nonlinear Photonics and Novel Optical Phenomena

    CERN Document Server

    Morandotti, Roberto

    2012-01-01

    Nonlinear Photonics and Novel Optical Phenomena contains contributed chapters from leading experts in nonlinear optics and photonics, and provides a comprehensive survey of fundamental concepts as well as hot topics in current research on nonlinear optical waves and related novel phenomena. The book covers self-accelerating airy beams, integrated photonics based on high index doped-silica glass, linear and nonlinear spatial beam dynamics in photonic lattices and waveguide arrays, polariton solitons and localized structures in semiconductor microcavities, terahertz waves, and other novel phenomena in different nanophotonic and optical systems.

  1. Fusion arrest and collapse phenomena due to Kerr-nonlinearity in quadratic media

    DEFF Research Database (Denmark)

    Johansen, Steffen Kjær; Bang, Ole; Sørensen, Mads Peter

    2000-01-01

    Emphasizing collapse phenomena it is investigated to what extend the always present cubic nonlinearity affects the properties of soliton interaction in quadratic bulk media. An effective particle approach is applied and verified by numerical simulations....

  2. Light-shift-induced photonic nonlinearities

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, F G S L; Hartmann, M J; Plenio, M B [Institute for Mathematical Sciences, Imperial College London, 53 Exhibition Road, SW7 2PE (United Kingdom)], E-mail: fernando@brandao@imperial.ac.uk

    2008-04-15

    We propose a new method to produce self- and cross-Kerr photonic nonlinearities, using light-induced Stark shifts due to the interaction of a cavity mode with atoms. The proposed experimental set-up is simpler than in previous approaches, while the strength of the nonlinearity obtained with a single atom is the same as in the setting based on electromagnetically induced transparency. Furthermore our scheme can be applied to engineer effective photonic nonlinear interactions whose strength increases with the number of atoms coupled to the cavity mode, leading to photon-photon interactions several orders of magnitude larger than previously considered possible.

  3. Effect of loss on photon-pair generation in nonlinear waveguides arrays

    CERN Document Server

    Antonosyan, Diana A; Sukhorukov, Andrey A

    2014-01-01

    We describe theoretically the process of spontaneous parametric down-conversion in quadratic nonlinear waveguide arrays in the presence of linear loss. We derive a set of discrete Schrodinger-type equations for the biphoton wave function, and the wave function of one photon when the other photon in a pair is lost. We demonstrate effects arising from loss-affected interference between the generated photon pairs and show that nonlinear waveguide arrays can serve as a robust loss-tolerant integrated platform for the generation of entangled photon states with non-classical spatial correlations.

  4. Multiple-μJ mid-IR supercontinuum generation in quadratic nonlinear crystals

    DEFF Research Database (Denmark)

    Bache, Morten; Zhou, Binbin; Ashihara, S.

    2016-01-01

    Pumping a quadratic nonlinear crystal in the mid-IR we observe octave-spanning mid-IR supercontinua. A self-acting cascaded process leads to the formation of a self-defocusing nonlinearity, allowing formation of filament-free octave-spanning supercontinua in the 2.0–7.0 μm range with 10s of μ...

  5. EXACT SOLUTIONS FOR NONLINEAR TRANSIENT FLOW MODEL INCLUDING A QUADRATIC GRADIENT TERM

    Institute of Scientific and Technical Information of China (English)

    曹绪龙; 同登科; 王瑞和

    2004-01-01

    The models of the nonlinear radial flow for the infinite and finite reservoirs including a quadratic gradient term were presented. The exact solution was given in real space for flow equation including quadratic gradiet term for both constant-rate and constant pressure production cases in an infinite system by using generalized Weber transform. Analytical solutions for flow equation including quadratic gradient term were also obtained by using the Hankel transform for a finite circular reservoir case. Both closed and constant pressure outer boundary conditions are considered. Moreover, both constant rate and constant pressure inner boundary conditions are considered. The difference between the nonlinear pressure solution and linear pressure solution is analyzed. The difference may be reached about 8% in the long time. The effect of the quadratic gradient term in the large time well test is considered.

  6. A Wavelet Bicoherence-Based Quadratic Nonlinearity Feature for Translational Axis Condition Monitoring

    Directory of Open Access Journals (Sweden)

    Yong Li

    2014-01-01

    Full Text Available The translational axis is one of the most important subsystems in modern machine tools, as its degradation may result in the loss of the product qualification and lower the control precision. Condition-based maintenance (CBM has been considered as one of the advanced maintenance schemes to achieve effective, reliable and cost-effective operation of machine systems, however, current vibration-based maintenance schemes cannot be employed directly in the translational axis system, due to its complex structure and the inefficiency of commonly used condition monitoring features. In this paper, a wavelet bicoherence-based quadratic nonlinearity feature is proposed for translational axis condition monitoring by using the torque signature of the drive servomotor. Firstly, the quadratic nonlinearity of the servomotor torque signature is discussed, and then, a biphase randomization wavelet bicoherence is introduced for its quadratic nonlinear detection. On this basis, a quadratic nonlinearity feature is proposed for condition monitoring of the translational axis. The properties of the proposed quadratic nonlinearity feature are investigated by simulations. Subsequently, this feature is applied to the real-world servomotor torque data collected from the X-axis on a high precision vertical machining centre. All the results show that the performance of the proposed feature is much better than that of original condition monitoring features.

  7. A wavelet bicoherence-based quadratic nonlinearity feature for translational axis condition monitoring.

    Science.gov (United States)

    Li, Yong; Wang, Xiufeng; Lin, Jing; Shi, Shengyu

    2014-01-27

    The translational axis is one of the most important subsystems in modern machine tools, as its degradation may result in the loss of the product qualification and lower the control precision. Condition-based maintenance (CBM) has been considered as one of the advanced maintenance schemes to achieve effective, reliable and cost-effective operation of machine systems, however, current vibration-based maintenance schemes cannot be employed directly in the translational axis system, due to its complex structure and the inefficiency of commonly used condition monitoring features. In this paper, a wavelet bicoherence-based quadratic nonlinearity feature is proposed for translational axis condition monitoring by using the torque signature of the drive servomotor. Firstly, the quadratic nonlinearity of the servomotor torque signature is discussed, and then, a biphase randomization wavelet bicoherence is introduced for its quadratic nonlinear detection. On this basis, a quadratic nonlinearity feature is proposed for condition monitoring of the translational axis. The properties of the proposed quadratic nonlinearity feature are investigated by simulations. Subsequently, this feature is applied to the real-world servomotor torque data collected from the X-axis on a high precision vertical machining centre. All the results show that the performance of the proposed feature is much better than that of original condition monitoring features.

  8. DYNAMICAL ANALYSIS OF A 3-D CHAOTIC SYSTEM WITH ONLY TWO QUADRATIC NONLINEARITIES

    Institute of Scientific and Technical Information of China (English)

    Zeraoulia ELHADJ

    2008-01-01

    The paper reports the dynamical study of a three-dimensional quadratic autonomous chaotic system with only two quadratic nonlinearities, which is a special case of the so-called conjugate Lü system. Basic properties of this system are analyzed by means of Lyapunov exponent spectrum and bifurcation diagram. The analysis shows that the system has complex dynamics with some interesting characteristics in which there are several periodic regions, but each of them has quite different periodic orbits.

  9. All-optical signal processing in quadratic nonlinear materials

    DEFF Research Database (Denmark)

    Johansen, Steffen Kjær

    2002-01-01

    of materials with a second order nonlinearity, the so-called X(2) materials, is faster and stronger than that of more conventional materials with a cubic nonlinearity. The X(2) materials support spatial solitons consisting of two coupled components, the fundamental wave (FW) and its second harmonic (SH......). During this project the interaction between such spatial solitons has been investigated theoretically through perturbation theory and experimentally via numerical simulations. The outcome of this research isnew theoretical tools for quantitatively predicting the escape angle, i.e. the angle of incidence...... and exploitation of these cubic nonlinearities in two-period QPM wave-guides has been another area of investigation. Introducing the second period might make practical engineering of the nonlinearities possible. A major result is the discovery that cubic nonlinearities leads to an enhancement of the bandwidth...

  10. 1:2 INTERNAL RESONANCE OF COUPLED DYNAMIC SYSTEM WITH QUADRATIC AND CUBIC NONLINEARITIES

    Institute of Scientific and Technical Information of China (English)

    陈予恕; 杨彩霞; 吴志强; 陈芳启

    2001-01-01

    The 1:2 internal resonance of coupled dynamic system with quadratic and cubic nonlinearities is studied. The normal forms of this system in 1: 2 internal resonance were derived by using the direct method of normal form. In the normal forms, quadratic and cubic nonlinearities were remained. Based on a new convenient transformation technique, the 4-dimension bifurcation equations were reduced to 3-dimension. A bifurcation equation with one-dimension was obtained. Then the bifurcation behaviors of a universal unfolding were studied by using the singularity theory. The method of this paper can be applied to analyze the bifurcation behavior in strong internal resonance on 4-dimension center manifolds.

  11. SVM with Quadratic Polynomial Kernel Function Based Nonlinear Model One-step-ahead Predictive Control

    Institute of Scientific and Technical Information of China (English)

    钟伟民; 何国龙; 皮道映; 孙优贤

    2005-01-01

    A support vector machine (SVM) with quadratic polynomial kernel function based nonlinear model one-step-ahead predictive controller is presented. The SVM based predictive model is established with black-box identification method. By solving a cubic equation in the feature space, an explicit predictive control law is obtained through the predictive control mechanism. The effect of controller is demonstrated on a recognized benchmark problem and on the control of continuous-stirred tank reactor (CSTR). Simulation results show that SVM with quadratic polynomial kernel function based predictive controller can be well applied to nonlinear systems, with good performance in following reference trajectory as well as in disturbance-rejection.

  12. Nonlinear surface waves in photonic hypercrystals

    Science.gov (United States)

    Ali, Munazza Zulfiqar

    2017-08-01

    Photonic crystals and hyperbolic metamaterials are merged to give the concept of photonic hypercrystals. It combines the properties of its two constituents to give rise to novel phenomena. Here the propagation of Transverse Magnetic waves at the interface between a nonlinear dielectric material and a photonic hypercrystal is studied and the corresponding dispersion relation is derived using the uniaxial parallel approximation. Both dielectric and metallic photonic hypercrystals are studied and it is found that nonlinearity limits the infinite divergence of wave vectors of the surface waves. These states exist in the frequency region where the linear surface waves do not exist. It is also shown that the nonlinearity can be used to engineer the group velocity of the resulting surface wave.

  13. Stability of the equilibrium positions of an engine with nonlinear quadratic springs

    Science.gov (United States)

    Stănescu, Nicolae-Doru; Popa, Dinel

    2014-06-01

    Our paper realizes a study of the equilibrium positions for an engine supported by four identical nonlinear springs of quadratic characteristic. The systems with quadratic characteristic are generally avoided because they lead to mathematical complications. Our goal is to realize such a study for an engine supported on quadratic springs. For the model purposed, we established the equations of motion and we discussed the possibilities for the equilibrium positions. Because of the quadratic characteristic of the springs and of the approximations made for the small rotations, the equations obtained for the equilibrium lead us to a paradox, which consists in the existence of an open neighborhood in which there exists an infinity of positions of indifferent equilibrium, or a curve where the equilibrium positions are situated. Moreover, the study of the stability shows that the stability is assured for the position at which the springs are not compressed. Finally, a numerical example is presented and completely solved.

  14. Three-wave interaction in two-component quadratic nonlinear lattices

    DEFF Research Database (Denmark)

    Konotop, V. V.; Cunha, M. D.; Christiansen, Peter Leth

    1999-01-01

    We investigate a two-component lattice with a quadratic nonlinearity and find with the multiple scale technique that integrable three-wave interaction takes place between plane wave solutions when these fulfill resonance conditions. We demonstrate that. energy conversion and pulse propagation kno...

  15. Advanced Nonlinear Latent Variable Modeling: Distribution Analytic LMS and QML Estimators of Interaction and Quadratic Effects

    Science.gov (United States)

    Kelava, Augustin; Werner, Christina S.; Schermelleh-Engel, Karin; Moosbrugger, Helfried; Zapf, Dieter; Ma, Yue; Cham, Heining; Aiken, Leona S.; West, Stephen G.

    2011-01-01

    Interaction and quadratic effects in latent variable models have to date only rarely been tested in practice. Traditional product indicator approaches need to create product indicators (e.g., x[superscript 2] [subscript 1], x[subscript 1]x[subscript 4]) to serve as indicators of each nonlinear latent construct. These approaches require the use of…

  16. Management of the orbital angular momentum of vortex beams in a quadratic nonlinear interaction

    CERN Document Server

    Bovino, Fabio A; Bertolotti, Mario; Sibilia, Concita

    2011-01-01

    Light intensity control of the orbital angular momentum of the fundamental beam in a quadratic nonlinear process is theoretically and numerically presented. In particular we analyzed a seeded second harmonic generation process in presence of orbital angular momentum of the interacting beams due both to on axis and off axis optical vortices. Examples are proposed and discussed.

  17. Vectorial spatial solitons in bulk periodic quadratically nonlinear media

    Energy Technology Data Exchange (ETDEWEB)

    Panoiu, N-C [Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027 (United States); Mihalache, D [Department of Theoretical Physics, Institute of Atomic Physics, PO Box MG-6, Bucharest (Romania); Mazilu, D [Department of Theoretical Physics, Institute of Atomic Physics, PO Box MG-6, Bucharest (Romania); Lederer, F [Institute of Solid State Theory and Theoretical Optics, Friedrich Schiller University Jena, Max-Wien-Platz 1, Jena, D-07743 (Germany); Osgood, R M Jr [Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027 (United States)

    2004-05-01

    We present a comprehensive analysis of the generation, propagation and characteristic properties of two-dimensional spatial solitons formed in quasi-phase-matched gratings through type-II vectorial interaction. By employing an averaging approach based on asymptotic expansion theory, we show that the dynamics of soliton propagation in the grating and their stability properties are strongly influenced by induced Kerr-like nonlinearities. Finally, through extensive numerical simulations, we verify the validity of our theoretical predictions.

  18. Semianalytical Solution of the Nonlinear Dual-Porosity Flow Model with the Quadratic Pressure Gradient Term

    Directory of Open Access Journals (Sweden)

    Jiang-Tao Li

    2015-01-01

    Full Text Available The nonlinear dual-porosity flow model, specifically considering the quadratic pressure gradient term, wellbore storage coefficient, well skin factor, and interporosity flow of matrix to natural fractures, was established for well production in a naturally fractured formation and then solved using a semianalytical method, including Laplace transform and a transformation of the pressure function. Analytical solution of the model in Laplace space was converted to numerical solution in real space using Stehfest numerical inversion. Nonlinear flow process for well production in a naturally fractured formation with different external boundaries was simulated and analyzed using standard pressure curves. Influence of the quadratic pressure gradient coefficient on pressure curves was studied qualitatively and quantitatively in conditions of a group of fixed model parameters. The research results show that the semianalytical modelling method is applicable in simulating the nonlinear dual-porosity flow behavior.

  19. Stable One-Dimensional Periodic Wave in Kerr-Type and Quadratic Nonlinear Media

    Directory of Open Access Journals (Sweden)

    Roxana Savastru

    2012-01-01

    Full Text Available We present the propagation of optical beams and the properties of one-dimensional (1D spatial solitons (“bright” and “dark” in saturated Kerr-type and quadratic nonlinear media. Special attention is paid to the recent advances of the theory of soliton stability. We show that the stabilization of bright periodic waves occurs above a certain threshold power level and the dark periodic waves can be destabilized by the saturation of the nonlinear response, while the dark quadratic waves turn out to be metastable in the broad range of material parameters. The propagation of (1+1 a dimension-optical field on saturated Kerr media using nonlinear Schrödinger equations is described. A model for the envelope one-dimensional evolution equation is built up using the Laplace transform.

  20. An application of nonlinear programming to the design of regulators of a linear-quadratic formulation

    Science.gov (United States)

    Fleming, P.

    1983-01-01

    A design technique is proposed for linear regulators in which a feedback controller of fixed structure is chosen to minimize an integral quadratic objective function subject to the satisfaction of integral quadratic constraint functions. Application of a nonlinear programming algorithm to this mathematically tractable formulation results in an efficient and useful computer aided design tool. Particular attention is paid to computational efficiency and various recommendations are made. Two design examples illustrate the flexibility of the approach and highlight the special insight afforded to the designer. One concerns helicopter longitudinal dynamics and the other the flight dynamics of an aerodynamically unstable aircraft.

  1. Finite-Time Stability and Stabilization of Nonlinear Quadratic Systems with Jumps

    Directory of Open Access Journals (Sweden)

    Minsong Zhang

    2014-01-01

    Full Text Available This paper investigates the problems of finite-time stability and finite-time stabilization for nonlinear quadratic systems with jumps. The jump time sequences here are assumed to satisfy some given constraints. Based on Lyapunov function and a particular presentation of the quadratic terms, sufficient conditions for finite-time stability and finite-time stabilization are developed to a set containing bilinear matrix inequalities (BLIMs and linear matrix inequalities (LMIs. Numerical examples are given to illustrate the effectiveness of the proposed methodology.

  2. ADAPTIVE NONLINEAR FEEDBACK CONTROL OF CHAOTIC SYSTEMSBASED ON REDUCED PARAMETER QUADRATIC PREDICTORS

    Institute of Scientific and Technical Information of China (English)

    张家树; 肖先赐; 万继宏

    2001-01-01

    An adaptive nonlinear feedback-control method is proposed to control continuous-time chaotic dynamical systems,where the adaptive nonlinear controller acts on only one-dimensional error signals between the desired state and the observed chaotic state of a system. The reduced parameter adaptive quadratic predictor used in adaptive feedback cancellation of the nonlinear terms can control the system at any desired state. Computer simulation results on the Lorenz system are shown to demonstrate the effectiveness of this feedback-control method.

  3. Ultrashort spatiotemporal optical solitons in quadratic nonlinear media: Generation of line and lump solitons from few-cycle input pulses

    CERN Document Server

    Leblond, Hervé; Mihalache, Dumitru; 10.1103/PHYSREVA.80.053812

    2011-01-01

    By using a powerful reductive perturbation technique, or a multiscale analysis, a generic Kadomtsev-Petviashvili evolution equation governing the propagation of femtosecond spatiotemporal optical solitons in quadratic nonlinear media beyond the slowly varying envelope approximation is put forward. Direct numerical simulations show the formation, from adequately chosen few-cycle input pulses, of both stable line solitons (in the case of a quadratic medium with normal dispersion) and of stable lumps (for a quadratic medium with anomalous dispersion). Besides, a typical example of the decay of the perturbed unstable line soliton into stable lumps for a quadratic nonlinear medium with anomalous dispersion is also given.

  4. An inner-outer nonlinear programming approach for constrained quadratic matrix model updating

    Science.gov (United States)

    Andretta, M.; Birgin, E. G.; Raydan, M.

    2016-01-01

    The Quadratic Finite Element Model Updating Problem (QFEMUP) concerns with updating a symmetric second-order finite element model so that it remains symmetric and the updated model reproduces a given set of desired eigenvalues and eigenvectors by replacing the corresponding ones from the original model. Taking advantage of the special structure of the constraint set, it is first shown that the QFEMUP can be formulated as a suitable constrained nonlinear programming problem. Using this formulation, a method based on successive optimizations is then proposed and analyzed. To avoid that spurious modes (eigenvectors) appear in the frequency range of interest (eigenvalues) after the model has been updated, additional constraints based on a quadratic Rayleigh quotient are dynamically included in the constraint set. A distinct practical feature of the proposed method is that it can be implemented by computing only a few eigenvalues and eigenvectors of the associated quadratic matrix pencil.

  5. Single-photon transport through a waveguide coupling to a quadratic optomechanical system

    Science.gov (United States)

    Qiao, Lei

    2017-07-01

    We study the coherent transport of a single photon, which propagates in a one-dimensional waveguide and is scattered by a quadratic optomechanical system. Our approach, which is based on the Lippmann-Schwinger equation, gives an analytical solution to describe the single-photon transmission and reflection properties. We analyze the transport spectra and find they are not only related to the optomechanical system's energy-level structure, but also dependent on the optomechanical system's inherent parameters. For the existence of atomic degrees of freedom, we get a Rabi-splitting-like or an electromagnetically induced transparency (EIT)-like spectrum, depending on the atom-cavity coupling strength. Here, we focus on the single-photon strong-coupling regime so that single-quantum effects could be seen.

  6. Photonic surfaces for designable nonlinear power shaping

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Roshni, E-mail: rbiswas@usc.edu; Povinelli, Michelle L. [Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089 (United States)

    2015-02-09

    We propose a method for designing nonlinear input-output power response based on absorptive resonances of nanostructured surfaces. We show that various power transmission trends can be obtained by placing a photonic resonance mode at the appropriate detuning from the laser wavelength. We demonstrate our results in a silicon photonic crystal slab at a laser wavelength of 808 nm. We quantify the overall spectral red shift as a function of laser power. The shift results from absorptive heating and the thermo-optic effect. We then demonstrate devices with increasing, decreasing, and non-monotonic transmission as a function of laser power. The transmission changes are up to 7.5 times larger than in unpatterned silicon. The strong nonlinear transmission is due to a combination of resonantly enhanced absorption, reduced thermal conductivity, and the resonant transmission lineshape. Our results illustrate the possibility of designing different nonlinear power trends within a single materials platform at a given wavelength of interest.

  7. Stable one-dimensional periodic waves in Kerr-type saturable and quadratic nonlinear media

    Energy Technology Data Exchange (ETDEWEB)

    Kartashov, Yaroslav V [ICFO-Institut de Ciencies Fotoniques, and Department of Signal Theory and Communications, Universitat Politecnica de Catalunya, E-08034 Barcelona (Spain); Egorov, Alexey A [Physics Department, M V Lomonosov Moscow State University, 119899, Moscow (Russian Federation); Vysloukh, Victor A [Departamento de Fisica y Matematicas, Universidad de las Americas-Puebla, Santa Catarina Martir, 72820, Puebla, Cholula (Mexico); Torner, Lluis [ICFO-Institut de Ciencies Fotoniques, and Department of Signal Theory and Communications, Universitat Politecnica de Catalunya, E-08034 Barcelona (Spain)

    2004-05-01

    We review the latest progress and properties of the families of bright and dark one-dimensional periodic waves propagating in saturable Kerr-type and quadratic nonlinear media. We show how saturation of the nonlinear response results in the appearance of stability (instability) bands in a focusing (defocusing) medium, which is in sharp contrast with the properties of periodic waves in Kerr media. One of the key results discovered is the stabilization of multicolour periodic waves in quadratic media. In particular, dark-type waves are shown to be metastable, while bright-type waves are completely stable in a broad range of energy flows and material parameters. This yields the first known example of completely stable periodic wave patterns propagating in conservative uniform media supporting bright solitons. Such results open the way to the experimental observation of the corresponding self-sustained periodic wave patterns.

  8. A Quadratic precision generalized nonlinear global optimization migration velocity inversion method

    Institute of Scientific and Technical Information of China (English)

    Zhao Taiyin; Hu Guangmin; He Zhenhua; Huang Deji

    2009-01-01

    An important research topic for prospecting seismology is to provide a fast accurate velocity model from pre-stack depth migration. Aiming at such a problem, we propose a quadratic precision generalized nonlinear global optimization migration velocity inversion. First we discard the assumption that there is a linear relationship between residual depth and residual velocity and propose a velocity model correction equation with quadratic precision which enables the velocity model from each iteration to approach the real model as quickly as possible. Second, we use a generalized nonlinear inversion to get the global optimal velocity perturbation model to all traces. This method can expedite the convergence speed and also can decrease the probability of falling into a local minimum during inversion. The synthetic data and Marmousi data examples show that our method has a higher precision and needs only a few iterations and consequently enhances the practicability and accuracy of migration velocity analysis (MVA) in complex areas.

  9. Explicit Soliton and Periodic Solutions to Three-Wave System with Quadratic and Cubic Nonlinearities

    Institute of Scientific and Technical Information of China (English)

    LIN Ji; ZHAO Li-Na; LI Hua-Mei

    2011-01-01

    Lie group theoretical method and the equation of the Jacobi elliptic function are used to study the three wave system that couples two fundamental frequency (FF) and a single second harmonic (SH) one by competing x(2)(quadratic) and x(3) (cubic) nonlinearities and birefringence.This system shares some of the nice properties of soliton system.On the phase-locked condition, we obtain large families of analytical solutions as the soliton, kink and periodic solutions of this system.

  10. Symmetries of the One-Dimensional Fokker-Planck-Kolmogorov Equation with a Nonlocal Quadratic Nonlinearity

    Science.gov (United States)

    Levchenko, E. A.; Trifonov, A. Yu.; Shapovalov, A. V.

    2017-06-01

    The one-dimensional Fokker-Planck-Kolmogorov equation with a special type of nonlocal quadratic nonlinearity is represented as a consistent system of differential equations, including a dynamical system describing the evolution of the moments of the unknown function. Lie symmetries are found for the consistent system using methods of classical group analysis. An example of an invariant-group solution obtained with an additional integral constraint imposed on the system is considered.

  11. General complex envelope solutions of coupled-mode optics with quadratic or cubic nonlinearity

    CERN Document Server

    Hesketh, Graham D

    2015-01-01

    The analytic general solutions for the complex field envelopes are derived using Weierstrass elliptic functions for two and three mode systems of differential equations coupled via quadratic $\\chi_2$ type nonlinearity as well as two mode systems coupled via cubic $\\chi_3$ type nonlinearity. For the first time, a compact form of the solutions is given involving simple ratios of Weierstrass sigma functions (or equivalently Jacobi theta functions). A Fourier series is also given. All possible launch states are considered. The models describe sum and difference frequency generation, polarization dynamics, parity-time dynamics and optical processing applications.

  12. Stationary solutions and self-trapping in discrete quadratic nonlinear systems

    DEFF Research Database (Denmark)

    Bang, Ole; Christiansen, Peter Leth; Clausen, Carl A. Balslev

    1998-01-01

    the nonintegrable dimer reduce to the discrete nonlinear Schrodinger (DNLS) equation with two degrees of freedom, which is integrable. We show how the stationary solutions to the two systems correspond to each other and how the self-trapped DNLS solutions gradually develop chaotic dynamics in the chi((2)) system......We consider the simplest equations describing coupled quadratic nonlinear (chi((2))) systems, which each consists of a fundamental mode resonantly interacting with its second harmonic. Such discrete equations apply, e.g., to optics, where they can describe arrays of chi((2)) waveguides...

  13. Parameters for efficient growth of second harmonic field in nonlinear photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Shereena, E-mail: sherin5462@gmail.com; Khan, Mohd. Shahid; Hafiz, Aurangzeb Khurram

    2014-03-01

    The ultrashort pulse propagation and nonlinear second harmonic generation under the undepleted pump approximation in a quadratic nonlinear photonic crystal (NPC) structure is theoretically investigated and the optimized parameters for high second harmonic generation conversion efficiency are extracted. The transfer matrix method is used for the numerical formulation for oblique angle of incidence. A unique set of material combination GaInP/InAlP is selected as alternating nonlinear and linear layers. The NPC parameters like incident angle and layer thickness are manipulated to obtain the exact phase matching using double resonance condition for a fixed number of layers with known experimental material parameters.

  14. Nonlinearities in Josephson-photonics

    Energy Technology Data Exchange (ETDEWEB)

    Kubala, Bjoern; Ankerhold, Joachim [Institute for Complex Quantum Systems and IQST, Ulm University, Ulm (Germany)

    2016-07-01

    Embedding a voltage-biased Josephson junction within a high-Q superconducting microwave cavity provides a new way to explore the interplay of the tunneling transfer of charges and the emission and absorption of light. While for weak driving the system can be reduced to simple cases, such as a (damped) harmonic or parametric oscillator, the inherent nonlinearity of the Josephson junction allows to access regimes of strongly non-linear quantum dynamics. Classically, dynamical phenomena such as thresholds for higher-order resonances, other bifurcations, and up- and down-conversion have been found. Here, we will investigate how and to which extent these features appear in the deep quantum regime, where charge quantization effects are crucial. Theory allows to employ phase-space quantities, such as the Wigner-density of the cavity mode(s), but also observables amenable to more immediate experimental access, such as correlations in light emission and charge transport, to probe these novel non-equilibrium transitions.

  15. Purification of a single photon nonlinearity

    CERN Document Server

    Snijders, H; Norman, J; Bakker, M P; Gossard, A; Bowers, J E; van Exter, M P; Bouwmeester, D; Löffler, W

    2016-01-01

    We show that the lifetime-reduced fidelity of a semiconductor quantum dot-cavity single photon nonlinearity can be restored by polarization pre- and postselection. This is realized with a polarization degenerate microcavity in the weak coupling regime, where an output polarizer enables quantum interference of the two orthogonally polarized transmission amplitudes. This allows us to transform incident coherent light into a stream of strongly correlated photons with a second-order correlation function of g2(0)~40, larger than previous experimental results even in the strong-coupling regime. This purification technique might also be useful to improve the fidelity of quantum dot based logic gates.

  16. Mid-infrared nonlinear silicon photonics

    Science.gov (United States)

    Liu, Xiaoping; Kuyken, Bart; Green, William M. J.; Osgood, Richard M.; Baets, Roel; Roelkens, Gunther

    2014-03-01

    Recently there has been a growing interest in mid-infrared (mid-IR) photonic technology with a wavelength of operation approximately from 2-14 μm. Among several established mid-IR photonic platforms, silicon nanophotonic platform could potentially offer ultra-compact, and monolithically integrated mid-IR photonic devices and device arrays, which could have board impact in the mid-IR technology, such as molecular spectroscopy, and imaging. At room temperature, silicon has a bandgap ~ 1.12 eV resulting in vanishing two-photon absorption (TPA) for mid-IR wavelengths beyond 2.2 μm, which, coupled with silicon's large nonlinear index of refraction and its strong waveguide optical confinement, enables efficient nonlinear processes in the mid-IR. By taking advantage of these nonlinear processes and judicious dispersion engineering in silicon waveguides, we have recently demonstrated a handful of silicon mid-IR nonlinear components, including optical parametric amplifiers (OPA), broadband sources, and a wavelength translator. Silicon nanophotonic waveguide's anomalous dispersion design, providing four-wave-mixing (FWM) phase-matching, has enabled the first demonstration of silicon mid-IR optical parametric amplifier (OPA) with a net off-chip gain exceeding 13 dB. In addition, reduction of propagation losses and balanced second and fourth order waveguide dispersion design led to an OPA with an extremely broadband gain spectrum from 1.9-2.5 μm and >50 dB parametric gain, upon which several novel silicon mid-IR light sources were built, including a mid-IR optical parametric oscillator, and a supercontinuum source. Finally, a mid-IR wavelength translation device, capable of translating signals near 2.4 μm to the telecom-band near 1.6 μm with simultaneous 19 dB gain, was demonstrated.

  17. Group-velocity matched nonlinear photonic crystal fibers

    DEFF Research Database (Denmark)

    Bache, Morten; Lægsgaard, Jesper; Bang, Ole

    2006-01-01

    A quadratic nonlinear index-guiding silica PCF is optimized for efficient second-harmonic generation through dispersion calculations. Zero group-velocity mismatch is possible for any pump wavelength above 780 nm. Very high conversion efficiencies and bandwidths are found.......A quadratic nonlinear index-guiding silica PCF is optimized for efficient second-harmonic generation through dispersion calculations. Zero group-velocity mismatch is possible for any pump wavelength above 780 nm. Very high conversion efficiencies and bandwidths are found....

  18. Regions of attraction and ultimate boundedness for linear quadratic regulators with nonlinearities

    Science.gov (United States)

    Joshi, S. M.

    1984-01-01

    The closed-loop stability of multivariable linear time-invariant systems controlled by optimal linear quadratic (LQ) regulators is investigated for the case when the feedback loops have nonlinearities N(sigma) that violate the standard stability condition, sigma N(sigma) or = 0.5 sigma(2). The violations of the condition are assumed to occur either (1) for values of sigma away from the origin (sigma = 0) or (2) for values of sigma in a neighborhood of the origin. It is proved that there exists a region of attraction for case (1) and a region of ultimate boundedness for case (2), and estimates are obtained for these regions. The results provide methods for selecting the performance function parameters to design LQ regulators with better tolerance to nonlinearities. The results are demonstrated by application to the problem of attitude and vibration control of a large, flexible space antenna in the presence of actuator nonlinearities.

  19. Efficient supercontinuum generation in quadratic nonlinear waveguides without quasi-phase matching

    CERN Document Server

    Guo, Hairun; Steinert, Michael; Setzpfandt, Frank; Pertsch, Thomas; Chung, Hung-ping; Chen, Yen-Hung; Bache, Morten

    2014-01-01

    Efficient supercontinuum generation (SCG) requires excitation of solitons at the pump laser wavelength. Quadratic nonlinear waveguides may support an effective self-defocusing nonlinearity so solitons can directly be generated at common ultrafast laser wavelengths without any waveguide dispersion engineering. We here experimentally demonstrate efficient SCG in a standard lithium niobate (LN) waveguide without using quasi-phase matching (QPM). By using femtosecond pumps with wavelengths in the $1.25-1.5 \\mu\\rm m$ range, where LN has normal dispersion and thus supports self-defocusing solitons, octave-spanning SCG is observed. An optimized mid-IR waveguide design is expected to support even broader spectra. The QPM-free design reduces production complexity, allows longer waveguides, limits undesired spectral resonances and effectively allows using nonlinear crystals where QPM is inefficient or impossible. This result is important for mid-IR SCG, where QPM-free self-defocusing waveguides in common mid-IR nonline...

  20. Hyperchaos, adaptive control and synchronization of a novel 4-D hyperchaotic system with two quadratic nonlinearities

    OpenAIRE

    Vaidyanathan Sundarapandian

    2016-01-01

    This research work announces an eleven-term novel 4-D hyperchaotic system with two quadratic nonlinearities. We describe the qualitative properties of the novel 4-D hyperchaotic system and illustrate their phase portraits. We show that the novel 4-D hyperchaotic system has two unstable equilibrium points. The novel 4-D hyperchaotic system has the Lyapunov exponents L1 = 3.1575, L2 = 0.3035, L3 = 0 and L4 = −33.4180. The Kaplan-Yorke dimension of this novel hyperchaotic system is found as DKY ...

  1. CAD of control systems: Application of nonlinear programming to a linear quadratic formulation

    Science.gov (United States)

    Fleming, P.

    1983-01-01

    The familiar suboptimal regulator design approach is recast as a constrained optimization problem and incorporated in a Computer Aided Design (CAD) package where both design objective and constraints are quadratic cost functions. This formulation permits the separate consideration of, for example, model following errors, sensitivity measures and control energy as objectives to be minimized or limits to be observed. Efficient techniques for computing the interrelated cost functions and their gradients are utilized in conjunction with a nonlinear programming algorithm. The effectiveness of the approach and the degree of insight into the problem which it affords is illustrated in a helicopter regulation design example.

  2. Spectral characterization of a frequency comb based on cascaded quadratic nonlinearities inside an optical parametric oscillator

    CERN Document Server

    Ulvila, Ville; Halonen, Lauri; Vainio, Markku

    2015-01-01

    We present an experimental study of optical frequency comb generation based on cascaded quadratic nonlinearities inside a continuous-wave-pumped optical parametric oscillator. We demonstrate comb states which produce narrow-linewidth intermode beat note signals, and we verify the mode spacing uniformity of the comb at the Hz level. We also show that spectral quality of the comb can be improved by modulating the parametric gain at a frequency that corresponds to the comb mode spacing. We have reached a high average output power of over 4 W in the near-infrared region, at ~2 {\\mu}m.

  3. Second-harmonic generation with zero group-velocity mismatch in nonlinear photonic crystal fibers

    DEFF Research Database (Denmark)

    Bache, Morten; Lægsgaard, Jesper; Bang, Ole;

    2006-01-01

    We consider an index-guiding silica photonic crystal fiber with a triangular hole-pattern and a periodically poled quadratic nonlinearity. By tuning the pitch and the relative size of the holes, second-harmonic generation with zero group-velocity mismatch is found to be feasible for any fundamental...... wavelength above 780 nm. The phase-velocity mismatch has a lower limit with coherence lengths in the micron range. The nonlinear strength is optimized when the fundamental has maximum confinement in the core. The conversion bandwidth allows for fs-pulse conversion and 4-180%/(Wmiddotcm2) relative...

  4. Purification of a single-photon nonlinearity

    Science.gov (United States)

    Snijders, H.; Frey, J. A.; Norman, J.; Bakker, M. P.; Langman, E. C.; Gossard, A.; Bowers, J. E.; van Exter, M. P.; Bouwmeester, D.; Löffler, W.

    2016-01-01

    Single photon nonlinearities based on a semiconductor quantum dot in an optical microcavity are a promising candidate for integrated optical quantum information processing nodes. In practice, however, the finite quantum dot lifetime and cavity-quantum dot coupling lead to reduced fidelity. Here we show that, with a nearly polarization degenerate microcavity in the weak coupling regime, polarization pre- and postselection can be used to restore high fidelity. The two orthogonally polarized transmission amplitudes interfere at the output polarizer; for special polarization angles, which depend only on the device cooperativity, this enables cancellation of light that did not interact with the quantum dot. With this, we can transform incident coherent light into a stream of strongly correlated photons with a second-order correlation value up to 40, larger than previous experimental results, even in the strong-coupling regime. This purification technique might also be useful to improve the fidelity of quantum dot based logic gates. PMID:27573361

  5. Nonlinear interferometry approach to photonic sequential logic

    CERN Document Server

    Mabuchi, Hideo

    2011-01-01

    Motivated by rapidly advancing capabilities for extensive nanoscale patterning of optical materials, I propose an approach to implementing photonic sequential logic that exploits circuit-scale phase coherence for efficient realizations of fundamental components such as a NAND-gate-with-fanout and a bistable latch. Kerr-nonlinear optical resonators are utilized in combination with interference effects to drive the binary logic. Quantum-optical input-output models are characterized numerically using design parameters that yield attojoule-scale energy separation between the latch states.

  6. Tunable nonlinear beam defocusing in infiltrated photonic crystal fibers

    DEFF Research Database (Denmark)

    Rosberg, Christian Romer; Bennet, Francis H; Neshev, Dragomir N.;

    2007-01-01

    We demonstrate a novel experimental platform for discrete nonlinear optics based on infiltrated photonic crystal fibers. We observe tunable discrete diffraction and nonlinear self-defocusing, and apply the effects to realize a compact all-optical power limiter....

  7. Nonlinear properties of a graded-index photonic heterostructure

    Indian Academy of Sciences (India)

    B Tavakkoly Moghaddam; S Roshan Entezar; H Pashei Adl

    2013-05-01

    The optical properties of a one-dimensional (1D) photonic heterostructure with gradedindex nonlinear materials are demonstrated theoretically. The influence of the gradation profile of the graded-index nonlinear layers on the linear and nonlinear responses of the structure are analysed. It is shown that the -factor of the defect mode and the threshold input intensity to achieve the optical bistability in the used photonic heterostructure depend on the gradation profile of the gradedindex nonlinear layers.

  8. Optical limiter based on two-dimensional nonlinear photonic crystals

    Science.gov (United States)

    Belabbas, Amirouche; Lazoul, Mohamed

    2016-04-01

    The aim behind this work is to investigate the capabilities of nonlinear photonic crystals to achieve ultra-fast optical limiters based on third order nonlinear effects. The purpose is to combine the actions of nonlinear effects with the properties of photonic crystals in order to activate the photonic band according to the magnitude of the nonlinear effects, themselves a function of incident laser power. We are interested in designing an optical limiter based nonlinear photonic crystal operating around 1064 nm and its second harmonic at 532 nm. Indeed, a very powerful solid-state laser that can blind or destroy optical sensors and is widely available and easy to handle. In this work, we perform design and optimization by numerical simulations to determine the better structure for the nonlinear photonic crystal to achieve compact and efficient integrated optical limiter. The approach consists to analyze the band structures in Kerr-nonlinear two-dimensional photonic crystals as a function of the optical intensity. We confirm that these bands are dynamically red-shifted with regard to the bands observed in linear photonic crystals or in the case of weak nonlinear effects. The implemented approach will help to understand such phenomena as intensitydriven optical limiting with Kerr-nonlinear photonic crystals.

  9. Numerical Approximation of Higher-Order Solutions of the Quadratic Nonlinear Stochastic Oscillatory Equation Using WHEP Technique

    Directory of Open Access Journals (Sweden)

    Mohamed A. El-Beltagy

    2013-01-01

    Full Text Available This paper introduces higher-order solutions of the stochastic nonlinear differential equations with the Wiener-Hermite expansion and perturbation (WHEP technique. The technique is used to study the quadratic nonlinear stochastic oscillatory equation with different orders, different number of corrections, and different strengths of the nonlinear term. The equivalent deterministic equations are derived up to third order and fourth correction. A model numerical integral solver is developed to solve the resulting set of equations. The numerical solver is tested and validated and then used in simulating the stochastic quadratic nonlinear oscillatory motion with different parameters. The solution ensemble average and variance are computed and compared in all cases. The current work extends the use of WHEP technique in solving stochastic nonlinear differential equations.

  10. Quadratic solid-shell elements for nonlinear structural analysis and sheet metal forming simulation

    Science.gov (United States)

    Wang, Peng; Chalal, Hocine; Abed-Meraim, Farid

    2017-01-01

    In this paper, two quadratic solid-shell (SHB) elements are proposed for the three-dimensional modeling of thin structures. These consist of a 20-node hexahedral solid-shell element, denoted SHB20, and its 15-node prismatic counterpart, denoted SHB15. The formulation of these elements is extended in this work to include geometric and material nonlinearities, for application to problems involving large displacements and rotations as well as plasticity. For this purpose, the SHB elements are coupled with large-strain anisotropic elasto-plastic constitutive equations for metallic materials. Although based on a purely three-dimensional approach, several modifications are introduced in the formulation of these elements to provide them with interesting shell features. In particular, a special direction is chosen to represent the thickness, along which a user-defined number of integration points are located. Furthermore, for efficiency requirements and for alleviating locking phenomena, an in-plane reduced-integration scheme is adopted. The resulting formulations are implemented into the finite element software ABAQUS/Standard and, to assess their performance, a variety of nonlinear benchmark problems are investigated. Attention is then focused on the simulation of various complex sheet metal forming processes, involving large strain, anisotropic plasticity, and double-sided contact. From all simulation results, it appears that the SHB elements represent an interesting alternative to traditional shell and solid elements, due to their versatility and capability of accurately modeling selective nonlinear benchmark problems as well as complex sheet metal forming processes.

  11. Quadratic solid-shell elements for nonlinear structural analysis and sheet metal forming simulation

    Science.gov (United States)

    Wang, Peng; Chalal, Hocine; Abed-Meraim, Farid

    2016-10-01

    In this paper, two quadratic solid-shell (SHB) elements are proposed for the three-dimensional modeling of thin structures. These consist of a 20-node hexahedral solid-shell element, denoted SHB20, and its 15-node prismatic counterpart, denoted SHB15. The formulation of these elements is extended in this work to include geometric and material nonlinearities, for application to problems involving large displacements and rotations as well as plasticity. For this purpose, the SHB elements are coupled with large-strain anisotropic elasto-plastic constitutive equations for metallic materials. Although based on a purely three-dimensional approach, several modifications are introduced in the formulation of these elements to provide them with interesting shell features. In particular, a special direction is chosen to represent the thickness, along which a user-defined number of integration points are located. Furthermore, for efficiency requirements and for alleviating locking phenomena, an in-plane reduced-integration scheme is adopted. The resulting formulations are implemented into the finite element software ABAQUS/Standard and, to assess their performance, a variety of nonlinear benchmark problems are investigated. Attention is then focused on the simulation of various complex sheet metal forming processes, involving large strain, anisotropic plasticity, and double-sided contact. From all simulation results, it appears that the SHB elements represent an interesting alternative to traditional shell and solid elements, due to their versatility and capability of accurately modeling selective nonlinear benchmark problems as well as complex sheet metal forming processes.

  12. Wave-kinetic description of nonlinear photons

    CERN Document Server

    Marklund, M; Brodin, G; Stenflo, L

    2004-01-01

    The nonlinear interaction, due to quantum electrodynamical (QED) effects, between photons is investigated using a wave-kinetic description. Starting from a coherent wave description, we use the Wigner transform technique to obtain a set of wave-kinetic equations, the so called Wigner-Moyal equations. These equations are coupled to a background radiation fluid, whose dynamics is determined by an acoustic wave equation. In the slowly varying acoustic limit, we analyse the resulting system of kinetic equations, and show that they describe instabilities, as well as Landau-like damping. The instabilities may lead to break-up and focusing of ultra-high intensity multi-beam systems, which in conjunction with the damping may result in stationary strong field structures. The results could be of relevance for the next generation of laser-plasma systems.

  13. Quadratic nonlinear optical parameters of 7% MgO-doped LiNbO3 crystal

    Science.gov (United States)

    Kulyk, B.; Kapustianyk, V.; Figà, V.; Sahraoui, B.

    2016-06-01

    Pure and 7% MgO-doped lithium niobate (LiNbO3) single crystals were grown by the Czochralski technique. The shift of optical absorption edge in 7% MgO-doped crystal in direction of shorter wavelength compared to undoped crystal was observed. The second harmonic generation measurements of 7% MgO-doped LiNbO3 crystal were performed at room temperature by means of the rotational Maker fringe technique using Nd:YAG laser generating at 1064 nm in picoseconds regime. Experimentally obtained value of nonlinear optical coefficient d33 for 7% MgO-doped LiNbO3 was found to be less than for undoped crystal but higher than for 5% MgO-doped. I-type phase-matched second harmonic generation was achieved and the value of phase-matched angle was calculated. High quadratic nonlinearity together with tolerance to intensive laser irradiation makes 7% MgO-doped LiNbO3 crystal interesting for application in optoelectronics.

  14. Asymptotic behaviour for Schrodinger equations with a quadratic nonlinearity in one-space dimension

    Directory of Open Access Journals (Sweden)

    Nakao Hayashi

    2001-07-01

    Full Text Available We consider the Cauchy problem for the Schr"{o}dinger equation with a quadratic nonlinearity in one space dimension $$ iu_{t}+frac{1}{2}u_{xx}=t^{-alpha}| u_x| ^2,quad u(0,x = u_0(x, $$ where $alpha in (0,1$. From the heuristic point of view, solutions to this problem should have a quasilinear character when $alpha in (1/2,1$. We show in this paper that the solutions do not have a quasilinear character for all $alpha in (0,1$ due to the special structure of the nonlinear term. We also prove that for $alpha in [1/2,1$ if the initial data $u_0in H^{3,0}cap H^{2,2}$ are small, then the solution has a slow time decay such as $t^{-alpha /2}$. For $alpha in (0,1/2$, if we assume that the initial data $u_0$ are analytic and small, then the same time decay occurs.

  15. Multiple-octave spanning mid-IR supercontinuum generation in bulk quadratic nonlinear crystals

    CERN Document Server

    Zhou, Binbin

    2016-01-01

    Bright and broadband coherent mid-IR radiation is important for exciting and probing molecular vibrations. Using cascaded nonlinearities in conventional quadratic nonlinear crystal like lithium niobate, self-defocusing near-IR solitons have been demonstrated that led to very broadband supercontinuum generation in the visible, near-IR and short-wavelength mid-IR. Here we conduct an experiment where a mid-IR crystal pumped in the mid-IR gives multiple-octave spanning supercontinua. The crystal is cut for noncritical interaction, so the three-wave mixing of a single mid-IR femtosecond pump source leads to highly phase-mismatched second-harmonic generation. This self-acting cascaded process leads to the formation of a self-defocusing soliton at the mid-IR pump wavelength and after the self-compression point multiple octave-spanning supercontinua are observed (covering 1.6-$7.0~\\mu$m). The results were recorded in a commercially available crystal LiInS$_2$ pumped in the 3-$4~\\mu$m range, but other mid-IR crystals ...

  16. Two-dimensional wave propagation in an elastic half-space with quadratic nonlinearity: a numerical study.

    Science.gov (United States)

    Küchler, Sebastian; Meurer, Thomas; Jacobs, Laurence J; Qu, Jianmin

    2009-03-01

    This study investigates two-dimensional wave propagation in an elastic half-space with quadratic nonlinearity. The problem is formulated as a hyperbolic system of conservation laws, which is solved numerically using a semi-discrete central scheme. These numerical results are then analyzed in the frequency domain to interpret the nonlinear effects, specifically the excitation of higher-order harmonics. To quantify and compare the nonlinearity of different materials, a new parameter is introduced, which is similar to the acoustic nonlinearity parameter beta for one-dimensional longitudinal waves. By using this new parameter, it is found that the nonlinear effects of a material depend on the point of observation in the half-space, both the angle and the distance to the excitation source. Furthermore it is illustrated that the third-order elastic constants have a linear effect on the acoustic nonlinearity of a material.

  17. AlGaAs-On-Insulator nonlinear photonics

    DEFF Research Database (Denmark)

    Pu, Minhao; Ottaviano, Luisa; Semenova, Elizaveta

    We present an AlGaAs-on-insulator platform for integrated nonlinear photonics. We demonstrate the highest reported conversion efficiency and ultra-broadband four-wave mixing for an integrated platform around 1550nm......We present an AlGaAs-on-insulator platform for integrated nonlinear photonics. We demonstrate the highest reported conversion efficiency and ultra-broadband four-wave mixing for an integrated platform around 1550nm...

  18. Simulation of Nonlinear Gain Saturation in Active Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Chen, Yaohui; Mørk, Jesper

    2012-01-01

    In this paper we present a theoretical analysis of slowlight enhanced traveling wave amplification in an active semiconductor Photonic crystal waveguides. The impact of group index on nonlinear modal gain saturation is investigated.......In this paper we present a theoretical analysis of slowlight enhanced traveling wave amplification in an active semiconductor Photonic crystal waveguides. The impact of group index on nonlinear modal gain saturation is investigated....

  19. Nonlinear Gain Saturation in Active Slow Light Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Chen, Yaohui; Mørk, Jesper

    2013-01-01

    We present a quantitative three-dimensional analysis of slow-light enhanced traveling wave amplification in an active semiconductor photonic crystal waveguides. The impact of slow-light propagation on the nonlinear gain saturation of the device is investigated.......We present a quantitative three-dimensional analysis of slow-light enhanced traveling wave amplification in an active semiconductor photonic crystal waveguides. The impact of slow-light propagation on the nonlinear gain saturation of the device is investigated....

  20. A novel 3-D jerk chaotic system with three quadratic nonlinearities and its adaptive control

    Directory of Open Access Journals (Sweden)

    Vaidyanathan Sundarapandian

    2016-03-01

    Full Text Available This paper announces an eight-term novel 3-D jerk chaotic system with three quadratic nonlinearities. The phase portraits of the novel jerk chaotic system are displayed and the qualitative properties of the jerk system are described. The novel jerk chaotic system has two equilibrium points, which are saddle-foci and unstable. The Lyapunov exponents of the novel jerk chaotic system are obtained as L1 = 0.20572,L2 = 0 and L3 = −1.20824. Since the sum of the Lyapunov exponents of the jerk chaotic system is negative, we conclude that the chaotic system is dissipative. The Kaplan-Yorke dimension of the novel jerk chaotic system is derived as DKY = 2.17026. Next, an adaptive controller is designed via backstepping control method to globally stabilize the novel jerk chaotic system with unknown parameters. Moreover, an adaptive controller is also designed via backstepping control method to achieve global chaos synchronization of the identical jerk chaotic systems with unknown parameters. The backstepping control method is a recursive procedure that links the choice of a Lyapunov function with the design of a controller and guarantees global asymptotic stability of strict feedback systems. MATLAB simulations have been depicted to illustrate the phase portraits of the novel jerk chaotic system and also the adaptive backstepping control results.

  1. Hyperchaos, adaptive control and synchronization of a novel 4-D hyperchaotic system with two quadratic nonlinearities

    Directory of Open Access Journals (Sweden)

    Vaidyanathan Sundarapandian

    2016-12-01

    Full Text Available This research work announces an eleven-term novel 4-D hyperchaotic system with two quadratic nonlinearities. We describe the qualitative properties of the novel 4-D hyperchaotic system and illustrate their phase portraits. We show that the novel 4-D hyperchaotic system has two unstable equilibrium points. The novel 4-D hyperchaotic system has the Lyapunov exponents L1 = 3.1575, L2 = 0.3035, L3 = 0 and L4 = −33.4180. The Kaplan-Yorke dimension of this novel hyperchaotic system is found as DKY = 3.1026. Since the sum of the Lyapunov exponents of the novel hyperchaotic system is negative, we deduce that the novel hyperchaotic system is dissipative. Next, an adaptive controller is designed to stabilize the novel 4-D hyperchaotic system with unknown system parameters. Moreover, an adaptive controller is designed to achieve global hyperchaos synchronization of the identical novel 4-D hyperchaotic systems with unknown system parameters. The adaptive control results are established using Lyapunov stability theory. MATLAB simulations are depicted to illustrate all the main results derived in this research work.

  2. Neural network-based nonlinear model predictive control vs. linear quadratic gaussian control

    Science.gov (United States)

    Cho, C.; Vance, R.; Mardi, N.; Qian, Z.; Prisbrey, K.

    1997-01-01

    One problem with the application of neural networks to the multivariable control of mineral and extractive processes is determining whether and how to use them. The objective of this investigation was to compare neural network control to more conventional strategies and to determine if there are any advantages in using neural network control in terms of set-point tracking, rise time, settling time, disturbance rejection and other criteria. The procedure involved developing neural network controllers using both historical plant data and simulation models. Various control patterns were tried, including both inverse and direct neural network plant models. These were compared to state space controllers that are, by nature, linear. For grinding and leaching circuits, a nonlinear neural network-based model predictive control strategy was superior to a state space-based linear quadratic gaussian controller. The investigation pointed out the importance of incorporating state space into neural networks by making them recurrent, i.e., feeding certain output state variables into input nodes in the neural network. It was concluded that neural network controllers can have better disturbance rejection, set-point tracking, rise time, settling time and lower set-point overshoot, and it was also concluded that neural network controllers can be more reliable and easy to implement in complex, multivariable plants.

  3. Geometry and quadratic nonlinearity of charge transfer complexes in solution: a theoretical study.

    Science.gov (United States)

    Mukhopadhyay, S; Pandey, Ravindra; Das, Puspendu K; Ramasesha, S

    2011-01-28

    In this paper, we have computed the quadratic nonlinear optical (NLO) properties of a class of weak charge transfer (CT) complexes. These weak complexes are formed when the methyl substituted benzenes (donors) are added to strong acceptors like chloranil (CHL) or di-chloro-di-cyano benzoquinone (DDQ) in chloroform or in dichloromethane. The formation of such complexes is manifested by the presence of a broad absorption maximum in the visible range of the spectrum where neither the donor nor the acceptor absorbs. The appearance of this visible band is due to CT interactions, which result in strong NLO responses. We have employed the semiempirical intermediate neglect of differential overlap (INDO∕S) Hamiltonian to calculate the energy levels of these CT complexes using single and double configuration interaction (SDCI). The solvent effects are taken into account by using the self-consistent reaction field (SCRF) scheme. The geometry of the complex is obtained by exploring different relative molecular geometries by rotating the acceptor with respect to the fixed donor about three different axes. The theoretical geometry that best fits the experimental energy gaps, β(HRS) and macroscopic depolarization ratios is taken to be the most probable geometry of the complex. Our studies show that the most probable geometry of these complexes in solution is the parallel displaced structure with a significant twist in some cases.

  4. Nonlinear Photonics in Waveguides for Telecommunications

    Science.gov (United States)

    Herrera, Oscar D.

    The work presented in this dissertation demonstrates the use of various nonlinear optical effects in new photonic device and system designs towards the generation and manipulation of high-speed optical pulses. First, an all fiber-based system utilizing an integrated carbon disulfide-filled liquid- core optical fiber (i-LCOF) and co-propagating pulses of comparable temporal lengths is presented. The slow light effect was observed in 1-meter of i-LCOF, where 18 ps pulses were delayed up to 34 ps through the use of stimulated Raman scattering. Delays greater than a pulse width indicate a potential application as an ultrafast controllable delay line for time division multiplexing in multi-Gb/s telecommunication systems. Similarly, an optically tunable frequency shift was observed using this system. Pulses experienced a full spectral bandwidth shift at low peak pump powers when utilizing the Raman-induced frequency shift and slow light effects. Numerical simulations of the pulse-propagation equations agree well with the observed shifts. Included in our simulations are the contributions of both the Raman cross-frequency shift and slow light effects to the overall frequency shift. These results make the system suitable for numerous applications including low power wavelength converters. Second, a silica/electro-optic (EO) polymer phase modulator with an embedded bowtie antenna is proposed for use as a microwave radiation receiver. The detection of high-frequency electromagnetic fields has been heavily studied for wireless data transfer. Recently there has been growing interest in the field of microwave photonics. We present the design and optimization of a silica/EO polymer waveguide. The effect of electrodes on the insertion losses and poling efficiency are also analyzed, and conditions for low-loss and high poling efficiency are established. Experimental results for a fabricated device with microwave-response between 10 - 14 GHz are presented. Finally, we present the

  5. AlGaAs-On-Insulator Nonlinear Photonics

    CERN Document Server

    Pu, Minhao; Semenova, Elizaveta; Yvind, Kresten

    2015-01-01

    The combination of nonlinear and integrated photonics has recently seen a surge with Kerr frequency comb generation in micro-resonators as the most significant achievement. Efficient nonlinear photonic chips have myriad applications including high speed optical signal processing, on-chip multi-wavelength lasers, metrology, molecular spectroscopy, and quantum information science. Aluminium gallium arsenide (AlGaAs) exhibits very high material nonlinearity and low nonlinear loss when operated below half its bandgap energy. However, difficulties in device processing and low device effective nonlinearity made Kerr frequency comb generation elusive. Here, we demonstrate AlGaAs-on-insulator as a nonlinear platform at telecom wavelengths. Using newly developed fabrication processes, we show high-quality-factor (Q>100,000) micro-resonators with integrated bus waveguides in a planar circuit where optical parametric oscillation is achieved with a record low threshold power of 3 mW and a frequency comb spanning 350 nm i...

  6. Extended phase space of AdS Black Holes in Einstein-Gauss-Bonnet gravity with a quadratic nonlinear electrodynamics

    CERN Document Server

    Hendi, S H; Momennia, M

    2015-01-01

    In this paper, we consider quadratic Maxwell invariant as a correction to the Maxwell theory and study thermodynamic behavior of the black holes in Einstein (EN) and Gauss-Bonnet (GB) gravities. We consider cosmological constant as a thermodynamic pressure to extend phase space. Next, we obtain critical values in case of variation of nonlinearity and GB parameters. We generalized the study by considering the effects of dimensionality on critical values and make comparisons between our models with their special sub classes.

  7. Nonlinear lepton-photon interactions in external background fields

    Energy Technology Data Exchange (ETDEWEB)

    Akal, Ibrahim [DESY, Hamburg (Germany). Theory Group; Moortgat-Pick, Gudrid [DESY, Hamburg (Germany). Theory Group; Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2016-02-09

    Nonlinear phenomena of lepton-photon interactions in external backgrounds with a generalised periodic plane-wave geometry are studied. We discuss nonlinear Compton scattering in head-on lepton-photon collisions extended properly to beyond the soft-photon regime. In addition, our results are applied to stimulated lepton-antilepton pair production in photon collisions with unrestricted energies. Derivations are considered semi-classically based on unperturbed fermionic Volkov representations encoding the full interaction with the background field. Closed expressions for total probabilities considering S-matrix elements have been derived. The general formula is applied to Compton scattering by an electron propagating in an external laser-like background. We obtain additive contributions in the extended unconstrained result which turns out to be stringently required in the highly nonlinear regime. A detailed comparison of contributing harmonics is discussed for various field parameters.

  8. Exploring Divisibility and Summability of 'Photon' Wave Packets in Nonlinear Optical Phenomena

    Science.gov (United States)

    Prasad, Narasimha; Roychoudhuri, Chandrasekhar

    2009-01-01

    Formulations for second and higher harmonic frequency up and down conversions, as well as multi photon processes directly assume summability and divisibility of photons. Quantum mechanical (QM) interpretations are completely congruent with these assumptions. However, for linear optical phenomena (interference, diffraction, refraction, material dispersion, spectral dispersion, etc.), we have a profound dichotomy. Most optical engineers innovate and analyze all optical instruments by propagating pure classical electromagnetic (EM) fields using Maxwell s equations and gives only lip-service to the concept "indivisible light quanta". Further, irrespective of linearity or nonlinearity of the phenomena, the final results are always registered through some photo-electric or photo-chemical effects. This is mathematically well modeled by a quadratic action (energy absorption) relation. Since QM does not preclude divisibility or summability of photons in nonlinear & multi-photon effects, it cannot have any foundational reason against these same possibilities in linear optical phenomena. It implies that we must carefully revisit the fundamental roots behind all light-matter interaction processes and understand the common origin of "graininess" and "discreteness" of light energy.

  9. Nonlinear light propagation in chalcogenide photonic crystal slow light waveguides.

    Science.gov (United States)

    Suzuki, Keijiro; Baba, Toshihiko

    2010-12-06

    Optical nonlinearity can be enhanced by the combination of highly nonlinear chalcogenide glass and photonic crystal waveguides (PCWs) providing strong optical confinement and slow-light effects. In a Ag-As(2)Se(3) chalcogenide PCW, the effective nonlinear parameter γeff reaches 6.3 × 10(4) W(-1)m(-1), which is 200 times larger than that in Si photonic wire waveguides. In this paper, we report the detailed design, fabrication process, and the linear and nonlinear characteristics of this waveguide at silica fiber communication wavelengths. We show that the waveguide exhibits negligible two-photon absorption, and also high-efficiency self-phase modulation and four-wave mixing, which are assisted by low-dispersion slow light.

  10. Cascaded third-harmonic generation in a single short-range-ordered nonlinear photonic crystal.

    Science.gov (United States)

    Sheng, Yan; Saltiel, Solomon M; Koynov, Kaloian

    2009-03-01

    Collinear third-harmonic generation at 526.7 nm was realized by the simultaneous phase matching of two second-order processes in a single quadratic crystal: second-harmonic generation (SHG) and sum-frequency mixing (SFM). The measured conversion efficiency was 12%. As a nonlinear medium a LiNbO(3) nonlinear photonic crystal with short-range order was used that allowed simultaneous phase matching by use of discrete reciprocal vector (for the SHG process) and continuous reciprocal vectors (for the SFM process). It was demonstrated that the third harmonic could be generated efficiently in such a crystal even if the intermediate process of SHG was not perfectly phase matched.

  11. A Quadratic Nonlinear Prediction-Based Heart Motion Model Following Control Algorithm in Robotic-Assisted Beating Heart Surgery

    Directory of Open Access Journals (Sweden)

    Fan Liang

    2013-01-01

    Full Text Available Off‐pump coronary artery bypass graft surgery outperforms the traditional on‐pump surgery because the assisted robotic tools can cancel the relative motion between the beating heart and the robotic tools, which reduces post‐surgery complications for patients. The challenge for the robot assisted tool when tracking the beating heart is the abrupt change caused by the nonlinear nature of heart motion and high precision surgery requirements. A characteristic analysis of 3D heart motion data through bi‐spectral analysis demonstrates the quadratic nonlinearity in heart motion. Therefore, it is necessary to introduce nonlinear heart motion prediction into the motion tracking control procedures. In this paper, the heart motion tracking problem is transformed into a heart motion model following problem by including the adaptive heart motion model into the controller. Moreover, the model following algorithm with the nonlinear heart motion model embedded inside provides more accurate future reference by the quadratic term of sinusoid series, which could enhance the tracking accuracy of sharp change point and approximate the motion with sufficient detail. The experiment results indicate that the proposed algorithm outperforms the linear prediction‐based model following controller in terms of tracking accuracy (root mean square.

  12. Nonlinear switching and solitons in PT-symmetric photonic systems

    CERN Document Server

    Suchkov, Sergey V; Huang, Jiahao; Dmitriev, Sergey V; Lee, Chaohong; Kivshar, Yuri S

    2015-01-01

    One of the challenges of the modern photonics is to develop all-optical devices enabling increased speed and energy efficiency for transmitting and processing information on an optical chip. It is believed that the recently suggested Parity-Time (PT) symmetric photonic systems with alternating regions of gain and loss can bring novel functionalities. In such systems, losses are as important as gain and, depending on the structural parameters, gain compensates losses. Generally, PT systems demonstrate nontrivial non-conservative wave interactions and phase transitions, which can be employed for signal filtering and switching, opening new prospects for active control of light. In this review, we discuss a broad range of problems involving nonlinear PT-symmetric photonic systems with an intensity-dependent refractive index. Nonlinearity in such PT symmetric systems provides a basis for many effects such as the formation of localized modes, nonlinearly-induced PT-symmetry breaking, and all-optical switching. Nonl...

  13. Equilateral pentagon polarization maintaining photonic crystal fibre with low nonlinearity

    Institute of Scientific and Technical Information of China (English)

    Yang Han-Rui; Li Xu-You; Hong Wei; Hao Jin-Hui

    2012-01-01

    A new pentagon polarization maintaining photonic crystal fibre with low nonlinearity is introduced. The full vector finite element method was used to investigate the distribution and the effective area of modal field,the nonlinear properties,the effective indices of two orthogonal polarization modes and the birefringence of the new PM-PCF effectively.It is found that the birefringence of the new polarization maintaining photonic crystal fibre can easily achieve the order of 10-4,and it can obtain higher birefringence,larger effectively mode-field area and lower nonlinearity than traditional hexagonal polarization maintaining photonic crystal fibre with the same hole pitch,same hole diameter,and same ring number.It is important for sensing and communication applications,especially has potential application for fibre optical gyroscope.

  14. Single envelope equation modelling of multi-octave comb arrays in microresonators with quadratic and cubic nonlinearity

    CERN Document Server

    Hansson, T; Erkintalo, M; Anthony, J; Coen, S; Ricciardi, I; De Rosa, M; Wabnitz, S

    2016-01-01

    We numerically study, by means of the single envelope equation, the generation of optical frequency combs ranging from the visible to the mid-infrared spectral regions in resonators with quadratic and cubic nonlinearities. Phase-matched quadratic wave-mixing processes among the comb lines can be activated by low-power continuous wave pumping in the near infrared of a radially poled lithium niobate whispering gallery resonator (WGR). We examine both separate and co-existing intra-cavity doubly resonant second-harmonic generation and parametric oscillation processes, and find that modulation instabilities may lead to the formation of coupled comb arrays extending over multiple octaves. In the temporal domain, the frequency combs may correspond to pulse trains, or isolated pulses.

  15. Geometry and quadratic nonlinearity of charge transfer complexes in solution using depolarized hyper-Rayleigh scattering.

    Science.gov (United States)

    Pandey, Ravindra; Ghosh, Sampa; Mukhopadhyay, S; Ramasesha, S; Das, Puspendu K

    2011-01-28

    We report large quadratic nonlinearity in a series of 1:1 molecular complexes between methyl substituted benzene donors and quinone acceptors in solution. The first hyperpolarizability, β(HRS), which is very small for the individual components, becomes large by intermolecular charge transfer (CT) interaction between the donor and the acceptor in the complex. In addition, we have investigated the geometry of these CT complexes in solution using polarization resolved hyper-Rayleigh scattering (HRS). Using linearly (electric field vector along X direction) and circularly polarized incident light, respectively, we have measured two macroscopic depolarization ratios D=I(2ω,X,X)/I(2ω,Z,X) and D(')=I(2ω,X,C)/I(2ω,Z,C) in the laboratory fixed XYZ frame by detecting the second harmonic scattered light in a polarization resolved fashion. The experimentally obtained first hyperpolarizability, β(HRS), and the value of macroscopic depolarization ratios, D and D('), are then matched with the theoretically deduced values from single and double configuration interaction calculations performed using the Zerner's intermediate neglect of differential overlap self-consistent reaction field technique. In solution, since several geometries are possible, we have carried out calculations by rotating the acceptor moiety around three different axes keeping the donor molecule fixed at an optimized geometry. These rotations give us the theoretical β(HRS), D and D(') values as a function of the geometry of the complex. The calculated β(HRS), D, and D(') values that closely match with the experimental values, give the dominant equilibrium geometry in solution. All the CT complexes between methyl benzenes and chloranil or 1,2-dichloro-4,5-dicyano-p-benzoquinone investigated here are found to have a slipped parallel stacking of the donors and the acceptors. Furthermore, the geometries are staggered and in some pairs, a twist angle as high as 30° is observed. Thus, we have demonstrated in

  16. Electrifying photonic metamaterials for tunable nonlinear optics.

    Science.gov (United States)

    Kang, Lei; Cui, Yonghao; Lan, Shoufeng; Rodrigues, Sean P; Brongersma, Mark L; Cai, Wenshan

    2014-08-11

    Metamaterials have not only enabled unprecedented flexibility in producing unconventional optical properties that are not found in nature, they have also provided exciting potential to create customized nonlinear media with high-order properties correlated to linear behaviour. Two particularly compelling directions are active metamaterials, whose optical properties can be purposely tailored by external stimuli in a reversible manner, and nonlinear metamaterials, which enable intensity-dependent frequency conversion of light waves. Here, by exploring the interaction of these two directions, we leverage the electrical and optical functions simultaneously supported in nanostructured metals and demonstrate electrically controlled nonlinear optical processes from a metamaterial. Both second harmonic generation and optical rectification, enhanced by the resonance behaviour in the metamaterial absorber, are modulated externally with applied voltage signals. Our results reveal an opportunity to exploit optical metamaterials as self-contained, dynamic electro-optic systems with intrinsically embedded electrical functions and optical nonlinearities.

  17. Coupled parametric processes in binary nonlinear photonic structures

    CERN Document Server

    Saygin, M Yu

    2016-01-01

    We study parametric interactions in a new type of nonlinear photonic structures, which is realized in the vicinity of a pair of nonlinear crystals. In this kind of structure, which we call binary, multiple nonlinear optical processes can be implemented simultaneously, owing to multiple phase-matching conditions, fulfilled separately in the constituent crystals. The coupling between the nonlinear processes by means of modes sharing similar frequency is attained by the spatially-broadband nature of the parametric fields. We investigate the spatial properties of the fields generated in the binary structure constructed from periodically poled crystals for the two examples: 1) single parametric down-conversion, and 2) coupled parametric down-conversion and up-conversion processes. The efficacy of the fields' generation in these examples is analyzed through comparison with the cases of traditional single periodically poled crystal and aperiodic photonic structure, respectively. It has been shown that the relative s...

  18. Few-photon coherent nonlinear optics with a single molecule

    CERN Document Server

    Maser, Andreas; Utikal, Tobias; Götzinger, Stephan; Sandoghdar, Vahid

    2015-01-01

    The pioneering experiments of linear spectroscopy were performed using flames in the 1800s, but nonlinear optical measurements had to wait until lasers became available in the twentieth century. Because the nonlinear cross section of materials is very small, usually macroscopic bulk samples and pulsed lasers are used. Numerous efforts have explored coherent nonlinear signal generation from individual nanoparticles or small atomic ensembles with millions of atoms. Experiments on a single semiconductor quantum dot have also been reported, albeit with a very small yield. Here, we report on coherent nonlinear spectroscopy of a single molecule under continuous-wave single-pass illumination, where efficient photon-molecule coupling in a tight focus allows switching of a laser beam by less than a handful of pump photons nearly resonant with the sharp molecular transition. Aside from their fundamental importance, our results emphasize the potential of organic molecules for applications such as quantum information pro...

  19. A quadratic approximation-based algorithm for the solution of multiparametric mixed-integer nonlinear programming problems

    KAUST Repository

    Domínguez, Luis F.

    2012-06-25

    An algorithm for the solution of convex multiparametric mixed-integer nonlinear programming problems arising in process engineering problems under uncertainty is introduced. The proposed algorithm iterates between a multiparametric nonlinear programming subproblem and a mixed-integer nonlinear programming subproblem to provide a series of parametric upper and lower bounds. The primal subproblem is formulated by fixing the integer variables and solved through a series of multiparametric quadratic programming (mp-QP) problems based on quadratic approximations of the objective function, while the deterministic master subproblem is formulated so as to provide feasible integer solutions for the next primal subproblem. To reduce the computational effort when infeasibilities are encountered at the vertices of the critical regions (CRs) generated by the primal subproblem, a simplicial approximation approach is used to obtain CRs that are feasible at each of their vertices. The algorithm terminates when there does not exist an integer solution that is better than the one previously used by the primal problem. Through a series of examples, the proposed algorithm is compared with a multiparametric mixed-integer outer approximation (mp-MIOA) algorithm to demonstrate its computational advantages. © 2012 American Institute of Chemical Engineers (AIChE).

  20. Localized modes in nonlinear photonic kagome nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Molina, Mario I., E-mail: mmolina@uchile.cl [Departamento de Física, MSI – Nucleus for Advanced Optics, and Center for Optics and Photonics (CEFOP), Facultad de Ciencias, Universidad de Chile, Santiago (Chile)

    2012-10-01

    We examine localization of light in nonlinear (Kerr) kagome lattices in the shape of narrow strips of varying width. For the narrowest ribbon, the band structure features a flat band leading to linear dynamical trapping of an initially localized excitation. We also find a geometry-induced bistability of the nonlinear modes as the width of the strip is changed. A crossover from one to two dimensions localization behavior is observed as the width is increased, attaining two-dimensional behavior for relatively narrow ribbons.

  1. Analysis and adaptive synchronization of eight-term 3-D polynomial chaotic systems with three quadratic nonlinearities

    Science.gov (United States)

    Vaidyanathan, S.

    2014-06-01

    This paper proposes a eight-term 3-D polynomial chaotic system with three quadratic nonlinearities and describes its properties. The maximal Lyapunov exponent (MLE) of the proposed 3-D chaotic system is obtained as L 1 = 6.5294. Next, new results are derived for the global chaos synchronization of the identical eight-term 3-D chaotic systems with unknown system parameters using adaptive control. Lyapunov stability theory has been applied for establishing the adaptive synchronization results. Numerical simulations are shown using MATLAB to describe the main results derived in this paper.

  2. Mid-IR femtosecond frequency conversion by soliton-probe collision in phase-mismatched quadratic nonlinear crystals

    DEFF Research Database (Denmark)

    Liu, Xing; Zhou, Binbin; Guo, Hairun;

    2015-01-01

    in a quadratic nonlinear crystal (beta-barium borate) in the normal dispersion regime due to cascaded (phase-mismatched) second-harmonic generation, and the mid-IR converted wave is formed in the anomalous dispersion regime between. lambda = 2.2-2.4 mu m as a resonant dispersive wave. This process relies...... on nondegenerate four-wave mixing mediated by an effective negative cross-phase modulation term caused by cascaded soliton-probe sum-frequency generation. (C) 2015 Optical Society of America...

  3. Non-linear optical properties of molecules in heterogeneous environments: a quadratic density functional/molecular mechanics response theory.

    Science.gov (United States)

    Rinkevicius, Zilvinas; Li, Xin; Sandberg, Jaime A R; Ågren, Hans

    2014-05-21

    We generalize a density functional theory/molecular mechanics approach for heterogeneous environments with an implementation of quadratic response theory. The updated methodology allows us to address a variety of non-linear optical, magnetic and mixed properties of molecular species in complex environments, such as combined metallic, solvent and confined organic environments. Illustrating calculations of para-nitroaniline on gold surfaces and in solution reveals a number of aspects that come into play when analyzing second harmonic generation of such systems--such as surface charge flow, coupled surface-solvent dynamics and induced geometric and electronic structure effects of the adsorbate. Some ramifications of the methodology for applied studies are discussed.

  4. On-chip steering of entangled photons in nonlinear photonic crystals.

    Science.gov (United States)

    Leng, H Y; Yu, X Q; Gong, Y X; Xu, P; Xie, Z D; Jin, H; Zhang, C; Zhu, S N

    2011-08-16

    One promising technique for working toward practical photonic quantum technologies is to implement multiple operations on a monolithic chip, thereby improving stability, scalability and miniaturization. The on-chip spatial control of entangled photons will certainly benefit numerous applications, including quantum imaging, quantum lithography, quantum metrology and quantum computation. However, external optical elements are usually required to spatially control the entangled photons. Here we present the first experimental demonstration of on-chip spatial control of entangled photons, based on a domain-engineered nonlinear photonic crystal. We manipulate the entangled photons using the inherent properties of the crystal during the parametric downconversion, demonstrating two-photon focusing and beam-splitting from a periodically poled lithium tantalate crystal with a parabolic phase profile. These experimental results indicate that versatile and precise spatial control of entangled photons is achievable. Because they may be operated independent of any bulk optical elements, domain-engineered nonlinear photonic crystals may prove to be a valuable ingredient in on-chip integrated quantum optics.

  5. Conditional linear-optical measurement schemes generate effective photon nonlinearities

    CERN Document Server

    Lapaire, G G; Dowling, J P; Sipe, J E; Dowling, Jonathan P.

    2003-01-01

    We provide a general approach for the analysis of optical state evolution under conditional measurement schemes, and identify the necessary and sufficient conditions for such schemes to simulate unitary evolution on the freely propagating modes. If such unitary evolution holds, an effective photon nonlinearity can be identified. Our analysis extends to conditional measurement schemes more general than those based solely on linear optics.

  6. Spontaneous emission and nonlinear effects in photonic bandgap materials

    Science.gov (United States)

    Fogel, Ishella S.; Bendickson, Jon M.; Tocci, Michael D.; Bloemer, Mark J.; Scalora, Michael; Bowden, Charles M.; Dowling, Jonathan P.

    1998-03-01

    We summarize and review our theoretical and experimental work on spontaneous emission and nonlinear effects in one-dimensional, photonic bandgap (PBG) structures. We present a new result: a method for calculating the normal-mode solutions - and hence the spontaneous emission of embedded emitters - in an arbitrary, linear, lossless, one-dimensional, PBG structure.

  7. Birefringent Bragg Gratings in Highly-Nonlinear Photonic Crystal Fiber

    Institute of Scientific and Technical Information of China (English)

    Kevin Cook; John Canning; John Holdsworth

    2008-01-01

    Efficient writing of Bragg gratings in 12-ring highly-nonlinear photonic crystal fibers is described. Experimental and numerical investigations are performed to reveal the optimum angle for coupling UV writing light to the core. Furthermore, we show that the formation of a strongly briefringent grating is at a particular angle of orientation.

  8. Nonlinear switching dynamics in a photonic-crystal nanocavity

    DEFF Research Database (Denmark)

    Yu, Yi; Palushani, Evarist; Heuck, Mikkel;

    2014-01-01

    the cavity is perturbed by strong pulses, we observe several nonlinear effects, i.e., saturation of the switching contrast, broadening of the switching window, and even initial reduction of the transmission. The effects are analyzed by comparison with nonlinear coupled mode theory and explained in terms......We report the experimental observation of nonlinear switching dynamics in an InP photonic crystal nanocavity. Usually, the regime of relatively small cavity perturbations is explored, where the signal transmitted through the cavity follows the temporal variation of the cavity resonance. When...... of large dynamical variations of the cavity resonance in combination with nonlinear losses. The results provide insight into the nonlinear optical processes that govern the dynamics of nanocavities and are important for applications in optical signal processing, where one wants to optimize the switching...

  9. Thermodynamics of a photon gas in nonlinear electrodynamics

    Directory of Open Access Journals (Sweden)

    Pierre Niau Akmansoy

    2014-11-01

    Full Text Available In this paper we analyze the thermodynamic properties of a photon gas under the influence of a background electromagnetic field in the context of any nonlinear electrodynamics. Neglecting the self-interaction of photons, we obtain a general expression for the grand canonical potential. Particularizing for the case when the background field is uniform, we determine the pressure and the energy density for the photon gas. Although the pressure and the energy density change when compared with the standard case, the relationship between them remains unaltered, namely ρ=3p. Finally, we apply the developed formulation to the cases of Heisenberg–Euler and Born–Infeld nonlinear electrodynamics. For the Heisenberg–Euler case, we show that our formalism recovers the results obtained with the 2-loop thermal effective action approach.

  10. Temporal nonlinear beam dynamics in infiltrated photonic crystal fibers

    DEFF Research Database (Denmark)

    Bennet, Francis; Rosberg, Christian Romer; Neshev, Dragomir N.

    of nonlinear beam reshaping occurring on a short time scale before the establishment of a steady state regime. In experiment, a 532nm laser beam can be injected into a single hole of an infiltrated PCF cladding structure, and the temporal dynamics of the nonlinear response is measured by monitoring......Liquid-infiltrated photonic crystal fibers (PCFs) offer a new way of studying light propagation in periodic and discrete systems. A wide range of available fiber structures combined with the ease of infiltration opens up a range of novel experimental opportunities for optical detection and bio......-sensing as well as active devices for all-optical switching at low (mW) laser powers. Commercially available PCFs infiltrated with liquids also provide a versatile and compact tool for exploration of the fundamentals of nonlinear beam propagation in periodic photonic structures. To explore the full scientific...

  11. Solitons and vortices in nonlinear two-dimensional photonic crystals of the Kronig-Penney type.

    Science.gov (United States)

    Mayteevarunyoo, Thawatchai; Malomed, Boris A; Roeksabutr, Athikom

    2011-08-29

    Solitons in the model of nonlinear photonic crystals with the transverse structure based on two-dimensional (2D) quadratic- or rhombic-shaped Kronig-Penney (KP) lattices are studied by means of numerical methods. The model can also applies to a Bose-Einstein condensate (BEC) trapped in a superposition of linear and nonlinear 2D periodic potentials. The analysis is chiefly presented for the self-repulsive nonlinearity, which gives rise to several species of stable fundamental gap solitons, dipoles, four-peak complexes, and vortices in two finite bandgaps of the underlying spectrum. Stable solitons with complex shapes are found, in particular, in the second bandgap of the KP lattice with the rhombic structure. The stability of the localized modes is analyzed in terms of eigenvalues of small perturbations, and tested in direct simulations. Depending on the value of the KP's duty cycle (DC, i.e., the ratio of the void's width to the lattice period), an internal stability boundary for the solitons and vortices may exist inside of the first bandgap. Otherwise, the families of the localized modes are entirely stable or unstable in the bandgaps. With the self-attractive nonlinearity, only unstable solitons and vortices are found in the semi-infinite gap.

  12. Nonlinear Equalization of Microwave Photonic Links

    Science.gov (United States)

    2016-10-31

    3[1…3] = [1][2][3] the Volterra model reduces to the Taylor series. TABLE I VOLTERRA KERNEL COEFFICIENTS FOR...ORDER 3 M UNIQUE VOLTERRA COEFFICIENTS 8 120 16 816 64 45760 128 357760 256 2829056 The main benefit of a Volterra model over a Taylor ...nonlinear equalizer works on the entire Nyquist band and is synthesized directly from mathematical requirements instead of using best - fit methods

  13. Quadratic eigenvalue problems.

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Timothy Francis; Day, David Minot

    2007-04-01

    In this report we will describe some nonlinear eigenvalue problems that arise in the areas of solid mechanics, acoustics, and coupled structural acoustics. We will focus mostly on quadratic eigenvalue problems, which are a special case of nonlinear eigenvalue problems. Algorithms for solving the quadratic eigenvalue problem will be presented, along with some example calculations.

  14. Supercontinuum generation in quadratic nonlinear waveguides without quasi-phase matching

    DEFF Research Database (Denmark)

    Guo, Hairun; Zhou, Binbin; Steinert, Michael

    2015-01-01

    bandwidths (even octave spanning), together with other experimental data, indicate that negative nonlinearity solitons are indeed excited, which is backed up by numerical simulations. The QPM-free design reduces production complexity, extends the maximum waveguide length, and limits undesired spectral...... resonances. Finally, nonlinear crystals can be used where QPM is inefficient or impossible, which is important for mid-IR SCG. QPM-free waveguides in mid-IR nonlinear crystals can support negative nonlinearity solitons, as these waveguides have a normal dispersion at the emission wavelengths of mid...

  15. Photonic Crystal Nanocavity Devices for Nonlinear Signal Processing

    DEFF Research Database (Denmark)

    Yu, Yi

    , membranization of InP/InGaAs structure and wet etching. Experimental investigation of the switching dynamics of InP photonic crystal nanocavity structures are carried out using short-pulse homodyne pump-probe techniques, both in the linear and nonlinear region where the cavity is perturbed by a relatively small......This thesis deals with the investigation of InP material based photonic crystal cavity membrane structures, both experimentally and theoretically. The work emphasizes on the understanding of the physics underlying the structures’ nonlinear properties and their applications for all-optical signal...... and large pump power. The experimental results are compared with coupled mode equations developed based on the first order perturbation theory, and carrier rate equations we established for the dynamics of the carrier density governing the cavity properties. The experimental observations show a good...

  16. GaInP on oxide nonlinear photonic crystal technology.

    Science.gov (United States)

    Martin, Aude; Sanchez, Dorian; Combrié, Sylvain; de Rossi, Alfredo; Raineri, Fabrice

    2017-02-01

    Heat dissipation is improved in nonlinear III-V photonic crystal waveguides owing to the hybrid III-V/Silicon integration platform, allowing efficient four-wave mixing in the continuous-wave regime. A conversion efficiency of -17.6  dB is demonstrated with a pump power level below 100 mW in a dispersion-engineered waveguide with a flat group index of 28 over a 10 nm bandwidth.

  17. One-photon controlled two-photon not gate contributed by weak cross-Kerr nonlinearities

    Science.gov (United States)

    Xiu, Xiao-Ming; Li, Qing-Yang; Lin, Yan-Fang; Dong, Li; Dong, Hai-Kuan; Gao, Ya-Jun

    2017-06-01

    A quantum logic gate is an indispensable fundamental element for completing tasks of quantum information processing, such as quantum computation and scalable quantum networks. With the help of weak cross-Kerr nonlinearities, we propose an efficient optical one-photon controlled two-photon not gate, where polarization modes of photons act as quantum bits, aiming to construct the practical and scalable quantum logic circuits. By adopting one-time nondestructive measurement, this gate can realize the function of two two-photon controlled-not gates, where the polarization bits of two target photons will be flipped when the controlled photon is in the vertical polarization state. After measuring on the coherent state, the suitable operations including swapping of photon states and single-photon transformations are carried out by classical feed forward, conditioned on the measurement outcomes. Simple linear optical elements, and mature techniques containing Homodyne measurement and classical feed forward are applied to enhance the feasibility of the scheme presented here and other scalable logic gates.

  18. Quantum noise in large-scale coherent nonlinear photonic circuits

    CERN Document Server

    Santori, Charles; Beausoleil, Raymond G; Tezak, Nikolas; Hamerly, Ryan; Mabuchi, Hideo

    2014-01-01

    A semiclassical simulation approach is presented for studying quantum noise in large-scale photonic circuits incorporating an ideal Kerr nonlinearity. A netlist-based circuit solver is used to generate matrices defining a set of stochastic differential equations, in which the resonator field variables represent random samplings of the Wigner quasi-probability distributions. Although the semiclassical approach involves making a large-photon-number approximation, tests on one- and two-resonator circuits indicate satisfactory agreement between the semiclassical and full-quantum simulation results in the parameter regime of interest. The semiclassical model is used to simulate random errors in a large-scale circuit that contains 88 resonators and hundreds of components in total, and functions as a 4-bit ripple counter. The error rate as a function of on-state photon number is examined, and it is observed that the quantum fluctuation amplitudes do not increase as signals propagate through the circuit, an important...

  19. Various Kinds Waves and Solitons Interaction Solutions of Boussinesq Equation Describing Ultrashort Pulse in Quadratic Nonlinear Medium

    Science.gov (United States)

    Guo, Bang-Xing; Gao, Zhan-Jie; Lin, Ji

    2016-12-01

    The consistent tanh expansion (CTE) method is applied to the (2+1)-dimensional Boussinesq equation which describes the propagation of ultrashort pulse in quadratic nonlinear medium. The interaction solutions are explicitly given, such as the bright soliton-periodic wave interaction solution, variational amplitude periodic wave solution, and kink-periodic wave interaction solution. We also obtain the bright soliton solution, kind bright soliton solution, double well dark soliton solution and kink-bright soliton interaction solution by using Painlevé truncated expansion method. And we investigate interactive properties of solitons and periodic waves. Supported by the National Natural Science Foundation of Zhejiang Province under Grant No. LZ15A050001 and the National Natural Science Foundation of China under Grant No. 11675164

  20. Spatiotemporal light bullets and supercontinuum generation in β-BBO crystal with competing quadratic and cubic nonlinearities.

    Science.gov (United States)

    Šuminas, R; Tamošauskas, G; Valiulis, G; Dubietis, A

    2016-05-01

    We experimentally study filamentation and supercontinuum generation in a birefringent medium [beta-barium borate (β-BBO) crystal] pumped by intense 90 fs, 1.8 μm laser pulses whose carrier wavelength falls in the range of anomalous group velocity dispersion of the crystal. We demonstrate that the competition between the intrinsic cubic and cascaded-quadratic nonlinearities may serve as a useful tool for controlling the self-action effects via phase matching condition. In particular, we found that spectral superbroadening of the ordinary polarization is linked to three-dimensional self-focusing and formation of self-compressed spatiotemporal light bullets that could be accessed within a certain range of either positive or negative phase mismatch. In the extraordinary polarization, we detect giant spectral shifts of the second harmonic radiation, which are attributed to a light bullet-induced self-phase matching.

  1. Design of satisfaction output feedback controls for stochastic nonlinear systems under quadratic tracking risk-sensitive index

    Institute of Scientific and Technical Information of China (English)

    刘允刚; 张纪峰; 潘子刚

    2003-01-01

    In this paper, the design problem of satisfaction output feedback controls for stochastic nonlinear systems in strict feedback form under long-term tracking risk-sensitive index is investigated.The index function adopted here is of quadratic form usually encountered in practice, rather than of quartic one used to beg the essential difficulty on controller design and performance analysis of the closed-loop systems. For any given risk-sensitive parameter and desired index value, by using the integrator backstepping method, an output feedback control is constructively designed so that the closed-loop system is bounded in probability and the risk-sensitive index is upper bounded by the desired value.

  2. Mid-IR femtosecond frequency conversion by soliton-probe collision in phase-mismatched quadratic nonlinear crystals

    CERN Document Server

    Liu, Xing; Guo, Hairun; Bache, Morten

    2015-01-01

    We show numerically that ultrashort self-defocusing temporal solitons colliding with a weak pulsed probe in the near-IR can convert the probe to the mid-IR. A near-perfect conversion efficiency is possible for a high effective soliton order. The near-IR self-defocusing soliton can form in a quadratic nonlinear crystal (beta-barium borate) in the normal dispersion regime due to cascaded (phase-mismatched) second-harmonic generation, and the mid-IR converted wave is formed in the anomalous dispersion regime between $\\lambda=2.2-2.4~\\mu\\rm m$ as a resonant dispersive wave. This process relies on non-degenerate four-wave mixing mediated by an effective negative cross-phase modulation term caused by cascaded soliton-probe sum-frequency generation.

  3. Deterministic quantum nonlinear optics with single atoms and virtual photons

    Science.gov (United States)

    Kockum, Anton Frisk; Miranowicz, Adam; Macrı, Vincenzo; Savasta, Salvatore; Nori, Franco

    2017-06-01

    We show how analogs of a large number of well-known nonlinear-optics phenomena can be realized with one or more two-level atoms coupled to one or more resonator modes. Through higher-order processes, where virtual photons are created and annihilated, an effective deterministic coupling between two states of such a system can be created. In this way, analogs of three-wave mixing, four-wave mixing, higher-harmonic and -subharmonic generation (i.e., up- and down-conversion), multiphoton absorption, parametric amplification, Raman and hyper-Raman scattering, the Kerr effect, and other nonlinear processes can be realized. In contrast to most conventional implementations of nonlinear optics, these analogs can reach unit efficiency, only use a minimal number of photons (they do not require any strong external drive), and do not require more than two atomic levels. The strength of the effective coupling in our proposed setups becomes weaker the more intermediate transition steps are needed. However, given the recent experimental progress in ultrastrong light-matter coupling and improvement of coherence times for engineered quantum systems, especially in the field of circuit quantum electrodynamics, we estimate that many of these nonlinear-optics analogs can be realized with currently available technology.

  4. HOPF BIFURCATION OF AN OSCILLATOR WITH QUADRATIC AND CUBIC NONLINEARITIES AND WITH DELAYED VELOCITY FEEDBACK

    Institute of Scientific and Technical Information of China (English)

    WANG Huailei; WANG Zaihua; HU Haiyan

    2004-01-01

    This paper studies the local dynamics of an SDOF system with quadratic and cubic stiffness terms, and with linear delayed velocity feedback. The analysis indicates that for a sufficiently large velocity feedback gain, the equilibrium of the system may undergo a number of stability switches with an increase of time delay, and then becomes unstable forever. At each critical value of time delay for which the system changes its stability, a generic Hopf bifurcation occurs and a periodic motion emerges in a one-sided neighbourhood of the critical time delay. The method of Fredholm alternative is applied to determine the bifurcating periodic motions and their stability. It stresses on the effect of the system parameters on the stable regions and the amplitudes of the bifurcating periodic solutions.

  5. Scattering of time-harmonic elastic waves by an elastic inclusion with quadratic nonlinearity.

    Science.gov (United States)

    Tang, Guangxin; Jacobs, Laurence J; Qu, Jianmin

    2012-04-01

    This paper considers the scattering of a plane, time-harmonic wave by an inclusion with heterogeneous nonlinear elastic properties embedded in an otherwise homogeneous linear elastic solid. When the inclusion and the surrounding matrix are both isotropic, the scattered second harmonic fields are obtained in terms of the Green's function of the surrounding medium. It is found that the second harmonic fields depend on two independent acoustic nonlinearity parameters related to the third order elastic constants. Solutions are also obtained when these two acoustic nonlinearity parameters are given as spatially random functions. An inverse procedure is developed to obtain the statistics of these two random functions from the measured forward and backscattered second harmonic fields.

  6. Controlling light with high-Q silicon photonic crystal nanocavities: Photon confinement, nonlinearity and coherence

    Science.gov (United States)

    Yang, Xiaodong

    The strong light localization and long photon lifetimes in two-dimensional silicon photonic crystal nanocavities with high quality factor (Q ) and subwavelength modal volume (V) significantly enhance the light-matter interactions, presenting many opportunities to explore new functionalities in silicon nanophotonic integrated circuits for on-chip all-optical information processing, optical computation and optical communications. This thesis will focus on the design, nanofabrication, and experimental characterization of both passive and active silicon nanophotonic devices based on two-dimensional high-Q silicon photonic crystal nanocavities. Three topics of controlling light with these high-Q nanocavities will be presented, including (1) photon confinement mechanism and cavity resonance tuning, (2) enhancement of optical nonlinearities, and (3) all-optical analogue to coherent interferences. The first topic is photon confinement in two-dimensional high- Q silicon photonic crystal nanocavities. In Chapter 2, the role of Q/V as the figure of merit for the enhanced light-matter interaction in optical microcavities and nanocavities is explained and different types of high-Q optical microcavities and nanocavities are reviewed with an emphasis on two-dimensional photonic crystal nanocavities. Then the nanofabrication process and the Q characterization are illustrated for the two-dimensional silicon photonic crystal nanocavities. In Chapter 3, the post-fabrication digital resonance tuning of high-Q silicon photonic crystal nanocavities using atomic layer deposition is proposed and demonstrated, with wide tuning range and precise control of cavity resonances while preserving high quality factors. The second topic is the enhancement of optical nonlinearities in two-dimensional high-Q silicon photonic crystal nanocavities, including stimulated Raman scattering and thermo-optical nonlinearities. In Chapter 4, the enhanced stimulated Raman scattering for low threshold Raman

  7. Generation of High Purity Photon-Pair in a Short Highly Non-Linear Fiber

    Science.gov (United States)

    2013-01-01

    of entangled photon pairs in optical fiber attracted enormous interest due to its better spatial mode definition and inherent compatibility with...existing fiber optics technologies for long distance transmission, storage and processing. Entangled photon pair generation in optical fiber is...nonlinear microstructure fiber (HNMSF) [7]. In contrast, entangled photon pair generation at telecom wavelengths via SFWM using highly nonlinear fiber

  8. Modeling of Z-scan characteristics for one-dimensional nonlinear photonic bandgap materials.

    Science.gov (United States)

    Chen, Shuqi; Zang, Weiping; Schülzgen, Axel; Liu, Xin; Tian, Jianguo; Moloney, Jerome V; Peyghambarian, Nasser

    2009-12-01

    We propose a Z-scan theory for one-dimensional nonlinear photonic bandgap materials. The Z-scan characteristics for this material are analyzed. Results show that the Z-scan curves for photonic bandgap materials with nonlinear refraction are similar to those of uniform materials exhibiting both nonlinear refraction and nonlinear absorption simultaneously. Effects of nonlinear absorption on reflected and transmitted Z-scan results are also discussed.

  9. Geometry and transport in a model of two coupled quadratic nonlinear waveguides

    DEFF Research Database (Denmark)

    Stirling, James R.; Bang, Ole; Christiansen, Peter Leth;

    2008-01-01

    This paper applies geometric methods developed to understand chaos and transport in Hamiltonian systems to the study of power distribution in nonlinear waveguide arrays. The specific case of two linearly coupled X(2) waveguides is modeled and analyzed in terms of transport and geometry in the pha...

  10. Asymmetric induced cubic nonlinearities in homogeneous and quasi-phase-matched quadratic materials: signature and importance

    DEFF Research Database (Denmark)

    Bang, Ole; Corney, Joel Frederick

    2001-01-01

    In continuous-wave operation asymmetric induced nonlinearities induce an intensity-dependent phase mismatch that implies a nonzero so-called separatrix intensity, the crossing of which changes the one-period phase shift of the fundamental by Pi , with obvious use in switching applications.We deri...

  11. Invited Article: Multiple-octave spanning high-energy mid-IR supercontinuum generation in bulk quadratic nonlinear crystals

    Science.gov (United States)

    Zhou, Binbin; Bache, Morten

    2016-08-01

    Bright and broadband coherent mid-IR radiation is important for exciting and probing molecular vibrations. Using cascaded nonlinearities in conventional quadratic nonlinear crystals like lithium niobate, self-defocusing near-IR solitons have been demonstrated that led to very broadband supercontinuum generation in the visible, near-IR, and short-wavelength mid-IR. Here we conduct an experiment where a mid-IR crystal is pumped in the mid-IR. The crystal is cut for noncritical interaction, so the three-wave mixing of a single mid-IR femtosecond pump source leads to highly phase-mismatched second-harmonic generation. This self-acting cascaded process leads to the formation of a self-defocusing soliton at the mid-IR pump wavelength and after the self-compression point multiple octave-spanning supercontinua are observed. The results were recorded in a commercially available crystal LiInS2 pumped in the 3-4 μm range with 85 fs 50 μJ pulse energy, with the broadest supercontinuum covering 1.6-7.0 μm. We measured up 30 μJ energy in the supercontinuum, and the energy promises to scale favorably with an increased pump energy. Other mid-IR crystals can readily be used as well to cover other pump wavelengths and target other supercontinuum wavelength ranges.

  12. The quadratic Fock functor

    CERN Document Server

    Accardi, Luigi

    2009-01-01

    We construct the quadratic analogue of the boson Fock functor. While in the first order case all contractions on the 1--particle space can be second quantized, the semigroup of contractions that admit a quadratic second quantization is much smaller due to the nonlinearity. Within this semigroup we characterize the unitary and the isometric elements.

  13. Properties of Differential Scattering Section Based on Multi-photon Nonlinear Compton Effect

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Properties of damping electrons in collision with photons based on multi-photon nonlinear Compton effect are investigated. The expressions of the differential scattering section are derived. Several useful conclusions are drawn.

  14. Unleashing the quadratic nonlinear optical responses of graphene by confining white-graphene (h-BN) sections in its framework.

    Science.gov (United States)

    Karamanis, Panaghiotis; Otero, Nicolás; Pouchan, Claude

    2014-05-21

    In an attempt to diversify the options in designing graphene-based systems bearing large second order nonlinear optical (NLO) responses of octupolar and/or dipolar character, the subject of the quadratic NLO properties of hybrid boron nitride (BN) graphene flakes is opened up. State of the art ab initio and density functional theory methods applied on a toolbox of book-text octupolar and arbitrary dipolar planar hybrid h-BN-graphene nanosized systems reveal that by confining finite h-BN sections in the internal network of graphene, the capacity of the π-electron network of graphene species in delivering giant second order NLO responses could be fully exploited. Configuration interaction (CIS) and time-dependent density functional (TD) computations, within the sum-overstate (SOS) perturbational approach, expose that the prevailing (hyper)polarization mechanism, lying under the sizable computed octupolar hyperpolarizabilities, is fueled by alternating positive and negative atomic charges located in the internal part of the hybrid flakes, and more precisely at the BN/graphene intersections. This type of charge transfer mechanism distinguishes, in fact, the elemental graphene dipoles/octupoles we report here from other conventional NLO dipoles or octupoles. More interestingly, it is shown that by controlling the shape, size, and covering area of the h-BN domain (or domains), one can effectively regulate "à volonté" both the magnitudes and types of the second order NLO responses switching from dipolar to octupolar and vice versa. Especially in the context of the latter class of NLO properties, this communication brings into surface novel, graphene-based, octupolar planar or quasiplanar motifs. The take home message of this communication is summarized as follows: When the right BN segment is incorporated in the right section of the right graphene flake, systems of giant quadratic NLO octupolar and/or dipolar responses may emerge.

  15. Emergent geometries and nonlinear-wave dynamics in photon fluids.

    Science.gov (United States)

    Marino, F; Maitland, C; Vocke, D; Ortolan, A; Faccio, D

    2016-03-22

    Nonlinear waves in defocusing media are investigated in the framework of the hydrodynamic description of light as a photon fluid. The observations are interpreted in terms of an emergent curved spacetime generated by the waves themselves, which fully determines their dynamics. The spacetime geometry emerges naturally as a result of the nonlinear interaction between the waves and the self-induced background flow. In particular, as observed in real fluids, different points of the wave profile propagate at different velocities leading to the self-steepening of the wave front and to the formation of a shock. This phenomenon can be associated to a curvature singularity of the emergent metric. Our analysis offers an alternative insight into the problem of shock formation and provides a demonstration of an analogue gravity model that goes beyond the kinematic level.

  16. Highly Nonlinear and Birefringent Spiral Photonic Crystal Fiber

    Directory of Open Access Journals (Sweden)

    S. Revathi

    2014-01-01

    Full Text Available We propose and design a spiral photonic crystal fiber with elliptical air holes for achieving high birefringence, large nonlinearity, and negative dispersion. The structure is designed using chalcogenide glass (As2S3 for different ellipticity ratios of air holes in the cladding and the effect on various properties is observed. The proposed structure has birefringence of the order 10−2, nonlinearity of 26739.42 W−1 m−1, and dispersion of −1136.69 at 0.85 μm. An accurate numerical approach based on finite element method is used for the design and simulation of the structure. Due to high birefringence and negative dispersion, the proposed structure can be used for polarization control and dispersion compensation, respectively.

  17. Photonics linear and nonlinear interactions of laser light and matter

    CERN Document Server

    Menzel, R

    2007-01-01

    This book covers the fundamental properties and the description of single photons and light beams, experimentally and theoretically. It explains the essentials of linear interactions and most nonlinear interactions between light and matter in both the transparent and absorbing cases. It also provides a basic understanding of modern quantum optics and lasers, as well as the principles of nonlinear optical spectroscopy. It is self-consistent and enriched by a large number of calculated illustrations, examples, and descriptive tables. Graduate students in physics and electrical engineering, as well as other sciences, will find this book a thorough introduction to the field, while for lecturers and scientists it is a rich source of useful information and a ready-to-hand reference. The new edition has been thoroughly expanded and revised in all sections

  18. Quantum nonlinear optics with single photons enabled by strongly interacting atoms

    DEFF Research Database (Denmark)

    Peyronel, Thibault; Firstenberg, Ofer; Liang, Qi Yu

    2012-01-01

    The realization of strong nonlinear interactions between individual light quanta (photons) is a long-standing goal in optical science and engineering, being of both fundamental and technological significance. In conventional optical materials, the nonlinearity at light powers corresponding...

  19. Nonlinear neutrino-photon interactions inside strong laser pulses

    CERN Document Server

    Meuren, Sebastian; Di Piazza, Antonino

    2015-01-01

    Even though neutrinos are neutral particles and interact only via the exchange of weak gauge bosons, charged leptons and quarks can mediate a coupling to the photon field beyond tree level. Inside a relativistically strong laser field nonlinear effects in the laser amplitude can play an important role, as electrons and positrons interact nonperturbatively with the coherent part of the photon field. Here, we calculate for the first time the leading-order contribution to the axial-vector--vector current-coupling tensor inside an arbitrary plane-wave laser field (which is taken into account exactly by employing the Furry picture). The current-coupling tensor appears in the calculation of various electroweak processes inside strong laser fields like photon emission or trident electron-positron pair production by a neutrino. Moreover, as we will see below, the axial-vector--vector current-coupling tensor contains the Adler-Bell-Jackiw (ABJ) anomaly. This occurrence renders the current-coupling tensor also interest...

  20. Modeling of dispersion and nonlinear characteristics of tapered photonic crystal fibers for applications in nonlinear optics

    Science.gov (United States)

    Pakarzadeh, H.; Rezaei, S. M.

    2016-01-01

    In this article, we investigate for the first time the dispersion and the nonlinear characteristics of the tapered photonic crystal fibers (PCFs) as a function of length z, via solving the eigenvalue equation of the guided mode using the finite-difference frequency-domain method. Since the structural parameters such as the air-hole diameter and the pitch of the microstructured cladding change along the tapered PCFs, dispersion and nonlinear properties change with the length as well. Therefore, it is important to know the exact behavior of such fiber parameters along z which is necessary for nonlinear optics applications. We simulate the z dependency of the zero-dispersion wavelength, dispersion slope, effective mode area, nonlinear parameter, and the confinement loss along the tapered PCFs and propose useful relations for describing dispersion and nonlinear parameters. The results of this article, which are in a very good agreement with the available experimental data, are important for simulating pulse propagation as well as investigating nonlinear effects such as supercontinuum generation and parametric amplification in tapered PCFs.

  1. Optical Solitons in a Trinal-channel Inverted Nonlinear Photonic Crystal

    CERN Document Server

    Chen, Guihua; Wu, Muying

    2014-01-01

    Inverted nonlinear photonic crystals are the crystals featuring competition between linear and nonlinear lattices, with minima of the linear potential coinciding with maxima of the nonlinear pseudopotential, and vice versa. Traditional inverted nonlinear photonic crystals only have two channels, and can be attained experimentally by means of Rhodamine B (RhB, a dye featuring saturable absorption) doped into the SU-8 polymer. In this paper, a new type of inverted nonlinear photonic crystal is constructed by juxtaposing three kinds of channels into a period. These three channels are a purely linear channel, a saturable self-focusing nonlinear channel, and a saturable self-defocusing nonlinear channel. This optical device is assumed to be fabricated by means of SU-8 polymer material periodically doped with two types of active dyes. The nonlinear propagation of a light field inside this device (passing along the channel) can be described by a nonlinear Schrodinger equation. Stable multi-peak fundamental and dipol...

  2. Analysis of acceptable spectral windows of quadratic cascaded nonlinear processes in a periodically poled lithium niobate waveguide.

    Science.gov (United States)

    Lee, Kwang Jo; Liu, Sheng; Gallo, Katia; Petropoulos, Periklis; Richardson, David J

    2011-04-25

    We report a systematic and comparative study of the acceptance bandwidths of two cascaded quadratic nonlinear processes in periodically poled lithium niobate waveguides, namely cascaded second-harmonic generation and difference-frequency generation (cSHG/DFG) and cascaded sum-frequency generation and difference-frequency generation (cSFG/DFG). We first theoretically and experimentally study the acceptance bandwidths of both the individual second-harmonic generation (SHG) and sum-frequency generation (SFG) processes in the continuous wave (CW) and pulsed-pump regimes. Our results show that the SHG bandwidth is approximately half that of the SFG process in the CW regime, whereas the SHG acceptance bandwidth can approach the CW SFG bandwidth limit when pulsed-pump is used. As a consequence we conclude that the tuning bandwidths of both cascaded processes should be similar in the pulsed pump regime once the pump pulse bandwidths approach that of SFG (i.e. the cSHG/DFG bandwidth is not limited by the CW SHG bandwidth). We confirm that this is the case experimentally.

  3. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    Discusses the basic physical principles underlying Biomedical Photonics, spectroscopy and microscopy This volume discusses biomedical photonics, spectroscopy and microscopy, the basic physical principles underlying the technology and its applications. The topics discussed in this volume are: Biophotonics; Fluorescence and Phosphorescence; Medical Photonics; Microscopy; Nonlinear Optics; Ophthalmic Technology; Optical Tomography; Optofluidics; Photodynamic Therapy; Image Processing; Imaging Systems; Sensors; Single Molecule Detection; Futurology in Photonics. Comprehensive and accessible cov

  4. Polarization entangled photon-pair source based on quantum nonlinear photonics and interferometry

    Science.gov (United States)

    Kaiser, F.; Ngah, L. A.; Issautier, A.; Delord, T.; Aktas, D.; D'Auria, V.; De Micheli, M. P.; Kastberg, A.; Labonté, L.; Alibart, O.; Martin, A.; Tanzilli, S.

    2014-09-01

    We present a versatile, high-brightness, guided-wave source of polarization entangled photons, emitted at a telecom wavelength. Photon-pairs are generated using an integrated type-0 nonlinear waveguide, and subsequently prepared in a polarization entangled state via a stabilized fiber interferometer. We show that the single photon emission wavelength can be tuned over more than 50 nm, whereas the single photon spectral bandwidth can be chosen at will over more than five orders of magnitude (from 25 MHz to 4 THz). Moreover, by performing entanglement analysis, we demonstrate a high degree of control of the quantum state via the violation of the Bell inequalities by more than 40 standard deviations. This makes this scheme suitable for a wide range of quantum optics experiments, ranging from fundamental research to quantum information applications. We report on details of the setup, as well as on the characterization of all included components, previously outlined in Kaiser et al. (Laser Phys. Lett. 10 (2013) 045202).

  5. Photonic Damascene Process for Integrated High-Q Microresonator Based Nonlinear Photonics

    CERN Document Server

    Pfeiffer, Martin H P; Brasch, Victor; Zervas, Michael; Geiselmann, Michael; Jost, John D; Kippenberg, Tobias J

    2015-01-01

    High confinement, integrated silicon nitride (SiN) waveguides have recently emerged as attractive platform for on-chip nonlinear optical devices. The fabrication of high-Q SiN microresonators with anomalous group velocity dispersion (GVD) has enabled broadband nonlinear optical frequency comb generation. Such frequency combs have been successfully applied in coherent communication and ultrashort pulse generation. However, the reliable fabrication of high confinement waveguides from stoichiometric, high stress SiN remains challenging. Here we present a novel photonic Damascene fabrication process enabling the use of substrate topography for stress control and thin film crack prevention. With close to unity sample yield we fabricate microresonators with $1.35\\,\\mu\\mathrm{m}$ thick waveguides and optical Q factors of $3.7\\times10^{6}$ and demonstrate single temporal dissipative Kerr soliton (DKS) based coherent optical frequency comb generation. Our newly developed process is interesting also for other material ...

  6. Few-photon Non-linearities in Nanophotonic Devices for Quantum Information Technology

    DEFF Research Database (Denmark)

    Nysteen, Anders

    In this thesis we investigate few-photon non-linearities in all-optical, on-chip circuits, and we discuss their possible applications in devices of interest for quantum information technology, such as conditional two-photon gates and single-photon sources. In order to propose efficient devices...

  7. On the construction of quadratic perfect nonlinear functions%二次完备非线性函数的构造

    Institute of Scientific and Technical Information of China (English)

    何业锋

    2012-01-01

    完备非线性函数能很好地抵抗差分密码分析,在密码和通信领域中有重要应用.构造了一族代数次数为二次的完备非线性函数,该函数为具有四项的Dembowski - Ostrom多项式.证明了新构造的完备非线性函数不但EA-不等价于已知的完备非线性方幂函数,而且也不等价于所有已知的完备非线性函数.%Perfect nonlinear functions can provide good protection for differential cryptanalysis, so they have important applications in cryptology and communications. A new family of quadratic perfect nonlinear functions is constructed. They are Dembowski-Ostrom polynomials with four terms. It is proven that the new quadratic perfect nonlinear functions are EA-inequivalent not only to known perfect nonlinear power functions but also to all known perfect nonlinear functions.

  8. Self-induced transparency and giant nonlinearity in doped photonic crystals

    CERN Document Server

    Kurizki, G; Opatrny, T; Blaauboer, M; Malomed, B; Kurizki, Gershon; Petrosyan, David; Opatrny, Tomas; Blaauboer, Miriam; Malomed, Boris

    2002-01-01

    Photonic crystals doped with resonant atoms allow for uniquely advantageous nonlinear modes of optical propagation: (a) Self-induced transparency (SIT) solitons and multi-dimensional localized "bullets" propagating at photonic band gap frequencies. These modes can exist even at ultraweak intensities (few photons) and therefore differ substantially either from solitons in Kerr-nonlinear photonic crystals or from SIT solitons in uniform media. (b) Cross-coupling between pulses exhibiting electromagnetically induced transparency (EIT) and SIT gap solitons. We show that extremely strong correlations (giant cross-phase modulation) can be formed between the two pulses. These features may find applications in high-fidelity classical and quantum optical communications.

  9. Optical nonlinearity for few-photon pulses on a quantum dot-pillar cavity device

    CERN Document Server

    Loo, Vivien; Gazzano, Olivier; Lemaitre, Aristide; Sagnes, Isabelle; Krebs, Olivier; Voisin, Paul; Senellart, Pascale; Lanco, Loïc

    2012-01-01

    Giant optical nonlinearity is observed under both continuous-wave and pulsed excitation in a deterministically-coupled quantum dot-micropillar system, in a pronounced strong-coupling regime. Using absolute reflectivity measurements we determine the critical intracavity photon number as well as the input and output coupling efficiencies of the device. Thanks to a near-unity input-coupling efficiency, we demonstrate a record nonlinearity threshold of only 8 incident photons per pulse. The output-coupling efficiency is found to strongly influence this nonlinearity threshold. We show how the fundamental limit of single-photon nonlinearity can be attained in realistic devices, which would provide an effective interaction between two coincident single photons.

  10. Self-Assembly of Nanocomposite Nonlinear Optical Materials for Photonic Devices Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This program targets the development of new highly anisotropic nonlinear optical nanocomposite materials for NASA and non-NASA applications in advanced photonic and...

  11. A 3-D Novel Highly Chaotic System with Four Quadratic Nonlinearities, its Adaptive Control and Anti-Synchronization with Unknown Parameters

    OpenAIRE

    Vaidyanathan, S.

    2014-01-01

    This research work proposes a seven-term 3-D novel dissipative chaotic system with four quadratic nonlinearities. The Lyapunov exponents of the 3-D novel chaotic system are obtained as L1 = 11.36204, L2 = 0 and L3 = –47.80208. Since the sum of the Lyapunov exponents is negative, the 3-D novel chaotic system is dissipative. Also, the Kaplan-Yorke dimension of the 3-D novel chaotic system is obtained as DKY = 2.23769. The maximal Lyapunov exponent (MLE) of the novel chaotic system i...

  12. Scattering in the ultrastrong regime: nonlinear optics with one photon

    OpenAIRE

    Sánchez-Burillo, Eduardo; Zueco, David; García-Ripoll, Juanjo; Martín-Moreno, Luis

    2014-01-01

    The scattering of a flying photon by a two-level system ultrastrongly coupled to a one-dimensional photonic waveguide is studied numerically. The photonic medium is modeled as an array of coupled cavities and the whole system is analyzed beyond the rotating wave approximation using Matrix Product States. It is found that the scattering is strongly influenced by the single- and multi-photon dressed bound states present in the system. In the ultrastrong coupling regime a new channel for inelast...

  13. Rabi oscillations of two-photon states in nonlinear optical resonators

    Science.gov (United States)

    Sherkunov, Y.; Whittaker, David M.; Fal'ko, Vladimir

    2016-02-01

    We demonstrate that four-wave mixing processes in high-quality nonlinear resonators can lead to Rabi-like oscillations in photon occupation numbers and second-order correlation functions, being a characteristic feature of the presence of entangled photon pairs in the optical signal. In the case of a system driven by a continuous coherent pump, the oscillations occur in the transient regime. We show that driving the system with pulsed coherent pumping would generate strongly antibunched photon states.

  14. Nonlinear optics at the single-photon level inside a hollow core fiber

    DEFF Research Database (Denmark)

    Hofferberth, Sebastian; Peyronel, Thibault; Liang, Qiyu

    2011-01-01

    Cold atoms inside a hollow core fiber provide an unique system for studying optical nonlinearities at the few-photon level. Confinement of both atoms and photons inside the fiber core to a diameter of just a few wavelengths results in high electric field intensity per photon and large optical...... depths with a relatively small number of atoms. We present our experimental apparatus and discuss results regarding all-optical switching at ultra-low light levels....

  15. Linear and nonlinear modeling of light propagation in hollow-core photonic crystal fiber

    DEFF Research Database (Denmark)

    Roberts, John; Lægsgaard, Jesper

    2009-01-01

    Hollow core photonic crystal fibers (HC-PCFs) find applications which include quantum and non-linear optics, gas detection and short high-intensity laser pulse delivery. Central to most applications is an understanding of the linear and nonlinear optical properties. These require careful modeling...

  16. Energetic mid-IR femtosecond pulse generation by self-defocusing soliton-induced dispersive waves in a bulk quadratic nonlinear crystal

    DEFF Research Database (Denmark)

    Zhou, Binbin; Guo, Hairun; Bache, Morten

    2015-01-01

    and without critical phase-matching requirements. Pumping a bulk quadratic nonlinear crystal (unpoled LiNbO3 cut for noncritical phase-mismatched interaction) with sub-mJ near-IR 50-fs pulses, tunable and broadband (∼ 1,000 cm−1) mid-IR pulses around 3.0 μm are generated with excellent spatio-temporal pulse...... quality, having up to 10.5 μJ energy (6.3% conversion). The mid-IR pulses are dispersive waves phase-matched to near-IR self-defocusing solitons created by the induced self-defocusing cascaded nonlinearity. This process is filament-free and the input pulse energy can therefore be scaled arbitrarily...

  17. Energetic mid-IR femtosecond pulse generation by self-defocusing soliton-induced dispersive waves in a bulk quadratic nonlinear crystal

    DEFF Research Database (Denmark)

    Zhou, Binbin; Guo, Hairun; Bache, Morten

    2015-01-01

    and without critical phase-matching requirements. Pumping a bulk quadratic nonlinear crystal (unpoled LiNbO3 cut for noncritical phase-mismatched interaction) with sub-mJ near-IR 50-fs pulses, tunable and broadband (∼ 1,000 cm−1) mid-IR pulses around 3.0 μm are generated with excellent spatio-temporal pulse...... quality, having up to 10.5 μJ energy (6.3% conversion). The mid-IR pulses are dispersive waves phase-matched to near-IR self-defocusing solitons created by the induced self-defocusing cascaded nonlinearity. This process is filament-free and the input pulse energy can therefore be scaled arbitrarily...... by using large-aperture crystals. The technique can readily be implemented with other crystals and laser wavelengths, and can therefore potentially replace current ultrafast frequency-conversion processes to the mid-IR....

  18. Multi-piecewise quadratic nonlinearity memristor and its 2N-scroll and 2N + 1-scroll chaotic attractors system.

    Science.gov (United States)

    Wang, Chunhua; Liu, Xiaoming; Xia, Hu

    2017-03-01

    In this paper, two kinds of novel ideal active flux-controlled smooth multi-piecewise quadratic nonlinearity memristors with multi-piecewise continuous memductance function are presented. The pinched hysteresis loop characteristics of the two memristor models are verified by building a memristor emulator circuit. Using the two memristor models establish a new memristive multi-scroll Chua's circuit, which can generate 2N-scroll and 2N+1-scroll chaotic attractors without any other ordinary nonlinear function. Furthermore, coexisting multi-scroll chaotic attractors are found in the proposed memristive multi-scroll Chua's circuit. Phase portraits, Lyapunov exponents, bifurcation diagrams, and equilibrium point analysis have been used to research the basic dynamics of the memristive multi-scroll Chua's circuit. The consistency of circuit implementation and numerical simulation verifies the effectiveness of the system design.

  19. Three-photon interactions and spin exchange in a quantum nonlinear medium

    Science.gov (United States)

    Cantu, Sergio; Liang, Qi-Yu; Thompson, Jeff; Nicholson, Travis; Venkatramani, Aditya; Gullans, Michael; Gorshkov, Alexey; Choi, Soonwon; Lukin, Mikhail; Vuletic, Vladan

    2016-05-01

    Robust quantum gates for photonic qubits are a longstanding goal of quantum information science. One promising approach to achieve this goal requires strong nonlinear interactions between single photons, which is impossible with conventional optical media. We realize these interactions with electromagnetically induced transparency (EIT), and strongly interacting Rydberg states to mediate strong interactions between photons. Operating in the dispersive regime of EIT, we have recently shown that two photons propagating in our system can bind into a photonic molecule. Extending these two-photon experiments to many-body physics would lead to exotic phenomena like photon crystallization. To that end, we have scaled up our two-photon measurements to three-photon experiments. We are now able to discern signatures of three-photon molecules from a variety of two- and three-photon interactions. Three-photon bound states manifest as an increase in photon bunching in g (3) correlation measurements. We also present a recent observation of coherent spin exchange interactions in Rydberg EIT.

  20. Enhanced nonlinearity in photonic crystal fiber by germanium doping in the core region

    Institute of Scientific and Technical Information of China (English)

    Tingting Sun; Guiyun Kai; Zhi Wang; Shuzhong Yuan; Xiaoyi Dong

    2008-01-01

    Germanium doping in silica can be used as a method for nonlinearity enhancement.Properties of the enhanced nonlinearity in photonic crystal fiber(PCF)with a GeO2-doped core are investigated theoretically by using all-vector finite element method.Numerical result shows that the nonlinear coefficient of PCF is greatly enhanced with increasing doping concentration,furthermore,optimal radius of the doped region should be considered for the desired operating wavelength.

  1. Two—photon Nonlinear Jaynes—Cummings Model with Stark Shift

    Institute of Scientific and Technical Information of China (English)

    董传华; 卢俊

    2002-01-01

    Two-photon Jaynes-Cummimgs model is generalized to the case of Kerr medium in this paper,The field and atom are prepared initially in two-photon superposition state and ground state respectively.Nonlinear coefficient affects the dynamic behaviors of the field and atom.Evolutions of the squeezing for the operators of field and atom and the quantum inversion are discussed.In particular,the higher-order squeezing for atomic dipole and the effects of nonlinearity on it,which have not been studied by other authors,are investigated,Increasing the nonlinear coefficient will decrease the squeezing depth of atomic dipole.

  2. Transient evolution of a photon gas in the nonlinear QED vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Wu, S Q; Hartemann, F V

    2011-10-04

    Thermally induced vacuum polarization stemming from QED radiative corrections to the electromagnetic field equations is studied. The physical behavior of thermal radiation, in the nonlinear QED vacuum first described by Heisenberg and Euler, is a problem of some theoretical importance in view of its relation to the cosmic microwave background (CMB), early universe evolution, and Hawking-Unruh radiation. The questions of evolution toward equilibrium, stability, and invariance of thermal radiation under such conditions are of great interest. Our analysis presents novel aspects associated with photon-photon scattering in a photon gas in the framework of quantum kinetic theory. Within the context of the Euler-Heisenberg theory, we show that a homogeneous, isotropic photon gas with arbitrary spectral distribution function evolves toward an equilibrium state with a Bose-Einstein distribution. The transient evolution toward equilibrium of a gas of photons undergoing photon-photon scattering is studied in detail via the Boltzmann transport equation.

  3. Modal theory of slow light enhanced third-order nonlinear effects in photonic crystal waveguides.

    Science.gov (United States)

    Chen, Tao; Sun, Junqiang; Li, Linsen

    2012-08-27

    In this paper, we derive the couple-mode equations for third-order nonlinear effects in photonic crystal waveguides by employing the modal theory. These nonlinear interactions include self-phase modulation, cross-phase modulation and degenerate four-wave mixing. The equations similar to that in nonlinear fiber optics could be expanded and applied for third-order nonlinear processes in other periodic waveguides. Based on the equations, we systematically analyze the group-velocity dispersion, optical propagation loss, effective interaction area, slow light enhanced factor and phase mismatch for a slow light engineered silicon photonic crystal waveguide. Considering the two-photon and free-carrier absorptions, the wavelength conversion efficiencies in two low-dispersion regions are numerically simulated by utilizing finite difference method. Finally, we investigate the influence of slow light enhanced multiple four-wave-mixing process on the conversion efficiency.

  4. Nonlinear enhancement in photonic crystal slow light waveguides fabricated using CMOS-compatible process.

    Science.gov (United States)

    Shinkawa, Mizuki; Ishikura, Norihiro; Hama, Yosuke; Suzuki, Keijiro; Baba, Toshihiko

    2011-10-24

    We have studied low-dispersion slow light and its nonlinear enhancement in photonic crystal waveguides. In this work, we fabricated the waveguides using Si CMOS-compatible process. It enables us to integrate spotsize converters, which greatly simplifies the optical coupling from fibers as well as demonstration of the nonlinear enhancement. Two-photon absorption, self-phase modulation and four-wave mixing were observed clearly for picosecond pulses in a 200-μm-long device. In comparison with Si wire waveguides, a 60-120 fold higher nonlinearity was evaluated for a group index of 51. Unique intensity response also occurred due to the specific transmission spectrum and enhanced nonlinearities. Such slow light may add various functionalities in Si photonics, while loss reduction is desired for ensuring the advantage of slow light.

  5. BIFURCATION SOLUTION FOR FREE VIBRATION OF CIRCULAR PLATE WITH STRONG QUADRATIC NONLINEARITY%二次非线性圆板自由振动分岔解

    Institute of Scientific and Technical Information of China (English)

    李银山; 刘波; 张明路; 段国林

    2011-01-01

    计及材料的非线性弹性,建立圆板自由振动的非线性动力学方程.采用Galerkin法,将圆板的非线性动力学偏微分方程简化成四种标准类型的二次非线性微分方程.提出一类强非线性动力系统的初值变换法,将描述动力系统的二阶常微分方程,化为以角频率、振幅和偏心距为独立变量的不完备非线性代数方程组,考虑初始条件补充约束方程,构成频率、振幅和偏心距为变量的完备非线性代数方程组.利用Maple程序可以方便地求解.结果表明,初值变换法不仅适合于对称振动问题,而且适合于非对称振动问题.首次给出二次非线性自由振动的偏一频曲线.%The nonlinear dynamic equation of free vibration of a circular plate is derived with nonlinear theory of elasticity. By using Calerkin' g method, the governing partial differential equation was reduced to four standard types of quadratic nonlinear ordinary ones. A method of initial-value transformation is presented for a class strongly nonlinear dynamic system. By using Ritz-Galerkin s method , an oscillation system governed by a set of second order ordinary differential equations, can be transformed into a set of incomplete non-linear algebraic equations with angular frequencies, amplitudes and central offsets as independent variables. Then, by supplement of some initial-value restrictions, the incomplete equations can be made complete, obtaining a set of non-linear algebraic equations with angular frequencies, amplitudes and central offsets, which can be solved conveniently by Maple program. Hie results show that the method of initial-value transformation can solve not only symmetry problems, but also asymmetry problems for free vibration. The offset-angular frequency backbone curves of quadratic nonlinear equations were presented for the first time.

  6. Spatial properties of entangled photon pairs generated in nonlinear layered structures

    CERN Document Server

    Perina, Jan

    2011-01-01

    A spatial quantum model of spontaneous parametric down-conversion in nonlinear layered structures is developed expanding the interacting vectorial fields into monochromatic plane waves. A two-photon spectral amplitude depending on the signal- and idler-field frequencies and propagation directions is used to derive transverse profiles of the emitted fields as well as their spatial correlations. Intensity spatial profiles and their spatial correlations are mainly determined by the positions of transmission peaks formed in these structures with photonic bands. A method for geometry optimization of the structures with respect to efficiency of the nonlinear process is suggested. Several structures composed of GaN/AlN layers are analyzed as typical examples. They allow the generation of photon pairs correlated in several emission directions. Photon-pair generation rates increasing better than the second power of the number of layers can be reached. Also structures efficiently generated photon pairs showing anti-bun...

  7. Quantum non-demolition measurement of photon number using weak nonlinearities

    Energy Technology Data Exchange (ETDEWEB)

    Gerry, Christopher C. [Department of Physics and Astronomy, Lehman College, City University of New York, Bronx, NY 10468-1589 (United States)], E-mail: christopher.gerry@lehman.cuny.edu; Bui, Trung [Department of Physics and Astronomy, Lehman College, City University of New York, Bronx, NY 10468-1589 (United States)

    2008-12-08

    We propose an alternative method for the quantum non-demolition measurement of photon numbers wherein weak cross-Kerr nonlinearities are to be used. The usual approach to quantum non-demolition measurements of quantum number involves encoding the photon number, through a cross-Kerr interaction, into a phase shift of a probe coherent state which is then detected through balanced homodyning. Weak nonlinearities produce small phase shifts which are difficult to detect and distinguish. In the method we propose, unbalanced homodyning acts as a displacement operator on the probe beam coherent state such that the cross-Kerr interaction encodes the photon number into the amplitude of a new coherent state. The value of the photon number can be determined by inefficient photon counting on the new coherent state. Our proposed method requires fewer resources than does the usual approach.

  8. Time-ordering effects in the generation of entangled photons using nonlinear optical processes.

    Science.gov (United States)

    Quesada, Nicolás; Sipe, J E

    2015-03-06

    We study the effects of time ordering in photon generation processes such as spontaneous parametric down-conversion (SPDC) and four wave mixing (SFWM). The results presented here are used to construct an intuitive picture that allows us to predict when time-ordering effects significantly modify the joint spectral amplitude (JSA) of the photons generated in SPDC and SFWM. These effects become important only when the photons being generated lie with the pump beam that travels through the nonlinear material for a significant amount of time. Thus sources of spectrally separable photons are ideal candidates for the observation of modifications of the JSA due to time ordering.

  9. Hamiltonian models of multiphoton processes and four--photon squeezed states via nonlinear canonical transformations

    CERN Document Server

    De Siena, S; Illuminati, F; Siena, Silvio De; Lisi, Antonio Di; Illuminati, Fabrizio

    2002-01-01

    We introduce nonlinear canonical transformations that yield effective Hamiltonians of multiphoton down conversion processes, and we define the associated non-Gaussian multiphoton squeezed states as the coherent states of the multiphoton Hamiltonians. We study in detail the four-photon processes and the associated non-Gaussian four-photon squeezed states. The realization of squeezing, the behavior of the field statistics, and the structure of the phase space distributions show that these states realize a natural four-photon generalization of the two-photon squeezed states.

  10. Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals.

    Science.gov (United States)

    Lepeshkin, Nick N; Schweinsberg, Aaron; Piredda, Giovanni; Bennink, Ryan S; Boyd, Robert W

    2004-09-17

    We describe a new type of artificial nonlinear optical material composed of a one-dimensional metal-dielectric photonic crystal. Because of the resonant nature of multiple Bragg reflections, the transmission within the transmission band can be quite large, even though the transmission through the same total thickness of bulk metal would be very small. This procedure allows light to penetrate into the highly nonlinear metallic layers, leading to a large nonlinear optical response. We present experimental results for a Cu/SiO(2) crystal which displays a strongly enhanced nonlinear optical response (up to 12X) in transmission.

  11. A Photonic Basis for Deriving Nonlinear Optical Response

    Science.gov (United States)

    Andrews, David L.; Bradshaw, David S.

    2009-01-01

    Nonlinear optics is generally first presented as an extension of conventional optics. Typically the subject is introduced with reference to a classical oscillatory electric polarization, accommodating correction terms that become significant at high intensities. The material parameters that quantify the extent of the nonlinear response are cast as…

  12. Generation of photon pairs through parametric processes in nonlinear waveguides with the account of losses

    Science.gov (United States)

    Vavulin, D. N.; Sukhorukov, A. A.

    2016-08-01

    We present an analytical description of the process of spontaneous four-wave mixing in a cubic nonlinear fiber with linear losses. We consider the generation of photon pairs in the fiber when in the input of fiber is fed the pumping wave and single signal photon. The focus of attention is on three cases: when the signal photon propagates in the fiber without generating of biphotons; when the photon pair is generated; and when the photon is lost in the fiber. We also consider the cascade processes, but do not give them an analytical description because of their smallness. Description of the biphotons generation process we provide using the Schrodinger-type equation, and take into account the losses in the fiber through the introduction of the virtual beam splitters. We demonstrate the effectiveness of the generation of photon pairs through parametric processes.

  13. Nonlinear quantitative photoacoustic tomography with two-photon absorption

    CERN Document Server

    Ren, Kui

    2016-01-01

    Two-photon photoacoustic tomography (TP-PAT) is a non-invasive optical molecular imaging modality that aims at inferring two-photon absorption property of heterogeneous media from photoacoustic measurements. In this work, we analyze an inverse problem in quantitative TP-PAT where we intend to reconstruct optical coefficients in a semilinear elliptic PDE, the mathematical model for the propagation of near infra-red photons in tissue-like optical media with two-photon absorption, from the internal absorbed energy data. We derive uniqueness and stability results on the reconstructions of single and multiple optical coefficients, and present some numerical reconstruction results based on synthetic data to complement the theoretical analysis.

  14. SVM with Quadratic Polynomial Kernel Function Based Nonlinear Model One-step-ahead Predictive Control%基于2次核SVM的单步非线性模型预测控制

    Institute of Scientific and Technical Information of China (English)

    钟伟民; 何国龙; 皮道映; 孙优贤

    2005-01-01

    A support vector machine (SVM) with quadratic polynomial kernel function based nonlinear model one-step-ahead predictive controller is presented. The SVM based predictive model is established with black-box identification method. By solving a cubic equation in the feature space, an explicit predictive control law is obtained through the predictive control mechanism. The effect of controller is demonstrated on a recognized benchmark problem and on the control of continuous-stirred tank reactor (CSTR). Simulation results show that SVM with quadratic polynomial kernel function based predictive controller can be well applied to nonlinear systems, with good performance in following reference trajectory as well as in disturbance-rejection.

  15. Nonlinear frequency conversion effect in a one-dimensional graphene-based photonic crystal

    Science.gov (United States)

    Wicharn, S.; Buranasiri, P.

    2015-07-01

    In this research, the nonlinear frequency conversion effect based on four-wave mixing (FWM) principle in a onedimensional graphene-based photonics crystal (1D-GPC) has been investigated numerically. The 1D-GPC structure is composed of two periodically alternating material layers, which are graphene-silicon dioxide bilayer system and silicon membrane. Since, the third-order nonlinear susceptibility χ(3) of bilayer system is hundred time higher than pure silicon dioxide layer, so the enhancement of FWM response can be achieved inside the structure with optimizing photon energy being much higher than a chemical potential level (μ) of graphene sheet. In addition, the conversion efficiencies of 1DGPC structure are compared with chalcogenide based photonic structure for showing that 1D-GPC structure can enhance nonlinear effect by a factor of 100 above the chalcogenide based structure with the same structure length.

  16. Nonlinear optical sub-bandgap excitation of ZnO-based photonic resonators

    Energy Technology Data Exchange (ETDEWEB)

    Bader, Christina A.; Zeuner, Franziska; Bader, Manuel H. W.; Zentgraf, Thomas; Meier, Cedrik [Department of Physics and Center for Optoelectronics and Photonics Paderborn (CeOPP), Universität Paderborn, Warburger Str. 100, 33098 Paderborn (Germany)

    2015-12-07

    Zinc oxide (ZnO) is a versatile candidate for photonic devices due to its highly efficient optical emission. However, for pumping of ZnO photonic devices UV-sources are required. Here, we investigate the alternative usage of widely available pulsed near-infrared (NIR)-sources and compare the efficiency of linear and nonlinear excitation processes. We found that bulk ZnO, ZnO thin films grown by molecular beam epitaxy, and ZnO/SiO{sub 2} microdisk devices exhibit strong nonlinear response when excited with NIR pulses (λ ≈ 1060 nm). In addition, we show that the ZnO/SiO{sub 2} microdisks exhibit sharp whispering gallery modes over the blue-yellow part of the visible spectrum for both excitation conditions and high Q-factors up to Q = 4700. The results demonstrate that nonlinear excitation is an efficient way to pump ZnO photonic devices.

  17. Nonlinear predictive control of a boiler-turbine unit: A state-space approach with successive on-line model linearisation and quadratic optimisation.

    Science.gov (United States)

    Ławryńczuk, Maciej

    2017-03-01

    This paper details development of a Model Predictive Control (MPC) algorithm for a boiler-turbine unit, which is a nonlinear multiple-input multiple-output process. The control objective is to follow set-point changes imposed on two state (output) variables and to satisfy constraints imposed on three inputs and one output. In order to obtain a computationally efficient control scheme, the state-space model is successively linearised on-line for the current operating point and used for prediction. In consequence, the future control policy is easily calculated from a quadratic optimisation problem. For state estimation the extended Kalman filter is used. It is demonstrated that the MPC strategy based on constant linear models does not work satisfactorily for the boiler-turbine unit whereas the discussed algorithm with on-line successive model linearisation gives practically the same trajectories as the truly nonlinear MPC controller with nonlinear optimisation repeated at each sampling instant. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Orthogonality preserving infinite dimensional quadratic stochastic operators

    Energy Technology Data Exchange (ETDEWEB)

    Akın, Hasan [Department of Mathematics, Faculty of Education, Zirve University, Gaziantep, 27260 (Turkey); Mukhamedov, Farrukh [Department of Computational & Theoretical Sciences Faculty of Science, International Islamic University Malaysia P.O. Box, 141, 25710, Kuantan Pahang (Malaysia)

    2015-09-18

    In the present paper, we consider a notion of orthogonal preserving nonlinear operators. We introduce π-Volterra quadratic operators finite and infinite dimensional settings. It is proved that any orthogonal preserving quadratic operator on finite dimensional simplex is π-Volterra quadratic operator. In infinite dimensional setting, we describe all π-Volterra operators in terms orthogonal preserving operators.

  19. Generation of Photon-Plasmon Quantum States in Nonlinear Hyperbolic Metamaterials

    Science.gov (United States)

    Poddubny, Alexander N.; Iorsh, Ivan V.; Sukhorukov, Andrey A.

    2016-09-01

    We develop a general theoretical framework of integrated paired photon-plasmon generation through spontaneous wave mixing in nonlinear plasmonic and metamaterial nanostructures, rigorously accounting for material dispersion and losses in quantum regime through the electromagnetic Green function. We identify photon-plasmon correlations in layered metal-dielectric structures with 70% internal heralding quantum efficiency, and reveal novel mechanism of broadband generation enhancement due to topological transition in hyperbolic metamaterials.

  20. Nonlinear spectroscopy of photon-dressed Dirac electrons in a quantum dot

    Science.gov (United States)

    Roslyak, O.; Gumbs, Godfrey; Mukamel, S.

    2013-01-01

    We study the localization of dressed Dirac electrons in a cylindrical quantum dot (QD) formed on monolayer and bilayer graphene by spatially different potential profiles. Short-lived excitonic states which are too broad to be resolved in linear spectroscopy are revealed by cross-peaks in the photon-echo nonlinear technique. Signatures of the dynamic gap in the two-dimensional photon-echo spectra are discussed.

  1. Analysis, Adaptive Control and Adaptive Synchronization of a Nine-Term Novel 3-D Chaotic System with Four Quadratic Nonlinearities and its Circuit Simulation

    Directory of Open Access Journals (Sweden)

    S. Vaidyanathan

    2014-11-01

    Full Text Available This research work describes a nine-term novel 3-D chaotic system with four quadratic nonlinearities and details its qualitative properties. The phase portraits of the 3-D novel chaotic system simulated using MATLAB, depict the strange chaotic attractor of the system. For the parameter values chosen in this work, the Lyapunov exponents of the novel chaotic system are obtained as L1 = 6.8548, L2 = 0 and L3 = −32.8779. Also, the Kaplan-Yorke dimension of the novel chaotic system is obtained as DKY = 2.2085. Next, an adaptive controller is design to achieve global stabilization of the 3-D novel chaotic system with unknown system parameters. Moreover, an adaptive controller is designed to achieve global chaos synchronization of two identical novel chaotic systems with unknown system parameters. Finally, an electronic circuit realization of the novel chaotic system is presented using SPICE to confirm the feasibility of the theoretical model.

  2. Photonic Nonlinear Transient Computing with Multiple-Delay Wavelength Dynamics

    Science.gov (United States)

    Martinenghi, Romain; Rybalko, Sergei; Jacquot, Maxime; Chembo, Yanne K.; Larger, Laurent

    2012-06-01

    We report on the experimental demonstration of a hybrid optoelectronic neuromorphic computer based on a complex nonlinear wavelength dynamics including multiple delayed feedbacks with randomly defined weights. This neuromorphic approach is based on a new paradigm of a brain-inspired computational unit, intrinsically differing from Turing machines. This recent paradigm consists in expanding the input information to be processed into a higher dimensional phase space, through the nonlinear transient response of a complex dynamics excited by the input information. The computed output is then extracted via a linear separation of the transient trajectory in the complex phase space. The hyperplane separation is derived from a learning phase consisting of the resolution of a regression problem. The processing capability originates from the nonlinear transient, resulting in nonlinear transient computing. The computational performance is successfully evaluated on a standard benchmark test, namely, a spoken digit recognition task.

  3. Experiments on Linear and Nonlinear Localization of Optical Vortices in Optically Induced Photonic Lattices

    Directory of Open Access Journals (Sweden)

    Daohong Song

    2012-01-01

    Full Text Available We provide a brief overview on our recent experimental work on linear and nonlinear localization of singly charged vortices (SCVs and doubly charged vortices (DCVs in two-dimensional optically induced photonic lattices. In the nonlinear case, vortex propagation at the lattice surface as well as inside the uniform square-shaped photonic lattices is considered. It is shown that, apart from the fundamental (semi-infinite gap discrete vortex solitons demonstrated earlier, the SCVs can self-trap into stable gap vortex solitons under the normal four-site excitation with a self-defocusing nonlinearity, while the DCVs can be stable only under an eight-site excitation inside the photonic lattices. Moreover, the SCVs can also turn into stable surface vortex solitons under the four-site excitation at the surface of a semi-infinite photonics lattice with a self-focusing nonlinearity. In the linear case, bandgap guidance of both SCVs and DCVs in photonic lattices with a tunable negative defect is investigated. It is found that the SCVs can be guided at the negative defect as linear vortex defect modes, while the DCVs tend to turn into quadrupole-like defect modes provided that the defect strength is not too strong.

  4. Self-consistent photonic band structure of dielectric superlattices containing nonlinear optical materials.

    Science.gov (United States)

    Lousse, V; Vigneron, J P

    2001-02-01

    The theory of photonic crystals is extended to include the optical Kerr effect taking place in weak third-order, nonlinear materials present in the unit cell. The influence on the dispersion relations of the illumination caused by a single Bloch mode transiting through the crystal structure is examined. Special attention is given to the modification of the photonic gap width and position. Assuming an instantaneous change of refractive index with illumination, the nonlinear band structure problem is solved as a sequence of ordinary, linear band structure calculations, carried out in a plane-wave field representation.

  5. Nonlinear Photonic Systems for V- and W-Band Antenna Remoting Applications

    Science.gov (United States)

    2016-10-22

    AFRL-AFOSR-JP-TR-2016-0088 Nonlinear Photonic Systems for V- and W-Band Antenna Remoting Applications Sheng-Kwang Hwang NATIONAL CHENG KUNG... Antenna Remoting Applications 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-15-1-4026 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) Sheng-Kwang Hwang...TERMS nonlinear, photonic, antenna , remote, microwave, amplification, bandwith, modulation 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR

  6. Slow light enhanced optical nonlinearity in a silicon photonic crystal coupled-resonator optical waveguide.

    Science.gov (United States)

    Matsuda, Nobuyuki; Kato, Takumi; Harada, Ken-Ichi; Takesue, Hiroki; Kuramochi, Eiichi; Taniyama, Hideaki; Notomi, Masaya

    2011-10-10

    We demonstrate highly enhanced optical nonlinearity in a coupled-resonator optical waveguide (CROW) in a four-wave mixing experiment. Using a CROW consisting of 200 coupled resonators based on width-modulated photonic crystal nanocavities in a line defect, we obtained an effective nonlinear constant exceeding 10,000 /W/m, thanks to slow light propagation combined with a strong spatial confinement of light achieved by the wavelength-sized cavities.

  7. Initial dynamics of supercontinuum generation in highly nonlinear photonic crystal fiber.

    Science.gov (United States)

    Moeser, J T; Wolchover, N A; Knight, J C; Omenetto, F G

    2007-04-15

    We present a theoretical and experimental analysis of supercontinuum generation in very short lengths of high-nonlinearity photonic crystal fibers. The Raman response function for Schott SF6 glass is presented for what is believed to be the first time and used for numerical modeling of pulse propagation. Simulation and experiments are in excellent agreement and demonstrate the rapid transition to regimes of spectral complexity due to higher-order nonlinear effects.

  8. Compensation for Self-Focusing of Picosecond Pulses in Nd:Glass by Using Cascaded Quadratic Nonlinearity

    Institute of Scientific and Technical Information of China (English)

    CHEN Hao; WEN Shuang-Chun; ZHU He-Yuan; QIAN Lie-Jia

    2004-01-01

    @@ One of the obstacles in obtaining high power/energy laser sources is self-focusing, which stems from the nonlinear phase shift (B-integral) accumulated during beam propagation in Kerr media. Phase-mismatched secondharmonic generation may impose a nonlinear phase shift on the fundamental with controllable sign and magnitude,which can be used to compensate for self-focusing with a single-pass configuration. We have demonstrated such a possibility for picosecond pulses theoretically and experimentally, and both configurations of pre- and postcompensation by a β-barium borate crystal have been studied in detail. Cascaded second-order nonlinearity-based compensation for self-focusing may provide an auxiliary means to the conventional B-integral control techniques.

  9. Role of spatial distortions on the quadratic nonlinear optical properties of octupolar organic and metallo-organic molecules

    Science.gov (United States)

    Bidault, Sébastien; Brasselet, Sophie; Zyss, Joseph; Maury, Olivier; Le Bozec, Hubert

    2007-01-01

    Following on the recent experimental demonstration of a discrepancy between the nonlinear optical (NLO) behavior of several π-conjugated chromophores and their assumed octupolar symmetry, the authors investigate how geometrical distortions influence the NLO response of multipolar push-pull molecules. Their analytical model is set on a basis of valence-bond and charge-transfer states to estimate the hyperpolarizability of organic and metallo-organic chromophores using the lowest possible number of variables. Since symmetry breakdown changes the definition of the molecular Cartesian framework, tensorial spherical coordinates are implemented. The evolution of the nonlinear molecular anisotropy with possible rotational deviations is then evaluated for two recently studied chromophores. Zero-frequency calculations show that, outside optical resonance, weak geometrical distortions lead to strong anisotropy variations in agreement with experimental data. Their goal is to underscore which molecular engineering strategies should be applied when designing a photoisomerizable nonlinear octupole.

  10. Exciton-polaritons in lattices: A non-linear photonic simulator

    Science.gov (United States)

    Amo, Alberto; Bloch, Jacqueline

    2016-10-01

    Microcavity polaritons are mixed light-matter quasiparticles with extraordinary nonlinear properties, which can be easily accessed in photoluminescence experiments. Thanks to the possibility of designing the potential landscape of polaritons, this system provides a versatile photonic platform to emulate 1D and 2D Hamiltonians. Polaritons allow transposing to the photonic world some of the properties of electrons in solid-state systems, and to engineer Hamiltonians for photons with novel transport properties. Here we review some experimental implementations of polariton Hamiltonians using lattice geometries. xml:lang="fr"

  11. Enhanced optical nonlinearities in CMOS-compatible ultra-silicon-rich nitride photonic crystal waveguides

    Science.gov (United States)

    Sahin, E.; Ooi, K. J. A.; Chen, G. F. R.; Ng, D. K. T.; Png, C. E.; Tan, D. T. H.

    2017-09-01

    We present the design, fabrication, and characterization of photonic crystal waveguides (PhCWs) on an ultra-silicon-rich nitride (USRN) platform, with the goal of augmenting the optical nonlinearities. The design goals are to achieve an optimized group index curve on the PhCW band edge with a non-membrane PhCW with symmetric SiO2 undercladding and overcladding, so as to maintain back-end CMOS compatibility and better structural robustness. Linear optical characterization, as well as nonlinear optical characterization of PhCWs on ultra-silicon-rich nitride is performed at the telecommunication wavelengths. USRN's negligible two-photon absorption and free carrier losses at the telecommunication wavelengths ensure that there is no scaling of two-photon related losses with the group index, thus maintaining a high nonlinear efficiency. Self-phase modulation experiments are performed using a 96.6 μm PhCW. A 1.5π phase shift is achieved with an input peak power of 2.5 W implying an effective nonlinear parameter of 1.97 × 104 (W m)-1. This nonlinear parameter represents a 49× enhancement in the nonlinear parameter from the slow light effect, in good agreement with expected scaling from the measured group index.

  12. Nonlinear optical effects of ultrahigh-Q silicon photonic nanocavities immersed in superfluid helium

    CERN Document Server

    Sun, Xiankai; Schuck, Carsten; Tang, Hong X

    2013-01-01

    Photonic nanocavities are a key component in many applications because of their capability of trapping and storing photons and enhancing interactions of light with various functional materials and structures. The maximal number of photons that can be stored in silicon photonic cavities is limited by the free-carrier and thermo-optic effects at room temperature. To reduce such effects, we performed the first experimental study of optical nonlinearities in ultrahigh-Q silicon disk nanocavities at cryogenic temperatures in a superfluid helium environment. At elevated input power, the cavity transmission spectra exhibit distinct blue-shifted bistability behavior when temperature crosses the liquid helium lambda point. At even lower temperatures, the spectra restore to symmetric Lorentzian shapes. Under this condition, we obtain a large stored intracavity photon number of about 40,000, which is limited ultimately by the local helium phase transition. These new discoveries are explained by theoretical calculations ...

  13. Strong nonlinearity-induced correlations for counterpropagating photons scattering on a two-level emitter

    DEFF Research Database (Denmark)

    Nysteen, Anders; McCutcheon, Dara; Mørk, Jesper

    2015-01-01

    We analytically treat the scattering of two counterpropagating photons on a two-level emitter embedded in an optical waveguide. We find that the nonlinearity of the emitter can give rise to significant pulse-dependent directional correlations in the scattered photonic state, which could...... be quantified via a reduction in coincidence clicks in a Hong–Ou–Mandel measurement setup, analogous to a linear beam splitter. Changes to the spectra and phase of the scattered photons, however, would lead to reduced interference with other photons when implemented in a larger optical circuit. We introduce...... suitable fidelity measures which account for these changes and find that high values can still be achieved even when accounting for all properties of the scattered photonic state....

  14. Nonlinear spatial mode imaging of hybrid photonic crystal fibers

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Alkeskjold, Thomas Tanggaard; Laurila, Marko;

    2013-01-01

    Degenerate spontaneous four wave mixing is studied for the rst time in a large mode area hybrid photonic crystal ber, where light con nement is achieved by combined index- and bandgap guiding. Four wave mixing products are generated on the edges of the bandgaps, which is veri ed by numerical...

  15. Quadratic choreographies

    CERN Document Server

    Ryckelynck, Philippe

    2011-01-01

    This paper addresses the classical and discrete Euler-Lagrange equations for systems of $n$ particles interacting quadratically in $\\mathbb{R}^d$. By highlighting the role played by the center of mass of the particles, we solve the previous systems via the classical quadratic eigenvalue problem (QEP) and its discrete transcendental generalization. The roots of classical and discrete QEP being given, we state some conditional convergence results. Next, we focus especially on periodic and choreographic solutions and we provide some numerical experiments which confirm the convergence.

  16. Realization of non-linear coherent states by photonic lattices

    Directory of Open Access Journals (Sweden)

    Shahram Dehdashti

    2015-06-01

    Full Text Available In this paper, first, by introducing Holstein-Primakoff representation of α-deformed algebra, we achieve the associated non-linear coherent states, including su(2 and su(1, 1 coherent states. Second, by using waveguide lattices with specific coupling coefficients between neighbouring channels, we generate these non-linear coherent states. In the case of positive values of α, we indicate that the Hilbert size space is finite; therefore, we construct this coherent state with finite channels of waveguide lattices. Finally, we study the field distribution behaviours of these coherent states, by using Mandel Q parameter.

  17. Cavity optomechanics with a nonlinear photonic-crystal nanomembrane

    Energy Technology Data Exchange (ETDEWEB)

    Makles, Kevin; Kuhn, Aurélien; Briant, Tristan; Cohadon, Pierre-François; Heidmann, Antoine [Laboratoire Kastler Brossel, UPMC-ENS-CNRS, Case 74, 4 place Jussieu, F75252 Paris Cedex 05 (France); Antoni, Thomas [Laboratoire de Photonique et Nanostructures LPN-CNRS, UPR-20, Route de Nozay, 91460 Marcoussis, France and Laboratoire Kastler Brossel, UPMC-ENS-CNRS, Case 74, 4 place Jussieu, F75252 Paris Cedex 05 (France); Braive, Rémy [Laboratoire de Photonique et Nanostructures LPN-CNRS, UPR-20, Route de Nozay, 91460 Marcoussis, France and Université Paris Diderot, 10, rue Alice Domon et Léonie Duquet, 75205 Paris, Cedex 13 (France); Sagnes, Isabelle; Robert-Philip, Isabelle [Laboratoire de Photonique et Nanostructures LPN-CNRS, UPR-20, Route de Nozay, 91460 Marcoussis (France)

    2014-12-04

    We have designed, fabricated and characterized a nanomembrane which could be used as a moving end mirror of a Fabry-Perot cavity. The high reflectivity and optimized mechanical properties of the membrane should allow us to demonstrate the mechanical ground state of the membrane. As any sub-micron mechanical resonator, our system demonstrates nonlinear dynamical effects. We characterize the mechanical response to a strong pump drive and observe a shift in the oscillation frequency and phase conjugation of the mechanical mode. Such nonlinear effects are expected to play a role in the quantum dynamics of the membrane as well.

  18. Realization of non-linear coherent states by photonic lattices

    Energy Technology Data Exchange (ETDEWEB)

    Dehdashti, Shahram, E-mail: shdehdashti@zju.edu.cn; Li, Rujiang; Chen, Hongsheng, E-mail: hansomchen@zju.edu.cn [State Key Laboratory of Modern Optical Instrumentations, Zhejiang University, Hangzhou 310027 (China); The Electromagnetics Academy at Zhejiang University, Zhejiang University, Hangzhou 310027 (China); Liu, Jiarui, E-mail: jrliu@zju.edu.cn; Yu, Faxin [School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027 (China)

    2015-06-15

    In this paper, first, by introducing Holstein-Primakoff representation of α-deformed algebra, we achieve the associated non-linear coherent states, including su(2) and su(1, 1) coherent states. Second, by using waveguide lattices with specific coupling coefficients between neighbouring channels, we generate these non-linear coherent states. In the case of positive values of α, we indicate that the Hilbert size space is finite; therefore, we construct this coherent state with finite channels of waveguide lattices. Finally, we study the field distribution behaviours of these coherent states, by using Mandel Q parameter.

  19. Azimuthal and radial shaping of vortex beams generated in twisted nonlinear photonic crystals.

    Science.gov (United States)

    Shemer, Keren; Voloch-Bloch, Noa; Shapira, Asia; Libster, Ana; Juwiler, Irit; Arie, Ady

    2013-12-15

    We experimentally demonstrate that the orbital angular momentum (OAM) of a second harmonic (SH) beam, generated within twisted nonlinear photonic crystals, depends both on the OAM of the input pump beam and on the quasi-angular momentum of the crystal. In addition, when the pump's radial index is zero, the radial index of the SH beam is equal to that of the nonlinear crystal. Furthermore, by mixing two noncollinear pump beams in this crystal, we generate, in addition to the SH beams, a new "virtual beam" having multiple values of OAM that are determined by the nonlinear process.

  20. Nonlinear Oscillations and Bifurcations in Silicon Photonic Microresonators

    CERN Document Server

    Abrams, Daniel M; Srinivasan, Kartik

    2013-01-01

    Silicon microdisks are optical resonators that can exhibit surprising nonlinear behavior. We present a new analysis of the dynamics of these resonators, elucidating the mathematical origin of spontaneous oscillations and deriving predictions for observed phenomena such as a frequency comb spectrum with MHz-scale repetition rate. We test predictions through laboratory experiment and numerical simulation.

  1. Experimental demonstration of non-reciprocal transmission in a nonlinear photonic-crystal Fano structure

    DEFF Research Database (Denmark)

    Yu, Yi; Chen, Yaohui; Hu, Hao;

    2015-01-01

    We suggest and experimentally demonstrate a photonic-crystal structure with more than 30 dB difference between forward and backward transmission levels. The non-reciprocity relies on the combination of ultrafast carrier nonlinearities and spatial symmetry breaking in a Fano structure employing...

  2. High intensity polarization entangled source with a 2D nonlinear photonic crystal

    DEFF Research Database (Denmark)

    Wang, Qin

    2009-01-01

    We gave a proposal on how to use a piece of two-dimension (2D) nonlinear photonic crystal to generate a polarization entangled source. It provides not only has a high stability, but also a high entangled quality and a high intensity. Moreover, our scheme involves only practical experimental...

  3. Nonlinear Control of Absorption in Graphene-based 1D Photonic Crystal

    CERN Document Server

    Vincenti, M A; Grande, M; D'Orazio, A; Scalora, M

    2013-01-01

    Perfect, narrow-band absorption is achieved in an asymmetric 1D photonic crystal with a monolayer graphene defect. Thanks to the large third order nonlinearity of graphene and field localization in the defect layer we demonstrate the possibility to achieve controllable, saturable absorption for the pump frequency.

  4. Could the photon dispersion relation be non-linear ?

    OpenAIRE

    2008-01-01

    The free photon dispersion relation is a reference quantity for high precision tests of Lorentz Invariance. We first outline theoretical approaches to a conceivable Lorentz Invariance Violation (LIV). Next we address phenomenological tests based on the propagation of cosmic rays, in particular in Gamma Ray Bursts (GRBs). As a specific concept, which could imply LIV, we then focus on field theory in a non-commutative (NC) space, and we present non-perturbative results for the dispersion relati...

  5. Energetic mid-IR femtosecond pulse generation by self-defocusing soliton-induced dispersive waves in a bulk quadratic nonlinear crystal

    CERN Document Server

    Zhou, B B; Bache, M

    2014-01-01

    Generating energetic femtosecond mid-IR pulses is crucial for ultrafast spectroscopy, and currently relies on parametric processes that, while efficient, are also complex. Here we experimentally show a simple alternative that uses a single pump wavelength without any pump synchronization and without critical phase-matching requirements. Pumping a bulk quadratic nonlinear crystal (unpoled LiNbO$_3$ cut for noncritical phase-mismatched interaction) with sub-mJ near-IR 50-fs pulses, tunable and broadband ($\\sim 1,000$ cm$^{-1}$) mid-IR pulses around $3.0~\\mu\\rm m$ are generated with excellent spatio-temporal pulse quality, having up to 10.5 $\\mu$J energy (6.3% conversion). The mid-IR pulses are dispersive waves phase-matched to near-IR self-defocusing solitons created by the induced self-defocusing cascaded nonlinearity. This process is filament-free and the input pulse energy can therefore be scaled arbitrarily by using large-aperture crystals. The technique can readily be implemented with other crystals and la...

  6. Switching behaviour of nonlinear Mach–Zehnder interferometer based on photonic crystal geometry

    Indian Academy of Sciences (India)

    Man Mohan Gupta; S Medhekar

    2014-06-01

    Nonlinear Mach–Zehnder interferometer (NMZI) created with photonic crystal waveguides (PCW) and with Kerr-type nonlinearity has been investigated in this paper. The NMZI has been simulated using two-dimensional finite difference time domain (2D-FDTD) method. Input verses output (I/O) characteristics have been obtained for different lengths of the nonlinear arm, nonlinear coefficients of the nonlinear arm, wavelengths of the input beam, sizes of defect rods and NMZI offset. The results obtained are compared with earlier published results of NMZI created with conventional step index waveguides (SIW). It is shown that all useful features of light switching offered by SIW-based NMZIs are also possible with PCW-based NMZIs of extremely small dimensions. Moreover, PCW-based NMZIs offer additional useful feature not available with SIW-based NMZIs.

  7. Observation of optical-fiber Kerr nonlinearity at the single-photon level

    CERN Document Server

    Matsuda, Nobuyuki; Mitsumori, Yasuyoshi; Kosaka, Hideo; Edamatsu, Keiichi; 10.1038/nphoton.2008.292

    2012-01-01

    Optical fibers have been enabling numerous distinguished applications involving the operation and generation of light, such as soliton transmission, light amplification, all-optical switching and supercontinuum generation. The active function of optical fibers in the quantum regime is expected to be applicable to ultralow-power all-optical signal processing and quantum information processing. Here we demonstrate the first experimental observation of optical nonlinearity at the single-photon level in an optical fiber. Taking advantage of large nonlinearity and managed dispersion of a photonic crystal fiber, we have successfully measured very small (10^(-7) ~ 10^(-8)) conditional phase shifts induced by weak coherent pulses that contain one or less than one photon per pulse on average. In spite of its tininess, the phase shift was measurable using much (~10^6 times) stronger coherent probe pulses than the pump pulses. We discuss the feasibility of quantum information processing using optical fibers, taking into...

  8. Micro-/nanoscale multi-field coupling in nonlinear photonic devices

    Science.gov (United States)

    Yang, Qing; Wang, Yubo; Tang, Mingwei; Xu, Pengfei; Xu, Yingke; Liu, Xu

    2017-08-01

    The coupling of mechanics/electronics/photonics may improve the performance of nanophotonic devices not only in the linear region but also in the nonlinear region. This review letter mainly presents the recent advances on multi-field coupling in nonlinear photonic devices. The nonlinear piezoelectric effect and piezo-phototronic effects in quantum wells and fibers show that large second-order nonlinear susceptibilities can be achieved, and second harmonic generation and electro-optic modulation can be enhanced and modulated. Strain engineering can tune the lattice structures and induce second order susceptibilities in central symmetry semiconductors. By combining the absorption-based photoacoustic effect and intensity-dependent photobleaching effect, subdiffraction imaging can be achieved. This review will also discuss possible future applications of these novel effects and the perspective of their research. The review can help us develop a deeper knowledge of the substance of photon-electron-phonon interaction in a micro-/nano- system. Moreover, it can benefit the design of nonlinear optical sensors and imaging devices with a faster response rate, higher efficiency, more sensitivity and higher spatial resolution which could be applied in environmental detection, bio-sensors, medical imaging and so on.

  9. Nonlinear processes upon two-photon interband picosecond excitation of PbWO4 crystal

    Science.gov (United States)

    Lukanin, V. I.; Karasik, A. Ya

    2016-09-01

    A new experimental method is proposed to study the dynamics of nonlinear processes occurring upon two-photon interband picosecond excitation of a lead tungstate crystal and upon its excitation by cw probe radiation in a temporal range from several nanoseconds to several seconds. The method is applied to the case of crystal excitation by a sequence of 25 high-power picosecond pulses with a wavelength of 523.5 nm and 633-nm cw probe radiation. Measuring the probe beam transmittance during crystal excitation, one can investigate the influence of two-photon interband absorption and the thermal nonlinearity of the refractive index on the dynamics of nonlinear processes in a wide range of times (from several nanoseconds to several seconds). The time resolution of the measuring system makes it possible to distinguish fast and slow nonlinear processes of electronic or thermal nature, including the generation of a thermal lens and thermal diffusion. An alternative method is proposed to study the dynamics of induced absorption transformation and, therefore, the dynamics of the development of nonlinear rocesses upon degenerate two-photon excitation of the crystal in the absence of external probe radiation.

  10. Design of an efficient terahertz source using triply resonant nonlinear photonic crystal cavities.

    Science.gov (United States)

    Burgess, Ian B; Zhang, Yinan; McCutcheon, Murray W; Rodriguez, Alejandro W; Bravo-Abad, Jorge; Johnson, Steven G; Loncar, Marko

    2009-10-26

    We propose a scheme for efficient cavity-enhanced nonlinear THz generation via difference-frequency generation (DFG) processes using a triply resonant system based on photonic crystal cavities. We show that high nonlinear overlap can be achieved by coupling a THz cavity to a doubly-resonant, dual-polarization near-infrared (e.g. telecom band) photonic-crystal nanobeam cavity, allowing the mixing of three mutually orthogonal fundamental cavity modes through a chi((2)) nonlinearity. We demonstrate through coupled-mode theory that complete depletion of the pump frequency - i.e., quantum-limited conversion - is possible. We show that the output power at the point of optimal total conversion efficiency is adjustable by varying the mode quality (Q) factors.

  11. Hollow Gaussian beam generation through nonlinear interaction of photons with orbital-angular-momemtum

    CERN Document Server

    Chaitanya, N Apurv; Banerji, J; Samanta, G K

    2016-01-01

    Hollow Gaussian beams (HGB) are a special class of doughnut shaped beams that do not carry orbital angular momentum (OAM). Such beams have a wide range of applications in many fields including atomic optics, bio-photonics, atmospheric science, and plasma physics. Till date, these beams have been generated using linear optical elements. Here, we show a new way of generating HGBs by three-wave mixing in a nonlinear crystal. Based on nonlinear interaction of photons having OAM and conservation of OAM in nonlinear processes, we experimentally generated ultrafast HGBs of order as high as 6 and power >180 mW at 355 nm. This generic concept can be extended to any wavelength, timescales (continuous-wave and ultrafast) and any orders. We show that the removal of azimuthal phase of vortices does not produce Gaussian beam. We also propose a new and only method to characterize the order of the HGBs.

  12. Hollow Gaussian beam generation through nonlinear interaction of photons with orbital angular momentum

    Science.gov (United States)

    Chaitanya, N. Apurv; Jabir, M. V.; Banerji, J.; Samanta, G. K.

    2016-09-01

    Hollow Gaussian beams (HGB) are a special class of doughnut shaped beams that do not carry orbital angular momentum (OAM). Such beams have a wide range of applications in many fields including atomic optics, bio-photonics, atmospheric science, and plasma physics. Till date, these beams have been generated using linear optical elements. Here, we show a new way of generating HGBs by three-wave mixing in a nonlinear crystal. Based on nonlinear interaction of photons having OAM and conservation of OAM in nonlinear processes, we experimentally generated ultrafast HGBs of order as high as 6 and power >180 mW at 355 nm. This generic concept can be extended to any wavelength, timescales (continuous-wave and ultrafast) and any orders. We show that the removal of azimuthal phase of vortices does not produce Gaussian beam. We also propose a new and only method to characterize the order of the HGBs.

  13. Nonlinear Silicon Photonic Signal Processing Devices for Future Optical Networks

    Directory of Open Access Journals (Sweden)

    Cosimo Lacava

    2017-01-01

    Full Text Available In this paper, we present a review on silicon-based nonlinear devices for all optical nonlinear processing of complex telecommunication signals. We discuss some recent developments achieved by our research group, through extensive collaborations with academic partners across Europe, on optical signal processing using silicon-germanium and amorphous silicon based waveguides as well as novel materials such as silicon rich silicon nitride and tantalum pentoxide. We review the performance of four wave mixing wavelength conversion applied on complex signals such as Differential Phase Shift Keying (DPSK, Quadrature Phase Shift Keying (QPSK, 16-Quadrature Amplitude Modulation (QAM and 64-QAM that dramatically enhance the telecom signal spectral efficiency, paving the way to next generation terabit all-optical networks.

  14. Strong nonlinear photonic responses from microbiologically synthesized tellurium nanocomposites

    Science.gov (United States)

    Liao, K.-S.; Wang, Jingyuan; Dias, S.; Dewald, J.; Alley, N.J.; Baesman, S.M.; Oremland, R.S.; Blau, W.J.; Curran, S.A.

    2010-01-01

    A new class of nanomaterials, namely microbiologically-formed nanorods composed of elemental tellurium [Te(0)] that forms unusual nanocomposites when combined with poly(m-phenylenevinylene-co-2,5-dioctoxy-phenylenevinylene) (PmPV) is described. These bio-nanocomposites exhibit excellent broadband optical limiting at 532 and 1064 nm. Nonlinear scattering, originating from the laser induced solvent bubbles and microplasmas, is responsible for this nonlinear behavior. The use of bacterially-formed Te(0) when combined with an organic chemical host (e.g., PmPV) is a new green method of nanoparticle syntheses. This opens the possibilities of using unique, biologically synthesized materials to advance future nanoelectronic and nanophotonic applications. ?? 2009 Elsevier B.V. All rights reserved.

  15. Waveguide quantum electrodynamics - nonlinear physics at the few-photon level

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Michael; Sproll, Tobias; Martens, Christoph [Max-Born-Institut, Max-Born-Str. 2A, 12489 Berlin (Germany); Schmitteckert, Peter [Institut fuer Nanotechnologie, Karlsruher Institut fuer Technologie (KIT), 76344 Eggenstein-Leopoldshafen (Germany); Busch, Kurt [Max-Born-Institut, Max-Born-Str. 2A, 12489 Berlin (Germany); Humboldt-Universitaet zu Berlin, Institut fuer Physik, AG Theoretische Optik und Photonik, Newtonstr. 15, 12489 Berlin (Germany)

    2014-07-01

    The transport of few photons in 1D structures coupled to a fermionic impurity gives rise to a set of non-linear effects, induced by an effective interaction due to Pauli blocking such as photon bunching and the formation of atom-photon bound states. We analyze a specific example of such systems, namely a 1-D waveguide coupled to a 2-level system, for the case of one and two-photon transport. Therefore we have developed a general theoretical framework, which contains analytic approaches originating in methods of quantum field theory, like path integrals and Feynman diagrams as well as powerful numerical tools based on solving the time-dependent Schroedinger equation. Owing its generality, our approach is also applicable to more involved setups, including disorder and dissipation as well as more complicated impurities such as driven and undriven 3-level systems.

  16. Nonlinear photon-assisted tunneling transport in optical gap antennas.

    Science.gov (United States)

    Stolz, Arnaud; Berthelot, Johann; Mennemanteuil, Marie-Maxime; Colas des Francs, Gérard; Markey, Laurent; Meunier, Vincent; Bouhelier, Alexandre

    2014-05-14

    We introduce strongly coupled optical gap antennas to interface optical radiation with current-carrying electrons at the nanoscale. The transducer relies on the nonlinear optical and electrical properties of an optical gap antenna operating in the tunneling regime. We discuss the underlying physical mechanisms controlling the conversion involving d-band electrons and demonstrate that a simple two-wire optical antenna can provide advanced optoelectronic functionalities beyond tailoring the electromagnetic response of a single emitter. Interfacing an electronic command layer with a nanoscale optical device may thus be facilitated by the optical rectennas discussed here.

  17. Exploiting the optical quadratic nonlinearity of zincblende semiconductors for guided-wave terahertz generation: a material comparison

    CERN Document Server

    Cherchi, Matteo; Busacca, Alessandro C; Oliveri, Roberto L; Bivona, Saverio; Cino, Alfonso C; Stivala, Salvatore; Sanseverino, Stefano Riva; Leone, Claudio

    2009-01-01

    We present a detailed analysis and comparison of dielectric waveguides made of CdTe, GaP, GaAs and InP for modal phase matched optical difference frequency generation (DFG) in the terahertz domain. From the form of the DFG equations, we derived the definition of a very general figure of merit (FOM). In turn, this FOM enabled us to compare different configurations, by taking into account linear and nonlinear susceptibility dispersion, terahertz absorption, and a rigorous evaluation of the waveguide modes properties. The most efficient waveguides found with this procedure are predicted to approach the quantum efficiency limit with input optical power in the order of kWs.

  18. Nonlinear neutrino-photon interactions inside strong laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Meuren, Sebastian; Keitel, Christoph H.; Di Piazza, Antonino [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany)

    2016-07-01

    As different neutrino mass eigenstates exist, only the lightest neutrino is absolutely stable. However, due to the small phase space and the GIM suppression mechanism the radiative neutrino lifetime is much larger than the age of the universe. Interestingly, the photon-emission probability by a neutrino is drastically increased in the presence of an external background field. Therefore, it is natural to ask the question whether this so-called ''electromagnetic catalysis'' could be studied in an laboratory experiment using existing and upcoming laser facilities. To shed light on this question, we derive the vector-axialvector coupling tensor in the presence of an arbitrary plane-wave background field, which is needed for the calculation of the radiative neutrino decay. Furthermore, we study the Adler-Bell-Jackiw anomaly associated with this object in detail.

  19. Kerr nonlinearity and multi-photon absorption in germanium at mid-infrared wavelengths

    Science.gov (United States)

    Sohn, B.-U.; Monmeyran, C.; Kimerling, L. C.; Agarwal, A. M.; Tan, D. T. H.

    2017-08-01

    Multiphoton absorption coefficients and nonlinear refractive indices of germanium in the near and mid-infrared (2-5 μm) are reported. The nonlinear coefficients are measured by open and closed aperture Z-scan with 150 fs pulses at a repetition rate of 1 kHz. The nonlinear refractive index of Ge has a peak value of 9.1 ×10-5cm2/GW at a wavelength of 3 μm. The effect of free electrons generated by multiphoton absorption is discussed by investigating the variation of multiphoton absorption coefficients at different input powers. Kramers-Kronig relations are also discussed with regard to the relationship between nonlinear refractive index and two photon absorption coefficient.

  20. Highly non-linear solid core photonic crystal fiber with one nano hole

    Science.gov (United States)

    Gangwar, Rahul Kumar; Bhardwaj, Vanita; Singh, Vinod Kumar

    2015-08-01

    The numerical study of newly designed solid core photonic crystal fiber (SCPCF) having three hexagonal air hole rings in cladding region and one small nano hole at the center are presented. By using full vectorial finite element method (FV-FEM), we analyses the optical properties like effective area, nonlinearity and confinement loss of the proposed PCF. Results show that the change in core diameter controls the effective area, nonlinearity and confinement loss. A low effective area (3.34 µm2), high nonlinearity (36.34 W-1km-1) and low confinement loss (0.00106 dB/km) are achieved at the communication wavelength 1.55 µm for the SCPCF having core air hole diameter 0.10 µm, cladding air holes diameter 1.00 µm and pitch 2.50 µm. This type of PCF is very useful in non-linear applications such as supercontinuum generation, four wave mixing, second harmonic generation etc.

  1. A sequential quadratically constrained quadratic programming method with an augmented Lagrangian line search function

    Science.gov (United States)

    Tang, Chun-Ming; Jian, Jin-Bao

    2008-10-01

    Based on an augmented Lagrangian line search function, a sequential quadratically constrained quadratic programming method is proposed for solving nonlinearly constrained optimization problems. Compared to quadratic programming solved in the traditional SQP methods, a convex quadratically constrained quadratic programming is solved here to obtain a search direction, and the Maratos effect does not occur without any other corrections. The "active set" strategy used in this subproblem can avoid recalculating the unnecessary gradients and (approximate) Hessian matrices of the constraints. Under certain assumptions, the proposed method is proved to be globally, superlinearly, and quadratically convergent. As an extension, general problems with inequality and equality constraints as well as nonmonotone line search are also considered.

  2. Nonreciprocal transmission in a nonlinear photonic-crystal Fano structure with broken symmetry

    DEFF Research Database (Denmark)

    Yu, Yi; Chen, Yaohui; Hu, Hao;

    2015-01-01

    Nanostructures that feature nonreciprocal light trans- mission are highly desirable building blocks for realizing photonic integrated circuits. Here, a simple and ultracompact photonic-crystal structure, where a waveguide is coupled to a single nanocavity, is proposed and experimentally demon- st...... tunability. The nonlinearity of the device relies on ultrafast carrier dynamics, rather than the thermal effects usually considered, allowing the demonstration of nonreciprocal operation at a bit-rate of 10 Gbit s − 1 with a low energy consumption of 4.5 fJ bit − 1...

  3. Effects of noninstantaneous nonlinear processes on photon-pair generation by spontaneous four-wave mixing

    DEFF Research Database (Denmark)

    Koefoed, Jacob Gade; Christensen, Jesper Bjerge; Rottwitt, Karsten

    2017-01-01

    We present a general model, based on a Hamiltonian approach, for the joint quantum state of photon pairs generated through pulsed spontaneous four-wave mixing, including nonlinear phase modulation and a finite material response time. For the case of a silica fiber, it is found that the pair......-dependent change in quantum-mechanical purity may be observed in silica. This shows that Raman scattering not only introduces noise, but can also drastically change the spectral correlations in photon pairs when pumped with short pulses....

  4. Spectral transformations in the regime of pulse self-trapping in a nonlinear photonic crystal

    CERN Document Server

    Novitsky, Denis

    2011-01-01

    We consider interaction of a femtosecond light pulse with a one-dimensional photonic crystal with relaxing cubic nonlinearity in the regime of self-trapping. By use of numerical simulations, it is shown that, under certain conditions, the spectra of reflected and transmitted light possess the properties of narrow-band (quasi-monochromatic) or wide-band (continuum-like) radiation. It is remarkable that these spectral features appear due to a significant frequency shift and occur inside a photonic band gap of the structure under investigation.

  5. Generation of spatially pure photon pairs in a multimode nonlinear waveguide using intermodal dispersion

    CERN Document Server

    Karpinski, Michal; Banaszek, Konrad

    2012-01-01

    We present experimental realization of type-II spontaneous parametric down-conversion in a periodically poled potassium titanyl phosphate (KTiOPO4) nonlinear waveguide. We demonstrate that by careful exploitation of intermodal dispersion in the waveguide it is feasible to produce photon pairs in well defined transverse modes without any additional spatial filtering at the output. Spatial characteristics is verified by measurements of the M2 beam quality factors. We also prepared a postselected polarization-entangled two-photon state shown to violate Bell's inequality. Similar techniques based on intermodal dispersion can be used to generate spatial entanglement and hyperentanglement.

  6. Silicon Photonics Research in Hong Kong: Microresonator Devices and Optical Nonlinearities

    Science.gov (United States)

    Poon, Andrew W.; Zhou, Linjie; Xu, Fang; Li, Chao; Chen, Hui; Liang, Tak-Keung; Liu, Yang; Tsang, Hon K.

    In this review paper we showcase recent activities on silicon photonics science and technology research in Hong Kong regarding two important topical areas-microresonator devices and optical nonlinearities. Our work on silicon microresonator filters, switches and modulators have shown promise for the nascent development of on-chip optoelectronic signal processing systems, while our studies on optical nonlinearities have contributed to basic understanding of silicon-based optically-pumped light sources and helium-implanted detectors. Here, we review our various passive and electro-optic active microresonator devices including (i) cascaded microring resonator cross-connect filters, (ii) NRZ-to-PRZ data format converters using a microring resonator notch filter, (iii) GHz-speed carrier-injection-based microring resonator modulators and 0.5-GHz-speed carrier-injection-based microdisk resonator modulators, and (iv) electrically reconfigurable microring resonator add-drop filters and electro-optic logic switches using interferometric resonance control. On the nonlinear waveguide front, we review the main nonlinear optical effects in silicon, and show that even at fairly modest average powers two-photon absorption and the accompanied free-carrier linear absorption could lead to optical limiting and a dramatic reduction in the effective lengths of nonlinear devices.

  7. Simulation of nonlinear benchmarks and sheet metal forming processes using linear and quadratic solid–shell elements combined with advanced anisotropic behavior models

    Directory of Open Access Journals (Sweden)

    WangPeng

    2016-01-01

    Full Text Available A family of prismatic and hexahedral solid‒shell (SHB elements with their linear and quadratic versions is presented in this paper to model thin 3D structures. Based on reduced integration and special treatments to eliminate locking effects and to control spurious zero-energy modes, the SHB solid‒shell elements are capable of modeling most thin 3D structural problems with only a single element layer, while describing accurately the various through-thickness phenomena. In this paper, the SHB elements are combined with fully 3D behavior models, including orthotropic elastic behavior for composite materials and anisotropic plastic behavior for metallic materials, which allows describing the strain/stress state in the thickness direction, in contrast to traditional shell elements. All SHB elements are implemented into ABAQUS using both standard/quasi-static and explicit/dynamic solvers. Several benchmark tests have been conducted, in order to first assess the performance of the SHB elements in quasi-static and dynamic analyses. Then, deep drawing of a hemispherical cup is performed to demonstrate the capabilities of the SHB elements in handling various types of nonlinearities (large displacements and rotations, anisotropic plasticity, and contact. Compared to classical ABAQUS solid and shell elements, the results given by the SHB elements show good agreement with the reference solutions.

  8. A 3-D Novel Highly Chaotic System with Four Quadratic Nonlinearities, its Adaptive Control and Anti-Synchronization with Unknown Parameters

    Directory of Open Access Journals (Sweden)

    S. Vaidyanathan

    2014-11-01

    Full Text Available This research work proposes a seven-term 3-D novel dissipative chaotic system with four quadratic nonlinearities. The Lyapunov exponents of the 3-D novel chaotic system are obtained as L1 = 11.36204, L2 = 0 and L3 = –47.80208. Since the sum of the Lyapunov exponents is negative, the 3-D novel chaotic system is dissipative. Also, the Kaplan-Yorke dimension of the 3-D novel chaotic system is obtained as DKY = 2.23769. The maximal Lyapunov exponent (MLE of the novel chaotic system is L1 = 11.36204, which is a large value for a polynomial chaotic system. Thus, the proposed 3-D novel chaotic system is highly chaotic. The phase portraits of the novel chaotic system simulated using MATLAB depict the highly chaotic attractor of the novel system. This research work also discusses other qualitative properties of the system. Next, an adaptive controller is designed to stabilize the 3-D novel chaotic system with unknown parameters. Also, an adaptive synchronizer is designed to achieve anti-synchronization of the identical 3-D novel chaotic systems with unknown parameters. The adaptive results derived in this work are established using Lyapunov stability theory. MATLAB simulations have been shown to illustrate and validate all the main results derived in this work.

  9. Removal of ordering ambiguity for a class of position dependent mass quantum systems with an application to the quadratic Liénard type nonlinear oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Chithiika Ruby, V.; Senthilvelan, M.; Lakshmanan, M. [Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirapalli 620 024 (India); Chandrasekar, V. K. [Centre for Nonlinear Science and Engineering, School of Electrical and Electronics Engineering, SASTRA University, Thanjavur 613 401 (India)

    2015-01-15

    We consider the problem of removal of ordering ambiguity in position dependent mass quantum systems characterized by a generalized position dependent mass Hamiltonian which generalizes a number of Hermitian as well as non-Hermitian ordered forms of the Hamiltonian. We implement point canonical transformation method to map one-dimensional time-independent position dependent mass Schrödinger equation endowed with potentials onto constant mass counterparts which are considered to be exactly solvable. We observe that a class of mass functions and the corresponding potentials give rise to solutions that do not depend on any particular ordering, leading to the removal of ambiguity in it. In this case, it is imperative that the ordering is Hermitian. For non-Hermitian ordering, we show that the class of systems can also be exactly solvable and is also shown to be iso-spectral using suitable similarity transformations. We also discuss the normalization of the eigenfunctions obtained from both Hermitian and non-Hermitian orderings. We illustrate the technique with the quadratic Liénard type nonlinear oscillators, which admit position dependent mass Hamiltonians.

  10. Giant kerr nonlinearity, controlled entangled photons and polarization phase gates in coupled quantum-well structures.

    Science.gov (United States)

    Zhu, Chengjie; Huang, Guoxiang

    2011-11-07

    We study linear and nonlinear propagations of probe and signal pulses in a multiple quantum-well structure with a four-level, double Λ-type configuration. We show that slow, mutually matched group velocities and giant Kerr nonlinearity of the probe and the signal pulses may be achieved with nearly vanishing optical absorption. Based on these properties we demonstrate that two-qubit quantum polarization phase gates can be constructed and highly entangled photon pairs may be produced. In addition, we show that coupled slow-light soliton pairs with very low generation power can be realized in the system.

  11. Progress Toward Single-Photon-Level Nonlinear Optics in Crystalline Microcavities

    Science.gov (United States)

    Kowligy, Abijith S.

    Over the last two decades, the emergence of quantum information science has uncovered many practical applications in areas such as communications, imaging, and sensing where harnessing quantum features of Nature provides tremendous benefits over existing methods exploiting classical physical phenomena. In this effort, one of the frontiers of research has been to identify and utilize quantum phenomena that are not susceptible to environmental and parasitic noise processes. Quantum photonics has been at the forefront of these studies because it allows room-temperature access to its inherently quantum-mechanical features, and allows leveraging the mature telecommunication industry. Accompanying the weak environmental influence, however, are also weak optical nonlinearities. Efficient nonlinear optical interactions are indispensible for many of the existing protocols for quantum optical computation and communication, e.g. high-fidelity entangling quantum logic gates rely on large nonlinear responses at the one- or few-photon-level. While this has been addressed to a great extent by interfacing photons with single quantum emitters and cold atomic gases, scalability has remained elusive. In this work, we identify the macroscopic second-order nonlinear polarization as a robust platform to address this challenge, and utilize the recent advances in the burgeoning field of optical microcavities to enhance this nonlinear response. In particular, we show theoretically that by using the quantum Zeno effect, low-noise, single-photon-level optical nonlinearities can be realized in lithium niobate whispering-gallery-mode microcavities, and present experimental progress toward this goal. Using the measured strength of the second-order nonlinear response in lithium niobate, we modeled the nonlinear system in the strong coupling regime using the Schrodinger picture framework and theoretically demonstrated that the single-photon-level operation can be observed for cavity lifetimes in

  12. Energy Squeeze of Ultrashort Light Pulse by Kerr Nonlinear Photonic Crystals

    Institute of Scientific and Technical Information of China (English)

    LIU Ye; ZHOU Fei; ZHANG Dao-Zhong; LI Zhi-Yuan

    2009-01-01

    Self-phase modulation can efficiently shape the spectrum of an optical pulse propagating along an optical material with Kerr nonlinearity. In this work we show that a one-dimensional Kerr nonlinear photonic crystal can impose anomalous spectrum modulation to a high-power ultrashort light pulse. The spectrum component at the photonic band gap edge can be one order of magnitude enhanced in addition to the ordinary spectrum broadening due to self-phase modulation. The enhancement is strictly pinned at the band gap edge by changing the sample length, the intensity or central wavelength of the incident pulse. The phenomenon is attributed to band gap induced enhancement of light-matter interaction.

  13. Nonlinear effects in photoionization over a broad photon-energy range within the TDCIS scheme

    Science.gov (United States)

    Karamatskou, Antonia

    2017-01-01

    The present tutorial provides an overview of the time-dependent configuration interaction singles scheme applied to nonlinear ionization over a broad photon-energy range. The efficient propagation of the wave function and the calculation of photoelectron spectra within this approach are described and demonstrated in various applications. Above-threshold ionization of argon and xenon in the extreme ultraviolet energy range is investigated as an example. A particular focus is put on the xenon 4d giant dipole resonance and the information that nonlinear ionization can provide about resonance substructure. Furthermore, above-threshold ionization is studied in the x-ray regime and the intensity regime, at which multiphoton ionization starts to play a role at hard x-ray photon energies, is identified.

  14. Wave propagation in photonic crystals and metamaterials: Surface waves, nonlinearity and chirality

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bingnan [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Photonic crystals and metamaterials, both composed of artificial structures, are two interesting areas in electromagnetism and optics. New phenomena in photonic crystals and metamaterials are being discovered, including some not found in natural materials. This thesis presents my research work in the two areas. Photonic crystals are periodically arranged artificial structures, mostly made from dielectric materials, with period on the same order of the wavelength of the working electromagnetic wave. The wave propagation in photonic crystals is determined by the Bragg scattering of the periodic structure. Photonic band-gaps can be present for a properly designed photonic crystal. Electromagnetic waves with frequency within the range of the band-gap are suppressed from propagating in the photonic crystal. With surface defects, a photonic crystal could support surface modes that are localized on the surface of the crystal, with mode frequencies within the band-gap. With line defects, a photonic crystal could allow the propagation of electromagnetic waves along the channels. The study of surface modes and waveguiding properties of a 2D photonic crystal will be presented in Chapter 1. Metamaterials are generally composed of artificial structures with sizes one order smaller than the wavelength and can be approximated as effective media. Effective macroscopic parameters such as electric permittivity ϵ, magnetic permeability μ are used to characterize the wave propagation in metamaterials. The fundamental structures of the metamaterials affect strongly their macroscopic properties. By designing the fundamental structures of the metamaterials, the effective parameters can be tuned and different electromagnetic properties can be achieved. One important aspect of metamaterial research is to get artificial magnetism. Metallic split-ring resonators (SRRs) and variants are widely used to build magnetic metamaterials with effective μ < 1 or even μ < 0. Varactor based

  15. Single-Photon Nonlinear Optics in Integrated Hollow-Core Waveguides

    Science.gov (United States)

    2010-10-13

    for achieving the effective EIT as well as other nonlinear optics phenomena that rely on large optical depth. Here, we introduced a technique to...there is an interesting threshold phenomena with the increase of 194 195 signal power and after this threshold, the efficiency of idler generation...34, Optics Letters, 21, 1936-38, (1996). 27. V. Bali , D. A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris, “Generation of Paired Photons with

  16. Analytical solitary wave solutions of the nonlinear Kronig-Penney model in photonic structures.

    Science.gov (United States)

    Kominis, Y

    2006-06-01

    A phase space method is employed for the construction of analytical solitary wave solutions of the nonlinear Kronig-Penney model in a photonic structure. This class of solutions is obtained under quite generic conditions, while the method is applicable to a large variety of systems. The location of the solutions on the spectral band gap structure as well as on the low dimensional space of system's conserved quantities is studied, and robust solitary wave propagation is shown.

  17. Nonlinearity management of photonic composites and observation of spatial-modulation instability due to quintic nonlinearity

    CERN Document Server

    Reyna, Albert S

    2014-01-01

    We present a procedure for nonlinearity management of metal-dielectric composites. Varying the volume fraction occupied by silver nanoparticles suspended in acetone we could cancel the refractive index related to the third-order susceptibility, $\\chi_{eff}^{(3)}$, and the nonlinear refraction behavior was due to the fifth-order susceptibility, $\\chi_{eff}^{(5)}$. Hence, in a cross-phase modulation experiment, we demonstrated for the first time the effect of spatial-modulation- instability due to $\\chi_{eff}^{(5)}$. The results are corroborated with numerical calculations based on a generalized Maxwell-Garnet model.

  18. New approaches for the fabrication of photonic structures of nonlinear optical materials

    Energy Technology Data Exchange (ETDEWEB)

    Carvajal, J.J., E-mail: joanjosep.carvajal@urv.ca [Fisica i Cristal lografia de Materials i Nanomaterials (FiCMA-FiCNA), Univ. Rovira i Virgili (URV), Campus Sescelades, Marcel li Domingo, s/n, E-43007 Tarragona (Spain); Pena, A.; Kumar, R.; Pujol, M.C.; Mateos, X.; Aguilo, M. [Fisica i Cristal lografia de Materials i Nanomaterials (FiCMA-FiCNA), Univ. Rovira i Virgili (URV), Campus Sescelades, Marcel li Domingo, s/n, E-43007 Tarragona (Spain); Diaz, F., E-mail: f.diaz@urv.ca [Fisica i Cristal lografia de Materials i Nanomaterials (FiCMA-FiCNA), Univ. Rovira i Virgili (URV), Campus Sescelades, Marcel li Domingo, s/n, E-43007 Tarragona (Spain); Vazquez de Aldana, J.R.; Mendez, C.; Moreno, P.; Roso, L. [Servicio Laser, Univ. Salamanca, E-37008 Salamanca (Spain); Trifonov, T.; Rodriguez, A.; Alcubilla, R. [Dept. Enginyeria Electronica, Univ. Politecnica de Catalunya, E-08034 Barcelona (Spain); Kral, Z.; Ferre-Borrull, J.; Pallares, J.; Marsal, L.F. [Dept. d' Enginyeria Electronica, Univ. Rovira i Virgili (URV), E-43007 Tarragona (Spain); Di Finizio, S.; Macovez, R. [ICFO-Institut de Ciencies Fotoniques, E-08860 Castelldefels (Spain)

    2009-12-15

    We revisited two different strategies to fabricate 1D photonic crystals of nonlinear optical dielectric materials based on ultrafast laser ablation of the surface of an RbTiOPO{sub 4} crystal, and selective etching of ferroelectric domains of the surface of a periodically poled LiNbO{sub 4} crystal. We evaluated their behaviour as Bragg diffraction gratings. We also presented the recent advances we developed in a new procedure of fabrication of 2D and 3D photonic crystals of KTiOPO{sub 4} (KTP) grown on the surface of a KTP substrate by liquid phase epitaxial means within the pores of a silicon macroporous template. Optical, structural, morphological, and compositional characterization for the photonic crystals produced through this technique are presented.

  19. Generating a four-photon polarization-entangled cluster state with homodyne measurement via cross-Kerr nonlinearity

    Institute of Scientific and Technical Information of China (English)

    Su Shi-Lei; Wang Yuan; Guo Qi; Wang Hong-Fu; Zhang Shou

    2012-01-01

    We propose a protocol to generate a four-photon polarization-entangled cluster state with cross-Kerr nonlinearity by using the interference of polarized photons. The protocol is based on optical elements,cross-Kerr nonlinearity,and homodyne measurement,therefore it is feasible with current experimental technology.The success probability of our protocol is optimal,this property makes our protocol more efficient than others in the applications of quantum communication.

  20. Nonlinear two-dimensional terahertz photon echo and rotational spectroscopy in the gas phase

    CERN Document Server

    Lu, Jian; Hwang, Harold Y; Ofori-Okai, Benjamin K; Fleischer, Sharly; Nelson, Keith A

    2016-01-01

    Ultrafast two-dimensional spectroscopy utilizes correlated multiple light-matter interactions for retrieving dynamic features that may otherwise be hidden under the linear spectrum. Its extension to the terahertz regime of the electromagnetic spectrum, where a rich variety of material degrees of freedom reside, remains an experimental challenge. Here we report ultrafast two-dimensional terahertz spectroscopy of gas-phase molecular rotors at room temperature. Using time-delayed terahertz pulse pairs, we observe photon echoes and other nonlinear signals resulting from molecular dipole orientation induced by three terahertz field-dipole interactions. The nonlinear time-domain orientation signals are mapped into the frequency domain in two-dimensional rotational spectra which reveal J-state-resolved nonlinear rotational dynamics. The approach enables direct observation of correlated rotational transitions and may reveal rotational coupling and relaxation pathways in the ground electronic and vibrational state.

  1. Design of broadband nearly-zero flattened dispersion highly nonlinear photonic crystal fiber

    Institute of Scientific and Technical Information of China (English)

    Shuqin Lou; Hong Fang; Honglei Li; Tieying Guo; Lei Yao; Liwen Wang; Weiguo Chen; Shuisheng Jian

    2008-01-01

    We propose a new structure of broadband nearly-zero flattened dispersion highly nonlinear photonic crystal fiber (PCF). Through optimizing the diameters of the first two inner rings of air-holes and the GeO2 doping concentration of the core, the nonlinear coefficient is up to 47 W-1.km-1 at the wavelength of 1.55 μm and nearly-zero flattened dispersion of±0.5 ps/(nm.km) is achieved in the telecommunication window (1460 - 1625 nm). Due to the use of GeO2-doped core, this innovative structure can offer not only a large nonlinear coefficient and broadband nearly-zero flattened dispersion but also low leakage losses.

  2. Modelling a nonlinear optical switching in a standard photonic crystal fiber infiltrated with carbon disulfide

    Science.gov (United States)

    Munera, Natalia; Acuna Herrera, Rodrigo

    2016-06-01

    In this letter, a numerical analysis is developed for the propagation of ultrafast optical pulses through a standard photonic crystal fiber (PCF) consisting of two infiltrated holes using carbon disulfide (CS2). This material is a good choice since it has highly nonlinear properties, what makes it a good candidate for optical switching and broadband source at low power compared to traditional nonlinear fiber coupler. Based on supermodes theory, a set of generalized nonlinear equations is presented in order to study the propagation characteristics. It is shown in this letter that it is possible to get optical switching behavior at low power and how the dispersion, as well as, the two infiltrated holes separation influence this effect. Finally, we see that supercontinuum generation can be induced equally in both infiltrated holes despite no initial excitation at one hole.

  3. Nonlinear optomechanical paddle nanocavities

    CERN Document Server

    Kaviani, Hamidreza; Wu, Marcelo; Ghobadi, Roohollah; Barclay, Paul E

    2014-01-01

    A photonic crystal optomechanical system combining strong nonlinear optomechanical coupling, low effective mass and large optical mode spacing is introduced. This nanoscale "paddle nanocavity" device supports mechanical resonances with effective mass of 300--600 fg which couple nonlinearly to co-localized optical modes with a quadratic optomechanical coupling coefficient $g^{(2)} > 2\\pi\\times400$ MHz/nm$^2$, and a two phonon to single photon optomechanical coupling rate $\\Delta \\omega_0 > 2\\pi\\times 16$ Hz. This coupling relies on strong phonon-photon interactions in a structure whose optical mode spectrum is highly non--degenerate. Simulations indicate that nonlinear optomechanical readout of thermally driven motion in these devices should be observable for T $> 50 $ mK, and that measurement of phonon shot noise is achievable.

  4. Filter-sequence of quadratic programming method with nonlinear complementarity problem function%结合非线性互补问题函数的滤子逐次二次规划算法

    Institute of Scientific and Technical Information of China (English)

    金中; 濮定国; 张宇; 蔡力

    2008-01-01

    A mechanism for proving global convergence in filter-SQP(sequence of quadratic programming)method with the nonlinear complementarity problem(NCP)function is described for constrained nonlinear optimization problem.We introduce an NCP function into the filter and construct a new SQP-filter algorithm.Such methods are characterized by their use of the dominance concept of multi-objective optimization,instead of a penalty parameter whose adjustment can be problematic.We prove that the algorithm has global convergence and superlinear convergence rates under some mild conditions.

  5. 可行逐步二次规划方法解非线性方程组%FEASIBLE SEQUENTIAL QUADRATIC PROGRAMMING APPROACHES TO THE SYSTEM OF NONLINEAR EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    聂普焱; 彭小飞

    2004-01-01

    We transform the system of nonlinear equations into a nonlinear programming problem, which is attacked by feasible sequential quadratic programming(FSQP) method.We do not employ standard least square approach.We divide the equations into two groups. One group, which contains the equations with zero residual,is treated as equality constraints. The square of other equations is regarded as objective function. Two groups are updated in every step.Therefore, the subproblem is updated at every step, which avoids the difficulty that it is required to lie in feasible region for FSQP.

  6. Optical scattering by a nonlinear medium, II: induced photonic crystal in a nonlinear slab of BBO

    CERN Document Server

    Godard, Pierre; Nicolet, Andre

    2010-01-01

    The purpose of this paper is to investigate the scattering by a nonlinear crystal whose depth is about the wavelength of the impinging field. More precisely, an infinite nonlinear slab is illuminated by an incident field which is the sum of three plane waves of the same frequency, but with different propagation vectors and amplitudes, in such a way that the resulting incident field is periodic. Moreover, the height of the slab is of the same order of the wavelength, and therefore the so-called slowly varying envelope approximation cannot be used. In our approach we take into account some retroactions of the scattered fields between them (for instance, we do not use the nondepletion of the pump beam). As a result, a system of coupled nonlinear partial differential equations has to be solved. To do this, the finite element method (FEM) associated with perfectly matched layers is well suited. Nevertheless, when using the FEM, the sources have to be located in the meshed area, which is of course impossible when d...

  7. A high-speed demultiplexer based on a nonlinear optical loop mirror with a photonic crystal fiber

    DEFF Research Database (Denmark)

    Siahlo, Andrei; Oxenløwe, Leif Katsuo; Berg, Kim Skaalum

    2003-01-01

    A 50-m-long photonic crystal fiber with zero-dispersion wavelength at 1552 nm is used as the nonlinear medium in a nonlinear optical loop-mirror-based demultiplexer. The successful demultiplexing of an 80-Gb/s optical time-division multiplexing signal transmitted through an 80-km span of standard...

  8. Applications of High-Q Microresonators in Cavity Optomechanics and Nonlinear Photonics

    Science.gov (United States)

    Jiang, Wei C.

    Optical microresonators confining light to small volumes are indispensable for a great variety of studies and applications. This thesis is devoted to a study of cavity optomechanical and nonlinear optical phenomena in high-Q microresonators with different materials and structures. Based on that, it proposes and demonstrates several novel schemes and device platforms that exhibit great potential for various applications ranging from frequency metrology and quantum photonics, to information processing and sensing. The thesis starts with a demonstration of a high-frequency (above 1 GHz) regenerative optomechanical oscillator based on a 2-mum-radius high-Q silicon microdisk resonator in the silicon-on-insulator platform with an ultra-low threshold pump power at room temperature and atmosphere. It then continues to explore the cavity optomechanics in single-crystal lithium niobate. A compact lithium niobate microdisk optomechanical resonator with high optical and mechanical qualities, large optomechanical coupling, and high mechanical frequency is achieved, enabling the demonstration of regenerative oscillation in the ambience. Meanwhile, I propose and investigate a novel approach for single molecule detection that utilizes the optical spring effect in a high-Q coherent optomechanical oscillator to dramatically enhance the sensing resolution by orders of magnitude compared with conventional resonator-based approaches. In particular, a high-Q silica microsphere is employed to experimentally demonstrate the detection of single Bovine Serum Albumin proteins with a molecular weight of 66 kDalton at a signal-to-noise ratio of 16.8. On the other hand, the thesis focuses on the theoretical and experimental investigation of the generation of high-purity bright photon pairs in a silicon microdisk based on the cavity enhanced four-wave mixing. The device is able to produce multiple photon pairs at different wavelengths in the telecom band with a high spectral brightness of 6.24 x

  9. Silicon Photonics: All-Optical Devices for Linear and Nonlinear Applications

    Science.gov (United States)

    Driscoll, Jeffrey B.

    Silicon photonics has grown rapidly since the first Si electro-optic switch was demonstrated in 1987, and the field has never grown more quickly than it has over the past decade, fueled by milestone achievements in semiconductor processing technologies for low loss waveguides, high-speed Si modulators, Si lasers, Si detectors, and an enormous toolbox of passive and active integrated devices. Silicon photonics is now on the verge of major commercialization breakthroughs, and optical communication links remain the force driving integrated and Si photonics towards the first commercial telecom and datacom transceivers; however other potential and future applications are becoming uncovered and refined as researchers reveal the benefits of manipulating photons on the nanoscale. This thesis documents an exploration into the unique guided-wave and nonlinear properties of deeply-scaled high-index-contrast sub-wavelength Si waveguides. It is found that the tight confinement inherent to single-mode channel waveguides on the silicon-on-insulator platform lead to a rich physics, which can be leveraged for new devices extending well beyond simple passive interconnects and electro-optic devices. The following chapters will concentrate, in detail, on a number of unique physical features of Si waveguides and extend these attributes towards new and interesting devices. Linear optical properties and nonlinear optical properties are investigated, both of which are strongly affected by tight optical confinement of the guided waveguide modes. As will be shown, tight optical confinement directly results in strongly vectoral modal components, where the electric and magnetic fields of the guided modes extend into all spatial dimensions, even along the axis of propagation. In fact, the longitudinal electric and magnetic field components can be just as strong as the transverse fields, directly affecting the modal group velocity and energy transport properties since the longitudinal fields

  10. Silica-glass contribution to the effective nonlinearity of hollow-core photonic band-gap fibers.

    Science.gov (United States)

    Hensley, Christopher J; Ouzounov, Dimitre G; Gaeta, Alexander L; Venkataraman, Natesan; Gallagher, Michael T; Koch, Karl W

    2007-03-19

    We measure the effective nonlinearity of various hollow-core photonic band-gap fibers. Our findings indicate that differences of tens of nanometers in the fiber structure result in significant changes to the power propagating in the silica glass and thus in the effective nonlinearity of the fiber. These results show that it is possible to engineer the nonlinear response of these fibers via small changes to the glass structure.

  11. Model reduction of cavity nonlinear optics for photonic logic: a quasi-principal components approach

    Science.gov (United States)

    Shi, Zhan; Nurdin, Hendra I.

    2016-11-01

    Kerr nonlinear cavities displaying optical thresholding have been proposed for the realization of ultra-low power photonic logic gates. In the ultra-low photon number regime, corresponding to energy levels in the attojoule scale, quantum input-output models become important to study the effect of unavoidable quantum fluctuations on the performance of such logic gates. However, being a quantum anharmonic oscillator, a Kerr-cavity has an infinite dimensional Hilbert space spanned by the Fock states of the oscillator. This poses a challenge to simulate and analyze photonic logic gates and circuits composed of multiple Kerr nonlinearities. For simulation, the Hilbert of the oscillator is typically truncated to the span of only a finite number of Fock states. This paper develops a quasi-principal components approach to identify important subspaces of a Kerr-cavity Hilbert space and exploits it to construct an approximate reduced model of the Kerr-cavity on a smaller Hilbert space. Using this approach, we find a reduced dimension model with a Hilbert space dimension of 15 that can closely match the magnitudes of the mean transmitted and reflected output fields of a conventional truncated Fock state model of dimension 75, when driven by an input coherent field that switches between two levels. For the same input, the reduced model also closely matches the magnitudes of the mean output fields of Kerr-cavity-based AND and NOT gates and a NAND latch obtained from simulation of the full 75 dimension model.

  12. Emerging Low-Dimensional Materials for Nonlinear Optics and Ultrafast Photonics.

    Science.gov (United States)

    Liu, Xiaofeng; Guo, Qiangbing; Qiu, Jianrong

    2017-02-22

    Low-dimensional (LD) materials demonstrate intriguing optical properties, which lead to applications in diverse fields, such as photonics, biomedicine and energy. Due to modulation of electronic structure by the reduced structural dimensionality, LD versions of metal, semiconductor and topological insulators (TIs) at the same time bear distinct nonlinear optical (NLO) properties as compared with their bulk counterparts. Their interaction with short pulse laser excitation exhibits a strong nonlinear character manifested by NLO absorption, giving rise to optical limiting or saturated absorption associated with excited state absorption and Pauli blocking in different materials. In particular, the saturable absorption of these emerging LD materials including two-dimensional semiconductors as well as colloidal TI nanoparticles has recently been utilized for Q-switching and mode-locking ultra-short pulse generation across the visible, near infrared and middle infrared wavelength regions. Beside the large operation bandwidth, these ultrafast photonics applications are especially benefit from the high recovery rate as well as the facile processibility of these LD materials. The prominent NLO response of these LD materials have also provided new avenues for the development of novel NLO and photonics devices for all-optical control as well as optical circuits beyond ultrafast lasers.

  13. Extreme nonlinearities in InAs/InP nanowire gain media: the two-photon induced laser

    DEFF Research Database (Denmark)

    Capua, Amir; Kami, Ouri; Eisenstein, Gadi;

    2012-01-01

    We demonstrate a novel laser oscillation scheme in an InAs / InP wire-like quantum dash gain medium. A short optical pulse excites carriers by two photon absorption which relax to the energy levels providing gain thereby enabling laser oscillations. The nonlinear dynamic interaction is analyzed...... and quantified using multi-color pump-probe measurements and shows a highly efficient nonlinear two photon excitation process which is larger by more than an order of magnitude compared to common quantum well and bulk gain media. The dynamic response of the nonlinearly induced laser line is characterized...

  14. Nonlinear ultrafast switching based on soliton self-trapping in dual-core photonic crystal fibre

    Science.gov (United States)

    Stajanca, P.; Bugar, I.

    2016-11-01

    In this paper, we present a systematic numerical study of a novel ultrafast nonlinear switching concept based on soliton self-trapping in dual-core (DC) photonic crystal fibre (PCF). The geometrical parameters of highly-nonlinear (HN) DC microstructure are optimized with regard to desired linear and nonlinear propagation characteristics. The comparable magnitude of fibre coupling length and soliton period is identified as a key condition for presented switching concept. The optimized DC PCF design is subjected to detailed nonlinear numerical study. Complex temporal-spectral-spatial transformations of 100 fs hyperbolic secant pulse at 1550 nm in the DC PCF are studied numerically employing a model based on coupled generalized nonlinear Schrödinger equations solved by a split-step Fourier method. For the optimized DC structure, mutual interplay of solitonic and coupling processes gives rise to nonlinear switching of self-trapped soliton. The output channel (fibre core) for the generated soliton can be controlled via the input pulse energy. For vertical polarization, the optimal soliton switching with extinction ratio contrast of 32.4 dB at 10.75 mm propagation distance is achieved. Even better switching contrast of 34.8 dB can be achieved for horizontal polarization at optimal propagation distance of 10.25 mm. Besides energy-controlled soliton self-trapping switching, the fibre supports also nonlinear polarization switching with soliton switching contrast as high as 37.4 dB. The proposed fibre holds a high application potential allowing efficient ultrafast switching of sub-nanojoule pulses at over-Tb/s data rates requiring only about 1 cm fibre length.

  15. Nonlinear properties of dispersion engineered InGaP photonic wire waveguides in the telecommunication wavelength range.

    Science.gov (United States)

    Dave, Utsav D; Kuyken, Bart; Leo, François; Gorza, Simon-Pierre; Combrie, Sylvain; De Rossi, Alfredo; Raineri, Fabrice; Roelkens, Gunther

    2015-02-23

    We propose high index contrast InGaP photonic wires as a platform for the integration of nonlinear optical functions in the telecom wavelength window. We characterize the linear and nonlinear properties of these waveguide structures. Waveguides with a linear loss of 12 dB/cm and which are coupled to a single mode fiber through gratings with a -7.5 dB coupling loss are realized. From four wave mixing experiments, we extract the real part of the nonlinear parameter γ to be 475 ± 50 W(-1)m(-1) and from nonlinear transmission measurements we infer the absence of two-photon absorption and measure a three-photon absorption coefficient of (2.5 ± 0.5) x 10(-2) cm(3)GW(-2).

  16. Weak-value amplification of the nonlinear effect of a single photon

    Science.gov (United States)

    Hallaji, Matin; Feizpour, Amir; Dmochowski, Greg; Sinclair, Josiah; Steinberg, Aephraim M.

    2017-06-01

    In quantum mechanics, the concept of weak measurements allows for the description of a quantum system both in terms of the initial preparation and the final state (post-selection). This paradigm has been extensively studied theoretically and experimentally, but almost all of weak-measurement experiments carried out to date can be understood in terms of the classical (electromagnetic wave) theory of optics. Here, we present a quantum version in which the measurement apparatus deterministically entangles two distinct optical beams. We show that a single photon, when properly post-selected, can have an effect equal to that of eight photons: that is, in a system where a single photon has been calibrated to write a nonlinear phase shift of φo on a probe beam, we measure phase shifts as large as 8φo for appropriately post-selected single photons. This opens up a new regime for the study of entanglement of optical beams, as well as further investigations of the power of weak-value amplification for the measurement of small quantities.

  17. Deterministic distribution of four-photon Dicke state over an arbitrary collective-noise channel with cross-Kerr nonlinearity

    Science.gov (United States)

    Wang, Mei-Yu; Yan, Feng-Li; Gao, Ting

    2016-07-01

    We present two deterministic quantum entanglement distribution protocols for a four-photon Dicke polarization entangled state resorting to the frequency and spatial degrees of freedom, which are immune to an arbitrary collective-noise channel. Both of the protocols adopt the X homodyne measurement based on the cross-Kerr nonlinearity to complete the task of the single-photon detection with nearly unit probability in principle. After the four receivers share the photons, they add some local unitary operations to obtain a standard four-photon Dicke polarization entangled state.

  18. Compression limits in cascaded quadratic soliton compression

    DEFF Research Database (Denmark)

    Bache, Morten; Bang, Ole; Krolikowski, Wieslaw;

    2008-01-01

    Cascaded quadratic soliton compressors generate under optimal conditions few-cycle pulses. Using theory and numerical simulations in a nonlinear crystal suitable for high-energy pulse compression, we address the limits to the compression quality and efficiency.......Cascaded quadratic soliton compressors generate under optimal conditions few-cycle pulses. Using theory and numerical simulations in a nonlinear crystal suitable for high-energy pulse compression, we address the limits to the compression quality and efficiency....

  19. Cascaded quadratic soliton compression at 800 nm

    DEFF Research Database (Denmark)

    Bache, Morten; Bang, Ole; Moses, Jeffrey;

    2007-01-01

    We study soliton compression in quadratic nonlinear materials at 800 nm, where group-velocity mismatch dominates. We develop a nonlocal theory showing that efficient compression depends strongly on characteristic nonlocal time scales related to pulse dispersion.......We study soliton compression in quadratic nonlinear materials at 800 nm, where group-velocity mismatch dominates. We develop a nonlocal theory showing that efficient compression depends strongly on characteristic nonlocal time scales related to pulse dispersion....

  20. Dynamic Equations and Nonlinear Dynamics of Cascade Two-Photon Laser

    Institute of Scientific and Technical Information of China (English)

    XIE Xia; HUANG Hong-Bin; QIAN Feng; ZHANG Ya-Jun; YANG Peng; QI Guan-Xiao

    2006-01-01

    We derive equations and study nonlinear dynamics of cascade two-photon laser, in which the electromagnetic field in the cavity is driven by coherently prepared three-level atoms and classical field injected into the cavity. The dynamic equations of such a system are derived by using the technique of quantum Langevin operators, and then are studied numerically under different driving conditions. The results show thgt under certain conditions the cascade twophoton laser can generate chaotic, period doubling, periodic, stable and bistable states. Chaos can be inhibited by atomic populations, atomic coherences, and injected classical field. In addition, no chaos occurs in optical bistability.

  1. Polarization maintaining highly nonlinear photonic crystal fiber with closely lying two zero dispersion wavelengths

    Science.gov (United States)

    Hasan, Md. Rabiul; Anower, Md. Shamim; Hasan, Md. Imran

    2016-05-01

    A simple hexagonal photonic crystal fiber is proposed to simultaneously achieve ultrahigh birefringence, large nonlinear coefficient, and two zero dispersion wavelengths (ZDWs). The finite element method with circular perfectly matched layer boundary condition is used to simulate the designed structure. Simulation results show that it is possible to achieve two closely lying ZDWs of 1.08 and 1.29 μm for x-polarization with 0.88 and 1.20 μm for y-polarization modes, respectively. In addition, an ultrahigh birefringence of 3.15×10-2 and a high nonlinear coefficient of 58 W-1 km-1 are also obtained at the excitation wavelength of 1.55 μm. The proposed fiber can have important applications in supercontinuum generation, parametric amplification, four-wave mixing, and optical sensors design.

  2. Nonlinear chirped-pulse propagation and supercontinuum generation in photonic crystal fibers.

    Science.gov (United States)

    Hu, Xiaohong; Wang, Yishan; Zhao, Wei; Yang, Zhi; Zhang, Wei; Li, Cheng; Wang, Hushan

    2010-09-10

    Based on the generalized nonlinear Schrödinger equation and waveguiding properties typical of the photonic crystal fiber structure, nonlinear chirped-pulse propagation and supercontinua generation in the femtosecond and picosecond regimes are investigated numerically. The simulation results indicate that an input chirp parameter mainly affects the initial stage of spectral broadening caused by the self-phase modulation (SPM) effect. In the femtosecond regime where the SPM effect plays an important role in the process of spectral broadening, an input positive chirp can enhance the supercontinuum bandwidth through a modified pulse compression phase and a decreased propagation distance required by soliton fission. In the picosecond regime, where the SPM effect contributes less to the continuum bandwidth and four-wave mixing process or modulational instability dominates the initial stage of spectral and temporal evolution, the output spectral shape and bandwidths are less sensitive to the input chirp parameters.

  3. High Pressure Gases in Hollow Core Photonic Crystal Fiber:A New Nonlinear Medium

    CERN Document Server

    Azhar, Mohiudeen; Chang, Wonkeun; Joly, Nicolas; Russell, Philip

    2012-01-01

    The effective Kerr nonlinearity of hollow-core kagome-style photonic crystal fiber (PCF) filled with argon gas increases over 100 times when the pressure is increased from 1 to 150 bar, reaching 15 % of that of bulk silica glass, while the zero dispersion wavelength shifts from 300 to 900 nm. The group velocity dispersion of the system is uniquely pressure-tunable over a wide range while avoiding Raman scattering : absent in noble gases and having an extremely high optical damage threshold. As a result, detailed and well controlled studies of nonlinear effects can be performed, in both normal and anomalous dispersion regimes, using only a fixed-frequency pump laser. For example, the absence of Raman scattering permits clean observation, at high powers, of the interaction between a modulational instability side-band and a soliton created dispersive wave. Excellent agreement is obtained between numerical simulations and experimental results. The system has great potential for the realisation of reconfigurable s...

  4. All-optical diode effect of a nonlinear photonic crystal with a defect

    Institute of Scientific and Technical Information of China (English)

    WANG Wei-jiang; ZHOU Jin-yun; XIAO Wan-neng

    2006-01-01

    An all-optical diode behavior that uses a nonlinear one-dimensional photonic crystal (NPC) with a defect Kerr medium is numerically simulated by the use of a nonlinear finite-difference time-domain (NFDTD) method.The numerical results show that for an incident pulse with appropriate intensity and temporal width,the transmittance can be several times greater in one direction of NPC than in the opposite direction at the pulse carrier frequency. This behaves like an all-optical diode and has promising applications in some areas such as optical isolation and all-optical processing.The ways to obtain low threshold of pulse field strength to realize an all-optical diode are also analyzed in detail.

  5. Two-photon Absorption and Nonlinear Optical Properties of A New Organic Dye DEASPI

    Institute of Scientific and Technical Information of China (English)

    Guangyong ZHOU; Xiaomei WANG; Dong WANG; Chun WANG; Xian ZHAO; Zongshu SHAO; Minhua JIANG

    2001-01-01

    A new organic dye trans-4- [p-(N,N-diethylamino) styryl ]-N-methylpyridinium iodide (abbreviatedas DEASPI thereafter) with large two-photon absorption (TPA) cross section and excellent upconverted lasing properties was synthesized. The melting point and decompound point were measured to be 230℃ and 264.7℃ respectively. The molecular TPA cross section was meaThe linear and nonlinear optical properties of this dye were systematically studied. The highest net upconversion efficiency from the absorbed pump energy to the output upconverted lasing energy is as high as 18.6% at the pump energy of 2.17 mJ from a mode-locked Nd:YAG ps laser.The nonlinear transmittance at the wavelengths from 720 to 1100 nm was measured. The dye solution also shows a clear optical power limiting effect.

  6. Highly non-linear solid core photonic crystal fiber with one nano hole

    Energy Technology Data Exchange (ETDEWEB)

    Gangwar, Rahul Kumar, E-mail: rahul0889@gmail.com; Bhardwaj, Vanita, E-mail: bhardwajphy12@gmail.com; Singh, Vinod Kumar, E-mail: singh.vk.ap@ismdhanbad.co.in [Department of Applied Physics, Indian School of Mines, Dhanbad, Jharkhand (India)

    2015-08-28

    The numerical study of newly designed solid core photonic crystal fiber (SCPCF) having three hexagonal air hole rings in cladding region and one small nano hole at the center are presented. By using full vectorial finite element method (FV-FEM), we analyses the optical properties like effective area, nonlinearity and confinement loss of the proposed PCF. Results show that the change in core diameter controls the effective area, nonlinearity and confinement loss. A low effective area (3.34 µm{sup 2}), high nonlinearity (36.34 W{sup −1}km{sup −1}) and low confinement loss (0.00106 dB/km) are achieved at the communication wavelength 1.55 µm for the SCPCF having core air hole diameter 0.10 µm, cladding air holes diameter 1.00 µm and pitch 2.50 µm. This type of PCF is very useful in non-linear applications such as supercontinuum generation, four wave mixing, second harmonic generation etc.

  7. Dispersion of nonlinear refractive index in layered WS2 and WSe2 semiconductor films induced by two-photon absorption.

    Science.gov (United States)

    Dong, Ningning; Li, Yuanxin; Zhang, Saifeng; McEvoy, Niall; Zhang, Xiaoyan; Cui, Yun; Zhang, Long; Duesberg, Georg S; Wang, Jun

    2016-09-01

    Both the nonlinear absorption and nonlinear refraction properties of WS2 and WSe2 semiconductor films have been characterized by using Z-scan technique with femtosecond pulses at the wavelength of 1040 nm. It is found that these films have two-photon absorption response with the nonlinear absorption coefficient of ∼103  cm GW-1, and a dispersion of nonlinear refractive index in the WS2 films that translated from positive in the monolayer to negative in bulk materials.

  8. Solvable quadratic Lie algebras

    Institute of Scientific and Technical Information of China (English)

    ZHU; Linsheng

    2006-01-01

    A Lie algebra endowed with a nondegenerate, symmetric, invariant bilinear form is called a quadratic Lie algebra. In this paper, the author investigates the structure of solvable quadratic Lie algebras, in particular, the solvable quadratic Lie algebras whose Cartan subalgebras consist of semi-simple elements, the author presents a procedure to construct a class of quadratic Lie algebras from the point of view of cohomology and shows that all solvable quadratic Lie algebras can be obtained in this way.

  9. Experimental constraints on non-linearities induced by two-photon effects in elastic and inelastic Rosenbluth separations

    Energy Technology Data Exchange (ETDEWEB)

    Vladas Tvaskis; John Arrington; Michael Christy; Rolf Ent; Cynthia Keppel; Yongguang Liang; Grahame Vittorini

    2006-01-26

    The effects of two-photon exchange corrections, suggested to explain the difference between measurements of the proton elastic electromagnetic form factors using the polarization transfer and Rosenbluth techniques, have been studied in elastic and inelastic scattering data. Such corrections could introduce epsilon-dependent non-linearities in inelastic Rosenbluth separations, where epsilon is the virtual photon polarization parameter. It is concluded that such non-linear effects are consistent with zero for elastic, resonance, and deep-inelastic scattering for all Q{sup 2} and W{sup 2} values measured.

  10. Optimization of highly nonlinear dispersion-flattened photonic crystal fiber for supercontinuum generation

    Institute of Scientific and Technical Information of China (English)

    Zhang Ya-Ni

    2013-01-01

    A simple type of photonic crystal fiber (PCF) for supercontinuum generation is proposed for the first time.The proposed PCF is composed of a solid silica core and a cladding with square lattice uniform elliptical air holes,which offers not only a large nonlinear coefficient but also a high birefringence and low leakage losses.The PCF with nonlinear coefficient as large as 46 W-1 · km-1 at the wavelength of 1.55 μm and a total dispersion as low as ±2.5 ps.nm-1 · km-1 over an ultra-broad waveband range of the S-C-L band (wavelength from 1.46 μm to 1.625 μm) is optimized by adjusting its structure parameter,such as the lattice constant A,the air-filling fraction f,and the air-hole ellipticity η.The novel PCF with ultra-flattened dispersion,highly nonlinear coefficient,and nearly zero negative dispersion slope will offer a possibility of efficient super-continuum generation in telecommunication windows using a few ps pulses.

  11. Enhanced Nonlinear Optical Effect in Hybrid Liquid Crystal Cells Based on Photonic Crystal

    Science.gov (United States)

    Bugaychuk, Svitlana; Iljin, Andrey; Lytvynenko, Oleg; Tarakhan, Ludmila; Karachevtseva, Lulmila

    2017-07-01

    Nonlinear-optical response of photorefractive hybrid liquid crystal (LC) cells has been studied by means of dynamic holographic technique in two-wave mixing arrangement. The LC cells include nonuniform silicon substrates comprising a micrometer-range photonic crystal. A thin LC layer is set between silicon substrate and a flat glass substrate covered by a transparent (ITO) electrode. A dynamic diffraction grating was induced in the LC volume by the two-wave mixing of laser beams with simultaneous application of DC electric field to the cell. Theoretical model of Raman-Nath self-diffraction was developed. This model allows for calculation of nonlinear optical characteristics in thin samples on the base of two-wave mixing experimental data, and with taking into account light losses on absorption and/or scattering. The hybrid LC cells demonstrate strong nonlinear optical effect, prospective for many applications in electro-optical microsystems, such as SLMs, as well as in multi-channel systems.

  12. Nonlinear ionization of many-electron systems over a broad photon-energy range

    Energy Technology Data Exchange (ETDEWEB)

    Karamatskou, Antonia

    2015-11-15

    Rapid developments in laser technology and, in particular, the advances in the realm of free-electron lasers have initiated tremendous progress in both theoretical and experimental atomic, molecular and optical physics. Owing to high intensities in combination with short pulse durations we can enter the utterly nonlinear regime of light-matter interaction and study the dynamics and features of matter under extreme conditions. The capabilities of X-ray free-electron laser sources have promoted the importance of nonlinear optics also in the X-ray regime. I show in my thesis how we can exploit the nonlinear response regime to reveal hidden information about resonance structures that are not resolved in the weak-field regime. This prospect points to many applications for future investigations of various complex systems with free-electron lasers. In the present thesis the interaction of atomic closed-shell systems with ultrashort and strong laser pulses is investigated. Over a broad photon-energy range the characteristics of the atomic shell are studied with a particular focus on the nonlinear response regime and on electron correlation effects. Several computational extensions of the XCID package for multi-electron dynamics are presented and their applications in various studies are demonstrated; a completely new capability of the numerical method is realized by implementing the calculation of photoelectron spectra and by calculating eigenstates of the many-electron Hamiltonian. The field of study within the present work encompasses (1) the strong-field regime, where the question of the adiabatic character in tunneling ionization is discussed and analyzed, especially for the case of few-cycle pulses; (2) the XUV regime, in which we show for the first time that the collectivity in resonant excitation reveals new information; and (3) the (hard) x-ray regime, which is highly relevant for x-ray free-electron laser experiments, and where we show how important two-photon

  13. A Trust-region-based Sequential Quadratic Programming Algorithm

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian; Poulsen, Niels Kjølstad

    This technical note documents the trust-region-based sequential quadratic programming algorithm used in other works by the authors. The algorithm seeks to minimize a convex nonlinear cost function subject to linear inequalty constraints and nonlinear equality constraints....

  14. Evolution of Electron Phase Orbits of Multi-photon Nonlinear Compton Scattering in High Power Laser-plasma

    Institute of Scientific and Technical Information of China (English)

    HAO Dong-shan; L(U) Jian

    2005-01-01

    The evolution of the electron phase orbits based on the multi-photon nonlinear Compton scattering with the high power laser-plasma is discussed by using Kroll-Morton-Rosenbluth theory. The random evolution of the un-captured electron phase orbits from periodicity to non-periodicity is found after the energy has been exchanged between the electron and photons. With the increase of the absorbed photon number n by an electron,this evolution will be more and more intense, while which is rapidly decreased with the enhancement of the collision non-flexibility ξ and their initial speeds of the electrons and photons, but this evolution is lower than that in the high power laser field. When the electrons are captured by the laser field, the evolution is finished, and the electrons will stably transport,and the photons don't provide the energy for these electrons any more.

  15. Nonlinear photonic crystal fiber with a structured multi-component glass core for four-wave mixing and supercontinuum generation.

    Science.gov (United States)

    Tombelaine, Vincent; Labruyère, Alexis; Kobelke, Jens; Schuster, Kay; Reichel, Volker; Leproux, Philippe; Couderc, Vincent; Jamier, Raphaël; Bartelt, Hartmut

    2009-08-31

    We report about a new type of nonlinear photonic crystal fibers allowing broadband four-wave mixing and supercontinuum generation. The microstructured optical fiber has a structured core consisting of a rod of highly nonlinear glass material inserted in a silica tube. This particular structure enables four wave mixing processes with very large frequency detuning (>135 THz), which permitted the generation of a wide supercontinuum spectrum extending over 1650 nm after 2.15 m of propagation length. The comparison with results obtained from germanium-doped holey fibers confirms the important role of the rod material properties regarding nonlinear process and dispersion.

  16. Design of photonic crystal fibers with highly nonlinear glasses for four-wave-mixing based telecom applications.

    Science.gov (United States)

    Kanka, Jiri

    2008-12-08

    A fully-vectorial mode solver based on the finite element method is employed in a combination with the downhill simplex method the dispersion optimization of photonic crystal fibers made from highly nonlinear glasses. The nonlinear fibers are designed for telecom applications such as parametric amplification, wavelength conversion, ultra-fast switching and regeneration of optical signals. The optimization is carried in terms of the zero dispersion wavelength, dispersion magnitude and nonlinear coefficient and confinement loss in the wavelength range around 1.55 microm. We restrict our work to the index-guiding fiber structures a small number of hexagonally arrayed air holes.

  17. Subpicosecond pulse compression in nonlinear photonic crystal waveguides based on the formation of high-order optical solitons

    Institute of Scientific and Technical Information of China (English)

    Chen Xiong-Wen; Lin Xu-Sheng; Lan Sheng

    2005-01-01

    We investigate by numerical simulation the compression of subpicosecond pulses in two-dimensional nonlinear photonic crystal (PC) waveguides. The compression originates from the generation of high-order optical solitons through the interplay of the huge group-velocity dispersion and the enhanced self-phase modulation in nonlinear PC waveguides.Both the formation of Bragg grating solitons and gap solitons can lead to efficient pulse compression. The compression factors under different excitation power densities and the optimum length for subpicosecond pulse compression have been determined. As a compressor, the total length of the nonlinear PC waveguide is only ten micrometres and therefore can be easily incorporated into PC integrated circuits.

  18. Broadband wavelength converter based on four-wave mixing in a highly nonlinear photonic crystal fiber.

    Science.gov (United States)

    Zhang, Ailing; Demokan, M S

    2005-09-15

    We demonstrate a 10 Gbit/s nonreturn-to-zero wavelength converter based on four-wave mixing in a 20 m highly nonlinear photonic crystal fiber. The tunable wavelength conversion bandwidth (3 dB) is about 100 nm. The conversion efficiency is -16 dB when the pump power is 22.5 dBm. Phase modulation was not used to suppress the stimulated Brillouin scattering; thus the linewidth of the converted wavelength remained very narrow. The eye diagrams show that there is no additional noise during wavelength conversion. The measured power penalty at a 10(-9) bit-error-rate level is about 0.7 dB.

  19. Measurements of nonlinear harmonic generation at the Advanced Photon Source's SASE FEL

    CERN Document Server

    Biedron, S G; Borland, M; Dejus, Roger J; Den Hartog, P K; Erdmann, M; Fawley, W M; Freund, H P; Gluskin, E; Huang, Z; Kim, K J; Lewellen, J W; Li, Y; Lumpkin, Alex H; Milton, S V; Moog, E; Nassiri, A; Sajaev, Vadim; Wiemerslage, G; Yang, B X

    2002-01-01

    SASE saturation was recently achieved at the Advanced Photon Source's SASE FEL in the low-energy undulator test line at 530 nm and 385 nm. The electron beam microbunching becomes more and more prominent until saturation is achieved. This bunching causes nonlinear harmonic emission that extends the usefulness of a SASE system in achieving shorter FEL wavelengths for the same electron beam energy. We have investigated the intensity of the fundamental and second harmonic undulator radiation as a function of distance along the undulator line and present the experimental results and compare them to numerical simulations. In addition, we have measured the single-shot second harmonic spectra as well as the simultaneous fundamental and second harmonic spectra and present the experimental results.

  20. Photon as a Vector Goldstone Boson: Nonlinear $\\sigma $ Model for QED

    CERN Document Server

    Chkareuli, J L; Mohapatra, Rabindra N; Nielsen, H B

    2004-01-01

    We show that QED in the Coulomb gauge can be considered as a low energy linear approximation of a non-linear $\\sigma $-type model where the photon emerges as a vector Goldstone boson related to the spontaneous breakdown of Lorentz symmetry down to its spatial rotation subgroup at some high scale $M$. Starting with a general massive vector field theory one naturally arrives at this model if the pure spin-1 value for the vector field $A_{\\mu }(x)$ provided by the Lorentz condition $\\partial _{\\mu }A_{\\mu }(x)=0$ is required. The model coincides with conventional QED in the Coulomb gauge in the limit of M going to infinity and generates a very particular form for the Lorentz and CPT symmetry breaking terms, which are suppressed by powers of $M$.

  1. Photon antibunching and nonlinear effects for a quantum dot coupled to a semiconductor cavity

    Science.gov (United States)

    Bello, F.; Whittaker, D. M.

    2010-09-01

    The models presented simulate pumping techniques that can be used on modern semiconductor devices which are capable of coupling a quantum dot and cavity mode in order to determine a more efficient method of producing a single-photon emitter while taking into consideration typical parameters which are achievable given today’s standards of coupling strength. Cavity quantum electrodynamics are incorporated in the calculations as we compare various pumping schemes for the system that either use on-resonant laser excitation or nonresonant excitation due to a wetting layer. In particular, we look to study how antibunching effects change for each method as the cavity finesse is increased toward the strong coupling regime. Experimentally these studies are equivalent to nonlinear pump-probe measurements, where a strong pump, either resonant or nonresonant, is used to excite the coupled system, and the resulting state is characterized using a weak, resonant probe beam.

  2. Cascadable and reconfigurable photonic logic gates based on linear lightwave interference and non-linear phase erasure.

    Science.gov (United States)

    Larom, Bar; Nazarathy, Moshe; Rudnitsky, Arkady; Nevet, Amir; Zalevsky, Zeev

    2010-06-21

    Feasibility of cascading and reconfiguring a pair of linear-nonlinear all-optical logic gate structures is experimentally demonstrated using RF photonics. Progress in highly integrated O/E/O repeaters over Si/InP hybrid platforms enables large-scale reconfigurable gate arrays.

  3. Photons and Particle Production in Cassiopeia ; A, Predictions from Nonlinear Diffusive Shock Acceleration

    CERN Document Server

    Ellison, D C; Baring, M G; Grenier, I A; Lagage, P O; Ellison, Donald C.; Goret, Philippe; Baring, Matthew G.; Grenier, Isabelle A.; Lagage, Pierre-Olivier

    1999-01-01

    We calculate particle spectra and continuum photon emission from the Cassiopeia A supernova remnant (SNR). The particle spectra, ion and electron, result from diffusive shock acceleration at the forward SNR shock and are determined with a nonlinear Monte Carlo calculation. The calculation self-consistently determines the shock structure under the influence of ion pressure, and includes a simple parameterized treatment of electron injection and acceleration. Our results are compared to photon observations, concentrating on the connection between the Radio and GeV-TeV gamma-ray range, and to cosmic ray ion observations. We include new upper limits from the Cherenkov Array at Themis (CAT) imaging Cherenkov telescope and the Whipple 10m gamma-ray telescope at > 400 GeV. These new limits support the suggestion (e.g. Cowsik & Sarkar 1980; Allen et. al. 1997) that energetic electrons are emitting synchrotron radiation in an extremely high magnetic field (~ 1000 microGauss), far greater than values routinely assi...

  4. Nonlinear two-photon absorption properties induced by femtosecond laser with the films of two novel anthracene derivatives

    Institute of Scientific and Technical Information of China (English)

    Liang Li; Yiqun Wu; Yang Wang

    2012-01-01

    Two novel anthracene derivatives containing 4-vinylpyridine (FPEA) and 2-vinylpyridine (TPEA) poly(methyl methacrylate) films are prepared on quartz glass substrates.Their nonlinear absorption properties are investigated by using a 120-fs,800-am Ti:sapphire femtosecond pulsed laser operating at a 1-kHz repetition rate.The unique nonlinear absorption properties of these new compounds are observed by utilizing a Z-scan system.These two-photon absorption (TPA) properties are proven by the two-photon fluorescence excited at 800 nm.The FPEA and TPEA films have nonlinear TPA coefficients of 0.164 and 0.148 cm/GW and the TPA cross sections of 3.345 × 10-48 and 3.081 × 10-48 cm4.s/photon,respectively.The influence of the chemical structures on the nonlinear TPA properties of the compounds is also discussed.The highly nonlinear TPA activities of the films implied that the new anthracene derivatives are suitable materials with promising applications in super-high-density three-dimensional data storage and nano- or microstructure fabrication.

  5. Creation technique and nonlinear optics of dynamic one-dimensional photonic crystals in colloidal solution of quantum dots

    Science.gov (United States)

    Smirnov, A. M.; Golinskaya, A. D.; Ezhova, K.; Kozlova, M.; Stebakova, J. V.; Valchuk, Y. V.

    2017-05-01

    One-dimensional dynamic photonic crystal was formed by a periodic spatial modulation of dielectric permittivity induced by the two ultrashort laser pulses interference in semiconductor quantum dots CdSe/ZnS (QDs) colloidal solution intersecting at angle θ. The fundamental differences of dynamic photonic crystals from static ones which determine the properties of these transient structures are the following. I. Dynamic photonic crystals lifetimes are determined by the nature of nonlinear changes of dielectric permittivity. II. The refractive index changing is determined by the intensity of the induced standing wave maxima and nonlinear susceptibility of the sample. We use the pump and probe method to create the dynamic one-dimensional photonic crystal and to analyze its features. Two focused laser beams are the pump beams, that form in the colloidal solution of quantum dots dynamic one-dimensional photonic crystal. The picosecond continuum, generated by the first harmonic of laser (1064 nm) passing through a heavy water is used as the probe beam. The self-diffraction of pumping beams on self induced dynamic one-dimensional photonic crystal provides information about spatial combining of laser beams.

  6. A NEW INEXACT SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM

    Institute of Scientific and Technical Information of China (English)

    倪勤

    2002-01-01

    This paper represents an inexact sequential quadratic programming (SQP ) algorithm which can solve nonlinear programming (NLP ) problems. An inexact solution of the quadratic programming subproblem is determined by a projection and contraction method such that only matrix-vector product is required. Some truncated criteria are chosen such that the algorithm is suitable to large scale NLP problem. The global convergence of the algorithm is proved.

  7. Triple-wavelength switchable multiwavelength erbium-doped fiber laser based on a highly nonlinear photonic crystal fiber

    Energy Technology Data Exchange (ETDEWEB)

    Han, Young-Geun [Hanyang University, Seoul (Korea, Republic of)

    2010-04-15

    We propose and experimentally investigate a novel scheme for a triple-wavelength switchable multiwavelength erbium-doped fiber laser based on a highly nonlinear photonic crystal fiber incorporating a multiply-phase-shifted fiber Bragg grating. A nonlinear optical loop mirror based on a highly nonlinear photonic crystal fiber is exploited to suppress the homogeneous line broadening of an erbium-doped fiber amplifier and to provide the triple lasing wavelength switchability. A multiply phase-shifted fiber Bragg grating with three channels, depending on the number of phase-shifted segments, is implemented to establish a multichannel filter and to generate the multiwavelength output. A high-quality multiwavelength output with a high extinction ratio of {approx}45 dB and a high output flatness of {approx}0.3 dB is realized. The switching performance to provide lasing-wavelength selectivity can be realized by using a nonlinear polarization rotation based on a nonlinear optical loop mirror. The lasing wavelength can be switched individually by controlling both the polarization controller within the nonlinear optical loop mirror and the cavity loss. The proposed multiwavelength fiber laser can be operated in the single-, dual-, and triple-lasing wavelength states. Based on the bending technique, the lasing wavelength of the proposed multiwavelength erbium-doped fiber laser can be readily controlled, and its tunability was measured to be {approx}7.2 nm/m{sup -1}.

  8. The Quadratic Graver Cone, Quadratic Integer Minimization, and Extensions

    CERN Document Server

    Lee, Jon; Romanchuk, Lyubov; Weismantel, Robert

    2010-01-01

    We consider the nonlinear integer programming problem of minimizing a quadratic function over the integer points in variable dimension satisfying a system of linear inequalities. We show that when the Graver basis of the matrix defining the system is given, and the quadratic function lies in a suitable {\\em dual Graver cone}, the problem can be solved in polynomial time. We discuss the relation between this cone and the cone of positive semidefinite matrices, and show that none contains the other. So we can minimize in polynomial time some non-convex and some (including all separable) convex quadrics. We conclude by extending our results to efficient integer minimization of multivariate polynomial functions of arbitrary degree lying in suitable cones.

  9. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    Discusses the basic physical principles underlying the technology instrumentation of photonics This volume discusses photonics technology and instrumentation. The topics discussed in this volume are: Communication Networks; Data Buffers; Defense and Security Applications; Detectors; Fiber Optics and Amplifiers; Green Photonics; Instrumentation and Metrology; Interferometers; Light-Harvesting Materials; Logic Devices; Optical Communications; Remote Sensing; Solar Energy; Solid-State Lighting; Wavelength Conversion Comprehensive and accessible coverage of the whole of modern photonics Emphas

  10. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    This book covers modern photonics accessibly and discusses the basic physical principles underlying all the applications and technology of photonicsThis volume covers the basic physical principles underlying the technology and all applications of photonics from statistical optics to quantum optics. The topics discussed in this volume are: Photons in perspective; Coherence and Statistical Optics; Complex Light and Singular Optics; Electrodynamics of Dielectric Media; Fast and slow Light; Holography; Multiphoton Processes; Optical Angular Momentum; Optical Forces, Trapping and Manipulation; Pol

  11. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    Discusses the basic physical principles underlying thescience and technology of nanophotonics, its materials andstructures This volume presents nanophotonic structures and Materials.Nanophotonics is photonic science and technology that utilizeslight/matter interactions on the nanoscale where researchers arediscovering new phenomena and developing techniques that go wellbeyond what is possible with conventional photonics andelectronics.The topics discussed in this volume are: CavityPhotonics; Cold Atoms and Bose-Einstein Condensates; Displays;E-paper; Graphene; Integrated Photonics; Liquid Cry

  12. Fabrication of air-bridged Kerr nonlinear polymer photonic crystal slab structures in near-infrared region

    Institute of Scientific and Technical Information of China (English)

    Ziming Meng; Xiaolan Zhong; Chen Wang; Zhiyuan Li

    2012-01-01

    Fabrication details of air-bridged Kerr nonlinear polymer photonic crystal slab structures are presented.Both the two-dimensional photonic crystal slab and the one-dimensional nanobeam structures are fabricated using direct focused ion beam etching and subsequent wet chemical etching.The scanning electron microscopy images show the uniformity and homogeneity of the cylindrical air holes.The optical measurement in the near-infrared region is implemented using the tapered fiber coupling method,and the results agree with the numerical calculations by using the three-dimensional finite-difference time-domain method.

  13. Theoretical Studies on the Third-order Nonlinear Optical Properties and Two-photon Absorption of Stilbene Derivatives

    Institute of Scientific and Technical Information of China (English)

    REN, Ai-Min(任爱民); FENG, Ji-Kang(封继康); LIU, Xiao-Juan(刘孝娟)

    2004-01-01

    Different types of stilbene derivatives (D-π-D, A-π-A, D-π-A) were investigated with AM1, and specially, equilibrium geometries of symmetrical stilbene derivatives (D-π-D) were studied using of PM3. With the same method INDO/CI, the UV-vis spectra were explored and the position and strength of the two-photon absorption were predicated by Sum-Over-States expression. The relationships of the structures, spectra and nonlinear optical properties have been examined. The influence of various substituents on two photon absorption cross-sections was discussed micromechanically.

  14. Ultrasensitive standoff chemical sensing based on nonlinear multi-photon laser wave-mixing spectroscopy

    Science.gov (United States)

    Gregerson, Marc; Hetu, Marcel; Iwabuchi, Manna; Jimenez, Jorge; Warren, Ashley; Tong, William G.

    2012-10-01

    Nonlinear multi-photon laser wave mixing is presented as an ultrasensitive optical detection method for chem/bio agents in thin films and gas- and liquid-phase samples. Laser wave mixing is an unusually sensitive optical absorption-based detection method that offers significant inherent advantages including excellent sensitivity, small sample requirements, short optical path lengths, high spatial resolution, high spectral resolution and standoff remote detection capability. Wave mixing can detect trace amounts of chemicals even when using micrometer-thin samples, and hence, it can be conveniently interfaced to fibers, microarrays, microfluidic systems, lab-on-a-chip, capillary electrophoresis and other capillary- or fiber-based chemical separation systems. The wave-mixing signal is generated instantaneously as the two input laser beams intersect inside the analyte of interest. Laser excitation wavelengths can be tuned to detect multiple chemicals in their native form since wave mixing can detect both fluorescing and non-fluorescing samples at parts-pertrillion or better detection sensitivity levels. The wave-mixing signal is a laser-like coherent beam, and hence, it allows reliable and effective remote sensing of chemicals. Sensitive wave-mixing detectors offer many potential applications including sensitive detection of biomarkers, early detection of diseases, sensitive monitoring of environmental samples, and reliable detection of hazardous chem/bio agents with a standoff detection capability.

  15. All optical NAND gate based on nonlinear photonic crystal ring resonator

    Directory of Open Access Journals (Sweden)

    Somaye Serajmohammadi

    2016-06-01

    Full Text Available In this paper we proposed a new design for all optical NAND gate. By combining nonlinear Kerr effect with photonic crystal ring resonators, we designed an all optical NAND gate. A typical NAND gate is a logic device with one bias and two logic input and one output ports. It has four different combinations for its logic input ports. The output port of the NAND gate is OFF, when both logic ports are ON, otherwise the output port will be ON. The switching power threshold obtained for this structure equals to 1.5 kW/μm2. For designing the proposed optical logic gate we employed one resonant ring whose resonant wavelength is at 1554 nm. The functionality of the proposed NAND gate depends on the operation of this resonant ring. When the power intensity of optical waves is less than the switching threshold the ring will couple optical waves into drop waveguide otherwise the optical waves will propagate on the bus waveguide.

  16. Photon undulatory non-linear conversion diagnostic method for caries detection: a pilot study.

    Science.gov (United States)

    Kesler, G; Masychev, V; Sokolovsky, A; Alexandrov, M; Kesler, A; Koren, R

    2003-08-01

    The objective of this study was to evaluate a new optical method - photon undulatory non-linear conversion (PNC)--for use in different stages of caries detection. Caries should be considered an infectious disease managed by risk assessment, early detection, and preventive therapies, rather than simply "drilling and filling." Fluorescence emission spectroscopy was performed in vitro on 90 extracted teeth, with intact occlusal surfaces. This system differs from the basic Diagnodent unit in its ability to distinguish between different tissue components with respect to their spectrums. Histological analysis served as the gold standard for verification. The teeth sections correspond to the specific point with the highest reading of the detector. The system was compared to visual inspection, probing, and x-ray methods. The system tested (helium-neon [He-Ne], lambda = 633 nm) has a fiber optic device that delivers radiation to the tooth and a spectrophotometer device that detects bacterial porphyrins fluorescence, allowing detection of caries, fillings, and calculus by simultaneous measurement of backscattering and fluorescence intensity. The system tested provides quantitatively reproducible measurements and detection even through sound enamel of more than 1 mm in thickness. The PNC method detects different stages of caries lesions in real time, and it exceeds x-rays in sensitivity, without any ionizing radiation. Preliminary results showed a high potential of using the PNC method in clinical practice (98% accuracy) in comparison to the other methods.

  17. Extinction ratio improvement by pump-modulated four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber.

    Science.gov (United States)

    Chow, K K; Shu, C; Lin, Chinlon; Bjarklev, A

    2005-10-31

    We demonstrate extinction ratio improvement by using pump-modulated four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber. A 6-dB improvement in the extinction ratio of a degraded return-to-zero signal has been achieved. A power penalty improvement of 3 dB at 10(-9) bit-error-rate level is obtained in the 10 Gb/s bit-error-rate measurements.

  18. Multiple omnidirectional defect modes and nonlinear magnetic-field effects in metamaterial photonic superlattices with a polaritonic defect

    Science.gov (United States)

    Robles-Uriza, A. X.; Reyes Gómez, F.; Mejía-Salazar, J. R.

    2016-09-01

    We report the existence of multiple omnidirectional defect modes in the zero-nbar gap of photonic stacks, made of alternate layers of conventional dielectric and double-negative metamaterial, with a polaritonic defect layer. In the case of nonlinear magnetic metamaterials, the optical bistability phenomenon leads to switching from negligible to perfect transmission around these defect modes. We hope these findings have potential applications in the design and development of multichannel optical filters, power limiters, optical-diodes and optical-transistors.

  19. Spin squeezing, entanglement, and coherence in two driven, dissipative, nonlinear cavities coupled with single- and two-photon exchange

    OpenAIRE

    Müstecaplıoğlu, Özgür; Hardal, Ali Ümit

    2014-01-01

    We investigate spin squeezing, quantum entanglement, and second-order coherence in two coupled, driven, dissipative, nonlinear cavities. We compare these quantum statistical properties for the cavities coupled with either single- or two-photon exchange. Solving the quantum optical master equation of the system numerically in the steady state, we calculate the zero-time delay second-order correlation function for the coherent, genuine two-mode entanglement parameters, an optimal spin squeezing...

  20. Nonlinear Dynamics of Photonics for Optical Signal Processing - Optical Frequency Conversion and Optical DSB-to-SSB Conversion

    Science.gov (United States)

    2015-09-17

    processing - optical frequency conversion and optical DSB -to-SSB conversion 5a. CONTRACT NUMBER FA2386-14-1-0006 5b. GRANT NUMBER Grant 134113...nonlinear dynamics of semiconductor lasers for certain optical signal processing functionalities, including optical DSB -to-SSB conversion, photonic...conversion and optical DSB -to-SSB conversion Performance Period May 30, 2014 ~ May 29, 2015 Principal Investigator Name: Sheng-Kwang Hwang Position

  1. Complete description of polarization effects in the nonlinear Compton scattering. I. Circularly polarized laser photons

    CERN Document Server

    Ivanov, D Y; Serbo, V G

    2003-01-01

    We consider emission of a photon by an electron in the field of a strong laser wave. Polarization effects in this process are important for a number of physical problems. We discuss a probability of this process for circularly polarized laser photons and for arbitrary polarization of all other particles. We obtain the complete set of functions which describe such a probability in a compact covariant form. Besides, we discuss an application of the obtained formulas to the problem of electron -> photon conversion at photon-photon and photon-electron colliders.

  2. Cellular imaging of deep organ using two-photon Bessel light-sheet nonlinear structured illumination microscopy

    Science.gov (United States)

    Zhao, Ming; Zhang, Han; Li, Yu; Ashok, Amit; Liang, Rongguang; Zhou, Weibin; Peng, Leilei

    2014-01-01

    In vivo fluorescent cellular imaging of deep internal organs is highly challenging, because the excitation needs to penetrate through strong scattering tissue and the emission signal is degraded significantly by photon diffusion induced by tissue-scattering. We report that by combining two-photon Bessel light-sheet microscopy with nonlinear structured illumination microscopy (SIM), live samples up to 600 microns wide can be imaged by light-sheet microscopy with 500 microns penetration depth, and diffused background in deep tissue light-sheet imaging can be reduced to obtain clear images at cellular resolution in depth beyond 200 microns. We demonstrate in vivo two-color imaging of pronephric glomeruli and vasculature of zebrafish kidney, whose cellular structures located at the center of the fish body are revealed in high clarity by two-color two-photon Bessel light-sheet SIM. PMID:24876996

  3. Cellular imaging of deep organ using two-photon Bessel light-sheet nonlinear structured illumination microscopy.

    Science.gov (United States)

    Zhao, Ming; Zhang, Han; Li, Yu; Ashok, Amit; Liang, Rongguang; Zhou, Weibin; Peng, Leilei

    2014-05-01

    In vivo fluorescent cellular imaging of deep internal organs is highly challenging, because the excitation needs to penetrate through strong scattering tissue and the emission signal is degraded significantly by photon diffusion induced by tissue-scattering. We report that by combining two-photon Bessel light-sheet microscopy with nonlinear structured illumination microscopy (SIM), live samples up to 600 microns wide can be imaged by light-sheet microscopy with 500 microns penetration depth, and diffused background in deep tissue light-sheet imaging can be reduced to obtain clear images at cellular resolution in depth beyond 200 microns. We demonstrate in vivo two-color imaging of pronephric glomeruli and vasculature of zebrafish kidney, whose cellular structures located at the center of the fish body are revealed in high clarity by two-color two-photon Bessel light-sheet SIM.

  4. Super Continuum Generation at 1310nm in a Highly Nonlinear Photonic Crystal Fiber with a Minimum Anomalous Group Velocity Dispersion

    Directory of Open Access Journals (Sweden)

    Ashkan Ghanbari

    2014-12-01

    Full Text Available In the present study, we investigate the evolution of the super continuum generation (SCG through the triangular photonic crystal fiber (PCF at 1310nm by using both full-vector multi pole method (M.P.M and novel concrete algorithms: Symmetric Split-step Fourier (SSF and fourth order Runge Kutta(RK4 which is an accurate method to solve the general nonlinear Schrodinger equation (GNLSE. We propose an ideal solid-core PCF structure featuring a minimum anomalous group velocity dispersion (GVD, small higher order dispersions (HODs and enhanced nonlinearity for appropriate super continuum generation with low input pulse energies over discrete distances of the PCF. We also investigate the impact of the linear and nonlinear effects on the super continuum spectra in detail and compare the results with different status.

  5. Target manifold formation using a quadratic SDF

    Science.gov (United States)

    Hester, Charles F.; Risko, Kelly K. D.

    2013-05-01

    Synthetic Discriminant Function (SDF) formulation of correlation filters provides constraints for forming target subspaces for a target set. In this paper we extend the SDF formulation to include quadratic constraints and use this solution to form nonlinear manifolds in the target space. The theory for forming these manifolds will be developed and demonstrated with data.

  6. Generation of green frequency comb from chirped χ{sup (2)} nonlinear photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Lai, C.-M. [Department of Electronic Engineering, Ming Chuan University, Taoyuan, Taiwan (China); Chang, K.-H.; Yang, Z.-Y.; Fu, S.-H.; Tsai, S.-T.; Hsu, C.-W.; Peng, L.-H. [Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan (China); Yu, N. E. [Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of); Boudrioua, A. [LPL, CNRS - UMR 7538, Université Paris 13, Sorbone Paris Cité (France); Kung, A. H. [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan (China); Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, Taiwan (China)

    2014-12-01

    Spectrally broad frequency comb generation over 510–555 nm range was reported on chirped quasi-phase-matching (QPM) χ{sup (2)} nonlinear photonic crystals of 12 mm length with periodicity stepwise increased from 5.9 μm to 7.1 μm. When pumped with nanosecond infrared (IR) frequency comb derived from a QPM optical parametric oscillator (OPO) and spanned over 1040 nm to 1090 nm wavelength range, the 520 nm to 545 nm up-converted green spectra were shown to consist of contributions from (a) second-harmonic generation among the signal or the idler modes, and (b) sum-frequency generation (SFG) from the neighboring pairs of the signal or the idler modes. These mechanisms led the up-converted green frequency comb to have the same mode spacing of 450 GHz as that in the IR-OPO pump comb. As the pump was further detuned from the aforementioned near-degeneracy point and moved toward the signal (1020–1040 nm) and the idler (1090–1110 nm) spectral range, the above QPM parametric processes were preserved in the chirped QPM devices to support up-converted green generation in the 510–520 nm and the 545–555 nm spectral regime. Additional 530–535 nm green spectral generation was also observed due to concurrence of multi-wavelength SFG processes between the (signal, idler) mode pairs. These mechanisms facilitate the chirped QPM device to support a single-pass up-conversion efficiency ∼10% when subject to an IR-OPO pump comb with 200 mW average power operated near- or off- the degeneracy point.

  7. Impedance matching in photonic crystal microcavities for second-harmonic generation.

    Science.gov (United States)

    Di Falco, Andrea; Conti, Claudio; Assanto, Gaetano

    2006-01-15

    By numerically integrating the three-dimensional Maxwell equations in the time domain with reference to a dispersive quadratically nonlinear material, we study second-harmonic generation in planar photonic crystal microresonators. The proposed scheme allows efficient coupling of the pump radiation to the defect resonant mode. The outcoupled generated second harmonic is maximized by impedance matching the photonic crystal cavity to the output waveguide.

  8. Guises and disguises of quadratic divergences

    Energy Technology Data Exchange (ETDEWEB)

    Cherchiglia, A.L., E-mail: adriano@fisica.ufmg.br [Departamento de Física, ICEx, Universidade Federal de Minas Gerais, P.O. BOX 702, 30.161-970, Belo Horizonte, MG (Brazil); Vieira, A.R., E-mail: arvieira@fisica.ufmg.br [Departamento de Física, ICEx, Universidade Federal de Minas Gerais, P.O. BOX 702, 30.161-970, Belo Horizonte, MG (Brazil); Hiller, Brigitte, E-mail: brigitte@teor.fis.uc.pt [Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, 3004-516 Coimbra (Portugal); Baêta Scarpelli, A.P., E-mail: scarpelli.apbs@dpf.gov.br [Setor Técnico-Científico, Departamento de Polícia Federal, Rua Hugo D’Antola, 95 - Lapa, São Paulo (Brazil); Sampaio, Marcos, E-mail: marcos.sampaio@durham.ac.uk [Departamento de Física, ICEx, Universidade Federal de Minas Gerais, P.O. BOX 702, 30.161-970, Belo Horizonte, MG (Brazil); Centre for Particle Theory, Department of Mathematical Sciences, Durham University, South Road Durham DH1 3LE (United Kingdom)

    2014-12-15

    In this contribution, we present a new perspective on the control of quadratic divergences in quantum field theory, in general, and in the Higgs naturalness problem, in particular. Our discussion is essentially based on an approach where UV divergences are parameterized, after being reduced to basic divergent integrals (BDI) in one internal momentum, as functions of a cutoff and a renormalization group scale λ. We illustrate our proposal with well-known examples, such as the gluon vacuum self energy of QCD and the Higgs decay in two photons within this approach. We also discuss frameworks in effective low-energy QCD models, where quadratic divergences are indeed fundamental.

  9. Nonlinear optical and multiphoton processes for in situ manipulation and conversion of photons: applications to energy and healthcare (Conference Presentation)

    Science.gov (United States)

    Prasad, Paras N.

    2017-02-01

    Chiral control of nonlinear optical functions holds a great promise for a wide range of applications including optical signal processing, bio-sensing and chiral bio-imaging. In chiral polyfluorene thin films, we demonstrated extremely large chiral nonlinearity. The physics of manipulating excitation dynamics for photon transformation will be discussed, along with nanochemistry control of upconversion in hierarchically built organic chromophore coupled-core-multiple shell nanostructures which enable introduce new, organic-inorganic energy transfer routes for broadband light harvesting and increased upconversion efficiency via multistep cascaded energy transfer. We are pursuing the applications of photon conversion technology in IR harvesting for photovoltaics, high contrast bioimaging, photoacoustic imaging, photodynamic therapy, and optogenetics. An important application is in Brain research and Neurophotonics for functional mapping and modulation of brain activities. Another new direction pursued is magnetic field control of light in in a chiral polymer nanocomposite to achieve large magneto-optic coefficient which can enable sensing of extremely weak magnetic field due to brain waves. Finally, we will consider the thought provoking concept of utilizing photons to quantify, through magneto-optics, and augment - through nanoptogenetics, the cognitive states, thus paving the path way to a quantified human paradigm.

  10. Experimental study of supercontinuum generation in an amplifier based on an Yb3+ doped nonlinear photonic crystal fiber

    Science.gov (United States)

    Baselt, Tobias; Taudt, Christopher; Nelsen, Bryan; Lasagni, Andrés. Fabián.; Hartmann, Peter

    2016-03-01

    The use of supercontinuum light sources in different optical measurement methods, like microscopy or optical coherence tomography, has increased significantly compared to classical wideband light sources. The development of various optical measurement techniques benefits from the high brightness and bandwidth, as well as the spatial coherence of these sources. For some applications, only a portion of the broad spectral range can be used. Therefore, an increase of the spectral power density in limited spectral regions would provide a clear advantage over spectral filtering. This study describes a method to increase the spectral power density of supercontinuum sources by amplifying the excitation wavelength inside a nonlinear photonic crystal fiber (PCF). An ytterbium doped photonic crystal fiber was manufactured by a sol-gel process and used in a fiber amplifier setup as the nonlinear fiber medium. In order to characterize the fiber's optimum operational characteristics, group-velocity dispersion (GVD) measurements were performed on the fiber during the amplification process. For this purpose, a notch-pass mirror was used to launch the radiation of a stabilized laser diode at 976 nm into the fiber sample for pumping. The performance of the fiber was compared with a conventional PCF. Finally, the system as a whole was characterized in reference to common solid state-laser-based photonic supercontinuum light sources. An improvement of the power density up to 7.2 times was observed between 1100 nm to 1380 nm wavelengths.

  11. Nonlinear and spin effects in two-photon annihilation of a fermion pair in an intensive laser wave

    CERN Document Server

    Sikach, S M

    2001-01-01

    The pattern of calculation of amplitudes of a series of processes in the field of an intensive laser wave, in which two fermions $(p; p')$ and two real photons $(k_1; k_2)$ participate, is considered. In relation to one-photon processes, these processes are of the second order on $\\alpha$, if the wave intensity $\\xi \\ll 1$ (i.e., actually absorption from the wave only one quantum). Otherwise, they are competing and essentially nonlinear. One-photon processes have a number of the important physical applications. For example, ${\\gamma}e$ and ${\\gamma}{\\gamma}$ colliders work on their basis. In DSB the calculation is conducted at the level of reaction amplitudes. It essentially simplifies both the calculation and the form of obtained results; those combinations of amplitudes which describe the spin effects are easy to calculate. And these effects are especially essential in nonlinear processes. The calculations are conducted in covariant form. Besides compactness, this provides independence of the frames of refe...

  12. Two-Photon Nonlinear Jaynes-Cummings Model with Stark Shift%具有Stark位移的非线性双光子Jaynes-Cummings模型

    Institute of Scientific and Technical Information of China (English)

    董传华; 卢俊

    2002-01-01

    Two-photon Jaynes-Cummimgs model is generalized to the case of Kerr medium in this paper. The field and atom are prepared initially in two-photon superposition state and ground state respectively. Nonlinear coefficient affects the dynamic behaviors of the field and atom. Evolutions of the squeezing for the operators of field and atom and the quantum inversion are discussed. In particular, the higher-order squeezing for atomic dipole and the effects of nonlinearity on it, which have not been studied by other authors,are investigated. Increasing the nonlinear coefficient will decrease the squeezing depth of atomic dipole.

  13. Quadratic measurement and conditional state preparation in an optomechanical system

    DEFF Research Database (Denmark)

    A. Brawley, George; Vanner, Michael A.; Bowen, Warwick P.;

    2014-01-01

    We experimentally demonstrate, for the first time, quadratic measurement of mechanical motion in an optomechanical system. We use this nonlinear easurement to conditionally prepare classical non-Gaussian states of motion of a micro-mechanical oscillator.......We experimentally demonstrate, for the first time, quadratic measurement of mechanical motion in an optomechanical system. We use this nonlinear easurement to conditionally prepare classical non-Gaussian states of motion of a micro-mechanical oscillator....

  14. Generating mid-IR octave-spanning supercontinua and few-cycle pulses with solitons in phase-mismatched quadratic nonlinear crystals

    DEFF Research Database (Denmark)

    Bache, Morten; Guo, Hairun; Zhou, Binbin

    2013-01-01

    of the promising crystals: in one case soliton pulse compression from 50 fs to 15 fs (1.5 cycles) at 3.0 μm is achieved, and at the same time a 3-cycle dispersive wave at 5.0 μm is formed that can be isolated using a long-pass filter. In another example we show that extremely broadband supercontinua can form......We discuss a novel method for generating octave-spanning supercontinua and few-cycle pulses in the important mid-IR wavelength range. The technique relies on strongly phase-mismatched cascaded second-harmonic generation (SHG) in mid-IR nonlinear frequency conversion crystals. Importantly we here...

  15. Signatures of chaotic and non-chaotic-like behaviour in a non-linear quantum oscillator through photon detection

    CERN Document Server

    Everitt, M J; Stiffell, P B; Ralph, J F; Bulsara, A R; Harland, C J

    2005-01-01

    The driven non-linear duffing osillator is a very good, and standard, example of a quantum mechanical system from which classical-like orbits can be recovered from unravellings of the master equation. In order to generated such trajectories in the phase space of this oscillator in this paper we use a the quantum jumps unravelling together with a suitable application of the correspondence principle. We analyse the measured readout by considering the power spectra of photon counts produced by the quantum jumps. Here we show that localisation of the wave packet from the measurement of the oscillator by the photon detector produces a concomitant structure in the power spectra of the measured output. Furthermore, we demonstrate that this spectral analysis can be used to distinguish between different modes of the underlying dynamics of the oscillator.

  16. Observation of nonlinear bands in near-field scanning optical microscopy of a photonic-crystal waveguide

    CERN Document Server

    Singh, Amandev; Huisman, Simon R; Korterik, Jeroen P; Mosk, Allard P; Herek, Jennifer L; Pinkse, Pepijn W H

    2014-01-01

    We have measured the photonic bandstructure of GaAs photonic-crystal waveguides with high energy and momentum resolution using near-field scanning optical microscopy. Intriguingly, we observe additional bands that are not predicted by eigenmode solvers, as was recently demonstrated by Huisman et al. [Phys. Rev. B 86, 155154 (2012)]. We study the presence of these additional bands by performing measurements of these bands while varying the incident light power, revealing a non-linear power dependence. Here, we demonstrate experimentally and theoretically that the observed additional bands are caused by a waveguide-specific near- field tip effect not previously reported, which can significantly phase-modulate the detected field.

  17. Generation of an arbitrary four-photon polarization-entangled decoherence-free state with cross-Kerr nonlinearity

    Science.gov (United States)

    Wang, Meiyu; Yan, Fengli; Gao, Ting

    2017-08-01

    We present a new scheme to provide an arbitrary four-photon polarization-entangled state, which enables the encoding of single logical qubit information into a four-qubit decoherence-free subspace robustly against collective decoherence. With the assistance of the cross-Kerr nonlinearities, a spatial entanglement gate and a polarization entanglement gate are inserted into the circuit, where the X-quadrature homodyne measurement is properly performed. According to the outcomes of homodyne measurement in the spatial entanglement process, some swap gates are inserted into the corresponding paths of the photons to swap their spatial modes. Apart from Kerr media, some basic linear optical elements are necessary, which make it feasible with current experimental techniques.

  18. Coherence properties of supercontinuum generated in highly nonlinear photonic crystal fibers

    Science.gov (United States)

    Zhang, Yuji

    In this dissertation, experimentally measured spectral and coherence evolution of supercontinuum (SC) is presented. Highly nonlinear soft-glass photonic crystal fibers (PCF) were used for SC generation, including lead-silicate (Schott SF6) PCFs of a few different lengths: 10.5 cm, 4.7 mm, and 3.9 mm, and a tellurite PCF of 2.7 cm. The pump is an optical parametric oscillator (OPO) at 1550 nm with pulse energy in the order of nanojoule (nJ) and pulse duration of 105 femtosecond (fs). The coherence of SC was measured using the delayed-pulse method, where the interferometric signal was sent into an optical spectrum analyzer (OSA) and spectral fringes were recorded. By tuning the pump power, power-dependent evolution of spectrum and coherence was obtained. Numerical simulations based on the generalized nonlinear Schrodinger equation (GNLSE) were performed. To match the measured data, the simulated spectral evolution was optimized by iteratively tuning parameters and comparing features. To further match the simulated coherence evolution with the measurement, shot noise and pulse-to-pulse power fluctuation were added in the pump, and the standard deviation of the fluctuation was tuned. Good agreement was obtained between the simulated and the measured spectral evolution, in spite of the unavailability of some physical parameters for simulation. It is demonstrated in principle that, given a measured spectral evolution, the fiber length, and the average power of SC, all other parameters can be determined unambiguously, and the spectral evolution can be reproduced in the simulations. Most importantly, the soliton fission length can be simulated accurately. The spectral evolution using the 4.7- and the 3.9-mm SF6 PCFs shows a pattern dominated by self phase modulation (SPM). This indicates that, these fiber lengths are close to the soliton fission length at the maximum power. The spectral evolution using the 10.5-cm SF6 PCF and the 2.7-cm tellurite PCF shows a soliton

  19. Nonlinear modifications of photon correlations via controlled single and double Rydberg blockade

    Science.gov (United States)

    Liu, Yi-Mou; Tian, Xue-Dong; Yan, Dong; Zhang, Yan; Cui, Cui-Li; Wu, Jin-Hui

    2015-04-01

    We study the optical response of cold rubidium atoms driven into the four-level Y configuration exhibiting two high Rydberg levels in the regime of electromagnetically induced transparency (EIT). Atoms excited to either Rydberg level interact with each other just via self-blockade potentials (I) or also via cross blockade potentials (II). Numerical results show a few interesting quantum phenomena on the transmitted properties of a weak probe field owing to controlled single and double Rydberg blockade. In case (I), it is viable to switch between single-photon outputs with vanishing (invariable) two-photon (three-photon) correlation and photon-pair outputs with vanishing (invariable) three-photon (two-photon) correlation. Such output switch can be easily done by modulating frequencies and intensities of two strong coupling fields to create a degenerate EIT window or two separated EIT windows. In case (II), we find that two-photon and three-photon correlations decrease together at a degenerate EIT window center while increasing together between two separated EIT windows. Such consistent changes are observed because both correlations are modified by the identical polarizability degradation though depending on single and double Rydberg blockade, respectively.

  20. Multistage quadratic stochastic programming

    Science.gov (United States)

    Lau, Karen K.; Womersley, Robert S.

    2001-04-01

    Quadratic stochastic programming (QSP) in which each subproblem is a convex piecewise quadratic program with stochastic data, is a natural extension of stochastic linear programming. This allows the use of quadratic or piecewise quadratic objective functions which are essential for controlling risk in financial and project planning. Two-stage QSP is a special case of extended linear-quadratic programming (ELQP). The recourse functions in QSP are piecewise quadratic convex and Lipschitz continuous. Moreover, they have Lipschitz gradients if each QP subproblem is strictly convex and differentiable. Using these properties, a generalized Newton algorithm exhibiting global and superlinear convergence has been proposed recently for the two stage case. We extend the generalized Newton algorithm to multistage QSP and show that it is globally and finitely convergent under suitable conditions. We present numerical results on randomly generated data and modified publicly available stochastic linear programming test sets. Efficiency schemes on different scenario tree structures are discussed. The large-scale deterministic equivalent of the multistage QSP is also generated and their accuracy compared.

  1. Photonic multi-shape UWB pulse generation using a semiconductor optical amplifier-based nonlinear optical loop mirror

    Institute of Scientific and Technical Information of China (English)

    Luo Bo-Wen; Dong Jian-Ji; Yu Yuan; Yang Ting; Zhang Xin-Liang

    2013-01-01

    We propose and demonstrate a scheme to implement photonic multi-shape ultra-wideband (UWB) signal generation using a semiconductor optical amplifier (SOA) based nonlinear optical loop mirror (NOLM).By employing the cross phase modulation (XPM) effect,cross gain modulation (XGM),or both,multi-shape UWB waveforms are generated including monocycle,doublet,triplet,and quadruplet pulses.Both the shapes and polarities of the generated pulses are flexible to adjust,which may be very useful in UWB pulse shape modulation and pulse polarity modulation.

  2. Multi-Wavelength Erbium-Doped Fibre Lasers on Assistance of High-Nonlinear Photonic-Crystal Fibre

    Institute of Scientific and Technical Information of China (English)

    LIU Xue-Ming; ZHAO Wei; ZHANG Tong-Yi; LU Ke-Qing; SUN Chuan-Dong; WANG Yi-Shan; OUYANG Xian; HOU Xun; CHEN Guo-Fu

    2006-01-01

    @@ On the basis of self-stability effect of four-wave mixings (FWMs) in high-nonlinear photonic-crystal fibres, a novel multi-wavelength erbium-doped fibre (EDF)laser is proposed and demonstrated experimentally at room temperature. The proposed lasers have the capacity of switching and tuning with excellent uniformity and stability. By means of adjusting the attenuators, the triple-, four-, or five-wavelength EDF lasers can be lasing simultaneously.With the assistance of the FWM self-stability function, the multi-wavelength spectrum is excellently stabilized with uniformity less than 0.9dB.

  3. Experimental study on a nonlinear photonics process of Er(0.5)Yb(3):FOV oxyfluoride nanophase vitroceramics

    Science.gov (United States)

    Chen, Xiaobo; Song, Zengfu; Hu, Lili; Zhang, Junjie; Wen, Lei

    2007-07-01

    We study the nonlinear photonics of rare-earth-doped oxyfluoride nanophase vitroceramics (FOV), oxyfluoride glass (FOG), and ZBLAN fluoride glass. We found that an interesting fluorescence intensity inversion phenomenon between red and green fluorescence occurs from Er(0.5)Yb(3):FOV. The dynamic range ∑ of the intensity inversion between red and green fluorescence of Er(0.5)Yb(3):FOV is about 5.753×102, which is 100 to 1000 times larger than those of other materials. One of the applications of this phenomenon is double-wavelength fluorescence falsification-preventing technology, which is proved to possess the novel antifriction loss and antiscribble properties.

  4. Efficient continuous-wave nonlinear frequency conversion in high-Q Gallium Nitride photonic crystal cavities on Silicon

    CERN Document Server

    Mohamed, Mohamed Sabry; Carlin, Jean-François; Minkov, Momchil; Gerace, Dario; Savona, Vincenzo; Grandjean, Nicolas; Galli, Matteo; Houdré, Romuald

    2016-01-01

    We report on nonlinear frequency conversion from the telecom range via second harmonic generation (SHG) and third harmonic generation (THG) in suspended gallium nitride slab photonic crystal (PhC) cavities on silicon, under continuous-wave resonant excitation. Optimized two-dimensional PhC cavities with augmented far-field coupling have been characterized with quality factors as high as 4.4$\\times10^{4}$, approaching the computed theoretical values. The strong enhancement in light confinement has enabled efficient SHG, achieving normalized conversion efficiency of 2.4$\\times10^{-3}$ $W^{-1}$, as well as simultaneous THG. SHG emission power of up to 0.74 nW has been detected without saturation. The results herein validate the suitability of gallium nitride for integrated nonlinear optical processing.

  5. Simultaneous Computation of Two Independent Tasks Using Reservoir Computing Based on a Single Photonic Nonlinear Node With Optical Feedback.

    Science.gov (United States)

    Nguimdo, Romain Modeste; Verschaffelt, Guy; Danckaert, Jan; Van der Sande, Guy

    2015-12-01

    In this brief, we numerically demonstrate a photonic delay-based reservoir computing system, which processes, in parallel, two independent computational tasks even when the two tasks have unrelated input streams. Our approach is based on a single-longitudinal mode semiconductor ring laser (SRL) with optical feedback. The SRL emits in two directional optical modes. Each directional mode processes one individual task to mitigate possible crosstalk. We illustrate the feasibility of our scheme by analyzing the performance on two benchmark tasks: 1) chaotic time series prediction and 2) nonlinear channel equalization. We identify some feedback configurations for which the results for simultaneous prediction/classification indicate a good performance, but with slight degradation (as compared with the performance obtained for single task processing) due to nonlinear and linear interactions between the two directional modes of the laser. In these configurations, the system performs well on both tasks for a broad range of the parameters.

  6. Investigation on nonlinear optical and dielectric properties of L-arginine doped ZTC crystal to explore photonic device applications

    Directory of Open Access Journals (Sweden)

    Anis Mohd

    2016-09-01

    Full Text Available The present study is focused to explore the photonic device applications of L-arginine doped ZTC (LA-ZTC crystals using nonlinear optical (NLO and dielectric studies. The LA-ZTC crystals have been grown by slow evaporation solution technique. The chemical composition and surface of LA-ZTC crystal have been analyzed by means of energy dispersive spectroscopy (EDS and surface scanning electron microscopy (SEM techniques. The Vicker’s microhardness study has been carried out to determine the hardness, work hardening index, yield strength and elastic stiffness of LA-ZTC crystal. The enhanced SHG efficiency of LA-ZTC crystal has been ascertained using the Kurtz-Perry powder SHG test. The closed-and-open aperture Z-scan technique has been employed to confirm the third order nonlinear optical nature of LA-ZTC crystal. The Z-scan transmittance data has been utilized to calculate the superior cubic susceptibility, nonlinear refractive index, nonlinear absorption coefficient and figure of merit of LA-ZTC crystal. The behavior of dielectric constant and dielectric loss of LA-ZTC crystal at different temperatures has been investigated using the dielectric analysis.

  7. Photonics

    Science.gov (United States)

    1991-01-01

    Optoelectronic materials and devices are examined. Optoelectronic devices, which generate, detect, modulate, or switch electromagnetic radiation are being developed for a variety of space applications. The program includes spatial light modulators, solid state lasers, optoelectronic integrated circuits, nonlinear optical materials and devices, fiber optics, and optical networking photovoltaic technology and optical processing.

  8. Complete description of polarization effects in the nonlinear Compton scattering. II. Linearly polarized laser photons

    CERN Document Server

    Ivanov, D Y; Serbo, V G

    2003-01-01

    We consider emission of a photon by an electron in the field of a strong laser wave. Polarization effects in this process are important for a number of physical problems. We discuss a probability of this process for linearly polarized laser photons and for arbitrary polarization of all other particles. We obtain the complete set of functions which describe such a probability in a compact form.

  9. Quadratic reactivity fuel cycle model

    Energy Technology Data Exchange (ETDEWEB)

    Lewins, J.D.

    1985-11-01

    For educational purposes it is highly desirable to provide simple yet realistic models for fuel cycle and fuel economy. In particular, a lumped model without recourse to detailed spatial calculations would be very helpful in providing the student with a proper understanding of the purposes of fuel cycle calculations. A teaching model for fuel cycle studies based on a lumped model assuming the summability of partial reactivities with a linear dependence of reactivity usefully illustrates fuel utilization concepts. The linear burnup model does not satisfactorily represent natural enrichment reactors. A better model, showing the trend of initial plutonium production before subsequent fuel burnup and fission product generation, is a quadratic fit. The study of M-batch cycles, reloading 1/Mth of the core at end of cycle, is now complicated by nonlinear equations. A complete account of the asymptotic cycle for any order of M-batch refueling can be given and compared with the linear model. A complete account of the transient cycle can be obtained readily in the two-batch model and this exact solution would be useful in verifying numerical marching models. It is convenient to treat the parabolic fit rho = 1 - tau/sup 2/ as a special case of the general quadratic fit rho = 1 - C/sub tau/ - (1 - C)tau/sup 2/ in suitably normalized reactivity and cycle time units. The parabolic results are given in this paper.

  10. Ionic two photon states and optical nonlinearity in. pi. -conjugated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Dixit, S.N. (Lawrence Livermore National Lab., CA (USA)); Guo, D.; Mazumdar, S. (Arizona Univ., Tucson, AZ (USA). Dept. of Physics)

    1990-11-06

    A microscopic mechanism of optical nonlinearity in {pi}-conjugated polymers is presented. It is shown that the bulk of the nonlinearity is determined by only two well defined channels, even though an infinite number of channels are possible in principle. The above conclusion is true for both short and long range Coulomb interactions. The complete frequency dependence of the third harmonic generation in both trans-polyacetylene and polydiacetylene are explained within the same theoretical picture. 19 refs., 4 figs.

  11. Semidefinite programming for quadratically constrained quadratic programs

    Science.gov (United States)

    Olkin, Julia A.; Titterton, Paul J., Jr.

    1995-06-01

    We consider the linear least squares problem subject to multiple quadratic constraints, which is motivated by a practical application in controller design. We use the techniques of convex optimization, in particluar, interior-point methods for semi-definite programming. We reduce a quasi-convex potential function. Each iteration requires calculating a primal and dual search direction and minimizing along the plane defined by these search directions. The primal search direction requires solving a least squares problem whose matrix is composed of a block- Toeplitz portion plus other structured matrices. We make use of Kronecker products and FFTs to greatly reduce the calculation. In addition, the matrix updates and matrix inverses in the plane search are actually low-rank updates to structured matrices so we are able to further reduce the flops required. Consequently, we can design controllers for problems of considerable size.

  12. Direct measurements of multi-photon induced nonlinear lattice dynamics in semiconductors via time-resolved x-ray scattering

    Science.gov (United States)

    Williams, G. Jackson; Lee, Sooheyong; Walko, Donald A.; Watson, Michael A.; Jo, Wonhuyk; Lee, Dong Ryeol; Landahl, Eric C.

    2016-12-01

    Nonlinear optical phenomena in semiconductors present several fundamental problems in modern optics that are of great importance for the development of optoelectronic devices. In particular, the details of photo-induced lattice dynamics at early time-scales prior to carrier recombination remain poorly understood. We demonstrate the first integrated measurements of both optical and structural, material-dependent quantities while also inferring the bulk impulsive strain profile by using high spatial-resolution time-resolved x-ray scattering (TRXS) on bulk crystalline gallium arsenide. Our findings reveal distinctive laser-fluence dependent crystal lattice responses, which are not described by previous TRXS experiments or models. The initial linear expansion of the crystal upon laser excitation stagnates at a laser fluence corresponding to the saturation of the free carrier density before resuming expansion in a third regime at higher fluences where two-photon absorption becomes dominant. Our interpretations of the lattice dynamics as nonlinear optical effects are confirmed by numerical simulations and by additional measurements in an n-type semiconductor that allows higher-order nonlinear optical processes to be directly observed as modulations of x-ray diffraction lineshapes.

  13. Design of an As2Se3-based photonic quasi-crystal fiber with highly nonlinear and dual zero-dispersion wavelengths

    Science.gov (United States)

    Zhao, Tongtong; Lou, Shuqin; Su, Wei; Wang, Xin

    2016-01-01

    We propose an As2Se3-based highly nonlinear photonic quasi-crystal fiber with dual zero-dispersion wavelengths (ZDWs). Using a full-vector finite element method, the proposed fiber is optimized to obtain high nonlinear coefficient, low confinement loss and two zero-dispersion points by optimizing the structure parameters. Numerical results demonstrate that the proposed photonic quasi-crystal fiber (PQF) has dual ZDWs and the nonlinear coefficient up to 2600 W-1 km-1 within the wavelength range from 2 to 5.5 μm. Due to the introduction of the large air holes in the third ring of the proposed fiber, the ability of confining the fundamental mode field can be improved effectively and thus the low confinement loss can be obtained. The proposed PQF with high nonlinearity and dual ZDWs will have a number of potential applications in four-wave mixing, super-continuum generation, and higher-order dispersion effects.

  14. Nonlinear wavelength conversion in photonic crystal fibers with three zero dispersion points

    CERN Document Server

    Stark, S P; Podlipensky, A; Russell, P St J

    2010-01-01

    In this theoretical study, we show that a simple endlessly single-mode photonic crystal fiber can be designed to yield, not just two, but three zero-dispersion wavelengths. The presence of a third dispersion zero creates a rich phase-matching topology, enabling enhanced control over the spectral locations of the four-wave-mixing and resonant-radiation bands emitted by solitons and short pulses. The greatly enhanced flexibility in the positioning of these bands has applications in wavelength conversion, supercontinuum generation and pair-photon sources for quantum optics.

  15. Synthesis,structure and nonlinear optical properties of two novel two-photon absorption chromophores

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Two triphenylamine-based derivatives that can be used as two-photon absorption chromophore,tris{4-[4-(3-trifluoromethyl-3-oxopanoyl)]phenyl}amine (1) and tris{4-[4-(3-phenyl-3-oxopanoyl)] phenyl} amine (2) were successfully synthesized and fully characterized by elemental analysis,IR,1H NMR and MS. The single crystal X-ray diffraction analysis showed that the molecules possess D-(π-A)3 structures. One-and two-photon absorption and fluorescence in various solvents were experimentally investigated. A data recording experiment proved the potential application of these chromophores.

  16. Nonlinear photonic diode behavior in energy-graded core-shell quantum well semiconductor rod.

    Science.gov (United States)

    Ko, Suk-Min; Gong, Su-Hyun; Cho, Yong-Hoon

    2014-09-10

    Future technologies require faster data transfer and processing with lower loss. A photonic diode could be an attractive alternative to the present Si-based electronic diode for rapid optical signal processing and communication. Here, we report highly asymmetric photonic diode behavior with low scattering loss, from tapered core-shell quantum well semiconductor rods that were fabricated to have a large gradient in their bandgap energy along their growth direction. Local laser illumination of the core-shell quantum well rods yielded a huge contrast in light output intensities from opposite ends of the rod.

  17. On Convex Quadratic Approximation

    NARCIS (Netherlands)

    den Hertog, D.; de Klerk, E.; Roos, J.

    2000-01-01

    In this paper we prove the counterintuitive result that the quadratic least squares approximation of a multivariate convex function in a finite set of points is not necessarily convex, even though it is convex for a univariate convex function. This result has many consequences both for the field of

  18. On Convex Quadratic Approximation

    NARCIS (Netherlands)

    den Hertog, D.; de Klerk, E.; Roos, J.

    2000-01-01

    In this paper we prove the counterintuitive result that the quadratic least squares approximation of a multivariate convex function in a finite set of points is not necessarily convex, even though it is convex for a univariate convex function. This result has many consequences both for the field of

  19. On Quadratic Differential Forms

    NARCIS (Netherlands)

    Willems, J.C.; Trentelman, H.L.

    1998-01-01

    This paper develops a theory around the notion of quadratic differential forms in the context of linear differential systems. In many applications, we need to not only understand the behavior of the system variables but also the behavior of certain functionals of these variables. The obvious cases w

  20. Aspects of Quadratic Gravity

    CERN Document Server

    Alvarez-Gaume, Luis; Kounnas, Costas; Lust, Dieter; Riotto, Antonio

    2016-01-01

    We discuss quadratic gravity where terms quadratic in the curvature tensor are included in the action. After reviewing the corresponding field equations, we analyze in detail the physical propagating modes in some specific backgrounds. First we confirm that the pure $R^2$ theory is indeed ghost free. Then we point out that for flat backgrounds the pure $R^2$ theory propagates only a scalar massless mode and no spin-two tensor mode. However, the latter emerges either by expanding the theory around curved backgrounds like de Sitter or anti-de Sitter, or by changing the long-distance dynamics by introducing the standard Einstein term. In both cases, the theory is modified in the infrared and a propagating graviton is recovered. Hence we recognize a subtle interplay between the UV and IR properties of higher order gravity. We also calculate the corresponding Newton's law for general quadratic curvature theories. Finally, we discuss how quadratic actions may be obtained from a fundamental theory like string- or M-...

  1. Automatic differentiation for reduced sequential quadratic programming

    Institute of Scientific and Technical Information of China (English)

    Liao Liangcai; Li Jin; Tan Yuejin

    2007-01-01

    In order to slove the large-scale nonlinear programming (NLP) problems efficiently, an efficient optimization algorithm based on reduced sequential quadratic programming (rSQP) and automatic differentiation (AD) is presented in this paper. With the characteristics of sparseness, relatively low degrees of freedom and equality constraints utilized, the nonlinear programming problem is solved by improved rSQP solver. In the solving process, AD technology is used to obtain accurate gradient information. The numerical results show that the combined algorithm, which is suitable for large-scale process optimization problems, can calculate more efficiently than rSQP itself.

  2. Linear and nonlinear photonic Jackiw-Rebbi states in interfaced binary waveguide arrays

    Science.gov (United States)

    Tran, Truong X.; Biancalana, Fabio

    2017-07-01

    We study analytically and numerically the optical analog of the Jackiw-Rebbi states in quantum-field theory. These solutions exist at the interface of two binary waveguide arrays, which are described by two Dirac equations with masses of opposite sign. We show that these special states are topologically robust not only in the linear regime, but also in the nonlinear one (with both focusing and defocusing nonlinearities). We also reveal that one can effectively generate Jackiw-Rebbi states starting from Dirac solitons.

  3. Hidden conic quadratic representation of some nonconvex quadratic optimization problems

    NARCIS (Netherlands)

    Ben-Tal, A.; den Hertog, D.

    2014-01-01

    The problem of minimizing a quadratic objective function subject to one or two quadratic constraints is known to have a hidden convexity property, even when the quadratic forms are indefinite. The equivalent convex problem is a semidefinite one, and the equivalence is based on the celebrated S-lemma

  4. Non-linear mixing in coupled photonic crystal nanobeam cavities due to cross-coupling opto-mechanical mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Daniel, E-mail: daniel.ramos@csic.es; Frank, Ian W.; Deotare, Parag B.; Bulu, Irfan; Lončar, Marko [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States)

    2014-11-03

    We investigate the coupling between mechanical and optical modes supported by coupled, freestanding, photonic crystal nanobeam cavities. We show that localized cavity modes for a given gap between the nanobeams provide weak optomechanical coupling with out-of-plane mechanical modes. However, we show that the coupling can be significantly increased, more than an order of magnitude for the symmetric mechanical mode, due to optical resonances that arise from the interaction of the localized cavity modes with standing waves formed by the reflection from thesubstrate. Finally, amplification of motion for the symmetric mode has been observed and attributed to the strong optomechanical interaction of our hybrid system. The amplitude of these self-sustained oscillations is large enough to put the system into a non-linear oscillation regime where a mixing between the mechanical modes is experimentally observed and theoretically explained.

  5. Optical Sampling at 80 Gbit/s Using a Highly Non-Linear Photonic Crystal Fiber

    Institute of Scientific and Technical Information of China (English)

    Andrea Tersigni; Vanessa Calle; Anders Clausen; Palle Jeppesen; Kim P. Hansen; Jacob R. Folkenberg

    2003-01-01

    Optical sampling using four-wave mixing in 50m of newly developed highly non-linear photo niccrystal fiber has been achieved at 80 Gbit/s with an Extinction Ratio of 12 dB. A basic characterization is also included.

  6. Extended gcd of quadratic integers

    CERN Document Server

    Miled, Abdelwaheb

    2010-01-01

    Computation of the extended gcd of two quadratic integers. The ring of integers considered is principal but could be euclidean or not euclidean ring. This method rely on principal ideal ring and reduction of binary quadratic forms.

  7. On Characterization of Quadratic Splines

    DEFF Research Database (Denmark)

    Chen, B. T.; Madsen, Kaj; Zhang, Shuzhong

    2005-01-01

    A quadratic spline is a differentiable piecewise quadratic function. Many problems in numerical analysis and optimization literature can be reformulated as unconstrained minimizations of quadratic splines. However, only special cases of quadratic splines are studied in the existing literature...... between the convexity of a quadratic spline function and the monotonicity of the corresponding LCP problem. It is shown that, although both conditions lead to easy solvability of the problem, they are different in general......., and algorithms are developed on a case by case basis. There lacks an analytical representation of a general or even a convex quadratic spline. The current paper fills this gap by providing an analytical representation of a general quadratic spline. Furthermore, for convex quadratic spline, it is shown...

  8. White-Light Nonlinear Photonic Lattices in Self-Defocusing Media

    Institute of Scientific and Technical Information of China (English)

    GAO Yuan-Mei; LIU Si-Min

    2007-01-01

    Using fully incoherent white light emitted from an incandescent lamp and amplitude mask, we experimentally investigate the influence of several factors on the fabrication of the lattice in photovoltaic self-defocusing LiNbO3:Fe crystal, the factors include the orientation of the crystalline c axis relative to the principal axis of the photonic lattice and the filament, the diameter of input dark spot and the separation of the adjacent input dark spots. Experimental results reveal that the best fabricating condition of photonic lattices is that the principal axis of lattice is tilted for 45° relative to the crystalline c axis which is parallel to the filament of the lamp. In addition, it is necessary that the diameter of the input dark spot is larger than the half of their separation.

  9. Heterodyne pump probe measurements of nonlinear dynamics in an indium phosphide photonic crystal cavity

    DEFF Research Database (Denmark)

    Heuck, Mikkel; Combrié, S.; Lehoucq, G.

    2013-01-01

    Using a sensitive two-color heterodyne pump-probe technique, we investigate the carrier dynamics of an InP photonic crystal nanocavity. The heterodyne technique provides unambiguous results for all wavelength configurations, including the degenerate case, which cannot be investigated with the wid...... with the widely used homodyne technique. A model based on coupled mode theory including two carrier distributions is introduced to account for the relaxation dynamics, which is assumed to be governed by both diffusion and recombination.......Using a sensitive two-color heterodyne pump-probe technique, we investigate the carrier dynamics of an InP photonic crystal nanocavity. The heterodyne technique provides unambiguous results for all wavelength configurations, including the degenerate case, which cannot be investigated...

  10. All-optical wavelength multicasting with extinction ratio enhancement using pump-modulated four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber

    DEFF Research Database (Denmark)

    Chow, K.K.; Shu, Chester; Lin, Chinlon;

    2006-01-01

    All optical wavelength multicasting at 4 x 10 Gb/s with extinction ratio enhancement has been demonstrated based on pump-modulated four-wave mixing in a nonlinear photonic crystal fiber. We show that the input signal wavelength can simultaneously convert to four different wavelengths, with a power...

  11. The nonlinear squeezed one-photon states and their nonclassical properties

    Institute of Scientific and Technical Information of China (English)

    Wang Ji-Suo; Meng Xiang-Guo

    2007-01-01

    By virtue of the technique of integration within an ordered product (IWOP) of operators and the properties of the inverses of annihilation and creation operators of f-oscillator, this paper obtains two new types of squeezed operators and f-analogues of squeezed one-photon states, which are quite different from ones constructed by Song and Fan (Phys. Lett. A 294 (2002) 66). Subsequently, some nonclassical properties of the states are investigated in detail.

  12. Photon interaction study of organic nonlinear optical materials in the energy range 122-1330 keV

    Science.gov (United States)

    Awasarmol, Vishal V.; Gaikwad, Dhammajyot K.; Raut, Siddheshwar D.; Pawar, Pravina P.

    2017-01-01

    In the present study, the mass attenuation coefficient (μm) of six organic nonlinear optical materials has been calculated in the energy range 122-1330 keV and compared with the obtained values from the WinXCOM program. It is found that there is a good agreement between theoretical and experimental values (<3%). The linear attenuation coefficients (μ) total atomic cross section (σt, a), and total electronic cross section (σt, el) have also been calculated from the obtained μm values and their variations with photon energy have been plotted. From the present work, it is observed that the variation of obtained values of μm, μ, σt, a, and σt, el strongly depends on the photon energy and decreases or increases due to chemical composition and density of the sample. All the samples have been studied extensively using transmission method with a view to utilize the material for radiation dosimetry. Investigated samples are good material for radiation dosimetry due their low effective atomic number. The mass attenuation coefficient (μm), linear attenuation coefficients (μ), total atomic cross section (σt, a), total electronic cross section (σt, el), effective atomic numbers (Zeff), molar extinction coefficient (ε), mass energy absorption coefficient (μen/ρ) and effective atomic energy absorption cross section (σa, en) of all sample materials have been carried out and transmission curves have been plotted. The transmission curve shows that the variation of all sample materials decreases with increasing photon energy.

  13. The biaxial nonlinear crystal BiB3O6 as a polarization entangled photon source using non-collinear type-II parametric down-conversion

    CERN Document Server

    Halevy, A; Dovrat, L; Eisenberg, H S; Becker, P; Bohatý, L

    2011-01-01

    We describe the full characterization of the biaxial nonlinear crystal BiB3O6 (BiBO) as a polarization entangled photon source using non-collinear type-II parametric down-conversion. We consider the relevant parameters for crystal design, such as cutting angles, polarization of the photons, effective nonlinearity, spatial and temporal walk-offs, crystal thickness and the effect of the pump laser bandwidth. Experimental results showing entanglement generation with high rates and a comparison to the well investigated beta-BaB2O4 (BBO) crystal are presented as well. Changing the down-conversion crystal of a polarization entangled photon source from BBO to BiBO enhances the generation rate as if the pump power was increased by more than three times. Such an improvement is currently required for the generation of multiphoton entangled states.

  14. The biaxial nonlinear crystal BiB₃O₆ as a polarization entangled photon source using non-collinear type-II parametric down-conversion.

    Science.gov (United States)

    Halevy, A; Megidish, E; Dovrat, L; Eisenberg, H S; Becker, P; Bohatý, L

    2011-10-10

    We describe the full characterization of the biaxial nonlinear crystal BiB₃O₆ (BiBO) as a polarization entangled photon source using non-collinear type-II parametric down-conversion. We consider the relevant parameters for crystal design, such as cutting angles, polarization of the photons, effective nonlinearity, spatial and temporal walk-offs, crystal thickness and the effect of the pump laser bandwidth. Experimental results showing entanglement generation with high rates and a comparison to the well investigated β-BaB₂O₄ (BBO) crystal are presented as well. Changing the down-conversion crystal of a polarization entangled photon source from BBO to BiBO enhances the generation rate as if the pump power was increased by 2.5 times. Such an improvement is currently required for the generation of multiphoton entangled states.

  15. Highly efficient flexible piezoelectric nanogenerator and femtosecond two-photon absorption properties of nonlinear lithium niobate nanowires

    Science.gov (United States)

    Gupta, Manoj Kumar; Aneesh, Janardhanakurup; Yadav, Rajesh; Adarsh, K. V.; Kim, Sang-Woo

    2017-05-01

    We present a high performance flexible piezoelectric nanogenerator (NG) device based on the hydrothermally grown lead-free piezoelectric lithium niobate (LiNbO3) nanowires (NWs) for scavenging mechanical energies. The non-linear optical coefficient and optical limiting properties of LiNbO3 were analyzed using femtosecond laser pulse assisted two photon absorption techniques for the first time. Further, a flexible hybrid type NG using a composite structure of the polydimethylsiloxane polymer and LiNbO3 NWs was fabricated, and their piezoelectric output signals were measured. A large output voltage of ˜4.0 V and a recordable large current density of about 1.5 μA cm-2 were obtained under the cyclic compressive force of 1 kgf. A subsequent UV-Vis analysis of the as-prepared sample provides a remarkable increase in the optical band gap (UV absorption cut-off, ˜251 nm) due to the nanoscale size effect. The high piezoelectric output voltage and current are discussed in terms of large band gap, significant nonlinear optical response, and electric dipole alignments under poling effects. Such high performance and unique optical properties of LiNbO3 show its great potential towards various next generation smart electronic applications and self-powered optoelectronic devices.

  16. Experimental photonic generation of chirped pulses using nonlinear dispersion-based incoherent processing.

    Science.gov (United States)

    Rius, Manuel; Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José

    2015-05-18

    We experimentally demonstrate, for the first time, a chirped microwave pulses generator based on the processing of an incoherent optical signal by means of a nonlinear dispersive element. Different capabilities have been demonstrated such as the control of the time-bandwidth product and the frequency tuning increasing the flexibility of the generated waveform compared to coherent techniques. Moreover, the use of differential detection improves considerably the limitation over the signal-to-noise ratio related to incoherent processing.

  17. Natural Silk as a Photonics Component: a Study on Its Light Guiding and Nonlinear Optical Properties

    Science.gov (United States)

    Kujala, Sami; Mannila, Anna; Karvonen, Lasse; Kieu, Khanh; Sun, Zhipei

    2016-03-01

    Silk fibers are expected to become a pathway to biocompatible and bioresorbable waveguides, which could be used to deliver localized optical power for various applications, e.g., optical therapy or imaging inside living tissue. Here, for the first time, the linear and nonlinear optical properties of natural silk fibers have been studied. The waveguiding properties of silk fibroin of largely unprocessed Bombyx mori silkworm silk are assessed using two complementary methods, and found to be on the average 2.8 dB mm-1. The waveguide losses of degummed silk are to a large extent due to scattering from debris on fiber surface and helical twisting of the fiber. Nonlinear optical microscopy reveals both configurational defects such as torsional twisting, and strong symmetry breaking at the center of the fiber, which provides potential for various nonlinear applications. Our results show that nonregenerated B. mori silk can be used for delivering optical power over short distances, when the waveguide needs to be biocompatible and bioresorbable, such as embedding the waveguide inside living tissue.

  18. Nonlinear photonic engineering: from NLO as a goal to NLO as a tool

    Science.gov (United States)

    Zyss, Joseph; Brasselet, Sophie

    2000-07-01

    Engineering of new nonlinear materials, structures and devices with enhanced figures of merit has acted over the last two decades as a major force to help drive nonlinear optics from the laboratory to real applications. In this perspective, electrooptic polymers have triggered a currently maturing integrated optics technology with a variety of industrial applications in view. We report here on a possibly major turning point in this field whereby nonlinear optical phenomena, while remaining a major functional end-goal per se, are being now implemented at the core of the elaboration process itself. Cycles of angularly selective optical pumping based on quantum interferences between multiphoton excitation pathways followed by relaxation via a randomizing diffusion process are able to break the isotropy of adequate photosensitive media into a rich variety of controllable multipolar patterns. Their photoinduced symmetry reflects the multipolar symmetry of controllable polarization states of the coherent writing beams which can be permanently or dynamically imprinted on a variety of currently explored structures including films, waveguides, gratings or microcavities.

  19. Higgsed Stueckelberg vector and Higgs quadratic divergence

    Directory of Open Access Journals (Sweden)

    Durmuş Ali Demir

    2015-01-01

    Full Text Available Here we show that, a hidden vector field whose gauge invariance is ensured by a Stueckelberg scalar and whose mass is spontaneously generated by the Standard Model Higgs field contributes to quadratic divergences in the Higgs boson mass squared, and even leads to its cancellation at one-loop when Higgs coupling to gauge field is fine-tuned. In contrast to mechanisms based on hidden scalars where a complete cancellation cannot be achieved, stabilization here is complete in that the hidden vector and the accompanying Stueckelberg scalar are both free from quadratic divergences at one-loop. This stability, deriving from hidden exact gauge invariance, can have important implications for modeling dark phenomena like dark matter, dark energy, dark photon and neutrino masses. The hidden fields can be produced at the LHC.

  20. Velocity-changing collisional effects in nonlinear atomic spectroscopy and photon echo decay in gases

    Science.gov (United States)

    Herman, R. M.

    1983-01-01

    A general theory of atomic dipole coherence under the influence of collisional phase changes, inelastic effects and optically active atom velocity changes, including those due to anisotropic interactions is presented. Velocity change effects are obtained in closed form. Line shapes appear as convolutions of standard pressure broadening contours with velocity-change contours. Width and shift parameters for the He-broadened Na D lines at 2 m bar pressure, 380 K are calculated, as are He-induced photon echo decay rates for these lines. Overall agreement with xperiment is reasonably good.

  1. Extending of flat normal dispersion profile in all-solid soft glass nonlinear photonic crystal fibres

    Science.gov (United States)

    Siwicki, Bartłomiej; Kasztelanic, Rafał; Klimczak, Mariusz; Cimek, Jarosław; Pysz, Dariusz; Stępień, Ryszard; Buczyński, Ryszard

    2016-06-01

    The bandwidth of coherent supercontinuum generated in optical fibres is strongly determined by the all-normal dispersion characteristic of the fibre. We investigate all-normal dispersion limitations in all-solid oxide-based soft glass photonic crystal fibres with various relative inclusion sizes and lattice constants. The influence of material dispersion on fibre dispersion characteristics for a selected pair of glasses is also examined. A relation between the material dispersion of the glasses and the fibre dispersion has been described. We determined the parameters which limit the maximum range of flattened all-normal dispersion profile achievable for the considered pair of heavy-metal-oxide soft glasses.

  2. Nonlinear Response of One-Dimensional Magneto-Optical Photonic Crystals

    Institute of Scientific and Technical Information of China (English)

    WANG Wei-Zhong

    2005-01-01

    @@ We numerically investigate the magneto-optical Cotton-Mouton effect in an alternating multilayer structure with a nonlinear dielectric constant. The multistability and polarization of the transmission of electromagnetic field near the edges of the stop gap are studied in detail. The resonant transmission is accompanied by solitons of intensity of the field. This investigation provides a way to select the transmission property with different polarizations since both the amplitude and the phase of the output field can be adjusted by the input power and by the magneto-optical coefficient depending on the external magnetic field.

  3. Flat super-continuum generation based on normal dispersion nonlinear photonic crystal fibre

    DEFF Research Database (Denmark)

    Chow, K.K.; Takushima, Y.; Lin, C.

    2006-01-01

    Flat super-continuum generation spanning over the whole telecommunication band using a passively modelocked fibre laser source at 1550 nm together with a dispersion-flattened nonlinear photoinc crystal fibre is demonstrated. Since the pulses propagate in the normal dispersion regime of the fibre...... only, linear frequency chirp is induced by self-phase modulation which leads to a flat super-continuum. By launching the compressed 170 fs modelocked pulses with an average power of 10 mW into the fibre, super-continuum over 185 nm with less than 5 dB fluctuation is obtained from the all...

  4. Recent advances in very highly nonlinear chalcogenide photonic crystal fibers and their applications

    Science.gov (United States)

    Méchin, David; Brilland, Laurent; Troles, Johann; Chartier, Thierry; Besnard, Pascal; Canat, Guillaume; Renversez, Gilles

    2012-02-01

    Perfos and the laboratory Glasses and Ceramics Group of University of Rennes 1 have worked together to develop a new fabrication technique for chalcogenide preforms based on the glass-casting process. Various fiber profiles have been designed by the Fresnel Institute and fiber losses have been significantly improved, approaching those of the material losses. Using this technology, we have manufactured an AsSe CPCF exhibiting a nonlinear coefficient γ of 46 000 W-1km-1. Self-phase modulation, Raman effect, Brillouin effect, Four-Wave Mixing have been observed leading to the demonstration of various optical functions such four-wave mixing based wavelength conversion at 1.55 μm by FOTON, the demonstration of Raman Shifts and the generation of a mid-IR supercontinuum source by ONERA and the demonstration of a Brillouin fiber laser by FOTON.

  5. Synthesis of nonlinear optical fluorinated polyimide/inorganic composites for photonic devices

    Institute of Scientific and Technical Information of China (English)

    LI Guo-yuan; REN Li

    2006-01-01

    A nonlinear optical (NLO) active alkoxysilane chromophore (SGDR1) was synthesized. A fluorinated polyimide/SGDR1 composite was prepared to improve the poor temporal stability of second-order NLO effects of the reported poled sol-gel film. The poled composite film was characterized by FTIR,DSC,TGA and UV-Vis. The composite displays good hydrophobic properties,high glass transition temperature (266 ℃),and high decomposition temperature (433 ℃). The second harmonic coefficient d33 of the composite was measured to be 16.77 pm/V by using maker fringe technique. The new NLO composite exhibits 85 % of the original d33 over 720 h at 100 ℃ and possesses much better stability than the reported sol-gel film.

  6. Photon and dilepton spectra from nonlinear QED effects in supercritical magnetic fields induced by heavy-ion collisions

    CERN Document Server

    Hattori, Koichi

    2015-01-01

    We discuss properties of photons in extremely strong magnetic fields induced by the relativistic heavy-ion collisions. We investigate the vacuum birefringence, the real-photon decay, and the photon splitting which are all forbidden in the ordinary vacuum, but become possible in strong magnetic fields. These effects potentially give rise to anisotropies in photon and dilepton spectra.

  7. Fabrication of GaN/AlGaN 1D photonic crystals designed for nonlinear optical applications

    CERN Document Server

    Stomeo, T; Tasco, V; Tarantini, I; Campa, A; De Vittorio, M; Passaseo, A; Braccini, M; Larciprete, M C; Sibilia, C; Bovino, F A

    2011-01-01

    In this paper we present a reliable process to fabricate GaN/AlGaN one dimensional photonic crystal (1D-PhC) microcavities with nonlinear optical properties. We used a heterostructure with a GaN layer embedded between two Distributed Bragg Reflectors consisting of AlGaN/GaN multilayers, on sapphire substrate, designed to generate a {\\lambda}= 800 nm frequency down-converted signal (\\chi^(2) effect) from an incident pump signal at {\\lambda}= 400 nm. The heterostructure was epitaxially grown by metal organic chemical vapour deposition (MOCVD) and integrates a properly designed 1D-PhC grating, which amplifies the signal by exploiting the double effect of cavity resonance and non linear GaN enhancement. The integrated 1D-PhC microcavity was fabricate combing a high resolution e-beam writing with a deep etching technique. For the pattern transfer we used ~ 170 nm layer Cr metal etch mask obtained by means of high quality lift-off technique based on the use of bi-layer resist (PMMA/MMA). At the same time, plasma co...

  8. A CLASS OF QUADRATIC HAMILTONIAN SYSTEMS UNDER QUADRATIC PERTURBATION

    Institute of Scientific and Technical Information of China (English)

    丰建文; 陈士华

    2001-01-01

    This paper deals with a class of quadratic Hamiltonian systems with quadratic perturbation. The authors prove that if the first order Melnikov function M1(h) = 0 and the second order Melnikov function M2(h) ≡ 0, then the origin of the Hamiltonian system with small perturbation is a center.

  9. On the linear and non-linear electronic spectroscopy of chlorophylls: a computational study.

    Science.gov (United States)

    Graczyk, Alicja; Żurek, Justyna M; Paterson, Martin J

    2014-01-01

    A theoretical analysis of linear and non-linear (two-photon absorption) electronic spectroscopy of all known porphyrinic pigments has been performed using linear and quadratic density functional response theory, with the long-range corrected CAM-B3LYP functional. We found that higher Soret transitions often contain non-Gouterman contributions and that each chlorophyll has the possibility for resonance enhanced TPA in the Soret region, although there is also significant TPA in the Q region.

  10. Quadratic solitons as nonlocal solitons

    DEFF Research Database (Denmark)

    Nikolov, Nikola Ivanov; Neshev, D.; Bang, Ole

    2003-01-01

    We show that quadratic solitons are equivalent to solitons of a nonlocal Kerr medium. This provides new physical insight into the properties of quadratic solitons, often believed to be equivalent to solitons of an effective saturable Kerr medium. The nonlocal analogy also allows for analytical...

  11. On Characterization of Quadratic Splines

    DEFF Research Database (Denmark)

    Chen, B. T.; Madsen, Kaj; Zhang, Shuzhong

    2005-01-01

    that the representation can be refined in a neighborhood of a non-degenerate point and a set of non-degenerate minimizers. Based on these characterizations, many existing algorithms for specific convex quadratic splines are also finite convergent for a general convex quadratic spline. Finally, we study the relationship...

  12. Second Order Backward Stochastic Differential Equations with Quadratic Growth

    CERN Document Server

    Dylan, Possamai

    2012-01-01

    We prove the existence and uniqueness of a solution for one-dimensionnal second order backward stochastic differential equations introduced by Soner, Touzi and Zhang (2010), with a bounded terminal condition and a generator which is continuous with quadratic growth in z. We also prove a Feyman-Kac formula and a probabilistic representation for fully nonlinear PDEs in this setting.

  13. Quadratic Lyapunov Function and Exponential Dichotomy on Time Scales

    Institute of Scientific and Technical Information of China (English)

    ZHANG JI; LIU ZHEN-XIN

    2011-01-01

    In this paper, we study the relationship between exponential dichotomy and quadratic Lyapunov function for the linear equation x△ = A(t)x on time scales.Moreover, for the nonlinear perturbed equation x△ = A(t)x + f(t,x) we give the instability of the zero solution when f is sufficiently small.

  14. Nonlinear Localization due to a Double Negative Defect Layer in a One-Dimensional Photonic Crystal Containing Single Negative Material Layers

    Institute of Scientific and Technical Information of China (English)

    Munazza Zulfiqar Ali; Tariq Abdullah

    2008-01-01

    We investigate the effects of introducing a defect layer in a one-dimensional photonic crystal containing single negative material layers on the transmission properties.The width of the defect layer js taken to be the same or smaller than the period of the structure.Different cases of the defect layer being linear or nonlinear and double positive or double negative are discussed.It is found that only a nonlinear double negative layer givas rises to a localized mode within the zero-φeff gap in this kind of structure.It is also shown that the important characteristics of the nonlinear defect mode such as its frequency,its FWHM and the threshold of the associated bistability can be controlled by changing the widths of the defect layer and the host layers.

  15. Large-scale sequential quadratic programming algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Eldersveld, S.K.

    1992-09-01

    The problem addressed is the general nonlinear programming problem: finding a local minimizer for a nonlinear function subject to a mixture of nonlinear equality and inequality constraints. The methods studied are in the class of sequential quadratic programming (SQP) algorithms, which have previously proved successful for problems of moderate size. Our goal is to devise an SQP algorithm that is applicable to large-scale optimization problems, using sparse data structures and storing less curvature information but maintaining the property of superlinear convergence. The main features are: 1. The use of a quasi-Newton approximation to the reduced Hessian of the Lagrangian function. Only an estimate of the reduced Hessian matrix is required by our algorithm. The impact of not having available the full Hessian approximation is studied and alternative estimates are constructed. 2. The use of a transformation matrix Q. This allows the QP gradient to be computed easily when only the reduced Hessian approximation is maintained. 3. The use of a reduced-gradient form of the basis for the null space of the working set. This choice of basis is more practical than an orthogonal null-space basis for large-scale problems. The continuity condition for this choice is proven. 4. The use of incomplete solutions of quadratic programming subproblems. Certain iterates generated by an active-set method for the QP subproblem are used in place of the QP minimizer to define the search direction for the nonlinear problem. An implementation of the new algorithm has been obtained by modifying the code MINOS. Results and comparisons with MINOS and NPSOL are given for the new algorithm on a set of 92 test problems.

  16. Nonlinear spectral imaging of human hypertrophic scar based on two-photon excited fluorescence and second-harmonic generation.

    Science.gov (United States)

    Chen, G; Chen, J; Zhuo, S; Xiong, S; Zeng, H; Jiang, X; Chen, R; Xie, S

    2009-07-01

    A noninvasive method using microscopy and spectroscopy for analysing the morphology of collagen and elastin and their biochemical variations in skin tissue will enable better understanding of the pathophysiology of hypertrophic scars and facilitate improved clinical management and treatment of this disease. To obtain simultaneously microscopic images and spectra of collagen and elastin fibres in ex vivo skin tissues (normal skin and hypertrophic scar) using a nonlinear spectral imaging method, and to compare the morphological structure and spectral characteristics of collagen and elastin fibres in hypertrophic scar tissues with those of normal skin, to determine whether this approach has potential for in vivo assessment of the pathophysiology of human hypertrophic scars and for monitoring treatment responses as well as for tracking the process of development of hypertrophic scars in clinic. Ex vivo human skin specimens obtained from six patients aged from 10 to 50 years old who were undergoing skin plastic surgery were examined. Five patients had hypertrophic scar lesions and one patient had no scar lesion before we obtained his skin specimen. A total of 30 tissue section samples of 30 mum thickness were analysed by the use of a nonlinear spectral imaging system consisting of a femtosecond excitation light source, a high-throughput scanning inverted microscope, and a spectral imaging detection system. The high-contrast and high-resolution second harmonic generation (SHG) images of collagen and two-photon excited fluorescence (TPEF) images of elastin fibres in hypertrophic scar tissues and normal skin were acquired using the extracting channel tool of the system. The emission spectra were analysed using the image-guided spectral analysis method. The depth-dependent decay constant of the SHG signal and the image texture characteristics of hypertrophic scar tissue and normal skin were used to quantitatively assess the amount, distribution and orientation of their

  17. Evolution of Dark Spatial Soliton in Quasi-phase-matched Quadratic Media

    Institute of Scientific and Technical Information of China (English)

    WANG Fei-Yu; CHEN Xian-Feng; CHEN Yu-Ping; YANG Yi; XIA Yu-Xing

    2005-01-01

    We theoretically investigate the evolvement of dark spatial soliton with cascading quadratic nonlinearity in quasi-phase-matched second harmonic generation. It is shown that the dark solitary wave can propagate stably when background intensity is large enough, in which diffraction of beam can be balanced by the cascading quadratic nonlinearity. We also analyze the influence of phase-mismatch on the stability of dark soliton propagation.

  18. SMOOTHING BY CONVEX QUADRATIC PROGRAMMING

    Institute of Scientific and Technical Information of China (English)

    Bing-sheng He; Yu-mei Wang

    2005-01-01

    In this paper, we study the relaxed smoothing problems with general closed convex constraints. It is pointed out that such problems can be converted to a convex quadratic minimization problem for which there are good programs in software libraries.

  19. Quantum quadratic operators and processes

    CERN Document Server

    Mukhamedov, Farrukh

    2015-01-01

    Covering both classical and quantum approaches, this unique and self-contained book presents the most recent developments in the theory of quadratic stochastic operators and their Markov and related processes. The asymptotic behavior of dynamical systems generated by classical and quantum quadratic operators is investigated and various properties of quantum quadratic operators are studied, providing an insight into the construction of quantum channels. This book is suitable as a textbook for an advanced undergraduate/graduate level course or summer school in quantum dynamical systems. It can also be used as a reference book by researchers looking for interesting  problems to work on, or useful techniques and discussions of particular problems. Since it includes the latest developments in the fields of quadratic dynamical systems, Markov processes and quantum stochastic processes, researchers at all levels are likely to find the book inspiring and useful.

  20. Quadratic Tangles in Planar Algebras

    CERN Document Server

    Jones, Vaughan F R

    2010-01-01

    In planar algebras, we show how to project certain simple "quadratic" tangles onto the linear space spanned by "linear" and "constant" tangles. We obtain some corollaries about the principal graphs and annular structure of subfactors.

  1. Successive approximation-like 4-bit full-optical analog-to-digital converter based on Kerr-like nonlinear photonic crystal ring resonators

    Science.gov (United States)

    Tavousi, Alireza; Mansouri-Birjandi, Mohammad Ali; Saffari, Mehdi

    2016-09-01

    Implementing of photonic sampling and quantizing analog-to-digital converters (ADCs) enable us to extract a single binary word from optical signals without need for extra electronic assisting parts. This would enormously increase the sampling and quantizing time as well as decreasing the consumed power. To this end, based on the concept of successive approximation method, a 4-bit full-optical ADC that operates using the intensity-dependent Kerr-like nonlinearity in a two dimensional photonic crystal (2DPhC) platform is proposed. The Silicon (Si) nanocrystal is chosen because of the suitable nonlinear material characteristic. An optical limiter is used for the clamping and quantization of each successive levels that represent the ADC bits. In the proposal, an energy efficient optical ADC circuit is implemented by controlling the system parameters such as ring-to-waveguide coupling coefficients, the ring's nonlinear refractive index, and the ring's length. The performance of the ADC structure is verified by the simulation using finite difference time domain (FDTD) method.

  2. Exact solutions to quadratic gravity generated by a conformal method

    CERN Document Server

    Pravda, Vojtech; Podolsky, Jiri; Svarc, Robert

    2016-01-01

    We study the role of conformal transformations in constructing vacuum solutions to quadratic gravity. We find that such solutions can be obtained by solving one non-linear partial differential equation for the conformal factor on any Einstein spacetime or, more generally, on any background with vanishing Bach tensor. We show that all spacetimes conformal to Kundt are either Kundt or Robinson--Trautmann, and we provide explicit Kundt and Robinson--Trautman solutions to quadratic gravity by solving the above mentioned equation on certain Kundt backgrounds.

  3. A bistriphenylamine-substituted spirobifluorene derivative exhibiting excellent nonlinearity/transparency/thermal stability trade-off and strong two-photon induced blue fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Hongyao [Department of Chemistry, Shanghai Normal University, Shanghai 200234 (China); Xiao, Haibo, E-mail: xiaohb@shnu.edu.cn [Department of Chemistry, Shanghai Normal University, Shanghai 200234 (China); Ding, Lei [Department of Chemistry, Shanghai Normal University, Shanghai 200234 (China); Zhang, Chun; Ren, Aiming [State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023 (China); Li, Bo [Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200241 (China)

    2015-02-01

    A spirobifluorene-bridged donor/donor chromophore, 2,7-bis-(4-(N,N-diphenylamino)phen-1-yl)-9,9′-spirobifluorene (SPF-TP), was found to combine excellent transparency in the near UV–visible region (λ{sub cut-off} ≤ 420 nm), large two-photon absorption cross-section (4.5 × 10{sup 3}GM) and high thermal stability (T{sub d} = 501 °C). In comparison to the reported two-photon absorption molecules, SPF-TP represents the best thermal stability so far described in the literature. The main electronic factors explaining the high two-photon absorption activities of SPF-TP were analyzed by theoretical calculations. Cyclic voltammograms were employed to explore the causes of the excellent transparency of SPF-TP. It was found that the spiroconjugation effect is responsible for the excellent nonlinearity/transparency/thermal stability trade-off in SPF-TP. In addition, SPF-TP is also a good two-photon induced blue fluorescent material with high fluorescence quantum yield (Φ = 0.90, in THF). - Highlights: • We report a molecule exhibiting excellent transparency. • The two-photon absorption cross-section is as large as 4.5 × 10{sup 3}GM. • The molecule exhibits excellent thermal stability. • The molecule is a good two-photon induced blue fluorescent material. • The spiroconjugation effect explains the excellent properties.

  4. On ξ(s-Quadratic Stochastic Operators on Two-Dimensional Simplex and Their Behavior

    Directory of Open Access Journals (Sweden)

    Farrukh Mukhamedov

    2013-01-01

    Full Text Available A quadratic stochastic operator (in short QSO is usually used to present the time evolution of differing species in biology. Some quadratic stochastic operators have been studied by Lotka and Volterra. The general problem in the nonlinear operator theory is to study the behavior of operators. This problem was not fully finished even for quadratic stochastic operators which are the simplest nonlinear operators. To study this problem, several classes of QSO were investigated. We study ξ(s-QSO defined on 2D simplex. We first classify ξ(s-QSO into 20 nonconjugate classes. Further, we investigate the dynamics of three classes of such operators.

  5. All-Optical 1-to-8 Wavelength Multicasting at 20 Gbit/s Exploiting Self-Phase Modulation in Dispersion Flattened Highly Nonlinear Photonic Crystal Fiber

    Directory of Open Access Journals (Sweden)

    Zhan-Qiang Hui

    2014-01-01

    Full Text Available All-optical multicasting of performing data routing from single node to multiple destinations in the optical domain is promising for next generation ultrahigh-peed photonic networks. Based on the self-phase modulation in dispersion flattened highly nonlinear photonic crystal fiber and followed spectral filtering, simultaneous 1-to-8 all-optical wavelength multicasting return-to-zero (RZ signal at 20 Gbit/s with 100 GHz channel spaced is achieved. Wavelength tunable range and dynamic characteristic of proposed wavelength multicasting scheme is further investigated. The results show our designed scheme achieve operation wavelength range of 25 nm, OSNR of 32.01 dB and Q factor of 12.8. Moreover, the scheme has simple structure as well as high tolerance to signal power fluctuation.

  6. Discrete quantum Fourier transform using weak cross-Kerr nonlinearity and displacement operator and photon-number-resolving measurement under the decoherence effect

    Science.gov (United States)

    Heo, Jino; Kang, Min-Sung; Hong, Chang-Ho; Yang, Hyeon; Choi, Seong-Gon

    2016-12-01

    We present a scheme for implementing discrete quantum Fourier transform (DQFT) with robustness against the decoherence effect using weak cross-Kerr nonlinearities (XKNLs). The multi-photon DQFT scheme can be achieved by operating the controlled path and merging path gates that are formed with weak XKNLs and linear optical devices. To enhance feasibility under the decoherence effect, in practice, we utilize a displacement operator and photon-number-resolving measurement in the optical gate using XKNLs. Consequently, when there is a strong amplitude of the coherent state, we demonstrate that it is possible to experimentally implement the DQFT scheme, utilizing current technology, with a certain probability of success under the decoherence effect.

  7. Broad optical bandwidth based on nonlinear effect of intensity and phase modulators through intense four-wave mixing in photonic crystal fiber

    Science.gov (United States)

    Eltaif, Tawfig

    2017-05-01

    This work investigates the advantages of nonlinear optics of a cascaded intensity modulator (IM) and phase modulator (PM) to generate an initial optical frequency comb. The results show that when the direct current bias to amplitude ratio, α=0.1, and the IM and PM have the same modulation index and are equal 10, seed comb is achieved; it is generated by the modulation of two continuous wave lasers. Hence, based on these parameters, an intense four-wave mixing is created through 9 m of photonic crystal fiber. Moreover, a broadband spectrum was achieved, spaced by a 30-GHz microwave frequency.

  8. Electro- and thermo-optic effects on multi-wavelength Solc filters based on chi(2) nonlinear quasi-periodic photonic crystals.

    Science.gov (United States)

    Kee, Chul-Sik; Lee, Yeong Lak; Lee, Jongmin

    2008-04-28

    We investigate electro- and thermo-optic effects on multi-wavelength Solc filters based on chi(2) nonlinear quasi-periodic photonic crystals. The multi-wavelength Solc filters are composed of two building blocks A and B, in which each containing a pair of antiparallel poled domains, arranged as a Fibonacci sequence. The transmittances at filtering wavelengths can be modulated from 0 to 100% by applying an external voltage but the filtering wave-lengths are unchanged. The filtering wavelengths can be tuned by varying temperature. As temperature decreases, the filtering wavelengths increase (approximately -0.45 nm/degrees C).

  9. Wavelength conversion of a 40 Gb/s RZ-DPSK signal using four-wave mixing in a dispersion-flattened highly nonlinear photonic crystal fiber

    DEFF Research Database (Denmark)

    Andersen, Peter Andreas; Tokle, Torger; Geng, Yan

    2005-01-01

    by the gain bandwidth of erbium-doped fiber amplifiers, are obtained in only 50-m dispersion-flattened HNL-PCF with nonlinear coefficient equal to 11 W-1·km-1. This experiment demonstrates the potential of four-wave mixing in HNL-PCF as a modulation format and bit rate transparent wavelength conversion......Wavelength conversion of a 40-Gb/s return-to-zero differential phase-shift keying signal is demonstrated in a highly nonlinear photonic crystal fiber (HNL-PCF) for the first time. A conversion efficiency of -20 dB for a pump power of 23 dBm and a conversion bandwidth of 31 nm, essentially limited...

  10. Multiple-output microwave single-photon source using superconducting circuits with longitudinal and transverse couplings

    Science.gov (United States)

    Wang, Xin; Miranowicz, Adam; Li, Hong-Rong; Nori, Franco

    2016-11-01

    Single-photon devices at microwave frequencies are important for applications in quantum information processing and communication in the microwave regime. In this work we describe a proposal of a multioutput single-photon device. We consider two superconducting resonators coupled to a gap-tunable qubit via both its longitudinal and transverse degrees of freedom. Thus, this qubit-resonator coupling differs from the coupling in standard circuit quantum-electrodynamic systems described by the Jaynes-Cummings model. We demonstrate that an effective quadratic coupling between one of the normal modes and the qubit can be induced and this induced second-order nonlinearity is much larger than that for conventional Kerr-type systems exhibiting photon blockade. Assuming that a coupled normal mode is resonantly driven, we observe that the output fields from the resonators exhibit strong sub-Poissonian photon-number statistics and photon antibunching. Contrary to previous studies on resonant photon blockade, the first-excited state of our device is a pure single-photon Fock state rather than a polariton state, i.e., a highly hybridized qubit-photon state. In addition, it is found that the optical state truncation caused by the strong qubit-induced nonlinearity can lead to an entanglement between the two resonators, even in their steady state under the Markov approximation.

  11. On Volterra quadratic stochastic operators with continual state space

    Energy Technology Data Exchange (ETDEWEB)

    Ganikhodjaev, Nasir; Hamzah, Nur Zatul Akmar [Department of Computational and Theoretical Sciences, Faculty of Science, International Islamic University, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang (Malaysia)

    2015-05-15

    Let (X,F) be a measurable space, and S(X,F) be the set of all probability measures on (X,F) where X is a state space and F is σ - algebraon X. We consider a nonlinear transformation (quadratic stochastic operator) defined by (Vλ)(A) = ∫{sub X}∫{sub X}P(x,y,A)dλ(x)dλ(y), where P(x, y, A) is regarded as a function of two variables x and y with fixed A ∈ F . A quadratic stochastic operator V is called a regular, if for any initial measure the strong limit lim{sub n→∞} V{sup n }(λ) is exists. In this paper, we construct a family of quadratic stochastic operators defined on the segment X = [0,1] with Borel σ - algebra F on X , prove their regularity and show that the limit measure is a Dirac measure.

  12. Nonlinear generalized source method for modeling second-harmonic generation in diffraction gratings

    CERN Document Server

    Weismann, Martin; Panoiu, Nicolae C

    2015-01-01

    We introduce a versatile numerical method for modeling light diffraction in periodically patterned photonic structures containing quadratically nonlinear non-centrosymmetric optical materials. Our approach extends the generalized source method to nonlinear optical interactions by incorporating the contribution of nonlinear polarization sources to the diffracted field in the algorithm. We derive the mathematical formalism underlying the numerical method and introduce the Fourier-factorization suitable for nonlinear calculations. The numerical efficiency and runtime characteristics of the method are investigated in a set of benchmark calculations: the results corresponding to the fundamental frequency are compared to those obtained from a reference method and the beneficial effects of the modified Fourier-factorization rule on the accuracy of the nonlinear computations is demonstrated. In order to illustrate the capabilities of our method, we employ it to demonstrate strong enhancement of second-harmonic genera...

  13. Nonlinear Least Squares for Inverse Problems

    CERN Document Server

    Chavent, Guy

    2009-01-01

    Presents an introduction into the least squares resolution of nonlinear inverse problems. This title intends to develop a geometrical theory to analyze nonlinear least square (NLS) problems with respect to their quadratic wellposedness, that is, both wellposedness and optimizability

  14. A transient, quadratic nodal method for triangular-Z geometry

    Energy Technology Data Exchange (ETDEWEB)

    DeLorey, T.F.

    1993-06-01

    Many systematically-derived nodal methods have been developed for Cartesian geometry due to the extensive interest in Light Water Reactors. These methods typically model the transverse-integrated flux as either an analytic or low order polynomial function of position within the node. Recently, quadratic nodal methods have been developed for R-Z and hexagonal geometry. A static and transient quadratic nodal method is developed for triangular-Z geometry. This development is particularly challenging because the quadratic expansion in each node must be performed between the node faces and the triangular points. As a consequence, in the 2-D plane, the flux and current at the points of the triangles must be treated. Quadratic nodal equations are solved using a non-linear iteration scheme, which utilizes the corrected, mesh-centered finite difference equations, and forces these equations to match the quadratic equations by computing discontinuity factors during the solution. Transient nodal equations are solved using the improved quasi-static method, which has been shown to be a very efficient solution method for transient problems. Several static problems are used to compare the quadratic nodal method to the Coarse Mesh Finite Difference (CMFD) method. The quadratic method is shown to give more accurate node-averaged fluxes. However, it appears that the method has difficulty predicting node leakages near reactor boundaries and severe material interfaces. The consequence is that the eigenvalue may be poorly predicted for certain reactor configurations. The transient methods are tested using a simple analytic test problem, a heterogeneous heavy water reactor benchmark problem, and three thermal hydraulic test problems. Results indicate that the transient methods have been implemented correctly.

  15. Students' understanding of quadratic equations

    Science.gov (United States)

    López, Jonathan; Robles, Izraim; Martínez-Planell, Rafael

    2016-05-01

    Action-Process-Object-Schema theory (APOS) was applied to study student understanding of quadratic equations in one variable. This required proposing a detailed conjecture (called a genetic decomposition) of mental constructions students may do to understand quadratic equations. The genetic decomposition which was proposed can contribute to help students achieve an understanding of quadratic equations with improved interrelation of ideas and more flexible application of solution methods. Semi-structured interviews with eight beginning undergraduate students explored which of the mental constructions conjectured in the genetic decomposition students could do, and which they had difficulty doing. Two of the mental constructions that form part of the genetic decomposition are highlighted and corresponding further data were obtained from the written work of 121 undergraduate science and engineering students taking a multivariable calculus course. The results suggest the importance of explicitly considering these two highlighted mental constructions.

  16. Finite dimensional quadratic Lie superalgebras

    CERN Document Server

    Jarvis, Peter; Yates, Luke

    2010-01-01

    We consider a special class of Z_2-graded, polynomial algebras of degree 2, which we call quadratic Lie superalgebras. Starting from the formal definition, we discuss the generalised Jacobi relations in the context of the Koszul property, and give a proof of the PBW basis theorem. We give several concrete examples of quadratic Lie superalgebras for low dimensional cases, and discuss aspects of their structure constants for the `type I' class. Based on the factorisation of the enveloping algebra, we derive the Kac module construction for typical and atypical modules, and a related direct construction of irreducible modules due to Gould. We investigate the method for one specific case, the quadratic generalisation gl_2(n/1) of the Lie superalgebra sl(n/1). We formulate the general atypicality conditions at level 1, and present an analysis of zero-and one-step atypical modules for a certain family of Kac modules.

  17. 80 Gb/s transmission over 80 km and demultiplexing using a highly non-linear photonic crystal fibre

    DEFF Research Database (Denmark)

    Berg, Kim Skaalum; Oxenløwe, Leif Katsuo; Siahlo, Andrei;

    2002-01-01

    We report on, transmission of an 80 Gb/s signal over 80 km of standard single mode fibre with subsequent demultiplexing to 10 Gb/s in a NOLM containing a novel photonic crystal fibre......We report on, transmission of an 80 Gb/s signal over 80 km of standard single mode fibre with subsequent demultiplexing to 10 Gb/s in a NOLM containing a novel photonic crystal fibre...

  18. Engineered nonlinear lattices

    DEFF Research Database (Denmark)

    Clausen, Carl A. Balslev; Christiansen, Peter Leth; Torner, L.

    1999-01-01

    We show that with the quasi-phase-matching technique it is possible to fabricate stripes of nonlinearity that trap and guide light like waveguides. We investigate an array of such stripes and find that when the stripes are sufficiently narrow, the beam dynamics is governed by a quadratic nonlinear...

  19. BRST structure of non-linear superalgebras

    CERN Document Server

    Asorey, M; Radchenko, O V; Sugamoto, A

    2008-01-01

    In this paper we analyse the structure of the BRST structure of nonlinear superalgebras. We consider quadratic non-linear superalgebras where a commutator (in terms of (super) Poisson brackets) of the generators is a quadratic polynomial of the generators. We find the explicit form of the BRST charge up to cubic order in Faddeev-Popov ghost fields for arbitrary quadratic nonlinear superalgebras. We point out the existence of constraints on structure constants of the superalgebra when the nilpotent BRST charge is quadratic in Faddeev-Popov ghost fields. The general results are illustrated by simple examples of superalgebras.

  20. Successive quadratic programming multiuser detector

    Institute of Scientific and Technical Information of China (English)

    Mu Xuewen; Zhang Yaling; Liu Sanyang

    2007-01-01

    Based on the semidefinite programming relaxation of the CDMA maximum likelihood multiuser detection problem,a detection strategy by the successive quadratic programming algorithm is presented. Coupled with the randomized cut generation scheme, the suboptimal solution of the multiuser detection problem in obtained. Compared to the interior point methods previously reported based on semidefinite programming, simulations demonstrate that the successive quadratic programming algorithm often yields the similar BER performances of the multiuser detection problem. But the average CPU time of this approach is significantly reduced.

  1. Integer Quadratic Quasi-polyhedra

    Science.gov (United States)

    Letchford, Adam N.

    This paper introduces two fundamental families of 'quasi-polyhedra' - polyhedra with a countably infinite number of facets - that arise in the context of integer quadratic programming. It is shown that any integer quadratic program can be reduced to the minimisation of a linear function over a quasi-polyhedron in the first family. Some fundamental properties of the quasi-polyhedra are derived, along with connections to some other well-studied convex sets. Several classes of facet-inducing inequalities are also derived. Finally, extensions to the mixed-integer case are briefly examined.

  2. Investigations on nonlinear optical properties of electron beam treated Gd:ZnO thin films for photonic device applications

    Science.gov (United States)

    Spoorthi, K.; Pramodini, S.; Kityk, I. V.; Abd-Lefdil, M.; Sekkati, M.; El Fakir, A.; Rao, Ashok; Sanjeev, Ganesh; Poornesh, P.

    2017-06-01

    In this article, we report the third-order nonlinear optical properties of electron beam irradiated gadolinium-doped zinc oxide (GZO) thin films prepared using the spray pyrolysis deposition technique. GZO thin films were treated with an electron beam from a variable energy microtron accelerator at dose rates ranging from 1-5 kGy. Nonlinear optical measurements were conducted by employing the single beam Z-scan technique. A continuous wave He-Ne laser operating at 633 nm was used as the source of excitation. Closed aperture Z-scan results reveal that the films exhibit self-defocusing nonlinearity. Open aperture Z-scan results exhibit a switching over phenomena of reverse saturable absorption to saturable absorption for thin film irradiated at 3 kGy, indicating the influence of electron beams on optical nonlinearity. The significant change in third-order nonlinear optical susceptibility χ (3) ranging from 2.14  ×  10-3 to 3.12  ×  10-3 esu is attributed to the effect of electron beam irradiation. The study shows that the nonlinear coefficients of GZO films can be tuned by electron beams for use in nonlinear optical device applications.

  3. Effective nonlinearities and multi-wavelength second-harmonic generation in modulated quasi-phase-matching gratings

    DEFF Research Database (Denmark)

    Bang, Ole; Graversen, T. W.; Clausen, Carl A. Balslev

    2000-01-01

    Quasi-phase-matching gratings induces Kerr effects in quadratic nonlinear materials. We show analytically and confirm numerically how modulating the grating changes the effective quadratic and cubic nonlinearities and allows for multi-wavelength second-harmonic generation....

  4. Vestibular integrator neurons have quadratic functions due to voltage dependent conductances.

    Science.gov (United States)

    Magnani, Christophe; Eugène, Daniel; Idoux, Erwin; Moore, Lee E

    2013-12-01

    The nonlinear properties of the dendrites of the prepositus hypoglossi nucleus (PHN) neurons are essential for the operation of the vestibular neural integrator that converts a head velocity signal to one that controls eye position. A novel system of frequency probing, namely quadratic sinusoidal analysis (QSA), was used to decode the intrinsic nonlinear behavior of these neurons under voltage clamp conditions. Voltage clamp currents were measured at harmonic and interactive frequencies using specific nonoverlapping stimulation frequencies. Eigenanalysis of the QSA matrix reduces it to a remarkably compact processing unit, composed of just one or two dominant components (eigenvalues). The QSA matrix of rat PHN neurons provides signatures of the voltage dependent conductances for their particular dendritic and somatic distributions. An important part of the nonlinear response is due to the persistent sodium conductance (gNaP), which is likely to be essential for sustained effects needed for a neural integrator. It was found that responses in the range of 10 mV peak to peak could be well described by quadratic nonlinearities suggesting that effects of higher degree nonlinearities would add only marginal improvement. Therefore, the quadratic response is likely to sufficiently capture most of the nonlinear behavior of neuronal systems except for extremely large synaptic inputs. Thus, neurons have two distinct linear and quadratic functions, which shows that piecewise linear + quadratic analysis is much more complete than just piecewise linear analysis; in addition quadratic analysis can be done at a single holding potential. Furthermore, the nonlinear neuronal responses contain more frequencies over a wider frequency band than the input signal. As a consequence, they convert limited amplitude and bandwidth input signals to wider bandwidth and more complex output responses. Finally, simulations at subthreshold membrane potentials with realistic PHN neuron models

  5. Unramified extensions of quadratic fields

    Institute of Scientific and Technical Information of China (English)

    Wei Li; Dong Yang; Xianke Zhang

    2008-01-01

    Let K be a global quadratic field, then every unramified abelian extension of K is proved to be absolutely Galois when K is a number field or under some natural conditions when K is a function field. The absolute Galois group is also determined explicitly.

  6. Quadratic prediction of factor scores

    NARCIS (Netherlands)

    Wansbeek, T

    1999-01-01

    Factor scores are naturally predicted by means of their conditional expectation given the indicators y. Under normality this expectation is linear in y but in general it is an unknown function of y. II is discussed that under nonnormality factor scores can be more precisely predicted by a quadratic

  7. Quadratic Variation by Markov Chains

    DEFF Research Database (Denmark)

    Hansen, Peter Reinhard; Horel, Guillaume

    We introduce a novel estimator of the quadratic variation that is based on the the- ory of Markov chains. The estimator is motivated by some general results concerning filtering contaminated semimartingales. Specifically, we show that filtering can in prin- ciple remove the effects of market...

  8. Wavelength conversion, time demultiplexing and multicasting based on cross-phase modulation and four-wave mixing in dispersion-flattened highly nonlinear photonic crystal fiber

    Science.gov (United States)

    Hui, Zhan-Qiang; Zhang, Jian-Guo

    2012-05-01

    We propose the use of cross-phase modulation (XPM) and four-wave mixing (FWM) in dispersion-flattened highly nonlinear photonic crystal fibers (HNL-PCFs) to implement the functionalities of wavelength conversion, simultaneous time demultiplexing and wavelength multicasting in optical time-division multiplexing (OTDM) systems. The experiments on wavelength conversion at 80 Gbit s-1and OTDM demultiplexing from 80 to 10 Gbit s-1 with wavelength multicasting of two channels are successfully demonstrated to validate the proposed scheme, which are carried out by using two segments of dispersion-flattened HNL-PCFs with lengths of 100 and 50 m, respectively. Moreover, the bit error rate (BER) performance is also measured. The results show that our designed system can achieve a power penalty of less than 4.6 dB for two multicasting channels with a 24 nm wavelength span at the BER of 10-9 when compared with the 10 Gbit/s back-to-back measurement. The proposed system is transparent to bit rate since only an ultrafast third-order nonlinear effect is used. The resulting configuration is compact, robust and reliable, benefiting from the use of dispersion-flattened HNL-PCFs with short lengths. This also makes the proposed system more flexible in the operational wavelengths than those based on dispersion-shifted fibers and traditional highly nonlinear fibers. The work was supported in part by the CAS/SAFEA International Partnership Program for Creative Research Teams.

  9. Diffusion Based Photon Mapping

    DEFF Research Database (Denmark)

    Schjøth, Lars; Olsen, Ole Fogh; Sporring, Jon

    2006-01-01

    . To address this problem we introduce a novel photon mapping algorithm based on nonlinear anisotropic diffusion. Our algorithm adapts according to the structure of the photon map such that smoothing occurs along edges and structures and not across. In this way we preserve the important illumination features......, while eliminating noise. We call our method diffusion based photon mapping....

  10. Diffusion Based Photon Mapping

    DEFF Research Database (Denmark)

    Schjøth, Lars; Fogh Olsen, Ole; Sporring, Jon

    2007-01-01

    . To address this problem we introduce a novel photon mapping algorithm based on nonlinear anisotropic diffusion. Our algorithm adapts according to the structure of the photon map such that smoothing occurs along edges and structures and not across. In this way we preserve the important illumination features......, while eliminating noise. We call our method diffusion based photon mapping....

  11. Consensus-ADMM for General Quadratically Constrained Quadratic Programming

    Science.gov (United States)

    Huang, Kejun; Sidiropoulos, Nicholas D.

    2016-10-01

    Non-convex quadratically constrained quadratic programming (QCQP) problems have numerous applications in signal processing, machine learning, and wireless communications, albeit the general QCQP is NP-hard, and several interesting special cases are NP-hard as well. This paper proposes a new algorithm for general QCQP. The problem is first reformulated in consensus optimization form, to which the alternating direction method of multipliers (ADMM) can be applied. The reformulation is done in such a way that each of the sub-problems is a QCQP with only one constraint (QCQP-1), which is efficiently solvable irrespective of (non-)convexity. The core components are carefully designed to make the overall algorithm more scalable, including efficient methods for solving QCQP-1, memory efficient implementation, parallel/distributed implementation, and smart initialization. The proposed algorithm is then tested in two applications: multicast beamforming and phase retrieval. The results indicate superior performance over prior state-of-the-art methods.

  12. Optimal power flow using sequential quadratic programming

    Science.gov (United States)

    Nejdawi, Imad M.

    1999-11-01

    Optimal power flow (OPF) is an operational as well as a planning tool used by electric utilities to help them operate their network in the most economic and secure mode of operation. Various algorithms to solve the OPF problem evolved over the past three decades; linear programming (LP) techniques were among the major mathematical programming methods utilized. The linear models of the objective function and the linearization of the constraints are the main features of these techniques. The main advantages of the LP approach are simplicity and speed. Nonlinear programming techniques have been applied to OPF solution. The major drawback is the expensive solution of large sparse systems of equations. This research is concerned with the development of a new OPF solution algorithm using sequential quadratic programming (SQP). In this formulation, a small dense system the size of which is equal to the number of control variables is solved in an inner loop. The Jacobian and Hessian terms are calculated in an outer loop. The total number of outer loop iterations is comparable to those in an ordinary load flow in contrast to 20--30 iterations in other nonlinear methods. In addition, the total number of floating point operations is less than that encountered in direct methods by two orders of magnitude. We also model dispatch over a twenty four-hour time horizon in a transmission constrained power network that includes price-responsive loads where large energy customers can operate their loads in time intervals with lowest spot prices.

  13. Two-photon absorption, nonlinear optical and UV-vis spectral properties of 2-furanylmethyleneaminoantipyrine, benzylideneaminoantipyrine and cinnamilideneaminoantipyrine

    Energy Technology Data Exchange (ETDEWEB)

    Sun Yuxi, E-mail: yuxisun@163.com [Key Laboratory for Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology, Nanjing 210094 (China) and Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165 (China); Hao Qingli; Tang Weihua; Wang Yufeng [Key Laboratory for Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology, Nanjing 210094 (China); Yang Xujie, E-mail: yangx@mail.njust.edu.cn [Key Laboratory for Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology, Nanjing 210094 (China); Lu Lude; Wang Xin [Key Laboratory for Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2011-09-15

    Highlights: {yields} Three imine-bridged aromatic antipyrine derivatives as photo-responsive materials. {yields} The compounds exhibit two-photon absorption and first-hyperpolarization properties {yields} The compounds have long-range electron transfer characteristics. - Abstract: Organic compounds as functional materials have attracted much keen interest in the past three decades owing to their potential applications in science and technology. Currently, great efforts have been made in looking for suitable photo-responsive materials among the multifarious organic compounds. Herein we reported the photophysical properties of 2-furanylmethylene-aminoantipyrine (FMAAP), benzylideneaminoantipyrine (BIAAP) and cinnamilideneamino-antipyrine (CIAAP) studied by a combined experimental and theoretical investigation. Two-photon absorption measurements give the cross-section values of 1.350 x 10{sup -50} cm{sup 4} s/photon for FMAAP, 1.046 x 10{sup -50} cm{sup 4} s/photon for BIAAP and 2.047 x 10{sup -50} cm{sup 4} s/photon for CIAAP. The calculated first-hyperpolarization values are of 2.303 x 10{sup -30}, 1.257 x 10{sup -29}, 2.889 x 10{sup -29} cm{sup 5}/esu for FMAAP, BIAAP and CIAAP, respectively. UV-vis spectroscopy technique further reveals that the studied compounds display long-range electron transfer characteristics by absorbing light of specific wavelengths of 294.5 nm for FMAAP, 293.2 nm for BIAAP and 303.1 nm for CIAAP. All the results indicate that the studied compounds are promising candidates of functionally photo-responsive materials.

  14. Quadratic and 2-Crossed Modules of Algebras

    Institute of Scientific and Technical Information of China (English)

    Z. Arvasi; E. Ulualan

    2007-01-01

    In this work, we define the quadratic modules for commutative algebras and give relations among 2-crossed modules, crossed squares, quadratic modules and simplicial commutative algebras with Moore complex of length 2.

  15. Team Decision Problems with Convex Quadratic Constraints

    OpenAIRE

    Gattami, Ather

    2015-01-01

    In this paper, we consider linear quadratic team problems with an arbitrary number of quadratic constraints in both stochastic and deterministic settings. The team consists of players with different measurements about the state of nature. The objective of the team is to minimize a quadratic cost subject to additional finite number of quadratic constraints. We first consider the problem of countably infinite number of players in the team for a bounded state of nature with a Gaussian distributi...

  16. Analysis of a quadratic system obtained from a scalar third order differential equation

    Directory of Open Access Journals (Sweden)

    Fabio Scalco Dias

    2010-11-01

    Full Text Available In this article, we study the nonlinear dynamics of a quadratic system in the three dimensional space which can be obtained from a scalar third order differential equation. More precisely, we study the stability and bifurcations which occur in a parameter dependent quadratic system in the three dimensional space. We present an analytical study of codimension one, two and three Hopf bifurcations, generic Bogdanov-Takens and fold-Hopf bifurcations.

  17. Nonlinear wave equation in frequency domain: accurate modeling of ultrafast interaction in anisotropic nonlinear media

    DEFF Research Database (Denmark)

    Guo, Hairun; Zeng, Xianglong; Zhou, Binbin

    2013-01-01

    We interpret the purely spectral forward Maxwell equation with up to third-order induced polarizations for pulse propagation and interactions in quadratic nonlinear crystals. The interpreted equation, also named the nonlinear wave equation in the frequency domain, includes quadratic and cubic...

  18. Nonlinear spectral imaging of human normal skin, basal cell carcinoma and squamous cell carcinoma based on two-photon excited fluorescence and second-harmonic generation

    Science.gov (United States)

    Xiong, S. Y.; Yang, J. G.; Zhuang, J.

    2011-10-01

    In this work, we use nonlinear spectral imaging based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) for analyzing the morphology of collagen and elastin and their biochemical variations in basal cell carcinoma (BCC), squamous cell carcinoma (SCC) and normal skin tissue. It was found in this work that there existed apparent differences among BCC, SCC and normal skin in terms of their thickness of the keratin and epithelial layers, their size of elastic fibers, as well as their distribution and spectral characteristics of collagen. These differences can potentially be used to distinguish BCC and SCC from normal skin, and to discriminate between BCC and SCC, as well as to evaluate treatment responses.

  19. Simultaneous multi-channel CMW-band and MMW-band UWB monocycle pulse generation using FWM effect in a highly nonlinear photonic crystal fiber.

    Science.gov (United States)

    Zhang, Fangzheng; Wu, Jian; Fu, Songnian; Xu, Kun; Li, Yan; Hong, Xiaobin; Shum, Ping; Lin, Jintong

    2010-07-19

    We propose and experimentally demonstrate a scheme to simultaneously realize multi-channel centimeter wave (CMW) band and millimeter wave (MMW) band ultra-wideband (UWB) monocycle pulse generation using four wave mixing (FWM) effect in a highly nonlinear photonic crystal fiber (HNL-PCF). Two lightwaves carrying polarity-reversed optical Gaussian pulses with appropriate time delay and another lightwave carrying a 20 GHz clock signal are launched into the HNL-PCF together. By filtering out the FWM idlers, two CMW-band UWB monocycle signals and two MMW-band UWB monocycle signals at 20 GHz are obtained simultaneously. Experimental measurements of the generated UWB monocycle pulses at individual wavelength, which comply with the FCC regulations, verify the feasibility and flexibility of proposed scheme for use in practical UWB communication systems.

  20. Air-guided photonic-crystal-fiber pulse-compression delivery of multimegawatt femtosecond laser output for nonlinear-optical imaging and neurosurgery

    Science.gov (United States)

    Lanin, Aleksandr A.; Fedotov, Il'ya V.; Sidorov-Biryukov, Dmitrii A.; Doronina-Amitonova, Lyubov V.; Ivashkina, Olga I.; Zots, Marina A.; Sun, Chi-Kuang; Ömer Ilday, F.; Fedotov, Andrei B.; Anokhin, Konstantin V.; Zheltikov, Aleksei M.

    2012-03-01

    Large-core hollow photonic-crystal fibers (PCFs) are shown to enable a fiber-format air-guided delivery of ultrashort infrared laser pulses for neurosurgery and nonlinear-optical imaging. With an appropriate dispersion precompensation, an anomalously dispersive 15-μm-core hollow PCF compresses 510-fs, 1070-nm light pulses to a pulse width of about 110 fs, providing a peak power in excess of 5 MW. The compressed PCF output is employed to induce a local photodisruption of corpus callosum tissues in mouse brain and is used to generate the third harmonic in brain tissues, which is captured by the PCF and delivered to a detector through the PCF cladding.

  1. A polyhedral approach to quadratic assignment problem

    OpenAIRE

    Köksaldı, Ahmet Sertaç Murat

    1994-01-01

    Ankara : Department of Industrial Engineering and the Institute of Engineering and Sciences of Bilkent University, 1994. Thesis (Master's) -- Bilkent University, 1994. Includes bibliographical references. In this thesis, Quadratic Assignment Problem is considered. Since Quadratic Assignment Problem is JVP-bard, no polynomial time exact solution method exists. Proving optimality of solutions to Quadratic Assignment Problems has been limited to instances of small dimension. In...

  2. Extending the Scope of Robust Quadratic Optimization

    NARCIS (Netherlands)

    Marandi, Ahmadreza; Ben-Tal, A.; den Hertog, Dick; Melenberg, Bertrand

    2017-01-01

    In this paper, we derive tractable reformulations of the robust counterparts of convex quadratic and conic quadratic constraints with concave uncertainties for a broad range of uncertainty sets. For quadratic constraints with convex uncertainty, it is well-known that the robust counterpart is, in ge

  3. Studies on Inverse Opal and Two-Dimensional Nonlinear Photonic Crystals%反Opal及二维非线性光子晶体的研究

    Institute of Scientific and Technical Information of China (English)

    倪培根; 程丙英; 张道中

    2006-01-01

    通过向SiO2 Opal模板中填充钛酸乙酯制备TiO2光子晶体,观测到光子晶体带隙位置的移动达62nm,并发现光子晶体的有序度随填充率的升高而下降.向聚苯乙烯Opal模板中填充钛酸乙酯,制备成当时填充率最高、带隙最短的紫外波段TiO2反Opal光子晶体(中心波长~380nm),并根据测量的其透射谱估算出其填充率约为12%,即Opal模板孔隙的50%被填充.本文还对二维PPLN光子晶体进行了研究.建立了一套高压极化装置和电压数据采集装置,通过外加电场极化法成功制备出了具有正方形和矩形两种晶格形状二维PPLN光子晶体.利用二维PPLN的二阶准相位匹配,测量了其对1.064μm激光的二次谐波转换效率,并研究了晶体的温度、激光的入射角度及占空比对二次谐波转换效率的影响.利用矩形晶格实现了多方向、多波长倍频高效输出.%In this paper, we report some results on inverse opal photonic crystal and two-dimensional periodically poled lithium niobate photonic crystal. First, the process of infiltrating TiO2 into SiO2 Opal was systematically studied. Because of the infiltration of TiO2, the gap of SiO2 Opal was shifted to longer wavelength and a maximum shift of 62nm was observed. Furthermore, an inverse TiO2 Opal with larger filling fraction, ~ 12%, was fabricated, whose band gap in the Γ-L direction is located in the ultraviolet region ( ~ 380nm). Then two-dimensional nonlinear photonic crystals of lithium nlobate with uniform square lattices were fabricated by applying external electric fields. The variations of second-harmonic output with crystal temperatures, incident angles and reversed duty cycles were measured. Red, yellow,green, blue, and violet coherent radiations were generated in the nonlinear photonic crystal with rectangular lattice in the collinearly and non-collinearly quasi-phase matching geometries. The results showed that two-dimensional nonlinear photonic crystal

  4. Quantum bouncer with quadratic dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, G. [NanoScience Technology Center, University of Central Florida, Orlando, FL 32826 (United States)]. e-mail: ggonzalez@physics.ucf.edu

    2008-07-01

    The energy loss due to a quadratic velocity-dependent force on a quantum particle bouncing off a perfectly reflecting surface is obtained for a full cycle of motion. We approach this problem by means of a new, effective, phenomenological Hamiltonian which corresponds to the actual energy of the system and obtain the correction to the eigenvalues of the energy in first-order quantum perturbation theory for the case of weak dissipation. (Author)

  5. Quantum bouncer with quadratic dissipation

    Science.gov (United States)

    González, G.

    2008-02-01

    The energy loss due to a quadratic velocity dependent force on a quantum particle bouncing on a perfectly reflecting surface is obtained for a full cycle of motion. We approach this problem by means of a new effective phenomenological Hamiltonian which corresponds to the actual energy of the system and obtained the correction to the eigenvalues of the energy in first order quantum perturbation theory for the case of weak dissipation.

  6. A dual neural network for convex quadratic programming subject to linear equality and inequality constraints

    Science.gov (United States)

    Zhang, Yunong; Wang, Jun

    2002-06-01

    A recurrent neural network called the dual neural network is proposed in this Letter for solving the strictly convex quadratic programming problems. Compared to other recurrent neural networks, the proposed dual network with fewer neurons can solve quadratic programming problems subject to equality, inequality, and bound constraints. The dual neural network is shown to be globally exponentially convergent to optimal solutions of quadratic programming problems. In addition, compared to neural networks containing high-order nonlinear terms, the dynamic equation of the proposed dual neural network is piecewise linear, and the network architecture is thus much simpler. The global convergence behavior of the dual neural network is demonstrated by an illustrative numerical example.

  7. Nonlinear polarization rotation in a dispersion-flattened photonic-crystal fiber for ultrawideband (> 100 nm) all-optical wavelength conversion of 10 Gbit/s nonreturn-to-zero signals

    DEFF Research Database (Denmark)

    Kwok, C.H.; Chow, C.W.; Tsang, H.K.;

    2006-01-01

    We study the conversion bandwidth of the cross-polarization-modulation (YPoIM)-based wavelength conversion scheme with a dispersion-flattened highly nonlinear photonic-crystal fiber for signals with a nonreturn-to-zero (NRZ) modulation format. Both theoretical and experimental results show...... using the YPoIM approach compared with the four-wave mixing approach previously reported is demonstrated....

  8. Global Optimization of a Class of Nonconvex Quadratically Constrained Quadratic Programming Problems

    Institute of Scientific and Technical Information of China (English)

    Yong XIA

    2011-01-01

    In this paper we study a class of nonconvex quadratically constrained quadratic programming problems generalized from relaxations of quadratic assignment problems.We show that each problem is polynomially solved.Strong duality holds if a redundant constraint is introduced.As an application,a new lower bound is proposed for the quadratic assignment problem.

  9. Vectorial coupled-mode solitons in one-dimensional photonic crystals

    Institute of Scientific and Technical Information of China (English)

    朱善华; 黄国翔; 崔维娜

    2002-01-01

    We study the dynamics of vectorial coupled-mode solitons in one-dimensional photonic crystals with quadraticand cubic nonlinearities. Starting from Maxwell's equations, the vectorial coupled-mode equations for the envelopesof two fundamental-frequency optical mode and one low-frequency mode components due to optical rectification arederived by means of the method of multiple scales. A set of coupled soliton solutions of the vectorial coupled-modeequations is provided. The results show that a modulation of the fundamental-frequency optical modes occurs due tothe optical rectification field resulting from the quadratic nonlinearity. The optical rectification field disappears whenthe frequency of the fundamental-frequency optical fields approaches the edge of the photonic bands.

  10. A nonlinear merging method of analog and photon signals for CO2 detection in lower altitudes using differential absorption lidar

    Science.gov (United States)

    Qi, Zhong; Zhang, Teng; Han, Ge; Li, Dongcang; Ma, Xin; Gong, Wei

    2017-04-01

    The current acquisition system of a lidar detects return signals in two modes (i.e., analog and photon counting); resulting in the lower (below 1500 m) and upper (higher than 1100 m) atmospheric parameters need analog and photon counting signal to retrieve, respectively. Hence, a lidar cannot obtain a continuous column of the concentrations of atmospheric components. For carbon cycle studies, the range-resolved concentration of atmospheric CO2 in the lower troposphere (below 1500 m) is one of the most significant parameters that should be determined. This study proposes a novel gluing method that merges the CO2 signal detected by ground-based DIAL in the lower troposphere. Through simulation experiments, the best uniform approximation polynomial theorem is utilized to determine the transformation coefficient to correlate signals from the different modes perfectly. The experimental results (both simulation experiments and actual measurement of signals) show that the proposed method is suitable and feasible for merging data in the region below 1500 m. Hence, the photon-counting signals whose SNRs are higher than those of the analog signals can be used to retrieve atmospheric parameters at an increased near range, facilitating atmospheric soundings using ground-based lidar in various fields.

  11. Calculations of nonlinear response properties using the intermediate state representation and the algebraic-diagrammatic construction polarization propagator approach: two-photon absorption spectra.

    Science.gov (United States)

    Knippenberg, S; Rehn, D R; Wormit, M; Starcke, J H; Rusakova, I L; Trofimov, A B; Dreuw, A

    2012-02-14

    An earlier proposed approach to molecular response functions based on the intermediate state representation (ISR) of polarization propagator and algebraic-diagrammatic construction (ADC) approximations is for the first time employed for calculations of nonlinear response properties. The two-photon absorption (TPA) spectra are considered. The hierarchy of the first- and second-order ADC∕ISR computational schemes, ADC(1), ADC(2), ADC(2)-x, and ADC(3/2), is tested in applications to H(2)O, HF, and C(2)H(4) (ethylene). The calculated TPA spectra are compared with the results of coupled cluster (CC) models and time-dependent density-functional theory (TDDFT) calculations, using the results of the CC3 model as benchmarks. As a more realistic example, the TPA spectrum of C(8)H(10) (octatetraene) is calculated using the ADC(2)-x and ADC(2) methods. The results are compared with the results of TDDFT method and earlier calculations, as well as to the available experimental data. A prominent feature of octatetraene and other polyene molecules is the existence of low-lying excited states with increased double excitation character. We demonstrate that the two-photon absorption involving such states can be adequately studied using the ADC(2)-x scheme, explicitly accounting for interaction of doubly excited configurations. Observed peaks in the experimental TPA spectrum of octatetraene are assigned based on our calculations.

  12. Nonlinear multi-photon laser wave-mixing optical detection in microarrays and microchips for ultrasensitive detection and separation of biomarkers for cancer and neurodegenerative diseases

    Science.gov (United States)

    Iwabuchi, Manna; Hetu, Marcel; Maxwell, Eric; Pradel, Jean S.; Ramos, Sashary; Tong, William G.

    2015-09-01

    Multi-photon degenerate four-wave mixing is demonstrated as an ultrasensitive absorption-based optical method for detection, separation and identification of biomarker proteins in the development of early diagnostic methods for HIV- 1, cancer and neurodegenerative diseases using compact, portable microarrays and capillary- or microchip-based chemical separation systems that offer high chemical specificity levels. The wave-mixing signal has a quadratic dependence on concentration, and hence, it allows more reliable monitoring of smaller changes in analyte properties. Our wave-mixing detection sensitivity is comparable or better than those of current methods including enzyme-linked immunoassay for clinical diagnostic and screening. Detection sensitivity is excellent since the wave-mixing signal is a coherent laser-like beam that can be collected with virtually 100% collection efficiency with high S/N. Our analysis time is short (1-15 minutes) for molecular weight-based protein separation as compared to that of a conventional separation technique, e.g., sodium dodecyl sulfate-polyacrylamide gel electrophoresis. When ultrasensitive wavemixing detection is paired with high-resolution capillary- or microchip-based separation systems, biomarkers can be separated and identified at the zepto- and yocto-mole levels for a wide range of analytes. Specific analytes can be captured in a microchannel through the use of antibody-antigen interactions that provide better chemical specificity as compared to size-based separation alone. The technique can also be combined with immune-precipitation and a multichannel capillary array for high-throughput analysis of more complex protein samples. Wave mixing allows the use of chromophores and absorption-modifying tags, in addition to conventional fluorophores, for online detection of immunecomplexes related to cancer.

  13. Deep-ultraviolet second-harmonic generation by combined degenerate four-wave mixing and surface nonlinearity polarization in photonic crystal fiber.

    Science.gov (United States)

    Yuan, Jinhui; Kang, Zhe; Li, Feng; Zhou, Guiyao; Zhang, Xianting; Mei, Chao; Sang, Xinzhu; Wu, Qiang; Yan, Binbin; Zhou, Xian; Zhong, Kangping; Wang, Kuiru; Yu, Chongxiu; Lu, Chao; Tam, Hwa Yaw; Wai, P K A

    2017-08-23

    Deep-ultraviolet (UV) second-harmonics (SHs) have important applications in basic physics and applied sciences. However, it still remains challenging to generate deep-UV SHs especially in optical fibers. Here, for the first time, we experimentally demonstrate the deep-UV SH generations (SHGs) by combined degenerate four-wave mixing (FWM) and surface nonlinearity polarization in an in-house designed and fabricated air-silica photonic crystal fiber (PCF). When femtosecond pump pulses with average input power P av of 650 mW and center wavelength λ p of 810, 820, 830, and 840 nm are coupled into the normal dispersion region close to the zero-dispersion wavelength of the fundamental mode of the PCF, the anti-Stokes waves induced by degenerate FWM process are tunable from 669 to 612 nm. Then, they serve as the secondary pump, and deep-UV SHs are generated within the wavelength range of 334.5 to 306 nm as a result of surface nonlinearity polarization at the core-cladding interface of the PCF. The physical mechanism of the SHGs is confirmed by studying the dependences of the output power P SH of the SHs on the PCF length and time. Finally, we also establish a theoretical model to analyze the SHGs.

  14. Asymptotic Normality of Quadratic Estimators.

    Science.gov (United States)

    Robins, James; Li, Lingling; Tchetgen, Eric; van der Vaart, Aad

    2016-12-01

    We prove conditional asymptotic normality of a class of quadratic U-statistics that are dominated by their degenerate second order part and have kernels that change with the number of observations. These statistics arise in the construction of estimators in high-dimensional semi- and non-parametric models, and in the construction of nonparametric confidence sets. This is illustrated by estimation of the integral of a square of a density or regression function, and estimation of the mean response with missing data. We show that estimators are asymptotically normal even in the case that the rate is slower than the square root of the observations.

  15. quadratic spline finite element method

    Directory of Open Access Journals (Sweden)

    A. R. Bahadir

    2002-01-01

    Full Text Available The problem of heat transfer in a Positive Temperature Coefficient (PTC thermistor, which may form one element of an electric circuit, is solved numerically by a finite element method. The approach used is based on Galerkin finite element using quadratic splines as shape functions. The resulting system of ordinary differential equations is solved by the finite difference method. Comparison is made with numerical and analytical solutions and the accuracy of the computed solutions indicates that the method is well suited for the solution of the PTC thermistor problem.

  16. Optimal control linear quadratic methods

    CERN Document Server

    Anderson, Brian D O

    2007-01-01

    This augmented edition of a respected text teaches the reader how to use linear quadratic Gaussian methods effectively for the design of control systems. It explores linear optimal control theory from an engineering viewpoint, with step-by-step explanations that show clearly how to make practical use of the material.The three-part treatment begins with the basic theory of the linear regulator/tracker for time-invariant and time-varying systems. The Hamilton-Jacobi equation is introduced using the Principle of Optimality, and the infinite-time problem is considered. The second part outlines the

  17. Factorization method of quadratic template

    Science.gov (United States)

    Kotyrba, Martin

    2017-07-01

    Multiplication of two numbers is a one-way function in mathematics. Any attempt to distribute the outcome to its roots is called factorization. There are many methods such as Fermat's factorization, Dixońs method or quadratic sieve and GNFS, which use sophisticated techniques fast factorization. All the above methods use the same basic formula differing only in its use. This article discusses a newly designed factorization method. Effective implementation of this method in programs is not important, it only represents and clearly defines its properties.

  18. Photon Polarization in Photonic Crystal Fibers under Compton Scattering

    Institute of Scientific and Technical Information of China (English)

    HAO Dong-shan; ZHANG Xiao-fu

    2007-01-01

    Using the quantum invariant theory and unitary transformation means, we study the influences of multi-photon nonlinear Compton scattering on the photon polarization in photonic crystal fibers(PCF). The results show that the photon polarization of the incident photon changes a lot due to scattered optical, and its general geometric phase factor, Hamiton number and evolution operator are definited both by the incident and scattered optical.

  19. On Algebraic Approach in Quadratic Systems

    Directory of Open Access Journals (Sweden)

    Matej Mencinger

    2011-01-01

    Full Text Available When considering friction or resistance, many physical processes are mathematically simulated by quadratic systems of ODEs or discrete quadratic dynamical systems. Probably the most important problem when such systems are applied in engineering is the stability of critical points and (nonchaotic dynamics. In this paper we consider homogeneous quadratic systems via the so-called Markus approach. We use the one-to-one correspondence between homogeneous quadratic dynamical systems and algebra which was originally introduced by Markus in (1960. We resume some connections between the dynamics of the quadratic systems and (algebraic properties of the corresponding algebras. We consider some general connections and the influence of power-associativity in the corresponding quadratic system.

  20. Theoretical study of second-order non-linear optical properties of pyrromethene dyes for photonic application

    Energy Technology Data Exchange (ETDEWEB)

    Acebal, P; Blaya, S; Carretero, L [Departamento de Ciencia y Tecnologia de Materiales, Universidad Miguel Hernandez, Avenida Ferrocarril s/n, Apartado 032002, Edificio Torrevaillo, Elx (Alicante) (Spain)

    2003-06-28

    Second-order non-linear optical properties and the ground state dipole moment of 2-, 6-, and 8-substituted dipyrromethene-BF{sub 2} complexes were evaluated using ab initio quantum mechanical methods and compared with those of a standard push-pull chromophore. The theoretical values obtained are discussed in terms of the different contributions of each spatial region using the electron density derivatives with respect to an applied electric field. As results, an origin for the second hyperpolarizability and a methodology for improving the performance of these compounds are proposed. The two-level model has been use to study the electro-optic properties of the substituted dipyrromethene-BF{sub 2} complexes, and the applicability of this method has been discussed in terms of the electron density derivatives.

  1. An Algorithm for Solving Quadratic Programming Problems

    Directory of Open Access Journals (Sweden)

    V. Moraru

    1997-08-01

    Full Text Available Herein is investigated the method of solution of quadratic programming problems. The algorithm is based on the effective selection of constraints. Quadratic programming with constraints-equalities are solved with the help of an algorithm, so that matrix inversion is avoided, because of the more convenient organization of the Calculus. Optimal solution is determined in a finite number of iterations. It is discussed the extension of the algorithm over solving quadratic non-convex programming problems.

  2. The Random Quadratic Assignment Problem

    Science.gov (United States)

    Paul, Gerald; Shao, Jia; Stanley, H. Eugene

    2011-11-01

    The quadratic assignment problem, QAP, is one of the most difficult of all combinatorial optimization problems. Here, we use an abbreviated application of the statistical mechanics replica method to study the asymptotic behavior of instances in which the entries of at least one of the two matrices that specify the problem are chosen from a random distribution P. Surprisingly, the QAP has not been studied before using the replica method despite the fact that the QAP was first proposed over 50 years ago and the replica method was developed over 30 years ago. We find simple forms for C min and C max , the costs of the minimal and maximum solutions respectively. Notable features of our results are the symmetry of the results for C min and C max and their dependence on P only through its mean and standard deviation, independent of the details of P.

  3. STOCHASTIC LINEAR QUADRATIC OPTIMAL CONTROL PROBLEMS WITH RANDOM COEFFICIENTS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper studies a stochastic linear quadratic optimal control problem (LQ problem, for short), for which the coefficients are allowed to be random and the cost functional is allowed to have a negative weight on the square of the control variable. The authors introduce the stochastic Riccati equation for the LQ problem. This is a backward SDE with a complicated nonlinearity and a singularity. The local solvability of such a backward SDE is established, which by no means is obvious. For the case of deterministic coefficients, some further discussions on the Riccati equations have been carried out. Finally, an illustrative example is presented.

  4. Theory of direct and indirect effect of two-photon absorption on nonlinear optical losses in high power semiconductor lasers

    Science.gov (United States)

    Avrutin, E. A.; Ryvkin, B. S.

    2017-01-01

    The effect of the transverse laser structure on two-photon absorption (TPA) related effects in high-power diode lasers is analysed theoretically. The direct effect of TPA is found to depend significantly on the transverse waveguide structure, and predicted to be weaker in broad and asymmetric waveguide designs. The indirect effect of TPA, via carrier generation in the waveguide and free-carrier absorption, is analysed for the case of a symmetric laser waveguide and shown to be strongly dependent on the active layer position. With the active layer near the mode peak, the indirect effect is weaker than the direct effect due to the population of TPA-created carriers being efficiently depleted by their diffusion and capture into the active layer, whereas for the active layer position strongly shifted towards the p-cladding, the indirect effect can become the dominant power limitation at very high currents. It is shown that for optimizing a laser design for pulsed high power operation, both TPA related effects and the inhomogeneous carrier accumulation in the waveguide caused by diffusive current need to be taken into account.

  5. Combined nonlinear laser imaging (two-photon excitation fluorescence, second and third-harmonic generation, and fluorescence lifetime imaging microscopies) in ovarian tumors

    Science.gov (United States)

    Adur, J.; Pelegati, V. B.; de Thomaz, A. A.; Bottcher-Luiz, F.; Andrade, L. A. L. A.; Almeida, D. B.; Carvalho, H. F.; Cesar, C. L.

    2012-03-01

    We applied Two-photon Excited Fluorescence (TPEF), Second/Third Harmonic Generation (SHG and THG) and Fluorescence Lifetime Imaging (FLIM) Non Linear Optics (NLO) Laser-Scanning Microscopy within the same imaging platform to evaluate their use as a diagnostic tool in ovarian tumors. We assess of applicability of this multimodal approach to perform a pathological evaluation of serous and mucinous tumors in human samples. The combination of TPEF-SHG-THG imaging provided complementary information about the interface epithelium/stromal, such as the transformation of epithelium surface (THG) and the overall fibrillar tissue architecture (SHG). The fact that H&E staining is the standard method used in clinical pathology and that the stored samples are usually fixed makes it important a re-evaluation of these samples with NLO microscopy to compare new results with a library of already existing samples. FLIM, however, depends on the chemical environment around the fluorophors that was completely changed after fixation; therefore it only makes sense in unstained samples. Our FLIM results in unstained samples demonstrate that it is possible to discriminate healthy epithelia from serous or mucinous epithelia. Qualitative and quantitative analysis of the different imaging modalities used showed that multimodal nonlinear microscopy has the potential to differentiate between cancerous and healthy ovarian tissue.

  6. Effect of field modulation on the quasi-phase-matching for second harmonic generation in a two-dimensional nonlinear photonic crystal

    Science.gov (United States)

    Zhao, Li-Ming; Zhou, Yun-Song; Wang, Ai-Hua

    2017-02-01

    Second harmonic generation (SHG) in a two-dimensional (2D) nonlinear photonic crystal (NPC) with finite width along z-direction that is embedded in air is investigated, without adopting the traditional approximations such as a plane-wave approximation (PWA) and slowly varying amplitude approximation (SVAA). The so-called quasi-phase-matching (QPM) and the corresponding SHG conversion efficiency can be modulated significantly by the field of fundamental wave (FW). It is assumed that the incident light, along z-direction, is normally launched upon the surface of the sample, and QPM for different directions is investigated. It is found that the QPM shows significant differences, compared with the traditional QPM along the two different directions: in the direction of finite width of the sample, the peak value of SHG conversion efficiency is deviated from the traditional case and it gets to its peak values when the transmittance resonance occurs. However, in the other direction, the deviation from the traditional QPM arises from the field modulation of the second harmonic wave (SHW) and in this direction, it is investigated that the full width at half maximum of QPM is much wider than that in the direction of finite width of the sample. These results can be used to provide a theoretical guidance for achieving QPM SHG.

  7. Tunable photonic Bloch oscillations in electrically modulated photonic crystals

    CERN Document Server

    Wang, Gang; Yu, Kin Wah

    2008-01-01

    We exploit theoretically the occurrence and tunability of photonic Bloch oscillations (PBOs) in one-dimensional photonic crystals (PCs) containing nonlinear composites. Because of the enhanced third-order nonlinearity (Kerr type nonlinearity) of composites, photons undergo oscillations inside tilted photonic bands, which are achieved by the application of graded external pump electric fields on such PCs, varying along the direction perpendicular to the surface of layers. The tunability of PBOs (including amplitude and period) is readily achieved by changing the field gradient. With an appropriate graded pump AC or DC electric field, terahertz PBOs can appear and cover a terahertz band in electromagnetic spectrum.

  8. Tunable photonic Bloch oscillations in electrically modulated photonic crystals.

    Science.gov (United States)

    Wang, Gang; Huang, Ji Ping; Yu, Kin Wah

    2008-10-01

    We exploit theoretically the occurrence and tunability of photonic Bloch oscillations (PBOs) in one-dimensional photonic crystals (PCs) containing nonlinear composites. Because of the enhanced third-order nonlinearity (Kerr-type nonlinearity) of composites, photons undergo oscillations inside tilted photonic bands, which are achieved by the application of graded external-pump electric fields on such PCs, varying along the direction perpendicular to the surface of layers. The tunability of PBOs (including amplitude and period) is readily achieved by changing the field gradient. With an appropriate graded pump ac or dc electric field, terahertz PBOs can appear and cover a terahertz band in an electromagnetic spectrum.

  9. Diffusion Based Photon Mapping

    DEFF Research Database (Denmark)

    Schjøth, Lars; Sporring, Jon; Fogh Olsen, Ole

    2008-01-01

    . To address this problem, we introduce a photon mapping algorithm based on nonlinear anisotropic diffusion. Our algorithm adapts according to the structure of the photon map such that smoothing occurs along edges and structures and not across. In this way, we preserve important illumination features, while...

  10. Binary Quadratic Forms: A Historical View

    Science.gov (United States)

    Khosravani, Azar N.; Beintema, Mark B.

    2006-01-01

    We present an expository account of the development of the theory of binary quadratic forms. Beginning with the formulation and proof of the Two-Square Theorem, we show how the study of forms of the type x[squared] + ny[squared] led to the discovery of the Quadratic Reciprocity Law, and how this theorem, along with the concept of reduction relates…

  11. Quadratic Boost A-Source Impedance Network

    DEFF Research Database (Denmark)

    Siwakoti, Yam Prasad; Blaabjerg, Frede; Chub, Andrii

    2016-01-01

    A novel quadratic boost type A-source impedance network is proposed in this paper for realizing converters that demand a very high voltage gain. To achieve that, the proposed network uses an auto-transformer, whose obtained gain is quadratically dependent on the duty ratio and is presently not ma...

  12. Quadratic Boost A-Source Impedance Network

    DEFF Research Database (Denmark)

    Siwakoti, Yam Prasad; Blaabjerg, Frede; Chub, Andrii

    2016-01-01

    A novel quadratic boost A-source impedance network is proposed to realize converters that demand very high voltage gain. To satisfy the requirement, the network uses an autotransformer where the obtained gain is quadratically dependent on the duty ratio and is unmatched by any existing impedance ...

  13. Factorising a Quadratic Expression with Geometric Insights

    Science.gov (United States)

    Joarder, Anwar H.

    2015-01-01

    An algorithm is presented for factorising a quadratic expression to facilitate instruction and learning. It appeals to elementary geometry which may provide better insights to some students or teachers. There have been many methods for factorising a quadratic expression described in school text books. However, students often seem to struggle with…

  14. An example in linear quadratic optimal control

    NARCIS (Netherlands)

    Weiss, George; Zwart, Heiko J.

    1998-01-01

    We construct a simple example of a quadratic optimal control problem for an infinite-dimensional linear system based on a shift semigroup. This system has an unbounded control operator. The cost is quadratic in the input and the state, and the weighting operators are bounded. Despite its extreme

  15. An example in linear quadratic optimal control

    NARCIS (Netherlands)

    Weiss, George; Zwart, Heiko J.

    1998-01-01

    We construct a simple example of a quadratic optimal control problem for an infinite-dimensional linear system based on a shift semigroup. This system has an unbounded control operator. The cost is quadratic in the input and the state, and the weighting operators are bounded. Despite its extreme sim

  16. Symmetry Operators of the Nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov Equation with a Quadratic Operator

    Science.gov (United States)

    Levchenko, E. A.; Trifonov, A. Yu.; Shapovalov, A. V.

    2014-04-01

    A class of nonlinear symmetry operators has been constructed for the many-dimensional nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov equation quadratic in independent variables and derivatives. The construction of each symmetry operator includes an interwining operator for the auxiliary linear equations and additional nonlinear algebraic conditions. Symmetry operators for the one-dimensional equation with a constant influence function have been constructed in explicit form and used to obtain a countable set of exact solutions.

  17. Numerical Methods for Solution of the Extended Linear Quadratic Control Problem

    DEFF Research Database (Denmark)

    Jørgensen, John Bagterp; Frison, Gianluca; Gade-Nielsen, Nicolai Fog

    2012-01-01

    to the Karush-Kuhn-Tucker system that constitute the majority of computational work in constrained nonlinear and linear model predictive control problems solved by efficient MPC-tailored interior-point and active-set algorithms. We state various methods of solving the extended linear quadratic control problem...

  18. Designing microstructured polymer optical fibers for cascaded quadratic soliton compression of femtosecond pulses

    DEFF Research Database (Denmark)

    Bache, Morten

    2009-01-01

    The dispersion of index-guiding microstructured polymer optical fibers is calculated for second-harmonic generation. The quadratic nonlinearity is assumed to come from poling of the polymer, which in this study is chosen to be the cyclic olefin copolymer Topas. We found a very large phase mismatch...

  19. On Quadratic Integral Equations of Urysohn Type in Fréchet Spaces

    Directory of Open Access Journals (Sweden)

    M. A. Darwish

    2010-02-01

    Full Text Available In this paper, we investigate the existence of a unique solution on a semiinfinite interval for a quadratic integral equation of Urysohn type in Fréchet spaces using a nonlinear alternative of Leray-Schauder type for contractive maps.

  20. Photonic Bandgaps in Photonic Molecules

    Science.gov (United States)

    Smith, David D.; Chang, Hongrok; Gates, Amanda L.; Fuller, Kirk A.; Gregory, Don A.; Witherow, William K.; Paley, Mark S.; Frazier, Donald O.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    This talk will focus on photonic bandgaps that arise due to nearly free photon and tight-binding effects in coupled microparticle and ring-resonator systems. The Mie formulation for homogeneous spheres is generalized to handle core/shell systems and multiple concentric layers in a manner that exploits an analogy with stratified planar systems, thereby allowing concentric multi-layered structures to be treated as photonic bandgap (PBG) materials. Representative results from a Mie code employing this analogy demonstrate that photonic bands arising from nearly free photon effects are easily observed in the backscattering, asymmetry parameter, and albedo for periodic quarter-wave concentric layers, though are not readily apparent in extinction spectra. Rather, the periodicity simply alters the scattering profile, enhancing the ratio of backscattering to forward scattering inside the bandgap, in direct analogy with planar quarter-wave multilayers. PBGs arising from tight-binding may also be observed when the layers (or rings) are designed such that the coupling between them is weak. We demonstrate that for a structure consisting of N coupled micro-resonators, the morphology dependent resonances split into N higher-Q modes, in direct analogy with other types of oscillators, and that this splitting ultimately results in PBGs which can lead to enhanced nonlinear optical effects.

  1. Dichromatic nonlinear eigenmodes in slab waveguide with chi(2) nonlinearity.

    Science.gov (United States)

    Darmanyan, S A; Nevière, M

    2001-03-01

    The existence of purely nonlinear eigenmodes in a waveguiding structure composed of a slab with quadratic nonlinearity surrounded by (non)linear claddings is reported. Modes having bright and dark solitonlike shapes and consisting of two mutually locked harmonics are identified. Asymmetrical modes are shown to exist in symmetrical environments. Constraints for the existence of the modes are derived in terms of parameters of guiding structure materials.

  2. Quadratic Hedging of Basis Risk

    Directory of Open Access Journals (Sweden)

    Hardy Hulley

    2015-02-01

    Full Text Available This paper examines a simple basis risk model based on correlated geometric Brownian motions. We apply quadratic criteria to minimize basis risk and hedge in an optimal manner. Initially, we derive the Föllmer–Schweizer decomposition for a European claim. This allows pricing and hedging under the minimal martingale measure, corresponding to the local risk-minimizing strategy. Furthermore, since the mean-variance tradeoff process is deterministic in our setup, the minimal martingale- and variance-optimal martingale measures coincide. Consequently, the mean-variance optimal strategy is easily constructed. Simple pricing and hedging formulae for put and call options are derived in terms of the Black–Scholes formula. Due to market incompleteness, these formulae depend on the drift parameters of the processes. By making a further equilibrium assumption, we derive an approximate hedging formula, which does not require knowledge of these parameters. The hedging strategies are tested using Monte Carlo experiments, and are compared with results achieved using a utility maximization approach.

  3. On Quadratic Variation of Martingales

    Indian Academy of Sciences (India)

    Rajeeva L Karandikar; B V Rao

    2014-08-01

    We give a construction of an explicit mapping $$\\Psi: D([0,∞),\\mathbb{R})→ D([0,∞),\\mathbb{R}),$$ where $D([0,∞), \\mathbb{R})$ denotes the class of real valued r.c.l.l. functions on $[0,∞)$ such that for a locally square integrable martingale $(M_t)$ with r.c.l.l. paths, $$\\Psi(M.())=A.()$$ gives the quadratic variation process (written usually as $[M,M]_t$) of $(M_t)$. We also show that this process $(A_t)$ is the unique increasing process $(B_t)$ such that $M_t^2-B_t$ is a local martingale, $B_0=0$ and $$\\mathbb{P}(( B)_t=[( M)_t]^2, 0 < ∞)=1.$$ Apart from elementary properties of martingales, the only result used is the Doob’s maximal inequality. This result can be the starting point of the development of the stochastic integral with respect to r.c.l.l. martingales.

  4. Quadratic models of AC-DC power flow and optimal reactive power flow with HVDC and UPFC controls

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Juan; Yan, Wei; Wen, Lili [The Key Laboratory of High Voltage Engineering and Electrical New Technology, Ministry of Education, Electrical Engineering College of Chongqing University, Chongqing 400030 (China); Li, Wenyuan [British Columbia Transmission Corporation (BCTC), Suite 1100, Four Bentall Center, 1055 Dunsmuir Street, P.O. Box 49260, Vancouver, BC (Canada)

    2008-03-15

    Quadratic models of power flow (PF) and optimal reactive power flow (ORPF) for AC-DC power systems are proposed in the paper. Voltage magnitudes at the two sides of ideal converter transformers are used as additional state variables to build the quadratic models. Effects of converter controls on equality constraints are considered. The quadratic expression of unified power flow controller (UPFC) is also developed and incorporated into the proposed models. The proposed PF model retaining nonlinearity has a better convergence feature and requires less CPU time compared to traditional PF models. The Hessian matrices in the quadratic AC-DC ORPF model are constant and need to be calculated only once in the entire optimization process, which speeds up the calculation greatly. Results obtained from the four IEEE test systems and an actual utility system indicate that the proposed quadratic models achieve a superior performance than conventional models. (author)

  5. Two-photon luminescence contrast by tip-sample coupling in femtosecond near-field optical microscopy

    Science.gov (United States)

    Horneber, Anke; Wackenhut, Frank; Braun, Kai; Wang, Xiao; Wang, Jiyong; Zhang, Dai; Meixner, Alfred J.

    2017-01-01

    We investigate the role of tip-sample interaction in nonlinear optical scanning near-field microscopy. The experiment was performed by tightly focusing femtosecond laser pulses onto a sharp gold tip that was positioned in close proximity to the surface of a sample with gold nanostructures on a Si-substrate by shear force feedback. The nonlinear optical signal consists of two-photon photoluminescence and second harmonic signal from the gold tip and the gold nanostructures. These signals can be used to characterize different coupling parameters such as geometry, material and width of the tip-sample gap and enable to reveal the mechanism responsible for the image contrast. Under the excitation with 776-nm and 110-fs laser pulses nonlinear imaging is almost background free and yields super resolution showing features with dimensions significantly below the diffraction limit with a signal intensity following quadratic excitation power law.

  6. The Pure Virtual Braid Group Is Quadratic

    CERN Document Server

    Lee, Peter

    2011-01-01

    If an augmented algebra K over Q is filtered by powers of its augmentation ideal I, the associated graded algebra gr_I K need not in general be quadratic: although it is generated in degree 1, its relations may not be generated by homogeneous relations of degree 2. In this paper we give a criterion which is equivalent to gr_I K being quadratic. We apply this criterion to the group algebra of the pure virtual braid group (also known as the quasi-triangular group), and show that the corresponding associated graded algebra is quadratic.

  7. Specialization of Quadratic and Symmetric Bilinear Forms

    CERN Document Server

    Knebusch, Manfred

    2010-01-01

    The specialization theory of quadratic and symmetric bilinear forms over fields and the subsequent generic splitting theory of quadratic forms were invented by the author in the mid-1970's. They came to fruition in the ensuing decades and have become an integral part of the geometric methods in quadratic form theory. This book comprehensively covers the specialization and generic splitting theories. These theories, originally developed for fields of characteristic different from 2, are explored here without this restriction. In addition to chapters on specialization theory, generic splitting t

  8. Quadratic B-mode (QB-Mode) Ultrasonic Imaging with Coded Transmit Waveforms.

    Science.gov (United States)

    Cecchini, Daniele; Yao, Hui; Phukpattaranont, Pornchai; Ebbini, Emad

    2005-01-01

    In this paper, the use of coded transmit waveforms with post-beamforming nonlinear filtering of echo data in diagnostic ultrasound is presented. The nonlinear filter based on the second-order Volterra filter (SoVF) model separates the linear and quadratic echo components. The grayscale representation of the latter results in a new mode of imaging we refer to as quadratic B-mode (QB-mode). The use of chirp transmit waveforms in imaging contrast agents allows for nonlinear excitation of microbubble contrast agents (UCA) at a range of frequencies throughout the bandwidth of the transducer. The QB-mode image is shown to produce significant increase in UCA contrast over standard B-mode images from conventional and chirp excitation with and without compression. This contrast enhancement is achieved without loss in spatial resolution.

  9. Extension of the coherence function to quadratic models. [applied to plasma density and potential fluctuations

    Science.gov (United States)

    Kim, Y. C.; Wong, W. F.; Powers, E. J.; Roth, J. R.

    1979-01-01

    It is shown how the use of higher coherence functions can recover some of the lost coherence due to nonlinear relationship between two fluctuating quantities whose degree of mutual coherence is being measured. The relationship between the two processes is modeled with the aid of a linear term and a quadratic term. As a specific example, the relationship between plasma density and potential fluctuations in a plasma is considered. The fraction of power in the auto-power spectrum of the potential fluctuations due to a linear relationship and to a quadratic relationship between the density and potential fluctuations is estimated.

  10. Structure of Solvable Quadratic Lie Algebras

    Institute of Scientific and Technical Information of China (English)

    ZHU Lin-sheng

    2005-01-01

    @@ Killing form plays a key role in the theory of semisimple Lie algebras. It is natural to extend the study to Lie algebras with a nondegenerate symmetric invariant bilinear form. Such a Lie algebra is generally called a quadratic Lie algebra which occur naturally in physics[10,12,13]. Besides semisimple Lie algebras, interesting quadratic Lie algebras include the Kac-Moody algebras and the Extended Affine Lie algebras.

  11. Radiotherapy treatment planning linear-quadratic radiobiology

    CERN Document Server

    Chapman, J Donald

    2015-01-01

    Understand Quantitative Radiobiology from a Radiation Biophysics PerspectiveIn the field of radiobiology, the linear-quadratic (LQ) equation has become the standard for defining radiation-induced cell killing. Radiotherapy Treatment Planning: Linear-Quadratic Radiobiology describes tumor cell inactivation from a radiation physics perspective and offers appropriate LQ parameters for modeling tumor and normal tissue responses.Explore the Latest Cell Killing Numbers for Defining Iso-Effective Cancer TreatmentsThe book compil

  12. Quadratic stabilization for uncertain stochastic systems

    Institute of Scientific and Technical Information of China (English)

    Jun'e FENG; Weihai ZHANG

    2005-01-01

    This paper discusses the robust quadratic stabilization control problem for stochastic uncertain systems,where the uncertain matrix is norm bounded,and the external disturbance is a stochastic process.Two kinds of controllers are designed,which include state feedback case and output feedback case.The conditions for the robust quadratic stabilization of stochastic uncertain systems are given via linear matrix inequalities.The detailed design methods are presented.Numerical examples show the effectiveness of our results.

  13. The explicit dependence of quadrat variance on the ratio of clump size to quadrat size.

    Science.gov (United States)

    Ferrandino, Francis J

    2005-05-01

    ABSTRACT In the past decade, it has become common practice to pool mapped binary epidemic data into quadrats. The resultant "quadrat counts" can then be analyzed by fitting them to a probability distribution (i.e., betabinomial). Often a binary form of Taylor's power law is used to relate the quadrat variance to the quadrat mean. The fact that there is an intrinsic dependence of such analyses on quadrat size and shape is well known. However, a clear-cut exposition of the direct connection between the spatial properties of the two-dimensional pattern of infected plants in terms of the geometry of the quadrat and the results of quadrat-based analyses is lacking. This problem was examined both empirically and analytically. The empirical approach is based on a set of stochastically generated "mock epidemics" using a Neyman-Scott cluster process. The resultant spatial point-patterns of infected plants have a fixed number of disease foci characterized by a known length scale (monodisperse) and saturated to a known disease level. When quadrat samples of these epidemics are fit to a beta-binomial distribution, the resulting measures of aggregation are totally independent of disease incidence and most strongly dependent on the ratio of the length scale of the quadrat to the length scale of spatial aggregation and to a lesser degree on disease saturation within individual foci. For the analytical approach, the mathematical form for the variation in the sum of random variates is coupled to the geometry of a quadrat through an assumed exponential autocorrelation function. The net result is an explicit equation expressing the intraquadrat correlation, quadrat variance, and the index of dispersion in terms of the ratio of the quadrat length scale to the correlative length scale.

  14. Photon-photon interaction in structured QED vacuum

    CERN Document Server

    Hatsagortsyan, K Z

    2012-01-01

    In spatially structured strong laser fields, quantum electrodynamical vacuum behaves like a nonlinear Kerr medium with modulated third-order susceptibility where new coherent nonlinear effects arise due to modulation. We consider the enhancement of vacuum polarization and magnetization via coherent spatial vacuum effects in the photon-photon interaction process during scattering of a probe laser beam on parallel focused laser beams. Both processes of elastic and inelastic four wave-mixing in structured QED vacuum accompanied with Bragg interference are investigated. The phase-matching conditions and coherent effects in the presence of Bragg grating are analyzed for photon-photon scattering.

  15. Vacuum solutions of Bianchi cosmologies in quadratic gravity

    Energy Technology Data Exchange (ETDEWEB)

    Deus, Juliano Alves de; Muller, Daniel [Universidade de Brasilia (UnB), DF (Brazil)

    2011-07-01

    Full text: In this work we solve numerically the vacuum solutions of field equations of Bianchi homogeneous universes in the context of Semiclassical theory. Our interest is to study the quadratic theory of gravity with regard in the cosmological description of our universe in periods of intense fields. Bianchi cosmologies are anisotropic homogeneous cosmological models, but can include the isotropic models as particular cases (Bianchi I, VII and IX include homogeneous and isotropic Friedmann models plane, hyperbolic and spherical, respectively). Homogeneous models are good cosmological representations of our universe. With focus in solutions for intense fields, like the early universe, where isotropy is not necessarily required, the adopted scenario is the vacuum solutions, where the geometry is dominant in determining the gravitation. Still following in this way, the Semiclassical theory, which considers quantum matter fields propagating in classical geometrical background, is addressed to give the field equations. This formalism leads to fourth-order ordinary differential equations, in contrast to second-order equations from General Relativity. The Lagrangian of the theory is quadratic in the Ricci scalar and in the Ricci tensor. The equations system is highly non-linear and can be only numerically solved, except perhaps for few particular cases. We obtained numerical solutions for Bianchi V II{sub A} evolving to Minkowski and to de Sitter solutions, and also to singularities. The both first and second solutions were obtained choosing initial conditions near from respective exact vacuum solutions from Einstein theory, which are also exact solutions of the quadratic theory. Other Bianchi types are still under study. (author)

  16. A semiconductor photon-sorter

    CERN Document Server

    Bennett, A J; Ellis, D J P; Farrer, I; Ritchie, D A; Shields, A J

    2016-01-01

    Photons do not interact directly with each other, but conditional control of one beam by another can be achieved with non-linear optical media at high field intensities. It is exceedingly difficult to reach such intensities at the single photon level but proposals have been made to obtain effective interactions by scattering photons from single transitions. We report here effective interactions between photons created using a quantum dot weakly coupled to a cavity. We show that a passive single-photon non-linearity can modify the counting statistics of a Poissonian beam, sorting the photons in number. This is used to create strong correlations between detection events and sort polarisation correlated photons from an uncorrelated stream using a single spin. These results pave the way for optical switches operated by single quanta of light.

  17. Polyhedral combinatorics of the cardinality constrained quadratic knapsack problem and the quadratic selective travelling salesman problem

    DEFF Research Database (Denmark)

    Mak, Vicky; Thomadsen, Tommy

    2006-01-01

    This paper considers the cardinality constrained quadratic knapsack problem (QKP) and the quadratic selective travelling salesman problem (QSTSP). The QKP is a generalization of the knapsack problem and the QSTSP is a generalization of the travelling salesman problem. Thus, both problems are NP...

  18. Linear-quadratic control and quadratic differential forms for multidimensional behaviors

    NARCIS (Netherlands)

    Napp, D.; Trentelman, H.L.

    2011-01-01

    This paper deals with systems described by constant coefficient linear partial differential equations (nD-systems) from a behavioral point of view. In this context we treat the linear-quadratic control problem where the performance functional is the integral of a quadratic differential form. We look

  19. A Mixed-Binary Convex Quadratic Reformulation for Box-Constrained Nonconvex Quadratic Integer Program

    OpenAIRE

    Xia, Yong; Han, Ying-Wei

    2014-01-01

    In this paper, we propose a mixed-binary convex quadratic programming reformulation for the box-constrained nonconvex quadratic integer program and then implement IBM ILOG CPLEX 12.6 to solve the new model. Computational results demonstrate that our approach clearly outperform the very recent state-of-the-art solvers.

  20. Analytical Solution of Projectile Motion with Quadratic Resistance and Generalisations

    CERN Document Server

    Ray, Shouryya

    2013-01-01

    The paper considers the motion of a body under the influence of gravity and drag of the surrounding fluid. Depending on the fluid mechanical regime, the drag force can exhibit a linear, quadratic or even more general dependence on the velocity of the body relative to the fluid. The case of quadratic drag is substantially more complex than the linear case, as it nonlinearly couples both components of the momentum equation, and no explicit analytic solution is known for a general trajectory. After a detailed account of the literature, the paper provides such a solution in form of a series expansion. This result is discussed in detail and related to other approaches previously proposed. In particular, it is shown to yield certain approximate solutions proposed in the literature as limiting cases. The solution technique employs a strategy to reduce systems of ordinary differential equations with a triangular dependence of the right-hand side on the vector of unknowns to a single equation in an auxiliary variable....